xref: /openbmc/linux/arch/x86/kvm/x86.c (revision c1d45424)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101 
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105 
106 #define KVM_NR_SHARED_MSRS 16
107 
108 struct kvm_shared_msrs_global {
109 	int nr;
110 	u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112 
113 struct kvm_shared_msrs {
114 	struct user_return_notifier urn;
115 	bool registered;
116 	struct kvm_shared_msr_values {
117 		u64 host;
118 		u64 curr;
119 	} values[KVM_NR_SHARED_MSRS];
120 };
121 
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124 
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
127 	{ "pf_guest", VCPU_STAT(pf_guest) },
128 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
129 	{ "invlpg", VCPU_STAT(invlpg) },
130 	{ "exits", VCPU_STAT(exits) },
131 	{ "io_exits", VCPU_STAT(io_exits) },
132 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
133 	{ "signal_exits", VCPU_STAT(signal_exits) },
134 	{ "irq_window", VCPU_STAT(irq_window_exits) },
135 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
136 	{ "halt_exits", VCPU_STAT(halt_exits) },
137 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 	{ "hypercalls", VCPU_STAT(hypercalls) },
139 	{ "request_irq", VCPU_STAT(request_irq_exits) },
140 	{ "irq_exits", VCPU_STAT(irq_exits) },
141 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
142 	{ "efer_reload", VCPU_STAT(efer_reload) },
143 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
144 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
145 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 	{ "irq_injections", VCPU_STAT(irq_injections) },
147 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
148 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
153 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
154 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
156 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 	{ "largepages", VM_STAT(lpages) },
158 	{ NULL }
159 };
160 
161 u64 __read_mostly host_xcr0;
162 
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164 
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 	int i;
168 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 		vcpu->arch.apf.gfns[i] = ~0;
170 }
171 
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 	unsigned slot;
175 	struct kvm_shared_msrs *locals
176 		= container_of(urn, struct kvm_shared_msrs, urn);
177 	struct kvm_shared_msr_values *values;
178 
179 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 		values = &locals->values[slot];
181 		if (values->host != values->curr) {
182 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 			values->curr = values->host;
184 		}
185 	}
186 	locals->registered = false;
187 	user_return_notifier_unregister(urn);
188 }
189 
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 	u64 value;
193 	unsigned int cpu = smp_processor_id();
194 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195 
196 	/* only read, and nobody should modify it at this time,
197 	 * so don't need lock */
198 	if (slot >= shared_msrs_global.nr) {
199 		printk(KERN_ERR "kvm: invalid MSR slot!");
200 		return;
201 	}
202 	rdmsrl_safe(msr, &value);
203 	smsr->values[slot].host = value;
204 	smsr->values[slot].curr = value;
205 }
206 
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 	if (slot >= shared_msrs_global.nr)
210 		shared_msrs_global.nr = slot + 1;
211 	shared_msrs_global.msrs[slot] = msr;
212 	/* we need ensured the shared_msr_global have been updated */
213 	smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216 
217 static void kvm_shared_msr_cpu_online(void)
218 {
219 	unsigned i;
220 
221 	for (i = 0; i < shared_msrs_global.nr; ++i)
222 		shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224 
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 	unsigned int cpu = smp_processor_id();
228 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229 
230 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 		return;
232 	smsr->values[slot].curr = value;
233 	wrmsrl(shared_msrs_global.msrs[slot], value);
234 	if (!smsr->registered) {
235 		smsr->urn.on_user_return = kvm_on_user_return;
236 		user_return_notifier_register(&smsr->urn);
237 		smsr->registered = true;
238 	}
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241 
242 static void drop_user_return_notifiers(void *ignore)
243 {
244 	unsigned int cpu = smp_processor_id();
245 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246 
247 	if (smsr->registered)
248 		kvm_on_user_return(&smsr->urn);
249 }
250 
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 	return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256 
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 	/* TODO: reserve bits check */
260 	kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263 
264 asmlinkage void kvm_spurious_fault(void)
265 {
266 	/* Fault while not rebooting.  We want the trace. */
267 	BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270 
271 #define EXCPT_BENIGN		0
272 #define EXCPT_CONTRIBUTORY	1
273 #define EXCPT_PF		2
274 
275 static int exception_class(int vector)
276 {
277 	switch (vector) {
278 	case PF_VECTOR:
279 		return EXCPT_PF;
280 	case DE_VECTOR:
281 	case TS_VECTOR:
282 	case NP_VECTOR:
283 	case SS_VECTOR:
284 	case GP_VECTOR:
285 		return EXCPT_CONTRIBUTORY;
286 	default:
287 		break;
288 	}
289 	return EXCPT_BENIGN;
290 }
291 
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 		unsigned nr, bool has_error, u32 error_code,
294 		bool reinject)
295 {
296 	u32 prev_nr;
297 	int class1, class2;
298 
299 	kvm_make_request(KVM_REQ_EVENT, vcpu);
300 
301 	if (!vcpu->arch.exception.pending) {
302 	queue:
303 		vcpu->arch.exception.pending = true;
304 		vcpu->arch.exception.has_error_code = has_error;
305 		vcpu->arch.exception.nr = nr;
306 		vcpu->arch.exception.error_code = error_code;
307 		vcpu->arch.exception.reinject = reinject;
308 		return;
309 	}
310 
311 	/* to check exception */
312 	prev_nr = vcpu->arch.exception.nr;
313 	if (prev_nr == DF_VECTOR) {
314 		/* triple fault -> shutdown */
315 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 		return;
317 	}
318 	class1 = exception_class(prev_nr);
319 	class2 = exception_class(nr);
320 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 		/* generate double fault per SDM Table 5-5 */
323 		vcpu->arch.exception.pending = true;
324 		vcpu->arch.exception.has_error_code = true;
325 		vcpu->arch.exception.nr = DF_VECTOR;
326 		vcpu->arch.exception.error_code = 0;
327 	} else
328 		/* replace previous exception with a new one in a hope
329 		   that instruction re-execution will regenerate lost
330 		   exception */
331 		goto queue;
332 }
333 
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336 	kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339 
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342 	kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345 
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348 	if (err)
349 		kvm_inject_gp(vcpu, 0);
350 	else
351 		kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354 
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357 	++vcpu->stat.pf_guest;
358 	vcpu->arch.cr2 = fault->address;
359 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362 
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 	else
368 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370 
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373 	atomic_inc(&vcpu->arch.nmi_queued);
374 	kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377 
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383 
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389 
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 		return true;
398 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 	return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402 
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 			    gfn_t ngfn, void *data, int offset, int len,
410 			    u32 access)
411 {
412 	gfn_t real_gfn;
413 	gpa_t ngpa;
414 
415 	ngpa     = gfn_to_gpa(ngfn);
416 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 	if (real_gfn == UNMAPPED_GVA)
418 		return -EFAULT;
419 
420 	real_gfn = gpa_to_gfn(real_gfn);
421 
422 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425 
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 			       void *data, int offset, int len, u32 access)
428 {
429 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 				       data, offset, len, access);
431 }
432 
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 	int i;
441 	int ret;
442 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443 
444 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 				      offset * sizeof(u64), sizeof(pdpte),
446 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
447 	if (ret < 0) {
448 		ret = 0;
449 		goto out;
450 	}
451 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 		if (is_present_gpte(pdpte[i]) &&
453 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 			ret = 0;
455 			goto out;
456 		}
457 	}
458 	ret = 1;
459 
460 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 	__set_bit(VCPU_EXREG_PDPTR,
462 		  (unsigned long *)&vcpu->arch.regs_avail);
463 	__set_bit(VCPU_EXREG_PDPTR,
464 		  (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470 
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 	bool changed = true;
475 	int offset;
476 	gfn_t gfn;
477 	int r;
478 
479 	if (is_long_mode(vcpu) || !is_pae(vcpu))
480 		return false;
481 
482 	if (!test_bit(VCPU_EXREG_PDPTR,
483 		      (unsigned long *)&vcpu->arch.regs_avail))
484 		return true;
485 
486 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
490 	if (r < 0)
491 		goto out;
492 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494 
495 	return changed;
496 }
497 
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 				    X86_CR0_CD | X86_CR0_NW;
503 
504 	cr0 |= X86_CR0_ET;
505 
506 #ifdef CONFIG_X86_64
507 	if (cr0 & 0xffffffff00000000UL)
508 		return 1;
509 #endif
510 
511 	cr0 &= ~CR0_RESERVED_BITS;
512 
513 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 		return 1;
515 
516 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 		return 1;
518 
519 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 		if ((vcpu->arch.efer & EFER_LME)) {
522 			int cs_db, cs_l;
523 
524 			if (!is_pae(vcpu))
525 				return 1;
526 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 			if (cs_l)
528 				return 1;
529 		} else
530 #endif
531 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 						 kvm_read_cr3(vcpu)))
533 			return 1;
534 	}
535 
536 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 		return 1;
538 
539 	kvm_x86_ops->set_cr0(vcpu, cr0);
540 
541 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 		kvm_clear_async_pf_completion_queue(vcpu);
543 		kvm_async_pf_hash_reset(vcpu);
544 	}
545 
546 	if ((cr0 ^ old_cr0) & update_bits)
547 		kvm_mmu_reset_context(vcpu);
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551 
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557 
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 			!vcpu->guest_xcr0_loaded) {
562 		/* kvm_set_xcr() also depends on this */
563 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 		vcpu->guest_xcr0_loaded = 1;
565 	}
566 }
567 
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570 	if (vcpu->guest_xcr0_loaded) {
571 		if (vcpu->arch.xcr0 != host_xcr0)
572 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 		vcpu->guest_xcr0_loaded = 0;
574 	}
575 }
576 
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579 	u64 xcr0;
580 
581 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582 	if (index != XCR_XFEATURE_ENABLED_MASK)
583 		return 1;
584 	xcr0 = xcr;
585 	if (!(xcr0 & XSTATE_FP))
586 		return 1;
587 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588 		return 1;
589 	if (xcr0 & ~host_xcr0)
590 		return 1;
591 	kvm_put_guest_xcr0(vcpu);
592 	vcpu->arch.xcr0 = xcr0;
593 	return 0;
594 }
595 
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599 	    __kvm_set_xcr(vcpu, index, xcr)) {
600 		kvm_inject_gp(vcpu, 0);
601 		return 1;
602 	}
603 	return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606 
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
610 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611 				   X86_CR4_PAE | X86_CR4_SMEP;
612 	if (cr4 & CR4_RESERVED_BITS)
613 		return 1;
614 
615 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616 		return 1;
617 
618 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619 		return 1;
620 
621 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
622 		return 1;
623 
624 	if (is_long_mode(vcpu)) {
625 		if (!(cr4 & X86_CR4_PAE))
626 			return 1;
627 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628 		   && ((cr4 ^ old_cr4) & pdptr_bits)
629 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630 				   kvm_read_cr3(vcpu)))
631 		return 1;
632 
633 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634 		if (!guest_cpuid_has_pcid(vcpu))
635 			return 1;
636 
637 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639 			return 1;
640 	}
641 
642 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
643 		return 1;
644 
645 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
646 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647 		kvm_mmu_reset_context(vcpu);
648 
649 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650 		kvm_update_cpuid(vcpu);
651 
652 	return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655 
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659 		kvm_mmu_sync_roots(vcpu);
660 		kvm_mmu_flush_tlb(vcpu);
661 		return 0;
662 	}
663 
664 	if (is_long_mode(vcpu)) {
665 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667 				return 1;
668 		} else
669 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
670 				return 1;
671 	} else {
672 		if (is_pae(vcpu)) {
673 			if (cr3 & CR3_PAE_RESERVED_BITS)
674 				return 1;
675 			if (is_paging(vcpu) &&
676 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677 				return 1;
678 		}
679 		/*
680 		 * We don't check reserved bits in nonpae mode, because
681 		 * this isn't enforced, and VMware depends on this.
682 		 */
683 	}
684 
685 	/*
686 	 * Does the new cr3 value map to physical memory? (Note, we
687 	 * catch an invalid cr3 even in real-mode, because it would
688 	 * cause trouble later on when we turn on paging anyway.)
689 	 *
690 	 * A real CPU would silently accept an invalid cr3 and would
691 	 * attempt to use it - with largely undefined (and often hard
692 	 * to debug) behavior on the guest side.
693 	 */
694 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695 		return 1;
696 	vcpu->arch.cr3 = cr3;
697 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698 	vcpu->arch.mmu.new_cr3(vcpu);
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702 
703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705 	if (cr8 & CR8_RESERVED_BITS)
706 		return 1;
707 	if (irqchip_in_kernel(vcpu->kvm))
708 		kvm_lapic_set_tpr(vcpu, cr8);
709 	else
710 		vcpu->arch.cr8 = cr8;
711 	return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714 
715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717 	if (irqchip_in_kernel(vcpu->kvm))
718 		return kvm_lapic_get_cr8(vcpu);
719 	else
720 		return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723 
724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726 	unsigned long dr7;
727 
728 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729 		dr7 = vcpu->arch.guest_debug_dr7;
730 	else
731 		dr7 = vcpu->arch.dr7;
732 	kvm_x86_ops->set_dr7(vcpu, dr7);
733 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735 
736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 	switch (dr) {
739 	case 0 ... 3:
740 		vcpu->arch.db[dr] = val;
741 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742 			vcpu->arch.eff_db[dr] = val;
743 		break;
744 	case 4:
745 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746 			return 1; /* #UD */
747 		/* fall through */
748 	case 6:
749 		if (val & 0xffffffff00000000ULL)
750 			return -1; /* #GP */
751 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752 		break;
753 	case 5:
754 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755 			return 1; /* #UD */
756 		/* fall through */
757 	default: /* 7 */
758 		if (val & 0xffffffff00000000ULL)
759 			return -1; /* #GP */
760 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761 		kvm_update_dr7(vcpu);
762 		break;
763 	}
764 
765 	return 0;
766 }
767 
768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770 	int res;
771 
772 	res = __kvm_set_dr(vcpu, dr, val);
773 	if (res > 0)
774 		kvm_queue_exception(vcpu, UD_VECTOR);
775 	else if (res < 0)
776 		kvm_inject_gp(vcpu, 0);
777 
778 	return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781 
782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784 	switch (dr) {
785 	case 0 ... 3:
786 		*val = vcpu->arch.db[dr];
787 		break;
788 	case 4:
789 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790 			return 1;
791 		/* fall through */
792 	case 6:
793 		*val = vcpu->arch.dr6;
794 		break;
795 	case 5:
796 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797 			return 1;
798 		/* fall through */
799 	default: /* 7 */
800 		*val = vcpu->arch.dr7;
801 		break;
802 	}
803 
804 	return 0;
805 }
806 
807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809 	if (_kvm_get_dr(vcpu, dr, val)) {
810 		kvm_queue_exception(vcpu, UD_VECTOR);
811 		return 1;
812 	}
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816 
817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820 	u64 data;
821 	int err;
822 
823 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824 	if (err)
825 		return err;
826 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828 	return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831 
832 /*
833  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835  *
836  * This list is modified at module load time to reflect the
837  * capabilities of the host cpu. This capabilities test skips MSRs that are
838  * kvm-specific. Those are put in the beginning of the list.
839  */
840 
841 #define KVM_SAVE_MSRS_BEGIN	10
842 static u32 msrs_to_save[] = {
843 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847 	MSR_KVM_PV_EOI_EN,
848 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849 	MSR_STAR,
850 #ifdef CONFIG_X86_64
851 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
854 };
855 
856 static unsigned num_msrs_to_save;
857 
858 static const u32 emulated_msrs[] = {
859 	MSR_IA32_TSC_ADJUST,
860 	MSR_IA32_TSCDEADLINE,
861 	MSR_IA32_MISC_ENABLE,
862 	MSR_IA32_MCG_STATUS,
863 	MSR_IA32_MCG_CTL,
864 };
865 
866 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
867 {
868 	if (efer & efer_reserved_bits)
869 		return false;
870 
871 	if (efer & EFER_FFXSR) {
872 		struct kvm_cpuid_entry2 *feat;
873 
874 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
875 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
876 			return false;
877 	}
878 
879 	if (efer & EFER_SVME) {
880 		struct kvm_cpuid_entry2 *feat;
881 
882 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
883 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
884 			return false;
885 	}
886 
887 	return true;
888 }
889 EXPORT_SYMBOL_GPL(kvm_valid_efer);
890 
891 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
892 {
893 	u64 old_efer = vcpu->arch.efer;
894 
895 	if (!kvm_valid_efer(vcpu, efer))
896 		return 1;
897 
898 	if (is_paging(vcpu)
899 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
900 		return 1;
901 
902 	efer &= ~EFER_LMA;
903 	efer |= vcpu->arch.efer & EFER_LMA;
904 
905 	kvm_x86_ops->set_efer(vcpu, efer);
906 
907 	/* Update reserved bits */
908 	if ((efer ^ old_efer) & EFER_NX)
909 		kvm_mmu_reset_context(vcpu);
910 
911 	return 0;
912 }
913 
914 void kvm_enable_efer_bits(u64 mask)
915 {
916        efer_reserved_bits &= ~mask;
917 }
918 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
919 
920 
921 /*
922  * Writes msr value into into the appropriate "register".
923  * Returns 0 on success, non-0 otherwise.
924  * Assumes vcpu_load() was already called.
925  */
926 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
927 {
928 	return kvm_x86_ops->set_msr(vcpu, msr);
929 }
930 
931 /*
932  * Adapt set_msr() to msr_io()'s calling convention
933  */
934 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
935 {
936 	struct msr_data msr;
937 
938 	msr.data = *data;
939 	msr.index = index;
940 	msr.host_initiated = true;
941 	return kvm_set_msr(vcpu, &msr);
942 }
943 
944 #ifdef CONFIG_X86_64
945 struct pvclock_gtod_data {
946 	seqcount_t	seq;
947 
948 	struct { /* extract of a clocksource struct */
949 		int vclock_mode;
950 		cycle_t	cycle_last;
951 		cycle_t	mask;
952 		u32	mult;
953 		u32	shift;
954 	} clock;
955 
956 	/* open coded 'struct timespec' */
957 	u64		monotonic_time_snsec;
958 	time_t		monotonic_time_sec;
959 };
960 
961 static struct pvclock_gtod_data pvclock_gtod_data;
962 
963 static void update_pvclock_gtod(struct timekeeper *tk)
964 {
965 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
966 
967 	write_seqcount_begin(&vdata->seq);
968 
969 	/* copy pvclock gtod data */
970 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
971 	vdata->clock.cycle_last		= tk->clock->cycle_last;
972 	vdata->clock.mask		= tk->clock->mask;
973 	vdata->clock.mult		= tk->mult;
974 	vdata->clock.shift		= tk->shift;
975 
976 	vdata->monotonic_time_sec	= tk->xtime_sec
977 					+ tk->wall_to_monotonic.tv_sec;
978 	vdata->monotonic_time_snsec	= tk->xtime_nsec
979 					+ (tk->wall_to_monotonic.tv_nsec
980 						<< tk->shift);
981 	while (vdata->monotonic_time_snsec >=
982 					(((u64)NSEC_PER_SEC) << tk->shift)) {
983 		vdata->monotonic_time_snsec -=
984 					((u64)NSEC_PER_SEC) << tk->shift;
985 		vdata->monotonic_time_sec++;
986 	}
987 
988 	write_seqcount_end(&vdata->seq);
989 }
990 #endif
991 
992 
993 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
994 {
995 	int version;
996 	int r;
997 	struct pvclock_wall_clock wc;
998 	struct timespec boot;
999 
1000 	if (!wall_clock)
1001 		return;
1002 
1003 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004 	if (r)
1005 		return;
1006 
1007 	if (version & 1)
1008 		++version;  /* first time write, random junk */
1009 
1010 	++version;
1011 
1012 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013 
1014 	/*
1015 	 * The guest calculates current wall clock time by adding
1016 	 * system time (updated by kvm_guest_time_update below) to the
1017 	 * wall clock specified here.  guest system time equals host
1018 	 * system time for us, thus we must fill in host boot time here.
1019 	 */
1020 	getboottime(&boot);
1021 
1022 	if (kvm->arch.kvmclock_offset) {
1023 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024 		boot = timespec_sub(boot, ts);
1025 	}
1026 	wc.sec = boot.tv_sec;
1027 	wc.nsec = boot.tv_nsec;
1028 	wc.version = version;
1029 
1030 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031 
1032 	version++;
1033 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034 }
1035 
1036 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037 {
1038 	uint32_t quotient, remainder;
1039 
1040 	/* Don't try to replace with do_div(), this one calculates
1041 	 * "(dividend << 32) / divisor" */
1042 	__asm__ ( "divl %4"
1043 		  : "=a" (quotient), "=d" (remainder)
1044 		  : "0" (0), "1" (dividend), "r" (divisor) );
1045 	return quotient;
1046 }
1047 
1048 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049 			       s8 *pshift, u32 *pmultiplier)
1050 {
1051 	uint64_t scaled64;
1052 	int32_t  shift = 0;
1053 	uint64_t tps64;
1054 	uint32_t tps32;
1055 
1056 	tps64 = base_khz * 1000LL;
1057 	scaled64 = scaled_khz * 1000LL;
1058 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059 		tps64 >>= 1;
1060 		shift--;
1061 	}
1062 
1063 	tps32 = (uint32_t)tps64;
1064 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066 			scaled64 >>= 1;
1067 		else
1068 			tps32 <<= 1;
1069 		shift++;
1070 	}
1071 
1072 	*pshift = shift;
1073 	*pmultiplier = div_frac(scaled64, tps32);
1074 
1075 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077 }
1078 
1079 static inline u64 get_kernel_ns(void)
1080 {
1081 	struct timespec ts;
1082 
1083 	WARN_ON(preemptible());
1084 	ktime_get_ts(&ts);
1085 	monotonic_to_bootbased(&ts);
1086 	return timespec_to_ns(&ts);
1087 }
1088 
1089 #ifdef CONFIG_X86_64
1090 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091 #endif
1092 
1093 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094 unsigned long max_tsc_khz;
1095 
1096 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097 {
1098 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099 				   vcpu->arch.virtual_tsc_shift);
1100 }
1101 
1102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103 {
1104 	u64 v = (u64)khz * (1000000 + ppm);
1105 	do_div(v, 1000000);
1106 	return v;
1107 }
1108 
1109 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110 {
1111 	u32 thresh_lo, thresh_hi;
1112 	int use_scaling = 0;
1113 
1114 	/* tsc_khz can be zero if TSC calibration fails */
1115 	if (this_tsc_khz == 0)
1116 		return;
1117 
1118 	/* Compute a scale to convert nanoseconds in TSC cycles */
1119 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120 			   &vcpu->arch.virtual_tsc_shift,
1121 			   &vcpu->arch.virtual_tsc_mult);
1122 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123 
1124 	/*
1125 	 * Compute the variation in TSC rate which is acceptable
1126 	 * within the range of tolerance and decide if the
1127 	 * rate being applied is within that bounds of the hardware
1128 	 * rate.  If so, no scaling or compensation need be done.
1129 	 */
1130 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134 		use_scaling = 1;
1135 	}
1136 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137 }
1138 
1139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140 {
1141 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142 				      vcpu->arch.virtual_tsc_mult,
1143 				      vcpu->arch.virtual_tsc_shift);
1144 	tsc += vcpu->arch.this_tsc_write;
1145 	return tsc;
1146 }
1147 
1148 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149 {
1150 #ifdef CONFIG_X86_64
1151 	bool vcpus_matched;
1152 	bool do_request = false;
1153 	struct kvm_arch *ka = &vcpu->kvm->arch;
1154 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155 
1156 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157 			 atomic_read(&vcpu->kvm->online_vcpus));
1158 
1159 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160 		if (!ka->use_master_clock)
1161 			do_request = 1;
1162 
1163 	if (!vcpus_matched && ka->use_master_clock)
1164 			do_request = 1;
1165 
1166 	if (do_request)
1167 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168 
1169 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170 			    atomic_read(&vcpu->kvm->online_vcpus),
1171 		            ka->use_master_clock, gtod->clock.vclock_mode);
1172 #endif
1173 }
1174 
1175 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176 {
1177 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179 }
1180 
1181 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183 	struct kvm *kvm = vcpu->kvm;
1184 	u64 offset, ns, elapsed;
1185 	unsigned long flags;
1186 	s64 usdiff;
1187 	bool matched;
1188 	u64 data = msr->data;
1189 
1190 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192 	ns = get_kernel_ns();
1193 	elapsed = ns - kvm->arch.last_tsc_nsec;
1194 
1195 	if (vcpu->arch.virtual_tsc_khz) {
1196 		int faulted = 0;
1197 
1198 		/* n.b - signed multiplication and division required */
1199 		usdiff = data - kvm->arch.last_tsc_write;
1200 #ifdef CONFIG_X86_64
1201 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1202 #else
1203 		/* do_div() only does unsigned */
1204 		asm("1: idivl %[divisor]\n"
1205 		    "2: xor %%edx, %%edx\n"
1206 		    "   movl $0, %[faulted]\n"
1207 		    "3:\n"
1208 		    ".section .fixup,\"ax\"\n"
1209 		    "4: movl $1, %[faulted]\n"
1210 		    "   jmp  3b\n"
1211 		    ".previous\n"
1212 
1213 		_ASM_EXTABLE(1b, 4b)
1214 
1215 		: "=A"(usdiff), [faulted] "=r" (faulted)
1216 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1217 
1218 #endif
1219 		do_div(elapsed, 1000);
1220 		usdiff -= elapsed;
1221 		if (usdiff < 0)
1222 			usdiff = -usdiff;
1223 
1224 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1225 		if (faulted)
1226 			usdiff = USEC_PER_SEC;
1227 	} else
1228 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1229 
1230 	/*
1231 	 * Special case: TSC write with a small delta (1 second) of virtual
1232 	 * cycle time against real time is interpreted as an attempt to
1233 	 * synchronize the CPU.
