xref: /openbmc/linux/arch/x86/kvm/x86.c (revision c1cf3d89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113 
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116 
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122 
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128 
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32  __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64  __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139 
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143 
144 /*
145  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
146  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
147  * advancement entirely.  Any other value is used as-is and disables adaptive
148  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149  */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155 
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159 
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162 
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165 
166 /*
167  * Restoring the host value for MSRs that are only consumed when running in
168  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169  * returns to userspace, i.e. the kernel can run with the guest's value.
170  */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172 
173 struct kvm_user_return_msrs_global {
174 	int nr;
175 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177 
178 struct kvm_user_return_msrs {
179 	struct user_return_notifier urn;
180 	bool registered;
181 	struct kvm_user_return_msr_values {
182 		u64 host;
183 		u64 curr;
184 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186 
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189 
190 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 				| XFEATURE_MASK_PKRU)
194 
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197 
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200 
201 u64 __read_mostly host_xss;
202 EXPORT_SYMBOL_GPL(host_xss);
203 u64 __read_mostly supported_xss;
204 EXPORT_SYMBOL_GPL(supported_xss);
205 
206 struct kvm_stats_debugfs_item debugfs_entries[] = {
207 	VCPU_STAT("pf_fixed", pf_fixed),
208 	VCPU_STAT("pf_guest", pf_guest),
209 	VCPU_STAT("tlb_flush", tlb_flush),
210 	VCPU_STAT("invlpg", invlpg),
211 	VCPU_STAT("exits", exits),
212 	VCPU_STAT("io_exits", io_exits),
213 	VCPU_STAT("mmio_exits", mmio_exits),
214 	VCPU_STAT("signal_exits", signal_exits),
215 	VCPU_STAT("irq_window", irq_window_exits),
216 	VCPU_STAT("nmi_window", nmi_window_exits),
217 	VCPU_STAT("halt_exits", halt_exits),
218 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
219 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
220 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
221 	VCPU_STAT("halt_wakeup", halt_wakeup),
222 	VCPU_STAT("hypercalls", hypercalls),
223 	VCPU_STAT("request_irq", request_irq_exits),
224 	VCPU_STAT("irq_exits", irq_exits),
225 	VCPU_STAT("host_state_reload", host_state_reload),
226 	VCPU_STAT("fpu_reload", fpu_reload),
227 	VCPU_STAT("insn_emulation", insn_emulation),
228 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
229 	VCPU_STAT("irq_injections", irq_injections),
230 	VCPU_STAT("nmi_injections", nmi_injections),
231 	VCPU_STAT("req_event", req_event),
232 	VCPU_STAT("l1d_flush", l1d_flush),
233 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
234 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
235 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
236 	VM_STAT("mmu_pte_write", mmu_pte_write),
237 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
238 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 	VM_STAT("mmu_flooded", mmu_flooded),
240 	VM_STAT("mmu_recycled", mmu_recycled),
241 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 	VM_STAT("mmu_unsync", mmu_unsync),
243 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 	VM_STAT("largepages", lpages, .mode = 0444),
245 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 	{ NULL }
248 };
249 
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253 
254 static struct kmem_cache *x86_fpu_cache;
255 
256 static struct kmem_cache *x86_emulator_cache;
257 
258 /*
259  * When called, it means the previous get/set msr reached an invalid msr.
260  * Return true if we want to ignore/silent this failed msr access.
261  */
262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 				  u64 data, bool write)
264 {
265 	const char *op = write ? "wrmsr" : "rdmsr";
266 
267 	if (ignore_msrs) {
268 		if (report_ignored_msrs)
269 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 				      op, msr, data);
271 		/* Mask the error */
272 		return true;
273 	} else {
274 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 				      op, msr, data);
276 		return false;
277 	}
278 }
279 
280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 	unsigned int size = sizeof(struct x86_emulate_ctxt);
284 
285 	return kmem_cache_create_usercopy("x86_emulator", size,
286 					  __alignof__(struct x86_emulate_ctxt),
287 					  SLAB_ACCOUNT, useroffset,
288 					  size - useroffset, NULL);
289 }
290 
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292 
293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 	int i;
296 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 		vcpu->arch.apf.gfns[i] = ~0;
298 }
299 
300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 	unsigned slot;
303 	struct kvm_user_return_msrs *msrs
304 		= container_of(urn, struct kvm_user_return_msrs, urn);
305 	struct kvm_user_return_msr_values *values;
306 	unsigned long flags;
307 
308 	/*
309 	 * Disabling irqs at this point since the following code could be
310 	 * interrupted and executed through kvm_arch_hardware_disable()
311 	 */
312 	local_irq_save(flags);
313 	if (msrs->registered) {
314 		msrs->registered = false;
315 		user_return_notifier_unregister(urn);
316 	}
317 	local_irq_restore(flags);
318 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 		values = &msrs->values[slot];
320 		if (values->host != values->curr) {
321 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 			values->curr = values->host;
323 		}
324 	}
325 }
326 
327 void kvm_define_user_return_msr(unsigned slot, u32 msr)
328 {
329 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
330 	user_return_msrs_global.msrs[slot] = msr;
331 	if (slot >= user_return_msrs_global.nr)
332 		user_return_msrs_global.nr = slot + 1;
333 }
334 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
335 
336 static void kvm_user_return_msr_cpu_online(void)
337 {
338 	unsigned int cpu = smp_processor_id();
339 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
340 	u64 value;
341 	int i;
342 
343 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
344 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
345 		msrs->values[i].host = value;
346 		msrs->values[i].curr = value;
347 	}
348 }
349 
350 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
351 {
352 	unsigned int cpu = smp_processor_id();
353 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
354 	int err;
355 
356 	value = (value & mask) | (msrs->values[slot].host & ~mask);
357 	if (value == msrs->values[slot].curr)
358 		return 0;
359 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
360 	if (err)
361 		return 1;
362 
363 	msrs->values[slot].curr = value;
364 	if (!msrs->registered) {
365 		msrs->urn.on_user_return = kvm_on_user_return;
366 		user_return_notifier_register(&msrs->urn);
367 		msrs->registered = true;
368 	}
369 	return 0;
370 }
371 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
372 
373 static void drop_user_return_notifiers(void)
374 {
375 	unsigned int cpu = smp_processor_id();
376 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
377 
378 	if (msrs->registered)
379 		kvm_on_user_return(&msrs->urn);
380 }
381 
382 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
383 {
384 	return vcpu->arch.apic_base;
385 }
386 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
387 
388 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
389 {
390 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
391 }
392 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
393 
394 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
395 {
396 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
397 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
398 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
399 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
400 
401 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
402 		return 1;
403 	if (!msr_info->host_initiated) {
404 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
405 			return 1;
406 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
407 			return 1;
408 	}
409 
410 	kvm_lapic_set_base(vcpu, msr_info->data);
411 	kvm_recalculate_apic_map(vcpu->kvm);
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
415 
416 asmlinkage __visible noinstr void kvm_spurious_fault(void)
417 {
418 	/* Fault while not rebooting.  We want the trace. */
419 	BUG_ON(!kvm_rebooting);
420 }
421 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
422 
423 #define EXCPT_BENIGN		0
424 #define EXCPT_CONTRIBUTORY	1
425 #define EXCPT_PF		2
426 
427 static int exception_class(int vector)
428 {
429 	switch (vector) {
430 	case PF_VECTOR:
431 		return EXCPT_PF;
432 	case DE_VECTOR:
433 	case TS_VECTOR:
434 	case NP_VECTOR:
435 	case SS_VECTOR:
436 	case GP_VECTOR:
437 		return EXCPT_CONTRIBUTORY;
438 	default:
439 		break;
440 	}
441 	return EXCPT_BENIGN;
442 }
443 
444 #define EXCPT_FAULT		0
445 #define EXCPT_TRAP		1
446 #define EXCPT_ABORT		2
447 #define EXCPT_INTERRUPT		3
448 
449 static int exception_type(int vector)
450 {
451 	unsigned int mask;
452 
453 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
454 		return EXCPT_INTERRUPT;
455 
456 	mask = 1 << vector;
457 
458 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
459 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
460 		return EXCPT_TRAP;
461 
462 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
463 		return EXCPT_ABORT;
464 
465 	/* Reserved exceptions will result in fault */
466 	return EXCPT_FAULT;
467 }
468 
469 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
470 {
471 	unsigned nr = vcpu->arch.exception.nr;
472 	bool has_payload = vcpu->arch.exception.has_payload;
473 	unsigned long payload = vcpu->arch.exception.payload;
474 
475 	if (!has_payload)
476 		return;
477 
478 	switch (nr) {
479 	case DB_VECTOR:
480 		/*
481 		 * "Certain debug exceptions may clear bit 0-3.  The
482 		 * remaining contents of the DR6 register are never
483 		 * cleared by the processor".
484 		 */
485 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
486 		/*
487 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
488 		 */
489 		vcpu->arch.dr6 |= DR6_RTM;
490 		vcpu->arch.dr6 |= payload;
491 		/*
492 		 * Bit 16 should be set in the payload whenever the #DB
493 		 * exception should clear DR6.RTM. This makes the payload
494 		 * compatible with the pending debug exceptions under VMX.
495 		 * Though not currently documented in the SDM, this also
496 		 * makes the payload compatible with the exit qualification
497 		 * for #DB exceptions under VMX.
498 		 */
499 		vcpu->arch.dr6 ^= payload & DR6_RTM;
500 
501 		/*
502 		 * The #DB payload is defined as compatible with the 'pending
503 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
504 		 * defined in the 'pending debug exceptions' field (enabled
505 		 * breakpoint), it is reserved and must be zero in DR6.
506 		 */
507 		vcpu->arch.dr6 &= ~BIT(12);
508 		break;
509 	case PF_VECTOR:
510 		vcpu->arch.cr2 = payload;
511 		break;
512 	}
513 
514 	vcpu->arch.exception.has_payload = false;
515 	vcpu->arch.exception.payload = 0;
516 }
517 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
518 
519 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
520 		unsigned nr, bool has_error, u32 error_code,
521 	        bool has_payload, unsigned long payload, bool reinject)
522 {
523 	u32 prev_nr;
524 	int class1, class2;
525 
526 	kvm_make_request(KVM_REQ_EVENT, vcpu);
527 
528 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
529 	queue:
530 		if (has_error && !is_protmode(vcpu))
531 			has_error = false;
532 		if (reinject) {
533 			/*
534 			 * On vmentry, vcpu->arch.exception.pending is only
535 			 * true if an event injection was blocked by
536 			 * nested_run_pending.  In that case, however,
537 			 * vcpu_enter_guest requests an immediate exit,
538 			 * and the guest shouldn't proceed far enough to
539 			 * need reinjection.
540 			 */
541 			WARN_ON_ONCE(vcpu->arch.exception.pending);
542 			vcpu->arch.exception.injected = true;
543 			if (WARN_ON_ONCE(has_payload)) {
544 				/*
545 				 * A reinjected event has already
546 				 * delivered its payload.
547 				 */
548 				has_payload = false;
549 				payload = 0;
550 			}
551 		} else {
552 			vcpu->arch.exception.pending = true;
553 			vcpu->arch.exception.injected = false;
554 		}
555 		vcpu->arch.exception.has_error_code = has_error;
556 		vcpu->arch.exception.nr = nr;
557 		vcpu->arch.exception.error_code = error_code;
558 		vcpu->arch.exception.has_payload = has_payload;
559 		vcpu->arch.exception.payload = payload;
560 		if (!is_guest_mode(vcpu))
561 			kvm_deliver_exception_payload(vcpu);
562 		return;
563 	}
564 
565 	/* to check exception */
566 	prev_nr = vcpu->arch.exception.nr;
567 	if (prev_nr == DF_VECTOR) {
568 		/* triple fault -> shutdown */
569 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
570 		return;
571 	}
572 	class1 = exception_class(prev_nr);
573 	class2 = exception_class(nr);
574 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
575 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
576 		/*
577 		 * Generate double fault per SDM Table 5-5.  Set
578 		 * exception.pending = true so that the double fault
579 		 * can trigger a nested vmexit.
580 		 */
581 		vcpu->arch.exception.pending = true;
582 		vcpu->arch.exception.injected = false;
583 		vcpu->arch.exception.has_error_code = true;
584 		vcpu->arch.exception.nr = DF_VECTOR;
585 		vcpu->arch.exception.error_code = 0;
586 		vcpu->arch.exception.has_payload = false;
587 		vcpu->arch.exception.payload = 0;
588 	} else
589 		/* replace previous exception with a new one in a hope
590 		   that instruction re-execution will regenerate lost
591 		   exception */
592 		goto queue;
593 }
594 
595 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
596 {
597 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
598 }
599 EXPORT_SYMBOL_GPL(kvm_queue_exception);
600 
601 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
602 {
603 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
604 }
605 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
606 
607 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
608 			   unsigned long payload)
609 {
610 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
611 }
612 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
613 
614 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
615 				    u32 error_code, unsigned long payload)
616 {
617 	kvm_multiple_exception(vcpu, nr, true, error_code,
618 			       true, payload, false);
619 }
620 
621 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
622 {
623 	if (err)
624 		kvm_inject_gp(vcpu, 0);
625 	else
626 		return kvm_skip_emulated_instruction(vcpu);
627 
628 	return 1;
629 }
630 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
631 
632 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
633 {
634 	++vcpu->stat.pf_guest;
635 	vcpu->arch.exception.nested_apf =
636 		is_guest_mode(vcpu) && fault->async_page_fault;
637 	if (vcpu->arch.exception.nested_apf) {
638 		vcpu->arch.apf.nested_apf_token = fault->address;
639 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
640 	} else {
641 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
642 					fault->address);
643 	}
644 }
645 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
646 
647 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
648 				    struct x86_exception *fault)
649 {
650 	struct kvm_mmu *fault_mmu;
651 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
652 
653 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
654 					       vcpu->arch.walk_mmu;
655 
656 	/*
657 	 * Invalidate the TLB entry for the faulting address, if it exists,
658 	 * else the access will fault indefinitely (and to emulate hardware).
659 	 */
660 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
661 	    !(fault->error_code & PFERR_RSVD_MASK))
662 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
663 				       fault_mmu->root_hpa);
664 
665 	fault_mmu->inject_page_fault(vcpu, fault);
666 	return fault->nested_page_fault;
667 }
668 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
669 
670 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
671 {
672 	atomic_inc(&vcpu->arch.nmi_queued);
673 	kvm_make_request(KVM_REQ_NMI, vcpu);
674 }
675 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
676 
677 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
678 {
679 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
680 }
681 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
682 
683 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
684 {
685 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
686 }
687 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
688 
689 /*
690  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
691  * a #GP and return false.
692  */
693 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
694 {
695 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
696 		return true;
697 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
698 	return false;
699 }
700 EXPORT_SYMBOL_GPL(kvm_require_cpl);
701 
702 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
703 {
704 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
705 		return true;
706 
707 	kvm_queue_exception(vcpu, UD_VECTOR);
708 	return false;
709 }
710 EXPORT_SYMBOL_GPL(kvm_require_dr);
711 
712 /*
713  * This function will be used to read from the physical memory of the currently
714  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
715  * can read from guest physical or from the guest's guest physical memory.
716  */
717 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
718 			    gfn_t ngfn, void *data, int offset, int len,
719 			    u32 access)
720 {
721 	struct x86_exception exception;
722 	gfn_t real_gfn;
723 	gpa_t ngpa;
724 
725 	ngpa     = gfn_to_gpa(ngfn);
726 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
727 	if (real_gfn == UNMAPPED_GVA)
728 		return -EFAULT;
729 
730 	real_gfn = gpa_to_gfn(real_gfn);
731 
732 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
733 }
734 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
735 
736 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
737 			       void *data, int offset, int len, u32 access)
738 {
739 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
740 				       data, offset, len, access);
741 }
742 
743 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
744 {
745 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
746 	       rsvd_bits(1, 2);
747 }
748 
749 /*
750  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
751  */
752 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
753 {
754 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
755 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
756 	int i;
757 	int ret;
758 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
759 
760 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
761 				      offset * sizeof(u64), sizeof(pdpte),
762 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
763 	if (ret < 0) {
764 		ret = 0;
765 		goto out;
766 	}
767 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
768 		if ((pdpte[i] & PT_PRESENT_MASK) &&
769 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
770 			ret = 0;
771 			goto out;
772 		}
773 	}
774 	ret = 1;
775 
776 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
777 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
778 
779 out:
780 
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(load_pdptrs);
784 
785 bool pdptrs_changed(struct kvm_vcpu *vcpu)
786 {
787 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
788 	int offset;
789 	gfn_t gfn;
790 	int r;
791 
792 	if (!is_pae_paging(vcpu))
793 		return false;
794 
795 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
796 		return true;
797 
798 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
799 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
800 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
801 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
802 	if (r < 0)
803 		return true;
804 
805 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
806 }
807 EXPORT_SYMBOL_GPL(pdptrs_changed);
808 
809 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
810 {
811 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
812 
813 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
814 		kvm_clear_async_pf_completion_queue(vcpu);
815 		kvm_async_pf_hash_reset(vcpu);
816 	}
817 
818 	if ((cr0 ^ old_cr0) & update_bits)
819 		kvm_mmu_reset_context(vcpu);
820 
821 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
822 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
823 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
824 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
825 }
826 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
827 
828 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
829 {
830 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
831 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
832 
833 	cr0 |= X86_CR0_ET;
834 
835 #ifdef CONFIG_X86_64
836 	if (cr0 & 0xffffffff00000000UL)
837 		return 1;
838 #endif
839 
840 	cr0 &= ~CR0_RESERVED_BITS;
841 
842 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
843 		return 1;
844 
845 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
846 		return 1;
847 
848 #ifdef CONFIG_X86_64
849 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
850 	    (cr0 & X86_CR0_PG)) {
851 		int cs_db, cs_l;
852 
853 		if (!is_pae(vcpu))
854 			return 1;
855 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
856 		if (cs_l)
857 			return 1;
858 	}
859 #endif
860 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
861 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
862 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
863 		return 1;
864 
865 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
866 		return 1;
867 
868 	kvm_x86_ops.set_cr0(vcpu, cr0);
869 
870 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_set_cr0);
875 
876 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
877 {
878 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
879 }
880 EXPORT_SYMBOL_GPL(kvm_lmsw);
881 
882 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
883 {
884 	if (vcpu->arch.guest_state_protected)
885 		return;
886 
887 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
888 
889 		if (vcpu->arch.xcr0 != host_xcr0)
890 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
891 
892 		if (vcpu->arch.xsaves_enabled &&
893 		    vcpu->arch.ia32_xss != host_xss)
894 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
895 	}
896 
897 	if (static_cpu_has(X86_FEATURE_PKU) &&
898 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
899 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
900 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
901 		__write_pkru(vcpu->arch.pkru);
902 }
903 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
904 
905 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
906 {
907 	if (vcpu->arch.guest_state_protected)
908 		return;
909 
910 	if (static_cpu_has(X86_FEATURE_PKU) &&
911 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
912 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
913 		vcpu->arch.pkru = rdpkru();
914 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
915 			__write_pkru(vcpu->arch.host_pkru);
916 	}
917 
918 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
919 
920 		if (vcpu->arch.xcr0 != host_xcr0)
921 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
922 
923 		if (vcpu->arch.xsaves_enabled &&
924 		    vcpu->arch.ia32_xss != host_xss)
925 			wrmsrl(MSR_IA32_XSS, host_xss);
926 	}
927 
928 }
929 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
930 
931 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
932 {
933 	u64 xcr0 = xcr;
934 	u64 old_xcr0 = vcpu->arch.xcr0;
935 	u64 valid_bits;
936 
937 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
938 	if (index != XCR_XFEATURE_ENABLED_MASK)
939 		return 1;
940 	if (!(xcr0 & XFEATURE_MASK_FP))
941 		return 1;
942 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
943 		return 1;
944 
945 	/*
946 	 * Do not allow the guest to set bits that we do not support
947 	 * saving.  However, xcr0 bit 0 is always set, even if the
948 	 * emulated CPU does not support XSAVE (see fx_init).
949 	 */
950 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
951 	if (xcr0 & ~valid_bits)
952 		return 1;
953 
954 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
955 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
956 		return 1;
957 
958 	if (xcr0 & XFEATURE_MASK_AVX512) {
959 		if (!(xcr0 & XFEATURE_MASK_YMM))
960 			return 1;
961 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
962 			return 1;
963 	}
964 	vcpu->arch.xcr0 = xcr0;
965 
966 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
967 		kvm_update_cpuid_runtime(vcpu);
968 	return 0;
969 }
970 
971 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
972 {
973 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
974 	    __kvm_set_xcr(vcpu, index, xcr)) {
975 		kvm_inject_gp(vcpu, 0);
976 		return 1;
977 	}
978 	return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_set_xcr);
981 
982 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
983 {
984 	if (cr4 & cr4_reserved_bits)
985 		return false;
986 
987 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
988 		return false;
989 
990 	return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
991 }
992 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
993 
994 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
995 {
996 	unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
997 				      X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
998 
999 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1000 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1001 		kvm_mmu_reset_context(vcpu);
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1004 
1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 				   X86_CR4_SMEP;
1010 
1011 	if (!kvm_is_valid_cr4(vcpu, cr4))
1012 		return 1;
1013 
1014 	if (is_long_mode(vcpu)) {
1015 		if (!(cr4 & X86_CR4_PAE))
1016 			return 1;
1017 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1018 			return 1;
1019 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1020 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1021 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1022 				   kvm_read_cr3(vcpu)))
1023 		return 1;
1024 
1025 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1026 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1027 			return 1;
1028 
1029 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1030 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1031 			return 1;
1032 	}
1033 
1034 	kvm_x86_ops.set_cr4(vcpu, cr4);
1035 
1036 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1041 
1042 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1043 {
1044 	bool skip_tlb_flush = false;
1045 #ifdef CONFIG_X86_64
1046 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1047 
1048 	if (pcid_enabled) {
1049 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1050 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1051 	}
1052 #endif
1053 
1054 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1055 		if (!skip_tlb_flush) {
1056 			kvm_mmu_sync_roots(vcpu);
1057 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1058 		}
1059 		return 0;
1060 	}
1061 
1062 	if (is_long_mode(vcpu) &&
1063 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1064 		return 1;
1065 	else if (is_pae_paging(vcpu) &&
1066 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1067 		return 1;
1068 
1069 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1070 	vcpu->arch.cr3 = cr3;
1071 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1072 
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1076 
1077 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1078 {
1079 	if (cr8 & CR8_RESERVED_BITS)
1080 		return 1;
1081 	if (lapic_in_kernel(vcpu))
1082 		kvm_lapic_set_tpr(vcpu, cr8);
1083 	else
1084 		vcpu->arch.cr8 = cr8;
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1088 
1089 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1090 {
1091 	if (lapic_in_kernel(vcpu))
1092 		return kvm_lapic_get_cr8(vcpu);
1093 	else
1094 		return vcpu->arch.cr8;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1097 
1098 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1099 {
1100 	int i;
1101 
1102 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1103 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1104 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1105 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1106 	}
1107 }
1108 
1109 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1110 {
1111 	unsigned long dr7;
1112 
1113 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1114 		dr7 = vcpu->arch.guest_debug_dr7;
1115 	else
1116 		dr7 = vcpu->arch.dr7;
1117 	kvm_x86_ops.set_dr7(vcpu, dr7);
1118 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1119 	if (dr7 & DR7_BP_EN_MASK)
1120 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1123 
1124 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1125 {
1126 	u64 fixed = DR6_FIXED_1;
1127 
1128 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1129 		fixed |= DR6_RTM;
1130 	return fixed;
1131 }
1132 
1133 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1134 {
1135 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1136 
1137 	switch (dr) {
1138 	case 0 ... 3:
1139 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1140 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1141 			vcpu->arch.eff_db[dr] = val;
1142 		break;
1143 	case 4:
1144 	case 6:
1145 		if (!kvm_dr6_valid(val))
1146 			return -1; /* #GP */
1147 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1148 		break;
1149 	case 5:
1150 	default: /* 7 */
1151 		if (!kvm_dr7_valid(val))
1152 			return -1; /* #GP */
1153 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1154 		kvm_update_dr7(vcpu);
1155 		break;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1162 {
1163 	if (__kvm_set_dr(vcpu, dr, val)) {
1164 		kvm_inject_gp(vcpu, 0);
1165 		return 1;
1166 	}
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_set_dr);
1170 
1171 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1172 {
1173 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1174 
1175 	switch (dr) {
1176 	case 0 ... 3:
1177 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1178 		break;
1179 	case 4:
1180 	case 6:
1181 		*val = vcpu->arch.dr6;
1182 		break;
1183 	case 5:
1184 	default: /* 7 */
1185 		*val = vcpu->arch.dr7;
1186 		break;
1187 	}
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dr);
1191 
1192 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1193 {
1194 	u32 ecx = kvm_rcx_read(vcpu);
1195 	u64 data;
1196 	int err;
1197 
1198 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1199 	if (err)
1200 		return err;
1201 	kvm_rax_write(vcpu, (u32)data);
1202 	kvm_rdx_write(vcpu, data >> 32);
1203 	return err;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1206 
1207 /*
1208  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1209  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1210  *
1211  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1212  * extract the supported MSRs from the related const lists.
1213  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1214  * capabilities of the host cpu. This capabilities test skips MSRs that are
1215  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1216  * may depend on host virtualization features rather than host cpu features.
1217  */
1218 
1219 static const u32 msrs_to_save_all[] = {
1220 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1221 	MSR_STAR,
1222 #ifdef CONFIG_X86_64
1223 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1224 #endif
1225 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1226 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1227 	MSR_IA32_SPEC_CTRL,
1228 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1229 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1230 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1231 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1232 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1233 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1234 	MSR_IA32_UMWAIT_CONTROL,
1235 
1236 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1237 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1238 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1239 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1240 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1241 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1242 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1243 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1244 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1245 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1246 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1249 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1250 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1251 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1252 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1253 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1254 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1255 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1258 };
1259 
1260 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1261 static unsigned num_msrs_to_save;
1262 
1263 static const u32 emulated_msrs_all[] = {
1264 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1265 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1266 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1267 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1268 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1269 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1270 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1271 	HV_X64_MSR_RESET,
1272 	HV_X64_MSR_VP_INDEX,
1273 	HV_X64_MSR_VP_RUNTIME,
1274 	HV_X64_MSR_SCONTROL,
1275 	HV_X64_MSR_STIMER0_CONFIG,
1276 	HV_X64_MSR_VP_ASSIST_PAGE,
1277 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1278 	HV_X64_MSR_TSC_EMULATION_STATUS,
1279 	HV_X64_MSR_SYNDBG_OPTIONS,
1280 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1281 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1282 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1283 
1284 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1285 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1286 
1287 	MSR_IA32_TSC_ADJUST,
1288 	MSR_IA32_TSCDEADLINE,
1289 	MSR_IA32_ARCH_CAPABILITIES,
1290 	MSR_IA32_PERF_CAPABILITIES,
1291 	MSR_IA32_MISC_ENABLE,
1292 	MSR_IA32_MCG_STATUS,
1293 	MSR_IA32_MCG_CTL,
1294 	MSR_IA32_MCG_EXT_CTL,
1295 	MSR_IA32_SMBASE,
1296 	MSR_SMI_COUNT,
1297 	MSR_PLATFORM_INFO,
1298 	MSR_MISC_FEATURES_ENABLES,
1299 	MSR_AMD64_VIRT_SPEC_CTRL,
1300 	MSR_IA32_POWER_CTL,
1301 	MSR_IA32_UCODE_REV,
1302 
1303 	/*
1304 	 * The following list leaves out MSRs whose values are determined
1305 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1306 	 * We always support the "true" VMX control MSRs, even if the host
1307 	 * processor does not, so I am putting these registers here rather
1308 	 * than in msrs_to_save_all.
1309 	 */
1310 	MSR_IA32_VMX_BASIC,
1311 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1312 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1313 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1314 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1315 	MSR_IA32_VMX_MISC,
1316 	MSR_IA32_VMX_CR0_FIXED0,
1317 	MSR_IA32_VMX_CR4_FIXED0,
1318 	MSR_IA32_VMX_VMCS_ENUM,
1319 	MSR_IA32_VMX_PROCBASED_CTLS2,
1320 	MSR_IA32_VMX_EPT_VPID_CAP,
1321 	MSR_IA32_VMX_VMFUNC,
1322 
1323 	MSR_K7_HWCR,
1324 	MSR_KVM_POLL_CONTROL,
1325 };
1326 
1327 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1328 static unsigned num_emulated_msrs;
1329 
1330 /*
1331  * List of msr numbers which are used to expose MSR-based features that
1332  * can be used by a hypervisor to validate requested CPU features.
1333  */
1334 static const u32 msr_based_features_all[] = {
1335 	MSR_IA32_VMX_BASIC,
1336 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1337 	MSR_IA32_VMX_PINBASED_CTLS,
1338 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1339 	MSR_IA32_VMX_PROCBASED_CTLS,
1340 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1341 	MSR_IA32_VMX_EXIT_CTLS,
1342 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1343 	MSR_IA32_VMX_ENTRY_CTLS,
1344 	MSR_IA32_VMX_MISC,
1345 	MSR_IA32_VMX_CR0_FIXED0,
1346 	MSR_IA32_VMX_CR0_FIXED1,
1347 	MSR_IA32_VMX_CR4_FIXED0,
1348 	MSR_IA32_VMX_CR4_FIXED1,
1349 	MSR_IA32_VMX_VMCS_ENUM,
1350 	MSR_IA32_VMX_PROCBASED_CTLS2,
1351 	MSR_IA32_VMX_EPT_VPID_CAP,
1352 	MSR_IA32_VMX_VMFUNC,
1353 
1354 	MSR_F10H_DECFG,
1355 	MSR_IA32_UCODE_REV,
1356 	MSR_IA32_ARCH_CAPABILITIES,
1357 	MSR_IA32_PERF_CAPABILITIES,
1358 };
1359 
1360 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1361 static unsigned int num_msr_based_features;
1362 
1363 static u64 kvm_get_arch_capabilities(void)
1364 {
1365 	u64 data = 0;
1366 
1367 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1368 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1369 
1370 	/*
1371 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1372 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1373 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1374 	 * L1 guests, so it need not worry about its own (L2) guests.
1375 	 */
1376 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1377 
1378 	/*
1379 	 * If we're doing cache flushes (either "always" or "cond")
1380 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1381 	 * If an outer hypervisor is doing the cache flush for us
1382 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1383 	 * capability to the guest too, and if EPT is disabled we're not
1384 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1385 	 * require a nested hypervisor to do a flush of its own.
1386 	 */
1387 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1388 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1389 
1390 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1391 		data |= ARCH_CAP_RDCL_NO;
1392 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1393 		data |= ARCH_CAP_SSB_NO;
1394 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1395 		data |= ARCH_CAP_MDS_NO;
1396 
1397 	/*
1398 	 * On TAA affected systems:
1399 	 *      - nothing to do if TSX is disabled on the host.
1400 	 *      - we emulate TSX_CTRL if present on the host.
1401 	 *	  This lets the guest use VERW to clear CPU buffers.
1402 	 */
1403 	if (!boot_cpu_has(X86_FEATURE_RTM))
1404 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1405 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1406 		data |= ARCH_CAP_TAA_NO;
1407 
1408 	return data;
1409 }
1410 
1411 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1412 {
1413 	switch (msr->index) {
1414 	case MSR_IA32_ARCH_CAPABILITIES:
1415 		msr->data = kvm_get_arch_capabilities();
1416 		break;
1417 	case MSR_IA32_UCODE_REV:
1418 		rdmsrl_safe(msr->index, &msr->data);
1419 		break;
1420 	default:
1421 		return kvm_x86_ops.get_msr_feature(msr);
1422 	}
1423 	return 0;
1424 }
1425 
1426 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1427 {
1428 	struct kvm_msr_entry msr;
1429 	int r;
1430 
1431 	msr.index = index;
1432 	r = kvm_get_msr_feature(&msr);
1433 
1434 	if (r == KVM_MSR_RET_INVALID) {
1435 		/* Unconditionally clear the output for simplicity */
1436 		*data = 0;
1437 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1438 			r = 0;
1439 	}
1440 
1441 	if (r)
1442 		return r;
1443 
1444 	*data = msr.data;
1445 
1446 	return 0;
1447 }
1448 
1449 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1450 {
1451 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1452 		return false;
1453 
1454 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1455 		return false;
1456 
1457 	if (efer & (EFER_LME | EFER_LMA) &&
1458 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1459 		return false;
1460 
1461 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1462 		return false;
1463 
1464 	return true;
1465 
1466 }
1467 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1468 {
1469 	if (efer & efer_reserved_bits)
1470 		return false;
1471 
1472 	return __kvm_valid_efer(vcpu, efer);
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1475 
1476 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1477 {
1478 	u64 old_efer = vcpu->arch.efer;
1479 	u64 efer = msr_info->data;
1480 	int r;
1481 
1482 	if (efer & efer_reserved_bits)
1483 		return 1;
1484 
1485 	if (!msr_info->host_initiated) {
1486 		if (!__kvm_valid_efer(vcpu, efer))
1487 			return 1;
1488 
1489 		if (is_paging(vcpu) &&
1490 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1491 			return 1;
1492 	}
1493 
1494 	efer &= ~EFER_LMA;
1495 	efer |= vcpu->arch.efer & EFER_LMA;
1496 
1497 	r = kvm_x86_ops.set_efer(vcpu, efer);
1498 	if (r) {
1499 		WARN_ON(r > 0);
1500 		return r;
1501 	}
1502 
1503 	/* Update reserved bits */
1504 	if ((efer ^ old_efer) & EFER_NX)
1505 		kvm_mmu_reset_context(vcpu);
1506 
1507 	return 0;
1508 }
1509 
1510 void kvm_enable_efer_bits(u64 mask)
1511 {
1512        efer_reserved_bits &= ~mask;
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1515 
1516 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1517 {
1518 	struct kvm *kvm = vcpu->kvm;
1519 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1520 	u32 count = kvm->arch.msr_filter.count;
1521 	u32 i;
1522 	bool r = kvm->arch.msr_filter.default_allow;
1523 	int idx;
1524 
1525 	/* MSR filtering not set up or x2APIC enabled, allow everything */
1526 	if (!count || (index >= 0x800 && index <= 0x8ff))
1527 		return true;
1528 
1529 	/* Prevent collision with set_msr_filter */
1530 	idx = srcu_read_lock(&kvm->srcu);
1531 
1532 	for (i = 0; i < count; i++) {
1533 		u32 start = ranges[i].base;
1534 		u32 end = start + ranges[i].nmsrs;
1535 		u32 flags = ranges[i].flags;
1536 		unsigned long *bitmap = ranges[i].bitmap;
1537 
1538 		if ((index >= start) && (index < end) && (flags & type)) {
1539 			r = !!test_bit(index - start, bitmap);
1540 			break;
1541 		}
1542 	}
1543 
1544 	srcu_read_unlock(&kvm->srcu, idx);
1545 
1546 	return r;
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1549 
1550 /*
1551  * Write @data into the MSR specified by @index.  Select MSR specific fault
1552  * checks are bypassed if @host_initiated is %true.
1553  * Returns 0 on success, non-0 otherwise.
1554  * Assumes vcpu_load() was already called.
1555  */
1556 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1557 			 bool host_initiated)
1558 {
1559 	struct msr_data msr;
1560 
1561 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1562 		return KVM_MSR_RET_FILTERED;
1563 
1564 	switch (index) {
1565 	case MSR_FS_BASE:
1566 	case MSR_GS_BASE:
1567 	case MSR_KERNEL_GS_BASE:
1568 	case MSR_CSTAR:
1569 	case MSR_LSTAR:
1570 		if (is_noncanonical_address(data, vcpu))
1571 			return 1;
1572 		break;
1573 	case MSR_IA32_SYSENTER_EIP:
1574 	case MSR_IA32_SYSENTER_ESP:
1575 		/*
1576 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1577 		 * non-canonical address is written on Intel but not on
1578 		 * AMD (which ignores the top 32-bits, because it does
1579 		 * not implement 64-bit SYSENTER).
1580 		 *
1581 		 * 64-bit code should hence be able to write a non-canonical
1582 		 * value on AMD.  Making the address canonical ensures that
1583 		 * vmentry does not fail on Intel after writing a non-canonical
1584 		 * value, and that something deterministic happens if the guest
1585 		 * invokes 64-bit SYSENTER.
1586 		 */
1587 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1588 	}
1589 
1590 	msr.data = data;
1591 	msr.index = index;
1592 	msr.host_initiated = host_initiated;
1593 
1594 	return kvm_x86_ops.set_msr(vcpu, &msr);
1595 }
1596 
1597 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1598 				     u32 index, u64 data, bool host_initiated)
1599 {
1600 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1601 
1602 	if (ret == KVM_MSR_RET_INVALID)
1603 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1604 			ret = 0;
1605 
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Read the MSR specified by @index into @data.  Select MSR specific fault
1611  * checks are bypassed if @host_initiated is %true.
1612  * Returns 0 on success, non-0 otherwise.
1613  * Assumes vcpu_load() was already called.
1614  */
1615 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1616 		  bool host_initiated)
1617 {
1618 	struct msr_data msr;
1619 	int ret;
1620 
1621 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1622 		return KVM_MSR_RET_FILTERED;
1623 
1624 	msr.index = index;
1625 	msr.host_initiated = host_initiated;
1626 
1627 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1628 	if (!ret)
1629 		*data = msr.data;
1630 	return ret;
1631 }
1632 
1633 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1634 				     u32 index, u64 *data, bool host_initiated)
1635 {
1636 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1637 
1638 	if (ret == KVM_MSR_RET_INVALID) {
1639 		/* Unconditionally clear *data for simplicity */
1640 		*data = 0;
1641 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1642 			ret = 0;
1643 	}
1644 
1645 	return ret;
1646 }
1647 
1648 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1649 {
1650 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1651 }
1652 EXPORT_SYMBOL_GPL(kvm_get_msr);
1653 
1654 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1655 {
1656 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_set_msr);
1659 
1660 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1661 {
1662 	int err = vcpu->run->msr.error;
1663 	if (!err) {
1664 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1665 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1666 	}
1667 
1668 	return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1669 }
1670 
1671 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1672 {
1673 	return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1674 }
1675 
1676 static u64 kvm_msr_reason(int r)
1677 {
1678 	switch (r) {
1679 	case KVM_MSR_RET_INVALID:
1680 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1681 	case KVM_MSR_RET_FILTERED:
1682 		return KVM_MSR_EXIT_REASON_FILTER;
1683 	default:
1684 		return KVM_MSR_EXIT_REASON_INVAL;
1685 	}
1686 }
1687 
1688 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1689 			      u32 exit_reason, u64 data,
1690 			      int (*completion)(struct kvm_vcpu *vcpu),
1691 			      int r)
1692 {
1693 	u64 msr_reason = kvm_msr_reason(r);
1694 
1695 	/* Check if the user wanted to know about this MSR fault */
1696 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1697 		return 0;
1698 
1699 	vcpu->run->exit_reason = exit_reason;
1700 	vcpu->run->msr.error = 0;
1701 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1702 	vcpu->run->msr.reason = msr_reason;
1703 	vcpu->run->msr.index = index;
1704 	vcpu->run->msr.data = data;
1705 	vcpu->arch.complete_userspace_io = completion;
1706 
1707 	return 1;
1708 }
1709 
1710 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1711 {
1712 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1713 				   complete_emulated_rdmsr, r);
1714 }
1715 
1716 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1717 {
1718 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1719 				   complete_emulated_wrmsr, r);
1720 }
1721 
1722 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1723 {
1724 	u32 ecx = kvm_rcx_read(vcpu);
1725 	u64 data;
1726 	int r;
1727 
1728 	r = kvm_get_msr(vcpu, ecx, &data);
1729 
1730 	/* MSR read failed? See if we should ask user space */
1731 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1732 		/* Bounce to user space */
1733 		return 0;
1734 	}
1735 
1736 	if (!r) {
1737 		trace_kvm_msr_read(ecx, data);
1738 
1739 		kvm_rax_write(vcpu, data & -1u);
1740 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1741 	} else {
1742 		trace_kvm_msr_read_ex(ecx);
1743 	}
1744 
1745 	return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1746 }
1747 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1748 
1749 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1750 {
1751 	u32 ecx = kvm_rcx_read(vcpu);
1752 	u64 data = kvm_read_edx_eax(vcpu);
1753 	int r;
1754 
1755 	r = kvm_set_msr(vcpu, ecx, data);
1756 
1757 	/* MSR write failed? See if we should ask user space */
1758 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1759 		/* Bounce to user space */
1760 		return 0;
1761 
1762 	/* Signal all other negative errors to userspace */
1763 	if (r < 0)
1764 		return r;
1765 
1766 	if (!r)
1767 		trace_kvm_msr_write(ecx, data);
1768 	else
1769 		trace_kvm_msr_write_ex(ecx, data);
1770 
1771 	return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1774 
1775 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1776 {
1777 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1778 		xfer_to_guest_mode_work_pending();
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1781 
1782 /*
1783  * The fast path for frequent and performance sensitive wrmsr emulation,
1784  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1785  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1786  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1787  * other cases which must be called after interrupts are enabled on the host.
