xref: /openbmc/linux/arch/x86/kvm/x86.c (revision c494a447)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_taken),
270 	STATS_DESC_COUNTER(VCPU, pf_fixed),
271 	STATS_DESC_COUNTER(VCPU, pf_emulate),
272 	STATS_DESC_COUNTER(VCPU, pf_spurious),
273 	STATS_DESC_COUNTER(VCPU, pf_fast),
274 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275 	STATS_DESC_COUNTER(VCPU, pf_guest),
276 	STATS_DESC_COUNTER(VCPU, tlb_flush),
277 	STATS_DESC_COUNTER(VCPU, invlpg),
278 	STATS_DESC_COUNTER(VCPU, exits),
279 	STATS_DESC_COUNTER(VCPU, io_exits),
280 	STATS_DESC_COUNTER(VCPU, mmio_exits),
281 	STATS_DESC_COUNTER(VCPU, signal_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
283 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284 	STATS_DESC_COUNTER(VCPU, l1d_flush),
285 	STATS_DESC_COUNTER(VCPU, halt_exits),
286 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
287 	STATS_DESC_COUNTER(VCPU, irq_exits),
288 	STATS_DESC_COUNTER(VCPU, host_state_reload),
289 	STATS_DESC_COUNTER(VCPU, fpu_reload),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation),
291 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292 	STATS_DESC_COUNTER(VCPU, hypercalls),
293 	STATS_DESC_COUNTER(VCPU, irq_injections),
294 	STATS_DESC_COUNTER(VCPU, nmi_injections),
295 	STATS_DESC_COUNTER(VCPU, req_event),
296 	STATS_DESC_COUNTER(VCPU, nested_run),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
300 };
301 
302 const struct kvm_stats_header kvm_vcpu_stats_header = {
303 	.name_size = KVM_STATS_NAME_SIZE,
304 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
305 	.id_offset = sizeof(struct kvm_stats_header),
306 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
307 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
308 		       sizeof(kvm_vcpu_stats_desc),
309 };
310 
311 u64 __read_mostly host_xcr0;
312 u64 __read_mostly supported_xcr0;
313 EXPORT_SYMBOL_GPL(supported_xcr0);
314 
315 static struct kmem_cache *x86_emulator_cache;
316 
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323 	const char *op = write ? "wrmsr" : "rdmsr";
324 
325 	if (ignore_msrs) {
326 		if (report_ignored_msrs)
327 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		/* Mask the error */
330 		return true;
331 	} else {
332 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333 				      op, msr, data);
334 		return false;
335 	}
336 }
337 
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 	unsigned int size = sizeof(struct x86_emulate_ctxt);
342 
343 	return kmem_cache_create_usercopy("x86_emulator", size,
344 					  __alignof__(struct x86_emulate_ctxt),
345 					  SLAB_ACCOUNT, useroffset,
346 					  size - useroffset, NULL);
347 }
348 
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350 
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353 	int i;
354 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355 		vcpu->arch.apf.gfns[i] = ~0;
356 }
357 
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360 	unsigned slot;
361 	struct kvm_user_return_msrs *msrs
362 		= container_of(urn, struct kvm_user_return_msrs, urn);
363 	struct kvm_user_return_msr_values *values;
364 	unsigned long flags;
365 
366 	/*
367 	 * Disabling irqs at this point since the following code could be
368 	 * interrupted and executed through kvm_arch_hardware_disable()
369 	 */
370 	local_irq_save(flags);
371 	if (msrs->registered) {
372 		msrs->registered = false;
373 		user_return_notifier_unregister(urn);
374 	}
375 	local_irq_restore(flags);
376 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377 		values = &msrs->values[slot];
378 		if (values->host != values->curr) {
379 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
380 			values->curr = values->host;
381 		}
382 	}
383 }
384 
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387 	u64 val;
388 	int ret;
389 
390 	preempt_disable();
391 	ret = rdmsrl_safe(msr, &val);
392 	if (ret)
393 		goto out;
394 	ret = wrmsrl_safe(msr, val);
395 out:
396 	preempt_enable();
397 	return ret;
398 }
399 
400 int kvm_add_user_return_msr(u32 msr)
401 {
402 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403 
404 	if (kvm_probe_user_return_msr(msr))
405 		return -1;
406 
407 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 	return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411 
412 int kvm_find_user_return_msr(u32 msr)
413 {
414 	int i;
415 
416 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 		if (kvm_uret_msrs_list[i] == msr)
418 			return i;
419 	}
420 	return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423 
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426 	unsigned int cpu = smp_processor_id();
427 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428 	u64 value;
429 	int i;
430 
431 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433 		msrs->values[i].host = value;
434 		msrs->values[i].curr = value;
435 	}
436 }
437 
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440 	unsigned int cpu = smp_processor_id();
441 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442 	int err;
443 
444 	value = (value & mask) | (msrs->values[slot].host & ~mask);
445 	if (value == msrs->values[slot].curr)
446 		return 0;
447 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448 	if (err)
449 		return 1;
450 
451 	msrs->values[slot].curr = value;
452 	if (!msrs->registered) {
453 		msrs->urn.on_user_return = kvm_on_user_return;
454 		user_return_notifier_register(&msrs->urn);
455 		msrs->registered = true;
456 	}
457 	return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460 
461 static void drop_user_return_notifiers(void)
462 {
463 	unsigned int cpu = smp_processor_id();
464 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465 
466 	if (msrs->registered)
467 		kvm_on_user_return(&msrs->urn);
468 }
469 
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472 	return vcpu->arch.apic_base;
473 }
474 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
475 
476 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
477 {
478 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
479 }
480 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
481 
482 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
483 {
484 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
485 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
486 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
487 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
488 
489 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
490 		return 1;
491 	if (!msr_info->host_initiated) {
492 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
493 			return 1;
494 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
495 			return 1;
496 	}
497 
498 	kvm_lapic_set_base(vcpu, msr_info->data);
499 	kvm_recalculate_apic_map(vcpu->kvm);
500 	return 0;
501 }
502 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
503 
504 /*
505  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
506  *
507  * Hardware virtualization extension instructions may fault if a reboot turns
508  * off virtualization while processes are running.  Usually after catching the
509  * fault we just panic; during reboot instead the instruction is ignored.
510  */
511 noinstr void kvm_spurious_fault(void)
512 {
513 	/* Fault while not rebooting.  We want the trace. */
514 	BUG_ON(!kvm_rebooting);
515 }
516 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
517 
518 #define EXCPT_BENIGN		0
519 #define EXCPT_CONTRIBUTORY	1
520 #define EXCPT_PF		2
521 
522 static int exception_class(int vector)
523 {
524 	switch (vector) {
525 	case PF_VECTOR:
526 		return EXCPT_PF;
527 	case DE_VECTOR:
528 	case TS_VECTOR:
529 	case NP_VECTOR:
530 	case SS_VECTOR:
531 	case GP_VECTOR:
532 		return EXCPT_CONTRIBUTORY;
533 	default:
534 		break;
535 	}
536 	return EXCPT_BENIGN;
537 }
538 
539 #define EXCPT_FAULT		0
540 #define EXCPT_TRAP		1
541 #define EXCPT_ABORT		2
542 #define EXCPT_INTERRUPT		3
543 
544 static int exception_type(int vector)
545 {
546 	unsigned int mask;
547 
548 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
549 		return EXCPT_INTERRUPT;
550 
551 	mask = 1 << vector;
552 
553 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
554 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
555 		return EXCPT_TRAP;
556 
557 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
558 		return EXCPT_ABORT;
559 
560 	/* Reserved exceptions will result in fault */
561 	return EXCPT_FAULT;
562 }
563 
564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
565 {
566 	unsigned nr = vcpu->arch.exception.nr;
567 	bool has_payload = vcpu->arch.exception.has_payload;
568 	unsigned long payload = vcpu->arch.exception.payload;
569 
570 	if (!has_payload)
571 		return;
572 
573 	switch (nr) {
574 	case DB_VECTOR:
575 		/*
576 		 * "Certain debug exceptions may clear bit 0-3.  The
577 		 * remaining contents of the DR6 register are never
578 		 * cleared by the processor".
579 		 */
580 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
581 		/*
582 		 * In order to reflect the #DB exception payload in guest
583 		 * dr6, three components need to be considered: active low
584 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
585 		 * DR6_BS and DR6_BT)
586 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
587 		 * In the target guest dr6:
588 		 * FIXED_1 bits should always be set.
589 		 * Active low bits should be cleared if 1-setting in payload.
590 		 * Active high bits should be set if 1-setting in payload.
591 		 *
592 		 * Note, the payload is compatible with the pending debug
593 		 * exceptions/exit qualification under VMX, that active_low bits
594 		 * are active high in payload.
595 		 * So they need to be flipped for DR6.
596 		 */
597 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
598 		vcpu->arch.dr6 |= payload;
599 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
600 
601 		/*
602 		 * The #DB payload is defined as compatible with the 'pending
603 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
604 		 * defined in the 'pending debug exceptions' field (enabled
605 		 * breakpoint), it is reserved and must be zero in DR6.
606 		 */
607 		vcpu->arch.dr6 &= ~BIT(12);
608 		break;
609 	case PF_VECTOR:
610 		vcpu->arch.cr2 = payload;
611 		break;
612 	}
613 
614 	vcpu->arch.exception.has_payload = false;
615 	vcpu->arch.exception.payload = 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
618 
619 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
620 		unsigned nr, bool has_error, u32 error_code,
621 	        bool has_payload, unsigned long payload, bool reinject)
622 {
623 	u32 prev_nr;
624 	int class1, class2;
625 
626 	kvm_make_request(KVM_REQ_EVENT, vcpu);
627 
628 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
629 	queue:
630 		if (reinject) {
631 			/*
632 			 * On vmentry, vcpu->arch.exception.pending is only
633 			 * true if an event injection was blocked by
634 			 * nested_run_pending.  In that case, however,
635 			 * vcpu_enter_guest requests an immediate exit,
636 			 * and the guest shouldn't proceed far enough to
637 			 * need reinjection.
638 			 */
639 			WARN_ON_ONCE(vcpu->arch.exception.pending);
640 			vcpu->arch.exception.injected = true;
641 			if (WARN_ON_ONCE(has_payload)) {
642 				/*
643 				 * A reinjected event has already
644 				 * delivered its payload.
645 				 */
646 				has_payload = false;
647 				payload = 0;
648 			}
649 		} else {
650 			vcpu->arch.exception.pending = true;
651 			vcpu->arch.exception.injected = false;
652 		}
653 		vcpu->arch.exception.has_error_code = has_error;
654 		vcpu->arch.exception.nr = nr;
655 		vcpu->arch.exception.error_code = error_code;
656 		vcpu->arch.exception.has_payload = has_payload;
657 		vcpu->arch.exception.payload = payload;
658 		if (!is_guest_mode(vcpu))
659 			kvm_deliver_exception_payload(vcpu);
660 		return;
661 	}
662 
663 	/* to check exception */
664 	prev_nr = vcpu->arch.exception.nr;
665 	if (prev_nr == DF_VECTOR) {
666 		/* triple fault -> shutdown */
667 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
668 		return;
669 	}
670 	class1 = exception_class(prev_nr);
671 	class2 = exception_class(nr);
672 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
673 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
674 		/*
675 		 * Generate double fault per SDM Table 5-5.  Set
676 		 * exception.pending = true so that the double fault
677 		 * can trigger a nested vmexit.
678 		 */
679 		vcpu->arch.exception.pending = true;
680 		vcpu->arch.exception.injected = false;
681 		vcpu->arch.exception.has_error_code = true;
682 		vcpu->arch.exception.nr = DF_VECTOR;
683 		vcpu->arch.exception.error_code = 0;
684 		vcpu->arch.exception.has_payload = false;
685 		vcpu->arch.exception.payload = 0;
686 	} else
687 		/* replace previous exception with a new one in a hope
688 		   that instruction re-execution will regenerate lost
689 		   exception */
690 		goto queue;
691 }
692 
693 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
694 {
695 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
696 }
697 EXPORT_SYMBOL_GPL(kvm_queue_exception);
698 
699 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
700 {
701 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
702 }
703 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
704 
705 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
706 			   unsigned long payload)
707 {
708 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
709 }
710 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
711 
712 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
713 				    u32 error_code, unsigned long payload)
714 {
715 	kvm_multiple_exception(vcpu, nr, true, error_code,
716 			       true, payload, false);
717 }
718 
719 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
720 {
721 	if (err)
722 		kvm_inject_gp(vcpu, 0);
723 	else
724 		return kvm_skip_emulated_instruction(vcpu);
725 
726 	return 1;
727 }
728 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
729 
730 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
731 {
732 	if (err) {
733 		kvm_inject_gp(vcpu, 0);
734 		return 1;
735 	}
736 
737 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
738 				       EMULTYPE_COMPLETE_USER_EXIT);
739 }
740 
741 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
742 {
743 	++vcpu->stat.pf_guest;
744 	vcpu->arch.exception.nested_apf =
745 		is_guest_mode(vcpu) && fault->async_page_fault;
746 	if (vcpu->arch.exception.nested_apf) {
747 		vcpu->arch.apf.nested_apf_token = fault->address;
748 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
749 	} else {
750 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
751 					fault->address);
752 	}
753 }
754 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
755 
756 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
757 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
758 				    struct x86_exception *fault)
759 {
760 	struct kvm_mmu *fault_mmu;
761 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
762 
763 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
764 					       vcpu->arch.walk_mmu;
765 
766 	/*
767 	 * Invalidate the TLB entry for the faulting address, if it exists,
768 	 * else the access will fault indefinitely (and to emulate hardware).
769 	 */
770 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
771 	    !(fault->error_code & PFERR_RSVD_MASK))
772 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
773 				       fault_mmu->root.hpa);
774 
775 	/*
776 	 * A workaround for KVM's bad exception handling.  If KVM injected an
777 	 * exception into L2, and L2 encountered a #PF while vectoring the
778 	 * injected exception, manually check to see if L1 wants to intercept
779 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
780 	 * In all other cases, defer the check to nested_ops->check_events(),
781 	 * which will correctly handle priority (this does not).  Note, other
782 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
783 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
784 	 * shadow paging.
785 	 *
786 	 * TODO: Rewrite exception handling to track injected and pending
787 	 *       (VM-Exit) exceptions separately.
788 	 */
789 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
790 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
791 		return true;
792 
793 	fault_mmu->inject_page_fault(vcpu, fault);
794 	return false;
795 }
796 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
797 
798 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
799 {
800 	atomic_inc(&vcpu->arch.nmi_queued);
801 	kvm_make_request(KVM_REQ_NMI, vcpu);
802 }
803 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
804 
805 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
806 {
807 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
808 }
809 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
810 
811 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
812 {
813 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
814 }
815 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
816 
817 /*
818  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
819  * a #GP and return false.
820  */
821 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
822 {
823 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
824 		return true;
825 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
826 	return false;
827 }
828 EXPORT_SYMBOL_GPL(kvm_require_cpl);
829 
830 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
831 {
832 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
833 		return true;
834 
835 	kvm_queue_exception(vcpu, UD_VECTOR);
836 	return false;
837 }
838 EXPORT_SYMBOL_GPL(kvm_require_dr);
839 
840 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
841 {
842 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
843 }
844 
845 /*
846  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
847  */
848 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
849 {
850 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
851 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
852 	gpa_t real_gpa;
853 	int i;
854 	int ret;
855 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
856 
857 	/*
858 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
859 	 * to an L1 GPA.
860 	 */
861 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
862 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
863 	if (real_gpa == UNMAPPED_GVA)
864 		return 0;
865 
866 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
867 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
868 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
869 	if (ret < 0)
870 		return 0;
871 
872 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
873 		if ((pdpte[i] & PT_PRESENT_MASK) &&
874 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
875 			return 0;
876 		}
877 	}
878 
879 	/*
880 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
881 	 * Shadow page roots need to be reconstructed instead.
882 	 */
883 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
884 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
885 
886 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
887 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
888 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
889 	vcpu->arch.pdptrs_from_userspace = false;
890 
891 	return 1;
892 }
893 EXPORT_SYMBOL_GPL(load_pdptrs);
894 
895 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
896 {
897 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
898 		kvm_clear_async_pf_completion_queue(vcpu);
899 		kvm_async_pf_hash_reset(vcpu);
900 
901 		/*
902 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
903 		 * perspective.
904 		 */
905 		if (!(cr0 & X86_CR0_PG))
906 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
907 	}
908 
909 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
910 		kvm_mmu_reset_context(vcpu);
911 
912 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
913 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
914 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
915 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
916 }
917 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
918 
919 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
920 {
921 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
922 
923 	cr0 |= X86_CR0_ET;
924 
925 #ifdef CONFIG_X86_64
926 	if (cr0 & 0xffffffff00000000UL)
927 		return 1;
928 #endif
929 
930 	cr0 &= ~CR0_RESERVED_BITS;
931 
932 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
933 		return 1;
934 
935 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
936 		return 1;
937 
938 #ifdef CONFIG_X86_64
939 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
940 	    (cr0 & X86_CR0_PG)) {
941 		int cs_db, cs_l;
942 
943 		if (!is_pae(vcpu))
944 			return 1;
945 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
946 		if (cs_l)
947 			return 1;
948 	}
949 #endif
950 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
951 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
952 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
953 		return 1;
954 
955 	if (!(cr0 & X86_CR0_PG) &&
956 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
957 		return 1;
958 
959 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
960 
961 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
962 
963 	return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_cr0);
966 
967 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
968 {
969 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
970 }
971 EXPORT_SYMBOL_GPL(kvm_lmsw);
972 
973 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
974 {
975 	if (vcpu->arch.guest_state_protected)
976 		return;
977 
978 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
979 
980 		if (vcpu->arch.xcr0 != host_xcr0)
981 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
982 
983 		if (vcpu->arch.xsaves_enabled &&
984 		    vcpu->arch.ia32_xss != host_xss)
985 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
986 	}
987 
988 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
989 	if (static_cpu_has(X86_FEATURE_PKU) &&
990 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
991 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
992 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
993 		write_pkru(vcpu->arch.pkru);
994 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
997 
998 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
999 {
1000 	if (vcpu->arch.guest_state_protected)
1001 		return;
1002 
1003 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1004 	if (static_cpu_has(X86_FEATURE_PKU) &&
1005 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1006 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1007 		vcpu->arch.pkru = rdpkru();
1008 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1009 			write_pkru(vcpu->arch.host_pkru);
1010 	}
1011 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1012 
1013 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1014 
1015 		if (vcpu->arch.xcr0 != host_xcr0)
1016 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1017 
1018 		if (vcpu->arch.xsaves_enabled &&
1019 		    vcpu->arch.ia32_xss != host_xss)
1020 			wrmsrl(MSR_IA32_XSS, host_xss);
1021 	}
1022 
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1025 
1026 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1027 {
1028 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1029 }
1030 
1031 #ifdef CONFIG_X86_64
1032 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1033 {
1034 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1035 }
1036 #endif
1037 
1038 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1039 {
1040 	u64 xcr0 = xcr;
1041 	u64 old_xcr0 = vcpu->arch.xcr0;
1042 	u64 valid_bits;
1043 
1044 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1045 	if (index != XCR_XFEATURE_ENABLED_MASK)
1046 		return 1;
1047 	if (!(xcr0 & XFEATURE_MASK_FP))
1048 		return 1;
1049 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1050 		return 1;
1051 
1052 	/*
1053 	 * Do not allow the guest to set bits that we do not support
1054 	 * saving.  However, xcr0 bit 0 is always set, even if the
1055 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1056 	 */
1057 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1058 	if (xcr0 & ~valid_bits)
1059 		return 1;
1060 
1061 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1062 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1063 		return 1;
1064 
1065 	if (xcr0 & XFEATURE_MASK_AVX512) {
1066 		if (!(xcr0 & XFEATURE_MASK_YMM))
1067 			return 1;
1068 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1069 			return 1;
1070 	}
1071 
1072 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1073 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1074 		return 1;
1075 
1076 	vcpu->arch.xcr0 = xcr0;
1077 
1078 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1079 		kvm_update_cpuid_runtime(vcpu);
1080 	return 0;
1081 }
1082 
1083 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1084 {
1085 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1086 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1087 		kvm_inject_gp(vcpu, 0);
1088 		return 1;
1089 	}
1090 
1091 	return kvm_skip_emulated_instruction(vcpu);
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1094 
1095 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096 {
1097 	if (cr4 & cr4_reserved_bits)
1098 		return false;
1099 
1100 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1101 		return false;
1102 
1103 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1106 
1107 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1108 {
1109 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1110 		kvm_mmu_reset_context(vcpu);
1111 
1112 	/*
1113 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1114 	 * according to the SDM; however, stale prev_roots could be reused
1115 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1116 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1117 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1118 	 * so fall through.
1119 	 */
1120 	if (!tdp_enabled &&
1121 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1122 		kvm_mmu_unload(vcpu);
1123 
1124 	/*
1125 	 * The TLB has to be flushed for all PCIDs if any of the following
1126 	 * (architecturally required) changes happen:
1127 	 * - CR4.PCIDE is changed from 1 to 0
1128 	 * - CR4.PGE is toggled
1129 	 *
1130 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1131 	 */
1132 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1133 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1134 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1135 
1136 	/*
1137 	 * The TLB has to be flushed for the current PCID if any of the
1138 	 * following (architecturally required) changes happen:
1139 	 * - CR4.SMEP is changed from 0 to 1
1140 	 * - CR4.PAE is toggled
1141 	 */
1142 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1143 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1144 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1145 
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1148 
1149 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1150 {
1151 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1152 
1153 	if (!kvm_is_valid_cr4(vcpu, cr4))
1154 		return 1;
1155 
1156 	if (is_long_mode(vcpu)) {
1157 		if (!(cr4 & X86_CR4_PAE))
1158 			return 1;
1159 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1160 			return 1;
1161 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1162 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1163 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1164 		return 1;
1165 
1166 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1167 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1168 			return 1;
1169 
1170 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1171 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1172 			return 1;
1173 	}
1174 
1175 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1176 
1177 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1178 
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1182 
1183 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1184 {
1185 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1186 	unsigned long roots_to_free = 0;
1187 	int i;
1188 
1189 	/*
1190 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1191 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1192 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1193 	 * the invalidation, but the guest's TLB entries need to be flushed as
1194 	 * the CPU may have cached entries in its TLB for the target PCID.
1195 	 */
1196 	if (unlikely(tdp_enabled)) {
1197 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1198 		return;
1199 	}
1200 
1201 	/*
1202 	 * If neither the current CR3 nor any of the prev_roots use the given
1203 	 * PCID, then nothing needs to be done here because a resync will
1204 	 * happen anyway before switching to any other CR3.
1205 	 */
1206 	if (kvm_get_active_pcid(vcpu) == pcid) {
1207 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1208 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1209 	}
1210 
1211 	/*
1212 	 * If PCID is disabled, there is no need to free prev_roots even if the
1213 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1214 	 * with PCIDE=0.
1215 	 */
1216 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1217 		return;
1218 
1219 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1220 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1221 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1222 
1223 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1224 }
1225 
1226 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1227 {
1228 	bool skip_tlb_flush = false;
1229 	unsigned long pcid = 0;
1230 #ifdef CONFIG_X86_64
1231 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1232 
1233 	if (pcid_enabled) {
1234 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1235 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1236 		pcid = cr3 & X86_CR3_PCID_MASK;
1237 	}
1238 #endif
1239 
1240 	/* PDPTRs are always reloaded for PAE paging. */
1241 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1242 		goto handle_tlb_flush;
1243 
1244 	/*
1245 	 * Do not condition the GPA check on long mode, this helper is used to
1246 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1247 	 * the current vCPU mode is accurate.
1248 	 */
1249 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1250 		return 1;
1251 
1252 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1253 		return 1;
1254 
1255 	if (cr3 != kvm_read_cr3(vcpu))
1256 		kvm_mmu_new_pgd(vcpu, cr3);
1257 
1258 	vcpu->arch.cr3 = cr3;
1259 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1260 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1261 
1262 handle_tlb_flush:
1263 	/*
1264 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1265 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1266 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1267 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1268 	 * i.e. only PCID=0 can be relevant.
1269 	 */
1270 	if (!skip_tlb_flush)
1271 		kvm_invalidate_pcid(vcpu, pcid);
1272 
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1276 
1277 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1278 {
1279 	if (cr8 & CR8_RESERVED_BITS)
1280 		return 1;
1281 	if (lapic_in_kernel(vcpu))
1282 		kvm_lapic_set_tpr(vcpu, cr8);
1283 	else
1284 		vcpu->arch.cr8 = cr8;
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1288 
1289 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1290 {
1291 	if (lapic_in_kernel(vcpu))
1292 		return kvm_lapic_get_cr8(vcpu);
1293 	else
1294 		return vcpu->arch.cr8;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1297 
1298 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1299 {
1300 	int i;
1301 
1302 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1303 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1304 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1305 	}
1306 }
1307 
1308 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1309 {
1310 	unsigned long dr7;
1311 
1312 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1313 		dr7 = vcpu->arch.guest_debug_dr7;
1314 	else
1315 		dr7 = vcpu->arch.dr7;
1316 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1317 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1318 	if (dr7 & DR7_BP_EN_MASK)
1319 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1322 
1323 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1324 {
1325 	u64 fixed = DR6_FIXED_1;
1326 
1327 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1328 		fixed |= DR6_RTM;
1329 
1330 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1331 		fixed |= DR6_BUS_LOCK;
1332 	return fixed;
1333 }
1334 
1335 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1336 {
1337 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1338 
1339 	switch (dr) {
1340 	case 0 ... 3:
1341 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1342 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1343 			vcpu->arch.eff_db[dr] = val;
1344 		break;
1345 	case 4:
1346 	case 6:
1347 		if (!kvm_dr6_valid(val))
1348 			return 1; /* #GP */
1349 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1350 		break;
1351 	case 5:
1352 	default: /* 7 */
1353 		if (!kvm_dr7_valid(val))
1354 			return 1; /* #GP */
1355 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1356 		kvm_update_dr7(vcpu);
1357 		break;
1358 	}
1359 
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_set_dr);
1363 
1364 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1365 {
1366 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1367 
1368 	switch (dr) {
1369 	case 0 ... 3:
1370 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1371 		break;
1372 	case 4:
1373 	case 6:
1374 		*val = vcpu->arch.dr6;
1375 		break;
1376 	case 5:
1377 	default: /* 7 */
1378 		*val = vcpu->arch.dr7;
1379 		break;
1380 	}
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_get_dr);
1383 
1384 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1385 {
1386 	u32 ecx = kvm_rcx_read(vcpu);
1387 	u64 data;
1388 
1389 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1390 		kvm_inject_gp(vcpu, 0);
1391 		return 1;
1392 	}
1393 
1394 	kvm_rax_write(vcpu, (u32)data);
1395 	kvm_rdx_write(vcpu, data >> 32);
1396 	return kvm_skip_emulated_instruction(vcpu);
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1399 
1400 /*
1401  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1402  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1403  *
1404  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1405  * extract the supported MSRs from the related const lists.
1406  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1407  * capabilities of the host cpu. This capabilities test skips MSRs that are
1408  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1409  * may depend on host virtualization features rather than host cpu features.
1410  */
1411 
1412 static const u32 msrs_to_save_all[] = {
1413 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1414 	MSR_STAR,
1415 #ifdef CONFIG_X86_64
1416 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1417 #endif
1418 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1419 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1420 	MSR_IA32_SPEC_CTRL,
1421 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1422 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1423 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1424 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1425 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1426 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1427 	MSR_IA32_UMWAIT_CONTROL,
1428 
1429 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1430 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1431 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1432 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1433 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1434 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1435 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1436 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1437 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1438 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1439 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1440 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1441 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1442 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1443 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1444 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1445 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1446 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1447 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1448 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1449 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1450 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1451 
1452 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1453 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1454 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1455 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1456 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1457 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1458 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1459 };
1460 
1461 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1462 static unsigned num_msrs_to_save;
1463 
1464 static const u32 emulated_msrs_all[] = {
1465 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1466 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1467 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1468 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1469 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1470 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1471 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1472 	HV_X64_MSR_RESET,
1473 	HV_X64_MSR_VP_INDEX,
1474 	HV_X64_MSR_VP_RUNTIME,
1475 	HV_X64_MSR_SCONTROL,
1476 	HV_X64_MSR_STIMER0_CONFIG,
1477 	HV_X64_MSR_VP_ASSIST_PAGE,
1478 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1479 	HV_X64_MSR_TSC_EMULATION_STATUS,
1480 	HV_X64_MSR_SYNDBG_OPTIONS,
1481 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1482 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1483 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1484 
1485 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1486 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1487 
1488 	MSR_IA32_TSC_ADJUST,
1489 	MSR_IA32_TSC_DEADLINE,
1490 	MSR_IA32_ARCH_CAPABILITIES,
1491 	MSR_IA32_PERF_CAPABILITIES,
1492 	MSR_IA32_MISC_ENABLE,
1493 	MSR_IA32_MCG_STATUS,
1494 	MSR_IA32_MCG_CTL,
1495 	MSR_IA32_MCG_EXT_CTL,
1496 	MSR_IA32_SMBASE,
1497 	MSR_SMI_COUNT,
1498 	MSR_PLATFORM_INFO,
1499 	MSR_MISC_FEATURES_ENABLES,
1500 	MSR_AMD64_VIRT_SPEC_CTRL,
1501 	MSR_AMD64_TSC_RATIO,
1502 	MSR_IA32_POWER_CTL,
1503 	MSR_IA32_UCODE_REV,
1504 
1505 	/*
1506 	 * The following list leaves out MSRs whose values are determined
1507 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1508 	 * We always support the "true" VMX control MSRs, even if the host
1509 	 * processor does not, so I am putting these registers here rather
1510 	 * than in msrs_to_save_all.
1511 	 */
1512 	MSR_IA32_VMX_BASIC,
1513 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1514 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1515 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1516 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1517 	MSR_IA32_VMX_MISC,
1518 	MSR_IA32_VMX_CR0_FIXED0,
1519 	MSR_IA32_VMX_CR4_FIXED0,
1520 	MSR_IA32_VMX_VMCS_ENUM,
1521 	MSR_IA32_VMX_PROCBASED_CTLS2,
1522 	MSR_IA32_VMX_EPT_VPID_CAP,
1523 	MSR_IA32_VMX_VMFUNC,
1524 
1525 	MSR_K7_HWCR,
1526 	MSR_KVM_POLL_CONTROL,
1527 };
1528 
1529 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1530 static unsigned num_emulated_msrs;
1531 
1532 /*
1533  * List of msr numbers which are used to expose MSR-based features that
1534  * can be used by a hypervisor to validate requested CPU features.
1535  */
1536 static const u32 msr_based_features_all[] = {
1537 	MSR_IA32_VMX_BASIC,
1538 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1539 	MSR_IA32_VMX_PINBASED_CTLS,
1540 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1541 	MSR_IA32_VMX_PROCBASED_CTLS,
1542 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1543 	MSR_IA32_VMX_EXIT_CTLS,
1544 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1545 	MSR_IA32_VMX_ENTRY_CTLS,
1546 	MSR_IA32_VMX_MISC,
1547 	MSR_IA32_VMX_CR0_FIXED0,
1548 	MSR_IA32_VMX_CR0_FIXED1,
1549 	MSR_IA32_VMX_CR4_FIXED0,
1550 	MSR_IA32_VMX_CR4_FIXED1,
1551 	MSR_IA32_VMX_VMCS_ENUM,
1552 	MSR_IA32_VMX_PROCBASED_CTLS2,
1553 	MSR_IA32_VMX_EPT_VPID_CAP,
1554 	MSR_IA32_VMX_VMFUNC,
1555 
1556 	MSR_F10H_DECFG,
1557 	MSR_IA32_UCODE_REV,
1558 	MSR_IA32_ARCH_CAPABILITIES,
1559 	MSR_IA32_PERF_CAPABILITIES,
1560 };
1561 
1562 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1563 static unsigned int num_msr_based_features;
1564 
1565 static u64 kvm_get_arch_capabilities(void)
1566 {
1567 	u64 data = 0;
1568 
1569 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1570 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1571 
1572 	/*
1573 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1574 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1575 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1576 	 * L1 guests, so it need not worry about its own (L2) guests.
1577 	 */
1578 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1579 
1580 	/*
1581 	 * If we're doing cache flushes (either "always" or "cond")
1582 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1583 	 * If an outer hypervisor is doing the cache flush for us
1584 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1585 	 * capability to the guest too, and if EPT is disabled we're not
1586 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1587 	 * require a nested hypervisor to do a flush of its own.
1588 	 */
1589 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1590 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1591 
1592 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1593 		data |= ARCH_CAP_RDCL_NO;
1594 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1595 		data |= ARCH_CAP_SSB_NO;
1596 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1597 		data |= ARCH_CAP_MDS_NO;
1598 
1599 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1600 		/*
1601 		 * If RTM=0 because the kernel has disabled TSX, the host might
1602 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1603 		 * and therefore knows that there cannot be TAA) but keep
1604 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1605 		 * and we want to allow migrating those guests to tsx=off hosts.
1606 		 */
1607 		data &= ~ARCH_CAP_TAA_NO;
1608 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1609 		data |= ARCH_CAP_TAA_NO;
1610 	} else {
1611 		/*
1612 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1613 		 * host so the guest can choose between disabling TSX or
1614 		 * using VERW to clear CPU buffers.
1615 		 */
1616 	}
1617 
1618 	return data;
1619 }
1620 
1621 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1622 {
1623 	switch (msr->index) {
1624 	case MSR_IA32_ARCH_CAPABILITIES:
1625 		msr->data = kvm_get_arch_capabilities();
1626 		break;
1627 	case MSR_IA32_UCODE_REV:
1628 		rdmsrl_safe(msr->index, &msr->data);
1629 		break;
1630 	default:
1631 		return static_call(kvm_x86_get_msr_feature)(msr);
1632 	}
1633 	return 0;
1634 }
1635 
1636 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1637 {
1638 	struct kvm_msr_entry msr;
1639 	int r;
1640 
1641 	msr.index = index;
1642 	r = kvm_get_msr_feature(&msr);
1643 
1644 	if (r == KVM_MSR_RET_INVALID) {
1645 		/* Unconditionally clear the output for simplicity */
1646 		*data = 0;
1647 		if (kvm_msr_ignored_check(index, 0, false))
1648 			r = 0;
1649 	}
1650 
1651 	if (r)
1652 		return r;
1653 
1654 	*data = msr.data;
1655 
1656 	return 0;
1657 }
1658 
1659 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1660 {
1661 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1662 		return false;
1663 
1664 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1665 		return false;
1666 
1667 	if (efer & (EFER_LME | EFER_LMA) &&
1668 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1669 		return false;
1670 
1671 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1672 		return false;
1673 
1674 	return true;
1675 
1676 }
1677 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1678 {
1679 	if (efer & efer_reserved_bits)
1680 		return false;
1681 
1682 	return __kvm_valid_efer(vcpu, efer);
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1685 
1686 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1687 {
1688 	u64 old_efer = vcpu->arch.efer;
1689 	u64 efer = msr_info->data;
1690 	int r;
1691 
1692 	if (efer & efer_reserved_bits)
1693 		return 1;
1694 
1695 	if (!msr_info->host_initiated) {
1696 		if (!__kvm_valid_efer(vcpu, efer))
1697 			return 1;
1698 
1699 		if (is_paging(vcpu) &&
1700 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1701 			return 1;
1702 	}
1703 
1704 	efer &= ~EFER_LMA;
1705 	efer |= vcpu->arch.efer & EFER_LMA;
1706 
1707 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1708 	if (r) {
1709 		WARN_ON(r > 0);
1710 		return r;
1711 	}
1712 
1713 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1714 		kvm_mmu_reset_context(vcpu);
1715 
1716 	return 0;
1717 }
1718 
1719 void kvm_enable_efer_bits(u64 mask)
1720 {
1721        efer_reserved_bits &= ~mask;
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1724 
1725 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1726 {
1727 	struct kvm_x86_msr_filter *msr_filter;
1728 	struct msr_bitmap_range *ranges;
1729 	struct kvm *kvm = vcpu->kvm;
1730 	bool allowed;
1731 	int idx;
1732 	u32 i;
1733 
1734 	/* x2APIC MSRs do not support filtering. */
1735 	if (index >= 0x800 && index <= 0x8ff)
1736 		return true;
1737 
1738 	idx = srcu_read_lock(&kvm->srcu);
1739 
1740 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1741 	if (!msr_filter) {
1742 		allowed = true;
1743 		goto out;
1744 	}
1745 
1746 	allowed = msr_filter->default_allow;
1747 	ranges = msr_filter->ranges;
1748 
1749 	for (i = 0; i < msr_filter->count; i++) {
1750 		u32 start = ranges[i].base;
1751 		u32 end = start + ranges[i].nmsrs;
1752 		u32 flags = ranges[i].flags;
1753 		unsigned long *bitmap = ranges[i].bitmap;
1754 
1755 		if ((index >= start) && (index < end) && (flags & type)) {
1756 			allowed = !!test_bit(index - start, bitmap);
1757 			break;
1758 		}
1759 	}
1760 
1761 out:
1762 	srcu_read_unlock(&kvm->srcu, idx);
1763 
1764 	return allowed;
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1767 
1768 /*
1769  * Write @data into the MSR specified by @index.  Select MSR specific fault
1770  * checks are bypassed if @host_initiated is %true.
1771  * Returns 0 on success, non-0 otherwise.
1772  * Assumes vcpu_load() was already called.
1773  */
1774 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1775 			 bool host_initiated)
1776 {
1777 	struct msr_data msr;
1778 
1779 	switch (index) {
1780 	case MSR_FS_BASE:
1781 	case MSR_GS_BASE:
1782 	case MSR_KERNEL_GS_BASE:
1783 	case MSR_CSTAR:
1784 	case MSR_LSTAR:
1785 		if (is_noncanonical_address(data, vcpu))
1786 			return 1;
1787 		break;
1788 	case MSR_IA32_SYSENTER_EIP:
1789 	case MSR_IA32_SYSENTER_ESP:
1790 		/*
1791 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1792 		 * non-canonical address is written on Intel but not on
1793 		 * AMD (which ignores the top 32-bits, because it does
1794 		 * not implement 64-bit SYSENTER).
1795 		 *
1796 		 * 64-bit code should hence be able to write a non-canonical
1797 		 * value on AMD.  Making the address canonical ensures that
1798 		 * vmentry does not fail on Intel after writing a non-canonical
1799 		 * value, and that something deterministic happens if the guest
1800 		 * invokes 64-bit SYSENTER.
1801 		 */
1802 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1803 		break;
1804 	case MSR_TSC_AUX:
1805 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1806 			return 1;
1807 
1808 		if (!host_initiated &&
1809 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1810 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1811 			return 1;
1812 
1813 		/*
1814 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1815 		 * incomplete and conflicting architectural behavior.  Current
1816 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1817 		 * reserved and always read as zeros.  Enforce Intel's reserved
1818 		 * bits check if and only if the guest CPU is Intel, and clear
1819 		 * the bits in all other cases.  This ensures cross-vendor
1820 		 * migration will provide consistent behavior for the guest.
1821 		 */
1822 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1823 			return 1;
1824 
1825 		data = (u32)data;
1826 		break;
1827 	}
1828 
1829 	msr.data = data;
1830 	msr.index = index;
1831 	msr.host_initiated = host_initiated;
1832 
1833 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1834 }
1835 
1836 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1837 				     u32 index, u64 data, bool host_initiated)
1838 {
1839 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1840 
1841 	if (ret == KVM_MSR_RET_INVALID)
1842 		if (kvm_msr_ignored_check(index, data, true))
1843 			ret = 0;
1844 
1845 	return ret;
1846 }
1847 
1848 /*
1849  * Read the MSR specified by @index into @data.  Select MSR specific fault
1850  * checks are bypassed if @host_initiated is %true.
1851  * Returns 0 on success, non-0 otherwise.
1852  * Assumes vcpu_load() was already called.
1853  */
1854 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1855 		  bool host_initiated)
1856 {
1857 	struct msr_data msr;
1858 	int ret;
1859 
1860 	switch (index) {
1861 	case MSR_TSC_AUX:
1862 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1863 			return 1;
1864 
1865 		if (!host_initiated &&
1866 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1867 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1868 			return 1;
1869 		break;
1870 	}
1871 
1872 	msr.index = index;
1873 	msr.host_initiated = host_initiated;
1874 
1875 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1876 	if (!ret)
1877 		*data = msr.data;
1878 	return ret;
1879 }
1880 
1881 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1882 				     u32 index, u64 *data, bool host_initiated)
1883 {
1884 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1885 
1886 	if (ret == KVM_MSR_RET_INVALID) {
1887 		/* Unconditionally clear *data for simplicity */
1888 		*data = 0;
1889 		if (kvm_msr_ignored_check(index, 0, false))
1890 			ret = 0;
1891 	}
1892 
1893 	return ret;
1894 }
1895 
1896 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1897 {
1898 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1899 		return KVM_MSR_RET_FILTERED;
1900 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1901 }
1902 
1903 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1904 {
1905 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1906 		return KVM_MSR_RET_FILTERED;
1907 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1908 }
1909 
1910 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1911 {
1912 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_get_msr);
1915 
1916 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1917 {
1918 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_set_msr);
1921 
1922 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1923 {
1924 	if (!vcpu->run->msr.error) {
1925 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1926 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1927 	}
1928 }
1929 
1930 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1931 {
1932 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1933 }
1934 
1935 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1936 {
1937 	complete_userspace_rdmsr(vcpu);
1938 	return complete_emulated_msr_access(vcpu);
1939 }
1940 
1941 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1942 {
1943 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1944 }
1945 
1946 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1947 {
1948 	complete_userspace_rdmsr(vcpu);
1949 	return complete_fast_msr_access(vcpu);
1950 }
1951 
1952 static u64 kvm_msr_reason(int r)
1953 {
1954 	switch (r) {
1955 	case KVM_MSR_RET_INVALID:
1956 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1957 	case KVM_MSR_RET_FILTERED:
1958 		return KVM_MSR_EXIT_REASON_FILTER;
1959 	default:
1960 		return KVM_MSR_EXIT_REASON_INVAL;
1961 	}
1962 }
1963 
1964 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1965 			      u32 exit_reason, u64 data,
1966 			      int (*completion)(struct kvm_vcpu *vcpu),
1967 			      int r)
1968 {
1969 	u64 msr_reason = kvm_msr_reason(r);
1970 
1971 	/* Check if the user wanted to know about this MSR fault */
1972 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1973 		return 0;
1974 
1975 	vcpu->run->exit_reason = exit_reason;
1976 	vcpu->run->msr.error = 0;
1977 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1978 	vcpu->run->msr.reason = msr_reason;
1979 	vcpu->run->msr.index = index;
1980 	vcpu->run->msr.data = data;
1981 	vcpu->arch.complete_userspace_io = completion;
1982 
1983 	return 1;
1984 }
1985 
1986 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1987 {
1988 	u32 ecx = kvm_rcx_read(vcpu);
1989 	u64 data;
1990 	int r;
1991 
1992 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1993 
1994 	if (!r) {
1995 		trace_kvm_msr_read(ecx, data);
1996 
1997 		kvm_rax_write(vcpu, data & -1u);
1998 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1999 	} else {
2000 		/* MSR read failed? See if we should ask user space */
2001 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2002 				       complete_fast_rdmsr, r))
2003 			return 0;
2004 		trace_kvm_msr_read_ex(ecx);
2005 	}
2006 
2007 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2010 
2011 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2012 {
2013 	u32 ecx = kvm_rcx_read(vcpu);
2014 	u64 data = kvm_read_edx_eax(vcpu);
2015 	int r;
2016 
2017 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2018 
2019 	if (!r) {
2020 		trace_kvm_msr_write(ecx, data);
2021 	} else {
2022 		/* MSR write failed? See if we should ask user space */
2023 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2024 				       complete_fast_msr_access, r))
2025 			return 0;
2026 		/* Signal all other negative errors to userspace */
2027 		if (r < 0)
2028 			return r;
2029 		trace_kvm_msr_write_ex(ecx, data);
2030 	}
2031 
2032 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2035 
2036 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2037 {
2038 	return kvm_skip_emulated_instruction(vcpu);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2041 
2042 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2043 {
2044 	/* Treat an INVD instruction as a NOP and just skip it. */
2045 	return kvm_emulate_as_nop(vcpu);
2046 }
2047 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2048 
2049 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2050 {
2051 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2052 	return kvm_emulate_as_nop(vcpu);
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2055 
2056 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2057 {
2058 	kvm_queue_exception(vcpu, UD_VECTOR);
2059 	return 1;
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2062 
2063 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2064 {
2065 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2066 	return kvm_emulate_as_nop(vcpu);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2069 
2070 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2071 {
2072 	xfer_to_guest_mode_prepare();
2073 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2074 		xfer_to_guest_mode_work_pending();
2075 }
2076 
2077 /*
2078  * The fast path for frequent and performance sensitive wrmsr emulation,
2079  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2080  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2081  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2082  * other cases which must be called after interrupts are enabled on the host.
