1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 92 93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 94 95 #define emul_to_vcpu(ctxt) \ 96 ((struct kvm_vcpu *)(ctxt)->vcpu) 97 98 /* EFER defaults: 99 * - enable syscall per default because its emulated by KVM 100 * - enable LME and LMA per default on 64 bit KVM 101 */ 102 #ifdef CONFIG_X86_64 103 static 104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 105 #else 106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 107 #endif 108 109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 110 111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 112 113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 114 115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 116 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 117 118 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 119 static void process_nmi(struct kvm_vcpu *vcpu); 120 static void process_smi(struct kvm_vcpu *vcpu); 121 static void enter_smm(struct kvm_vcpu *vcpu); 122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 123 static void store_regs(struct kvm_vcpu *vcpu); 124 static int sync_regs(struct kvm_vcpu *vcpu); 125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 126 127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 130 struct kvm_x86_ops kvm_x86_ops __read_mostly; 131 132 #define KVM_X86_OP(func) \ 133 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 134 *(((struct kvm_x86_ops *)0)->func)); 135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 137 #include <asm/kvm-x86-ops.h> 138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 140 141 static bool __read_mostly ignore_msrs = 0; 142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 143 144 bool __read_mostly report_ignored_msrs = true; 145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 146 EXPORT_SYMBOL_GPL(report_ignored_msrs); 147 148 unsigned int min_timer_period_us = 200; 149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 150 151 static bool __read_mostly kvmclock_periodic_sync = true; 152 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 153 154 bool __read_mostly kvm_has_tsc_control; 155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 156 u32 __read_mostly kvm_max_guest_tsc_khz; 157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 158 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 160 u64 __read_mostly kvm_max_tsc_scaling_ratio; 161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 162 u64 __read_mostly kvm_default_tsc_scaling_ratio; 163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 164 bool __read_mostly kvm_has_bus_lock_exit; 165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 166 167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 168 static u32 __read_mostly tsc_tolerance_ppm = 250; 169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 170 171 /* 172 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 173 * adaptive tuning starting from default advancement of 1000ns. '0' disables 174 * advancement entirely. Any other value is used as-is and disables adaptive 175 * tuning, i.e. allows privileged userspace to set an exact advancement time. 176 */ 177 static int __read_mostly lapic_timer_advance_ns = -1; 178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 179 180 static bool __read_mostly vector_hashing = true; 181 module_param(vector_hashing, bool, S_IRUGO); 182 183 bool __read_mostly enable_vmware_backdoor = false; 184 module_param(enable_vmware_backdoor, bool, S_IRUGO); 185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 186 187 static bool __read_mostly force_emulation_prefix = false; 188 module_param(force_emulation_prefix, bool, S_IRUGO); 189 190 int __read_mostly pi_inject_timer = -1; 191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 192 193 /* Enable/disable PMU virtualization */ 194 bool __read_mostly enable_pmu = true; 195 EXPORT_SYMBOL_GPL(enable_pmu); 196 module_param(enable_pmu, bool, 0444); 197 198 bool __read_mostly eager_page_split = true; 199 module_param(eager_page_split, bool, 0644); 200 201 /* 202 * Restoring the host value for MSRs that are only consumed when running in 203 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 204 * returns to userspace, i.e. the kernel can run with the guest's value. 205 */ 206 #define KVM_MAX_NR_USER_RETURN_MSRS 16 207 208 struct kvm_user_return_msrs { 209 struct user_return_notifier urn; 210 bool registered; 211 struct kvm_user_return_msr_values { 212 u64 host; 213 u64 curr; 214 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 215 }; 216 217 u32 __read_mostly kvm_nr_uret_msrs; 218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 220 static struct kvm_user_return_msrs __percpu *user_return_msrs; 221 222 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 223 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 224 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 225 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 226 227 u64 __read_mostly host_efer; 228 EXPORT_SYMBOL_GPL(host_efer); 229 230 bool __read_mostly allow_smaller_maxphyaddr = 0; 231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 232 233 bool __read_mostly enable_apicv = true; 234 EXPORT_SYMBOL_GPL(enable_apicv); 235 236 u64 __read_mostly host_xss; 237 EXPORT_SYMBOL_GPL(host_xss); 238 u64 __read_mostly supported_xss; 239 EXPORT_SYMBOL_GPL(supported_xss); 240 241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 242 KVM_GENERIC_VM_STATS(), 243 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 244 STATS_DESC_COUNTER(VM, mmu_pte_write), 245 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 246 STATS_DESC_COUNTER(VM, mmu_flooded), 247 STATS_DESC_COUNTER(VM, mmu_recycled), 248 STATS_DESC_COUNTER(VM, mmu_cache_miss), 249 STATS_DESC_ICOUNTER(VM, mmu_unsync), 250 STATS_DESC_ICOUNTER(VM, pages_4k), 251 STATS_DESC_ICOUNTER(VM, pages_2m), 252 STATS_DESC_ICOUNTER(VM, pages_1g), 253 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 254 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 255 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 256 }; 257 258 const struct kvm_stats_header kvm_vm_stats_header = { 259 .name_size = KVM_STATS_NAME_SIZE, 260 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 261 .id_offset = sizeof(struct kvm_stats_header), 262 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 263 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 264 sizeof(kvm_vm_stats_desc), 265 }; 266 267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 268 KVM_GENERIC_VCPU_STATS(), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_guest), 271 STATS_DESC_COUNTER(VCPU, tlb_flush), 272 STATS_DESC_COUNTER(VCPU, invlpg), 273 STATS_DESC_COUNTER(VCPU, exits), 274 STATS_DESC_COUNTER(VCPU, io_exits), 275 STATS_DESC_COUNTER(VCPU, mmio_exits), 276 STATS_DESC_COUNTER(VCPU, signal_exits), 277 STATS_DESC_COUNTER(VCPU, irq_window_exits), 278 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 279 STATS_DESC_COUNTER(VCPU, l1d_flush), 280 STATS_DESC_COUNTER(VCPU, halt_exits), 281 STATS_DESC_COUNTER(VCPU, request_irq_exits), 282 STATS_DESC_COUNTER(VCPU, irq_exits), 283 STATS_DESC_COUNTER(VCPU, host_state_reload), 284 STATS_DESC_COUNTER(VCPU, fpu_reload), 285 STATS_DESC_COUNTER(VCPU, insn_emulation), 286 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 287 STATS_DESC_COUNTER(VCPU, hypercalls), 288 STATS_DESC_COUNTER(VCPU, irq_injections), 289 STATS_DESC_COUNTER(VCPU, nmi_injections), 290 STATS_DESC_COUNTER(VCPU, req_event), 291 STATS_DESC_COUNTER(VCPU, nested_run), 292 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 293 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 294 STATS_DESC_ICOUNTER(VCPU, guest_mode) 295 }; 296 297 const struct kvm_stats_header kvm_vcpu_stats_header = { 298 .name_size = KVM_STATS_NAME_SIZE, 299 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 300 .id_offset = sizeof(struct kvm_stats_header), 301 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 302 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 303 sizeof(kvm_vcpu_stats_desc), 304 }; 305 306 u64 __read_mostly host_xcr0; 307 u64 __read_mostly supported_xcr0; 308 EXPORT_SYMBOL_GPL(supported_xcr0); 309 310 static struct kmem_cache *x86_emulator_cache; 311 312 /* 313 * When called, it means the previous get/set msr reached an invalid msr. 314 * Return true if we want to ignore/silent this failed msr access. 315 */ 316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 317 { 318 const char *op = write ? "wrmsr" : "rdmsr"; 319 320 if (ignore_msrs) { 321 if (report_ignored_msrs) 322 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 323 op, msr, data); 324 /* Mask the error */ 325 return true; 326 } else { 327 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 return false; 330 } 331 } 332 333 static struct kmem_cache *kvm_alloc_emulator_cache(void) 334 { 335 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 336 unsigned int size = sizeof(struct x86_emulate_ctxt); 337 338 return kmem_cache_create_usercopy("x86_emulator", size, 339 __alignof__(struct x86_emulate_ctxt), 340 SLAB_ACCOUNT, useroffset, 341 size - useroffset, NULL); 342 } 343 344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 345 346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 347 { 348 int i; 349 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 350 vcpu->arch.apf.gfns[i] = ~0; 351 } 352 353 static void kvm_on_user_return(struct user_return_notifier *urn) 354 { 355 unsigned slot; 356 struct kvm_user_return_msrs *msrs 357 = container_of(urn, struct kvm_user_return_msrs, urn); 358 struct kvm_user_return_msr_values *values; 359 unsigned long flags; 360 361 /* 362 * Disabling irqs at this point since the following code could be 363 * interrupted and executed through kvm_arch_hardware_disable() 364 */ 365 local_irq_save(flags); 366 if (msrs->registered) { 367 msrs->registered = false; 368 user_return_notifier_unregister(urn); 369 } 370 local_irq_restore(flags); 371 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 372 values = &msrs->values[slot]; 373 if (values->host != values->curr) { 374 wrmsrl(kvm_uret_msrs_list[slot], values->host); 375 values->curr = values->host; 376 } 377 } 378 } 379 380 static int kvm_probe_user_return_msr(u32 msr) 381 { 382 u64 val; 383 int ret; 384 385 preempt_disable(); 386 ret = rdmsrl_safe(msr, &val); 387 if (ret) 388 goto out; 389 ret = wrmsrl_safe(msr, val); 390 out: 391 preempt_enable(); 392 return ret; 393 } 394 395 int kvm_add_user_return_msr(u32 msr) 396 { 397 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 398 399 if (kvm_probe_user_return_msr(msr)) 400 return -1; 401 402 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 403 return kvm_nr_uret_msrs++; 404 } 405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 406 407 int kvm_find_user_return_msr(u32 msr) 408 { 409 int i; 410 411 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 412 if (kvm_uret_msrs_list[i] == msr) 413 return i; 414 } 415 return -1; 416 } 417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 418 419 static void kvm_user_return_msr_cpu_online(void) 420 { 421 unsigned int cpu = smp_processor_id(); 422 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 423 u64 value; 424 int i; 425 426 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 427 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 428 msrs->values[i].host = value; 429 msrs->values[i].curr = value; 430 } 431 } 432 433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 434 { 435 unsigned int cpu = smp_processor_id(); 436 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 437 int err; 438 439 value = (value & mask) | (msrs->values[slot].host & ~mask); 440 if (value == msrs->values[slot].curr) 441 return 0; 442 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 443 if (err) 444 return 1; 445 446 msrs->values[slot].curr = value; 447 if (!msrs->registered) { 448 msrs->urn.on_user_return = kvm_on_user_return; 449 user_return_notifier_register(&msrs->urn); 450 msrs->registered = true; 451 } 452 return 0; 453 } 454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 455 456 static void drop_user_return_notifiers(void) 457 { 458 unsigned int cpu = smp_processor_id(); 459 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 460 461 if (msrs->registered) 462 kvm_on_user_return(&msrs->urn); 463 } 464 465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 466 { 467 return vcpu->arch.apic_base; 468 } 469 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 470 471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 472 { 473 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 474 } 475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 476 477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 478 { 479 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 480 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 481 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 482 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 483 484 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 485 return 1; 486 if (!msr_info->host_initiated) { 487 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 488 return 1; 489 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 490 return 1; 491 } 492 493 kvm_lapic_set_base(vcpu, msr_info->data); 494 kvm_recalculate_apic_map(vcpu->kvm); 495 return 0; 496 } 497 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 498 499 /* 500 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 501 * 502 * Hardware virtualization extension instructions may fault if a reboot turns 503 * off virtualization while processes are running. Usually after catching the 504 * fault we just panic; during reboot instead the instruction is ignored. 505 */ 506 noinstr void kvm_spurious_fault(void) 507 { 508 /* Fault while not rebooting. We want the trace. */ 509 BUG_ON(!kvm_rebooting); 510 } 511 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 512 513 #define EXCPT_BENIGN 0 514 #define EXCPT_CONTRIBUTORY 1 515 #define EXCPT_PF 2 516 517 static int exception_class(int vector) 518 { 519 switch (vector) { 520 case PF_VECTOR: 521 return EXCPT_PF; 522 case DE_VECTOR: 523 case TS_VECTOR: 524 case NP_VECTOR: 525 case SS_VECTOR: 526 case GP_VECTOR: 527 return EXCPT_CONTRIBUTORY; 528 default: 529 break; 530 } 531 return EXCPT_BENIGN; 532 } 533 534 #define EXCPT_FAULT 0 535 #define EXCPT_TRAP 1 536 #define EXCPT_ABORT 2 537 #define EXCPT_INTERRUPT 3 538 539 static int exception_type(int vector) 540 { 541 unsigned int mask; 542 543 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 544 return EXCPT_INTERRUPT; 545 546 mask = 1 << vector; 547 548 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 549 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 550 return EXCPT_TRAP; 551 552 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 553 return EXCPT_ABORT; 554 555 /* Reserved exceptions will result in fault */ 556 return EXCPT_FAULT; 557 } 558 559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 560 { 561 unsigned nr = vcpu->arch.exception.nr; 562 bool has_payload = vcpu->arch.exception.has_payload; 563 unsigned long payload = vcpu->arch.exception.payload; 564 565 if (!has_payload) 566 return; 567 568 switch (nr) { 569 case DB_VECTOR: 570 /* 571 * "Certain debug exceptions may clear bit 0-3. The 572 * remaining contents of the DR6 register are never 573 * cleared by the processor". 574 */ 575 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 576 /* 577 * In order to reflect the #DB exception payload in guest 578 * dr6, three components need to be considered: active low 579 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 580 * DR6_BS and DR6_BT) 581 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 582 * In the target guest dr6: 583 * FIXED_1 bits should always be set. 584 * Active low bits should be cleared if 1-setting in payload. 585 * Active high bits should be set if 1-setting in payload. 586 * 587 * Note, the payload is compatible with the pending debug 588 * exceptions/exit qualification under VMX, that active_low bits 589 * are active high in payload. 590 * So they need to be flipped for DR6. 591 */ 592 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 593 vcpu->arch.dr6 |= payload; 594 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 595 596 /* 597 * The #DB payload is defined as compatible with the 'pending 598 * debug exceptions' field under VMX, not DR6. While bit 12 is 599 * defined in the 'pending debug exceptions' field (enabled 600 * breakpoint), it is reserved and must be zero in DR6. 601 */ 602 vcpu->arch.dr6 &= ~BIT(12); 603 break; 604 case PF_VECTOR: 605 vcpu->arch.cr2 = payload; 606 break; 607 } 608 609 vcpu->arch.exception.has_payload = false; 610 vcpu->arch.exception.payload = 0; 611 } 612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 613 614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 615 unsigned nr, bool has_error, u32 error_code, 616 bool has_payload, unsigned long payload, bool reinject) 617 { 618 u32 prev_nr; 619 int class1, class2; 620 621 kvm_make_request(KVM_REQ_EVENT, vcpu); 622 623 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 624 queue: 625 if (reinject) { 626 /* 627 * On vmentry, vcpu->arch.exception.pending is only 628 * true if an event injection was blocked by 629 * nested_run_pending. In that case, however, 630 * vcpu_enter_guest requests an immediate exit, 631 * and the guest shouldn't proceed far enough to 632 * need reinjection. 633 */ 634 WARN_ON_ONCE(vcpu->arch.exception.pending); 635 vcpu->arch.exception.injected = true; 636 if (WARN_ON_ONCE(has_payload)) { 637 /* 638 * A reinjected event has already 639 * delivered its payload. 640 */ 641 has_payload = false; 642 payload = 0; 643 } 644 } else { 645 vcpu->arch.exception.pending = true; 646 vcpu->arch.exception.injected = false; 647 } 648 vcpu->arch.exception.has_error_code = has_error; 649 vcpu->arch.exception.nr = nr; 650 vcpu->arch.exception.error_code = error_code; 651 vcpu->arch.exception.has_payload = has_payload; 652 vcpu->arch.exception.payload = payload; 653 if (!is_guest_mode(vcpu)) 654 kvm_deliver_exception_payload(vcpu); 655 return; 656 } 657 658 /* to check exception */ 659 prev_nr = vcpu->arch.exception.nr; 660 if (prev_nr == DF_VECTOR) { 661 /* triple fault -> shutdown */ 662 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 663 return; 664 } 665 class1 = exception_class(prev_nr); 666 class2 = exception_class(nr); 667 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 668 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 669 /* 670 * Generate double fault per SDM Table 5-5. Set 671 * exception.pending = true so that the double fault 672 * can trigger a nested vmexit. 673 */ 674 vcpu->arch.exception.pending = true; 675 vcpu->arch.exception.injected = false; 676 vcpu->arch.exception.has_error_code = true; 677 vcpu->arch.exception.nr = DF_VECTOR; 678 vcpu->arch.exception.error_code = 0; 679 vcpu->arch.exception.has_payload = false; 680 vcpu->arch.exception.payload = 0; 681 } else 682 /* replace previous exception with a new one in a hope 683 that instruction re-execution will regenerate lost 684 exception */ 685 goto queue; 686 } 687 688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 689 { 690 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 691 } 692 EXPORT_SYMBOL_GPL(kvm_queue_exception); 693 694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 695 { 696 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 697 } 698 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 699 700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 701 unsigned long payload) 702 { 703 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 704 } 705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 706 707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 708 u32 error_code, unsigned long payload) 709 { 710 kvm_multiple_exception(vcpu, nr, true, error_code, 711 true, payload, false); 712 } 713 714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 715 { 716 if (err) 717 kvm_inject_gp(vcpu, 0); 718 else 719 return kvm_skip_emulated_instruction(vcpu); 720 721 return 1; 722 } 723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 724 725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 726 { 727 if (err) { 728 kvm_inject_gp(vcpu, 0); 729 return 1; 730 } 731 732 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 733 EMULTYPE_COMPLETE_USER_EXIT); 734 } 735 736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 737 { 738 ++vcpu->stat.pf_guest; 739 vcpu->arch.exception.nested_apf = 740 is_guest_mode(vcpu) && fault->async_page_fault; 741 if (vcpu->arch.exception.nested_apf) { 742 vcpu->arch.apf.nested_apf_token = fault->address; 743 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 744 } else { 745 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 746 fault->address); 747 } 748 } 749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 750 751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 752 struct x86_exception *fault) 753 { 754 struct kvm_mmu *fault_mmu; 755 WARN_ON_ONCE(fault->vector != PF_VECTOR); 756 757 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 758 vcpu->arch.walk_mmu; 759 760 /* 761 * Invalidate the TLB entry for the faulting address, if it exists, 762 * else the access will fault indefinitely (and to emulate hardware). 763 */ 764 if ((fault->error_code & PFERR_PRESENT_MASK) && 765 !(fault->error_code & PFERR_RSVD_MASK)) 766 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 767 fault_mmu->root.hpa); 768 769 fault_mmu->inject_page_fault(vcpu, fault); 770 return fault->nested_page_fault; 771 } 772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 773 774 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 775 { 776 atomic_inc(&vcpu->arch.nmi_queued); 777 kvm_make_request(KVM_REQ_NMI, vcpu); 778 } 779 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 780 781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 782 { 783 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 784 } 785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 786 787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 788 { 789 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 790 } 791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 792 793 /* 794 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 795 * a #GP and return false. 796 */ 797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 798 { 799 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 800 return true; 801 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 802 return false; 803 } 804 EXPORT_SYMBOL_GPL(kvm_require_cpl); 805 806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 807 { 808 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 809 return true; 810 811 kvm_queue_exception(vcpu, UD_VECTOR); 812 return false; 813 } 814 EXPORT_SYMBOL_GPL(kvm_require_dr); 815 816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 817 { 818 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 819 } 820 821 /* 822 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 823 */ 824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 825 { 826 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 828 gpa_t real_gpa; 829 int i; 830 int ret; 831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 832 833 /* 834 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 835 * to an L1 GPA. 836 */ 837 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 838 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 839 if (real_gpa == UNMAPPED_GVA) 840 return 0; 841 842 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 843 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 844 cr3 & GENMASK(11, 5), sizeof(pdpte)); 845 if (ret < 0) 846 return 0; 847 848 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 849 if ((pdpte[i] & PT_PRESENT_MASK) && 850 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 851 return 0; 852 } 853 } 854 855 /* 856 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 857 * Shadow page roots need to be reconstructed instead. 858 */ 859 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 860 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 861 862 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 863 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 864 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 865 vcpu->arch.pdptrs_from_userspace = false; 866 867 return 1; 868 } 869 EXPORT_SYMBOL_GPL(load_pdptrs); 870 871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 872 { 873 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 874 kvm_clear_async_pf_completion_queue(vcpu); 875 kvm_async_pf_hash_reset(vcpu); 876 877 /* 878 * Clearing CR0.PG is defined to flush the TLB from the guest's 879 * perspective. 880 */ 881 if (!(cr0 & X86_CR0_PG)) 882 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 883 } 884 885 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 886 kvm_mmu_reset_context(vcpu); 887 888 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 889 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 890 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 891 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 892 } 893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 894 895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 896 { 897 unsigned long old_cr0 = kvm_read_cr0(vcpu); 898 899 cr0 |= X86_CR0_ET; 900 901 #ifdef CONFIG_X86_64 902 if (cr0 & 0xffffffff00000000UL) 903 return 1; 904 #endif 905 906 cr0 &= ~CR0_RESERVED_BITS; 907 908 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 909 return 1; 910 911 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 912 return 1; 913 914 #ifdef CONFIG_X86_64 915 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 916 (cr0 & X86_CR0_PG)) { 917 int cs_db, cs_l; 918 919 if (!is_pae(vcpu)) 920 return 1; 921 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 922 if (cs_l) 923 return 1; 924 } 925 #endif 926 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 927 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 928 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 929 return 1; 930 931 if (!(cr0 & X86_CR0_PG) && 932 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 933 return 1; 934 935 static_call(kvm_x86_set_cr0)(vcpu, cr0); 936 937 kvm_post_set_cr0(vcpu, old_cr0, cr0); 938 939 return 0; 940 } 941 EXPORT_SYMBOL_GPL(kvm_set_cr0); 942 943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 944 { 945 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 946 } 947 EXPORT_SYMBOL_GPL(kvm_lmsw); 948 949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 950 { 951 if (vcpu->arch.guest_state_protected) 952 return; 953 954 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 955 956 if (vcpu->arch.xcr0 != host_xcr0) 957 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 958 959 if (vcpu->arch.xsaves_enabled && 960 vcpu->arch.ia32_xss != host_xss) 961 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 962 } 963 964 if (static_cpu_has(X86_FEATURE_PKU) && 965 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 966 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 967 vcpu->arch.pkru != vcpu->arch.host_pkru) 968 write_pkru(vcpu->arch.pkru); 969 } 970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 971 972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 973 { 974 if (vcpu->arch.guest_state_protected) 975 return; 976 977 if (static_cpu_has(X86_FEATURE_PKU) && 978 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 979 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 980 vcpu->arch.pkru = rdpkru(); 981 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 982 write_pkru(vcpu->arch.host_pkru); 983 } 984 985 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 986 987 if (vcpu->arch.xcr0 != host_xcr0) 988 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 989 990 if (vcpu->arch.xsaves_enabled && 991 vcpu->arch.ia32_xss != host_xss) 992 wrmsrl(MSR_IA32_XSS, host_xss); 993 } 994 995 } 996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 997 998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 999 { 1000 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 1001 } 1002 1003 #ifdef CONFIG_X86_64 1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1005 { 1006 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 1007 } 1008 #endif 1009 1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1011 { 1012 u64 xcr0 = xcr; 1013 u64 old_xcr0 = vcpu->arch.xcr0; 1014 u64 valid_bits; 1015 1016 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1017 if (index != XCR_XFEATURE_ENABLED_MASK) 1018 return 1; 1019 if (!(xcr0 & XFEATURE_MASK_FP)) 1020 return 1; 1021 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1022 return 1; 1023 1024 /* 1025 * Do not allow the guest to set bits that we do not support 1026 * saving. However, xcr0 bit 0 is always set, even if the 1027 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1028 */ 1029 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1030 if (xcr0 & ~valid_bits) 1031 return 1; 1032 1033 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1034 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1035 return 1; 1036 1037 if (xcr0 & XFEATURE_MASK_AVX512) { 1038 if (!(xcr0 & XFEATURE_MASK_YMM)) 1039 return 1; 1040 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1041 return 1; 1042 } 1043 1044 if ((xcr0 & XFEATURE_MASK_XTILE) && 1045 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1046 return 1; 1047 1048 vcpu->arch.xcr0 = xcr0; 1049 1050 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1051 kvm_update_cpuid_runtime(vcpu); 1052 return 0; 1053 } 1054 1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1056 { 1057 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1058 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1059 kvm_inject_gp(vcpu, 0); 1060 return 1; 1061 } 1062 1063 return kvm_skip_emulated_instruction(vcpu); 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1066 1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1068 { 1069 if (cr4 & cr4_reserved_bits) 1070 return false; 1071 1072 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1073 return false; 1074 1075 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1076 } 1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1078 1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1080 { 1081 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1082 kvm_mmu_reset_context(vcpu); 1083 1084 /* 1085 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1086 * according to the SDM; however, stale prev_roots could be reused 1087 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1088 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1089 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1090 * so fall through. 1091 */ 1092 if (!tdp_enabled && 1093 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1094 kvm_mmu_unload(vcpu); 1095 1096 /* 1097 * The TLB has to be flushed for all PCIDs if any of the following 1098 * (architecturally required) changes happen: 1099 * - CR4.PCIDE is changed from 1 to 0 1100 * - CR4.PGE is toggled 1101 * 1102 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1103 */ 1104 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1105 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1106 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1107 1108 /* 1109 * The TLB has to be flushed for the current PCID if any of the 1110 * following (architecturally required) changes happen: 1111 * - CR4.SMEP is changed from 0 to 1 1112 * - CR4.PAE is toggled 1113 */ 1114 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1115 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1116 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1117 1118 } 1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1120 1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1122 { 1123 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1124 1125 if (!kvm_is_valid_cr4(vcpu, cr4)) 1126 return 1; 1127 1128 if (is_long_mode(vcpu)) { 1129 if (!(cr4 & X86_CR4_PAE)) 1130 return 1; 1131 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1132 return 1; 1133 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1134 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1135 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1136 return 1; 1137 1138 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1139 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1140 return 1; 1141 1142 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1143 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1144 return 1; 1145 } 1146 1147 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1148 1149 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1150 1151 return 0; 1152 } 1153 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1154 1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1156 { 1157 struct kvm_mmu *mmu = vcpu->arch.mmu; 1158 unsigned long roots_to_free = 0; 1159 int i; 1160 1161 /* 1162 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1163 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1164 * also via the emulator. KVM's TDP page tables are not in the scope of 1165 * the invalidation, but the guest's TLB entries need to be flushed as 1166 * the CPU may have cached entries in its TLB for the target PCID. 1167 */ 1168 if (unlikely(tdp_enabled)) { 1169 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1170 return; 1171 } 1172 1173 /* 1174 * If neither the current CR3 nor any of the prev_roots use the given 1175 * PCID, then nothing needs to be done here because a resync will 1176 * happen anyway before switching to any other CR3. 1177 */ 1178 if (kvm_get_active_pcid(vcpu) == pcid) { 1179 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1180 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1181 } 1182 1183 /* 1184 * If PCID is disabled, there is no need to free prev_roots even if the 1185 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1186 * with PCIDE=0. 1187 */ 1188 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1189 return; 1190 1191 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1192 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1193 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1194 1195 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1196 } 1197 1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1199 { 1200 bool skip_tlb_flush = false; 1201 unsigned long pcid = 0; 1202 #ifdef CONFIG_X86_64 1203 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1204 1205 if (pcid_enabled) { 1206 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1207 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1208 pcid = cr3 & X86_CR3_PCID_MASK; 1209 } 1210 #endif 1211 1212 /* PDPTRs are always reloaded for PAE paging. */ 1213 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1214 goto handle_tlb_flush; 1215 1216 /* 1217 * Do not condition the GPA check on long mode, this helper is used to 1218 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1219 * the current vCPU mode is accurate. 1220 */ 1221 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1222 return 1; 1223 1224 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1225 return 1; 1226 1227 if (cr3 != kvm_read_cr3(vcpu)) 1228 kvm_mmu_new_pgd(vcpu, cr3); 1229 1230 vcpu->arch.cr3 = cr3; 1231 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1232 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1233 1234 handle_tlb_flush: 1235 /* 1236 * A load of CR3 that flushes the TLB flushes only the current PCID, 1237 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1238 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1239 * and it's impossible to use a non-zero PCID when PCID is disabled, 1240 * i.e. only PCID=0 can be relevant. 