1788  */
1789 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1790 {
1791 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1792 		return 1;
1793 
1794 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1795 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1796 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1797 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1798 
1799 		data &= ~(1 << 12);
1800 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1801 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1802 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1803 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1804 		return 0;
1805 	}
1806 
1807 	return 1;
1808 }
1809 
1810 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1811 {
1812 	if (!kvm_can_use_hv_timer(vcpu))
1813 		return 1;
1814 
1815 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1816 	return 0;
1817 }
1818 
1819 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1820 {
1821 	u32 msr = kvm_rcx_read(vcpu);
1822 	u64 data;
1823 	fastpath_t ret = EXIT_FASTPATH_NONE;
1824 
1825 	switch (msr) {
1826 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1827 		data = kvm_read_edx_eax(vcpu);
1828 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1829 			kvm_skip_emulated_instruction(vcpu);
1830 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1831 		}
1832 		break;
1833 	case MSR_IA32_TSCDEADLINE:
1834 		data = kvm_read_edx_eax(vcpu);
1835 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1836 			kvm_skip_emulated_instruction(vcpu);
1837 			ret = EXIT_FASTPATH_REENTER_GUEST;
1838 		}
1839 		break;
1840 	default:
1841 		break;
1842 	}
1843 
1844 	if (ret != EXIT_FASTPATH_NONE)
1845 		trace_kvm_msr_write(msr, data);
1846 
1847 	return ret;
1848 }
1849 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1850 
1851 /*
1852  * Adapt set_msr() to msr_io()'s calling convention
1853  */
1854 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1855 {
1856 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1857 }
1858 
1859 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1860 {
1861 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1862 }
1863 
1864 #ifdef CONFIG_X86_64
1865 struct pvclock_clock {
1866 	int vclock_mode;
1867 	u64 cycle_last;
1868 	u64 mask;
1869 	u32 mult;
1870 	u32 shift;
1871 	u64 base_cycles;
1872 	u64 offset;
1873 };
1874 
1875 struct pvclock_gtod_data {
1876 	seqcount_t	seq;
1877 
1878 	struct pvclock_clock clock; /* extract of a clocksource struct */
1879 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1880 
1881 	ktime_t		offs_boot;
1882 	u64		wall_time_sec;
1883 };
1884 
1885 static struct pvclock_gtod_data pvclock_gtod_data;
1886 
1887 static void update_pvclock_gtod(struct timekeeper *tk)
1888 {
1889 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1890 
1891 	write_seqcount_begin(&vdata->seq);
1892 
1893 	/* copy pvclock gtod data */
1894 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1895 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1896 	vdata->clock.mask		= tk->tkr_mono.mask;
1897 	vdata->clock.mult		= tk->tkr_mono.mult;
1898 	vdata->clock.shift		= tk->tkr_mono.shift;
1899 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1900 	vdata->clock.offset		= tk->tkr_mono.base;
1901 
1902 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1903 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1904 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1905 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1906 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1907 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1908 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1909 
1910 	vdata->wall_time_sec            = tk->xtime_sec;
1911 
1912 	vdata->offs_boot		= tk->offs_boot;
1913 
1914 	write_seqcount_end(&vdata->seq);
1915 }
1916 
1917 static s64 get_kvmclock_base_ns(void)
1918 {
1919 	/* Count up from boot time, but with the frequency of the raw clock.  */
1920 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1921 }
1922 #else
1923 static s64 get_kvmclock_base_ns(void)
1924 {
1925 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1926 	return ktime_get_boottime_ns();
1927 }
1928 #endif
1929 
1930 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1931 {
1932 	int version;
1933 	int r;
1934 	struct pvclock_wall_clock wc;
1935 	u64 wall_nsec;
1936 
1937 	kvm->arch.wall_clock = wall_clock;
1938 
1939 	if (!wall_clock)
1940 		return;
1941 
1942 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1943 	if (r)
1944 		return;
1945 
1946 	if (version & 1)
1947 		++version;  /* first time write, random junk */
1948 
1949 	++version;
1950 
1951 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1952 		return;
1953 
1954 	/*
1955 	 * The guest calculates current wall clock time by adding
1956 	 * system time (updated by kvm_guest_time_update below) to the
1957 	 * wall clock specified here.  We do the reverse here.
1958 	 */
1959 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1960 
1961 	wc.nsec = do_div(wall_nsec, 1000000000);
1962 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1963 	wc.version = version;
1964 
1965 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1966 
1967 	version++;
1968 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1969 }
1970 
1971 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1972 				  bool old_msr, bool host_initiated)
1973 {
1974 	struct kvm_arch *ka = &vcpu->kvm->arch;
1975 
1976 	if (vcpu->vcpu_id == 0 && !host_initiated) {
1977 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1978 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1979 
1980 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
1981 	}
1982 
1983 	vcpu->arch.time = system_time;
1984 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1985 
1986 	/* we verify if the enable bit is set... */
1987 	vcpu->arch.pv_time_enabled = false;
1988 	if (!(system_time & 1))
1989 		return;
1990 
1991 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1992 				       &vcpu->arch.pv_time, system_time & ~1ULL,
1993 				       sizeof(struct pvclock_vcpu_time_info)))
1994 		vcpu->arch.pv_time_enabled = true;
1995 
1996 	return;
1997 }
1998 
1999 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2000 {
2001 	do_shl32_div32(dividend, divisor);
2002 	return dividend;
2003 }
2004 
2005 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2006 			       s8 *pshift, u32 *pmultiplier)
2007 {
2008 	uint64_t scaled64;
2009 	int32_t  shift = 0;
2010 	uint64_t tps64;
2011 	uint32_t tps32;
2012 
2013 	tps64 = base_hz;
2014 	scaled64 = scaled_hz;
2015 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2016 		tps64 >>= 1;
2017 		shift--;
2018 	}
2019 
2020 	tps32 = (uint32_t)tps64;
2021 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2022 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2023 			scaled64 >>= 1;
2024 		else
2025 			tps32 <<= 1;
2026 		shift++;
2027 	}
2028 
2029 	*pshift = shift;
2030 	*pmultiplier = div_frac(scaled64, tps32);
2031 }
2032 
2033 #ifdef CONFIG_X86_64
2034 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2035 #endif
2036 
2037 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2038 static unsigned long max_tsc_khz;
2039 
2040 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2041 {
2042 	u64 v = (u64)khz * (1000000 + ppm);
2043 	do_div(v, 1000000);
2044 	return v;
2045 }
2046 
2047 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2048 {
2049 	u64 ratio;
2050 
2051 	/* Guest TSC same frequency as host TSC? */
2052 	if (!scale) {
2053 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2054 		return 0;
2055 	}
2056 
2057 	/* TSC scaling supported? */
2058 	if (!kvm_has_tsc_control) {
2059 		if (user_tsc_khz > tsc_khz) {
2060 			vcpu->arch.tsc_catchup = 1;
2061 			vcpu->arch.tsc_always_catchup = 1;
2062 			return 0;
2063 		} else {
2064 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2065 			return -1;
2066 		}
2067 	}
2068 
2069 	/* TSC scaling required  - calculate ratio */
2070 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2071 				user_tsc_khz, tsc_khz);
2072 
2073 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2074 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2075 			            user_tsc_khz);
2076 		return -1;
2077 	}
2078 
2079 	vcpu->arch.tsc_scaling_ratio = ratio;
2080 	return 0;
2081 }
2082 
2083 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2084 {
2085 	u32 thresh_lo, thresh_hi;
2086 	int use_scaling = 0;
2087 
2088 	/* tsc_khz can be zero if TSC calibration fails */
2089 	if (user_tsc_khz == 0) {
2090 		/* set tsc_scaling_ratio to a safe value */
2091 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2092 		return -1;
2093 	}
2094 
2095 	/* Compute a scale to convert nanoseconds in TSC cycles */
2096 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2097 			   &vcpu->arch.virtual_tsc_shift,
2098 			   &vcpu->arch.virtual_tsc_mult);
2099 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2100 
2101 	/*
2102 	 * Compute the variation in TSC rate which is acceptable
2103 	 * within the range of tolerance and decide if the
2104 	 * rate being applied is within that bounds of the hardware
2105 	 * rate.  If so, no scaling or compensation need be done.
2106 	 */
2107 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2108 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2109 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2110 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2111 		use_scaling = 1;
2112 	}
2113 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2114 }
2115 
2116 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2117 {
2118 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2119 				      vcpu->arch.virtual_tsc_mult,
2120 				      vcpu->arch.virtual_tsc_shift);
2121 	tsc += vcpu->arch.this_tsc_write;
2122 	return tsc;
2123 }
2124 
2125 static inline int gtod_is_based_on_tsc(int mode)
2126 {
2127 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2128 }
2129 
2130 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2131 {
2132 #ifdef CONFIG_X86_64
2133 	bool vcpus_matched;
2134 	struct kvm_arch *ka = &vcpu->kvm->arch;
2135 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2136 
2137 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2138 			 atomic_read(&vcpu->kvm->online_vcpus));
2139 
2140 	/*
2141 	 * Once the masterclock is enabled, always perform request in
2142 	 * order to update it.
2143 	 *
2144 	 * In order to enable masterclock, the host clocksource must be TSC
2145 	 * and the vcpus need to have matched TSCs.  When that happens,
2146 	 * perform request to enable masterclock.
2147 	 */
2148 	if (ka->use_master_clock ||
2149 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2150 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2151 
2152 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2153 			    atomic_read(&vcpu->kvm->online_vcpus),
2154 		            ka->use_master_clock, gtod->clock.vclock_mode);
2155 #endif
2156 }
2157 
2158 /*
2159  * Multiply tsc by a fixed point number represented by ratio.
2160  *
2161  * The most significant 64-N bits (mult) of ratio represent the
2162  * integral part of the fixed point number; the remaining N bits
2163  * (frac) represent the fractional part, ie. ratio represents a fixed
2164  * point number (mult + frac * 2^(-N)).
2165  *
2166  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2167  */
2168 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2169 {
2170 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2171 }
2172 
2173 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2174 {
2175 	u64 _tsc = tsc;
2176 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2177 
2178 	if (ratio != kvm_default_tsc_scaling_ratio)
2179 		_tsc = __scale_tsc(ratio, tsc);
2180 
2181 	return _tsc;
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2184 
2185 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2186 {
2187 	u64 tsc;
2188 
2189 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2190 
2191 	return target_tsc - tsc;
2192 }
2193 
2194 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2195 {
2196 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2199 
2200 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2201 {
2202 	vcpu->arch.l1_tsc_offset = offset;
2203 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2204 }
2205 
2206 static inline bool kvm_check_tsc_unstable(void)
2207 {
2208 #ifdef CONFIG_X86_64
2209 	/*
2210 	 * TSC is marked unstable when we're running on Hyper-V,
2211 	 * 'TSC page' clocksource is good.
2212 	 */
2213 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2214 		return false;
2215 #endif
2216 	return check_tsc_unstable();
2217 }
2218 
2219 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2220 {
2221 	struct kvm *kvm = vcpu->kvm;
2222 	u64 offset, ns, elapsed;
2223 	unsigned long flags;
2224 	bool matched;
2225 	bool already_matched;
2226 	bool synchronizing = false;
2227 
2228 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2229 	offset = kvm_compute_tsc_offset(vcpu, data);
2230 	ns = get_kvmclock_base_ns();
2231 	elapsed = ns - kvm->arch.last_tsc_nsec;
2232 
2233 	if (vcpu->arch.virtual_tsc_khz) {
2234 		if (data == 0) {
2235 			/*
2236 			 * detection of vcpu initialization -- need to sync
2237 			 * with other vCPUs. This particularly helps to keep
2238 			 * kvm_clock stable after CPU hotplug
2239 			 */
2240 			synchronizing = true;
2241 		} else {
2242 			u64 tsc_exp = kvm->arch.last_tsc_write +
2243 						nsec_to_cycles(vcpu, elapsed);
2244 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2245 			/*
2246 			 * Special case: TSC write with a small delta (1 second)
2247 			 * of virtual cycle time against real time is
2248 			 * interpreted as an attempt to synchronize the CPU.
2249 			 */
2250 			synchronizing = data < tsc_exp + tsc_hz &&
2251 					data + tsc_hz > tsc_exp;
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2257 	 * TSC, we add elapsed time in this computation.  We could let the
2258 	 * compensation code attempt to catch up if we fall behind, but
2259 	 * it's better to try to match offsets from the beginning.
2260          */
2261 	if (synchronizing &&
2262 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2263 		if (!kvm_check_tsc_unstable()) {
2264 			offset = kvm->arch.cur_tsc_offset;
2265 		} else {
2266 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2267 			data += delta;
2268 			offset = kvm_compute_tsc_offset(vcpu, data);
2269 		}
2270 		matched = true;
2271 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2272 	} else {
2273 		/*
2274 		 * We split periods of matched TSC writes into generations.
2275 		 * For each generation, we track the original measured
2276 		 * nanosecond time, offset, and write, so if TSCs are in
2277 		 * sync, we can match exact offset, and if not, we can match
2278 		 * exact software computation in compute_guest_tsc()
2279 		 *
2280 		 * These values are tracked in kvm->arch.cur_xxx variables.
2281 		 */
2282 		kvm->arch.cur_tsc_generation++;
2283 		kvm->arch.cur_tsc_nsec = ns;
2284 		kvm->arch.cur_tsc_write = data;
2285 		kvm->arch.cur_tsc_offset = offset;
2286 		matched = false;
2287 	}
2288 
2289 	/*
2290 	 * We also track th most recent recorded KHZ, write and time to
2291 	 * allow the matching interval to be extended at each write.
2292 	 */
2293 	kvm->arch.last_tsc_nsec = ns;
2294 	kvm->arch.last_tsc_write = data;
2295 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2296 
2297 	vcpu->arch.last_guest_tsc = data;
2298 
2299 	/* Keep track of which generation this VCPU has synchronized to */
2300 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2301 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2302 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2303 
2304 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2305 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2306 
2307 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2308 	if (!matched) {
2309 		kvm->arch.nr_vcpus_matched_tsc = 0;
2310 	} else if (!already_matched) {
2311 		kvm->arch.nr_vcpus_matched_tsc++;
2312 	}
2313 
2314 	kvm_track_tsc_matching(vcpu);
2315 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2316 }
2317 
2318 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2319 					   s64 adjustment)
2320 {
2321 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2322 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2323 }
2324 
2325 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2326 {
2327 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2328 		WARN_ON(adjustment < 0);
2329 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2330 	adjust_tsc_offset_guest(vcpu, adjustment);
2331 }
2332 
2333 #ifdef CONFIG_X86_64
2334 
2335 static u64 read_tsc(void)
2336 {
2337 	u64 ret = (u64)rdtsc_ordered();
2338 	u64 last = pvclock_gtod_data.clock.cycle_last;
2339 
2340 	if (likely(ret >= last))
2341 		return ret;
2342 
2343 	/*
2344 	 * GCC likes to generate cmov here, but this branch is extremely
2345 	 * predictable (it's just a function of time and the likely is
2346 	 * very likely) and there's a data dependence, so force GCC
2347 	 * to generate a branch instead.  I don't barrier() because
2348 	 * we don't actually need a barrier, and if this function
2349 	 * ever gets inlined it will generate worse code.
2350 	 */
2351 	asm volatile ("");
2352 	return last;
2353 }
2354 
2355 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2356 			  int *mode)
2357 {
2358 	long v;
2359 	u64 tsc_pg_val;
2360 
2361 	switch (clock->vclock_mode) {
2362 	case VDSO_CLOCKMODE_HVCLOCK:
2363 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2364 						  tsc_timestamp);
2365 		if (tsc_pg_val != U64_MAX) {
2366 			/* TSC page valid */
2367 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2368 			v = (tsc_pg_val - clock->cycle_last) &
2369 				clock->mask;
2370 		} else {
2371 			/* TSC page invalid */
2372 			*mode = VDSO_CLOCKMODE_NONE;
2373 		}
2374 		break;
2375 	case VDSO_CLOCKMODE_TSC:
2376 		*mode = VDSO_CLOCKMODE_TSC;
2377 		*tsc_timestamp = read_tsc();
2378 		v = (*tsc_timestamp - clock->cycle_last) &
2379 			clock->mask;
2380 		break;
2381 	default:
2382 		*mode = VDSO_CLOCKMODE_NONE;
2383 	}
2384 
2385 	if (*mode == VDSO_CLOCKMODE_NONE)
2386 		*tsc_timestamp = v = 0;
2387 
2388 	return v * clock->mult;
2389 }
2390 
2391 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2392 {
2393 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2394 	unsigned long seq;
2395 	int mode;
2396 	u64 ns;
2397 
2398 	do {
2399 		seq = read_seqcount_begin(&gtod->seq);
2400 		ns = gtod->raw_clock.base_cycles;
2401 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2402 		ns >>= gtod->raw_clock.shift;
2403 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2404 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2405 	*t = ns;
2406 
2407 	return mode;
2408 }
2409 
2410 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2411 {
2412 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2413 	unsigned long seq;
2414 	int mode;
2415 	u64 ns;
2416 
2417 	do {
2418 		seq = read_seqcount_begin(&gtod->seq);
2419 		ts->tv_sec = gtod->wall_time_sec;
2420 		ns = gtod->clock.base_cycles;
2421 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2422 		ns >>= gtod->clock.shift;
2423 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2424 
2425 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2426 	ts->tv_nsec = ns;
2427 
2428 	return mode;
2429 }
2430 
2431 /* returns true if host is using TSC based clocksource */
2432 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2433 {
2434 	/* checked again under seqlock below */
2435 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2436 		return false;
2437 
2438 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2439 						      tsc_timestamp));
2440 }
2441 
2442 /* returns true if host is using TSC based clocksource */
2443 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2444 					   u64 *tsc_timestamp)
2445 {
2446 	/* checked again under seqlock below */
2447 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2448 		return false;
2449 
2450 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2451 }
2452 #endif
2453 
2454 /*
2455  *
2456  * Assuming a stable TSC across physical CPUS, and a stable TSC
2457  * across virtual CPUs, the following condition is possible.
2458  * Each numbered line represents an event visible to both
2459  * CPUs at the next numbered event.
2460  *
2461  * "timespecX" represents host monotonic time. "tscX" represents
2462  * RDTSC value.
2463  *
2464  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2465  *
2466  * 1.  read timespec0,tsc0
2467  * 2.					| timespec1 = timespec0 + N
2468  * 					| tsc1 = tsc0 + M
2469  * 3. transition to guest		| transition to guest
2470  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2471  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2472  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2473  *
2474  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2475  *
2476  * 	- ret0 < ret1
2477  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2478  *		...
2479  *	- 0 < N - M => M < N
2480  *
2481  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2482  * always the case (the difference between two distinct xtime instances
2483  * might be smaller then the difference between corresponding TSC reads,
2484  * when updating guest vcpus pvclock areas).
2485  *
2486  * To avoid that problem, do not allow visibility of distinct
2487  * system_timestamp/tsc_timestamp values simultaneously: use a master
2488  * copy of host monotonic time values. Update that master copy
2489  * in lockstep.
2490  *
2491  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2492  *
2493  */
2494 
2495 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2496 {
2497 #ifdef CONFIG_X86_64
2498 	struct kvm_arch *ka = &kvm->arch;
2499 	int vclock_mode;
2500 	bool host_tsc_clocksource, vcpus_matched;
2501 
2502 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2503 			atomic_read(&kvm->online_vcpus));
2504 
2505 	/*
2506 	 * If the host uses TSC clock, then passthrough TSC as stable
2507 	 * to the guest.
2508 	 */
2509 	host_tsc_clocksource = kvm_get_time_and_clockread(
2510 					&ka->master_kernel_ns,
2511 					&ka->master_cycle_now);
2512 
2513 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2514 				&& !ka->backwards_tsc_observed
2515 				&& !ka->boot_vcpu_runs_old_kvmclock;
2516 
2517 	if (ka->use_master_clock)
2518 		atomic_set(&kvm_guest_has_master_clock, 1);
2519 
2520 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2521 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2522 					vcpus_matched);
2523 #endif
2524 }
2525 
2526 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2527 {
2528 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2529 }
2530 
2531 static void kvm_gen_update_masterclock(struct kvm *kvm)
2532 {
2533 #ifdef CONFIG_X86_64
2534 	int i;
2535 	struct kvm_vcpu *vcpu;
2536 	struct kvm_arch *ka = &kvm->arch;
2537 
2538 	spin_lock(&ka->pvclock_gtod_sync_lock);
2539 	kvm_make_mclock_inprogress_request(kvm);
2540 	/* no guest entries from this point */
2541 	pvclock_update_vm_gtod_copy(kvm);
2542 
2543 	kvm_for_each_vcpu(i, vcpu, kvm)
2544 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2545 
2546 	/* guest entries allowed */
2547 	kvm_for_each_vcpu(i, vcpu, kvm)
2548 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2549 
2550 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2551 #endif
2552 }
2553 
2554 u64 get_kvmclock_ns(struct kvm *kvm)
2555 {
2556 	struct kvm_arch *ka = &kvm->arch;
2557 	struct pvclock_vcpu_time_info hv_clock;
2558 	u64 ret;
2559 
2560 	spin_lock(&ka->pvclock_gtod_sync_lock);
2561 	if (!ka->use_master_clock) {
2562 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2563 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2564 	}
2565 
2566 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2567 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2568 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2569 
2570 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2571 	get_cpu();
2572 
2573 	if (__this_cpu_read(cpu_tsc_khz)) {
2574 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2575 				   &hv_clock.tsc_shift,
2576 				   &hv_clock.tsc_to_system_mul);
2577 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2578 	} else
2579 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2580 
2581 	put_cpu();
2582 
2583 	return ret;
2584 }
2585 
2586 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2587 {
2588 	struct kvm_vcpu_arch *vcpu = &v->arch;
2589 	struct pvclock_vcpu_time_info guest_hv_clock;
2590 
2591 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2592 		&guest_hv_clock, sizeof(guest_hv_clock))))
2593 		return;
2594 
2595 	/* This VCPU is paused, but it's legal for a guest to read another
2596 	 * VCPU's kvmclock, so we really have to follow the specification where
2597 	 * it says that version is odd if data is being modified, and even after
2598 	 * it is consistent.
2599 	 *
2600 	 * Version field updates must be kept separate.  This is because
2601 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2602 	 * writes within a string instruction are weakly ordered.  So there
2603 	 * are three writes overall.
2604 	 *
2605 	 * As a small optimization, only write the version field in the first
2606 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2607 	 * version field is the first in the struct.
2608 	 */
2609 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2610 
2611 	if (guest_hv_clock.version & 1)
2612 		++guest_hv_clock.version;  /* first time write, random junk */
2613 
2614 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2615 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2616 				&vcpu->hv_clock,
2617 				sizeof(vcpu->hv_clock.version));
2618 
2619 	smp_wmb();
2620 
2621 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2622 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2623 
2624 	if (vcpu->pvclock_set_guest_stopped_request) {
2625 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2626 		vcpu->pvclock_set_guest_stopped_request = false;
2627 	}
2628 
2629 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2630 
2631 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2632 				&vcpu->hv_clock,
2633 				sizeof(vcpu->hv_clock));
2634 
2635 	smp_wmb();
2636 
2637 	vcpu->hv_clock.version++;
2638 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2639 				&vcpu->hv_clock,
2640 				sizeof(vcpu->hv_clock.version));
2641 }
2642 
2643 static int kvm_guest_time_update(struct kvm_vcpu *v)
2644 {
2645 	unsigned long flags, tgt_tsc_khz;
2646 	struct kvm_vcpu_arch *vcpu = &v->arch;
2647 	struct kvm_arch *ka = &v->kvm->arch;
2648 	s64 kernel_ns;
2649 	u64 tsc_timestamp, host_tsc;
2650 	u8 pvclock_flags;
2651 	bool use_master_clock;
2652 
2653 	kernel_ns = 0;
2654 	host_tsc = 0;
2655 
2656 	/*
2657 	 * If the host uses TSC clock, then passthrough TSC as stable
2658 	 * to the guest.
2659 	 */
2660 	spin_lock(&ka->pvclock_gtod_sync_lock);
2661 	use_master_clock = ka->use_master_clock;
2662 	if (use_master_clock) {
2663 		host_tsc = ka->master_cycle_now;
2664 		kernel_ns = ka->master_kernel_ns;
2665 	}
2666 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2667 
2668 	/* Keep irq disabled to prevent changes to the clock */
2669 	local_irq_save(flags);
2670 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2671 	if (unlikely(tgt_tsc_khz == 0)) {
2672 		local_irq_restore(flags);
2673 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2674 		return 1;
2675 	}
2676 	if (!use_master_clock) {
2677 		host_tsc = rdtsc();
2678 		kernel_ns = get_kvmclock_base_ns();
2679 	}
2680 
2681 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2682 
2683 	/*
2684 	 * We may have to catch up the TSC to match elapsed wall clock
2685 	 * time for two reasons, even if kvmclock is used.
2686 	 *   1) CPU could have been running below the maximum TSC rate
2687 	 *   2) Broken TSC compensation resets the base at each VCPU
2688 	 *      entry to avoid unknown leaps of TSC even when running
2689 	 *      again on the same CPU.  This may cause apparent elapsed
2690 	 *      time to disappear, and the guest to stand still or run
2691 	 *	very slowly.
2692 	 */
2693 	if (vcpu->tsc_catchup) {
2694 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2695 		if (tsc > tsc_timestamp) {
2696 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2697 			tsc_timestamp = tsc;
2698 		}
2699 	}
2700 
2701 	local_irq_restore(flags);
2702 
2703 	/* With all the info we got, fill in the values */
2704 
2705 	if (kvm_has_tsc_control)
2706 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2707 
2708 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2709 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2710 				   &vcpu->hv_clock.tsc_shift,
2711 				   &vcpu->hv_clock.tsc_to_system_mul);
2712 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2713 	}
2714 
2715 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2716 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2717 	vcpu->last_guest_tsc = tsc_timestamp;
2718 
2719 	/* If the host uses TSC clocksource, then it is stable */
2720 	pvclock_flags = 0;
2721 	if (use_master_clock)
2722 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2723 
2724 	vcpu->hv_clock.flags = pvclock_flags;
2725 
2726 	if (vcpu->pv_time_enabled)
2727 		kvm_setup_pvclock_page(v);
2728 	if (v == kvm_get_vcpu(v->kvm, 0))
2729 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2730 	return 0;
2731 }
2732 
2733 /*
2734  * kvmclock updates which are isolated to a given vcpu, such as
2735  * vcpu->cpu migration, should not allow system_timestamp from
2736  * the rest of the vcpus to remain static. Otherwise ntp frequency
2737  * correction applies to one vcpu's system_timestamp but not
2738  * the others.
2739  *
2740  * So in those cases, request a kvmclock update for all vcpus.
2741  * We need to rate-limit these requests though, as they can
2742  * considerably slow guests that have a large number of vcpus.
2743  * The time for a remote vcpu to update its kvmclock is bound
2744  * by the delay we use to rate-limit the updates.
2745  */
2746 
2747 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2748 
2749 static void kvmclock_update_fn(struct work_struct *work)
2750 {
2751 	int i;
2752 	struct delayed_work *dwork = to_delayed_work(work);
2753 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2754 					   kvmclock_update_work);
2755 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2756 	struct kvm_vcpu *vcpu;
2757 
2758 	kvm_for_each_vcpu(i, vcpu, kvm) {
2759 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2760 		kvm_vcpu_kick(vcpu);
2761 	}
2762 }
2763 
2764 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2765 {
2766 	struct kvm *kvm = v->kvm;
2767 
2768 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2769 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2770 					KVMCLOCK_UPDATE_DELAY);
2771 }
2772 
2773 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2774 
2775 static void kvmclock_sync_fn(struct work_struct *work)
2776 {
2777 	struct delayed_work *dwork = to_delayed_work(work);
2778 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2779 					   kvmclock_sync_work);
2780 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2781 
2782 	if (!kvmclock_periodic_sync)
2783 		return;
2784 
2785 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2786 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2787 					KVMCLOCK_SYNC_PERIOD);
2788 }
2789 
2790 /*
2791  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2792  */
2793 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2794 {
2795 	/* McStatusWrEn enabled? */
2796 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2797 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2798 
2799 	return false;
2800 }
2801 
2802 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2803 {
2804 	u64 mcg_cap = vcpu->arch.mcg_cap;
2805 	unsigned bank_num = mcg_cap & 0xff;
2806 	u32 msr = msr_info->index;
2807 	u64 data = msr_info->data;
2808 
2809 	switch (msr) {
2810 	case MSR_IA32_MCG_STATUS:
2811 		vcpu->arch.mcg_status = data;
2812 		break;
2813 	case MSR_IA32_MCG_CTL:
2814 		if (!(mcg_cap & MCG_CTL_P) &&
2815 		    (data || !msr_info->host_initiated))
2816 			return 1;
2817 		if (data != 0 && data != ~(u64)0)
2818 			return 1;
2819 		vcpu->arch.mcg_ctl = data;
2820 		break;
2821 	default:
2822 		if (msr >= MSR_IA32_MC0_CTL &&
2823 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2824 			u32 offset = array_index_nospec(
2825 				msr - MSR_IA32_MC0_CTL,
2826 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2827 
2828 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2829 			 * some Linux kernels though clear bit 10 in bank 4 to
2830 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2831 			 * this to avoid an uncatched #GP in the guest
2832 			 */
2833 			if ((offset & 0x3) == 0 &&
2834 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2835 				return -1;
2836 
2837 			/* MCi_STATUS */
2838 			if (!msr_info->host_initiated &&
2839 			    (offset & 0x3) == 1 && data != 0) {
2840 				if (!can_set_mci_status(vcpu))
2841 					return -1;
2842 			}
2843 
2844 			vcpu->arch.mce_banks[offset] = data;
2845 			break;
2846 		}
2847 		return 1;
2848 	}
2849 	return 0;
2850 }
2851 
2852 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2853 {
2854 	struct kvm *kvm = vcpu->kvm;
2855 	int lm = is_long_mode(vcpu);
2856 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2857 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2858 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2859 		: kvm->arch.xen_hvm_config.blob_size_32;
2860 	u32 page_num = data & ~PAGE_MASK;
2861 	u64 page_addr = data & PAGE_MASK;
2862 	u8 *page;
2863 
2864 	if (page_num >= blob_size)
2865 		return 1;
2866 
2867 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2868 	if (IS_ERR(page))
2869 		return PTR_ERR(page);
2870 
2871 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2872 		kfree(page);
2873 		return 1;
2874 	}
2875 	return 0;
2876 }
2877 
2878 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2879 {
2880 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2881 
2882 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2883 }
2884 
2885 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2886 {
2887 	gpa_t gpa = data & ~0x3f;
2888 
2889 	/* Bits 4:5 are reserved, Should be zero */
2890 	if (data & 0x30)
2891 		return 1;
2892 
2893 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2894 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2895 		return 1;
2896 
2897 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2898 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2899 		return 1;
2900 
2901 	if (!lapic_in_kernel(vcpu))
2902 		return data ? 1 : 0;
2903 
2904 	vcpu->arch.apf.msr_en_val = data;
2905 
2906 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2907 		kvm_clear_async_pf_completion_queue(vcpu);
2908 		kvm_async_pf_hash_reset(vcpu);
2909 		return 0;
2910 	}
2911 
2912 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2913 					sizeof(u64)))
2914 		return 1;
2915 
2916 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2917 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2918 
2919 	kvm_async_pf_wakeup_all(vcpu);
2920 
2921 	return 0;
2922 }
2923 
2924 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2925 {
2926 	/* Bits 8-63 are reserved */
2927 	if (data >> 8)
2928 		return 1;
2929 
2930 	if (!lapic_in_kernel(vcpu))
2931 		return 1;
2932 
2933 	vcpu->arch.apf.msr_int_val = data;
2934 
2935 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2936 
2937 	return 0;
2938 }
2939 
2940 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2941 {
2942 	vcpu->arch.pv_time_enabled = false;
2943 	vcpu->arch.time = 0;
2944 }
2945 
2946 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2947 {
2948 	++vcpu->stat.tlb_flush;
2949 	kvm_x86_ops.tlb_flush_all(vcpu);
2950 }
2951 
2952 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2953 {
2954 	++vcpu->stat.tlb_flush;
2955 	kvm_x86_ops.tlb_flush_guest(vcpu);
2956 }
2957 
2958 static void record_steal_time(struct kvm_vcpu *vcpu)
2959 {
2960 	struct kvm_host_map map;
2961 	struct kvm_steal_time *st;
2962 
2963 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2964 		return;
2965 
2966 	/* -EAGAIN is returned in atomic context so we can just return. */
2967 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2968 			&map, &vcpu->arch.st.cache, false))
2969 		return;
2970 
2971 	st = map.hva +
2972 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2973 
2974 	/*
2975 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2976 	 * expensive IPIs.
2977 	 */
2978 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2979 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2980 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2981 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2982 			kvm_vcpu_flush_tlb_guest(vcpu);
2983 	}
2984 
2985 	vcpu->arch.st.preempted = 0;
2986 
2987 	if (st->version & 1)
2988 		st->version += 1;  /* first time write, random junk */
2989 
2990 	st->version += 1;
2991 
2992 	smp_wmb();
2993 
2994 	st->steal += current->sched_info.run_delay -
2995 		vcpu->arch.st.last_steal;
2996 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2997 
2998 	smp_wmb();
2999 
3000 	st->version += 1;
3001 
3002 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3003 }
3004 
3005 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3006 {
3007 	bool pr = false;
3008 	u32 msr = msr_info->index;
3009 	u64 data = msr_info->data;
3010 
3011 	switch (msr) {
3012 	case MSR_AMD64_NB_CFG:
3013 	case MSR_IA32_UCODE_WRITE:
3014 	case MSR_VM_HSAVE_PA:
3015 	case MSR_AMD64_PATCH_LOADER:
3016 	case MSR_AMD64_BU_CFG2:
3017 	case MSR_AMD64_DC_CFG:
3018 	case MSR_F15H_EX_CFG:
3019 		break;
3020 
3021 	case MSR_IA32_UCODE_REV:
3022 		if (msr_info->host_initiated)
3023 			vcpu->arch.microcode_version = data;
3024 		break;
3025 	case MSR_IA32_ARCH_CAPABILITIES:
3026 		if (!msr_info->host_initiated)
3027 			return 1;
3028 		vcpu->arch.arch_capabilities = data;
3029 		break;
3030 	case MSR_IA32_PERF_CAPABILITIES: {
3031 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3032 
3033 		if (!msr_info->host_initiated)
3034 			return 1;
3035 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3036 			return 1;
3037 		if (data & ~msr_ent.data)
3038 			return 1;
3039 
3040 		vcpu->arch.perf_capabilities = data;
3041 
3042 		return 0;
3043 		}
3044 	case MSR_EFER:
3045 		return set_efer(vcpu, msr_info);
3046 	case MSR_K7_HWCR:
3047 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3048 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3049 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3050 
3051 		/* Handle McStatusWrEn */
3052 		if (data == BIT_ULL(18)) {
3053 			vcpu->arch.msr_hwcr = data;
3054 		} else if (data != 0) {
3055 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3056 				    data);
3057 			return 1;
3058 		}
3059 		break;
3060 	case MSR_FAM10H_MMIO_CONF_BASE:
3061 		if (data != 0) {
3062 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3063 				    "0x%llx\n", data);
3064 			return 1;
3065 		}
3066 		break;
3067 	case MSR_IA32_DEBUGCTLMSR:
3068 		if (!data) {
3069 			/* We support the non-activated case already */
3070 			break;
3071 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3072 			/* Values other than LBR and BTF are vendor-specific,
3073 			   thus reserved and should throw a #GP */
3074 			return 1;
3075 		} else if (report_ignored_msrs)
3076 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3077 				    __func__, data);
3078 		break;
3079 	case 0x200 ... 0x2ff:
3080 		return kvm_mtrr_set_msr(vcpu, msr, data);
3081 	case MSR_IA32_APICBASE:
3082 		return kvm_set_apic_base(vcpu, msr_info);
3083 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3084 		return kvm_x2apic_msr_write(vcpu, msr, data);
3085 	case MSR_IA32_TSCDEADLINE:
3086 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3087 		break;
3088 	case MSR_IA32_TSC_ADJUST:
3089 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3090 			if (!msr_info->host_initiated) {
3091 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3092 				adjust_tsc_offset_guest(vcpu, adj);
3093 			}
3094 			vcpu->arch.ia32_tsc_adjust_msr = data;
3095 		}
3096 		break;
3097 	case MSR_IA32_MISC_ENABLE:
3098 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3099 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3100 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3101 				return 1;
3102 			vcpu->arch.ia32_misc_enable_msr = data;
3103 			kvm_update_cpuid_runtime(vcpu);
3104 		} else {
3105 			vcpu->arch.ia32_misc_enable_msr = data;
3106 		}
3107 		break;
3108 	case MSR_IA32_SMBASE:
3109 		if (!msr_info->host_initiated)
3110 			return 1;
3111 		vcpu->arch.smbase = data;
3112 		break;
3113 	case MSR_IA32_POWER_CTL:
3114 		vcpu->arch.msr_ia32_power_ctl = data;
3115 		break;
3116 	case MSR_IA32_TSC:
3117 		if (msr_info->host_initiated) {
3118 			kvm_synchronize_tsc(vcpu, data);
3119 		} else {
3120 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3121 			adjust_tsc_offset_guest(vcpu, adj);
3122 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3123 		}
3124 		break;
3125 	case MSR_IA32_XSS:
3126 		if (!msr_info->host_initiated &&
3127 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3128 			return 1;
3129 		/*
3130 		 * KVM supports exposing PT to the guest, but does not support
3131 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3132 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3133 		 */
3134 		if (data & ~supported_xss)
3135 			return 1;
3136 		vcpu->arch.ia32_xss = data;
3137 		break;
3138 	case MSR_SMI_COUNT:
3139 		if (!msr_info->host_initiated)
3140 			return 1;
3141 		vcpu->arch.smi_count = data;
3142 		break;
3143 	case MSR_KVM_WALL_CLOCK_NEW:
3144 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3145 			return 1;
3146 
3147 		kvm_write_wall_clock(vcpu->kvm, data);
3148 		break;
3149 	case MSR_KVM_WALL_CLOCK:
3150 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3151 			return 1;
3152 
3153 		kvm_write_wall_clock(vcpu->kvm, data);
3154 		break;
3155 	case MSR_KVM_SYSTEM_TIME_NEW:
3156 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3157 			return 1;
3158 
3159 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3160 		break;
3161 	case MSR_KVM_SYSTEM_TIME:
3162 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3163 			return 1;
3164 
3165 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3166 		break;
3167 	case MSR_KVM_ASYNC_PF_EN:
3168 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3169 			return 1;
3170 
3171 		if (kvm_pv_enable_async_pf(vcpu, data))
3172 			return 1;
3173 		break;
3174 	case MSR_KVM_ASYNC_PF_INT:
3175 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3176 			return 1;
3177 
3178 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3179 			return 1;
3180 		break;
3181 	case MSR_KVM_ASYNC_PF_ACK:
3182 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3183 			return 1;
3184 		if (data & 0x1) {
3185 			vcpu->arch.apf.pageready_pending = false;
3186 			kvm_check_async_pf_completion(vcpu);
3187 		}
3188 		break;
3189 	case MSR_KVM_STEAL_TIME:
3190 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3191 			return 1;
3192 
3193 		if (unlikely(!sched_info_on()))
3194 			return 1;
3195 
3196 		if (data & KVM_STEAL_RESERVED_MASK)
3197 			return 1;
3198 
3199 		vcpu->arch.st.msr_val = data;
3200 
3201 		if (!(data & KVM_MSR_ENABLED))
3202 			break;
3203 
3204 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3205 
3206 		break;
3207 	case MSR_KVM_PV_EOI_EN:
3208 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3209 			return 1;
3210 
3211 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3212 			return 1;
3213 		break;
3214 
3215 	case MSR_KVM_POLL_CONTROL:
3216 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3217 			return 1;
3218 
3219 		/* only enable bit supported */
3220 		if (data & (-1ULL << 1))
3221 			return 1;
3222 
3223 		vcpu->arch.msr_kvm_poll_control = data;
3224 		break;
3225 
3226 	case MSR_IA32_MCG_CTL:
3227 	case MSR_IA32_MCG_STATUS:
3228 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3229 		return set_msr_mce(vcpu, msr_info);
3230 
3231 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3232 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3233 		pr = true;
3234 		fallthrough;
3235 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3236 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3237 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3238 			return kvm_pmu_set_msr(vcpu, msr_info);
3239 
3240 		if (pr || data != 0)
3241 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3242 				    "0x%x data 0x%llx\n", msr, data);
3243 		break;
3244 	case MSR_K7_CLK_CTL:
3245 		/*
3246 		 * Ignore all writes to this no longer documented MSR.