2083  */
2084 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2085 {
2086 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2087 		return 1;
2088 
2089 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2090 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2091 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2092 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2093 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2094 
2095 	return 1;
2096 }
2097 
2098 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2099 {
2100 	if (!kvm_can_use_hv_timer(vcpu))
2101 		return 1;
2102 
2103 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2104 	return 0;
2105 }
2106 
2107 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2108 {
2109 	u32 msr = kvm_rcx_read(vcpu);
2110 	u64 data;
2111 	fastpath_t ret = EXIT_FASTPATH_NONE;
2112 
2113 	switch (msr) {
2114 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2115 		data = kvm_read_edx_eax(vcpu);
2116 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2117 			kvm_skip_emulated_instruction(vcpu);
2118 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2119 		}
2120 		break;
2121 	case MSR_IA32_TSC_DEADLINE:
2122 		data = kvm_read_edx_eax(vcpu);
2123 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2124 			kvm_skip_emulated_instruction(vcpu);
2125 			ret = EXIT_FASTPATH_REENTER_GUEST;
2126 		}
2127 		break;
2128 	default:
2129 		break;
2130 	}
2131 
2132 	if (ret != EXIT_FASTPATH_NONE)
2133 		trace_kvm_msr_write(msr, data);
2134 
2135 	return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2138 
2139 /*
2140  * Adapt set_msr() to msr_io()'s calling convention
2141  */
2142 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2143 {
2144 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2145 }
2146 
2147 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2148 {
2149 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2150 }
2151 
2152 #ifdef CONFIG_X86_64
2153 struct pvclock_clock {
2154 	int vclock_mode;
2155 	u64 cycle_last;
2156 	u64 mask;
2157 	u32 mult;
2158 	u32 shift;
2159 	u64 base_cycles;
2160 	u64 offset;
2161 };
2162 
2163 struct pvclock_gtod_data {
2164 	seqcount_t	seq;
2165 
2166 	struct pvclock_clock clock; /* extract of a clocksource struct */
2167 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2168 
2169 	ktime_t		offs_boot;
2170 	u64		wall_time_sec;
2171 };
2172 
2173 static struct pvclock_gtod_data pvclock_gtod_data;
2174 
2175 static void update_pvclock_gtod(struct timekeeper *tk)
2176 {
2177 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2178 
2179 	write_seqcount_begin(&vdata->seq);
2180 
2181 	/* copy pvclock gtod data */
2182 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2183 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2184 	vdata->clock.mask		= tk->tkr_mono.mask;
2185 	vdata->clock.mult		= tk->tkr_mono.mult;
2186 	vdata->clock.shift		= tk->tkr_mono.shift;
2187 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2188 	vdata->clock.offset		= tk->tkr_mono.base;
2189 
2190 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2191 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2192 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2193 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2194 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2195 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2196 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2197 
2198 	vdata->wall_time_sec            = tk->xtime_sec;
2199 
2200 	vdata->offs_boot		= tk->offs_boot;
2201 
2202 	write_seqcount_end(&vdata->seq);
2203 }
2204 
2205 static s64 get_kvmclock_base_ns(void)
2206 {
2207 	/* Count up from boot time, but with the frequency of the raw clock.  */
2208 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2209 }
2210 #else
2211 static s64 get_kvmclock_base_ns(void)
2212 {
2213 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2214 	return ktime_get_boottime_ns();
2215 }
2216 #endif
2217 
2218 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2219 {
2220 	int version;
2221 	int r;
2222 	struct pvclock_wall_clock wc;
2223 	u32 wc_sec_hi;
2224 	u64 wall_nsec;
2225 
2226 	if (!wall_clock)
2227 		return;
2228 
2229 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2230 	if (r)
2231 		return;
2232 
2233 	if (version & 1)
2234 		++version;  /* first time write, random junk */
2235 
2236 	++version;
2237 
2238 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2239 		return;
2240 
2241 	/*
2242 	 * The guest calculates current wall clock time by adding
2243 	 * system time (updated by kvm_guest_time_update below) to the
2244 	 * wall clock specified here.  We do the reverse here.
2245 	 */
2246 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2247 
2248 	wc.nsec = do_div(wall_nsec, 1000000000);
2249 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2250 	wc.version = version;
2251 
2252 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2253 
2254 	if (sec_hi_ofs) {
2255 		wc_sec_hi = wall_nsec >> 32;
2256 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2257 				&wc_sec_hi, sizeof(wc_sec_hi));
2258 	}
2259 
2260 	version++;
2261 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2262 }
2263 
2264 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2265 				  bool old_msr, bool host_initiated)
2266 {
2267 	struct kvm_arch *ka = &vcpu->kvm->arch;
2268 
2269 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2270 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2271 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2272 
2273 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2274 	}
2275 
2276 	vcpu->arch.time = system_time;
2277 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2278 
2279 	/* we verify if the enable bit is set... */
2280 	if (system_time & 1) {
2281 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2282 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2283 					  sizeof(struct pvclock_vcpu_time_info));
2284 	} else {
2285 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2286 	}
2287 
2288 	return;
2289 }
2290 
2291 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2292 {
2293 	do_shl32_div32(dividend, divisor);
2294 	return dividend;
2295 }
2296 
2297 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2298 			       s8 *pshift, u32 *pmultiplier)
2299 {
2300 	uint64_t scaled64;
2301 	int32_t  shift = 0;
2302 	uint64_t tps64;
2303 	uint32_t tps32;
2304 
2305 	tps64 = base_hz;
2306 	scaled64 = scaled_hz;
2307 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2308 		tps64 >>= 1;
2309 		shift--;
2310 	}
2311 
2312 	tps32 = (uint32_t)tps64;
2313 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2314 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2315 			scaled64 >>= 1;
2316 		else
2317 			tps32 <<= 1;
2318 		shift++;
2319 	}
2320 
2321 	*pshift = shift;
2322 	*pmultiplier = div_frac(scaled64, tps32);
2323 }
2324 
2325 #ifdef CONFIG_X86_64
2326 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2327 #endif
2328 
2329 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2330 static unsigned long max_tsc_khz;
2331 
2332 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2333 {
2334 	u64 v = (u64)khz * (1000000 + ppm);
2335 	do_div(v, 1000000);
2336 	return v;
2337 }
2338 
2339 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2340 
2341 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2342 {
2343 	u64 ratio;
2344 
2345 	/* Guest TSC same frequency as host TSC? */
2346 	if (!scale) {
2347 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2348 		return 0;
2349 	}
2350 
2351 	/* TSC scaling supported? */
2352 	if (!kvm_has_tsc_control) {
2353 		if (user_tsc_khz > tsc_khz) {
2354 			vcpu->arch.tsc_catchup = 1;
2355 			vcpu->arch.tsc_always_catchup = 1;
2356 			return 0;
2357 		} else {
2358 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2359 			return -1;
2360 		}
2361 	}
2362 
2363 	/* TSC scaling required  - calculate ratio */
2364 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2365 				user_tsc_khz, tsc_khz);
2366 
2367 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2368 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2369 			            user_tsc_khz);
2370 		return -1;
2371 	}
2372 
2373 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2374 	return 0;
2375 }
2376 
2377 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2378 {
2379 	u32 thresh_lo, thresh_hi;
2380 	int use_scaling = 0;
2381 
2382 	/* tsc_khz can be zero if TSC calibration fails */
2383 	if (user_tsc_khz == 0) {
2384 		/* set tsc_scaling_ratio to a safe value */
2385 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2386 		return -1;
2387 	}
2388 
2389 	/* Compute a scale to convert nanoseconds in TSC cycles */
2390 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2391 			   &vcpu->arch.virtual_tsc_shift,
2392 			   &vcpu->arch.virtual_tsc_mult);
2393 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2394 
2395 	/*
2396 	 * Compute the variation in TSC rate which is acceptable
2397 	 * within the range of tolerance and decide if the
2398 	 * rate being applied is within that bounds of the hardware
2399 	 * rate.  If so, no scaling or compensation need be done.
2400 	 */
2401 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2402 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2403 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2404 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2405 		use_scaling = 1;
2406 	}
2407 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2408 }
2409 
2410 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2411 {
2412 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2413 				      vcpu->arch.virtual_tsc_mult,
2414 				      vcpu->arch.virtual_tsc_shift);
2415 	tsc += vcpu->arch.this_tsc_write;
2416 	return tsc;
2417 }
2418 
2419 #ifdef CONFIG_X86_64
2420 static inline int gtod_is_based_on_tsc(int mode)
2421 {
2422 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2423 }
2424 #endif
2425 
2426 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2427 {
2428 #ifdef CONFIG_X86_64
2429 	bool vcpus_matched;
2430 	struct kvm_arch *ka = &vcpu->kvm->arch;
2431 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2432 
2433 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2434 			 atomic_read(&vcpu->kvm->online_vcpus));
2435 
2436 	/*
2437 	 * Once the masterclock is enabled, always perform request in
2438 	 * order to update it.
2439 	 *
2440 	 * In order to enable masterclock, the host clocksource must be TSC
2441 	 * and the vcpus need to have matched TSCs.  When that happens,
2442 	 * perform request to enable masterclock.
2443 	 */
2444 	if (ka->use_master_clock ||
2445 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2446 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2447 
2448 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2449 			    atomic_read(&vcpu->kvm->online_vcpus),
2450 		            ka->use_master_clock, gtod->clock.vclock_mode);
2451 #endif
2452 }
2453 
2454 /*
2455  * Multiply tsc by a fixed point number represented by ratio.
2456  *
2457  * The most significant 64-N bits (mult) of ratio represent the
2458  * integral part of the fixed point number; the remaining N bits
2459  * (frac) represent the fractional part, ie. ratio represents a fixed
2460  * point number (mult + frac * 2^(-N)).
2461  *
2462  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2463  */
2464 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2465 {
2466 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2467 }
2468 
2469 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2470 {
2471 	u64 _tsc = tsc;
2472 
2473 	if (ratio != kvm_default_tsc_scaling_ratio)
2474 		_tsc = __scale_tsc(ratio, tsc);
2475 
2476 	return _tsc;
2477 }
2478 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2479 
2480 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2481 {
2482 	u64 tsc;
2483 
2484 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2485 
2486 	return target_tsc - tsc;
2487 }
2488 
2489 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2490 {
2491 	return vcpu->arch.l1_tsc_offset +
2492 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2495 
2496 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2497 {
2498 	u64 nested_offset;
2499 
2500 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2501 		nested_offset = l1_offset;
2502 	else
2503 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2504 						kvm_tsc_scaling_ratio_frac_bits);
2505 
2506 	nested_offset += l2_offset;
2507 	return nested_offset;
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2510 
2511 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2512 {
2513 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2514 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2515 				       kvm_tsc_scaling_ratio_frac_bits);
2516 
2517 	return l1_multiplier;
2518 }
2519 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2520 
2521 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2522 {
2523 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2524 				   vcpu->arch.l1_tsc_offset,
2525 				   l1_offset);
2526 
2527 	vcpu->arch.l1_tsc_offset = l1_offset;
2528 
2529 	/*
2530 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2531 	 * according to the spec this should set L1's TSC (as opposed to
2532 	 * setting L1's offset for L2).
2533 	 */
2534 	if (is_guest_mode(vcpu))
2535 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2536 			l1_offset,
2537 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2538 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2539 	else
2540 		vcpu->arch.tsc_offset = l1_offset;
2541 
2542 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2543 }
2544 
2545 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2546 {
2547 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2548 
2549 	/* Userspace is changing the multiplier while L2 is active */
2550 	if (is_guest_mode(vcpu))
2551 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2552 			l1_multiplier,
2553 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2554 	else
2555 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2556 
2557 	if (kvm_has_tsc_control)
2558 		static_call(kvm_x86_write_tsc_multiplier)(
2559 			vcpu, vcpu->arch.tsc_scaling_ratio);
2560 }
2561 
2562 static inline bool kvm_check_tsc_unstable(void)
2563 {
2564 #ifdef CONFIG_X86_64
2565 	/*
2566 	 * TSC is marked unstable when we're running on Hyper-V,
2567 	 * 'TSC page' clocksource is good.
2568 	 */
2569 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2570 		return false;
2571 #endif
2572 	return check_tsc_unstable();
2573 }
2574 
2575 /*
2576  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2577  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2578  * participates in.
2579  */
2580 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2581 				  u64 ns, bool matched)
2582 {
2583 	struct kvm *kvm = vcpu->kvm;
2584 
2585 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2586 
2587 	/*
2588 	 * We also track th most recent recorded KHZ, write and time to
2589 	 * allow the matching interval to be extended at each write.
2590 	 */
2591 	kvm->arch.last_tsc_nsec = ns;
2592 	kvm->arch.last_tsc_write = tsc;
2593 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2594 	kvm->arch.last_tsc_offset = offset;
2595 
2596 	vcpu->arch.last_guest_tsc = tsc;
2597 
2598 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2599 
2600 	if (!matched) {
2601 		/*
2602 		 * We split periods of matched TSC writes into generations.
2603 		 * For each generation, we track the original measured
2604 		 * nanosecond time, offset, and write, so if TSCs are in
2605 		 * sync, we can match exact offset, and if not, we can match
2606 		 * exact software computation in compute_guest_tsc()
2607 		 *
2608 		 * These values are tracked in kvm->arch.cur_xxx variables.
2609 		 */
2610 		kvm->arch.cur_tsc_generation++;
2611 		kvm->arch.cur_tsc_nsec = ns;
2612 		kvm->arch.cur_tsc_write = tsc;
2613 		kvm->arch.cur_tsc_offset = offset;
2614 		kvm->arch.nr_vcpus_matched_tsc = 0;
2615 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2616 		kvm->arch.nr_vcpus_matched_tsc++;
2617 	}
2618 
2619 	/* Keep track of which generation this VCPU has synchronized to */
2620 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2621 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2622 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2623 
2624 	kvm_track_tsc_matching(vcpu);
2625 }
2626 
2627 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2628 {
2629 	struct kvm *kvm = vcpu->kvm;
2630 	u64 offset, ns, elapsed;
2631 	unsigned long flags;
2632 	bool matched = false;
2633 	bool synchronizing = false;
2634 
2635 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2636 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2637 	ns = get_kvmclock_base_ns();
2638 	elapsed = ns - kvm->arch.last_tsc_nsec;
2639 
2640 	if (vcpu->arch.virtual_tsc_khz) {
2641 		if (data == 0) {
2642 			/*
2643 			 * detection of vcpu initialization -- need to sync
2644 			 * with other vCPUs. This particularly helps to keep
2645 			 * kvm_clock stable after CPU hotplug
2646 			 */
2647 			synchronizing = true;
2648 		} else {
2649 			u64 tsc_exp = kvm->arch.last_tsc_write +
2650 						nsec_to_cycles(vcpu, elapsed);
2651 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2652 			/*
2653 			 * Special case: TSC write with a small delta (1 second)
2654 			 * of virtual cycle time against real time is
2655 			 * interpreted as an attempt to synchronize the CPU.
2656 			 */
2657 			synchronizing = data < tsc_exp + tsc_hz &&
2658 					data + tsc_hz > tsc_exp;
2659 		}
2660 	}
2661 
2662 	/*
2663 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2664 	 * TSC, we add elapsed time in this computation.  We could let the
2665 	 * compensation code attempt to catch up if we fall behind, but
2666 	 * it's better to try to match offsets from the beginning.
2667          */
2668 	if (synchronizing &&
2669 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2670 		if (!kvm_check_tsc_unstable()) {
2671 			offset = kvm->arch.cur_tsc_offset;
2672 		} else {
2673 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2674 			data += delta;
2675 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2676 		}
2677 		matched = true;
2678 	}
2679 
2680 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2681 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2682 }
2683 
2684 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2685 					   s64 adjustment)
2686 {
2687 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2688 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2689 }
2690 
2691 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2692 {
2693 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2694 		WARN_ON(adjustment < 0);
2695 	adjustment = kvm_scale_tsc((u64) adjustment,
2696 				   vcpu->arch.l1_tsc_scaling_ratio);
2697 	adjust_tsc_offset_guest(vcpu, adjustment);
2698 }
2699 
2700 #ifdef CONFIG_X86_64
2701 
2702 static u64 read_tsc(void)
2703 {
2704 	u64 ret = (u64)rdtsc_ordered();
2705 	u64 last = pvclock_gtod_data.clock.cycle_last;
2706 
2707 	if (likely(ret >= last))
2708 		return ret;
2709 
2710 	/*
2711 	 * GCC likes to generate cmov here, but this branch is extremely
2712 	 * predictable (it's just a function of time and the likely is
2713 	 * very likely) and there's a data dependence, so force GCC
2714 	 * to generate a branch instead.  I don't barrier() because
2715 	 * we don't actually need a barrier, and if this function
2716 	 * ever gets inlined it will generate worse code.
2717 	 */
2718 	asm volatile ("");
2719 	return last;
2720 }
2721 
2722 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2723 			  int *mode)
2724 {
2725 	long v;
2726 	u64 tsc_pg_val;
2727 
2728 	switch (clock->vclock_mode) {
2729 	case VDSO_CLOCKMODE_HVCLOCK:
2730 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2731 						  tsc_timestamp);
2732 		if (tsc_pg_val != U64_MAX) {
2733 			/* TSC page valid */
2734 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2735 			v = (tsc_pg_val - clock->cycle_last) &
2736 				clock->mask;
2737 		} else {
2738 			/* TSC page invalid */
2739 			*mode = VDSO_CLOCKMODE_NONE;
2740 		}
2741 		break;
2742 	case VDSO_CLOCKMODE_TSC:
2743 		*mode = VDSO_CLOCKMODE_TSC;
2744 		*tsc_timestamp = read_tsc();
2745 		v = (*tsc_timestamp - clock->cycle_last) &
2746 			clock->mask;
2747 		break;
2748 	default:
2749 		*mode = VDSO_CLOCKMODE_NONE;
2750 	}
2751 
2752 	if (*mode == VDSO_CLOCKMODE_NONE)
2753 		*tsc_timestamp = v = 0;
2754 
2755 	return v * clock->mult;
2756 }
2757 
2758 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2759 {
2760 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2761 	unsigned long seq;
2762 	int mode;
2763 	u64 ns;
2764 
2765 	do {
2766 		seq = read_seqcount_begin(&gtod->seq);
2767 		ns = gtod->raw_clock.base_cycles;
2768 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2769 		ns >>= gtod->raw_clock.shift;
2770 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2771 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2772 	*t = ns;
2773 
2774 	return mode;
2775 }
2776 
2777 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2778 {
2779 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2780 	unsigned long seq;
2781 	int mode;
2782 	u64 ns;
2783 
2784 	do {
2785 		seq = read_seqcount_begin(&gtod->seq);
2786 		ts->tv_sec = gtod->wall_time_sec;
2787 		ns = gtod->clock.base_cycles;
2788 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2789 		ns >>= gtod->clock.shift;
2790 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2791 
2792 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2793 	ts->tv_nsec = ns;
2794 
2795 	return mode;
2796 }
2797 
2798 /* returns true if host is using TSC based clocksource */
2799 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2800 {
2801 	/* checked again under seqlock below */
2802 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2803 		return false;
2804 
2805 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2806 						      tsc_timestamp));
2807 }
2808 
2809 /* returns true if host is using TSC based clocksource */
2810 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2811 					   u64 *tsc_timestamp)
2812 {
2813 	/* checked again under seqlock below */
2814 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2815 		return false;
2816 
2817 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2818 }
2819 #endif
2820 
2821 /*
2822  *
2823  * Assuming a stable TSC across physical CPUS, and a stable TSC
2824  * across virtual CPUs, the following condition is possible.
2825  * Each numbered line represents an event visible to both
2826  * CPUs at the next numbered event.
2827  *
2828  * "timespecX" represents host monotonic time. "tscX" represents
2829  * RDTSC value.
2830  *
2831  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2832  *
2833  * 1.  read timespec0,tsc0
2834  * 2.					| timespec1 = timespec0 + N
2835  * 					| tsc1 = tsc0 + M
2836  * 3. transition to guest		| transition to guest
2837  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2838  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2839  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2840  *
2841  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2842  *
2843  * 	- ret0 < ret1
2844  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2845  *		...
2846  *	- 0 < N - M => M < N
2847  *
2848  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2849  * always the case (the difference between two distinct xtime instances
2850  * might be smaller then the difference between corresponding TSC reads,
2851  * when updating guest vcpus pvclock areas).
2852  *
2853  * To avoid that problem, do not allow visibility of distinct
2854  * system_timestamp/tsc_timestamp values simultaneously: use a master
2855  * copy of host monotonic time values. Update that master copy
2856  * in lockstep.
2857  *
2858  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2859  *
2860  */
2861 
2862 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2863 {
2864 #ifdef CONFIG_X86_64
2865 	struct kvm_arch *ka = &kvm->arch;
2866 	int vclock_mode;
2867 	bool host_tsc_clocksource, vcpus_matched;
2868 
2869 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2870 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2871 			atomic_read(&kvm->online_vcpus));
2872 
2873 	/*
2874 	 * If the host uses TSC clock, then passthrough TSC as stable
2875 	 * to the guest.
2876 	 */
2877 	host_tsc_clocksource = kvm_get_time_and_clockread(
2878 					&ka->master_kernel_ns,
2879 					&ka->master_cycle_now);
2880 
2881 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2882 				&& !ka->backwards_tsc_observed
2883 				&& !ka->boot_vcpu_runs_old_kvmclock;
2884 
2885 	if (ka->use_master_clock)
2886 		atomic_set(&kvm_guest_has_master_clock, 1);
2887 
2888 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2889 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2890 					vcpus_matched);
2891 #endif
2892 }
2893 
2894 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2895 {
2896 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2897 }
2898 
2899 static void __kvm_start_pvclock_update(struct kvm *kvm)
2900 {
2901 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2902 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2903 }
2904 
2905 static void kvm_start_pvclock_update(struct kvm *kvm)
2906 {
2907 	kvm_make_mclock_inprogress_request(kvm);
2908 
2909 	/* no guest entries from this point */
2910 	__kvm_start_pvclock_update(kvm);
2911 }
2912 
2913 static void kvm_end_pvclock_update(struct kvm *kvm)
2914 {
2915 	struct kvm_arch *ka = &kvm->arch;
2916 	struct kvm_vcpu *vcpu;
2917 	unsigned long i;
2918 
2919 	write_seqcount_end(&ka->pvclock_sc);
2920 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2921 	kvm_for_each_vcpu(i, vcpu, kvm)
2922 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2923 
2924 	/* guest entries allowed */
2925 	kvm_for_each_vcpu(i, vcpu, kvm)
2926 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2927 }
2928 
2929 static void kvm_update_masterclock(struct kvm *kvm)
2930 {
2931 	kvm_hv_request_tsc_page_update(kvm);
2932 	kvm_start_pvclock_update(kvm);
2933 	pvclock_update_vm_gtod_copy(kvm);
2934 	kvm_end_pvclock_update(kvm);
2935 }
2936 
2937 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2938 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2939 {
2940 	struct kvm_arch *ka = &kvm->arch;
2941 	struct pvclock_vcpu_time_info hv_clock;
2942 
2943 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2944 	get_cpu();
2945 
2946 	data->flags = 0;
2947 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2948 #ifdef CONFIG_X86_64
2949 		struct timespec64 ts;
2950 
2951 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2952 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2953 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2954 		} else
2955 #endif
2956 		data->host_tsc = rdtsc();
2957 
2958 		data->flags |= KVM_CLOCK_TSC_STABLE;
2959 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2960 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2961 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2962 				   &hv_clock.tsc_shift,
2963 				   &hv_clock.tsc_to_system_mul);
2964 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2965 	} else {
2966 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2967 	}
2968 
2969 	put_cpu();
2970 }
2971 
2972 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2973 {
2974 	struct kvm_arch *ka = &kvm->arch;
2975 	unsigned seq;
2976 
2977 	do {
2978 		seq = read_seqcount_begin(&ka->pvclock_sc);
2979 		__get_kvmclock(kvm, data);
2980 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2981 }
2982 
2983 u64 get_kvmclock_ns(struct kvm *kvm)
2984 {
2985 	struct kvm_clock_data data;
2986 
2987 	get_kvmclock(kvm, &data);
2988 	return data.clock;
2989 }
2990 
2991 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2992 				    struct gfn_to_pfn_cache *gpc,
2993 				    unsigned int offset)
2994 {
2995 	struct kvm_vcpu_arch *vcpu = &v->arch;
2996 	struct pvclock_vcpu_time_info *guest_hv_clock;
2997 	unsigned long flags;
2998 
2999 	read_lock_irqsave(&gpc->lock, flags);
3000 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3001 					   offset + sizeof(*guest_hv_clock))) {
3002 		read_unlock_irqrestore(&gpc->lock, flags);
3003 
3004 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3005 						 offset + sizeof(*guest_hv_clock)))
3006 			return;
3007 
3008 		read_lock_irqsave(&gpc->lock, flags);
3009 	}
3010 
3011 	guest_hv_clock = (void *)(gpc->khva + offset);
3012 
3013 	/*
3014 	 * This VCPU is paused, but it's legal for a guest to read another
3015 	 * VCPU's kvmclock, so we really have to follow the specification where
3016 	 * it says that version is odd if data is being modified, and even after
3017 	 * it is consistent.
3018 	 */
3019 
3020 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3021 	smp_wmb();
3022 
3023 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3024 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3025 
3026 	if (vcpu->pvclock_set_guest_stopped_request) {
3027 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3028 		vcpu->pvclock_set_guest_stopped_request = false;
3029 	}
3030 
3031 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3032 	smp_wmb();
3033 
3034 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3035 
3036 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3037 	read_unlock_irqrestore(&gpc->lock, flags);
3038 
3039 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3040 }
3041 
3042 static int kvm_guest_time_update(struct kvm_vcpu *v)
3043 {
3044 	unsigned long flags, tgt_tsc_khz;
3045 	unsigned seq;
3046 	struct kvm_vcpu_arch *vcpu = &v->arch;
3047 	struct kvm_arch *ka = &v->kvm->arch;
3048 	s64 kernel_ns;
3049 	u64 tsc_timestamp, host_tsc;
3050 	u8 pvclock_flags;
3051 	bool use_master_clock;
3052 
3053 	kernel_ns = 0;
3054 	host_tsc = 0;
3055 
3056 	/*
3057 	 * If the host uses TSC clock, then passthrough TSC as stable
3058 	 * to the guest.
3059 	 */
3060 	do {
3061 		seq = read_seqcount_begin(&ka->pvclock_sc);
3062 		use_master_clock = ka->use_master_clock;
3063 		if (use_master_clock) {
3064 			host_tsc = ka->master_cycle_now;
3065 			kernel_ns = ka->master_kernel_ns;
3066 		}
3067 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3068 
3069 	/* Keep irq disabled to prevent changes to the clock */
3070 	local_irq_save(flags);
3071 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3072 	if (unlikely(tgt_tsc_khz == 0)) {
3073 		local_irq_restore(flags);
3074 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3075 		return 1;
3076 	}
3077 	if (!use_master_clock) {
3078 		host_tsc = rdtsc();
3079 		kernel_ns = get_kvmclock_base_ns();
3080 	}
3081 
3082 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3083 
3084 	/*
3085 	 * We may have to catch up the TSC to match elapsed wall clock
3086 	 * time for two reasons, even if kvmclock is used.
3087 	 *   1) CPU could have been running below the maximum TSC rate
3088 	 *   2) Broken TSC compensation resets the base at each VCPU
3089 	 *      entry to avoid unknown leaps of TSC even when running
3090 	 *      again on the same CPU.  This may cause apparent elapsed
3091 	 *      time to disappear, and the guest to stand still or run
3092 	 *	very slowly.
3093 	 */
3094 	if (vcpu->tsc_catchup) {
3095 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3096 		if (tsc > tsc_timestamp) {
3097 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3098 			tsc_timestamp = tsc;
3099 		}
3100 	}
3101 
3102 	local_irq_restore(flags);
3103 
3104 	/* With all the info we got, fill in the values */
3105 
3106 	if (kvm_has_tsc_control)
3107 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3108 					    v->arch.l1_tsc_scaling_ratio);
3109 
3110 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3111 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3112 				   &vcpu->hv_clock.tsc_shift,
3113 				   &vcpu->hv_clock.tsc_to_system_mul);
3114 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3115 	}
3116 
3117 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3118 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3119 	vcpu->last_guest_tsc = tsc_timestamp;
3120 
3121 	/* If the host uses TSC clocksource, then it is stable */
3122 	pvclock_flags = 0;
3123 	if (use_master_clock)
3124 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3125 
3126 	vcpu->hv_clock.flags = pvclock_flags;
3127 
3128 	if (vcpu->pv_time.active)
3129 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3130 	if (vcpu->xen.vcpu_info_cache.active)
3131 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3132 					offsetof(struct compat_vcpu_info, time));
3133 	if (vcpu->xen.vcpu_time_info_cache.active)
3134 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3135 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3136 	return 0;
3137 }
3138 
3139 /*
3140  * kvmclock updates which are isolated to a given vcpu, such as
3141  * vcpu->cpu migration, should not allow system_timestamp from
3142  * the rest of the vcpus to remain static. Otherwise ntp frequency
3143  * correction applies to one vcpu's system_timestamp but not
3144  * the others.
3145  *
3146  * So in those cases, request a kvmclock update for all vcpus.
3147  * We need to rate-limit these requests though, as they can
3148  * considerably slow guests that have a large number of vcpus.
3149  * The time for a remote vcpu to update its kvmclock is bound
3150  * by the delay we use to rate-limit the updates.
3151  */
3152 
3153 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3154 
3155 static void kvmclock_update_fn(struct work_struct *work)
3156 {
3157 	unsigned long i;
3158 	struct delayed_work *dwork = to_delayed_work(work);
3159 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3160 					   kvmclock_update_work);
3161 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3162 	struct kvm_vcpu *vcpu;
3163 
3164 	kvm_for_each_vcpu(i, vcpu, kvm) {
3165 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3166 		kvm_vcpu_kick(vcpu);
3167 	}
3168 }
3169 
3170 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3171 {
3172 	struct kvm *kvm = v->kvm;
3173 
3174 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3175 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3176 					KVMCLOCK_UPDATE_DELAY);
3177 }
3178 
3179 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3180 
3181 static void kvmclock_sync_fn(struct work_struct *work)
3182 {
3183 	struct delayed_work *dwork = to_delayed_work(work);
3184 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3185 					   kvmclock_sync_work);
3186 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3187 
3188 	if (!kvmclock_periodic_sync)
3189 		return;
3190 
3191 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3192 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3193 					KVMCLOCK_SYNC_PERIOD);
3194 }
3195 
3196 /*
3197  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3198  */
3199 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3200 {
3201 	/* McStatusWrEn enabled? */
3202 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3203 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3204 
3205 	return false;
3206 }
3207 
3208 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3209 {
3210 	u64 mcg_cap = vcpu->arch.mcg_cap;
3211 	unsigned bank_num = mcg_cap & 0xff;
3212 	u32 msr = msr_info->index;
3213 	u64 data = msr_info->data;
3214 
3215 	switch (msr) {
3216 	case MSR_IA32_MCG_STATUS:
3217 		vcpu->arch.mcg_status = data;
3218 		break;
3219 	case MSR_IA32_MCG_CTL:
3220 		if (!(mcg_cap & MCG_CTL_P) &&
3221 		    (data || !msr_info->host_initiated))
3222 			return 1;
3223 		if (data != 0 && data != ~(u64)0)
3224 			return 1;
3225 		vcpu->arch.mcg_ctl = data;
3226 		break;
3227 	default:
3228 		if (msr >= MSR_IA32_MC0_CTL &&
3229 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3230 			u32 offset = array_index_nospec(
3231 				msr - MSR_IA32_MC0_CTL,
3232 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3233 
3234 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3235 			 * some Linux kernels though clear bit 10 in bank 4 to
3236 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3237 			 * this to avoid an uncatched #GP in the guest
3238 			 */
3239 			if ((offset & 0x3) == 0 &&
3240 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3241 				return -1;
3242 
3243 			/* MCi_STATUS */
3244 			if (!msr_info->host_initiated &&
3245 			    (offset & 0x3) == 1 && data != 0) {
3246 				if (!can_set_mci_status(vcpu))
3247 					return -1;
3248 			}
3249 
3250 			vcpu->arch.mce_banks[offset] = data;
3251 			break;
3252 		}
3253 		return 1;
3254 	}
3255 	return 0;
3256 }
3257 
3258 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3259 {
3260 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3261 
3262 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3263 }
3264 
3265 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3266 {
3267 	gpa_t gpa = data & ~0x3f;
3268 
3269 	/* Bits 4:5 are reserved, Should be zero */
3270 	if (data & 0x30)
3271 		return 1;
3272 
3273 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3274 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3275 		return 1;
3276 
3277 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3278 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3279 		return 1;
3280 
3281 	if (!lapic_in_kernel(vcpu))
3282 		return data ? 1 : 0;
3283 
3284 	vcpu->arch.apf.msr_en_val = data;
3285 
3286 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3287 		kvm_clear_async_pf_completion_queue(vcpu);
3288 		kvm_async_pf_hash_reset(vcpu);
3289 		return 0;
3290 	}
3291 
3292 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3293 					sizeof(u64)))
3294 		return 1;
3295 
3296 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3297 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3298 
3299 	kvm_async_pf_wakeup_all(vcpu);
3300 
3301 	return 0;
3302 }
3303 
3304 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3305 {
3306 	/* Bits 8-63 are reserved */
3307 	if (data >> 8)
3308 		return 1;
3309 
3310 	if (!lapic_in_kernel(vcpu))
3311 		return 1;
3312 
3313 	vcpu->arch.apf.msr_int_val = data;
3314 
3315 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3316 
3317 	return 0;
3318 }
3319 
3320 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3321 {
3322 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3323 	vcpu->arch.time = 0;
3324 }
3325 
3326 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3327 {
3328 	++vcpu->stat.tlb_flush;
3329 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3330 }
3331 
3332 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3333 {
3334 	++vcpu->stat.tlb_flush;
3335 
3336 	if (!tdp_enabled) {
3337 		/*
3338 		 * A TLB flush on behalf of the guest is equivalent to
3339 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3340 		 * a forced sync of the shadow page tables.  Ensure all the
3341 		 * roots are synced and the guest TLB in hardware is clean.
3342 		 */
3343 		kvm_mmu_sync_roots(vcpu);
3344 		kvm_mmu_sync_prev_roots(vcpu);
3345 	}
3346 
3347 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3348 }
3349 
3350 
3351 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3352 {
3353 	++vcpu->stat.tlb_flush;
3354 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3355 }
3356 
3357 /*
3358  * Service "local" TLB flush requests, which are specific to the current MMU
3359  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3360  * TLB flushes that are targeted at an MMU context also need to be serviced
3361  * prior before nested VM-Enter/VM-Exit.
3362  */
3363 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3364 {
3365 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3366 		kvm_vcpu_flush_tlb_current(vcpu);
3367 
3368 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3369 		kvm_vcpu_flush_tlb_guest(vcpu);
3370 }
3371 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3372 
3373 static void record_steal_time(struct kvm_vcpu *vcpu)
3374 {
3375 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3376 	struct kvm_steal_time __user *st;
3377 	struct kvm_memslots *slots;
3378 	u64 steal;
3379 	u32 version;
3380 
3381 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3382 		kvm_xen_runstate_set_running(vcpu);
3383 		return;
3384 	}
3385 
3386 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3387 		return;
3388 
3389 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3390 		return;
3391 
3392 	slots = kvm_memslots(vcpu->kvm);
3393 
3394 	if (unlikely(slots->generation != ghc->generation ||
3395 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3396 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3397 
3398 		/* We rely on the fact that it fits in a single page. */
3399 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3400 
3401 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3402 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3403 			return;
3404 	}
3405 
3406 	st = (struct kvm_steal_time __user *)ghc->hva;
3407 	/*
3408 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3409 	 * expensive IPIs.
3410 	 */
3411 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3412 		u8 st_preempted = 0;
3413 		int err = -EFAULT;
3414 
3415 		if (!user_access_begin(st, sizeof(*st)))
3416 			return;
3417 
3418 		asm volatile("1: xchgb %0, %2\n"
3419 			     "xor %1, %1\n"
3420 			     "2:\n"
3421 			     _ASM_EXTABLE_UA(1b, 2b)
3422 			     : "+q" (st_preempted),
3423 			       "+&r" (err),
3424 			       "+m" (st->preempted));
3425 		if (err)
3426 			goto out;
3427 
3428 		user_access_end();
3429 
3430 		vcpu->arch.st.preempted = 0;
3431 
3432 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3433 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3434 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3435 			kvm_vcpu_flush_tlb_guest(vcpu);
3436 
3437 		if (!user_access_begin(st, sizeof(*st)))
3438 			goto dirty;
3439 	} else {
3440 		if (!user_access_begin(st, sizeof(*st)))
3441 			return;
3442 
3443 		unsafe_put_user(0, &st->preempted, out);
3444 		vcpu->arch.st.preempted = 0;
3445 	}
3446 
3447 	unsafe_get_user(version, &st->version, out);
3448 	if (version & 1)
3449 		version += 1;  /* first time write, random junk */
3450 
3451 	version += 1;
3452 	unsafe_put_user(version, &st->version, out);
3453 
3454 	smp_wmb();
3455 
3456 	unsafe_get_user(steal, &st->steal, out);
3457 	steal += current->sched_info.run_delay -
3458 		vcpu->arch.st.last_steal;
3459 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3460 	unsafe_put_user(steal, &st->steal, out);
3461 
3462 	version += 1;
3463 	unsafe_put_user(version, &st->version, out);
3464 
3465  out:
3466 	user_access_end();
3467  dirty:
3468 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3469 }
3470 
3471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3472 {
3473 	bool pr = false;
3474 	u32 msr = msr_info->index;
3475 	u64 data = msr_info->data;
3476 
3477 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3478 		return kvm_xen_write_hypercall_page(vcpu, data);
3479 
3480 	switch (msr) {
3481 	case MSR_AMD64_NB_CFG:
3482 	case MSR_IA32_UCODE_WRITE:
3483 	case MSR_VM_HSAVE_PA:
3484 	case MSR_AMD64_PATCH_LOADER:
3485 	case MSR_AMD64_BU_CFG2:
3486 	case MSR_AMD64_DC_CFG:
3487 	case MSR_F15H_EX_CFG:
3488 		break;
3489 
3490 	case MSR_IA32_UCODE_REV:
3491 		if (msr_info->host_initiated)
3492 			vcpu->arch.microcode_version = data;
3493 		break;
3494 	case MSR_IA32_ARCH_CAPABILITIES:
3495 		if (!msr_info->host_initiated)
3496 			return 1;
3497 		vcpu->arch.arch_capabilities = data;
3498 		break;
3499 	case MSR_IA32_PERF_CAPABILITIES: {
3500 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3501 
3502 		if (!msr_info->host_initiated)
3503 			return 1;
3504 		if (kvm_get_msr_feature(&msr_ent))
3505 			return 1;
3506 		if (data & ~msr_ent.data)
3507 			return 1;
3508 
3509 		vcpu->arch.perf_capabilities = data;
3510 
3511 		return 0;
3512 		}
3513 	case MSR_EFER:
3514 		return set_efer(vcpu, msr_info);
3515 	case MSR_K7_HWCR:
3516 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3517 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3518 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3519 
3520 		/* Handle McStatusWrEn */
3521 		if (data == BIT_ULL(18)) {
3522 			vcpu->arch.msr_hwcr = data;
3523 		} else if (data != 0) {
3524 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3525 				    data);
3526 			return 1;
3527 		}
3528 		break;
3529 	case MSR_FAM10H_MMIO_CONF_BASE:
3530 		if (data != 0) {
3531 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3532 				    "0x%llx\n", data);
3533 			return 1;
3534 		}
3535 		break;
3536 	case 0x200 ... 0x2ff:
3537 		return kvm_mtrr_set_msr(vcpu, msr, data);
3538 	case MSR_IA32_APICBASE:
3539 		return kvm_set_apic_base(vcpu, msr_info);
3540 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3541 		return kvm_x2apic_msr_write(vcpu, msr, data);
3542 	case MSR_IA32_TSC_DEADLINE:
3543 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3544 		break;
3545 	case MSR_IA32_TSC_ADJUST:
3546 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3547 			if (!msr_info->host_initiated) {
3548 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3549 				adjust_tsc_offset_guest(vcpu, adj);
3550 				/* Before back to guest, tsc_timestamp must be adjusted
3551 				 * as well, otherwise guest's percpu pvclock time could jump.