1234          *
1235 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1236 	 * TSC, we add elapsed time in this computation.  We could let the
1237 	 * compensation code attempt to catch up if we fall behind, but
1238 	 * it's better to try to match offsets from the beginning.
1239          */
1240 	if (usdiff < USEC_PER_SEC &&
1241 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1242 		if (!check_tsc_unstable()) {
1243 			offset = kvm->arch.cur_tsc_offset;
1244 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1245 		} else {
1246 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1247 			data += delta;
1248 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1249 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1250 		}
1251 		matched = true;
1252 	} else {
1253 		/*
1254 		 * We split periods of matched TSC writes into generations.
1255 		 * For each generation, we track the original measured
1256 		 * nanosecond time, offset, and write, so if TSCs are in
1257 		 * sync, we can match exact offset, and if not, we can match
1258 		 * exact software computation in compute_guest_tsc()
1259 		 *
1260 		 * These values are tracked in kvm->arch.cur_xxx variables.
1261 		 */
1262 		kvm->arch.cur_tsc_generation++;
1263 		kvm->arch.cur_tsc_nsec = ns;
1264 		kvm->arch.cur_tsc_write = data;
1265 		kvm->arch.cur_tsc_offset = offset;
1266 		matched = false;
1267 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1268 			 kvm->arch.cur_tsc_generation, data);
1269 	}
1270 
1271 	/*
1272 	 * We also track th most recent recorded KHZ, write and time to
1273 	 * allow the matching interval to be extended at each write.
1274 	 */
1275 	kvm->arch.last_tsc_nsec = ns;
1276 	kvm->arch.last_tsc_write = data;
1277 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1278 
1279 	/* Reset of TSC must disable overshoot protection below */
1280 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1281 	vcpu->arch.last_guest_tsc = data;
1282 
1283 	/* Keep track of which generation this VCPU has synchronized to */
1284 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1285 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1286 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1287 
1288 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1289 		update_ia32_tsc_adjust_msr(vcpu, offset);
1290 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1291 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1292 
1293 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1294 	if (matched)
1295 		kvm->arch.nr_vcpus_matched_tsc++;
1296 	else
1297 		kvm->arch.nr_vcpus_matched_tsc = 0;
1298 
1299 	kvm_track_tsc_matching(vcpu);
1300 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1301 }
1302 
1303 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1304 
1305 #ifdef CONFIG_X86_64
1306 
1307 static cycle_t read_tsc(void)
1308 {
1309 	cycle_t ret;
1310 	u64 last;
1311 
1312 	/*
1313 	 * Empirically, a fence (of type that depends on the CPU)
1314 	 * before rdtsc is enough to ensure that rdtsc is ordered
1315 	 * with respect to loads.  The various CPU manuals are unclear
1316 	 * as to whether rdtsc can be reordered with later loads,
1317 	 * but no one has ever seen it happen.
1318 	 */
1319 	rdtsc_barrier();
1320 	ret = (cycle_t)vget_cycles();
1321 
1322 	last = pvclock_gtod_data.clock.cycle_last;
1323 
1324 	if (likely(ret >= last))
1325 		return ret;
1326 
1327 	/*
1328 	 * GCC likes to generate cmov here, but this branch is extremely
1329 	 * predictable (it's just a funciton of time and the likely is
1330 	 * very likely) and there's a data dependence, so force GCC
1331 	 * to generate a branch instead.  I don't barrier() because
1332 	 * we don't actually need a barrier, and if this function
1333 	 * ever gets inlined it will generate worse code.
1334 	 */
1335 	asm volatile ("");
1336 	return last;
1337 }
1338 
1339 static inline u64 vgettsc(cycle_t *cycle_now)
1340 {
1341 	long v;
1342 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343 
1344 	*cycle_now = read_tsc();
1345 
1346 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1347 	return v * gtod->clock.mult;
1348 }
1349 
1350 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1351 {
1352 	unsigned long seq;
1353 	u64 ns;
1354 	int mode;
1355 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1356 
1357 	ts->tv_nsec = 0;
1358 	do {
1359 		seq = read_seqcount_begin(&gtod->seq);
1360 		mode = gtod->clock.vclock_mode;
1361 		ts->tv_sec = gtod->monotonic_time_sec;
1362 		ns = gtod->monotonic_time_snsec;
1363 		ns += vgettsc(cycle_now);
1364 		ns >>= gtod->clock.shift;
1365 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1366 	timespec_add_ns(ts, ns);
1367 
1368 	return mode;
1369 }
1370 
1371 /* returns true if host is using tsc clocksource */
1372 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1373 {
1374 	struct timespec ts;
1375 
1376 	/* checked again under seqlock below */
1377 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1378 		return false;
1379 
1380 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1381 		return false;
1382 
1383 	monotonic_to_bootbased(&ts);
1384 	*kernel_ns = timespec_to_ns(&ts);
1385 
1386 	return true;
1387 }
1388 #endif
1389 
1390 /*
1391  *
1392  * Assuming a stable TSC across physical CPUS, and a stable TSC
1393  * across virtual CPUs, the following condition is possible.
1394  * Each numbered line represents an event visible to both
1395  * CPUs at the next numbered event.
1396  *
1397  * "timespecX" represents host monotonic time. "tscX" represents
1398  * RDTSC value.
1399  *
1400  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1401  *
1402  * 1.  read timespec0,tsc0
1403  * 2.					| timespec1 = timespec0 + N
1404  * 					| tsc1 = tsc0 + M
1405  * 3. transition to guest		| transition to guest
1406  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1407  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1408  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1409  *
1410  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1411  *
1412  * 	- ret0 < ret1
1413  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1414  *		...
1415  *	- 0 < N - M => M < N
1416  *
1417  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1418  * always the case (the difference between two distinct xtime instances
1419  * might be smaller then the difference between corresponding TSC reads,
1420  * when updating guest vcpus pvclock areas).
1421  *
1422  * To avoid that problem, do not allow visibility of distinct
1423  * system_timestamp/tsc_timestamp values simultaneously: use a master
1424  * copy of host monotonic time values. Update that master copy
1425  * in lockstep.
1426  *
1427  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1428  *
1429  */
1430 
1431 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1432 {
1433 #ifdef CONFIG_X86_64
1434 	struct kvm_arch *ka = &kvm->arch;
1435 	int vclock_mode;
1436 	bool host_tsc_clocksource, vcpus_matched;
1437 
1438 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1439 			atomic_read(&kvm->online_vcpus));
1440 
1441 	/*
1442 	 * If the host uses TSC clock, then passthrough TSC as stable
1443 	 * to the guest.
1444 	 */
1445 	host_tsc_clocksource = kvm_get_time_and_clockread(
1446 					&ka->master_kernel_ns,
1447 					&ka->master_cycle_now);
1448 
1449 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1450 
1451 	if (ka->use_master_clock)
1452 		atomic_set(&kvm_guest_has_master_clock, 1);
1453 
1454 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1455 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1456 					vcpus_matched);
1457 #endif
1458 }
1459 
1460 static int kvm_guest_time_update(struct kvm_vcpu *v)
1461 {
1462 	unsigned long flags, this_tsc_khz;
1463 	struct kvm_vcpu_arch *vcpu = &v->arch;
1464 	struct kvm_arch *ka = &v->kvm->arch;
1465 	s64 kernel_ns, max_kernel_ns;
1466 	u64 tsc_timestamp, host_tsc;
1467 	struct pvclock_vcpu_time_info guest_hv_clock;
1468 	u8 pvclock_flags;
1469 	bool use_master_clock;
1470 
1471 	kernel_ns = 0;
1472 	host_tsc = 0;
1473 
1474 	/*
1475 	 * If the host uses TSC clock, then passthrough TSC as stable
1476 	 * to the guest.
1477 	 */
1478 	spin_lock(&ka->pvclock_gtod_sync_lock);
1479 	use_master_clock = ka->use_master_clock;
1480 	if (use_master_clock) {
1481 		host_tsc = ka->master_cycle_now;
1482 		kernel_ns = ka->master_kernel_ns;
1483 	}
1484 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1485 
1486 	/* Keep irq disabled to prevent changes to the clock */
1487 	local_irq_save(flags);
1488 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1489 	if (unlikely(this_tsc_khz == 0)) {
1490 		local_irq_restore(flags);
1491 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1492 		return 1;
1493 	}
1494 	if (!use_master_clock) {
1495 		host_tsc = native_read_tsc();
1496 		kernel_ns = get_kernel_ns();
1497 	}
1498 
1499 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1500 
1501 	/*
1502 	 * We may have to catch up the TSC to match elapsed wall clock
1503 	 * time for two reasons, even if kvmclock is used.
1504 	 *   1) CPU could have been running below the maximum TSC rate
1505 	 *   2) Broken TSC compensation resets the base at each VCPU
1506 	 *      entry to avoid unknown leaps of TSC even when running
1507 	 *      again on the same CPU.  This may cause apparent elapsed
1508 	 *      time to disappear, and the guest to stand still or run
1509 	 *	very slowly.
1510 	 */
1511 	if (vcpu->tsc_catchup) {
1512 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1513 		if (tsc > tsc_timestamp) {
1514 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1515 			tsc_timestamp = tsc;
1516 		}
1517 	}
1518 
1519 	local_irq_restore(flags);
1520 
1521 	if (!vcpu->pv_time_enabled)
1522 		return 0;
1523 
1524 	/*
1525 	 * Time as measured by the TSC may go backwards when resetting the base
1526 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1527 	 * higher than the resolution of the other clock scales.  Thus, many
1528 	 * possible measurments of the TSC correspond to one measurement of any
1529 	 * other clock, and so a spread of values is possible.  This is not a
1530 	 * problem for the computation of the nanosecond clock; with TSC rates
1531 	 * around 1GHZ, there can only be a few cycles which correspond to one
1532 	 * nanosecond value, and any path through this code will inevitably
1533 	 * take longer than that.  However, with the kernel_ns value itself,
1534 	 * the precision may be much lower, down to HZ granularity.  If the
1535 	 * first sampling of TSC against kernel_ns ends in the low part of the
1536 	 * range, and the second in the high end of the range, we can get:
1537 	 *
1538 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1539 	 *
1540 	 * As the sampling errors potentially range in the thousands of cycles,
1541 	 * it is possible such a time value has already been observed by the
1542 	 * guest.  To protect against this, we must compute the system time as
1543 	 * observed by the guest and ensure the new system time is greater.
1544 	 */
1545 	max_kernel_ns = 0;
1546 	if (vcpu->hv_clock.tsc_timestamp) {
1547 		max_kernel_ns = vcpu->last_guest_tsc -
1548 				vcpu->hv_clock.tsc_timestamp;
1549 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1550 				    vcpu->hv_clock.tsc_to_system_mul,
1551 				    vcpu->hv_clock.tsc_shift);
1552 		max_kernel_ns += vcpu->last_kernel_ns;
1553 	}
1554 
1555 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1556 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1557 				   &vcpu->hv_clock.tsc_shift,
1558 				   &vcpu->hv_clock.tsc_to_system_mul);
1559 		vcpu->hw_tsc_khz = this_tsc_khz;
1560 	}
1561 
1562 	/* with a master <monotonic time, tsc value> tuple,
1563 	 * pvclock clock reads always increase at the (scaled) rate
1564 	 * of guest TSC - no need to deal with sampling errors.
1565 	 */
1566 	if (!use_master_clock) {
1567 		if (max_kernel_ns > kernel_ns)
1568 			kernel_ns = max_kernel_ns;
1569 	}
1570 	/* With all the info we got, fill in the values */
1571 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1572 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1573 	vcpu->last_kernel_ns = kernel_ns;
1574 	vcpu->last_guest_tsc = tsc_timestamp;
1575 
1576 	/*
1577 	 * The interface expects us to write an even number signaling that the
1578 	 * update is finished. Since the guest won't see the intermediate
1579 	 * state, we just increase by 2 at the end.
1580 	 */
1581 	vcpu->hv_clock.version += 2;
1582 
1583 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1584 		&guest_hv_clock, sizeof(guest_hv_clock))))
1585 		return 0;
1586 
1587 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1588 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1589 
1590 	if (vcpu->pvclock_set_guest_stopped_request) {
1591 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1592 		vcpu->pvclock_set_guest_stopped_request = false;
1593 	}
1594 
1595 	/* If the host uses TSC clocksource, then it is stable */
1596 	if (use_master_clock)
1597 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1598 
1599 	vcpu->hv_clock.flags = pvclock_flags;
1600 
1601 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1602 				&vcpu->hv_clock,
1603 				sizeof(vcpu->hv_clock));
1604 	return 0;
1605 }
1606 
1607 /*
1608  * kvmclock updates which are isolated to a given vcpu, such as
1609  * vcpu->cpu migration, should not allow system_timestamp from
1610  * the rest of the vcpus to remain static. Otherwise ntp frequency
1611  * correction applies to one vcpu's system_timestamp but not
1612  * the others.
1613  *
1614  * So in those cases, request a kvmclock update for all vcpus.
1615  * The worst case for a remote vcpu to update its kvmclock
1616  * is then bounded by maximum nohz sleep latency.
1617  */
1618 
1619 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1620 {
1621 	int i;
1622 	struct kvm *kvm = v->kvm;
1623 	struct kvm_vcpu *vcpu;
1624 
1625 	kvm_for_each_vcpu(i, vcpu, kvm) {
1626 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1627 		kvm_vcpu_kick(vcpu);
1628 	}
1629 }
1630 
1631 static bool msr_mtrr_valid(unsigned msr)
1632 {
1633 	switch (msr) {
1634 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1635 	case MSR_MTRRfix64K_00000:
1636 	case MSR_MTRRfix16K_80000:
1637 	case MSR_MTRRfix16K_A0000:
1638 	case MSR_MTRRfix4K_C0000:
1639 	case MSR_MTRRfix4K_C8000:
1640 	case MSR_MTRRfix4K_D0000:
1641 	case MSR_MTRRfix4K_D8000:
1642 	case MSR_MTRRfix4K_E0000:
1643 	case MSR_MTRRfix4K_E8000:
1644 	case MSR_MTRRfix4K_F0000:
1645 	case MSR_MTRRfix4K_F8000:
1646 	case MSR_MTRRdefType:
1647 	case MSR_IA32_CR_PAT:
1648 		return true;
1649 	case 0x2f8:
1650 		return true;
1651 	}
1652 	return false;
1653 }
1654 
1655 static bool valid_pat_type(unsigned t)
1656 {
1657 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1658 }
1659 
1660 static bool valid_mtrr_type(unsigned t)
1661 {
1662 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1663 }
1664 
1665 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1666 {
1667 	int i;
1668 
1669 	if (!msr_mtrr_valid(msr))
1670 		return false;
1671 
1672 	if (msr == MSR_IA32_CR_PAT) {
1673 		for (i = 0; i < 8; i++)
1674 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1675 				return false;
1676 		return true;
1677 	} else if (msr == MSR_MTRRdefType) {
1678 		if (data & ~0xcff)
1679 			return false;
1680 		return valid_mtrr_type(data & 0xff);
1681 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1682 		for (i = 0; i < 8 ; i++)
1683 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1684 				return false;
1685 		return true;
1686 	}
1687 
1688 	/* variable MTRRs */
1689 	return valid_mtrr_type(data & 0xff);
1690 }
1691 
1692 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1693 {
1694 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1695 
1696 	if (!mtrr_valid(vcpu, msr, data))
1697 		return 1;
1698 
1699 	if (msr == MSR_MTRRdefType) {
1700 		vcpu->arch.mtrr_state.def_type = data;
1701 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1702 	} else if (msr == MSR_MTRRfix64K_00000)
1703 		p[0] = data;
1704 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1705 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1706 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1707 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1708 	else if (msr == MSR_IA32_CR_PAT)
1709 		vcpu->arch.pat = data;
1710 	else {	/* Variable MTRRs */
1711 		int idx, is_mtrr_mask;
1712 		u64 *pt;
1713 
1714 		idx = (msr - 0x200) / 2;
1715 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1716 		if (!is_mtrr_mask)
1717 			pt =
1718 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1719 		else
1720 			pt =
1721 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1722 		*pt = data;
1723 	}
1724 
1725 	kvm_mmu_reset_context(vcpu);
1726 	return 0;
1727 }
1728 
1729 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1730 {
1731 	u64 mcg_cap = vcpu->arch.mcg_cap;
1732 	unsigned bank_num = mcg_cap & 0xff;
1733 
1734 	switch (msr) {
1735 	case MSR_IA32_MCG_STATUS:
1736 		vcpu->arch.mcg_status = data;
1737 		break;
1738 	case MSR_IA32_MCG_CTL:
1739 		if (!(mcg_cap & MCG_CTL_P))
1740 			return 1;
1741 		if (data != 0 && data != ~(u64)0)
1742 			return -1;
1743 		vcpu->arch.mcg_ctl = data;
1744 		break;
1745 	default:
1746 		if (msr >= MSR_IA32_MC0_CTL &&
1747 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1748 			u32 offset = msr - MSR_IA32_MC0_CTL;
1749 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1750 			 * some Linux kernels though clear bit 10 in bank 4 to
1751 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1752 			 * this to avoid an uncatched #GP in the guest
1753 			 */
1754 			if ((offset & 0x3) == 0 &&
1755 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1756 				return -1;
1757 			vcpu->arch.mce_banks[offset] = data;
1758 			break;
1759 		}
1760 		return 1;
1761 	}
1762 	return 0;
1763 }
1764 
1765 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1766 {
1767 	struct kvm *kvm = vcpu->kvm;
1768 	int lm = is_long_mode(vcpu);
1769 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1770 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1771 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1772 		: kvm->arch.xen_hvm_config.blob_size_32;
1773 	u32 page_num = data & ~PAGE_MASK;
1774 	u64 page_addr = data & PAGE_MASK;
1775 	u8 *page;
1776 	int r;
1777 
1778 	r = -E2BIG;
1779 	if (page_num >= blob_size)
1780 		goto out;
1781 	r = -ENOMEM;
1782 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1783 	if (IS_ERR(page)) {
1784 		r = PTR_ERR(page);
1785 		goto out;
1786 	}
1787 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1788 		goto out_free;
1789 	r = 0;
1790 out_free:
1791 	kfree(page);
1792 out:
1793 	return r;
1794 }
1795 
1796 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1797 {
1798 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1799 }
1800 
1801 static bool kvm_hv_msr_partition_wide(u32 msr)
1802 {
1803 	bool r = false;
1804 	switch (msr) {
1805 	case HV_X64_MSR_GUEST_OS_ID:
1806 	case HV_X64_MSR_HYPERCALL:
1807 		r = true;
1808 		break;
1809 	}
1810 
1811 	return r;
1812 }
1813 
1814 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1815 {
1816 	struct kvm *kvm = vcpu->kvm;
1817 
1818 	switch (msr) {
1819 	case HV_X64_MSR_GUEST_OS_ID:
1820 		kvm->arch.hv_guest_os_id = data;
1821 		/* setting guest os id to zero disables hypercall page */
1822 		if (!kvm->arch.hv_guest_os_id)
1823 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1824 		break;
1825 	case HV_X64_MSR_HYPERCALL: {
1826 		u64 gfn;
1827 		unsigned long addr;
1828 		u8 instructions[4];
1829 
1830 		/* if guest os id is not set hypercall should remain disabled */
1831 		if (!kvm->arch.hv_guest_os_id)
1832 			break;
1833 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1834 			kvm->arch.hv_hypercall = data;
1835 			break;
1836 		}
1837 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1838 		addr = gfn_to_hva(kvm, gfn);
1839 		if (kvm_is_error_hva(addr))
1840 			return 1;
1841 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1842 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1843 		if (__copy_to_user((void __user *)addr, instructions, 4))
1844 			return 1;
1845 		kvm->arch.hv_hypercall = data;
1846 		break;
1847 	}
1848 	default:
1849 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1850 			    "data 0x%llx\n", msr, data);
1851 		return 1;
1852 	}
1853 	return 0;
1854 }
1855 
1856 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1857 {
1858 	switch (msr) {
1859 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1860 		unsigned long addr;
1861 
1862 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1863 			vcpu->arch.hv_vapic = data;
1864 			break;
1865 		}
1866 		addr = gfn_to_hva(vcpu->kvm, data >>
1867 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1868 		if (kvm_is_error_hva(addr))
1869 			return 1;
1870 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1871 			return 1;
1872 		vcpu->arch.hv_vapic = data;
1873 		break;
1874 	}
1875 	case HV_X64_MSR_EOI:
1876 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1877 	case HV_X64_MSR_ICR:
1878 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1879 	case HV_X64_MSR_TPR:
1880 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1881 	default:
1882 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1883 			    "data 0x%llx\n", msr, data);
1884 		return 1;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1891 {
1892 	gpa_t gpa = data & ~0x3f;
1893 
1894 	/* Bits 2:5 are reserved, Should be zero */
1895 	if (data & 0x3c)
1896 		return 1;
1897 
1898 	vcpu->arch.apf.msr_val = data;
1899 
1900 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1901 		kvm_clear_async_pf_completion_queue(vcpu);
1902 		kvm_async_pf_hash_reset(vcpu);
1903 		return 0;
1904 	}
1905 
1906 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1907 					sizeof(u32)))
1908 		return 1;
1909 
1910 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1911 	kvm_async_pf_wakeup_all(vcpu);
1912 	return 0;
1913 }
1914 
1915 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1916 {
1917 	vcpu->arch.pv_time_enabled = false;
1918 }
1919 
1920 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1921 {
1922 	u64 delta;
1923 
1924 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1925 		return;
1926 
1927 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1928 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1929 	vcpu->arch.st.accum_steal = delta;
1930 }
1931 
1932 static void record_steal_time(struct kvm_vcpu *vcpu)
1933 {
1934 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1935 		return;
1936 
1937 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1938 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1939 		return;
1940 
1941 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1942 	vcpu->arch.st.steal.version += 2;
1943 	vcpu->arch.st.accum_steal = 0;
1944 
1945 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1946 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1947 }
1948 
1949 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1950 {
1951 	bool pr = false;
1952 	u32 msr = msr_info->index;
1953 	u64 data = msr_info->data;
1954 
1955 	switch (msr) {
1956 	case MSR_AMD64_NB_CFG:
1957 	case MSR_IA32_UCODE_REV:
1958 	case MSR_IA32_UCODE_WRITE:
1959 	case MSR_VM_HSAVE_PA:
1960 	case MSR_AMD64_PATCH_LOADER:
1961 	case MSR_AMD64_BU_CFG2:
1962 		break;
1963 
1964 	case MSR_EFER:
1965 		return set_efer(vcpu, data);
1966 	case MSR_K7_HWCR:
1967 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1968 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1969 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1970 		if (data != 0) {
1971 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1972 				    data);
1973 			return 1;
1974 		}
1975 		break;
1976 	case MSR_FAM10H_MMIO_CONF_BASE:
1977 		if (data != 0) {
1978 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1979 				    "0x%llx\n", data);
1980 			return 1;
1981 		}
1982 		break;
1983 	case MSR_IA32_DEBUGCTLMSR:
1984 		if (!data) {
1985 			/* We support the non-activated case already */
1986 			break;
1987 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1988 			/* Values other than LBR and BTF are vendor-specific,
1989 			   thus reserved and should throw a #GP */
1990 			return 1;
1991 		}
1992 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1993 			    __func__, data);
1994 		break;
1995 	case 0x200 ... 0x2ff:
1996 		return set_msr_mtrr(vcpu, msr, data);
1997 	case MSR_IA32_APICBASE:
1998 		kvm_set_apic_base(vcpu, data);
1999 		break;
2000 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2001 		return kvm_x2apic_msr_write(vcpu, msr, data);
2002 	case MSR_IA32_TSCDEADLINE:
2003 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2004 		break;
2005 	case MSR_IA32_TSC_ADJUST:
2006 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2007 			if (!msr_info->host_initiated) {
2008 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2009 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2010 			}
2011 			vcpu->arch.ia32_tsc_adjust_msr = data;
2012 		}
2013 		break;
2014 	case MSR_IA32_MISC_ENABLE:
2015 		vcpu->arch.ia32_misc_enable_msr = data;
2016 		break;
2017 	case MSR_KVM_WALL_CLOCK_NEW:
2018 	case MSR_KVM_WALL_CLOCK:
2019 		vcpu->kvm->arch.wall_clock = data;
2020 		kvm_write_wall_clock(vcpu->kvm, data);
2021 		break;
2022 	case MSR_KVM_SYSTEM_TIME_NEW:
2023 	case MSR_KVM_SYSTEM_TIME: {
2024 		u64 gpa_offset;
2025 		kvmclock_reset(vcpu);
2026 
2027 		vcpu->arch.time = data;
2028 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2029 
2030 		/* we verify if the enable bit is set... */
2031 		if (!(data & 1))
2032 			break;
2033 
2034 		gpa_offset = data & ~(PAGE_MASK | 1);
2035 
2036 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2037 		     &vcpu->arch.pv_time, data & ~1ULL,
2038 		     sizeof(struct pvclock_vcpu_time_info)))
2039 			vcpu->arch.pv_time_enabled = false;
2040 		else
2041 			vcpu->arch.pv_time_enabled = true;
2042 
2043 		break;
2044 	}
2045 	case MSR_KVM_ASYNC_PF_EN:
2046 		if (kvm_pv_enable_async_pf(vcpu, data))
2047 			return 1;
2048 		break;
2049 	case MSR_KVM_STEAL_TIME:
2050 
2051 		if (unlikely(!sched_info_on()))
2052 			return 1;
2053 
2054 		if (data & KVM_STEAL_RESERVED_MASK)
2055 			return 1;
2056 
2057 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2058 						data & KVM_STEAL_VALID_BITS,
2059 						sizeof(struct kvm_steal_time)))
2060 			return 1;
2061 
2062 		vcpu->arch.st.msr_val = data;
2063 
2064 		if (!(data & KVM_MSR_ENABLED))
2065 			break;
2066 
2067 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2068 
2069 		preempt_disable();
2070 		accumulate_steal_time(vcpu);
2071 		preempt_enable();
2072 
2073 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2074 
2075 		break;
2076 	case MSR_KVM_PV_EOI_EN:
2077 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2078 			return 1;
2079 		break;
2080 
2081 	case MSR_IA32_MCG_CTL:
2082 	case MSR_IA32_MCG_STATUS:
2083 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2084 		return set_msr_mce(vcpu, msr, data);
2085 
2086 	/* Performance counters are not protected by a CPUID bit,
2087 	 * so we should check all of them in the generic path for the sake of
2088 	 * cross vendor migration.