3247 		 * Writes are only relevant for old K7 processors,
3248 		 * all pre-dating SVM, but a recommended workaround from
3249 		 * AMD for these chips. It is possible to specify the
3250 		 * affected processor models on the command line, hence
3251 		 * the need to ignore the workaround.
3252 		 */
3253 		break;
3254 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3255 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3256 	case HV_X64_MSR_SYNDBG_OPTIONS:
3257 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3258 	case HV_X64_MSR_CRASH_CTL:
3259 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3260 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3261 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3262 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3263 		return kvm_hv_set_msr_common(vcpu, msr, data,
3264 					     msr_info->host_initiated);
3265 	case MSR_IA32_BBL_CR_CTL3:
3266 		/* Drop writes to this legacy MSR -- see rdmsr
3267 		 * counterpart for further detail.
3268 		 */
3269 		if (report_ignored_msrs)
3270 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3271 				msr, data);
3272 		break;
3273 	case MSR_AMD64_OSVW_ID_LENGTH:
3274 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3275 			return 1;
3276 		vcpu->arch.osvw.length = data;
3277 		break;
3278 	case MSR_AMD64_OSVW_STATUS:
3279 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3280 			return 1;
3281 		vcpu->arch.osvw.status = data;
3282 		break;
3283 	case MSR_PLATFORM_INFO:
3284 		if (!msr_info->host_initiated ||
3285 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3286 		     cpuid_fault_enabled(vcpu)))
3287 			return 1;
3288 		vcpu->arch.msr_platform_info = data;
3289 		break;
3290 	case MSR_MISC_FEATURES_ENABLES:
3291 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3292 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3293 		     !supports_cpuid_fault(vcpu)))
3294 			return 1;
3295 		vcpu->arch.msr_misc_features_enables = data;
3296 		break;
3297 	default:
3298 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3299 			return xen_hvm_config(vcpu, data);
3300 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3301 			return kvm_pmu_set_msr(vcpu, msr_info);
3302 		return KVM_MSR_RET_INVALID;
3303 	}
3304 	return 0;
3305 }
3306 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3307 
3308 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3309 {
3310 	u64 data;
3311 	u64 mcg_cap = vcpu->arch.mcg_cap;
3312 	unsigned bank_num = mcg_cap & 0xff;
3313 
3314 	switch (msr) {
3315 	case MSR_IA32_P5_MC_ADDR:
3316 	case MSR_IA32_P5_MC_TYPE:
3317 		data = 0;
3318 		break;
3319 	case MSR_IA32_MCG_CAP:
3320 		data = vcpu->arch.mcg_cap;
3321 		break;
3322 	case MSR_IA32_MCG_CTL:
3323 		if (!(mcg_cap & MCG_CTL_P) && !host)
3324 			return 1;
3325 		data = vcpu->arch.mcg_ctl;
3326 		break;
3327 	case MSR_IA32_MCG_STATUS:
3328 		data = vcpu->arch.mcg_status;
3329 		break;
3330 	default:
3331 		if (msr >= MSR_IA32_MC0_CTL &&
3332 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3333 			u32 offset = array_index_nospec(
3334 				msr - MSR_IA32_MC0_CTL,
3335 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3336 
3337 			data = vcpu->arch.mce_banks[offset];
3338 			break;
3339 		}
3340 		return 1;
3341 	}
3342 	*pdata = data;
3343 	return 0;
3344 }
3345 
3346 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3347 {
3348 	switch (msr_info->index) {
3349 	case MSR_IA32_PLATFORM_ID:
3350 	case MSR_IA32_EBL_CR_POWERON:
3351 	case MSR_IA32_DEBUGCTLMSR:
3352 	case MSR_IA32_LASTBRANCHFROMIP:
3353 	case MSR_IA32_LASTBRANCHTOIP:
3354 	case MSR_IA32_LASTINTFROMIP:
3355 	case MSR_IA32_LASTINTTOIP:
3356 	case MSR_K8_SYSCFG:
3357 	case MSR_K8_TSEG_ADDR:
3358 	case MSR_K8_TSEG_MASK:
3359 	case MSR_VM_HSAVE_PA:
3360 	case MSR_K8_INT_PENDING_MSG:
3361 	case MSR_AMD64_NB_CFG:
3362 	case MSR_FAM10H_MMIO_CONF_BASE:
3363 	case MSR_AMD64_BU_CFG2:
3364 	case MSR_IA32_PERF_CTL:
3365 	case MSR_AMD64_DC_CFG:
3366 	case MSR_F15H_EX_CFG:
3367 	/*
3368 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3369 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3370 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3371 	 * so for existing CPU-specific MSRs.
3372 	 */
3373 	case MSR_RAPL_POWER_UNIT:
3374 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3375 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3376 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3377 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3378 		msr_info->data = 0;
3379 		break;
3380 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3381 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3382 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3383 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3384 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3385 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3386 			return kvm_pmu_get_msr(vcpu, msr_info);
3387 		msr_info->data = 0;
3388 		break;
3389 	case MSR_IA32_UCODE_REV:
3390 		msr_info->data = vcpu->arch.microcode_version;
3391 		break;
3392 	case MSR_IA32_ARCH_CAPABILITIES:
3393 		if (!msr_info->host_initiated &&
3394 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3395 			return 1;
3396 		msr_info->data = vcpu->arch.arch_capabilities;
3397 		break;
3398 	case MSR_IA32_PERF_CAPABILITIES:
3399 		if (!msr_info->host_initiated &&
3400 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3401 			return 1;
3402 		msr_info->data = vcpu->arch.perf_capabilities;
3403 		break;
3404 	case MSR_IA32_POWER_CTL:
3405 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3406 		break;
3407 	case MSR_IA32_TSC: {
3408 		/*
3409 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3410 		 * even when not intercepted. AMD manual doesn't explicitly
3411 		 * state this but appears to behave the same.
3412 		 *
3413 		 * On userspace reads and writes, however, we unconditionally
3414 		 * return L1's TSC value to ensure backwards-compatible
3415 		 * behavior for migration.
3416 		 */
3417 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3418 							    vcpu->arch.tsc_offset;
3419 
3420 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3421 		break;
3422 	}
3423 	case MSR_MTRRcap:
3424 	case 0x200 ... 0x2ff:
3425 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3426 	case 0xcd: /* fsb frequency */
3427 		msr_info->data = 3;
3428 		break;
3429 		/*
3430 		 * MSR_EBC_FREQUENCY_ID
3431 		 * Conservative value valid for even the basic CPU models.
3432 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3433 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3434 		 * and 266MHz for model 3, or 4. Set Core Clock
3435 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3436 		 * 31:24) even though these are only valid for CPU
3437 		 * models > 2, however guests may end up dividing or
3438 		 * multiplying by zero otherwise.
3439 		 */
3440 	case MSR_EBC_FREQUENCY_ID:
3441 		msr_info->data = 1 << 24;
3442 		break;
3443 	case MSR_IA32_APICBASE:
3444 		msr_info->data = kvm_get_apic_base(vcpu);
3445 		break;
3446 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3447 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3448 	case MSR_IA32_TSCDEADLINE:
3449 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3450 		break;
3451 	case MSR_IA32_TSC_ADJUST:
3452 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3453 		break;
3454 	case MSR_IA32_MISC_ENABLE:
3455 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3456 		break;
3457 	case MSR_IA32_SMBASE:
3458 		if (!msr_info->host_initiated)
3459 			return 1;
3460 		msr_info->data = vcpu->arch.smbase;
3461 		break;
3462 	case MSR_SMI_COUNT:
3463 		msr_info->data = vcpu->arch.smi_count;
3464 		break;
3465 	case MSR_IA32_PERF_STATUS:
3466 		/* TSC increment by tick */
3467 		msr_info->data = 1000ULL;
3468 		/* CPU multiplier */
3469 		msr_info->data |= (((uint64_t)4ULL) << 40);
3470 		break;
3471 	case MSR_EFER:
3472 		msr_info->data = vcpu->arch.efer;
3473 		break;
3474 	case MSR_KVM_WALL_CLOCK:
3475 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3476 			return 1;
3477 
3478 		msr_info->data = vcpu->kvm->arch.wall_clock;
3479 		break;
3480 	case MSR_KVM_WALL_CLOCK_NEW:
3481 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3482 			return 1;
3483 
3484 		msr_info->data = vcpu->kvm->arch.wall_clock;
3485 		break;
3486 	case MSR_KVM_SYSTEM_TIME:
3487 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3488 			return 1;
3489 
3490 		msr_info->data = vcpu->arch.time;
3491 		break;
3492 	case MSR_KVM_SYSTEM_TIME_NEW:
3493 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3494 			return 1;
3495 
3496 		msr_info->data = vcpu->arch.time;
3497 		break;
3498 	case MSR_KVM_ASYNC_PF_EN:
3499 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3500 			return 1;
3501 
3502 		msr_info->data = vcpu->arch.apf.msr_en_val;
3503 		break;
3504 	case MSR_KVM_ASYNC_PF_INT:
3505 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3506 			return 1;
3507 
3508 		msr_info->data = vcpu->arch.apf.msr_int_val;
3509 		break;
3510 	case MSR_KVM_ASYNC_PF_ACK:
3511 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3512 			return 1;
3513 
3514 		msr_info->data = 0;
3515 		break;
3516 	case MSR_KVM_STEAL_TIME:
3517 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3518 			return 1;
3519 
3520 		msr_info->data = vcpu->arch.st.msr_val;
3521 		break;
3522 	case MSR_KVM_PV_EOI_EN:
3523 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3524 			return 1;
3525 
3526 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3527 		break;
3528 	case MSR_KVM_POLL_CONTROL:
3529 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3530 			return 1;
3531 
3532 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3533 		break;
3534 	case MSR_IA32_P5_MC_ADDR:
3535 	case MSR_IA32_P5_MC_TYPE:
3536 	case MSR_IA32_MCG_CAP:
3537 	case MSR_IA32_MCG_CTL:
3538 	case MSR_IA32_MCG_STATUS:
3539 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3540 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3541 				   msr_info->host_initiated);
3542 	case MSR_IA32_XSS:
3543 		if (!msr_info->host_initiated &&
3544 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3545 			return 1;
3546 		msr_info->data = vcpu->arch.ia32_xss;
3547 		break;
3548 	case MSR_K7_CLK_CTL:
3549 		/*
3550 		 * Provide expected ramp-up count for K7. All other
3551 		 * are set to zero, indicating minimum divisors for
3552 		 * every field.
3553 		 *
3554 		 * This prevents guest kernels on AMD host with CPU
3555 		 * type 6, model 8 and higher from exploding due to
3556 		 * the rdmsr failing.
3557 		 */
3558 		msr_info->data = 0x20000000;
3559 		break;
3560 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3561 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3562 	case HV_X64_MSR_SYNDBG_OPTIONS:
3563 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3564 	case HV_X64_MSR_CRASH_CTL:
3565 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3566 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3567 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3568 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3569 		return kvm_hv_get_msr_common(vcpu,
3570 					     msr_info->index, &msr_info->data,
3571 					     msr_info->host_initiated);
3572 	case MSR_IA32_BBL_CR_CTL3:
3573 		/* This legacy MSR exists but isn't fully documented in current
3574 		 * silicon.  It is however accessed by winxp in very narrow
3575 		 * scenarios where it sets bit #19, itself documented as
3576 		 * a "reserved" bit.  Best effort attempt to source coherent
3577 		 * read data here should the balance of the register be
3578 		 * interpreted by the guest:
3579 		 *
3580 		 * L2 cache control register 3: 64GB range, 256KB size,
3581 		 * enabled, latency 0x1, configured
3582 		 */
3583 		msr_info->data = 0xbe702111;
3584 		break;
3585 	case MSR_AMD64_OSVW_ID_LENGTH:
3586 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3587 			return 1;
3588 		msr_info->data = vcpu->arch.osvw.length;
3589 		break;
3590 	case MSR_AMD64_OSVW_STATUS:
3591 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3592 			return 1;
3593 		msr_info->data = vcpu->arch.osvw.status;
3594 		break;
3595 	case MSR_PLATFORM_INFO:
3596 		if (!msr_info->host_initiated &&
3597 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3598 			return 1;
3599 		msr_info->data = vcpu->arch.msr_platform_info;
3600 		break;
3601 	case MSR_MISC_FEATURES_ENABLES:
3602 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3603 		break;
3604 	case MSR_K7_HWCR:
3605 		msr_info->data = vcpu->arch.msr_hwcr;
3606 		break;
3607 	default:
3608 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3609 			return kvm_pmu_get_msr(vcpu, msr_info);
3610 		return KVM_MSR_RET_INVALID;
3611 	}
3612 	return 0;
3613 }
3614 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3615 
3616 /*
3617  * Read or write a bunch of msrs. All parameters are kernel addresses.
3618  *
3619  * @return number of msrs set successfully.
3620  */
3621 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3622 		    struct kvm_msr_entry *entries,
3623 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3624 				  unsigned index, u64 *data))
3625 {
3626 	int i;
3627 
3628 	for (i = 0; i < msrs->nmsrs; ++i)
3629 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3630 			break;
3631 
3632 	return i;
3633 }
3634 
3635 /*
3636  * Read or write a bunch of msrs. Parameters are user addresses.
3637  *
3638  * @return number of msrs set successfully.
3639  */
3640 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3641 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3642 				unsigned index, u64 *data),
3643 		  int writeback)
3644 {
3645 	struct kvm_msrs msrs;
3646 	struct kvm_msr_entry *entries;
3647 	int r, n;
3648 	unsigned size;
3649 
3650 	r = -EFAULT;
3651 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3652 		goto out;
3653 
3654 	r = -E2BIG;
3655 	if (msrs.nmsrs >= MAX_IO_MSRS)
3656 		goto out;
3657 
3658 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3659 	entries = memdup_user(user_msrs->entries, size);
3660 	if (IS_ERR(entries)) {
3661 		r = PTR_ERR(entries);
3662 		goto out;
3663 	}
3664 
3665 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3666 	if (r < 0)
3667 		goto out_free;
3668 
3669 	r = -EFAULT;
3670 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3671 		goto out_free;
3672 
3673 	r = n;
3674 
3675 out_free:
3676 	kfree(entries);
3677 out:
3678 	return r;
3679 }
3680 
3681 static inline bool kvm_can_mwait_in_guest(void)
3682 {
3683 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3684 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3685 		boot_cpu_has(X86_FEATURE_ARAT);
3686 }
3687 
3688 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3689 					    struct kvm_cpuid2 __user *cpuid_arg)
3690 {
3691 	struct kvm_cpuid2 cpuid;
3692 	int r;
3693 
3694 	r = -EFAULT;
3695 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3696 		return r;
3697 
3698 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3699 	if (r)
3700 		return r;
3701 
3702 	r = -EFAULT;
3703 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3704 		return r;
3705 
3706 	return 0;
3707 }
3708 
3709 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3710 {
3711 	int r = 0;
3712 
3713 	switch (ext) {
3714 	case KVM_CAP_IRQCHIP:
3715 	case KVM_CAP_HLT:
3716 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3717 	case KVM_CAP_SET_TSS_ADDR:
3718 	case KVM_CAP_EXT_CPUID:
3719 	case KVM_CAP_EXT_EMUL_CPUID:
3720 	case KVM_CAP_CLOCKSOURCE:
3721 	case KVM_CAP_PIT:
3722 	case KVM_CAP_NOP_IO_DELAY:
3723 	case KVM_CAP_MP_STATE:
3724 	case KVM_CAP_SYNC_MMU:
3725 	case KVM_CAP_USER_NMI:
3726 	case KVM_CAP_REINJECT_CONTROL:
3727 	case KVM_CAP_IRQ_INJECT_STATUS:
3728 	case KVM_CAP_IOEVENTFD:
3729 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3730 	case KVM_CAP_PIT2:
3731 	case KVM_CAP_PIT_STATE2:
3732 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3733 	case KVM_CAP_XEN_HVM:
3734 	case KVM_CAP_VCPU_EVENTS:
3735 	case KVM_CAP_HYPERV:
3736 	case KVM_CAP_HYPERV_VAPIC:
3737 	case KVM_CAP_HYPERV_SPIN:
3738 	case KVM_CAP_HYPERV_SYNIC:
3739 	case KVM_CAP_HYPERV_SYNIC2:
3740 	case KVM_CAP_HYPERV_VP_INDEX:
3741 	case KVM_CAP_HYPERV_EVENTFD:
3742 	case KVM_CAP_HYPERV_TLBFLUSH:
3743 	case KVM_CAP_HYPERV_SEND_IPI:
3744 	case KVM_CAP_HYPERV_CPUID:
3745 	case KVM_CAP_SYS_HYPERV_CPUID:
3746 	case KVM_CAP_PCI_SEGMENT:
3747 	case KVM_CAP_DEBUGREGS:
3748 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3749 	case KVM_CAP_XSAVE:
3750 	case KVM_CAP_ASYNC_PF:
3751 	case KVM_CAP_ASYNC_PF_INT:
3752 	case KVM_CAP_GET_TSC_KHZ:
3753 	case KVM_CAP_KVMCLOCK_CTRL:
3754 	case KVM_CAP_READONLY_MEM:
3755 	case KVM_CAP_HYPERV_TIME:
3756 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3757 	case KVM_CAP_TSC_DEADLINE_TIMER:
3758 	case KVM_CAP_DISABLE_QUIRKS:
3759 	case KVM_CAP_SET_BOOT_CPU_ID:
3760  	case KVM_CAP_SPLIT_IRQCHIP:
3761 	case KVM_CAP_IMMEDIATE_EXIT:
3762 	case KVM_CAP_PMU_EVENT_FILTER:
3763 	case KVM_CAP_GET_MSR_FEATURES:
3764 	case KVM_CAP_MSR_PLATFORM_INFO:
3765 	case KVM_CAP_EXCEPTION_PAYLOAD:
3766 	case KVM_CAP_SET_GUEST_DEBUG:
3767 	case KVM_CAP_LAST_CPU:
3768 	case KVM_CAP_X86_USER_SPACE_MSR:
3769 	case KVM_CAP_X86_MSR_FILTER:
3770 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3771 		r = 1;
3772 		break;
3773 	case KVM_CAP_SYNC_REGS:
3774 		r = KVM_SYNC_X86_VALID_FIELDS;
3775 		break;
3776 	case KVM_CAP_ADJUST_CLOCK:
3777 		r = KVM_CLOCK_TSC_STABLE;
3778 		break;
3779 	case KVM_CAP_X86_DISABLE_EXITS:
3780 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3781 		      KVM_X86_DISABLE_EXITS_CSTATE;
3782 		if(kvm_can_mwait_in_guest())
3783 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3784 		break;
3785 	case KVM_CAP_X86_SMM:
3786 		/* SMBASE is usually relocated above 1M on modern chipsets,
3787 		 * and SMM handlers might indeed rely on 4G segment limits,
3788 		 * so do not report SMM to be available if real mode is
3789 		 * emulated via vm86 mode.  Still, do not go to great lengths
3790 		 * to avoid userspace's usage of the feature, because it is a
3791 		 * fringe case that is not enabled except via specific settings
3792 		 * of the module parameters.
3793 		 */
3794 		r = kvm_x86_ops.has_emulated_msr(kvm, MSR_IA32_SMBASE);
3795 		break;
3796 	case KVM_CAP_VAPIC:
3797 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3798 		break;
3799 	case KVM_CAP_NR_VCPUS:
3800 		r = KVM_SOFT_MAX_VCPUS;
3801 		break;
3802 	case KVM_CAP_MAX_VCPUS:
3803 		r = KVM_MAX_VCPUS;
3804 		break;
3805 	case KVM_CAP_MAX_VCPU_ID:
3806 		r = KVM_MAX_VCPU_ID;
3807 		break;
3808 	case KVM_CAP_PV_MMU:	/* obsolete */
3809 		r = 0;
3810 		break;
3811 	case KVM_CAP_MCE:
3812 		r = KVM_MAX_MCE_BANKS;
3813 		break;
3814 	case KVM_CAP_XCRS:
3815 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3816 		break;
3817 	case KVM_CAP_TSC_CONTROL:
3818 		r = kvm_has_tsc_control;
3819 		break;
3820 	case KVM_CAP_X2APIC_API:
3821 		r = KVM_X2APIC_API_VALID_FLAGS;
3822 		break;
3823 	case KVM_CAP_NESTED_STATE:
3824 		r = kvm_x86_ops.nested_ops->get_state ?
3825 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3826 		break;
3827 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3828 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3829 		break;
3830 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3831 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3832 		break;
3833 	case KVM_CAP_SMALLER_MAXPHYADDR:
3834 		r = (int) allow_smaller_maxphyaddr;
3835 		break;
3836 	case KVM_CAP_STEAL_TIME:
3837 		r = sched_info_on();
3838 		break;
3839 	default:
3840 		break;
3841 	}
3842 	return r;
3843 
3844 }
3845 
3846 long kvm_arch_dev_ioctl(struct file *filp,
3847 			unsigned int ioctl, unsigned long arg)
3848 {
3849 	void __user *argp = (void __user *)arg;
3850 	long r;
3851 
3852 	switch (ioctl) {
3853 	case KVM_GET_MSR_INDEX_LIST: {
3854 		struct kvm_msr_list __user *user_msr_list = argp;
3855 		struct kvm_msr_list msr_list;
3856 		unsigned n;
3857 
3858 		r = -EFAULT;
3859 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3860 			goto out;
3861 		n = msr_list.nmsrs;
3862 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3863 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3864 			goto out;
3865 		r = -E2BIG;
3866 		if (n < msr_list.nmsrs)
3867 			goto out;
3868 		r = -EFAULT;
3869 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3870 				 num_msrs_to_save * sizeof(u32)))
3871 			goto out;
3872 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3873 				 &emulated_msrs,
3874 				 num_emulated_msrs * sizeof(u32)))
3875 			goto out;
3876 		r = 0;
3877 		break;
3878 	}
3879 	case KVM_GET_SUPPORTED_CPUID:
3880 	case KVM_GET_EMULATED_CPUID: {
3881 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3882 		struct kvm_cpuid2 cpuid;
3883 
3884 		r = -EFAULT;
3885 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3886 			goto out;
3887 
3888 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3889 					    ioctl);
3890 		if (r)
3891 			goto out;
3892 
3893 		r = -EFAULT;
3894 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3895 			goto out;
3896 		r = 0;
3897 		break;
3898 	}
3899 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3900 		r = -EFAULT;
3901 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3902 				 sizeof(kvm_mce_cap_supported)))
3903 			goto out;
3904 		r = 0;
3905 		break;
3906 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3907 		struct kvm_msr_list __user *user_msr_list = argp;
3908 		struct kvm_msr_list msr_list;
3909 		unsigned int n;
3910 
3911 		r = -EFAULT;
3912 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3913 			goto out;
3914 		n = msr_list.nmsrs;
3915 		msr_list.nmsrs = num_msr_based_features;
3916 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3917 			goto out;
3918 		r = -E2BIG;
3919 		if (n < msr_list.nmsrs)
3920 			goto out;
3921 		r = -EFAULT;
3922 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3923 				 num_msr_based_features * sizeof(u32)))
3924 			goto out;
3925 		r = 0;
3926 		break;
3927 	}
3928 	case KVM_GET_MSRS:
3929 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3930 		break;
3931 	case KVM_GET_SUPPORTED_HV_CPUID:
3932 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3933 		break;
3934 	default:
3935 		r = -EINVAL;
3936 		break;
3937 	}
3938 out:
3939 	return r;
3940 }
3941 
3942 static void wbinvd_ipi(void *garbage)
3943 {
3944 	wbinvd();
3945 }
3946 
3947 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3948 {
3949 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3950 }
3951 
3952 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3953 {
3954 	/* Address WBINVD may be executed by guest */
3955 	if (need_emulate_wbinvd(vcpu)) {
3956 		if (kvm_x86_ops.has_wbinvd_exit())
3957 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3958 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3959 			smp_call_function_single(vcpu->cpu,
3960 					wbinvd_ipi, NULL, 1);
3961 	}
3962 
3963 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3964 
3965 	/* Save host pkru register if supported */
3966 	vcpu->arch.host_pkru = read_pkru();
3967 
3968 	/* Apply any externally detected TSC adjustments (due to suspend) */
3969 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3970 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3971 		vcpu->arch.tsc_offset_adjustment = 0;
3972 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3973 	}
3974 
3975 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3976 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3977 				rdtsc() - vcpu->arch.last_host_tsc;
3978 		if (tsc_delta < 0)
3979 			mark_tsc_unstable("KVM discovered backwards TSC");
3980 
3981 		if (kvm_check_tsc_unstable()) {
3982 			u64 offset = kvm_compute_tsc_offset(vcpu,
3983 						vcpu->arch.last_guest_tsc);
3984 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3985 			vcpu->arch.tsc_catchup = 1;
3986 		}
3987 
3988 		if (kvm_lapic_hv_timer_in_use(vcpu))
3989 			kvm_lapic_restart_hv_timer(vcpu);
3990 
3991 		/*
3992 		 * On a host with synchronized TSC, there is no need to update
3993 		 * kvmclock on vcpu->cpu migration
3994 		 */
3995 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3996 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3997 		if (vcpu->cpu != cpu)
3998 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3999 		vcpu->cpu = cpu;
4000 	}
4001 
4002 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4003 }
4004 
4005 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4006 {
4007 	struct kvm_host_map map;
4008 	struct kvm_steal_time *st;
4009 
4010 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4011 		return;
4012 
4013 	if (vcpu->arch.st.preempted)
4014 		return;
4015 
4016 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4017 			&vcpu->arch.st.cache, true))
4018 		return;
4019 
4020 	st = map.hva +
4021 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4022 
4023 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4024 
4025 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4026 }
4027 
4028 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4029 {
4030 	int idx;
4031 
4032 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4033 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4034 
4035 	/*
4036 	 * Disable page faults because we're in atomic context here.
4037 	 * kvm_write_guest_offset_cached() would call might_fault()
4038 	 * that relies on pagefault_disable() to tell if there's a
4039 	 * bug. NOTE: the write to guest memory may not go through if
4040 	 * during postcopy live migration or if there's heavy guest
4041 	 * paging.
4042 	 */
4043 	pagefault_disable();
4044 	/*
4045 	 * kvm_memslots() will be called by
4046 	 * kvm_write_guest_offset_cached() so take the srcu lock.
4047 	 */
4048 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4049 	kvm_steal_time_set_preempted(vcpu);
4050 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4051 	pagefault_enable();
4052 	kvm_x86_ops.vcpu_put(vcpu);
4053 	vcpu->arch.last_host_tsc = rdtsc();
4054 	/*
4055 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4056 	 * on every vmexit, but if not, we might have a stale dr6 from the
4057 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4058 	 */
4059 	set_debugreg(0, 6);
4060 }
4061 
4062 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4063 				    struct kvm_lapic_state *s)
4064 {
4065 	if (vcpu->arch.apicv_active)
4066 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4067 
4068 	return kvm_apic_get_state(vcpu, s);
4069 }
4070 
4071 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4072 				    struct kvm_lapic_state *s)
4073 {
4074 	int r;
4075 
4076 	r = kvm_apic_set_state(vcpu, s);
4077 	if (r)
4078 		return r;
4079 	update_cr8_intercept(vcpu);
4080 
4081 	return 0;
4082 }
4083 
4084 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4085 {
4086 	/*
4087 	 * We can accept userspace's request for interrupt injection
4088 	 * as long as we have a place to store the interrupt number.
4089 	 * The actual injection will happen when the CPU is able to
4090 	 * deliver the interrupt.
4091 	 */
4092 	if (kvm_cpu_has_extint(vcpu))
4093 		return false;
4094 
4095 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4096 	return (!lapic_in_kernel(vcpu) ||
4097 		kvm_apic_accept_pic_intr(vcpu));
4098 }
4099 
4100 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4101 {
4102 	return kvm_arch_interrupt_allowed(vcpu) &&
4103 		kvm_cpu_accept_dm_intr(vcpu);
4104 }
4105 
4106 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4107 				    struct kvm_interrupt *irq)
4108 {
4109 	if (irq->irq >= KVM_NR_INTERRUPTS)
4110 		return -EINVAL;
4111 
4112 	if (!irqchip_in_kernel(vcpu->kvm)) {
4113 		kvm_queue_interrupt(vcpu, irq->irq, false);
4114 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4115 		return 0;
4116 	}
4117 
4118 	/*
4119 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4120 	 * fail for in-kernel 8259.
4121 	 */
4122 	if (pic_in_kernel(vcpu->kvm))
4123 		return -ENXIO;
4124 
4125 	if (vcpu->arch.pending_external_vector != -1)
4126 		return -EEXIST;
4127 
4128 	vcpu->arch.pending_external_vector = irq->irq;
4129 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4130 	return 0;
4131 }
4132 
4133 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4134 {
4135 	kvm_inject_nmi(vcpu);
4136 
4137 	return 0;
4138 }
4139 
4140 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4141 {
4142 	kvm_make_request(KVM_REQ_SMI, vcpu);
4143 
4144 	return 0;
4145 }
4146 
4147 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4148 					   struct kvm_tpr_access_ctl *tac)
4149 {
4150 	if (tac->flags)
4151 		return -EINVAL;
4152 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4153 	return 0;
4154 }
4155 
4156 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4157 					u64 mcg_cap)
4158 {
4159 	int r;
4160 	unsigned bank_num = mcg_cap & 0xff, bank;
4161 
4162 	r = -EINVAL;
4163 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4164 		goto out;
4165 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4166 		goto out;
4167 	r = 0;
4168 	vcpu->arch.mcg_cap = mcg_cap;
4169 	/* Init IA32_MCG_CTL to all 1s */
4170 	if (mcg_cap & MCG_CTL_P)
4171 		vcpu->arch.mcg_ctl = ~(u64)0;
4172 	/* Init IA32_MCi_CTL to all 1s */
4173 	for (bank = 0; bank < bank_num; bank++)
4174 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4175 
4176 	kvm_x86_ops.setup_mce(vcpu);
4177 out:
4178 	return r;
4179 }
4180 
4181 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4182 				      struct kvm_x86_mce *mce)
4183 {
4184 	u64 mcg_cap = vcpu->arch.mcg_cap;
4185 	unsigned bank_num = mcg_cap & 0xff;
4186 	u64 *banks = vcpu->arch.mce_banks;
4187 
4188 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4189 		return -EINVAL;
4190 	/*
4191 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4192 	 * reporting is disabled
4193 	 */
4194 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4195 	    vcpu->arch.mcg_ctl != ~(u64)0)
4196 		return 0;
4197 	banks += 4 * mce->bank;
4198 	/*
4199 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4200 	 * reporting is disabled for the bank
4201 	 */
4202 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4203 		return 0;
4204 	if (mce->status & MCI_STATUS_UC) {
4205 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4206 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4207 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4208 			return 0;
4209 		}
4210 		if (banks[1] & MCI_STATUS_VAL)
4211 			mce->status |= MCI_STATUS_OVER;
4212 		banks[2] = mce->addr;
4213 		banks[3] = mce->misc;
4214 		vcpu->arch.mcg_status = mce->mcg_status;
4215 		banks[1] = mce->status;
4216 		kvm_queue_exception(vcpu, MC_VECTOR);
4217 	} else if (!(banks[1] & MCI_STATUS_VAL)
4218 		   || !(banks[1] & MCI_STATUS_UC)) {
4219 		if (banks[1] & MCI_STATUS_VAL)
4220 			mce->status |= MCI_STATUS_OVER;
4221 		banks[2] = mce->addr;
4222 		banks[3] = mce->misc;
4223 		banks[1] = mce->status;
4224 	} else
4225 		banks[1] |= MCI_STATUS_OVER;
4226 	return 0;
4227 }
4228 
4229 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4230 					       struct kvm_vcpu_events *events)
4231 {
4232 	process_nmi(vcpu);
4233 
4234 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4235 		process_smi(vcpu);
4236 
4237 	/*
4238 	 * In guest mode, payload delivery should be deferred,
4239 	 * so that the L1 hypervisor can intercept #PF before
4240 	 * CR2 is modified (or intercept #DB before DR6 is
4241 	 * modified under nVMX). Unless the per-VM capability,
4242 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4243 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4244 	 * opportunistically defer the exception payload, deliver it if the
4245 	 * capability hasn't been requested before processing a
4246 	 * KVM_GET_VCPU_EVENTS.
4247 	 */
4248 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4249 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4250 		kvm_deliver_exception_payload(vcpu);
4251 
4252 	/*
4253 	 * The API doesn't provide the instruction length for software
4254 	 * exceptions, so don't report them. As long as the guest RIP
4255 	 * isn't advanced, we should expect to encounter the exception
4256 	 * again.
4257 	 */
4258 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4259 		events->exception.injected = 0;
4260 		events->exception.pending = 0;
4261 	} else {
4262 		events->exception.injected = vcpu->arch.exception.injected;
4263 		events->exception.pending = vcpu->arch.exception.pending;
4264 		/*
4265 		 * For ABI compatibility, deliberately conflate
4266 		 * pending and injected exceptions when
4267 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4268 		 */
4269 		if (!vcpu->kvm->arch.exception_payload_enabled)
4270 			events->exception.injected |=
4271 				vcpu->arch.exception.pending;
4272 	}
4273 	events->exception.nr = vcpu->arch.exception.nr;
4274 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4275 	events->exception.error_code = vcpu->arch.exception.error_code;
4276 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4277 	events->exception_payload = vcpu->arch.exception.payload;
4278 
4279 	events->interrupt.injected =
4280 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4281 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4282 	events->interrupt.soft = 0;
4283 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4284 
4285 	events->nmi.injected = vcpu->arch.nmi_injected;
4286 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4287 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4288 	events->nmi.pad = 0;
4289 
4290 	events->sipi_vector = 0; /* never valid when reporting to user space */
4291 
4292 	events->smi.smm = is_smm(vcpu);
4293 	events->smi.pending = vcpu->arch.smi_pending;
4294 	events->smi.smm_inside_nmi =
4295 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4296 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4297 
4298 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4299 			 | KVM_VCPUEVENT_VALID_SHADOW
4300 			 | KVM_VCPUEVENT_VALID_SMM);
4301 	if (vcpu->kvm->arch.exception_payload_enabled)
4302 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4303 
4304 	memset(&events->reserved, 0, sizeof(events->reserved));
4305 }
4306 
4307 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4308 
4309 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4310 					      struct kvm_vcpu_events *events)
4311 {
4312 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4313 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4314 			      | KVM_VCPUEVENT_VALID_SHADOW
4315 			      | KVM_VCPUEVENT_VALID_SMM
4316 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4317 		return -EINVAL;
4318 
4319 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4320 		if (!vcpu->kvm->arch.exception_payload_enabled)
4321 			return -EINVAL;
4322 		if (events->exception.pending)
4323 			events->exception.injected = 0;
4324 		else
4325 			events->exception_has_payload = 0;
4326 	} else {
4327 		events->exception.pending = 0;
4328 		events->exception_has_payload = 0;
4329 	}
4330 
4331 	if ((events->exception.injected || events->exception.pending) &&
4332 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4333 		return -EINVAL;
4334 
4335 	/* INITs are latched while in SMM */
4336 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4337 	    (events->smi.smm || events->smi.pending) &&
4338 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4339 		return -EINVAL;
4340 
4341 	process_nmi(vcpu);
4342 	vcpu->arch.exception.injected = events->exception.injected;
4343 	vcpu->arch.exception.pending = events->exception.pending;
4344 	vcpu->arch.exception.nr = events->exception.nr;
4345 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4346 	vcpu->arch.exception.error_code = events->exception.error_code;
4347 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4348 	vcpu->arch.exception.payload = events->exception_payload;
4349 
4350 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4351 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4352 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4353 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4354 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4355 						  events->interrupt.shadow);
4356 
4357 	vcpu->arch.nmi_injected = events->nmi.injected;
4358 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4359 		vcpu->arch.nmi_pending = events->nmi.pending;
4360 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4361 
4362 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4363 	    lapic_in_kernel(vcpu))
4364 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4365 
4366 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4367 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4368 			if (events->smi.smm)
4369 				vcpu->arch.hflags |= HF_SMM_MASK;
4370 			else
4371 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4372 			kvm_smm_changed(vcpu);
4373 		}
4374 
4375 		vcpu->arch.smi_pending = events->smi.pending;
4376 
4377 		if (events->smi.smm) {
4378 			if (events->smi.smm_inside_nmi)
4379 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4380 			else
4381 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4382 		}
4383 
4384 		if (lapic_in_kernel(vcpu)) {
4385 			if (events->smi.latched_init)
4386 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4387 			else
4388 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4389 		}
4390 	}
4391 
4392 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4393 
4394 	return 0;
4395 }
4396 
4397 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4398 					     struct kvm_debugregs *dbgregs)
4399 {
4400 	unsigned long val;
4401 
4402 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4403 	kvm_get_dr(vcpu, 6, &val);
4404 	dbgregs->dr6 = val;
4405 	dbgregs->dr7 = vcpu->arch.dr7;
4406 	dbgregs->flags = 0;
4407 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4408 }
4409 
4410 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4411 					    struct kvm_debugregs *dbgregs)
4412 {
4413 	if (dbgregs->flags)
4414 		return -EINVAL;
4415 
4416 	if (dbgregs->dr6 & ~0xffffffffull)
4417 		return -EINVAL;
4418 	if (dbgregs->dr7 & ~0xffffffffull)
4419 		return -EINVAL;
4420 
4421 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4422 	kvm_update_dr0123(vcpu);
4423 	vcpu->arch.dr6 = dbgregs->dr6;
4424 	vcpu->arch.dr7 = dbgregs->dr7;
4425 	kvm_update_dr7(vcpu);
4426 
4427 	return 0;
4428 }
4429 
4430 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4431 
4432 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4433 {
4434 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4435 	u64 xstate_bv = xsave->header.xfeatures;
4436 	u64 valid;
4437 
4438 	/*
4439 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4440 	 * leaves 0 and 1 in the loop below.