3552 				 */
3553 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3554 			}
3555 			vcpu->arch.ia32_tsc_adjust_msr = data;
3556 		}
3557 		break;
3558 	case MSR_IA32_MISC_ENABLE:
3559 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3560 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3561 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3562 				return 1;
3563 			vcpu->arch.ia32_misc_enable_msr = data;
3564 			kvm_update_cpuid_runtime(vcpu);
3565 		} else {
3566 			vcpu->arch.ia32_misc_enable_msr = data;
3567 		}
3568 		break;
3569 	case MSR_IA32_SMBASE:
3570 		if (!msr_info->host_initiated)
3571 			return 1;
3572 		vcpu->arch.smbase = data;
3573 		break;
3574 	case MSR_IA32_POWER_CTL:
3575 		vcpu->arch.msr_ia32_power_ctl = data;
3576 		break;
3577 	case MSR_IA32_TSC:
3578 		if (msr_info->host_initiated) {
3579 			kvm_synchronize_tsc(vcpu, data);
3580 		} else {
3581 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3582 			adjust_tsc_offset_guest(vcpu, adj);
3583 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3584 		}
3585 		break;
3586 	case MSR_IA32_XSS:
3587 		if (!msr_info->host_initiated &&
3588 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3589 			return 1;
3590 		/*
3591 		 * KVM supports exposing PT to the guest, but does not support
3592 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3593 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3594 		 */
3595 		if (data & ~supported_xss)
3596 			return 1;
3597 		vcpu->arch.ia32_xss = data;
3598 		kvm_update_cpuid_runtime(vcpu);
3599 		break;
3600 	case MSR_SMI_COUNT:
3601 		if (!msr_info->host_initiated)
3602 			return 1;
3603 		vcpu->arch.smi_count = data;
3604 		break;
3605 	case MSR_KVM_WALL_CLOCK_NEW:
3606 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3607 			return 1;
3608 
3609 		vcpu->kvm->arch.wall_clock = data;
3610 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3611 		break;
3612 	case MSR_KVM_WALL_CLOCK:
3613 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3614 			return 1;
3615 
3616 		vcpu->kvm->arch.wall_clock = data;
3617 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3618 		break;
3619 	case MSR_KVM_SYSTEM_TIME_NEW:
3620 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3621 			return 1;
3622 
3623 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3624 		break;
3625 	case MSR_KVM_SYSTEM_TIME:
3626 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3627 			return 1;
3628 
3629 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3630 		break;
3631 	case MSR_KVM_ASYNC_PF_EN:
3632 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3633 			return 1;
3634 
3635 		if (kvm_pv_enable_async_pf(vcpu, data))
3636 			return 1;
3637 		break;
3638 	case MSR_KVM_ASYNC_PF_INT:
3639 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3640 			return 1;
3641 
3642 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3643 			return 1;
3644 		break;
3645 	case MSR_KVM_ASYNC_PF_ACK:
3646 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3647 			return 1;
3648 		if (data & 0x1) {
3649 			vcpu->arch.apf.pageready_pending = false;
3650 			kvm_check_async_pf_completion(vcpu);
3651 		}
3652 		break;
3653 	case MSR_KVM_STEAL_TIME:
3654 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3655 			return 1;
3656 
3657 		if (unlikely(!sched_info_on()))
3658 			return 1;
3659 
3660 		if (data & KVM_STEAL_RESERVED_MASK)
3661 			return 1;
3662 
3663 		vcpu->arch.st.msr_val = data;
3664 
3665 		if (!(data & KVM_MSR_ENABLED))
3666 			break;
3667 
3668 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3669 
3670 		break;
3671 	case MSR_KVM_PV_EOI_EN:
3672 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3673 			return 1;
3674 
3675 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3676 			return 1;
3677 		break;
3678 
3679 	case MSR_KVM_POLL_CONTROL:
3680 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3681 			return 1;
3682 
3683 		/* only enable bit supported */
3684 		if (data & (-1ULL << 1))
3685 			return 1;
3686 
3687 		vcpu->arch.msr_kvm_poll_control = data;
3688 		break;
3689 
3690 	case MSR_IA32_MCG_CTL:
3691 	case MSR_IA32_MCG_STATUS:
3692 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3693 		return set_msr_mce(vcpu, msr_info);
3694 
3695 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3696 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3697 		pr = true;
3698 		fallthrough;
3699 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3700 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3701 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3702 			return kvm_pmu_set_msr(vcpu, msr_info);
3703 
3704 		if (pr || data != 0)
3705 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3706 				    "0x%x data 0x%llx\n", msr, data);
3707 		break;
3708 	case MSR_K7_CLK_CTL:
3709 		/*
3710 		 * Ignore all writes to this no longer documented MSR.
3711 		 * Writes are only relevant for old K7 processors,
3712 		 * all pre-dating SVM, but a recommended workaround from
3713 		 * AMD for these chips. It is possible to specify the
3714 		 * affected processor models on the command line, hence
3715 		 * the need to ignore the workaround.
3716 		 */
3717 		break;
3718 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3719 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3720 	case HV_X64_MSR_SYNDBG_OPTIONS:
3721 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3722 	case HV_X64_MSR_CRASH_CTL:
3723 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3724 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3725 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3726 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3727 		return kvm_hv_set_msr_common(vcpu, msr, data,
3728 					     msr_info->host_initiated);
3729 	case MSR_IA32_BBL_CR_CTL3:
3730 		/* Drop writes to this legacy MSR -- see rdmsr
3731 		 * counterpart for further detail.
3732 		 */
3733 		if (report_ignored_msrs)
3734 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3735 				msr, data);
3736 		break;
3737 	case MSR_AMD64_OSVW_ID_LENGTH:
3738 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3739 			return 1;
3740 		vcpu->arch.osvw.length = data;
3741 		break;
3742 	case MSR_AMD64_OSVW_STATUS:
3743 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3744 			return 1;
3745 		vcpu->arch.osvw.status = data;
3746 		break;
3747 	case MSR_PLATFORM_INFO:
3748 		if (!msr_info->host_initiated ||
3749 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3750 		     cpuid_fault_enabled(vcpu)))
3751 			return 1;
3752 		vcpu->arch.msr_platform_info = data;
3753 		break;
3754 	case MSR_MISC_FEATURES_ENABLES:
3755 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3756 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3757 		     !supports_cpuid_fault(vcpu)))
3758 			return 1;
3759 		vcpu->arch.msr_misc_features_enables = data;
3760 		break;
3761 #ifdef CONFIG_X86_64
3762 	case MSR_IA32_XFD:
3763 		if (!msr_info->host_initiated &&
3764 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3765 			return 1;
3766 
3767 		if (data & ~kvm_guest_supported_xfd(vcpu))
3768 			return 1;
3769 
3770 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3771 		break;
3772 	case MSR_IA32_XFD_ERR:
3773 		if (!msr_info->host_initiated &&
3774 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3775 			return 1;
3776 
3777 		if (data & ~kvm_guest_supported_xfd(vcpu))
3778 			return 1;
3779 
3780 		vcpu->arch.guest_fpu.xfd_err = data;
3781 		break;
3782 #endif
3783 	default:
3784 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3785 			return kvm_pmu_set_msr(vcpu, msr_info);
3786 		return KVM_MSR_RET_INVALID;
3787 	}
3788 	return 0;
3789 }
3790 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3791 
3792 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3793 {
3794 	u64 data;
3795 	u64 mcg_cap = vcpu->arch.mcg_cap;
3796 	unsigned bank_num = mcg_cap & 0xff;
3797 
3798 	switch (msr) {
3799 	case MSR_IA32_P5_MC_ADDR:
3800 	case MSR_IA32_P5_MC_TYPE:
3801 		data = 0;
3802 		break;
3803 	case MSR_IA32_MCG_CAP:
3804 		data = vcpu->arch.mcg_cap;
3805 		break;
3806 	case MSR_IA32_MCG_CTL:
3807 		if (!(mcg_cap & MCG_CTL_P) && !host)
3808 			return 1;
3809 		data = vcpu->arch.mcg_ctl;
3810 		break;
3811 	case MSR_IA32_MCG_STATUS:
3812 		data = vcpu->arch.mcg_status;
3813 		break;
3814 	default:
3815 		if (msr >= MSR_IA32_MC0_CTL &&
3816 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3817 			u32 offset = array_index_nospec(
3818 				msr - MSR_IA32_MC0_CTL,
3819 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3820 
3821 			data = vcpu->arch.mce_banks[offset];
3822 			break;
3823 		}
3824 		return 1;
3825 	}
3826 	*pdata = data;
3827 	return 0;
3828 }
3829 
3830 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3831 {
3832 	switch (msr_info->index) {
3833 	case MSR_IA32_PLATFORM_ID:
3834 	case MSR_IA32_EBL_CR_POWERON:
3835 	case MSR_IA32_LASTBRANCHFROMIP:
3836 	case MSR_IA32_LASTBRANCHTOIP:
3837 	case MSR_IA32_LASTINTFROMIP:
3838 	case MSR_IA32_LASTINTTOIP:
3839 	case MSR_AMD64_SYSCFG:
3840 	case MSR_K8_TSEG_ADDR:
3841 	case MSR_K8_TSEG_MASK:
3842 	case MSR_VM_HSAVE_PA:
3843 	case MSR_K8_INT_PENDING_MSG:
3844 	case MSR_AMD64_NB_CFG:
3845 	case MSR_FAM10H_MMIO_CONF_BASE:
3846 	case MSR_AMD64_BU_CFG2:
3847 	case MSR_IA32_PERF_CTL:
3848 	case MSR_AMD64_DC_CFG:
3849 	case MSR_F15H_EX_CFG:
3850 	/*
3851 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3852 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3853 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3854 	 * so for existing CPU-specific MSRs.
3855 	 */
3856 	case MSR_RAPL_POWER_UNIT:
3857 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3858 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3859 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3860 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3861 		msr_info->data = 0;
3862 		break;
3863 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3864 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3865 			return kvm_pmu_get_msr(vcpu, msr_info);
3866 		if (!msr_info->host_initiated)
3867 			return 1;
3868 		msr_info->data = 0;
3869 		break;
3870 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3871 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3872 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3873 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3874 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3875 			return kvm_pmu_get_msr(vcpu, msr_info);
3876 		msr_info->data = 0;
3877 		break;
3878 	case MSR_IA32_UCODE_REV:
3879 		msr_info->data = vcpu->arch.microcode_version;
3880 		break;
3881 	case MSR_IA32_ARCH_CAPABILITIES:
3882 		if (!msr_info->host_initiated &&
3883 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3884 			return 1;
3885 		msr_info->data = vcpu->arch.arch_capabilities;
3886 		break;
3887 	case MSR_IA32_PERF_CAPABILITIES:
3888 		if (!msr_info->host_initiated &&
3889 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3890 			return 1;
3891 		msr_info->data = vcpu->arch.perf_capabilities;
3892 		break;
3893 	case MSR_IA32_POWER_CTL:
3894 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3895 		break;
3896 	case MSR_IA32_TSC: {
3897 		/*
3898 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3899 		 * even when not intercepted. AMD manual doesn't explicitly
3900 		 * state this but appears to behave the same.
3901 		 *
3902 		 * On userspace reads and writes, however, we unconditionally
3903 		 * return L1's TSC value to ensure backwards-compatible
3904 		 * behavior for migration.
3905 		 */
3906 		u64 offset, ratio;
3907 
3908 		if (msr_info->host_initiated) {
3909 			offset = vcpu->arch.l1_tsc_offset;
3910 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3911 		} else {
3912 			offset = vcpu->arch.tsc_offset;
3913 			ratio = vcpu->arch.tsc_scaling_ratio;
3914 		}
3915 
3916 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3917 		break;
3918 	}
3919 	case MSR_MTRRcap:
3920 	case 0x200 ... 0x2ff:
3921 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3922 	case 0xcd: /* fsb frequency */
3923 		msr_info->data = 3;
3924 		break;
3925 		/*
3926 		 * MSR_EBC_FREQUENCY_ID
3927 		 * Conservative value valid for even the basic CPU models.
3928 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3929 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3930 		 * and 266MHz for model 3, or 4. Set Core Clock
3931 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3932 		 * 31:24) even though these are only valid for CPU
3933 		 * models > 2, however guests may end up dividing or
3934 		 * multiplying by zero otherwise.
3935 		 */
3936 	case MSR_EBC_FREQUENCY_ID:
3937 		msr_info->data = 1 << 24;
3938 		break;
3939 	case MSR_IA32_APICBASE:
3940 		msr_info->data = kvm_get_apic_base(vcpu);
3941 		break;
3942 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3943 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3944 	case MSR_IA32_TSC_DEADLINE:
3945 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3946 		break;
3947 	case MSR_IA32_TSC_ADJUST:
3948 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3949 		break;
3950 	case MSR_IA32_MISC_ENABLE:
3951 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3952 		break;
3953 	case MSR_IA32_SMBASE:
3954 		if (!msr_info->host_initiated)
3955 			return 1;
3956 		msr_info->data = vcpu->arch.smbase;
3957 		break;
3958 	case MSR_SMI_COUNT:
3959 		msr_info->data = vcpu->arch.smi_count;
3960 		break;
3961 	case MSR_IA32_PERF_STATUS:
3962 		/* TSC increment by tick */
3963 		msr_info->data = 1000ULL;
3964 		/* CPU multiplier */
3965 		msr_info->data |= (((uint64_t)4ULL) << 40);
3966 		break;
3967 	case MSR_EFER:
3968 		msr_info->data = vcpu->arch.efer;
3969 		break;
3970 	case MSR_KVM_WALL_CLOCK:
3971 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3972 			return 1;
3973 
3974 		msr_info->data = vcpu->kvm->arch.wall_clock;
3975 		break;
3976 	case MSR_KVM_WALL_CLOCK_NEW:
3977 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3978 			return 1;
3979 
3980 		msr_info->data = vcpu->kvm->arch.wall_clock;
3981 		break;
3982 	case MSR_KVM_SYSTEM_TIME:
3983 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3984 			return 1;
3985 
3986 		msr_info->data = vcpu->arch.time;
3987 		break;
3988 	case MSR_KVM_SYSTEM_TIME_NEW:
3989 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3990 			return 1;
3991 
3992 		msr_info->data = vcpu->arch.time;
3993 		break;
3994 	case MSR_KVM_ASYNC_PF_EN:
3995 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3996 			return 1;
3997 
3998 		msr_info->data = vcpu->arch.apf.msr_en_val;
3999 		break;
4000 	case MSR_KVM_ASYNC_PF_INT:
4001 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4002 			return 1;
4003 
4004 		msr_info->data = vcpu->arch.apf.msr_int_val;
4005 		break;
4006 	case MSR_KVM_ASYNC_PF_ACK:
4007 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4008 			return 1;
4009 
4010 		msr_info->data = 0;
4011 		break;
4012 	case MSR_KVM_STEAL_TIME:
4013 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4014 			return 1;
4015 
4016 		msr_info->data = vcpu->arch.st.msr_val;
4017 		break;
4018 	case MSR_KVM_PV_EOI_EN:
4019 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4020 			return 1;
4021 
4022 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4023 		break;
4024 	case MSR_KVM_POLL_CONTROL:
4025 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4026 			return 1;
4027 
4028 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4029 		break;
4030 	case MSR_IA32_P5_MC_ADDR:
4031 	case MSR_IA32_P5_MC_TYPE:
4032 	case MSR_IA32_MCG_CAP:
4033 	case MSR_IA32_MCG_CTL:
4034 	case MSR_IA32_MCG_STATUS:
4035 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4036 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4037 				   msr_info->host_initiated);
4038 	case MSR_IA32_XSS:
4039 		if (!msr_info->host_initiated &&
4040 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4041 			return 1;
4042 		msr_info->data = vcpu->arch.ia32_xss;
4043 		break;
4044 	case MSR_K7_CLK_CTL:
4045 		/*
4046 		 * Provide expected ramp-up count for K7. All other
4047 		 * are set to zero, indicating minimum divisors for
4048 		 * every field.
4049 		 *
4050 		 * This prevents guest kernels on AMD host with CPU
4051 		 * type 6, model 8 and higher from exploding due to
4052 		 * the rdmsr failing.
4053 		 */
4054 		msr_info->data = 0x20000000;
4055 		break;
4056 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4057 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4058 	case HV_X64_MSR_SYNDBG_OPTIONS:
4059 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4060 	case HV_X64_MSR_CRASH_CTL:
4061 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4062 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4063 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4064 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4065 		return kvm_hv_get_msr_common(vcpu,
4066 					     msr_info->index, &msr_info->data,
4067 					     msr_info->host_initiated);
4068 	case MSR_IA32_BBL_CR_CTL3:
4069 		/* This legacy MSR exists but isn't fully documented in current
4070 		 * silicon.  It is however accessed by winxp in very narrow
4071 		 * scenarios where it sets bit #19, itself documented as
4072 		 * a "reserved" bit.  Best effort attempt to source coherent
4073 		 * read data here should the balance of the register be
4074 		 * interpreted by the guest:
4075 		 *
4076 		 * L2 cache control register 3: 64GB range, 256KB size,
4077 		 * enabled, latency 0x1, configured
4078 		 */
4079 		msr_info->data = 0xbe702111;
4080 		break;
4081 	case MSR_AMD64_OSVW_ID_LENGTH:
4082 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4083 			return 1;
4084 		msr_info->data = vcpu->arch.osvw.length;
4085 		break;
4086 	case MSR_AMD64_OSVW_STATUS:
4087 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4088 			return 1;
4089 		msr_info->data = vcpu->arch.osvw.status;
4090 		break;
4091 	case MSR_PLATFORM_INFO:
4092 		if (!msr_info->host_initiated &&
4093 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4094 			return 1;
4095 		msr_info->data = vcpu->arch.msr_platform_info;
4096 		break;
4097 	case MSR_MISC_FEATURES_ENABLES:
4098 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4099 		break;
4100 	case MSR_K7_HWCR:
4101 		msr_info->data = vcpu->arch.msr_hwcr;
4102 		break;
4103 #ifdef CONFIG_X86_64
4104 	case MSR_IA32_XFD:
4105 		if (!msr_info->host_initiated &&
4106 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4107 			return 1;
4108 
4109 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4110 		break;
4111 	case MSR_IA32_XFD_ERR:
4112 		if (!msr_info->host_initiated &&
4113 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4114 			return 1;
4115 
4116 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4117 		break;
4118 #endif
4119 	default:
4120 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4121 			return kvm_pmu_get_msr(vcpu, msr_info);
4122 		return KVM_MSR_RET_INVALID;
4123 	}
4124 	return 0;
4125 }
4126 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4127 
4128 /*
4129  * Read or write a bunch of msrs. All parameters are kernel addresses.
4130  *
4131  * @return number of msrs set successfully.
4132  */
4133 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4134 		    struct kvm_msr_entry *entries,
4135 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4136 				  unsigned index, u64 *data))
4137 {
4138 	int i;
4139 
4140 	for (i = 0; i < msrs->nmsrs; ++i)
4141 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4142 			break;
4143 
4144 	return i;
4145 }
4146 
4147 /*
4148  * Read or write a bunch of msrs. Parameters are user addresses.
4149  *
4150  * @return number of msrs set successfully.
4151  */
4152 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4153 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4154 				unsigned index, u64 *data),
4155 		  int writeback)
4156 {
4157 	struct kvm_msrs msrs;
4158 	struct kvm_msr_entry *entries;
4159 	int r, n;
4160 	unsigned size;
4161 
4162 	r = -EFAULT;
4163 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4164 		goto out;
4165 
4166 	r = -E2BIG;
4167 	if (msrs.nmsrs >= MAX_IO_MSRS)
4168 		goto out;
4169 
4170 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4171 	entries = memdup_user(user_msrs->entries, size);
4172 	if (IS_ERR(entries)) {
4173 		r = PTR_ERR(entries);
4174 		goto out;
4175 	}
4176 
4177 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4178 	if (r < 0)
4179 		goto out_free;
4180 
4181 	r = -EFAULT;
4182 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4183 		goto out_free;
4184 
4185 	r = n;
4186 
4187 out_free:
4188 	kfree(entries);
4189 out:
4190 	return r;
4191 }
4192 
4193 static inline bool kvm_can_mwait_in_guest(void)
4194 {
4195 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4196 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4197 		boot_cpu_has(X86_FEATURE_ARAT);
4198 }
4199 
4200 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4201 					    struct kvm_cpuid2 __user *cpuid_arg)
4202 {
4203 	struct kvm_cpuid2 cpuid;
4204 	int r;
4205 
4206 	r = -EFAULT;
4207 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4208 		return r;
4209 
4210 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4211 	if (r)
4212 		return r;
4213 
4214 	r = -EFAULT;
4215 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4216 		return r;
4217 
4218 	return 0;
4219 }
4220 
4221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4222 {
4223 	int r = 0;
4224 
4225 	switch (ext) {
4226 	case KVM_CAP_IRQCHIP:
4227 	case KVM_CAP_HLT:
4228 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4229 	case KVM_CAP_SET_TSS_ADDR:
4230 	case KVM_CAP_EXT_CPUID:
4231 	case KVM_CAP_EXT_EMUL_CPUID:
4232 	case KVM_CAP_CLOCKSOURCE:
4233 	case KVM_CAP_PIT:
4234 	case KVM_CAP_NOP_IO_DELAY:
4235 	case KVM_CAP_MP_STATE:
4236 	case KVM_CAP_SYNC_MMU:
4237 	case KVM_CAP_USER_NMI:
4238 	case KVM_CAP_REINJECT_CONTROL:
4239 	case KVM_CAP_IRQ_INJECT_STATUS:
4240 	case KVM_CAP_IOEVENTFD:
4241 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4242 	case KVM_CAP_PIT2:
4243 	case KVM_CAP_PIT_STATE2:
4244 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4245 	case KVM_CAP_VCPU_EVENTS:
4246 	case KVM_CAP_HYPERV:
4247 	case KVM_CAP_HYPERV_VAPIC:
4248 	case KVM_CAP_HYPERV_SPIN:
4249 	case KVM_CAP_HYPERV_SYNIC:
4250 	case KVM_CAP_HYPERV_SYNIC2:
4251 	case KVM_CAP_HYPERV_VP_INDEX:
4252 	case KVM_CAP_HYPERV_EVENTFD:
4253 	case KVM_CAP_HYPERV_TLBFLUSH:
4254 	case KVM_CAP_HYPERV_SEND_IPI:
4255 	case KVM_CAP_HYPERV_CPUID:
4256 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4257 	case KVM_CAP_SYS_HYPERV_CPUID:
4258 	case KVM_CAP_PCI_SEGMENT:
4259 	case KVM_CAP_DEBUGREGS:
4260 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4261 	case KVM_CAP_XSAVE:
4262 	case KVM_CAP_ASYNC_PF:
4263 	case KVM_CAP_ASYNC_PF_INT:
4264 	case KVM_CAP_GET_TSC_KHZ:
4265 	case KVM_CAP_KVMCLOCK_CTRL:
4266 	case KVM_CAP_READONLY_MEM:
4267 	case KVM_CAP_HYPERV_TIME:
4268 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4269 	case KVM_CAP_TSC_DEADLINE_TIMER:
4270 	case KVM_CAP_DISABLE_QUIRKS:
4271 	case KVM_CAP_SET_BOOT_CPU_ID:
4272  	case KVM_CAP_SPLIT_IRQCHIP:
4273 	case KVM_CAP_IMMEDIATE_EXIT:
4274 	case KVM_CAP_PMU_EVENT_FILTER:
4275 	case KVM_CAP_GET_MSR_FEATURES:
4276 	case KVM_CAP_MSR_PLATFORM_INFO:
4277 	case KVM_CAP_EXCEPTION_PAYLOAD:
4278 	case KVM_CAP_SET_GUEST_DEBUG:
4279 	case KVM_CAP_LAST_CPU:
4280 	case KVM_CAP_X86_USER_SPACE_MSR:
4281 	case KVM_CAP_X86_MSR_FILTER:
4282 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4283 #ifdef CONFIG_X86_SGX_KVM
4284 	case KVM_CAP_SGX_ATTRIBUTE:
4285 #endif
4286 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4287 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4288 	case KVM_CAP_SREGS2:
4289 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4290 	case KVM_CAP_VCPU_ATTRIBUTES:
4291 	case KVM_CAP_SYS_ATTRIBUTES:
4292 	case KVM_CAP_VAPIC:
4293 	case KVM_CAP_ENABLE_CAP:
4294 		r = 1;
4295 		break;
4296 	case KVM_CAP_EXIT_HYPERCALL:
4297 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4298 		break;
4299 	case KVM_CAP_SET_GUEST_DEBUG2:
4300 		return KVM_GUESTDBG_VALID_MASK;
4301 #ifdef CONFIG_KVM_XEN
4302 	case KVM_CAP_XEN_HVM:
4303 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4304 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4305 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4306 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4307 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4308 		if (sched_info_on())
4309 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4310 		break;
4311 #endif
4312 	case KVM_CAP_SYNC_REGS:
4313 		r = KVM_SYNC_X86_VALID_FIELDS;
4314 		break;
4315 	case KVM_CAP_ADJUST_CLOCK:
4316 		r = KVM_CLOCK_VALID_FLAGS;
4317 		break;
4318 	case KVM_CAP_X86_DISABLE_EXITS:
4319 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4320 		      KVM_X86_DISABLE_EXITS_CSTATE;
4321 		if(kvm_can_mwait_in_guest())
4322 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4323 		break;
4324 	case KVM_CAP_X86_SMM:
4325 		/* SMBASE is usually relocated above 1M on modern chipsets,
4326 		 * and SMM handlers might indeed rely on 4G segment limits,
4327 		 * so do not report SMM to be available if real mode is
4328 		 * emulated via vm86 mode.  Still, do not go to great lengths
4329 		 * to avoid userspace's usage of the feature, because it is a
4330 		 * fringe case that is not enabled except via specific settings
4331 		 * of the module parameters.
4332 		 */
4333 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4334 		break;
4335 	case KVM_CAP_NR_VCPUS:
4336 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4337 		break;
4338 	case KVM_CAP_MAX_VCPUS:
4339 		r = KVM_MAX_VCPUS;
4340 		break;
4341 	case KVM_CAP_MAX_VCPU_ID:
4342 		r = KVM_MAX_VCPU_IDS;
4343 		break;
4344 	case KVM_CAP_PV_MMU:	/* obsolete */
4345 		r = 0;
4346 		break;
4347 	case KVM_CAP_MCE:
4348 		r = KVM_MAX_MCE_BANKS;
4349 		break;
4350 	case KVM_CAP_XCRS:
4351 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4352 		break;
4353 	case KVM_CAP_TSC_CONTROL:
4354 	case KVM_CAP_VM_TSC_CONTROL:
4355 		r = kvm_has_tsc_control;
4356 		break;
4357 	case KVM_CAP_X2APIC_API:
4358 		r = KVM_X2APIC_API_VALID_FLAGS;
4359 		break;
4360 	case KVM_CAP_NESTED_STATE:
4361 		r = kvm_x86_ops.nested_ops->get_state ?
4362 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4363 		break;
4364 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4365 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4366 		break;
4367 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4368 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4369 		break;
4370 	case KVM_CAP_SMALLER_MAXPHYADDR:
4371 		r = (int) allow_smaller_maxphyaddr;
4372 		break;
4373 	case KVM_CAP_STEAL_TIME:
4374 		r = sched_info_on();
4375 		break;
4376 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4377 		if (kvm_has_bus_lock_exit)
4378 			r = KVM_BUS_LOCK_DETECTION_OFF |
4379 			    KVM_BUS_LOCK_DETECTION_EXIT;
4380 		else
4381 			r = 0;
4382 		break;
4383 	case KVM_CAP_XSAVE2: {
4384 		u64 guest_perm = xstate_get_guest_group_perm();
4385 
4386 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4387 		if (r < sizeof(struct kvm_xsave))
4388 			r = sizeof(struct kvm_xsave);
4389 		break;
4390 	case KVM_CAP_PMU_CAPABILITY:
4391 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4392 		break;
4393 	}
4394 	case KVM_CAP_DISABLE_QUIRKS2:
4395 		r = KVM_X86_VALID_QUIRKS;
4396 		break;
4397 	default:
4398 		break;
4399 	}
4400 	return r;
4401 }
4402 
4403 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4404 {
4405 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4406 
4407 	if ((u64)(unsigned long)uaddr != attr->addr)
4408 		return ERR_PTR_USR(-EFAULT);
4409 	return uaddr;
4410 }
4411 
4412 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4413 {
4414 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4415 
4416 	if (attr->group)
4417 		return -ENXIO;
4418 
4419 	if (IS_ERR(uaddr))
4420 		return PTR_ERR(uaddr);
4421 
4422 	switch (attr->attr) {
4423 	case KVM_X86_XCOMP_GUEST_SUPP:
4424 		if (put_user(supported_xcr0, uaddr))
4425 			return -EFAULT;
4426 		return 0;
4427 	default:
4428 		return -ENXIO;
4429 		break;
4430 	}
4431 }
4432 
4433 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4434 {
4435 	if (attr->group)
4436 		return -ENXIO;
4437 
4438 	switch (attr->attr) {
4439 	case KVM_X86_XCOMP_GUEST_SUPP:
4440 		return 0;
4441 	default:
4442 		return -ENXIO;
4443 	}
4444 }
4445 
4446 long kvm_arch_dev_ioctl(struct file *filp,
4447 			unsigned int ioctl, unsigned long arg)
4448 {
4449 	void __user *argp = (void __user *)arg;
4450 	long r;
4451 
4452 	switch (ioctl) {
4453 	case KVM_GET_MSR_INDEX_LIST: {
4454 		struct kvm_msr_list __user *user_msr_list = argp;
4455 		struct kvm_msr_list msr_list;
4456 		unsigned n;
4457 
4458 		r = -EFAULT;
4459 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4460 			goto out;
4461 		n = msr_list.nmsrs;
4462 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4463 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4464 			goto out;
4465 		r = -E2BIG;
4466 		if (n < msr_list.nmsrs)
4467 			goto out;
4468 		r = -EFAULT;
4469 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4470 				 num_msrs_to_save * sizeof(u32)))
4471 			goto out;
4472 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4473 				 &emulated_msrs,
4474 				 num_emulated_msrs * sizeof(u32)))
4475 			goto out;
4476 		r = 0;
4477 		break;
4478 	}
4479 	case KVM_GET_SUPPORTED_CPUID:
4480 	case KVM_GET_EMULATED_CPUID: {
4481 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4482 		struct kvm_cpuid2 cpuid;
4483 
4484 		r = -EFAULT;
4485 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4486 			goto out;
4487 
4488 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4489 					    ioctl);
4490 		if (r)
4491 			goto out;
4492 
4493 		r = -EFAULT;
4494 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4495 			goto out;
4496 		r = 0;
4497 		break;
4498 	}
4499 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4500 		r = -EFAULT;
4501 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4502 				 sizeof(kvm_mce_cap_supported)))
4503 			goto out;
4504 		r = 0;
4505 		break;
4506 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4507 		struct kvm_msr_list __user *user_msr_list = argp;
4508 		struct kvm_msr_list msr_list;
4509 		unsigned int n;
4510 
4511 		r = -EFAULT;
4512 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4513 			goto out;
4514 		n = msr_list.nmsrs;
4515 		msr_list.nmsrs = num_msr_based_features;
4516 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4517 			goto out;
4518 		r = -E2BIG;
4519 		if (n < msr_list.nmsrs)
4520 			goto out;
4521 		r = -EFAULT;
4522 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4523 				 num_msr_based_features * sizeof(u32)))
4524 			goto out;
4525 		r = 0;
4526 		break;
4527 	}
4528 	case KVM_GET_MSRS:
4529 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4530 		break;
4531 	case KVM_GET_SUPPORTED_HV_CPUID:
4532 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4533 		break;
4534 	case KVM_GET_DEVICE_ATTR: {
4535 		struct kvm_device_attr attr;
4536 		r = -EFAULT;
4537 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4538 			break;
4539 		r = kvm_x86_dev_get_attr(&attr);
4540 		break;
4541 	}
4542 	case KVM_HAS_DEVICE_ATTR: {
4543 		struct kvm_device_attr attr;
4544 		r = -EFAULT;
4545 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4546 			break;
4547 		r = kvm_x86_dev_has_attr(&attr);
4548 		break;
4549 	}
4550 	default:
4551 		r = -EINVAL;
4552 		break;
4553 	}
4554 out:
4555 	return r;
4556 }
4557 
4558 static void wbinvd_ipi(void *garbage)
4559 {
4560 	wbinvd();
4561 }
4562 
4563 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4564 {
4565 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4566 }
4567 
4568 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4569 {
4570 	/* Address WBINVD may be executed by guest */
4571 	if (need_emulate_wbinvd(vcpu)) {
4572 		if (static_call(kvm_x86_has_wbinvd_exit)())
4573 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4574 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4575 			smp_call_function_single(vcpu->cpu,
4576 					wbinvd_ipi, NULL, 1);
4577 	}
4578 
4579 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4580 
4581 	/* Save host pkru register if supported */
4582 	vcpu->arch.host_pkru = read_pkru();
4583 
4584 	/* Apply any externally detected TSC adjustments (due to suspend) */
4585 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4586 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4587 		vcpu->arch.tsc_offset_adjustment = 0;
4588 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4589 	}
4590 
4591 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4592 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4593 				rdtsc() - vcpu->arch.last_host_tsc;
4594 		if (tsc_delta < 0)
4595 			mark_tsc_unstable("KVM discovered backwards TSC");
4596 
4597 		if (kvm_check_tsc_unstable()) {
4598 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4599 						vcpu->arch.last_guest_tsc);
4600 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4601 			vcpu->arch.tsc_catchup = 1;
4602 		}
4603 
4604 		if (kvm_lapic_hv_timer_in_use(vcpu))
4605 			kvm_lapic_restart_hv_timer(vcpu);
4606 
4607 		/*
4608 		 * On a host with synchronized TSC, there is no need to update
4609 		 * kvmclock on vcpu->cpu migration
4610 		 */
4611 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4612 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4613 		if (vcpu->cpu != cpu)
4614 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4615 		vcpu->cpu = cpu;
4616 	}
4617 
4618 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4619 }
4620 
4621 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4622 {
4623 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4624 	struct kvm_steal_time __user *st;
4625 	struct kvm_memslots *slots;
4626 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4627 
4628 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4629 		return;
4630 
4631 	if (vcpu->arch.st.preempted)
4632 		return;
4633 
4634 	/* This happens on process exit */
4635 	if (unlikely(current->mm != vcpu->kvm->mm))
4636 		return;
4637 
4638 	slots = kvm_memslots(vcpu->kvm);
4639 
4640 	if (unlikely(slots->generation != ghc->generation ||
4641 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4642 		return;
4643 
4644 	st = (struct kvm_steal_time __user *)ghc->hva;
4645 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4646 
4647 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4648 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4649 
4650 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4651 }
4652 
4653 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4654 {
4655 	int idx;
4656 
4657 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4658 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4659 
4660 	/*
4661 	 * Take the srcu lock as memslots will be accessed to check the gfn
4662 	 * cache generation against the memslots generation.
4663 	 */
4664 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4665 	if (kvm_xen_msr_enabled(vcpu->kvm))
4666 		kvm_xen_runstate_set_preempted(vcpu);
4667 	else
4668 		kvm_steal_time_set_preempted(vcpu);
4669 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4670 
4671 	static_call(kvm_x86_vcpu_put)(vcpu);
4672 	vcpu->arch.last_host_tsc = rdtsc();
4673 }
4674 
4675 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4676 				    struct kvm_lapic_state *s)
4677 {
4678 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4679 
4680 	return kvm_apic_get_state(vcpu, s);
4681 }
4682 
4683 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4684 				    struct kvm_lapic_state *s)
4685 {
4686 	int r;
4687 
4688 	r = kvm_apic_set_state(vcpu, s);
4689 	if (r)
4690 		return r;
4691 	update_cr8_intercept(vcpu);
4692 
4693 	return 0;
4694 }
4695 
4696 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4697 {
4698 	/*
4699 	 * We can accept userspace's request for interrupt injection
4700 	 * as long as we have a place to store the interrupt number.
4701 	 * The actual injection will happen when the CPU is able to
4702 	 * deliver the interrupt.
4703 	 */
4704 	if (kvm_cpu_has_extint(vcpu))
4705 		return false;
4706 
4707 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4708 	return (!lapic_in_kernel(vcpu) ||
4709 		kvm_apic_accept_pic_intr(vcpu));
4710 }
4711 
4712 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4713 {
4714 	/*
4715 	 * Do not cause an interrupt window exit if an exception
4716 	 * is pending or an event needs reinjection; userspace
4717 	 * might want to inject the interrupt manually using KVM_SET_REGS
4718 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4719 	 * instruction boundary and with no events half-injected.
4720 	 */
4721 	return (kvm_arch_interrupt_allowed(vcpu) &&
4722 		kvm_cpu_accept_dm_intr(vcpu) &&
4723 		!kvm_event_needs_reinjection(vcpu) &&
4724 		!vcpu->arch.exception.pending);
4725 }
4726 
4727 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4728 				    struct kvm_interrupt *irq)
4729 {
4730 	if (irq->irq >= KVM_NR_INTERRUPTS)
4731 		return -EINVAL;
4732 
4733 	if (!irqchip_in_kernel(vcpu->kvm)) {
4734 		kvm_queue_interrupt(vcpu, irq->irq, false);
4735 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4736 		return 0;
4737 	}
4738 
4739 	/*
4740 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4741 	 * fail for in-kernel 8259.
4742 	 */
4743 	if (pic_in_kernel(vcpu->kvm))
4744 		return -ENXIO;
4745 
4746 	if (vcpu->arch.pending_external_vector != -1)
4747 		return -EEXIST;
4748 
4749 	vcpu->arch.pending_external_vector = irq->irq;
4750 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4751 	return 0;
4752 }
4753 
4754 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4755 {
4756 	kvm_inject_nmi(vcpu);
4757 
4758 	return 0;
4759 }
4760 
4761 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4762 {
4763 	kvm_make_request(KVM_REQ_SMI, vcpu);
4764 
4765 	return 0;
4766 }
4767 
4768 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4769 					   struct kvm_tpr_access_ctl *tac)
4770 {
4771 	if (tac->flags)
4772 		return -EINVAL;
4773 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4774 	return 0;
4775 }
4776 
4777 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4778 					u64 mcg_cap)
4779 {
4780 	int r;
4781 	unsigned bank_num = mcg_cap & 0xff, bank;
4782 
4783 	r = -EINVAL;
4784 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4785 		goto out;
4786 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4787 		goto out;
4788 	r = 0;
4789 	vcpu->arch.mcg_cap = mcg_cap;
4790 	/* Init IA32_MCG_CTL to all 1s */
4791 	if (mcg_cap & MCG_CTL_P)
4792 		vcpu->arch.mcg_ctl = ~(u64)0;
4793 	/* Init IA32_MCi_CTL to all 1s */
4794 	for (bank = 0; bank < bank_num; bank++)
4795 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4796 
4797 	static_call(kvm_x86_setup_mce)(vcpu);
4798 out:
4799 	return r;
4800 }
4801 
4802 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4803 				      struct kvm_x86_mce *mce)
4804 {
4805 	u64 mcg_cap = vcpu->arch.mcg_cap;
4806 	unsigned bank_num = mcg_cap & 0xff;
4807 	u64 *banks = vcpu->arch.mce_banks;
4808 
4809 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4810 		return -EINVAL;
4811 	/*
4812 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4813 	 * reporting is disabled
4814 	 */
4815 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4816 	    vcpu->arch.mcg_ctl != ~(u64)0)
4817 		return 0;
4818 	banks += 4 * mce->bank;
4819 	/*
4820 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4821 	 * reporting is disabled for the bank
4822 	 */
4823 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4824 		return 0;
4825 	if (mce->status & MCI_STATUS_UC) {
4826 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4827 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4828 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4829 			return 0;
4830 		}
4831 		if (banks[1] & MCI_STATUS_VAL)
4832 			mce->status |= MCI_STATUS_OVER;
4833 		banks[2] = mce->addr;
4834 		banks[3] = mce->misc;
4835 		vcpu->arch.mcg_status = mce->mcg_status;
4836 		banks[1] = mce->status;
4837 		kvm_queue_exception(vcpu, MC_VECTOR);
4838 	} else if (!(banks[1] & MCI_STATUS_VAL)
4839 		   || !(banks[1] & MCI_STATUS_UC)) {
4840 		if (banks[1] & MCI_STATUS_VAL)
4841 			mce->status |= MCI_STATUS_OVER;
4842 		banks[2] = mce->addr;
4843 		banks[3] = mce->misc;
4844 		banks[1] = mce->status;
4845 	} else
4846 		banks[1] |= MCI_STATUS_OVER;
4847 	return 0;
4848 }
4849 
4850 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4851 					       struct kvm_vcpu_events *events)
4852 {
4853 	process_nmi(vcpu);
4854 
4855 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4856 		process_smi(vcpu);
4857 
4858 	/*
4859 	 * In guest mode, payload delivery should be deferred,
4860 	 * so that the L1 hypervisor can intercept #PF before
4861 	 * CR2 is modified (or intercept #DB before DR6 is
4862 	 * modified under nVMX). Unless the per-VM capability,
4863 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4864 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4865 	 * opportunistically defer the exception payload, deliver it if the
4866 	 * capability hasn't been requested before processing a
4867 	 * KVM_GET_VCPU_EVENTS.
4868 	 */
4869 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4870 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4871 		kvm_deliver_exception_payload(vcpu);
4872 
4873 	/*
4874 	 * The API doesn't provide the instruction length for software
4875 	 * exceptions, so don't report them. As long as the guest RIP
4876 	 * isn't advanced, we should expect to encounter the exception
4877 	 * again.
4878 	 */
4879 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4880 		events->exception.injected = 0;
4881 		events->exception.pending = 0;
4882 	} else {
4883 		events->exception.injected = vcpu->arch.exception.injected;
4884 		events->exception.pending = vcpu->arch.exception.pending;
4885 		/*
4886 		 * For ABI compatibility, deliberately conflate
4887 		 * pending and injected exceptions when
4888 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4889 		 */
4890 		if (!vcpu->kvm->arch.exception_payload_enabled)
4891 			events->exception.injected |=
4892 				vcpu->arch.exception.pending;
4893 	}
4894 	events->exception.nr = vcpu->arch.exception.nr;
4895 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4896 	events->exception.error_code = vcpu->arch.exception.error_code;
4897 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4898 	events->exception_payload = vcpu->arch.exception.payload;
4899 
4900 	events->interrupt.injected =
4901 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4902 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4903 	events->interrupt.soft = 0;
4904 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4905 
4906 	events->nmi.injected = vcpu->arch.nmi_injected;
4907 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4908 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4909 	events->nmi.pad = 0;
4910 
4911 	events->sipi_vector = 0; /* never valid when reporting to user space */
4912 
4913 	events->smi.smm = is_smm(vcpu);
4914 	events->smi.pending = vcpu->arch.smi_pending;
4915 	events->smi.smm_inside_nmi =
4916 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4917 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4918 
4919 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4920 			 | KVM_VCPUEVENT_VALID_SHADOW
4921 			 | KVM_VCPUEVENT_VALID_SMM);
4922 	if (vcpu->kvm->arch.exception_payload_enabled)
4923 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4924 
4925 	memset(&events->reserved, 0, sizeof(events->reserved));
4926 }
4927 
4928 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4929 
4930 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4931 					      struct kvm_vcpu_events *events)
4932 {
4933 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4934 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4935 			      | KVM_VCPUEVENT_VALID_SHADOW
4936 			      | KVM_VCPUEVENT_VALID_SMM
4937 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4938 		return -EINVAL;
4939 
4940 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4941 		if (!vcpu->kvm->arch.exception_payload_enabled)
4942 			return -EINVAL;
4943 		if (events->exception.pending)
4944 			events->exception.injected = 0;
4945 		else
4946 			events->exception_has_payload = 0;
4947 	} else {
4948 		events->exception.pending = 0;
4949 		events->exception_has_payload = 0;
4950 	}
4951 
4952 	if ((events->exception.injected || events->exception.pending) &&
4953 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4954 		return -EINVAL;
4955 
4956 	/* INITs are latched while in SMM */
4957 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4958 	    (events->smi.smm || events->smi.pending) &&
4959 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4960 		return -EINVAL;
4961 
4962 	process_nmi(vcpu);
4963 	vcpu->arch.exception.injected = events->exception.injected;
4964 	vcpu->arch.exception.pending = events->exception.pending;
4965 	vcpu->arch.exception.nr = events->exception.nr;
4966 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4967 	vcpu->arch.exception.error_code = events->exception.error_code;
4968 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4969 	vcpu->arch.exception.payload = events->exception_payload;
4970 
4971 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4972 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4973 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4974 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4975 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4976 						events->interrupt.shadow);
4977 
4978 	vcpu->arch.nmi_injected = events->nmi.injected;
4979 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4980 		vcpu->arch.nmi_pending = events->nmi.pending;
4981 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4982 
4983 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4984 	    lapic_in_kernel(vcpu))
4985 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4986 
4987 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4988 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4989 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4990 			kvm_smm_changed(vcpu, events->smi.smm);
4991 		}
4992 
4993 		vcpu->arch.smi_pending = events->smi.pending;
4994 
4995 		if (events->smi.smm) {
4996 			if (events->smi.smm_inside_nmi)
4997 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4998 			else
4999 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5000 		}
5001 
5002 		if (lapic_in_kernel(vcpu)) {
5003 			if (events->smi.latched_init)
5004 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5005 			else
5006 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5007 		}
5008 	}
5009 
5010 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5011 
5012 	return 0;
5013 }
5014 
5015 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5016 					     struct kvm_debugregs *dbgregs)
5017 {
5018 	unsigned long val;
5019 
5020 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5021 	kvm_get_dr(vcpu, 6, &val);
5022 	dbgregs->dr6 = val;
5023 	dbgregs->dr7 = vcpu->arch.dr7;
5024 	dbgregs->flags = 0;
5025 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5026 }
5027 
5028 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5029 					    struct kvm_debugregs *dbgregs)
5030 {
5031 	if (dbgregs->flags)
5032 		return -EINVAL;
5033 
5034 	if (!kvm_dr6_valid(dbgregs->dr6))
5035 		return -EINVAL;
5036 	if (!kvm_dr7_valid(dbgregs->dr7))
5037 		return -EINVAL;
5038 
5039 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5040 	kvm_update_dr0123(vcpu);
5041 	vcpu->arch.dr6 = dbgregs->dr6;
5042 	vcpu->arch.dr7 = dbgregs->dr7;
5043 	kvm_update_dr7(vcpu);
5044 
5045 	return 0;
5046 }
5047 
5048 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5049 					 struct kvm_xsave *guest_xsave)
5050 {
5051 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5052 		return;
5053 
5054 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5055 				       guest_xsave->region,
5056 				       sizeof(guest_xsave->region),
5057 				       vcpu->arch.pkru);
5058 }
5059 
5060 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5061 					  u8 *state, unsigned int size)
5062 {
5063 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5064 		return;
5065 
5066 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5067 				       state, size, vcpu->arch.pkru);
5068 }
5069 
5070 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5071 					struct kvm_xsave *guest_xsave)
5072 {
5073 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5074 		return 0;
5075 
5076 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5077 					      guest_xsave->region,
5078 					      supported_xcr0, &vcpu->arch.pkru);
5079 }
5080 
5081 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5082 					struct kvm_xcrs *guest_xcrs)
5083 {
5084 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5085 		guest_xcrs->nr_xcrs = 0;
5086 		return;
5087 	}
5088 
5089 	guest_xcrs->nr_xcrs = 1;
5090 	guest_xcrs->flags = 0;
5091 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5092 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5093 }
5094 
5095 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5096 				       struct kvm_xcrs *guest_xcrs)
5097 {
5098 	int i, r = 0;
5099 
5100 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5101 		return -EINVAL;
5102 
5103 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5104 		return -EINVAL;
5105 
5106 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5107 		/* Only support XCR0 currently */
5108 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5109 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5110 				guest_xcrs->xcrs[i].value);
5111 			break;
5112 		}
5113 	if (r)
5114 		r = -EINVAL;
5115 	return r;
5116 }
5117 
5118 /*
5119  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5120  * stopped by the hypervisor.  This function will be called from the host only.