2089 	 * Writing a zero into the event select MSRs disables them,
2090 	 * which we perfectly emulate ;-). Any other value should be at least
2091 	 * reported, some guests depend on them.
2092 	 */
2093 	case MSR_K7_EVNTSEL0:
2094 	case MSR_K7_EVNTSEL1:
2095 	case MSR_K7_EVNTSEL2:
2096 	case MSR_K7_EVNTSEL3:
2097 		if (data != 0)
2098 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2099 				    "0x%x data 0x%llx\n", msr, data);
2100 		break;
2101 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2102 	 * so we ignore writes to make it happy.
2103 	 */
2104 	case MSR_K7_PERFCTR0:
2105 	case MSR_K7_PERFCTR1:
2106 	case MSR_K7_PERFCTR2:
2107 	case MSR_K7_PERFCTR3:
2108 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2109 			    "0x%x data 0x%llx\n", msr, data);
2110 		break;
2111 	case MSR_P6_PERFCTR0:
2112 	case MSR_P6_PERFCTR1:
2113 		pr = true;
2114 	case MSR_P6_EVNTSEL0:
2115 	case MSR_P6_EVNTSEL1:
2116 		if (kvm_pmu_msr(vcpu, msr))
2117 			return kvm_pmu_set_msr(vcpu, msr_info);
2118 
2119 		if (pr || data != 0)
2120 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2121 				    "0x%x data 0x%llx\n", msr, data);
2122 		break;
2123 	case MSR_K7_CLK_CTL:
2124 		/*
2125 		 * Ignore all writes to this no longer documented MSR.
2126 		 * Writes are only relevant for old K7 processors,
2127 		 * all pre-dating SVM, but a recommended workaround from
2128 		 * AMD for these chips. It is possible to specify the
2129 		 * affected processor models on the command line, hence
2130 		 * the need to ignore the workaround.
2131 		 */
2132 		break;
2133 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2134 		if (kvm_hv_msr_partition_wide(msr)) {
2135 			int r;
2136 			mutex_lock(&vcpu->kvm->lock);
2137 			r = set_msr_hyperv_pw(vcpu, msr, data);
2138 			mutex_unlock(&vcpu->kvm->lock);
2139 			return r;
2140 		} else
2141 			return set_msr_hyperv(vcpu, msr, data);
2142 		break;
2143 	case MSR_IA32_BBL_CR_CTL3:
2144 		/* Drop writes to this legacy MSR -- see rdmsr
2145 		 * counterpart for further detail.
2146 		 */
2147 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2148 		break;
2149 	case MSR_AMD64_OSVW_ID_LENGTH:
2150 		if (!guest_cpuid_has_osvw(vcpu))
2151 			return 1;
2152 		vcpu->arch.osvw.length = data;
2153 		break;
2154 	case MSR_AMD64_OSVW_STATUS:
2155 		if (!guest_cpuid_has_osvw(vcpu))
2156 			return 1;
2157 		vcpu->arch.osvw.status = data;
2158 		break;
2159 	default:
2160 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2161 			return xen_hvm_config(vcpu, data);
2162 		if (kvm_pmu_msr(vcpu, msr))
2163 			return kvm_pmu_set_msr(vcpu, msr_info);
2164 		if (!ignore_msrs) {
2165 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2166 				    msr, data);
2167 			return 1;
2168 		} else {
2169 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2170 				    msr, data);
2171 			break;
2172 		}
2173 	}
2174 	return 0;
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2177 
2178 
2179 /*
2180  * Reads an msr value (of 'msr_index') into 'pdata'.
2181  * Returns 0 on success, non-0 otherwise.
2182  * Assumes vcpu_load() was already called.
2183  */
2184 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2185 {
2186 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2187 }
2188 
2189 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2190 {
2191 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2192 
2193 	if (!msr_mtrr_valid(msr))
2194 		return 1;
2195 
2196 	if (msr == MSR_MTRRdefType)
2197 		*pdata = vcpu->arch.mtrr_state.def_type +
2198 			 (vcpu->arch.mtrr_state.enabled << 10);
2199 	else if (msr == MSR_MTRRfix64K_00000)
2200 		*pdata = p[0];
2201 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2202 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2203 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2204 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2205 	else if (msr == MSR_IA32_CR_PAT)
2206 		*pdata = vcpu->arch.pat;
2207 	else {	/* Variable MTRRs */
2208 		int idx, is_mtrr_mask;
2209 		u64 *pt;
2210 
2211 		idx = (msr - 0x200) / 2;
2212 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2213 		if (!is_mtrr_mask)
2214 			pt =
2215 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2216 		else
2217 			pt =
2218 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2219 		*pdata = *pt;
2220 	}
2221 
2222 	return 0;
2223 }
2224 
2225 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2226 {
2227 	u64 data;
2228 	u64 mcg_cap = vcpu->arch.mcg_cap;
2229 	unsigned bank_num = mcg_cap & 0xff;
2230 
2231 	switch (msr) {
2232 	case MSR_IA32_P5_MC_ADDR:
2233 	case MSR_IA32_P5_MC_TYPE:
2234 		data = 0;
2235 		break;
2236 	case MSR_IA32_MCG_CAP:
2237 		data = vcpu->arch.mcg_cap;
2238 		break;
2239 	case MSR_IA32_MCG_CTL:
2240 		if (!(mcg_cap & MCG_CTL_P))
2241 			return 1;
2242 		data = vcpu->arch.mcg_ctl;
2243 		break;
2244 	case MSR_IA32_MCG_STATUS:
2245 		data = vcpu->arch.mcg_status;
2246 		break;
2247 	default:
2248 		if (msr >= MSR_IA32_MC0_CTL &&
2249 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2250 			u32 offset = msr - MSR_IA32_MC0_CTL;
2251 			data = vcpu->arch.mce_banks[offset];
2252 			break;
2253 		}
2254 		return 1;
2255 	}
2256 	*pdata = data;
2257 	return 0;
2258 }
2259 
2260 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2261 {
2262 	u64 data = 0;
2263 	struct kvm *kvm = vcpu->kvm;
2264 
2265 	switch (msr) {
2266 	case HV_X64_MSR_GUEST_OS_ID:
2267 		data = kvm->arch.hv_guest_os_id;
2268 		break;
2269 	case HV_X64_MSR_HYPERCALL:
2270 		data = kvm->arch.hv_hypercall;
2271 		break;
2272 	default:
2273 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2274 		return 1;
2275 	}
2276 
2277 	*pdata = data;
2278 	return 0;
2279 }
2280 
2281 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2282 {
2283 	u64 data = 0;
2284 
2285 	switch (msr) {
2286 	case HV_X64_MSR_VP_INDEX: {
2287 		int r;
2288 		struct kvm_vcpu *v;
2289 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2290 			if (v == vcpu)
2291 				data = r;
2292 		break;
2293 	}
2294 	case HV_X64_MSR_EOI:
2295 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2296 	case HV_X64_MSR_ICR:
2297 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2298 	case HV_X64_MSR_TPR:
2299 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2300 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2301 		data = vcpu->arch.hv_vapic;
2302 		break;
2303 	default:
2304 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2305 		return 1;
2306 	}
2307 	*pdata = data;
2308 	return 0;
2309 }
2310 
2311 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2312 {
2313 	u64 data;
2314 
2315 	switch (msr) {
2316 	case MSR_IA32_PLATFORM_ID:
2317 	case MSR_IA32_EBL_CR_POWERON:
2318 	case MSR_IA32_DEBUGCTLMSR:
2319 	case MSR_IA32_LASTBRANCHFROMIP:
2320 	case MSR_IA32_LASTBRANCHTOIP:
2321 	case MSR_IA32_LASTINTFROMIP:
2322 	case MSR_IA32_LASTINTTOIP:
2323 	case MSR_K8_SYSCFG:
2324 	case MSR_K7_HWCR:
2325 	case MSR_VM_HSAVE_PA:
2326 	case MSR_K7_EVNTSEL0:
2327 	case MSR_K7_PERFCTR0:
2328 	case MSR_K8_INT_PENDING_MSG:
2329 	case MSR_AMD64_NB_CFG:
2330 	case MSR_FAM10H_MMIO_CONF_BASE:
2331 	case MSR_AMD64_BU_CFG2:
2332 		data = 0;
2333 		break;
2334 	case MSR_P6_PERFCTR0:
2335 	case MSR_P6_PERFCTR1:
2336 	case MSR_P6_EVNTSEL0:
2337 	case MSR_P6_EVNTSEL1:
2338 		if (kvm_pmu_msr(vcpu, msr))
2339 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2340 		data = 0;
2341 		break;
2342 	case MSR_IA32_UCODE_REV:
2343 		data = 0x100000000ULL;
2344 		break;
2345 	case MSR_MTRRcap:
2346 		data = 0x500 | KVM_NR_VAR_MTRR;
2347 		break;
2348 	case 0x200 ... 0x2ff:
2349 		return get_msr_mtrr(vcpu, msr, pdata);
2350 	case 0xcd: /* fsb frequency */
2351 		data = 3;
2352 		break;
2353 		/*
2354 		 * MSR_EBC_FREQUENCY_ID
2355 		 * Conservative value valid for even the basic CPU models.
2356 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2357 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2358 		 * and 266MHz for model 3, or 4. Set Core Clock
2359 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2360 		 * 31:24) even though these are only valid for CPU
2361 		 * models > 2, however guests may end up dividing or
2362 		 * multiplying by zero otherwise.
2363 		 */
2364 	case MSR_EBC_FREQUENCY_ID:
2365 		data = 1 << 24;
2366 		break;
2367 	case MSR_IA32_APICBASE:
2368 		data = kvm_get_apic_base(vcpu);
2369 		break;
2370 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2371 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2372 		break;
2373 	case MSR_IA32_TSCDEADLINE:
2374 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2375 		break;
2376 	case MSR_IA32_TSC_ADJUST:
2377 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2378 		break;
2379 	case MSR_IA32_MISC_ENABLE:
2380 		data = vcpu->arch.ia32_misc_enable_msr;
2381 		break;
2382 	case MSR_IA32_PERF_STATUS:
2383 		/* TSC increment by tick */
2384 		data = 1000ULL;
2385 		/* CPU multiplier */
2386 		data |= (((uint64_t)4ULL) << 40);
2387 		break;
2388 	case MSR_EFER:
2389 		data = vcpu->arch.efer;
2390 		break;
2391 	case MSR_KVM_WALL_CLOCK:
2392 	case MSR_KVM_WALL_CLOCK_NEW:
2393 		data = vcpu->kvm->arch.wall_clock;
2394 		break;
2395 	case MSR_KVM_SYSTEM_TIME:
2396 	case MSR_KVM_SYSTEM_TIME_NEW:
2397 		data = vcpu->arch.time;
2398 		break;
2399 	case MSR_KVM_ASYNC_PF_EN:
2400 		data = vcpu->arch.apf.msr_val;
2401 		break;
2402 	case MSR_KVM_STEAL_TIME:
2403 		data = vcpu->arch.st.msr_val;
2404 		break;
2405 	case MSR_KVM_PV_EOI_EN:
2406 		data = vcpu->arch.pv_eoi.msr_val;
2407 		break;
2408 	case MSR_IA32_P5_MC_ADDR:
2409 	case MSR_IA32_P5_MC_TYPE:
2410 	case MSR_IA32_MCG_CAP:
2411 	case MSR_IA32_MCG_CTL:
2412 	case MSR_IA32_MCG_STATUS:
2413 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2414 		return get_msr_mce(vcpu, msr, pdata);
2415 	case MSR_K7_CLK_CTL:
2416 		/*
2417 		 * Provide expected ramp-up count for K7. All other
2418 		 * are set to zero, indicating minimum divisors for
2419 		 * every field.
2420 		 *
2421 		 * This prevents guest kernels on AMD host with CPU
2422 		 * type 6, model 8 and higher from exploding due to
2423 		 * the rdmsr failing.
2424 		 */
2425 		data = 0x20000000;
2426 		break;
2427 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2428 		if (kvm_hv_msr_partition_wide(msr)) {
2429 			int r;
2430 			mutex_lock(&vcpu->kvm->lock);
2431 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2432 			mutex_unlock(&vcpu->kvm->lock);
2433 			return r;
2434 		} else
2435 			return get_msr_hyperv(vcpu, msr, pdata);
2436 		break;
2437 	case MSR_IA32_BBL_CR_CTL3:
2438 		/* This legacy MSR exists but isn't fully documented in current
2439 		 * silicon.  It is however accessed by winxp in very narrow
2440 		 * scenarios where it sets bit #19, itself documented as
2441 		 * a "reserved" bit.  Best effort attempt to source coherent
2442 		 * read data here should the balance of the register be
2443 		 * interpreted by the guest:
2444 		 *
2445 		 * L2 cache control register 3: 64GB range, 256KB size,
2446 		 * enabled, latency 0x1, configured
2447 		 */
2448 		data = 0xbe702111;
2449 		break;
2450 	case MSR_AMD64_OSVW_ID_LENGTH:
2451 		if (!guest_cpuid_has_osvw(vcpu))
2452 			return 1;
2453 		data = vcpu->arch.osvw.length;
2454 		break;
2455 	case MSR_AMD64_OSVW_STATUS:
2456 		if (!guest_cpuid_has_osvw(vcpu))
2457 			return 1;
2458 		data = vcpu->arch.osvw.status;
2459 		break;
2460 	default:
2461 		if (kvm_pmu_msr(vcpu, msr))
2462 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2463 		if (!ignore_msrs) {
2464 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2465 			return 1;
2466 		} else {
2467 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2468 			data = 0;
2469 		}
2470 		break;
2471 	}
2472 	*pdata = data;
2473 	return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2476 
2477 /*
2478  * Read or write a bunch of msrs. All parameters are kernel addresses.
2479  *
2480  * @return number of msrs set successfully.
2481  */
2482 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2483 		    struct kvm_msr_entry *entries,
2484 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2485 				  unsigned index, u64 *data))
2486 {
2487 	int i, idx;
2488 
2489 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2490 	for (i = 0; i < msrs->nmsrs; ++i)
2491 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2492 			break;
2493 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2494 
2495 	return i;
2496 }
2497 
2498 /*
2499  * Read or write a bunch of msrs. Parameters are user addresses.
2500  *
2501  * @return number of msrs set successfully.
2502  */
2503 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2504 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2505 				unsigned index, u64 *data),
2506 		  int writeback)
2507 {
2508 	struct kvm_msrs msrs;
2509 	struct kvm_msr_entry *entries;
2510 	int r, n;
2511 	unsigned size;
2512 
2513 	r = -EFAULT;
2514 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2515 		goto out;
2516 
2517 	r = -E2BIG;
2518 	if (msrs.nmsrs >= MAX_IO_MSRS)
2519 		goto out;
2520 
2521 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2522 	entries = memdup_user(user_msrs->entries, size);
2523 	if (IS_ERR(entries)) {
2524 		r = PTR_ERR(entries);
2525 		goto out;
2526 	}
2527 
2528 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2529 	if (r < 0)
2530 		goto out_free;
2531 
2532 	r = -EFAULT;
2533 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2534 		goto out_free;
2535 
2536 	r = n;
2537 
2538 out_free:
2539 	kfree(entries);
2540 out:
2541 	return r;
2542 }
2543 
2544 int kvm_dev_ioctl_check_extension(long ext)
2545 {
2546 	int r;
2547 
2548 	switch (ext) {
2549 	case KVM_CAP_IRQCHIP:
2550 	case KVM_CAP_HLT:
2551 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2552 	case KVM_CAP_SET_TSS_ADDR:
2553 	case KVM_CAP_EXT_CPUID:
2554 	case KVM_CAP_CLOCKSOURCE:
2555 	case KVM_CAP_PIT:
2556 	case KVM_CAP_NOP_IO_DELAY:
2557 	case KVM_CAP_MP_STATE:
2558 	case KVM_CAP_SYNC_MMU:
2559 	case KVM_CAP_USER_NMI:
2560 	case KVM_CAP_REINJECT_CONTROL:
2561 	case KVM_CAP_IRQ_INJECT_STATUS:
2562 	case KVM_CAP_IRQFD:
2563 	case KVM_CAP_IOEVENTFD:
2564 	case KVM_CAP_PIT2:
2565 	case KVM_CAP_PIT_STATE2:
2566 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2567 	case KVM_CAP_XEN_HVM:
2568 	case KVM_CAP_ADJUST_CLOCK:
2569 	case KVM_CAP_VCPU_EVENTS:
2570 	case KVM_CAP_HYPERV:
2571 	case KVM_CAP_HYPERV_VAPIC:
2572 	case KVM_CAP_HYPERV_SPIN:
2573 	case KVM_CAP_PCI_SEGMENT:
2574 	case KVM_CAP_DEBUGREGS:
2575 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2576 	case KVM_CAP_XSAVE:
2577 	case KVM_CAP_ASYNC_PF:
2578 	case KVM_CAP_GET_TSC_KHZ:
2579 	case KVM_CAP_KVMCLOCK_CTRL:
2580 	case KVM_CAP_READONLY_MEM:
2581 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2582 	case KVM_CAP_ASSIGN_DEV_IRQ:
2583 	case KVM_CAP_PCI_2_3:
2584 #endif
2585 		r = 1;
2586 		break;
2587 	case KVM_CAP_COALESCED_MMIO:
2588 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589 		break;
2590 	case KVM_CAP_VAPIC:
2591 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592 		break;
2593 	case KVM_CAP_NR_VCPUS:
2594 		r = KVM_SOFT_MAX_VCPUS;
2595 		break;
2596 	case KVM_CAP_MAX_VCPUS:
2597 		r = KVM_MAX_VCPUS;
2598 		break;
2599 	case KVM_CAP_NR_MEMSLOTS:
2600 		r = KVM_USER_MEM_SLOTS;
2601 		break;
2602 	case KVM_CAP_PV_MMU:	/* obsolete */
2603 		r = 0;
2604 		break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606 	case KVM_CAP_IOMMU:
2607 		r = iommu_present(&pci_bus_type);
2608 		break;
2609 #endif
2610 	case KVM_CAP_MCE:
2611 		r = KVM_MAX_MCE_BANKS;
2612 		break;
2613 	case KVM_CAP_XCRS:
2614 		r = cpu_has_xsave;
2615 		break;
2616 	case KVM_CAP_TSC_CONTROL:
2617 		r = kvm_has_tsc_control;
2618 		break;
2619 	case KVM_CAP_TSC_DEADLINE_TIMER:
2620 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2621 		break;
2622 	default:
2623 		r = 0;
2624 		break;
2625 	}
2626 	return r;
2627 
2628 }
2629 
2630 long kvm_arch_dev_ioctl(struct file *filp,
2631 			unsigned int ioctl, unsigned long arg)
2632 {
2633 	void __user *argp = (void __user *)arg;
2634 	long r;
2635 
2636 	switch (ioctl) {
2637 	case KVM_GET_MSR_INDEX_LIST: {
2638 		struct kvm_msr_list __user *user_msr_list = argp;
2639 		struct kvm_msr_list msr_list;
2640 		unsigned n;
2641 
2642 		r = -EFAULT;
2643 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2644 			goto out;
2645 		n = msr_list.nmsrs;
2646 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2647 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2648 			goto out;
2649 		r = -E2BIG;
2650 		if (n < msr_list.nmsrs)
2651 			goto out;
2652 		r = -EFAULT;
2653 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2654 				 num_msrs_to_save * sizeof(u32)))
2655 			goto out;
2656 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2657 				 &emulated_msrs,
2658 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2659 			goto out;
2660 		r = 0;
2661 		break;
2662 	}
2663 	case KVM_GET_SUPPORTED_CPUID: {
2664 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2665 		struct kvm_cpuid2 cpuid;
2666 
2667 		r = -EFAULT;
2668 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2669 			goto out;
2670 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2671 						      cpuid_arg->entries);
2672 		if (r)
2673 			goto out;
2674 
2675 		r = -EFAULT;
2676 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2677 			goto out;
2678 		r = 0;
2679 		break;
2680 	}
2681 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2682 		u64 mce_cap;
2683 
2684 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2685 		r = -EFAULT;
2686 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2687 			goto out;
2688 		r = 0;
2689 		break;
2690 	}
2691 	default:
2692 		r = -EINVAL;
2693 	}
2694 out:
2695 	return r;
2696 }
2697 
2698 static void wbinvd_ipi(void *garbage)
2699 {
2700 	wbinvd();
2701 }
2702 
2703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2704 {
2705 	return vcpu->kvm->arch.iommu_domain &&
2706 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2707 }
2708 
2709 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2710 {
2711 	/* Address WBINVD may be executed by guest */
2712 	if (need_emulate_wbinvd(vcpu)) {
2713 		if (kvm_x86_ops->has_wbinvd_exit())
2714 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2715 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2716 			smp_call_function_single(vcpu->cpu,
2717 					wbinvd_ipi, NULL, 1);
2718 	}
2719 
2720 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2721 
2722 	/* Apply any externally detected TSC adjustments (due to suspend) */
2723 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2724 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2725 		vcpu->arch.tsc_offset_adjustment = 0;
2726 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2727 	}
2728 
2729 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2730 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2731 				native_read_tsc() - vcpu->arch.last_host_tsc;
2732 		if (tsc_delta < 0)
2733 			mark_tsc_unstable("KVM discovered backwards TSC");
2734 		if (check_tsc_unstable()) {
2735 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2736 						vcpu->arch.last_guest_tsc);
2737 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2738 			vcpu->arch.tsc_catchup = 1;
2739 		}
2740 		/*
2741 		 * On a host with synchronized TSC, there is no need to update
2742 		 * kvmclock on vcpu->cpu migration
2743 		 */
2744 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2745 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2746 		if (vcpu->cpu != cpu)
2747 			kvm_migrate_timers(vcpu);
2748 		vcpu->cpu = cpu;
2749 	}
2750 
2751 	accumulate_steal_time(vcpu);
2752 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2753 }
2754 
2755 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2756 {
2757 	kvm_x86_ops->vcpu_put(vcpu);
2758 	kvm_put_guest_fpu(vcpu);
2759 	vcpu->arch.last_host_tsc = native_read_tsc();
2760 }
2761 
2762 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2763 				    struct kvm_lapic_state *s)
2764 {
2765 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2766 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2767 
2768 	return 0;
2769 }
2770 
2771 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2772 				    struct kvm_lapic_state *s)
2773 {
2774 	kvm_apic_post_state_restore(vcpu, s);
2775 	update_cr8_intercept(vcpu);
2776 
2777 	return 0;
2778 }
2779 
2780 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2781 				    struct kvm_interrupt *irq)
2782 {
2783 	if (irq->irq >= KVM_NR_INTERRUPTS)
2784 		return -EINVAL;
2785 	if (irqchip_in_kernel(vcpu->kvm))
2786 		return -ENXIO;
2787 
2788 	kvm_queue_interrupt(vcpu, irq->irq, false);
2789 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2790 
2791 	return 0;
2792 }
2793 
2794 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2795 {
2796 	kvm_inject_nmi(vcpu);
2797 
2798 	return 0;
2799 }
2800 
2801 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2802 					   struct kvm_tpr_access_ctl *tac)
2803 {
2804 	if (tac->flags)
2805 		return -EINVAL;
2806 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2807 	return 0;
2808 }
2809 
2810 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2811 					u64 mcg_cap)
2812 {
2813 	int r;
2814 	unsigned bank_num = mcg_cap & 0xff, bank;
2815 
2816 	r = -EINVAL;
2817 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2818 		goto out;
2819 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2820 		goto out;
2821 	r = 0;
2822 	vcpu->arch.mcg_cap = mcg_cap;
2823 	/* Init IA32_MCG_CTL to all 1s */
2824 	if (mcg_cap & MCG_CTL_P)
2825 		vcpu->arch.mcg_ctl = ~(u64)0;
2826 	/* Init IA32_MCi_CTL to all 1s */
2827 	for (bank = 0; bank < bank_num; bank++)
2828 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2829 out:
2830 	return r;
2831 }
2832 
2833 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2834 				      struct kvm_x86_mce *mce)
2835 {
2836 	u64 mcg_cap = vcpu->arch.mcg_cap;
2837 	unsigned bank_num = mcg_cap & 0xff;
2838 	u64 *banks = vcpu->arch.mce_banks;
2839 
2840 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2841 		return -EINVAL;
2842 	/*
2843 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2844 	 * reporting is disabled
2845 	 */
2846 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2847 	    vcpu->arch.mcg_ctl != ~(u64)0)
2848 		return 0;
2849 	banks += 4 * mce->bank;
2850 	/*
2851 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2852 	 * reporting is disabled for the bank
2853 	 */
2854 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2855 		return 0;
2856 	if (mce->status & MCI_STATUS_UC) {
2857 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2858 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2859 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2860 			return 0;
2861 		}
2862 		if (banks[1] & MCI_STATUS_VAL)
2863 			mce->status |= MCI_STATUS_OVER;
2864 		banks[2] = mce->addr;
2865 		banks[3] = mce->misc;
2866 		vcpu->arch.mcg_status = mce->mcg_status;
2867 		banks[1] = mce->status;
2868 		kvm_queue_exception(vcpu, MC_VECTOR);
2869 	} else if (!(banks[1] & MCI_STATUS_VAL)
2870 		   || !(banks[1] & MCI_STATUS_UC)) {
2871 		if (banks[1] & MCI_STATUS_VAL)
2872 			mce->status |= MCI_STATUS_OVER;
2873 		banks[2] = mce->addr;
2874 		banks[3] = mce->misc;
2875 		banks[1] = mce->status;
2876 	} else
2877 		banks[1] |= MCI_STATUS_OVER;
2878 	return 0;
2879 }
2880 
2881 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2882 					       struct kvm_vcpu_events *events)
2883 {
2884 	process_nmi(vcpu);
2885 	events->exception.injected =
2886 		vcpu->arch.exception.pending &&
2887 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2888 	events->exception.nr = vcpu->arch.exception.nr;
2889 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2890 	events->exception.pad = 0;
2891 	events->exception.error_code = vcpu->arch.exception.error_code;
2892 
2893 	events->interrupt.injected =
2894 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2895 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2896 	events->interrupt.soft = 0;
2897 	events->interrupt.shadow =
2898 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2899 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2900 
2901 	events->nmi.injected = vcpu->arch.nmi_injected;
2902 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2903 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2904 	events->nmi.pad = 0;
2905 
2906 	events->sipi_vector = 0; /* never valid when reporting to user space */
2907 
2908 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2909 			 | KVM_VCPUEVENT_VALID_SHADOW);
2910 	memset(&events->reserved, 0, sizeof(events->reserved));
2911 }
2912 
2913 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2914 					      struct kvm_vcpu_events *events)
2915 {
2916 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2917 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2918 			      | KVM_VCPUEVENT_VALID_SHADOW))
2919 		return -EINVAL;
2920 
2921 	process_nmi(vcpu);
2922 	vcpu->arch.exception.pending = events->exception.injected;
2923 	vcpu->arch.exception.nr = events->exception.nr;
2924 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2925 	vcpu->arch.exception.error_code = events->exception.error_code;
2926 
2927 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2928 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2929 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2930 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2931 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2932 						  events->interrupt.shadow);
2933 
2934 	vcpu->arch.nmi_injected = events->nmi.injected;
2935 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2936 		vcpu->arch.nmi_pending = events->nmi.pending;
2937 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2938 
2939 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2940 	    kvm_vcpu_has_lapic(vcpu))
2941 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2942 
2943 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2944 
2945 	return 0;
2946 }
2947 
2948 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2949 					     struct kvm_debugregs *dbgregs)
2950 {
2951 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2952 	dbgregs->dr6 = vcpu->arch.dr6;
2953 	dbgregs->dr7 = vcpu->arch.dr7;
2954 	dbgregs->flags = 0;
2955 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2956 }
2957 
2958 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2959 					    struct kvm_debugregs *dbgregs)
2960 {
2961 	if (dbgregs->flags)
2962 		return -EINVAL;
2963 
2964 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2965 	vcpu->arch.dr6 = dbgregs->dr6;
2966 	vcpu->arch.dr7 = dbgregs->dr7;
2967 
2968 	return 0;
2969 }
2970 
2971 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2972 					 struct kvm_xsave *guest_xsave)
2973 {
2974 	if (cpu_has_xsave)
2975 		memcpy(guest_xsave->region,
2976 			&vcpu->arch.guest_fpu.state->xsave,
2977 			xstate_size);
2978 	else {
2979 		memcpy(guest_xsave->region,
2980 			&vcpu->arch.guest_fpu.state->fxsave,
2981 			sizeof(struct i387_fxsave_struct));
2982 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2983 			XSTATE_FPSSE;
2984 	}
2985 }
2986 
2987 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2988 					struct kvm_xsave *guest_xsave)
2989 {
2990 	u64 xstate_bv =
2991 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2992 
2993 	if (cpu_has_xsave)
2994 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2995 			guest_xsave->region, xstate_size);
2996 	else {
2997 		if (xstate_bv & ~XSTATE_FPSSE)
2998 			return -EINVAL;
2999 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3000 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3001 	}
3002 	return 0;
3003 }
3004 
3005 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3006 					struct kvm_xcrs *guest_xcrs)
3007 {
3008 	if (!cpu_has_xsave) {
3009 		guest_xcrs->nr_xcrs = 0;
3010 		return;
3011 	}
3012 
3013 	guest_xcrs->nr_xcrs = 1;
3014 	guest_xcrs->flags = 0;
3015 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3016 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3017 }
3018 
3019 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3020 				       struct kvm_xcrs *guest_xcrs)
3021 {
3022 	int i, r = 0;
3023 
3024 	if (!cpu_has_xsave)
3025 		return -EINVAL;
3026 
3027 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3028 		return -EINVAL;
3029 
3030 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3031 		/* Only support XCR0 currently */
3032 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3033 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3034 				guest_xcrs->xcrs[0].value);
3035 			break;
3036 		}
3037 	if (r)
3038 		r = -EINVAL;
3039 	return r;
3040 }
3041 
3042 /*
3043  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3044  * stopped by the hypervisor.  This function will be called from the host only.