1241 */ 1242 if (!skip_tlb_flush) 1243 kvm_invalidate_pcid(vcpu, pcid); 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1248 1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1250 { 1251 if (cr8 & CR8_RESERVED_BITS) 1252 return 1; 1253 if (lapic_in_kernel(vcpu)) 1254 kvm_lapic_set_tpr(vcpu, cr8); 1255 else 1256 vcpu->arch.cr8 = cr8; 1257 return 0; 1258 } 1259 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1260 1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1262 { 1263 if (lapic_in_kernel(vcpu)) 1264 return kvm_lapic_get_cr8(vcpu); 1265 else 1266 return vcpu->arch.cr8; 1267 } 1268 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1269 1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1271 { 1272 int i; 1273 1274 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1275 for (i = 0; i < KVM_NR_DB_REGS; i++) 1276 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1277 } 1278 } 1279 1280 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1281 { 1282 unsigned long dr7; 1283 1284 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1285 dr7 = vcpu->arch.guest_debug_dr7; 1286 else 1287 dr7 = vcpu->arch.dr7; 1288 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1289 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1290 if (dr7 & DR7_BP_EN_MASK) 1291 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1292 } 1293 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1294 1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1296 { 1297 u64 fixed = DR6_FIXED_1; 1298 1299 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1300 fixed |= DR6_RTM; 1301 1302 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1303 fixed |= DR6_BUS_LOCK; 1304 return fixed; 1305 } 1306 1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1308 { 1309 size_t size = ARRAY_SIZE(vcpu->arch.db); 1310 1311 switch (dr) { 1312 case 0 ... 3: 1313 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1314 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1315 vcpu->arch.eff_db[dr] = val; 1316 break; 1317 case 4: 1318 case 6: 1319 if (!kvm_dr6_valid(val)) 1320 return 1; /* #GP */ 1321 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1322 break; 1323 case 5: 1324 default: /* 7 */ 1325 if (!kvm_dr7_valid(val)) 1326 return 1; /* #GP */ 1327 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1328 kvm_update_dr7(vcpu); 1329 break; 1330 } 1331 1332 return 0; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_set_dr); 1335 1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1337 { 1338 size_t size = ARRAY_SIZE(vcpu->arch.db); 1339 1340 switch (dr) { 1341 case 0 ... 3: 1342 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1343 break; 1344 case 4: 1345 case 6: 1346 *val = vcpu->arch.dr6; 1347 break; 1348 case 5: 1349 default: /* 7 */ 1350 *val = vcpu->arch.dr7; 1351 break; 1352 } 1353 } 1354 EXPORT_SYMBOL_GPL(kvm_get_dr); 1355 1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1357 { 1358 u32 ecx = kvm_rcx_read(vcpu); 1359 u64 data; 1360 1361 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1362 kvm_inject_gp(vcpu, 0); 1363 return 1; 1364 } 1365 1366 kvm_rax_write(vcpu, (u32)data); 1367 kvm_rdx_write(vcpu, data >> 32); 1368 return kvm_skip_emulated_instruction(vcpu); 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1371 1372 /* 1373 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1374 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1375 * 1376 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1377 * extract the supported MSRs from the related const lists. 1378 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1379 * capabilities of the host cpu. This capabilities test skips MSRs that are 1380 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1381 * may depend on host virtualization features rather than host cpu features. 1382 */ 1383 1384 static const u32 msrs_to_save_all[] = { 1385 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1386 MSR_STAR, 1387 #ifdef CONFIG_X86_64 1388 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1389 #endif 1390 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1391 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1392 MSR_IA32_SPEC_CTRL, 1393 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1394 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1395 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1396 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1397 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1398 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1399 MSR_IA32_UMWAIT_CONTROL, 1400 1401 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1402 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1403 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1404 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1405 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1406 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1407 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1408 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1409 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1410 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1411 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1412 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1413 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1414 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1415 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1416 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1417 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1418 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1419 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1420 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1421 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1422 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1423 1424 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1425 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1426 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1427 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1428 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1429 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1430 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1431 }; 1432 1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1434 static unsigned num_msrs_to_save; 1435 1436 static const u32 emulated_msrs_all[] = { 1437 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1438 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1439 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1440 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1441 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1442 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1443 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1444 HV_X64_MSR_RESET, 1445 HV_X64_MSR_VP_INDEX, 1446 HV_X64_MSR_VP_RUNTIME, 1447 HV_X64_MSR_SCONTROL, 1448 HV_X64_MSR_STIMER0_CONFIG, 1449 HV_X64_MSR_VP_ASSIST_PAGE, 1450 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1451 HV_X64_MSR_TSC_EMULATION_STATUS, 1452 HV_X64_MSR_SYNDBG_OPTIONS, 1453 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1454 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1455 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1456 1457 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1458 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1459 1460 MSR_IA32_TSC_ADJUST, 1461 MSR_IA32_TSC_DEADLINE, 1462 MSR_IA32_ARCH_CAPABILITIES, 1463 MSR_IA32_PERF_CAPABILITIES, 1464 MSR_IA32_MISC_ENABLE, 1465 MSR_IA32_MCG_STATUS, 1466 MSR_IA32_MCG_CTL, 1467 MSR_IA32_MCG_EXT_CTL, 1468 MSR_IA32_SMBASE, 1469 MSR_SMI_COUNT, 1470 MSR_PLATFORM_INFO, 1471 MSR_MISC_FEATURES_ENABLES, 1472 MSR_AMD64_VIRT_SPEC_CTRL, 1473 MSR_AMD64_TSC_RATIO, 1474 MSR_IA32_POWER_CTL, 1475 MSR_IA32_UCODE_REV, 1476 1477 /* 1478 * The following list leaves out MSRs whose values are determined 1479 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1480 * We always support the "true" VMX control MSRs, even if the host 1481 * processor does not, so I am putting these registers here rather 1482 * than in msrs_to_save_all. 1483 */ 1484 MSR_IA32_VMX_BASIC, 1485 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1486 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1487 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1488 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1489 MSR_IA32_VMX_MISC, 1490 MSR_IA32_VMX_CR0_FIXED0, 1491 MSR_IA32_VMX_CR4_FIXED0, 1492 MSR_IA32_VMX_VMCS_ENUM, 1493 MSR_IA32_VMX_PROCBASED_CTLS2, 1494 MSR_IA32_VMX_EPT_VPID_CAP, 1495 MSR_IA32_VMX_VMFUNC, 1496 1497 MSR_K7_HWCR, 1498 MSR_KVM_POLL_CONTROL, 1499 }; 1500 1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1502 static unsigned num_emulated_msrs; 1503 1504 /* 1505 * List of msr numbers which are used to expose MSR-based features that 1506 * can be used by a hypervisor to validate requested CPU features. 1507 */ 1508 static const u32 msr_based_features_all[] = { 1509 MSR_IA32_VMX_BASIC, 1510 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1511 MSR_IA32_VMX_PINBASED_CTLS, 1512 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1513 MSR_IA32_VMX_PROCBASED_CTLS, 1514 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1515 MSR_IA32_VMX_EXIT_CTLS, 1516 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1517 MSR_IA32_VMX_ENTRY_CTLS, 1518 MSR_IA32_VMX_MISC, 1519 MSR_IA32_VMX_CR0_FIXED0, 1520 MSR_IA32_VMX_CR0_FIXED1, 1521 MSR_IA32_VMX_CR4_FIXED0, 1522 MSR_IA32_VMX_CR4_FIXED1, 1523 MSR_IA32_VMX_VMCS_ENUM, 1524 MSR_IA32_VMX_PROCBASED_CTLS2, 1525 MSR_IA32_VMX_EPT_VPID_CAP, 1526 MSR_IA32_VMX_VMFUNC, 1527 1528 MSR_F10H_DECFG, 1529 MSR_IA32_UCODE_REV, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 }; 1533 1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1535 static unsigned int num_msr_based_features; 1536 1537 static u64 kvm_get_arch_capabilities(void) 1538 { 1539 u64 data = 0; 1540 1541 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1542 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1543 1544 /* 1545 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1546 * the nested hypervisor runs with NX huge pages. If it is not, 1547 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1548 * L1 guests, so it need not worry about its own (L2) guests. 1549 */ 1550 data |= ARCH_CAP_PSCHANGE_MC_NO; 1551 1552 /* 1553 * If we're doing cache flushes (either "always" or "cond") 1554 * we will do one whenever the guest does a vmlaunch/vmresume. 1555 * If an outer hypervisor is doing the cache flush for us 1556 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1557 * capability to the guest too, and if EPT is disabled we're not 1558 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1559 * require a nested hypervisor to do a flush of its own. 1560 */ 1561 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1562 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1563 1564 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1565 data |= ARCH_CAP_RDCL_NO; 1566 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1567 data |= ARCH_CAP_SSB_NO; 1568 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1569 data |= ARCH_CAP_MDS_NO; 1570 1571 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1572 /* 1573 * If RTM=0 because the kernel has disabled TSX, the host might 1574 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1575 * and therefore knows that there cannot be TAA) but keep 1576 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1577 * and we want to allow migrating those guests to tsx=off hosts. 1578 */ 1579 data &= ~ARCH_CAP_TAA_NO; 1580 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1581 data |= ARCH_CAP_TAA_NO; 1582 } else { 1583 /* 1584 * Nothing to do here; we emulate TSX_CTRL if present on the 1585 * host so the guest can choose between disabling TSX or 1586 * using VERW to clear CPU buffers. 1587 */ 1588 } 1589 1590 return data; 1591 } 1592 1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1594 { 1595 switch (msr->index) { 1596 case MSR_IA32_ARCH_CAPABILITIES: 1597 msr->data = kvm_get_arch_capabilities(); 1598 break; 1599 case MSR_IA32_UCODE_REV: 1600 rdmsrl_safe(msr->index, &msr->data); 1601 break; 1602 default: 1603 return static_call(kvm_x86_get_msr_feature)(msr); 1604 } 1605 return 0; 1606 } 1607 1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1609 { 1610 struct kvm_msr_entry msr; 1611 int r; 1612 1613 msr.index = index; 1614 r = kvm_get_msr_feature(&msr); 1615 1616 if (r == KVM_MSR_RET_INVALID) { 1617 /* Unconditionally clear the output for simplicity */ 1618 *data = 0; 1619 if (kvm_msr_ignored_check(index, 0, false)) 1620 r = 0; 1621 } 1622 1623 if (r) 1624 return r; 1625 1626 *data = msr.data; 1627 1628 return 0; 1629 } 1630 1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1632 { 1633 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1634 return false; 1635 1636 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1637 return false; 1638 1639 if (efer & (EFER_LME | EFER_LMA) && 1640 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1641 return false; 1642 1643 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1644 return false; 1645 1646 return true; 1647 1648 } 1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1650 { 1651 if (efer & efer_reserved_bits) 1652 return false; 1653 1654 return __kvm_valid_efer(vcpu, efer); 1655 } 1656 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1657 1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1659 { 1660 u64 old_efer = vcpu->arch.efer; 1661 u64 efer = msr_info->data; 1662 int r; 1663 1664 if (efer & efer_reserved_bits) 1665 return 1; 1666 1667 if (!msr_info->host_initiated) { 1668 if (!__kvm_valid_efer(vcpu, efer)) 1669 return 1; 1670 1671 if (is_paging(vcpu) && 1672 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1673 return 1; 1674 } 1675 1676 efer &= ~EFER_LMA; 1677 efer |= vcpu->arch.efer & EFER_LMA; 1678 1679 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1680 if (r) { 1681 WARN_ON(r > 0); 1682 return r; 1683 } 1684 1685 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1686 kvm_mmu_reset_context(vcpu); 1687 1688 return 0; 1689 } 1690 1691 void kvm_enable_efer_bits(u64 mask) 1692 { 1693 efer_reserved_bits &= ~mask; 1694 } 1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1696 1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1698 { 1699 struct kvm_x86_msr_filter *msr_filter; 1700 struct msr_bitmap_range *ranges; 1701 struct kvm *kvm = vcpu->kvm; 1702 bool allowed; 1703 int idx; 1704 u32 i; 1705 1706 /* x2APIC MSRs do not support filtering. */ 1707 if (index >= 0x800 && index <= 0x8ff) 1708 return true; 1709 1710 idx = srcu_read_lock(&kvm->srcu); 1711 1712 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1713 if (!msr_filter) { 1714 allowed = true; 1715 goto out; 1716 } 1717 1718 allowed = msr_filter->default_allow; 1719 ranges = msr_filter->ranges; 1720 1721 for (i = 0; i < msr_filter->count; i++) { 1722 u32 start = ranges[i].base; 1723 u32 end = start + ranges[i].nmsrs; 1724 u32 flags = ranges[i].flags; 1725 unsigned long *bitmap = ranges[i].bitmap; 1726 1727 if ((index >= start) && (index < end) && (flags & type)) { 1728 allowed = !!test_bit(index - start, bitmap); 1729 break; 1730 } 1731 } 1732 1733 out: 1734 srcu_read_unlock(&kvm->srcu, idx); 1735 1736 return allowed; 1737 } 1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1739 1740 /* 1741 * Write @data into the MSR specified by @index. Select MSR specific fault 1742 * checks are bypassed if @host_initiated is %true. 1743 * Returns 0 on success, non-0 otherwise. 1744 * Assumes vcpu_load() was already called. 1745 */ 1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1747 bool host_initiated) 1748 { 1749 struct msr_data msr; 1750 1751 switch (index) { 1752 case MSR_FS_BASE: 1753 case MSR_GS_BASE: 1754 case MSR_KERNEL_GS_BASE: 1755 case MSR_CSTAR: 1756 case MSR_LSTAR: 1757 if (is_noncanonical_address(data, vcpu)) 1758 return 1; 1759 break; 1760 case MSR_IA32_SYSENTER_EIP: 1761 case MSR_IA32_SYSENTER_ESP: 1762 /* 1763 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1764 * non-canonical address is written on Intel but not on 1765 * AMD (which ignores the top 32-bits, because it does 1766 * not implement 64-bit SYSENTER). 1767 * 1768 * 64-bit code should hence be able to write a non-canonical 1769 * value on AMD. Making the address canonical ensures that 1770 * vmentry does not fail on Intel after writing a non-canonical 1771 * value, and that something deterministic happens if the guest 1772 * invokes 64-bit SYSENTER. 1773 */ 1774 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1775 break; 1776 case MSR_TSC_AUX: 1777 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1778 return 1; 1779 1780 if (!host_initiated && 1781 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1782 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1783 return 1; 1784 1785 /* 1786 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1787 * incomplete and conflicting architectural behavior. Current 1788 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1789 * reserved and always read as zeros. Enforce Intel's reserved 1790 * bits check if and only if the guest CPU is Intel, and clear 1791 * the bits in all other cases. This ensures cross-vendor 1792 * migration will provide consistent behavior for the guest. 1793 */ 1794 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1795 return 1; 1796 1797 data = (u32)data; 1798 break; 1799 } 1800 1801 msr.data = data; 1802 msr.index = index; 1803 msr.host_initiated = host_initiated; 1804 1805 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1806 } 1807 1808 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1809 u32 index, u64 data, bool host_initiated) 1810 { 1811 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1812 1813 if (ret == KVM_MSR_RET_INVALID) 1814 if (kvm_msr_ignored_check(index, data, true)) 1815 ret = 0; 1816 1817 return ret; 1818 } 1819 1820 /* 1821 * Read the MSR specified by @index into @data. Select MSR specific fault 1822 * checks are bypassed if @host_initiated is %true. 1823 * Returns 0 on success, non-0 otherwise. 1824 * Assumes vcpu_load() was already called. 1825 */ 1826 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1827 bool host_initiated) 1828 { 1829 struct msr_data msr; 1830 int ret; 1831 1832 switch (index) { 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 break; 1842 } 1843 1844 msr.index = index; 1845 msr.host_initiated = host_initiated; 1846 1847 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1848 if (!ret) 1849 *data = msr.data; 1850 return ret; 1851 } 1852 1853 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1854 u32 index, u64 *data, bool host_initiated) 1855 { 1856 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1857 1858 if (ret == KVM_MSR_RET_INVALID) { 1859 /* Unconditionally clear *data for simplicity */ 1860 *data = 0; 1861 if (kvm_msr_ignored_check(index, 0, false)) 1862 ret = 0; 1863 } 1864 1865 return ret; 1866 } 1867 1868 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1869 { 1870 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1871 return KVM_MSR_RET_FILTERED; 1872 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1873 } 1874 1875 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1876 { 1877 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1878 return KVM_MSR_RET_FILTERED; 1879 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1880 } 1881 1882 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1883 { 1884 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1885 } 1886 EXPORT_SYMBOL_GPL(kvm_get_msr); 1887 1888 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1889 { 1890 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1891 } 1892 EXPORT_SYMBOL_GPL(kvm_set_msr); 1893 1894 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1895 { 1896 if (!vcpu->run->msr.error) { 1897 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1898 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1899 } 1900 } 1901 1902 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1903 { 1904 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1905 } 1906 1907 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1908 { 1909 complete_userspace_rdmsr(vcpu); 1910 return complete_emulated_msr_access(vcpu); 1911 } 1912 1913 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1914 { 1915 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1916 } 1917 1918 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1919 { 1920 complete_userspace_rdmsr(vcpu); 1921 return complete_fast_msr_access(vcpu); 1922 } 1923 1924 static u64 kvm_msr_reason(int r) 1925 { 1926 switch (r) { 1927 case KVM_MSR_RET_INVALID: 1928 return KVM_MSR_EXIT_REASON_UNKNOWN; 1929 case KVM_MSR_RET_FILTERED: 1930 return KVM_MSR_EXIT_REASON_FILTER; 1931 default: 1932 return KVM_MSR_EXIT_REASON_INVAL; 1933 } 1934 } 1935 1936 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1937 u32 exit_reason, u64 data, 1938 int (*completion)(struct kvm_vcpu *vcpu), 1939 int r) 1940 { 1941 u64 msr_reason = kvm_msr_reason(r); 1942 1943 /* Check if the user wanted to know about this MSR fault */ 1944 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1945 return 0; 1946 1947 vcpu->run->exit_reason = exit_reason; 1948 vcpu->run->msr.error = 0; 1949 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1950 vcpu->run->msr.reason = msr_reason; 1951 vcpu->run->msr.index = index; 1952 vcpu->run->msr.data = data; 1953 vcpu->arch.complete_userspace_io = completion; 1954 1955 return 1; 1956 } 1957 1958 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1959 { 1960 u32 ecx = kvm_rcx_read(vcpu); 1961 u64 data; 1962 int r; 1963 1964 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 1965 1966 if (!r) { 1967 trace_kvm_msr_read(ecx, data); 1968 1969 kvm_rax_write(vcpu, data & -1u); 1970 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1971 } else { 1972 /* MSR read failed? See if we should ask user space */ 1973 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 1974 complete_fast_rdmsr, r)) 1975 return 0; 1976 trace_kvm_msr_read_ex(ecx); 1977 } 1978 1979 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1980 } 1981 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1982 1983 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1984 { 1985 u32 ecx = kvm_rcx_read(vcpu); 1986 u64 data = kvm_read_edx_eax(vcpu); 1987 int r; 1988 1989 r = kvm_set_msr_with_filter(vcpu, ecx, data); 1990 1991 if (!r) { 1992 trace_kvm_msr_write(ecx, data); 1993 } else { 1994 /* MSR write failed? See if we should ask user space */ 1995 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 1996 complete_fast_msr_access, r)) 1997 return 0; 1998 /* Signal all other negative errors to userspace */ 1999 if (r < 0) 2000 return r; 2001 trace_kvm_msr_write_ex(ecx, data); 2002 } 2003 2004 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2005 } 2006 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2007 2008 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2009 { 2010 return kvm_skip_emulated_instruction(vcpu); 2011 } 2012 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2013 2014 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2015 { 2016 /* Treat an INVD instruction as a NOP and just skip it. */ 2017 return kvm_emulate_as_nop(vcpu); 2018 } 2019 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2020 2021 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2022 { 2023 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 2024 return kvm_emulate_as_nop(vcpu); 2025 } 2026 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2027 2028 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2029 { 2030 kvm_queue_exception(vcpu, UD_VECTOR); 2031 return 1; 2032 } 2033 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2034 2035 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2036 { 2037 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 2038 return kvm_emulate_as_nop(vcpu); 2039 } 2040 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2041 2042 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2043 { 2044 xfer_to_guest_mode_prepare(); 2045 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2046 xfer_to_guest_mode_work_pending(); 2047 } 2048 2049 /* 2050 * The fast path for frequent and performance sensitive wrmsr emulation, 2051 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2052 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2053 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2054 * other cases which must be called after interrupts are enabled on the host. 2055 */ 2056 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2057 { 2058 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2059 return 1; 2060 2061 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2062 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2063 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2064 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2065 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2066 2067 return 1; 2068 } 2069 2070 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2071 { 2072 if (!kvm_can_use_hv_timer(vcpu)) 2073 return 1; 2074 2075 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2076 return 0; 2077 } 2078 2079 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2080 { 2081 u32 msr = kvm_rcx_read(vcpu); 2082 u64 data; 2083 fastpath_t ret = EXIT_FASTPATH_NONE; 2084 2085 switch (msr) { 2086 case APIC_BASE_MSR + (APIC_ICR >> 4): 2087 data = kvm_read_edx_eax(vcpu); 2088 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2089 kvm_skip_emulated_instruction(vcpu); 2090 ret = EXIT_FASTPATH_EXIT_HANDLED; 2091 } 2092 break; 2093 case MSR_IA32_TSC_DEADLINE: 2094 data = kvm_read_edx_eax(vcpu); 2095 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2096 kvm_skip_emulated_instruction(vcpu); 2097 ret = EXIT_FASTPATH_REENTER_GUEST; 2098 } 2099 break; 2100 default: 2101 break; 2102 } 2103 2104 if (ret != EXIT_FASTPATH_NONE) 2105 trace_kvm_msr_write(msr, data); 2106 2107 return ret; 2108 } 2109 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2110 2111 /* 2112 * Adapt set_msr() to msr_io()'s calling convention 2113 */ 2114 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2115 { 2116 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2117 } 2118 2119 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2120 { 2121 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2122 } 2123 2124 #ifdef CONFIG_X86_64 2125 struct pvclock_clock { 2126 int vclock_mode; 2127 u64 cycle_last; 2128 u64 mask; 2129 u32 mult; 2130 u32 shift; 2131 u64 base_cycles; 2132 u64 offset; 2133 }; 2134 2135 struct pvclock_gtod_data { 2136 seqcount_t seq; 2137 2138 struct pvclock_clock clock; /* extract of a clocksource struct */ 2139 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2140 2141 ktime_t offs_boot; 2142 u64 wall_time_sec; 2143 }; 2144 2145 static struct pvclock_gtod_data pvclock_gtod_data; 2146 2147 static void update_pvclock_gtod(struct timekeeper *tk) 2148 { 2149 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2150 2151 write_seqcount_begin(&vdata->seq); 2152 2153 /* copy pvclock gtod data */ 2154 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2155 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2156 vdata->clock.mask = tk->tkr_mono.mask; 2157 vdata->clock.mult = tk->tkr_mono.mult; 2158 vdata->clock.shift = tk->tkr_mono.shift; 2159 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2160 vdata->clock.offset = tk->tkr_mono.base; 2161 2162 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2163 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2164 vdata->raw_clock.mask = tk->tkr_raw.mask; 2165 vdata->raw_clock.mult = tk->tkr_raw.mult; 2166 vdata->raw_clock.shift = tk->tkr_raw.shift; 2167 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2168 vdata->raw_clock.offset = tk->tkr_raw.base; 2169 2170 vdata->wall_time_sec = tk->xtime_sec; 2171 2172 vdata->offs_boot = tk->offs_boot; 2173 2174 write_seqcount_end(&vdata->seq); 2175 } 2176 2177 static s64 get_kvmclock_base_ns(void) 2178 { 2179 /* Count up from boot time, but with the frequency of the raw clock. */ 2180 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2181 } 2182 #else 2183 static s64 get_kvmclock_base_ns(void) 2184 { 2185 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2186 return ktime_get_boottime_ns(); 2187 } 2188 #endif 2189 2190 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2191 { 2192 int version; 2193 int r; 2194 struct pvclock_wall_clock wc; 2195 u32 wc_sec_hi; 2196 u64 wall_nsec; 2197 2198 if (!wall_clock) 2199 return; 2200 2201 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2202 if (r) 2203 return; 2204 2205 if (version & 1) 2206 ++version; /* first time write, random junk */ 2207 2208 ++version; 2209 2210 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2211 return; 2212 2213 /* 2214 * The guest calculates current wall clock time by adding 2215 * system time (updated by kvm_guest_time_update below) to the 2216 * wall clock specified here. We do the reverse here. 2217 */ 2218 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2219 2220 wc.nsec = do_div(wall_nsec, 1000000000); 2221 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2222 wc.version = version; 2223 2224 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2225 2226 if (sec_hi_ofs) { 2227 wc_sec_hi = wall_nsec >> 32; 2228 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2229 &wc_sec_hi, sizeof(wc_sec_hi)); 2230 } 2231 2232 version++; 2233 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2234 } 2235 2236 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2237 bool old_msr, bool host_initiated) 2238 { 2239 struct kvm_arch *ka = &vcpu->kvm->arch; 2240 2241 if (vcpu->vcpu_id == 0 && !host_initiated) { 2242 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2243 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2244 2245 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2246 } 2247 2248 vcpu->arch.time = system_time; 2249 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2250 2251 /* we verify if the enable bit is set... */ 2252 vcpu->arch.pv_time_enabled = false; 2253 if (!(system_time & 1)) 2254 return; 2255 2256 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2257 &vcpu->arch.pv_time, system_time & ~1ULL, 2258 sizeof(struct pvclock_vcpu_time_info))) 2259 vcpu->arch.pv_time_enabled = true; 2260 2261 return; 2262 } 2263 2264 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2265 { 2266 do_shl32_div32(dividend, divisor); 2267 return dividend; 2268 } 2269 2270 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2271 s8 *pshift, u32 *pmultiplier) 2272 { 2273 uint64_t scaled64; 2274 int32_t shift = 0; 2275 uint64_t tps64; 2276 uint32_t tps32; 2277 2278 tps64 = base_hz; 2279 scaled64 = scaled_hz; 2280 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2281 tps64 >>= 1; 2282 shift--; 2283 } 2284 2285 tps32 = (uint32_t)tps64; 2286 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2287 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2288 scaled64 >>= 1; 2289 else 2290 tps32 <<= 1; 2291 shift++; 2292 } 2293 2294 *pshift = shift; 2295 *pmultiplier = div_frac(scaled64, tps32); 2296 } 2297 2298 #ifdef CONFIG_X86_64 2299 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2300 #endif 2301 2302 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2303 static unsigned long max_tsc_khz; 2304 2305 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2306 { 2307 u64 v = (u64)khz * (1000000 + ppm); 2308 do_div(v, 1000000); 2309 return v; 2310 } 2311 2312 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2313 2314 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2315 { 2316 u64 ratio; 2317 2318 /* Guest TSC same frequency as host TSC? */ 2319 if (!scale) { 2320 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2321 return 0; 2322 } 2323 2324 /* TSC scaling supported? */ 2325 if (!kvm_has_tsc_control) { 2326 if (user_tsc_khz > tsc_khz) { 2327 vcpu->arch.tsc_catchup = 1; 2328 vcpu->arch.tsc_always_catchup = 1; 2329 return 0; 2330 } else { 2331 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2332 return -1; 2333 } 2334 } 2335 2336 /* TSC scaling required - calculate ratio */ 2337 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2338 user_tsc_khz, tsc_khz); 2339 2340 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2341 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2342 user_tsc_khz); 2343 return -1; 2344 } 2345 2346 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2347 return 0; 2348 } 2349 2350 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2351 { 2352 u32 thresh_lo, thresh_hi; 2353 int use_scaling = 0; 2354 2355 /* tsc_khz can be zero if TSC calibration fails */ 2356 if (user_tsc_khz == 0) { 2357 /* set tsc_scaling_ratio to a safe value */ 2358 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2359 return -1; 2360 } 2361 2362 /* Compute a scale to convert nanoseconds in TSC cycles */ 2363 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2364 &vcpu->arch.virtual_tsc_shift, 2365 &vcpu->arch.virtual_tsc_mult); 2366 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2367 2368 /* 2369 * Compute the variation in TSC rate which is acceptable 2370 * within the range of tolerance and decide if the 2371 * rate being applied is within that bounds of the hardware 2372 * rate. If so, no scaling or compensation need be done. 2373 */ 2374 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2375 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2376 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2377 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2378 use_scaling = 1; 2379 } 2380 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2381 } 2382 2383 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2384 { 2385 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2386 vcpu->arch.virtual_tsc_mult, 2387 vcpu->arch.virtual_tsc_shift); 2388 tsc += vcpu->arch.this_tsc_write; 2389 return tsc; 2390 } 2391 2392 #ifdef CONFIG_X86_64 2393 static inline int gtod_is_based_on_tsc(int mode) 2394 { 2395 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2396 } 2397 #endif 2398 2399 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2400 { 2401 #ifdef CONFIG_X86_64 2402 bool vcpus_matched; 2403 struct kvm_arch *ka = &vcpu->kvm->arch; 2404 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2405 2406 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2407 atomic_read(&vcpu->kvm->online_vcpus)); 2408 2409 /* 2410 * Once the masterclock is enabled, always perform request in 2411 * order to update it. 2412 * 2413 * In order to enable masterclock, the host clocksource must be TSC 2414 * and the vcpus need to have matched TSCs. When that happens, 2415 * perform request to enable masterclock. 2416 */ 2417 if (ka->use_master_clock || 2418 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2419 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2420 2421 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2422 atomic_read(&vcpu->kvm->online_vcpus), 2423 ka->use_master_clock, gtod->clock.vclock_mode); 2424 #endif 2425 } 2426 2427 /* 2428 * Multiply tsc by a fixed point number represented by ratio. 