5121  * EINVAL is returned when the host attempts to set the flag for a guest that
5122  * does not support pv clocks.
5123  */
5124 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5125 {
5126 	if (!vcpu->arch.pv_time.active)
5127 		return -EINVAL;
5128 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5129 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5130 	return 0;
5131 }
5132 
5133 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5134 				 struct kvm_device_attr *attr)
5135 {
5136 	int r;
5137 
5138 	switch (attr->attr) {
5139 	case KVM_VCPU_TSC_OFFSET:
5140 		r = 0;
5141 		break;
5142 	default:
5143 		r = -ENXIO;
5144 	}
5145 
5146 	return r;
5147 }
5148 
5149 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5150 				 struct kvm_device_attr *attr)
5151 {
5152 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5153 	int r;
5154 
5155 	if (IS_ERR(uaddr))
5156 		return PTR_ERR(uaddr);
5157 
5158 	switch (attr->attr) {
5159 	case KVM_VCPU_TSC_OFFSET:
5160 		r = -EFAULT;
5161 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5162 			break;
5163 		r = 0;
5164 		break;
5165 	default:
5166 		r = -ENXIO;
5167 	}
5168 
5169 	return r;
5170 }
5171 
5172 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5173 				 struct kvm_device_attr *attr)
5174 {
5175 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5176 	struct kvm *kvm = vcpu->kvm;
5177 	int r;
5178 
5179 	if (IS_ERR(uaddr))
5180 		return PTR_ERR(uaddr);
5181 
5182 	switch (attr->attr) {
5183 	case KVM_VCPU_TSC_OFFSET: {
5184 		u64 offset, tsc, ns;
5185 		unsigned long flags;
5186 		bool matched;
5187 
5188 		r = -EFAULT;
5189 		if (get_user(offset, uaddr))
5190 			break;
5191 
5192 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5193 
5194 		matched = (vcpu->arch.virtual_tsc_khz &&
5195 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5196 			   kvm->arch.last_tsc_offset == offset);
5197 
5198 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5199 		ns = get_kvmclock_base_ns();
5200 
5201 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5202 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5203 
5204 		r = 0;
5205 		break;
5206 	}
5207 	default:
5208 		r = -ENXIO;
5209 	}
5210 
5211 	return r;
5212 }
5213 
5214 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5215 				      unsigned int ioctl,
5216 				      void __user *argp)
5217 {
5218 	struct kvm_device_attr attr;
5219 	int r;
5220 
5221 	if (copy_from_user(&attr, argp, sizeof(attr)))
5222 		return -EFAULT;
5223 
5224 	if (attr.group != KVM_VCPU_TSC_CTRL)
5225 		return -ENXIO;
5226 
5227 	switch (ioctl) {
5228 	case KVM_HAS_DEVICE_ATTR:
5229 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5230 		break;
5231 	case KVM_GET_DEVICE_ATTR:
5232 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5233 		break;
5234 	case KVM_SET_DEVICE_ATTR:
5235 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5236 		break;
5237 	}
5238 
5239 	return r;
5240 }
5241 
5242 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5243 				     struct kvm_enable_cap *cap)
5244 {
5245 	int r;
5246 	uint16_t vmcs_version;
5247 	void __user *user_ptr;
5248 
5249 	if (cap->flags)
5250 		return -EINVAL;
5251 
5252 	switch (cap->cap) {
5253 	case KVM_CAP_HYPERV_SYNIC2:
5254 		if (cap->args[0])
5255 			return -EINVAL;
5256 		fallthrough;
5257 
5258 	case KVM_CAP_HYPERV_SYNIC:
5259 		if (!irqchip_in_kernel(vcpu->kvm))
5260 			return -EINVAL;
5261 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5262 					     KVM_CAP_HYPERV_SYNIC2);
5263 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5264 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5265 			return -ENOTTY;
5266 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5267 		if (!r) {
5268 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5269 			if (copy_to_user(user_ptr, &vmcs_version,
5270 					 sizeof(vmcs_version)))
5271 				r = -EFAULT;
5272 		}
5273 		return r;
5274 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5275 		if (!kvm_x86_ops.enable_direct_tlbflush)
5276 			return -ENOTTY;
5277 
5278 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5279 
5280 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5281 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5282 
5283 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5284 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5285 		if (vcpu->arch.pv_cpuid.enforce)
5286 			kvm_update_pv_runtime(vcpu);
5287 
5288 		return 0;
5289 	default:
5290 		return -EINVAL;
5291 	}
5292 }
5293 
5294 long kvm_arch_vcpu_ioctl(struct file *filp,
5295 			 unsigned int ioctl, unsigned long arg)
5296 {
5297 	struct kvm_vcpu *vcpu = filp->private_data;
5298 	void __user *argp = (void __user *)arg;
5299 	int r;
5300 	union {
5301 		struct kvm_sregs2 *sregs2;
5302 		struct kvm_lapic_state *lapic;
5303 		struct kvm_xsave *xsave;
5304 		struct kvm_xcrs *xcrs;
5305 		void *buffer;
5306 	} u;
5307 
5308 	vcpu_load(vcpu);
5309 
5310 	u.buffer = NULL;
5311 	switch (ioctl) {
5312 	case KVM_GET_LAPIC: {
5313 		r = -EINVAL;
5314 		if (!lapic_in_kernel(vcpu))
5315 			goto out;
5316 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5317 				GFP_KERNEL_ACCOUNT);
5318 
5319 		r = -ENOMEM;
5320 		if (!u.lapic)
5321 			goto out;
5322 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5323 		if (r)
5324 			goto out;
5325 		r = -EFAULT;
5326 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5327 			goto out;
5328 		r = 0;
5329 		break;
5330 	}
5331 	case KVM_SET_LAPIC: {
5332 		r = -EINVAL;
5333 		if (!lapic_in_kernel(vcpu))
5334 			goto out;
5335 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5336 		if (IS_ERR(u.lapic)) {
5337 			r = PTR_ERR(u.lapic);
5338 			goto out_nofree;
5339 		}
5340 
5341 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5342 		break;
5343 	}
5344 	case KVM_INTERRUPT: {
5345 		struct kvm_interrupt irq;
5346 
5347 		r = -EFAULT;
5348 		if (copy_from_user(&irq, argp, sizeof(irq)))
5349 			goto out;
5350 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5351 		break;
5352 	}
5353 	case KVM_NMI: {
5354 		r = kvm_vcpu_ioctl_nmi(vcpu);
5355 		break;
5356 	}
5357 	case KVM_SMI: {
5358 		r = kvm_vcpu_ioctl_smi(vcpu);
5359 		break;
5360 	}
5361 	case KVM_SET_CPUID: {
5362 		struct kvm_cpuid __user *cpuid_arg = argp;
5363 		struct kvm_cpuid cpuid;
5364 
5365 		r = -EFAULT;
5366 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5367 			goto out;
5368 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5369 		break;
5370 	}
5371 	case KVM_SET_CPUID2: {
5372 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5373 		struct kvm_cpuid2 cpuid;
5374 
5375 		r = -EFAULT;
5376 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5377 			goto out;
5378 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5379 					      cpuid_arg->entries);
5380 		break;
5381 	}
5382 	case KVM_GET_CPUID2: {
5383 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5384 		struct kvm_cpuid2 cpuid;
5385 
5386 		r = -EFAULT;
5387 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5388 			goto out;
5389 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5390 					      cpuid_arg->entries);
5391 		if (r)
5392 			goto out;
5393 		r = -EFAULT;
5394 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5395 			goto out;
5396 		r = 0;
5397 		break;
5398 	}
5399 	case KVM_GET_MSRS: {
5400 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5401 		r = msr_io(vcpu, argp, do_get_msr, 1);
5402 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5403 		break;
5404 	}
5405 	case KVM_SET_MSRS: {
5406 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5407 		r = msr_io(vcpu, argp, do_set_msr, 0);
5408 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5409 		break;
5410 	}
5411 	case KVM_TPR_ACCESS_REPORTING: {
5412 		struct kvm_tpr_access_ctl tac;
5413 
5414 		r = -EFAULT;
5415 		if (copy_from_user(&tac, argp, sizeof(tac)))
5416 			goto out;
5417 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5418 		if (r)
5419 			goto out;
5420 		r = -EFAULT;
5421 		if (copy_to_user(argp, &tac, sizeof(tac)))
5422 			goto out;
5423 		r = 0;
5424 		break;
5425 	};
5426 	case KVM_SET_VAPIC_ADDR: {
5427 		struct kvm_vapic_addr va;
5428 		int idx;
5429 
5430 		r = -EINVAL;
5431 		if (!lapic_in_kernel(vcpu))
5432 			goto out;
5433 		r = -EFAULT;
5434 		if (copy_from_user(&va, argp, sizeof(va)))
5435 			goto out;
5436 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5437 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5438 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5439 		break;
5440 	}
5441 	case KVM_X86_SETUP_MCE: {
5442 		u64 mcg_cap;
5443 
5444 		r = -EFAULT;
5445 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5446 			goto out;
5447 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5448 		break;
5449 	}
5450 	case KVM_X86_SET_MCE: {
5451 		struct kvm_x86_mce mce;
5452 
5453 		r = -EFAULT;
5454 		if (copy_from_user(&mce, argp, sizeof(mce)))
5455 			goto out;
5456 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5457 		break;
5458 	}
5459 	case KVM_GET_VCPU_EVENTS: {
5460 		struct kvm_vcpu_events events;
5461 
5462 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5463 
5464 		r = -EFAULT;
5465 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5466 			break;
5467 		r = 0;
5468 		break;
5469 	}
5470 	case KVM_SET_VCPU_EVENTS: {
5471 		struct kvm_vcpu_events events;
5472 
5473 		r = -EFAULT;
5474 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5475 			break;
5476 
5477 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5478 		break;
5479 	}
5480 	case KVM_GET_DEBUGREGS: {
5481 		struct kvm_debugregs dbgregs;
5482 
5483 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5484 
5485 		r = -EFAULT;
5486 		if (copy_to_user(argp, &dbgregs,
5487 				 sizeof(struct kvm_debugregs)))
5488 			break;
5489 		r = 0;
5490 		break;
5491 	}
5492 	case KVM_SET_DEBUGREGS: {
5493 		struct kvm_debugregs dbgregs;
5494 
5495 		r = -EFAULT;
5496 		if (copy_from_user(&dbgregs, argp,
5497 				   sizeof(struct kvm_debugregs)))
5498 			break;
5499 
5500 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5501 		break;
5502 	}
5503 	case KVM_GET_XSAVE: {
5504 		r = -EINVAL;
5505 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5506 			break;
5507 
5508 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5509 		r = -ENOMEM;
5510 		if (!u.xsave)
5511 			break;
5512 
5513 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5514 
5515 		r = -EFAULT;
5516 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5517 			break;
5518 		r = 0;
5519 		break;
5520 	}
5521 	case KVM_SET_XSAVE: {
5522 		int size = vcpu->arch.guest_fpu.uabi_size;
5523 
5524 		u.xsave = memdup_user(argp, size);
5525 		if (IS_ERR(u.xsave)) {
5526 			r = PTR_ERR(u.xsave);
5527 			goto out_nofree;
5528 		}
5529 
5530 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5531 		break;
5532 	}
5533 
5534 	case KVM_GET_XSAVE2: {
5535 		int size = vcpu->arch.guest_fpu.uabi_size;
5536 
5537 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5538 		r = -ENOMEM;
5539 		if (!u.xsave)
5540 			break;
5541 
5542 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5543 
5544 		r = -EFAULT;
5545 		if (copy_to_user(argp, u.xsave, size))
5546 			break;
5547 
5548 		r = 0;
5549 		break;
5550 	}
5551 
5552 	case KVM_GET_XCRS: {
5553 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5554 		r = -ENOMEM;
5555 		if (!u.xcrs)
5556 			break;
5557 
5558 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5559 
5560 		r = -EFAULT;
5561 		if (copy_to_user(argp, u.xcrs,
5562 				 sizeof(struct kvm_xcrs)))
5563 			break;
5564 		r = 0;
5565 		break;
5566 	}
5567 	case KVM_SET_XCRS: {
5568 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5569 		if (IS_ERR(u.xcrs)) {
5570 			r = PTR_ERR(u.xcrs);
5571 			goto out_nofree;
5572 		}
5573 
5574 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5575 		break;
5576 	}
5577 	case KVM_SET_TSC_KHZ: {
5578 		u32 user_tsc_khz;
5579 
5580 		r = -EINVAL;
5581 		user_tsc_khz = (u32)arg;
5582 
5583 		if (kvm_has_tsc_control &&
5584 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5585 			goto out;
5586 
5587 		if (user_tsc_khz == 0)
5588 			user_tsc_khz = tsc_khz;
5589 
5590 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5591 			r = 0;
5592 
5593 		goto out;
5594 	}
5595 	case KVM_GET_TSC_KHZ: {
5596 		r = vcpu->arch.virtual_tsc_khz;
5597 		goto out;
5598 	}
5599 	case KVM_KVMCLOCK_CTRL: {
5600 		r = kvm_set_guest_paused(vcpu);
5601 		goto out;
5602 	}
5603 	case KVM_ENABLE_CAP: {
5604 		struct kvm_enable_cap cap;
5605 
5606 		r = -EFAULT;
5607 		if (copy_from_user(&cap, argp, sizeof(cap)))
5608 			goto out;
5609 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5610 		break;
5611 	}
5612 	case KVM_GET_NESTED_STATE: {
5613 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5614 		u32 user_data_size;
5615 
5616 		r = -EINVAL;
5617 		if (!kvm_x86_ops.nested_ops->get_state)
5618 			break;
5619 
5620 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5621 		r = -EFAULT;
5622 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5623 			break;
5624 
5625 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5626 						     user_data_size);
5627 		if (r < 0)
5628 			break;
5629 
5630 		if (r > user_data_size) {
5631 			if (put_user(r, &user_kvm_nested_state->size))
5632 				r = -EFAULT;
5633 			else
5634 				r = -E2BIG;
5635 			break;
5636 		}
5637 
5638 		r = 0;
5639 		break;
5640 	}
5641 	case KVM_SET_NESTED_STATE: {
5642 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5643 		struct kvm_nested_state kvm_state;
5644 		int idx;
5645 
5646 		r = -EINVAL;
5647 		if (!kvm_x86_ops.nested_ops->set_state)
5648 			break;
5649 
5650 		r = -EFAULT;
5651 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5652 			break;
5653 
5654 		r = -EINVAL;
5655 		if (kvm_state.size < sizeof(kvm_state))
5656 			break;
5657 
5658 		if (kvm_state.flags &
5659 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5660 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5661 		      | KVM_STATE_NESTED_GIF_SET))
5662 			break;
5663 
5664 		/* nested_run_pending implies guest_mode.  */
5665 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5666 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5667 			break;
5668 
5669 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5670 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5671 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5672 		break;
5673 	}
5674 	case KVM_GET_SUPPORTED_HV_CPUID:
5675 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5676 		break;
5677 #ifdef CONFIG_KVM_XEN
5678 	case KVM_XEN_VCPU_GET_ATTR: {
5679 		struct kvm_xen_vcpu_attr xva;
5680 
5681 		r = -EFAULT;
5682 		if (copy_from_user(&xva, argp, sizeof(xva)))
5683 			goto out;
5684 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5685 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5686 			r = -EFAULT;
5687 		break;
5688 	}
5689 	case KVM_XEN_VCPU_SET_ATTR: {
5690 		struct kvm_xen_vcpu_attr xva;
5691 
5692 		r = -EFAULT;
5693 		if (copy_from_user(&xva, argp, sizeof(xva)))
5694 			goto out;
5695 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5696 		break;
5697 	}
5698 #endif
5699 	case KVM_GET_SREGS2: {
5700 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5701 		r = -ENOMEM;
5702 		if (!u.sregs2)
5703 			goto out;
5704 		__get_sregs2(vcpu, u.sregs2);
5705 		r = -EFAULT;
5706 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5707 			goto out;
5708 		r = 0;
5709 		break;
5710 	}
5711 	case KVM_SET_SREGS2: {
5712 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5713 		if (IS_ERR(u.sregs2)) {
5714 			r = PTR_ERR(u.sregs2);
5715 			u.sregs2 = NULL;
5716 			goto out;
5717 		}
5718 		r = __set_sregs2(vcpu, u.sregs2);
5719 		break;
5720 	}
5721 	case KVM_HAS_DEVICE_ATTR:
5722 	case KVM_GET_DEVICE_ATTR:
5723 	case KVM_SET_DEVICE_ATTR:
5724 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5725 		break;
5726 	default:
5727 		r = -EINVAL;
5728 	}
5729 out:
5730 	kfree(u.buffer);
5731 out_nofree:
5732 	vcpu_put(vcpu);
5733 	return r;
5734 }
5735 
5736 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5737 {
5738 	return VM_FAULT_SIGBUS;
5739 }
5740 
5741 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5742 {
5743 	int ret;
5744 
5745 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5746 		return -EINVAL;
5747 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5748 	return ret;
5749 }
5750 
5751 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5752 					      u64 ident_addr)
5753 {
5754 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5755 }
5756 
5757 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5758 					 unsigned long kvm_nr_mmu_pages)
5759 {
5760 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5761 		return -EINVAL;
5762 
5763 	mutex_lock(&kvm->slots_lock);
5764 
5765 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5766 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5767 
5768 	mutex_unlock(&kvm->slots_lock);
5769 	return 0;
5770 }
5771 
5772 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5773 {
5774 	return kvm->arch.n_max_mmu_pages;
5775 }
5776 
5777 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5778 {
5779 	struct kvm_pic *pic = kvm->arch.vpic;
5780 	int r;
5781 
5782 	r = 0;
5783 	switch (chip->chip_id) {
5784 	case KVM_IRQCHIP_PIC_MASTER:
5785 		memcpy(&chip->chip.pic, &pic->pics[0],
5786 			sizeof(struct kvm_pic_state));
5787 		break;
5788 	case KVM_IRQCHIP_PIC_SLAVE:
5789 		memcpy(&chip->chip.pic, &pic->pics[1],
5790 			sizeof(struct kvm_pic_state));
5791 		break;
5792 	case KVM_IRQCHIP_IOAPIC:
5793 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5794 		break;
5795 	default:
5796 		r = -EINVAL;
5797 		break;
5798 	}
5799 	return r;
5800 }
5801 
5802 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5803 {
5804 	struct kvm_pic *pic = kvm->arch.vpic;
5805 	int r;
5806 
5807 	r = 0;
5808 	switch (chip->chip_id) {
5809 	case KVM_IRQCHIP_PIC_MASTER:
5810 		spin_lock(&pic->lock);
5811 		memcpy(&pic->pics[0], &chip->chip.pic,
5812 			sizeof(struct kvm_pic_state));
5813 		spin_unlock(&pic->lock);
5814 		break;
5815 	case KVM_IRQCHIP_PIC_SLAVE:
5816 		spin_lock(&pic->lock);
5817 		memcpy(&pic->pics[1], &chip->chip.pic,
5818 			sizeof(struct kvm_pic_state));
5819 		spin_unlock(&pic->lock);
5820 		break;
5821 	case KVM_IRQCHIP_IOAPIC:
5822 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5823 		break;
5824 	default:
5825 		r = -EINVAL;
5826 		break;
5827 	}
5828 	kvm_pic_update_irq(pic);
5829 	return r;
5830 }
5831 
5832 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5833 {
5834 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5835 
5836 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5837 
5838 	mutex_lock(&kps->lock);
5839 	memcpy(ps, &kps->channels, sizeof(*ps));
5840 	mutex_unlock(&kps->lock);
5841 	return 0;
5842 }
5843 
5844 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5845 {
5846 	int i;
5847 	struct kvm_pit *pit = kvm->arch.vpit;
5848 
5849 	mutex_lock(&pit->pit_state.lock);
5850 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5851 	for (i = 0; i < 3; i++)
5852 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5853 	mutex_unlock(&pit->pit_state.lock);
5854 	return 0;
5855 }
5856 
5857 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5858 {
5859 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5860 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5861 		sizeof(ps->channels));
5862 	ps->flags = kvm->arch.vpit->pit_state.flags;
5863 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5864 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5865 	return 0;
5866 }
5867 
5868 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5869 {
5870 	int start = 0;
5871 	int i;
5872 	u32 prev_legacy, cur_legacy;
5873 	struct kvm_pit *pit = kvm->arch.vpit;
5874 
5875 	mutex_lock(&pit->pit_state.lock);
5876 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5877 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5878 	if (!prev_legacy && cur_legacy)
5879 		start = 1;
5880 	memcpy(&pit->pit_state.channels, &ps->channels,
5881 	       sizeof(pit->pit_state.channels));
5882 	pit->pit_state.flags = ps->flags;
5883 	for (i = 0; i < 3; i++)
5884 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5885 				   start && i == 0);
5886 	mutex_unlock(&pit->pit_state.lock);
5887 	return 0;
5888 }
5889 
5890 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5891 				 struct kvm_reinject_control *control)
5892 {
5893 	struct kvm_pit *pit = kvm->arch.vpit;
5894 
5895 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5896 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5897 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5898 	 */
5899 	mutex_lock(&pit->pit_state.lock);
5900 	kvm_pit_set_reinject(pit, control->pit_reinject);
5901 	mutex_unlock(&pit->pit_state.lock);
5902 
5903 	return 0;
5904 }
5905 
5906 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5907 {
5908 
5909 	/*
5910 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5911 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5912 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5913 	 * VM-Exit.
5914 	 */
5915 	struct kvm_vcpu *vcpu;
5916 	unsigned long i;
5917 
5918 	kvm_for_each_vcpu(i, vcpu, kvm)
5919 		kvm_vcpu_kick(vcpu);
5920 }
5921 
5922 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5923 			bool line_status)
5924 {
5925 	if (!irqchip_in_kernel(kvm))
5926 		return -ENXIO;
5927 
5928 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5929 					irq_event->irq, irq_event->level,
5930 					line_status);
5931 	return 0;
5932 }
5933 
5934 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5935 			    struct kvm_enable_cap *cap)
5936 {
5937 	int r;
5938 
5939 	if (cap->flags)
5940 		return -EINVAL;
5941 
5942 	switch (cap->cap) {
5943 	case KVM_CAP_DISABLE_QUIRKS2:
5944 		r = -EINVAL;
5945 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5946 			break;
5947 		fallthrough;
5948 	case KVM_CAP_DISABLE_QUIRKS:
5949 		kvm->arch.disabled_quirks = cap->args[0];
5950 		r = 0;
5951 		break;
5952 	case KVM_CAP_SPLIT_IRQCHIP: {
5953 		mutex_lock(&kvm->lock);
5954 		r = -EINVAL;
5955 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5956 			goto split_irqchip_unlock;
5957 		r = -EEXIST;
5958 		if (irqchip_in_kernel(kvm))
5959 			goto split_irqchip_unlock;
5960 		if (kvm->created_vcpus)
5961 			goto split_irqchip_unlock;
5962 		r = kvm_setup_empty_irq_routing(kvm);
5963 		if (r)
5964 			goto split_irqchip_unlock;
5965 		/* Pairs with irqchip_in_kernel. */
5966 		smp_wmb();
5967 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5968 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5969 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5970 		r = 0;
5971 split_irqchip_unlock:
5972 		mutex_unlock(&kvm->lock);
5973 		break;
5974 	}
5975 	case KVM_CAP_X2APIC_API:
5976 		r = -EINVAL;
5977 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5978 			break;
5979 
5980 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5981 			kvm->arch.x2apic_format = true;
5982 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5983 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5984 
5985 		r = 0;
5986 		break;
5987 	case KVM_CAP_X86_DISABLE_EXITS:
5988 		r = -EINVAL;
5989 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5990 			break;
5991 
5992 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5993 			kvm_can_mwait_in_guest())
5994 			kvm->arch.mwait_in_guest = true;
5995 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5996 			kvm->arch.hlt_in_guest = true;
5997 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5998 			kvm->arch.pause_in_guest = true;
5999 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6000 			kvm->arch.cstate_in_guest = true;
6001 		r = 0;
6002 		break;
6003 	case KVM_CAP_MSR_PLATFORM_INFO:
6004 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6005 		r = 0;
6006 		break;
6007 	case KVM_CAP_EXCEPTION_PAYLOAD:
6008 		kvm->arch.exception_payload_enabled = cap->args[0];
6009 		r = 0;
6010 		break;
6011 	case KVM_CAP_X86_USER_SPACE_MSR:
6012 		kvm->arch.user_space_msr_mask = cap->args[0];
6013 		r = 0;
6014 		break;
6015 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6016 		r = -EINVAL;
6017 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6018 			break;
6019 
6020 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6021 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6022 			break;
6023 
6024 		if (kvm_has_bus_lock_exit &&
6025 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6026 			kvm->arch.bus_lock_detection_enabled = true;
6027 		r = 0;
6028 		break;
6029 #ifdef CONFIG_X86_SGX_KVM
6030 	case KVM_CAP_SGX_ATTRIBUTE: {
6031 		unsigned long allowed_attributes = 0;
6032 
6033 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6034 		if (r)
6035 			break;
6036 
6037 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6038 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6039 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6040 			kvm->arch.sgx_provisioning_allowed = true;
6041 		else
6042 			r = -EINVAL;
6043 		break;
6044 	}
6045 #endif
6046 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6047 		r = -EINVAL;
6048 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6049 			break;
6050 
6051 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6052 		break;
6053 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6054 		r = -EINVAL;
6055 		if (!kvm_x86_ops.vm_move_enc_context_from)
6056 			break;
6057 
6058 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6059 		break;
6060 	case KVM_CAP_EXIT_HYPERCALL:
6061 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6062 			r = -EINVAL;
6063 			break;
6064 		}
6065 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6066 		r = 0;
6067 		break;
6068 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6069 		r = -EINVAL;
6070 		if (cap->args[0] & ~1)
6071 			break;
6072 		kvm->arch.exit_on_emulation_error = cap->args[0];
6073 		r = 0;
6074 		break;
6075 	case KVM_CAP_PMU_CAPABILITY:
6076 		r = -EINVAL;
6077 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6078 			break;
6079 
6080 		mutex_lock(&kvm->lock);
6081 		if (!kvm->created_vcpus) {
6082 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6083 			r = 0;
6084 		}
6085 		mutex_unlock(&kvm->lock);
6086 		break;
6087 	default:
6088 		r = -EINVAL;
6089 		break;
6090 	}
6091 	return r;
6092 }
6093 
6094 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6095 {
6096 	struct kvm_x86_msr_filter *msr_filter;
6097 
6098 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6099 	if (!msr_filter)
6100 		return NULL;
6101 
6102 	msr_filter->default_allow = default_allow;
6103 	return msr_filter;
6104 }
6105 
6106 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6107 {
6108 	u32 i;
6109 
6110 	if (!msr_filter)
6111 		return;
6112 
6113 	for (i = 0; i < msr_filter->count; i++)
6114 		kfree(msr_filter->ranges[i].bitmap);
6115 
6116 	kfree(msr_filter);
6117 }
6118 
6119 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6120 			      struct kvm_msr_filter_range *user_range)
6121 {
6122 	unsigned long *bitmap = NULL;
6123 	size_t bitmap_size;
6124 
6125 	if (!user_range->nmsrs)
6126 		return 0;
6127 
6128 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6129 		return -EINVAL;
6130 
6131 	if (!user_range->flags)
6132 		return -EINVAL;
6133 
6134 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6135 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6136 		return -EINVAL;
6137 
6138 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6139 	if (IS_ERR(bitmap))
6140 		return PTR_ERR(bitmap);
6141 
6142 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6143 		.flags = user_range->flags,
6144 		.base = user_range->base,
6145 		.nmsrs = user_range->nmsrs,
6146 		.bitmap = bitmap,
6147 	};
6148 
6149 	msr_filter->count++;
6150 	return 0;
6151 }
6152 
6153 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6154 {
6155 	struct kvm_msr_filter __user *user_msr_filter = argp;
6156 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6157 	struct kvm_msr_filter filter;
6158 	bool default_allow;
6159 	bool empty = true;
6160 	int r = 0;
6161 	u32 i;
6162 
6163 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6164 		return -EFAULT;
6165 
6166 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6167 		empty &= !filter.ranges[i].nmsrs;
6168 
6169 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6170 	if (empty && !default_allow)
6171 		return -EINVAL;
6172 
6173 	new_filter = kvm_alloc_msr_filter(default_allow);
6174 	if (!new_filter)
6175 		return -ENOMEM;
6176 
6177 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6178 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6179 		if (r) {
6180 			kvm_free_msr_filter(new_filter);
6181 			return r;
6182 		}
6183 	}
6184 
6185 	mutex_lock(&kvm->lock);
6186 
6187 	/* The per-VM filter is protected by kvm->lock... */
6188 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6189 
6190 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6191 	synchronize_srcu(&kvm->srcu);
6192 
6193 	kvm_free_msr_filter(old_filter);
6194 
6195 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6196 	mutex_unlock(&kvm->lock);
6197 
6198 	return 0;
6199 }
6200 
6201 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6202 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6203 {
6204 	struct kvm_vcpu *vcpu;
6205 	unsigned long i;
6206 	int ret = 0;
6207 
6208 	mutex_lock(&kvm->lock);
6209 	kvm_for_each_vcpu(i, vcpu, kvm) {
6210 		if (!vcpu->arch.pv_time.active)
6211 			continue;
6212 
6213 		ret = kvm_set_guest_paused(vcpu);
6214 		if (ret) {
6215 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6216 				vcpu->vcpu_id, ret);
6217 			break;
6218 		}
6219 	}
6220 	mutex_unlock(&kvm->lock);
6221 
6222 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6223 }
6224 
6225 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6226 {
6227 	switch (state) {
6228 	case PM_HIBERNATION_PREPARE:
6229 	case PM_SUSPEND_PREPARE:
6230 		return kvm_arch_suspend_notifier(kvm);
6231 	}
6232 
6233 	return NOTIFY_DONE;
6234 }
6235 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6236 
6237 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6238 {
6239 	struct kvm_clock_data data = { 0 };
6240 
6241 	get_kvmclock(kvm, &data);
6242 	if (copy_to_user(argp, &data, sizeof(data)))
6243 		return -EFAULT;
6244 
6245 	return 0;
6246 }
6247 
6248 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6249 {
6250 	struct kvm_arch *ka = &kvm->arch;
6251 	struct kvm_clock_data data;
6252 	u64 now_raw_ns;
6253 
6254 	if (copy_from_user(&data, argp, sizeof(data)))
6255 		return -EFAULT;
6256 
6257 	/*
6258 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6259 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6260 	 */
6261 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6262 		return -EINVAL;
6263 
6264 	kvm_hv_request_tsc_page_update(kvm);
6265 	kvm_start_pvclock_update(kvm);
6266 	pvclock_update_vm_gtod_copy(kvm);
6267 
6268 	/*
6269 	 * This pairs with kvm_guest_time_update(): when masterclock is
6270 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6271 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6272 	 * is slightly ahead) here we risk going negative on unsigned
6273 	 * 'system_time' when 'data.clock' is very small.
6274 	 */
6275 	if (data.flags & KVM_CLOCK_REALTIME) {
6276 		u64 now_real_ns = ktime_get_real_ns();
6277 
6278 		/*
6279 		 * Avoid stepping the kvmclock backwards.
6280 		 */
6281 		if (now_real_ns > data.realtime)
6282 			data.clock += now_real_ns - data.realtime;
6283 	}
6284 
6285 	if (ka->use_master_clock)
6286 		now_raw_ns = ka->master_kernel_ns;
6287 	else
6288 		now_raw_ns = get_kvmclock_base_ns();
6289 	ka->kvmclock_offset = data.clock - now_raw_ns;
6290 	kvm_end_pvclock_update(kvm);
6291 	return 0;
6292 }
6293 
6294 long kvm_arch_vm_ioctl(struct file *filp,
6295 		       unsigned int ioctl, unsigned long arg)
6296 {
6297 	struct kvm *kvm = filp->private_data;
6298 	void __user *argp = (void __user *)arg;
6299 	int r = -ENOTTY;
6300 	/*
6301 	 * This union makes it completely explicit to gcc-3.x
6302 	 * that these two variables' stack usage should be
6303 	 * combined, not added together.
6304 	 */
6305 	union {
6306 		struct kvm_pit_state ps;
6307 		struct kvm_pit_state2 ps2;
6308 		struct kvm_pit_config pit_config;
6309 	} u;
6310 
6311 	switch (ioctl) {
6312 	case KVM_SET_TSS_ADDR:
6313 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6314 		break;
6315 	case KVM_SET_IDENTITY_MAP_ADDR: {
6316 		u64 ident_addr;
6317 
6318 		mutex_lock(&kvm->lock);
6319 		r = -EINVAL;
6320 		if (kvm->created_vcpus)
6321 			goto set_identity_unlock;
6322 		r = -EFAULT;
6323 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6324 			goto set_identity_unlock;
6325 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6326 set_identity_unlock:
6327 		mutex_unlock(&kvm->lock);
6328 		break;
6329 	}
6330 	case KVM_SET_NR_MMU_PAGES:
6331 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6332 		break;
6333 	case KVM_GET_NR_MMU_PAGES:
6334 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6335 		break;
6336 	case KVM_CREATE_IRQCHIP: {
6337 		mutex_lock(&kvm->lock);
6338 
6339 		r = -EEXIST;
6340 		if (irqchip_in_kernel(kvm))
6341 			goto create_irqchip_unlock;
6342 
6343 		r = -EINVAL;
6344 		if (kvm->created_vcpus)
6345 			goto create_irqchip_unlock;
6346 
6347 		r = kvm_pic_init(kvm);
6348 		if (r)
6349 			goto create_irqchip_unlock;
6350 
6351 		r = kvm_ioapic_init(kvm);
6352 		if (r) {
6353 			kvm_pic_destroy(kvm);
6354 			goto create_irqchip_unlock;
6355 		}
6356 
6357 		r = kvm_setup_default_irq_routing(kvm);
6358 		if (r) {
6359 			kvm_ioapic_destroy(kvm);
6360 			kvm_pic_destroy(kvm);
6361 			goto create_irqchip_unlock;
6362 		}
6363 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6364 		smp_wmb();
6365 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6366 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6367 	create_irqchip_unlock:
6368 		mutex_unlock(&kvm->lock);
6369 		break;
6370 	}
6371 	case KVM_CREATE_PIT:
6372 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6373 		goto create_pit;
6374 	case KVM_CREATE_PIT2:
6375 		r = -EFAULT;
6376 		if (copy_from_user(&u.pit_config, argp,
6377 				   sizeof(struct kvm_pit_config)))
6378 			goto out;
6379 	create_pit:
6380 		mutex_lock(&kvm->lock);
6381 		r = -EEXIST;
6382 		if (kvm->arch.vpit)
6383 			goto create_pit_unlock;
6384 		r = -ENOMEM;
6385 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6386 		if (kvm->arch.vpit)
6387 			r = 0;
6388 	create_pit_unlock:
6389 		mutex_unlock(&kvm->lock);
6390 		break;
6391 	case KVM_GET_IRQCHIP: {
6392 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6393 		struct kvm_irqchip *chip;
6394 
6395 		chip = memdup_user(argp, sizeof(*chip));
6396 		if (IS_ERR(chip)) {
6397 			r = PTR_ERR(chip);
6398 			goto out;
6399 		}
6400 
6401 		r = -ENXIO;
6402 		if (!irqchip_kernel(kvm))
6403 			goto get_irqchip_out;
6404 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6405 		if (r)
6406 			goto get_irqchip_out;
6407 		r = -EFAULT;
6408 		if (copy_to_user(argp, chip, sizeof(*chip)))
6409 			goto get_irqchip_out;
6410 		r = 0;
6411 	get_irqchip_out:
6412 		kfree(chip);
6413 		break;
6414 	}
6415 	case KVM_SET_IRQCHIP: {
6416 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6417 		struct kvm_irqchip *chip;
6418 
6419 		chip = memdup_user(argp, sizeof(*chip));
6420 		if (IS_ERR(chip)) {
6421 			r = PTR_ERR(chip);
6422 			goto out;
6423 		}
6424 
6425 		r = -ENXIO;
6426 		if (!irqchip_kernel(kvm))
6427 			goto set_irqchip_out;
6428 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6429 	set_irqchip_out:
6430 		kfree(chip);
6431 		break;
6432 	}
6433 	case KVM_GET_PIT: {
6434 		r = -EFAULT;
6435 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6436 			goto out;
6437 		r = -ENXIO;
6438 		if (!kvm->arch.vpit)
6439 			goto out;
6440 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6441 		if (r)
6442 			goto out;
6443 		r = -EFAULT;
6444 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6445 			goto out;
6446 		r = 0;
6447 		break;
6448 	}
6449 	case KVM_SET_PIT: {
6450 		r = -EFAULT;
6451 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6452 			goto out;
6453 		mutex_lock(&kvm->lock);
6454 		r = -ENXIO;
6455 		if (!kvm->arch.vpit)
6456 			goto set_pit_out;
6457 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6458 set_pit_out:
6459 		mutex_unlock(&kvm->lock);
6460 		break;
6461 	}
6462 	case KVM_GET_PIT2: {
6463 		r = -ENXIO;
6464 		if (!kvm->arch.vpit)
6465 			goto out;
6466 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6467 		if (r)
6468 			goto out;
6469 		r = -EFAULT;
6470 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6471 			goto out;
6472 		r = 0;
6473 		break;
6474 	}
6475 	case KVM_SET_PIT2: {
6476 		r = -EFAULT;
6477 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6478 			goto out;
6479 		mutex_lock(&kvm->lock);
6480 		r = -ENXIO;
6481 		if (!kvm->arch.vpit)
6482 			goto set_pit2_out;
6483 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6484 set_pit2_out:
6485 		mutex_unlock(&kvm->lock);
6486 		break;
6487 	}
6488 	case KVM_REINJECT_CONTROL: {
6489 		struct kvm_reinject_control control;
6490 		r =  -EFAULT;
6491 		if (copy_from_user(&control, argp, sizeof(control)))
6492 			goto out;
6493 		r = -ENXIO;
6494 		if (!kvm->arch.vpit)
6495 			goto out;
6496 		r = kvm_vm_ioctl_reinject(kvm, &control);
6497 		break;
6498 	}
6499 	case KVM_SET_BOOT_CPU_ID:
6500 		r = 0;
6501 		mutex_lock(&kvm->lock);
6502 		if (kvm->created_vcpus)
6503 			r = -EBUSY;
6504 		else
6505 			kvm->arch.bsp_vcpu_id = arg;
6506 		mutex_unlock(&kvm->lock);
6507 		break;
6508 #ifdef CONFIG_KVM_XEN
6509 	case KVM_XEN_HVM_CONFIG: {
6510 		struct kvm_xen_hvm_config xhc;
6511 		r = -EFAULT;
6512 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6513 			goto out;
6514 		r = kvm_xen_hvm_config(kvm, &xhc);
6515 		break;
6516 	}
6517 	case KVM_XEN_HVM_GET_ATTR: {
6518 		struct kvm_xen_hvm_attr xha;
6519 
6520 		r = -EFAULT;
6521 		if (copy_from_user(&xha, argp, sizeof(xha)))
6522 			goto out;
6523 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6524 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6525 			r = -EFAULT;
6526 		break;
6527 	}
6528 	case KVM_XEN_HVM_SET_ATTR: {
6529 		struct kvm_xen_hvm_attr xha;
6530 
6531 		r = -EFAULT;
6532 		if (copy_from_user(&xha, argp, sizeof(xha)))
6533 			goto out;
6534 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6535 		break;
6536 	}
6537 	case KVM_XEN_HVM_EVTCHN_SEND: {
6538 		struct kvm_irq_routing_xen_evtchn uxe;
6539 
6540 		r = -EFAULT;
6541 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6542 			goto out;
6543 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6544 		break;
6545 	}
6546 #endif
6547 	case KVM_SET_CLOCK:
6548 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6549 		break;
6550 	case KVM_GET_CLOCK:
6551 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6552 		break;
6553 	case KVM_SET_TSC_KHZ: {
6554 		u32 user_tsc_khz;
6555 
6556 		r = -EINVAL;
6557 		user_tsc_khz = (u32)arg;
6558 
6559 		if (kvm_has_tsc_control &&
6560 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
6561 			goto out;
6562 
6563 		if (user_tsc_khz == 0)
6564 			user_tsc_khz = tsc_khz;
6565 
6566 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6567 		r = 0;
6568 
6569 		goto out;
6570 	}
6571 	case KVM_GET_TSC_KHZ: {
6572 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6573 		goto out;
6574 	}
6575 	case KVM_MEMORY_ENCRYPT_OP: {
6576 		r = -ENOTTY;
6577 		if (!kvm_x86_ops.mem_enc_ioctl)
6578 			goto out;
6579 
6580 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6581 		break;
6582 	}
6583 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6584 		struct kvm_enc_region region;
6585 
6586 		r = -EFAULT;
6587 		if (copy_from_user(&region, argp, sizeof(region)))
6588 			goto out;
6589 
6590 		r = -ENOTTY;
6591 		if (!kvm_x86_ops.mem_enc_register_region)
6592 			goto out;
6593 
6594 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6595 		break;
6596 	}
6597 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6598 		struct kvm_enc_region region;
6599 
6600 		r = -EFAULT;
6601 		if (copy_from_user(&region, argp, sizeof(region)))
6602 			goto out;
6603 
6604 		r = -ENOTTY;
6605 		if (!kvm_x86_ops.mem_enc_unregister_region)
6606 			goto out;
6607 
6608 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6609 		break;
6610 	}
6611 	case KVM_HYPERV_EVENTFD: {
6612 		struct kvm_hyperv_eventfd hvevfd;
6613 
6614 		r = -EFAULT;
6615 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6616 			goto out;
6617 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6618 		break;
6619 	}
6620 	case KVM_SET_PMU_EVENT_FILTER:
6621 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6622 		break;
6623 	case KVM_X86_SET_MSR_FILTER:
6624 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6625 		break;
6626 	default:
6627 		r = -ENOTTY;
6628 	}
6629 out:
6630 	return r;
6631 }
6632 
6633 static void kvm_init_msr_list(void)
6634 {
6635 	struct x86_pmu_capability x86_pmu;
6636 	u32 dummy[2];
6637 	unsigned i;
6638 
6639 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6640 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6641 
6642 	perf_get_x86_pmu_capability(&x86_pmu);
6643 
6644 	num_msrs_to_save = 0;
6645 	num_emulated_msrs = 0;
6646 	num_msr_based_features = 0;
6647 
6648 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6649 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6650 			continue;
6651 
6652 		/*
6653 		 * Even MSRs that are valid in the host may not be exposed
6654 		 * to the guests in some cases.