3045  * EINVAL is returned when the host attempts to set the flag for a guest that
3046  * does not support pv clocks.
3047  */
3048 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3049 {
3050 	if (!vcpu->arch.pv_time_enabled)
3051 		return -EINVAL;
3052 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3053 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3054 	return 0;
3055 }
3056 
3057 long kvm_arch_vcpu_ioctl(struct file *filp,
3058 			 unsigned int ioctl, unsigned long arg)
3059 {
3060 	struct kvm_vcpu *vcpu = filp->private_data;
3061 	void __user *argp = (void __user *)arg;
3062 	int r;
3063 	union {
3064 		struct kvm_lapic_state *lapic;
3065 		struct kvm_xsave *xsave;
3066 		struct kvm_xcrs *xcrs;
3067 		void *buffer;
3068 	} u;
3069 
3070 	u.buffer = NULL;
3071 	switch (ioctl) {
3072 	case KVM_GET_LAPIC: {
3073 		r = -EINVAL;
3074 		if (!vcpu->arch.apic)
3075 			goto out;
3076 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3077 
3078 		r = -ENOMEM;
3079 		if (!u.lapic)
3080 			goto out;
3081 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3082 		if (r)
3083 			goto out;
3084 		r = -EFAULT;
3085 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3086 			goto out;
3087 		r = 0;
3088 		break;
3089 	}
3090 	case KVM_SET_LAPIC: {
3091 		r = -EINVAL;
3092 		if (!vcpu->arch.apic)
3093 			goto out;
3094 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3095 		if (IS_ERR(u.lapic))
3096 			return PTR_ERR(u.lapic);
3097 
3098 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3099 		break;
3100 	}
3101 	case KVM_INTERRUPT: {
3102 		struct kvm_interrupt irq;
3103 
3104 		r = -EFAULT;
3105 		if (copy_from_user(&irq, argp, sizeof irq))
3106 			goto out;
3107 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3108 		break;
3109 	}
3110 	case KVM_NMI: {
3111 		r = kvm_vcpu_ioctl_nmi(vcpu);
3112 		break;
3113 	}
3114 	case KVM_SET_CPUID: {
3115 		struct kvm_cpuid __user *cpuid_arg = argp;
3116 		struct kvm_cpuid cpuid;
3117 
3118 		r = -EFAULT;
3119 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3120 			goto out;
3121 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3122 		break;
3123 	}
3124 	case KVM_SET_CPUID2: {
3125 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3126 		struct kvm_cpuid2 cpuid;
3127 
3128 		r = -EFAULT;
3129 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3130 			goto out;
3131 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3132 					      cpuid_arg->entries);
3133 		break;
3134 	}
3135 	case KVM_GET_CPUID2: {
3136 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3137 		struct kvm_cpuid2 cpuid;
3138 
3139 		r = -EFAULT;
3140 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3141 			goto out;
3142 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3143 					      cpuid_arg->entries);
3144 		if (r)
3145 			goto out;
3146 		r = -EFAULT;
3147 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3148 			goto out;
3149 		r = 0;
3150 		break;
3151 	}
3152 	case KVM_GET_MSRS:
3153 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3154 		break;
3155 	case KVM_SET_MSRS:
3156 		r = msr_io(vcpu, argp, do_set_msr, 0);
3157 		break;
3158 	case KVM_TPR_ACCESS_REPORTING: {
3159 		struct kvm_tpr_access_ctl tac;
3160 
3161 		r = -EFAULT;
3162 		if (copy_from_user(&tac, argp, sizeof tac))
3163 			goto out;
3164 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3165 		if (r)
3166 			goto out;
3167 		r = -EFAULT;
3168 		if (copy_to_user(argp, &tac, sizeof tac))
3169 			goto out;
3170 		r = 0;
3171 		break;
3172 	};
3173 	case KVM_SET_VAPIC_ADDR: {
3174 		struct kvm_vapic_addr va;
3175 
3176 		r = -EINVAL;
3177 		if (!irqchip_in_kernel(vcpu->kvm))
3178 			goto out;
3179 		r = -EFAULT;
3180 		if (copy_from_user(&va, argp, sizeof va))
3181 			goto out;
3182 		r = 0;
3183 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3184 		break;
3185 	}
3186 	case KVM_X86_SETUP_MCE: {
3187 		u64 mcg_cap;
3188 
3189 		r = -EFAULT;
3190 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3191 			goto out;
3192 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3193 		break;
3194 	}
3195 	case KVM_X86_SET_MCE: {
3196 		struct kvm_x86_mce mce;
3197 
3198 		r = -EFAULT;
3199 		if (copy_from_user(&mce, argp, sizeof mce))
3200 			goto out;
3201 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3202 		break;
3203 	}
3204 	case KVM_GET_VCPU_EVENTS: {
3205 		struct kvm_vcpu_events events;
3206 
3207 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3208 
3209 		r = -EFAULT;
3210 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3211 			break;
3212 		r = 0;
3213 		break;
3214 	}
3215 	case KVM_SET_VCPU_EVENTS: {
3216 		struct kvm_vcpu_events events;
3217 
3218 		r = -EFAULT;
3219 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3220 			break;
3221 
3222 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3223 		break;
3224 	}
3225 	case KVM_GET_DEBUGREGS: {
3226 		struct kvm_debugregs dbgregs;
3227 
3228 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3229 
3230 		r = -EFAULT;
3231 		if (copy_to_user(argp, &dbgregs,
3232 				 sizeof(struct kvm_debugregs)))
3233 			break;
3234 		r = 0;
3235 		break;
3236 	}
3237 	case KVM_SET_DEBUGREGS: {
3238 		struct kvm_debugregs dbgregs;
3239 
3240 		r = -EFAULT;
3241 		if (copy_from_user(&dbgregs, argp,
3242 				   sizeof(struct kvm_debugregs)))
3243 			break;
3244 
3245 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3246 		break;
3247 	}
3248 	case KVM_GET_XSAVE: {
3249 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3250 		r = -ENOMEM;
3251 		if (!u.xsave)
3252 			break;
3253 
3254 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3255 
3256 		r = -EFAULT;
3257 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3258 			break;
3259 		r = 0;
3260 		break;
3261 	}
3262 	case KVM_SET_XSAVE: {
3263 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3264 		if (IS_ERR(u.xsave))
3265 			return PTR_ERR(u.xsave);
3266 
3267 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3268 		break;
3269 	}
3270 	case KVM_GET_XCRS: {
3271 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3272 		r = -ENOMEM;
3273 		if (!u.xcrs)
3274 			break;
3275 
3276 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3277 
3278 		r = -EFAULT;
3279 		if (copy_to_user(argp, u.xcrs,
3280 				 sizeof(struct kvm_xcrs)))
3281 			break;
3282 		r = 0;
3283 		break;
3284 	}
3285 	case KVM_SET_XCRS: {
3286 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3287 		if (IS_ERR(u.xcrs))
3288 			return PTR_ERR(u.xcrs);
3289 
3290 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3291 		break;
3292 	}
3293 	case KVM_SET_TSC_KHZ: {
3294 		u32 user_tsc_khz;
3295 
3296 		r = -EINVAL;
3297 		user_tsc_khz = (u32)arg;
3298 
3299 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3300 			goto out;
3301 
3302 		if (user_tsc_khz == 0)
3303 			user_tsc_khz = tsc_khz;
3304 
3305 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3306 
3307 		r = 0;
3308 		goto out;
3309 	}
3310 	case KVM_GET_TSC_KHZ: {
3311 		r = vcpu->arch.virtual_tsc_khz;
3312 		goto out;
3313 	}
3314 	case KVM_KVMCLOCK_CTRL: {
3315 		r = kvm_set_guest_paused(vcpu);
3316 		goto out;
3317 	}
3318 	default:
3319 		r = -EINVAL;
3320 	}
3321 out:
3322 	kfree(u.buffer);
3323 	return r;
3324 }
3325 
3326 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3327 {
3328 	return VM_FAULT_SIGBUS;
3329 }
3330 
3331 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3332 {
3333 	int ret;
3334 
3335 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3336 		return -EINVAL;
3337 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3338 	return ret;
3339 }
3340 
3341 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3342 					      u64 ident_addr)
3343 {
3344 	kvm->arch.ept_identity_map_addr = ident_addr;
3345 	return 0;
3346 }
3347 
3348 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3349 					  u32 kvm_nr_mmu_pages)
3350 {
3351 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3352 		return -EINVAL;
3353 
3354 	mutex_lock(&kvm->slots_lock);
3355 
3356 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3357 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3358 
3359 	mutex_unlock(&kvm->slots_lock);
3360 	return 0;
3361 }
3362 
3363 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3364 {
3365 	return kvm->arch.n_max_mmu_pages;
3366 }
3367 
3368 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3369 {
3370 	int r;
3371 
3372 	r = 0;
3373 	switch (chip->chip_id) {
3374 	case KVM_IRQCHIP_PIC_MASTER:
3375 		memcpy(&chip->chip.pic,
3376 			&pic_irqchip(kvm)->pics[0],
3377 			sizeof(struct kvm_pic_state));
3378 		break;
3379 	case KVM_IRQCHIP_PIC_SLAVE:
3380 		memcpy(&chip->chip.pic,
3381 			&pic_irqchip(kvm)->pics[1],
3382 			sizeof(struct kvm_pic_state));
3383 		break;
3384 	case KVM_IRQCHIP_IOAPIC:
3385 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3386 		break;
3387 	default:
3388 		r = -EINVAL;
3389 		break;
3390 	}
3391 	return r;
3392 }
3393 
3394 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3395 {
3396 	int r;
3397 
3398 	r = 0;
3399 	switch (chip->chip_id) {
3400 	case KVM_IRQCHIP_PIC_MASTER:
3401 		spin_lock(&pic_irqchip(kvm)->lock);
3402 		memcpy(&pic_irqchip(kvm)->pics[0],
3403 			&chip->chip.pic,
3404 			sizeof(struct kvm_pic_state));
3405 		spin_unlock(&pic_irqchip(kvm)->lock);
3406 		break;
3407 	case KVM_IRQCHIP_PIC_SLAVE:
3408 		spin_lock(&pic_irqchip(kvm)->lock);
3409 		memcpy(&pic_irqchip(kvm)->pics[1],
3410 			&chip->chip.pic,
3411 			sizeof(struct kvm_pic_state));
3412 		spin_unlock(&pic_irqchip(kvm)->lock);
3413 		break;
3414 	case KVM_IRQCHIP_IOAPIC:
3415 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3416 		break;
3417 	default:
3418 		r = -EINVAL;
3419 		break;
3420 	}
3421 	kvm_pic_update_irq(pic_irqchip(kvm));
3422 	return r;
3423 }
3424 
3425 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3426 {
3427 	int r = 0;
3428 
3429 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3430 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3431 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432 	return r;
3433 }
3434 
3435 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3436 {
3437 	int r = 0;
3438 
3439 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3440 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3441 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3442 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443 	return r;
3444 }
3445 
3446 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3447 {
3448 	int r = 0;
3449 
3450 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3451 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3452 		sizeof(ps->channels));
3453 	ps->flags = kvm->arch.vpit->pit_state.flags;
3454 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3455 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3456 	return r;
3457 }
3458 
3459 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460 {
3461 	int r = 0, start = 0;
3462 	u32 prev_legacy, cur_legacy;
3463 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3465 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466 	if (!prev_legacy && cur_legacy)
3467 		start = 1;
3468 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3469 	       sizeof(kvm->arch.vpit->pit_state.channels));
3470 	kvm->arch.vpit->pit_state.flags = ps->flags;
3471 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3472 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3473 	return r;
3474 }
3475 
3476 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3477 				 struct kvm_reinject_control *control)
3478 {
3479 	if (!kvm->arch.vpit)
3480 		return -ENXIO;
3481 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3482 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3483 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3484 	return 0;
3485 }
3486 
3487 /**
3488  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3489  * @kvm: kvm instance
3490  * @log: slot id and address to which we copy the log
3491  *
3492  * We need to keep it in mind that VCPU threads can write to the bitmap
3493  * concurrently.  So, to avoid losing data, we keep the following order for
3494  * each bit:
3495  *
3496  *   1. Take a snapshot of the bit and clear it if needed.
3497  *   2. Write protect the corresponding page.
3498  *   3. Flush TLB's if needed.
3499  *   4. Copy the snapshot to the userspace.
3500  *
3501  * Between 2 and 3, the guest may write to the page using the remaining TLB
3502  * entry.  This is not a problem because the page will be reported dirty at
3503  * step 4 using the snapshot taken before and step 3 ensures that successive
3504  * writes will be logged for the next call.
3505  */
3506 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3507 {
3508 	int r;
3509 	struct kvm_memory_slot *memslot;
3510 	unsigned long n, i;
3511 	unsigned long *dirty_bitmap;
3512 	unsigned long *dirty_bitmap_buffer;
3513 	bool is_dirty = false;
3514 
3515 	mutex_lock(&kvm->slots_lock);
3516 
3517 	r = -EINVAL;
3518 	if (log->slot >= KVM_USER_MEM_SLOTS)
3519 		goto out;
3520 
3521 	memslot = id_to_memslot(kvm->memslots, log->slot);
3522 
3523 	dirty_bitmap = memslot->dirty_bitmap;
3524 	r = -ENOENT;
3525 	if (!dirty_bitmap)
3526 		goto out;
3527 
3528 	n = kvm_dirty_bitmap_bytes(memslot);
3529 
3530 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3531 	memset(dirty_bitmap_buffer, 0, n);
3532 
3533 	spin_lock(&kvm->mmu_lock);
3534 
3535 	for (i = 0; i < n / sizeof(long); i++) {
3536 		unsigned long mask;
3537 		gfn_t offset;
3538 
3539 		if (!dirty_bitmap[i])
3540 			continue;
3541 
3542 		is_dirty = true;
3543 
3544 		mask = xchg(&dirty_bitmap[i], 0);
3545 		dirty_bitmap_buffer[i] = mask;
3546 
3547 		offset = i * BITS_PER_LONG;
3548 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3549 	}
3550 	if (is_dirty)
3551 		kvm_flush_remote_tlbs(kvm);
3552 
3553 	spin_unlock(&kvm->mmu_lock);
3554 
3555 	r = -EFAULT;
3556 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3557 		goto out;
3558 
3559 	r = 0;
3560 out:
3561 	mutex_unlock(&kvm->slots_lock);
3562 	return r;
3563 }
3564 
3565 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3566 			bool line_status)
3567 {
3568 	if (!irqchip_in_kernel(kvm))
3569 		return -ENXIO;
3570 
3571 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3572 					irq_event->irq, irq_event->level,
3573 					line_status);
3574 	return 0;
3575 }
3576 
3577 long kvm_arch_vm_ioctl(struct file *filp,
3578 		       unsigned int ioctl, unsigned long arg)
3579 {
3580 	struct kvm *kvm = filp->private_data;
3581 	void __user *argp = (void __user *)arg;
3582 	int r = -ENOTTY;
3583 	/*
3584 	 * This union makes it completely explicit to gcc-3.x
3585 	 * that these two variables' stack usage should be
3586 	 * combined, not added together.