2429 * 2430 * The most significant 64-N bits (mult) of ratio represent the 2431 * integral part of the fixed point number; the remaining N bits 2432 * (frac) represent the fractional part, ie. ratio represents a fixed 2433 * point number (mult + frac * 2^(-N)). 2434 * 2435 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2436 */ 2437 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2438 { 2439 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2440 } 2441 2442 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2443 { 2444 u64 _tsc = tsc; 2445 2446 if (ratio != kvm_default_tsc_scaling_ratio) 2447 _tsc = __scale_tsc(ratio, tsc); 2448 2449 return _tsc; 2450 } 2451 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2452 2453 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2454 { 2455 u64 tsc; 2456 2457 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2458 2459 return target_tsc - tsc; 2460 } 2461 2462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2463 { 2464 return vcpu->arch.l1_tsc_offset + 2465 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2466 } 2467 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2468 2469 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2470 { 2471 u64 nested_offset; 2472 2473 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2474 nested_offset = l1_offset; 2475 else 2476 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2477 kvm_tsc_scaling_ratio_frac_bits); 2478 2479 nested_offset += l2_offset; 2480 return nested_offset; 2481 } 2482 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2483 2484 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2485 { 2486 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2487 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2488 kvm_tsc_scaling_ratio_frac_bits); 2489 2490 return l1_multiplier; 2491 } 2492 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2493 2494 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2495 { 2496 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2497 vcpu->arch.l1_tsc_offset, 2498 l1_offset); 2499 2500 vcpu->arch.l1_tsc_offset = l1_offset; 2501 2502 /* 2503 * If we are here because L1 chose not to trap WRMSR to TSC then 2504 * according to the spec this should set L1's TSC (as opposed to 2505 * setting L1's offset for L2). 2506 */ 2507 if (is_guest_mode(vcpu)) 2508 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2509 l1_offset, 2510 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2511 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2512 else 2513 vcpu->arch.tsc_offset = l1_offset; 2514 2515 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2516 } 2517 2518 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2519 { 2520 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2521 2522 /* Userspace is changing the multiplier while L2 is active */ 2523 if (is_guest_mode(vcpu)) 2524 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2525 l1_multiplier, 2526 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2527 else 2528 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2529 2530 if (kvm_has_tsc_control) 2531 static_call(kvm_x86_write_tsc_multiplier)( 2532 vcpu, vcpu->arch.tsc_scaling_ratio); 2533 } 2534 2535 static inline bool kvm_check_tsc_unstable(void) 2536 { 2537 #ifdef CONFIG_X86_64 2538 /* 2539 * TSC is marked unstable when we're running on Hyper-V, 2540 * 'TSC page' clocksource is good. 2541 */ 2542 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2543 return false; 2544 #endif 2545 return check_tsc_unstable(); 2546 } 2547 2548 /* 2549 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2550 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2551 * participates in. 2552 */ 2553 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2554 u64 ns, bool matched) 2555 { 2556 struct kvm *kvm = vcpu->kvm; 2557 2558 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2559 2560 /* 2561 * We also track th most recent recorded KHZ, write and time to 2562 * allow the matching interval to be extended at each write. 2563 */ 2564 kvm->arch.last_tsc_nsec = ns; 2565 kvm->arch.last_tsc_write = tsc; 2566 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2567 kvm->arch.last_tsc_offset = offset; 2568 2569 vcpu->arch.last_guest_tsc = tsc; 2570 2571 kvm_vcpu_write_tsc_offset(vcpu, offset); 2572 2573 if (!matched) { 2574 /* 2575 * We split periods of matched TSC writes into generations. 2576 * For each generation, we track the original measured 2577 * nanosecond time, offset, and write, so if TSCs are in 2578 * sync, we can match exact offset, and if not, we can match 2579 * exact software computation in compute_guest_tsc() 2580 * 2581 * These values are tracked in kvm->arch.cur_xxx variables. 2582 */ 2583 kvm->arch.cur_tsc_generation++; 2584 kvm->arch.cur_tsc_nsec = ns; 2585 kvm->arch.cur_tsc_write = tsc; 2586 kvm->arch.cur_tsc_offset = offset; 2587 kvm->arch.nr_vcpus_matched_tsc = 0; 2588 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2589 kvm->arch.nr_vcpus_matched_tsc++; 2590 } 2591 2592 /* Keep track of which generation this VCPU has synchronized to */ 2593 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2594 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2595 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2596 2597 kvm_track_tsc_matching(vcpu); 2598 } 2599 2600 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2601 { 2602 struct kvm *kvm = vcpu->kvm; 2603 u64 offset, ns, elapsed; 2604 unsigned long flags; 2605 bool matched = false; 2606 bool synchronizing = false; 2607 2608 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2609 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2610 ns = get_kvmclock_base_ns(); 2611 elapsed = ns - kvm->arch.last_tsc_nsec; 2612 2613 if (vcpu->arch.virtual_tsc_khz) { 2614 if (data == 0) { 2615 /* 2616 * detection of vcpu initialization -- need to sync 2617 * with other vCPUs. This particularly helps to keep 2618 * kvm_clock stable after CPU hotplug 2619 */ 2620 synchronizing = true; 2621 } else { 2622 u64 tsc_exp = kvm->arch.last_tsc_write + 2623 nsec_to_cycles(vcpu, elapsed); 2624 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2625 /* 2626 * Special case: TSC write with a small delta (1 second) 2627 * of virtual cycle time against real time is 2628 * interpreted as an attempt to synchronize the CPU. 2629 */ 2630 synchronizing = data < tsc_exp + tsc_hz && 2631 data + tsc_hz > tsc_exp; 2632 } 2633 } 2634 2635 /* 2636 * For a reliable TSC, we can match TSC offsets, and for an unstable 2637 * TSC, we add elapsed time in this computation. We could let the 2638 * compensation code attempt to catch up if we fall behind, but 2639 * it's better to try to match offsets from the beginning. 2640 */ 2641 if (synchronizing && 2642 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2643 if (!kvm_check_tsc_unstable()) { 2644 offset = kvm->arch.cur_tsc_offset; 2645 } else { 2646 u64 delta = nsec_to_cycles(vcpu, elapsed); 2647 data += delta; 2648 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2649 } 2650 matched = true; 2651 } 2652 2653 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2654 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2655 } 2656 2657 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2658 s64 adjustment) 2659 { 2660 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2661 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2662 } 2663 2664 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2665 { 2666 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2667 WARN_ON(adjustment < 0); 2668 adjustment = kvm_scale_tsc((u64) adjustment, 2669 vcpu->arch.l1_tsc_scaling_ratio); 2670 adjust_tsc_offset_guest(vcpu, adjustment); 2671 } 2672 2673 #ifdef CONFIG_X86_64 2674 2675 static u64 read_tsc(void) 2676 { 2677 u64 ret = (u64)rdtsc_ordered(); 2678 u64 last = pvclock_gtod_data.clock.cycle_last; 2679 2680 if (likely(ret >= last)) 2681 return ret; 2682 2683 /* 2684 * GCC likes to generate cmov here, but this branch is extremely 2685 * predictable (it's just a function of time and the likely is 2686 * very likely) and there's a data dependence, so force GCC 2687 * to generate a branch instead. I don't barrier() because 2688 * we don't actually need a barrier, and if this function 2689 * ever gets inlined it will generate worse code. 2690 */ 2691 asm volatile (""); 2692 return last; 2693 } 2694 2695 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2696 int *mode) 2697 { 2698 long v; 2699 u64 tsc_pg_val; 2700 2701 switch (clock->vclock_mode) { 2702 case VDSO_CLOCKMODE_HVCLOCK: 2703 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2704 tsc_timestamp); 2705 if (tsc_pg_val != U64_MAX) { 2706 /* TSC page valid */ 2707 *mode = VDSO_CLOCKMODE_HVCLOCK; 2708 v = (tsc_pg_val - clock->cycle_last) & 2709 clock->mask; 2710 } else { 2711 /* TSC page invalid */ 2712 *mode = VDSO_CLOCKMODE_NONE; 2713 } 2714 break; 2715 case VDSO_CLOCKMODE_TSC: 2716 *mode = VDSO_CLOCKMODE_TSC; 2717 *tsc_timestamp = read_tsc(); 2718 v = (*tsc_timestamp - clock->cycle_last) & 2719 clock->mask; 2720 break; 2721 default: 2722 *mode = VDSO_CLOCKMODE_NONE; 2723 } 2724 2725 if (*mode == VDSO_CLOCKMODE_NONE) 2726 *tsc_timestamp = v = 0; 2727 2728 return v * clock->mult; 2729 } 2730 2731 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2732 { 2733 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2734 unsigned long seq; 2735 int mode; 2736 u64 ns; 2737 2738 do { 2739 seq = read_seqcount_begin(>od->seq); 2740 ns = gtod->raw_clock.base_cycles; 2741 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2742 ns >>= gtod->raw_clock.shift; 2743 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2744 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2745 *t = ns; 2746 2747 return mode; 2748 } 2749 2750 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2751 { 2752 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2753 unsigned long seq; 2754 int mode; 2755 u64 ns; 2756 2757 do { 2758 seq = read_seqcount_begin(>od->seq); 2759 ts->tv_sec = gtod->wall_time_sec; 2760 ns = gtod->clock.base_cycles; 2761 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2762 ns >>= gtod->clock.shift; 2763 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2764 2765 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2766 ts->tv_nsec = ns; 2767 2768 return mode; 2769 } 2770 2771 /* returns true if host is using TSC based clocksource */ 2772 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2773 { 2774 /* checked again under seqlock below */ 2775 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2776 return false; 2777 2778 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2779 tsc_timestamp)); 2780 } 2781 2782 /* returns true if host is using TSC based clocksource */ 2783 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2784 u64 *tsc_timestamp) 2785 { 2786 /* checked again under seqlock below */ 2787 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2788 return false; 2789 2790 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2791 } 2792 #endif 2793 2794 /* 2795 * 2796 * Assuming a stable TSC across physical CPUS, and a stable TSC 2797 * across virtual CPUs, the following condition is possible. 2798 * Each numbered line represents an event visible to both 2799 * CPUs at the next numbered event. 2800 * 2801 * "timespecX" represents host monotonic time. "tscX" represents 2802 * RDTSC value. 2803 * 2804 * VCPU0 on CPU0 | VCPU1 on CPU1 2805 * 2806 * 1. read timespec0,tsc0 2807 * 2. | timespec1 = timespec0 + N 2808 * | tsc1 = tsc0 + M 2809 * 3. transition to guest | transition to guest 2810 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2811 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2812 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2813 * 2814 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2815 * 2816 * - ret0 < ret1 2817 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2818 * ... 2819 * - 0 < N - M => M < N 2820 * 2821 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2822 * always the case (the difference between two distinct xtime instances 2823 * might be smaller then the difference between corresponding TSC reads, 2824 * when updating guest vcpus pvclock areas). 2825 * 2826 * To avoid that problem, do not allow visibility of distinct 2827 * system_timestamp/tsc_timestamp values simultaneously: use a master 2828 * copy of host monotonic time values. Update that master copy 2829 * in lockstep. 2830 * 2831 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2832 * 2833 */ 2834 2835 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2836 { 2837 #ifdef CONFIG_X86_64 2838 struct kvm_arch *ka = &kvm->arch; 2839 int vclock_mode; 2840 bool host_tsc_clocksource, vcpus_matched; 2841 2842 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2843 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2844 atomic_read(&kvm->online_vcpus)); 2845 2846 /* 2847 * If the host uses TSC clock, then passthrough TSC as stable 2848 * to the guest. 2849 */ 2850 host_tsc_clocksource = kvm_get_time_and_clockread( 2851 &ka->master_kernel_ns, 2852 &ka->master_cycle_now); 2853 2854 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2855 && !ka->backwards_tsc_observed 2856 && !ka->boot_vcpu_runs_old_kvmclock; 2857 2858 if (ka->use_master_clock) 2859 atomic_set(&kvm_guest_has_master_clock, 1); 2860 2861 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2862 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2863 vcpus_matched); 2864 #endif 2865 } 2866 2867 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2868 { 2869 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2870 } 2871 2872 static void __kvm_start_pvclock_update(struct kvm *kvm) 2873 { 2874 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2875 write_seqcount_begin(&kvm->arch.pvclock_sc); 2876 } 2877 2878 static void kvm_start_pvclock_update(struct kvm *kvm) 2879 { 2880 kvm_make_mclock_inprogress_request(kvm); 2881 2882 /* no guest entries from this point */ 2883 __kvm_start_pvclock_update(kvm); 2884 } 2885 2886 static void kvm_end_pvclock_update(struct kvm *kvm) 2887 { 2888 struct kvm_arch *ka = &kvm->arch; 2889 struct kvm_vcpu *vcpu; 2890 unsigned long i; 2891 2892 write_seqcount_end(&ka->pvclock_sc); 2893 raw_spin_unlock_irq(&ka->tsc_write_lock); 2894 kvm_for_each_vcpu(i, vcpu, kvm) 2895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2896 2897 /* guest entries allowed */ 2898 kvm_for_each_vcpu(i, vcpu, kvm) 2899 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2900 } 2901 2902 static void kvm_update_masterclock(struct kvm *kvm) 2903 { 2904 kvm_hv_request_tsc_page_update(kvm); 2905 kvm_start_pvclock_update(kvm); 2906 pvclock_update_vm_gtod_copy(kvm); 2907 kvm_end_pvclock_update(kvm); 2908 } 2909 2910 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2911 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2912 { 2913 struct kvm_arch *ka = &kvm->arch; 2914 struct pvclock_vcpu_time_info hv_clock; 2915 2916 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2917 get_cpu(); 2918 2919 data->flags = 0; 2920 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2921 #ifdef CONFIG_X86_64 2922 struct timespec64 ts; 2923 2924 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2925 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2926 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2927 } else 2928 #endif 2929 data->host_tsc = rdtsc(); 2930 2931 data->flags |= KVM_CLOCK_TSC_STABLE; 2932 hv_clock.tsc_timestamp = ka->master_cycle_now; 2933 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2934 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2935 &hv_clock.tsc_shift, 2936 &hv_clock.tsc_to_system_mul); 2937 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2938 } else { 2939 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2940 } 2941 2942 put_cpu(); 2943 } 2944 2945 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2946 { 2947 struct kvm_arch *ka = &kvm->arch; 2948 unsigned seq; 2949 2950 do { 2951 seq = read_seqcount_begin(&ka->pvclock_sc); 2952 __get_kvmclock(kvm, data); 2953 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2954 } 2955 2956 u64 get_kvmclock_ns(struct kvm *kvm) 2957 { 2958 struct kvm_clock_data data; 2959 2960 get_kvmclock(kvm, &data); 2961 return data.clock; 2962 } 2963 2964 static void kvm_setup_pvclock_page(struct kvm_vcpu *v, 2965 struct gfn_to_hva_cache *cache, 2966 unsigned int offset) 2967 { 2968 struct kvm_vcpu_arch *vcpu = &v->arch; 2969 struct pvclock_vcpu_time_info guest_hv_clock; 2970 2971 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache, 2972 &guest_hv_clock, offset, sizeof(guest_hv_clock)))) 2973 return; 2974 2975 /* This VCPU is paused, but it's legal for a guest to read another 2976 * VCPU's kvmclock, so we really have to follow the specification where 2977 * it says that version is odd if data is being modified, and even after 2978 * it is consistent. 2979 * 2980 * Version field updates must be kept separate. This is because 2981 * kvm_write_guest_cached might use a "rep movs" instruction, and 2982 * writes within a string instruction are weakly ordered. So there 2983 * are three writes overall. 2984 * 2985 * As a small optimization, only write the version field in the first 2986 * and third write. The vcpu->pv_time cache is still valid, because the 2987 * version field is the first in the struct. 2988 */ 2989 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2990 2991 if (guest_hv_clock.version & 1) 2992 ++guest_hv_clock.version; /* first time write, random junk */ 2993 2994 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2995 kvm_write_guest_offset_cached(v->kvm, cache, 2996 &vcpu->hv_clock, offset, 2997 sizeof(vcpu->hv_clock.version)); 2998 2999 smp_wmb(); 3000 3001 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3002 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 3003 3004 if (vcpu->pvclock_set_guest_stopped_request) { 3005 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3006 vcpu->pvclock_set_guest_stopped_request = false; 3007 } 3008 3009 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3010 3011 kvm_write_guest_offset_cached(v->kvm, cache, 3012 &vcpu->hv_clock, offset, 3013 sizeof(vcpu->hv_clock)); 3014 3015 smp_wmb(); 3016 3017 vcpu->hv_clock.version++; 3018 kvm_write_guest_offset_cached(v->kvm, cache, 3019 &vcpu->hv_clock, offset, 3020 sizeof(vcpu->hv_clock.version)); 3021 } 3022 3023 static int kvm_guest_time_update(struct kvm_vcpu *v) 3024 { 3025 unsigned long flags, tgt_tsc_khz; 3026 unsigned seq; 3027 struct kvm_vcpu_arch *vcpu = &v->arch; 3028 struct kvm_arch *ka = &v->kvm->arch; 3029 s64 kernel_ns; 3030 u64 tsc_timestamp, host_tsc; 3031 u8 pvclock_flags; 3032 bool use_master_clock; 3033 3034 kernel_ns = 0; 3035 host_tsc = 0; 3036 3037 /* 3038 * If the host uses TSC clock, then passthrough TSC as stable 3039 * to the guest. 3040 */ 3041 do { 3042 seq = read_seqcount_begin(&ka->pvclock_sc); 3043 use_master_clock = ka->use_master_clock; 3044 if (use_master_clock) { 3045 host_tsc = ka->master_cycle_now; 3046 kernel_ns = ka->master_kernel_ns; 3047 } 3048 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3049 3050 /* Keep irq disabled to prevent changes to the clock */ 3051 local_irq_save(flags); 3052 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3053 if (unlikely(tgt_tsc_khz == 0)) { 3054 local_irq_restore(flags); 3055 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3056 return 1; 3057 } 3058 if (!use_master_clock) { 3059 host_tsc = rdtsc(); 3060 kernel_ns = get_kvmclock_base_ns(); 3061 } 3062 3063 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3064 3065 /* 3066 * We may have to catch up the TSC to match elapsed wall clock 3067 * time for two reasons, even if kvmclock is used. 3068 * 1) CPU could have been running below the maximum TSC rate 3069 * 2) Broken TSC compensation resets the base at each VCPU 3070 * entry to avoid unknown leaps of TSC even when running 3071 * again on the same CPU. This may cause apparent elapsed 3072 * time to disappear, and the guest to stand still or run 3073 * very slowly. 3074 */ 3075 if (vcpu->tsc_catchup) { 3076 u64 tsc = compute_guest_tsc(v, kernel_ns); 3077 if (tsc > tsc_timestamp) { 3078 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3079 tsc_timestamp = tsc; 3080 } 3081 } 3082 3083 local_irq_restore(flags); 3084 3085 /* With all the info we got, fill in the values */ 3086 3087 if (kvm_has_tsc_control) 3088 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3089 v->arch.l1_tsc_scaling_ratio); 3090 3091 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3092 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3093 &vcpu->hv_clock.tsc_shift, 3094 &vcpu->hv_clock.tsc_to_system_mul); 3095 vcpu->hw_tsc_khz = tgt_tsc_khz; 3096 } 3097 3098 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3099 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3100 vcpu->last_guest_tsc = tsc_timestamp; 3101 3102 /* If the host uses TSC clocksource, then it is stable */ 3103 pvclock_flags = 0; 3104 if (use_master_clock) 3105 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3106 3107 vcpu->hv_clock.flags = pvclock_flags; 3108 3109 if (vcpu->pv_time_enabled) 3110 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0); 3111 if (vcpu->xen.vcpu_info_set) 3112 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache, 3113 offsetof(struct compat_vcpu_info, time)); 3114 if (vcpu->xen.vcpu_time_info_set) 3115 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0); 3116 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3117 return 0; 3118 } 3119 3120 /* 3121 * kvmclock updates which are isolated to a given vcpu, such as 3122 * vcpu->cpu migration, should not allow system_timestamp from 3123 * the rest of the vcpus to remain static. Otherwise ntp frequency 3124 * correction applies to one vcpu's system_timestamp but not 3125 * the others. 3126 * 3127 * So in those cases, request a kvmclock update for all vcpus. 3128 * We need to rate-limit these requests though, as they can 3129 * considerably slow guests that have a large number of vcpus. 3130 * The time for a remote vcpu to update its kvmclock is bound 3131 * by the delay we use to rate-limit the updates. 3132 */ 3133 3134 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3135 3136 static void kvmclock_update_fn(struct work_struct *work) 3137 { 3138 unsigned long i; 3139 struct delayed_work *dwork = to_delayed_work(work); 3140 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3141 kvmclock_update_work); 3142 struct kvm *kvm = container_of(ka, struct kvm, arch); 3143 struct kvm_vcpu *vcpu; 3144 3145 kvm_for_each_vcpu(i, vcpu, kvm) { 3146 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3147 kvm_vcpu_kick(vcpu); 3148 } 3149 } 3150 3151 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3152 { 3153 struct kvm *kvm = v->kvm; 3154 3155 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3156 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3157 KVMCLOCK_UPDATE_DELAY); 3158 } 3159 3160 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3161 3162 static void kvmclock_sync_fn(struct work_struct *work) 3163 { 3164 struct delayed_work *dwork = to_delayed_work(work); 3165 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3166 kvmclock_sync_work); 3167 struct kvm *kvm = container_of(ka, struct kvm, arch); 3168 3169 if (!kvmclock_periodic_sync) 3170 return; 3171 3172 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3173 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3174 KVMCLOCK_SYNC_PERIOD); 3175 } 3176 3177 /* 3178 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3179 */ 3180 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3181 { 3182 /* McStatusWrEn enabled? */ 3183 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3184 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3185 3186 return false; 3187 } 3188 3189 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3190 { 3191 u64 mcg_cap = vcpu->arch.mcg_cap; 3192 unsigned bank_num = mcg_cap & 0xff; 3193 u32 msr = msr_info->index; 3194 u64 data = msr_info->data; 3195 3196 switch (msr) { 3197 case MSR_IA32_MCG_STATUS: 3198 vcpu->arch.mcg_status = data; 3199 break; 3200 case MSR_IA32_MCG_CTL: 3201 if (!(mcg_cap & MCG_CTL_P) && 3202 (data || !msr_info->host_initiated)) 3203 return 1; 3204 if (data != 0 && data != ~(u64)0) 3205 return 1; 3206 vcpu->arch.mcg_ctl = data; 3207 break; 3208 default: 3209 if (msr >= MSR_IA32_MC0_CTL && 3210 msr < MSR_IA32_MCx_CTL(bank_num)) { 3211 u32 offset = array_index_nospec( 3212 msr - MSR_IA32_MC0_CTL, 3213 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3214 3215 /* only 0 or all 1s can be written to IA32_MCi_CTL 3216 * some Linux kernels though clear bit 10 in bank 4 to 3217 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3218 * this to avoid an uncatched #GP in the guest 3219 */ 3220 if ((offset & 0x3) == 0 && 3221 data != 0 && (data | (1 << 10)) != ~(u64)0) 3222 return -1; 3223 3224 /* MCi_STATUS */ 3225 if (!msr_info->host_initiated && 3226 (offset & 0x3) == 1 && data != 0) { 3227 if (!can_set_mci_status(vcpu)) 3228 return -1; 3229 } 3230 3231 vcpu->arch.mce_banks[offset] = data; 3232 break; 3233 } 3234 return 1; 3235 } 3236 return 0; 3237 } 3238 3239 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3240 { 3241 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3242 3243 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3244 } 3245 3246 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3247 { 3248 gpa_t gpa = data & ~0x3f; 3249 3250 /* Bits 4:5 are reserved, Should be zero */ 3251 if (data & 0x30) 3252 return 1; 3253 3254 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3255 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3256 return 1; 3257 3258 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3259 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3260 return 1; 3261 3262 if (!lapic_in_kernel(vcpu)) 3263 return data ? 1 : 0; 3264 3265 vcpu->arch.apf.msr_en_val = data; 3266 3267 if (!kvm_pv_async_pf_enabled(vcpu)) { 3268 kvm_clear_async_pf_completion_queue(vcpu); 3269 kvm_async_pf_hash_reset(vcpu); 3270 return 0; 3271 } 3272 3273 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3274 sizeof(u64))) 3275 return 1; 3276 3277 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3278 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3279 3280 kvm_async_pf_wakeup_all(vcpu); 3281 3282 return 0; 3283 } 3284 3285 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3286 { 3287 /* Bits 8-63 are reserved */ 3288 if (data >> 8) 3289 return 1; 3290 3291 if (!lapic_in_kernel(vcpu)) 3292 return 1; 3293 3294 vcpu->arch.apf.msr_int_val = data; 3295 3296 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3297 3298 return 0; 3299 } 3300 3301 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3302 { 3303 vcpu->arch.pv_time_enabled = false; 3304 vcpu->arch.time = 0; 3305 } 3306 3307 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3308 { 3309 ++vcpu->stat.tlb_flush; 3310 static_call(kvm_x86_flush_tlb_all)(vcpu); 3311 } 3312 3313 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3314 { 3315 ++vcpu->stat.tlb_flush; 3316 3317 if (!tdp_enabled) { 3318 /* 3319 * A TLB flush on behalf of the guest is equivalent to 3320 * INVPCID(all), toggling CR4.PGE, etc., which requires 3321 * a forced sync of the shadow page tables. Ensure all the 3322 * roots are synced and the guest TLB in hardware is clean. 3323 */ 3324 kvm_mmu_sync_roots(vcpu); 3325 kvm_mmu_sync_prev_roots(vcpu); 3326 } 3327 3328 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3329 } 3330 3331 3332 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3333 { 3334 ++vcpu->stat.tlb_flush; 3335 static_call(kvm_x86_flush_tlb_current)(vcpu); 3336 } 3337 3338 /* 3339 * Service "local" TLB flush requests, which are specific to the current MMU 3340 * context. In addition to the generic event handling in vcpu_enter_guest(), 3341 * TLB flushes that are targeted at an MMU context also need to be serviced 3342 * prior before nested VM-Enter/VM-Exit. 3343 */ 3344 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3345 { 3346 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3347 kvm_vcpu_flush_tlb_current(vcpu); 3348 3349 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3350 kvm_vcpu_flush_tlb_guest(vcpu); 3351 } 3352 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3353 3354 static void record_steal_time(struct kvm_vcpu *vcpu) 3355 { 3356 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3357 struct kvm_steal_time __user *st; 3358 struct kvm_memslots *slots; 3359 u64 steal; 3360 u32 version; 3361 3362 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3363 kvm_xen_runstate_set_running(vcpu); 3364 return; 3365 } 3366 3367 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3368 return; 3369 3370 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3371 return; 3372 3373 slots = kvm_memslots(vcpu->kvm); 3374 3375 if (unlikely(slots->generation != ghc->generation || 3376 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3377 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3378 3379 /* We rely on the fact that it fits in a single page. */ 3380 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3381 3382 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3383 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3384 return; 3385 } 3386 3387 st = (struct kvm_steal_time __user *)ghc->hva; 3388 /* 3389 * Doing a TLB flush here, on the guest's behalf, can avoid 3390 * expensive IPIs. 3391 */ 3392 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3393 u8 st_preempted = 0; 3394 int err = -EFAULT; 3395 3396 if (!user_access_begin(st, sizeof(*st))) 3397 return; 3398 3399 asm volatile("1: xchgb %0, %2\n" 3400 "xor %1, %1\n" 3401 "2:\n" 3402 _ASM_EXTABLE_UA(1b, 2b) 3403 : "+q" (st_preempted), 3404 "+&r" (err), 3405 "+m" (st->preempted)); 3406 if (err) 3407 goto out; 3408 3409 user_access_end(); 3410 3411 vcpu->arch.st.preempted = 0; 3412 3413 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3414 st_preempted & KVM_VCPU_FLUSH_TLB); 3415 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3416 kvm_vcpu_flush_tlb_guest(vcpu); 3417 3418 if (!user_access_begin(st, sizeof(*st))) 3419 goto dirty; 3420 } else { 3421 if (!user_access_begin(st, sizeof(*st))) 3422 return; 3423 3424 unsafe_put_user(0, &st->preempted, out); 3425 vcpu->arch.st.preempted = 0; 3426 } 3427 3428 unsafe_get_user(version, &st->version, out); 3429 if (version & 1) 3430 version += 1; /* first time write, random junk */ 3431 3432 version += 1; 3433 unsafe_put_user(version, &st->version, out); 3434 3435 smp_wmb(); 3436 3437 unsafe_get_user(steal, &st->steal, out); 3438 steal += current->sched_info.run_delay - 3439 vcpu->arch.st.last_steal; 3440 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3441 unsafe_put_user(steal, &st->steal, out); 3442 3443 version += 1; 3444 unsafe_put_user(version, &st->version, out); 3445 3446 out: 3447 user_access_end(); 3448 dirty: 3449 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3450 } 3451 3452 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3453 { 3454 bool pr = false; 3455 u32 msr = msr_info->index; 3456 u64 data = msr_info->data; 3457 3458 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3459 return kvm_xen_write_hypercall_page(vcpu, data); 3460 3461 switch (msr) { 3462 case MSR_AMD64_NB_CFG: 3463 case MSR_IA32_UCODE_WRITE: 3464 case MSR_VM_HSAVE_PA: 3465 case MSR_AMD64_PATCH_LOADER: 3466 case MSR_AMD64_BU_CFG2: 3467 case MSR_AMD64_DC_CFG: 3468 case MSR_F15H_EX_CFG: 3469 break; 3470 3471 case MSR_IA32_UCODE_REV: 3472 if (msr_info->host_initiated) 3473 vcpu->arch.microcode_version = data; 3474 break; 3475 case MSR_IA32_ARCH_CAPABILITIES: 3476 if (!msr_info->host_initiated) 3477 return 1; 3478 vcpu->arch.arch_capabilities = data; 3479 break; 3480 case MSR_IA32_PERF_CAPABILITIES: { 3481 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3482 3483 if (!msr_info->host_initiated) 3484 return 1; 3485 if (kvm_get_msr_feature(&msr_ent)) 3486 return 1; 3487 if (data & ~msr_ent.data) 3488 return 1; 3489 3490 vcpu->arch.perf_capabilities = data; 3491 3492 return 0; 3493 } 3494 case MSR_EFER: 3495 return set_efer(vcpu, msr_info); 3496 case MSR_K7_HWCR: 3497 data &= ~(u64)0x40; /* ignore flush filter disable */ 3498 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3499 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3500 3501 /* Handle McStatusWrEn */ 3502 if (data == BIT_ULL(18)) { 3503 vcpu->arch.msr_hwcr = data; 3504 } else if (data != 0) { 3505 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3506 data); 3507 return 1; 3508 } 3509 break; 3510 case MSR_FAM10H_MMIO_CONF_BASE: 3511 if (data != 0) { 3512 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3513 "0x%llx\n", data); 3514 return 1; 3515 } 3516 break; 3517 case 0x200 ... 0x2ff: 3518 return kvm_mtrr_set_msr(vcpu, msr, data); 3519 case MSR_IA32_APICBASE: 3520 return kvm_set_apic_base(vcpu, msr_info); 3521 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3522 return kvm_x2apic_msr_write(vcpu, msr, data); 3523 case MSR_IA32_TSC_DEADLINE: 3524 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3525 break; 3526 case MSR_IA32_TSC_ADJUST: 3527 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3528 if (!msr_info->host_initiated) { 3529 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3530 adjust_tsc_offset_guest(vcpu, adj); 3531 /* Before back to guest, tsc_timestamp must be adjusted 3532 * as well, otherwise guest's percpu pvclock time could jump. 3533 */ 3534 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3535 } 3536 vcpu->arch.ia32_tsc_adjust_msr = data; 3537 } 3538 break; 3539 case MSR_IA32_MISC_ENABLE: 3540 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3541 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3542 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3543 return 1; 3544 vcpu->arch.ia32_misc_enable_msr = data; 3545 kvm_update_cpuid_runtime(vcpu); 3546 } else { 3547 vcpu->arch.ia32_misc_enable_msr = data; 3548 } 3549 break; 3550 case MSR_IA32_SMBASE: 3551 if (!msr_info->host_initiated) 3552 return 1; 3553 vcpu->arch.smbase = data; 3554 break; 3555 case MSR_IA32_POWER_CTL: 3556 vcpu->arch.msr_ia32_power_ctl = data; 3557 break; 3558 case MSR_IA32_TSC: 3559 if (msr_info->host_initiated) { 3560 kvm_synchronize_tsc(vcpu, data); 3561 } else { 3562 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3563 adjust_tsc_offset_guest(vcpu, adj); 3564 vcpu->arch.ia32_tsc_adjust_msr += adj; 3565 } 3566 break; 3567 case MSR_IA32_XSS: 3568 if (!msr_info->host_initiated && 3569 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3570 return 1; 3571 /* 3572 * KVM supports exposing PT to the guest, but does not support 3573 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3574 * XSAVES/XRSTORS to save/restore PT MSRs. 3575 */ 3576 if (data & ~supported_xss) 3577 return 1; 3578 vcpu->arch.ia32_xss = data; 3579 kvm_update_cpuid_runtime(vcpu); 3580 break; 3581 case MSR_SMI_COUNT: 3582 if (!msr_info->host_initiated) 3583 return 1; 3584 vcpu->arch.smi_count = data; 3585 break; 3586 case MSR_KVM_WALL_CLOCK_NEW: 3587 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3588 return 1; 3589 3590 vcpu->kvm->arch.wall_clock = data; 3591 kvm_write_wall_clock(vcpu->kvm, data, 0); 3592 break; 3593 case MSR_KVM_WALL_CLOCK: 3594 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3595 return 1; 3596 3597 vcpu->kvm->arch.wall_clock = data; 3598 kvm_write_wall_clock(vcpu->kvm, data, 0); 3599 break; 3600 case MSR_KVM_SYSTEM_TIME_NEW: 3601 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3602 return 1; 3603 3604 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3605 break; 3606 case MSR_KVM_SYSTEM_TIME: 3607 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3608 return 1; 3609 3610 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3611 break; 3612 case MSR_KVM_ASYNC_PF_EN: 3613 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3614 return 1; 3615 3616 if (kvm_pv_enable_async_pf(vcpu, data)) 3617 return 1; 3618 break; 3619 case MSR_KVM_ASYNC_PF_INT: 3620 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3621 return 1; 3622 3623 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3624 return 1; 3625 break; 3626 case MSR_KVM_ASYNC_PF_ACK: 3627 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3628 return 1; 3629 if (data & 0x1) { 3630 vcpu->arch.apf.pageready_pending = false; 3631 kvm_check_async_pf_completion(vcpu); 3632 } 3633 break; 3634 case MSR_KVM_STEAL_TIME: 3635 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3636 return 1; 3637 3638 if (unlikely(!sched_info_on())) 3639 return 1; 3640 3641 if (data & KVM_STEAL_RESERVED_MASK) 3642 return 1; 3643 3644 vcpu->arch.st.msr_val = data; 3645 3646 if (!