6655 		 */
6656 		switch (msrs_to_save_all[i]) {
6657 		case MSR_IA32_BNDCFGS:
6658 			if (!kvm_mpx_supported())
6659 				continue;
6660 			break;
6661 		case MSR_TSC_AUX:
6662 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6663 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6664 				continue;
6665 			break;
6666 		case MSR_IA32_UMWAIT_CONTROL:
6667 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6668 				continue;
6669 			break;
6670 		case MSR_IA32_RTIT_CTL:
6671 		case MSR_IA32_RTIT_STATUS:
6672 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6673 				continue;
6674 			break;
6675 		case MSR_IA32_RTIT_CR3_MATCH:
6676 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6677 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6678 				continue;
6679 			break;
6680 		case MSR_IA32_RTIT_OUTPUT_BASE:
6681 		case MSR_IA32_RTIT_OUTPUT_MASK:
6682 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6683 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6684 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6685 				continue;
6686 			break;
6687 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6688 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6689 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6690 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6691 				continue;
6692 			break;
6693 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6694 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6695 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6696 				continue;
6697 			break;
6698 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6699 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6700 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6701 				continue;
6702 			break;
6703 		case MSR_IA32_XFD:
6704 		case MSR_IA32_XFD_ERR:
6705 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6706 				continue;
6707 			break;
6708 		default:
6709 			break;
6710 		}
6711 
6712 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6713 	}
6714 
6715 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6716 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6717 			continue;
6718 
6719 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6720 	}
6721 
6722 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6723 		struct kvm_msr_entry msr;
6724 
6725 		msr.index = msr_based_features_all[i];
6726 		if (kvm_get_msr_feature(&msr))
6727 			continue;
6728 
6729 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6730 	}
6731 }
6732 
6733 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6734 			   const void *v)
6735 {
6736 	int handled = 0;
6737 	int n;
6738 
6739 	do {
6740 		n = min(len, 8);
6741 		if (!(lapic_in_kernel(vcpu) &&
6742 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6743 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6744 			break;
6745 		handled += n;
6746 		addr += n;
6747 		len -= n;
6748 		v += n;
6749 	} while (len);
6750 
6751 	return handled;
6752 }
6753 
6754 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6755 {
6756 	int handled = 0;
6757 	int n;
6758 
6759 	do {
6760 		n = min(len, 8);
6761 		if (!(lapic_in_kernel(vcpu) &&
6762 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6763 					 addr, n, v))
6764 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6765 			break;
6766 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6767 		handled += n;
6768 		addr += n;
6769 		len -= n;
6770 		v += n;
6771 	} while (len);
6772 
6773 	return handled;
6774 }
6775 
6776 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6777 			struct kvm_segment *var, int seg)
6778 {
6779 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6780 }
6781 
6782 void kvm_get_segment(struct kvm_vcpu *vcpu,
6783 		     struct kvm_segment *var, int seg)
6784 {
6785 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6786 }
6787 
6788 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6789 			   struct x86_exception *exception)
6790 {
6791 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6792 	gpa_t t_gpa;
6793 
6794 	BUG_ON(!mmu_is_nested(vcpu));
6795 
6796 	/* NPT walks are always user-walks */
6797 	access |= PFERR_USER_MASK;
6798 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6799 
6800 	return t_gpa;
6801 }
6802 
6803 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6804 			      struct x86_exception *exception)
6805 {
6806 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6807 
6808 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6809 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6810 }
6811 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6812 
6813  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6814 				struct x86_exception *exception)
6815 {
6816 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6817 
6818 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6819 	access |= PFERR_FETCH_MASK;
6820 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6821 }
6822 
6823 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6824 			       struct x86_exception *exception)
6825 {
6826 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6827 
6828 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6829 	access |= PFERR_WRITE_MASK;
6830 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6831 }
6832 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6833 
6834 /* uses this to access any guest's mapped memory without checking CPL */
6835 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6836 				struct x86_exception *exception)
6837 {
6838 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6839 
6840 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6841 }
6842 
6843 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6844 				      struct kvm_vcpu *vcpu, u64 access,
6845 				      struct x86_exception *exception)
6846 {
6847 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6848 	void *data = val;
6849 	int r = X86EMUL_CONTINUE;
6850 
6851 	while (bytes) {
6852 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6853 		unsigned offset = addr & (PAGE_SIZE-1);
6854 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6855 		int ret;
6856 
6857 		if (gpa == UNMAPPED_GVA)
6858 			return X86EMUL_PROPAGATE_FAULT;
6859 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6860 					       offset, toread);
6861 		if (ret < 0) {
6862 			r = X86EMUL_IO_NEEDED;
6863 			goto out;
6864 		}
6865 
6866 		bytes -= toread;
6867 		data += toread;
6868 		addr += toread;
6869 	}
6870 out:
6871 	return r;
6872 }
6873 
6874 /* used for instruction fetching */
6875 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6876 				gva_t addr, void *val, unsigned int bytes,
6877 				struct x86_exception *exception)
6878 {
6879 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6880 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6881 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6882 	unsigned offset;
6883 	int ret;
6884 
6885 	/* Inline kvm_read_guest_virt_helper for speed.  */
6886 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6887 				    exception);
6888 	if (unlikely(gpa == UNMAPPED_GVA))
6889 		return X86EMUL_PROPAGATE_FAULT;
6890 
6891 	offset = addr & (PAGE_SIZE-1);
6892 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6893 		bytes = (unsigned)PAGE_SIZE - offset;
6894 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6895 				       offset, bytes);
6896 	if (unlikely(ret < 0))
6897 		return X86EMUL_IO_NEEDED;
6898 
6899 	return X86EMUL_CONTINUE;
6900 }
6901 
6902 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6903 			       gva_t addr, void *val, unsigned int bytes,
6904 			       struct x86_exception *exception)
6905 {
6906 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6907 
6908 	/*
6909 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6910 	 * is returned, but our callers are not ready for that and they blindly
6911 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6912 	 * uninitialized kernel stack memory into cr2 and error code.
6913 	 */
6914 	memset(exception, 0, sizeof(*exception));
6915 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6916 					  exception);
6917 }
6918 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6919 
6920 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6921 			     gva_t addr, void *val, unsigned int bytes,
6922 			     struct x86_exception *exception, bool system)
6923 {
6924 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6925 	u64 access = 0;
6926 
6927 	if (system)
6928 		access |= PFERR_IMPLICIT_ACCESS;
6929 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6930 		access |= PFERR_USER_MASK;
6931 
6932 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6933 }
6934 
6935 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6936 		unsigned long addr, void *val, unsigned int bytes)
6937 {
6938 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6939 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6940 
6941 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6942 }
6943 
6944 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6945 				      struct kvm_vcpu *vcpu, u64 access,
6946 				      struct x86_exception *exception)
6947 {
6948 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6949 	void *data = val;
6950 	int r = X86EMUL_CONTINUE;
6951 
6952 	while (bytes) {
6953 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6954 		unsigned offset = addr & (PAGE_SIZE-1);
6955 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6956 		int ret;
6957 
6958 		if (gpa == UNMAPPED_GVA)
6959 			return X86EMUL_PROPAGATE_FAULT;
6960 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6961 		if (ret < 0) {
6962 			r = X86EMUL_IO_NEEDED;
6963 			goto out;
6964 		}
6965 
6966 		bytes -= towrite;
6967 		data += towrite;
6968 		addr += towrite;
6969 	}
6970 out:
6971 	return r;
6972 }
6973 
6974 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6975 			      unsigned int bytes, struct x86_exception *exception,
6976 			      bool system)
6977 {
6978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6979 	u64 access = PFERR_WRITE_MASK;
6980 
6981 	if (system)
6982 		access |= PFERR_IMPLICIT_ACCESS;
6983 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6984 		access |= PFERR_USER_MASK;
6985 
6986 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6987 					   access, exception);
6988 }
6989 
6990 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6991 				unsigned int bytes, struct x86_exception *exception)
6992 {
6993 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6994 	vcpu->arch.l1tf_flush_l1d = true;
6995 
6996 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6997 					   PFERR_WRITE_MASK, exception);
6998 }
6999 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7000 
7001 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7002 				void *insn, int insn_len)
7003 {
7004 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7005 							    insn, insn_len);
7006 }
7007 
7008 int handle_ud(struct kvm_vcpu *vcpu)
7009 {
7010 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7011 	int emul_type = EMULTYPE_TRAP_UD;
7012 	char sig[5]; /* ud2; .ascii "kvm" */
7013 	struct x86_exception e;
7014 
7015 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7016 		return 1;
7017 
7018 	if (force_emulation_prefix &&
7019 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7020 				sig, sizeof(sig), &e) == 0 &&
7021 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7022 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7023 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7024 	}
7025 
7026 	return kvm_emulate_instruction(vcpu, emul_type);
7027 }
7028 EXPORT_SYMBOL_GPL(handle_ud);
7029 
7030 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7031 			    gpa_t gpa, bool write)
7032 {
7033 	/* For APIC access vmexit */
7034 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7035 		return 1;
7036 
7037 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7038 		trace_vcpu_match_mmio(gva, gpa, write, true);
7039 		return 1;
7040 	}
7041 
7042 	return 0;
7043 }
7044 
7045 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7046 				gpa_t *gpa, struct x86_exception *exception,
7047 				bool write)
7048 {
7049 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7050 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7051 		| (write ? PFERR_WRITE_MASK : 0);
7052 
7053 	/*
7054 	 * currently PKRU is only applied to ept enabled guest so
7055 	 * there is no pkey in EPT page table for L1 guest or EPT
7056 	 * shadow page table for L2 guest.
7057 	 */
7058 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7059 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7060 			      vcpu->arch.mmio_access, 0, access))) {
7061 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7062 					(gva & (PAGE_SIZE - 1));
7063 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7064 		return 1;
7065 	}
7066 
7067 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7068 
7069 	if (*gpa == UNMAPPED_GVA)
7070 		return -1;
7071 
7072 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7073 }
7074 
7075 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7076 			const void *val, int bytes)
7077 {
7078 	int ret;
7079 
7080 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7081 	if (ret < 0)
7082 		return 0;
7083 	kvm_page_track_write(vcpu, gpa, val, bytes);
7084 	return 1;
7085 }
7086 
7087 struct read_write_emulator_ops {
7088 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7089 				  int bytes);
7090 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7091 				  void *val, int bytes);
7092 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7093 			       int bytes, void *val);
7094 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7095 				    void *val, int bytes);
7096 	bool write;
7097 };
7098 
7099 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7100 {
7101 	if (vcpu->mmio_read_completed) {
7102 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7103 			       vcpu->mmio_fragments[0].gpa, val);
7104 		vcpu->mmio_read_completed = 0;
7105 		return 1;
7106 	}
7107 
7108 	return 0;
7109 }
7110 
7111 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7112 			void *val, int bytes)
7113 {
7114 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7115 }
7116 
7117 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7118 			 void *val, int bytes)
7119 {
7120 	return emulator_write_phys(vcpu, gpa, val, bytes);
7121 }
7122 
7123 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7124 {
7125 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7126 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7127 }
7128 
7129 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7130 			  void *val, int bytes)
7131 {
7132 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7133 	return X86EMUL_IO_NEEDED;
7134 }
7135 
7136 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7137 			   void *val, int bytes)
7138 {
7139 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7140 
7141 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7142 	return X86EMUL_CONTINUE;
7143 }
7144 
7145 static const struct read_write_emulator_ops read_emultor = {
7146 	.read_write_prepare = read_prepare,
7147 	.read_write_emulate = read_emulate,
7148 	.read_write_mmio = vcpu_mmio_read,
7149 	.read_write_exit_mmio = read_exit_mmio,
7150 };
7151 
7152 static const struct read_write_emulator_ops write_emultor = {
7153 	.read_write_emulate = write_emulate,
7154 	.read_write_mmio = write_mmio,
7155 	.read_write_exit_mmio = write_exit_mmio,
7156 	.write = true,
7157 };
7158 
7159 static int emulator_read_write_onepage(unsigned long addr, void *val,
7160 				       unsigned int bytes,
7161 				       struct x86_exception *exception,
7162 				       struct kvm_vcpu *vcpu,
7163 				       const struct read_write_emulator_ops *ops)
7164 {
7165 	gpa_t gpa;
7166 	int handled, ret;
7167 	bool write = ops->write;
7168 	struct kvm_mmio_fragment *frag;
7169 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7170 
7171 	/*
7172 	 * If the exit was due to a NPF we may already have a GPA.
7173 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7174 	 * Note, this cannot be used on string operations since string
7175 	 * operation using rep will only have the initial GPA from the NPF
7176 	 * occurred.
7177 	 */
7178 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7179 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7180 		gpa = ctxt->gpa_val;
7181 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7182 	} else {
7183 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7184 		if (ret < 0)
7185 			return X86EMUL_PROPAGATE_FAULT;
7186 	}
7187 
7188 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7189 		return X86EMUL_CONTINUE;
7190 
7191 	/*
7192 	 * Is this MMIO handled locally?
7193 	 */
7194 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7195 	if (handled == bytes)
7196 		return X86EMUL_CONTINUE;
7197 
7198 	gpa += handled;
7199 	bytes -= handled;
7200 	val += handled;
7201 
7202 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7203 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7204 	frag->gpa = gpa;
7205 	frag->data = val;
7206 	frag->len = bytes;
7207 	return X86EMUL_CONTINUE;
7208 }
7209 
7210 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7211 			unsigned long addr,
7212 			void *val, unsigned int bytes,
7213 			struct x86_exception *exception,
7214 			const struct read_write_emulator_ops *ops)
7215 {
7216 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7217 	gpa_t gpa;
7218 	int rc;
7219 
7220 	if (ops->read_write_prepare &&
7221 		  ops->read_write_prepare(vcpu, val, bytes))
7222 		return X86EMUL_CONTINUE;
7223 
7224 	vcpu->mmio_nr_fragments = 0;
7225 
7226 	/* Crossing a page boundary? */
7227 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7228 		int now;
7229 
7230 		now = -addr & ~PAGE_MASK;
7231 		rc = emulator_read_write_onepage(addr, val, now, exception,
7232 						 vcpu, ops);
7233 
7234 		if (rc != X86EMUL_CONTINUE)
7235 			return rc;
7236 		addr += now;
7237 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7238 			addr = (u32)addr;
7239 		val += now;
7240 		bytes -= now;
7241 	}
7242 
7243 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7244 					 vcpu, ops);
7245 	if (rc != X86EMUL_CONTINUE)
7246 		return rc;
7247 
7248 	if (!vcpu->mmio_nr_fragments)
7249 		return rc;
7250 
7251 	gpa = vcpu->mmio_fragments[0].gpa;
7252 
7253 	vcpu->mmio_needed = 1;
7254 	vcpu->mmio_cur_fragment = 0;
7255 
7256 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7257 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7258 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7259 	vcpu->run->mmio.phys_addr = gpa;
7260 
7261 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7262 }
7263 
7264 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7265 				  unsigned long addr,
7266 				  void *val,
7267 				  unsigned int bytes,
7268 				  struct x86_exception *exception)
7269 {
7270 	return emulator_read_write(ctxt, addr, val, bytes,
7271 				   exception, &read_emultor);
7272 }
7273 
7274 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7275 			    unsigned long addr,
7276 			    const void *val,
7277 			    unsigned int bytes,
7278 			    struct x86_exception *exception)
7279 {
7280 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7281 				   exception, &write_emultor);
7282 }
7283 
7284 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7285 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7286 
7287 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7288 				     unsigned long addr,
7289 				     const void *old,
7290 				     const void *new,
7291 				     unsigned int bytes,
7292 				     struct x86_exception *exception)
7293 {
7294 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7295 	u64 page_line_mask;
7296 	unsigned long hva;
7297 	gpa_t gpa;
7298 	int r;
7299 
7300 	/* guests cmpxchg8b have to be emulated atomically */
7301 	if (bytes > 8 || (bytes & (bytes - 1)))
7302 		goto emul_write;
7303 
7304 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7305 
7306 	if (gpa == UNMAPPED_GVA ||
7307 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7308 		goto emul_write;
7309 
7310 	/*
7311 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7312 	 * enabled in the host and the access splits a cache line.
7313 	 */
7314 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7315 		page_line_mask = ~(cache_line_size() - 1);
7316 	else
7317 		page_line_mask = PAGE_MASK;
7318 
7319 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7320 		goto emul_write;
7321 
7322 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7323 	if (kvm_is_error_hva(hva))
7324 		goto emul_write;
7325 
7326 	hva += offset_in_page(gpa);
7327 
7328 	switch (bytes) {
7329 	case 1:
7330 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7331 		break;
7332 	case 2:
7333 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7334 		break;
7335 	case 4:
7336 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7337 		break;
7338 	case 8:
7339 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7340 		break;
7341 	default:
7342 		BUG();
7343 	}
7344 
7345 	if (r < 0)
7346 		return X86EMUL_UNHANDLEABLE;
7347 	if (r)
7348 		return X86EMUL_CMPXCHG_FAILED;
7349 
7350 	kvm_page_track_write(vcpu, gpa, new, bytes);
7351 
7352 	return X86EMUL_CONTINUE;
7353 
7354 emul_write:
7355 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7356 
7357 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7358 }
7359 
7360 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7361 {
7362 	int r = 0, i;
7363 
7364 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7365 		if (vcpu->arch.pio.in)
7366 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7367 					    vcpu->arch.pio.size, pd);
7368 		else
7369 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7370 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7371 					     pd);
7372 		if (r)
7373 			break;
7374 		pd += vcpu->arch.pio.size;
7375 	}
7376 	return r;
7377 }
7378 
7379 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7380 			       unsigned short port,
7381 			       unsigned int count, bool in)
7382 {
7383 	vcpu->arch.pio.port = port;
7384 	vcpu->arch.pio.in = in;
7385 	vcpu->arch.pio.count  = count;
7386 	vcpu->arch.pio.size = size;
7387 
7388 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7389 		return 1;
7390 
7391 	vcpu->run->exit_reason = KVM_EXIT_IO;
7392 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7393 	vcpu->run->io.size = size;
7394 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7395 	vcpu->run->io.count = count;
7396 	vcpu->run->io.port = port;
7397 
7398 	return 0;
7399 }
7400 
7401 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7402 			     unsigned short port, unsigned int count)
7403 {
7404 	WARN_ON(vcpu->arch.pio.count);
7405 	memset(vcpu->arch.pio_data, 0, size * count);
7406 	return emulator_pio_in_out(vcpu, size, port, count, true);
7407 }
7408 
7409 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7410 {
7411 	int size = vcpu->arch.pio.size;
7412 	unsigned count = vcpu->arch.pio.count;
7413 	memcpy(val, vcpu->arch.pio_data, size * count);
7414 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7415 	vcpu->arch.pio.count = 0;
7416 }
7417 
7418 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7419 			   unsigned short port, void *val, unsigned int count)
7420 {
7421 	if (vcpu->arch.pio.count) {
7422 		/*
7423 		 * Complete a previous iteration that required userspace I/O.
7424 		 * Note, @count isn't guaranteed to match pio.count as userspace
7425 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7426 		 * shenanigans as KVM doesn't support modifying the rep count,
7427 		 * and the emulator ensures @count doesn't overflow the buffer.
7428 		 */
7429 	} else {
7430 		int r = __emulator_pio_in(vcpu, size, port, count);
7431 		if (!r)
7432 			return r;
7433 
7434 		/* Results already available, fall through.  */
7435 	}
7436 
7437 	complete_emulator_pio_in(vcpu, val);
7438 	return 1;
7439 }
7440 
7441 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7442 				    int size, unsigned short port, void *val,
7443 				    unsigned int count)
7444 {
7445 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7446 
7447 }
7448 
7449 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7450 			    unsigned short port, const void *val,
7451 			    unsigned int count)
7452 {
7453 	int ret;
7454 
7455 	memcpy(vcpu->arch.pio_data, val, size * count);
7456 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7457 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7458 	if (ret)
7459                 vcpu->arch.pio.count = 0;
7460 
7461         return ret;
7462 }
7463 
7464 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7465 				     int size, unsigned short port,
7466 				     const void *val, unsigned int count)
7467 {
7468 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7469 }
7470 
7471 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7472 {
7473 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7474 }
7475 
7476 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7477 {
7478 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7479 }
7480 
7481 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7482 {
7483 	if (!need_emulate_wbinvd(vcpu))
7484 		return X86EMUL_CONTINUE;
7485 
7486 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7487 		int cpu = get_cpu();
7488 
7489 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7490 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7491 				wbinvd_ipi, NULL, 1);
7492 		put_cpu();
7493 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7494 	} else
7495 		wbinvd();
7496 	return X86EMUL_CONTINUE;
7497 }
7498 
7499 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7500 {
7501 	kvm_emulate_wbinvd_noskip(vcpu);
7502 	return kvm_skip_emulated_instruction(vcpu);
7503 }
7504 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7505 
7506 
7507 
7508 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7509 {
7510 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7511 }
7512 
7513 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7514 			    unsigned long *dest)
7515 {
7516 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7517 }
7518 
7519 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7520 			   unsigned long value)
7521 {
7522 
7523 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7524 }
7525 
7526 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7527 {
7528 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7529 }
7530 
7531 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7532 {
7533 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7534 	unsigned long value;
7535 
7536 	switch (cr) {
7537 	case 0:
7538 		value = kvm_read_cr0(vcpu);
7539 		break;
7540 	case 2:
7541 		value = vcpu->arch.cr2;
7542 		break;
7543 	case 3:
7544 		value = kvm_read_cr3(vcpu);
7545 		break;
7546 	case 4:
7547 		value = kvm_read_cr4(vcpu);
7548 		break;
7549 	case 8:
7550 		value = kvm_get_cr8(vcpu);
7551 		break;
7552 	default:
7553 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7554 		return 0;
7555 	}
7556 
7557 	return value;
7558 }
7559 
7560 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7561 {
7562 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7563 	int res = 0;
7564 
7565 	switch (cr) {
7566 	case 0:
7567 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7568 		break;
7569 	case 2:
7570 		vcpu->arch.cr2 = val;
7571 		break;
7572 	case 3:
7573 		res = kvm_set_cr3(vcpu, val);
7574 		break;
7575 	case 4:
7576 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7577 		break;
7578 	case 8:
7579 		res = kvm_set_cr8(vcpu, val);
7580 		break;
7581 	default:
7582 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7583 		res = -1;
7584 	}
7585 
7586 	return res;
7587 }
7588 
7589 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7590 {
7591 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7592 }
7593 
7594 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7595 {
7596 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7597 }
7598 
7599 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7600 {
7601 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7602 }
7603 
7604 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7605 {
7606 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7607 }
7608 
7609 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7610 {
7611 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7612 }
7613 
7614 static unsigned long emulator_get_cached_segment_base(
7615 	struct x86_emulate_ctxt *ctxt, int seg)
7616 {
7617 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7618 }
7619 
7620 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7621 				 struct desc_struct *desc, u32 *base3,
7622 				 int seg)
7623 {
7624 	struct kvm_segment var;
7625 
7626 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7627 	*selector = var.selector;
7628 
7629 	if (var.unusable) {
7630 		memset(desc, 0, sizeof(*desc));
7631 		if (base3)
7632 			*base3 = 0;
7633 		return false;
7634 	}
7635 
7636 	if (var.g)
7637 		var.limit >>= 12;
7638 	set_desc_limit(desc, var.limit);
7639 	set_desc_base(desc, (unsigned long)var.base);
7640 #ifdef CONFIG_X86_64
7641 	if (base3)
7642 		*base3 = var.base >> 32;
7643 #endif
7644 	desc->type = var.type;
7645 	desc->s = var.s;
7646 	desc->dpl = var.dpl;
7647 	desc->p = var.present;
7648 	desc->avl = var.avl;
7649 	desc->l = var.l;
7650 	desc->d = var.db;
7651 	desc->g = var.g;
7652 
7653 	return true;
7654 }
7655 
7656 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7657 				 struct desc_struct *desc, u32 base3,
7658 				 int seg)
7659 {
7660 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7661 	struct kvm_segment var;
7662 
7663 	var.selector = selector;
7664 	var.base = get_desc_base(desc);
7665 #ifdef CONFIG_X86_64
7666 	var.base |= ((u64)base3) << 32;
7667 #endif
7668 	var.limit = get_desc_limit(desc);
7669 	if (desc->g)
7670 		var.limit = (var.limit << 12) | 0xfff;
7671 	var.type = desc->type;
7672 	var.dpl = desc->dpl;
7673 	var.db = desc->d;
7674 	var.s = desc->s;
7675 	var.l = desc->l;
7676 	var.g = desc->g;
7677 	var.avl = desc->avl;
7678 	var.present = desc->p;
7679 	var.unusable = !var.present;
7680 	var.padding = 0;
7681 
7682 	kvm_set_segment(vcpu, &var, seg);
7683 	return;
7684 }
7685 
7686 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7687 					u32 msr_index, u64 *pdata)
7688 {
7689 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7690 	int r;
7691 
7692 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7693 
7694 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7695 				    complete_emulated_rdmsr, r)) {
7696 		/* Bounce to user space */
7697 		return X86EMUL_IO_NEEDED;
7698 	}
7699 
7700 	return r;
7701 }
7702 
7703 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7704 					u32 msr_index, u64 data)
7705 {
7706 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7707 	int r;
7708 
7709 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7710 
7711 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7712 				    complete_emulated_msr_access, r)) {
7713 		/* Bounce to user space */
7714 		return X86EMUL_IO_NEEDED;
7715 	}
7716 
7717 	return r;
7718 }
7719 
7720 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7721 			    u32 msr_index, u64 *pdata)
7722 {
7723 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7724 }
7725 
7726 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7727 			    u32 msr_index, u64 data)
7728 {
7729 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7730 }
7731 
7732 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7733 {
7734 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7735 
7736 	return vcpu->arch.smbase;
7737 }
7738 
7739 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7740 {
7741 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7742 
7743 	vcpu->arch.smbase = smbase;
7744 }
7745 
7746 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7747 			      u32 pmc)
7748 {
7749 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7750 		return 0;
7751 	return -EINVAL;
7752 }
7753 
7754 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7755 			     u32 pmc, u64 *pdata)
7756 {
7757 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7758 }
7759 
7760 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7761 {
7762 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7763 }
7764 
7765 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7766 			      struct x86_instruction_info *info,
7767 			      enum x86_intercept_stage stage)
7768 {
7769 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7770 					    &ctxt->exception);
7771 }
7772 
7773 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7774 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7775 			      bool exact_only)
7776 {
7777 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7778 }
7779 
7780 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7781 {
7782 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7783 }
7784 
7785 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7786 {
7787 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7788 }
7789 
7790 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7791 {
7792 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7793 }
7794 
7795 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7796 {
7797 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7798 }
7799 
7800 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7801 {
7802 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7803 }
7804 
7805 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7806 {
7807 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7808 }
7809 
7810 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7811 {
7812 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7813 }
7814 
7815 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7816 {
7817 	return emul_to_vcpu(ctxt)->arch.hflags;
7818 }
7819 
7820 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7821 {
7822 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7823 
7824 	kvm_smm_changed(vcpu, false);
7825 }
7826 
7827 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7828 				  const char *smstate)
7829 {
7830 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7831 }
7832 
7833 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7834 {
7835 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7836 }
7837 
7838 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7839 {
7840 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7841 }
7842 
7843 static const struct x86_emulate_ops emulate_ops = {
7844 	.read_gpr            = emulator_read_gpr,
7845 	.write_gpr           = emulator_write_gpr,
7846 	.read_std            = emulator_read_std,
7847 	.write_std           = emulator_write_std,
7848 	.read_phys           = kvm_read_guest_phys_system,
7849 	.fetch               = kvm_fetch_guest_virt,
7850 	.read_emulated       = emulator_read_emulated,
7851 	.write_emulated      = emulator_write_emulated,
7852 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7853 	.invlpg              = emulator_invlpg,
7854 	.pio_in_emulated     = emulator_pio_in_emulated,
7855 	.pio_out_emulated    = emulator_pio_out_emulated,
7856 	.get_segment         = emulator_get_segment,
7857 	.set_segment         = emulator_set_segment,
7858 	.get_cached_segment_base = emulator_get_cached_segment_base,
7859 	.get_gdt             = emulator_get_gdt,
7860 	.get_idt	     = emulator_get_idt,
7861 	.set_gdt             = emulator_set_gdt,
7862 	.set_idt	     = emulator_set_idt,
7863 	.get_cr              = emulator_get_cr,
7864 	.set_cr              = emulator_set_cr,
7865 	.cpl                 = emulator_get_cpl,
7866 	.get_dr              = emulator_get_dr,
7867 	.set_dr              = emulator_set_dr,
7868 	.get_smbase          = emulator_get_smbase,
7869 	.set_smbase          = emulator_set_smbase,
7870 	.set_msr_with_filter = emulator_set_msr_with_filter,
7871 	.get_msr_with_filter = emulator_get_msr_with_filter,
7872 	.set_msr             = emulator_set_msr,
7873 	.get_msr             = emulator_get_msr,
7874 	.check_pmc	     = emulator_check_pmc,
7875 	.read_pmc            = emulator_read_pmc,
7876 	.halt                = emulator_halt,
7877 	.wbinvd              = emulator_wbinvd,
7878 	.fix_hypercall       = emulator_fix_hypercall,
7879 	.intercept           = emulator_intercept,
7880 	.get_cpuid           = emulator_get_cpuid,
7881 	.guest_has_long_mode = emulator_guest_has_long_mode,
7882 	.guest_has_movbe     = emulator_guest_has_movbe,
7883 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7884 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7885 	.set_nmi_mask        = emulator_set_nmi_mask,
7886 	.get_hflags          = emulator_get_hflags,
7887 	.exiting_smm         = emulator_exiting_smm,
7888 	.leave_smm           = emulator_leave_smm,
7889 	.triple_fault        = emulator_triple_fault,
7890 	.set_xcr             = emulator_set_xcr,
7891 };
7892 
7893 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7894 {
7895 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7896 	/*
7897 	 * an sti; sti; sequence only disable interrupts for the first
7898 	 * instruction. So, if the last instruction, be it emulated or
7899 	 * not, left the system with the INT_STI flag enabled, it
7900 	 * means that the last instruction is an sti. We should not
7901 	 * leave the flag on in this case. The same goes for mov ss
7902 	 */
7903 	if (int_shadow & mask)
7904 		mask = 0;
7905 	if (unlikely(int_shadow || mask)) {
7906 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7907 		if (!mask)
7908 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7909 	}
7910 }
7911 
7912 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7913 {
7914 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7915 	if (ctxt->exception.vector == PF_VECTOR)
7916 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7917 
7918 	if (ctxt->exception.error_code_valid)
7919 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7920 				      ctxt->exception.error_code);
7921 	else
7922 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7923 	return false;
7924 }
7925 
7926 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7927 {
7928 	struct x86_emulate_ctxt *ctxt;
7929 
7930 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7931 	if (!ctxt) {
7932 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7933 		return NULL;
7934 	}
7935 
7936 	ctxt->vcpu = vcpu;
7937 	ctxt->ops = &emulate_ops;
7938 	vcpu->arch.emulate_ctxt = ctxt;
7939 
7940 	return ctxt;
7941 }
7942 
7943 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7944 {
7945 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7946 	int cs_db, cs_l;
7947 
7948 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7949 
7950 	ctxt->gpa_available = false;
7951 	ctxt->eflags = kvm_get_rflags(vcpu);
7952 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7953 
7954 	ctxt->eip = kvm_rip_read(vcpu);
7955 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7956 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7957 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7958 		     cs_db				? X86EMUL_MODE_PROT32 :
7959 							  X86EMUL_MODE_PROT16;
7960 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7961 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7962 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7963 
7964 	ctxt->interruptibility = 0;
7965 	ctxt->have_exception = false;
7966 	ctxt->exception.vector = -1;
7967 	ctxt->perm_ok = false;
7968 
7969 	init_decode_cache(ctxt);
7970 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7971 }
7972 
7973 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7974 {
7975 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7976 	int ret;
7977 
7978 	init_emulate_ctxt(vcpu);
7979 
7980 	ctxt->op_bytes = 2;
7981 	ctxt->ad_bytes = 2;
7982 	ctxt->_eip = ctxt->eip + inc_eip;
7983 	ret = emulate_int_real(ctxt, irq);
7984 
7985 	if (ret != X86EMUL_CONTINUE) {
7986 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7987 	} else {
7988 		ctxt->eip = ctxt->_eip;
7989 		kvm_rip_write(vcpu, ctxt->eip);
7990 		kvm_set_rflags(vcpu, ctxt->eflags);
7991 	}
7992 }
7993 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7994 
7995 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7996 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7997 {
7998 	struct kvm_run *run = vcpu->run;
7999 	u64 info[5];
8000 	u8 info_start;
8001 
8002 	/*
8003 	 * Zero the whole array used to retrieve the exit info, as casting to
8004 	 * u32 for select entries will leave some chunks uninitialized.
8005 	 */
8006 	memset(&info, 0, sizeof(info));
8007 
8008 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8009 					   &info[2], (u32 *)&info[3],
8010 					   (u32 *)&info[4]);
8011 
8012 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8013 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8014 
8015 	/*
8016 	 * There's currently space for 13 entries, but 5 are used for the exit
8017 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8018 	 * when expanding kvm_run.emulation_failure in the future.
8019 	 */
8020 	if (WARN_ON_ONCE(ndata > 4))
8021 		ndata = 4;
8022 
8023 	/* Always include the flags as a 'data' entry. */
8024 	info_start = 1;
8025 	run->emulation_failure.flags = 0;
8026 
8027 	if (insn_size) {
8028 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8029 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8030 		info_start += 2;
8031 		run->emulation_failure.flags |=
8032 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8033 		run->emulation_failure.insn_size = insn_size;
8034 		memset(run->emulation_failure.insn_bytes, 0x90,
8035 		       sizeof(run->emulation_failure.insn_bytes));
8036 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8037 	}
8038 
8039 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8040 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8041 	       ndata * sizeof(data[0]));
8042 
8043 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8044 }
8045 
8046 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8047 {
8048 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8049 
8050 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8051 				       ctxt->fetch.end - ctxt->fetch.data);
8052 }
8053 
8054 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8055 					  u8 ndata)
8056 {
8057 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8058 }
8059 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8060 
8061 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8062 {
8063 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8064 }
8065 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8066 
8067 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8068 {
8069 	struct kvm *kvm = vcpu->kvm;
8070 
8071 	++vcpu->stat.insn_emulation_fail;
8072 	trace_kvm_emulate_insn_failed(vcpu);
8073 
8074 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8075 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8076 		return 1;
8077 	}
8078 
8079 	if (kvm->arch.exit_on_emulation_error ||
8080 	    (emulation_type & EMULTYPE_SKIP)) {
8081 		prepare_emulation_ctxt_failure_exit(vcpu);
8082 		return 0;
8083 	}
8084 
8085 	kvm_queue_exception(vcpu, UD_VECTOR);
8086 
8087 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8088 		prepare_emulation_ctxt_failure_exit(vcpu);
8089 		return 0;
8090 	}
8091 
8092 	return 1;
8093 }
8094 
8095 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8096 				  bool write_fault_to_shadow_pgtable,
8097 				  int emulation_type)
8098 {
8099 	gpa_t gpa = cr2_or_gpa;
8100 	kvm_pfn_t pfn;
8101 
8102 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8103 		return false;
8104 
8105 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8106 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8107 		return false;
8108 
8109 	if (!vcpu->arch.mmu->root_role.direct) {
8110 		/*
8111 		 * Write permission should be allowed since only
8112 		 * write access need to be emulated.
8113 		 */
8114 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8115 
8116 		/*
8117 		 * If the mapping is invalid in guest, let cpu retry
8118 		 * it to generate fault.
8119 		 */
8120 		if (gpa == UNMAPPED_GVA)
8121 			return true;
8122 	}
8123 
8124 	/*
8125 	 * Do not retry the unhandleable instruction if it faults on the
8126 	 * readonly host memory, otherwise it will goto a infinite loop:
8127 	 * retry instruction -> write #PF -> emulation fail -> retry
8128 	 * instruction -> ...
8129 	 */
8130 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8131 
8132 	/*
8133 	 * If the instruction failed on the error pfn, it can not be fixed,
8134 	 * report the error to userspace.
8135 	 */
8136 	if (is_error_noslot_pfn(pfn))
8137 		return false;
8138 
8139 	kvm_release_pfn_clean(pfn);
8140 
8141 	/* The instructions are well-emulated on direct mmu. */
8142 	if (vcpu->arch.mmu->root_role.direct) {
8143 		unsigned int indirect_shadow_pages;
8144 
8145 		write_lock(&vcpu->kvm->mmu_lock);
8146 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8147 		write_unlock(&vcpu->kvm->mmu_lock);
8148 
8149 		if (indirect_shadow_pages)
8150 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8151 
8152 		return true;
8153 	}
8154 
8155 	/*
8156 	 * if emulation was due to access to shadowed page table
8157 	 * and it failed try to unshadow page and re-enter the
8158 	 * guest to let CPU execute the instruction.
8159 	 */
8160 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8161 
8162 	/*
8163 	 * If the access faults on its page table, it can not
8164 	 * be fixed by unprotecting shadow page and it should
8165 	 * be reported to userspace.
8166 	 */
8167 	return !write_fault_to_shadow_pgtable;
8168 }
8169 
8170 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8171 			      gpa_t cr2_or_gpa,  int emulation_type)
8172 {
8173 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8174 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8175 
8176 	last_retry_eip = vcpu->arch.last_retry_eip;
8177 	last_retry_addr = vcpu->arch.last_retry_addr;
8178 
8179 	/*
8180 	 * If the emulation is caused by #PF and it is non-page_table
8181 	 * writing instruction, it means the VM-EXIT is caused by shadow
8182 	 * page protected, we can zap the shadow page and retry this
8183 	 * instruction directly.
8184 	 *
8185 	 * Note: if the guest uses a non-page-table modifying instruction
8186 	 * on the PDE that points to the instruction, then we will unmap
8187 	 * the instruction and go to an infinite loop. So, we cache the
8188 	 * last retried eip and the last fault address, if we meet the eip
8189 	 * and the address again, we can break out of the potential infinite
8190 	 * loop.
8191 	 */
8192 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8193 
8194 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8195 		return false;
8196 
8197 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8198 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8199 		return false;
8200 
8201 	if (x86_page_table_writing_insn(ctxt))
8202 		return false;
8203 
8204 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8205 		return false;
8206 
8207 	vcpu->arch.last_retry_eip = ctxt->eip;
8208 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8209 
8210 	if (!vcpu->arch.mmu->root_role.direct)
8211 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8212 
8213 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8214 
8215 	return true;
8216 }
8217 
8218 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8219 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8220 
8221 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8222 {
8223 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8224 
8225 	if (entering_smm) {
8226 		vcpu->arch.hflags |= HF_SMM_MASK;
8227 	} else {
8228 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8229 
8230 		/* Process a latched INIT or SMI, if any.  */
8231 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8232 
8233 		/*
8234 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8235 		 * on SMM exit we still need to reload them from
8236 		 * guest memory
8237 		 */
8238 		vcpu->arch.pdptrs_from_userspace = false;
8239 	}
8240 
8241 	kvm_mmu_reset_context(vcpu);
8242 }
8243 
8244 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8245 				unsigned long *db)
8246 {
8247 	u32 dr6 = 0;
8248 	int i;
8249 	u32 enable, rwlen;
8250 
8251 	enable = dr7;
8252 	rwlen = dr7 >> 16;
8253 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8254 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8255 			dr6 |= (1 << i);
8256 	return dr6;
8257 }
8258 
8259 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8260 {
8261 	struct kvm_run *kvm_run = vcpu->run;
8262 
8263 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8264 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8265 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8266 		kvm_run->debug.arch.exception = DB_VECTOR;
8267 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8268 		return 0;
8269 	}
8270 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8271 	return 1;
8272 }
8273 
8274 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8275 {
8276 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8277 	int r;
8278 
8279 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8280 	if (unlikely(!r))
8281 		return 0;
8282 
8283 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8284 
8285 	/*
8286 	 * rflags is the old, "raw" value of the flags.  The new value has
8287 	 * not been saved yet.
8288 	 *
8289 	 * This is correct even for TF set by the guest, because "the
8290 	 * processor will not generate this exception after the instruction
8291 	 * that sets the TF flag".
8292 	 */
8293 	if (unlikely(rflags & X86_EFLAGS_TF))
8294 		r = kvm_vcpu_do_singlestep(vcpu);
8295 	return r;
8296 }
8297 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8298 
8299 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8300 {
8301 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8302 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8303 		struct kvm_run *kvm_run = vcpu->run;
8304 		unsigned long eip = kvm_get_linear_rip(vcpu);
8305 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8306 					   vcpu->arch.guest_debug_dr7,
8307 					   vcpu->arch.eff_db);
8308 
8309 		if (dr6 != 0) {
8310 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8311 			kvm_run->debug.arch.pc = eip;
8312 			kvm_run->debug.arch.exception = DB_VECTOR;
8313 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8314 			*r = 0;
8315 			return true;
8316 		}
8317 	}
8318 
8319 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8320 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8321 		unsigned long eip = kvm_get_linear_rip(vcpu);
8322 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8323 					   vcpu->arch.dr7,
8324 					   vcpu->arch.db);
8325 
8326 		if (dr6 != 0) {
8327 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8328 			*r = 1;
8329 			return true;
8330 		}
8331 	}
8332 
8333 	return false;
8334 }
8335 
8336 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8337 {
8338 	switch (ctxt->opcode_len) {
8339 	case 1:
8340 		switch (ctxt->b) {
8341 		case 0xe4:	/* IN */
8342 		case 0xe5:
8343 		case 0xec:
8344 		case 0xed:
8345 		case 0xe6:	/* OUT */
8346 		case 0xe7:
8347 		case 0xee:
8348 		case 0xef:
8349 		case 0x6c:	/* INS */
8350 		case 0x6d:
8351 		case 0x6e:	/* OUTS */
8352 		case 0x6f:
8353 			return true;
8354 		}
8355 		break;
8356 	case 2:
8357 		switch (ctxt->b) {
8358 		case 0x33:	/* RDPMC */
8359 			return true;
8360 		}
8361 		break;
8362 	}
8363 
8364 	return false;
8365 }
8366 
8367 /*
8368  * Decode an instruction for emulation.  The caller is responsible for handling
8369  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8370  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8371  * code breakpoints have higher priority and thus have already been done by
8372  * hardware.