4441 	 */
4442 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4443 
4444 	/* Set XSTATE_BV */
4445 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4446 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4447 
4448 	/*
4449 	 * Copy each region from the possibly compacted offset to the
4450 	 * non-compacted offset.
4451 	 */
4452 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4453 	while (valid) {
4454 		u64 xfeature_mask = valid & -valid;
4455 		int xfeature_nr = fls64(xfeature_mask) - 1;
4456 		void *src = get_xsave_addr(xsave, xfeature_nr);
4457 
4458 		if (src) {
4459 			u32 size, offset, ecx, edx;
4460 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4461 				    &size, &offset, &ecx, &edx);
4462 			if (xfeature_nr == XFEATURE_PKRU)
4463 				memcpy(dest + offset, &vcpu->arch.pkru,
4464 				       sizeof(vcpu->arch.pkru));
4465 			else
4466 				memcpy(dest + offset, src, size);
4467 
4468 		}
4469 
4470 		valid -= xfeature_mask;
4471 	}
4472 }
4473 
4474 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4475 {
4476 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4477 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4478 	u64 valid;
4479 
4480 	/*
4481 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4482 	 * leaves 0 and 1 in the loop below.
4483 	 */
4484 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4485 
4486 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4487 	xsave->header.xfeatures = xstate_bv;
4488 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4489 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4490 
4491 	/*
4492 	 * Copy each region from the non-compacted offset to the
4493 	 * possibly compacted offset.
4494 	 */
4495 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4496 	while (valid) {
4497 		u64 xfeature_mask = valid & -valid;
4498 		int xfeature_nr = fls64(xfeature_mask) - 1;
4499 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4500 
4501 		if (dest) {
4502 			u32 size, offset, ecx, edx;
4503 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4504 				    &size, &offset, &ecx, &edx);
4505 			if (xfeature_nr == XFEATURE_PKRU)
4506 				memcpy(&vcpu->arch.pkru, src + offset,
4507 				       sizeof(vcpu->arch.pkru));
4508 			else
4509 				memcpy(dest, src + offset, size);
4510 		}
4511 
4512 		valid -= xfeature_mask;
4513 	}
4514 }
4515 
4516 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4517 					 struct kvm_xsave *guest_xsave)
4518 {
4519 	if (!vcpu->arch.guest_fpu)
4520 		return;
4521 
4522 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4523 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4524 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4525 	} else {
4526 		memcpy(guest_xsave->region,
4527 			&vcpu->arch.guest_fpu->state.fxsave,
4528 			sizeof(struct fxregs_state));
4529 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4530 			XFEATURE_MASK_FPSSE;
4531 	}
4532 }
4533 
4534 #define XSAVE_MXCSR_OFFSET 24
4535 
4536 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4537 					struct kvm_xsave *guest_xsave)
4538 {
4539 	u64 xstate_bv;
4540 	u32 mxcsr;
4541 
4542 	if (!vcpu->arch.guest_fpu)
4543 		return 0;
4544 
4545 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4546 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4547 
4548 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4549 		/*
4550 		 * Here we allow setting states that are not present in
4551 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4552 		 * with old userspace.
4553 		 */
4554 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4555 			return -EINVAL;
4556 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4557 	} else {
4558 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4559 			mxcsr & ~mxcsr_feature_mask)
4560 			return -EINVAL;
4561 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4562 			guest_xsave->region, sizeof(struct fxregs_state));
4563 	}
4564 	return 0;
4565 }
4566 
4567 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4568 					struct kvm_xcrs *guest_xcrs)
4569 {
4570 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4571 		guest_xcrs->nr_xcrs = 0;
4572 		return;
4573 	}
4574 
4575 	guest_xcrs->nr_xcrs = 1;
4576 	guest_xcrs->flags = 0;
4577 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4578 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4579 }
4580 
4581 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4582 				       struct kvm_xcrs *guest_xcrs)
4583 {
4584 	int i, r = 0;
4585 
4586 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4587 		return -EINVAL;
4588 
4589 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4590 		return -EINVAL;
4591 
4592 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4593 		/* Only support XCR0 currently */
4594 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4595 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4596 				guest_xcrs->xcrs[i].value);
4597 			break;
4598 		}
4599 	if (r)
4600 		r = -EINVAL;
4601 	return r;
4602 }
4603 
4604 /*
4605  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4606  * stopped by the hypervisor.  This function will be called from the host only.
4607  * EINVAL is returned when the host attempts to set the flag for a guest that
4608  * does not support pv clocks.
4609  */
4610 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4611 {
4612 	if (!vcpu->arch.pv_time_enabled)
4613 		return -EINVAL;
4614 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4615 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4616 	return 0;
4617 }
4618 
4619 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4620 				     struct kvm_enable_cap *cap)
4621 {
4622 	int r;
4623 	uint16_t vmcs_version;
4624 	void __user *user_ptr;
4625 
4626 	if (cap->flags)
4627 		return -EINVAL;
4628 
4629 	switch (cap->cap) {
4630 	case KVM_CAP_HYPERV_SYNIC2:
4631 		if (cap->args[0])
4632 			return -EINVAL;
4633 		fallthrough;
4634 
4635 	case KVM_CAP_HYPERV_SYNIC:
4636 		if (!irqchip_in_kernel(vcpu->kvm))
4637 			return -EINVAL;
4638 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4639 					     KVM_CAP_HYPERV_SYNIC2);
4640 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4641 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4642 			return -ENOTTY;
4643 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4644 		if (!r) {
4645 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4646 			if (copy_to_user(user_ptr, &vmcs_version,
4647 					 sizeof(vmcs_version)))
4648 				r = -EFAULT;
4649 		}
4650 		return r;
4651 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4652 		if (!kvm_x86_ops.enable_direct_tlbflush)
4653 			return -ENOTTY;
4654 
4655 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4656 
4657 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4658 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4659 		if (vcpu->arch.pv_cpuid.enforce)
4660 			kvm_update_pv_runtime(vcpu);
4661 
4662 		return 0;
4663 
4664 	default:
4665 		return -EINVAL;
4666 	}
4667 }
4668 
4669 long kvm_arch_vcpu_ioctl(struct file *filp,
4670 			 unsigned int ioctl, unsigned long arg)
4671 {
4672 	struct kvm_vcpu *vcpu = filp->private_data;
4673 	void __user *argp = (void __user *)arg;
4674 	int r;
4675 	union {
4676 		struct kvm_lapic_state *lapic;
4677 		struct kvm_xsave *xsave;
4678 		struct kvm_xcrs *xcrs;
4679 		void *buffer;
4680 	} u;
4681 
4682 	vcpu_load(vcpu);
4683 
4684 	u.buffer = NULL;
4685 	switch (ioctl) {
4686 	case KVM_GET_LAPIC: {
4687 		r = -EINVAL;
4688 		if (!lapic_in_kernel(vcpu))
4689 			goto out;
4690 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4691 				GFP_KERNEL_ACCOUNT);
4692 
4693 		r = -ENOMEM;
4694 		if (!u.lapic)
4695 			goto out;
4696 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4697 		if (r)
4698 			goto out;
4699 		r = -EFAULT;
4700 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4701 			goto out;
4702 		r = 0;
4703 		break;
4704 	}
4705 	case KVM_SET_LAPIC: {
4706 		r = -EINVAL;
4707 		if (!lapic_in_kernel(vcpu))
4708 			goto out;
4709 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4710 		if (IS_ERR(u.lapic)) {
4711 			r = PTR_ERR(u.lapic);
4712 			goto out_nofree;
4713 		}
4714 
4715 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4716 		break;
4717 	}
4718 	case KVM_INTERRUPT: {
4719 		struct kvm_interrupt irq;
4720 
4721 		r = -EFAULT;
4722 		if (copy_from_user(&irq, argp, sizeof(irq)))
4723 			goto out;
4724 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4725 		break;
4726 	}
4727 	case KVM_NMI: {
4728 		r = kvm_vcpu_ioctl_nmi(vcpu);
4729 		break;
4730 	}
4731 	case KVM_SMI: {
4732 		r = kvm_vcpu_ioctl_smi(vcpu);
4733 		break;
4734 	}
4735 	case KVM_SET_CPUID: {
4736 		struct kvm_cpuid __user *cpuid_arg = argp;
4737 		struct kvm_cpuid cpuid;
4738 
4739 		r = -EFAULT;
4740 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4741 			goto out;
4742 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4743 		break;
4744 	}
4745 	case KVM_SET_CPUID2: {
4746 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4747 		struct kvm_cpuid2 cpuid;
4748 
4749 		r = -EFAULT;
4750 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4751 			goto out;
4752 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4753 					      cpuid_arg->entries);
4754 		break;
4755 	}
4756 	case KVM_GET_CPUID2: {
4757 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4758 		struct kvm_cpuid2 cpuid;
4759 
4760 		r = -EFAULT;
4761 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4762 			goto out;
4763 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4764 					      cpuid_arg->entries);
4765 		if (r)
4766 			goto out;
4767 		r = -EFAULT;
4768 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4769 			goto out;
4770 		r = 0;
4771 		break;
4772 	}
4773 	case KVM_GET_MSRS: {
4774 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4775 		r = msr_io(vcpu, argp, do_get_msr, 1);
4776 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4777 		break;
4778 	}
4779 	case KVM_SET_MSRS: {
4780 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4781 		r = msr_io(vcpu, argp, do_set_msr, 0);
4782 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4783 		break;
4784 	}
4785 	case KVM_TPR_ACCESS_REPORTING: {
4786 		struct kvm_tpr_access_ctl tac;
4787 
4788 		r = -EFAULT;
4789 		if (copy_from_user(&tac, argp, sizeof(tac)))
4790 			goto out;
4791 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4792 		if (r)
4793 			goto out;
4794 		r = -EFAULT;
4795 		if (copy_to_user(argp, &tac, sizeof(tac)))
4796 			goto out;
4797 		r = 0;
4798 		break;
4799 	};
4800 	case KVM_SET_VAPIC_ADDR: {
4801 		struct kvm_vapic_addr va;
4802 		int idx;
4803 
4804 		r = -EINVAL;
4805 		if (!lapic_in_kernel(vcpu))
4806 			goto out;
4807 		r = -EFAULT;
4808 		if (copy_from_user(&va, argp, sizeof(va)))
4809 			goto out;
4810 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4811 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4812 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4813 		break;
4814 	}
4815 	case KVM_X86_SETUP_MCE: {
4816 		u64 mcg_cap;
4817 
4818 		r = -EFAULT;
4819 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4820 			goto out;
4821 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4822 		break;
4823 	}
4824 	case KVM_X86_SET_MCE: {
4825 		struct kvm_x86_mce mce;
4826 
4827 		r = -EFAULT;
4828 		if (copy_from_user(&mce, argp, sizeof(mce)))
4829 			goto out;
4830 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4831 		break;
4832 	}
4833 	case KVM_GET_VCPU_EVENTS: {
4834 		struct kvm_vcpu_events events;
4835 
4836 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4837 
4838 		r = -EFAULT;
4839 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4840 			break;
4841 		r = 0;
4842 		break;
4843 	}
4844 	case KVM_SET_VCPU_EVENTS: {
4845 		struct kvm_vcpu_events events;
4846 
4847 		r = -EFAULT;
4848 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4849 			break;
4850 
4851 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4852 		break;
4853 	}
4854 	case KVM_GET_DEBUGREGS: {
4855 		struct kvm_debugregs dbgregs;
4856 
4857 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4858 
4859 		r = -EFAULT;
4860 		if (copy_to_user(argp, &dbgregs,
4861 				 sizeof(struct kvm_debugregs)))
4862 			break;
4863 		r = 0;
4864 		break;
4865 	}
4866 	case KVM_SET_DEBUGREGS: {
4867 		struct kvm_debugregs dbgregs;
4868 
4869 		r = -EFAULT;
4870 		if (copy_from_user(&dbgregs, argp,
4871 				   sizeof(struct kvm_debugregs)))
4872 			break;
4873 
4874 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4875 		break;
4876 	}
4877 	case KVM_GET_XSAVE: {
4878 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4879 		r = -ENOMEM;
4880 		if (!u.xsave)
4881 			break;
4882 
4883 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4884 
4885 		r = -EFAULT;
4886 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4887 			break;
4888 		r = 0;
4889 		break;
4890 	}
4891 	case KVM_SET_XSAVE: {
4892 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4893 		if (IS_ERR(u.xsave)) {
4894 			r = PTR_ERR(u.xsave);
4895 			goto out_nofree;
4896 		}
4897 
4898 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4899 		break;
4900 	}
4901 	case KVM_GET_XCRS: {
4902 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4903 		r = -ENOMEM;
4904 		if (!u.xcrs)
4905 			break;
4906 
4907 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4908 
4909 		r = -EFAULT;
4910 		if (copy_to_user(argp, u.xcrs,
4911 				 sizeof(struct kvm_xcrs)))
4912 			break;
4913 		r = 0;
4914 		break;
4915 	}
4916 	case KVM_SET_XCRS: {
4917 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4918 		if (IS_ERR(u.xcrs)) {
4919 			r = PTR_ERR(u.xcrs);
4920 			goto out_nofree;
4921 		}
4922 
4923 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4924 		break;
4925 	}
4926 	case KVM_SET_TSC_KHZ: {
4927 		u32 user_tsc_khz;
4928 
4929 		r = -EINVAL;
4930 		user_tsc_khz = (u32)arg;
4931 
4932 		if (kvm_has_tsc_control &&
4933 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4934 			goto out;
4935 
4936 		if (user_tsc_khz == 0)
4937 			user_tsc_khz = tsc_khz;
4938 
4939 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4940 			r = 0;
4941 
4942 		goto out;
4943 	}
4944 	case KVM_GET_TSC_KHZ: {
4945 		r = vcpu->arch.virtual_tsc_khz;
4946 		goto out;
4947 	}
4948 	case KVM_KVMCLOCK_CTRL: {
4949 		r = kvm_set_guest_paused(vcpu);
4950 		goto out;
4951 	}
4952 	case KVM_ENABLE_CAP: {
4953 		struct kvm_enable_cap cap;
4954 
4955 		r = -EFAULT;
4956 		if (copy_from_user(&cap, argp, sizeof(cap)))
4957 			goto out;
4958 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4959 		break;
4960 	}
4961 	case KVM_GET_NESTED_STATE: {
4962 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4963 		u32 user_data_size;
4964 
4965 		r = -EINVAL;
4966 		if (!kvm_x86_ops.nested_ops->get_state)
4967 			break;
4968 
4969 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4970 		r = -EFAULT;
4971 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4972 			break;
4973 
4974 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4975 						     user_data_size);
4976 		if (r < 0)
4977 			break;
4978 
4979 		if (r > user_data_size) {
4980 			if (put_user(r, &user_kvm_nested_state->size))
4981 				r = -EFAULT;
4982 			else
4983 				r = -E2BIG;
4984 			break;
4985 		}
4986 
4987 		r = 0;
4988 		break;
4989 	}
4990 	case KVM_SET_NESTED_STATE: {
4991 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4992 		struct kvm_nested_state kvm_state;
4993 		int idx;
4994 
4995 		r = -EINVAL;
4996 		if (!kvm_x86_ops.nested_ops->set_state)
4997 			break;
4998 
4999 		r = -EFAULT;
5000 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5001 			break;
5002 
5003 		r = -EINVAL;
5004 		if (kvm_state.size < sizeof(kvm_state))
5005 			break;
5006 
5007 		if (kvm_state.flags &
5008 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5009 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5010 		      | KVM_STATE_NESTED_GIF_SET))
5011 			break;
5012 
5013 		/* nested_run_pending implies guest_mode.  */
5014 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5015 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5016 			break;
5017 
5018 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5019 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5020 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5021 		break;
5022 	}
5023 	case KVM_GET_SUPPORTED_HV_CPUID:
5024 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5025 		break;
5026 	default:
5027 		r = -EINVAL;
5028 	}
5029 out:
5030 	kfree(u.buffer);
5031 out_nofree:
5032 	vcpu_put(vcpu);
5033 	return r;
5034 }
5035 
5036 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5037 {
5038 	return VM_FAULT_SIGBUS;
5039 }
5040 
5041 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5042 {
5043 	int ret;
5044 
5045 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5046 		return -EINVAL;
5047 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5048 	return ret;
5049 }
5050 
5051 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5052 					      u64 ident_addr)
5053 {
5054 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5055 }
5056 
5057 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5058 					 unsigned long kvm_nr_mmu_pages)
5059 {
5060 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5061 		return -EINVAL;
5062 
5063 	mutex_lock(&kvm->slots_lock);
5064 
5065 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5066 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5067 
5068 	mutex_unlock(&kvm->slots_lock);
5069 	return 0;
5070 }
5071 
5072 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5073 {
5074 	return kvm->arch.n_max_mmu_pages;
5075 }
5076 
5077 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5078 {
5079 	struct kvm_pic *pic = kvm->arch.vpic;
5080 	int r;
5081 
5082 	r = 0;
5083 	switch (chip->chip_id) {
5084 	case KVM_IRQCHIP_PIC_MASTER:
5085 		memcpy(&chip->chip.pic, &pic->pics[0],
5086 			sizeof(struct kvm_pic_state));
5087 		break;
5088 	case KVM_IRQCHIP_PIC_SLAVE:
5089 		memcpy(&chip->chip.pic, &pic->pics[1],
5090 			sizeof(struct kvm_pic_state));
5091 		break;
5092 	case KVM_IRQCHIP_IOAPIC:
5093 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5094 		break;
5095 	default:
5096 		r = -EINVAL;
5097 		break;
5098 	}
5099 	return r;
5100 }
5101 
5102 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5103 {
5104 	struct kvm_pic *pic = kvm->arch.vpic;
5105 	int r;
5106 
5107 	r = 0;
5108 	switch (chip->chip_id) {
5109 	case KVM_IRQCHIP_PIC_MASTER:
5110 		spin_lock(&pic->lock);
5111 		memcpy(&pic->pics[0], &chip->chip.pic,
5112 			sizeof(struct kvm_pic_state));
5113 		spin_unlock(&pic->lock);
5114 		break;
5115 	case KVM_IRQCHIP_PIC_SLAVE:
5116 		spin_lock(&pic->lock);
5117 		memcpy(&pic->pics[1], &chip->chip.pic,
5118 			sizeof(struct kvm_pic_state));
5119 		spin_unlock(&pic->lock);
5120 		break;
5121 	case KVM_IRQCHIP_IOAPIC:
5122 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5123 		break;
5124 	default:
5125 		r = -EINVAL;
5126 		break;
5127 	}
5128 	kvm_pic_update_irq(pic);
5129 	return r;
5130 }
5131 
5132 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5133 {
5134 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5135 
5136 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5137 
5138 	mutex_lock(&kps->lock);
5139 	memcpy(ps, &kps->channels, sizeof(*ps));
5140 	mutex_unlock(&kps->lock);
5141 	return 0;
5142 }
5143 
5144 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5145 {
5146 	int i;
5147 	struct kvm_pit *pit = kvm->arch.vpit;
5148 
5149 	mutex_lock(&pit->pit_state.lock);
5150 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5151 	for (i = 0; i < 3; i++)
5152 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5153 	mutex_unlock(&pit->pit_state.lock);
5154 	return 0;
5155 }
5156 
5157 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5158 {
5159 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5160 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5161 		sizeof(ps->channels));
5162 	ps->flags = kvm->arch.vpit->pit_state.flags;
5163 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5164 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5165 	return 0;
5166 }
5167 
5168 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5169 {
5170 	int start = 0;
5171 	int i;
5172 	u32 prev_legacy, cur_legacy;
5173 	struct kvm_pit *pit = kvm->arch.vpit;
5174 
5175 	mutex_lock(&pit->pit_state.lock);
5176 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5177 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5178 	if (!prev_legacy && cur_legacy)
5179 		start = 1;
5180 	memcpy(&pit->pit_state.channels, &ps->channels,
5181 	       sizeof(pit->pit_state.channels));
5182 	pit->pit_state.flags = ps->flags;
5183 	for (i = 0; i < 3; i++)
5184 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5185 				   start && i == 0);
5186 	mutex_unlock(&pit->pit_state.lock);
5187 	return 0;
5188 }
5189 
5190 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5191 				 struct kvm_reinject_control *control)
5192 {
5193 	struct kvm_pit *pit = kvm->arch.vpit;
5194 
5195 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5196 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5197 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5198 	 */
5199 	mutex_lock(&pit->pit_state.lock);
5200 	kvm_pit_set_reinject(pit, control->pit_reinject);
5201 	mutex_unlock(&pit->pit_state.lock);
5202 
5203 	return 0;
5204 }
5205 
5206 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5207 {
5208 	/*
5209 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5210 	 */
5211 	if (kvm_x86_ops.flush_log_dirty)
5212 		kvm_x86_ops.flush_log_dirty(kvm);
5213 }
5214 
5215 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5216 			bool line_status)
5217 {
5218 	if (!irqchip_in_kernel(kvm))
5219 		return -ENXIO;
5220 
5221 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5222 					irq_event->irq, irq_event->level,
5223 					line_status);
5224 	return 0;
5225 }
5226 
5227 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5228 			    struct kvm_enable_cap *cap)
5229 {
5230 	int r;
5231 
5232 	if (cap->flags)
5233 		return -EINVAL;
5234 
5235 	switch (cap->cap) {
5236 	case KVM_CAP_DISABLE_QUIRKS:
5237 		kvm->arch.disabled_quirks = cap->args[0];
5238 		r = 0;
5239 		break;
5240 	case KVM_CAP_SPLIT_IRQCHIP: {
5241 		mutex_lock(&kvm->lock);
5242 		r = -EINVAL;
5243 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5244 			goto split_irqchip_unlock;
5245 		r = -EEXIST;
5246 		if (irqchip_in_kernel(kvm))
5247 			goto split_irqchip_unlock;
5248 		if (kvm->created_vcpus)
5249 			goto split_irqchip_unlock;
5250 		r = kvm_setup_empty_irq_routing(kvm);
5251 		if (r)
5252 			goto split_irqchip_unlock;
5253 		/* Pairs with irqchip_in_kernel. */
5254 		smp_wmb();
5255 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5256 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5257 		r = 0;
5258 split_irqchip_unlock:
5259 		mutex_unlock(&kvm->lock);
5260 		break;
5261 	}
5262 	case KVM_CAP_X2APIC_API:
5263 		r = -EINVAL;
5264 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5265 			break;
5266 
5267 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5268 			kvm->arch.x2apic_format = true;
5269 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5270 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5271 
5272 		r = 0;
5273 		break;
5274 	case KVM_CAP_X86_DISABLE_EXITS:
5275 		r = -EINVAL;
5276 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5277 			break;
5278 
5279 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5280 			kvm_can_mwait_in_guest())
5281 			kvm->arch.mwait_in_guest = true;
5282 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5283 			kvm->arch.hlt_in_guest = true;
5284 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5285 			kvm->arch.pause_in_guest = true;
5286 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5287 			kvm->arch.cstate_in_guest = true;
5288 		r = 0;
5289 		break;
5290 	case KVM_CAP_MSR_PLATFORM_INFO:
5291 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5292 		r = 0;
5293 		break;
5294 	case KVM_CAP_EXCEPTION_PAYLOAD:
5295 		kvm->arch.exception_payload_enabled = cap->args[0];
5296 		r = 0;
5297 		break;
5298 	case KVM_CAP_X86_USER_SPACE_MSR:
5299 		kvm->arch.user_space_msr_mask = cap->args[0];
5300 		r = 0;
5301 		break;
5302 	default:
5303 		r = -EINVAL;
5304 		break;
5305 	}
5306 	return r;
5307 }
5308 
5309 static void kvm_clear_msr_filter(struct kvm *kvm)
5310 {
5311 	u32 i;
5312 	u32 count = kvm->arch.msr_filter.count;
5313 	struct msr_bitmap_range ranges[16];
5314 
5315 	mutex_lock(&kvm->lock);
5316 	kvm->arch.msr_filter.count = 0;
5317 	memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5318 	mutex_unlock(&kvm->lock);
5319 	synchronize_srcu(&kvm->srcu);
5320 
5321 	for (i = 0; i < count; i++)
5322 		kfree(ranges[i].bitmap);
5323 }
5324 
5325 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5326 {
5327 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5328 	struct msr_bitmap_range range;
5329 	unsigned long *bitmap = NULL;
5330 	size_t bitmap_size;
5331 	int r;
5332 
5333 	if (!user_range->nmsrs)
5334 		return 0;
5335 
5336 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5337 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5338 		return -EINVAL;
5339 
5340 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5341 	if (IS_ERR(bitmap))
5342 		return PTR_ERR(bitmap);
5343 
5344 	range = (struct msr_bitmap_range) {
5345 		.flags = user_range->flags,
5346 		.base = user_range->base,
5347 		.nmsrs = user_range->nmsrs,
5348 		.bitmap = bitmap,
5349 	};
5350 
5351 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5352 		r = -EINVAL;
5353 		goto err;
5354 	}
5355 
5356 	if (!range.flags) {
5357 		r = -EINVAL;
5358 		goto err;
5359 	}
5360 
5361 	/* Everything ok, add this range identifier to our global pool */
5362 	ranges[kvm->arch.msr_filter.count] = range;
5363 	/* Make sure we filled the array before we tell anyone to walk it */
5364 	smp_wmb();
5365 	kvm->arch.msr_filter.count++;
5366 
5367 	return 0;
5368 err:
5369 	kfree(bitmap);
5370 	return r;
5371 }
5372 
5373 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5374 {
5375 	struct kvm_msr_filter __user *user_msr_filter = argp;
5376 	struct kvm_msr_filter filter;
5377 	bool default_allow;
5378 	int r = 0;
5379 	bool empty = true;
5380 	u32 i;
5381 
5382 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5383 		return -EFAULT;
5384 
5385 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5386 		empty &= !filter.ranges[i].nmsrs;
5387 
5388 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5389 	if (empty && !default_allow)
5390 		return -EINVAL;
5391 
5392 	kvm_clear_msr_filter(kvm);
5393 
5394 	kvm->arch.msr_filter.default_allow = default_allow;
5395 
5396 	/*
5397 	 * Protect from concurrent calls to this function that could trigger
5398 	 * a TOCTOU violation on kvm->arch.msr_filter.count.
5399 	 */
5400 	mutex_lock(&kvm->lock);
5401 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5402 		r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5403 		if (r)
5404 			break;
5405 	}
5406 
5407 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5408 	mutex_unlock(&kvm->lock);
5409 
5410 	return r;
5411 }
5412 
5413 long kvm_arch_vm_ioctl(struct file *filp,
5414 		       unsigned int ioctl, unsigned long arg)
5415 {
5416 	struct kvm *kvm = filp->private_data;
5417 	void __user *argp = (void __user *)arg;
5418 	int r = -ENOTTY;
5419 	/*
5420 	 * This union makes it completely explicit to gcc-3.x
5421 	 * that these two variables' stack usage should be
5422 	 * combined, not added together.
5423 	 */
5424 	union {
5425 		struct kvm_pit_state ps;
5426 		struct kvm_pit_state2 ps2;
5427 		struct kvm_pit_config pit_config;
5428 	} u;
5429 
5430 	switch (ioctl) {
5431 	case KVM_SET_TSS_ADDR:
5432 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5433 		break;
5434 	case KVM_SET_IDENTITY_MAP_ADDR: {
5435 		u64 ident_addr;
5436 
5437 		mutex_lock(&kvm->lock);
5438 		r = -EINVAL;
5439 		if (kvm->created_vcpus)
5440 			goto set_identity_unlock;
5441 		r = -EFAULT;
5442 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5443 			goto set_identity_unlock;
5444 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5445 set_identity_unlock:
5446 		mutex_unlock(&kvm->lock);
5447 		break;
5448 	}
5449 	case KVM_SET_NR_MMU_PAGES:
5450 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5451 		break;
5452 	case KVM_GET_NR_MMU_PAGES:
5453 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5454 		break;
5455 	case KVM_CREATE_IRQCHIP: {
5456 		mutex_lock(&kvm->lock);
5457 
5458 		r = -EEXIST;
5459 		if (irqchip_in_kernel(kvm))
5460 			goto create_irqchip_unlock;
5461 
5462 		r = -EINVAL;
5463 		if (kvm->created_vcpus)
5464 			goto create_irqchip_unlock;
5465 
5466 		r = kvm_pic_init(kvm);
5467 		if (r)
5468 			goto create_irqchip_unlock;
5469 
5470 		r = kvm_ioapic_init(kvm);
5471 		if (r) {
5472 			kvm_pic_destroy(kvm);
5473 			goto create_irqchip_unlock;
5474 		}
5475 
5476 		r = kvm_setup_default_irq_routing(kvm);
5477 		if (r) {
5478 			kvm_ioapic_destroy(kvm);
5479 			kvm_pic_destroy(kvm);
5480 			goto create_irqchip_unlock;
5481 		}
5482 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5483 		smp_wmb();
5484 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5485 	create_irqchip_unlock:
5486 		mutex_unlock(&kvm->lock);
5487 		break;
5488 	}
5489 	case KVM_CREATE_PIT:
5490 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5491 		goto create_pit;
5492 	case KVM_CREATE_PIT2:
5493 		r = -EFAULT;
5494 		if (copy_from_user(&u.pit_config, argp,
5495 				   sizeof(struct kvm_pit_config)))
5496 			goto out;
5497 	create_pit:
5498 		mutex_lock(&kvm->lock);
5499 		r = -EEXIST;
5500 		if (kvm->arch.vpit)
5501 			goto create_pit_unlock;
5502 		r = -ENOMEM;
5503 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5504 		if (kvm->arch.vpit)
5505 			r = 0;
5506 	create_pit_unlock:
5507 		mutex_unlock(&kvm->lock);
5508 		break;
5509 	case KVM_GET_IRQCHIP: {
5510 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5511 		struct kvm_irqchip *chip;
5512 
5513 		chip = memdup_user(argp, sizeof(*chip));
5514 		if (IS_ERR(chip)) {
5515 			r = PTR_ERR(chip);
5516 			goto out;
5517 		}
5518 
5519 		r = -ENXIO;
5520 		if (!irqchip_kernel(kvm))
5521 			goto get_irqchip_out;
5522 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5523 		if (r)
5524 			goto get_irqchip_out;
5525 		r = -EFAULT;
5526 		if (copy_to_user(argp, chip, sizeof(*chip)))
5527 			goto get_irqchip_out;
5528 		r = 0;
5529 	get_irqchip_out:
5530 		kfree(chip);
5531 		break;
5532 	}
5533 	case KVM_SET_IRQCHIP: {
5534 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5535 		struct kvm_irqchip *chip;
5536 
5537 		chip = memdup_user(argp, sizeof(*chip));
5538 		if (IS_ERR(chip)) {
5539 			r = PTR_ERR(chip);
5540 			goto out;
5541 		}
5542 
5543 		r = -ENXIO;
5544 		if (!irqchip_kernel(kvm))
5545 			goto set_irqchip_out;
5546 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5547 	set_irqchip_out:
5548 		kfree(chip);
5549 		break;
5550 	}
5551 	case KVM_GET_PIT: {
5552 		r = -EFAULT;
5553 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5554 			goto out;
5555 		r = -ENXIO;
5556 		if (!kvm->arch.vpit)
5557 			goto out;
5558 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5559 		if (r)
5560 			goto out;
5561 		r = -EFAULT;
5562 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5563 			goto out;
5564 		r = 0;
5565 		break;
5566 	}
5567 	case KVM_SET_PIT: {
5568 		r = -EFAULT;
5569 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5570 			goto out;
5571 		mutex_lock(&kvm->lock);
5572 		r = -ENXIO;
5573 		if (!kvm->arch.vpit)
5574 			goto set_pit_out;
5575 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5576 set_pit_out:
5577 		mutex_unlock(&kvm->lock);
5578 		break;
5579 	}
5580 	case KVM_GET_PIT2: {
5581 		r = -ENXIO;
5582 		if (!kvm->arch.vpit)
5583 			goto out;
5584 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5585 		if (r)
5586 			goto out;
5587 		r = -EFAULT;
5588 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5589 			goto out;
5590 		r = 0;
5591 		break;
5592 	}
5593 	case KVM_SET_PIT2: {
5594 		r = -EFAULT;
5595 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5596 			goto out;
5597 		mutex_lock(&kvm->lock);
5598 		r = -ENXIO;
5599 		if (!kvm->arch.vpit)
5600 			goto set_pit2_out;
5601 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5602 set_pit2_out:
5603 		mutex_unlock(&kvm->lock);
5604 		break;
5605 	}
5606 	case KVM_REINJECT_CONTROL: {
5607 		struct kvm_reinject_control control;
5608 		r =  -EFAULT;
5609 		if (copy_from_user(&control, argp, sizeof(control)))
5610 			goto out;
5611 		r = -ENXIO;
5612 		if (!kvm->arch.vpit)
5613 			goto out;
5614 		r = kvm_vm_ioctl_reinject(kvm, &control);
5615 		break;
5616 	}
5617 	case KVM_SET_BOOT_CPU_ID:
5618 		r = 0;
5619 		mutex_lock(&kvm->lock);
5620 		if (kvm->created_vcpus)
5621 			r = -EBUSY;
5622 		else
5623 			kvm->arch.bsp_vcpu_id = arg;
5624 		mutex_unlock(&kvm->lock);
5625 		break;
5626 	case KVM_XEN_HVM_CONFIG: {
5627 		struct kvm_xen_hvm_config xhc;
5628 		r = -EFAULT;
5629 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5630 			goto out;
5631 		r = -EINVAL;
5632 		if (xhc.flags)
5633 			goto out;
5634 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5635 		r = 0;
5636 		break;
5637 	}
5638 	case KVM_SET_CLOCK: {
5639 		struct kvm_clock_data user_ns;
5640 		u64 now_ns;
5641 
5642 		r = -EFAULT;
5643 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5644 			goto out;
5645 
5646 		r = -EINVAL;
5647 		if (user_ns.flags)
5648 			goto out;
5649 
5650 		r = 0;
5651 		/*
5652 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5653 		 * kvm_gen_update_masterclock() can be cut down to locked
5654 		 * pvclock_update_vm_gtod_copy().
5655 		 */
5656 		kvm_gen_update_masterclock(kvm);
5657 		now_ns = get_kvmclock_ns(kvm);
5658 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5659 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5660 		break;
5661 	}
5662 	case KVM_GET_CLOCK: {
5663 		struct kvm_clock_data user_ns;
5664 		u64 now_ns;
5665 
5666 		now_ns = get_kvmclock_ns(kvm);
5667 		user_ns.clock = now_ns;
5668 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5669 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5670 
5671 		r = -EFAULT;
5672 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5673 			goto out;
5674 		r = 0;
5675 		break;
5676 	}
5677 	case KVM_MEMORY_ENCRYPT_OP: {
5678 		r = -ENOTTY;
5679 		if (kvm_x86_ops.mem_enc_op)
5680 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5681 		break;
5682 	}
5683 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5684 		struct kvm_enc_region region;
5685 
5686 		r = -EFAULT;
5687 		if (copy_from_user(&region, argp, sizeof(region)))
5688 			goto out;
5689 
5690 		r = -ENOTTY;
5691 		if (kvm_x86_ops.mem_enc_reg_region)
5692 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5693 		break;
5694 	}
5695 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5696 		struct kvm_enc_region region;
5697 
5698 		r = -EFAULT;
5699 		if (copy_from_user(&region, argp, sizeof(region)))
5700 			goto out;
5701 
5702 		r = -ENOTTY;
5703 		if (kvm_x86_ops.mem_enc_unreg_region)
5704 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5705 		break;
5706 	}
5707 	case KVM_HYPERV_EVENTFD: {
5708 		struct kvm_hyperv_eventfd hvevfd;
5709 
5710 		r = -EFAULT;
5711 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5712 			goto out;
5713 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5714 		break;
5715 	}
5716 	case KVM_SET_PMU_EVENT_FILTER:
5717 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5718 		break;
5719 	case KVM_X86_SET_MSR_FILTER:
5720 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5721 		break;
5722 	default:
5723 		r = -ENOTTY;
5724 	}
5725 out:
5726 	return r;
5727 }
5728 
5729 static void kvm_init_msr_list(void)
5730 {
5731 	struct x86_pmu_capability x86_pmu;
5732 	u32 dummy[2];
5733 	unsigned i;
5734 
5735 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5736 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5737 
5738 	perf_get_x86_pmu_capability(&x86_pmu);
5739 
5740 	num_msrs_to_save = 0;
5741 	num_emulated_msrs = 0;
5742 	num_msr_based_features = 0;
5743 
5744 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5745 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5746 			continue;
5747 
5748 		/*
5749 		 * Even MSRs that are valid in the host may not be exposed
5750 		 * to the guests in some cases.