(data & KVM_MSR_ENABLED)) 3647 break; 3648 3649 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3650 3651 break; 3652 case MSR_KVM_PV_EOI_EN: 3653 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3654 return 1; 3655 3656 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3657 return 1; 3658 break; 3659 3660 case MSR_KVM_POLL_CONTROL: 3661 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3662 return 1; 3663 3664 /* only enable bit supported */ 3665 if (data & (-1ULL << 1)) 3666 return 1; 3667 3668 vcpu->arch.msr_kvm_poll_control = data; 3669 break; 3670 3671 case MSR_IA32_MCG_CTL: 3672 case MSR_IA32_MCG_STATUS: 3673 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3674 return set_msr_mce(vcpu, msr_info); 3675 3676 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3677 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3678 pr = true; 3679 fallthrough; 3680 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3681 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3682 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3683 return kvm_pmu_set_msr(vcpu, msr_info); 3684 3685 if (pr || data != 0) 3686 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3687 "0x%x data 0x%llx\n", msr, data); 3688 break; 3689 case MSR_K7_CLK_CTL: 3690 /* 3691 * Ignore all writes to this no longer documented MSR. 3692 * Writes are only relevant for old K7 processors, 3693 * all pre-dating SVM, but a recommended workaround from 3694 * AMD for these chips. It is possible to specify the 3695 * affected processor models on the command line, hence 3696 * the need to ignore the workaround. 3697 */ 3698 break; 3699 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3700 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3701 case HV_X64_MSR_SYNDBG_OPTIONS: 3702 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3703 case HV_X64_MSR_CRASH_CTL: 3704 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3705 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3706 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3707 case HV_X64_MSR_TSC_EMULATION_STATUS: 3708 return kvm_hv_set_msr_common(vcpu, msr, data, 3709 msr_info->host_initiated); 3710 case MSR_IA32_BBL_CR_CTL3: 3711 /* Drop writes to this legacy MSR -- see rdmsr 3712 * counterpart for further detail. 3713 */ 3714 if (report_ignored_msrs) 3715 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3716 msr, data); 3717 break; 3718 case MSR_AMD64_OSVW_ID_LENGTH: 3719 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3720 return 1; 3721 vcpu->arch.osvw.length = data; 3722 break; 3723 case MSR_AMD64_OSVW_STATUS: 3724 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3725 return 1; 3726 vcpu->arch.osvw.status = data; 3727 break; 3728 case MSR_PLATFORM_INFO: 3729 if (!msr_info->host_initiated || 3730 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3731 cpuid_fault_enabled(vcpu))) 3732 return 1; 3733 vcpu->arch.msr_platform_info = data; 3734 break; 3735 case MSR_MISC_FEATURES_ENABLES: 3736 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3737 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3738 !supports_cpuid_fault(vcpu))) 3739 return 1; 3740 vcpu->arch.msr_misc_features_enables = data; 3741 break; 3742 #ifdef CONFIG_X86_64 3743 case MSR_IA32_XFD: 3744 if (!msr_info->host_initiated && 3745 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3746 return 1; 3747 3748 if (data & ~kvm_guest_supported_xfd(vcpu)) 3749 return 1; 3750 3751 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3752 break; 3753 case MSR_IA32_XFD_ERR: 3754 if (!msr_info->host_initiated && 3755 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3756 return 1; 3757 3758 if (data & ~kvm_guest_supported_xfd(vcpu)) 3759 return 1; 3760 3761 vcpu->arch.guest_fpu.xfd_err = data; 3762 break; 3763 #endif 3764 default: 3765 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3766 return kvm_pmu_set_msr(vcpu, msr_info); 3767 return KVM_MSR_RET_INVALID; 3768 } 3769 return 0; 3770 } 3771 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3772 3773 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3774 { 3775 u64 data; 3776 u64 mcg_cap = vcpu->arch.mcg_cap; 3777 unsigned bank_num = mcg_cap & 0xff; 3778 3779 switch (msr) { 3780 case MSR_IA32_P5_MC_ADDR: 3781 case MSR_IA32_P5_MC_TYPE: 3782 data = 0; 3783 break; 3784 case MSR_IA32_MCG_CAP: 3785 data = vcpu->arch.mcg_cap; 3786 break; 3787 case MSR_IA32_MCG_CTL: 3788 if (!(mcg_cap & MCG_CTL_P) && !host) 3789 return 1; 3790 data = vcpu->arch.mcg_ctl; 3791 break; 3792 case MSR_IA32_MCG_STATUS: 3793 data = vcpu->arch.mcg_status; 3794 break; 3795 default: 3796 if (msr >= MSR_IA32_MC0_CTL && 3797 msr < MSR_IA32_MCx_CTL(bank_num)) { 3798 u32 offset = array_index_nospec( 3799 msr - MSR_IA32_MC0_CTL, 3800 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3801 3802 data = vcpu->arch.mce_banks[offset]; 3803 break; 3804 } 3805 return 1; 3806 } 3807 *pdata = data; 3808 return 0; 3809 } 3810 3811 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3812 { 3813 switch (msr_info->index) { 3814 case MSR_IA32_PLATFORM_ID: 3815 case MSR_IA32_EBL_CR_POWERON: 3816 case MSR_IA32_LASTBRANCHFROMIP: 3817 case MSR_IA32_LASTBRANCHTOIP: 3818 case MSR_IA32_LASTINTFROMIP: 3819 case MSR_IA32_LASTINTTOIP: 3820 case MSR_AMD64_SYSCFG: 3821 case MSR_K8_TSEG_ADDR: 3822 case MSR_K8_TSEG_MASK: 3823 case MSR_VM_HSAVE_PA: 3824 case MSR_K8_INT_PENDING_MSG: 3825 case MSR_AMD64_NB_CFG: 3826 case MSR_FAM10H_MMIO_CONF_BASE: 3827 case MSR_AMD64_BU_CFG2: 3828 case MSR_IA32_PERF_CTL: 3829 case MSR_AMD64_DC_CFG: 3830 case MSR_F15H_EX_CFG: 3831 /* 3832 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3833 * limit) MSRs. Just return 0, as we do not want to expose the host 3834 * data here. Do not conditionalize this on CPUID, as KVM does not do 3835 * so for existing CPU-specific MSRs. 3836 */ 3837 case MSR_RAPL_POWER_UNIT: 3838 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3839 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3840 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3841 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3842 msr_info->data = 0; 3843 break; 3844 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3845 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3846 return kvm_pmu_get_msr(vcpu, msr_info); 3847 if (!msr_info->host_initiated) 3848 return 1; 3849 msr_info->data = 0; 3850 break; 3851 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3852 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3853 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3854 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3855 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3856 return kvm_pmu_get_msr(vcpu, msr_info); 3857 msr_info->data = 0; 3858 break; 3859 case MSR_IA32_UCODE_REV: 3860 msr_info->data = vcpu->arch.microcode_version; 3861 break; 3862 case MSR_IA32_ARCH_CAPABILITIES: 3863 if (!msr_info->host_initiated && 3864 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3865 return 1; 3866 msr_info->data = vcpu->arch.arch_capabilities; 3867 break; 3868 case MSR_IA32_PERF_CAPABILITIES: 3869 if (!msr_info->host_initiated && 3870 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3871 return 1; 3872 msr_info->data = vcpu->arch.perf_capabilities; 3873 break; 3874 case MSR_IA32_POWER_CTL: 3875 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3876 break; 3877 case MSR_IA32_TSC: { 3878 /* 3879 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3880 * even when not intercepted. AMD manual doesn't explicitly 3881 * state this but appears to behave the same. 3882 * 3883 * On userspace reads and writes, however, we unconditionally 3884 * return L1's TSC value to ensure backwards-compatible 3885 * behavior for migration. 3886 */ 3887 u64 offset, ratio; 3888 3889 if (msr_info->host_initiated) { 3890 offset = vcpu->arch.l1_tsc_offset; 3891 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3892 } else { 3893 offset = vcpu->arch.tsc_offset; 3894 ratio = vcpu->arch.tsc_scaling_ratio; 3895 } 3896 3897 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 3898 break; 3899 } 3900 case MSR_MTRRcap: 3901 case 0x200 ... 0x2ff: 3902 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3903 case 0xcd: /* fsb frequency */ 3904 msr_info->data = 3; 3905 break; 3906 /* 3907 * MSR_EBC_FREQUENCY_ID 3908 * Conservative value valid for even the basic CPU models. 3909 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3910 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3911 * and 266MHz for model 3, or 4. Set Core Clock 3912 * Frequency to System Bus Frequency Ratio to 1 (bits 3913 * 31:24) even though these are only valid for CPU 3914 * models > 2, however guests may end up dividing or 3915 * multiplying by zero otherwise. 3916 */ 3917 case MSR_EBC_FREQUENCY_ID: 3918 msr_info->data = 1 << 24; 3919 break; 3920 case MSR_IA32_APICBASE: 3921 msr_info->data = kvm_get_apic_base(vcpu); 3922 break; 3923 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3924 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3925 case MSR_IA32_TSC_DEADLINE: 3926 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3927 break; 3928 case MSR_IA32_TSC_ADJUST: 3929 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3930 break; 3931 case MSR_IA32_MISC_ENABLE: 3932 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3933 break; 3934 case MSR_IA32_SMBASE: 3935 if (!msr_info->host_initiated) 3936 return 1; 3937 msr_info->data = vcpu->arch.smbase; 3938 break; 3939 case MSR_SMI_COUNT: 3940 msr_info->data = vcpu->arch.smi_count; 3941 break; 3942 case MSR_IA32_PERF_STATUS: 3943 /* TSC increment by tick */ 3944 msr_info->data = 1000ULL; 3945 /* CPU multiplier */ 3946 msr_info->data |= (((uint64_t)4ULL) << 40); 3947 break; 3948 case MSR_EFER: 3949 msr_info->data = vcpu->arch.efer; 3950 break; 3951 case MSR_KVM_WALL_CLOCK: 3952 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3953 return 1; 3954 3955 msr_info->data = vcpu->kvm->arch.wall_clock; 3956 break; 3957 case MSR_KVM_WALL_CLOCK_NEW: 3958 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3959 return 1; 3960 3961 msr_info->data = vcpu->kvm->arch.wall_clock; 3962 break; 3963 case MSR_KVM_SYSTEM_TIME: 3964 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3965 return 1; 3966 3967 msr_info->data = vcpu->arch.time; 3968 break; 3969 case MSR_KVM_SYSTEM_TIME_NEW: 3970 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3971 return 1; 3972 3973 msr_info->data = vcpu->arch.time; 3974 break; 3975 case MSR_KVM_ASYNC_PF_EN: 3976 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3977 return 1; 3978 3979 msr_info->data = vcpu->arch.apf.msr_en_val; 3980 break; 3981 case MSR_KVM_ASYNC_PF_INT: 3982 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3983 return 1; 3984 3985 msr_info->data = vcpu->arch.apf.msr_int_val; 3986 break; 3987 case MSR_KVM_ASYNC_PF_ACK: 3988 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3989 return 1; 3990 3991 msr_info->data = 0; 3992 break; 3993 case MSR_KVM_STEAL_TIME: 3994 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3995 return 1; 3996 3997 msr_info->data = vcpu->arch.st.msr_val; 3998 break; 3999 case MSR_KVM_PV_EOI_EN: 4000 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4001 return 1; 4002 4003 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4004 break; 4005 case MSR_KVM_POLL_CONTROL: 4006 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4007 return 1; 4008 4009 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4010 break; 4011 case MSR_IA32_P5_MC_ADDR: 4012 case MSR_IA32_P5_MC_TYPE: 4013 case MSR_IA32_MCG_CAP: 4014 case MSR_IA32_MCG_CTL: 4015 case MSR_IA32_MCG_STATUS: 4016 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4017 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4018 msr_info->host_initiated); 4019 case MSR_IA32_XSS: 4020 if (!msr_info->host_initiated && 4021 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4022 return 1; 4023 msr_info->data = vcpu->arch.ia32_xss; 4024 break; 4025 case MSR_K7_CLK_CTL: 4026 /* 4027 * Provide expected ramp-up count for K7. All other 4028 * are set to zero, indicating minimum divisors for 4029 * every field. 4030 * 4031 * This prevents guest kernels on AMD host with CPU 4032 * type 6, model 8 and higher from exploding due to 4033 * the rdmsr failing. 4034 */ 4035 msr_info->data = 0x20000000; 4036 break; 4037 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4038 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4039 case HV_X64_MSR_SYNDBG_OPTIONS: 4040 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4041 case HV_X64_MSR_CRASH_CTL: 4042 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4043 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4044 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4045 case HV_X64_MSR_TSC_EMULATION_STATUS: 4046 return kvm_hv_get_msr_common(vcpu, 4047 msr_info->index, &msr_info->data, 4048 msr_info->host_initiated); 4049 case MSR_IA32_BBL_CR_CTL3: 4050 /* This legacy MSR exists but isn't fully documented in current 4051 * silicon. It is however accessed by winxp in very narrow 4052 * scenarios where it sets bit #19, itself documented as 4053 * a "reserved" bit. Best effort attempt to source coherent 4054 * read data here should the balance of the register be 4055 * interpreted by the guest: 4056 * 4057 * L2 cache control register 3: 64GB range, 256KB size, 4058 * enabled, latency 0x1, configured 4059 */ 4060 msr_info->data = 0xbe702111; 4061 break; 4062 case MSR_AMD64_OSVW_ID_LENGTH: 4063 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4064 return 1; 4065 msr_info->data = vcpu->arch.osvw.length; 4066 break; 4067 case MSR_AMD64_OSVW_STATUS: 4068 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4069 return 1; 4070 msr_info->data = vcpu->arch.osvw.status; 4071 break; 4072 case MSR_PLATFORM_INFO: 4073 if (!msr_info->host_initiated && 4074 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4075 return 1; 4076 msr_info->data = vcpu->arch.msr_platform_info; 4077 break; 4078 case MSR_MISC_FEATURES_ENABLES: 4079 msr_info->data = vcpu->arch.msr_misc_features_enables; 4080 break; 4081 case MSR_K7_HWCR: 4082 msr_info->data = vcpu->arch.msr_hwcr; 4083 break; 4084 #ifdef CONFIG_X86_64 4085 case MSR_IA32_XFD: 4086 if (!msr_info->host_initiated && 4087 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4088 return 1; 4089 4090 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4091 break; 4092 case MSR_IA32_XFD_ERR: 4093 if (!msr_info->host_initiated && 4094 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4095 return 1; 4096 4097 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4098 break; 4099 #endif 4100 default: 4101 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4102 return kvm_pmu_get_msr(vcpu, msr_info); 4103 return KVM_MSR_RET_INVALID; 4104 } 4105 return 0; 4106 } 4107 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4108 4109 /* 4110 * Read or write a bunch of msrs. All parameters are kernel addresses. 4111 * 4112 * @return number of msrs set successfully. 4113 */ 4114 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4115 struct kvm_msr_entry *entries, 4116 int (*do_msr)(struct kvm_vcpu *vcpu, 4117 unsigned index, u64 *data)) 4118 { 4119 int i; 4120 4121 for (i = 0; i < msrs->nmsrs; ++i) 4122 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4123 break; 4124 4125 return i; 4126 } 4127 4128 /* 4129 * Read or write a bunch of msrs. Parameters are user addresses. 4130 * 4131 * @return number of msrs set successfully. 4132 */ 4133 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4134 int (*do_msr)(struct kvm_vcpu *vcpu, 4135 unsigned index, u64 *data), 4136 int writeback) 4137 { 4138 struct kvm_msrs msrs; 4139 struct kvm_msr_entry *entries; 4140 int r, n; 4141 unsigned size; 4142 4143 r = -EFAULT; 4144 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4145 goto out; 4146 4147 r = -E2BIG; 4148 if (msrs.nmsrs >= MAX_IO_MSRS) 4149 goto out; 4150 4151 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4152 entries = memdup_user(user_msrs->entries, size); 4153 if (IS_ERR(entries)) { 4154 r = PTR_ERR(entries); 4155 goto out; 4156 } 4157 4158 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4159 if (r < 0) 4160 goto out_free; 4161 4162 r = -EFAULT; 4163 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4164 goto out_free; 4165 4166 r = n; 4167 4168 out_free: 4169 kfree(entries); 4170 out: 4171 return r; 4172 } 4173 4174 static inline bool kvm_can_mwait_in_guest(void) 4175 { 4176 return boot_cpu_has(X86_FEATURE_MWAIT) && 4177 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4178 boot_cpu_has(X86_FEATURE_ARAT); 4179 } 4180 4181 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4182 struct kvm_cpuid2 __user *cpuid_arg) 4183 { 4184 struct kvm_cpuid2 cpuid; 4185 int r; 4186 4187 r = -EFAULT; 4188 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4189 return r; 4190 4191 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4192 if (r) 4193 return r; 4194 4195 r = -EFAULT; 4196 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4197 return r; 4198 4199 return 0; 4200 } 4201 4202 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4203 { 4204 int r = 0; 4205 4206 switch (ext) { 4207 case KVM_CAP_IRQCHIP: 4208 case KVM_CAP_HLT: 4209 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4210 case KVM_CAP_SET_TSS_ADDR: 4211 case KVM_CAP_EXT_CPUID: 4212 case KVM_CAP_EXT_EMUL_CPUID: 4213 case KVM_CAP_CLOCKSOURCE: 4214 case KVM_CAP_PIT: 4215 case KVM_CAP_NOP_IO_DELAY: 4216 case KVM_CAP_MP_STATE: 4217 case KVM_CAP_SYNC_MMU: 4218 case KVM_CAP_USER_NMI: 4219 case KVM_CAP_REINJECT_CONTROL: 4220 case KVM_CAP_IRQ_INJECT_STATUS: 4221 case KVM_CAP_IOEVENTFD: 4222 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4223 case KVM_CAP_PIT2: 4224 case KVM_CAP_PIT_STATE2: 4225 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4226 case KVM_CAP_VCPU_EVENTS: 4227 case KVM_CAP_HYPERV: 4228 case KVM_CAP_HYPERV_VAPIC: 4229 case KVM_CAP_HYPERV_SPIN: 4230 case KVM_CAP_HYPERV_SYNIC: 4231 case KVM_CAP_HYPERV_SYNIC2: 4232 case KVM_CAP_HYPERV_VP_INDEX: 4233 case KVM_CAP_HYPERV_EVENTFD: 4234 case KVM_CAP_HYPERV_TLBFLUSH: 4235 case KVM_CAP_HYPERV_SEND_IPI: 4236 case KVM_CAP_HYPERV_CPUID: 4237 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4238 case KVM_CAP_SYS_HYPERV_CPUID: 4239 case KVM_CAP_PCI_SEGMENT: 4240 case KVM_CAP_DEBUGREGS: 4241 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4242 case KVM_CAP_XSAVE: 4243 case KVM_CAP_ASYNC_PF: 4244 case KVM_CAP_ASYNC_PF_INT: 4245 case KVM_CAP_GET_TSC_KHZ: 4246 case KVM_CAP_KVMCLOCK_CTRL: 4247 case KVM_CAP_READONLY_MEM: 4248 case KVM_CAP_HYPERV_TIME: 4249 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4250 case KVM_CAP_TSC_DEADLINE_TIMER: 4251 case KVM_CAP_DISABLE_QUIRKS: 4252 case KVM_CAP_SET_BOOT_CPU_ID: 4253 case KVM_CAP_SPLIT_IRQCHIP: 4254 case KVM_CAP_IMMEDIATE_EXIT: 4255 case KVM_CAP_PMU_EVENT_FILTER: 4256 case KVM_CAP_GET_MSR_FEATURES: 4257 case KVM_CAP_MSR_PLATFORM_INFO: 4258 case KVM_CAP_EXCEPTION_PAYLOAD: 4259 case KVM_CAP_SET_GUEST_DEBUG: 4260 case KVM_CAP_LAST_CPU: 4261 case KVM_CAP_X86_USER_SPACE_MSR: 4262 case KVM_CAP_X86_MSR_FILTER: 4263 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4264 #ifdef CONFIG_X86_SGX_KVM 4265 case KVM_CAP_SGX_ATTRIBUTE: 4266 #endif 4267 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4268 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4269 case KVM_CAP_SREGS2: 4270 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4271 case KVM_CAP_VCPU_ATTRIBUTES: 4272 case KVM_CAP_SYS_ATTRIBUTES: 4273 case KVM_CAP_VAPIC: 4274 case KVM_CAP_ENABLE_CAP: 4275 r = 1; 4276 break; 4277 case KVM_CAP_EXIT_HYPERCALL: 4278 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4279 break; 4280 case KVM_CAP_SET_GUEST_DEBUG2: 4281 return KVM_GUESTDBG_VALID_MASK; 4282 #ifdef CONFIG_KVM_XEN 4283 case KVM_CAP_XEN_HVM: 4284 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4285 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4286 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4287 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL; 4288 if (sched_info_on()) 4289 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4290 break; 4291 #endif 4292 case KVM_CAP_SYNC_REGS: 4293 r = KVM_SYNC_X86_VALID_FIELDS; 4294 break; 4295 case KVM_CAP_ADJUST_CLOCK: 4296 r = KVM_CLOCK_VALID_FLAGS; 4297 break; 4298 case KVM_CAP_X86_DISABLE_EXITS: 4299 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4300 KVM_X86_DISABLE_EXITS_CSTATE; 4301 if(kvm_can_mwait_in_guest()) 4302 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4303 break; 4304 case KVM_CAP_X86_SMM: 4305 /* SMBASE is usually relocated above 1M on modern chipsets, 4306 * and SMM handlers might indeed rely on 4G segment limits, 4307 * so do not report SMM to be available if real mode is 4308 * emulated via vm86 mode. Still, do not go to great lengths 4309 * to avoid userspace's usage of the feature, because it is a 4310 * fringe case that is not enabled except via specific settings 4311 * of the module parameters. 4312 */ 4313 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4314 break; 4315 case KVM_CAP_NR_VCPUS: 4316 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4317 break; 4318 case KVM_CAP_MAX_VCPUS: 4319 r = KVM_MAX_VCPUS; 4320 break; 4321 case KVM_CAP_MAX_VCPU_ID: 4322 r = KVM_MAX_VCPU_IDS; 4323 break; 4324 case KVM_CAP_PV_MMU: /* obsolete */ 4325 r = 0; 4326 break; 4327 case KVM_CAP_MCE: 4328 r = KVM_MAX_MCE_BANKS; 4329 break; 4330 case KVM_CAP_XCRS: 4331 r = boot_cpu_has(X86_FEATURE_XSAVE); 4332 break; 4333 case KVM_CAP_TSC_CONTROL: 4334 r = kvm_has_tsc_control; 4335 break; 4336 case KVM_CAP_X2APIC_API: 4337 r = KVM_X2APIC_API_VALID_FLAGS; 4338 break; 4339 case KVM_CAP_NESTED_STATE: 4340 r = kvm_x86_ops.nested_ops->get_state ? 4341 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4342 break; 4343 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4344 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4345 break; 4346 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4347 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4348 break; 4349 case KVM_CAP_SMALLER_MAXPHYADDR: 4350 r = (int) allow_smaller_maxphyaddr; 4351 break; 4352 case KVM_CAP_STEAL_TIME: 4353 r = sched_info_on(); 4354 break; 4355 case KVM_CAP_X86_BUS_LOCK_EXIT: 4356 if (kvm_has_bus_lock_exit) 4357 r = KVM_BUS_LOCK_DETECTION_OFF | 4358 KVM_BUS_LOCK_DETECTION_EXIT; 4359 else 4360 r = 0; 4361 break; 4362 case KVM_CAP_XSAVE2: { 4363 u64 guest_perm = xstate_get_guest_group_perm(); 4364 4365 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4366 if (r < sizeof(struct kvm_xsave)) 4367 r = sizeof(struct kvm_xsave); 4368 break; 4369 case KVM_CAP_PMU_CAPABILITY: 4370 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4371 break; 4372 } 4373 case KVM_CAP_DISABLE_QUIRKS2: 4374 r = KVM_X86_VALID_QUIRKS; 4375 break; 4376 default: 4377 break; 4378 } 4379 return r; 4380 } 4381 4382 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4383 { 4384 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4385 4386 if ((u64)(unsigned long)uaddr != attr->addr) 4387 return ERR_PTR_USR(-EFAULT); 4388 return uaddr; 4389 } 4390 4391 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4392 { 4393 u64 __user *uaddr = kvm_get_attr_addr(attr); 4394 4395 if (attr->group) 4396 return -ENXIO; 4397 4398 if (IS_ERR(uaddr)) 4399 return PTR_ERR(uaddr); 4400 4401 switch (attr->attr) { 4402 case KVM_X86_XCOMP_GUEST_SUPP: 4403 if (put_user(supported_xcr0, uaddr)) 4404 return -EFAULT; 4405 return 0; 4406 default: 4407 return -ENXIO; 4408 break; 4409 } 4410 } 4411 4412 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4413 { 4414 if (attr->group) 4415 return -ENXIO; 4416 4417 switch (attr->attr) { 4418 case KVM_X86_XCOMP_GUEST_SUPP: 4419 return 0; 4420 default: 4421 return -ENXIO; 4422 } 4423 } 4424 4425 long kvm_arch_dev_ioctl(struct file *filp, 4426 unsigned int ioctl, unsigned long arg) 4427 { 4428 void __user *argp = (void __user *)arg; 4429 long r; 4430 4431 switch (ioctl) { 4432 case KVM_GET_MSR_INDEX_LIST: { 4433 struct kvm_msr_list __user *user_msr_list = argp; 4434 struct kvm_msr_list msr_list; 4435 unsigned n; 4436 4437 r = -EFAULT; 4438 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4439 goto out; 4440 n = msr_list.nmsrs; 4441 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4442 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4443 goto out; 4444 r = -E2BIG; 4445 if (n < msr_list.nmsrs) 4446 goto out; 4447 r = -EFAULT; 4448 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4449 num_msrs_to_save * sizeof(u32))) 4450 goto out; 4451 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4452 &emulated_msrs, 4453 num_emulated_msrs * sizeof(u32))) 4454 goto out; 4455 r = 0; 4456 break; 4457 } 4458 case KVM_GET_SUPPORTED_CPUID: 4459 case KVM_GET_EMULATED_CPUID: { 4460 struct kvm_cpuid2 __user *cpuid_arg = argp; 4461 struct kvm_cpuid2 cpuid; 4462 4463 r = -EFAULT; 4464 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4465 goto out; 4466 4467 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4468 ioctl); 4469 if (r) 4470 goto out; 4471 4472 r = -EFAULT; 4473 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4474 goto out; 4475 r = 0; 4476 break; 4477 } 4478 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4479 r = -EFAULT; 4480 if (copy_to_user(argp, &kvm_mce_cap_supported, 4481 sizeof(kvm_mce_cap_supported))) 4482 goto out; 4483 r = 0; 4484 break; 4485 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4486 struct kvm_msr_list __user *user_msr_list = argp; 4487 struct kvm_msr_list msr_list; 4488 unsigned int n; 4489 4490 r = -EFAULT; 4491 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4492 goto out; 4493 n = msr_list.nmsrs; 4494 msr_list.nmsrs = num_msr_based_features; 4495 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4496 goto out; 4497 r = -E2BIG; 4498 if (n < msr_list.nmsrs) 4499 goto out; 4500 r = -EFAULT; 4501 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4502 num_msr_based_features * sizeof(u32))) 4503 goto out; 4504 r = 0; 4505 break; 4506 } 4507 case KVM_GET_MSRS: 4508 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4509 break; 4510 case KVM_GET_SUPPORTED_HV_CPUID: 4511 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4512 break; 4513 case KVM_GET_DEVICE_ATTR: { 4514 struct kvm_device_attr attr; 4515 r = -EFAULT; 4516 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4517 break; 4518 r = kvm_x86_dev_get_attr(&attr); 4519 break; 4520 } 4521 case KVM_HAS_DEVICE_ATTR: { 4522 struct kvm_device_attr attr; 4523 r = -EFAULT; 4524 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4525 break; 4526 r = kvm_x86_dev_has_attr(&attr); 4527 break; 4528 } 4529 default: 4530 r = -EINVAL; 4531 break; 4532 } 4533 out: 4534 return r; 4535 } 4536 4537 static void wbinvd_ipi(void *garbage) 4538 { 4539 wbinvd(); 4540 } 4541 4542 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4543 { 4544 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4545 } 4546 4547 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4548 { 4549 /* Address WBINVD may be executed by guest */ 4550 if (need_emulate_wbinvd(vcpu)) { 4551 if (static_call(kvm_x86_has_wbinvd_exit)()) 4552 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4553 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4554 smp_call_function_single(vcpu->cpu, 4555 wbinvd_ipi, NULL, 1); 4556 } 4557 4558 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4559 4560 /* Save host pkru register if supported */ 4561 vcpu->arch.host_pkru = read_pkru(); 4562 4563 /* Apply any externally detected TSC adjustments (due to suspend) */ 4564 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4565 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4566 vcpu->arch.tsc_offset_adjustment = 0; 4567 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4568 } 4569 4570 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4571 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4572 rdtsc() - vcpu->arch.last_host_tsc; 4573 if (tsc_delta < 0) 4574 mark_tsc_unstable("KVM discovered backwards TSC"); 4575 4576 if (kvm_check_tsc_unstable()) { 4577 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4578 vcpu->arch.last_guest_tsc); 4579 kvm_vcpu_write_tsc_offset(vcpu, offset); 4580 vcpu->arch.tsc_catchup = 1; 4581 } 4582 4583 if (kvm_lapic_hv_timer_in_use(vcpu)) 4584 kvm_lapic_restart_hv_timer(vcpu); 4585 4586 /* 4587 * On a host with synchronized TSC, there is no need to update 4588 * kvmclock on vcpu->cpu migration 4589 */ 4590 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4591 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4592 if (vcpu->cpu != cpu) 4593 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4594 vcpu->cpu = cpu; 4595 } 4596 4597 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4598 } 4599 4600 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4601 { 4602 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4603 struct kvm_steal_time __user *st; 4604 struct kvm_memslots *slots; 4605 static const u8 preempted = KVM_VCPU_PREEMPTED; 4606 4607 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4608 return; 4609 4610 if (vcpu->arch.st.preempted) 4611 return; 4612 4613 /* This happens on process exit */ 4614 if (unlikely(current->mm != vcpu->kvm->mm)) 4615 return; 4616 4617 slots = kvm_memslots(vcpu->kvm); 4618 4619 if (unlikely(slots->generation != ghc->generation || 4620 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4621 return; 4622 4623 st = (struct kvm_steal_time __user *)ghc->hva; 4624 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4625 4626 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4627 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4628 4629 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4630 } 4631 4632 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4633 { 4634 int idx; 4635 4636 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4637 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4638 4639 /* 4640 * Take the srcu lock as memslots will be accessed to check the gfn 4641 * cache generation against the memslots generation. 4642 */ 4643 idx = srcu_read_lock(&vcpu->kvm->srcu); 4644 if (kvm_xen_msr_enabled(vcpu->kvm)) 4645 kvm_xen_runstate_set_preempted(vcpu); 4646 else 4647 kvm_steal_time_set_preempted(vcpu); 4648 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4649 4650 static_call(kvm_x86_vcpu_put)(vcpu); 4651 vcpu->arch.last_host_tsc = rdtsc(); 4652 } 4653 4654 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4655 struct kvm_lapic_state *s) 4656 { 4657 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4658 4659 return kvm_apic_get_state(vcpu, s); 4660 } 4661 4662 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4663 struct kvm_lapic_state *s) 4664 { 4665 int r; 4666 4667 r = kvm_apic_set_state(vcpu, s); 4668 if (r) 4669 return r; 4670 update_cr8_intercept(vcpu); 4671 4672 return 0; 4673 } 4674 4675 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4676 { 4677 /* 4678 * We can accept userspace's request for interrupt injection 4679 * as long as we have a place to store the interrupt number. 4680 * The actual injection will happen when the CPU is able to 4681 * deliver the interrupt. 4682 */ 4683 if (kvm_cpu_has_extint(vcpu)) 4684 return false; 4685 4686 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4687 return (!lapic_in_kernel(vcpu) || 4688 kvm_apic_accept_pic_intr(vcpu)); 4689 } 4690 4691 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4692 { 4693 /* 4694 * Do not cause an interrupt window exit if an exception 4695 * is pending or an event needs reinjection; userspace 4696 * might want to inject the interrupt manually using KVM_SET_REGS 4697 * or KVM_SET_SREGS. For that to work, we must be at an 4698 * instruction boundary and with no events half-injected. 4699 */ 4700 return (kvm_arch_interrupt_allowed(vcpu) && 4701 kvm_cpu_accept_dm_intr(vcpu) && 4702 !kvm_event_needs_reinjection(vcpu) && 4703 !vcpu->arch.exception.pending); 4704 } 4705 4706 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4707 struct kvm_interrupt *irq) 4708 { 4709 if (irq->irq >= KVM_NR_INTERRUPTS) 4710 return -EINVAL; 4711 4712 if (!irqchip_in_kernel(vcpu->kvm)) { 4713 kvm_queue_interrupt(vcpu, irq->irq, false); 4714 kvm_make_request(KVM_REQ_EVENT, vcpu); 4715 return 0; 4716 } 4717 4718 /* 4719 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4720 * fail for in-kernel 8259. 4721 */ 4722 if (pic_in_kernel(vcpu->kvm)) 4723 return -ENXIO; 4724 4725 if (vcpu->arch.pending_external_vector != -1) 4726 return -EEXIST; 4727 4728 vcpu->arch.pending_external_vector = irq->irq; 4729 kvm_make_request(KVM_REQ_EVENT, vcpu); 4730 return 0; 4731 } 4732 4733 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4734 { 4735 kvm_inject_nmi(vcpu); 4736 4737 return 0; 4738 } 4739 4740 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4741 { 4742 kvm_make_request(KVM_REQ_SMI, vcpu); 4743 4744 return 0; 4745 } 4746 4747 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4748 struct kvm_tpr_access_ctl *tac) 4749 { 4750 if (tac->flags) 4751 return -EINVAL; 4752 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4753 return 0; 4754 } 4755 4756 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4757 u64 mcg_cap) 4758 { 4759 int r; 4760 unsigned bank_num = mcg_cap & 0xff, bank; 4761 4762 r = -EINVAL; 4763 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4764 goto out; 4765 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4766 goto out; 4767 r = 0; 4768 vcpu->arch.mcg_cap = mcg_cap; 4769 /* Init IA32_MCG_CTL to all 1s */ 4770 if (mcg_cap & MCG_CTL_P) 4771 vcpu->arch.mcg_ctl = ~(u64)0; 4772 /* Init IA32_MCi_CTL to all 1s */ 4773 for (bank = 0; bank < bank_num; bank++) 4774 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4775 4776 static_call(kvm_x86_setup_mce)(vcpu); 4777 out: 4778 return r; 4779 } 4780 4781 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4782 struct kvm_x86_mce *mce) 4783 { 4784 u64 mcg_cap = vcpu->arch.mcg_cap; 4785 unsigned bank_num = mcg_cap & 0xff; 4786 u64 *banks = vcpu->arch.mce_banks; 4787 4788 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4789 return -EINVAL; 4790 /* 4791 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4792 * reporting is disabled 4793 */ 4794 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4795 vcpu->arch.mcg_ctl != ~(u64)0) 4796 return 0; 4797 banks += 4 * mce->bank; 4798 /* 4799 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4800 * reporting is disabled for the bank 4801 */ 4802 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4803 return 0; 4804 if (mce->status & MCI_STATUS_UC) { 4805 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4806 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4807 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4808 return 0; 4809 } 4810 if (banks[1] & MCI_STATUS_VAL) 4811 mce->status |= MCI_STATUS_OVER; 4812 banks[2] = mce->addr; 4813 banks[3] = mce->misc; 4814 vcpu->arch.mcg_status = mce->mcg_status; 4815 banks[1] = mce->status; 4816 kvm_queue_exception(vcpu, MC_VECTOR); 4817 } else if (!