8373  *
8374  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8375  *     response to a machine check.
8376  */
8377 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8378 				    void *insn, int insn_len)
8379 {
8380 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8381 	int r;
8382 
8383 	init_emulate_ctxt(vcpu);
8384 
8385 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8386 
8387 	trace_kvm_emulate_insn_start(vcpu);
8388 	++vcpu->stat.insn_emulation;
8389 
8390 	return r;
8391 }
8392 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8393 
8394 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8395 			    int emulation_type, void *insn, int insn_len)
8396 {
8397 	int r;
8398 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8399 	bool writeback = true;
8400 	bool write_fault_to_spt;
8401 
8402 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8403 		return 1;
8404 
8405 	vcpu->arch.l1tf_flush_l1d = true;
8406 
8407 	/*
8408 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8409 	 * never reused.
8410 	 */
8411 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8412 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8413 
8414 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8415 		kvm_clear_exception_queue(vcpu);
8416 
8417 		/*
8418 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8419 		 * are fault-like and are higher priority than any faults on
8420 		 * the code fetch itself.
8421 		 */
8422 		if (!(emulation_type & EMULTYPE_SKIP) &&
8423 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8424 			return r;
8425 
8426 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8427 						    insn, insn_len);
8428 		if (r != EMULATION_OK)  {
8429 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8430 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8431 				kvm_queue_exception(vcpu, UD_VECTOR);
8432 				return 1;
8433 			}
8434 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8435 						  write_fault_to_spt,
8436 						  emulation_type))
8437 				return 1;
8438 			if (ctxt->have_exception) {
8439 				/*
8440 				 * #UD should result in just EMULATION_FAILED, and trap-like
8441 				 * exception should not be encountered during decode.
8442 				 */
8443 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8444 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8445 				inject_emulated_exception(vcpu);
8446 				return 1;
8447 			}
8448 			return handle_emulation_failure(vcpu, emulation_type);
8449 		}
8450 	}
8451 
8452 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8453 	    !is_vmware_backdoor_opcode(ctxt)) {
8454 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8455 		return 1;
8456 	}
8457 
8458 	/*
8459 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8460 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8461 	 * The caller is responsible for updating interruptibility state and
8462 	 * injecting single-step #DBs.
8463 	 */
8464 	if (emulation_type & EMULTYPE_SKIP) {
8465 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8466 			ctxt->eip = (u32)ctxt->_eip;
8467 		else
8468 			ctxt->eip = ctxt->_eip;
8469 
8470 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8471 			r = 1;
8472 			goto writeback;
8473 		}
8474 
8475 		kvm_rip_write(vcpu, ctxt->eip);
8476 		if (ctxt->eflags & X86_EFLAGS_RF)
8477 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8478 		return 1;
8479 	}
8480 
8481 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8482 		return 1;
8483 
8484 	/* this is needed for vmware backdoor interface to work since it
8485 	   changes registers values  during IO operation */
8486 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8487 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8488 		emulator_invalidate_register_cache(ctxt);
8489 	}
8490 
8491 restart:
8492 	if (emulation_type & EMULTYPE_PF) {
8493 		/* Save the faulting GPA (cr2) in the address field */
8494 		ctxt->exception.address = cr2_or_gpa;
8495 
8496 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8497 		if (vcpu->arch.mmu->root_role.direct) {
8498 			ctxt->gpa_available = true;
8499 			ctxt->gpa_val = cr2_or_gpa;
8500 		}
8501 	} else {
8502 		/* Sanitize the address out of an abundance of paranoia. */
8503 		ctxt->exception.address = 0;
8504 	}
8505 
8506 	r = x86_emulate_insn(ctxt);
8507 
8508 	if (r == EMULATION_INTERCEPTED)
8509 		return 1;
8510 
8511 	if (r == EMULATION_FAILED) {
8512 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8513 					emulation_type))
8514 			return 1;
8515 
8516 		return handle_emulation_failure(vcpu, emulation_type);
8517 	}
8518 
8519 	if (ctxt->have_exception) {
8520 		r = 1;
8521 		if (inject_emulated_exception(vcpu))
8522 			return r;
8523 	} else if (vcpu->arch.pio.count) {
8524 		if (!vcpu->arch.pio.in) {
8525 			/* FIXME: return into emulator if single-stepping.  */
8526 			vcpu->arch.pio.count = 0;
8527 		} else {
8528 			writeback = false;
8529 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8530 		}
8531 		r = 0;
8532 	} else if (vcpu->mmio_needed) {
8533 		++vcpu->stat.mmio_exits;
8534 
8535 		if (!vcpu->mmio_is_write)
8536 			writeback = false;
8537 		r = 0;
8538 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8539 	} else if (vcpu->arch.complete_userspace_io) {
8540 		writeback = false;
8541 		r = 0;
8542 	} else if (r == EMULATION_RESTART)
8543 		goto restart;
8544 	else
8545 		r = 1;
8546 
8547 writeback:
8548 	if (writeback) {
8549 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8550 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8551 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8552 		if (!ctxt->have_exception ||
8553 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8554 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8555 			if (ctxt->is_branch)
8556 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8557 			kvm_rip_write(vcpu, ctxt->eip);
8558 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8559 				r = kvm_vcpu_do_singlestep(vcpu);
8560 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8561 			__kvm_set_rflags(vcpu, ctxt->eflags);
8562 		}
8563 
8564 		/*
8565 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8566 		 * do nothing, and it will be requested again as soon as
8567 		 * the shadow expires.  But we still need to check here,
8568 		 * because POPF has no interrupt shadow.
8569 		 */
8570 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8571 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8572 	} else
8573 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8574 
8575 	return r;
8576 }
8577 
8578 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8579 {
8580 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8581 }
8582 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8583 
8584 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8585 					void *insn, int insn_len)
8586 {
8587 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8588 }
8589 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8590 
8591 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8592 {
8593 	vcpu->arch.pio.count = 0;
8594 	return 1;
8595 }
8596 
8597 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8598 {
8599 	vcpu->arch.pio.count = 0;
8600 
8601 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8602 		return 1;
8603 
8604 	return kvm_skip_emulated_instruction(vcpu);
8605 }
8606 
8607 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8608 			    unsigned short port)
8609 {
8610 	unsigned long val = kvm_rax_read(vcpu);
8611 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8612 
8613 	if (ret)
8614 		return ret;
8615 
8616 	/*
8617 	 * Workaround userspace that relies on old KVM behavior of %rip being
8618 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8619 	 */
8620 	if (port == 0x7e &&
8621 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8622 		vcpu->arch.complete_userspace_io =
8623 			complete_fast_pio_out_port_0x7e;
8624 		kvm_skip_emulated_instruction(vcpu);
8625 	} else {
8626 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8627 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8628 	}
8629 	return 0;
8630 }
8631 
8632 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8633 {
8634 	unsigned long val;
8635 
8636 	/* We should only ever be called with arch.pio.count equal to 1 */
8637 	BUG_ON(vcpu->arch.pio.count != 1);
8638 
8639 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8640 		vcpu->arch.pio.count = 0;
8641 		return 1;
8642 	}
8643 
8644 	/* For size less than 4 we merge, else we zero extend */
8645 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8646 
8647 	/*
8648 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8649 	 * the copy and tracing
8650 	 */
8651 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8652 	kvm_rax_write(vcpu, val);
8653 
8654 	return kvm_skip_emulated_instruction(vcpu);
8655 }
8656 
8657 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8658 			   unsigned short port)
8659 {
8660 	unsigned long val;
8661 	int ret;
8662 
8663 	/* For size less than 4 we merge, else we zero extend */
8664 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8665 
8666 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8667 	if (ret) {
8668 		kvm_rax_write(vcpu, val);
8669 		return ret;
8670 	}
8671 
8672 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8673 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8674 
8675 	return 0;
8676 }
8677 
8678 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8679 {
8680 	int ret;
8681 
8682 	if (in)
8683 		ret = kvm_fast_pio_in(vcpu, size, port);
8684 	else
8685 		ret = kvm_fast_pio_out(vcpu, size, port);
8686 	return ret && kvm_skip_emulated_instruction(vcpu);
8687 }
8688 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8689 
8690 static int kvmclock_cpu_down_prep(unsigned int cpu)
8691 {
8692 	__this_cpu_write(cpu_tsc_khz, 0);
8693 	return 0;
8694 }
8695 
8696 static void tsc_khz_changed(void *data)
8697 {
8698 	struct cpufreq_freqs *freq = data;
8699 	unsigned long khz = 0;
8700 
8701 	if (data)
8702 		khz = freq->new;
8703 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8704 		khz = cpufreq_quick_get(raw_smp_processor_id());
8705 	if (!khz)
8706 		khz = tsc_khz;
8707 	__this_cpu_write(cpu_tsc_khz, khz);
8708 }
8709 
8710 #ifdef CONFIG_X86_64
8711 static void kvm_hyperv_tsc_notifier(void)
8712 {
8713 	struct kvm *kvm;
8714 	int cpu;
8715 
8716 	mutex_lock(&kvm_lock);
8717 	list_for_each_entry(kvm, &vm_list, vm_list)
8718 		kvm_make_mclock_inprogress_request(kvm);
8719 
8720 	/* no guest entries from this point */
8721 	hyperv_stop_tsc_emulation();
8722 
8723 	/* TSC frequency always matches when on Hyper-V */
8724 	for_each_present_cpu(cpu)
8725 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8726 	kvm_max_guest_tsc_khz = tsc_khz;
8727 
8728 	list_for_each_entry(kvm, &vm_list, vm_list) {
8729 		__kvm_start_pvclock_update(kvm);
8730 		pvclock_update_vm_gtod_copy(kvm);
8731 		kvm_end_pvclock_update(kvm);
8732 	}
8733 
8734 	mutex_unlock(&kvm_lock);
8735 }
8736 #endif
8737 
8738 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8739 {
8740 	struct kvm *kvm;
8741 	struct kvm_vcpu *vcpu;
8742 	int send_ipi = 0;
8743 	unsigned long i;
8744 
8745 	/*
8746 	 * We allow guests to temporarily run on slowing clocks,
8747 	 * provided we notify them after, or to run on accelerating
8748 	 * clocks, provided we notify them before.  Thus time never
8749 	 * goes backwards.
8750 	 *
8751 	 * However, we have a problem.  We can't atomically update
8752 	 * the frequency of a given CPU from this function; it is
8753 	 * merely a notifier, which can be called from any CPU.
8754 	 * Changing the TSC frequency at arbitrary points in time
8755 	 * requires a recomputation of local variables related to
8756 	 * the TSC for each VCPU.  We must flag these local variables
8757 	 * to be updated and be sure the update takes place with the
8758 	 * new frequency before any guests proceed.
8759 	 *
8760 	 * Unfortunately, the combination of hotplug CPU and frequency
8761 	 * change creates an intractable locking scenario; the order
8762 	 * of when these callouts happen is undefined with respect to
8763 	 * CPU hotplug, and they can race with each other.  As such,
8764 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8765 	 * undefined; you can actually have a CPU frequency change take
8766 	 * place in between the computation of X and the setting of the
8767 	 * variable.  To protect against this problem, all updates of
8768 	 * the per_cpu tsc_khz variable are done in an interrupt
8769 	 * protected IPI, and all callers wishing to update the value
8770 	 * must wait for a synchronous IPI to complete (which is trivial
8771 	 * if the caller is on the CPU already).  This establishes the
8772 	 * necessary total order on variable updates.
8773 	 *
8774 	 * Note that because a guest time update may take place
8775 	 * anytime after the setting of the VCPU's request bit, the
8776 	 * correct TSC value must be set before the request.  However,
8777 	 * to ensure the update actually makes it to any guest which
8778 	 * starts running in hardware virtualization between the set
8779 	 * and the acquisition of the spinlock, we must also ping the
8780 	 * CPU after setting the request bit.
8781 	 *
8782 	 */
8783 
8784 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8785 
8786 	mutex_lock(&kvm_lock);
8787 	list_for_each_entry(kvm, &vm_list, vm_list) {
8788 		kvm_for_each_vcpu(i, vcpu, kvm) {
8789 			if (vcpu->cpu != cpu)
8790 				continue;
8791 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8792 			if (vcpu->cpu != raw_smp_processor_id())
8793 				send_ipi = 1;
8794 		}
8795 	}
8796 	mutex_unlock(&kvm_lock);
8797 
8798 	if (freq->old < freq->new && send_ipi) {
8799 		/*
8800 		 * We upscale the frequency.  Must make the guest
8801 		 * doesn't see old kvmclock values while running with
8802 		 * the new frequency, otherwise we risk the guest sees
8803 		 * time go backwards.
8804 		 *
8805 		 * In case we update the frequency for another cpu
8806 		 * (which might be in guest context) send an interrupt
8807 		 * to kick the cpu out of guest context.  Next time
8808 		 * guest context is entered kvmclock will be updated,
8809 		 * so the guest will not see stale values.
8810 		 */
8811 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8812 	}
8813 }
8814 
8815 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8816 				     void *data)
8817 {
8818 	struct cpufreq_freqs *freq = data;
8819 	int cpu;
8820 
8821 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8822 		return 0;
8823 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8824 		return 0;
8825 
8826 	for_each_cpu(cpu, freq->policy->cpus)
8827 		__kvmclock_cpufreq_notifier(freq, cpu);
8828 
8829 	return 0;
8830 }
8831 
8832 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8833 	.notifier_call  = kvmclock_cpufreq_notifier
8834 };
8835 
8836 static int kvmclock_cpu_online(unsigned int cpu)
8837 {
8838 	tsc_khz_changed(NULL);
8839 	return 0;
8840 }
8841 
8842 static void kvm_timer_init(void)
8843 {
8844 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8845 		max_tsc_khz = tsc_khz;
8846 
8847 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8848 			struct cpufreq_policy *policy;
8849 			int cpu;
8850 
8851 			cpu = get_cpu();
8852 			policy = cpufreq_cpu_get(cpu);
8853 			if (policy) {
8854 				if (policy->cpuinfo.max_freq)
8855 					max_tsc_khz = policy->cpuinfo.max_freq;
8856 				cpufreq_cpu_put(policy);
8857 			}
8858 			put_cpu();
8859 		}
8860 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8861 					  CPUFREQ_TRANSITION_NOTIFIER);
8862 	}
8863 
8864 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8865 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8866 }
8867 
8868 #ifdef CONFIG_X86_64
8869 static void pvclock_gtod_update_fn(struct work_struct *work)
8870 {
8871 	struct kvm *kvm;
8872 	struct kvm_vcpu *vcpu;
8873 	unsigned long i;
8874 
8875 	mutex_lock(&kvm_lock);
8876 	list_for_each_entry(kvm, &vm_list, vm_list)
8877 		kvm_for_each_vcpu(i, vcpu, kvm)
8878 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8879 	atomic_set(&kvm_guest_has_master_clock, 0);
8880 	mutex_unlock(&kvm_lock);
8881 }
8882 
8883 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8884 
8885 /*
8886  * Indirection to move queue_work() out of the tk_core.seq write held
8887  * region to prevent possible deadlocks against time accessors which
8888  * are invoked with work related locks held.
8889  */
8890 static void pvclock_irq_work_fn(struct irq_work *w)
8891 {
8892 	queue_work(system_long_wq, &pvclock_gtod_work);
8893 }
8894 
8895 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8896 
8897 /*
8898  * Notification about pvclock gtod data update.
8899  */
8900 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8901 			       void *priv)
8902 {
8903 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8904 	struct timekeeper *tk = priv;
8905 
8906 	update_pvclock_gtod(tk);
8907 
8908 	/*
8909 	 * Disable master clock if host does not trust, or does not use,
8910 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8911 	 * this is invoked with tk_core.seq write held.
8912 	 */
8913 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8914 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8915 		irq_work_queue(&pvclock_irq_work);
8916 	return 0;
8917 }
8918 
8919 static struct notifier_block pvclock_gtod_notifier = {
8920 	.notifier_call = pvclock_gtod_notify,
8921 };
8922 #endif
8923 
8924 int kvm_arch_init(void *opaque)
8925 {
8926 	struct kvm_x86_init_ops *ops = opaque;
8927 	int r;
8928 
8929 	if (kvm_x86_ops.hardware_enable) {
8930 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8931 		r = -EEXIST;
8932 		goto out;
8933 	}
8934 
8935 	if (!ops->cpu_has_kvm_support()) {
8936 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8937 				   ops->runtime_ops->name);
8938 		r = -EOPNOTSUPP;
8939 		goto out;
8940 	}
8941 	if (ops->disabled_by_bios()) {
8942 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8943 				   ops->runtime_ops->name);
8944 		r = -EOPNOTSUPP;
8945 		goto out;
8946 	}
8947 
8948 	/*
8949 	 * KVM explicitly assumes that the guest has an FPU and
8950 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8951 	 * vCPU's FPU state as a fxregs_state struct.
8952 	 */
8953 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8954 		printk(KERN_ERR "kvm: inadequate fpu\n");
8955 		r = -EOPNOTSUPP;
8956 		goto out;
8957 	}
8958 
8959 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8960 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8961 		r = -EOPNOTSUPP;
8962 		goto out;
8963 	}
8964 
8965 	r = -ENOMEM;
8966 
8967 	x86_emulator_cache = kvm_alloc_emulator_cache();
8968 	if (!x86_emulator_cache) {
8969 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8970 		goto out;
8971 	}
8972 
8973 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8974 	if (!user_return_msrs) {
8975 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8976 		goto out_free_x86_emulator_cache;
8977 	}
8978 	kvm_nr_uret_msrs = 0;
8979 
8980 	r = kvm_mmu_vendor_module_init();
8981 	if (r)
8982 		goto out_free_percpu;
8983 
8984 	kvm_timer_init();
8985 
8986 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8987 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8988 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8989 	}
8990 
8991 	if (pi_inject_timer == -1)
8992 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
8993 #ifdef CONFIG_X86_64
8994 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8995 
8996 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8997 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8998 #endif
8999 
9000 	return 0;
9001 
9002 out_free_percpu:
9003 	free_percpu(user_return_msrs);
9004 out_free_x86_emulator_cache:
9005 	kmem_cache_destroy(x86_emulator_cache);
9006 out:
9007 	return r;
9008 }
9009 
9010 void kvm_arch_exit(void)
9011 {
9012 #ifdef CONFIG_X86_64
9013 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9014 		clear_hv_tscchange_cb();
9015 #endif
9016 	kvm_lapic_exit();
9017 
9018 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9019 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9020 					    CPUFREQ_TRANSITION_NOTIFIER);
9021 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9022 #ifdef CONFIG_X86_64
9023 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9024 	irq_work_sync(&pvclock_irq_work);
9025 	cancel_work_sync(&pvclock_gtod_work);
9026 #endif
9027 	kvm_x86_ops.hardware_enable = NULL;
9028 	kvm_mmu_vendor_module_exit();
9029 	free_percpu(user_return_msrs);
9030 	kmem_cache_destroy(x86_emulator_cache);
9031 #ifdef CONFIG_KVM_XEN
9032 	static_key_deferred_flush(&kvm_xen_enabled);
9033 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9034 #endif
9035 }
9036 
9037 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9038 {
9039 	/*
9040 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9041 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9042 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9043 	 * managed by userspace, in which case userspace is responsible for
9044 	 * handling wake events.
9045 	 */
9046 	++vcpu->stat.halt_exits;
9047 	if (lapic_in_kernel(vcpu)) {
9048 		vcpu->arch.mp_state = state;
9049 		return 1;
9050 	} else {
9051 		vcpu->run->exit_reason = reason;
9052 		return 0;
9053 	}
9054 }
9055 
9056 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9057 {
9058 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9059 }
9060 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9061 
9062 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9063 {
9064 	int ret = kvm_skip_emulated_instruction(vcpu);
9065 	/*
9066 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9067 	 * KVM_EXIT_DEBUG here.
9068 	 */
9069 	return kvm_emulate_halt_noskip(vcpu) && ret;
9070 }
9071 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9072 
9073 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9074 {
9075 	int ret = kvm_skip_emulated_instruction(vcpu);
9076 
9077 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9078 					KVM_EXIT_AP_RESET_HOLD) && ret;
9079 }
9080 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9081 
9082 #ifdef CONFIG_X86_64
9083 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9084 			        unsigned long clock_type)
9085 {
9086 	struct kvm_clock_pairing clock_pairing;
9087 	struct timespec64 ts;
9088 	u64 cycle;
9089 	int ret;
9090 
9091 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9092 		return -KVM_EOPNOTSUPP;
9093 
9094 	/*
9095 	 * When tsc is in permanent catchup mode guests won't be able to use
9096 	 * pvclock_read_retry loop to get consistent view of pvclock
9097 	 */
9098 	if (vcpu->arch.tsc_always_catchup)
9099 		return -KVM_EOPNOTSUPP;
9100 
9101 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9102 		return -KVM_EOPNOTSUPP;
9103 
9104 	clock_pairing.sec = ts.tv_sec;
9105 	clock_pairing.nsec = ts.tv_nsec;
9106 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9107 	clock_pairing.flags = 0;
9108 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9109 
9110 	ret = 0;
9111 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9112 			    sizeof(struct kvm_clock_pairing)))
9113 		ret = -KVM_EFAULT;
9114 
9115 	return ret;
9116 }
9117 #endif
9118 
9119 /*
9120  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9121  *
9122  * @apicid - apicid of vcpu to be kicked.
9123  */
9124 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9125 {
9126 	struct kvm_lapic_irq lapic_irq;
9127 
9128 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9129 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9130 	lapic_irq.level = 0;
9131 	lapic_irq.dest_id = apicid;
9132 	lapic_irq.msi_redir_hint = false;
9133 
9134 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9135 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9136 }
9137 
9138 bool kvm_apicv_activated(struct kvm *kvm)
9139 {
9140 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9141 }
9142 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9143 
9144 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9145 {
9146 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9147 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9148 
9149 	return (vm_reasons | vcpu_reasons) == 0;
9150 }
9151 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9152 
9153 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9154 				       enum kvm_apicv_inhibit reason, bool set)
9155 {
9156 	if (set)
9157 		__set_bit(reason, inhibits);
9158 	else
9159 		__clear_bit(reason, inhibits);
9160 
9161 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9162 }
9163 
9164 static void kvm_apicv_init(struct kvm *kvm)
9165 {
9166 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9167 
9168 	init_rwsem(&kvm->arch.apicv_update_lock);
9169 
9170 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9171 
9172 	if (!enable_apicv)
9173 		set_or_clear_apicv_inhibit(inhibits,
9174 					   APICV_INHIBIT_REASON_DISABLE, true);
9175 }
9176 
9177 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9178 {
9179 	struct kvm_vcpu *target = NULL;
9180 	struct kvm_apic_map *map;
9181 
9182 	vcpu->stat.directed_yield_attempted++;
9183 
9184 	if (single_task_running())
9185 		goto no_yield;
9186 
9187 	rcu_read_lock();
9188 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9189 
9190 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9191 		target = map->phys_map[dest_id]->vcpu;
9192 
9193 	rcu_read_unlock();
9194 
9195 	if (!target || !READ_ONCE(target->ready))
9196 		goto no_yield;
9197 
9198 	/* Ignore requests to yield to self */
9199 	if (vcpu == target)
9200 		goto no_yield;
9201 
9202 	if (kvm_vcpu_yield_to(target) <= 0)
9203 		goto no_yield;
9204 
9205 	vcpu->stat.directed_yield_successful++;
9206 
9207 no_yield:
9208 	return;
9209 }
9210 
9211 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9212 {
9213 	u64 ret = vcpu->run->hypercall.ret;
9214 
9215 	if (!is_64_bit_mode(vcpu))
9216 		ret = (u32)ret;
9217 	kvm_rax_write(vcpu, ret);
9218 	++vcpu->stat.hypercalls;
9219 	return kvm_skip_emulated_instruction(vcpu);
9220 }
9221 
9222 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9223 {
9224 	unsigned long nr, a0, a1, a2, a3, ret;
9225 	int op_64_bit;
9226 
9227 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9228 		return kvm_xen_hypercall(vcpu);
9229 
9230 	if (kvm_hv_hypercall_enabled(vcpu))
9231 		return kvm_hv_hypercall(vcpu);
9232 
9233 	nr = kvm_rax_read(vcpu);
9234 	a0 = kvm_rbx_read(vcpu);
9235 	a1 = kvm_rcx_read(vcpu);
9236 	a2 = kvm_rdx_read(vcpu);
9237 	a3 = kvm_rsi_read(vcpu);
9238 
9239 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9240 
9241 	op_64_bit = is_64_bit_hypercall(vcpu);
9242 	if (!op_64_bit) {
9243 		nr &= 0xFFFFFFFF;
9244 		a0 &= 0xFFFFFFFF;
9245 		a1 &= 0xFFFFFFFF;
9246 		a2 &= 0xFFFFFFFF;
9247 		a3 &= 0xFFFFFFFF;
9248 	}
9249 
9250 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9251 		ret = -KVM_EPERM;
9252 		goto out;
9253 	}
9254 
9255 	ret = -KVM_ENOSYS;
9256 
9257 	switch (nr) {
9258 	case KVM_HC_VAPIC_POLL_IRQ:
9259 		ret = 0;
9260 		break;
9261 	case KVM_HC_KICK_CPU:
9262 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9263 			break;
9264 
9265 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9266 		kvm_sched_yield(vcpu, a1);
9267 		ret = 0;
9268 		break;
9269 #ifdef CONFIG_X86_64
9270 	case KVM_HC_CLOCK_PAIRING:
9271 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9272 		break;
9273 #endif
9274 	case KVM_HC_SEND_IPI:
9275 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9276 			break;
9277 
9278 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9279 		break;
9280 	case KVM_HC_SCHED_YIELD:
9281 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9282 			break;
9283 
9284 		kvm_sched_yield(vcpu, a0);
9285 		ret = 0;
9286 		break;
9287 	case KVM_HC_MAP_GPA_RANGE: {
9288 		u64 gpa = a0, npages = a1, attrs = a2;
9289 
9290 		ret = -KVM_ENOSYS;
9291 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9292 			break;
9293 
9294 		if (!PAGE_ALIGNED(gpa) || !npages ||
9295 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9296 			ret = -KVM_EINVAL;
9297 			break;
9298 		}
9299 
9300 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9301 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9302 		vcpu->run->hypercall.args[0]  = gpa;
9303 		vcpu->run->hypercall.args[1]  = npages;
9304 		vcpu->run->hypercall.args[2]  = attrs;
9305 		vcpu->run->hypercall.longmode = op_64_bit;
9306 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9307 		return 0;
9308 	}
9309 	default:
9310 		ret = -KVM_ENOSYS;
9311 		break;
9312 	}
9313 out:
9314 	if (!op_64_bit)
9315 		ret = (u32)ret;
9316 	kvm_rax_write(vcpu, ret);
9317 
9318 	++vcpu->stat.hypercalls;
9319 	return kvm_skip_emulated_instruction(vcpu);
9320 }
9321 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9322 
9323 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9324 {
9325 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9326 	char instruction[3];
9327 	unsigned long rip = kvm_rip_read(vcpu);
9328 
9329 	/*
9330 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9331 	 * the pieces.
9332 	 */
9333 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9334 		ctxt->exception.error_code_valid = false;
9335 		ctxt->exception.vector = UD_VECTOR;
9336 		ctxt->have_exception = true;
9337 		return X86EMUL_PROPAGATE_FAULT;
9338 	}
9339 
9340 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9341 
9342 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9343 		&ctxt->exception);
9344 }
9345 
9346 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9347 {
9348 	return vcpu->run->request_interrupt_window &&
9349 		likely(!pic_in_kernel(vcpu->kvm));
9350 }
9351 
9352 /* Called within kvm->srcu read side.  */
9353 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9354 {
9355 	struct kvm_run *kvm_run = vcpu->run;
9356 
9357 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9358 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9359 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9360 
9361 	kvm_run->ready_for_interrupt_injection =
9362 		pic_in_kernel(vcpu->kvm) ||
9363 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9364 
9365 	if (is_smm(vcpu))
9366 		kvm_run->flags |= KVM_RUN_X86_SMM;
9367 }
9368 
9369 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9370 {
9371 	int max_irr, tpr;
9372 
9373 	if (!kvm_x86_ops.update_cr8_intercept)
9374 		return;
9375 
9376 	if (!lapic_in_kernel(vcpu))
9377 		return;
9378 
9379 	if (vcpu->arch.apicv_active)
9380 		return;
9381 
9382 	if (!vcpu->arch.apic->vapic_addr)
9383 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9384 	else
9385 		max_irr = -1;
9386 
9387 	if (max_irr != -1)
9388 		max_irr >>= 4;
9389 
9390 	tpr = kvm_lapic_get_cr8(vcpu);
9391 
9392 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9393 }
9394 
9395 
9396 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9397 {
9398 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9399 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9400 		return 1;
9401 	}
9402 
9403 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9404 }
9405 
9406 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9407 {
9408 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9409 		vcpu->arch.exception.error_code = false;
9410 	static_call(kvm_x86_queue_exception)(vcpu);
9411 }
9412 
9413 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9414 {
9415 	int r;
9416 	bool can_inject = true;
9417 
9418 	/* try to reinject previous events if any */
9419 
9420 	if (vcpu->arch.exception.injected) {
9421 		kvm_inject_exception(vcpu);
9422 		can_inject = false;
9423 	}
9424 	/*
9425 	 * Do not inject an NMI or interrupt if there is a pending
9426 	 * exception.  Exceptions and interrupts are recognized at
9427 	 * instruction boundaries, i.e. the start of an instruction.
9428 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9429 	 * NMIs and interrupts, i.e. traps are recognized before an
9430 	 * NMI/interrupt that's pending on the same instruction.
9431 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9432 	 * priority, but are only generated (pended) during instruction
9433 	 * execution, i.e. a pending fault-like exception means the
9434 	 * fault occurred on the *previous* instruction and must be
9435 	 * serviced prior to recognizing any new events in order to
9436 	 * fully complete the previous instruction.
9437 	 */
9438 	else if (!vcpu->arch.exception.pending) {
9439 		if (vcpu->arch.nmi_injected) {
9440 			static_call(kvm_x86_inject_nmi)(vcpu);
9441 			can_inject = false;
9442 		} else if (vcpu->arch.interrupt.injected) {
9443 			static_call(kvm_x86_inject_irq)(vcpu);
9444 			can_inject = false;
9445 		}
9446 	}
9447 
9448 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9449 		     vcpu->arch.exception.pending);
9450 
9451 	/*
9452 	 * Call check_nested_events() even if we reinjected a previous event
9453 	 * in order for caller to determine if it should require immediate-exit
9454 	 * from L2 to L1 due to pending L1 events which require exit
9455 	 * from L2 to L1.
9456 	 */
9457 	if (is_guest_mode(vcpu)) {
9458 		r = kvm_check_nested_events(vcpu);
9459 		if (r < 0)
9460 			goto out;
9461 	}
9462 
9463 	/* try to inject new event if pending */
9464 	if (vcpu->arch.exception.pending) {
9465 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9466 					vcpu->arch.exception.has_error_code,
9467 					vcpu->arch.exception.error_code);
9468 
9469 		vcpu->arch.exception.pending = false;
9470 		vcpu->arch.exception.injected = true;
9471 
9472 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9473 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9474 					     X86_EFLAGS_RF);
9475 
9476 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9477 			kvm_deliver_exception_payload(vcpu);
9478 			if (vcpu->arch.dr7 & DR7_GD) {
9479 				vcpu->arch.dr7 &= ~DR7_GD;
9480 				kvm_update_dr7(vcpu);
9481 			}
9482 		}
9483 
9484 		kvm_inject_exception(vcpu);
9485 		can_inject = false;
9486 	}
9487 
9488 	/* Don't inject interrupts if the user asked to avoid doing so */
9489 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9490 		return 0;
9491 
9492 	/*
9493 	 * Finally, inject interrupt events.  If an event cannot be injected
9494 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9495 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9496 	 * and can architecturally be injected, but we cannot do it right now:
9497 	 * an interrupt could have arrived just now and we have to inject it
9498 	 * as a vmexit, or there could already an event in the queue, which is
9499 	 * indicated by can_inject.  In that case we request an immediate exit
9500 	 * in order to make progress and get back here for another iteration.
9501 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9502 	 */
9503 	if (vcpu->arch.smi_pending) {
9504 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9505 		if (r < 0)
9506 			goto out;
9507 		if (r) {
9508 			vcpu->arch.smi_pending = false;
9509 			++vcpu->arch.smi_count;
9510 			enter_smm(vcpu);
9511 			can_inject = false;
9512 		} else
9513 			static_call(kvm_x86_enable_smi_window)(vcpu);
9514 	}
9515 
9516 	if (vcpu->arch.nmi_pending) {
9517 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9518 		if (r < 0)
9519 			goto out;
9520 		if (r) {
9521 			--vcpu->arch.nmi_pending;
9522 			vcpu->arch.nmi_injected = true;
9523 			static_call(kvm_x86_inject_nmi)(vcpu);
9524 			can_inject = false;
9525 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9526 		}
9527 		if (vcpu->arch.nmi_pending)
9528 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9529 	}
9530 
9531 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9532 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9533 		if (r < 0)
9534 			goto out;
9535 		if (r) {
9536 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9537 			static_call(kvm_x86_inject_irq)(vcpu);
9538 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9539 		}
9540 		if (kvm_cpu_has_injectable_intr(vcpu))
9541 			static_call(kvm_x86_enable_irq_window)(vcpu);
9542 	}
9543 
9544 	if (is_guest_mode(vcpu) &&
9545 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9546 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9547 		*req_immediate_exit = true;
9548 
9549 	WARN_ON(vcpu->arch.exception.pending);
9550 	return 0;
9551 
9552 out:
9553 	if (r == -EBUSY) {
9554 		*req_immediate_exit = true;
9555 		r = 0;
9556 	}
9557 	return r;
9558 }
9559 
9560 static void process_nmi(struct kvm_vcpu *vcpu)
9561 {
9562 	unsigned limit = 2;
9563 
9564 	/*
9565 	 * x86 is limited to one NMI running, and one NMI pending after it.
9566 	 * If an NMI is already in progress, limit further NMIs to just one.
9567 	 * Otherwise, allow two (and we'll inject the first one immediately).
9568 	 */
9569 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9570 		limit = 1;
9571 
9572 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9573 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9574 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9575 }
9576 
9577 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9578 {
9579 	u32 flags = 0;
9580 	flags |= seg->g       << 23;
9581 	flags |= seg->db      << 22;
9582 	flags |= seg->l       << 21;
9583 	flags |= seg->avl     << 20;
9584 	flags |= seg->present << 15;
9585 	flags |= seg->dpl     << 13;
9586 	flags |= seg->s       << 12;
9587 	flags |= seg->type    << 8;
9588 	return flags;
9589 }
9590 
9591 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9592 {
9593 	struct kvm_segment seg;
9594 	int offset;
9595 
9596 	kvm_get_segment(vcpu, &seg, n);
9597 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9598 
9599 	if (n < 3)
9600 		offset = 0x7f84 + n * 12;
9601 	else
9602 		offset = 0x7f2c + (n - 3) * 12;
9603 
9604 	put_smstate(u32, buf, offset + 8, seg.base);
9605 	put_smstate(u32, buf, offset + 4, seg.limit);
9606 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9607 }
9608 
9609 #ifdef CONFIG_X86_64
9610 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9611 {
9612 	struct kvm_segment seg;
9613 	int offset;
9614 	u16 flags;
9615 
9616 	kvm_get_segment(vcpu, &seg, n);
9617 	offset = 0x7e00 + n * 16;
9618 
9619 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9620 	put_smstate(u16, buf, offset, seg.selector);
9621 	put_smstate(u16, buf, offset + 2, flags);
9622 	put_smstate(u32, buf, offset + 4, seg.limit);
9623 	put_smstate(u64, buf, offset + 8, seg.base);
9624 }
9625 #endif
9626 
9627 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9628 {
9629 	struct desc_ptr dt;
9630 	struct kvm_segment seg;
9631 	unsigned long val;
9632 	int i;
9633 
9634 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9635 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9636 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9637 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9638 
9639 	for (i = 0; i < 8; i++)
9640 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9641 
9642 	kvm_get_dr(vcpu, 6, &val);
9643 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9644 	kvm_get_dr(vcpu, 7, &val);
9645 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9646 
9647 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9648 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9649 	put_smstate(u32, buf, 0x7f64, seg.base);
9650 	put_smstate(u32, buf, 0x7f60, seg.limit);
9651 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9652 
9653 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9654 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9655 	put_smstate(u32, buf, 0x7f80, seg.base);
9656 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9657 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9658 
9659 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9660 	put_smstate(u32, buf, 0x7f74, dt.address);
9661 	put_smstate(u32, buf, 0x7f70, dt.size);
9662 
9663 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9664 	put_smstate(u32, buf, 0x7f58, dt.address);
9665 	put_smstate(u32, buf, 0x7f54, dt.size);
9666 
9667 	for (i = 0; i < 6; i++)
9668 		enter_smm_save_seg_32(vcpu, buf, i);
9669 
9670 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9671 
9672 	/* revision id */
9673 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9674 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9675 }
9676 
9677 #ifdef CONFIG_X86_64
9678 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9679 {
9680 	struct desc_ptr dt;
9681 	struct kvm_segment seg;
9682 	unsigned long val;
9683 	int i;
9684 
9685 	for (i = 0; i < 16; i++)
9686 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9687 
9688 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9689 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9690 
9691 	kvm_get_dr(vcpu, 6, &val);
9692 	put_smstate(u64, buf, 0x7f68, val);
9693 	kvm_get_dr(vcpu, 7, &val);
9694 	put_smstate(u64, buf, 0x7f60, val);
9695 
9696 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9697 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9698 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9699 
9700 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9701 
9702 	/* revision id */
9703 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9704 
9705 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9706 
9707 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9708 	put_smstate(u16, buf, 0x7e90, seg.selector);
9709 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9710 	put_smstate(u32, buf, 0x7e94, seg.limit);
9711 	put_smstate(u64, buf, 0x7e98, seg.base);
9712 
9713 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9714 	put_smstate(u32, buf, 0x7e84, dt.size);
9715 	put_smstate(u64, buf, 0x7e88, dt.address);
9716 
9717 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9718 	put_smstate(u16, buf, 0x7e70, seg.selector);
9719 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9720 	put_smstate(u32, buf, 0x7e74, seg.limit);
9721 	put_smstate(u64, buf, 0x7e78, seg.base);
9722 
9723 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9724 	put_smstate(u32, buf, 0x7e64, dt.size);
9725 	put_smstate(u64, buf, 0x7e68, dt.address);
9726 
9727 	for (i = 0; i < 6; i++)
9728 		enter_smm_save_seg_64(vcpu, buf, i);
9729 }
9730 #endif
9731 
9732 static void enter_smm(struct kvm_vcpu *vcpu)
9733 {
9734 	struct kvm_segment cs, ds;
9735 	struct desc_ptr dt;
9736 	unsigned long cr0;
9737 	char buf[512];
9738 
9739 	memset(buf, 0, 512);
9740 #ifdef CONFIG_X86_64
9741 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9742 		enter_smm_save_state_64(vcpu, buf);
9743 	else
9744 #endif
9745 		enter_smm_save_state_32(vcpu, buf);
9746 
9747 	/*
9748 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9749 	 * state (e.g. leave guest mode) after we've saved the state into the
9750 	 * SMM state-save area.
9751 	 */
9752 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9753 
9754 	kvm_smm_changed(vcpu, true);
9755 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9756 
9757 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9758 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9759 	else
9760 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9761 
9762 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9763 	kvm_rip_write(vcpu, 0x8000);
9764 
9765 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9766 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9767 	vcpu->arch.cr0 = cr0;
9768 
9769 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9770 
9771 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9772 	dt.address = dt.size = 0;
9773 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9774 
9775 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9776 
9777 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9778 	cs.base = vcpu->arch.smbase;
9779 
9780 	ds.selector = 0;
9781 	ds.base = 0;
9782 
9783 	cs.limit    = ds.limit = 0xffffffff;
9784 	cs.type     = ds.type = 0x3;
9785 	cs.dpl      = ds.dpl = 0;
9786 	cs.db       = ds.db = 0;
9787 	cs.s        = ds.s = 1;
9788 	cs.l        = ds.l = 0;
9789 	cs.g        = ds.g = 1;
9790 	cs.avl      = ds.avl = 0;
9791 	cs.present  = ds.present = 1;
9792 	cs.unusable = ds.unusable = 0;
9793 	cs.padding  = ds.padding = 0;
9794 
9795 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9796 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9797 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9798 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9799 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9800 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9801 
9802 #ifdef CONFIG_X86_64
9803 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9804 		static_call(kvm_x86_set_efer)(vcpu, 0);
9805 #endif
9806 
9807 	kvm_update_cpuid_runtime(vcpu);
9808 	kvm_mmu_reset_context(vcpu);
9809 }
9810 
9811 static void process_smi(struct kvm_vcpu *vcpu)
9812 {
9813 	vcpu->arch.smi_pending = true;
9814 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9815 }
9816 
9817 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9818 				       unsigned long *vcpu_bitmap)
9819 {
9820 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9821 }
9822 
9823 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9824 {
9825 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9826 }
9827 
9828 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9829 {
9830 	bool activate;
9831 
9832 	if (!lapic_in_kernel(vcpu))
9833 		return;
9834 
9835 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9836 
9837 	activate = kvm_vcpu_apicv_activated(vcpu);
9838 
9839 	if (vcpu->arch.apicv_active == activate)
9840 		goto out;
9841 
9842 	vcpu->arch.apicv_active = activate;
9843 	kvm_apic_update_apicv(vcpu);
9844 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9845 
9846 	/*
9847 	 * When APICv gets disabled, we may still have injected interrupts
9848 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9849 	 * still active when the interrupt got accepted. Make sure
9850 	 * inject_pending_event() is called to check for that.
9851 	 */
9852 	if (!vcpu->arch.apicv_active)
9853 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9854 
9855 out:
9856 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9857 }
9858 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9859 
9860 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9861 				      enum kvm_apicv_inhibit reason, bool set)
9862 {
9863 	unsigned long old, new;
9864 
9865 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9866 
9867 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9868 		return;
9869 
9870 	old = new = kvm->arch.apicv_inhibit_reasons;
9871 
9872 	set_or_clear_apicv_inhibit(&new, reason, set);
9873 
9874 	if (!!old != !!new) {
9875 		/*
9876 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9877 		 * false positives in the sanity check WARN in svm_vcpu_run().
9878 		 * This task will wait for all vCPUs to ack the kick IRQ before
9879 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9880 		 * block on acquiring apicv_update_lock so that vCPUs can't
9881 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9882 		 *
9883 		 * Note, holding apicv_update_lock and taking it in the read
9884 		 * side (handling the request) also prevents other vCPUs from
9885 		 * servicing the request with a stale apicv_inhibit_reasons.