5751 		 */
5752 		switch (msrs_to_save_all[i]) {
5753 		case MSR_IA32_BNDCFGS:
5754 			if (!kvm_mpx_supported())
5755 				continue;
5756 			break;
5757 		case MSR_TSC_AUX:
5758 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5759 				continue;
5760 			break;
5761 		case MSR_IA32_UMWAIT_CONTROL:
5762 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5763 				continue;
5764 			break;
5765 		case MSR_IA32_RTIT_CTL:
5766 		case MSR_IA32_RTIT_STATUS:
5767 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5768 				continue;
5769 			break;
5770 		case MSR_IA32_RTIT_CR3_MATCH:
5771 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5772 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5773 				continue;
5774 			break;
5775 		case MSR_IA32_RTIT_OUTPUT_BASE:
5776 		case MSR_IA32_RTIT_OUTPUT_MASK:
5777 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5778 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5779 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5780 				continue;
5781 			break;
5782 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5783 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5784 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5785 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5786 				continue;
5787 			break;
5788 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5789 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5790 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5791 				continue;
5792 			break;
5793 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5794 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5795 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5796 				continue;
5797 			break;
5798 		default:
5799 			break;
5800 		}
5801 
5802 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5803 	}
5804 
5805 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5806 		if (!kvm_x86_ops.has_emulated_msr(NULL, emulated_msrs_all[i]))
5807 			continue;
5808 
5809 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5810 	}
5811 
5812 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5813 		struct kvm_msr_entry msr;
5814 
5815 		msr.index = msr_based_features_all[i];
5816 		if (kvm_get_msr_feature(&msr))
5817 			continue;
5818 
5819 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5820 	}
5821 }
5822 
5823 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5824 			   const void *v)
5825 {
5826 	int handled = 0;
5827 	int n;
5828 
5829 	do {
5830 		n = min(len, 8);
5831 		if (!(lapic_in_kernel(vcpu) &&
5832 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5833 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5834 			break;
5835 		handled += n;
5836 		addr += n;
5837 		len -= n;
5838 		v += n;
5839 	} while (len);
5840 
5841 	return handled;
5842 }
5843 
5844 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5845 {
5846 	int handled = 0;
5847 	int n;
5848 
5849 	do {
5850 		n = min(len, 8);
5851 		if (!(lapic_in_kernel(vcpu) &&
5852 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5853 					 addr, n, v))
5854 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5855 			break;
5856 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5857 		handled += n;
5858 		addr += n;
5859 		len -= n;
5860 		v += n;
5861 	} while (len);
5862 
5863 	return handled;
5864 }
5865 
5866 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5867 			struct kvm_segment *var, int seg)
5868 {
5869 	kvm_x86_ops.set_segment(vcpu, var, seg);
5870 }
5871 
5872 void kvm_get_segment(struct kvm_vcpu *vcpu,
5873 		     struct kvm_segment *var, int seg)
5874 {
5875 	kvm_x86_ops.get_segment(vcpu, var, seg);
5876 }
5877 
5878 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5879 			   struct x86_exception *exception)
5880 {
5881 	gpa_t t_gpa;
5882 
5883 	BUG_ON(!mmu_is_nested(vcpu));
5884 
5885 	/* NPT walks are always user-walks */
5886 	access |= PFERR_USER_MASK;
5887 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5888 
5889 	return t_gpa;
5890 }
5891 
5892 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5893 			      struct x86_exception *exception)
5894 {
5895 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5896 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5897 }
5898 
5899  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5900 				struct x86_exception *exception)
5901 {
5902 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5903 	access |= PFERR_FETCH_MASK;
5904 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5905 }
5906 
5907 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5908 			       struct x86_exception *exception)
5909 {
5910 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5911 	access |= PFERR_WRITE_MASK;
5912 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5913 }
5914 
5915 /* uses this to access any guest's mapped memory without checking CPL */
5916 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5917 				struct x86_exception *exception)
5918 {
5919 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5920 }
5921 
5922 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5923 				      struct kvm_vcpu *vcpu, u32 access,
5924 				      struct x86_exception *exception)
5925 {
5926 	void *data = val;
5927 	int r = X86EMUL_CONTINUE;
5928 
5929 	while (bytes) {
5930 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5931 							    exception);
5932 		unsigned offset = addr & (PAGE_SIZE-1);
5933 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5934 		int ret;
5935 
5936 		if (gpa == UNMAPPED_GVA)
5937 			return X86EMUL_PROPAGATE_FAULT;
5938 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5939 					       offset, toread);
5940 		if (ret < 0) {
5941 			r = X86EMUL_IO_NEEDED;
5942 			goto out;
5943 		}
5944 
5945 		bytes -= toread;
5946 		data += toread;
5947 		addr += toread;
5948 	}
5949 out:
5950 	return r;
5951 }
5952 
5953 /* used for instruction fetching */
5954 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5955 				gva_t addr, void *val, unsigned int bytes,
5956 				struct x86_exception *exception)
5957 {
5958 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5959 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5960 	unsigned offset;
5961 	int ret;
5962 
5963 	/* Inline kvm_read_guest_virt_helper for speed.  */
5964 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5965 						    exception);
5966 	if (unlikely(gpa == UNMAPPED_GVA))
5967 		return X86EMUL_PROPAGATE_FAULT;
5968 
5969 	offset = addr & (PAGE_SIZE-1);
5970 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5971 		bytes = (unsigned)PAGE_SIZE - offset;
5972 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5973 				       offset, bytes);
5974 	if (unlikely(ret < 0))
5975 		return X86EMUL_IO_NEEDED;
5976 
5977 	return X86EMUL_CONTINUE;
5978 }
5979 
5980 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5981 			       gva_t addr, void *val, unsigned int bytes,
5982 			       struct x86_exception *exception)
5983 {
5984 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5985 
5986 	/*
5987 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5988 	 * is returned, but our callers are not ready for that and they blindly
5989 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5990 	 * uninitialized kernel stack memory into cr2 and error code.
5991 	 */
5992 	memset(exception, 0, sizeof(*exception));
5993 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5994 					  exception);
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5997 
5998 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5999 			     gva_t addr, void *val, unsigned int bytes,
6000 			     struct x86_exception *exception, bool system)
6001 {
6002 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6003 	u32 access = 0;
6004 
6005 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6006 		access |= PFERR_USER_MASK;
6007 
6008 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6009 }
6010 
6011 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6012 		unsigned long addr, void *val, unsigned int bytes)
6013 {
6014 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6015 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6016 
6017 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6018 }
6019 
6020 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6021 				      struct kvm_vcpu *vcpu, u32 access,
6022 				      struct x86_exception *exception)
6023 {
6024 	void *data = val;
6025 	int r = X86EMUL_CONTINUE;
6026 
6027 	while (bytes) {
6028 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6029 							     access,
6030 							     exception);
6031 		unsigned offset = addr & (PAGE_SIZE-1);
6032 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6033 		int ret;
6034 
6035 		if (gpa == UNMAPPED_GVA)
6036 			return X86EMUL_PROPAGATE_FAULT;
6037 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6038 		if (ret < 0) {
6039 			r = X86EMUL_IO_NEEDED;
6040 			goto out;
6041 		}
6042 
6043 		bytes -= towrite;
6044 		data += towrite;
6045 		addr += towrite;
6046 	}
6047 out:
6048 	return r;
6049 }
6050 
6051 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6052 			      unsigned int bytes, struct x86_exception *exception,
6053 			      bool system)
6054 {
6055 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6056 	u32 access = PFERR_WRITE_MASK;
6057 
6058 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6059 		access |= PFERR_USER_MASK;
6060 
6061 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6062 					   access, exception);
6063 }
6064 
6065 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6066 				unsigned int bytes, struct x86_exception *exception)
6067 {
6068 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6069 	vcpu->arch.l1tf_flush_l1d = true;
6070 
6071 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6072 					   PFERR_WRITE_MASK, exception);
6073 }
6074 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6075 
6076 int handle_ud(struct kvm_vcpu *vcpu)
6077 {
6078 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6079 	int emul_type = EMULTYPE_TRAP_UD;
6080 	char sig[5]; /* ud2; .ascii "kvm" */
6081 	struct x86_exception e;
6082 
6083 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6084 		return 1;
6085 
6086 	if (force_emulation_prefix &&
6087 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6088 				sig, sizeof(sig), &e) == 0 &&
6089 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6090 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6091 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6092 	}
6093 
6094 	return kvm_emulate_instruction(vcpu, emul_type);
6095 }
6096 EXPORT_SYMBOL_GPL(handle_ud);
6097 
6098 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6099 			    gpa_t gpa, bool write)
6100 {
6101 	/* For APIC access vmexit */
6102 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6103 		return 1;
6104 
6105 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6106 		trace_vcpu_match_mmio(gva, gpa, write, true);
6107 		return 1;
6108 	}
6109 
6110 	return 0;
6111 }
6112 
6113 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6114 				gpa_t *gpa, struct x86_exception *exception,
6115 				bool write)
6116 {
6117 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6118 		| (write ? PFERR_WRITE_MASK : 0);
6119 
6120 	/*
6121 	 * currently PKRU is only applied to ept enabled guest so
6122 	 * there is no pkey in EPT page table for L1 guest or EPT
6123 	 * shadow page table for L2 guest.
6124 	 */
6125 	if (vcpu_match_mmio_gva(vcpu, gva)
6126 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6127 				 vcpu->arch.mmio_access, 0, access)) {
6128 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6129 					(gva & (PAGE_SIZE - 1));
6130 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6131 		return 1;
6132 	}
6133 
6134 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6135 
6136 	if (*gpa == UNMAPPED_GVA)
6137 		return -1;
6138 
6139 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6140 }
6141 
6142 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6143 			const void *val, int bytes)
6144 {
6145 	int ret;
6146 
6147 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6148 	if (ret < 0)
6149 		return 0;
6150 	kvm_page_track_write(vcpu, gpa, val, bytes);
6151 	return 1;
6152 }
6153 
6154 struct read_write_emulator_ops {
6155 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6156 				  int bytes);
6157 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6158 				  void *val, int bytes);
6159 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6160 			       int bytes, void *val);
6161 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6162 				    void *val, int bytes);
6163 	bool write;
6164 };
6165 
6166 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6167 {
6168 	if (vcpu->mmio_read_completed) {
6169 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6170 			       vcpu->mmio_fragments[0].gpa, val);
6171 		vcpu->mmio_read_completed = 0;
6172 		return 1;
6173 	}
6174 
6175 	return 0;
6176 }
6177 
6178 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6179 			void *val, int bytes)
6180 {
6181 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6182 }
6183 
6184 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6185 			 void *val, int bytes)
6186 {
6187 	return emulator_write_phys(vcpu, gpa, val, bytes);
6188 }
6189 
6190 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6191 {
6192 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6193 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6194 }
6195 
6196 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6197 			  void *val, int bytes)
6198 {
6199 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6200 	return X86EMUL_IO_NEEDED;
6201 }
6202 
6203 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6204 			   void *val, int bytes)
6205 {
6206 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6207 
6208 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6209 	return X86EMUL_CONTINUE;
6210 }
6211 
6212 static const struct read_write_emulator_ops read_emultor = {
6213 	.read_write_prepare = read_prepare,
6214 	.read_write_emulate = read_emulate,
6215 	.read_write_mmio = vcpu_mmio_read,
6216 	.read_write_exit_mmio = read_exit_mmio,
6217 };
6218 
6219 static const struct read_write_emulator_ops write_emultor = {
6220 	.read_write_emulate = write_emulate,
6221 	.read_write_mmio = write_mmio,
6222 	.read_write_exit_mmio = write_exit_mmio,
6223 	.write = true,
6224 };
6225 
6226 static int emulator_read_write_onepage(unsigned long addr, void *val,
6227 				       unsigned int bytes,
6228 				       struct x86_exception *exception,
6229 				       struct kvm_vcpu *vcpu,
6230 				       const struct read_write_emulator_ops *ops)
6231 {
6232 	gpa_t gpa;
6233 	int handled, ret;
6234 	bool write = ops->write;
6235 	struct kvm_mmio_fragment *frag;
6236 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6237 
6238 	/*
6239 	 * If the exit was due to a NPF we may already have a GPA.
6240 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6241 	 * Note, this cannot be used on string operations since string
6242 	 * operation using rep will only have the initial GPA from the NPF
6243 	 * occurred.
6244 	 */
6245 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6246 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6247 		gpa = ctxt->gpa_val;
6248 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6249 	} else {
6250 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6251 		if (ret < 0)
6252 			return X86EMUL_PROPAGATE_FAULT;
6253 	}
6254 
6255 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6256 		return X86EMUL_CONTINUE;
6257 
6258 	/*
6259 	 * Is this MMIO handled locally?
6260 	 */
6261 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6262 	if (handled == bytes)
6263 		return X86EMUL_CONTINUE;
6264 
6265 	gpa += handled;
6266 	bytes -= handled;
6267 	val += handled;
6268 
6269 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6270 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6271 	frag->gpa = gpa;
6272 	frag->data = val;
6273 	frag->len = bytes;
6274 	return X86EMUL_CONTINUE;
6275 }
6276 
6277 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6278 			unsigned long addr,
6279 			void *val, unsigned int bytes,
6280 			struct x86_exception *exception,
6281 			const struct read_write_emulator_ops *ops)
6282 {
6283 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6284 	gpa_t gpa;
6285 	int rc;
6286 
6287 	if (ops->read_write_prepare &&
6288 		  ops->read_write_prepare(vcpu, val, bytes))
6289 		return X86EMUL_CONTINUE;
6290 
6291 	vcpu->mmio_nr_fragments = 0;
6292 
6293 	/* Crossing a page boundary? */
6294 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6295 		int now;
6296 
6297 		now = -addr & ~PAGE_MASK;
6298 		rc = emulator_read_write_onepage(addr, val, now, exception,
6299 						 vcpu, ops);
6300 
6301 		if (rc != X86EMUL_CONTINUE)
6302 			return rc;
6303 		addr += now;
6304 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6305 			addr = (u32)addr;
6306 		val += now;
6307 		bytes -= now;
6308 	}
6309 
6310 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6311 					 vcpu, ops);
6312 	if (rc != X86EMUL_CONTINUE)
6313 		return rc;
6314 
6315 	if (!vcpu->mmio_nr_fragments)
6316 		return rc;
6317 
6318 	gpa = vcpu->mmio_fragments[0].gpa;
6319 
6320 	vcpu->mmio_needed = 1;
6321 	vcpu->mmio_cur_fragment = 0;
6322 
6323 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6324 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6325 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6326 	vcpu->run->mmio.phys_addr = gpa;
6327 
6328 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6329 }
6330 
6331 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6332 				  unsigned long addr,
6333 				  void *val,
6334 				  unsigned int bytes,
6335 				  struct x86_exception *exception)
6336 {
6337 	return emulator_read_write(ctxt, addr, val, bytes,
6338 				   exception, &read_emultor);
6339 }
6340 
6341 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6342 			    unsigned long addr,
6343 			    const void *val,
6344 			    unsigned int bytes,
6345 			    struct x86_exception *exception)
6346 {
6347 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6348 				   exception, &write_emultor);
6349 }
6350 
6351 #define CMPXCHG_TYPE(t, ptr, old, new) \
6352 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6353 
6354 #ifdef CONFIG_X86_64
6355 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6356 #else
6357 #  define CMPXCHG64(ptr, old, new) \
6358 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6359 #endif
6360 
6361 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6362 				     unsigned long addr,
6363 				     const void *old,
6364 				     const void *new,
6365 				     unsigned int bytes,
6366 				     struct x86_exception *exception)
6367 {
6368 	struct kvm_host_map map;
6369 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6370 	u64 page_line_mask;
6371 	gpa_t gpa;
6372 	char *kaddr;
6373 	bool exchanged;
6374 
6375 	/* guests cmpxchg8b have to be emulated atomically */
6376 	if (bytes > 8 || (bytes & (bytes - 1)))
6377 		goto emul_write;
6378 
6379 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6380 
6381 	if (gpa == UNMAPPED_GVA ||
6382 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6383 		goto emul_write;
6384 
6385 	/*
6386 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6387 	 * enabled in the host and the access splits a cache line.
6388 	 */
6389 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6390 		page_line_mask = ~(cache_line_size() - 1);
6391 	else
6392 		page_line_mask = PAGE_MASK;
6393 
6394 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6395 		goto emul_write;
6396 
6397 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6398 		goto emul_write;
6399 
6400 	kaddr = map.hva + offset_in_page(gpa);
6401 
6402 	switch (bytes) {
6403 	case 1:
6404 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6405 		break;
6406 	case 2:
6407 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6408 		break;
6409 	case 4:
6410 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6411 		break;
6412 	case 8:
6413 		exchanged = CMPXCHG64(kaddr, old, new);
6414 		break;
6415 	default:
6416 		BUG();
6417 	}
6418 
6419 	kvm_vcpu_unmap(vcpu, &map, true);
6420 
6421 	if (!exchanged)
6422 		return X86EMUL_CMPXCHG_FAILED;
6423 
6424 	kvm_page_track_write(vcpu, gpa, new, bytes);
6425 
6426 	return X86EMUL_CONTINUE;
6427 
6428 emul_write:
6429 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6430 
6431 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6432 }
6433 
6434 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6435 {
6436 	int r = 0, i;
6437 
6438 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6439 		if (vcpu->arch.pio.in)
6440 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6441 					    vcpu->arch.pio.size, pd);
6442 		else
6443 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6444 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6445 					     pd);
6446 		if (r)
6447 			break;
6448 		pd += vcpu->arch.pio.size;
6449 	}
6450 	return r;
6451 }
6452 
6453 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6454 			       unsigned short port, void *val,
6455 			       unsigned int count, bool in)
6456 {
6457 	vcpu->arch.pio.port = port;
6458 	vcpu->arch.pio.in = in;
6459 	vcpu->arch.pio.count  = count;
6460 	vcpu->arch.pio.size = size;
6461 
6462 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6463 		vcpu->arch.pio.count = 0;
6464 		return 1;
6465 	}
6466 
6467 	vcpu->run->exit_reason = KVM_EXIT_IO;
6468 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6469 	vcpu->run->io.size = size;
6470 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6471 	vcpu->run->io.count = count;
6472 	vcpu->run->io.port = port;
6473 
6474 	return 0;
6475 }
6476 
6477 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6478 			   unsigned short port, void *val, unsigned int count)
6479 {
6480 	int ret;
6481 
6482 	if (vcpu->arch.pio.count)
6483 		goto data_avail;
6484 
6485 	memset(vcpu->arch.pio_data, 0, size * count);
6486 
6487 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6488 	if (ret) {
6489 data_avail:
6490 		memcpy(val, vcpu->arch.pio_data, size * count);
6491 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6492 		vcpu->arch.pio.count = 0;
6493 		return 1;
6494 	}
6495 
6496 	return 0;
6497 }
6498 
6499 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6500 				    int size, unsigned short port, void *val,
6501 				    unsigned int count)
6502 {
6503 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6504 
6505 }
6506 
6507 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6508 			    unsigned short port, const void *val,
6509 			    unsigned int count)
6510 {
6511 	memcpy(vcpu->arch.pio_data, val, size * count);
6512 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6513 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6514 }
6515 
6516 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6517 				     int size, unsigned short port,
6518 				     const void *val, unsigned int count)
6519 {
6520 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6521 }
6522 
6523 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6524 {
6525 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6526 }
6527 
6528 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6529 {
6530 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6531 }
6532 
6533 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6534 {
6535 	if (!need_emulate_wbinvd(vcpu))
6536 		return X86EMUL_CONTINUE;
6537 
6538 	if (kvm_x86_ops.has_wbinvd_exit()) {
6539 		int cpu = get_cpu();
6540 
6541 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6542 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6543 				wbinvd_ipi, NULL, 1);
6544 		put_cpu();
6545 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6546 	} else
6547 		wbinvd();
6548 	return X86EMUL_CONTINUE;
6549 }
6550 
6551 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6552 {
6553 	kvm_emulate_wbinvd_noskip(vcpu);
6554 	return kvm_skip_emulated_instruction(vcpu);
6555 }
6556 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6557 
6558 
6559 
6560 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6561 {
6562 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6563 }
6564 
6565 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6566 			   unsigned long *dest)
6567 {
6568 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6569 }
6570 
6571 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6572 			   unsigned long value)
6573 {
6574 
6575 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6576 }
6577 
6578 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6579 {
6580 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6581 }
6582 
6583 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6584 {
6585 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6586 	unsigned long value;
6587 
6588 	switch (cr) {
6589 	case 0:
6590 		value = kvm_read_cr0(vcpu);
6591 		break;
6592 	case 2:
6593 		value = vcpu->arch.cr2;
6594 		break;
6595 	case 3:
6596 		value = kvm_read_cr3(vcpu);
6597 		break;
6598 	case 4:
6599 		value = kvm_read_cr4(vcpu);
6600 		break;
6601 	case 8:
6602 		value = kvm_get_cr8(vcpu);
6603 		break;
6604 	default:
6605 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6606 		return 0;
6607 	}
6608 
6609 	return value;
6610 }
6611 
6612 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6613 {
6614 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6615 	int res = 0;
6616 
6617 	switch (cr) {
6618 	case 0:
6619 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6620 		break;
6621 	case 2:
6622 		vcpu->arch.cr2 = val;
6623 		break;
6624 	case 3:
6625 		res = kvm_set_cr3(vcpu, val);
6626 		break;
6627 	case 4:
6628 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6629 		break;
6630 	case 8:
6631 		res = kvm_set_cr8(vcpu, val);
6632 		break;
6633 	default:
6634 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6635 		res = -1;
6636 	}
6637 
6638 	return res;
6639 }
6640 
6641 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6642 {
6643 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6644 }
6645 
6646 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6647 {
6648 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6649 }
6650 
6651 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6652 {
6653 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6654 }
6655 
6656 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6657 {
6658 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6659 }
6660 
6661 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6662 {
6663 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6664 }
6665 
6666 static unsigned long emulator_get_cached_segment_base(
6667 	struct x86_emulate_ctxt *ctxt, int seg)
6668 {
6669 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6670 }
6671 
6672 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6673 				 struct desc_struct *desc, u32 *base3,
6674 				 int seg)
6675 {
6676 	struct kvm_segment var;
6677 
6678 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6679 	*selector = var.selector;
6680 
6681 	if (var.unusable) {
6682 		memset(desc, 0, sizeof(*desc));
6683 		if (base3)
6684 			*base3 = 0;
6685 		return false;
6686 	}
6687 
6688 	if (var.g)
6689 		var.limit >>= 12;
6690 	set_desc_limit(desc, var.limit);
6691 	set_desc_base(desc, (unsigned long)var.base);
6692 #ifdef CONFIG_X86_64
6693 	if (base3)
6694 		*base3 = var.base >> 32;
6695 #endif
6696 	desc->type = var.type;
6697 	desc->s = var.s;
6698 	desc->dpl = var.dpl;
6699 	desc->p = var.present;
6700 	desc->avl = var.avl;
6701 	desc->l = var.l;
6702 	desc->d = var.db;
6703 	desc->g = var.g;
6704 
6705 	return true;
6706 }
6707 
6708 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6709 				 struct desc_struct *desc, u32 base3,
6710 				 int seg)
6711 {
6712 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713 	struct kvm_segment var;
6714 
6715 	var.selector = selector;
6716 	var.base = get_desc_base(desc);
6717 #ifdef CONFIG_X86_64
6718 	var.base |= ((u64)base3) << 32;
6719 #endif
6720 	var.limit = get_desc_limit(desc);
6721 	if (desc->g)
6722 		var.limit = (var.limit << 12) | 0xfff;
6723 	var.type = desc->type;
6724 	var.dpl = desc->dpl;
6725 	var.db = desc->d;
6726 	var.s = desc->s;
6727 	var.l = desc->l;
6728 	var.g = desc->g;
6729 	var.avl = desc->avl;
6730 	var.present = desc->p;
6731 	var.unusable = !var.present;
6732 	var.padding = 0;
6733 
6734 	kvm_set_segment(vcpu, &var, seg);
6735 	return;
6736 }
6737 
6738 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6739 			    u32 msr_index, u64 *pdata)
6740 {
6741 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6742 	int r;
6743 
6744 	r = kvm_get_msr(vcpu, msr_index, pdata);
6745 
6746 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6747 		/* Bounce to user space */
6748 		return X86EMUL_IO_NEEDED;
6749 	}
6750 
6751 	return r;
6752 }
6753 
6754 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6755 			    u32 msr_index, u64 data)
6756 {
6757 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6758 	int r;
6759 
6760 	r = kvm_set_msr(vcpu, msr_index, data);
6761 
6762 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6763 		/* Bounce to user space */
6764 		return X86EMUL_IO_NEEDED;
6765 	}
6766 
6767 	return r;
6768 }
6769 
6770 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6771 {
6772 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6773 
6774 	return vcpu->arch.smbase;
6775 }
6776 
6777 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6778 {
6779 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6780 
6781 	vcpu->arch.smbase = smbase;
6782 }
6783 
6784 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6785 			      u32 pmc)
6786 {
6787 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6788 }
6789 
6790 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6791 			     u32 pmc, u64 *pdata)
6792 {
6793 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6794 }
6795 
6796 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6797 {
6798 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6799 }
6800 
6801 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6802 			      struct x86_instruction_info *info,
6803 			      enum x86_intercept_stage stage)
6804 {
6805 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6806 					    &ctxt->exception);
6807 }
6808 
6809 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6810 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6811 			      bool exact_only)
6812 {
6813 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6814 }
6815 
6816 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6817 {
6818 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6819 }
6820 
6821 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6822 {
6823 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6824 }
6825 
6826 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6827 {
6828 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6829 }
6830 
6831 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6832 {
6833 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6834 }
6835 
6836 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6837 {
6838 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6839 }
6840 
6841 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6842 {
6843 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6844 }
6845 
6846 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6847 {
6848 	return emul_to_vcpu(ctxt)->arch.hflags;
6849 }
6850 
6851 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6852 {
6853 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6854 }
6855 
6856 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6857 				  const char *smstate)
6858 {
6859 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6860 }
6861 
6862 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6863 {
6864 	kvm_smm_changed(emul_to_vcpu(ctxt));
6865 }
6866 
6867 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6868 {
6869 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6870 }
6871 
6872 static const struct x86_emulate_ops emulate_ops = {
6873 	.read_gpr            = emulator_read_gpr,
6874 	.write_gpr           = emulator_write_gpr,
6875 	.read_std            = emulator_read_std,
6876 	.write_std           = emulator_write_std,
6877 	.read_phys           = kvm_read_guest_phys_system,
6878 	.fetch               = kvm_fetch_guest_virt,
6879 	.read_emulated       = emulator_read_emulated,
6880 	.write_emulated      = emulator_write_emulated,
6881 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6882 	.invlpg              = emulator_invlpg,
6883 	.pio_in_emulated     = emulator_pio_in_emulated,
6884 	.pio_out_emulated    = emulator_pio_out_emulated,
6885 	.get_segment         = emulator_get_segment,
6886 	.set_segment         = emulator_set_segment,
6887 	.get_cached_segment_base = emulator_get_cached_segment_base,
6888 	.get_gdt             = emulator_get_gdt,
6889 	.get_idt	     = emulator_get_idt,
6890 	.set_gdt             = emulator_set_gdt,
6891 	.set_idt	     = emulator_set_idt,
6892 	.get_cr              = emulator_get_cr,
6893 	.set_cr              = emulator_set_cr,
6894 	.cpl                 = emulator_get_cpl,
6895 	.get_dr              = emulator_get_dr,
6896 	.set_dr              = emulator_set_dr,
6897 	.get_smbase          = emulator_get_smbase,
6898 	.set_smbase          = emulator_set_smbase,
6899 	.set_msr             = emulator_set_msr,
6900 	.get_msr             = emulator_get_msr,
6901 	.check_pmc	     = emulator_check_pmc,
6902 	.read_pmc            = emulator_read_pmc,
6903 	.halt                = emulator_halt,
6904 	.wbinvd              = emulator_wbinvd,
6905 	.fix_hypercall       = emulator_fix_hypercall,
6906 	.intercept           = emulator_intercept,
6907 	.get_cpuid           = emulator_get_cpuid,
6908 	.guest_has_long_mode = emulator_guest_has_long_mode,
6909 	.guest_has_movbe     = emulator_guest_has_movbe,
6910 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6911 	.set_nmi_mask        = emulator_set_nmi_mask,
6912 	.get_hflags          = emulator_get_hflags,
6913 	.set_hflags          = emulator_set_hflags,
6914 	.pre_leave_smm       = emulator_pre_leave_smm,
6915 	.post_leave_smm      = emulator_post_leave_smm,
6916 	.set_xcr             = emulator_set_xcr,
6917 };
6918 
6919 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6920 {
6921 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6922 	/*
6923 	 * an sti; sti; sequence only disable interrupts for the first
6924 	 * instruction. So, if the last instruction, be it emulated or
6925 	 * not, left the system with the INT_STI flag enabled, it
6926 	 * means that the last instruction is an sti. We should not
6927 	 * leave the flag on in this case. The same goes for mov ss
6928 	 */
6929 	if (int_shadow & mask)
6930 		mask = 0;
6931 	if (unlikely(int_shadow || mask)) {
6932 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6933 		if (!mask)
6934 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6935 	}
6936 }
6937 
6938 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6939 {
6940 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6941 	if (ctxt->exception.vector == PF_VECTOR)
6942 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6943 
6944 	if (ctxt->exception.error_code_valid)
6945 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6946 				      ctxt->exception.error_code);
6947 	else
6948 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6949 	return false;
6950 }
6951 
6952 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6953 {
6954 	struct x86_emulate_ctxt *ctxt;
6955 
6956 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6957 	if (!ctxt) {
6958 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6959 		return NULL;
6960 	}
6961 
6962 	ctxt->vcpu = vcpu;
6963 	ctxt->ops = &emulate_ops;
6964 	vcpu->arch.emulate_ctxt = ctxt;
6965 
6966 	return ctxt;
6967 }
6968 
6969 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6970 {
6971 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6972 	int cs_db, cs_l;
6973 
6974 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6975 
6976 	ctxt->gpa_available = false;
6977 	ctxt->eflags = kvm_get_rflags(vcpu);
6978 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6979 
6980 	ctxt->eip = kvm_rip_read(vcpu);
6981 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6982 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6983 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6984 		     cs_db				? X86EMUL_MODE_PROT32 :
6985 							  X86EMUL_MODE_PROT16;
6986 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6987 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6988 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6989 
6990 	init_decode_cache(ctxt);
6991 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6992 }
6993 
6994 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6995 {
6996 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6997 	int ret;
6998 
6999 	init_emulate_ctxt(vcpu);
7000 
7001 	ctxt->op_bytes = 2;
7002 	ctxt->ad_bytes = 2;
7003 	ctxt->_eip = ctxt->eip + inc_eip;
7004 	ret = emulate_int_real(ctxt, irq);
7005 
7006 	if (ret != X86EMUL_CONTINUE) {
7007 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7008 	} else {
7009 		ctxt->eip = ctxt->_eip;
7010 		kvm_rip_write(vcpu, ctxt->eip);
7011 		kvm_set_rflags(vcpu, ctxt->eflags);
7012 	}
7013 }
7014 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7015 
7016 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7017 {
7018 	++vcpu->stat.insn_emulation_fail;
7019 	trace_kvm_emulate_insn_failed(vcpu);
7020 
7021 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7022 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7023 		return 1;
7024 	}
7025 
7026 	if (emulation_type & EMULTYPE_SKIP) {
7027 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7028 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7029 		vcpu->run->internal.ndata = 0;
7030 		return 0;
7031 	}
7032 
7033 	kvm_queue_exception(vcpu, UD_VECTOR);
7034 
7035 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7036 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7037 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7038 		vcpu->run->internal.ndata = 0;
7039 		return 0;
7040 	}
7041 
7042 	return 1;
7043 }
7044 
7045 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7046 				  bool write_fault_to_shadow_pgtable,
7047 				  int emulation_type)
7048 {
7049 	gpa_t gpa = cr2_or_gpa;
7050 	kvm_pfn_t pfn;
7051 
7052 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7053 		return false;
7054 
7055 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7056 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7057 		return false;
7058 
7059 	if (!vcpu->arch.mmu->direct_map) {
7060 		/*
7061 		 * Write permission should be allowed since only
7062 		 * write access need to be emulated.
7063 		 */
7064 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7065 
7066 		/*
7067 		 * If the mapping is invalid in guest, let cpu retry
7068 		 * it to generate fault.
7069 		 */
7070 		if (gpa == UNMAPPED_GVA)
7071 			return true;
7072 	}
7073 
7074 	/*
7075 	 * Do not retry the unhandleable instruction if it faults on the
7076 	 * readonly host memory, otherwise it will goto a infinite loop:
7077 	 * retry instruction -> write #PF -> emulation fail -> retry
7078 	 * instruction -> ...
7079 	 */
7080 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7081 
7082 	/*
7083 	 * If the instruction failed on the error pfn, it can not be fixed,
7084 	 * report the error to userspace.
7085 	 */
7086 	if (is_error_noslot_pfn(pfn))
7087 		return false;
7088 
7089 	kvm_release_pfn_clean(pfn);
7090 
7091 	/* The instructions are well-emulated on direct mmu. */
7092 	if (vcpu->arch.mmu->direct_map) {
7093 		unsigned int indirect_shadow_pages;
7094 
7095 		spin_lock(&vcpu->kvm->mmu_lock);
7096 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7097 		spin_unlock(&vcpu->kvm->mmu_lock);
7098 
7099 		if (indirect_shadow_pages)
7100 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7101 
7102 		return true;
7103 	}
7104 
7105 	/*
7106 	 * if emulation was due to access to shadowed page table
7107 	 * and it failed try to unshadow page and re-enter the
7108 	 * guest to let CPU execute the instruction.
7109 	 */
7110 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7111 
7112 	/*
7113 	 * If the access faults on its page table, it can not
7114 	 * be fixed by unprotecting shadow page and it should
7115 	 * be reported to userspace.
7116 	 */
7117 	return !write_fault_to_shadow_pgtable;
7118 }
7119 
7120 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7121 			      gpa_t cr2_or_gpa,  int emulation_type)
7122 {
7123 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7124 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7125 
7126 	last_retry_eip = vcpu->arch.last_retry_eip;
7127 	last_retry_addr = vcpu->arch.last_retry_addr;
7128 
7129 	/*
7130 	 * If the emulation is caused by #PF and it is non-page_table
7131 	 * writing instruction, it means the VM-EXIT is caused by shadow
7132 	 * page protected, we can zap the shadow page and retry this
7133 	 * instruction directly.
7134 	 *
7135 	 * Note: if the guest uses a non-page-table modifying instruction
7136 	 * on the PDE that points to the instruction, then we will unmap
7137 	 * the instruction and go to an infinite loop. So, we cache the
7138 	 * last retried eip and the last fault address, if we meet the eip
7139 	 * and the address again, we can break out of the potential infinite
7140 	 * loop.
7141 	 */
7142 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7143 
7144 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7145 		return false;
7146 
7147 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7148 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7149 		return false;
7150 
7151 	if (x86_page_table_writing_insn(ctxt))
7152 		return false;
7153 
7154 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7155 		return false;
7156 
7157 	vcpu->arch.last_retry_eip = ctxt->eip;
7158 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7159 
7160 	if (!vcpu->arch.mmu->direct_map)
7161 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7162 
7163 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7164 
7165 	return true;
7166 }
7167 
7168 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7169 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7170 
7171 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7172 {
7173 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7174 		/* This is a good place to trace that we are exiting SMM.  */
7175 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7176 
7177 		/* Process a latched INIT or SMI, if any.  */
7178 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7179 	}
7180 
7181 	kvm_mmu_reset_context(vcpu);
7182 }
7183 
7184 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7185 				unsigned long *db)
7186 {
7187 	u32 dr6 = 0;
7188 	int i;
7189 	u32 enable, rwlen;
7190 
7191 	enable = dr7;
7192 	rwlen = dr7 >> 16;
7193 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7194 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7195 			dr6 |= (1 << i);
7196 	return dr6;
7197 }
7198 
7199 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7200 {
7201 	struct kvm_run *kvm_run = vcpu->run;
7202 
7203 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7204 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7205 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7206 		kvm_run->debug.arch.exception = DB_VECTOR;
7207 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7208 		return 0;
7209 	}
7210 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7211 	return 1;
7212 }
7213 
7214 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7215 {
7216 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7217 	int r;
7218 
7219 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7220 	if (unlikely(!r))
7221 		return 0;
7222 
7223 	/*
7224 	 * rflags is the old, "raw" value of the flags.  The new value has
7225 	 * not been saved yet.
7226 	 *
7227 	 * This is correct even for TF set by the guest, because "the
7228 	 * processor will not generate this exception after the instruction
7229 	 * that sets the TF flag".
7230 	 */
7231 	if (unlikely(rflags & X86_EFLAGS_TF))
7232 		r = kvm_vcpu_do_singlestep(vcpu);
7233 	return r;
7234 }
7235 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7236 
7237 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7238 {
7239 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7240 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7241 		struct kvm_run *kvm_run = vcpu->run;
7242 		unsigned long eip = kvm_get_linear_rip(vcpu);
7243 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7244 					   vcpu->arch.guest_debug_dr7,
7245 					   vcpu->arch.eff_db);
7246 
7247 		if (dr6 != 0) {
7248 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7249 			kvm_run->debug.arch.pc = eip;
7250 			kvm_run->debug.arch.exception = DB_VECTOR;
7251 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7252 			*r = 0;
7253 			return true;
7254 		}
7255 	}
7256 
7257 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7258 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7259 		unsigned long eip = kvm_get_linear_rip(vcpu);
7260 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7261 					   vcpu->arch.dr7,
7262 					   vcpu->arch.db);
7263 
7264 		if (dr6 != 0) {
7265 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7266 			*r = 1;
7267 			return true;
7268 		}
7269 	}
7270 
7271 	return false;
7272 }
7273 
7274 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7275 {
7276 	switch (ctxt->opcode_len) {
7277 	case 1:
7278 		switch (ctxt->b) {
7279 		case 0xe4:	/* IN */
7280 		case 0xe5:
7281 		case 0xec:
7282 		case 0xed:
7283 		case 0xe6:	/* OUT */
7284 		case 0xe7:
7285 		case 0xee:
7286 		case 0xef:
7287 		case 0x6c:	/* INS */
7288 		case 0x6d:
7289 		case 0x6e:	/* OUTS */
7290 		case 0x6f:
7291 			return true;
7292 		}
7293 		break;
7294 	case 2:
7295 		switch (ctxt->b) {
7296 		case 0x33:	/* RDPMC */
7297 			return true;
7298 		}
7299 		break;
7300 	}
7301 
7302 	return false;
7303 }
7304 
7305 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7306 			    int emulation_type, void *insn, int insn_len)
7307 {
7308 	int r;
7309 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7310 	bool writeback = true;
7311 	bool write_fault_to_spt;
7312 
7313 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7314 		return 1;
7315 
7316 	vcpu->arch.l1tf_flush_l1d = true;
7317 
7318 	/*
7319 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7320 	 * never reused.
7321 	 */
7322 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7323 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7324 	kvm_clear_exception_queue(vcpu);
7325 
7326 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7327 		init_emulate_ctxt(vcpu);
7328 
7329 		/*
7330 		 * We will reenter on the same instruction since
7331 		 * we do not set complete_userspace_io.  This does not
7332 		 * handle watchpoints yet, those would be handled in
7333 		 * the emulate_ops.
7334 		 */
7335 		if (!(emulation_type & EMULTYPE_SKIP) &&
7336 		    kvm_vcpu_check_breakpoint(vcpu, &r))
7337 			return r;
7338 
7339 		ctxt->interruptibility = 0;
7340 		ctxt->have_exception = false;
7341 		ctxt->exception.vector = -1;
7342 		ctxt->perm_ok = false;
7343 
7344 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7345 
7346 		r = x86_decode_insn(ctxt, insn, insn_len);
7347 
7348 		trace_kvm_emulate_insn_start(vcpu);
7349 		++vcpu->stat.insn_emulation;
7350 		if (r != EMULATION_OK)  {
7351 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7352 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7353 				kvm_queue_exception(vcpu, UD_VECTOR);
7354 				return 1;
7355 			}
7356 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7357 						  write_fault_to_spt,
7358 						  emulation_type))
7359 				return 1;
7360 			if (ctxt->have_exception) {
7361 				/*
7362 				 * #UD should result in just EMULATION_FAILED, and trap-like
7363 				 * exception should not be encountered during decode.
7364 				 */
7365 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7366 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7367 				inject_emulated_exception(vcpu);
7368 				return 1;
7369 			}
7370 			return handle_emulation_failure(vcpu, emulation_type);
7371 		}
7372 	}
7373 
7374 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7375 	    !is_vmware_backdoor_opcode(ctxt)) {
7376 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7377 		return 1;
7378 	}
7379 
7380 	/*
7381 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7382 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7383 	 * updating interruptibility state and injecting single-step #DBs.