3587 	 */
3588 	union {
3589 		struct kvm_pit_state ps;
3590 		struct kvm_pit_state2 ps2;
3591 		struct kvm_pit_config pit_config;
3592 	} u;
3593 
3594 	switch (ioctl) {
3595 	case KVM_SET_TSS_ADDR:
3596 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3597 		break;
3598 	case KVM_SET_IDENTITY_MAP_ADDR: {
3599 		u64 ident_addr;
3600 
3601 		r = -EFAULT;
3602 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3603 			goto out;
3604 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3605 		break;
3606 	}
3607 	case KVM_SET_NR_MMU_PAGES:
3608 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3609 		break;
3610 	case KVM_GET_NR_MMU_PAGES:
3611 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3612 		break;
3613 	case KVM_CREATE_IRQCHIP: {
3614 		struct kvm_pic *vpic;
3615 
3616 		mutex_lock(&kvm->lock);
3617 		r = -EEXIST;
3618 		if (kvm->arch.vpic)
3619 			goto create_irqchip_unlock;
3620 		r = -EINVAL;
3621 		if (atomic_read(&kvm->online_vcpus))
3622 			goto create_irqchip_unlock;
3623 		r = -ENOMEM;
3624 		vpic = kvm_create_pic(kvm);
3625 		if (vpic) {
3626 			r = kvm_ioapic_init(kvm);
3627 			if (r) {
3628 				mutex_lock(&kvm->slots_lock);
3629 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3630 							  &vpic->dev_master);
3631 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3632 							  &vpic->dev_slave);
3633 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3634 							  &vpic->dev_eclr);
3635 				mutex_unlock(&kvm->slots_lock);
3636 				kfree(vpic);
3637 				goto create_irqchip_unlock;
3638 			}
3639 		} else
3640 			goto create_irqchip_unlock;
3641 		smp_wmb();
3642 		kvm->arch.vpic = vpic;
3643 		smp_wmb();
3644 		r = kvm_setup_default_irq_routing(kvm);
3645 		if (r) {
3646 			mutex_lock(&kvm->slots_lock);
3647 			mutex_lock(&kvm->irq_lock);
3648 			kvm_ioapic_destroy(kvm);
3649 			kvm_destroy_pic(kvm);
3650 			mutex_unlock(&kvm->irq_lock);
3651 			mutex_unlock(&kvm->slots_lock);
3652 		}
3653 	create_irqchip_unlock:
3654 		mutex_unlock(&kvm->lock);
3655 		break;
3656 	}
3657 	case KVM_CREATE_PIT:
3658 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3659 		goto create_pit;
3660 	case KVM_CREATE_PIT2:
3661 		r = -EFAULT;
3662 		if (copy_from_user(&u.pit_config, argp,
3663 				   sizeof(struct kvm_pit_config)))
3664 			goto out;
3665 	create_pit:
3666 		mutex_lock(&kvm->slots_lock);
3667 		r = -EEXIST;
3668 		if (kvm->arch.vpit)
3669 			goto create_pit_unlock;
3670 		r = -ENOMEM;
3671 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3672 		if (kvm->arch.vpit)
3673 			r = 0;
3674 	create_pit_unlock:
3675 		mutex_unlock(&kvm->slots_lock);
3676 		break;
3677 	case KVM_GET_IRQCHIP: {
3678 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3679 		struct kvm_irqchip *chip;
3680 
3681 		chip = memdup_user(argp, sizeof(*chip));
3682 		if (IS_ERR(chip)) {
3683 			r = PTR_ERR(chip);
3684 			goto out;
3685 		}
3686 
3687 		r = -ENXIO;
3688 		if (!irqchip_in_kernel(kvm))
3689 			goto get_irqchip_out;
3690 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3691 		if (r)
3692 			goto get_irqchip_out;
3693 		r = -EFAULT;
3694 		if (copy_to_user(argp, chip, sizeof *chip))
3695 			goto get_irqchip_out;
3696 		r = 0;
3697 	get_irqchip_out:
3698 		kfree(chip);
3699 		break;
3700 	}
3701 	case KVM_SET_IRQCHIP: {
3702 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3703 		struct kvm_irqchip *chip;
3704 
3705 		chip = memdup_user(argp, sizeof(*chip));
3706 		if (IS_ERR(chip)) {
3707 			r = PTR_ERR(chip);
3708 			goto out;
3709 		}
3710 
3711 		r = -ENXIO;
3712 		if (!irqchip_in_kernel(kvm))
3713 			goto set_irqchip_out;
3714 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3715 		if (r)
3716 			goto set_irqchip_out;
3717 		r = 0;
3718 	set_irqchip_out:
3719 		kfree(chip);
3720 		break;
3721 	}
3722 	case KVM_GET_PIT: {
3723 		r = -EFAULT;
3724 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3725 			goto out;
3726 		r = -ENXIO;
3727 		if (!kvm->arch.vpit)
3728 			goto out;
3729 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3730 		if (r)
3731 			goto out;
3732 		r = -EFAULT;
3733 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3734 			goto out;
3735 		r = 0;
3736 		break;
3737 	}
3738 	case KVM_SET_PIT: {
3739 		r = -EFAULT;
3740 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3741 			goto out;
3742 		r = -ENXIO;
3743 		if (!kvm->arch.vpit)
3744 			goto out;
3745 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3746 		break;
3747 	}
3748 	case KVM_GET_PIT2: {
3749 		r = -ENXIO;
3750 		if (!kvm->arch.vpit)
3751 			goto out;
3752 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3753 		if (r)
3754 			goto out;
3755 		r = -EFAULT;
3756 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3757 			goto out;
3758 		r = 0;
3759 		break;
3760 	}
3761 	case KVM_SET_PIT2: {
3762 		r = -EFAULT;
3763 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3764 			goto out;
3765 		r = -ENXIO;
3766 		if (!kvm->arch.vpit)
3767 			goto out;
3768 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3769 		break;
3770 	}
3771 	case KVM_REINJECT_CONTROL: {
3772 		struct kvm_reinject_control control;
3773 		r =  -EFAULT;
3774 		if (copy_from_user(&control, argp, sizeof(control)))
3775 			goto out;
3776 		r = kvm_vm_ioctl_reinject(kvm, &control);
3777 		break;
3778 	}
3779 	case KVM_XEN_HVM_CONFIG: {
3780 		r = -EFAULT;
3781 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3782 				   sizeof(struct kvm_xen_hvm_config)))
3783 			goto out;
3784 		r = -EINVAL;
3785 		if (kvm->arch.xen_hvm_config.flags)
3786 			goto out;
3787 		r = 0;
3788 		break;
3789 	}
3790 	case KVM_SET_CLOCK: {
3791 		struct kvm_clock_data user_ns;
3792 		u64 now_ns;
3793 		s64 delta;
3794 
3795 		r = -EFAULT;
3796 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3797 			goto out;
3798 
3799 		r = -EINVAL;
3800 		if (user_ns.flags)
3801 			goto out;
3802 
3803 		r = 0;
3804 		local_irq_disable();
3805 		now_ns = get_kernel_ns();
3806 		delta = user_ns.clock - now_ns;
3807 		local_irq_enable();
3808 		kvm->arch.kvmclock_offset = delta;
3809 		break;
3810 	}
3811 	case KVM_GET_CLOCK: {
3812 		struct kvm_clock_data user_ns;
3813 		u64 now_ns;
3814 
3815 		local_irq_disable();
3816 		now_ns = get_kernel_ns();
3817 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3818 		local_irq_enable();
3819 		user_ns.flags = 0;
3820 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3821 
3822 		r = -EFAULT;
3823 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3824 			goto out;
3825 		r = 0;
3826 		break;
3827 	}
3828 
3829 	default:
3830 		;
3831 	}
3832 out:
3833 	return r;
3834 }
3835 
3836 static void kvm_init_msr_list(void)
3837 {
3838 	u32 dummy[2];
3839 	unsigned i, j;
3840 
3841 	/* skip the first msrs in the list. KVM-specific */
3842 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3843 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3844 			continue;
3845 		if (j < i)
3846 			msrs_to_save[j] = msrs_to_save[i];
3847 		j++;
3848 	}
3849 	num_msrs_to_save = j;
3850 }
3851 
3852 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3853 			   const void *v)
3854 {
3855 	int handled = 0;
3856 	int n;
3857 
3858 	do {
3859 		n = min(len, 8);
3860 		if (!(vcpu->arch.apic &&
3861 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3862 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3863 			break;
3864 		handled += n;
3865 		addr += n;
3866 		len -= n;
3867 		v += n;
3868 	} while (len);
3869 
3870 	return handled;
3871 }
3872 
3873 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3874 {
3875 	int handled = 0;
3876 	int n;
3877 
3878 	do {
3879 		n = min(len, 8);
3880 		if (!(vcpu->arch.apic &&
3881 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3882 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3883 			break;
3884 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3885 		handled += n;
3886 		addr += n;
3887 		len -= n;
3888 		v += n;
3889 	} while (len);
3890 
3891 	return handled;
3892 }
3893 
3894 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3895 			struct kvm_segment *var, int seg)
3896 {
3897 	kvm_x86_ops->set_segment(vcpu, var, seg);
3898 }
3899 
3900 void kvm_get_segment(struct kvm_vcpu *vcpu,
3901 		     struct kvm_segment *var, int seg)
3902 {
3903 	kvm_x86_ops->get_segment(vcpu, var, seg);
3904 }
3905 
3906 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3907 {
3908 	gpa_t t_gpa;
3909 	struct x86_exception exception;
3910 
3911 	BUG_ON(!mmu_is_nested(vcpu));
3912 
3913 	/* NPT walks are always user-walks */
3914 	access |= PFERR_USER_MASK;
3915 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3916 
3917 	return t_gpa;
3918 }
3919 
3920 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3921 			      struct x86_exception *exception)
3922 {
3923 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3924 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3925 }
3926 
3927  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3928 				struct x86_exception *exception)
3929 {
3930 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3931 	access |= PFERR_FETCH_MASK;
3932 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3933 }
3934 
3935 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3936 			       struct x86_exception *exception)
3937 {
3938 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3939 	access |= PFERR_WRITE_MASK;
3940 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3941 }
3942 
3943 /* uses this to access any guest's mapped memory without checking CPL */
3944 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3945 				struct x86_exception *exception)
3946 {
3947 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3948 }
3949 
3950 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3951 				      struct kvm_vcpu *vcpu, u32 access,
3952 				      struct x86_exception *exception)
3953 {
3954 	void *data = val;
3955 	int r = X86EMUL_CONTINUE;
3956 
3957 	while (bytes) {
3958 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3959 							    exception);
3960 		unsigned offset = addr & (PAGE_SIZE-1);
3961 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3962 		int ret;
3963 
3964 		if (gpa == UNMAPPED_GVA)
3965 			return X86EMUL_PROPAGATE_FAULT;
3966 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3967 		if (ret < 0) {
3968 			r = X86EMUL_IO_NEEDED;
3969 			goto out;
3970 		}
3971 
3972 		bytes -= toread;
3973 		data += toread;
3974 		addr += toread;
3975 	}
3976 out:
3977 	return r;
3978 }
3979 
3980 /* used for instruction fetching */
3981 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3982 				gva_t addr, void *val, unsigned int bytes,
3983 				struct x86_exception *exception)
3984 {
3985 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3986 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3987 
3988 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3989 					  access | PFERR_FETCH_MASK,
3990 					  exception);
3991 }
3992 
3993 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3994 			       gva_t addr, void *val, unsigned int bytes,
3995 			       struct x86_exception *exception)
3996 {
3997 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3998 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3999 
4000 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4001 					  exception);
4002 }
4003 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4004 
4005 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4006 				      gva_t addr, void *val, unsigned int bytes,
4007 				      struct x86_exception *exception)
4008 {
4009 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4011 }
4012 
4013 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4014 				       gva_t addr, void *val,
4015 				       unsigned int bytes,
4016 				       struct x86_exception *exception)
4017 {
4018 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4019 	void *data = val;
4020 	int r = X86EMUL_CONTINUE;
4021 
4022 	while (bytes) {
4023 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4024 							     PFERR_WRITE_MASK,
4025 							     exception);
4026 		unsigned offset = addr & (PAGE_SIZE-1);
4027 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4028 		int ret;
4029 
4030 		if (gpa == UNMAPPED_GVA)
4031 			return X86EMUL_PROPAGATE_FAULT;
4032 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4033 		if (ret < 0) {
4034 			r = X86EMUL_IO_NEEDED;
4035 			goto out;
4036 		}
4037 
4038 		bytes -= towrite;
4039 		data += towrite;
4040 		addr += towrite;
4041 	}
4042 out:
4043 	return r;
4044 }
4045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4046 
4047 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4048 				gpa_t *gpa, struct x86_exception *exception,
4049 				bool write)
4050 {
4051 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4052 		| (write ? PFERR_WRITE_MASK : 0);
4053 
4054 	if (vcpu_match_mmio_gva(vcpu, gva)
4055 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4056 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4057 					(gva & (PAGE_SIZE - 1));
4058 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4059 		return 1;
4060 	}
4061 
4062 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4063 
4064 	if (*gpa == UNMAPPED_GVA)
4065 		return -1;
4066 
4067 	/* For APIC access vmexit */
4068 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4069 		return 1;
4070 
4071 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4072 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4073 		return 1;
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4080 			const void *val, int bytes)
4081 {
4082 	int ret;
4083 
4084 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4085 	if (ret < 0)
4086 		return 0;
4087 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4088 	return 1;
4089 }
4090 
4091 struct read_write_emulator_ops {
4092 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4093 				  int bytes);
4094 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4095 				  void *val, int bytes);
4096 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4097 			       int bytes, void *val);
4098 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4099 				    void *val, int bytes);
4100 	bool write;
4101 };
4102 
4103 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4104 {
4105 	if (vcpu->mmio_read_completed) {
4106 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4107 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4108 		vcpu->mmio_read_completed = 0;
4109 		return 1;
4110 	}
4111 
4112 	return 0;
4113 }
4114 
4115 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4116 			void *val, int bytes)
4117 {
4118 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4119 }
4120 
4121 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4122 			 void *val, int bytes)
4123 {
4124 	return emulator_write_phys(vcpu, gpa, val, bytes);
4125 }
4126 
4127 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4128 {
4129 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4130 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4131 }
4132 
4133 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4134 			  void *val, int bytes)
4135 {
4136 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4137 	return X86EMUL_IO_NEEDED;
4138 }
4139 
4140 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4141 			   void *val, int bytes)
4142 {
4143 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4144 
4145 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4146 	return X86EMUL_CONTINUE;
4147 }
4148 
4149 static const struct read_write_emulator_ops read_emultor = {
4150 	.read_write_prepare = read_prepare,
4151 	.read_write_emulate = read_emulate,
4152 	.read_write_mmio = vcpu_mmio_read,
4153 	.read_write_exit_mmio = read_exit_mmio,
4154 };
4155 
4156 static const struct read_write_emulator_ops write_emultor = {
4157 	.read_write_emulate = write_emulate,
4158 	.read_write_mmio = write_mmio,
4159 	.read_write_exit_mmio = write_exit_mmio,
4160 	.write = true,
4161 };
4162 
4163 static int emulator_read_write_onepage(unsigned long addr, void *val,
4164 				       unsigned int bytes,
4165 				       struct x86_exception *exception,
4166 				       struct kvm_vcpu *vcpu,
4167 				       const struct read_write_emulator_ops *ops)
4168 {
4169 	gpa_t gpa;
4170 	int handled, ret;
4171 	bool write = ops->write;
4172 	struct kvm_mmio_fragment *frag;
4173 
4174 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4175 
4176 	if (ret < 0)
4177 		return X86EMUL_PROPAGATE_FAULT;
4178 
4179 	/* For APIC access vmexit */
4180 	if (ret)
4181 		goto mmio;
4182 
4183 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4184 		return X86EMUL_CONTINUE;
4185 
4186 mmio:
4187 	/*
4188 	 * Is this MMIO handled locally?
4189 	 */
4190 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4191 	if (handled == bytes)
4192 		return X86EMUL_CONTINUE;
4193 
4194 	gpa += handled;
4195 	bytes -= handled;
4196 	val += handled;
4197 
4198 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4199 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4200 	frag->gpa = gpa;
4201 	frag->data = val;
4202 	frag->len = bytes;
4203 	return X86EMUL_CONTINUE;
4204 }
4205 
4206 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4207 			void *val, unsigned int bytes,
4208 			struct x86_exception *exception,
4209 			const struct read_write_emulator_ops *ops)
4210 {
4211 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4212 	gpa_t gpa;
4213 	int rc;
4214 
4215 	if (ops->read_write_prepare &&
4216 		  ops->read_write_prepare(vcpu, val, bytes))
4217 		return X86EMUL_CONTINUE;
4218 
4219 	vcpu->mmio_nr_fragments = 0;
4220 
4221 	/* Crossing a page boundary? */
4222 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4223 		int now;
4224 
4225 		now = -addr & ~PAGE_MASK;
4226 		rc = emulator_read_write_onepage(addr, val, now, exception,
4227 						 vcpu, ops);
4228 
4229 		if (rc != X86EMUL_CONTINUE)
4230 			return rc;
4231 		addr += now;
4232 		val += now;
4233 		bytes -= now;
4234 	}
4235 
4236 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4237 					 vcpu, ops);
4238 	if (rc != X86EMUL_CONTINUE)
4239 		return rc;
4240 
4241 	if (!vcpu->mmio_nr_fragments)
4242 		return rc;
4243 
4244 	gpa = vcpu->mmio_fragments[0].gpa;
4245 
4246 	vcpu->mmio_needed = 1;
4247 	vcpu->mmio_cur_fragment = 0;
4248 
4249 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4250 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4251 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4252 	vcpu->run->mmio.phys_addr = gpa;
4253 
4254 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4255 }
4256 
4257 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4258 				  unsigned long addr,
4259 				  void *val,
4260 				  unsigned int bytes,
4261 				  struct x86_exception *exception)
4262 {
4263 	return emulator_read_write(ctxt, addr, val, bytes,
4264 				   exception, &read_emultor);
4265 }
4266 
4267 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4268 			    unsigned long addr,
4269 			    const void *val,
4270 			    unsigned int bytes,
4271 			    struct x86_exception *exception)
4272 {
4273 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4274 				   exception, &write_emultor);
4275 }
4276 
4277 #define CMPXCHG_TYPE(t, ptr, old, new) \
4278 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4279 
4280 #ifdef CONFIG_X86_64
4281 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4282 #else
4283 #  define CMPXCHG64(ptr, old, new) \
4284 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4285 #endif
4286 
4287 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4288 				     unsigned long addr,
4289 				     const void *old,
4290 				     const void *new,
4291 				     unsigned int bytes,
4292 				     struct x86_exception *exception)
4293 {
4294 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4295 	gpa_t gpa;
4296 	struct page *page;
4297 	char *kaddr;
4298 	bool exchanged;
4299 
4300 	/* guests cmpxchg8b have to be emulated atomically */
4301 	if (bytes > 8 || (bytes & (bytes - 1)))
4302 		goto emul_write;
4303 
4304 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4305 
4306 	if (gpa == UNMAPPED_GVA ||
4307 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4308 		goto emul_write;
4309 
4310 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4311 		goto emul_write;
4312 
4313 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4314 	if (is_error_page(page))
4315 		goto emul_write;
4316 
4317 	kaddr = kmap_atomic(page);
4318 	kaddr += offset_in_page(gpa);
4319 	switch (bytes) {
4320 	case 1:
4321 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4322 		break;
4323 	case 2:
4324 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4325 		break;
4326 	case 4:
4327 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4328 		break;
4329 	case 8:
4330 		exchanged = CMPXCHG64(kaddr, old, new);
4331 		break;
4332 	default:
4333 		BUG();
4334 	}
4335 	kunmap_atomic(kaddr);
4336 	kvm_release_page_dirty(page);
4337 
4338 	if (!exchanged)
4339 		return X86EMUL_CMPXCHG_FAILED;
4340 
4341 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4342 
4343 	return X86EMUL_CONTINUE;
4344 
4345 emul_write:
4346 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4347 
4348 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4349 }
4350 
4351 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4352 {
4353 	/* TODO: String I/O for in kernel device */
4354 	int r;
4355 
4356 	if (vcpu->arch.pio.in)
4357 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4358 				    vcpu->arch.pio.size, pd);
4359 	else
4360 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4361 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4362 				     pd);
4363 	return r;
4364 }
4365 
4366 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4367 			       unsigned short port, void *val,
4368 			       unsigned int count, bool in)
4369 {
4370 	trace_kvm_pio(!in, port, size, count);
4371 
4372 	vcpu->arch.pio.port = port;
4373 	vcpu->arch.pio.in = in;
4374 	vcpu->arch.pio.count  = count;
4375 	vcpu->arch.pio.size = size;
4376 
4377 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4378 		vcpu->arch.pio.count = 0;
4379 		return 1;
4380 	}
4381 
4382 	vcpu->run->exit_reason = KVM_EXIT_IO;
4383 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4384 	vcpu->run->io.size = size;
4385 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4386 	vcpu->run->io.count = count;
4387 	vcpu->run->io.port = port;
4388 
4389 	return 0;
4390 }
4391 
4392 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4393 				    int size, unsigned short port, void *val,
4394 				    unsigned int count)
4395 {
4396 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4397 	int ret;
4398 
4399 	if (vcpu->arch.pio.count)
4400 		goto data_avail;
4401 
4402 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4403 	if (ret) {
4404 data_avail:
4405 		memcpy(val, vcpu->arch.pio_data, size * count);
4406 		vcpu->arch.pio.count = 0;
4407 		return 1;
4408 	}
4409 
4410 	return 0;
4411 }
4412 
4413 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4414 				     int size, unsigned short port,
4415 				     const void *val, unsigned int count)
4416 {
4417 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418 
4419 	memcpy(vcpu->arch.pio_data, val, size * count);
4420 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4421 }
4422 
4423 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4424 {
4425 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4426 }
4427 
4428 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4429 {
4430 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4431 }
4432 
4433 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4434 {
4435 	if (!need_emulate_wbinvd(vcpu))
4436 		return X86EMUL_CONTINUE;
4437 
4438 	if (kvm_x86_ops->has_wbinvd_exit()) {
4439 		int cpu = get_cpu();
4440 
4441 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4442 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4443 				wbinvd_ipi, NULL, 1);
4444 		put_cpu();
4445 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4446 	} else
4447 		wbinvd();
4448 	return X86EMUL_CONTINUE;
4449 }
4450 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4451 
4452 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4453 {
4454 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4455 }
4456 
4457 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4458 {
4459 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4460 }
4461 
4462 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4463 {
4464 
4465 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4466 }
4467 
4468 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4469 {
4470 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4471 }
4472 
4473 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4474 {
4475 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476 	unsigned long value;
4477 
4478 	switch (cr) {
4479 	case 0:
4480 		value = kvm_read_cr0(vcpu);
4481 		break;
4482 	case 2:
4483 		value = vcpu->arch.cr2;
4484 		break;
4485 	case 3:
4486 		value = kvm_read_cr3(vcpu);
4487 		break;
4488 	case 4:
4489 		value = kvm_read_cr4(vcpu);
4490 		break;
4491 	case 8:
4492 		value = kvm_get_cr8(vcpu);
4493 		break;
4494 	default:
4495 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4496 		return 0;
4497 	}
4498 
4499 	return value;
4500 }
4501 
4502 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4503 {
4504 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505 	int res = 0;
4506 
4507 	switch (cr) {
4508 	case 0:
4509 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4510 		break;
4511 	case 2:
4512 		vcpu->arch.cr2 = val;
4513 		break;
4514 	case 3:
4515 		res = kvm_set_cr3(vcpu, val);
4516 		break;
4517 	case 4:
4518 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4519 		break;
4520 	case 8:
4521 		res = kvm_set_cr8(vcpu, val);
4522 		break;
4523 	default:
4524 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4525 		res = -1;
4526 	}
4527 
4528 	return res;
4529 }
4530 
4531 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4532 {
4533 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4534 }
4535 
4536 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4537 {
4538 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4539 }
4540 
4541 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4542 {
4543 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4544 }
4545 
4546 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4547 {
4548 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4549 }
4550 
4551 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4552 {
4553 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4554 }
4555 
4556 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4557 {
4558 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4559 }
4560 
4561 static unsigned long emulator_get_cached_segment_base(
4562 	struct x86_emulate_ctxt *ctxt, int seg)
4563 {
4564 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4565 }
4566 
4567 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4568 				 struct desc_struct *desc, u32 *base3,
4569 				 int seg)
4570 {
4571 	struct kvm_segment var;
4572 
4573 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4574 	*selector = var.selector;
4575 
4576 	if (var.unusable) {
4577 		memset(desc, 0, sizeof(*desc));
4578 		return false;
4579 	}
4580 
4581 	if (var.g)
4582 		var.limit >>= 12;
4583 	set_desc_limit(desc, var.limit);
4584 	set_desc_base(desc, (unsigned long)var.base);
4585 #ifdef CONFIG_X86_64
4586 	if (base3)
4587 		*base3 = var.base >> 32;
4588 #endif
4589 	desc->type = var.type;
4590 	desc->s = var.s;
4591 	desc->dpl = var.dpl;
4592 	desc->p = var.present;
4593 	desc->avl = var.avl;
4594 	desc->l = var.l;
4595 	desc->d = var.db;
4596 	desc->g = var.g;
4597 
4598 	return true;
4599 }
4600 
4601 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4602 				 struct desc_struct *desc, u32 base3,
4603 				 int seg)
4604 {
4605 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 	struct kvm_segment var;
4607 
4608 	var.selector = selector;
4609 	var.base = get_desc_base(desc);
4610 #ifdef CONFIG_X86_64
4611 	var.base |= ((u64)base3) << 32;
4612 #endif
4613 	var.limit = get_desc_limit(desc);
4614 	if (desc->g)
4615 		var.limit = (var.limit << 12) | 0xfff;
4616 	var.type = desc->type;
4617 	var.present = desc->p;
4618 	var.dpl = desc->dpl;
4619 	var.db = desc->d;
4620 	var.s = desc->s;
4621 	var.l = desc->l;
4622 	var.g = desc->g;
4623 	var.avl = desc->avl;
4624 	var.present = desc->p;
4625 	var.unusable = !var.present;
4626 	var.padding = 0;
4627 
4628 	kvm_set_segment(vcpu, &var, seg);
4629 	return;
4630 }
4631 
4632 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4633 			    u32 msr_index, u64 *pdata)
4634 {
4635 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4636 }
4637 
4638 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4639 			    u32 msr_index, u64 data)
4640 {
4641 	struct msr_data msr;
4642 
4643 	msr.data = data;
4644 	msr.index = msr_index;
4645 	msr.host_initiated = false;
4646 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4647 }
4648 
4649 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4650 			     u32 pmc, u64 *pdata)
4651 {
4652 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4653 }
4654 
4655 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4656 {
4657 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4658 }
4659 
4660 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4661 {
4662 	preempt_disable();
4663 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4664 	/*
4665 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4666 	 * so it may be clear at this point.