9886 		 */
9887 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9888 		kvm->arch.apicv_inhibit_reasons = new;
9889 		if (new) {
9890 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9891 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9892 		}
9893 	} else {
9894 		kvm->arch.apicv_inhibit_reasons = new;
9895 	}
9896 }
9897 
9898 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9899 				    enum kvm_apicv_inhibit reason, bool set)
9900 {
9901 	if (!enable_apicv)
9902 		return;
9903 
9904 	down_write(&kvm->arch.apicv_update_lock);
9905 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9906 	up_write(&kvm->arch.apicv_update_lock);
9907 }
9908 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9909 
9910 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9911 {
9912 	if (!kvm_apic_present(vcpu))
9913 		return;
9914 
9915 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9916 
9917 	if (irqchip_split(vcpu->kvm))
9918 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9919 	else {
9920 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9921 		if (ioapic_in_kernel(vcpu->kvm))
9922 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9923 	}
9924 
9925 	if (is_guest_mode(vcpu))
9926 		vcpu->arch.load_eoi_exitmap_pending = true;
9927 	else
9928 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9929 }
9930 
9931 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9932 {
9933 	u64 eoi_exit_bitmap[4];
9934 
9935 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9936 		return;
9937 
9938 	if (to_hv_vcpu(vcpu)) {
9939 		bitmap_or((ulong *)eoi_exit_bitmap,
9940 			  vcpu->arch.ioapic_handled_vectors,
9941 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9942 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9943 		return;
9944 	}
9945 
9946 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9947 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9948 }
9949 
9950 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9951 					    unsigned long start, unsigned long end)
9952 {
9953 	unsigned long apic_address;
9954 
9955 	/*
9956 	 * The physical address of apic access page is stored in the VMCS.
9957 	 * Update it when it becomes invalid.
9958 	 */
9959 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9960 	if (start <= apic_address && apic_address < end)
9961 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9962 }
9963 
9964 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9965 {
9966 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9967 }
9968 
9969 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9970 {
9971 	if (!lapic_in_kernel(vcpu))
9972 		return;
9973 
9974 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9975 }
9976 
9977 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9978 {
9979 	smp_send_reschedule(vcpu->cpu);
9980 }
9981 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9982 
9983 /*
9984  * Called within kvm->srcu read side.
9985  * Returns 1 to let vcpu_run() continue the guest execution loop without
9986  * exiting to the userspace.  Otherwise, the value will be returned to the
9987  * userspace.
9988  */
9989 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9990 {
9991 	int r;
9992 	bool req_int_win =
9993 		dm_request_for_irq_injection(vcpu) &&
9994 		kvm_cpu_accept_dm_intr(vcpu);
9995 	fastpath_t exit_fastpath;
9996 
9997 	bool req_immediate_exit = false;
9998 
9999 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10000 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10001 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10002 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10003 		trace_kvm_dirty_ring_exit(vcpu);
10004 		r = 0;
10005 		goto out;
10006 	}
10007 
10008 	if (kvm_request_pending(vcpu)) {
10009 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10010 			r = -EIO;
10011 			goto out;
10012 		}
10013 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10014 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10015 				r = 0;
10016 				goto out;
10017 			}
10018 		}
10019 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10020 			kvm_mmu_free_obsolete_roots(vcpu);
10021 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10022 			__kvm_migrate_timers(vcpu);
10023 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10024 			kvm_update_masterclock(vcpu->kvm);
10025 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10026 			kvm_gen_kvmclock_update(vcpu);
10027 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10028 			r = kvm_guest_time_update(vcpu);
10029 			if (unlikely(r))
10030 				goto out;
10031 		}
10032 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10033 			kvm_mmu_sync_roots(vcpu);
10034 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10035 			kvm_mmu_load_pgd(vcpu);
10036 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10037 			kvm_vcpu_flush_tlb_all(vcpu);
10038 
10039 			/* Flushing all ASIDs flushes the current ASID... */
10040 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10041 		}
10042 		kvm_service_local_tlb_flush_requests(vcpu);
10043 
10044 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10045 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10046 			r = 0;
10047 			goto out;
10048 		}
10049 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10050 			if (is_guest_mode(vcpu)) {
10051 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10052 			} else {
10053 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10054 				vcpu->mmio_needed = 0;
10055 				r = 0;
10056 				goto out;
10057 			}
10058 		}
10059 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10060 			/* Page is swapped out. Do synthetic halt */
10061 			vcpu->arch.apf.halted = true;
10062 			r = 1;
10063 			goto out;
10064 		}
10065 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10066 			record_steal_time(vcpu);
10067 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10068 			process_smi(vcpu);
10069 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10070 			process_nmi(vcpu);
10071 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10072 			kvm_pmu_handle_event(vcpu);
10073 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10074 			kvm_pmu_deliver_pmi(vcpu);
10075 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10076 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10077 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10078 				     vcpu->arch.ioapic_handled_vectors)) {
10079 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10080 				vcpu->run->eoi.vector =
10081 						vcpu->arch.pending_ioapic_eoi;
10082 				r = 0;
10083 				goto out;
10084 			}
10085 		}
10086 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10087 			vcpu_scan_ioapic(vcpu);
10088 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10089 			vcpu_load_eoi_exitmap(vcpu);
10090 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10091 			kvm_vcpu_reload_apic_access_page(vcpu);
10092 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10093 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10094 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10095 			vcpu->run->system_event.ndata = 0;
10096 			r = 0;
10097 			goto out;
10098 		}
10099 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10100 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10101 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10102 			vcpu->run->system_event.ndata = 0;
10103 			r = 0;
10104 			goto out;
10105 		}
10106 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10107 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10108 
10109 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10110 			vcpu->run->hyperv = hv_vcpu->exit;
10111 			r = 0;
10112 			goto out;
10113 		}
10114 
10115 		/*
10116 		 * KVM_REQ_HV_STIMER has to be processed after
10117 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10118 		 * depend on the guest clock being up-to-date
10119 		 */
10120 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10121 			kvm_hv_process_stimers(vcpu);
10122 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10123 			kvm_vcpu_update_apicv(vcpu);
10124 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10125 			kvm_check_async_pf_completion(vcpu);
10126 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10127 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10128 
10129 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10130 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10131 	}
10132 
10133 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10134 	    kvm_xen_has_interrupt(vcpu)) {
10135 		++vcpu->stat.req_event;
10136 		r = kvm_apic_accept_events(vcpu);
10137 		if (r < 0) {
10138 			r = 0;
10139 			goto out;
10140 		}
10141 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10142 			r = 1;
10143 			goto out;
10144 		}
10145 
10146 		r = inject_pending_event(vcpu, &req_immediate_exit);
10147 		if (r < 0) {
10148 			r = 0;
10149 			goto out;
10150 		}
10151 		if (req_int_win)
10152 			static_call(kvm_x86_enable_irq_window)(vcpu);
10153 
10154 		if (kvm_lapic_enabled(vcpu)) {
10155 			update_cr8_intercept(vcpu);
10156 			kvm_lapic_sync_to_vapic(vcpu);
10157 		}
10158 	}
10159 
10160 	r = kvm_mmu_reload(vcpu);
10161 	if (unlikely(r)) {
10162 		goto cancel_injection;
10163 	}
10164 
10165 	preempt_disable();
10166 
10167 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10168 
10169 	/*
10170 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10171 	 * IPI are then delayed after guest entry, which ensures that they
10172 	 * result in virtual interrupt delivery.
10173 	 */
10174 	local_irq_disable();
10175 
10176 	/* Store vcpu->apicv_active before vcpu->mode.  */
10177 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10178 
10179 	kvm_vcpu_srcu_read_unlock(vcpu);
10180 
10181 	/*
10182 	 * 1) We should set ->mode before checking ->requests.  Please see
10183 	 * the comment in kvm_vcpu_exiting_guest_mode().
10184 	 *
10185 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10186 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10187 	 * (see vmx_deliver_posted_interrupt).
10188 	 *
10189 	 * 3) This also orders the write to mode from any reads to the page
10190 	 * tables done while the VCPU is running.  Please see the comment
10191 	 * in kvm_flush_remote_tlbs.
10192 	 */
10193 	smp_mb__after_srcu_read_unlock();
10194 
10195 	/*
10196 	 * Process pending posted interrupts to handle the case where the
10197 	 * notification IRQ arrived in the host, or was never sent (because the
10198 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10199 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10200 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10201 	 */
10202 	if (kvm_lapic_enabled(vcpu))
10203 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10204 
10205 	if (kvm_vcpu_exit_request(vcpu)) {
10206 		vcpu->mode = OUTSIDE_GUEST_MODE;
10207 		smp_wmb();
10208 		local_irq_enable();
10209 		preempt_enable();
10210 		kvm_vcpu_srcu_read_lock(vcpu);
10211 		r = 1;
10212 		goto cancel_injection;
10213 	}
10214 
10215 	if (req_immediate_exit) {
10216 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10217 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10218 	}
10219 
10220 	fpregs_assert_state_consistent();
10221 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10222 		switch_fpu_return();
10223 
10224 	if (vcpu->arch.guest_fpu.xfd_err)
10225 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10226 
10227 	if (unlikely(vcpu->arch.switch_db_regs)) {
10228 		set_debugreg(0, 7);
10229 		set_debugreg(vcpu->arch.eff_db[0], 0);
10230 		set_debugreg(vcpu->arch.eff_db[1], 1);
10231 		set_debugreg(vcpu->arch.eff_db[2], 2);
10232 		set_debugreg(vcpu->arch.eff_db[3], 3);
10233 	} else if (unlikely(hw_breakpoint_active())) {
10234 		set_debugreg(0, 7);
10235 	}
10236 
10237 	guest_timing_enter_irqoff();
10238 
10239 	for (;;) {
10240 		/*
10241 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10242 		 * update must kick and wait for all vCPUs before toggling the
10243 		 * per-VM state, and responsing vCPUs must wait for the update
10244 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10245 		 */
10246 		WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10247 
10248 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10249 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10250 			break;
10251 
10252 		if (kvm_lapic_enabled(vcpu))
10253 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10254 
10255 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10256 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10257 			break;
10258 		}
10259 	}
10260 
10261 	/*
10262 	 * Do this here before restoring debug registers on the host.  And
10263 	 * since we do this before handling the vmexit, a DR access vmexit
10264 	 * can (a) read the correct value of the debug registers, (b) set
10265 	 * KVM_DEBUGREG_WONT_EXIT again.
10266 	 */
10267 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10268 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10269 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10270 		kvm_update_dr0123(vcpu);
10271 		kvm_update_dr7(vcpu);
10272 	}
10273 
10274 	/*
10275 	 * If the guest has used debug registers, at least dr7
10276 	 * will be disabled while returning to the host.
10277 	 * If we don't have active breakpoints in the host, we don't
10278 	 * care about the messed up debug address registers. But if
10279 	 * we have some of them active, restore the old state.
10280 	 */
10281 	if (hw_breakpoint_active())
10282 		hw_breakpoint_restore();
10283 
10284 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10285 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10286 
10287 	vcpu->mode = OUTSIDE_GUEST_MODE;
10288 	smp_wmb();
10289 
10290 	/*
10291 	 * Sync xfd before calling handle_exit_irqoff() which may
10292 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10293 	 * in #NM irqoff handler).
10294 	 */
10295 	if (vcpu->arch.xfd_no_write_intercept)
10296 		fpu_sync_guest_vmexit_xfd_state();
10297 
10298 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10299 
10300 	if (vcpu->arch.guest_fpu.xfd_err)
10301 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10302 
10303 	/*
10304 	 * Consume any pending interrupts, including the possible source of
10305 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10306 	 * An instruction is required after local_irq_enable() to fully unblock
10307 	 * interrupts on processors that implement an interrupt shadow, the
10308 	 * stat.exits increment will do nicely.
10309 	 */
10310 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10311 	local_irq_enable();
10312 	++vcpu->stat.exits;
10313 	local_irq_disable();
10314 	kvm_after_interrupt(vcpu);
10315 
10316 	/*
10317 	 * Wait until after servicing IRQs to account guest time so that any
10318 	 * ticks that occurred while running the guest are properly accounted
10319 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10320 	 * of accounting via context tracking, but the loss of accuracy is
10321 	 * acceptable for all known use cases.
10322 	 */
10323 	guest_timing_exit_irqoff();
10324 
10325 	local_irq_enable();
10326 	preempt_enable();
10327 
10328 	kvm_vcpu_srcu_read_lock(vcpu);
10329 
10330 	/*
10331 	 * Profile KVM exit RIPs:
10332 	 */
10333 	if (unlikely(prof_on == KVM_PROFILING)) {
10334 		unsigned long rip = kvm_rip_read(vcpu);
10335 		profile_hit(KVM_PROFILING, (void *)rip);
10336 	}
10337 
10338 	if (unlikely(vcpu->arch.tsc_always_catchup))
10339 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10340 
10341 	if (vcpu->arch.apic_attention)
10342 		kvm_lapic_sync_from_vapic(vcpu);
10343 
10344 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10345 	return r;
10346 
10347 cancel_injection:
10348 	if (req_immediate_exit)
10349 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10350 	static_call(kvm_x86_cancel_injection)(vcpu);
10351 	if (unlikely(vcpu->arch.apic_attention))
10352 		kvm_lapic_sync_from_vapic(vcpu);
10353 out:
10354 	return r;
10355 }
10356 
10357 /* Called within kvm->srcu read side.  */
10358 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10359 {
10360 	bool hv_timer;
10361 
10362 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10363 		/*
10364 		 * Switch to the software timer before halt-polling/blocking as
10365 		 * the guest's timer may be a break event for the vCPU, and the
10366 		 * hypervisor timer runs only when the CPU is in guest mode.
10367 		 * Switch before halt-polling so that KVM recognizes an expired
10368 		 * timer before blocking.
10369 		 */
10370 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10371 		if (hv_timer)
10372 			kvm_lapic_switch_to_sw_timer(vcpu);
10373 
10374 		kvm_vcpu_srcu_read_unlock(vcpu);
10375 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10376 			kvm_vcpu_halt(vcpu);
10377 		else
10378 			kvm_vcpu_block(vcpu);
10379 		kvm_vcpu_srcu_read_lock(vcpu);
10380 
10381 		if (hv_timer)
10382 			kvm_lapic_switch_to_hv_timer(vcpu);
10383 
10384 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10385 			return 1;
10386 	}
10387 
10388 	if (kvm_apic_accept_events(vcpu) < 0)
10389 		return 0;
10390 	switch(vcpu->arch.mp_state) {
10391 	case KVM_MP_STATE_HALTED:
10392 	case KVM_MP_STATE_AP_RESET_HOLD:
10393 		vcpu->arch.pv.pv_unhalted = false;
10394 		vcpu->arch.mp_state =
10395 			KVM_MP_STATE_RUNNABLE;
10396 		fallthrough;
10397 	case KVM_MP_STATE_RUNNABLE:
10398 		vcpu->arch.apf.halted = false;
10399 		break;
10400 	case KVM_MP_STATE_INIT_RECEIVED:
10401 		break;
10402 	default:
10403 		return -EINTR;
10404 	}
10405 	return 1;
10406 }
10407 
10408 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10409 {
10410 	if (is_guest_mode(vcpu))
10411 		kvm_check_nested_events(vcpu);
10412 
10413 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10414 		!vcpu->arch.apf.halted);
10415 }
10416 
10417 /* Called within kvm->srcu read side.  */
10418 static int vcpu_run(struct kvm_vcpu *vcpu)
10419 {
10420 	int r;
10421 
10422 	vcpu->arch.l1tf_flush_l1d = true;
10423 
10424 	for (;;) {
10425 		if (kvm_vcpu_running(vcpu)) {
10426 			r = vcpu_enter_guest(vcpu);
10427 		} else {
10428 			r = vcpu_block(vcpu);
10429 		}
10430 
10431 		if (r <= 0)
10432 			break;
10433 
10434 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10435 		if (kvm_xen_has_pending_events(vcpu))
10436 			kvm_xen_inject_pending_events(vcpu);
10437 
10438 		if (kvm_cpu_has_pending_timer(vcpu))
10439 			kvm_inject_pending_timer_irqs(vcpu);
10440 
10441 		if (dm_request_for_irq_injection(vcpu) &&
10442 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10443 			r = 0;
10444 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10445 			++vcpu->stat.request_irq_exits;
10446 			break;
10447 		}
10448 
10449 		if (__xfer_to_guest_mode_work_pending()) {
10450 			kvm_vcpu_srcu_read_unlock(vcpu);
10451 			r = xfer_to_guest_mode_handle_work(vcpu);
10452 			kvm_vcpu_srcu_read_lock(vcpu);
10453 			if (r)
10454 				return r;
10455 		}
10456 	}
10457 
10458 	return r;
10459 }
10460 
10461 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10462 {
10463 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10464 }
10465 
10466 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10467 {
10468 	BUG_ON(!vcpu->arch.pio.count);
10469 
10470 	return complete_emulated_io(vcpu);
10471 }
10472 
10473 /*
10474  * Implements the following, as a state machine:
10475  *
10476  * read:
10477  *   for each fragment
10478  *     for each mmio piece in the fragment
10479  *       write gpa, len
10480  *       exit
10481  *       copy data
10482  *   execute insn
10483  *
10484  * write:
10485  *   for each fragment
10486  *     for each mmio piece in the fragment
10487  *       write gpa, len
10488  *       copy data
10489  *       exit
10490  */
10491 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10492 {
10493 	struct kvm_run *run = vcpu->run;
10494 	struct kvm_mmio_fragment *frag;
10495 	unsigned len;
10496 
10497 	BUG_ON(!vcpu->mmio_needed);
10498 
10499 	/* Complete previous fragment */
10500 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10501 	len = min(8u, frag->len);
10502 	if (!vcpu->mmio_is_write)
10503 		memcpy(frag->data, run->mmio.data, len);
10504 
10505 	if (frag->len <= 8) {
10506 		/* Switch to the next fragment. */
10507 		frag++;
10508 		vcpu->mmio_cur_fragment++;
10509 	} else {
10510 		/* Go forward to the next mmio piece. */
10511 		frag->data += len;
10512 		frag->gpa += len;
10513 		frag->len -= len;
10514 	}
10515 
10516 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10517 		vcpu->mmio_needed = 0;
10518 
10519 		/* FIXME: return into emulator if single-stepping.  */
10520 		if (vcpu->mmio_is_write)
10521 			return 1;
10522 		vcpu->mmio_read_completed = 1;
10523 		return complete_emulated_io(vcpu);
10524 	}
10525 
10526 	run->exit_reason = KVM_EXIT_MMIO;
10527 	run->mmio.phys_addr = frag->gpa;
10528 	if (vcpu->mmio_is_write)
10529 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10530 	run->mmio.len = min(8u, frag->len);
10531 	run->mmio.is_write = vcpu->mmio_is_write;
10532 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10533 	return 0;
10534 }
10535 
10536 /* Swap (qemu) user FPU context for the guest FPU context. */
10537 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10538 {
10539 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10540 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10541 	trace_kvm_fpu(1);
10542 }
10543 
10544 /* When vcpu_run ends, restore user space FPU context. */
10545 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10546 {
10547 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10548 	++vcpu->stat.fpu_reload;
10549 	trace_kvm_fpu(0);
10550 }
10551 
10552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10553 {
10554 	struct kvm_run *kvm_run = vcpu->run;
10555 	int r;
10556 
10557 	vcpu_load(vcpu);
10558 	kvm_sigset_activate(vcpu);
10559 	kvm_run->flags = 0;
10560 	kvm_load_guest_fpu(vcpu);
10561 
10562 	kvm_vcpu_srcu_read_lock(vcpu);
10563 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10564 		if (kvm_run->immediate_exit) {
10565 			r = -EINTR;
10566 			goto out;
10567 		}
10568 		/*
10569 		 * It should be impossible for the hypervisor timer to be in
10570 		 * use before KVM has ever run the vCPU.
10571 		 */
10572 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10573 
10574 		kvm_vcpu_srcu_read_unlock(vcpu);
10575 		kvm_vcpu_block(vcpu);
10576 		kvm_vcpu_srcu_read_lock(vcpu);
10577 
10578 		if (kvm_apic_accept_events(vcpu) < 0) {
10579 			r = 0;
10580 			goto out;
10581 		}
10582 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10583 		r = -EAGAIN;
10584 		if (signal_pending(current)) {
10585 			r = -EINTR;
10586 			kvm_run->exit_reason = KVM_EXIT_INTR;
10587 			++vcpu->stat.signal_exits;
10588 		}
10589 		goto out;
10590 	}
10591 
10592 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10593 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10594 		r = -EINVAL;
10595 		goto out;
10596 	}
10597 
10598 	if (kvm_run->kvm_dirty_regs) {
10599 		r = sync_regs(vcpu);
10600 		if (r != 0)
10601 			goto out;
10602 	}
10603 
10604 	/* re-sync apic's tpr */
10605 	if (!lapic_in_kernel(vcpu)) {
10606 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10607 			r = -EINVAL;
10608 			goto out;
10609 		}
10610 	}
10611 
10612 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10613 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10614 		vcpu->arch.complete_userspace_io = NULL;
10615 		r = cui(vcpu);
10616 		if (r <= 0)
10617 			goto out;
10618 	} else
10619 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10620 
10621 	if (kvm_run->immediate_exit) {
10622 		r = -EINTR;
10623 		goto out;
10624 	}
10625 
10626 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10627 	if (r <= 0)
10628 		goto out;
10629 
10630 	r = vcpu_run(vcpu);
10631 
10632 out:
10633 	kvm_put_guest_fpu(vcpu);
10634 	if (kvm_run->kvm_valid_regs)
10635 		store_regs(vcpu);
10636 	post_kvm_run_save(vcpu);
10637 	kvm_vcpu_srcu_read_unlock(vcpu);
10638 
10639 	kvm_sigset_deactivate(vcpu);
10640 	vcpu_put(vcpu);
10641 	return r;
10642 }
10643 
10644 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10645 {
10646 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10647 		/*
10648 		 * We are here if userspace calls get_regs() in the middle of
10649 		 * instruction emulation. Registers state needs to be copied
10650 		 * back from emulation context to vcpu. Userspace shouldn't do
10651 		 * that usually, but some bad designed PV devices (vmware
10652 		 * backdoor interface) need this to work
10653 		 */
10654 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10655 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10656 	}
10657 	regs->rax = kvm_rax_read(vcpu);
10658 	regs->rbx = kvm_rbx_read(vcpu);
10659 	regs->rcx = kvm_rcx_read(vcpu);
10660 	regs->rdx = kvm_rdx_read(vcpu);
10661 	regs->rsi = kvm_rsi_read(vcpu);
10662 	regs->rdi = kvm_rdi_read(vcpu);
10663 	regs->rsp = kvm_rsp_read(vcpu);
10664 	regs->rbp = kvm_rbp_read(vcpu);
10665 #ifdef CONFIG_X86_64
10666 	regs->r8 = kvm_r8_read(vcpu);
10667 	regs->r9 = kvm_r9_read(vcpu);
10668 	regs->r10 = kvm_r10_read(vcpu);
10669 	regs->r11 = kvm_r11_read(vcpu);
10670 	regs->r12 = kvm_r12_read(vcpu);
10671 	regs->r13 = kvm_r13_read(vcpu);
10672 	regs->r14 = kvm_r14_read(vcpu);
10673 	regs->r15 = kvm_r15_read(vcpu);
10674 #endif
10675 
10676 	regs->rip = kvm_rip_read(vcpu);
10677 	regs->rflags = kvm_get_rflags(vcpu);
10678 }
10679 
10680 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10681 {
10682 	vcpu_load(vcpu);
10683 	__get_regs(vcpu, regs);
10684 	vcpu_put(vcpu);
10685 	return 0;
10686 }
10687 
10688 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10689 {
10690 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10691 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10692 
10693 	kvm_rax_write(vcpu, regs->rax);
10694 	kvm_rbx_write(vcpu, regs->rbx);
10695 	kvm_rcx_write(vcpu, regs->rcx);
10696 	kvm_rdx_write(vcpu, regs->rdx);
10697 	kvm_rsi_write(vcpu, regs->rsi);
10698 	kvm_rdi_write(vcpu, regs->rdi);
10699 	kvm_rsp_write(vcpu, regs->rsp);
10700 	kvm_rbp_write(vcpu, regs->rbp);
10701 #ifdef CONFIG_X86_64
10702 	kvm_r8_write(vcpu, regs->r8);
10703 	kvm_r9_write(vcpu, regs->r9);
10704 	kvm_r10_write(vcpu, regs->r10);
10705 	kvm_r11_write(vcpu, regs->r11);
10706 	kvm_r12_write(vcpu, regs->r12);
10707 	kvm_r13_write(vcpu, regs->r13);
10708 	kvm_r14_write(vcpu, regs->r14);
10709 	kvm_r15_write(vcpu, regs->r15);
10710 #endif
10711 
10712 	kvm_rip_write(vcpu, regs->rip);
10713 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10714 
10715 	vcpu->arch.exception.pending = false;
10716 
10717 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10718 }
10719 
10720 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10721 {
10722 	vcpu_load(vcpu);
10723 	__set_regs(vcpu, regs);
10724 	vcpu_put(vcpu);
10725 	return 0;
10726 }
10727 
10728 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10729 {
10730 	struct desc_ptr dt;
10731 
10732 	if (vcpu->arch.guest_state_protected)
10733 		goto skip_protected_regs;
10734 
10735 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10736 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10737 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10738 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10739 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10740 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10741 
10742 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10743 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10744 
10745 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10746 	sregs->idt.limit = dt.size;
10747 	sregs->idt.base = dt.address;
10748 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10749 	sregs->gdt.limit = dt.size;
10750 	sregs->gdt.base = dt.address;
10751 
10752 	sregs->cr2 = vcpu->arch.cr2;
10753 	sregs->cr3 = kvm_read_cr3(vcpu);
10754 
10755 skip_protected_regs:
10756 	sregs->cr0 = kvm_read_cr0(vcpu);
10757 	sregs->cr4 = kvm_read_cr4(vcpu);
10758 	sregs->cr8 = kvm_get_cr8(vcpu);
10759 	sregs->efer = vcpu->arch.efer;
10760 	sregs->apic_base = kvm_get_apic_base(vcpu);
10761 }
10762 
10763 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10764 {
10765 	__get_sregs_common(vcpu, sregs);
10766 
10767 	if (vcpu->arch.guest_state_protected)
10768 		return;
10769 
10770 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10771 		set_bit(vcpu->arch.interrupt.nr,
10772 			(unsigned long *)sregs->interrupt_bitmap);
10773 }
10774 
10775 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10776 {
10777 	int i;
10778 
10779 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10780 
10781 	if (vcpu->arch.guest_state_protected)
10782 		return;
10783 
10784 	if (is_pae_paging(vcpu)) {
10785 		for (i = 0 ; i < 4 ; i++)
10786 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10787 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10788 	}
10789 }
10790 
10791 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10792 				  struct kvm_sregs *sregs)
10793 {
10794 	vcpu_load(vcpu);
10795 	__get_sregs(vcpu, sregs);
10796 	vcpu_put(vcpu);
10797 	return 0;
10798 }
10799 
10800 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10801 				    struct kvm_mp_state *mp_state)
10802 {
10803 	int r;
10804 
10805 	vcpu_load(vcpu);
10806 	if (kvm_mpx_supported())
10807 		kvm_load_guest_fpu(vcpu);
10808 
10809 	r = kvm_apic_accept_events(vcpu);
10810 	if (r < 0)
10811 		goto out;
10812 	r = 0;
10813 
10814 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10815 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10816 	    vcpu->arch.pv.pv_unhalted)
10817 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10818 	else
10819 		mp_state->mp_state = vcpu->arch.mp_state;
10820 
10821 out:
10822 	if (kvm_mpx_supported())
10823 		kvm_put_guest_fpu(vcpu);
10824 	vcpu_put(vcpu);
10825 	return r;
10826 }
10827 
10828 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10829 				    struct kvm_mp_state *mp_state)
10830 {
10831 	int ret = -EINVAL;
10832 
10833 	vcpu_load(vcpu);
10834 
10835 	if (!lapic_in_kernel(vcpu) &&
10836 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10837 		goto out;
10838 
10839 	/*
10840 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10841 	 * INIT state; latched init should be reported using
10842 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10843 	 */
10844 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10845 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10846 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10847 		goto out;
10848 
10849 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10850 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10851 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10852 	} else
10853 		vcpu->arch.mp_state = mp_state->mp_state;
10854 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10855 
10856 	ret = 0;
10857 out:
10858 	vcpu_put(vcpu);
10859 	return ret;
10860 }
10861 
10862 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10863 		    int reason, bool has_error_code, u32 error_code)
10864 {
10865 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10866 	int ret;
10867 
10868 	init_emulate_ctxt(vcpu);
10869 
10870 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10871 				   has_error_code, error_code);
10872 	if (ret) {
10873 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10874 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10875 		vcpu->run->internal.ndata = 0;
10876 		return 0;
10877 	}
10878 
10879 	kvm_rip_write(vcpu, ctxt->eip);
10880 	kvm_set_rflags(vcpu, ctxt->eflags);
10881 	return 1;
10882 }
10883 EXPORT_SYMBOL_GPL(kvm_task_switch);
10884 
10885 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10886 {
10887 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10888 		/*
10889 		 * When EFER.LME and CR0.PG are set, the processor is in
10890 		 * 64-bit mode (though maybe in a 32-bit code segment).
10891 		 * CR4.PAE and EFER.LMA must be set.
10892 		 */
10893 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10894 			return false;
10895 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10896 			return false;
10897 	} else {
10898 		/*
10899 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10900 		 * segment cannot be 64-bit.
10901 		 */
10902 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10903 			return false;
10904 	}
10905 
10906 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10907 }
10908 
10909 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10910 		int *mmu_reset_needed, bool update_pdptrs)
10911 {
10912 	struct msr_data apic_base_msr;
10913 	int idx;
10914 	struct desc_ptr dt;
10915 
10916 	if (!kvm_is_valid_sregs(vcpu, sregs))
10917 		return -EINVAL;
10918 
10919 	apic_base_msr.data = sregs->apic_base;
10920 	apic_base_msr.host_initiated = true;
10921 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10922 		return -EINVAL;
10923 
10924 	if (vcpu->arch.guest_state_protected)
10925 		return 0;
10926 
10927 	dt.size = sregs->idt.limit;
10928 	dt.address = sregs->idt.base;
10929 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10930 	dt.size = sregs->gdt.limit;
10931 	dt.address = sregs->gdt.base;
10932 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10933 
10934 	vcpu->arch.cr2 = sregs->cr2;
10935 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10936 	vcpu->arch.cr3 = sregs->cr3;
10937 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10938 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10939 
10940 	kvm_set_cr8(vcpu, sregs->cr8);
10941 
10942 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10943 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10944 
10945 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10946 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10947 	vcpu->arch.cr0 = sregs->cr0;
10948 
10949 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10950 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10951 
10952 	if (update_pdptrs) {
10953 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10954 		if (is_pae_paging(vcpu)) {
10955 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10956 			*mmu_reset_needed = 1;
10957 		}
10958 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10959 	}
10960 
10961 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10962 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10963 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10964 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10965 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10966 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10967 
10968 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10969 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10970 
10971 	update_cr8_intercept(vcpu);
10972 
10973 	/* Older userspace won't unhalt the vcpu on reset. */
10974 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10975 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10976 	    !is_protmode(vcpu))
10977 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10978 
10979 	return 0;
10980 }
10981 
10982 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10983 {
10984 	int pending_vec, max_bits;
10985 	int mmu_reset_needed = 0;
10986 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10987 
10988 	if (ret)
10989 		return ret;
10990 
10991 	if (mmu_reset_needed)
10992 		kvm_mmu_reset_context(vcpu);
10993 
10994 	max_bits = KVM_NR_INTERRUPTS;
10995 	pending_vec = find_first_bit(
10996 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10997 
10998 	if (pending_vec < max_bits) {
10999 		kvm_queue_interrupt(vcpu, pending_vec, false);
11000 		pr_debug("Set back pending irq %d\n", pending_vec);
11001 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11002 	}
11003 	return 0;
11004 }
11005 
11006 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11007 {
11008 	int mmu_reset_needed = 0;
11009 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11010 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11011 		!(sregs2->efer & EFER_LMA);
11012 	int i, ret;
11013 
11014 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11015 		return -EINVAL;
11016 
11017 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11018 		return -EINVAL;
11019 
11020 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11021 				 &mmu_reset_needed, !valid_pdptrs);
11022 	if (ret)
11023 		return ret;
11024 
11025 	if (valid_pdptrs) {
11026 		for (i = 0; i < 4 ; i++)
11027 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11028 
11029 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11030 		mmu_reset_needed = 1;
11031 		vcpu->arch.pdptrs_from_userspace = true;
11032 	}
11033 	if (mmu_reset_needed)
11034 		kvm_mmu_reset_context(vcpu);
11035 	return 0;
11036 }
11037 
11038 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11039 				  struct kvm_sregs *sregs)
11040 {
11041 	int ret;
11042 
11043 	vcpu_load(vcpu);
11044 	ret = __set_sregs(vcpu, sregs);
11045 	vcpu_put(vcpu);
11046 	return ret;
11047 }
11048 
11049 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11050 {
11051 	bool set = false;
11052 	struct kvm_vcpu *vcpu;
11053 	unsigned long i;
11054 
11055 	if (!enable_apicv)
11056 		return;
11057 
11058 	down_write(&kvm->arch.apicv_update_lock);
11059 
11060 	kvm_for_each_vcpu(i, vcpu, kvm) {
11061 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11062 			set = true;
11063 			break;
11064 		}
11065 	}
11066 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11067 	up_write(&kvm->arch.apicv_update_lock);
11068 }
11069 
11070 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11071 					struct kvm_guest_debug *dbg)
11072 {
11073 	unsigned long rflags;
11074 	int i, r;
11075 
11076 	if (vcpu->arch.guest_state_protected)
11077 		return -EINVAL;
11078 
11079 	vcpu_load(vcpu);
11080 
11081 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11082 		r = -EBUSY;
11083 		if (vcpu->arch.exception.pending)
11084 			goto out;
11085 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11086 			kvm_queue_exception(vcpu, DB_VECTOR);
11087 		else
11088 			kvm_queue_exception(vcpu, BP_VECTOR);
11089 	}
11090 
11091 	/*
11092 	 * Read rflags as long as potentially injected trace flags are still
11093 	 * filtered out.
11094 	 */
11095 	rflags = kvm_get_rflags(vcpu);
11096 
11097 	vcpu->guest_debug = dbg->control;
11098 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11099 		vcpu->guest_debug = 0;
11100 
11101 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11102 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11103 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11104 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11105 	} else {
11106 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11107 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11108 	}
11109 	kvm_update_dr7(vcpu);
11110 
11111 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11112 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11113 
11114 	/*
11115 	 * Trigger an rflags update that will inject or remove the trace
11116 	 * flags.
11117 	 */
11118 	kvm_set_rflags(vcpu, rflags);
11119 
11120 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11121 
11122 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11123 
11124 	r = 0;
11125 
11126 out:
11127 	vcpu_put(vcpu);
11128 	return r;
11129 }
11130 
11131 /*
11132  * Translate a guest virtual address to a guest physical address.
11133  */
11134 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11135 				    struct kvm_translation *tr)
11136 {
11137 	unsigned long vaddr = tr->linear_address;
11138 	gpa_t gpa;
11139 	int idx;
11140 
11141 	vcpu_load(vcpu);
11142 
11143 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11144 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11145 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11146 	tr->physical_address = gpa;
11147 	tr->valid = gpa != UNMAPPED_GVA;
11148 	tr->writeable = 1;
11149 	tr->usermode = 0;
11150 
11151 	vcpu_put(vcpu);
11152 	return 0;
11153 }
11154 
11155 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11156 {
11157 	struct fxregs_state *fxsave;
11158 
11159 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11160 		return 0;
11161 
11162 	vcpu_load(vcpu);
11163 
11164 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11165 	memcpy(fpu->fpr, fxsave->st_space, 128);
11166 	fpu->fcw = fxsave->cwd;
11167 	fpu->fsw = fxsave->swd;
11168 	fpu->ftwx = fxsave->twd;
11169 	fpu->last_opcode = fxsave->fop;
11170 	fpu->last_ip = fxsave->rip;
11171 	fpu->last_dp = fxsave->rdp;
11172 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11173 
11174 	vcpu_put(vcpu);
11175 	return 0;
11176 }
11177 
11178 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11179 {
11180 	struct fxregs_state *fxsave;
11181 
11182 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11183 		return 0;
11184 
11185 	vcpu_load(vcpu);
11186 
11187 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11188 
11189 	memcpy(fxsave->st_space, fpu->fpr, 128);
11190 	fxsave->cwd = fpu->fcw;
11191 	fxsave->swd = fpu->fsw;
11192 	fxsave->twd = fpu->ftwx;
11193 	fxsave->fop = fpu->last_opcode;
11194 	fxsave->rip = fpu->last_ip;
11195 	fxsave->rdp = fpu->last_dp;
11196 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11197 
11198 	vcpu_put(vcpu);
11199 	return 0;
11200 }
11201 
11202 static void store_regs(struct kvm_vcpu *vcpu)
11203 {
11204 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11205 
11206 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11207 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11208 
11209 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11210 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11211 
11212 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11213 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11214 				vcpu, &vcpu->run->s.regs.events);
11215 }
11216 
11217 static int sync_regs(struct kvm_vcpu *vcpu)
11218 {
11219 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11220 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11221 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11222 	}
11223 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11224 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11225 			return -EINVAL;
11226 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11227 	}
11228 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11229 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11230 				vcpu, &vcpu->run->s.regs.events))
11231 			return -EINVAL;
11232 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11233 	}
11234 
11235 	return 0;
11236 }
11237 
11238 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11239 {
11240 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11241 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11242 			     "guest TSC will not be reliable\n");
11243 
11244 	return 0;
11245 }
11246 
11247 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11248 {
11249 	struct page *page;
11250 	int r;
11251 
11252 	vcpu->arch.last_vmentry_cpu = -1;
11253 	vcpu->arch.regs_avail = ~0;
11254 	vcpu->arch.regs_dirty = ~0;
11255 
11256 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11257 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11258 	else
11259 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11260 
11261 	r = kvm_mmu_create(vcpu);
11262 	if (r < 0)
11263 		return r;
11264 
11265 	if (irqchip_in_kernel(vcpu->kvm)) {
11266 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11267 		if (r < 0)
11268 			goto fail_mmu_destroy;
11269 
11270 		/*
11271 		 * Defer evaluating inhibits until the vCPU is first run, as
11272 		 * this vCPU will not get notified of any changes until this
11273 		 * vCPU is visible to other vCPUs (marked online and added to
11274 		 * the set of vCPUs).  Opportunistically mark APICv active as
11275 		 * VMX in particularly is highly unlikely to have inhibits.
11276 		 * Ignore the current per-VM APICv state so that vCPU creation
11277 		 * is guaranteed to run with a deterministic value, the request
11278 		 * will ensure the vCPU gets the correct state before VM-Entry.
11279 		 */
11280 		if (enable_apicv) {
11281 			vcpu->arch.apicv_active = true;
11282 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11283 		}
11284 	} else
11285 		static_branch_inc(&kvm_has_noapic_vcpu);
11286 
11287 	r = -ENOMEM;
11288 
11289 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11290 	if (!page)
11291 		goto fail_free_lapic;
11292 	vcpu->arch.pio_data = page_address(page);
11293 
11294 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11295 				       GFP_KERNEL_ACCOUNT);
11296 	if (!vcpu->arch.mce_banks)
11297 		goto fail_free_pio_data;
11298 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11299 
11300 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11301 				GFP_KERNEL_ACCOUNT))
11302 		goto fail_free_mce_banks;
11303 
11304 	if (!alloc_emulate_ctxt(vcpu))
11305 		goto free_wbinvd_dirty_mask;
11306 
11307 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11308 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11309 		goto free_emulate_ctxt;
11310 	}
11311 
11312 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11313 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11314 
11315 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11316 
11317 	kvm_async_pf_hash_reset(vcpu);
11318 	kvm_pmu_init(vcpu);
11319 
11320 	vcpu->arch.pending_external_vector = -1;
11321 	vcpu->arch.preempted_in_kernel = false;
11322 
11323 #if IS_ENABLED(CONFIG_HYPERV)
11324 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11325 #endif
11326 
11327 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11328 	if (r)
11329 		goto free_guest_fpu;
11330 
11331 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11332 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11333 	kvm_xen_init_vcpu(vcpu);
11334 	kvm_vcpu_mtrr_init(vcpu);
11335 	vcpu_load(vcpu);
11336 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11337 	kvm_vcpu_reset(vcpu, false);
11338 	kvm_init_mmu(vcpu);
11339 	vcpu_put(vcpu);
11340 	return 0;
11341 
11342 free_guest_fpu:
11343 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11344 free_emulate_ctxt:
11345 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11346 free_wbinvd_dirty_mask:
11347 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11348 fail_free_mce_banks:
11349 	kfree(vcpu->arch.mce_banks);
11350 fail_free_pio_data:
11351 	free_page((unsigned long)vcpu->arch.pio_data);
11352 fail_free_lapic:
11353 	kvm_free_lapic(vcpu);
11354 fail_mmu_destroy:
11355 	kvm_mmu_destroy(vcpu);
11356 	return r;
11357 }
11358 
11359 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11360 {
11361 	struct kvm *kvm = vcpu->kvm;
11362 
11363 	if (mutex_lock_killable(&vcpu->mutex))
11364 		return;
11365 	vcpu_load(vcpu);
11366 	kvm_synchronize_tsc(vcpu, 0);
11367 	vcpu_put(vcpu);
11368 
11369 	/* poll control enabled by default */
11370 	vcpu->arch.msr_kvm_poll_control = 1;
11371 
11372 	mutex_unlock(&vcpu->mutex);
11373 
11374 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11375 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11376 						KVMCLOCK_SYNC_PERIOD);
11377 }
11378 
11379 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11380 {
11381 	int idx;
11382 
11383 	kvmclock_reset(vcpu);
11384 
11385 	static_call(kvm_x86_vcpu_free)(vcpu);
11386 
11387 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11388 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11389 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11390 
11391 	kvm_xen_destroy_vcpu(vcpu);
11392 	kvm_hv_vcpu_uninit(vcpu);
11393 	kvm_pmu_destroy(vcpu);
11394 	kfree(vcpu->arch.mce_banks);
11395 	kvm_free_lapic(vcpu);
11396 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11397 	kvm_mmu_destroy(vcpu);
11398 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11399 	free_page((unsigned long)vcpu->arch.pio_data);
11400 	kvfree(vcpu->arch.cpuid_entries);
11401 	if (!lapic_in_kernel(vcpu))
11402 		static_branch_dec(&kvm_has_noapic_vcpu);
11403 }
11404 
11405 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11406 {
11407 	struct kvm_cpuid_entry2 *cpuid_0x1;
11408 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11409 	unsigned long new_cr0;
11410 
11411 	/*
11412 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11413 	 * to handle side effects.  RESET emulation hits those flows and relies
11414 	 * on emulated/virtualized registers, including those that are loaded
11415 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11416 	 * to detect improper or missing initialization.