7384 	 */
7385 	if (emulation_type & EMULTYPE_SKIP) {
7386 		kvm_rip_write(vcpu, ctxt->_eip);
7387 		if (ctxt->eflags & X86_EFLAGS_RF)
7388 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7389 		return 1;
7390 	}
7391 
7392 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7393 		return 1;
7394 
7395 	/* this is needed for vmware backdoor interface to work since it
7396 	   changes registers values  during IO operation */
7397 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7398 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7399 		emulator_invalidate_register_cache(ctxt);
7400 	}
7401 
7402 restart:
7403 	if (emulation_type & EMULTYPE_PF) {
7404 		/* Save the faulting GPA (cr2) in the address field */
7405 		ctxt->exception.address = cr2_or_gpa;
7406 
7407 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7408 		if (vcpu->arch.mmu->direct_map) {
7409 			ctxt->gpa_available = true;
7410 			ctxt->gpa_val = cr2_or_gpa;
7411 		}
7412 	} else {
7413 		/* Sanitize the address out of an abundance of paranoia. */
7414 		ctxt->exception.address = 0;
7415 	}
7416 
7417 	r = x86_emulate_insn(ctxt);
7418 
7419 	if (r == EMULATION_INTERCEPTED)
7420 		return 1;
7421 
7422 	if (r == EMULATION_FAILED) {
7423 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7424 					emulation_type))
7425 			return 1;
7426 
7427 		return handle_emulation_failure(vcpu, emulation_type);
7428 	}
7429 
7430 	if (ctxt->have_exception) {
7431 		r = 1;
7432 		if (inject_emulated_exception(vcpu))
7433 			return r;
7434 	} else if (vcpu->arch.pio.count) {
7435 		if (!vcpu->arch.pio.in) {
7436 			/* FIXME: return into emulator if single-stepping.  */
7437 			vcpu->arch.pio.count = 0;
7438 		} else {
7439 			writeback = false;
7440 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7441 		}
7442 		r = 0;
7443 	} else if (vcpu->mmio_needed) {
7444 		++vcpu->stat.mmio_exits;
7445 
7446 		if (!vcpu->mmio_is_write)
7447 			writeback = false;
7448 		r = 0;
7449 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7450 	} else if (r == EMULATION_RESTART)
7451 		goto restart;
7452 	else
7453 		r = 1;
7454 
7455 	if (writeback) {
7456 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7457 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7458 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7459 		if (!ctxt->have_exception ||
7460 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7461 			kvm_rip_write(vcpu, ctxt->eip);
7462 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7463 				r = kvm_vcpu_do_singlestep(vcpu);
7464 			if (kvm_x86_ops.update_emulated_instruction)
7465 				kvm_x86_ops.update_emulated_instruction(vcpu);
7466 			__kvm_set_rflags(vcpu, ctxt->eflags);
7467 		}
7468 
7469 		/*
7470 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7471 		 * do nothing, and it will be requested again as soon as
7472 		 * the shadow expires.  But we still need to check here,
7473 		 * because POPF has no interrupt shadow.
7474 		 */
7475 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7476 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7477 	} else
7478 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7479 
7480 	return r;
7481 }
7482 
7483 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7484 {
7485 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7486 }
7487 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7488 
7489 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7490 					void *insn, int insn_len)
7491 {
7492 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7493 }
7494 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7495 
7496 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7497 {
7498 	vcpu->arch.pio.count = 0;
7499 	return 1;
7500 }
7501 
7502 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7503 {
7504 	vcpu->arch.pio.count = 0;
7505 
7506 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7507 		return 1;
7508 
7509 	return kvm_skip_emulated_instruction(vcpu);
7510 }
7511 
7512 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7513 			    unsigned short port)
7514 {
7515 	unsigned long val = kvm_rax_read(vcpu);
7516 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7517 
7518 	if (ret)
7519 		return ret;
7520 
7521 	/*
7522 	 * Workaround userspace that relies on old KVM behavior of %rip being
7523 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7524 	 */
7525 	if (port == 0x7e &&
7526 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7527 		vcpu->arch.complete_userspace_io =
7528 			complete_fast_pio_out_port_0x7e;
7529 		kvm_skip_emulated_instruction(vcpu);
7530 	} else {
7531 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7532 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7533 	}
7534 	return 0;
7535 }
7536 
7537 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7538 {
7539 	unsigned long val;
7540 
7541 	/* We should only ever be called with arch.pio.count equal to 1 */
7542 	BUG_ON(vcpu->arch.pio.count != 1);
7543 
7544 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7545 		vcpu->arch.pio.count = 0;
7546 		return 1;
7547 	}
7548 
7549 	/* For size less than 4 we merge, else we zero extend */
7550 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7551 
7552 	/*
7553 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7554 	 * the copy and tracing
7555 	 */
7556 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7557 	kvm_rax_write(vcpu, val);
7558 
7559 	return kvm_skip_emulated_instruction(vcpu);
7560 }
7561 
7562 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7563 			   unsigned short port)
7564 {
7565 	unsigned long val;
7566 	int ret;
7567 
7568 	/* For size less than 4 we merge, else we zero extend */
7569 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7570 
7571 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7572 	if (ret) {
7573 		kvm_rax_write(vcpu, val);
7574 		return ret;
7575 	}
7576 
7577 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7578 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7579 
7580 	return 0;
7581 }
7582 
7583 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7584 {
7585 	int ret;
7586 
7587 	if (in)
7588 		ret = kvm_fast_pio_in(vcpu, size, port);
7589 	else
7590 		ret = kvm_fast_pio_out(vcpu, size, port);
7591 	return ret && kvm_skip_emulated_instruction(vcpu);
7592 }
7593 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7594 
7595 static int kvmclock_cpu_down_prep(unsigned int cpu)
7596 {
7597 	__this_cpu_write(cpu_tsc_khz, 0);
7598 	return 0;
7599 }
7600 
7601 static void tsc_khz_changed(void *data)
7602 {
7603 	struct cpufreq_freqs *freq = data;
7604 	unsigned long khz = 0;
7605 
7606 	if (data)
7607 		khz = freq->new;
7608 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7609 		khz = cpufreq_quick_get(raw_smp_processor_id());
7610 	if (!khz)
7611 		khz = tsc_khz;
7612 	__this_cpu_write(cpu_tsc_khz, khz);
7613 }
7614 
7615 #ifdef CONFIG_X86_64
7616 static void kvm_hyperv_tsc_notifier(void)
7617 {
7618 	struct kvm *kvm;
7619 	struct kvm_vcpu *vcpu;
7620 	int cpu;
7621 
7622 	mutex_lock(&kvm_lock);
7623 	list_for_each_entry(kvm, &vm_list, vm_list)
7624 		kvm_make_mclock_inprogress_request(kvm);
7625 
7626 	hyperv_stop_tsc_emulation();
7627 
7628 	/* TSC frequency always matches when on Hyper-V */
7629 	for_each_present_cpu(cpu)
7630 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7631 	kvm_max_guest_tsc_khz = tsc_khz;
7632 
7633 	list_for_each_entry(kvm, &vm_list, vm_list) {
7634 		struct kvm_arch *ka = &kvm->arch;
7635 
7636 		spin_lock(&ka->pvclock_gtod_sync_lock);
7637 
7638 		pvclock_update_vm_gtod_copy(kvm);
7639 
7640 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7641 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7642 
7643 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7644 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7645 
7646 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7647 	}
7648 	mutex_unlock(&kvm_lock);
7649 }
7650 #endif
7651 
7652 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7653 {
7654 	struct kvm *kvm;
7655 	struct kvm_vcpu *vcpu;
7656 	int i, send_ipi = 0;
7657 
7658 	/*
7659 	 * We allow guests to temporarily run on slowing clocks,
7660 	 * provided we notify them after, or to run on accelerating
7661 	 * clocks, provided we notify them before.  Thus time never
7662 	 * goes backwards.
7663 	 *
7664 	 * However, we have a problem.  We can't atomically update
7665 	 * the frequency of a given CPU from this function; it is
7666 	 * merely a notifier, which can be called from any CPU.
7667 	 * Changing the TSC frequency at arbitrary points in time
7668 	 * requires a recomputation of local variables related to
7669 	 * the TSC for each VCPU.  We must flag these local variables
7670 	 * to be updated and be sure the update takes place with the
7671 	 * new frequency before any guests proceed.
7672 	 *
7673 	 * Unfortunately, the combination of hotplug CPU and frequency
7674 	 * change creates an intractable locking scenario; the order
7675 	 * of when these callouts happen is undefined with respect to
7676 	 * CPU hotplug, and they can race with each other.  As such,
7677 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7678 	 * undefined; you can actually have a CPU frequency change take
7679 	 * place in between the computation of X and the setting of the
7680 	 * variable.  To protect against this problem, all updates of
7681 	 * the per_cpu tsc_khz variable are done in an interrupt
7682 	 * protected IPI, and all callers wishing to update the value
7683 	 * must wait for a synchronous IPI to complete (which is trivial
7684 	 * if the caller is on the CPU already).  This establishes the
7685 	 * necessary total order on variable updates.
7686 	 *
7687 	 * Note that because a guest time update may take place
7688 	 * anytime after the setting of the VCPU's request bit, the
7689 	 * correct TSC value must be set before the request.  However,
7690 	 * to ensure the update actually makes it to any guest which
7691 	 * starts running in hardware virtualization between the set
7692 	 * and the acquisition of the spinlock, we must also ping the
7693 	 * CPU after setting the request bit.
7694 	 *
7695 	 */
7696 
7697 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7698 
7699 	mutex_lock(&kvm_lock);
7700 	list_for_each_entry(kvm, &vm_list, vm_list) {
7701 		kvm_for_each_vcpu(i, vcpu, kvm) {
7702 			if (vcpu->cpu != cpu)
7703 				continue;
7704 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7705 			if (vcpu->cpu != raw_smp_processor_id())
7706 				send_ipi = 1;
7707 		}
7708 	}
7709 	mutex_unlock(&kvm_lock);
7710 
7711 	if (freq->old < freq->new && send_ipi) {
7712 		/*
7713 		 * We upscale the frequency.  Must make the guest
7714 		 * doesn't see old kvmclock values while running with
7715 		 * the new frequency, otherwise we risk the guest sees
7716 		 * time go backwards.
7717 		 *
7718 		 * In case we update the frequency for another cpu
7719 		 * (which might be in guest context) send an interrupt
7720 		 * to kick the cpu out of guest context.  Next time
7721 		 * guest context is entered kvmclock will be updated,
7722 		 * so the guest will not see stale values.
7723 		 */
7724 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7725 	}
7726 }
7727 
7728 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7729 				     void *data)
7730 {
7731 	struct cpufreq_freqs *freq = data;
7732 	int cpu;
7733 
7734 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7735 		return 0;
7736 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7737 		return 0;
7738 
7739 	for_each_cpu(cpu, freq->policy->cpus)
7740 		__kvmclock_cpufreq_notifier(freq, cpu);
7741 
7742 	return 0;
7743 }
7744 
7745 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7746 	.notifier_call  = kvmclock_cpufreq_notifier
7747 };
7748 
7749 static int kvmclock_cpu_online(unsigned int cpu)
7750 {
7751 	tsc_khz_changed(NULL);
7752 	return 0;
7753 }
7754 
7755 static void kvm_timer_init(void)
7756 {
7757 	max_tsc_khz = tsc_khz;
7758 
7759 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7760 #ifdef CONFIG_CPU_FREQ
7761 		struct cpufreq_policy *policy;
7762 		int cpu;
7763 
7764 		cpu = get_cpu();
7765 		policy = cpufreq_cpu_get(cpu);
7766 		if (policy) {
7767 			if (policy->cpuinfo.max_freq)
7768 				max_tsc_khz = policy->cpuinfo.max_freq;
7769 			cpufreq_cpu_put(policy);
7770 		}
7771 		put_cpu();
7772 #endif
7773 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7774 					  CPUFREQ_TRANSITION_NOTIFIER);
7775 	}
7776 
7777 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7778 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7779 }
7780 
7781 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7782 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7783 
7784 int kvm_is_in_guest(void)
7785 {
7786 	return __this_cpu_read(current_vcpu) != NULL;
7787 }
7788 
7789 static int kvm_is_user_mode(void)
7790 {
7791 	int user_mode = 3;
7792 
7793 	if (__this_cpu_read(current_vcpu))
7794 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7795 
7796 	return user_mode != 0;
7797 }
7798 
7799 static unsigned long kvm_get_guest_ip(void)
7800 {
7801 	unsigned long ip = 0;
7802 
7803 	if (__this_cpu_read(current_vcpu))
7804 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7805 
7806 	return ip;
7807 }
7808 
7809 static void kvm_handle_intel_pt_intr(void)
7810 {
7811 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7812 
7813 	kvm_make_request(KVM_REQ_PMI, vcpu);
7814 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7815 			(unsigned long *)&vcpu->arch.pmu.global_status);
7816 }
7817 
7818 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7819 	.is_in_guest		= kvm_is_in_guest,
7820 	.is_user_mode		= kvm_is_user_mode,
7821 	.get_guest_ip		= kvm_get_guest_ip,
7822 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7823 };
7824 
7825 #ifdef CONFIG_X86_64
7826 static void pvclock_gtod_update_fn(struct work_struct *work)
7827 {
7828 	struct kvm *kvm;
7829 
7830 	struct kvm_vcpu *vcpu;
7831 	int i;
7832 
7833 	mutex_lock(&kvm_lock);
7834 	list_for_each_entry(kvm, &vm_list, vm_list)
7835 		kvm_for_each_vcpu(i, vcpu, kvm)
7836 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7837 	atomic_set(&kvm_guest_has_master_clock, 0);
7838 	mutex_unlock(&kvm_lock);
7839 }
7840 
7841 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7842 
7843 /*
7844  * Notification about pvclock gtod data update.
7845  */
7846 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7847 			       void *priv)
7848 {
7849 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7850 	struct timekeeper *tk = priv;
7851 
7852 	update_pvclock_gtod(tk);
7853 
7854 	/* disable master clock if host does not trust, or does not
7855 	 * use, TSC based clocksource.
7856 	 */
7857 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7858 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7859 		queue_work(system_long_wq, &pvclock_gtod_work);
7860 
7861 	return 0;
7862 }
7863 
7864 static struct notifier_block pvclock_gtod_notifier = {
7865 	.notifier_call = pvclock_gtod_notify,
7866 };
7867 #endif
7868 
7869 int kvm_arch_init(void *opaque)
7870 {
7871 	struct kvm_x86_init_ops *ops = opaque;
7872 	int r;
7873 
7874 	if (kvm_x86_ops.hardware_enable) {
7875 		printk(KERN_ERR "kvm: already loaded the other module\n");
7876 		r = -EEXIST;
7877 		goto out;
7878 	}
7879 
7880 	if (!ops->cpu_has_kvm_support()) {
7881 		pr_err_ratelimited("kvm: no hardware support\n");
7882 		r = -EOPNOTSUPP;
7883 		goto out;
7884 	}
7885 	if (ops->disabled_by_bios()) {
7886 		pr_err_ratelimited("kvm: disabled by bios\n");
7887 		r = -EOPNOTSUPP;
7888 		goto out;
7889 	}
7890 
7891 	/*
7892 	 * KVM explicitly assumes that the guest has an FPU and
7893 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7894 	 * vCPU's FPU state as a fxregs_state struct.
7895 	 */
7896 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7897 		printk(KERN_ERR "kvm: inadequate fpu\n");
7898 		r = -EOPNOTSUPP;
7899 		goto out;
7900 	}
7901 
7902 	r = -ENOMEM;
7903 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7904 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7905 					  NULL);
7906 	if (!x86_fpu_cache) {
7907 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7908 		goto out;
7909 	}
7910 
7911 	x86_emulator_cache = kvm_alloc_emulator_cache();
7912 	if (!x86_emulator_cache) {
7913 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7914 		goto out_free_x86_fpu_cache;
7915 	}
7916 
7917 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7918 	if (!user_return_msrs) {
7919 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7920 		goto out_free_x86_emulator_cache;
7921 	}
7922 
7923 	r = kvm_mmu_module_init();
7924 	if (r)
7925 		goto out_free_percpu;
7926 
7927 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7928 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7929 			PT_PRESENT_MASK, 0, sme_me_mask);
7930 	kvm_timer_init();
7931 
7932 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7933 
7934 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7935 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7936 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7937 	}
7938 
7939 	kvm_lapic_init();
7940 	if (pi_inject_timer == -1)
7941 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7942 #ifdef CONFIG_X86_64
7943 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7944 
7945 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7946 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7947 #endif
7948 
7949 	return 0;
7950 
7951 out_free_percpu:
7952 	free_percpu(user_return_msrs);
7953 out_free_x86_emulator_cache:
7954 	kmem_cache_destroy(x86_emulator_cache);
7955 out_free_x86_fpu_cache:
7956 	kmem_cache_destroy(x86_fpu_cache);
7957 out:
7958 	return r;
7959 }
7960 
7961 void kvm_arch_exit(void)
7962 {
7963 #ifdef CONFIG_X86_64
7964 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7965 		clear_hv_tscchange_cb();
7966 #endif
7967 	kvm_lapic_exit();
7968 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7969 
7970 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7971 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7972 					    CPUFREQ_TRANSITION_NOTIFIER);
7973 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7974 #ifdef CONFIG_X86_64
7975 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7976 #endif
7977 	kvm_x86_ops.hardware_enable = NULL;
7978 	kvm_mmu_module_exit();
7979 	free_percpu(user_return_msrs);
7980 	kmem_cache_destroy(x86_fpu_cache);
7981 }
7982 
7983 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
7984 {
7985 	++vcpu->stat.halt_exits;
7986 	if (lapic_in_kernel(vcpu)) {
7987 		vcpu->arch.mp_state = state;
7988 		return 1;
7989 	} else {
7990 		vcpu->run->exit_reason = reason;
7991 		return 0;
7992 	}
7993 }
7994 
7995 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7996 {
7997 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
7998 }
7999 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8000 
8001 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8002 {
8003 	int ret = kvm_skip_emulated_instruction(vcpu);
8004 	/*
8005 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8006 	 * KVM_EXIT_DEBUG here.
8007 	 */
8008 	return kvm_vcpu_halt(vcpu) && ret;
8009 }
8010 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8011 
8012 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8013 {
8014 	int ret = kvm_skip_emulated_instruction(vcpu);
8015 
8016 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8017 }
8018 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8019 
8020 #ifdef CONFIG_X86_64
8021 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8022 			        unsigned long clock_type)
8023 {
8024 	struct kvm_clock_pairing clock_pairing;
8025 	struct timespec64 ts;
8026 	u64 cycle;
8027 	int ret;
8028 
8029 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8030 		return -KVM_EOPNOTSUPP;
8031 
8032 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8033 		return -KVM_EOPNOTSUPP;
8034 
8035 	clock_pairing.sec = ts.tv_sec;
8036 	clock_pairing.nsec = ts.tv_nsec;
8037 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8038 	clock_pairing.flags = 0;
8039 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8040 
8041 	ret = 0;
8042 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8043 			    sizeof(struct kvm_clock_pairing)))
8044 		ret = -KVM_EFAULT;
8045 
8046 	return ret;
8047 }
8048 #endif
8049 
8050 /*
8051  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8052  *
8053  * @apicid - apicid of vcpu to be kicked.
8054  */
8055 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8056 {
8057 	struct kvm_lapic_irq lapic_irq;
8058 
8059 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8060 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8061 	lapic_irq.level = 0;
8062 	lapic_irq.dest_id = apicid;
8063 	lapic_irq.msi_redir_hint = false;
8064 
8065 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8066 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8067 }
8068 
8069 bool kvm_apicv_activated(struct kvm *kvm)
8070 {
8071 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8072 }
8073 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8074 
8075 void kvm_apicv_init(struct kvm *kvm, bool enable)
8076 {
8077 	if (enable)
8078 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8079 			  &kvm->arch.apicv_inhibit_reasons);
8080 	else
8081 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8082 			&kvm->arch.apicv_inhibit_reasons);
8083 }
8084 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8085 
8086 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8087 {
8088 	struct kvm_vcpu *target = NULL;
8089 	struct kvm_apic_map *map;
8090 
8091 	rcu_read_lock();
8092 	map = rcu_dereference(kvm->arch.apic_map);
8093 
8094 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8095 		target = map->phys_map[dest_id]->vcpu;
8096 
8097 	rcu_read_unlock();
8098 
8099 	if (target && READ_ONCE(target->ready))
8100 		kvm_vcpu_yield_to(target);
8101 }
8102 
8103 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8104 {
8105 	unsigned long nr, a0, a1, a2, a3, ret;
8106 	int op_64_bit;
8107 
8108 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8109 		return kvm_hv_hypercall(vcpu);
8110 
8111 	nr = kvm_rax_read(vcpu);
8112 	a0 = kvm_rbx_read(vcpu);
8113 	a1 = kvm_rcx_read(vcpu);
8114 	a2 = kvm_rdx_read(vcpu);
8115 	a3 = kvm_rsi_read(vcpu);
8116 
8117 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8118 
8119 	op_64_bit = is_64_bit_mode(vcpu);
8120 	if (!op_64_bit) {
8121 		nr &= 0xFFFFFFFF;
8122 		a0 &= 0xFFFFFFFF;
8123 		a1 &= 0xFFFFFFFF;
8124 		a2 &= 0xFFFFFFFF;
8125 		a3 &= 0xFFFFFFFF;
8126 	}
8127 
8128 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8129 		ret = -KVM_EPERM;
8130 		goto out;
8131 	}
8132 
8133 	ret = -KVM_ENOSYS;
8134 
8135 	switch (nr) {
8136 	case KVM_HC_VAPIC_POLL_IRQ:
8137 		ret = 0;
8138 		break;
8139 	case KVM_HC_KICK_CPU:
8140 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8141 			break;
8142 
8143 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8144 		kvm_sched_yield(vcpu->kvm, a1);
8145 		ret = 0;
8146 		break;
8147 #ifdef CONFIG_X86_64
8148 	case KVM_HC_CLOCK_PAIRING:
8149 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8150 		break;
8151 #endif
8152 	case KVM_HC_SEND_IPI:
8153 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8154 			break;
8155 
8156 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8157 		break;
8158 	case KVM_HC_SCHED_YIELD:
8159 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8160 			break;
8161 
8162 		kvm_sched_yield(vcpu->kvm, a0);
8163 		ret = 0;
8164 		break;
8165 	default:
8166 		ret = -KVM_ENOSYS;
8167 		break;
8168 	}
8169 out:
8170 	if (!op_64_bit)
8171 		ret = (u32)ret;
8172 	kvm_rax_write(vcpu, ret);
8173 
8174 	++vcpu->stat.hypercalls;
8175 	return kvm_skip_emulated_instruction(vcpu);
8176 }
8177 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8178 
8179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8180 {
8181 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8182 	char instruction[3];
8183 	unsigned long rip = kvm_rip_read(vcpu);
8184 
8185 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8186 
8187 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8188 		&ctxt->exception);
8189 }
8190 
8191 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8192 {
8193 	return vcpu->run->request_interrupt_window &&
8194 		likely(!pic_in_kernel(vcpu->kvm));
8195 }
8196 
8197 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8198 {
8199 	struct kvm_run *kvm_run = vcpu->run;
8200 
8201 	/*
8202 	 * if_flag is obsolete and useless, so do not bother
8203 	 * setting it for SEV-ES guests.  Userspace can just
8204 	 * use kvm_run->ready_for_interrupt_injection.
8205 	 */
8206 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8207 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8208 
8209 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8210 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8211 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8212 	kvm_run->ready_for_interrupt_injection =
8213 		pic_in_kernel(vcpu->kvm) ||
8214 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8215 }
8216 
8217 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8218 {
8219 	int max_irr, tpr;
8220 
8221 	if (!kvm_x86_ops.update_cr8_intercept)
8222 		return;
8223 
8224 	if (!lapic_in_kernel(vcpu))
8225 		return;
8226 
8227 	if (vcpu->arch.apicv_active)
8228 		return;
8229 
8230 	if (!vcpu->arch.apic->vapic_addr)
8231 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8232 	else
8233 		max_irr = -1;
8234 
8235 	if (max_irr != -1)
8236 		max_irr >>= 4;
8237 
8238 	tpr = kvm_lapic_get_cr8(vcpu);
8239 
8240 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8241 }
8242 
8243 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8244 {
8245 	int r;
8246 	bool can_inject = true;
8247 
8248 	/* try to reinject previous events if any */
8249 
8250 	if (vcpu->arch.exception.injected) {
8251 		kvm_x86_ops.queue_exception(vcpu);
8252 		can_inject = false;
8253 	}
8254 	/*
8255 	 * Do not inject an NMI or interrupt if there is a pending
8256 	 * exception.  Exceptions and interrupts are recognized at
8257 	 * instruction boundaries, i.e. the start of an instruction.
8258 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8259 	 * NMIs and interrupts, i.e. traps are recognized before an
8260 	 * NMI/interrupt that's pending on the same instruction.
8261 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8262 	 * priority, but are only generated (pended) during instruction
8263 	 * execution, i.e. a pending fault-like exception means the
8264 	 * fault occurred on the *previous* instruction and must be
8265 	 * serviced prior to recognizing any new events in order to
8266 	 * fully complete the previous instruction.
8267 	 */
8268 	else if (!vcpu->arch.exception.pending) {
8269 		if (vcpu->arch.nmi_injected) {
8270 			kvm_x86_ops.set_nmi(vcpu);
8271 			can_inject = false;
8272 		} else if (vcpu->arch.interrupt.injected) {
8273 			kvm_x86_ops.set_irq(vcpu);
8274 			can_inject = false;
8275 		}
8276 	}
8277 
8278 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8279 		     vcpu->arch.exception.pending);
8280 
8281 	/*
8282 	 * Call check_nested_events() even if we reinjected a previous event
8283 	 * in order for caller to determine if it should require immediate-exit
8284 	 * from L2 to L1 due to pending L1 events which require exit
8285 	 * from L2 to L1.
8286 	 */
8287 	if (is_guest_mode(vcpu)) {
8288 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8289 		if (r < 0)
8290 			goto busy;
8291 	}
8292 
8293 	/* try to inject new event if pending */
8294 	if (vcpu->arch.exception.pending) {
8295 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8296 					vcpu->arch.exception.has_error_code,
8297 					vcpu->arch.exception.error_code);
8298 
8299 		vcpu->arch.exception.pending = false;
8300 		vcpu->arch.exception.injected = true;
8301 
8302 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8303 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8304 					     X86_EFLAGS_RF);
8305 
8306 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8307 			kvm_deliver_exception_payload(vcpu);
8308 			if (vcpu->arch.dr7 & DR7_GD) {
8309 				vcpu->arch.dr7 &= ~DR7_GD;
8310 				kvm_update_dr7(vcpu);
8311 			}
8312 		}
8313 
8314 		kvm_x86_ops.queue_exception(vcpu);
8315 		can_inject = false;
8316 	}
8317 
8318 	/*
8319 	 * Finally, inject interrupt events.  If an event cannot be injected
8320 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8321 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8322 	 * and can architecturally be injected, but we cannot do it right now:
8323 	 * an interrupt could have arrived just now and we have to inject it
8324 	 * as a vmexit, or there could already an event in the queue, which is
8325 	 * indicated by can_inject.  In that case we request an immediate exit
8326 	 * in order to make progress and get back here for another iteration.
8327 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8328 	 */
8329 	if (vcpu->arch.smi_pending) {
8330 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8331 		if (r < 0)
8332 			goto busy;
8333 		if (r) {
8334 			vcpu->arch.smi_pending = false;
8335 			++vcpu->arch.smi_count;
8336 			enter_smm(vcpu);
8337 			can_inject = false;
8338 		} else
8339 			kvm_x86_ops.enable_smi_window(vcpu);
8340 	}
8341 
8342 	if (vcpu->arch.nmi_pending) {
8343 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8344 		if (r < 0)
8345 			goto busy;
8346 		if (r) {
8347 			--vcpu->arch.nmi_pending;
8348 			vcpu->arch.nmi_injected = true;
8349 			kvm_x86_ops.set_nmi(vcpu);
8350 			can_inject = false;
8351 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8352 		}
8353 		if (vcpu->arch.nmi_pending)
8354 			kvm_x86_ops.enable_nmi_window(vcpu);
8355 	}
8356 
8357 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8358 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8359 		if (r < 0)
8360 			goto busy;
8361 		if (r) {
8362 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8363 			kvm_x86_ops.set_irq(vcpu);
8364 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8365 		}
8366 		if (kvm_cpu_has_injectable_intr(vcpu))
8367 			kvm_x86_ops.enable_irq_window(vcpu);
8368 	}
8369 
8370 	if (is_guest_mode(vcpu) &&
8371 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8372 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8373 		*req_immediate_exit = true;
8374 
8375 	WARN_ON(vcpu->arch.exception.pending);
8376 	return;
8377 
8378 busy:
8379 	*req_immediate_exit = true;
8380 	return;
8381 }
8382 
8383 static void process_nmi(struct kvm_vcpu *vcpu)
8384 {
8385 	unsigned limit = 2;
8386 
8387 	/*
8388 	 * x86 is limited to one NMI running, and one NMI pending after it.
8389 	 * If an NMI is already in progress, limit further NMIs to just one.
8390 	 * Otherwise, allow two (and we'll inject the first one immediately).
8391 	 */
8392 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8393 		limit = 1;
8394 
8395 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8396 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8397 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8398 }
8399 
8400 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8401 {
8402 	u32 flags = 0;
8403 	flags |= seg->g       << 23;
8404 	flags |= seg->db      << 22;
8405 	flags |= seg->l       << 21;
8406 	flags |= seg->avl     << 20;
8407 	flags |= seg->present << 15;
8408 	flags |= seg->dpl     << 13;
8409 	flags |= seg->s       << 12;
8410 	flags |= seg->type    << 8;
8411 	return flags;
8412 }
8413 
8414 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8415 {
8416 	struct kvm_segment seg;
8417 	int offset;
8418 
8419 	kvm_get_segment(vcpu, &seg, n);
8420 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8421 
8422 	if (n < 3)
8423 		offset = 0x7f84 + n * 12;
8424 	else
8425 		offset = 0x7f2c + (n - 3) * 12;
8426 
8427 	put_smstate(u32, buf, offset + 8, seg.base);
8428 	put_smstate(u32, buf, offset + 4, seg.limit);
8429 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8430 }
8431 
8432 #ifdef CONFIG_X86_64
8433 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8434 {
8435 	struct kvm_segment seg;
8436 	int offset;
8437 	u16 flags;
8438 
8439 	kvm_get_segment(vcpu, &seg, n);
8440 	offset = 0x7e00 + n * 16;
8441 
8442 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8443 	put_smstate(u16, buf, offset, seg.selector);
8444 	put_smstate(u16, buf, offset + 2, flags);
8445 	put_smstate(u32, buf, offset + 4, seg.limit);
8446 	put_smstate(u64, buf, offset + 8, seg.base);
8447 }
8448 #endif
8449 
8450 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8451 {
8452 	struct desc_ptr dt;
8453 	struct kvm_segment seg;
8454 	unsigned long val;
8455 	int i;
8456 
8457 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8458 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8459 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8460 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8461 
8462 	for (i = 0; i < 8; i++)
8463 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8464 
8465 	kvm_get_dr(vcpu, 6, &val);
8466 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8467 	kvm_get_dr(vcpu, 7, &val);
8468 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8469 
8470 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8471 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8472 	put_smstate(u32, buf, 0x7f64, seg.base);
8473 	put_smstate(u32, buf, 0x7f60, seg.limit);
8474 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8475 
8476 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8477 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8478 	put_smstate(u32, buf, 0x7f80, seg.base);
8479 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8480 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8481 
8482 	kvm_x86_ops.get_gdt(vcpu, &dt);
8483 	put_smstate(u32, buf, 0x7f74, dt.address);
8484 	put_smstate(u32, buf, 0x7f70, dt.size);
8485 
8486 	kvm_x86_ops.get_idt(vcpu, &dt);
8487 	put_smstate(u32, buf, 0x7f58, dt.address);
8488 	put_smstate(u32, buf, 0x7f54, dt.size);
8489 
8490 	for (i = 0; i < 6; i++)
8491 		enter_smm_save_seg_32(vcpu, buf, i);
8492 
8493 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8494 
8495 	/* revision id */
8496 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8497 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8498 }
8499 
8500 #ifdef CONFIG_X86_64
8501 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8502 {
8503 	struct desc_ptr dt;
8504 	struct kvm_segment seg;
8505 	unsigned long val;
8506 	int i;
8507 
8508 	for (i = 0; i < 16; i++)
8509 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8510 
8511 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8512 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8513 
8514 	kvm_get_dr(vcpu, 6, &val);
8515 	put_smstate(u64, buf, 0x7f68, val);
8516 	kvm_get_dr(vcpu, 7, &val);
8517 	put_smstate(u64, buf, 0x7f60, val);
8518 
8519 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8520 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8521 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8522 
8523 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8524 
8525 	/* revision id */
8526 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8527 
8528 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8529 
8530 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8531 	put_smstate(u16, buf, 0x7e90, seg.selector);
8532 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8533 	put_smstate(u32, buf, 0x7e94, seg.limit);
8534 	put_smstate(u64, buf, 0x7e98, seg.base);
8535 
8536 	kvm_x86_ops.get_idt(vcpu, &dt);
8537 	put_smstate(u32, buf, 0x7e84, dt.size);
8538 	put_smstate(u64, buf, 0x7e88, dt.address);
8539 
8540 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8541 	put_smstate(u16, buf, 0x7e70, seg.selector);
8542 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8543 	put_smstate(u32, buf, 0x7e74, seg.limit);
8544 	put_smstate(u64, buf, 0x7e78, seg.base);
8545 
8546 	kvm_x86_ops.get_gdt(vcpu, &dt);
8547 	put_smstate(u32, buf, 0x7e64, dt.size);
8548 	put_smstate(u64, buf, 0x7e68, dt.address);
8549 
8550 	for (i = 0; i < 6; i++)
8551 		enter_smm_save_seg_64(vcpu, buf, i);
8552 }
8553 #endif
8554 
8555 static void enter_smm(struct kvm_vcpu *vcpu)
8556 {
8557 	struct kvm_segment cs, ds;
8558 	struct desc_ptr dt;
8559 	char buf[512];
8560 	u32 cr0;
8561 
8562 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8563 	memset(buf, 0, 512);
8564 #ifdef CONFIG_X86_64
8565 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8566 		enter_smm_save_state_64(vcpu, buf);
8567 	else
8568 #endif
8569 		enter_smm_save_state_32(vcpu, buf);
8570 
8571 	/*
8572 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8573 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8574 	 * the SMM state-save area.
8575 	 */
8576 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8577 
8578 	vcpu->arch.hflags |= HF_SMM_MASK;
8579 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8580 
8581 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8582 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8583 	else
8584 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8585 
8586 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8587 	kvm_rip_write(vcpu, 0x8000);
8588 
8589 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8590 	kvm_x86_ops.set_cr0(vcpu, cr0);
8591 	vcpu->arch.cr0 = cr0;
8592 
8593 	kvm_x86_ops.set_cr4(vcpu, 0);
8594 
8595 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8596 	dt.address = dt.size = 0;
8597 	kvm_x86_ops.set_idt(vcpu, &dt);
8598 
8599 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8600 
8601 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8602 	cs.base = vcpu->arch.smbase;
8603 
8604 	ds.selector = 0;
8605 	ds.base = 0;
8606 
8607 	cs.limit    = ds.limit = 0xffffffff;
8608 	cs.type     = ds.type = 0x3;
8609 	cs.dpl      = ds.dpl = 0;
8610 	cs.db       = ds.db = 0;
8611 	cs.s        = ds.s = 1;
8612 	cs.l        = ds.l = 0;
8613 	cs.g        = ds.g = 1;
8614 	cs.avl      = ds.avl = 0;
8615 	cs.present  = ds.present = 1;
8616 	cs.unusable = ds.unusable = 0;
8617 	cs.padding  = ds.padding = 0;
8618 
8619 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8620 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8621 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8622 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8623 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8624 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8625 
8626 #ifdef CONFIG_X86_64
8627 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8628 		kvm_x86_ops.set_efer(vcpu, 0);
8629 #endif
8630 
8631 	kvm_update_cpuid_runtime(vcpu);
8632 	kvm_mmu_reset_context(vcpu);
8633 }
8634 
8635 static void process_smi(struct kvm_vcpu *vcpu)
8636 {
8637 	vcpu->arch.smi_pending = true;
8638 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8639 }
8640 
8641 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8642 				       unsigned long *vcpu_bitmap)
8643 {
8644 	cpumask_var_t cpus;
8645 
8646 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8647 
8648 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8649 				    NULL, vcpu_bitmap, cpus);
8650 
8651 	free_cpumask_var(cpus);
8652 }
8653 
8654 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8655 {
8656 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8657 }
8658 
8659 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8660 {
8661 	if (!lapic_in_kernel(vcpu))
8662 		return;
8663 
8664 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8665 	kvm_apic_update_apicv(vcpu);
8666 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8667 }
8668 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8669 
8670 /*
8671  * NOTE: Do not hold any lock prior to calling this.
8672  *
8673  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8674  * locked, because it calls __x86_set_memory_region() which does
8675  * synchronize_srcu(&kvm->srcu).
8676  */
8677 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8678 {
8679 	struct kvm_vcpu *except;
8680 	unsigned long old, new, expected;
8681 
8682 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8683 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8684 		return;
8685 
8686 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8687 	do {
8688 		expected = new = old;
8689 		if (activate)
8690 			__clear_bit(bit, &new);
8691 		else
8692 			__set_bit(bit, &new);
8693 		if (new == old)
8694 			break;
8695 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8696 	} while (old != expected);
8697 
8698 	if (!!old == !!new)
8699 		return;
8700 
8701 	trace_kvm_apicv_update_request(activate, bit);
8702 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8703 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8704 
8705 	/*
8706 	 * Sending request to update APICV for all other vcpus,
8707 	 * while update the calling vcpu immediately instead of
8708 	 * waiting for another #VMEXIT to handle the request.
8709 	 */
8710 	except = kvm_get_running_vcpu();
8711 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8712 					 except);
8713 	if (except)
8714 		kvm_vcpu_update_apicv(except);
8715 }
8716 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8717 
8718 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8719 {
8720 	if (!kvm_apic_present(vcpu))
8721 		return;
8722 
8723 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8724 
8725 	if (irqchip_split(vcpu->kvm))
8726 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8727 	else {
8728 		if (vcpu->arch.apicv_active)
8729 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8730 		if (ioapic_in_kernel(vcpu->kvm))
8731 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8732 	}
8733 
8734 	if (is_guest_mode(vcpu))
8735 		vcpu->arch.load_eoi_exitmap_pending = true;
8736 	else
8737 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8738 }
8739 
8740 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8741 {
8742 	u64 eoi_exit_bitmap[4];
8743 
8744 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8745 		return;
8746 
8747 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8748 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8749 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8750 }
8751 
8752 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8753 					    unsigned long start, unsigned long end)
8754 {
8755 	unsigned long apic_address;
8756 
8757 	/*
8758 	 * The physical address of apic access page is stored in the VMCS.
8759 	 * Update it when it becomes invalid.