(banks[1] & MCI_STATUS_VAL) 4818 || !(banks[1] & MCI_STATUS_UC)) { 4819 if (banks[1] & MCI_STATUS_VAL) 4820 mce->status |= MCI_STATUS_OVER; 4821 banks[2] = mce->addr; 4822 banks[3] = mce->misc; 4823 banks[1] = mce->status; 4824 } else 4825 banks[1] |= MCI_STATUS_OVER; 4826 return 0; 4827 } 4828 4829 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4830 struct kvm_vcpu_events *events) 4831 { 4832 process_nmi(vcpu); 4833 4834 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4835 process_smi(vcpu); 4836 4837 /* 4838 * In guest mode, payload delivery should be deferred, 4839 * so that the L1 hypervisor can intercept #PF before 4840 * CR2 is modified (or intercept #DB before DR6 is 4841 * modified under nVMX). Unless the per-VM capability, 4842 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4843 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4844 * opportunistically defer the exception payload, deliver it if the 4845 * capability hasn't been requested before processing a 4846 * KVM_GET_VCPU_EVENTS. 4847 */ 4848 if (!vcpu->kvm->arch.exception_payload_enabled && 4849 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4850 kvm_deliver_exception_payload(vcpu); 4851 4852 /* 4853 * The API doesn't provide the instruction length for software 4854 * exceptions, so don't report them. As long as the guest RIP 4855 * isn't advanced, we should expect to encounter the exception 4856 * again. 4857 */ 4858 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4859 events->exception.injected = 0; 4860 events->exception.pending = 0; 4861 } else { 4862 events->exception.injected = vcpu->arch.exception.injected; 4863 events->exception.pending = vcpu->arch.exception.pending; 4864 /* 4865 * For ABI compatibility, deliberately conflate 4866 * pending and injected exceptions when 4867 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4868 */ 4869 if (!vcpu->kvm->arch.exception_payload_enabled) 4870 events->exception.injected |= 4871 vcpu->arch.exception.pending; 4872 } 4873 events->exception.nr = vcpu->arch.exception.nr; 4874 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4875 events->exception.error_code = vcpu->arch.exception.error_code; 4876 events->exception_has_payload = vcpu->arch.exception.has_payload; 4877 events->exception_payload = vcpu->arch.exception.payload; 4878 4879 events->interrupt.injected = 4880 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4881 events->interrupt.nr = vcpu->arch.interrupt.nr; 4882 events->interrupt.soft = 0; 4883 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4884 4885 events->nmi.injected = vcpu->arch.nmi_injected; 4886 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4887 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4888 events->nmi.pad = 0; 4889 4890 events->sipi_vector = 0; /* never valid when reporting to user space */ 4891 4892 events->smi.smm = is_smm(vcpu); 4893 events->smi.pending = vcpu->arch.smi_pending; 4894 events->smi.smm_inside_nmi = 4895 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4896 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4897 4898 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4899 | KVM_VCPUEVENT_VALID_SHADOW 4900 | KVM_VCPUEVENT_VALID_SMM); 4901 if (vcpu->kvm->arch.exception_payload_enabled) 4902 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4903 4904 memset(&events->reserved, 0, sizeof(events->reserved)); 4905 } 4906 4907 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4908 4909 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4910 struct kvm_vcpu_events *events) 4911 { 4912 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4913 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4914 | KVM_VCPUEVENT_VALID_SHADOW 4915 | KVM_VCPUEVENT_VALID_SMM 4916 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4917 return -EINVAL; 4918 4919 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4920 if (!vcpu->kvm->arch.exception_payload_enabled) 4921 return -EINVAL; 4922 if (events->exception.pending) 4923 events->exception.injected = 0; 4924 else 4925 events->exception_has_payload = 0; 4926 } else { 4927 events->exception.pending = 0; 4928 events->exception_has_payload = 0; 4929 } 4930 4931 if ((events->exception.injected || events->exception.pending) && 4932 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4933 return -EINVAL; 4934 4935 /* INITs are latched while in SMM */ 4936 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4937 (events->smi.smm || events->smi.pending) && 4938 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4939 return -EINVAL; 4940 4941 process_nmi(vcpu); 4942 vcpu->arch.exception.injected = events->exception.injected; 4943 vcpu->arch.exception.pending = events->exception.pending; 4944 vcpu->arch.exception.nr = events->exception.nr; 4945 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4946 vcpu->arch.exception.error_code = events->exception.error_code; 4947 vcpu->arch.exception.has_payload = events->exception_has_payload; 4948 vcpu->arch.exception.payload = events->exception_payload; 4949 4950 vcpu->arch.interrupt.injected = events->interrupt.injected; 4951 vcpu->arch.interrupt.nr = events->interrupt.nr; 4952 vcpu->arch.interrupt.soft = events->interrupt.soft; 4953 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4954 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4955 events->interrupt.shadow); 4956 4957 vcpu->arch.nmi_injected = events->nmi.injected; 4958 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4959 vcpu->arch.nmi_pending = events->nmi.pending; 4960 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4961 4962 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4963 lapic_in_kernel(vcpu)) 4964 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4965 4966 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4967 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4968 kvm_x86_ops.nested_ops->leave_nested(vcpu); 4969 kvm_smm_changed(vcpu, events->smi.smm); 4970 } 4971 4972 vcpu->arch.smi_pending = events->smi.pending; 4973 4974 if (events->smi.smm) { 4975 if (events->smi.smm_inside_nmi) 4976 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4977 else 4978 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4979 } 4980 4981 if (lapic_in_kernel(vcpu)) { 4982 if (events->smi.latched_init) 4983 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4984 else 4985 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4986 } 4987 } 4988 4989 kvm_make_request(KVM_REQ_EVENT, vcpu); 4990 4991 return 0; 4992 } 4993 4994 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4995 struct kvm_debugregs *dbgregs) 4996 { 4997 unsigned long val; 4998 4999 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5000 kvm_get_dr(vcpu, 6, &val); 5001 dbgregs->dr6 = val; 5002 dbgregs->dr7 = vcpu->arch.dr7; 5003 dbgregs->flags = 0; 5004 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5005 } 5006 5007 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5008 struct kvm_debugregs *dbgregs) 5009 { 5010 if (dbgregs->flags) 5011 return -EINVAL; 5012 5013 if (!kvm_dr6_valid(dbgregs->dr6)) 5014 return -EINVAL; 5015 if (!kvm_dr7_valid(dbgregs->dr7)) 5016 return -EINVAL; 5017 5018 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5019 kvm_update_dr0123(vcpu); 5020 vcpu->arch.dr6 = dbgregs->dr6; 5021 vcpu->arch.dr7 = dbgregs->dr7; 5022 kvm_update_dr7(vcpu); 5023 5024 return 0; 5025 } 5026 5027 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5028 struct kvm_xsave *guest_xsave) 5029 { 5030 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5031 return; 5032 5033 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5034 guest_xsave->region, 5035 sizeof(guest_xsave->region), 5036 vcpu->arch.pkru); 5037 } 5038 5039 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5040 u8 *state, unsigned int size) 5041 { 5042 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5043 return; 5044 5045 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5046 state, size, vcpu->arch.pkru); 5047 } 5048 5049 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5050 struct kvm_xsave *guest_xsave) 5051 { 5052 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5053 return 0; 5054 5055 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5056 guest_xsave->region, 5057 supported_xcr0, &vcpu->arch.pkru); 5058 } 5059 5060 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5061 struct kvm_xcrs *guest_xcrs) 5062 { 5063 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5064 guest_xcrs->nr_xcrs = 0; 5065 return; 5066 } 5067 5068 guest_xcrs->nr_xcrs = 1; 5069 guest_xcrs->flags = 0; 5070 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5071 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5072 } 5073 5074 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5075 struct kvm_xcrs *guest_xcrs) 5076 { 5077 int i, r = 0; 5078 5079 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5080 return -EINVAL; 5081 5082 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5083 return -EINVAL; 5084 5085 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5086 /* Only support XCR0 currently */ 5087 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5088 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5089 guest_xcrs->xcrs[i].value); 5090 break; 5091 } 5092 if (r) 5093 r = -EINVAL; 5094 return r; 5095 } 5096 5097 /* 5098 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5099 * stopped by the hypervisor. This function will be called from the host only. 5100 * EINVAL is returned when the host attempts to set the flag for a guest that 5101 * does not support pv clocks. 5102 */ 5103 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5104 { 5105 if (!vcpu->arch.pv_time_enabled) 5106 return -EINVAL; 5107 vcpu->arch.pvclock_set_guest_stopped_request = true; 5108 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5109 return 0; 5110 } 5111 5112 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5113 struct kvm_device_attr *attr) 5114 { 5115 int r; 5116 5117 switch (attr->attr) { 5118 case KVM_VCPU_TSC_OFFSET: 5119 r = 0; 5120 break; 5121 default: 5122 r = -ENXIO; 5123 } 5124 5125 return r; 5126 } 5127 5128 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5129 struct kvm_device_attr *attr) 5130 { 5131 u64 __user *uaddr = kvm_get_attr_addr(attr); 5132 int r; 5133 5134 if (IS_ERR(uaddr)) 5135 return PTR_ERR(uaddr); 5136 5137 switch (attr->attr) { 5138 case KVM_VCPU_TSC_OFFSET: 5139 r = -EFAULT; 5140 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5141 break; 5142 r = 0; 5143 break; 5144 default: 5145 r = -ENXIO; 5146 } 5147 5148 return r; 5149 } 5150 5151 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5152 struct kvm_device_attr *attr) 5153 { 5154 u64 __user *uaddr = kvm_get_attr_addr(attr); 5155 struct kvm *kvm = vcpu->kvm; 5156 int r; 5157 5158 if (IS_ERR(uaddr)) 5159 return PTR_ERR(uaddr); 5160 5161 switch (attr->attr) { 5162 case KVM_VCPU_TSC_OFFSET: { 5163 u64 offset, tsc, ns; 5164 unsigned long flags; 5165 bool matched; 5166 5167 r = -EFAULT; 5168 if (get_user(offset, uaddr)) 5169 break; 5170 5171 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5172 5173 matched = (vcpu->arch.virtual_tsc_khz && 5174 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5175 kvm->arch.last_tsc_offset == offset); 5176 5177 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5178 ns = get_kvmclock_base_ns(); 5179 5180 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5181 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5182 5183 r = 0; 5184 break; 5185 } 5186 default: 5187 r = -ENXIO; 5188 } 5189 5190 return r; 5191 } 5192 5193 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5194 unsigned int ioctl, 5195 void __user *argp) 5196 { 5197 struct kvm_device_attr attr; 5198 int r; 5199 5200 if (copy_from_user(&attr, argp, sizeof(attr))) 5201 return -EFAULT; 5202 5203 if (attr.group != KVM_VCPU_TSC_CTRL) 5204 return -ENXIO; 5205 5206 switch (ioctl) { 5207 case KVM_HAS_DEVICE_ATTR: 5208 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5209 break; 5210 case KVM_GET_DEVICE_ATTR: 5211 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5212 break; 5213 case KVM_SET_DEVICE_ATTR: 5214 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5215 break; 5216 } 5217 5218 return r; 5219 } 5220 5221 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5222 struct kvm_enable_cap *cap) 5223 { 5224 int r; 5225 uint16_t vmcs_version; 5226 void __user *user_ptr; 5227 5228 if (cap->flags) 5229 return -EINVAL; 5230 5231 switch (cap->cap) { 5232 case KVM_CAP_HYPERV_SYNIC2: 5233 if (cap->args[0]) 5234 return -EINVAL; 5235 fallthrough; 5236 5237 case KVM_CAP_HYPERV_SYNIC: 5238 if (!irqchip_in_kernel(vcpu->kvm)) 5239 return -EINVAL; 5240 return kvm_hv_activate_synic(vcpu, cap->cap == 5241 KVM_CAP_HYPERV_SYNIC2); 5242 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5243 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5244 return -ENOTTY; 5245 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5246 if (!r) { 5247 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5248 if (copy_to_user(user_ptr, &vmcs_version, 5249 sizeof(vmcs_version))) 5250 r = -EFAULT; 5251 } 5252 return r; 5253 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5254 if (!kvm_x86_ops.enable_direct_tlbflush) 5255 return -ENOTTY; 5256 5257 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5258 5259 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5260 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5261 5262 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5263 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5264 if (vcpu->arch.pv_cpuid.enforce) 5265 kvm_update_pv_runtime(vcpu); 5266 5267 return 0; 5268 default: 5269 return -EINVAL; 5270 } 5271 } 5272 5273 long kvm_arch_vcpu_ioctl(struct file *filp, 5274 unsigned int ioctl, unsigned long arg) 5275 { 5276 struct kvm_vcpu *vcpu = filp->private_data; 5277 void __user *argp = (void __user *)arg; 5278 int r; 5279 union { 5280 struct kvm_sregs2 *sregs2; 5281 struct kvm_lapic_state *lapic; 5282 struct kvm_xsave *xsave; 5283 struct kvm_xcrs *xcrs; 5284 void *buffer; 5285 } u; 5286 5287 vcpu_load(vcpu); 5288 5289 u.buffer = NULL; 5290 switch (ioctl) { 5291 case KVM_GET_LAPIC: { 5292 r = -EINVAL; 5293 if (!lapic_in_kernel(vcpu)) 5294 goto out; 5295 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5296 GFP_KERNEL_ACCOUNT); 5297 5298 r = -ENOMEM; 5299 if (!u.lapic) 5300 goto out; 5301 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5302 if (r) 5303 goto out; 5304 r = -EFAULT; 5305 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5306 goto out; 5307 r = 0; 5308 break; 5309 } 5310 case KVM_SET_LAPIC: { 5311 r = -EINVAL; 5312 if (!lapic_in_kernel(vcpu)) 5313 goto out; 5314 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5315 if (IS_ERR(u.lapic)) { 5316 r = PTR_ERR(u.lapic); 5317 goto out_nofree; 5318 } 5319 5320 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5321 break; 5322 } 5323 case KVM_INTERRUPT: { 5324 struct kvm_interrupt irq; 5325 5326 r = -EFAULT; 5327 if (copy_from_user(&irq, argp, sizeof(irq))) 5328 goto out; 5329 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5330 break; 5331 } 5332 case KVM_NMI: { 5333 r = kvm_vcpu_ioctl_nmi(vcpu); 5334 break; 5335 } 5336 case KVM_SMI: { 5337 r = kvm_vcpu_ioctl_smi(vcpu); 5338 break; 5339 } 5340 case KVM_SET_CPUID: { 5341 struct kvm_cpuid __user *cpuid_arg = argp; 5342 struct kvm_cpuid cpuid; 5343 5344 r = -EFAULT; 5345 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5346 goto out; 5347 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5348 break; 5349 } 5350 case KVM_SET_CPUID2: { 5351 struct kvm_cpuid2 __user *cpuid_arg = argp; 5352 struct kvm_cpuid2 cpuid; 5353 5354 r = -EFAULT; 5355 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5356 goto out; 5357 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5358 cpuid_arg->entries); 5359 break; 5360 } 5361 case KVM_GET_CPUID2: { 5362 struct kvm_cpuid2 __user *cpuid_arg = argp; 5363 struct kvm_cpuid2 cpuid; 5364 5365 r = -EFAULT; 5366 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5367 goto out; 5368 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5369 cpuid_arg->entries); 5370 if (r) 5371 goto out; 5372 r = -EFAULT; 5373 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5374 goto out; 5375 r = 0; 5376 break; 5377 } 5378 case KVM_GET_MSRS: { 5379 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5380 r = msr_io(vcpu, argp, do_get_msr, 1); 5381 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5382 break; 5383 } 5384 case KVM_SET_MSRS: { 5385 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5386 r = msr_io(vcpu, argp, do_set_msr, 0); 5387 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5388 break; 5389 } 5390 case KVM_TPR_ACCESS_REPORTING: { 5391 struct kvm_tpr_access_ctl tac; 5392 5393 r = -EFAULT; 5394 if (copy_from_user(&tac, argp, sizeof(tac))) 5395 goto out; 5396 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5397 if (r) 5398 goto out; 5399 r = -EFAULT; 5400 if (copy_to_user(argp, &tac, sizeof(tac))) 5401 goto out; 5402 r = 0; 5403 break; 5404 }; 5405 case KVM_SET_VAPIC_ADDR: { 5406 struct kvm_vapic_addr va; 5407 int idx; 5408 5409 r = -EINVAL; 5410 if (!lapic_in_kernel(vcpu)) 5411 goto out; 5412 r = -EFAULT; 5413 if (copy_from_user(&va, argp, sizeof(va))) 5414 goto out; 5415 idx = srcu_read_lock(&vcpu->kvm->srcu); 5416 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5417 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5418 break; 5419 } 5420 case KVM_X86_SETUP_MCE: { 5421 u64 mcg_cap; 5422 5423 r = -EFAULT; 5424 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5425 goto out; 5426 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5427 break; 5428 } 5429 case KVM_X86_SET_MCE: { 5430 struct kvm_x86_mce mce; 5431 5432 r = -EFAULT; 5433 if (copy_from_user(&mce, argp, sizeof(mce))) 5434 goto out; 5435 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5436 break; 5437 } 5438 case KVM_GET_VCPU_EVENTS: { 5439 struct kvm_vcpu_events events; 5440 5441 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5442 5443 r = -EFAULT; 5444 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5445 break; 5446 r = 0; 5447 break; 5448 } 5449 case KVM_SET_VCPU_EVENTS: { 5450 struct kvm_vcpu_events events; 5451 5452 r = -EFAULT; 5453 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5454 break; 5455 5456 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5457 break; 5458 } 5459 case KVM_GET_DEBUGREGS: { 5460 struct kvm_debugregs dbgregs; 5461 5462 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5463 5464 r = -EFAULT; 5465 if (copy_to_user(argp, &dbgregs, 5466 sizeof(struct kvm_debugregs))) 5467 break; 5468 r = 0; 5469 break; 5470 } 5471 case KVM_SET_DEBUGREGS: { 5472 struct kvm_debugregs dbgregs; 5473 5474 r = -EFAULT; 5475 if (copy_from_user(&dbgregs, argp, 5476 sizeof(struct kvm_debugregs))) 5477 break; 5478 5479 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5480 break; 5481 } 5482 case KVM_GET_XSAVE: { 5483 r = -EINVAL; 5484 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5485 break; 5486 5487 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5488 r = -ENOMEM; 5489 if (!u.xsave) 5490 break; 5491 5492 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5493 5494 r = -EFAULT; 5495 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5496 break; 5497 r = 0; 5498 break; 5499 } 5500 case KVM_SET_XSAVE: { 5501 int size = vcpu->arch.guest_fpu.uabi_size; 5502 5503 u.xsave = memdup_user(argp, size); 5504 if (IS_ERR(u.xsave)) { 5505 r = PTR_ERR(u.xsave); 5506 goto out_nofree; 5507 } 5508 5509 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5510 break; 5511 } 5512 5513 case KVM_GET_XSAVE2: { 5514 int size = vcpu->arch.guest_fpu.uabi_size; 5515 5516 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5517 r = -ENOMEM; 5518 if (!u.xsave) 5519 break; 5520 5521 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5522 5523 r = -EFAULT; 5524 if (copy_to_user(argp, u.xsave, size)) 5525 break; 5526 5527 r = 0; 5528 break; 5529 } 5530 5531 case KVM_GET_XCRS: { 5532 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5533 r = -ENOMEM; 5534 if (!u.xcrs) 5535 break; 5536 5537 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5538 5539 r = -EFAULT; 5540 if (copy_to_user(argp, u.xcrs, 5541 sizeof(struct kvm_xcrs))) 5542 break; 5543 r = 0; 5544 break; 5545 } 5546 case KVM_SET_XCRS: { 5547 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5548 if (IS_ERR(u.xcrs)) { 5549 r = PTR_ERR(u.xcrs); 5550 goto out_nofree; 5551 } 5552 5553 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5554 break; 5555 } 5556 case KVM_SET_TSC_KHZ: { 5557 u32 user_tsc_khz; 5558 5559 r = -EINVAL; 5560 user_tsc_khz = (u32)arg; 5561 5562 if (kvm_has_tsc_control && 5563 user_tsc_khz >= kvm_max_guest_tsc_khz) 5564 goto out; 5565 5566 if (user_tsc_khz == 0) 5567 user_tsc_khz = tsc_khz; 5568 5569 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5570 r = 0; 5571 5572 goto out; 5573 } 5574 case KVM_GET_TSC_KHZ: { 5575 r = vcpu->arch.virtual_tsc_khz; 5576 goto out; 5577 } 5578 case KVM_KVMCLOCK_CTRL: { 5579 r = kvm_set_guest_paused(vcpu); 5580 goto out; 5581 } 5582 case KVM_ENABLE_CAP: { 5583 struct kvm_enable_cap cap; 5584 5585 r = -EFAULT; 5586 if (copy_from_user(&cap, argp, sizeof(cap))) 5587 goto out; 5588 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5589 break; 5590 } 5591 case KVM_GET_NESTED_STATE: { 5592 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5593 u32 user_data_size; 5594 5595 r = -EINVAL; 5596 if (!kvm_x86_ops.nested_ops->get_state) 5597 break; 5598 5599 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5600 r = -EFAULT; 5601 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5602 break; 5603 5604 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5605 user_data_size); 5606 if (r < 0) 5607 break; 5608 5609 if (r > user_data_size) { 5610 if (put_user(r, &user_kvm_nested_state->size)) 5611 r = -EFAULT; 5612 else 5613 r = -E2BIG; 5614 break; 5615 } 5616 5617 r = 0; 5618 break; 5619 } 5620 case KVM_SET_NESTED_STATE: { 5621 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5622 struct kvm_nested_state kvm_state; 5623 int idx; 5624 5625 r = -EINVAL; 5626 if (!kvm_x86_ops.nested_ops->set_state) 5627 break; 5628 5629 r = -EFAULT; 5630 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5631 break; 5632 5633 r = -EINVAL; 5634 if (kvm_state.size < sizeof(kvm_state)) 5635 break; 5636 5637 if (kvm_state.flags & 5638 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5639 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5640 | KVM_STATE_NESTED_GIF_SET)) 5641 break; 5642 5643 /* nested_run_pending implies guest_mode. */ 5644 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5645 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5646 break; 5647 5648 idx = srcu_read_lock(&vcpu->kvm->srcu); 5649 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5650 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5651 break; 5652 } 5653 case KVM_GET_SUPPORTED_HV_CPUID: 5654 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5655 break; 5656 #ifdef CONFIG_KVM_XEN 5657 case KVM_XEN_VCPU_GET_ATTR: { 5658 struct kvm_xen_vcpu_attr xva; 5659 5660 r = -EFAULT; 5661 if (copy_from_user(&xva, argp, sizeof(xva))) 5662 goto out; 5663 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5664 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5665 r = -EFAULT; 5666 break; 5667 } 5668 case KVM_XEN_VCPU_SET_ATTR: { 5669 struct kvm_xen_vcpu_attr xva; 5670 5671 r = -EFAULT; 5672 if (copy_from_user(&xva, argp, sizeof(xva))) 5673 goto out; 5674 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5675 break; 5676 } 5677 #endif 5678 case KVM_GET_SREGS2: { 5679 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5680 r = -ENOMEM; 5681 if (!u.sregs2) 5682 goto out; 5683 __get_sregs2(vcpu, u.sregs2); 5684 r = -EFAULT; 5685 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5686 goto out; 5687 r = 0; 5688 break; 5689 } 5690 case KVM_SET_SREGS2: { 5691 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5692 if (IS_ERR(u.sregs2)) { 5693 r = PTR_ERR(u.sregs2); 5694 u.sregs2 = NULL; 5695 goto out; 5696 } 5697 r = __set_sregs2(vcpu, u.sregs2); 5698 break; 5699 } 5700 case KVM_HAS_DEVICE_ATTR: 5701 case KVM_GET_DEVICE_ATTR: 5702 case KVM_SET_DEVICE_ATTR: 5703 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5704 break; 5705 default: 5706 r = -EINVAL; 5707 } 5708 out: 5709 kfree(u.buffer); 5710 out_nofree: 5711 vcpu_put(vcpu); 5712 return r; 5713 } 5714 5715 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5716 { 5717 return VM_FAULT_SIGBUS; 5718 } 5719 5720 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5721 { 5722 int ret; 5723 5724 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5725 return -EINVAL; 5726 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5727 return ret; 5728 } 5729 5730 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5731 u64 ident_addr) 5732 { 5733 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5734 } 5735 5736 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5737 unsigned long kvm_nr_mmu_pages) 5738 { 5739 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5740 return -EINVAL; 5741 5742 mutex_lock(&kvm->slots_lock); 5743 5744 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5745 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5746 5747 mutex_unlock(&kvm->slots_lock); 5748 return 0; 5749 } 5750 5751 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5752 { 5753 return kvm->arch.n_max_mmu_pages; 5754 } 5755 5756 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5757 { 5758 struct kvm_pic *pic = kvm->arch.vpic; 5759 int r; 5760 5761 r = 0; 5762 switch (chip->chip_id) { 5763 case KVM_IRQCHIP_PIC_MASTER: 5764 memcpy(&chip->chip.pic, &pic->pics[0], 5765 sizeof(struct kvm_pic_state)); 5766 break; 5767 case KVM_IRQCHIP_PIC_SLAVE: 5768 memcpy(&chip->chip.pic, &pic->pics[1], 5769 sizeof(struct kvm_pic_state)); 5770 break; 5771 case KVM_IRQCHIP_IOAPIC: 5772 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5773 break; 5774 default: 5775 r = -EINVAL; 5776 break; 5777 } 5778 return r; 5779 } 5780 5781 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5782 { 5783 struct kvm_pic *pic = kvm->arch.vpic; 5784 int r; 5785 5786 r = 0; 5787 switch (chip->chip_id) { 5788 case KVM_IRQCHIP_PIC_MASTER: 5789 spin_lock(&pic->lock); 5790 memcpy(&pic->pics[0], &chip->chip.pic, 5791 sizeof(struct kvm_pic_state)); 5792 spin_unlock(&pic->lock); 5793 break; 5794 case KVM_IRQCHIP_PIC_SLAVE: 5795 spin_lock(&pic->lock); 5796 memcpy(&pic->pics[1], &chip->chip.pic, 5797 sizeof(struct kvm_pic_state)); 5798 spin_unlock(&pic->lock); 5799 break; 5800 case KVM_IRQCHIP_IOAPIC: 5801 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5802 break; 5803 default: 5804 r = -EINVAL; 5805 break; 5806 } 5807 kvm_pic_update_irq(pic); 5808 return r; 5809 } 5810 5811 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5812 { 5813 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5814 5815 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5816 5817 mutex_lock(&kps->lock); 5818 memcpy(ps, &kps->channels, sizeof(*ps)); 5819 mutex_unlock(&kps->lock); 5820 return 0; 5821 } 5822 5823 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5824 { 5825 int i; 5826 struct kvm_pit *pit = kvm->arch.vpit; 5827 5828 mutex_lock(&pit->pit_state.lock); 5829 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5830 for (i = 0; i < 3; i++) 5831 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5832 mutex_unlock(&pit->pit_state.lock); 5833 return 0; 5834 } 5835 5836 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5837 { 5838 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5839 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5840 sizeof(ps->channels)); 5841 ps->flags = kvm->arch.vpit->pit_state.flags; 5842 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5843 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5844 return 0; 5845 } 5846 5847 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5848 { 5849 int start = 0; 5850 int i; 5851 u32 prev_legacy, cur_legacy; 5852 struct kvm_pit *pit = kvm->arch.vpit; 5853 5854 mutex_lock(&pit->pit_state.lock); 5855 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5856 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5857 if (!prev_legacy && cur_legacy) 5858 start = 1; 5859 memcpy(&pit->pit_state.channels, &ps->channels, 5860 sizeof(pit->pit_state.channels)); 5861 pit->pit_state.flags = ps->flags; 5862 for (i = 0; i < 3; i++) 5863 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5864 start && i == 0); 5865 mutex_unlock(&pit->pit_state.lock); 5866 return 0; 5867 } 5868 5869 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5870 struct kvm_reinject_control *control) 5871 { 5872 struct kvm_pit *pit = kvm->arch.vpit; 5873 5874 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5875 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5876 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5877 */ 5878 mutex_lock(&pit->pit_state.lock); 5879 kvm_pit_set_reinject(pit, control->pit_reinject); 5880 mutex_unlock(&pit->pit_state.lock); 5881 5882 return 0; 5883 } 5884 5885 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5886 { 5887 5888 /* 5889 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5890 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5891 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5892 * VM-Exit. 5893 */ 5894 struct kvm_vcpu *vcpu; 5895 unsigned long i; 5896 5897 kvm_for_each_vcpu(i, vcpu, kvm) 5898 kvm_vcpu_kick(vcpu); 5899 } 5900 5901 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5902 bool line_status) 5903 { 5904 if (!irqchip_in_kernel(kvm)) 5905 return -ENXIO; 5906 5907 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5908 irq_event->irq, irq_event->level, 5909 line_status); 5910 return 0; 5911 } 5912 5913 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5914 struct kvm_enable_cap *cap) 5915 { 5916 int r; 5917 5918 if (cap->flags) 5919 return -EINVAL; 5920 5921 switch (cap->cap) { 5922 case KVM_CAP_DISABLE_QUIRKS2: 5923 r = -EINVAL; 5924 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 5925 break; 5926 fallthrough; 5927 case KVM_CAP_DISABLE_QUIRKS: 5928 kvm->arch.disabled_quirks = cap->args[0]; 5929 r = 0; 5930 break; 5931 case KVM_CAP_SPLIT_IRQCHIP: { 5932 mutex_lock(&kvm->lock); 5933 r = -EINVAL; 5934 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5935 goto split_irqchip_unlock; 5936 r = -EEXIST; 5937 if (irqchip_in_kernel(kvm)) 5938 goto split_irqchip_unlock; 5939 if (kvm->created_vcpus) 5940 goto split_irqchip_unlock; 5941 r = kvm_setup_empty_irq_routing(kvm); 5942 if (r) 5943 goto split_irqchip_unlock; 5944 /* Pairs with irqchip_in_kernel. */ 5945 smp_wmb(); 5946 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5947 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5948 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 5949 r = 0; 5950 split_irqchip_unlock: 5951 mutex_unlock(&kvm->lock); 5952 break; 5953 } 5954 case KVM_CAP_X2APIC_API: 5955 r = -EINVAL; 5956 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5957 break; 5958 5959 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5960 kvm->arch.x2apic_format = true; 5961 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5962 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5963 5964 r = 0; 5965 break; 5966 case KVM_CAP_X86_DISABLE_EXITS: 5967 r = -EINVAL; 5968 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5969 break; 5970 5971 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5972 kvm_can_mwait_in_guest()) 5973 kvm->arch.mwait_in_guest = true; 5974 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5975 kvm->arch.hlt_in_guest = true; 5976 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5977 kvm->arch.pause_in_guest = true; 5978 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5979 kvm->arch.cstate_in_guest = true; 5980 r = 0; 5981 break; 5982 case KVM_CAP_MSR_PLATFORM_INFO: 5983 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5984 r = 0; 5985 break; 5986 case KVM_CAP_EXCEPTION_PAYLOAD: 5987 kvm->arch.exception_payload_enabled = cap->args[0]; 5988 r = 0; 5989 break; 5990 case KVM_CAP_X86_USER_SPACE_MSR: 5991 kvm->arch.user_space_msr_mask = cap->args[0]; 5992 r = 0; 5993 break; 5994 case KVM_CAP_X86_BUS_LOCK_EXIT: 5995 r = -EINVAL; 5996 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 5997 break; 5998 5999 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6000 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6001 break; 6002 6003 if (kvm_has_bus_lock_exit && 6004 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6005 kvm->arch.bus_lock_detection_enabled = true; 6006 r = 0; 6007 break; 6008 #ifdef CONFIG_X86_SGX_KVM 6009 case KVM_CAP_SGX_ATTRIBUTE: { 6010 unsigned long allowed_attributes = 0; 6011 6012 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6013 if (r) 6014 break; 6015 6016 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6017 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6018 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6019 kvm->arch.sgx_provisioning_allowed = true; 6020 else 6021 r = -EINVAL; 6022 break; 6023 } 6024 #endif 6025 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6026 r = -EINVAL; 6027 if (!kvm_x86_ops.vm_copy_enc_context_from) 6028 break; 6029 6030 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6031 break; 6032 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6033 r = -EINVAL; 6034 if (!kvm_x86_ops.vm_move_enc_context_from) 6035 break; 6036 6037 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6038 break; 6039 case KVM_CAP_EXIT_HYPERCALL: 6040 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6041 r = -EINVAL; 6042 break; 6043 } 6044 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6045 r = 0; 6046 break; 6047 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6048 r = -EINVAL; 6049 if (cap->args[0] & ~1) 6050 break; 6051 kvm->arch.exit_on_emulation_error = cap->args[0]; 6052 r = 0; 6053 break; 6054 case KVM_CAP_PMU_CAPABILITY: 6055 r = -EINVAL; 6056 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6057 break; 6058 6059 mutex_lock(&kvm->lock); 6060 if (!kvm->created_vcpus) { 6061 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6062 r = 0; 6063 } 6064 mutex_unlock(&kvm->lock); 6065 break; 6066 default: 6067 r = -EINVAL; 6068 break; 6069 } 6070 return r; 6071 } 6072 6073 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6074 { 6075 struct kvm_x86_msr_filter *msr_filter; 6076 6077 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6078 if (!msr_filter) 6079 return NULL; 6080 6081 msr_filter->default_allow = default_allow; 6082 return msr_filter; 6083 } 6084 6085 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6086 { 6087 u32 i; 6088 6089 if (!msr_filter) 6090 return; 6091 6092 for (i = 0; i < msr_filter->count; i++) 6093 kfree(msr_filter->ranges[i].bitmap); 6094 6095 kfree(msr_filter); 6096 } 6097 6098 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6099 struct kvm_msr_filter_range *user_range) 6100 { 6101 unsigned long *bitmap = NULL; 6102 size_t bitmap_size; 6103 6104 if (!user_range->nmsrs) 6105 return 0; 6106 6107 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6108 return -EINVAL; 6109 6110 if (!user_range->flags) 6111 return -EINVAL; 6112 6113 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6114 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6115 return -EINVAL; 6116 6117 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6118 if (IS_ERR(bitmap)) 6119 return PTR_ERR(bitmap); 6120 6121 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6122 .flags = user_range->flags, 6123 .base = user_range->base, 6124 .nmsrs = user_range->nmsrs, 6125 .bitmap = bitmap, 6126 }; 6127 6128 msr_filter->count++; 6129 return 0; 6130 } 6131 6132 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6133 { 6134 struct kvm_msr_filter __user *user_msr_filter = argp; 6135 struct kvm_x86_msr_filter *new_filter, *old_filter; 6136 struct kvm_msr_filter filter; 6137 bool default_allow; 6138 bool empty = true; 6139 int r = 0; 6140 u32 i; 6141 6142 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6143 return -EFAULT; 6144 6145 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6146 empty &= !filter.ranges[i].nmsrs; 6147 6148 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6149 if (empty && !default_allow) 6150 return -EINVAL; 6151 6152 new_filter = kvm_alloc_msr_filter(default_allow); 6153 if (!new_filter) 6154 return -ENOMEM; 6155 6156 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6157 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6158 if (r) { 6159 kvm_free_msr_filter(new_filter); 6160 return r; 6161 } 6162 } 6163 6164 mutex_lock(&kvm->lock); 6165 6166 /* The per-VM filter is protected by kvm->lock... */ 6167 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6168 6169 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6170 synchronize_srcu(&kvm->srcu); 6171 6172 kvm_free_msr_filter(old_filter); 6173 6174 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6175 mutex_unlock(&kvm->lock); 6176 6177 return 0; 6178 } 6179 6180 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6181 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6182 { 6183 struct kvm_vcpu *vcpu; 6184 unsigned long i; 6185 int ret = 0; 6186 6187 mutex_lock(&kvm->lock); 6188 kvm_for_each_vcpu(i, vcpu, kvm) { 6189 if (!vcpu->arch.pv_time_enabled) 6190 continue; 6191 6192 ret = kvm_set_guest_paused(vcpu); 6193 if (ret) { 6194 kvm_err("Failed to pause guest VCPU%d: %d\n", 6195 vcpu->vcpu_id, ret); 6196 break; 6197 } 6198 } 6199 mutex_unlock(&kvm->lock); 6200 6201 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6202 } 6203 6204 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6205 { 6206 switch (state) { 6207 case PM_HIBERNATION_PREPARE: 6208 case PM_SUSPEND_PREPARE: 6209 return kvm_arch_suspend_notifier(kvm); 6210 } 6211 6212 return NOTIFY_DONE; 6213 } 6214 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6215 6216 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6217 { 6218 struct kvm_clock_data data = { 0 }; 6219 6220 get_kvmclock(kvm, &data); 6221 if (copy_to_user(argp, &data, sizeof(data))) 6222 return -EFAULT; 6223 6224 return 0; 6225 } 6226 6227 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6228 { 6229 struct kvm_arch *ka = &kvm->arch; 6230 struct kvm_clock_data data; 6231 u64 now_raw_ns; 6232 6233 if (copy_from_user(&data, argp, sizeof(data))) 6234 return -EFAULT; 6235 6236 /* 6237 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6238 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6239 */ 6240 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6241 return -EINVAL; 6242 6243 kvm_hv_request_tsc_page_update(kvm); 6244 kvm_start_pvclock_update(kvm); 6245 pvclock_update_vm_gtod_copy(kvm); 6246 6247 /* 6248 * This pairs with kvm_guest_time_update(): when masterclock is 6249 * in use, we use master_kernel_ns + kvmclock_offset to set 6250 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6251 * is slightly ahead) here we risk going negative on unsigned 6252 * 'system_time' when 'data.clock' is very small. 