11417 	 */
11418 	WARN_ON_ONCE(!init_event &&
11419 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11420 
11421 	kvm_lapic_reset(vcpu, init_event);
11422 
11423 	vcpu->arch.hflags = 0;
11424 
11425 	vcpu->arch.smi_pending = 0;
11426 	vcpu->arch.smi_count = 0;
11427 	atomic_set(&vcpu->arch.nmi_queued, 0);
11428 	vcpu->arch.nmi_pending = 0;
11429 	vcpu->arch.nmi_injected = false;
11430 	kvm_clear_interrupt_queue(vcpu);
11431 	kvm_clear_exception_queue(vcpu);
11432 
11433 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11434 	kvm_update_dr0123(vcpu);
11435 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11436 	vcpu->arch.dr7 = DR7_FIXED_1;
11437 	kvm_update_dr7(vcpu);
11438 
11439 	vcpu->arch.cr2 = 0;
11440 
11441 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11442 	vcpu->arch.apf.msr_en_val = 0;
11443 	vcpu->arch.apf.msr_int_val = 0;
11444 	vcpu->arch.st.msr_val = 0;
11445 
11446 	kvmclock_reset(vcpu);
11447 
11448 	kvm_clear_async_pf_completion_queue(vcpu);
11449 	kvm_async_pf_hash_reset(vcpu);
11450 	vcpu->arch.apf.halted = false;
11451 
11452 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11453 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11454 
11455 		/*
11456 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11457 		 * called with loaded FPU and does not let userspace fix the state.
11458 		 */
11459 		if (init_event)
11460 			kvm_put_guest_fpu(vcpu);
11461 
11462 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11463 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11464 
11465 		if (init_event)
11466 			kvm_load_guest_fpu(vcpu);
11467 	}
11468 
11469 	if (!init_event) {
11470 		kvm_pmu_reset(vcpu);
11471 		vcpu->arch.smbase = 0x30000;
11472 
11473 		vcpu->arch.msr_misc_features_enables = 0;
11474 
11475 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11476 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11477 	}
11478 
11479 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11480 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11481 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11482 
11483 	/*
11484 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11485 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11486 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11487 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11488 	 * on RESET.  But, go through the motions in case that's ever remedied.
11489 	 */
11490 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11491 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11492 
11493 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11494 
11495 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11496 	kvm_rip_write(vcpu, 0xfff0);
11497 
11498 	vcpu->arch.cr3 = 0;
11499 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11500 
11501 	/*
11502 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11503 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11504 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11505 	 */
11506 	new_cr0 = X86_CR0_ET;
11507 	if (init_event)
11508 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11509 	else
11510 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11511 
11512 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11513 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11514 	static_call(kvm_x86_set_efer)(vcpu, 0);
11515 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11516 
11517 	/*
11518 	 * On the standard CR0/CR4/EFER modification paths, there are several
11519 	 * complex conditions determining whether the MMU has to be reset and/or
11520 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11521 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11522 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11523 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11524 	 */
11525 	if (old_cr0 & X86_CR0_PG) {
11526 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11527 		kvm_mmu_reset_context(vcpu);
11528 	}
11529 
11530 	/*
11531 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11532 	 * APM states the TLBs are untouched by INIT, but it also states that
11533 	 * the TLBs are flushed on "External initialization of the processor."
11534 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11535 	 * benefit in relying on the guest to flush the TLB immediately after
11536 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11537 	 * performance perspective.
11538 	 */
11539 	if (init_event)
11540 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11541 }
11542 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11543 
11544 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11545 {
11546 	struct kvm_segment cs;
11547 
11548 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11549 	cs.selector = vector << 8;
11550 	cs.base = vector << 12;
11551 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11552 	kvm_rip_write(vcpu, 0);
11553 }
11554 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11555 
11556 int kvm_arch_hardware_enable(void)
11557 {
11558 	struct kvm *kvm;
11559 	struct kvm_vcpu *vcpu;
11560 	unsigned long i;
11561 	int ret;
11562 	u64 local_tsc;
11563 	u64 max_tsc = 0;
11564 	bool stable, backwards_tsc = false;
11565 
11566 	kvm_user_return_msr_cpu_online();
11567 	ret = static_call(kvm_x86_hardware_enable)();
11568 	if (ret != 0)
11569 		return ret;
11570 
11571 	local_tsc = rdtsc();
11572 	stable = !kvm_check_tsc_unstable();
11573 	list_for_each_entry(kvm, &vm_list, vm_list) {
11574 		kvm_for_each_vcpu(i, vcpu, kvm) {
11575 			if (!stable && vcpu->cpu == smp_processor_id())
11576 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11577 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11578 				backwards_tsc = true;
11579 				if (vcpu->arch.last_host_tsc > max_tsc)
11580 					max_tsc = vcpu->arch.last_host_tsc;
11581 			}
11582 		}
11583 	}
11584 
11585 	/*
11586 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11587 	 * platforms that reset TSC during suspend or hibernate actions, but
11588 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11589 	 * detect that condition here, which happens early in CPU bringup,
11590 	 * before any KVM threads can be running.  Unfortunately, we can't
11591 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11592 	 * enough into CPU bringup that we know how much real time has actually
11593 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11594 	 * variables that haven't been updated yet.
11595 	 *
11596 	 * So we simply find the maximum observed TSC above, then record the
11597 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11598 	 * the adjustment will be applied.  Note that we accumulate
11599 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11600 	 * gets a chance to run again.  In the event that no KVM threads get a
11601 	 * chance to run, we will miss the entire elapsed period, as we'll have
11602 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11603 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11604 	 * uniform across all VCPUs (not to mention the scenario is extremely
11605 	 * unlikely). It is possible that a second hibernate recovery happens
11606 	 * much faster than a first, causing the observed TSC here to be
11607 	 * smaller; this would require additional padding adjustment, which is
11608 	 * why we set last_host_tsc to the local tsc observed here.
11609 	 *
11610 	 * N.B. - this code below runs only on platforms with reliable TSC,
11611 	 * as that is the only way backwards_tsc is set above.  Also note
11612 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11613 	 * have the same delta_cyc adjustment applied if backwards_tsc
11614 	 * is detected.  Note further, this adjustment is only done once,
11615 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11616 	 * called multiple times (one for each physical CPU bringup).
11617 	 *
11618 	 * Platforms with unreliable TSCs don't have to deal with this, they
11619 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11620 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11621 	 * guarantee that they stay in perfect synchronization.
11622 	 */
11623 	if (backwards_tsc) {
11624 		u64 delta_cyc = max_tsc - local_tsc;
11625 		list_for_each_entry(kvm, &vm_list, vm_list) {
11626 			kvm->arch.backwards_tsc_observed = true;
11627 			kvm_for_each_vcpu(i, vcpu, kvm) {
11628 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11629 				vcpu->arch.last_host_tsc = local_tsc;
11630 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11631 			}
11632 
11633 			/*
11634 			 * We have to disable TSC offset matching.. if you were
11635 			 * booting a VM while issuing an S4 host suspend....
11636 			 * you may have some problem.  Solving this issue is
11637 			 * left as an exercise to the reader.
11638 			 */
11639 			kvm->arch.last_tsc_nsec = 0;
11640 			kvm->arch.last_tsc_write = 0;
11641 		}
11642 
11643 	}
11644 	return 0;
11645 }
11646 
11647 void kvm_arch_hardware_disable(void)
11648 {
11649 	static_call(kvm_x86_hardware_disable)();
11650 	drop_user_return_notifiers();
11651 }
11652 
11653 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11654 {
11655 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11656 
11657 #define __KVM_X86_OP(func) \
11658 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11659 #define KVM_X86_OP(func) \
11660 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11661 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11662 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11663 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11664 					   (void *)__static_call_return0);
11665 #include <asm/kvm-x86-ops.h>
11666 #undef __KVM_X86_OP
11667 
11668 	kvm_pmu_ops_update(ops->pmu_ops);
11669 }
11670 
11671 int kvm_arch_hardware_setup(void *opaque)
11672 {
11673 	struct kvm_x86_init_ops *ops = opaque;
11674 	int r;
11675 
11676 	rdmsrl_safe(MSR_EFER, &host_efer);
11677 
11678 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11679 		rdmsrl(MSR_IA32_XSS, host_xss);
11680 
11681 	r = ops->hardware_setup();
11682 	if (r != 0)
11683 		return r;
11684 
11685 	kvm_ops_update(ops);
11686 
11687 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11688 
11689 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11690 		supported_xss = 0;
11691 
11692 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11693 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11694 #undef __kvm_cpu_cap_has
11695 
11696 	if (kvm_has_tsc_control) {
11697 		/*
11698 		 * Make sure the user can only configure tsc_khz values that
11699 		 * fit into a signed integer.
11700 		 * A min value is not calculated because it will always
11701 		 * be 1 on all machines.
11702 		 */
11703 		u64 max = min(0x7fffffffULL,
11704 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11705 		kvm_max_guest_tsc_khz = max;
11706 	}
11707 	kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11708 	kvm_init_msr_list();
11709 	return 0;
11710 }
11711 
11712 void kvm_arch_hardware_unsetup(void)
11713 {
11714 	kvm_unregister_perf_callbacks();
11715 
11716 	static_call(kvm_x86_hardware_unsetup)();
11717 }
11718 
11719 int kvm_arch_check_processor_compat(void *opaque)
11720 {
11721 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11722 	struct kvm_x86_init_ops *ops = opaque;
11723 
11724 	WARN_ON(!irqs_disabled());
11725 
11726 	if (__cr4_reserved_bits(cpu_has, c) !=
11727 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11728 		return -EIO;
11729 
11730 	return ops->check_processor_compatibility();
11731 }
11732 
11733 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11734 {
11735 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11736 }
11737 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11738 
11739 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11740 {
11741 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11742 }
11743 
11744 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11745 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11746 
11747 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11748 {
11749 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11750 
11751 	vcpu->arch.l1tf_flush_l1d = true;
11752 	if (pmu->version && unlikely(pmu->event_count)) {
11753 		pmu->need_cleanup = true;
11754 		kvm_make_request(KVM_REQ_PMU, vcpu);
11755 	}
11756 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11757 }
11758 
11759 void kvm_arch_free_vm(struct kvm *kvm)
11760 {
11761 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11762 	__kvm_arch_free_vm(kvm);
11763 }
11764 
11765 
11766 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11767 {
11768 	int ret;
11769 	unsigned long flags;
11770 
11771 	if (type)
11772 		return -EINVAL;
11773 
11774 	ret = kvm_page_track_init(kvm);
11775 	if (ret)
11776 		goto out;
11777 
11778 	ret = kvm_mmu_init_vm(kvm);
11779 	if (ret)
11780 		goto out_page_track;
11781 
11782 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11783 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11784 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11785 
11786 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11787 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11788 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11789 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11790 		&kvm->arch.irq_sources_bitmap);
11791 
11792 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11793 	mutex_init(&kvm->arch.apic_map_lock);
11794 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11795 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11796 
11797 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11798 	pvclock_update_vm_gtod_copy(kvm);
11799 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11800 
11801 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11802 	kvm->arch.guest_can_read_msr_platform_info = true;
11803 	kvm->arch.enable_pmu = enable_pmu;
11804 
11805 #if IS_ENABLED(CONFIG_HYPERV)
11806 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11807 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11808 #endif
11809 
11810 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11811 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11812 
11813 	kvm_apicv_init(kvm);
11814 	kvm_hv_init_vm(kvm);
11815 	kvm_xen_init_vm(kvm);
11816 
11817 	return static_call(kvm_x86_vm_init)(kvm);
11818 
11819 out_page_track:
11820 	kvm_page_track_cleanup(kvm);
11821 out:
11822 	return ret;
11823 }
11824 
11825 int kvm_arch_post_init_vm(struct kvm *kvm)
11826 {
11827 	return kvm_mmu_post_init_vm(kvm);
11828 }
11829 
11830 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11831 {
11832 	vcpu_load(vcpu);
11833 	kvm_mmu_unload(vcpu);
11834 	vcpu_put(vcpu);
11835 }
11836 
11837 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11838 {
11839 	unsigned long i;
11840 	struct kvm_vcpu *vcpu;
11841 
11842 	kvm_for_each_vcpu(i, vcpu, kvm) {
11843 		kvm_clear_async_pf_completion_queue(vcpu);
11844 		kvm_unload_vcpu_mmu(vcpu);
11845 	}
11846 }
11847 
11848 void kvm_arch_sync_events(struct kvm *kvm)
11849 {
11850 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11851 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11852 	kvm_free_pit(kvm);
11853 }
11854 
11855 /**
11856  * __x86_set_memory_region: Setup KVM internal memory slot
11857  *
11858  * @kvm: the kvm pointer to the VM.
11859  * @id: the slot ID to setup.
11860  * @gpa: the GPA to install the slot (unused when @size == 0).
11861  * @size: the size of the slot. Set to zero to uninstall a slot.
11862  *
11863  * This function helps to setup a KVM internal memory slot.  Specify
11864  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11865  * slot.  The return code can be one of the following:
11866  *
11867  *   HVA:           on success (uninstall will return a bogus HVA)
11868  *   -errno:        on error
11869  *
11870  * The caller should always use IS_ERR() to check the return value
11871  * before use.  Note, the KVM internal memory slots are guaranteed to
11872  * remain valid and unchanged until the VM is destroyed, i.e., the
11873  * GPA->HVA translation will not change.  However, the HVA is a user
11874  * address, i.e. its accessibility is not guaranteed, and must be
11875  * accessed via __copy_{to,from}_user().
11876  */
11877 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11878 				      u32 size)
11879 {
11880 	int i, r;
11881 	unsigned long hva, old_npages;
11882 	struct kvm_memslots *slots = kvm_memslots(kvm);
11883 	struct kvm_memory_slot *slot;
11884 
11885 	/* Called with kvm->slots_lock held.  */
11886 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11887 		return ERR_PTR_USR(-EINVAL);
11888 
11889 	slot = id_to_memslot(slots, id);
11890 	if (size) {
11891 		if (slot && slot->npages)
11892 			return ERR_PTR_USR(-EEXIST);
11893 
11894 		/*
11895 		 * MAP_SHARED to prevent internal slot pages from being moved
11896 		 * by fork()/COW.
11897 		 */
11898 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11899 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11900 		if (IS_ERR((void *)hva))
11901 			return (void __user *)hva;
11902 	} else {
11903 		if (!slot || !slot->npages)
11904 			return NULL;
11905 
11906 		old_npages = slot->npages;
11907 		hva = slot->userspace_addr;
11908 	}
11909 
11910 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11911 		struct kvm_userspace_memory_region m;
11912 
11913 		m.slot = id | (i << 16);
11914 		m.flags = 0;
11915 		m.guest_phys_addr = gpa;
11916 		m.userspace_addr = hva;
11917 		m.memory_size = size;
11918 		r = __kvm_set_memory_region(kvm, &m);
11919 		if (r < 0)
11920 			return ERR_PTR_USR(r);
11921 	}
11922 
11923 	if (!size)
11924 		vm_munmap(hva, old_npages * PAGE_SIZE);
11925 
11926 	return (void __user *)hva;
11927 }
11928 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11929 
11930 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11931 {
11932 	kvm_mmu_pre_destroy_vm(kvm);
11933 }
11934 
11935 void kvm_arch_destroy_vm(struct kvm *kvm)
11936 {
11937 	if (current->mm == kvm->mm) {
11938 		/*
11939 		 * Free memory regions allocated on behalf of userspace,
11940 		 * unless the memory map has changed due to process exit
11941 		 * or fd copying.
11942 		 */
11943 		mutex_lock(&kvm->slots_lock);
11944 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11945 					0, 0);
11946 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11947 					0, 0);
11948 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11949 		mutex_unlock(&kvm->slots_lock);
11950 	}
11951 	kvm_unload_vcpu_mmus(kvm);
11952 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11953 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11954 	kvm_pic_destroy(kvm);
11955 	kvm_ioapic_destroy(kvm);
11956 	kvm_destroy_vcpus(kvm);
11957 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11958 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11959 	kvm_mmu_uninit_vm(kvm);
11960 	kvm_page_track_cleanup(kvm);
11961 	kvm_xen_destroy_vm(kvm);
11962 	kvm_hv_destroy_vm(kvm);
11963 }
11964 
11965 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11966 {
11967 	int i;
11968 
11969 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11970 		kvfree(slot->arch.rmap[i]);
11971 		slot->arch.rmap[i] = NULL;
11972 	}
11973 }
11974 
11975 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11976 {
11977 	int i;
11978 
11979 	memslot_rmap_free(slot);
11980 
11981 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11982 		kvfree(slot->arch.lpage_info[i - 1]);
11983 		slot->arch.lpage_info[i - 1] = NULL;
11984 	}
11985 
11986 	kvm_page_track_free_memslot(slot);
11987 }
11988 
11989 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11990 {
11991 	const int sz = sizeof(*slot->arch.rmap[0]);
11992 	int i;
11993 
11994 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11995 		int level = i + 1;
11996 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11997 
11998 		if (slot->arch.rmap[i])
11999 			continue;
12000 
12001 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12002 		if (!slot->arch.rmap[i]) {
12003 			memslot_rmap_free(slot);
12004 			return -ENOMEM;
12005 		}
12006 	}
12007 
12008 	return 0;
12009 }
12010 
12011 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12012 				      struct kvm_memory_slot *slot)
12013 {
12014 	unsigned long npages = slot->npages;
12015 	int i, r;
12016 
12017 	/*
12018 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12019 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12020 	 * the new memslot is successful.
12021 	 */
12022 	memset(&slot->arch, 0, sizeof(slot->arch));
12023 
12024 	if (kvm_memslots_have_rmaps(kvm)) {
12025 		r = memslot_rmap_alloc(slot, npages);
12026 		if (r)
12027 			return r;
12028 	}
12029 
12030 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12031 		struct kvm_lpage_info *linfo;
12032 		unsigned long ugfn;
12033 		int lpages;
12034 		int level = i + 1;
12035 
12036 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12037 
12038 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12039 		if (!linfo)
12040 			goto out_free;
12041 
12042 		slot->arch.lpage_info[i - 1] = linfo;
12043 
12044 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12045 			linfo[0].disallow_lpage = 1;
12046 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12047 			linfo[lpages - 1].disallow_lpage = 1;
12048 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12049 		/*
12050 		 * If the gfn and userspace address are not aligned wrt each
12051 		 * other, disable large page support for this slot.
12052 		 */
12053 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12054 			unsigned long j;
12055 
12056 			for (j = 0; j < lpages; ++j)
12057 				linfo[j].disallow_lpage = 1;
12058 		}
12059 	}
12060 
12061 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12062 		goto out_free;
12063 
12064 	return 0;
12065 
12066 out_free:
12067 	memslot_rmap_free(slot);
12068 
12069 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12070 		kvfree(slot->arch.lpage_info[i - 1]);
12071 		slot->arch.lpage_info[i - 1] = NULL;
12072 	}
12073 	return -ENOMEM;
12074 }
12075 
12076 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12077 {
12078 	struct kvm_vcpu *vcpu;
12079 	unsigned long i;
12080 
12081 	/*
12082 	 * memslots->generation has been incremented.
12083 	 * mmio generation may have reached its maximum value.
12084 	 */
12085 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12086 
12087 	/* Force re-initialization of steal_time cache */
12088 	kvm_for_each_vcpu(i, vcpu, kvm)
12089 		kvm_vcpu_kick(vcpu);
12090 }
12091 
12092 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12093 				   const struct kvm_memory_slot *old,
12094 				   struct kvm_memory_slot *new,
12095 				   enum kvm_mr_change change)
12096 {
12097 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12098 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12099 			return -EINVAL;
12100 
12101 		return kvm_alloc_memslot_metadata(kvm, new);
12102 	}
12103 
12104 	if (change == KVM_MR_FLAGS_ONLY)
12105 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12106 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12107 		return -EIO;
12108 
12109 	return 0;
12110 }
12111 
12112 
12113 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12114 {
12115 	struct kvm_arch *ka = &kvm->arch;
12116 
12117 	if (!kvm_x86_ops.cpu_dirty_log_size)
12118 		return;
12119 
12120 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12121 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12122 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12123 
12124 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12125 }
12126 
12127 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12128 				     struct kvm_memory_slot *old,
12129 				     const struct kvm_memory_slot *new,
12130 				     enum kvm_mr_change change)
12131 {
12132 	u32 old_flags = old ? old->flags : 0;
12133 	u32 new_flags = new ? new->flags : 0;
12134 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12135 
12136 	/*
12137 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12138 	 * applies to all operations.
12139 	 */
12140 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12141 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12142 
12143 	/*
12144 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12145 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12146 	 *
12147 	 * For a memslot with dirty logging disabled:
12148 	 * CREATE:      No dirty mappings will already exist.
12149 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12150 	 *		kvm_arch_flush_shadow_memslot()
12151 	 *
12152 	 * For a memslot with dirty logging enabled:
12153 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12154 	 *		and no dirty bits to clear.
12155 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12156 	 *		kvm_arch_flush_shadow_memslot().
12157 	 */
12158 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12159 		return;
12160 
12161 	/*
12162 	 * READONLY and non-flags changes were filtered out above, and the only
12163 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12164 	 * logging isn't being toggled on or off.
12165 	 */
12166 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12167 		return;
12168 
12169 	if (!log_dirty_pages) {
12170 		/*
12171 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12172 		 * large sptes have to be split.  If live migration succeeds,
12173 		 * the guest in the source machine will be destroyed and large
12174 		 * sptes will be created in the destination.  However, if the
12175 		 * guest continues to run in the source machine (for example if
12176 		 * live migration fails), small sptes will remain around and
12177 		 * cause bad performance.
12178 		 *
12179 		 * Scan sptes if dirty logging has been stopped, dropping those
12180 		 * which can be collapsed into a single large-page spte.  Later
12181 		 * page faults will create the large-page sptes.
12182 		 */
12183 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12184 	} else {
12185 		/*
12186 		 * Initially-all-set does not require write protecting any page,
12187 		 * because they're all assumed to be dirty.
12188 		 */
12189 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12190 			return;
12191 
12192 		if (READ_ONCE(eager_page_split))
12193 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12194 
12195 		if (kvm_x86_ops.cpu_dirty_log_size) {
12196 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12197 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12198 		} else {
12199 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12200 		}
12201 	}
12202 }
12203 
12204 void kvm_arch_commit_memory_region(struct kvm *kvm,
12205 				struct kvm_memory_slot *old,
12206 				const struct kvm_memory_slot *new,
12207 				enum kvm_mr_change change)
12208 {
12209 	if (!kvm->arch.n_requested_mmu_pages &&
12210 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12211 		unsigned long nr_mmu_pages;
12212 
12213 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12214 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12215 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12216 	}
12217 
12218 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12219 
12220 	/* Free the arrays associated with the old memslot. */
12221 	if (change == KVM_MR_MOVE)
12222 		kvm_arch_free_memslot(kvm, old);
12223 }
12224 
12225 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12226 {
12227 	kvm_mmu_zap_all(kvm);
12228 }
12229 
12230 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12231 				   struct kvm_memory_slot *slot)
12232 {
12233 	kvm_page_track_flush_slot(kvm, slot);
12234 }
12235 
12236 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12237 {
12238 	return (is_guest_mode(vcpu) &&
12239 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12240 }
12241 
12242 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12243 {
12244 	if (!list_empty_careful(&vcpu->async_pf.done))
12245 		return true;
12246 
12247 	if (kvm_apic_has_events(vcpu))
12248 		return true;
12249 
12250 	if (vcpu->arch.pv.pv_unhalted)
12251 		return true;
12252 
12253 	if (vcpu->arch.exception.pending)
12254 		return true;
12255 
12256 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12257 	    (vcpu->arch.nmi_pending &&
12258 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12259 		return true;
12260 
12261 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12262 	    (vcpu->arch.smi_pending &&
12263 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12264 		return true;
12265 
12266 	if (kvm_arch_interrupt_allowed(vcpu) &&
12267 	    (kvm_cpu_has_interrupt(vcpu) ||
12268 	    kvm_guest_apic_has_interrupt(vcpu)))
12269 		return true;
12270 
12271 	if (kvm_hv_has_stimer_pending(vcpu))
12272 		return true;
12273 
12274 	if (is_guest_mode(vcpu) &&
12275 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12276 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12277 		return true;
12278 
12279 	if (kvm_xen_has_pending_events(vcpu))
12280 		return true;
12281 
12282 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12283 		return true;
12284 
12285 	return false;
12286 }
12287 
12288 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12289 {
12290 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12291 }
12292 
12293 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12294 {
12295 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12296 		return true;
12297 
12298 	return false;
12299 }
12300 
12301 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12302 {
12303 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12304 		return true;
12305 
12306 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12307 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12308 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12309 		return true;
12310 
12311 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12312 }
12313 
12314 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12315 {
12316 	if (vcpu->arch.guest_state_protected)
12317 		return true;
12318 
12319 	return vcpu->arch.preempted_in_kernel;
12320 }
12321 
12322 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12323 {
12324 	return kvm_rip_read(vcpu);
12325 }
12326 
12327 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12328 {
12329 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12330 }
12331 
12332 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12333 {
12334 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12335 }
12336 
12337 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12338 {
12339 	/* Can't read the RIP when guest state is protected, just return 0 */
12340 	if (vcpu->arch.guest_state_protected)
12341 		return 0;
12342 
12343 	if (is_64_bit_mode(vcpu))
12344 		return kvm_rip_read(vcpu);
12345 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12346 		     kvm_rip_read(vcpu));
12347 }
12348 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12349 
12350 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12351 {
12352 	return kvm_get_linear_rip(vcpu) == linear_rip;
12353 }
12354 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12355 
12356 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12357 {
12358 	unsigned long rflags;
12359 
12360 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12361 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12362 		rflags &= ~X86_EFLAGS_TF;
12363 	return rflags;
12364 }
12365 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12366 
12367 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12368 {
12369 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12370 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12371 		rflags |= X86_EFLAGS_TF;
12372 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12373 }
12374 
12375 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12376 {
12377 	__kvm_set_rflags(vcpu, rflags);
12378 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12379 }
12380 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12381 
12382 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12383 {
12384 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12385 
12386 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12387 }
12388 
12389 static inline u32 kvm_async_pf_next_probe(u32 key)
12390 {
12391 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12392 }
12393 
12394 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12395 {
12396 	u32 key = kvm_async_pf_hash_fn(gfn);
12397 
12398 	while (vcpu->arch.apf.gfns[key] != ~0)
12399 		key = kvm_async_pf_next_probe(key);
12400 
12401 	vcpu->arch.apf.gfns[key] = gfn;
12402 }
12403 
12404 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12405 {
12406 	int i;
12407 	u32 key = kvm_async_pf_hash_fn(gfn);
12408 
12409 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12410 		     (vcpu->arch.apf.gfns[key] != gfn &&
12411 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12412 		key = kvm_async_pf_next_probe(key);
12413 
12414 	return key;
12415 }
12416 
12417 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12418 {
12419 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12420 }
12421 
12422 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12423 {
12424 	u32 i, j, k;
12425 
12426 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12427 
12428 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12429 		return;
12430 
12431 	while (true) {
12432 		vcpu->arch.apf.gfns[i] = ~0;
12433 		do {
12434 			j = kvm_async_pf_next_probe(j);
12435 			if (vcpu->arch.apf.gfns[j] == ~0)
12436 				return;
12437 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12438 			/*
12439 			 * k lies cyclically in ]i,j]
12440 			 * |    i.k.j |
12441 			 * |....j i.k.| or  |.k..j i...|
12442 			 */
12443 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12444 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12445 		i = j;
12446 	}
12447 }
12448 
12449 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12450 {
12451 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12452 
12453 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12454 				      sizeof(reason));
12455 }
12456 
12457 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12458 {
12459 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12460 
12461 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12462 					     &token, offset, sizeof(token));
12463 }
12464 
12465 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12466 {
12467 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12468 	u32 val;
12469 
12470 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12471 					 &val, offset, sizeof(val)))
12472 		return false;
12473 
12474 	return !val;
12475 }
12476 
12477 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12478 {
12479 
12480 	if (!kvm_pv_async_pf_enabled(vcpu))
12481 		return false;
12482 
12483 	if (vcpu->arch.apf.send_user_only &&
12484 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12485 		return false;
12486 
12487 	if (is_guest_mode(vcpu)) {
12488 		/*
12489 		 * L1 needs to opt into the special #PF vmexits that are
12490 		 * used to deliver async page faults.
12491 		 */
12492 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12493 	} else {
12494 		/*
12495 		 * Play it safe in case the guest temporarily disables paging.
12496 		 * The real mode IDT in particular is unlikely to have a #PF
12497 		 * exception setup.
12498 		 */
12499 		return is_paging(vcpu);
12500 	}
12501 }
12502 
12503 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12504 {
12505 	if (unlikely(!lapic_in_kernel(vcpu) ||
12506 		     kvm_event_needs_reinjection(vcpu) ||
12507 		     vcpu->arch.exception.pending))
12508 		return false;
12509 
12510 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12511 		return false;
12512 
12513 	/*
12514 	 * If interrupts are off we cannot even use an artificial
12515 	 * halt state.
12516 	 */
12517 	return kvm_arch_interrupt_allowed(vcpu);
12518 }
12519 
12520 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12521 				     struct kvm_async_pf *work)
12522 {
12523 	struct x86_exception fault;
12524 
12525 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12526 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12527 
12528 	if (kvm_can_deliver_async_pf(vcpu) &&
12529 	    !apf_put_user_notpresent(vcpu)) {
12530 		fault.vector = PF_VECTOR;
12531 		fault.error_code_valid = true;
12532 		fault.error_code = 0;
12533 		fault.nested_page_fault = false;
12534 		fault.address = work->arch.token;
12535 		fault.async_page_fault = true;
12536 		kvm_inject_page_fault(vcpu, &fault);
12537 		return true;
12538 	} else {
12539 		/*
12540 		 * It is not possible to deliver a paravirtualized asynchronous
12541 		 * page fault, but putting the guest in an artificial halt state
12542 		 * can be beneficial nevertheless: if an interrupt arrives, we
12543 		 * can deliver it timely and perhaps the guest will schedule
12544 		 * another process.  When the instruction that triggered a page
12545 		 * fault is retried, hopefully the page will be ready in the host.
12546 		 */
12547 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12548 		return false;
12549 	}
12550 }
12551 
12552 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12553 				 struct kvm_async_pf *work)
12554 {
12555 	struct kvm_lapic_irq irq = {
12556 		.delivery_mode = APIC_DM_FIXED,
12557 		.vector = vcpu->arch.apf.vec
12558 	};
12559 
12560 	if (work->wakeup_all)
12561 		work->arch.token = ~0; /* broadcast wakeup */
12562 	else
12563 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12564 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12565 
12566 	if ((work->wakeup_all || work->notpresent_injected) &&
12567 	    kvm_pv_async_pf_enabled(vcpu) &&
12568 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12569 		vcpu->arch.apf.pageready_pending = true;
12570 		kvm_apic_set_irq(vcpu, &irq, NULL);
12571 	}
12572 
12573 	vcpu->arch.apf.halted = false;
12574 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12575 }
12576 
12577 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12578 {
12579 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12580 	if (!vcpu->arch.apf.pageready_pending)
12581 		kvm_vcpu_kick(vcpu);
12582 }
12583 
12584 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12585 {
12586 	if (!kvm_pv_async_pf_enabled(vcpu))
12587 		return true;
12588 	else
12589 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12590 }
12591 
12592 void kvm_arch_start_assignment(struct kvm *kvm)
12593 {
12594 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12595 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12596 }
12597 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12598 
12599 void kvm_arch_end_assignment(struct kvm *kvm)
12600 {
12601 	atomic_dec(&kvm->arch.assigned_device_count);
12602 }
12603 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12604 
12605 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12606 {
12607 	return atomic_read(&kvm->arch.assigned_device_count);
12608 }
12609 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12610 
12611 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12612 {
12613 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12614 }
12615 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12616 
12617 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12618 {
12619 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12620 }
12621 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12622 
12623 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12624 {
12625 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12626 }
12627 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12628 
12629 bool kvm_arch_has_irq_bypass(void)
12630 {
12631 	return true;
12632 }
12633 
12634 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12635 				      struct irq_bypass_producer *prod)
12636 {
12637 	struct kvm_kernel_irqfd *irqfd =
12638 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12639 	int ret;
12640 
12641 	irqfd->producer = prod;
12642 	kvm_arch_start_assignment(irqfd->kvm);
12643 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12644 					 prod->irq, irqfd->gsi, 1);
12645 
12646 	if (ret)
12647 		kvm_arch_end_assignment(irqfd->kvm);
12648 
12649 	return ret;
12650 }
12651 
12652 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12653 				      struct irq_bypass_producer *prod)
12654 {
12655 	int ret;
12656 	struct kvm_kernel_irqfd *irqfd =
12657 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12658 
12659 	WARN_ON(irqfd->producer != prod);
12660 	irqfd->producer = NULL;
12661 
12662 	/*
12663 	 * When producer of consumer is unregistered, we change back to
12664 	 * remapped mode, so we can re-use the current implementation
12665 	 * when the irq is masked/disabled or the consumer side (KVM
12666 	 * int this case doesn't want to receive the interrupts.
12667 	*/
12668 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12669 	if (ret)
12670 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12671 		       " fails: %d\n", irqfd->consumer.token, ret);
12672 
12673 	kvm_arch_end_assignment(irqfd->kvm);
12674 }
12675 
12676 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12677 				   uint32_t guest_irq, bool set)
12678 {
12679 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12680 }
12681 
12682 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12683 				  struct kvm_kernel_irq_routing_entry *new)
12684 {
12685 	if (new->type != KVM_IRQ_ROUTING_MSI)
12686 		return true;
12687 
12688 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12689 }
12690 
12691 bool kvm_vector_hashing_enabled(void)
12692 {
12693 	return vector_hashing;
12694 }
12695 
12696 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12697 {
12698 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12699 }
12700 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12701 
12702 
12703 int kvm_spec_ctrl_test_value(u64 value)
12704 {
12705 	/*
12706 	 * test that setting IA32_SPEC_CTRL to given value
12707 	 * is allowed by the host processor
12708 	 */
12709 
12710 	u64 saved_value;
12711 	unsigned long flags;
12712 	int ret = 0;
12713 
12714 	local_irq_save(flags);
12715 
12716 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12717 		ret = 1;
12718 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12719 		ret = 1;
12720 	else
12721 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12722 
12723 	local_irq_restore(flags);
12724 
12725 	return ret;
12726 }
12727 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12728 
12729 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12730 {
12731 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12732 	struct x86_exception fault;
12733 	u64 access = error_code &
12734 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12735 
12736 	if (!(error_code & PFERR_PRESENT_MASK) ||
12737 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12738 		/*
12739 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12740 		 * tables probably do not match the TLB.  Just proceed
12741 		 * with the error code that the processor gave.
12742 		 */
12743 		fault.vector = PF_VECTOR;
12744 		fault.error_code_valid = true;
12745 		fault.error_code = error_code;
12746 		fault.nested_page_fault = false;
12747 		fault.address = gva;
12748 	}
12749 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12750 }
12751 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12752 
12753 /*
12754  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12755  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12756  * indicates whether exit to userspace is needed.
12757  */
12758 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12759 			      struct x86_exception *e)
12760 {
12761 	if (r == X86EMUL_PROPAGATE_FAULT) {
12762 		kvm_inject_emulated_page_fault(vcpu, e);
12763 		return 1;
12764 	}
12765 
12766 	/*
12767 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12768 	 * while handling a VMX instruction KVM could've handled the request
12769 	 * correctly by exiting to userspace and performing I/O but there
12770 	 * doesn't seem to be a real use-case behind such requests, just return
12771 	 * KVM_EXIT_INTERNAL_ERROR for now.
12772 	 */
12773 	kvm_prepare_emulation_failure_exit(vcpu);
12774 
12775 	return 0;
12776 }
12777 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12778 
12779 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12780 {
12781 	bool pcid_enabled;
12782 	struct x86_exception e;
12783 	struct {
12784 		u64 pcid;
12785 		u64 gla;
12786 	} operand;
12787 	int r;
12788 
12789 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12790 	if (r != X86EMUL_CONTINUE)
12791 		return kvm_handle_memory_failure(vcpu, r, &e);
12792 
12793 	if (operand.pcid >> 12 != 0) {
12794 		kvm_inject_gp(vcpu, 0);
12795 		return 1;
12796 	}
12797 
12798 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12799 
12800 	switch (type) {
12801 	case INVPCID_TYPE_INDIV_ADDR:
12802 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12803 		    is_noncanonical_address(operand.gla, vcpu)) {
12804 			kvm_inject_gp(vcpu, 0);
12805 			return 1;
12806 		}
12807 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12808 		return kvm_skip_emulated_instruction(vcpu);
12809 
12810 	case INVPCID_TYPE_SINGLE_CTXT:
12811 		if (!pcid_enabled && (operand.pcid != 0)) {
12812 			kvm_inject_gp(vcpu, 0);
12813 			return 1;
12814 		}
12815 
12816 		kvm_invalidate_pcid(vcpu, operand.pcid);
12817 		return kvm_skip_emulated_instruction(vcpu);
12818 
12819 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12820 		/*
12821 		 * Currently, KVM doesn't mark global entries in the shadow
12822 		 * page tables, so a non-global flush just degenerates to a
12823 		 * global flush. If needed, we could optimize this later by
12824 		 * keeping track of global entries in shadow page tables.
12825 		 */
12826 
12827 		fallthrough;
12828 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12829 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12830 		return kvm_skip_emulated_instruction(vcpu);
12831 
12832 	default:
12833 		kvm_inject_gp(vcpu, 0);
12834 		return 1;
12835 	}
12836 }
12837 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12838 
12839 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12840 {
12841 	struct kvm_run *run = vcpu->run;
12842 	struct kvm_mmio_fragment *frag;
12843 	unsigned int len;
12844 
12845 	BUG_ON(!vcpu->mmio_needed);
12846 
12847 	/* Complete previous fragment */
12848 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12849 	len = min(8u, frag->len);
12850 	if (!vcpu->mmio_is_write)
12851 		memcpy(frag->data, run->mmio.data, len);
12852 
12853 	if (frag->len <= 8) {
12854 		/* Switch to the next fragment. */
12855 		frag++;
12856 		vcpu->mmio_cur_fragment++;
12857 	} else {
12858 		/* Go forward to the next mmio piece. */
12859 		frag->data += len;
12860 		frag->gpa += len;
12861 		frag->len -= len;
12862 	}
12863 
12864 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12865 		vcpu->mmio_needed = 0;
12866 
12867 		// VMG change, at this point, we're always done
12868 		// RIP has already been advanced
12869 		return 1;
12870 	}
12871 
12872 	// More MMIO is needed
12873 	run->mmio.phys_addr = frag->gpa;
12874 	run->mmio.len = min(8u, frag->len);
12875 	run->mmio.is_write = vcpu->mmio_is_write;
12876 	if (run->mmio.is_write)
12877 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12878 	run->exit_reason = KVM_EXIT_MMIO;
12879 
12880 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12881 
12882 	return 0;
12883 }
12884 
12885 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12886 			  void *data)
12887 {
12888 	int handled;
12889 	struct kvm_mmio_fragment *frag;
12890 
12891 	if (!data)
12892 		return -EINVAL;
12893 
12894 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12895 	if (handled == bytes)
12896 		return 1;
12897 
12898 	bytes -= handled;
12899 	gpa += handled;
12900 	data += handled;
12901 
12902 	/*TODO: Check if need to increment number of frags */
12903 	frag = vcpu->mmio_fragments;
12904 	vcpu->mmio_nr_fragments = 1;
12905 	frag->len = bytes;
12906 	frag->gpa = gpa;
12907 	frag->data = data;
12908 
12909 	vcpu->mmio_needed = 1;
12910 	vcpu->mmio_cur_fragment = 0;
12911 
12912 	vcpu->run->mmio.phys_addr = gpa;
12913 	vcpu->run->mmio.len = min(8u, frag->len);
12914 	vcpu->run->mmio.is_write = 1;
12915 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12916 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12917 
12918 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12919 
12920 	return 0;
12921 }
12922 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12923 
12924 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12925 			 void *data)
12926 {
12927 	int handled;
12928 	struct kvm_mmio_fragment *frag;
12929 
12930 	if (!data)
12931 		return -EINVAL;
12932 
12933 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12934 	if (handled == bytes)
12935 		return 1;
12936 
12937 	bytes -= handled;
12938 	gpa += handled;
12939 	data += handled;
12940 
12941 	/*TODO: Check if need to increment number of frags */
12942 	frag = vcpu->mmio_fragments;
12943 	vcpu->mmio_nr_fragments = 1;
12944 	frag->len = bytes;
12945 	frag->gpa = gpa;
12946 	frag->data = data;
12947 
12948 	vcpu->mmio_needed = 1;
12949 	vcpu->mmio_cur_fragment = 0;
12950 
12951 	vcpu->run->mmio.phys_addr = gpa;
12952 	vcpu->run->mmio.len = min(8u, frag->len);
12953 	vcpu->run->mmio.is_write = 0;
12954 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12955 
12956 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12957 
12958 	return 0;
12959 }
12960 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12961 
12962 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12963 			   unsigned int port);
12964 
12965 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12966 {
12967 	int size = vcpu->arch.pio.size;
12968 	int port = vcpu->arch.pio.port;
12969 
12970 	vcpu->arch.pio.count = 0;
12971 	if (vcpu->arch.sev_pio_count)
12972 		return kvm_sev_es_outs(vcpu, size, port);
12973 	return 1;
12974 }
12975 
12976 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12977 			   unsigned int port)
12978 {
12979 	for (;;) {
12980 		unsigned int count =
12981 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12982 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12983 
12984 		/* memcpy done already by emulator_pio_out.  */
12985 		vcpu->arch.sev_pio_count -= count;
12986 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12987 		if (!ret)
12988 			break;
12989 
12990 		/* Emulation done by the kernel.  */
12991 		if (!vcpu->arch.sev_pio_count)
12992 			return 1;
12993 	}
12994 
12995 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12996 	return 0;
12997 }
12998 
12999 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13000 			  unsigned int port);
13001 
13002 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13003 {
13004 	unsigned count = vcpu->arch.pio.count;
13005 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13006 	vcpu->arch.sev_pio_count -= count;
13007 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13008 }
13009 
13010 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13011 {
13012 	int size = vcpu->arch.pio.size;
13013 	int port = vcpu->arch.pio.port;
13014 
13015 	advance_sev_es_emulated_ins(vcpu);
13016 	if (vcpu->arch.sev_pio_count)
13017 		return kvm_sev_es_ins(vcpu, size, port);
13018 	return 1;
13019 }
13020 
13021 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13022 			  unsigned int port)
13023 {
13024 	for (;;) {
13025 		unsigned int count =
13026 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13027 		if (!__emulator_pio_in(vcpu, size, port, count))
13028 			break;
13029 
13030 		/* Emulation done by the kernel.  */
13031 		advance_sev_es_emulated_ins(vcpu);
13032 		if (!vcpu->arch.sev_pio_count)
13033 			return 1;
13034 	}
13035 
13036 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13037 	return 0;
13038 }
13039 
13040 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13041 			 unsigned int port, void *data,  unsigned int count,
13042 			 int in)
13043 {
13044 	vcpu->arch.sev_pio_data = data;
13045 	vcpu->arch.sev_pio_count = count;
13046 	return in ? kvm_sev_es_ins(vcpu, size, port)
13047 		  : kvm_sev_es_outs(vcpu, size, port);
13048 }
13049 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13050 
13051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13052 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13053 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13054 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13055 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13079 
13080 static int __init kvm_x86_init(void)
13081 {
13082 	kvm_mmu_x86_module_init();
13083 	return 0;
13084 }
13085 module_init(kvm_x86_init);
13086 
13087 static void __exit kvm_x86_exit(void)
13088 {
13089 	/*
13090 	 * If module_init() is implemented, module_exit() must also be
13091 	 * implemented to allow module unload.
13092 	 */
13093 }
13094 module_exit(kvm_x86_exit);
13095