8760 	 */
8761 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8762 	if (start <= apic_address && apic_address < end)
8763 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8764 }
8765 
8766 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8767 {
8768 	if (!lapic_in_kernel(vcpu))
8769 		return;
8770 
8771 	if (!kvm_x86_ops.set_apic_access_page_addr)
8772 		return;
8773 
8774 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8775 }
8776 
8777 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8778 {
8779 	smp_send_reschedule(vcpu->cpu);
8780 }
8781 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8782 
8783 /*
8784  * Returns 1 to let vcpu_run() continue the guest execution loop without
8785  * exiting to the userspace.  Otherwise, the value will be returned to the
8786  * userspace.
8787  */
8788 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8789 {
8790 	int r;
8791 	bool req_int_win =
8792 		dm_request_for_irq_injection(vcpu) &&
8793 		kvm_cpu_accept_dm_intr(vcpu);
8794 	fastpath_t exit_fastpath;
8795 
8796 	bool req_immediate_exit = false;
8797 
8798 	/* Forbid vmenter if vcpu dirty ring is soft-full */
8799 	if (unlikely(vcpu->kvm->dirty_ring_size &&
8800 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8801 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8802 		trace_kvm_dirty_ring_exit(vcpu);
8803 		r = 0;
8804 		goto out;
8805 	}
8806 
8807 	if (kvm_request_pending(vcpu)) {
8808 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8809 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8810 				r = 0;
8811 				goto out;
8812 			}
8813 		}
8814 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8815 			kvm_mmu_unload(vcpu);
8816 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8817 			__kvm_migrate_timers(vcpu);
8818 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8819 			kvm_gen_update_masterclock(vcpu->kvm);
8820 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8821 			kvm_gen_kvmclock_update(vcpu);
8822 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8823 			r = kvm_guest_time_update(vcpu);
8824 			if (unlikely(r))
8825 				goto out;
8826 		}
8827 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8828 			kvm_mmu_sync_roots(vcpu);
8829 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8830 			kvm_mmu_load_pgd(vcpu);
8831 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8832 			kvm_vcpu_flush_tlb_all(vcpu);
8833 
8834 			/* Flushing all ASIDs flushes the current ASID... */
8835 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8836 		}
8837 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8838 			kvm_vcpu_flush_tlb_current(vcpu);
8839 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8840 			kvm_vcpu_flush_tlb_guest(vcpu);
8841 
8842 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8843 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8844 			r = 0;
8845 			goto out;
8846 		}
8847 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8848 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8849 			vcpu->mmio_needed = 0;
8850 			r = 0;
8851 			goto out;
8852 		}
8853 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8854 			/* Page is swapped out. Do synthetic halt */
8855 			vcpu->arch.apf.halted = true;
8856 			r = 1;
8857 			goto out;
8858 		}
8859 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8860 			record_steal_time(vcpu);
8861 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8862 			process_smi(vcpu);
8863 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8864 			process_nmi(vcpu);
8865 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8866 			kvm_pmu_handle_event(vcpu);
8867 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8868 			kvm_pmu_deliver_pmi(vcpu);
8869 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8870 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8871 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8872 				     vcpu->arch.ioapic_handled_vectors)) {
8873 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8874 				vcpu->run->eoi.vector =
8875 						vcpu->arch.pending_ioapic_eoi;
8876 				r = 0;
8877 				goto out;
8878 			}
8879 		}
8880 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8881 			vcpu_scan_ioapic(vcpu);
8882 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8883 			vcpu_load_eoi_exitmap(vcpu);
8884 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8885 			kvm_vcpu_reload_apic_access_page(vcpu);
8886 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8887 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8888 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8889 			r = 0;
8890 			goto out;
8891 		}
8892 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8893 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8894 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8895 			r = 0;
8896 			goto out;
8897 		}
8898 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8899 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8900 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8901 			r = 0;
8902 			goto out;
8903 		}
8904 
8905 		/*
8906 		 * KVM_REQ_HV_STIMER has to be processed after
8907 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8908 		 * depend on the guest clock being up-to-date
8909 		 */
8910 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8911 			kvm_hv_process_stimers(vcpu);
8912 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8913 			kvm_vcpu_update_apicv(vcpu);
8914 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8915 			kvm_check_async_pf_completion(vcpu);
8916 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8917 			kvm_x86_ops.msr_filter_changed(vcpu);
8918 	}
8919 
8920 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8921 		++vcpu->stat.req_event;
8922 		kvm_apic_accept_events(vcpu);
8923 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8924 			r = 1;
8925 			goto out;
8926 		}
8927 
8928 		inject_pending_event(vcpu, &req_immediate_exit);
8929 		if (req_int_win)
8930 			kvm_x86_ops.enable_irq_window(vcpu);
8931 
8932 		if (kvm_lapic_enabled(vcpu)) {
8933 			update_cr8_intercept(vcpu);
8934 			kvm_lapic_sync_to_vapic(vcpu);
8935 		}
8936 	}
8937 
8938 	r = kvm_mmu_reload(vcpu);
8939 	if (unlikely(r)) {
8940 		goto cancel_injection;
8941 	}
8942 
8943 	preempt_disable();
8944 
8945 	kvm_x86_ops.prepare_guest_switch(vcpu);
8946 
8947 	/*
8948 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8949 	 * IPI are then delayed after guest entry, which ensures that they
8950 	 * result in virtual interrupt delivery.
8951 	 */
8952 	local_irq_disable();
8953 	vcpu->mode = IN_GUEST_MODE;
8954 
8955 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8956 
8957 	/*
8958 	 * 1) We should set ->mode before checking ->requests.  Please see
8959 	 * the comment in kvm_vcpu_exiting_guest_mode().
8960 	 *
8961 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8962 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8963 	 * (see vmx_deliver_posted_interrupt).
8964 	 *
8965 	 * 3) This also orders the write to mode from any reads to the page
8966 	 * tables done while the VCPU is running.  Please see the comment
8967 	 * in kvm_flush_remote_tlbs.
8968 	 */
8969 	smp_mb__after_srcu_read_unlock();
8970 
8971 	/*
8972 	 * This handles the case where a posted interrupt was
8973 	 * notified with kvm_vcpu_kick.
8974 	 */
8975 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8976 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8977 
8978 	if (kvm_vcpu_exit_request(vcpu)) {
8979 		vcpu->mode = OUTSIDE_GUEST_MODE;
8980 		smp_wmb();
8981 		local_irq_enable();
8982 		preempt_enable();
8983 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8984 		r = 1;
8985 		goto cancel_injection;
8986 	}
8987 
8988 	if (req_immediate_exit) {
8989 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8990 		kvm_x86_ops.request_immediate_exit(vcpu);
8991 	}
8992 
8993 	fpregs_assert_state_consistent();
8994 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8995 		switch_fpu_return();
8996 
8997 	if (unlikely(vcpu->arch.switch_db_regs)) {
8998 		set_debugreg(0, 7);
8999 		set_debugreg(vcpu->arch.eff_db[0], 0);
9000 		set_debugreg(vcpu->arch.eff_db[1], 1);
9001 		set_debugreg(vcpu->arch.eff_db[2], 2);
9002 		set_debugreg(vcpu->arch.eff_db[3], 3);
9003 		set_debugreg(vcpu->arch.dr6, 6);
9004 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9005 	}
9006 
9007 	exit_fastpath = kvm_x86_ops.run(vcpu);
9008 
9009 	/*
9010 	 * Do this here before restoring debug registers on the host.  And
9011 	 * since we do this before handling the vmexit, a DR access vmexit
9012 	 * can (a) read the correct value of the debug registers, (b) set
9013 	 * KVM_DEBUGREG_WONT_EXIT again.
9014 	 */
9015 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9016 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9017 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9018 		kvm_update_dr0123(vcpu);
9019 		kvm_update_dr7(vcpu);
9020 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9021 	}
9022 
9023 	/*
9024 	 * If the guest has used debug registers, at least dr7
9025 	 * will be disabled while returning to the host.
9026 	 * If we don't have active breakpoints in the host, we don't
9027 	 * care about the messed up debug address registers. But if
9028 	 * we have some of them active, restore the old state.
9029 	 */
9030 	if (hw_breakpoint_active())
9031 		hw_breakpoint_restore();
9032 
9033 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9034 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9035 
9036 	vcpu->mode = OUTSIDE_GUEST_MODE;
9037 	smp_wmb();
9038 
9039 	kvm_x86_ops.handle_exit_irqoff(vcpu);
9040 
9041 	/*
9042 	 * Consume any pending interrupts, including the possible source of
9043 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9044 	 * An instruction is required after local_irq_enable() to fully unblock
9045 	 * interrupts on processors that implement an interrupt shadow, the
9046 	 * stat.exits increment will do nicely.
9047 	 */
9048 	kvm_before_interrupt(vcpu);
9049 	local_irq_enable();
9050 	++vcpu->stat.exits;
9051 	local_irq_disable();
9052 	kvm_after_interrupt(vcpu);
9053 
9054 	if (lapic_in_kernel(vcpu)) {
9055 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9056 		if (delta != S64_MIN) {
9057 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9058 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9059 		}
9060 	}
9061 
9062 	local_irq_enable();
9063 	preempt_enable();
9064 
9065 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9066 
9067 	/*
9068 	 * Profile KVM exit RIPs:
9069 	 */
9070 	if (unlikely(prof_on == KVM_PROFILING)) {
9071 		unsigned long rip = kvm_rip_read(vcpu);
9072 		profile_hit(KVM_PROFILING, (void *)rip);
9073 	}
9074 
9075 	if (unlikely(vcpu->arch.tsc_always_catchup))
9076 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9077 
9078 	if (vcpu->arch.apic_attention)
9079 		kvm_lapic_sync_from_vapic(vcpu);
9080 
9081 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9082 	return r;
9083 
9084 cancel_injection:
9085 	if (req_immediate_exit)
9086 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9087 	kvm_x86_ops.cancel_injection(vcpu);
9088 	if (unlikely(vcpu->arch.apic_attention))
9089 		kvm_lapic_sync_from_vapic(vcpu);
9090 out:
9091 	return r;
9092 }
9093 
9094 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9095 {
9096 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9097 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9098 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9099 		kvm_vcpu_block(vcpu);
9100 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9101 
9102 		if (kvm_x86_ops.post_block)
9103 			kvm_x86_ops.post_block(vcpu);
9104 
9105 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9106 			return 1;
9107 	}
9108 
9109 	kvm_apic_accept_events(vcpu);
9110 	switch(vcpu->arch.mp_state) {
9111 	case KVM_MP_STATE_HALTED:
9112 	case KVM_MP_STATE_AP_RESET_HOLD:
9113 		vcpu->arch.pv.pv_unhalted = false;
9114 		vcpu->arch.mp_state =
9115 			KVM_MP_STATE_RUNNABLE;
9116 		fallthrough;
9117 	case KVM_MP_STATE_RUNNABLE:
9118 		vcpu->arch.apf.halted = false;
9119 		break;
9120 	case KVM_MP_STATE_INIT_RECEIVED:
9121 		break;
9122 	default:
9123 		return -EINTR;
9124 	}
9125 	return 1;
9126 }
9127 
9128 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9129 {
9130 	if (is_guest_mode(vcpu))
9131 		kvm_x86_ops.nested_ops->check_events(vcpu);
9132 
9133 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9134 		!vcpu->arch.apf.halted);
9135 }
9136 
9137 static int vcpu_run(struct kvm_vcpu *vcpu)
9138 {
9139 	int r;
9140 	struct kvm *kvm = vcpu->kvm;
9141 
9142 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9143 	vcpu->arch.l1tf_flush_l1d = true;
9144 
9145 	for (;;) {
9146 		if (kvm_vcpu_running(vcpu)) {
9147 			r = vcpu_enter_guest(vcpu);
9148 		} else {
9149 			r = vcpu_block(kvm, vcpu);
9150 		}
9151 
9152 		if (r <= 0)
9153 			break;
9154 
9155 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9156 		if (kvm_cpu_has_pending_timer(vcpu))
9157 			kvm_inject_pending_timer_irqs(vcpu);
9158 
9159 		if (dm_request_for_irq_injection(vcpu) &&
9160 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9161 			r = 0;
9162 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9163 			++vcpu->stat.request_irq_exits;
9164 			break;
9165 		}
9166 
9167 		if (__xfer_to_guest_mode_work_pending()) {
9168 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9169 			r = xfer_to_guest_mode_handle_work(vcpu);
9170 			if (r)
9171 				return r;
9172 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9173 		}
9174 	}
9175 
9176 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9177 
9178 	return r;
9179 }
9180 
9181 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9182 {
9183 	int r;
9184 
9185 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9186 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9187 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9188 	return r;
9189 }
9190 
9191 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9192 {
9193 	BUG_ON(!vcpu->arch.pio.count);
9194 
9195 	return complete_emulated_io(vcpu);
9196 }
9197 
9198 /*
9199  * Implements the following, as a state machine:
9200  *
9201  * read:
9202  *   for each fragment
9203  *     for each mmio piece in the fragment
9204  *       write gpa, len
9205  *       exit
9206  *       copy data
9207  *   execute insn
9208  *
9209  * write:
9210  *   for each fragment
9211  *     for each mmio piece in the fragment
9212  *       write gpa, len
9213  *       copy data
9214  *       exit
9215  */
9216 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9217 {
9218 	struct kvm_run *run = vcpu->run;
9219 	struct kvm_mmio_fragment *frag;
9220 	unsigned len;
9221 
9222 	BUG_ON(!vcpu->mmio_needed);
9223 
9224 	/* Complete previous fragment */
9225 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9226 	len = min(8u, frag->len);
9227 	if (!vcpu->mmio_is_write)
9228 		memcpy(frag->data, run->mmio.data, len);
9229 
9230 	if (frag->len <= 8) {
9231 		/* Switch to the next fragment. */
9232 		frag++;
9233 		vcpu->mmio_cur_fragment++;
9234 	} else {
9235 		/* Go forward to the next mmio piece. */
9236 		frag->data += len;
9237 		frag->gpa += len;
9238 		frag->len -= len;
9239 	}
9240 
9241 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9242 		vcpu->mmio_needed = 0;
9243 
9244 		/* FIXME: return into emulator if single-stepping.  */
9245 		if (vcpu->mmio_is_write)
9246 			return 1;
9247 		vcpu->mmio_read_completed = 1;
9248 		return complete_emulated_io(vcpu);
9249 	}
9250 
9251 	run->exit_reason = KVM_EXIT_MMIO;
9252 	run->mmio.phys_addr = frag->gpa;
9253 	if (vcpu->mmio_is_write)
9254 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9255 	run->mmio.len = min(8u, frag->len);
9256 	run->mmio.is_write = vcpu->mmio_is_write;
9257 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9258 	return 0;
9259 }
9260 
9261 static void kvm_save_current_fpu(struct fpu *fpu)
9262 {
9263 	/*
9264 	 * If the target FPU state is not resident in the CPU registers, just
9265 	 * memcpy() from current, else save CPU state directly to the target.
9266 	 */
9267 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9268 		memcpy(&fpu->state, &current->thread.fpu.state,
9269 		       fpu_kernel_xstate_size);
9270 	else
9271 		copy_fpregs_to_fpstate(fpu);
9272 }
9273 
9274 /* Swap (qemu) user FPU context for the guest FPU context. */
9275 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9276 {
9277 	fpregs_lock();
9278 
9279 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9280 
9281 	/*
9282 	 * Guests with protected state can't have it set by the hypervisor,
9283 	 * so skip trying to set it.
9284 	 */
9285 	if (vcpu->arch.guest_fpu)
9286 		/* PKRU is separately restored in kvm_x86_ops.run. */
9287 		__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9288 					~XFEATURE_MASK_PKRU);
9289 
9290 	fpregs_mark_activate();
9291 	fpregs_unlock();
9292 
9293 	trace_kvm_fpu(1);
9294 }
9295 
9296 /* When vcpu_run ends, restore user space FPU context. */
9297 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9298 {
9299 	fpregs_lock();
9300 
9301 	/*
9302 	 * Guests with protected state can't have it read by the hypervisor,
9303 	 * so skip trying to save it.
9304 	 */
9305 	if (vcpu->arch.guest_fpu)
9306 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9307 
9308 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9309 
9310 	fpregs_mark_activate();
9311 	fpregs_unlock();
9312 
9313 	++vcpu->stat.fpu_reload;
9314 	trace_kvm_fpu(0);
9315 }
9316 
9317 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9318 {
9319 	struct kvm_run *kvm_run = vcpu->run;
9320 	int r;
9321 
9322 	vcpu_load(vcpu);
9323 	kvm_sigset_activate(vcpu);
9324 	kvm_load_guest_fpu(vcpu);
9325 
9326 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9327 		if (kvm_run->immediate_exit) {
9328 			r = -EINTR;
9329 			goto out;
9330 		}
9331 		kvm_vcpu_block(vcpu);
9332 		kvm_apic_accept_events(vcpu);
9333 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9334 		r = -EAGAIN;
9335 		if (signal_pending(current)) {
9336 			r = -EINTR;
9337 			kvm_run->exit_reason = KVM_EXIT_INTR;
9338 			++vcpu->stat.signal_exits;
9339 		}
9340 		goto out;
9341 	}
9342 
9343 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9344 		r = -EINVAL;
9345 		goto out;
9346 	}
9347 
9348 	if (kvm_run->kvm_dirty_regs) {
9349 		r = sync_regs(vcpu);
9350 		if (r != 0)
9351 			goto out;
9352 	}
9353 
9354 	/* re-sync apic's tpr */
9355 	if (!lapic_in_kernel(vcpu)) {
9356 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9357 			r = -EINVAL;
9358 			goto out;
9359 		}
9360 	}
9361 
9362 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9363 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9364 		vcpu->arch.complete_userspace_io = NULL;
9365 		r = cui(vcpu);
9366 		if (r <= 0)
9367 			goto out;
9368 	} else
9369 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9370 
9371 	if (kvm_run->immediate_exit)
9372 		r = -EINTR;
9373 	else
9374 		r = vcpu_run(vcpu);
9375 
9376 out:
9377 	kvm_put_guest_fpu(vcpu);
9378 	if (kvm_run->kvm_valid_regs)
9379 		store_regs(vcpu);
9380 	post_kvm_run_save(vcpu);
9381 	kvm_sigset_deactivate(vcpu);
9382 
9383 	vcpu_put(vcpu);
9384 	return r;
9385 }
9386 
9387 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9388 {
9389 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9390 		/*
9391 		 * We are here if userspace calls get_regs() in the middle of
9392 		 * instruction emulation. Registers state needs to be copied
9393 		 * back from emulation context to vcpu. Userspace shouldn't do
9394 		 * that usually, but some bad designed PV devices (vmware
9395 		 * backdoor interface) need this to work
9396 		 */
9397 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9398 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9399 	}
9400 	regs->rax = kvm_rax_read(vcpu);
9401 	regs->rbx = kvm_rbx_read(vcpu);
9402 	regs->rcx = kvm_rcx_read(vcpu);
9403 	regs->rdx = kvm_rdx_read(vcpu);
9404 	regs->rsi = kvm_rsi_read(vcpu);
9405 	regs->rdi = kvm_rdi_read(vcpu);
9406 	regs->rsp = kvm_rsp_read(vcpu);
9407 	regs->rbp = kvm_rbp_read(vcpu);
9408 #ifdef CONFIG_X86_64
9409 	regs->r8 = kvm_r8_read(vcpu);
9410 	regs->r9 = kvm_r9_read(vcpu);
9411 	regs->r10 = kvm_r10_read(vcpu);
9412 	regs->r11 = kvm_r11_read(vcpu);
9413 	regs->r12 = kvm_r12_read(vcpu);
9414 	regs->r13 = kvm_r13_read(vcpu);
9415 	regs->r14 = kvm_r14_read(vcpu);
9416 	regs->r15 = kvm_r15_read(vcpu);
9417 #endif
9418 
9419 	regs->rip = kvm_rip_read(vcpu);
9420 	regs->rflags = kvm_get_rflags(vcpu);
9421 }
9422 
9423 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9424 {
9425 	vcpu_load(vcpu);
9426 	__get_regs(vcpu, regs);
9427 	vcpu_put(vcpu);
9428 	return 0;
9429 }
9430 
9431 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9432 {
9433 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9434 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9435 
9436 	kvm_rax_write(vcpu, regs->rax);
9437 	kvm_rbx_write(vcpu, regs->rbx);
9438 	kvm_rcx_write(vcpu, regs->rcx);
9439 	kvm_rdx_write(vcpu, regs->rdx);
9440 	kvm_rsi_write(vcpu, regs->rsi);
9441 	kvm_rdi_write(vcpu, regs->rdi);
9442 	kvm_rsp_write(vcpu, regs->rsp);
9443 	kvm_rbp_write(vcpu, regs->rbp);
9444 #ifdef CONFIG_X86_64
9445 	kvm_r8_write(vcpu, regs->r8);
9446 	kvm_r9_write(vcpu, regs->r9);
9447 	kvm_r10_write(vcpu, regs->r10);
9448 	kvm_r11_write(vcpu, regs->r11);
9449 	kvm_r12_write(vcpu, regs->r12);
9450 	kvm_r13_write(vcpu, regs->r13);
9451 	kvm_r14_write(vcpu, regs->r14);
9452 	kvm_r15_write(vcpu, regs->r15);
9453 #endif
9454 
9455 	kvm_rip_write(vcpu, regs->rip);
9456 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9457 
9458 	vcpu->arch.exception.pending = false;
9459 
9460 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9461 }
9462 
9463 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9464 {
9465 	vcpu_load(vcpu);
9466 	__set_regs(vcpu, regs);
9467 	vcpu_put(vcpu);
9468 	return 0;
9469 }
9470 
9471 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9472 {
9473 	struct kvm_segment cs;
9474 
9475 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9476 	*db = cs.db;
9477 	*l = cs.l;
9478 }
9479 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9480 
9481 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9482 {
9483 	struct desc_ptr dt;
9484 
9485 	if (vcpu->arch.guest_state_protected)
9486 		goto skip_protected_regs;
9487 
9488 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9489 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9490 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9491 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9492 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9493 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9494 
9495 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9496 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9497 
9498 	kvm_x86_ops.get_idt(vcpu, &dt);
9499 	sregs->idt.limit = dt.size;
9500 	sregs->idt.base = dt.address;
9501 	kvm_x86_ops.get_gdt(vcpu, &dt);
9502 	sregs->gdt.limit = dt.size;
9503 	sregs->gdt.base = dt.address;
9504 
9505 	sregs->cr2 = vcpu->arch.cr2;
9506 	sregs->cr3 = kvm_read_cr3(vcpu);
9507 
9508 skip_protected_regs:
9509 	sregs->cr0 = kvm_read_cr0(vcpu);
9510 	sregs->cr4 = kvm_read_cr4(vcpu);
9511 	sregs->cr8 = kvm_get_cr8(vcpu);
9512 	sregs->efer = vcpu->arch.efer;
9513 	sregs->apic_base = kvm_get_apic_base(vcpu);
9514 
9515 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9516 
9517 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9518 		set_bit(vcpu->arch.interrupt.nr,
9519 			(unsigned long *)sregs->interrupt_bitmap);
9520 }
9521 
9522 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9523 				  struct kvm_sregs *sregs)
9524 {
9525 	vcpu_load(vcpu);
9526 	__get_sregs(vcpu, sregs);
9527 	vcpu_put(vcpu);
9528 	return 0;
9529 }
9530 
9531 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9532 				    struct kvm_mp_state *mp_state)
9533 {
9534 	vcpu_load(vcpu);
9535 	if (kvm_mpx_supported())
9536 		kvm_load_guest_fpu(vcpu);
9537 
9538 	kvm_apic_accept_events(vcpu);
9539 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9540 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9541 	    vcpu->arch.pv.pv_unhalted)
9542 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9543 	else
9544 		mp_state->mp_state = vcpu->arch.mp_state;
9545 
9546 	if (kvm_mpx_supported())
9547 		kvm_put_guest_fpu(vcpu);
9548 	vcpu_put(vcpu);
9549 	return 0;
9550 }
9551 
9552 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9553 				    struct kvm_mp_state *mp_state)
9554 {
9555 	int ret = -EINVAL;
9556 
9557 	vcpu_load(vcpu);
9558 
9559 	if (!lapic_in_kernel(vcpu) &&
9560 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9561 		goto out;
9562 
9563 	/*
9564 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9565 	 * INIT state; latched init should be reported using
9566 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9567 	 */
9568 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9569 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9570 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9571 		goto out;
9572 
9573 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9574 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9575 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9576 	} else
9577 		vcpu->arch.mp_state = mp_state->mp_state;
9578 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9579 
9580 	ret = 0;
9581 out:
9582 	vcpu_put(vcpu);
9583 	return ret;
9584 }
9585 
9586 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9587 		    int reason, bool has_error_code, u32 error_code)
9588 {
9589 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9590 	int ret;
9591 
9592 	init_emulate_ctxt(vcpu);
9593 
9594 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9595 				   has_error_code, error_code);
9596 	if (ret) {
9597 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9598 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9599 		vcpu->run->internal.ndata = 0;
9600 		return 0;
9601 	}
9602 
9603 	kvm_rip_write(vcpu, ctxt->eip);
9604 	kvm_set_rflags(vcpu, ctxt->eflags);
9605 	return 1;
9606 }
9607 EXPORT_SYMBOL_GPL(kvm_task_switch);
9608 
9609 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9610 {
9611 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9612 		/*
9613 		 * When EFER.LME and CR0.PG are set, the processor is in
9614 		 * 64-bit mode (though maybe in a 32-bit code segment).
9615 		 * CR4.PAE and EFER.LMA must be set.
9616 		 */
9617 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9618 			return false;
9619 	} else {
9620 		/*
9621 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9622 		 * segment cannot be 64-bit.
9623 		 */
9624 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9625 			return false;
9626 	}
9627 
9628 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
9629 }
9630 
9631 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9632 {
9633 	struct msr_data apic_base_msr;
9634 	int mmu_reset_needed = 0;
9635 	int pending_vec, max_bits, idx;
9636 	struct desc_ptr dt;
9637 	int ret = -EINVAL;
9638 
9639 	if (!kvm_is_valid_sregs(vcpu, sregs))
9640 		goto out;
9641 
9642 	apic_base_msr.data = sregs->apic_base;
9643 	apic_base_msr.host_initiated = true;
9644 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9645 		goto out;
9646 
9647 	if (vcpu->arch.guest_state_protected)
9648 		goto skip_protected_regs;
9649 
9650 	dt.size = sregs->idt.limit;
9651 	dt.address = sregs->idt.base;
9652 	kvm_x86_ops.set_idt(vcpu, &dt);
9653 	dt.size = sregs->gdt.limit;
9654 	dt.address = sregs->gdt.base;
9655 	kvm_x86_ops.set_gdt(vcpu, &dt);
9656 
9657 	vcpu->arch.cr2 = sregs->cr2;
9658 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9659 	vcpu->arch.cr3 = sregs->cr3;
9660 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9661 
9662 	kvm_set_cr8(vcpu, sregs->cr8);
9663 
9664 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9665 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9666 
9667 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9668 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9669 	vcpu->arch.cr0 = sregs->cr0;
9670 
9671 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9672 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9673 
9674 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9675 	if (is_pae_paging(vcpu)) {
9676 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9677 		mmu_reset_needed = 1;
9678 	}
9679 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9680 
9681 	if (mmu_reset_needed)
9682 		kvm_mmu_reset_context(vcpu);
9683 
9684 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9685 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9686 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9687 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9688 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9689 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9690 
9691 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9692 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9693 
9694 	update_cr8_intercept(vcpu);
9695 
9696 	/* Older userspace won't unhalt the vcpu on reset. */
9697 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9698 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9699 	    !is_protmode(vcpu))
9700 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9701 
9702 skip_protected_regs:
9703 	max_bits = KVM_NR_INTERRUPTS;
9704 	pending_vec = find_first_bit(
9705 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9706 	if (pending_vec < max_bits) {
9707 		kvm_queue_interrupt(vcpu, pending_vec, false);
9708 		pr_debug("Set back pending irq %d\n", pending_vec);
9709 	}
9710 
9711 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9712 
9713 	ret = 0;
9714 out:
9715 	return ret;
9716 }
9717 
9718 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9719 				  struct kvm_sregs *sregs)
9720 {
9721 	int ret;
9722 
9723 	vcpu_load(vcpu);
9724 	ret = __set_sregs(vcpu, sregs);
9725 	vcpu_put(vcpu);
9726 	return ret;
9727 }
9728 
9729 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9730 					struct kvm_guest_debug *dbg)
9731 {
9732 	unsigned long rflags;
9733 	int i, r;
9734 
9735 	if (vcpu->arch.guest_state_protected)
9736 		return -EINVAL;
9737 
9738 	vcpu_load(vcpu);
9739 
9740 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9741 		r = -EBUSY;
9742 		if (vcpu->arch.exception.pending)
9743 			goto out;
9744 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9745 			kvm_queue_exception(vcpu, DB_VECTOR);
9746 		else
9747 			kvm_queue_exception(vcpu, BP_VECTOR);
9748 	}
9749 
9750 	/*
9751 	 * Read rflags as long as potentially injected trace flags are still
9752 	 * filtered out.
9753 	 */
9754 	rflags = kvm_get_rflags(vcpu);
9755 
9756 	vcpu->guest_debug = dbg->control;
9757 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9758 		vcpu->guest_debug = 0;
9759 
9760 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9761 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9762 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9763 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9764 	} else {
9765 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9766 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9767 	}
9768 	kvm_update_dr7(vcpu);
9769 
9770 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9771 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9772 			get_segment_base(vcpu, VCPU_SREG_CS);
9773 
9774 	/*
9775 	 * Trigger an rflags update that will inject or remove the trace
9776 	 * flags.
9777 	 */
9778 	kvm_set_rflags(vcpu, rflags);
9779 
9780 	kvm_x86_ops.update_exception_bitmap(vcpu);
9781 
9782 	r = 0;
9783 
9784 out:
9785 	vcpu_put(vcpu);
9786 	return r;
9787 }
9788 
9789 /*
9790  * Translate a guest virtual address to a guest physical address.
9791  */
9792 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9793 				    struct kvm_translation *tr)
9794 {
9795 	unsigned long vaddr = tr->linear_address;
9796 	gpa_t gpa;
9797 	int idx;
9798 
9799 	vcpu_load(vcpu);
9800 
9801 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9802 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9803 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9804 	tr->physical_address = gpa;
9805 	tr->valid = gpa != UNMAPPED_GVA;
9806 	tr->writeable = 1;
9807 	tr->usermode = 0;
9808 
9809 	vcpu_put(vcpu);
9810 	return 0;
9811 }
9812 
9813 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9814 {
9815 	struct fxregs_state *fxsave;
9816 
9817 	if (!vcpu->arch.guest_fpu)
9818 		return 0;
9819 
9820 	vcpu_load(vcpu);
9821 
9822 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9823 	memcpy(fpu->fpr, fxsave->st_space, 128);
9824 	fpu->fcw = fxsave->cwd;
9825 	fpu->fsw = fxsave->swd;
9826 	fpu->ftwx = fxsave->twd;
9827 	fpu->last_opcode = fxsave->fop;
9828 	fpu->last_ip = fxsave->rip;
9829 	fpu->last_dp = fxsave->rdp;
9830 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9831 
9832 	vcpu_put(vcpu);
9833 	return 0;
9834 }
9835 
9836 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9837 {
9838 	struct fxregs_state *fxsave;
9839 
9840 	if (!vcpu->arch.guest_fpu)
9841 		return 0;
9842 
9843 	vcpu_load(vcpu);
9844 
9845 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9846 
9847 	memcpy(fxsave->st_space, fpu->fpr, 128);
9848 	fxsave->cwd = fpu->fcw;
9849 	fxsave->swd = fpu->fsw;
9850 	fxsave->twd = fpu->ftwx;
9851 	fxsave->fop = fpu->last_opcode;
9852 	fxsave->rip = fpu->last_ip;
9853 	fxsave->rdp = fpu->last_dp;
9854 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9855 
9856 	vcpu_put(vcpu);
9857 	return 0;
9858 }
9859 
9860 static void store_regs(struct kvm_vcpu *vcpu)
9861 {
9862 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9863 
9864 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9865 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9866 
9867 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9868 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9869 
9870 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9871 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9872 				vcpu, &vcpu->run->s.regs.events);
9873 }
9874 
9875 static int sync_regs(struct kvm_vcpu *vcpu)
9876 {
9877 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9878 		return -EINVAL;
9879 
9880 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9881 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9882 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9883 	}
9884 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9885 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9886 			return -EINVAL;
9887 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9888 	}
9889 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9890 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9891 				vcpu, &vcpu->run->s.regs.events))
9892 			return -EINVAL;
9893 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9894 	}
9895 
9896 	return 0;
9897 }
9898 
9899 static void fx_init(struct kvm_vcpu *vcpu)
9900 {
9901 	if (!vcpu->arch.guest_fpu)
9902 		return;
9903 
9904 	fpstate_init(&vcpu->arch.guest_fpu->state);
9905 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9906 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9907 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9908 
9909 	/*
9910 	 * Ensure guest xcr0 is valid for loading
9911 	 */
9912 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9913 
9914 	vcpu->arch.cr0 |= X86_CR0_ET;
9915 }
9916 
9917 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9918 {
9919 	if (vcpu->arch.guest_fpu) {
9920 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9921 		vcpu->arch.guest_fpu = NULL;
9922 	}
9923 }
9924 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
9925 
9926 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9927 {
9928 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9929 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9930 			     "guest TSC will not be reliable\n");
9931 
9932 	return 0;
9933 }
9934 
9935 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9936 {
9937 	struct page *page;
9938 	int r;
9939 
9940 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9941 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9942 	else
9943 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9944 
9945 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9946 
9947 	r = kvm_mmu_create(vcpu);
9948 	if (r < 0)
9949 		return r;
9950 
9951 	if (irqchip_in_kernel(vcpu->kvm)) {
9952 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9953 		if (r < 0)
9954 			goto fail_mmu_destroy;
9955 		if (kvm_apicv_activated(vcpu->kvm))
9956 			vcpu->arch.apicv_active = true;
9957 	} else
9958 		static_key_slow_inc(&kvm_no_apic_vcpu);
9959 
9960 	r = -ENOMEM;
9961 
9962 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
9963 	if (!page)
9964 		goto fail_free_lapic;
9965 	vcpu->arch.pio_data = page_address(page);
9966 
9967 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9968 				       GFP_KERNEL_ACCOUNT);
9969 	if (!vcpu->arch.mce_banks)
9970 		goto fail_free_pio_data;
9971 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9972 
9973 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9974 				GFP_KERNEL_ACCOUNT))
9975 		goto fail_free_mce_banks;
9976 
9977 	if (!alloc_emulate_ctxt(vcpu))
9978 		goto free_wbinvd_dirty_mask;
9979 
9980 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9981 						GFP_KERNEL_ACCOUNT);
9982 	if (!vcpu->arch.user_fpu) {
9983 		pr_err("kvm: failed to allocate userspace's fpu\n");
9984 		goto free_emulate_ctxt;
9985 	}
9986 
9987 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9988 						 GFP_KERNEL_ACCOUNT);
9989 	if (!vcpu->arch.guest_fpu) {
9990 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9991 		goto free_user_fpu;
9992 	}
9993 	fx_init(vcpu);
9994 
9995 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9996 
9997 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9998 
9999 	kvm_async_pf_hash_reset(vcpu);
10000 	kvm_pmu_init(vcpu);
10001 
10002 	vcpu->arch.pending_external_vector = -1;
10003 	vcpu->arch.preempted_in_kernel = false;
10004 
10005 	kvm_hv_vcpu_init(vcpu);
10006 
10007 	r = kvm_x86_ops.vcpu_create(vcpu);
10008 	if (r)
10009 		goto free_guest_fpu;
10010 
10011 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10012 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10013 	kvm_vcpu_mtrr_init(vcpu);
10014 	vcpu_load(vcpu);
10015 	kvm_vcpu_reset(vcpu, false);
10016 	kvm_init_mmu(vcpu, false);
10017 	vcpu_put(vcpu);
10018 	return 0;
10019 
10020 free_guest_fpu:
10021 	kvm_free_guest_fpu(vcpu);
10022 free_user_fpu:
10023 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10024 free_emulate_ctxt:
10025 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10026 free_wbinvd_dirty_mask:
10027 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10028 fail_free_mce_banks:
10029 	kfree(vcpu->arch.mce_banks);
10030 fail_free_pio_data:
10031 	free_page((unsigned long)vcpu->arch.pio_data);
10032 fail_free_lapic:
10033 	kvm_free_lapic(vcpu);
10034 fail_mmu_destroy:
10035 	kvm_mmu_destroy(vcpu);
10036 	return r;
10037 }
10038 
10039 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10040 {
10041 	struct kvm *kvm = vcpu->kvm;
10042 
10043 	kvm_hv_vcpu_postcreate(vcpu);
10044 
10045 	if (mutex_lock_killable(&vcpu->mutex))
10046 		return;
10047 	vcpu_load(vcpu);
10048 	kvm_synchronize_tsc(vcpu, 0);
10049 	vcpu_put(vcpu);
10050 
10051 	/* poll control enabled by default */
10052 	vcpu->arch.msr_kvm_poll_control = 1;
10053 
10054 	mutex_unlock(&vcpu->mutex);
10055 
10056 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10057 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10058 						KVMCLOCK_SYNC_PERIOD);
10059 }
10060 
10061 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10062 {
10063 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10064 	int idx;
10065 
10066 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10067 
10068 	kvmclock_reset(vcpu);
10069 
10070 	kvm_x86_ops.vcpu_free(vcpu);
10071 
10072 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10073 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10074 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10075 	kvm_free_guest_fpu(vcpu);
10076 
10077 	kvm_hv_vcpu_uninit(vcpu);
10078 	kvm_pmu_destroy(vcpu);
10079 	kfree(vcpu->arch.mce_banks);
10080 	kvm_free_lapic(vcpu);
10081 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10082 	kvm_mmu_destroy(vcpu);
10083 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10084 	free_page((unsigned long)vcpu->arch.pio_data);
10085 	kvfree(vcpu->arch.cpuid_entries);
10086 	if (!lapic_in_kernel(vcpu))
10087 		static_key_slow_dec(&kvm_no_apic_vcpu);
10088 }
10089 
10090 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10091 {
10092 	kvm_lapic_reset(vcpu, init_event);
10093 
10094 	vcpu->arch.hflags = 0;
10095 
10096 	vcpu->arch.smi_pending = 0;
10097 	vcpu->arch.smi_count = 0;
10098 	atomic_set(&vcpu->arch.nmi_queued, 0);
10099 	vcpu->arch.nmi_pending = 0;
10100 	vcpu->arch.nmi_injected = false;
10101 	kvm_clear_interrupt_queue(vcpu);
10102 	kvm_clear_exception_queue(vcpu);
10103 
10104 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10105 	kvm_update_dr0123(vcpu);
10106 	vcpu->arch.dr6 = DR6_INIT;
10107 	vcpu->arch.dr7 = DR7_FIXED_1;
10108 	kvm_update_dr7(vcpu);
10109 
10110 	vcpu->arch.cr2 = 0;
10111 
10112 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10113 	vcpu->arch.apf.msr_en_val = 0;
10114 	vcpu->arch.apf.msr_int_val = 0;
10115 	vcpu->arch.st.msr_val = 0;
10116 
10117 	kvmclock_reset(vcpu);
10118 
10119 	kvm_clear_async_pf_completion_queue(vcpu);
10120 	kvm_async_pf_hash_reset(vcpu);
10121 	vcpu->arch.apf.halted = false;
10122 
10123 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10124 		void *mpx_state_buffer;
10125 
10126 		/*
10127 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10128 		 * called with loaded FPU and does not let userspace fix the state.