6253 */ 6254 if (data.flags & KVM_CLOCK_REALTIME) { 6255 u64 now_real_ns = ktime_get_real_ns(); 6256 6257 /* 6258 * Avoid stepping the kvmclock backwards. 6259 */ 6260 if (now_real_ns > data.realtime) 6261 data.clock += now_real_ns - data.realtime; 6262 } 6263 6264 if (ka->use_master_clock) 6265 now_raw_ns = ka->master_kernel_ns; 6266 else 6267 now_raw_ns = get_kvmclock_base_ns(); 6268 ka->kvmclock_offset = data.clock - now_raw_ns; 6269 kvm_end_pvclock_update(kvm); 6270 return 0; 6271 } 6272 6273 long kvm_arch_vm_ioctl(struct file *filp, 6274 unsigned int ioctl, unsigned long arg) 6275 { 6276 struct kvm *kvm = filp->private_data; 6277 void __user *argp = (void __user *)arg; 6278 int r = -ENOTTY; 6279 /* 6280 * This union makes it completely explicit to gcc-3.x 6281 * that these two variables' stack usage should be 6282 * combined, not added together. 6283 */ 6284 union { 6285 struct kvm_pit_state ps; 6286 struct kvm_pit_state2 ps2; 6287 struct kvm_pit_config pit_config; 6288 } u; 6289 6290 switch (ioctl) { 6291 case KVM_SET_TSS_ADDR: 6292 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6293 break; 6294 case KVM_SET_IDENTITY_MAP_ADDR: { 6295 u64 ident_addr; 6296 6297 mutex_lock(&kvm->lock); 6298 r = -EINVAL; 6299 if (kvm->created_vcpus) 6300 goto set_identity_unlock; 6301 r = -EFAULT; 6302 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6303 goto set_identity_unlock; 6304 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6305 set_identity_unlock: 6306 mutex_unlock(&kvm->lock); 6307 break; 6308 } 6309 case KVM_SET_NR_MMU_PAGES: 6310 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6311 break; 6312 case KVM_GET_NR_MMU_PAGES: 6313 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6314 break; 6315 case KVM_CREATE_IRQCHIP: { 6316 mutex_lock(&kvm->lock); 6317 6318 r = -EEXIST; 6319 if (irqchip_in_kernel(kvm)) 6320 goto create_irqchip_unlock; 6321 6322 r = -EINVAL; 6323 if (kvm->created_vcpus) 6324 goto create_irqchip_unlock; 6325 6326 r = kvm_pic_init(kvm); 6327 if (r) 6328 goto create_irqchip_unlock; 6329 6330 r = kvm_ioapic_init(kvm); 6331 if (r) { 6332 kvm_pic_destroy(kvm); 6333 goto create_irqchip_unlock; 6334 } 6335 6336 r = kvm_setup_default_irq_routing(kvm); 6337 if (r) { 6338 kvm_ioapic_destroy(kvm); 6339 kvm_pic_destroy(kvm); 6340 goto create_irqchip_unlock; 6341 } 6342 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6343 smp_wmb(); 6344 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6345 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6346 create_irqchip_unlock: 6347 mutex_unlock(&kvm->lock); 6348 break; 6349 } 6350 case KVM_CREATE_PIT: 6351 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6352 goto create_pit; 6353 case KVM_CREATE_PIT2: 6354 r = -EFAULT; 6355 if (copy_from_user(&u.pit_config, argp, 6356 sizeof(struct kvm_pit_config))) 6357 goto out; 6358 create_pit: 6359 mutex_lock(&kvm->lock); 6360 r = -EEXIST; 6361 if (kvm->arch.vpit) 6362 goto create_pit_unlock; 6363 r = -ENOMEM; 6364 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6365 if (kvm->arch.vpit) 6366 r = 0; 6367 create_pit_unlock: 6368 mutex_unlock(&kvm->lock); 6369 break; 6370 case KVM_GET_IRQCHIP: { 6371 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6372 struct kvm_irqchip *chip; 6373 6374 chip = memdup_user(argp, sizeof(*chip)); 6375 if (IS_ERR(chip)) { 6376 r = PTR_ERR(chip); 6377 goto out; 6378 } 6379 6380 r = -ENXIO; 6381 if (!irqchip_kernel(kvm)) 6382 goto get_irqchip_out; 6383 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6384 if (r) 6385 goto get_irqchip_out; 6386 r = -EFAULT; 6387 if (copy_to_user(argp, chip, sizeof(*chip))) 6388 goto get_irqchip_out; 6389 r = 0; 6390 get_irqchip_out: 6391 kfree(chip); 6392 break; 6393 } 6394 case KVM_SET_IRQCHIP: { 6395 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6396 struct kvm_irqchip *chip; 6397 6398 chip = memdup_user(argp, sizeof(*chip)); 6399 if (IS_ERR(chip)) { 6400 r = PTR_ERR(chip); 6401 goto out; 6402 } 6403 6404 r = -ENXIO; 6405 if (!irqchip_kernel(kvm)) 6406 goto set_irqchip_out; 6407 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6408 set_irqchip_out: 6409 kfree(chip); 6410 break; 6411 } 6412 case KVM_GET_PIT: { 6413 r = -EFAULT; 6414 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6415 goto out; 6416 r = -ENXIO; 6417 if (!kvm->arch.vpit) 6418 goto out; 6419 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6420 if (r) 6421 goto out; 6422 r = -EFAULT; 6423 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6424 goto out; 6425 r = 0; 6426 break; 6427 } 6428 case KVM_SET_PIT: { 6429 r = -EFAULT; 6430 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6431 goto out; 6432 mutex_lock(&kvm->lock); 6433 r = -ENXIO; 6434 if (!kvm->arch.vpit) 6435 goto set_pit_out; 6436 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6437 set_pit_out: 6438 mutex_unlock(&kvm->lock); 6439 break; 6440 } 6441 case KVM_GET_PIT2: { 6442 r = -ENXIO; 6443 if (!kvm->arch.vpit) 6444 goto out; 6445 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6446 if (r) 6447 goto out; 6448 r = -EFAULT; 6449 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6450 goto out; 6451 r = 0; 6452 break; 6453 } 6454 case KVM_SET_PIT2: { 6455 r = -EFAULT; 6456 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6457 goto out; 6458 mutex_lock(&kvm->lock); 6459 r = -ENXIO; 6460 if (!kvm->arch.vpit) 6461 goto set_pit2_out; 6462 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6463 set_pit2_out: 6464 mutex_unlock(&kvm->lock); 6465 break; 6466 } 6467 case KVM_REINJECT_CONTROL: { 6468 struct kvm_reinject_control control; 6469 r = -EFAULT; 6470 if (copy_from_user(&control, argp, sizeof(control))) 6471 goto out; 6472 r = -ENXIO; 6473 if (!kvm->arch.vpit) 6474 goto out; 6475 r = kvm_vm_ioctl_reinject(kvm, &control); 6476 break; 6477 } 6478 case KVM_SET_BOOT_CPU_ID: 6479 r = 0; 6480 mutex_lock(&kvm->lock); 6481 if (kvm->created_vcpus) 6482 r = -EBUSY; 6483 else 6484 kvm->arch.bsp_vcpu_id = arg; 6485 mutex_unlock(&kvm->lock); 6486 break; 6487 #ifdef CONFIG_KVM_XEN 6488 case KVM_XEN_HVM_CONFIG: { 6489 struct kvm_xen_hvm_config xhc; 6490 r = -EFAULT; 6491 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6492 goto out; 6493 r = kvm_xen_hvm_config(kvm, &xhc); 6494 break; 6495 } 6496 case KVM_XEN_HVM_GET_ATTR: { 6497 struct kvm_xen_hvm_attr xha; 6498 6499 r = -EFAULT; 6500 if (copy_from_user(&xha, argp, sizeof(xha))) 6501 goto out; 6502 r = kvm_xen_hvm_get_attr(kvm, &xha); 6503 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6504 r = -EFAULT; 6505 break; 6506 } 6507 case KVM_XEN_HVM_SET_ATTR: { 6508 struct kvm_xen_hvm_attr xha; 6509 6510 r = -EFAULT; 6511 if (copy_from_user(&xha, argp, sizeof(xha))) 6512 goto out; 6513 r = kvm_xen_hvm_set_attr(kvm, &xha); 6514 break; 6515 } 6516 #endif 6517 case KVM_SET_CLOCK: 6518 r = kvm_vm_ioctl_set_clock(kvm, argp); 6519 break; 6520 case KVM_GET_CLOCK: 6521 r = kvm_vm_ioctl_get_clock(kvm, argp); 6522 break; 6523 case KVM_MEMORY_ENCRYPT_OP: { 6524 r = -ENOTTY; 6525 if (!kvm_x86_ops.mem_enc_ioctl) 6526 goto out; 6527 6528 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6529 break; 6530 } 6531 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6532 struct kvm_enc_region region; 6533 6534 r = -EFAULT; 6535 if (copy_from_user(®ion, argp, sizeof(region))) 6536 goto out; 6537 6538 r = -ENOTTY; 6539 if (!kvm_x86_ops.mem_enc_register_region) 6540 goto out; 6541 6542 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6543 break; 6544 } 6545 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6546 struct kvm_enc_region region; 6547 6548 r = -EFAULT; 6549 if (copy_from_user(®ion, argp, sizeof(region))) 6550 goto out; 6551 6552 r = -ENOTTY; 6553 if (!kvm_x86_ops.mem_enc_unregister_region) 6554 goto out; 6555 6556 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6557 break; 6558 } 6559 case KVM_HYPERV_EVENTFD: { 6560 struct kvm_hyperv_eventfd hvevfd; 6561 6562 r = -EFAULT; 6563 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6564 goto out; 6565 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6566 break; 6567 } 6568 case KVM_SET_PMU_EVENT_FILTER: 6569 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6570 break; 6571 case KVM_X86_SET_MSR_FILTER: 6572 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6573 break; 6574 default: 6575 r = -ENOTTY; 6576 } 6577 out: 6578 return r; 6579 } 6580 6581 static void kvm_init_msr_list(void) 6582 { 6583 struct x86_pmu_capability x86_pmu; 6584 u32 dummy[2]; 6585 unsigned i; 6586 6587 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6588 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6589 6590 perf_get_x86_pmu_capability(&x86_pmu); 6591 6592 num_msrs_to_save = 0; 6593 num_emulated_msrs = 0; 6594 num_msr_based_features = 0; 6595 6596 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6597 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6598 continue; 6599 6600 /* 6601 * Even MSRs that are valid in the host may not be exposed 6602 * to the guests in some cases. 6603 */ 6604 switch (msrs_to_save_all[i]) { 6605 case MSR_IA32_BNDCFGS: 6606 if (!kvm_mpx_supported()) 6607 continue; 6608 break; 6609 case MSR_TSC_AUX: 6610 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6611 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6612 continue; 6613 break; 6614 case MSR_IA32_UMWAIT_CONTROL: 6615 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6616 continue; 6617 break; 6618 case MSR_IA32_RTIT_CTL: 6619 case MSR_IA32_RTIT_STATUS: 6620 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6621 continue; 6622 break; 6623 case MSR_IA32_RTIT_CR3_MATCH: 6624 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6625 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6626 continue; 6627 break; 6628 case MSR_IA32_RTIT_OUTPUT_BASE: 6629 case MSR_IA32_RTIT_OUTPUT_MASK: 6630 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6631 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6632 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6633 continue; 6634 break; 6635 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6636 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6637 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6638 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6639 continue; 6640 break; 6641 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6642 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6643 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6644 continue; 6645 break; 6646 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6647 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6648 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6649 continue; 6650 break; 6651 case MSR_IA32_XFD: 6652 case MSR_IA32_XFD_ERR: 6653 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6654 continue; 6655 break; 6656 default: 6657 break; 6658 } 6659 6660 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6661 } 6662 6663 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6664 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6665 continue; 6666 6667 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6668 } 6669 6670 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6671 struct kvm_msr_entry msr; 6672 6673 msr.index = msr_based_features_all[i]; 6674 if (kvm_get_msr_feature(&msr)) 6675 continue; 6676 6677 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6678 } 6679 } 6680 6681 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6682 const void *v) 6683 { 6684 int handled = 0; 6685 int n; 6686 6687 do { 6688 n = min(len, 8); 6689 if (!(lapic_in_kernel(vcpu) && 6690 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6691 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6692 break; 6693 handled += n; 6694 addr += n; 6695 len -= n; 6696 v += n; 6697 } while (len); 6698 6699 return handled; 6700 } 6701 6702 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6703 { 6704 int handled = 0; 6705 int n; 6706 6707 do { 6708 n = min(len, 8); 6709 if (!(lapic_in_kernel(vcpu) && 6710 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6711 addr, n, v)) 6712 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6713 break; 6714 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6715 handled += n; 6716 addr += n; 6717 len -= n; 6718 v += n; 6719 } while (len); 6720 6721 return handled; 6722 } 6723 6724 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6725 struct kvm_segment *var, int seg) 6726 { 6727 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6728 } 6729 6730 void kvm_get_segment(struct kvm_vcpu *vcpu, 6731 struct kvm_segment *var, int seg) 6732 { 6733 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6734 } 6735 6736 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 6737 struct x86_exception *exception) 6738 { 6739 struct kvm_mmu *mmu = vcpu->arch.mmu; 6740 gpa_t t_gpa; 6741 6742 BUG_ON(!mmu_is_nested(vcpu)); 6743 6744 /* NPT walks are always user-walks */ 6745 access |= PFERR_USER_MASK; 6746 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6747 6748 return t_gpa; 6749 } 6750 6751 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6752 struct x86_exception *exception) 6753 { 6754 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6755 6756 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6757 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6758 } 6759 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6760 6761 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6762 struct x86_exception *exception) 6763 { 6764 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6765 6766 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6767 access |= PFERR_FETCH_MASK; 6768 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6769 } 6770 6771 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6772 struct x86_exception *exception) 6773 { 6774 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6775 6776 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6777 access |= PFERR_WRITE_MASK; 6778 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6779 } 6780 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6781 6782 /* uses this to access any guest's mapped memory without checking CPL */ 6783 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6784 struct x86_exception *exception) 6785 { 6786 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6787 6788 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6789 } 6790 6791 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6792 struct kvm_vcpu *vcpu, u64 access, 6793 struct x86_exception *exception) 6794 { 6795 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6796 void *data = val; 6797 int r = X86EMUL_CONTINUE; 6798 6799 while (bytes) { 6800 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6801 unsigned offset = addr & (PAGE_SIZE-1); 6802 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6803 int ret; 6804 6805 if (gpa == UNMAPPED_GVA) 6806 return X86EMUL_PROPAGATE_FAULT; 6807 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6808 offset, toread); 6809 if (ret < 0) { 6810 r = X86EMUL_IO_NEEDED; 6811 goto out; 6812 } 6813 6814 bytes -= toread; 6815 data += toread; 6816 addr += toread; 6817 } 6818 out: 6819 return r; 6820 } 6821 6822 /* used for instruction fetching */ 6823 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6824 gva_t addr, void *val, unsigned int bytes, 6825 struct x86_exception *exception) 6826 { 6827 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6828 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6829 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6830 unsigned offset; 6831 int ret; 6832 6833 /* Inline kvm_read_guest_virt_helper for speed. */ 6834 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6835 exception); 6836 if (unlikely(gpa == UNMAPPED_GVA)) 6837 return X86EMUL_PROPAGATE_FAULT; 6838 6839 offset = addr & (PAGE_SIZE-1); 6840 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6841 bytes = (unsigned)PAGE_SIZE - offset; 6842 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6843 offset, bytes); 6844 if (unlikely(ret < 0)) 6845 return X86EMUL_IO_NEEDED; 6846 6847 return X86EMUL_CONTINUE; 6848 } 6849 6850 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6851 gva_t addr, void *val, unsigned int bytes, 6852 struct x86_exception *exception) 6853 { 6854 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6855 6856 /* 6857 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6858 * is returned, but our callers are not ready for that and they blindly 6859 * call kvm_inject_page_fault. Ensure that they at least do not leak 6860 * uninitialized kernel stack memory into cr2 and error code. 6861 */ 6862 memset(exception, 0, sizeof(*exception)); 6863 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6864 exception); 6865 } 6866 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6867 6868 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6869 gva_t addr, void *val, unsigned int bytes, 6870 struct x86_exception *exception, bool system) 6871 { 6872 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6873 u64 access = 0; 6874 6875 if (system) 6876 access |= PFERR_IMPLICIT_ACCESS; 6877 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6878 access |= PFERR_USER_MASK; 6879 6880 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6881 } 6882 6883 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6884 unsigned long addr, void *val, unsigned int bytes) 6885 { 6886 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6887 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6888 6889 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6890 } 6891 6892 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6893 struct kvm_vcpu *vcpu, u64 access, 6894 struct x86_exception *exception) 6895 { 6896 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6897 void *data = val; 6898 int r = X86EMUL_CONTINUE; 6899 6900 while (bytes) { 6901 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6902 unsigned offset = addr & (PAGE_SIZE-1); 6903 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6904 int ret; 6905 6906 if (gpa == UNMAPPED_GVA) 6907 return X86EMUL_PROPAGATE_FAULT; 6908 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6909 if (ret < 0) { 6910 r = X86EMUL_IO_NEEDED; 6911 goto out; 6912 } 6913 6914 bytes -= towrite; 6915 data += towrite; 6916 addr += towrite; 6917 } 6918 out: 6919 return r; 6920 } 6921 6922 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6923 unsigned int bytes, struct x86_exception *exception, 6924 bool system) 6925 { 6926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6927 u64 access = PFERR_WRITE_MASK; 6928 6929 if (system) 6930 access |= PFERR_IMPLICIT_ACCESS; 6931 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6932 access |= PFERR_USER_MASK; 6933 6934 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6935 access, exception); 6936 } 6937 6938 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6939 unsigned int bytes, struct x86_exception *exception) 6940 { 6941 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6942 vcpu->arch.l1tf_flush_l1d = true; 6943 6944 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6945 PFERR_WRITE_MASK, exception); 6946 } 6947 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6948 6949 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 6950 void *insn, int insn_len) 6951 { 6952 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 6953 insn, insn_len); 6954 } 6955 6956 int handle_ud(struct kvm_vcpu *vcpu) 6957 { 6958 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6959 int emul_type = EMULTYPE_TRAP_UD; 6960 char sig[5]; /* ud2; .ascii "kvm" */ 6961 struct x86_exception e; 6962 6963 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 6964 return 1; 6965 6966 if (force_emulation_prefix && 6967 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6968 sig, sizeof(sig), &e) == 0 && 6969 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6970 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6971 emul_type = EMULTYPE_TRAP_UD_FORCED; 6972 } 6973 6974 return kvm_emulate_instruction(vcpu, emul_type); 6975 } 6976 EXPORT_SYMBOL_GPL(handle_ud); 6977 6978 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6979 gpa_t gpa, bool write) 6980 { 6981 /* For APIC access vmexit */ 6982 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6983 return 1; 6984 6985 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6986 trace_vcpu_match_mmio(gva, gpa, write, true); 6987 return 1; 6988 } 6989 6990 return 0; 6991 } 6992 6993 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6994 gpa_t *gpa, struct x86_exception *exception, 6995 bool write) 6996 { 6997 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6998 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 6999 | (write ? PFERR_WRITE_MASK : 0); 7000 7001 /* 7002 * currently PKRU is only applied to ept enabled guest so 7003 * there is no pkey in EPT page table for L1 guest or EPT 7004 * shadow page table for L2 guest. 7005 */ 7006 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7007 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7008 vcpu->arch.mmio_access, 0, access))) { 7009 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7010 (gva & (PAGE_SIZE - 1)); 7011 trace_vcpu_match_mmio(gva, *gpa, write, false); 7012 return 1; 7013 } 7014 7015 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7016 7017 if (*gpa == UNMAPPED_GVA) 7018 return -1; 7019 7020 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7021 } 7022 7023 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7024 const void *val, int bytes) 7025 { 7026 int ret; 7027 7028 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7029 if (ret < 0) 7030 return 0; 7031 kvm_page_track_write(vcpu, gpa, val, bytes); 7032 return 1; 7033 } 7034 7035 struct read_write_emulator_ops { 7036 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7037 int bytes); 7038 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7039 void *val, int bytes); 7040 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7041 int bytes, void *val); 7042 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7043 void *val, int bytes); 7044 bool write; 7045 }; 7046 7047 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7048 { 7049 if (vcpu->mmio_read_completed) { 7050 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7051 vcpu->mmio_fragments[0].gpa, val); 7052 vcpu->mmio_read_completed = 0; 7053 return 1; 7054 } 7055 7056 return 0; 7057 } 7058 7059 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7060 void *val, int bytes) 7061 { 7062 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7063 } 7064 7065 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7066 void *val, int bytes) 7067 { 7068 return emulator_write_phys(vcpu, gpa, val, bytes); 7069 } 7070 7071 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7072 { 7073 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7074 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7075 } 7076 7077 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7078 void *val, int bytes) 7079 { 7080 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7081 return X86EMUL_IO_NEEDED; 7082 } 7083 7084 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7085 void *val, int bytes) 7086 { 7087 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7088 7089 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7090 return X86EMUL_CONTINUE; 7091 } 7092 7093 static const struct read_write_emulator_ops read_emultor = { 7094 .read_write_prepare = read_prepare, 7095 .read_write_emulate = read_emulate, 7096 .read_write_mmio = vcpu_mmio_read, 7097 .read_write_exit_mmio = read_exit_mmio, 7098 }; 7099 7100 static const struct read_write_emulator_ops write_emultor = { 7101 .read_write_emulate = write_emulate, 7102 .read_write_mmio = write_mmio, 7103 .read_write_exit_mmio = write_exit_mmio, 7104 .write = true, 7105 }; 7106 7107 static int emulator_read_write_onepage(unsigned long addr, void *val, 7108 unsigned int bytes, 7109 struct x86_exception *exception, 7110 struct kvm_vcpu *vcpu, 7111 const struct read_write_emulator_ops *ops) 7112 { 7113 gpa_t gpa; 7114 int handled, ret; 7115 bool write = ops->write; 7116 struct kvm_mmio_fragment *frag; 7117 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7118 7119 /* 7120 * If the exit was due to a NPF we may already have a GPA. 7121 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7122 * Note, this cannot be used on string operations since string 7123 * operation using rep will only have the initial GPA from the NPF 7124 * occurred. 7125 */ 7126 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7127 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7128 gpa = ctxt->gpa_val; 7129 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7130 } else { 7131 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7132 if (ret < 0) 7133 return X86EMUL_PROPAGATE_FAULT; 7134 } 7135 7136 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7137 return X86EMUL_CONTINUE; 7138 7139 /* 7140 * Is this MMIO handled locally? 7141 */ 7142 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7143 if (handled == bytes) 7144 return X86EMUL_CONTINUE; 7145 7146 gpa += handled; 7147 bytes -= handled; 7148 val += handled; 7149 7150 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7151 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7152 frag->gpa = gpa; 7153 frag->data = val; 7154 frag->len = bytes; 7155 return X86EMUL_CONTINUE; 7156 } 7157 7158 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7159 unsigned long addr, 7160 void *val, unsigned int bytes, 7161 struct x86_exception *exception, 7162 const struct read_write_emulator_ops *ops) 7163 { 7164 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7165 gpa_t gpa; 7166 int rc; 7167 7168 if (ops->read_write_prepare && 7169 ops->read_write_prepare(vcpu, val, bytes)) 7170 return X86EMUL_CONTINUE; 7171 7172 vcpu->mmio_nr_fragments = 0; 7173 7174 /* Crossing a page boundary? */ 7175 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7176 int now; 7177 7178 now = -addr & ~PAGE_MASK; 7179 rc = emulator_read_write_onepage(addr, val, now, exception, 7180 vcpu, ops); 7181 7182 if (rc != X86EMUL_CONTINUE) 7183 return rc; 7184 addr += now; 7185 if (ctxt->mode != X86EMUL_MODE_PROT64) 7186 addr = (u32)addr; 7187 val += now; 7188 bytes -= now; 7189 } 7190 7191 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7192 vcpu, ops); 7193 if (rc != X86EMUL_CONTINUE) 7194 return rc; 7195 7196 if (!vcpu->mmio_nr_fragments) 7197 return rc; 7198 7199 gpa = vcpu->mmio_fragments[0].gpa; 7200 7201 vcpu->mmio_needed = 1; 7202 vcpu->mmio_cur_fragment = 0; 7203 7204 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7205 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7206 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7207 vcpu->run->mmio.phys_addr = gpa; 7208 7209 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7210 } 7211 7212 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7213 unsigned long addr, 7214 void *val, 7215 unsigned int bytes, 7216 struct x86_exception *exception) 7217 { 7218 return emulator_read_write(ctxt, addr, val, bytes, 7219 exception, &read_emultor); 7220 } 7221 7222 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7223 unsigned long addr, 7224 const void *val, 7225 unsigned int bytes, 7226 struct x86_exception *exception) 7227 { 7228 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7229 exception, &write_emultor); 7230 } 7231 7232 #define CMPXCHG_TYPE(t, ptr, old, new) \ 7233 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 7234 7235 #ifdef CONFIG_X86_64 7236 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 7237 #else 7238 # define CMPXCHG64(ptr, old, new) \ 7239 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 7240 #endif 7241 7242 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7243 unsigned long addr, 7244 const void *old, 7245 const void *new, 7246 unsigned int bytes, 7247 struct x86_exception *exception) 7248 { 7249 struct kvm_host_map map; 7250 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7251 u64 page_line_mask; 7252 gpa_t gpa; 7253 char *kaddr; 7254 bool exchanged; 7255 7256 /* guests cmpxchg8b have to be emulated atomically */ 7257 if (bytes > 8 || (bytes & (bytes - 1))) 7258 goto emul_write; 7259 7260 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7261 7262 if (gpa == UNMAPPED_GVA || 7263 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7264 goto emul_write; 7265 7266 /* 7267 * Emulate the atomic as a straight write to avoid #AC if SLD is 7268 * enabled in the host and the access splits a cache line. 7269 */ 7270 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7271 page_line_mask = ~(cache_line_size() - 1); 7272 else 7273 page_line_mask = PAGE_MASK; 7274 7275 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7276 goto emul_write; 7277 7278 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 7279 goto emul_write; 7280 7281 kaddr = map.hva + offset_in_page(gpa); 7282 7283 switch (bytes) { 7284 case 1: 7285 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 7286 break; 7287 case 2: 7288 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 7289 break; 7290 case 4: 7291 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 7292 break; 7293 case 8: 7294 exchanged = CMPXCHG64(kaddr, old, new); 7295 break; 7296 default: 7297 BUG(); 7298 } 7299 7300 kvm_vcpu_unmap(vcpu, &map, true); 7301 7302 if (!exchanged) 7303 return X86EMUL_CMPXCHG_FAILED; 7304 7305 kvm_page_track_write(vcpu, gpa, new, bytes); 7306 7307 return X86EMUL_CONTINUE; 7308 7309 emul_write: 7310 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7311 7312 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7313 } 7314 7315 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7316 { 7317 int r = 0, i; 7318 7319 for (i = 0; i < vcpu->arch.pio.count; i++) { 7320 if (vcpu->arch.pio.in) 7321 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7322 vcpu->arch.pio.size, pd); 7323 else 7324 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7325 vcpu->arch.pio.port, vcpu->arch.pio.size, 7326 pd); 7327 if (r) 7328 break; 7329 pd += vcpu->arch.pio.size; 7330 } 7331 return r; 7332 } 7333 7334 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7335 unsigned short port, 7336 unsigned int count, bool in) 7337 { 7338 vcpu->arch.pio.port = port; 7339 vcpu->arch.pio.in = in; 7340 vcpu->arch.pio.count = count; 7341 vcpu->arch.pio.size = size; 7342 7343 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7344 return 1; 7345 7346 vcpu->run->exit_reason = KVM_EXIT_IO; 7347 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7348 vcpu->run->io.size = size; 7349 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7350 vcpu->run->io.count = count; 7351 vcpu->run->io.port = port; 7352 7353 return 0; 7354 } 7355 7356 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7357 unsigned short port, unsigned int count) 7358 { 7359 WARN_ON(vcpu->arch.pio.count); 7360 memset(vcpu->arch.pio_data, 0, size * count); 7361 return emulator_pio_in_out(vcpu, size, port, count, true); 7362 } 7363 7364 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7365 { 7366 int size = vcpu->arch.pio.size; 7367 unsigned count = vcpu->arch.pio.count; 7368 memcpy(val, vcpu->arch.pio_data, size * count); 7369 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7370 vcpu->arch.pio.count = 0; 7371 } 7372 7373 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7374 unsigned short port, void *val, unsigned int count) 7375 { 7376 if (vcpu->arch.pio.count) { 7377 /* 7378 * Complete a previous iteration that required userspace I/O. 7379 * Note, @count isn't guaranteed to match pio.count as userspace 7380 * can modify ECX before rerunning the vCPU. Ignore any such 7381 * shenanigans as KVM doesn't support modifying the rep count, 7382 * and the emulator ensures @count doesn't overflow the buffer. 