4667 	 */
4668 	clts();
4669 }
4670 
4671 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4672 {
4673 	preempt_enable();
4674 }
4675 
4676 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4677 			      struct x86_instruction_info *info,
4678 			      enum x86_intercept_stage stage)
4679 {
4680 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4681 }
4682 
4683 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4684 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4685 {
4686 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4687 }
4688 
4689 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4690 {
4691 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4692 }
4693 
4694 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4695 {
4696 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4697 }
4698 
4699 static const struct x86_emulate_ops emulate_ops = {
4700 	.read_gpr            = emulator_read_gpr,
4701 	.write_gpr           = emulator_write_gpr,
4702 	.read_std            = kvm_read_guest_virt_system,
4703 	.write_std           = kvm_write_guest_virt_system,
4704 	.fetch               = kvm_fetch_guest_virt,
4705 	.read_emulated       = emulator_read_emulated,
4706 	.write_emulated      = emulator_write_emulated,
4707 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4708 	.invlpg              = emulator_invlpg,
4709 	.pio_in_emulated     = emulator_pio_in_emulated,
4710 	.pio_out_emulated    = emulator_pio_out_emulated,
4711 	.get_segment         = emulator_get_segment,
4712 	.set_segment         = emulator_set_segment,
4713 	.get_cached_segment_base = emulator_get_cached_segment_base,
4714 	.get_gdt             = emulator_get_gdt,
4715 	.get_idt	     = emulator_get_idt,
4716 	.set_gdt             = emulator_set_gdt,
4717 	.set_idt	     = emulator_set_idt,
4718 	.get_cr              = emulator_get_cr,
4719 	.set_cr              = emulator_set_cr,
4720 	.set_rflags          = emulator_set_rflags,
4721 	.cpl                 = emulator_get_cpl,
4722 	.get_dr              = emulator_get_dr,
4723 	.set_dr              = emulator_set_dr,
4724 	.set_msr             = emulator_set_msr,
4725 	.get_msr             = emulator_get_msr,
4726 	.read_pmc            = emulator_read_pmc,
4727 	.halt                = emulator_halt,
4728 	.wbinvd              = emulator_wbinvd,
4729 	.fix_hypercall       = emulator_fix_hypercall,
4730 	.get_fpu             = emulator_get_fpu,
4731 	.put_fpu             = emulator_put_fpu,
4732 	.intercept           = emulator_intercept,
4733 	.get_cpuid           = emulator_get_cpuid,
4734 };
4735 
4736 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4737 {
4738 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4739 	/*
4740 	 * an sti; sti; sequence only disable interrupts for the first
4741 	 * instruction. So, if the last instruction, be it emulated or
4742 	 * not, left the system with the INT_STI flag enabled, it
4743 	 * means that the last instruction is an sti. We should not
4744 	 * leave the flag on in this case. The same goes for mov ss
4745 	 */
4746 	if (!(int_shadow & mask))
4747 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4748 }
4749 
4750 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4751 {
4752 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4753 	if (ctxt->exception.vector == PF_VECTOR)
4754 		kvm_propagate_fault(vcpu, &ctxt->exception);
4755 	else if (ctxt->exception.error_code_valid)
4756 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4757 				      ctxt->exception.error_code);
4758 	else
4759 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4760 }
4761 
4762 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4763 {
4764 	memset(&ctxt->twobyte, 0,
4765 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4766 
4767 	ctxt->fetch.start = 0;
4768 	ctxt->fetch.end = 0;
4769 	ctxt->io_read.pos = 0;
4770 	ctxt->io_read.end = 0;
4771 	ctxt->mem_read.pos = 0;
4772 	ctxt->mem_read.end = 0;
4773 }
4774 
4775 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4776 {
4777 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4778 	int cs_db, cs_l;
4779 
4780 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4781 
4782 	ctxt->eflags = kvm_get_rflags(vcpu);
4783 	ctxt->eip = kvm_rip_read(vcpu);
4784 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4785 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4786 		     cs_l				? X86EMUL_MODE_PROT64 :
4787 		     cs_db				? X86EMUL_MODE_PROT32 :
4788 							  X86EMUL_MODE_PROT16;
4789 	ctxt->guest_mode = is_guest_mode(vcpu);
4790 
4791 	init_decode_cache(ctxt);
4792 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4793 }
4794 
4795 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4796 {
4797 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4798 	int ret;
4799 
4800 	init_emulate_ctxt(vcpu);
4801 
4802 	ctxt->op_bytes = 2;
4803 	ctxt->ad_bytes = 2;
4804 	ctxt->_eip = ctxt->eip + inc_eip;
4805 	ret = emulate_int_real(ctxt, irq);
4806 
4807 	if (ret != X86EMUL_CONTINUE)
4808 		return EMULATE_FAIL;
4809 
4810 	ctxt->eip = ctxt->_eip;
4811 	kvm_rip_write(vcpu, ctxt->eip);
4812 	kvm_set_rflags(vcpu, ctxt->eflags);
4813 
4814 	if (irq == NMI_VECTOR)
4815 		vcpu->arch.nmi_pending = 0;
4816 	else
4817 		vcpu->arch.interrupt.pending = false;
4818 
4819 	return EMULATE_DONE;
4820 }
4821 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4822 
4823 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4824 {
4825 	int r = EMULATE_DONE;
4826 
4827 	++vcpu->stat.insn_emulation_fail;
4828 	trace_kvm_emulate_insn_failed(vcpu);
4829 	if (!is_guest_mode(vcpu)) {
4830 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4831 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4832 		vcpu->run->internal.ndata = 0;
4833 		r = EMULATE_FAIL;
4834 	}
4835 	kvm_queue_exception(vcpu, UD_VECTOR);
4836 
4837 	return r;
4838 }
4839 
4840 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4841 				  bool write_fault_to_shadow_pgtable,
4842 				  int emulation_type)
4843 {
4844 	gpa_t gpa = cr2;
4845 	pfn_t pfn;
4846 
4847 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4848 		return false;
4849 
4850 	if (!vcpu->arch.mmu.direct_map) {
4851 		/*
4852 		 * Write permission should be allowed since only
4853 		 * write access need to be emulated.
4854 		 */
4855 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4856 
4857 		/*
4858 		 * If the mapping is invalid in guest, let cpu retry
4859 		 * it to generate fault.
4860 		 */
4861 		if (gpa == UNMAPPED_GVA)
4862 			return true;
4863 	}
4864 
4865 	/*
4866 	 * Do not retry the unhandleable instruction if it faults on the
4867 	 * readonly host memory, otherwise it will goto a infinite loop:
4868 	 * retry instruction -> write #PF -> emulation fail -> retry
4869 	 * instruction -> ...
4870 	 */
4871 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4872 
4873 	/*
4874 	 * If the instruction failed on the error pfn, it can not be fixed,
4875 	 * report the error to userspace.
4876 	 */
4877 	if (is_error_noslot_pfn(pfn))
4878 		return false;
4879 
4880 	kvm_release_pfn_clean(pfn);
4881 
4882 	/* The instructions are well-emulated on direct mmu. */
4883 	if (vcpu->arch.mmu.direct_map) {
4884 		unsigned int indirect_shadow_pages;
4885 
4886 		spin_lock(&vcpu->kvm->mmu_lock);
4887 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4888 		spin_unlock(&vcpu->kvm->mmu_lock);
4889 
4890 		if (indirect_shadow_pages)
4891 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4892 
4893 		return true;
4894 	}
4895 
4896 	/*
4897 	 * if emulation was due to access to shadowed page table
4898 	 * and it failed try to unshadow page and re-enter the
4899 	 * guest to let CPU execute the instruction.
4900 	 */
4901 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4902 
4903 	/*
4904 	 * If the access faults on its page table, it can not
4905 	 * be fixed by unprotecting shadow page and it should
4906 	 * be reported to userspace.
4907 	 */
4908 	return !write_fault_to_shadow_pgtable;
4909 }
4910 
4911 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4912 			      unsigned long cr2,  int emulation_type)
4913 {
4914 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4916 
4917 	last_retry_eip = vcpu->arch.last_retry_eip;
4918 	last_retry_addr = vcpu->arch.last_retry_addr;
4919 
4920 	/*
4921 	 * If the emulation is caused by #PF and it is non-page_table
4922 	 * writing instruction, it means the VM-EXIT is caused by shadow
4923 	 * page protected, we can zap the shadow page and retry this
4924 	 * instruction directly.
4925 	 *
4926 	 * Note: if the guest uses a non-page-table modifying instruction
4927 	 * on the PDE that points to the instruction, then we will unmap
4928 	 * the instruction and go to an infinite loop. So, we cache the
4929 	 * last retried eip and the last fault address, if we meet the eip
4930 	 * and the address again, we can break out of the potential infinite
4931 	 * loop.
4932 	 */
4933 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4934 
4935 	if (!(emulation_type & EMULTYPE_RETRY))
4936 		return false;
4937 
4938 	if (x86_page_table_writing_insn(ctxt))
4939 		return false;
4940 
4941 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4942 		return false;
4943 
4944 	vcpu->arch.last_retry_eip = ctxt->eip;
4945 	vcpu->arch.last_retry_addr = cr2;
4946 
4947 	if (!vcpu->arch.mmu.direct_map)
4948 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4949 
4950 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4951 
4952 	return true;
4953 }
4954 
4955 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4956 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4957 
4958 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4959 			    unsigned long cr2,
4960 			    int emulation_type,
4961 			    void *insn,
4962 			    int insn_len)
4963 {
4964 	int r;
4965 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4966 	bool writeback = true;
4967 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4968 
4969 	/*
4970 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
4971 	 * never reused.
4972 	 */
4973 	vcpu->arch.write_fault_to_shadow_pgtable = false;
4974 	kvm_clear_exception_queue(vcpu);
4975 
4976 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4977 		init_emulate_ctxt(vcpu);
4978 		ctxt->interruptibility = 0;
4979 		ctxt->have_exception = false;
4980 		ctxt->perm_ok = false;
4981 
4982 		ctxt->only_vendor_specific_insn
4983 			= emulation_type & EMULTYPE_TRAP_UD;
4984 
4985 		r = x86_decode_insn(ctxt, insn, insn_len);
4986 
4987 		trace_kvm_emulate_insn_start(vcpu);
4988 		++vcpu->stat.insn_emulation;
4989 		if (r != EMULATION_OK)  {
4990 			if (emulation_type & EMULTYPE_TRAP_UD)
4991 				return EMULATE_FAIL;
4992 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4993 						emulation_type))
4994 				return EMULATE_DONE;
4995 			if (emulation_type & EMULTYPE_SKIP)
4996 				return EMULATE_FAIL;
4997 			return handle_emulation_failure(vcpu);
4998 		}
4999 	}
5000 
5001 	if (emulation_type & EMULTYPE_SKIP) {
5002 		kvm_rip_write(vcpu, ctxt->_eip);
5003 		return EMULATE_DONE;
5004 	}
5005 
5006 	if (retry_instruction(ctxt, cr2, emulation_type))
5007 		return EMULATE_DONE;
5008 
5009 	/* this is needed for vmware backdoor interface to work since it
5010 	   changes registers values  during IO operation */
5011 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5012 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5013 		emulator_invalidate_register_cache(ctxt);
5014 	}
5015 
5016 restart:
5017 	r = x86_emulate_insn(ctxt);
5018 
5019 	if (r == EMULATION_INTERCEPTED)
5020 		return EMULATE_DONE;
5021 
5022 	if (r == EMULATION_FAILED) {
5023 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5024 					emulation_type))
5025 			return EMULATE_DONE;
5026 
5027 		return handle_emulation_failure(vcpu);
5028 	}
5029 
5030 	if (ctxt->have_exception) {
5031 		inject_emulated_exception(vcpu);
5032 		r = EMULATE_DONE;
5033 	} else if (vcpu->arch.pio.count) {
5034 		if (!vcpu->arch.pio.in)
5035 			vcpu->arch.pio.count = 0;
5036 		else {
5037 			writeback = false;
5038 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5039 		}
5040 		r = EMULATE_DO_MMIO;
5041 	} else if (vcpu->mmio_needed) {
5042 		if (!vcpu->mmio_is_write)
5043 			writeback = false;
5044 		r = EMULATE_DO_MMIO;
5045 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5046 	} else if (r == EMULATION_RESTART)
5047 		goto restart;
5048 	else
5049 		r = EMULATE_DONE;
5050 
5051 	if (writeback) {
5052 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5053 		kvm_set_rflags(vcpu, ctxt->eflags);
5054 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5055 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5056 		kvm_rip_write(vcpu, ctxt->eip);
5057 	} else
5058 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5059 
5060 	return r;
5061 }
5062 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5063 
5064 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5065 {
5066 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5067 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5068 					    size, port, &val, 1);
5069 	/* do not return to emulator after return from userspace */
5070 	vcpu->arch.pio.count = 0;
5071 	return ret;
5072 }
5073 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5074 
5075 static void tsc_bad(void *info)
5076 {
5077 	__this_cpu_write(cpu_tsc_khz, 0);
5078 }
5079 
5080 static void tsc_khz_changed(void *data)
5081 {
5082 	struct cpufreq_freqs *freq = data;
5083 	unsigned long khz = 0;
5084 
5085 	if (data)
5086 		khz = freq->new;
5087 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5088 		khz = cpufreq_quick_get(raw_smp_processor_id());
5089 	if (!khz)
5090 		khz = tsc_khz;
5091 	__this_cpu_write(cpu_tsc_khz, khz);
5092 }
5093 
5094 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5095 				     void *data)
5096 {
5097 	struct cpufreq_freqs *freq = data;
5098 	struct kvm *kvm;
5099 	struct kvm_vcpu *vcpu;
5100 	int i, send_ipi = 0;
5101 
5102 	/*
5103 	 * We allow guests to temporarily run on slowing clocks,
5104 	 * provided we notify them after, or to run on accelerating
5105 	 * clocks, provided we notify them before.  Thus time never
5106 	 * goes backwards.
5107 	 *
5108 	 * However, we have a problem.  We can't atomically update
5109 	 * the frequency of a given CPU from this function; it is
5110 	 * merely a notifier, which can be called from any CPU.
5111 	 * Changing the TSC frequency at arbitrary points in time
5112 	 * requires a recomputation of local variables related to
5113 	 * the TSC for each VCPU.  We must flag these local variables
5114 	 * to be updated and be sure the update takes place with the
5115 	 * new frequency before any guests proceed.
5116 	 *
5117 	 * Unfortunately, the combination of hotplug CPU and frequency
5118 	 * change creates an intractable locking scenario; the order
5119 	 * of when these callouts happen is undefined with respect to
5120 	 * CPU hotplug, and they can race with each other.  As such,
5121 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5122 	 * undefined; you can actually have a CPU frequency change take
5123 	 * place in between the computation of X and the setting of the
5124 	 * variable.  To protect against this problem, all updates of
5125 	 * the per_cpu tsc_khz variable are done in an interrupt
5126 	 * protected IPI, and all callers wishing to update the value
5127 	 * must wait for a synchronous IPI to complete (which is trivial
5128 	 * if the caller is on the CPU already).  This establishes the
5129 	 * necessary total order on variable updates.
5130 	 *
5131 	 * Note that because a guest time update may take place
5132 	 * anytime after the setting of the VCPU's request bit, the
5133 	 * correct TSC value must be set before the request.  However,
5134 	 * to ensure the update actually makes it to any guest which
5135 	 * starts running in hardware virtualization between the set
5136 	 * and the acquisition of the spinlock, we must also ping the
5137 	 * CPU after setting the request bit.
5138 	 *
5139 	 */
5140 
5141 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5142 		return 0;
5143 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5144 		return 0;
5145 
5146 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5147 
5148 	raw_spin_lock(&kvm_lock);
5149 	list_for_each_entry(kvm, &vm_list, vm_list) {
5150 		kvm_for_each_vcpu(i, vcpu, kvm) {
5151 			if (vcpu->cpu != freq->cpu)
5152 				continue;
5153 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5154 			if (vcpu->cpu != smp_processor_id())
5155 				send_ipi = 1;
5156 		}
5157 	}
5158 	raw_spin_unlock(&kvm_lock);
5159 
5160 	if (freq->old < freq->new && send_ipi) {
5161 		/*
5162 		 * We upscale the frequency.  Must make the guest
5163 		 * doesn't see old kvmclock values while running with
5164 		 * the new frequency, otherwise we risk the guest sees
5165 		 * time go backwards.
5166 		 *
5167 		 * In case we update the frequency for another cpu
5168 		 * (which might be in guest context) send an interrupt
5169 		 * to kick the cpu out of guest context.  Next time
5170 		 * guest context is entered kvmclock will be updated,
5171 		 * so the guest will not see stale values.
5172 		 */
5173 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5174 	}
5175 	return 0;
5176 }
5177 
5178 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5179 	.notifier_call  = kvmclock_cpufreq_notifier
5180 };
5181 
5182 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5183 					unsigned long action, void *hcpu)
5184 {
5185 	unsigned int cpu = (unsigned long)hcpu;
5186 
5187 	switch (action) {
5188 		case CPU_ONLINE:
5189 		case CPU_DOWN_FAILED:
5190 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5191 			break;
5192 		case CPU_DOWN_PREPARE:
5193 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5194 			break;
5195 	}
5196 	return NOTIFY_OK;
5197 }
5198 
5199 static struct notifier_block kvmclock_cpu_notifier_block = {
5200 	.notifier_call  = kvmclock_cpu_notifier,
5201 	.priority = -INT_MAX
5202 };
5203 
5204 static void kvm_timer_init(void)
5205 {
5206 	int cpu;
5207 
5208 	max_tsc_khz = tsc_khz;
5209 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5210 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5211 #ifdef CONFIG_CPU_FREQ
5212 		struct cpufreq_policy policy;
5213 		memset(&policy, 0, sizeof(policy));
5214 		cpu = get_cpu();
5215 		cpufreq_get_policy(&policy, cpu);
5216 		if (policy.cpuinfo.max_freq)
5217 			max_tsc_khz = policy.cpuinfo.max_freq;
5218 		put_cpu();
5219 #endif
5220 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5221 					  CPUFREQ_TRANSITION_NOTIFIER);
5222 	}
5223 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5224 	for_each_online_cpu(cpu)
5225 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5226 }
5227 
5228 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5229 
5230 int kvm_is_in_guest(void)
5231 {
5232 	return __this_cpu_read(current_vcpu) != NULL;
5233 }
5234 
5235 static int kvm_is_user_mode(void)
5236 {
5237 	int user_mode = 3;
5238 
5239 	if (__this_cpu_read(current_vcpu))
5240 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5241 
5242 	return user_mode != 0;
5243 }
5244 
5245 static unsigned long kvm_get_guest_ip(void)
5246 {
5247 	unsigned long ip = 0;
5248 
5249 	if (__this_cpu_read(current_vcpu))
5250 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5251 
5252 	return ip;
5253 }
5254 
5255 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5256 	.is_in_guest		= kvm_is_in_guest,
5257 	.is_user_mode		= kvm_is_user_mode,
5258 	.get_guest_ip		= kvm_get_guest_ip,
5259 };
5260 
5261 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5262 {
5263 	__this_cpu_write(current_vcpu, vcpu);
5264 }
5265 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5266 
5267 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5268 {
5269 	__this_cpu_write(current_vcpu, NULL);
5270 }
5271 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5272 
5273 static void kvm_set_mmio_spte_mask(void)
5274 {
5275 	u64 mask;
5276 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5277 
5278 	/*
5279 	 * Set the reserved bits and the present bit of an paging-structure
5280 	 * entry to generate page fault with PFER.RSV = 1.
5281 	 */
5282 	 /* Mask the reserved physical address bits. */
5283 	mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5284 
5285 	/* Bit 62 is always reserved for 32bit host. */
5286 	mask |= 0x3ull << 62;
5287 
5288 	/* Set the present bit. */
5289 	mask |= 1ull;
5290 
5291 #ifdef CONFIG_X86_64
5292 	/*
5293 	 * If reserved bit is not supported, clear the present bit to disable
5294 	 * mmio page fault.
5295 	 */
5296 	if (maxphyaddr == 52)
5297 		mask &= ~1ull;
5298 #endif
5299 
5300 	kvm_mmu_set_mmio_spte_mask(mask);
5301 }
5302 
5303 #ifdef CONFIG_X86_64
5304 static void pvclock_gtod_update_fn(struct work_struct *work)
5305 {
5306 	struct kvm *kvm;
5307 
5308 	struct kvm_vcpu *vcpu;
5309 	int i;
5310 
5311 	raw_spin_lock(&kvm_lock);
5312 	list_for_each_entry(kvm, &vm_list, vm_list)
5313 		kvm_for_each_vcpu(i, vcpu, kvm)
5314 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5315 	atomic_set(&kvm_guest_has_master_clock, 0);
5316 	raw_spin_unlock(&kvm_lock);
5317 }
5318 
5319 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5320 
5321 /*
5322  * Notification about pvclock gtod data update.
5323  */
5324 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5325 			       void *priv)
5326 {
5327 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5328 	struct timekeeper *tk = priv;
5329 
5330 	update_pvclock_gtod(tk);
5331 
5332 	/* disable master clock if host does not trust, or does not
5333 	 * use, TSC clocksource
5334 	 */
5335 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5336 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5337 		queue_work(system_long_wq, &pvclock_gtod_work);
5338 
5339 	return 0;
5340 }
5341 
5342 static struct notifier_block pvclock_gtod_notifier = {
5343 	.notifier_call = pvclock_gtod_notify,
5344 };
5345 #endif
5346 
5347 int kvm_arch_init(void *opaque)
5348 {
5349 	int r;
5350 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5351 
5352 	if (kvm_x86_ops) {
5353 		printk(KERN_ERR "kvm: already loaded the other module\n");
5354 		r = -EEXIST;
5355 		goto out;
5356 	}
5357 
5358 	if (!ops->cpu_has_kvm_support()) {
5359 		printk(KERN_ERR "kvm: no hardware support\n");
5360 		r = -EOPNOTSUPP;
5361 		goto out;
5362 	}
5363 	if (ops->disabled_by_bios()) {
5364 		printk(KERN_ERR "kvm: disabled by bios\n");
5365 		r = -EOPNOTSUPP;
5366 		goto out;
5367 	}
5368 
5369 	r = -ENOMEM;
5370 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5371 	if (!shared_msrs) {
5372 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5373 		goto out;
5374 	}
5375 
5376 	r = kvm_mmu_module_init();
5377 	if (r)
5378 		goto out_free_percpu;
5379 
5380 	kvm_set_mmio_spte_mask();
5381 	kvm_init_msr_list();
5382 
5383 	kvm_x86_ops = ops;
5384 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5385 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5386 
5387 	kvm_timer_init();
5388 
5389 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5390 
5391 	if (cpu_has_xsave)
5392 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5393 
5394 	kvm_lapic_init();
5395 #ifdef CONFIG_X86_64
5396 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5397 #endif
5398 
5399 	return 0;
5400 
5401 out_free_percpu:
5402 	free_percpu(shared_msrs);
5403 out:
5404 	return r;
5405 }
5406 
5407 void kvm_arch_exit(void)
5408 {
5409 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5410 
5411 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5412 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5413 					    CPUFREQ_TRANSITION_NOTIFIER);
5414 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5415 #ifdef CONFIG_X86_64
5416 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5417 #endif
5418 	kvm_x86_ops = NULL;
5419 	kvm_mmu_module_exit();
5420 	free_percpu(shared_msrs);
5421 }
5422 
5423 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5424 {
5425 	++vcpu->stat.halt_exits;
5426 	if (irqchip_in_kernel(vcpu->kvm)) {
5427 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5428 		return 1;
5429 	} else {
5430 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5431 		return 0;
5432 	}
5433 }
5434 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5435 
5436 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5437 {
5438 	u64 param, ingpa, outgpa, ret;
5439 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5440 	bool fast, longmode;
5441 	int cs_db, cs_l;
5442 
5443 	/*
5444 	 * hypercall generates UD from non zero cpl and real mode
5445 	 * per HYPER-V spec
5446 	 */
5447 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5448 		kvm_queue_exception(vcpu, UD_VECTOR);
5449 		return 0;
5450 	}
5451 
5452 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5453 	longmode = is_long_mode(vcpu) && cs_l == 1;
5454 
5455 	if (!longmode) {
5456 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5457 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5458 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5459 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5460 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5461 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5462 	}
5463 #ifdef CONFIG_X86_64
5464 	else {
5465 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5466 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5467 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5468 	}
5469 #endif
5470 
5471 	code = param & 0xffff;
5472 	fast = (param >> 16) & 0x1;
5473 	rep_cnt = (param >> 32) & 0xfff;
5474 	rep_idx = (param >> 48) & 0xfff;
5475 
5476 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5477 
5478 	switch (code) {
5479 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5480 		kvm_vcpu_on_spin(vcpu);
5481 		break;
5482 	default:
5483 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5484 		break;
5485 	}
5486 
5487 	ret = res | (((u64)rep_done & 0xfff) << 32);
5488 	if (longmode) {
5489 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5490 	} else {
5491 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5492 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5493 	}
5494 
5495 	return 1;
5496 }
5497 
5498 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5499 {
5500 	unsigned long nr, a0, a1, a2, a3, ret;
5501 	int r = 1;
5502 
5503 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5504 		return kvm_hv_hypercall(vcpu);
5505 
5506 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5507 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5508 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5509 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5510 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5511 
5512 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5513 
5514 	if (!is_long_mode(vcpu)) {
5515 		nr &= 0xFFFFFFFF;
5516 		a0 &= 0xFFFFFFFF;
5517 		a1 &= 0xFFFFFFFF;
5518 		a2 &= 0xFFFFFFFF;
5519 		a3 &= 0xFFFFFFFF;
5520 	}
5521 
5522 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5523 		ret = -KVM_EPERM;
5524 		goto out;
5525 	}
5526 
5527 	switch (nr) {
5528 	case KVM_HC_VAPIC_POLL_IRQ:
5529 		ret = 0;
5530 		break;
5531 	default:
5532 		ret = -KVM_ENOSYS;
5533 		break;
5534 	}
5535 out:
5536 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5537 	++vcpu->stat.hypercalls;
5538 	return r;
5539 }
5540 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5541 
5542 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5543 {
5544 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5545 	char instruction[3];
5546 	unsigned long rip = kvm_rip_read(vcpu);
5547 
5548 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5549 
5550 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5551 }
5552 
5553 /*
5554  * Check if userspace requested an interrupt window, and that the
5555  * interrupt window is open.