10129 		 */
10130 		if (init_event)
10131 			kvm_put_guest_fpu(vcpu);
10132 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10133 					XFEATURE_BNDREGS);
10134 		if (mpx_state_buffer)
10135 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10136 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10137 					XFEATURE_BNDCSR);
10138 		if (mpx_state_buffer)
10139 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10140 		if (init_event)
10141 			kvm_load_guest_fpu(vcpu);
10142 	}
10143 
10144 	if (!init_event) {
10145 		kvm_pmu_reset(vcpu);
10146 		vcpu->arch.smbase = 0x30000;
10147 
10148 		vcpu->arch.msr_misc_features_enables = 0;
10149 
10150 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10151 	}
10152 
10153 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10154 	vcpu->arch.regs_avail = ~0;
10155 	vcpu->arch.regs_dirty = ~0;
10156 
10157 	vcpu->arch.ia32_xss = 0;
10158 
10159 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10160 }
10161 
10162 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10163 {
10164 	struct kvm_segment cs;
10165 
10166 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10167 	cs.selector = vector << 8;
10168 	cs.base = vector << 12;
10169 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10170 	kvm_rip_write(vcpu, 0);
10171 }
10172 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10173 
10174 int kvm_arch_hardware_enable(void)
10175 {
10176 	struct kvm *kvm;
10177 	struct kvm_vcpu *vcpu;
10178 	int i;
10179 	int ret;
10180 	u64 local_tsc;
10181 	u64 max_tsc = 0;
10182 	bool stable, backwards_tsc = false;
10183 
10184 	kvm_user_return_msr_cpu_online();
10185 	ret = kvm_x86_ops.hardware_enable();
10186 	if (ret != 0)
10187 		return ret;
10188 
10189 	local_tsc = rdtsc();
10190 	stable = !kvm_check_tsc_unstable();
10191 	list_for_each_entry(kvm, &vm_list, vm_list) {
10192 		kvm_for_each_vcpu(i, vcpu, kvm) {
10193 			if (!stable && vcpu->cpu == smp_processor_id())
10194 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10195 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10196 				backwards_tsc = true;
10197 				if (vcpu->arch.last_host_tsc > max_tsc)
10198 					max_tsc = vcpu->arch.last_host_tsc;
10199 			}
10200 		}
10201 	}
10202 
10203 	/*
10204 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10205 	 * platforms that reset TSC during suspend or hibernate actions, but
10206 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10207 	 * detect that condition here, which happens early in CPU bringup,
10208 	 * before any KVM threads can be running.  Unfortunately, we can't
10209 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10210 	 * enough into CPU bringup that we know how much real time has actually
10211 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10212 	 * variables that haven't been updated yet.
10213 	 *
10214 	 * So we simply find the maximum observed TSC above, then record the
10215 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10216 	 * the adjustment will be applied.  Note that we accumulate
10217 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10218 	 * gets a chance to run again.  In the event that no KVM threads get a
10219 	 * chance to run, we will miss the entire elapsed period, as we'll have
10220 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10221 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10222 	 * uniform across all VCPUs (not to mention the scenario is extremely
10223 	 * unlikely). It is possible that a second hibernate recovery happens
10224 	 * much faster than a first, causing the observed TSC here to be
10225 	 * smaller; this would require additional padding adjustment, which is
10226 	 * why we set last_host_tsc to the local tsc observed here.
10227 	 *
10228 	 * N.B. - this code below runs only on platforms with reliable TSC,
10229 	 * as that is the only way backwards_tsc is set above.  Also note
10230 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10231 	 * have the same delta_cyc adjustment applied if backwards_tsc
10232 	 * is detected.  Note further, this adjustment is only done once,
10233 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10234 	 * called multiple times (one for each physical CPU bringup).
10235 	 *
10236 	 * Platforms with unreliable TSCs don't have to deal with this, they
10237 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10238 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10239 	 * guarantee that they stay in perfect synchronization.
10240 	 */
10241 	if (backwards_tsc) {
10242 		u64 delta_cyc = max_tsc - local_tsc;
10243 		list_for_each_entry(kvm, &vm_list, vm_list) {
10244 			kvm->arch.backwards_tsc_observed = true;
10245 			kvm_for_each_vcpu(i, vcpu, kvm) {
10246 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10247 				vcpu->arch.last_host_tsc = local_tsc;
10248 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10249 			}
10250 
10251 			/*
10252 			 * We have to disable TSC offset matching.. if you were
10253 			 * booting a VM while issuing an S4 host suspend....
10254 			 * you may have some problem.  Solving this issue is
10255 			 * left as an exercise to the reader.
10256 			 */
10257 			kvm->arch.last_tsc_nsec = 0;
10258 			kvm->arch.last_tsc_write = 0;
10259 		}
10260 
10261 	}
10262 	return 0;
10263 }
10264 
10265 void kvm_arch_hardware_disable(void)
10266 {
10267 	kvm_x86_ops.hardware_disable();
10268 	drop_user_return_notifiers();
10269 }
10270 
10271 int kvm_arch_hardware_setup(void *opaque)
10272 {
10273 	struct kvm_x86_init_ops *ops = opaque;
10274 	int r;
10275 
10276 	rdmsrl_safe(MSR_EFER, &host_efer);
10277 
10278 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10279 		rdmsrl(MSR_IA32_XSS, host_xss);
10280 
10281 	r = ops->hardware_setup();
10282 	if (r != 0)
10283 		return r;
10284 
10285 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10286 
10287 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10288 		supported_xss = 0;
10289 
10290 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10291 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10292 #undef __kvm_cpu_cap_has
10293 
10294 	if (kvm_has_tsc_control) {
10295 		/*
10296 		 * Make sure the user can only configure tsc_khz values that
10297 		 * fit into a signed integer.
10298 		 * A min value is not calculated because it will always
10299 		 * be 1 on all machines.
10300 		 */
10301 		u64 max = min(0x7fffffffULL,
10302 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10303 		kvm_max_guest_tsc_khz = max;
10304 
10305 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10306 	}
10307 
10308 	kvm_init_msr_list();
10309 	return 0;
10310 }
10311 
10312 void kvm_arch_hardware_unsetup(void)
10313 {
10314 	kvm_x86_ops.hardware_unsetup();
10315 }
10316 
10317 int kvm_arch_check_processor_compat(void *opaque)
10318 {
10319 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10320 	struct kvm_x86_init_ops *ops = opaque;
10321 
10322 	WARN_ON(!irqs_disabled());
10323 
10324 	if (__cr4_reserved_bits(cpu_has, c) !=
10325 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10326 		return -EIO;
10327 
10328 	return ops->check_processor_compatibility();
10329 }
10330 
10331 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10332 {
10333 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10334 }
10335 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10336 
10337 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10338 {
10339 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10340 }
10341 
10342 struct static_key kvm_no_apic_vcpu __read_mostly;
10343 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10344 
10345 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10346 {
10347 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10348 
10349 	vcpu->arch.l1tf_flush_l1d = true;
10350 	if (pmu->version && unlikely(pmu->event_count)) {
10351 		pmu->need_cleanup = true;
10352 		kvm_make_request(KVM_REQ_PMU, vcpu);
10353 	}
10354 	kvm_x86_ops.sched_in(vcpu, cpu);
10355 }
10356 
10357 void kvm_arch_free_vm(struct kvm *kvm)
10358 {
10359 	kfree(kvm->arch.hyperv.hv_pa_pg);
10360 	vfree(kvm);
10361 }
10362 
10363 
10364 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10365 {
10366 	if (type)
10367 		return -EINVAL;
10368 
10369 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10370 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10371 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10372 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10373 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10374 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10375 
10376 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10377 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10378 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10379 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10380 		&kvm->arch.irq_sources_bitmap);
10381 
10382 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10383 	mutex_init(&kvm->arch.apic_map_lock);
10384 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10385 
10386 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10387 	pvclock_update_vm_gtod_copy(kvm);
10388 
10389 	kvm->arch.guest_can_read_msr_platform_info = true;
10390 
10391 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10392 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10393 
10394 	kvm_hv_init_vm(kvm);
10395 	kvm_page_track_init(kvm);
10396 	kvm_mmu_init_vm(kvm);
10397 
10398 	return kvm_x86_ops.vm_init(kvm);
10399 }
10400 
10401 int kvm_arch_post_init_vm(struct kvm *kvm)
10402 {
10403 	return kvm_mmu_post_init_vm(kvm);
10404 }
10405 
10406 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10407 {
10408 	vcpu_load(vcpu);
10409 	kvm_mmu_unload(vcpu);
10410 	vcpu_put(vcpu);
10411 }
10412 
10413 static void kvm_free_vcpus(struct kvm *kvm)
10414 {
10415 	unsigned int i;
10416 	struct kvm_vcpu *vcpu;
10417 
10418 	/*
10419 	 * Unpin any mmu pages first.
10420 	 */
10421 	kvm_for_each_vcpu(i, vcpu, kvm) {
10422 		kvm_clear_async_pf_completion_queue(vcpu);
10423 		kvm_unload_vcpu_mmu(vcpu);
10424 	}
10425 	kvm_for_each_vcpu(i, vcpu, kvm)
10426 		kvm_vcpu_destroy(vcpu);
10427 
10428 	mutex_lock(&kvm->lock);
10429 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10430 		kvm->vcpus[i] = NULL;
10431 
10432 	atomic_set(&kvm->online_vcpus, 0);
10433 	mutex_unlock(&kvm->lock);
10434 }
10435 
10436 void kvm_arch_sync_events(struct kvm *kvm)
10437 {
10438 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10439 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10440 	kvm_free_pit(kvm);
10441 }
10442 
10443 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10444 
10445 /**
10446  * __x86_set_memory_region: Setup KVM internal memory slot
10447  *
10448  * @kvm: the kvm pointer to the VM.
10449  * @id: the slot ID to setup.
10450  * @gpa: the GPA to install the slot (unused when @size == 0).
10451  * @size: the size of the slot. Set to zero to uninstall a slot.
10452  *
10453  * This function helps to setup a KVM internal memory slot.  Specify
10454  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10455  * slot.  The return code can be one of the following:
10456  *
10457  *   HVA:           on success (uninstall will return a bogus HVA)
10458  *   -errno:        on error
10459  *
10460  * The caller should always use IS_ERR() to check the return value
10461  * before use.  Note, the KVM internal memory slots are guaranteed to
10462  * remain valid and unchanged until the VM is destroyed, i.e., the
10463  * GPA->HVA translation will not change.  However, the HVA is a user
10464  * address, i.e. its accessibility is not guaranteed, and must be
10465  * accessed via __copy_{to,from}_user().
10466  */
10467 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10468 				      u32 size)
10469 {
10470 	int i, r;
10471 	unsigned long hva, old_npages;
10472 	struct kvm_memslots *slots = kvm_memslots(kvm);
10473 	struct kvm_memory_slot *slot;
10474 
10475 	/* Called with kvm->slots_lock held.  */
10476 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10477 		return ERR_PTR_USR(-EINVAL);
10478 
10479 	slot = id_to_memslot(slots, id);
10480 	if (size) {
10481 		if (slot && slot->npages)
10482 			return ERR_PTR_USR(-EEXIST);
10483 
10484 		/*
10485 		 * MAP_SHARED to prevent internal slot pages from being moved
10486 		 * by fork()/COW.
10487 		 */
10488 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10489 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10490 		if (IS_ERR((void *)hva))
10491 			return (void __user *)hva;
10492 	} else {
10493 		if (!slot || !slot->npages)
10494 			return 0;
10495 
10496 		old_npages = slot->npages;
10497 		hva = 0;
10498 	}
10499 
10500 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10501 		struct kvm_userspace_memory_region m;
10502 
10503 		m.slot = id | (i << 16);
10504 		m.flags = 0;
10505 		m.guest_phys_addr = gpa;
10506 		m.userspace_addr = hva;
10507 		m.memory_size = size;
10508 		r = __kvm_set_memory_region(kvm, &m);
10509 		if (r < 0)
10510 			return ERR_PTR_USR(r);
10511 	}
10512 
10513 	if (!size)
10514 		vm_munmap(hva, old_npages * PAGE_SIZE);
10515 
10516 	return (void __user *)hva;
10517 }
10518 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10519 
10520 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10521 {
10522 	kvm_mmu_pre_destroy_vm(kvm);
10523 }
10524 
10525 void kvm_arch_destroy_vm(struct kvm *kvm)
10526 {
10527 	u32 i;
10528 
10529 	if (current->mm == kvm->mm) {
10530 		/*
10531 		 * Free memory regions allocated on behalf of userspace,
10532 		 * unless the the memory map has changed due to process exit
10533 		 * or fd copying.
10534 		 */
10535 		mutex_lock(&kvm->slots_lock);
10536 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10537 					0, 0);
10538 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10539 					0, 0);
10540 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10541 		mutex_unlock(&kvm->slots_lock);
10542 	}
10543 	if (kvm_x86_ops.vm_destroy)
10544 		kvm_x86_ops.vm_destroy(kvm);
10545 	for (i = 0; i < kvm->arch.msr_filter.count; i++)
10546 		kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10547 	kvm_pic_destroy(kvm);
10548 	kvm_ioapic_destroy(kvm);
10549 	kvm_free_vcpus(kvm);
10550 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10551 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10552 	kvm_mmu_uninit_vm(kvm);
10553 	kvm_page_track_cleanup(kvm);
10554 	kvm_hv_destroy_vm(kvm);
10555 }
10556 
10557 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10558 {
10559 	int i;
10560 
10561 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10562 		kvfree(slot->arch.rmap[i]);
10563 		slot->arch.rmap[i] = NULL;
10564 
10565 		if (i == 0)
10566 			continue;
10567 
10568 		kvfree(slot->arch.lpage_info[i - 1]);
10569 		slot->arch.lpage_info[i - 1] = NULL;
10570 	}
10571 
10572 	kvm_page_track_free_memslot(slot);
10573 }
10574 
10575 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10576 				      unsigned long npages)
10577 {
10578 	int i;
10579 
10580 	/*
10581 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10582 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10583 	 * the new memslot is successful.
10584 	 */
10585 	memset(&slot->arch, 0, sizeof(slot->arch));
10586 
10587 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10588 		struct kvm_lpage_info *linfo;
10589 		unsigned long ugfn;
10590 		int lpages;
10591 		int level = i + 1;
10592 
10593 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10594 				      slot->base_gfn, level) + 1;
10595 
10596 		slot->arch.rmap[i] =
10597 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10598 				 GFP_KERNEL_ACCOUNT);
10599 		if (!slot->arch.rmap[i])
10600 			goto out_free;
10601 		if (i == 0)
10602 			continue;
10603 
10604 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10605 		if (!linfo)
10606 			goto out_free;
10607 
10608 		slot->arch.lpage_info[i - 1] = linfo;
10609 
10610 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10611 			linfo[0].disallow_lpage = 1;
10612 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10613 			linfo[lpages - 1].disallow_lpage = 1;
10614 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10615 		/*
10616 		 * If the gfn and userspace address are not aligned wrt each
10617 		 * other, disable large page support for this slot.
10618 		 */
10619 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10620 			unsigned long j;
10621 
10622 			for (j = 0; j < lpages; ++j)
10623 				linfo[j].disallow_lpage = 1;
10624 		}
10625 	}
10626 
10627 	if (kvm_page_track_create_memslot(slot, npages))
10628 		goto out_free;
10629 
10630 	return 0;
10631 
10632 out_free:
10633 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10634 		kvfree(slot->arch.rmap[i]);
10635 		slot->arch.rmap[i] = NULL;
10636 		if (i == 0)
10637 			continue;
10638 
10639 		kvfree(slot->arch.lpage_info[i - 1]);
10640 		slot->arch.lpage_info[i - 1] = NULL;
10641 	}
10642 	return -ENOMEM;
10643 }
10644 
10645 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10646 {
10647 	struct kvm_vcpu *vcpu;
10648 	int i;
10649 
10650 	/*
10651 	 * memslots->generation has been incremented.
10652 	 * mmio generation may have reached its maximum value.
10653 	 */
10654 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10655 
10656 	/* Force re-initialization of steal_time cache */
10657 	kvm_for_each_vcpu(i, vcpu, kvm)
10658 		kvm_vcpu_kick(vcpu);
10659 }
10660 
10661 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10662 				struct kvm_memory_slot *memslot,
10663 				const struct kvm_userspace_memory_region *mem,
10664 				enum kvm_mr_change change)
10665 {
10666 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10667 		return kvm_alloc_memslot_metadata(memslot,
10668 						  mem->memory_size >> PAGE_SHIFT);
10669 	return 0;
10670 }
10671 
10672 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10673 				     struct kvm_memory_slot *old,
10674 				     struct kvm_memory_slot *new,
10675 				     enum kvm_mr_change change)
10676 {
10677 	/*
10678 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10679 	 * See comments below.
10680 	 */
10681 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10682 		return;
10683 
10684 	/*
10685 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10686 	 * sptes have to be split.  If live migration is successful, the guest
10687 	 * in the source machine will be destroyed and large sptes will be
10688 	 * created in the destination. However, if the guest continues to run
10689 	 * in the source machine (for example if live migration fails), small
10690 	 * sptes will remain around and cause bad performance.
10691 	 *
10692 	 * Scan sptes if dirty logging has been stopped, dropping those
10693 	 * which can be collapsed into a single large-page spte.  Later
10694 	 * page faults will create the large-page sptes.
10695 	 *
10696 	 * There is no need to do this in any of the following cases:
10697 	 * CREATE:      No dirty mappings will already exist.
10698 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10699 	 *		kvm_arch_flush_shadow_memslot()
10700 	 */
10701 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10702 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10703 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10704 
10705 	/*
10706 	 * Enable or disable dirty logging for the slot.
10707 	 *
10708 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10709 	 * slot have been zapped so no dirty logging updates are needed for
10710 	 * the old slot.
10711 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10712 	 * any mappings that might be created in it will consume the
10713 	 * properties of the new slot and do not need to be updated here.
10714 	 *
10715 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10716 	 * called to enable/disable dirty logging.
10717 	 *
10718 	 * When disabling dirty logging with PML enabled, the D-bit is set
10719 	 * for sptes in the slot in order to prevent unnecessary GPA
10720 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10721 	 * This guarantees leaving PML enabled for the guest's lifetime
10722 	 * won't have any additional overhead from PML when the guest is
10723 	 * running with dirty logging disabled.
10724 	 *
10725 	 * When enabling dirty logging, large sptes are write-protected
10726 	 * so they can be split on first write.  New large sptes cannot
10727 	 * be created for this slot until the end of the logging.
10728 	 * See the comments in fast_page_fault().
10729 	 * For small sptes, nothing is done if the dirty log is in the
10730 	 * initial-all-set state.  Otherwise, depending on whether pml
10731 	 * is enabled the D-bit or the W-bit will be cleared.
10732 	 */
10733 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10734 		if (kvm_x86_ops.slot_enable_log_dirty) {
10735 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10736 		} else {
10737 			int level =
10738 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10739 				PG_LEVEL_2M : PG_LEVEL_4K;
10740 
10741 			/*
10742 			 * If we're with initial-all-set, we don't need
10743 			 * to write protect any small page because
10744 			 * they're reported as dirty already.  However
10745 			 * we still need to write-protect huge pages
10746 			 * so that the page split can happen lazily on
10747 			 * the first write to the huge page.
10748 			 */
10749 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10750 		}
10751 	} else {
10752 		if (kvm_x86_ops.slot_disable_log_dirty)
10753 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10754 	}
10755 }
10756 
10757 void kvm_arch_commit_memory_region(struct kvm *kvm,
10758 				const struct kvm_userspace_memory_region *mem,
10759 				struct kvm_memory_slot *old,
10760 				const struct kvm_memory_slot *new,
10761 				enum kvm_mr_change change)
10762 {
10763 	if (!kvm->arch.n_requested_mmu_pages)
10764 		kvm_mmu_change_mmu_pages(kvm,
10765 				kvm_mmu_calculate_default_mmu_pages(kvm));
10766 
10767 	/*
10768 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10769 	 */
10770 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10771 
10772 	/* Free the arrays associated with the old memslot. */
10773 	if (change == KVM_MR_MOVE)
10774 		kvm_arch_free_memslot(kvm, old);
10775 }
10776 
10777 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10778 {
10779 	kvm_mmu_zap_all(kvm);
10780 }
10781 
10782 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10783 				   struct kvm_memory_slot *slot)
10784 {
10785 	kvm_page_track_flush_slot(kvm, slot);
10786 }
10787 
10788 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10789 {
10790 	return (is_guest_mode(vcpu) &&
10791 			kvm_x86_ops.guest_apic_has_interrupt &&
10792 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10793 }
10794 
10795 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10796 {
10797 	if (!list_empty_careful(&vcpu->async_pf.done))
10798 		return true;
10799 
10800 	if (kvm_apic_has_events(vcpu))
10801 		return true;
10802 
10803 	if (vcpu->arch.pv.pv_unhalted)
10804 		return true;
10805 
10806 	if (vcpu->arch.exception.pending)
10807 		return true;
10808 
10809 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10810 	    (vcpu->arch.nmi_pending &&
10811 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10812 		return true;
10813 
10814 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10815 	    (vcpu->arch.smi_pending &&
10816 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10817 		return true;
10818 
10819 	if (kvm_arch_interrupt_allowed(vcpu) &&
10820 	    (kvm_cpu_has_interrupt(vcpu) ||
10821 	    kvm_guest_apic_has_interrupt(vcpu)))
10822 		return true;
10823 
10824 	if (kvm_hv_has_stimer_pending(vcpu))
10825 		return true;
10826 
10827 	if (is_guest_mode(vcpu) &&
10828 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10829 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10830 		return true;
10831 
10832 	return false;
10833 }
10834 
10835 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10836 {
10837 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10838 }
10839 
10840 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10841 {
10842 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10843 		return true;
10844 
10845 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10846 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10847 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10848 		return true;
10849 
10850 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10851 		return true;
10852 
10853 	return false;
10854 }
10855 
10856 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10857 {
10858 	return vcpu->arch.preempted_in_kernel;
10859 }
10860 
10861 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10862 {
10863 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10864 }
10865 
10866 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10867 {
10868 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10869 }
10870 
10871 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10872 {
10873 	/* Can't read the RIP when guest state is protected, just return 0 */
10874 	if (vcpu->arch.guest_state_protected)
10875 		return 0;
10876 
10877 	if (is_64_bit_mode(vcpu))
10878 		return kvm_rip_read(vcpu);
10879 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10880 		     kvm_rip_read(vcpu));
10881 }
10882 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10883 
10884 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10885 {
10886 	return kvm_get_linear_rip(vcpu) == linear_rip;
10887 }
10888 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10889 
10890 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10891 {
10892 	unsigned long rflags;
10893 
10894 	rflags = kvm_x86_ops.get_rflags(vcpu);
10895 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10896 		rflags &= ~X86_EFLAGS_TF;
10897 	return rflags;
10898 }
10899 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10900 
10901 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10902 {
10903 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10904 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10905 		rflags |= X86_EFLAGS_TF;
10906 	kvm_x86_ops.set_rflags(vcpu, rflags);
10907 }
10908 
10909 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10910 {
10911 	__kvm_set_rflags(vcpu, rflags);
10912 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10913 }
10914 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10915 
10916 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10917 {
10918 	int r;
10919 
10920 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10921 	      work->wakeup_all)
10922 		return;
10923 
10924 	r = kvm_mmu_reload(vcpu);
10925 	if (unlikely(r))
10926 		return;
10927 
10928 	if (!vcpu->arch.mmu->direct_map &&
10929 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10930 		return;
10931 
10932 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10933 }
10934 
10935 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10936 {
10937 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10938 
10939 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10940 }
10941 
10942 static inline u32 kvm_async_pf_next_probe(u32 key)
10943 {
10944 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10945 }
10946 
10947 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10948 {
10949 	u32 key = kvm_async_pf_hash_fn(gfn);
10950 
10951 	while (vcpu->arch.apf.gfns[key] != ~0)
10952 		key = kvm_async_pf_next_probe(key);
10953 
10954 	vcpu->arch.apf.gfns[key] = gfn;
10955 }
10956 
10957 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10958 {
10959 	int i;
10960 	u32 key = kvm_async_pf_hash_fn(gfn);
10961 
10962 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10963 		     (vcpu->arch.apf.gfns[key] != gfn &&
10964 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10965 		key = kvm_async_pf_next_probe(key);
10966 
10967 	return key;
10968 }
10969 
10970 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10971 {
10972 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10973 }
10974 
10975 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10976 {
10977 	u32 i, j, k;
10978 
10979 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10980 
10981 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10982 		return;
10983 
10984 	while (true) {
10985 		vcpu->arch.apf.gfns[i] = ~0;
10986 		do {
10987 			j = kvm_async_pf_next_probe(j);
10988 			if (vcpu->arch.apf.gfns[j] == ~0)
10989 				return;
10990 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10991 			/*
10992 			 * k lies cyclically in ]i,j]
10993 			 * |    i.k.j |
10994 			 * |....j i.k.| or  |.k..j i...|
10995 			 */
10996 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10997 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10998 		i = j;
10999 	}
11000 }
11001 
11002 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11003 {
11004 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11005 
11006 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11007 				      sizeof(reason));
11008 }
11009 
11010 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11011 {
11012 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11013 
11014 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11015 					     &token, offset, sizeof(token));
11016 }
11017 
11018 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11019 {
11020 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11021 	u32 val;
11022 
11023 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11024 					 &val, offset, sizeof(val)))
11025 		return false;
11026 
11027 	return !val;
11028 }
11029 
11030 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11031 {
11032 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11033 		return false;
11034 
11035 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11036 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11037 		return false;
11038 
11039 	return true;
11040 }
11041 
11042 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11043 {
11044 	if (unlikely(!lapic_in_kernel(vcpu) ||
11045 		     kvm_event_needs_reinjection(vcpu) ||
11046 		     vcpu->arch.exception.pending))
11047 		return false;
11048 
11049 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11050 		return false;
11051 
11052 	/*
11053 	 * If interrupts are off we cannot even use an artificial
11054 	 * halt state.
11055 	 */
11056 	return kvm_arch_interrupt_allowed(vcpu);
11057 }
11058 
11059 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11060 				     struct kvm_async_pf *work)
11061 {
11062 	struct x86_exception fault;
11063 
11064 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11065 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11066 
11067 	if (kvm_can_deliver_async_pf(vcpu) &&
11068 	    !apf_put_user_notpresent(vcpu)) {
11069 		fault.vector = PF_VECTOR;
11070 		fault.error_code_valid = true;
11071 		fault.error_code = 0;
11072 		fault.nested_page_fault = false;
11073 		fault.address = work->arch.token;
11074 		fault.async_page_fault = true;
11075 		kvm_inject_page_fault(vcpu, &fault);
11076 		return true;
11077 	} else {
11078 		/*
11079 		 * It is not possible to deliver a paravirtualized asynchronous
11080 		 * page fault, but putting the guest in an artificial halt state
11081 		 * can be beneficial nevertheless: if an interrupt arrives, we
11082 		 * can deliver it timely and perhaps the guest will schedule
11083 		 * another process.  When the instruction that triggered a page
11084 		 * fault is retried, hopefully the page will be ready in the host.
11085 		 */
11086 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11087 		return false;
11088 	}
11089 }
11090 
11091 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11092 				 struct kvm_async_pf *work)
11093 {
11094 	struct kvm_lapic_irq irq = {
11095 		.delivery_mode = APIC_DM_FIXED,
11096 		.vector = vcpu->arch.apf.vec
11097 	};
11098 
11099 	if (work->wakeup_all)
11100 		work->arch.token = ~0; /* broadcast wakeup */
11101 	else
11102 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11103 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11104 
11105 	if ((work->wakeup_all || work->notpresent_injected) &&
11106 	    kvm_pv_async_pf_enabled(vcpu) &&
11107 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11108 		vcpu->arch.apf.pageready_pending = true;
11109 		kvm_apic_set_irq(vcpu, &irq, NULL);
11110 	}
11111 
11112 	vcpu->arch.apf.halted = false;
11113 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11114 }
11115 
11116 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11117 {
11118 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11119 	if (!vcpu->arch.apf.pageready_pending)
11120 		kvm_vcpu_kick(vcpu);
11121 }
11122 
11123 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11124 {
11125 	if (!kvm_pv_async_pf_enabled(vcpu))
11126 		return true;
11127 	else
11128 		return apf_pageready_slot_free(vcpu);
11129 }
11130 
11131 void kvm_arch_start_assignment(struct kvm *kvm)
11132 {
11133 	atomic_inc(&kvm->arch.assigned_device_count);
11134 }
11135 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11136 
11137 void kvm_arch_end_assignment(struct kvm *kvm)
11138 {
11139 	atomic_dec(&kvm->arch.assigned_device_count);
11140 }
11141 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11142 
11143 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11144 {
11145 	return atomic_read(&kvm->arch.assigned_device_count);
11146 }
11147 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11148 
11149 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11150 {
11151 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11152 }
11153 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11154 
11155 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11156 {
11157 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11158 }
11159 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11160 
11161 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11162 {
11163 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11164 }
11165 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11166 
11167 bool kvm_arch_has_irq_bypass(void)
11168 {
11169 	return true;
11170 }
11171 
11172 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11173 				      struct irq_bypass_producer *prod)
11174 {
11175 	struct kvm_kernel_irqfd *irqfd =
11176 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11177 	int ret;
11178 
11179 	irqfd->producer = prod;
11180 	kvm_arch_start_assignment(irqfd->kvm);
11181 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11182 					 prod->irq, irqfd->gsi, 1);
11183 
11184 	if (ret)
11185 		kvm_arch_end_assignment(irqfd->kvm);
11186 
11187 	return ret;
11188 }
11189 
11190 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11191 				      struct irq_bypass_producer *prod)
11192 {
11193 	int ret;
11194 	struct kvm_kernel_irqfd *irqfd =
11195 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11196 
11197 	WARN_ON(irqfd->producer != prod);
11198 	irqfd->producer = NULL;
11199 
11200 	/*
11201 	 * When producer of consumer is unregistered, we change back to
11202 	 * remapped mode, so we can re-use the current implementation
11203 	 * when the irq is masked/disabled or the consumer side (KVM
11204 	 * int this case doesn't want to receive the interrupts.
11205 	*/
11206 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11207 	if (ret)
11208 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11209 		       " fails: %d\n", irqfd->consumer.token, ret);
11210 
11211 	kvm_arch_end_assignment(irqfd->kvm);
11212 }
11213 
11214 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11215 				   uint32_t guest_irq, bool set)
11216 {
11217 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11218 }
11219 
11220 bool kvm_vector_hashing_enabled(void)
11221 {
11222 	return vector_hashing;
11223 }
11224 
11225 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11226 {
11227 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11228 }
11229 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11230 
11231 
11232 int kvm_spec_ctrl_test_value(u64 value)
11233 {
11234 	/*
11235 	 * test that setting IA32_SPEC_CTRL to given value
11236 	 * is allowed by the host processor
11237 	 */
11238 
11239 	u64 saved_value;
11240 	unsigned long flags;
11241 	int ret = 0;
11242 
11243 	local_irq_save(flags);
11244 
11245 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11246 		ret = 1;
11247 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11248 		ret = 1;
11249 	else
11250 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11251 
11252 	local_irq_restore(flags);
11253 
11254 	return ret;
11255 }
11256 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11257 
11258 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11259 {
11260 	struct x86_exception fault;
11261 	u32 access = error_code &
11262 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11263 
11264 	if (!(error_code & PFERR_PRESENT_MASK) ||
11265 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11266 		/*
11267 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11268 		 * tables probably do not match the TLB.  Just proceed
11269 		 * with the error code that the processor gave.
11270 		 */
11271 		fault.vector = PF_VECTOR;
11272 		fault.error_code_valid = true;
11273 		fault.error_code = error_code;
11274 		fault.nested_page_fault = false;
11275 		fault.address = gva;
11276 	}
11277 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11278 }
11279 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11280 
11281 /*
11282  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11283  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11284  * indicates whether exit to userspace is needed.
11285  */
11286 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11287 			      struct x86_exception *e)
11288 {
11289 	if (r == X86EMUL_PROPAGATE_FAULT) {
11290 		kvm_inject_emulated_page_fault(vcpu, e);
11291 		return 1;
11292 	}
11293 
11294 	/*
11295 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11296 	 * while handling a VMX instruction KVM could've handled the request
11297 	 * correctly by exiting to userspace and performing I/O but there
11298 	 * doesn't seem to be a real use-case behind such requests, just return
11299 	 * KVM_EXIT_INTERNAL_ERROR for now.
11300 	 */
11301 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11302 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11303 	vcpu->run->internal.ndata = 0;
11304 
11305 	return 0;
11306 }
11307 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11308 
11309 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11310 {
11311 	bool pcid_enabled;
11312 	struct x86_exception e;
11313 	unsigned i;
11314 	unsigned long roots_to_free = 0;
11315 	struct {
11316 		u64 pcid;
11317 		u64 gla;
11318 	} operand;
11319 	int r;
11320 
11321 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11322 	if (r != X86EMUL_CONTINUE)
11323 		return kvm_handle_memory_failure(vcpu, r, &e);
11324 
11325 	if (operand.pcid >> 12 != 0) {
11326 		kvm_inject_gp(vcpu, 0);
11327 		return 1;
11328 	}
11329 
11330 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11331 
11332 	switch (type) {
11333 	case INVPCID_TYPE_INDIV_ADDR:
11334 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11335 		    is_noncanonical_address(operand.gla, vcpu)) {
11336 			kvm_inject_gp(vcpu, 0);
11337 			return 1;
11338 		}
11339 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11340 		return kvm_skip_emulated_instruction(vcpu);
11341 
11342 	case INVPCID_TYPE_SINGLE_CTXT:
11343 		if (!pcid_enabled && (operand.pcid != 0)) {
11344 			kvm_inject_gp(vcpu, 0);
11345 			return 1;
11346 		}
11347 
11348 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11349 			kvm_mmu_sync_roots(vcpu);
11350 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11351 		}
11352 
11353 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11354 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11355 			    == operand.pcid)
11356 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11357 
11358 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11359 		/*
11360 		 * If neither the current cr3 nor any of the prev_roots use the
11361 		 * given PCID, then nothing needs to be done here because a
11362 		 * resync will happen anyway before switching to any other CR3.
11363 		 */
11364 
11365 		return kvm_skip_emulated_instruction(vcpu);
11366 
11367 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11368 		/*
11369 		 * Currently, KVM doesn't mark global entries in the shadow
11370 		 * page tables, so a non-global flush just degenerates to a
11371 		 * global flush. If needed, we could optimize this later by
11372 		 * keeping track of global entries in shadow page tables.
11373 		 */
11374 
11375 		fallthrough;
11376 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11377 		kvm_mmu_unload(vcpu);
11378 		return kvm_skip_emulated_instruction(vcpu);
11379 
11380 	default:
11381 		BUG(); /* We have already checked above that type <= 3 */
11382 	}
11383 }
11384 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11385 
11386 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11387 {
11388 	struct kvm_run *run = vcpu->run;
11389 	struct kvm_mmio_fragment *frag;
11390 	unsigned int len;
11391 
11392 	BUG_ON(!vcpu->mmio_needed);
11393 
11394 	/* Complete previous fragment */
11395 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11396 	len = min(8u, frag->len);
11397 	if (!vcpu->mmio_is_write)
11398 		memcpy(frag->data, run->mmio.data, len);
11399 
11400 	if (frag->len <= 8) {
11401 		/* Switch to the next fragment. */
11402 		frag++;
11403 		vcpu->mmio_cur_fragment++;
11404 	} else {
11405 		/* Go forward to the next mmio piece. */
11406 		frag->data += len;
11407 		frag->gpa += len;
11408 		frag->len -= len;
11409 	}
11410 
11411 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11412 		vcpu->mmio_needed = 0;
11413 
11414 		// VMG change, at this point, we're always done
11415 		// RIP has already been advanced
11416 		return 1;
11417 	}
11418 
11419 	// More MMIO is needed
11420 	run->mmio.phys_addr = frag->gpa;
11421 	run->mmio.len = min(8u, frag->len);
11422 	run->mmio.is_write = vcpu->mmio_is_write;
11423 	if (run->mmio.is_write)
11424 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11425 	run->exit_reason = KVM_EXIT_MMIO;
11426 
11427 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11428 
11429 	return 0;
11430 }
11431 
11432 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11433 			  void *data)
11434 {
11435 	int handled;
11436 	struct kvm_mmio_fragment *frag;
11437 
11438 	if (!data)
11439 		return -EINVAL;
11440 
11441 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11442 	if (handled == bytes)
11443 		return 1;
11444 
11445 	bytes -= handled;
11446 	gpa += handled;
11447 	data += handled;
11448 
11449 	/*TODO: Check if need to increment number of frags */
11450 	frag = vcpu->mmio_fragments;
11451 	vcpu->mmio_nr_fragments = 1;
11452 	frag->len = bytes;
11453 	frag->gpa = gpa;
11454 	frag->data = data;
11455 
11456 	vcpu->mmio_needed = 1;
11457 	vcpu->mmio_cur_fragment = 0;
11458 
11459 	vcpu->run->mmio.phys_addr = gpa;
11460 	vcpu->run->mmio.len = min(8u, frag->len);
11461 	vcpu->run->mmio.is_write = 1;
11462 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11463 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11464 
11465 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11466 
11467 	return 0;
11468 }
11469 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11470 
11471 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11472 			 void *data)
11473 {
11474 	int handled;
11475 	struct kvm_mmio_fragment *frag;
11476 
11477 	if (!data)
11478 		return -EINVAL;
11479 
11480 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11481 	if (handled == bytes)
11482 		return 1;
11483 
11484 	bytes -= handled;
11485 	gpa += handled;
11486 	data += handled;
11487 
11488 	/*TODO: Check if need to increment number of frags */
11489 	frag = vcpu->mmio_fragments;
11490 	vcpu->mmio_nr_fragments = 1;
11491 	frag->len = bytes;
11492 	frag->gpa = gpa;
11493 	frag->data = data;
11494 
11495 	vcpu->mmio_needed = 1;
11496 	vcpu->mmio_cur_fragment = 0;
11497 
11498 	vcpu->run->mmio.phys_addr = gpa;
11499 	vcpu->run->mmio.len = min(8u, frag->len);
11500 	vcpu->run->mmio.is_write = 0;
11501 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11502 
11503 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11504 
11505 	return 0;
11506 }
11507 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11508 
11509 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11510 {
11511 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11512 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
11513 	vcpu->arch.pio.count = 0;
11514 
11515 	return 1;
11516 }
11517 
11518 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11519 			   unsigned int port, void *data,  unsigned int count)
11520 {
11521 	int ret;
11522 
11523 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11524 					data, count);
11525 	if (ret)
11526 		return ret;
11527 
11528 	vcpu->arch.pio.count = 0;
11529 
11530 	return 0;
11531 }
11532 
11533 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11534 			  unsigned int port, void *data, unsigned int count)
11535 {
11536 	int ret;
11537 
11538 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11539 				       data, count);
11540 	if (ret) {
11541 		vcpu->arch.pio.count = 0;
11542 	} else {
11543 		vcpu->arch.guest_ins_data = data;
11544 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11545 	}
11546 
11547 	return 0;
11548 }
11549 
11550 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11551 			 unsigned int port, void *data,  unsigned int count,
11552 			 int in)
11553 {
11554 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11555 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
11556 }
11557 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11558 
11559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
11586