7383 */ 7384 } else { 7385 int r = __emulator_pio_in(vcpu, size, port, count); 7386 if (!r) 7387 return r; 7388 7389 /* Results already available, fall through. */ 7390 } 7391 7392 complete_emulator_pio_in(vcpu, val); 7393 return 1; 7394 } 7395 7396 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7397 int size, unsigned short port, void *val, 7398 unsigned int count) 7399 { 7400 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7401 7402 } 7403 7404 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7405 unsigned short port, const void *val, 7406 unsigned int count) 7407 { 7408 int ret; 7409 7410 memcpy(vcpu->arch.pio_data, val, size * count); 7411 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7412 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7413 if (ret) 7414 vcpu->arch.pio.count = 0; 7415 7416 return ret; 7417 } 7418 7419 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7420 int size, unsigned short port, 7421 const void *val, unsigned int count) 7422 { 7423 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7424 } 7425 7426 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7427 { 7428 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7429 } 7430 7431 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7432 { 7433 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7434 } 7435 7436 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7437 { 7438 if (!need_emulate_wbinvd(vcpu)) 7439 return X86EMUL_CONTINUE; 7440 7441 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7442 int cpu = get_cpu(); 7443 7444 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7445 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7446 wbinvd_ipi, NULL, 1); 7447 put_cpu(); 7448 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7449 } else 7450 wbinvd(); 7451 return X86EMUL_CONTINUE; 7452 } 7453 7454 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7455 { 7456 kvm_emulate_wbinvd_noskip(vcpu); 7457 return kvm_skip_emulated_instruction(vcpu); 7458 } 7459 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7460 7461 7462 7463 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7464 { 7465 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7466 } 7467 7468 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7469 unsigned long *dest) 7470 { 7471 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7472 } 7473 7474 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7475 unsigned long value) 7476 { 7477 7478 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7479 } 7480 7481 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7482 { 7483 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7484 } 7485 7486 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7487 { 7488 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7489 unsigned long value; 7490 7491 switch (cr) { 7492 case 0: 7493 value = kvm_read_cr0(vcpu); 7494 break; 7495 case 2: 7496 value = vcpu->arch.cr2; 7497 break; 7498 case 3: 7499 value = kvm_read_cr3(vcpu); 7500 break; 7501 case 4: 7502 value = kvm_read_cr4(vcpu); 7503 break; 7504 case 8: 7505 value = kvm_get_cr8(vcpu); 7506 break; 7507 default: 7508 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7509 return 0; 7510 } 7511 7512 return value; 7513 } 7514 7515 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7516 { 7517 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7518 int res = 0; 7519 7520 switch (cr) { 7521 case 0: 7522 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7523 break; 7524 case 2: 7525 vcpu->arch.cr2 = val; 7526 break; 7527 case 3: 7528 res = kvm_set_cr3(vcpu, val); 7529 break; 7530 case 4: 7531 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7532 break; 7533 case 8: 7534 res = kvm_set_cr8(vcpu, val); 7535 break; 7536 default: 7537 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7538 res = -1; 7539 } 7540 7541 return res; 7542 } 7543 7544 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7545 { 7546 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7547 } 7548 7549 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7550 { 7551 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7552 } 7553 7554 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7555 { 7556 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7557 } 7558 7559 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7560 { 7561 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7562 } 7563 7564 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7565 { 7566 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7567 } 7568 7569 static unsigned long emulator_get_cached_segment_base( 7570 struct x86_emulate_ctxt *ctxt, int seg) 7571 { 7572 return get_segment_base(emul_to_vcpu(ctxt), seg); 7573 } 7574 7575 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7576 struct desc_struct *desc, u32 *base3, 7577 int seg) 7578 { 7579 struct kvm_segment var; 7580 7581 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7582 *selector = var.selector; 7583 7584 if (var.unusable) { 7585 memset(desc, 0, sizeof(*desc)); 7586 if (base3) 7587 *base3 = 0; 7588 return false; 7589 } 7590 7591 if (var.g) 7592 var.limit >>= 12; 7593 set_desc_limit(desc, var.limit); 7594 set_desc_base(desc, (unsigned long)var.base); 7595 #ifdef CONFIG_X86_64 7596 if (base3) 7597 *base3 = var.base >> 32; 7598 #endif 7599 desc->type = var.type; 7600 desc->s = var.s; 7601 desc->dpl = var.dpl; 7602 desc->p = var.present; 7603 desc->avl = var.avl; 7604 desc->l = var.l; 7605 desc->d = var.db; 7606 desc->g = var.g; 7607 7608 return true; 7609 } 7610 7611 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7612 struct desc_struct *desc, u32 base3, 7613 int seg) 7614 { 7615 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7616 struct kvm_segment var; 7617 7618 var.selector = selector; 7619 var.base = get_desc_base(desc); 7620 #ifdef CONFIG_X86_64 7621 var.base |= ((u64)base3) << 32; 7622 #endif 7623 var.limit = get_desc_limit(desc); 7624 if (desc->g) 7625 var.limit = (var.limit << 12) | 0xfff; 7626 var.type = desc->type; 7627 var.dpl = desc->dpl; 7628 var.db = desc->d; 7629 var.s = desc->s; 7630 var.l = desc->l; 7631 var.g = desc->g; 7632 var.avl = desc->avl; 7633 var.present = desc->p; 7634 var.unusable = !var.present; 7635 var.padding = 0; 7636 7637 kvm_set_segment(vcpu, &var, seg); 7638 return; 7639 } 7640 7641 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7642 u32 msr_index, u64 *pdata) 7643 { 7644 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7645 int r; 7646 7647 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7648 7649 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7650 complete_emulated_rdmsr, r)) { 7651 /* Bounce to user space */ 7652 return X86EMUL_IO_NEEDED; 7653 } 7654 7655 return r; 7656 } 7657 7658 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7659 u32 msr_index, u64 data) 7660 { 7661 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7662 int r; 7663 7664 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7665 7666 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7667 complete_emulated_msr_access, r)) { 7668 /* Bounce to user space */ 7669 return X86EMUL_IO_NEEDED; 7670 } 7671 7672 return r; 7673 } 7674 7675 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7676 u32 msr_index, u64 *pdata) 7677 { 7678 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7679 } 7680 7681 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7682 u32 msr_index, u64 data) 7683 { 7684 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7685 } 7686 7687 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7688 { 7689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7690 7691 return vcpu->arch.smbase; 7692 } 7693 7694 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7695 { 7696 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7697 7698 vcpu->arch.smbase = smbase; 7699 } 7700 7701 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7702 u32 pmc) 7703 { 7704 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7705 return 0; 7706 return -EINVAL; 7707 } 7708 7709 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7710 u32 pmc, u64 *pdata) 7711 { 7712 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7713 } 7714 7715 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7716 { 7717 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7718 } 7719 7720 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7721 struct x86_instruction_info *info, 7722 enum x86_intercept_stage stage) 7723 { 7724 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7725 &ctxt->exception); 7726 } 7727 7728 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7729 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7730 bool exact_only) 7731 { 7732 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7733 } 7734 7735 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7736 { 7737 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7738 } 7739 7740 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7741 { 7742 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7743 } 7744 7745 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7746 { 7747 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7748 } 7749 7750 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 7751 { 7752 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 7753 } 7754 7755 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7756 { 7757 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7758 } 7759 7760 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7761 { 7762 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7763 } 7764 7765 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7766 { 7767 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7768 } 7769 7770 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7771 { 7772 return emul_to_vcpu(ctxt)->arch.hflags; 7773 } 7774 7775 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7776 { 7777 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7778 7779 kvm_smm_changed(vcpu, false); 7780 } 7781 7782 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7783 const char *smstate) 7784 { 7785 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7786 } 7787 7788 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7789 { 7790 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7791 } 7792 7793 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7794 { 7795 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7796 } 7797 7798 static const struct x86_emulate_ops emulate_ops = { 7799 .read_gpr = emulator_read_gpr, 7800 .write_gpr = emulator_write_gpr, 7801 .read_std = emulator_read_std, 7802 .write_std = emulator_write_std, 7803 .read_phys = kvm_read_guest_phys_system, 7804 .fetch = kvm_fetch_guest_virt, 7805 .read_emulated = emulator_read_emulated, 7806 .write_emulated = emulator_write_emulated, 7807 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7808 .invlpg = emulator_invlpg, 7809 .pio_in_emulated = emulator_pio_in_emulated, 7810 .pio_out_emulated = emulator_pio_out_emulated, 7811 .get_segment = emulator_get_segment, 7812 .set_segment = emulator_set_segment, 7813 .get_cached_segment_base = emulator_get_cached_segment_base, 7814 .get_gdt = emulator_get_gdt, 7815 .get_idt = emulator_get_idt, 7816 .set_gdt = emulator_set_gdt, 7817 .set_idt = emulator_set_idt, 7818 .get_cr = emulator_get_cr, 7819 .set_cr = emulator_set_cr, 7820 .cpl = emulator_get_cpl, 7821 .get_dr = emulator_get_dr, 7822 .set_dr = emulator_set_dr, 7823 .get_smbase = emulator_get_smbase, 7824 .set_smbase = emulator_set_smbase, 7825 .set_msr_with_filter = emulator_set_msr_with_filter, 7826 .get_msr_with_filter = emulator_get_msr_with_filter, 7827 .set_msr = emulator_set_msr, 7828 .get_msr = emulator_get_msr, 7829 .check_pmc = emulator_check_pmc, 7830 .read_pmc = emulator_read_pmc, 7831 .halt = emulator_halt, 7832 .wbinvd = emulator_wbinvd, 7833 .fix_hypercall = emulator_fix_hypercall, 7834 .intercept = emulator_intercept, 7835 .get_cpuid = emulator_get_cpuid, 7836 .guest_has_long_mode = emulator_guest_has_long_mode, 7837 .guest_has_movbe = emulator_guest_has_movbe, 7838 .guest_has_fxsr = emulator_guest_has_fxsr, 7839 .guest_has_rdpid = emulator_guest_has_rdpid, 7840 .set_nmi_mask = emulator_set_nmi_mask, 7841 .get_hflags = emulator_get_hflags, 7842 .exiting_smm = emulator_exiting_smm, 7843 .leave_smm = emulator_leave_smm, 7844 .triple_fault = emulator_triple_fault, 7845 .set_xcr = emulator_set_xcr, 7846 }; 7847 7848 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7849 { 7850 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7851 /* 7852 * an sti; sti; sequence only disable interrupts for the first 7853 * instruction. So, if the last instruction, be it emulated or 7854 * not, left the system with the INT_STI flag enabled, it 7855 * means that the last instruction is an sti. We should not 7856 * leave the flag on in this case. The same goes for mov ss 7857 */ 7858 if (int_shadow & mask) 7859 mask = 0; 7860 if (unlikely(int_shadow || mask)) { 7861 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7862 if (!mask) 7863 kvm_make_request(KVM_REQ_EVENT, vcpu); 7864 } 7865 } 7866 7867 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7868 { 7869 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7870 if (ctxt->exception.vector == PF_VECTOR) 7871 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7872 7873 if (ctxt->exception.error_code_valid) 7874 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7875 ctxt->exception.error_code); 7876 else 7877 kvm_queue_exception(vcpu, ctxt->exception.vector); 7878 return false; 7879 } 7880 7881 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7882 { 7883 struct x86_emulate_ctxt *ctxt; 7884 7885 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7886 if (!ctxt) { 7887 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7888 return NULL; 7889 } 7890 7891 ctxt->vcpu = vcpu; 7892 ctxt->ops = &emulate_ops; 7893 vcpu->arch.emulate_ctxt = ctxt; 7894 7895 return ctxt; 7896 } 7897 7898 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7899 { 7900 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7901 int cs_db, cs_l; 7902 7903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7904 7905 ctxt->gpa_available = false; 7906 ctxt->eflags = kvm_get_rflags(vcpu); 7907 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7908 7909 ctxt->eip = kvm_rip_read(vcpu); 7910 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7911 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7912 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7913 cs_db ? X86EMUL_MODE_PROT32 : 7914 X86EMUL_MODE_PROT16; 7915 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7916 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7917 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7918 7919 ctxt->interruptibility = 0; 7920 ctxt->have_exception = false; 7921 ctxt->exception.vector = -1; 7922 ctxt->perm_ok = false; 7923 7924 init_decode_cache(ctxt); 7925 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7926 } 7927 7928 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7929 { 7930 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7931 int ret; 7932 7933 init_emulate_ctxt(vcpu); 7934 7935 ctxt->op_bytes = 2; 7936 ctxt->ad_bytes = 2; 7937 ctxt->_eip = ctxt->eip + inc_eip; 7938 ret = emulate_int_real(ctxt, irq); 7939 7940 if (ret != X86EMUL_CONTINUE) { 7941 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7942 } else { 7943 ctxt->eip = ctxt->_eip; 7944 kvm_rip_write(vcpu, ctxt->eip); 7945 kvm_set_rflags(vcpu, ctxt->eflags); 7946 } 7947 } 7948 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7949 7950 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7951 u8 ndata, u8 *insn_bytes, u8 insn_size) 7952 { 7953 struct kvm_run *run = vcpu->run; 7954 u64 info[5]; 7955 u8 info_start; 7956 7957 /* 7958 * Zero the whole array used to retrieve the exit info, as casting to 7959 * u32 for select entries will leave some chunks uninitialized. 7960 */ 7961 memset(&info, 0, sizeof(info)); 7962 7963 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 7964 &info[2], (u32 *)&info[3], 7965 (u32 *)&info[4]); 7966 7967 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7968 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 7969 7970 /* 7971 * There's currently space for 13 entries, but 5 are used for the exit 7972 * reason and info. Restrict to 4 to reduce the maintenance burden 7973 * when expanding kvm_run.emulation_failure in the future. 7974 */ 7975 if (WARN_ON_ONCE(ndata > 4)) 7976 ndata = 4; 7977 7978 /* Always include the flags as a 'data' entry. */ 7979 info_start = 1; 7980 run->emulation_failure.flags = 0; 7981 7982 if (insn_size) { 7983 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 7984 sizeof(run->emulation_failure.insn_bytes) != 16)); 7985 info_start += 2; 7986 run->emulation_failure.flags |= 7987 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 7988 run->emulation_failure.insn_size = insn_size; 7989 memset(run->emulation_failure.insn_bytes, 0x90, 7990 sizeof(run->emulation_failure.insn_bytes)); 7991 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 7992 } 7993 7994 memcpy(&run->internal.data[info_start], info, sizeof(info)); 7995 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 7996 ndata * sizeof(data[0])); 7997 7998 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 7999 } 8000 8001 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8002 { 8003 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8004 8005 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8006 ctxt->fetch.end - ctxt->fetch.data); 8007 } 8008 8009 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8010 u8 ndata) 8011 { 8012 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8013 } 8014 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8015 8016 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8017 { 8018 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8019 } 8020 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8021 8022 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8023 { 8024 struct kvm *kvm = vcpu->kvm; 8025 8026 ++vcpu->stat.insn_emulation_fail; 8027 trace_kvm_emulate_insn_failed(vcpu); 8028 8029 if (emulation_type & EMULTYPE_VMWARE_GP) { 8030 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8031 return 1; 8032 } 8033 8034 if (kvm->arch.exit_on_emulation_error || 8035 (emulation_type & EMULTYPE_SKIP)) { 8036 prepare_emulation_ctxt_failure_exit(vcpu); 8037 return 0; 8038 } 8039 8040 kvm_queue_exception(vcpu, UD_VECTOR); 8041 8042 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8043 prepare_emulation_ctxt_failure_exit(vcpu); 8044 return 0; 8045 } 8046 8047 return 1; 8048 } 8049 8050 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8051 bool write_fault_to_shadow_pgtable, 8052 int emulation_type) 8053 { 8054 gpa_t gpa = cr2_or_gpa; 8055 kvm_pfn_t pfn; 8056 8057 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8058 return false; 8059 8060 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8061 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8062 return false; 8063 8064 if (!vcpu->arch.mmu->direct_map) { 8065 /* 8066 * Write permission should be allowed since only 8067 * write access need to be emulated. 8068 */ 8069 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8070 8071 /* 8072 * If the mapping is invalid in guest, let cpu retry 8073 * it to generate fault. 8074 */ 8075 if (gpa == UNMAPPED_GVA) 8076 return true; 8077 } 8078 8079 /* 8080 * Do not retry the unhandleable instruction if it faults on the 8081 * readonly host memory, otherwise it will goto a infinite loop: 8082 * retry instruction -> write #PF -> emulation fail -> retry 8083 * instruction -> ... 8084 */ 8085 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8086 8087 /* 8088 * If the instruction failed on the error pfn, it can not be fixed, 8089 * report the error to userspace. 8090 */ 8091 if (is_error_noslot_pfn(pfn)) 8092 return false; 8093 8094 kvm_release_pfn_clean(pfn); 8095 8096 /* The instructions are well-emulated on direct mmu. */ 8097 if (vcpu->arch.mmu->direct_map) { 8098 unsigned int indirect_shadow_pages; 8099 8100 write_lock(&vcpu->kvm->mmu_lock); 8101 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8102 write_unlock(&vcpu->kvm->mmu_lock); 8103 8104 if (indirect_shadow_pages) 8105 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8106 8107 return true; 8108 } 8109 8110 /* 8111 * if emulation was due to access to shadowed page table 8112 * and it failed try to unshadow page and re-enter the 8113 * guest to let CPU execute the instruction. 8114 */ 8115 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8116 8117 /* 8118 * If the access faults on its page table, it can not 8119 * be fixed by unprotecting shadow page and it should 8120 * be reported to userspace. 8121 */ 8122 return !write_fault_to_shadow_pgtable; 8123 } 8124 8125 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8126 gpa_t cr2_or_gpa, int emulation_type) 8127 { 8128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8129 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8130 8131 last_retry_eip = vcpu->arch.last_retry_eip; 8132 last_retry_addr = vcpu->arch.last_retry_addr; 8133 8134 /* 8135 * If the emulation is caused by #PF and it is non-page_table 8136 * writing instruction, it means the VM-EXIT is caused by shadow 8137 * page protected, we can zap the shadow page and retry this 8138 * instruction directly. 8139 * 8140 * Note: if the guest uses a non-page-table modifying instruction 8141 * on the PDE that points to the instruction, then we will unmap 8142 * the instruction and go to an infinite loop. So, we cache the 8143 * last retried eip and the last fault address, if we meet the eip 8144 * and the address again, we can break out of the potential infinite 8145 * loop. 8146 */ 8147 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8148 8149 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8150 return false; 8151 8152 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8153 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8154 return false; 8155 8156 if (x86_page_table_writing_insn(ctxt)) 8157 return false; 8158 8159 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8160 return false; 8161 8162 vcpu->arch.last_retry_eip = ctxt->eip; 8163 vcpu->arch.last_retry_addr = cr2_or_gpa; 8164 8165 if (!vcpu->arch.mmu->direct_map) 8166 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8167 8168 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8169 8170 return true; 8171 } 8172 8173 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8174 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8175 8176 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8177 { 8178 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8179 8180 if (entering_smm) { 8181 vcpu->arch.hflags |= HF_SMM_MASK; 8182 } else { 8183 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8184 8185 /* Process a latched INIT or SMI, if any. */ 8186 kvm_make_request(KVM_REQ_EVENT, vcpu); 8187 8188 /* 8189 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8190 * on SMM exit we still need to reload them from 8191 * guest memory 8192 */ 8193 vcpu->arch.pdptrs_from_userspace = false; 8194 } 8195 8196 kvm_mmu_reset_context(vcpu); 8197 } 8198 8199 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8200 unsigned long *db) 8201 { 8202 u32 dr6 = 0; 8203 int i; 8204 u32 enable, rwlen; 8205 8206 enable = dr7; 8207 rwlen = dr7 >> 16; 8208 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8209 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8210 dr6 |= (1 << i); 8211 return dr6; 8212 } 8213 8214 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8215 { 8216 struct kvm_run *kvm_run = vcpu->run; 8217 8218 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8219 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8220 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8221 kvm_run->debug.arch.exception = DB_VECTOR; 8222 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8223 return 0; 8224 } 8225 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8226 return 1; 8227 } 8228 8229 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8230 { 8231 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8232 int r; 8233 8234 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8235 if (unlikely(!r)) 8236 return 0; 8237 8238 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8239 8240 /* 8241 * rflags is the old, "raw" value of the flags. The new value has 8242 * not been saved yet. 8243 * 8244 * This is correct even for TF set by the guest, because "the 8245 * processor will not generate this exception after the instruction 8246 * that sets the TF flag". 8247 */ 8248 if (unlikely(rflags & X86_EFLAGS_TF)) 8249 r = kvm_vcpu_do_singlestep(vcpu); 8250 return r; 8251 } 8252 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8253 8254 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 8255 { 8256 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8257 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8258 struct kvm_run *kvm_run = vcpu->run; 8259 unsigned long eip = kvm_get_linear_rip(vcpu); 8260 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8261 vcpu->arch.guest_debug_dr7, 8262 vcpu->arch.eff_db); 8263 8264 if (dr6 != 0) { 8265 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8266 kvm_run->debug.arch.pc = eip; 8267 kvm_run->debug.arch.exception = DB_VECTOR; 8268 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8269 *r = 0; 8270 return true; 8271 } 8272 } 8273 8274 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8275 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8276 unsigned long eip = kvm_get_linear_rip(vcpu); 8277 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8278 vcpu->arch.dr7, 8279 vcpu->arch.db); 8280 8281 if (dr6 != 0) { 8282 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8283 *r = 1; 8284 return true; 8285 } 8286 } 8287 8288 return false; 8289 } 8290 8291 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8292 { 8293 switch (ctxt->opcode_len) { 8294 case 1: 8295 switch (ctxt->b) { 8296 case 0xe4: /* IN */ 8297 case 0xe5: 8298 case 0xec: 8299 case 0xed: 8300 case 0xe6: /* OUT */ 8301 case 0xe7: 8302 case 0xee: 8303 case 0xef: 8304 case 0x6c: /* INS */ 8305 case 0x6d: 8306 case 0x6e: /* OUTS */ 8307 case 0x6f: 8308 return true; 8309 } 8310 break; 8311 case 2: 8312 switch (ctxt->b) { 8313 case 0x33: /* RDPMC */ 8314 return true; 8315 } 8316 break; 8317 } 8318 8319 return false; 8320 } 8321 8322 /* 8323 * Decode to be emulated instruction. Return EMULATION_OK if success. 8324 */ 8325 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8326 void *insn, int insn_len) 8327 { 8328 int r = EMULATION_OK; 8329 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8330 8331 init_emulate_ctxt(vcpu); 8332 8333 /* 8334 * We will reenter on the same instruction since we do not set 8335 * complete_userspace_io. This does not handle watchpoints yet, 8336 * those would be handled in the emulate_ops. 8337 */ 8338 if (!(emulation_type & EMULTYPE_SKIP) && 8339 kvm_vcpu_check_breakpoint(vcpu, &r)) 8340 return r; 8341 8342 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8343 8344 trace_kvm_emulate_insn_start(vcpu); 8345 ++vcpu->stat.insn_emulation; 8346 8347 return r; 8348 } 8349 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8350 8351 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8352 int emulation_type, void *insn, int insn_len) 8353 { 8354 int r; 8355 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8356 bool writeback = true; 8357 bool write_fault_to_spt; 8358 8359 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8360 return 1; 8361 8362 vcpu->arch.l1tf_flush_l1d = true; 8363 8364 /* 8365 * Clear write_fault_to_shadow_pgtable here to ensure it is 8366 * never reused. 8367 */ 8368 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8369 vcpu->arch.write_fault_to_shadow_pgtable = false; 8370 8371 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8372 kvm_clear_exception_queue(vcpu); 8373 8374 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8375 insn, insn_len); 8376 if (r != EMULATION_OK) { 8377 if ((emulation_type & EMULTYPE_TRAP_UD) || 8378 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8379 kvm_queue_exception(vcpu, UD_VECTOR); 8380 return 1; 8381 } 8382 if (reexecute_instruction(vcpu, cr2_or_gpa, 8383 write_fault_to_spt, 8384 emulation_type)) 8385 return 1; 8386 if (ctxt->have_exception) { 8387 /* 8388 * #UD should result in just EMULATION_FAILED, and trap-like 8389 * exception should not be encountered during decode. 8390 */ 8391 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8392 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8393 inject_emulated_exception(vcpu); 8394 return 1; 8395 } 8396 return handle_emulation_failure(vcpu, emulation_type); 8397 } 8398 } 8399 8400 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8401 !is_vmware_backdoor_opcode(ctxt)) { 8402 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8403 return 1; 8404 } 8405 8406 /* 8407 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8408 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8409 * The caller is responsible for updating interruptibility state and 8410 * injecting single-step #DBs. 8411 */ 8412 if (emulation_type & EMULTYPE_SKIP) { 8413 if (ctxt->mode != X86EMUL_MODE_PROT64) 8414 ctxt->eip = (u32)ctxt->_eip; 8415 else 8416 ctxt->eip = ctxt->_eip; 8417 8418 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8419 r = 1; 8420 goto writeback; 8421 } 8422 8423 kvm_rip_write(vcpu, ctxt->eip); 8424 if (ctxt->eflags & X86_EFLAGS_RF) 8425 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8426 return 1; 8427 } 8428 8429 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8430 return 1; 8431 8432 /* this is needed for vmware backdoor interface to work since it 8433 changes registers values during IO operation */ 8434 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8435 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8436 emulator_invalidate_register_cache(ctxt); 8437 } 8438 8439 restart: 8440 if (emulation_type & EMULTYPE_PF) { 8441 /* Save the faulting GPA (cr2) in the address field */ 8442 ctxt->exception.address = cr2_or_gpa; 8443 8444 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8445 if (vcpu->arch.mmu->direct_map) { 8446 ctxt->gpa_available = true; 8447 ctxt->gpa_val = cr2_or_gpa; 8448 } 8449 } else { 8450 /* Sanitize the address out of an abundance of paranoia. */ 8451 ctxt->exception.address = 0; 8452 } 8453 8454 r = x86_emulate_insn(ctxt); 8455 8456 if (r == EMULATION_INTERCEPTED) 8457 return 1; 8458 8459 if (r == EMULATION_FAILED) { 8460 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8461 emulation_type)) 8462 return 1; 8463 8464 return handle_emulation_failure(vcpu, emulation_type); 8465 } 8466 8467 if (ctxt->have_exception) { 8468 r = 1; 8469 if (inject_emulated_exception(vcpu)) 8470 return r; 8471 } else if (vcpu->arch.pio.count) { 8472 if (!vcpu->arch.pio.in) { 8473 /* FIXME: return into emulator if single-stepping. */ 8474 vcpu->arch.pio.count = 0; 8475 } else { 8476 writeback = false; 8477 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8478 } 8479 r = 0; 8480 } else if (vcpu->mmio_needed) { 8481 ++vcpu->stat.mmio_exits; 8482 8483 if (!vcpu->mmio_is_write) 8484 writeback = false; 8485 r = 0; 8486 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8487 } else if (vcpu->arch.complete_userspace_io) { 8488 writeback = false; 8489 r = 0; 8490 } else if (r == EMULATION_RESTART) 8491 goto restart; 8492 else 8493 r = 1; 8494 8495 writeback: 8496 if (writeback) { 8497 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8498 toggle_interruptibility(vcpu, ctxt->interruptibility); 8499 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8500 if (!ctxt->have_exception || 8501 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8502 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8503 if (ctxt->is_branch) 8504 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8505 kvm_rip_write(vcpu, ctxt->eip); 8506 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8507 r = kvm_vcpu_do_singlestep(vcpu); 8508 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8509 __kvm_set_rflags(vcpu, ctxt->eflags); 8510 } 8511 8512 /* 8513 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8514 * do nothing, and it will be requested again as soon as 8515 * the shadow expires. But we still need to check here, 8516 * because POPF has no interrupt shadow. 