5556  *
5557  * No need to exit to userspace if we already have an interrupt queued.
5558  */
5559 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5560 {
5561 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5562 		vcpu->run->request_interrupt_window &&
5563 		kvm_arch_interrupt_allowed(vcpu));
5564 }
5565 
5566 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5567 {
5568 	struct kvm_run *kvm_run = vcpu->run;
5569 
5570 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5571 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5572 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5573 	if (irqchip_in_kernel(vcpu->kvm))
5574 		kvm_run->ready_for_interrupt_injection = 1;
5575 	else
5576 		kvm_run->ready_for_interrupt_injection =
5577 			kvm_arch_interrupt_allowed(vcpu) &&
5578 			!kvm_cpu_has_interrupt(vcpu) &&
5579 			!kvm_event_needs_reinjection(vcpu);
5580 }
5581 
5582 static int vapic_enter(struct kvm_vcpu *vcpu)
5583 {
5584 	struct kvm_lapic *apic = vcpu->arch.apic;
5585 	struct page *page;
5586 
5587 	if (!apic || !apic->vapic_addr)
5588 		return 0;
5589 
5590 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5591 	if (is_error_page(page))
5592 		return -EFAULT;
5593 
5594 	vcpu->arch.apic->vapic_page = page;
5595 	return 0;
5596 }
5597 
5598 static void vapic_exit(struct kvm_vcpu *vcpu)
5599 {
5600 	struct kvm_lapic *apic = vcpu->arch.apic;
5601 	int idx;
5602 
5603 	if (!apic || !apic->vapic_addr)
5604 		return;
5605 
5606 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5607 	kvm_release_page_dirty(apic->vapic_page);
5608 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5609 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5610 }
5611 
5612 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5613 {
5614 	int max_irr, tpr;
5615 
5616 	if (!kvm_x86_ops->update_cr8_intercept)
5617 		return;
5618 
5619 	if (!vcpu->arch.apic)
5620 		return;
5621 
5622 	if (!vcpu->arch.apic->vapic_addr)
5623 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5624 	else
5625 		max_irr = -1;
5626 
5627 	if (max_irr != -1)
5628 		max_irr >>= 4;
5629 
5630 	tpr = kvm_lapic_get_cr8(vcpu);
5631 
5632 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5633 }
5634 
5635 static void inject_pending_event(struct kvm_vcpu *vcpu)
5636 {
5637 	/* try to reinject previous events if any */
5638 	if (vcpu->arch.exception.pending) {
5639 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5640 					vcpu->arch.exception.has_error_code,
5641 					vcpu->arch.exception.error_code);
5642 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5643 					  vcpu->arch.exception.has_error_code,
5644 					  vcpu->arch.exception.error_code,
5645 					  vcpu->arch.exception.reinject);
5646 		return;
5647 	}
5648 
5649 	if (vcpu->arch.nmi_injected) {
5650 		kvm_x86_ops->set_nmi(vcpu);
5651 		return;
5652 	}
5653 
5654 	if (vcpu->arch.interrupt.pending) {
5655 		kvm_x86_ops->set_irq(vcpu);
5656 		return;
5657 	}
5658 
5659 	/* try to inject new event if pending */
5660 	if (vcpu->arch.nmi_pending) {
5661 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5662 			--vcpu->arch.nmi_pending;
5663 			vcpu->arch.nmi_injected = true;
5664 			kvm_x86_ops->set_nmi(vcpu);
5665 		}
5666 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5667 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5668 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5669 					    false);
5670 			kvm_x86_ops->set_irq(vcpu);
5671 		}
5672 	}
5673 }
5674 
5675 static void process_nmi(struct kvm_vcpu *vcpu)
5676 {
5677 	unsigned limit = 2;
5678 
5679 	/*
5680 	 * x86 is limited to one NMI running, and one NMI pending after it.
5681 	 * If an NMI is already in progress, limit further NMIs to just one.
5682 	 * Otherwise, allow two (and we'll inject the first one immediately).
5683 	 */
5684 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5685 		limit = 1;
5686 
5687 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5688 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5689 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5690 }
5691 
5692 static void kvm_gen_update_masterclock(struct kvm *kvm)
5693 {
5694 #ifdef CONFIG_X86_64
5695 	int i;
5696 	struct kvm_vcpu *vcpu;
5697 	struct kvm_arch *ka = &kvm->arch;
5698 
5699 	spin_lock(&ka->pvclock_gtod_sync_lock);
5700 	kvm_make_mclock_inprogress_request(kvm);
5701 	/* no guest entries from this point */
5702 	pvclock_update_vm_gtod_copy(kvm);
5703 
5704 	kvm_for_each_vcpu(i, vcpu, kvm)
5705 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5706 
5707 	/* guest entries allowed */
5708 	kvm_for_each_vcpu(i, vcpu, kvm)
5709 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5710 
5711 	spin_unlock(&ka->pvclock_gtod_sync_lock);
5712 #endif
5713 }
5714 
5715 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5716 {
5717 	u64 eoi_exit_bitmap[4];
5718 	u32 tmr[8];
5719 
5720 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5721 		return;
5722 
5723 	memset(eoi_exit_bitmap, 0, 32);
5724 	memset(tmr, 0, 32);
5725 
5726 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5727 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5728 	kvm_apic_update_tmr(vcpu, tmr);
5729 }
5730 
5731 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5732 {
5733 	int r;
5734 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5735 		vcpu->run->request_interrupt_window;
5736 	bool req_immediate_exit = false;
5737 
5738 	if (vcpu->requests) {
5739 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5740 			kvm_mmu_unload(vcpu);
5741 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5742 			__kvm_migrate_timers(vcpu);
5743 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5744 			kvm_gen_update_masterclock(vcpu->kvm);
5745 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5746 			kvm_gen_kvmclock_update(vcpu);
5747 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5748 			r = kvm_guest_time_update(vcpu);
5749 			if (unlikely(r))
5750 				goto out;
5751 		}
5752 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5753 			kvm_mmu_sync_roots(vcpu);
5754 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5755 			kvm_x86_ops->tlb_flush(vcpu);
5756 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5757 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5758 			r = 0;
5759 			goto out;
5760 		}
5761 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5762 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5763 			r = 0;
5764 			goto out;
5765 		}
5766 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5767 			vcpu->fpu_active = 0;
5768 			kvm_x86_ops->fpu_deactivate(vcpu);
5769 		}
5770 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5771 			/* Page is swapped out. Do synthetic halt */
5772 			vcpu->arch.apf.halted = true;
5773 			r = 1;
5774 			goto out;
5775 		}
5776 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5777 			record_steal_time(vcpu);
5778 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5779 			process_nmi(vcpu);
5780 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5781 			kvm_handle_pmu_event(vcpu);
5782 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5783 			kvm_deliver_pmi(vcpu);
5784 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5785 			vcpu_scan_ioapic(vcpu);
5786 	}
5787 
5788 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5789 		kvm_apic_accept_events(vcpu);
5790 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5791 			r = 1;
5792 			goto out;
5793 		}
5794 
5795 		inject_pending_event(vcpu);
5796 
5797 		/* enable NMI/IRQ window open exits if needed */
5798 		if (vcpu->arch.nmi_pending)
5799 			req_immediate_exit =
5800 				kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5801 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5802 			req_immediate_exit =
5803 				kvm_x86_ops->enable_irq_window(vcpu) != 0;
5804 
5805 		if (kvm_lapic_enabled(vcpu)) {
5806 			/*
5807 			 * Update architecture specific hints for APIC
5808 			 * virtual interrupt delivery.
5809 			 */
5810 			if (kvm_x86_ops->hwapic_irr_update)
5811 				kvm_x86_ops->hwapic_irr_update(vcpu,
5812 					kvm_lapic_find_highest_irr(vcpu));
5813 			update_cr8_intercept(vcpu);
5814 			kvm_lapic_sync_to_vapic(vcpu);
5815 		}
5816 	}
5817 
5818 	r = kvm_mmu_reload(vcpu);
5819 	if (unlikely(r)) {
5820 		goto cancel_injection;
5821 	}
5822 
5823 	preempt_disable();
5824 
5825 	kvm_x86_ops->prepare_guest_switch(vcpu);
5826 	if (vcpu->fpu_active)
5827 		kvm_load_guest_fpu(vcpu);
5828 	kvm_load_guest_xcr0(vcpu);
5829 
5830 	vcpu->mode = IN_GUEST_MODE;
5831 
5832 	/* We should set ->mode before check ->requests,
5833 	 * see the comment in make_all_cpus_request.
5834 	 */
5835 	smp_mb();
5836 
5837 	local_irq_disable();
5838 
5839 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5840 	    || need_resched() || signal_pending(current)) {
5841 		vcpu->mode = OUTSIDE_GUEST_MODE;
5842 		smp_wmb();
5843 		local_irq_enable();
5844 		preempt_enable();
5845 		r = 1;
5846 		goto cancel_injection;
5847 	}
5848 
5849 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5850 
5851 	if (req_immediate_exit)
5852 		smp_send_reschedule(vcpu->cpu);
5853 
5854 	kvm_guest_enter();
5855 
5856 	if (unlikely(vcpu->arch.switch_db_regs)) {
5857 		set_debugreg(0, 7);
5858 		set_debugreg(vcpu->arch.eff_db[0], 0);
5859 		set_debugreg(vcpu->arch.eff_db[1], 1);
5860 		set_debugreg(vcpu->arch.eff_db[2], 2);
5861 		set_debugreg(vcpu->arch.eff_db[3], 3);
5862 	}
5863 
5864 	trace_kvm_entry(vcpu->vcpu_id);
5865 	kvm_x86_ops->run(vcpu);
5866 
5867 	/*
5868 	 * If the guest has used debug registers, at least dr7
5869 	 * will be disabled while returning to the host.
5870 	 * If we don't have active breakpoints in the host, we don't
5871 	 * care about the messed up debug address registers. But if
5872 	 * we have some of them active, restore the old state.
5873 	 */
5874 	if (hw_breakpoint_active())
5875 		hw_breakpoint_restore();
5876 
5877 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5878 							   native_read_tsc());
5879 
5880 	vcpu->mode = OUTSIDE_GUEST_MODE;
5881 	smp_wmb();
5882 
5883 	/* Interrupt is enabled by handle_external_intr() */
5884 	kvm_x86_ops->handle_external_intr(vcpu);
5885 
5886 	++vcpu->stat.exits;
5887 
5888 	/*
5889 	 * We must have an instruction between local_irq_enable() and
5890 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5891 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5892 	 * But we need to prevent reordering, hence this barrier():
5893 	 */
5894 	barrier();
5895 
5896 	kvm_guest_exit();
5897 
5898 	preempt_enable();
5899 
5900 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5901 
5902 	/*
5903 	 * Profile KVM exit RIPs:
5904 	 */
5905 	if (unlikely(prof_on == KVM_PROFILING)) {
5906 		unsigned long rip = kvm_rip_read(vcpu);
5907 		profile_hit(KVM_PROFILING, (void *)rip);
5908 	}
5909 
5910 	if (unlikely(vcpu->arch.tsc_always_catchup))
5911 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5912 
5913 	if (vcpu->arch.apic_attention)
5914 		kvm_lapic_sync_from_vapic(vcpu);
5915 
5916 	r = kvm_x86_ops->handle_exit(vcpu);
5917 	return r;
5918 
5919 cancel_injection:
5920 	kvm_x86_ops->cancel_injection(vcpu);
5921 	if (unlikely(vcpu->arch.apic_attention))
5922 		kvm_lapic_sync_from_vapic(vcpu);
5923 out:
5924 	return r;
5925 }
5926 
5927 
5928 static int __vcpu_run(struct kvm_vcpu *vcpu)
5929 {
5930 	int r;
5931 	struct kvm *kvm = vcpu->kvm;
5932 
5933 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5934 	r = vapic_enter(vcpu);
5935 	if (r) {
5936 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5937 		return r;
5938 	}
5939 
5940 	r = 1;
5941 	while (r > 0) {
5942 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5943 		    !vcpu->arch.apf.halted)
5944 			r = vcpu_enter_guest(vcpu);
5945 		else {
5946 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5947 			kvm_vcpu_block(vcpu);
5948 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5949 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5950 				kvm_apic_accept_events(vcpu);
5951 				switch(vcpu->arch.mp_state) {
5952 				case KVM_MP_STATE_HALTED:
5953 					vcpu->arch.mp_state =
5954 						KVM_MP_STATE_RUNNABLE;
5955 				case KVM_MP_STATE_RUNNABLE:
5956 					vcpu->arch.apf.halted = false;
5957 					break;
5958 				case KVM_MP_STATE_INIT_RECEIVED:
5959 					break;
5960 				default:
5961 					r = -EINTR;
5962 					break;
5963 				}
5964 			}
5965 		}
5966 
5967 		if (r <= 0)
5968 			break;
5969 
5970 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5971 		if (kvm_cpu_has_pending_timer(vcpu))
5972 			kvm_inject_pending_timer_irqs(vcpu);
5973 
5974 		if (dm_request_for_irq_injection(vcpu)) {
5975 			r = -EINTR;
5976 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5977 			++vcpu->stat.request_irq_exits;
5978 		}
5979 
5980 		kvm_check_async_pf_completion(vcpu);
5981 
5982 		if (signal_pending(current)) {
5983 			r = -EINTR;
5984 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5985 			++vcpu->stat.signal_exits;
5986 		}
5987 		if (need_resched()) {
5988 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5989 			kvm_resched(vcpu);
5990 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5991 		}
5992 	}
5993 
5994 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5995 
5996 	vapic_exit(vcpu);
5997 
5998 	return r;
5999 }
6000 
6001 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6002 {
6003 	int r;
6004 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6005 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6006 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6007 	if (r != EMULATE_DONE)
6008 		return 0;
6009 	return 1;
6010 }
6011 
6012 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6013 {
6014 	BUG_ON(!vcpu->arch.pio.count);
6015 
6016 	return complete_emulated_io(vcpu);
6017 }
6018 
6019 /*
6020  * Implements the following, as a state machine:
6021  *
6022  * read:
6023  *   for each fragment
6024  *     for each mmio piece in the fragment
6025  *       write gpa, len
6026  *       exit
6027  *       copy data
6028  *   execute insn
6029  *
6030  * write:
6031  *   for each fragment
6032  *     for each mmio piece in the fragment
6033  *       write gpa, len
6034  *       copy data
6035  *       exit
6036  */
6037 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6038 {
6039 	struct kvm_run *run = vcpu->run;
6040 	struct kvm_mmio_fragment *frag;
6041 	unsigned len;
6042 
6043 	BUG_ON(!vcpu->mmio_needed);
6044 
6045 	/* Complete previous fragment */
6046 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6047 	len = min(8u, frag->len);
6048 	if (!vcpu->mmio_is_write)
6049 		memcpy(frag->data, run->mmio.data, len);
6050 
6051 	if (frag->len <= 8) {
6052 		/* Switch to the next fragment. */
6053 		frag++;
6054 		vcpu->mmio_cur_fragment++;
6055 	} else {
6056 		/* Go forward to the next mmio piece. */
6057 		frag->data += len;
6058 		frag->gpa += len;
6059 		frag->len -= len;
6060 	}
6061 
6062 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6063 		vcpu->mmio_needed = 0;
6064 		if (vcpu->mmio_is_write)
6065 			return 1;
6066 		vcpu->mmio_read_completed = 1;
6067 		return complete_emulated_io(vcpu);
6068 	}
6069 
6070 	run->exit_reason = KVM_EXIT_MMIO;
6071 	run->mmio.phys_addr = frag->gpa;
6072 	if (vcpu->mmio_is_write)
6073 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6074 	run->mmio.len = min(8u, frag->len);
6075 	run->mmio.is_write = vcpu->mmio_is_write;
6076 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6077 	return 0;
6078 }
6079 
6080 
6081 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6082 {
6083 	int r;
6084 	sigset_t sigsaved;
6085 
6086 	if (!tsk_used_math(current) && init_fpu(current))
6087 		return -ENOMEM;
6088 
6089 	if (vcpu->sigset_active)
6090 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6091 
6092 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6093 		kvm_vcpu_block(vcpu);
6094 		kvm_apic_accept_events(vcpu);
6095 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6096 		r = -EAGAIN;
6097 		goto out;
6098 	}
6099 
6100 	/* re-sync apic's tpr */
6101 	if (!irqchip_in_kernel(vcpu->kvm)) {
6102 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6103 			r = -EINVAL;
6104 			goto out;
6105 		}
6106 	}
6107 
6108 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6109 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6110 		vcpu->arch.complete_userspace_io = NULL;
6111 		r = cui(vcpu);
6112 		if (r <= 0)
6113 			goto out;
6114 	} else
6115 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6116 
6117 	r = __vcpu_run(vcpu);
6118 
6119 out:
6120 	post_kvm_run_save(vcpu);
6121 	if (vcpu->sigset_active)
6122 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6123 
6124 	return r;
6125 }
6126 
6127 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6128 {
6129 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6130 		/*
6131 		 * We are here if userspace calls get_regs() in the middle of
6132 		 * instruction emulation. Registers state needs to be copied
6133 		 * back from emulation context to vcpu. Userspace shouldn't do
6134 		 * that usually, but some bad designed PV devices (vmware
6135 		 * backdoor interface) need this to work
6136 		 */
6137 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6138 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6139 	}
6140 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6141 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6142 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6143 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6144 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6145 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6146 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6147 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6148 #ifdef CONFIG_X86_64
6149 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6150 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6151 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6152 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6153 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6154 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6155 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6156 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6157 #endif
6158 
6159 	regs->rip = kvm_rip_read(vcpu);
6160 	regs->rflags = kvm_get_rflags(vcpu);
6161 
6162 	return 0;
6163 }
6164 
6165 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6166 {
6167 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6168 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6169 
6170 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6171 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6172 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6173 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6174 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6175 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6176 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6177 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6178 #ifdef CONFIG_X86_64
6179 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6180 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6181 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6182 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6183 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6184 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6185 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6186 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6187 #endif
6188 
6189 	kvm_rip_write(vcpu, regs->rip);
6190 	kvm_set_rflags(vcpu, regs->rflags);
6191 
6192 	vcpu->arch.exception.pending = false;
6193 
6194 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6195 
6196 	return 0;
6197 }
6198 
6199 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6200 {
6201 	struct kvm_segment cs;
6202 
6203 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6204 	*db = cs.db;
6205 	*l = cs.l;
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6208 
6209 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6210 				  struct kvm_sregs *sregs)
6211 {
6212 	struct desc_ptr dt;
6213 
6214 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6215 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6216 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6217 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6218 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6219 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6220 
6221 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6222 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6223 
6224 	kvm_x86_ops->get_idt(vcpu, &dt);
6225 	sregs->idt.limit = dt.size;
6226 	sregs->idt.base = dt.address;
6227 	kvm_x86_ops->get_gdt(vcpu, &dt);
6228 	sregs->gdt.limit = dt.size;
6229 	sregs->gdt.base = dt.address;
6230 
6231 	sregs->cr0 = kvm_read_cr0(vcpu);
6232 	sregs->cr2 = vcpu->arch.cr2;
6233 	sregs->cr3 = kvm_read_cr3(vcpu);
6234 	sregs->cr4 = kvm_read_cr4(vcpu);
6235 	sregs->cr8 = kvm_get_cr8(vcpu);
6236 	sregs->efer = vcpu->arch.efer;
6237 	sregs->apic_base = kvm_get_apic_base(vcpu);
6238 
6239 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6240 
6241 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6242 		set_bit(vcpu->arch.interrupt.nr,
6243 			(unsigned long *)sregs->interrupt_bitmap);
6244 
6245 	return 0;
6246 }
6247 
6248 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6249 				    struct kvm_mp_state *mp_state)
6250 {
6251 	kvm_apic_accept_events(vcpu);
6252 	mp_state->mp_state = vcpu->arch.mp_state;
6253 	return 0;
6254 }
6255 
6256 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6257 				    struct kvm_mp_state *mp_state)
6258 {
6259 	if (!kvm_vcpu_has_lapic(vcpu) &&
6260 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6261 		return -EINVAL;
6262 
6263 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6264 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6265 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6266 	} else
6267 		vcpu->arch.mp_state = mp_state->mp_state;
6268 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6269 	return 0;
6270 }
6271 
6272 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6273 		    int reason, bool has_error_code, u32 error_code)
6274 {
6275 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6276 	int ret;
6277 
6278 	init_emulate_ctxt(vcpu);
6279 
6280 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6281 				   has_error_code, error_code);
6282 
6283 	if (ret)
6284 		return EMULATE_FAIL;
6285 
6286 	kvm_rip_write(vcpu, ctxt->eip);
6287 	kvm_set_rflags(vcpu, ctxt->eflags);
6288 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6289 	return EMULATE_DONE;
6290 }
6291 EXPORT_SYMBOL_GPL(kvm_task_switch);
6292 
6293 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6294 				  struct kvm_sregs *sregs)
6295 {
6296 	int mmu_reset_needed = 0;
6297 	int pending_vec, max_bits, idx;
6298 	struct desc_ptr dt;
6299 
6300 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6301 		return -EINVAL;
6302 
6303 	dt.size = sregs->idt.limit;
6304 	dt.address = sregs->idt.base;
6305 	kvm_x86_ops->set_idt(vcpu, &dt);
6306 	dt.size = sregs->gdt.limit;
6307 	dt.address = sregs->gdt.base;
6308 	kvm_x86_ops->set_gdt(vcpu, &dt);
6309 
6310 	vcpu->arch.cr2 = sregs->cr2;
6311 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6312 	vcpu->arch.cr3 = sregs->cr3;
6313 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6314 
6315 	kvm_set_cr8(vcpu, sregs->cr8);
6316 
6317 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6318 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6319 	kvm_set_apic_base(vcpu, sregs->apic_base);
6320 
6321 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6322 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6323 	vcpu->arch.cr0 = sregs->cr0;
6324 
6325 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6326 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6327 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6328 		kvm_update_cpuid(vcpu);
6329 
6330 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6331 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6332 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6333 		mmu_reset_needed = 1;
6334 	}
6335 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6336 
6337 	if (mmu_reset_needed)
6338 		kvm_mmu_reset_context(vcpu);
6339 
6340 	max_bits = KVM_NR_INTERRUPTS;
6341 	pending_vec = find_first_bit(
6342 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6343 	if (pending_vec < max_bits) {
6344 		kvm_queue_interrupt(vcpu, pending_vec, false);
6345 		pr_debug("Set back pending irq %d\n", pending_vec);
6346 	}
6347 
6348 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6349 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6350 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6351 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6352 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6353 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6354 
6355 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6356 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6357 
6358 	update_cr8_intercept(vcpu);
6359 
6360 	/* Older userspace won't unhalt the vcpu on reset. */
6361 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6362 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6363 	    !is_protmode(vcpu))
6364 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6365 
6366 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6367 
6368 	return 0;
6369 }
6370 
6371 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6372 					struct kvm_guest_debug *dbg)
6373 {
6374 	unsigned long rflags;
6375 	int i, r;
6376 
6377 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6378 		r = -EBUSY;
6379 		if (vcpu->arch.exception.pending)
6380 			goto out;
6381 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6382 			kvm_queue_exception(vcpu, DB_VECTOR);
6383 		else
6384 			kvm_queue_exception(vcpu, BP_VECTOR);
6385 	}
6386 
6387 	/*
6388 	 * Read rflags as long as potentially injected trace flags are still
6389 	 * filtered out.
6390 	 */
6391 	rflags = kvm_get_rflags(vcpu);
6392 
6393 	vcpu->guest_debug = dbg->control;
6394 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6395 		vcpu->guest_debug = 0;
6396 
6397 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6398 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6399 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6400 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6401 	} else {
6402 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6403 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6404 	}
6405 	kvm_update_dr7(vcpu);
6406 
6407 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6408 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6409 			get_segment_base(vcpu, VCPU_SREG_CS);
6410 
6411 	/*
6412 	 * Trigger an rflags update that will inject or remove the trace
6413 	 * flags.
6414 	 */
6415 	kvm_set_rflags(vcpu, rflags);
6416 
6417 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6418 
6419 	r = 0;
6420 
6421 out:
6422 
6423 	return r;
6424 }
6425 
6426 /*
6427  * Translate a guest virtual address to a guest physical address.
6428  */
6429 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6430 				    struct kvm_translation *tr)
6431 {
6432 	unsigned long vaddr = tr->linear_address;
6433 	gpa_t gpa;
6434 	int idx;
6435 
6436 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6437 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6438 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6439 	tr->physical_address = gpa;
6440 	tr->valid = gpa != UNMAPPED_GVA;
6441 	tr->writeable = 1;
6442 	tr->usermode = 0;
6443 
6444 	return 0;
6445 }
6446 
6447 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6448 {
6449 	struct i387_fxsave_struct *fxsave =
6450 			&vcpu->arch.guest_fpu.state->fxsave;
6451 
6452 	memcpy(fpu->fpr, fxsave->st_space, 128);
6453 	fpu->fcw = fxsave->cwd;
6454 	fpu->fsw = fxsave->swd;
6455 	fpu->ftwx = fxsave->twd;
6456 	fpu->last_opcode = fxsave->fop;
6457 	fpu->last_ip = fxsave->rip;
6458 	fpu->last_dp = fxsave->rdp;
6459 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6460 
6461 	return 0;
6462 }
6463 
6464 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6465 {
6466 	struct i387_fxsave_struct *fxsave =
6467 			&vcpu->arch.guest_fpu.state->fxsave;
6468 
6469 	memcpy(fxsave->st_space, fpu->fpr, 128);
6470 	fxsave->cwd = fpu->fcw;
6471 	fxsave->swd = fpu->fsw;
6472 	fxsave->twd = fpu->ftwx;
6473 	fxsave->fop = fpu->last_opcode;
6474 	fxsave->rip = fpu->last_ip;
6475 	fxsave->rdp = fpu->last_dp;
6476 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6477 
6478 	return 0;
6479 }
6480 
6481 int fx_init(struct kvm_vcpu *vcpu)
6482 {
6483 	int err;
6484 
6485 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6486 	if (err)
6487 		return err;
6488 
6489 	fpu_finit(&vcpu->arch.guest_fpu);
6490 
6491 	/*
6492 	 * Ensure guest xcr0 is valid for loading
6493 	 */
6494 	vcpu->arch.xcr0 = XSTATE_FP;
6495 
6496 	vcpu->arch.cr0 |= X86_CR0_ET;
6497 
6498 	return 0;
6499 }
6500 EXPORT_SYMBOL_GPL(fx_init);
6501 
6502 static void fx_free(struct kvm_vcpu *vcpu)
6503 {
6504 	fpu_free(&vcpu->arch.guest_fpu);
6505 }
6506 
6507 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6508 {
6509 	if (vcpu->guest_fpu_loaded)
6510 		return;
6511 
6512 	/*
6513 	 * Restore all possible states in the guest,
6514 	 * and assume host would use all available bits.
6515 	 * Guest xcr0 would be loaded later.
6516 	 */
6517 	kvm_put_guest_xcr0(vcpu);
6518 	vcpu->guest_fpu_loaded = 1;
6519 	__kernel_fpu_begin();
6520 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6521 	trace_kvm_fpu(1);
6522 }
6523 
6524 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6525 {
6526 	kvm_put_guest_xcr0(vcpu);
6527 
6528 	if (!vcpu->guest_fpu_loaded)
6529 		return;
6530 
6531 	vcpu->guest_fpu_loaded = 0;
6532 	fpu_save_init(&vcpu->arch.guest_fpu);
6533 	__kernel_fpu_end();
6534 	++vcpu->stat.fpu_reload;
6535 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6536 	trace_kvm_fpu(0);
6537 }
6538 
6539 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6540 {
6541 	kvmclock_reset(vcpu);
6542 
6543 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6544 	fx_free(vcpu);
6545 	kvm_x86_ops->vcpu_free(vcpu);
6546 }
6547 
6548 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6549 						unsigned int id)
6550 {
6551 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6552 		printk_once(KERN_WARNING
6553 		"kvm: SMP vm created on host with unstable TSC; "
6554 		"guest TSC will not be reliable\n");
6555 	return kvm_x86_ops->vcpu_create(kvm, id);
6556 }
6557 
6558 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6559 {
6560 	int r;
6561 
6562 	vcpu->arch.mtrr_state.have_fixed = 1;
6563 	r = vcpu_load(vcpu);
6564 	if (r)
6565 		return r;
6566 	kvm_vcpu_reset(vcpu);
6567 	r = kvm_mmu_setup(vcpu);
6568 	vcpu_put(vcpu);
6569 
6570 	return r;
6571 }
6572 
6573 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6574 {
6575 	int r;
6576 	struct msr_data msr;
6577 
6578 	r = vcpu_load(vcpu);
6579 	if (r)
6580 		return r;
6581 	msr.data = 0x0;
6582 	msr.index = MSR_IA32_TSC;
6583 	msr.host_initiated = true;
6584 	kvm_write_tsc(vcpu, &msr);
6585 	vcpu_put(vcpu);
6586 
6587 	return r;
6588 }
6589 
6590 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6591 {
6592 	int r;
6593 	vcpu->arch.apf.msr_val = 0;
6594 
6595 	r = vcpu_load(vcpu);
6596 	BUG_ON(r);
6597 	kvm_mmu_unload(vcpu);
6598 	vcpu_put(vcpu);
6599 
6600 	fx_free(vcpu);
6601 	kvm_x86_ops->vcpu_free(vcpu);
6602 }
6603 
6604 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6605 {
6606 	atomic_set(&vcpu->arch.nmi_queued, 0);
6607 	vcpu->arch.nmi_pending = 0;
6608 	vcpu->arch.nmi_injected = false;
6609 
6610 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6611 	vcpu->arch.dr6 = DR6_FIXED_1;
6612 	vcpu->arch.dr7 = DR7_FIXED_1;
6613 	kvm_update_dr7(vcpu);
6614 
6615 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6616 	vcpu->arch.apf.msr_val = 0;
6617 	vcpu->arch.st.msr_val = 0;
6618 
6619 	kvmclock_reset(vcpu);
6620 
6621 	kvm_clear_async_pf_completion_queue(vcpu);
6622 	kvm_async_pf_hash_reset(vcpu);
6623 	vcpu->arch.apf.halted = false;
6624 
6625 	kvm_pmu_reset(vcpu);
6626 
6627 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6628 	vcpu->arch.regs_avail = ~0;
6629 	vcpu->arch.regs_dirty = ~0;
6630 
6631 	kvm_x86_ops->vcpu_reset(vcpu);
6632 }
6633 
6634 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6635 {
6636 	struct kvm_segment cs;
6637 
6638 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6639 	cs.selector = vector << 8;
6640 	cs.base = vector << 12;
6641 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6642 	kvm_rip_write(vcpu, 0);
6643 }
6644 
6645 int kvm_arch_hardware_enable(void *garbage)
6646 {
6647 	struct kvm *kvm;
6648 	struct kvm_vcpu *vcpu;
6649 	int i;
6650 	int ret;
6651 	u64 local_tsc;
6652 	u64 max_tsc = 0;
6653 	bool stable, backwards_tsc = false;
6654 
6655 	kvm_shared_msr_cpu_online();
6656 	ret = kvm_x86_ops->hardware_enable(garbage);
6657 	if (ret != 0)
6658 		return ret;
6659 
6660 	local_tsc = native_read_tsc();
6661 	stable = !check_tsc_unstable();
6662 	list_for_each_entry(kvm, &vm_list, vm_list) {
6663 		kvm_for_each_vcpu(i, vcpu, kvm) {
6664 			if (!stable && vcpu->cpu == smp_processor_id())
6665 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6666 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6667 				backwards_tsc = true;
6668 				if (vcpu->arch.last_host_tsc > max_tsc)
6669 					max_tsc = vcpu->arch.last_host_tsc;
6670 			}
6671 		}
6672 	}
6673 
6674 	/*
6675 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6676 	 * platforms that reset TSC during suspend or hibernate actions, but
6677 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6678 	 * detect that condition here, which happens early in CPU bringup,
6679 	 * before any KVM threads can be running.  Unfortunately, we can't
6680 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6681 	 * enough into CPU bringup that we know how much real time has actually
6682 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6683 	 * variables that haven't been updated yet.
6684 	 *
6685 	 * So we simply find the maximum observed TSC above, then record the
6686 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6687 	 * the adjustment will be applied.  Note that we accumulate
6688 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6689 	 * gets a chance to run again.  In the event that no KVM threads get a
6690 	 * chance to run, we will miss the entire elapsed period, as we'll have
6691 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6692 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6693 	 * uniform across all VCPUs (not to mention the scenario is extremely
6694 	 * unlikely). It is possible that a second hibernate recovery happens
6695 	 * much faster than a first, causing the observed TSC here to be
6696 	 * smaller; this would require additional padding adjustment, which is
6697 	 * why we set last_host_tsc to the local tsc observed here.
6698 	 *
6699 	 * N.B. - this code below runs only on platforms with reliable TSC,
6700 	 * as that is the only way backwards_tsc is set above.  Also note
6701 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6702 	 * have the same delta_cyc adjustment applied if backwards_tsc
6703 	 * is detected.  Note further, this adjustment is only done once,
6704 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6705 	 * called multiple times (one for each physical CPU bringup).
6706 	 *
6707 	 * Platforms with unreliable TSCs don't have to deal with this, they
6708 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6709 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6710 	 * guarantee that they stay in perfect synchronization.
6711 	 */
6712 	if (backwards_tsc) {
6713 		u64 delta_cyc = max_tsc - local_tsc;
6714 		list_for_each_entry(kvm, &vm_list, vm_list) {
6715 			kvm_for_each_vcpu(i, vcpu, kvm) {
6716 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6717 				vcpu->arch.last_host_tsc = local_tsc;
6718 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6719 					&vcpu->requests);
6720 			}
6721 
6722 			/*
6723 			 * We have to disable TSC offset matching.. if you were
6724 			 * booting a VM while issuing an S4 host suspend....
6725 			 * you may have some problem.  Solving this issue is
6726 			 * left as an exercise to the reader.
6727 			 */
6728 			kvm->arch.last_tsc_nsec = 0;
6729 			kvm->arch.last_tsc_write = 0;
6730 		}
6731 
6732 	}
6733 	return 0;
6734 }
6735 
6736 void kvm_arch_hardware_disable(void *garbage)
6737 {
6738 	kvm_x86_ops->hardware_disable(garbage);
6739 	drop_user_return_notifiers(garbage);
6740 }
6741 
6742 int kvm_arch_hardware_setup(void)
6743 {
6744 	return kvm_x86_ops->hardware_setup();
6745 }
6746 
6747 void kvm_arch_hardware_unsetup(void)
6748 {
6749 	kvm_x86_ops->hardware_unsetup();
6750 }
6751 
6752 void kvm_arch_check_processor_compat(void *rtn)
6753 {
6754 	kvm_x86_ops->check_processor_compatibility(rtn);
6755 }
6756 
6757 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6758 {
6759 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6760 }
6761 
6762 struct static_key kvm_no_apic_vcpu __read_mostly;
6763 
6764 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6765 {
6766 	struct page *page;
6767 	struct kvm *kvm;
6768 	int r;
6769 
6770 	BUG_ON(vcpu->kvm == NULL);
6771 	kvm = vcpu->kvm;
6772 
6773 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6774 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6775 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6776 	else
6777 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6778 
6779 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6780 	if (!page) {
6781 		r = -ENOMEM;
6782 		goto fail;
6783 	}
6784 	vcpu->arch.pio_data = page_address(page);
6785 
6786 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6787 
6788 	r = kvm_mmu_create(vcpu);
6789 	if (r < 0)
6790 		goto fail_free_pio_data;
6791 
6792 	if (irqchip_in_kernel(kvm)) {
6793 		r = kvm_create_lapic(vcpu);
6794 		if (r < 0)
6795 			goto fail_mmu_destroy;
6796 	} else
6797 		static_key_slow_inc(&kvm_no_apic_vcpu);
6798 
6799 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6800 				       GFP_KERNEL);
6801 	if (!vcpu->arch.mce_banks) {
6802 		r = -ENOMEM;
6803 		goto fail_free_lapic;
6804 	}
6805 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6806 
6807 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6808 		r = -ENOMEM;
6809 		goto fail_free_mce_banks;
6810 	}
6811 
6812 	r = fx_init(vcpu);
6813 	if (r)
6814 		goto fail_free_wbinvd_dirty_mask;
6815 
6816 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6817 	vcpu->arch.pv_time_enabled = false;
6818 	kvm_async_pf_hash_reset(vcpu);
6819 	kvm_pmu_init(vcpu);
6820 
6821 	return 0;
6822 fail_free_wbinvd_dirty_mask:
6823 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6824 fail_free_mce_banks:
6825 	kfree(vcpu->arch.mce_banks);
6826 fail_free_lapic:
6827 	kvm_free_lapic(vcpu);
6828 fail_mmu_destroy:
6829 	kvm_mmu_destroy(vcpu);
6830 fail_free_pio_data:
6831 	free_page((unsigned long)vcpu->arch.pio_data);
6832 fail:
6833 	return r;
6834 }
6835 
6836 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6837 {
6838 	int idx;
6839 
6840 	kvm_pmu_destroy(vcpu);
6841 	kfree(vcpu->arch.mce_banks);
6842 	kvm_free_lapic(vcpu);
6843 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6844 	kvm_mmu_destroy(vcpu);
6845 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6846 	free_page((unsigned long)vcpu->arch.pio_data);
6847 	if (!irqchip_in_kernel(vcpu->kvm))
6848 		static_key_slow_dec(&kvm_no_apic_vcpu);
6849 }
6850 
6851 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6852 {
6853 	if (type)
6854 		return -EINVAL;
6855 
6856 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6857 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6858 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6859 
6860 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6861 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6862 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6863 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6864 		&kvm->arch.irq_sources_bitmap);
6865 
6866 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6867 	mutex_init(&kvm->arch.apic_map_lock);
6868 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6869 
6870 	pvclock_update_vm_gtod_copy(kvm);
6871 
6872 	return 0;
6873 }
6874 
6875 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6876 {
6877 	int r;
6878 	r = vcpu_load(vcpu);
6879 	BUG_ON(r);
6880 	kvm_mmu_unload(vcpu);
6881 	vcpu_put(vcpu);
6882 }
6883 
6884 static void kvm_free_vcpus(struct kvm *kvm)
6885 {
6886 	unsigned int i;
6887 	struct kvm_vcpu *vcpu;
6888 
6889 	/*
6890 	 * Unpin any mmu pages first.
6891 	 */
6892 	kvm_for_each_vcpu(i, vcpu, kvm) {
6893 		kvm_clear_async_pf_completion_queue(vcpu);
6894 		kvm_unload_vcpu_mmu(vcpu);
6895 	}
6896 	kvm_for_each_vcpu(i, vcpu, kvm)
6897 		kvm_arch_vcpu_free(vcpu);
6898 
6899 	mutex_lock(&kvm->lock);
6900 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6901 		kvm->vcpus[i] = NULL;
6902 
6903 	atomic_set(&kvm->online_vcpus, 0);
6904 	mutex_unlock(&kvm->lock);
6905 }
6906 
6907 void kvm_arch_sync_events(struct kvm *kvm)
6908 {
6909 	kvm_free_all_assigned_devices(kvm);
6910 	kvm_free_pit(kvm);
6911 }
6912 
6913 void kvm_arch_destroy_vm(struct kvm *kvm)
6914 {
6915 	if (current->mm == kvm->mm) {
6916 		/*
6917 		 * Free memory regions allocated on behalf of userspace,
6918 		 * unless the the memory map has changed due to process exit
6919 		 * or fd copying.
6920 		 */
6921 		struct kvm_userspace_memory_region mem;
6922 		memset(&mem, 0, sizeof(mem));
6923 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6924 		kvm_set_memory_region(kvm, &mem);
6925 
6926 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6927 		kvm_set_memory_region(kvm, &mem);
6928 
6929 		mem.slot = TSS_PRIVATE_MEMSLOT;
6930 		kvm_set_memory_region(kvm, &mem);
6931 	}
6932 	kvm_iommu_unmap_guest(kvm);
6933 	kfree(kvm->arch.vpic);
6934 	kfree(kvm->arch.vioapic);
6935 	kvm_free_vcpus(kvm);
6936 	if (kvm->arch.apic_access_page)
6937 		put_page(kvm->arch.apic_access_page);
6938 	if (kvm->arch.ept_identity_pagetable)
6939 		put_page(kvm->arch.ept_identity_pagetable);
6940 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6941 }
6942 
6943 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6944 			   struct kvm_memory_slot *dont)
6945 {
6946 	int i;
6947 
6948 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6949 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6950 			kvm_kvfree(free->arch.rmap[i]);
6951 			free->arch.rmap[i] = NULL;
6952 		}
6953 		if (i == 0)
6954 			continue;
6955 
6956 		if (!dont || free->arch.lpage_info[i - 1] !=
6957 			     dont->arch.lpage_info[i - 1]) {
6958 			kvm_kvfree(free->arch.lpage_info[i - 1]);
6959 			free->arch.lpage_info[i - 1] = NULL;
6960 		}
6961 	}
6962 }
6963 
6964 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6965 {
6966 	int i;
6967 
6968 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969 		unsigned long ugfn;
6970 		int lpages;
6971 		int level = i + 1;
6972 
6973 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6974 				      slot->base_gfn, level) + 1;
6975 
6976 		slot->arch.rmap[i] =
6977 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6978 		if (!slot->arch.rmap[i])
6979 			goto out_free;
6980 		if (i == 0)
6981 			continue;
6982 
6983 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6984 					sizeof(*slot->arch.lpage_info[i - 1]));
6985 		if (!slot->arch.lpage_info[i - 1])
6986 			goto out_free;
6987 
6988 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6989 			slot->arch.lpage_info[i - 1][0].write_count = 1;
6990 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6991 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6992 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6993 		/*
6994 		 * If the gfn and userspace address are not aligned wrt each
6995 		 * other, or if explicitly asked to, disable large page
6996 		 * support for this slot
6997 		 */
6998 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6999 		    !kvm_largepages_enabled()) {
7000 			unsigned long j;
7001 
7002 			for (j = 0; j < lpages; ++j)
7003 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7004 		}
7005 	}
7006 
7007 	return 0;
7008 
7009 out_free:
7010 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7011 		kvm_kvfree(slot->arch.rmap[i]);
7012 		slot->arch.rmap[i] = NULL;
7013 		if (i == 0)
7014 			continue;
7015 
7016 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7017 		slot->arch.lpage_info[i - 1] = NULL;
7018 	}
7019 	return -ENOMEM;
7020 }
7021 
7022 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7023 				struct kvm_memory_slot *memslot,
7024 				struct kvm_userspace_memory_region *mem,
7025 				enum kvm_mr_change change)
7026 {
7027 	/*
7028 	 * Only private memory slots need to be mapped here since
7029 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7030 	 */
7031 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7032 		unsigned long userspace_addr;
7033 
7034 		/*
7035 		 * MAP_SHARED to prevent internal slot pages from being moved
7036 		 * by fork()/COW.
7037 		 */
7038 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7039 					 PROT_READ | PROT_WRITE,
7040 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7041 
7042 		if (IS_ERR((void *)userspace_addr))
7043 			return PTR_ERR((void *)userspace_addr);
7044 
7045 		memslot->userspace_addr = userspace_addr;
7046 	}
7047 
7048 	return 0;
7049 }
7050 
7051 void kvm_arch_commit_memory_region(struct kvm *kvm,
7052 				struct kvm_userspace_memory_region *mem,
7053 				const struct kvm_memory_slot *old,
7054 				enum kvm_mr_change change)
7055 {
7056 
7057 	int nr_mmu_pages = 0;
7058 
7059 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7060 		int ret;
7061 
7062 		ret = vm_munmap(old->userspace_addr,
7063 				old->npages * PAGE_SIZE);
7064 		if (ret < 0)
7065 			printk(KERN_WARNING
7066 			       "kvm_vm_ioctl_set_memory_region: "
7067 			       "failed to munmap memory\n");
7068 	}
7069 
7070 	if (!kvm->arch.n_requested_mmu_pages)
7071 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7072 
7073 	if (nr_mmu_pages)
7074 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7075 	/*
7076 	 * Write protect all pages for dirty logging.
7077 	 * Existing largepage mappings are destroyed here and new ones will
7078 	 * not be created until the end of the logging.
7079 	 */
7080 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7081 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7082 	/*
7083 	 * If memory slot is created, or moved, we need to clear all
7084 	 * mmio sptes.
7085 	 */
7086 	kvm_mmu_invalidate_mmio_sptes(kvm);
7087 }
7088 
7089 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7090 {
7091 	kvm_mmu_invalidate_zap_all_pages(kvm);
7092 }
7093 
7094 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7095 				   struct kvm_memory_slot *slot)
7096 {
7097 	kvm_mmu_invalidate_zap_all_pages(kvm);
7098 }
7099 
7100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7101 {
7102 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7103 		!vcpu->arch.apf.halted)
7104 		|| !list_empty_careful(&vcpu->async_pf.done)
7105 		|| kvm_apic_has_events(vcpu)
7106 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7107 		(kvm_arch_interrupt_allowed(vcpu) &&
7108 		 kvm_cpu_has_interrupt(vcpu));
7109 }
7110 
7111 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7112 {
7113 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7114 }
7115 
7116 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7117 {
7118 	return kvm_x86_ops->interrupt_allowed(vcpu);
7119 }
7120 
7121 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7122 {
7123 	unsigned long current_rip = kvm_rip_read(vcpu) +
7124 		get_segment_base(vcpu, VCPU_SREG_CS);
7125 
7126 	return current_rip == linear_rip;
7127 }
7128 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7129 
7130 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7131 {
7132 	unsigned long rflags;
7133 
7134 	rflags = kvm_x86_ops->get_rflags(vcpu);
7135 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7136 		rflags &= ~X86_EFLAGS_TF;
7137 	return rflags;
7138 }
7139 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7140 
7141 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7142 {
7143 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7144 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7145 		rflags |= X86_EFLAGS_TF;
7146 	kvm_x86_ops->set_rflags(vcpu, rflags);
7147 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7148 }
7149 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7150 
7151 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7152 {
7153 	int r;
7154 
7155 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7156 	      is_error_page(work->page))
7157 		return;
7158 
7159 	r = kvm_mmu_reload(vcpu);
7160 	if (unlikely(r))
7161 		return;
7162 
7163 	if (!vcpu->arch.mmu.direct_map &&
7164 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7165 		return;
7166 
7167 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7168 }
7169 
7170 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7171 {
7172 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7173 }
7174 
7175 static inline u32 kvm_async_pf_next_probe(u32 key)
7176 {
7177 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7178 }
7179 
7180 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7181 {
7182 	u32 key = kvm_async_pf_hash_fn(gfn);
7183 
7184 	while (vcpu->arch.apf.gfns[key] != ~0)
7185 		key = kvm_async_pf_next_probe(key);
7186 
7187 	vcpu->arch.apf.gfns[key] = gfn;
7188 }
7189 
7190 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7191 {
7192 	int i;
7193 	u32 key = kvm_async_pf_hash_fn(gfn);
7194 
7195 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7196 		     (vcpu->arch.apf.gfns[key] != gfn &&
7197 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7198 		key = kvm_async_pf_next_probe(key);
7199 
7200 	return key;
7201 }
7202 
7203 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7204 {
7205 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7206 }
7207 
7208 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7209 {
7210 	u32 i, j, k;
7211 
7212 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7213 	while (true) {
7214 		vcpu->arch.apf.gfns[i] = ~0;
7215 		do {
7216 			j = kvm_async_pf_next_probe(j);
7217 			if (vcpu->arch.apf.gfns[j] == ~0)
7218 				return;
7219 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7220 			/*
7221 			 * k lies cyclically in ]i,j]
7222 			 * |    i.k.j |
7223 			 * |....j i.k.| or  |.k..j i...|
7224 			 */
7225 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7226 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7227 		i = j;
7228 	}
7229 }
7230 
7231 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7232 {
7233 
7234 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7235 				      sizeof(val));
7236 }
7237 
7238 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7239 				     struct kvm_async_pf *work)
7240 {
7241 	struct x86_exception fault;
7242 
7243 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7244 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7245 
7246 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7247 	    (vcpu->arch.apf.send_user_only &&
7248 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7249 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7250 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7251 		fault.vector = PF_VECTOR;
7252 		fault.error_code_valid = true;
7253 		fault.error_code = 0;
7254 		fault.nested_page_fault = false;
7255 		fault.address = work->arch.token;
7256 		kvm_inject_page_fault(vcpu, &fault);
7257 	}
7258 }
7259 
7260 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7261 				 struct kvm_async_pf *work)
7262 {
7263 	struct x86_exception fault;
7264 
7265 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7266 	if (is_error_page(work->page))
7267 		work->arch.token = ~0; /* broadcast wakeup */
7268 	else
7269 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7270 
7271 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7272 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7273 		fault.vector = PF_VECTOR;
7274 		fault.error_code_valid = true;
7275 		fault.error_code = 0;
7276 		fault.nested_page_fault = false;
7277 		fault.address = work->arch.token;
7278 		kvm_inject_page_fault(vcpu, &fault);
7279 	}
7280 	vcpu->arch.apf.halted = false;
7281 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7282 }
7283 
7284 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7285 {
7286 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7287 		return true;
7288 	else
7289 		return !kvm_event_needs_reinjection(vcpu) &&
7290 			kvm_x86_ops->interrupt_allowed(vcpu);
7291 }
7292 
7293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7306