8517 */ 8518 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8519 kvm_make_request(KVM_REQ_EVENT, vcpu); 8520 } else 8521 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8522 8523 return r; 8524 } 8525 8526 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8527 { 8528 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8529 } 8530 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8531 8532 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8533 void *insn, int insn_len) 8534 { 8535 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8536 } 8537 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8538 8539 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8540 { 8541 vcpu->arch.pio.count = 0; 8542 return 1; 8543 } 8544 8545 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8546 { 8547 vcpu->arch.pio.count = 0; 8548 8549 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8550 return 1; 8551 8552 return kvm_skip_emulated_instruction(vcpu); 8553 } 8554 8555 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8556 unsigned short port) 8557 { 8558 unsigned long val = kvm_rax_read(vcpu); 8559 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8560 8561 if (ret) 8562 return ret; 8563 8564 /* 8565 * Workaround userspace that relies on old KVM behavior of %rip being 8566 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8567 */ 8568 if (port == 0x7e && 8569 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8570 vcpu->arch.complete_userspace_io = 8571 complete_fast_pio_out_port_0x7e; 8572 kvm_skip_emulated_instruction(vcpu); 8573 } else { 8574 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8575 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8576 } 8577 return 0; 8578 } 8579 8580 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8581 { 8582 unsigned long val; 8583 8584 /* We should only ever be called with arch.pio.count equal to 1 */ 8585 BUG_ON(vcpu->arch.pio.count != 1); 8586 8587 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8588 vcpu->arch.pio.count = 0; 8589 return 1; 8590 } 8591 8592 /* For size less than 4 we merge, else we zero extend */ 8593 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8594 8595 /* 8596 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8597 * the copy and tracing 8598 */ 8599 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8600 kvm_rax_write(vcpu, val); 8601 8602 return kvm_skip_emulated_instruction(vcpu); 8603 } 8604 8605 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8606 unsigned short port) 8607 { 8608 unsigned long val; 8609 int ret; 8610 8611 /* For size less than 4 we merge, else we zero extend */ 8612 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8613 8614 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8615 if (ret) { 8616 kvm_rax_write(vcpu, val); 8617 return ret; 8618 } 8619 8620 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8621 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8622 8623 return 0; 8624 } 8625 8626 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8627 { 8628 int ret; 8629 8630 if (in) 8631 ret = kvm_fast_pio_in(vcpu, size, port); 8632 else 8633 ret = kvm_fast_pio_out(vcpu, size, port); 8634 return ret && kvm_skip_emulated_instruction(vcpu); 8635 } 8636 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8637 8638 static int kvmclock_cpu_down_prep(unsigned int cpu) 8639 { 8640 __this_cpu_write(cpu_tsc_khz, 0); 8641 return 0; 8642 } 8643 8644 static void tsc_khz_changed(void *data) 8645 { 8646 struct cpufreq_freqs *freq = data; 8647 unsigned long khz = 0; 8648 8649 if (data) 8650 khz = freq->new; 8651 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8652 khz = cpufreq_quick_get(raw_smp_processor_id()); 8653 if (!khz) 8654 khz = tsc_khz; 8655 __this_cpu_write(cpu_tsc_khz, khz); 8656 } 8657 8658 #ifdef CONFIG_X86_64 8659 static void kvm_hyperv_tsc_notifier(void) 8660 { 8661 struct kvm *kvm; 8662 int cpu; 8663 8664 mutex_lock(&kvm_lock); 8665 list_for_each_entry(kvm, &vm_list, vm_list) 8666 kvm_make_mclock_inprogress_request(kvm); 8667 8668 /* no guest entries from this point */ 8669 hyperv_stop_tsc_emulation(); 8670 8671 /* TSC frequency always matches when on Hyper-V */ 8672 for_each_present_cpu(cpu) 8673 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8674 kvm_max_guest_tsc_khz = tsc_khz; 8675 8676 list_for_each_entry(kvm, &vm_list, vm_list) { 8677 __kvm_start_pvclock_update(kvm); 8678 pvclock_update_vm_gtod_copy(kvm); 8679 kvm_end_pvclock_update(kvm); 8680 } 8681 8682 mutex_unlock(&kvm_lock); 8683 } 8684 #endif 8685 8686 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8687 { 8688 struct kvm *kvm; 8689 struct kvm_vcpu *vcpu; 8690 int send_ipi = 0; 8691 unsigned long i; 8692 8693 /* 8694 * We allow guests to temporarily run on slowing clocks, 8695 * provided we notify them after, or to run on accelerating 8696 * clocks, provided we notify them before. Thus time never 8697 * goes backwards. 8698 * 8699 * However, we have a problem. We can't atomically update 8700 * the frequency of a given CPU from this function; it is 8701 * merely a notifier, which can be called from any CPU. 8702 * Changing the TSC frequency at arbitrary points in time 8703 * requires a recomputation of local variables related to 8704 * the TSC for each VCPU. We must flag these local variables 8705 * to be updated and be sure the update takes place with the 8706 * new frequency before any guests proceed. 8707 * 8708 * Unfortunately, the combination of hotplug CPU and frequency 8709 * change creates an intractable locking scenario; the order 8710 * of when these callouts happen is undefined with respect to 8711 * CPU hotplug, and they can race with each other. As such, 8712 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8713 * undefined; you can actually have a CPU frequency change take 8714 * place in between the computation of X and the setting of the 8715 * variable. To protect against this problem, all updates of 8716 * the per_cpu tsc_khz variable are done in an interrupt 8717 * protected IPI, and all callers wishing to update the value 8718 * must wait for a synchronous IPI to complete (which is trivial 8719 * if the caller is on the CPU already). This establishes the 8720 * necessary total order on variable updates. 8721 * 8722 * Note that because a guest time update may take place 8723 * anytime after the setting of the VCPU's request bit, the 8724 * correct TSC value must be set before the request. However, 8725 * to ensure the update actually makes it to any guest which 8726 * starts running in hardware virtualization between the set 8727 * and the acquisition of the spinlock, we must also ping the 8728 * CPU after setting the request bit. 8729 * 8730 */ 8731 8732 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8733 8734 mutex_lock(&kvm_lock); 8735 list_for_each_entry(kvm, &vm_list, vm_list) { 8736 kvm_for_each_vcpu(i, vcpu, kvm) { 8737 if (vcpu->cpu != cpu) 8738 continue; 8739 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8740 if (vcpu->cpu != raw_smp_processor_id()) 8741 send_ipi = 1; 8742 } 8743 } 8744 mutex_unlock(&kvm_lock); 8745 8746 if (freq->old < freq->new && send_ipi) { 8747 /* 8748 * We upscale the frequency. Must make the guest 8749 * doesn't see old kvmclock values while running with 8750 * the new frequency, otherwise we risk the guest sees 8751 * time go backwards. 8752 * 8753 * In case we update the frequency for another cpu 8754 * (which might be in guest context) send an interrupt 8755 * to kick the cpu out of guest context. Next time 8756 * guest context is entered kvmclock will be updated, 8757 * so the guest will not see stale values. 8758 */ 8759 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8760 } 8761 } 8762 8763 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8764 void *data) 8765 { 8766 struct cpufreq_freqs *freq = data; 8767 int cpu; 8768 8769 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8770 return 0; 8771 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8772 return 0; 8773 8774 for_each_cpu(cpu, freq->policy->cpus) 8775 __kvmclock_cpufreq_notifier(freq, cpu); 8776 8777 return 0; 8778 } 8779 8780 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8781 .notifier_call = kvmclock_cpufreq_notifier 8782 }; 8783 8784 static int kvmclock_cpu_online(unsigned int cpu) 8785 { 8786 tsc_khz_changed(NULL); 8787 return 0; 8788 } 8789 8790 static void kvm_timer_init(void) 8791 { 8792 max_tsc_khz = tsc_khz; 8793 8794 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8795 #ifdef CONFIG_CPU_FREQ 8796 struct cpufreq_policy *policy; 8797 int cpu; 8798 8799 cpu = get_cpu(); 8800 policy = cpufreq_cpu_get(cpu); 8801 if (policy) { 8802 if (policy->cpuinfo.max_freq) 8803 max_tsc_khz = policy->cpuinfo.max_freq; 8804 cpufreq_cpu_put(policy); 8805 } 8806 put_cpu(); 8807 #endif 8808 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8809 CPUFREQ_TRANSITION_NOTIFIER); 8810 } 8811 8812 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8813 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8814 } 8815 8816 #ifdef CONFIG_X86_64 8817 static void pvclock_gtod_update_fn(struct work_struct *work) 8818 { 8819 struct kvm *kvm; 8820 struct kvm_vcpu *vcpu; 8821 unsigned long i; 8822 8823 mutex_lock(&kvm_lock); 8824 list_for_each_entry(kvm, &vm_list, vm_list) 8825 kvm_for_each_vcpu(i, vcpu, kvm) 8826 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8827 atomic_set(&kvm_guest_has_master_clock, 0); 8828 mutex_unlock(&kvm_lock); 8829 } 8830 8831 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8832 8833 /* 8834 * Indirection to move queue_work() out of the tk_core.seq write held 8835 * region to prevent possible deadlocks against time accessors which 8836 * are invoked with work related locks held. 8837 */ 8838 static void pvclock_irq_work_fn(struct irq_work *w) 8839 { 8840 queue_work(system_long_wq, &pvclock_gtod_work); 8841 } 8842 8843 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8844 8845 /* 8846 * Notification about pvclock gtod data update. 8847 */ 8848 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8849 void *priv) 8850 { 8851 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8852 struct timekeeper *tk = priv; 8853 8854 update_pvclock_gtod(tk); 8855 8856 /* 8857 * Disable master clock if host does not trust, or does not use, 8858 * TSC based clocksource. Delegate queue_work() to irq_work as 8859 * this is invoked with tk_core.seq write held. 8860 */ 8861 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8862 atomic_read(&kvm_guest_has_master_clock) != 0) 8863 irq_work_queue(&pvclock_irq_work); 8864 return 0; 8865 } 8866 8867 static struct notifier_block pvclock_gtod_notifier = { 8868 .notifier_call = pvclock_gtod_notify, 8869 }; 8870 #endif 8871 8872 int kvm_arch_init(void *opaque) 8873 { 8874 struct kvm_x86_init_ops *ops = opaque; 8875 int r; 8876 8877 if (kvm_x86_ops.hardware_enable) { 8878 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8879 r = -EEXIST; 8880 goto out; 8881 } 8882 8883 if (!ops->cpu_has_kvm_support()) { 8884 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8885 ops->runtime_ops->name); 8886 r = -EOPNOTSUPP; 8887 goto out; 8888 } 8889 if (ops->disabled_by_bios()) { 8890 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8891 ops->runtime_ops->name); 8892 r = -EOPNOTSUPP; 8893 goto out; 8894 } 8895 8896 /* 8897 * KVM explicitly assumes that the guest has an FPU and 8898 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8899 * vCPU's FPU state as a fxregs_state struct. 8900 */ 8901 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8902 printk(KERN_ERR "kvm: inadequate fpu\n"); 8903 r = -EOPNOTSUPP; 8904 goto out; 8905 } 8906 8907 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8908 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 8909 r = -EOPNOTSUPP; 8910 goto out; 8911 } 8912 8913 r = -ENOMEM; 8914 8915 x86_emulator_cache = kvm_alloc_emulator_cache(); 8916 if (!x86_emulator_cache) { 8917 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8918 goto out; 8919 } 8920 8921 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8922 if (!user_return_msrs) { 8923 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8924 goto out_free_x86_emulator_cache; 8925 } 8926 kvm_nr_uret_msrs = 0; 8927 8928 r = kvm_mmu_vendor_module_init(); 8929 if (r) 8930 goto out_free_percpu; 8931 8932 kvm_timer_init(); 8933 8934 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8935 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8936 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8937 } 8938 8939 if (pi_inject_timer == -1) 8940 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 8941 #ifdef CONFIG_X86_64 8942 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8943 8944 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8945 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8946 #endif 8947 8948 return 0; 8949 8950 out_free_percpu: 8951 free_percpu(user_return_msrs); 8952 out_free_x86_emulator_cache: 8953 kmem_cache_destroy(x86_emulator_cache); 8954 out: 8955 return r; 8956 } 8957 8958 void kvm_arch_exit(void) 8959 { 8960 #ifdef CONFIG_X86_64 8961 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8962 clear_hv_tscchange_cb(); 8963 #endif 8964 kvm_lapic_exit(); 8965 8966 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8967 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8968 CPUFREQ_TRANSITION_NOTIFIER); 8969 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8970 #ifdef CONFIG_X86_64 8971 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8972 irq_work_sync(&pvclock_irq_work); 8973 cancel_work_sync(&pvclock_gtod_work); 8974 #endif 8975 kvm_x86_ops.hardware_enable = NULL; 8976 kvm_mmu_vendor_module_exit(); 8977 free_percpu(user_return_msrs); 8978 kmem_cache_destroy(x86_emulator_cache); 8979 #ifdef CONFIG_KVM_XEN 8980 static_key_deferred_flush(&kvm_xen_enabled); 8981 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 8982 #endif 8983 } 8984 8985 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 8986 { 8987 /* 8988 * The vCPU has halted, e.g. executed HLT. Update the run state if the 8989 * local APIC is in-kernel, the run loop will detect the non-runnable 8990 * state and halt the vCPU. Exit to userspace if the local APIC is 8991 * managed by userspace, in which case userspace is responsible for 8992 * handling wake events. 8993 */ 8994 ++vcpu->stat.halt_exits; 8995 if (lapic_in_kernel(vcpu)) { 8996 vcpu->arch.mp_state = state; 8997 return 1; 8998 } else { 8999 vcpu->run->exit_reason = reason; 9000 return 0; 9001 } 9002 } 9003 9004 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9005 { 9006 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9007 } 9008 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9009 9010 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9011 { 9012 int ret = kvm_skip_emulated_instruction(vcpu); 9013 /* 9014 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9015 * KVM_EXIT_DEBUG here. 9016 */ 9017 return kvm_emulate_halt_noskip(vcpu) && ret; 9018 } 9019 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9020 9021 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9022 { 9023 int ret = kvm_skip_emulated_instruction(vcpu); 9024 9025 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9026 KVM_EXIT_AP_RESET_HOLD) && ret; 9027 } 9028 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9029 9030 #ifdef CONFIG_X86_64 9031 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9032 unsigned long clock_type) 9033 { 9034 struct kvm_clock_pairing clock_pairing; 9035 struct timespec64 ts; 9036 u64 cycle; 9037 int ret; 9038 9039 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9040 return -KVM_EOPNOTSUPP; 9041 9042 /* 9043 * When tsc is in permanent catchup mode guests won't be able to use 9044 * pvclock_read_retry loop to get consistent view of pvclock 9045 */ 9046 if (vcpu->arch.tsc_always_catchup) 9047 return -KVM_EOPNOTSUPP; 9048 9049 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9050 return -KVM_EOPNOTSUPP; 9051 9052 clock_pairing.sec = ts.tv_sec; 9053 clock_pairing.nsec = ts.tv_nsec; 9054 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9055 clock_pairing.flags = 0; 9056 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9057 9058 ret = 0; 9059 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9060 sizeof(struct kvm_clock_pairing))) 9061 ret = -KVM_EFAULT; 9062 9063 return ret; 9064 } 9065 #endif 9066 9067 /* 9068 * kvm_pv_kick_cpu_op: Kick a vcpu. 9069 * 9070 * @apicid - apicid of vcpu to be kicked. 9071 */ 9072 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9073 { 9074 struct kvm_lapic_irq lapic_irq; 9075 9076 lapic_irq.shorthand = APIC_DEST_NOSHORT; 9077 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 9078 lapic_irq.level = 0; 9079 lapic_irq.dest_id = apicid; 9080 lapic_irq.msi_redir_hint = false; 9081 9082 lapic_irq.delivery_mode = APIC_DM_REMRD; 9083 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9084 } 9085 9086 bool kvm_apicv_activated(struct kvm *kvm) 9087 { 9088 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9089 } 9090 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9091 9092 9093 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9094 enum kvm_apicv_inhibit reason, bool set) 9095 { 9096 if (set) 9097 __set_bit(reason, inhibits); 9098 else 9099 __clear_bit(reason, inhibits); 9100 9101 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9102 } 9103 9104 static void kvm_apicv_init(struct kvm *kvm) 9105 { 9106 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9107 9108 init_rwsem(&kvm->arch.apicv_update_lock); 9109 9110 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9111 9112 if (!enable_apicv) 9113 set_or_clear_apicv_inhibit(inhibits, 9114 APICV_INHIBIT_REASON_DISABLE, true); 9115 } 9116 9117 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9118 { 9119 struct kvm_vcpu *target = NULL; 9120 struct kvm_apic_map *map; 9121 9122 vcpu->stat.directed_yield_attempted++; 9123 9124 if (single_task_running()) 9125 goto no_yield; 9126 9127 rcu_read_lock(); 9128 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9129 9130 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9131 target = map->phys_map[dest_id]->vcpu; 9132 9133 rcu_read_unlock(); 9134 9135 if (!target || !READ_ONCE(target->ready)) 9136 goto no_yield; 9137 9138 /* Ignore requests to yield to self */ 9139 if (vcpu == target) 9140 goto no_yield; 9141 9142 if (kvm_vcpu_yield_to(target) <= 0) 9143 goto no_yield; 9144 9145 vcpu->stat.directed_yield_successful++; 9146 9147 no_yield: 9148 return; 9149 } 9150 9151 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9152 { 9153 u64 ret = vcpu->run->hypercall.ret; 9154 9155 if (!is_64_bit_mode(vcpu)) 9156 ret = (u32)ret; 9157 kvm_rax_write(vcpu, ret); 9158 ++vcpu->stat.hypercalls; 9159 return kvm_skip_emulated_instruction(vcpu); 9160 } 9161 9162 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9163 { 9164 unsigned long nr, a0, a1, a2, a3, ret; 9165 int op_64_bit; 9166 9167 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9168 return kvm_xen_hypercall(vcpu); 9169 9170 if (kvm_hv_hypercall_enabled(vcpu)) 9171 return kvm_hv_hypercall(vcpu); 9172 9173 nr = kvm_rax_read(vcpu); 9174 a0 = kvm_rbx_read(vcpu); 9175 a1 = kvm_rcx_read(vcpu); 9176 a2 = kvm_rdx_read(vcpu); 9177 a3 = kvm_rsi_read(vcpu); 9178 9179 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9180 9181 op_64_bit = is_64_bit_hypercall(vcpu); 9182 if (!op_64_bit) { 9183 nr &= 0xFFFFFFFF; 9184 a0 &= 0xFFFFFFFF; 9185 a1 &= 0xFFFFFFFF; 9186 a2 &= 0xFFFFFFFF; 9187 a3 &= 0xFFFFFFFF; 9188 } 9189 9190 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9191 ret = -KVM_EPERM; 9192 goto out; 9193 } 9194 9195 ret = -KVM_ENOSYS; 9196 9197 switch (nr) { 9198 case KVM_HC_VAPIC_POLL_IRQ: 9199 ret = 0; 9200 break; 9201 case KVM_HC_KICK_CPU: 9202 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9203 break; 9204 9205 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9206 kvm_sched_yield(vcpu, a1); 9207 ret = 0; 9208 break; 9209 #ifdef CONFIG_X86_64 9210 case KVM_HC_CLOCK_PAIRING: 9211 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9212 break; 9213 #endif 9214 case KVM_HC_SEND_IPI: 9215 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9216 break; 9217 9218 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9219 break; 9220 case KVM_HC_SCHED_YIELD: 9221 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9222 break; 9223 9224 kvm_sched_yield(vcpu, a0); 9225 ret = 0; 9226 break; 9227 case KVM_HC_MAP_GPA_RANGE: { 9228 u64 gpa = a0, npages = a1, attrs = a2; 9229 9230 ret = -KVM_ENOSYS; 9231 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9232 break; 9233 9234 if (!PAGE_ALIGNED(gpa) || !npages || 9235 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9236 ret = -KVM_EINVAL; 9237 break; 9238 } 9239 9240 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9241 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9242 vcpu->run->hypercall.args[0] = gpa; 9243 vcpu->run->hypercall.args[1] = npages; 9244 vcpu->run->hypercall.args[2] = attrs; 9245 vcpu->run->hypercall.longmode = op_64_bit; 9246 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9247 return 0; 9248 } 9249 default: 9250 ret = -KVM_ENOSYS; 9251 break; 9252 } 9253 out: 9254 if (!op_64_bit) 9255 ret = (u32)ret; 9256 kvm_rax_write(vcpu, ret); 9257 9258 ++vcpu->stat.hypercalls; 9259 return kvm_skip_emulated_instruction(vcpu); 9260 } 9261 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9262 9263 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9264 { 9265 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9266 char instruction[3]; 9267 unsigned long rip = kvm_rip_read(vcpu); 9268 9269 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9270 9271 return emulator_write_emulated(ctxt, rip, instruction, 3, 9272 &ctxt->exception); 9273 } 9274 9275 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9276 { 9277 return vcpu->run->request_interrupt_window && 9278 likely(!pic_in_kernel(vcpu->kvm)); 9279 } 9280 9281 /* Called within kvm->srcu read side. */ 9282 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9283 { 9284 struct kvm_run *kvm_run = vcpu->run; 9285 9286 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9287 kvm_run->cr8 = kvm_get_cr8(vcpu); 9288 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9289 9290 kvm_run->ready_for_interrupt_injection = 9291 pic_in_kernel(vcpu->kvm) || 9292 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9293 9294 if (is_smm(vcpu)) 9295 kvm_run->flags |= KVM_RUN_X86_SMM; 9296 } 9297 9298 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9299 { 9300 int max_irr, tpr; 9301 9302 if (!kvm_x86_ops.update_cr8_intercept) 9303 return; 9304 9305 if (!lapic_in_kernel(vcpu)) 9306 return; 9307 9308 if (vcpu->arch.apicv_active) 9309 return; 9310 9311 if (!vcpu->arch.apic->vapic_addr) 9312 max_irr = kvm_lapic_find_highest_irr(vcpu); 9313 else 9314 max_irr = -1; 9315 9316 if (max_irr != -1) 9317 max_irr >>= 4; 9318 9319 tpr = kvm_lapic_get_cr8(vcpu); 9320 9321 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9322 } 9323 9324 9325 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9326 { 9327 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9328 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9329 return 1; 9330 } 9331 9332 return kvm_x86_ops.nested_ops->check_events(vcpu); 9333 } 9334 9335 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9336 { 9337 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9338 vcpu->arch.exception.error_code = false; 9339 static_call(kvm_x86_queue_exception)(vcpu); 9340 } 9341 9342 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9343 { 9344 int r; 9345 bool can_inject = true; 9346 9347 /* try to reinject previous events if any */ 9348 9349 if (vcpu->arch.exception.injected) { 9350 kvm_inject_exception(vcpu); 9351 can_inject = false; 9352 } 9353 /* 9354 * Do not inject an NMI or interrupt if there is a pending 9355 * exception. Exceptions and interrupts are recognized at 9356 * instruction boundaries, i.e. the start of an instruction. 9357 * Trap-like exceptions, e.g. #DB, have higher priority than 9358 * NMIs and interrupts, i.e. traps are recognized before an 9359 * NMI/interrupt that's pending on the same instruction. 9360 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9361 * priority, but are only generated (pended) during instruction 9362 * execution, i.e. a pending fault-like exception means the 9363 * fault occurred on the *previous* instruction and must be 9364 * serviced prior to recognizing any new events in order to 9365 * fully complete the previous instruction. 9366 */ 9367 else if (!vcpu->arch.exception.pending) { 9368 if (vcpu->arch.nmi_injected) { 9369 static_call(kvm_x86_inject_nmi)(vcpu); 9370 can_inject = false; 9371 } else if (vcpu->arch.interrupt.injected) { 9372 static_call(kvm_x86_inject_irq)(vcpu); 9373 can_inject = false; 9374 } 9375 } 9376 9377 WARN_ON_ONCE(vcpu->arch.exception.injected && 9378 vcpu->arch.exception.pending); 9379 9380 /* 9381 * Call check_nested_events() even if we reinjected a previous event 9382 * in order for caller to determine if it should require immediate-exit 9383 * from L2 to L1 due to pending L1 events which require exit 9384 * from L2 to L1. 9385 */ 9386 if (is_guest_mode(vcpu)) { 9387 r = kvm_check_nested_events(vcpu); 9388 if (r < 0) 9389 goto out; 9390 } 9391 9392 /* try to inject new event if pending */ 9393 if (vcpu->arch.exception.pending) { 9394 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9395 vcpu->arch.exception.has_error_code, 9396 vcpu->arch.exception.error_code); 9397 9398 vcpu->arch.exception.pending = false; 9399 vcpu->arch.exception.injected = true; 9400 9401 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9402 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9403 X86_EFLAGS_RF); 9404 9405 if (vcpu->arch.exception.nr == DB_VECTOR) { 9406 kvm_deliver_exception_payload(vcpu); 9407 if (vcpu->arch.dr7 & DR7_GD) { 9408 vcpu->arch.dr7 &= ~DR7_GD; 9409 kvm_update_dr7(vcpu); 9410 } 9411 } 9412 9413 kvm_inject_exception(vcpu); 9414 can_inject = false; 9415 } 9416 9417 /* Don't inject interrupts if the user asked to avoid doing so */ 9418 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9419 return 0; 9420 9421 /* 9422 * Finally, inject interrupt events. If an event cannot be injected 9423 * due to architectural conditions (e.g. IF=0) a window-open exit 9424 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9425 * and can architecturally be injected, but we cannot do it right now: 9426 * an interrupt could have arrived just now and we have to inject it 9427 * as a vmexit, or there could already an event in the queue, which is 9428 * indicated by can_inject. In that case we request an immediate exit 9429 * in order to make progress and get back here for another iteration. 9430 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9431 */ 9432 if (vcpu->arch.smi_pending) { 9433 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9434 if (r < 0) 9435 goto out; 9436 if (r) { 9437 vcpu->arch.smi_pending = false; 9438 ++vcpu->arch.smi_count; 9439 enter_smm(vcpu); 9440 can_inject = false; 9441 } else 9442 static_call(kvm_x86_enable_smi_window)(vcpu); 9443 } 9444 9445 if (vcpu->arch.nmi_pending) { 9446 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9447 if (r < 0) 9448 goto out; 9449 if (r) { 9450 --vcpu->arch.nmi_pending; 9451 vcpu->arch.nmi_injected = true; 9452 static_call(kvm_x86_inject_nmi)(vcpu); 9453 can_inject = false; 9454 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9455 } 9456 if (vcpu->arch.nmi_pending) 9457 static_call(kvm_x86_enable_nmi_window)(vcpu); 9458 } 9459 9460 if (kvm_cpu_has_injectable_intr(vcpu)) { 9461 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9462 if (r < 0) 9463 goto out; 9464 if (r) { 9465 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9466 static_call(kvm_x86_inject_irq)(vcpu); 9467 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9468 } 9469 if (kvm_cpu_has_injectable_intr(vcpu)) 9470 static_call(kvm_x86_enable_irq_window)(vcpu); 9471 } 9472 9473 if (is_guest_mode(vcpu) && 9474 kvm_x86_ops.nested_ops->hv_timer_pending && 9475 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9476 *req_immediate_exit = true; 9477 9478 WARN_ON(vcpu->arch.exception.pending); 9479 return 0; 9480 9481 out: 9482 if (r == -EBUSY) { 9483 *req_immediate_exit = true; 9484 r = 0; 9485 } 9486 return r; 9487 } 9488 9489 static void process_nmi(struct kvm_vcpu *vcpu) 9490 { 9491 unsigned limit = 2; 9492 9493 /* 9494 * x86 is limited to one NMI running, and one NMI pending after it. 9495 * If an NMI is already in progress, limit further NMIs to just one. 9496 * Otherwise, allow two (and we'll inject the first one immediately). 9497 */ 9498 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9499 limit = 1; 9500 9501 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9502 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9503 kvm_make_request(KVM_REQ_EVENT, vcpu); 9504 } 9505 9506 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9507 { 9508 u32 flags = 0; 9509 flags |= seg->g << 23; 9510 flags |= seg->db << 22; 9511 flags |= seg->l << 21; 9512 flags |= seg->avl << 20; 9513 flags |= seg->present << 15; 9514 flags |= seg->dpl << 13; 9515 flags |= seg->s << 12; 9516 flags |= seg->type << 8; 9517 return flags; 9518 } 9519 9520 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9521 { 9522 struct kvm_segment seg; 9523 int offset; 9524 9525 kvm_get_segment(vcpu, &seg, n); 9526 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9527 9528 if (n < 3) 9529 offset = 0x7f84 + n * 12; 9530 else 9531 offset = 0x7f2c + (n - 3) * 12; 9532 9533 put_smstate(u32, buf, offset + 8, seg.base); 9534 put_smstate(u32, buf, offset + 4, seg.limit); 9535 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9536 } 9537 9538 #ifdef CONFIG_X86_64 9539 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9540 { 9541 struct kvm_segment seg; 9542 int offset; 9543 u16 flags; 9544 9545 kvm_get_segment(vcpu, &seg, n); 9546 offset = 0x7e00 + n * 16; 9547 9548 flags = enter_smm_get_segment_flags(&seg) >> 8; 9549 put_smstate(u16, buf, offset, seg.selector); 9550 put_smstate(u16, buf, offset + 2, flags); 9551 put_smstate(u32, buf, offset + 4, seg.limit); 9552 put_smstate(u64, buf, offset + 8, seg.base); 9553 } 9554 #endif 9555 9556 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9557 { 9558 struct desc_ptr dt; 9559 struct kvm_segment seg; 9560 unsigned long val; 9561 int i; 9562 9563 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9564 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9565 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9566 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9567 9568 for (i = 0; i < 8; i++) 9569 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9570 9571 kvm_get_dr(vcpu, 6, &val); 9572 put_smstate(u32, buf, 0x7fcc, (u32)val); 9573 kvm_get_dr(vcpu, 7, &val); 9574 put_smstate(u32, buf, 0x7fc8, (u32)val); 9575 9576 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9577 put_smstate(u32, buf, 0x7fc4, seg.selector); 9578 put_smstate(u32, buf, 0x7f64, seg.base); 9579 put_smstate(u32, buf, 0x7f60, seg.limit); 9580 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9581 9582 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9583 put_smstate(u32, buf, 0x7fc0, seg.selector); 9584 put_smstate(u32, buf, 0x7f80, seg.base); 9585 put_smstate(u32, buf, 0x7f7c, seg.limit); 9586 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9587 9588 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9589 put_smstate(u32, buf, 0x7f74, dt.address); 9590 put_smstate(u32, buf, 0x7f70, dt.size); 9591 9592 static_call(kvm_x86_get_idt)(vcpu, &dt); 9593 put_smstate(u32, buf, 0x7f58, dt.address); 9594 put_smstate(u32, buf, 0x7f54, dt.size); 9595 9596 for (i = 0; i < 6; i++) 9597 enter_smm_save_seg_32(vcpu, buf, i); 9598 9599 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9600 9601 /* revision id */ 9602 put_smstate(u32, buf, 0x7efc, 0x00020000); 9603 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9604 } 9605 9606 #ifdef CONFIG_X86_64 9607 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9608 { 9609 struct desc_ptr dt; 9610 struct kvm_segment seg; 9611 unsigned long val; 9612 int i; 9613 9614 for (i = 0; i < 16; i++) 9615 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9616 9617 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9618 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9619 9620 kvm_get_dr(vcpu, 6, &val); 9621 put_smstate(u64, buf, 0x7f68, val); 9622 kvm_get_dr(vcpu, 7, &val); 9623 put_smstate(u64, buf, 0x7f60, val); 9624 9625 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9626 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9627 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9628 9629 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9630 9631 /* revision id */ 9632 put_smstate(u32, buf, 0x7efc, 0x00020064); 9633 9634 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9635 9636 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9637 put_smstate(u16, buf, 0x7e90, seg.selector); 9638 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9639 put_smstate(u32, buf, 0x7e94, seg.limit); 9640 put_smstate(u64, buf, 0x7e98, seg.base); 9641 9642 static_call(kvm_x86_get_idt)(vcpu, &dt); 9643 put_smstate(u32, buf, 0x7e84, dt.size); 9644 put_smstate(u64, buf, 0x7e88, dt.address); 9645 9646 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9647 put_smstate(u16, buf, 0x7e70, seg.selector); 9648 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9649 put_smstate(u32, buf, 0x7e74, seg.limit); 9650 put_smstate(u64, buf, 0x7e78, seg.base); 9651 9652 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9653 put_smstate(u32, buf, 0x7e64, dt.size); 9654 put_smstate(u64, buf, 0x7e68, dt.address); 9655 9656 for (i = 0; i < 6; i++) 9657 enter_smm_save_seg_64(vcpu, buf, i); 9658 } 9659 #endif 9660 9661 static void enter_smm(struct kvm_vcpu *vcpu) 9662 { 9663 struct kvm_segment cs, ds; 9664 struct desc_ptr dt; 9665 unsigned long cr0; 9666 char buf[512]; 9667 9668 memset(buf, 0, 512); 9669 #ifdef CONFIG_X86_64 9670 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9671 enter_smm_save_state_64(vcpu, buf); 9672 else 9673 #endif 9674 enter_smm_save_state_32(vcpu, buf); 9675 9676 /* 9677 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9678 * state (e.g. leave guest mode) after we've saved the state into the 9679 * SMM state-save area. 9680 */ 9681 static_call(kvm_x86_enter_smm)(vcpu, buf); 9682 9683 kvm_smm_changed(vcpu, true); 9684 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9685 9686 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9687 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9688 else 9689 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9690 9691 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9692 kvm_rip_write(vcpu, 0x8000); 9693 9694 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9695 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9696 vcpu->arch.cr0 = cr0; 9697 9698 static_call(kvm_x86_set_cr4)(vcpu, 0); 9699 9700 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9701 dt.address = dt.size = 0; 9702 static_call(kvm_x86_set_idt)(vcpu, &dt); 9703 9704 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9705 9706 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9707 cs.base = vcpu->arch.smbase; 9708 9709 ds.selector = 0; 9710 ds.base = 0; 9711 9712 cs.limit = ds.limit = 0xffffffff; 9713 cs.type = ds.type = 0x3; 9714 cs.dpl = ds.dpl = 0; 9715 cs.db = ds.db = 0; 9716 cs.s = ds.s = 1; 9717 cs.l = ds.l = 0; 9718 cs.g = ds.g = 1; 9719 cs.avl = ds.avl = 0; 9720 cs.present = ds.present = 1; 9721 cs.unusable = ds.unusable = 0; 9722 cs.padding = ds.padding = 0; 9723 9724 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9725 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9726 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9727 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9728 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9729 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9730 9731 #ifdef CONFIG_X86_64 9732 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9733 static_call(kvm_x86_set_efer)(vcpu, 0); 9734 #endif 9735 9736 kvm_update_cpuid_runtime(vcpu); 9737 kvm_mmu_reset_context(vcpu); 9738 } 9739 9740 static void process_smi(struct kvm_vcpu *vcpu) 9741 { 9742 vcpu->arch.smi_pending = true; 9743 kvm_make_request(KVM_REQ_EVENT, vcpu); 9744 } 9745 9746 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9747 unsigned long *vcpu_bitmap) 9748 { 9749 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9750 } 9751 9752 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9753 { 9754 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9755 } 9756 9757 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9758 { 9759 bool activate; 9760 9761 if (!lapic_in_kernel(vcpu)) 9762 return; 9763 9764 down_read(&vcpu->kvm->arch.apicv_update_lock); 9765 9766 activate = kvm_apicv_activated(vcpu->kvm); 9767 if (vcpu->arch.apicv_active == activate) 9768 goto out; 9769 9770 vcpu->arch.apicv_active = activate; 9771 kvm_apic_update_apicv(vcpu); 9772 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9773 9774 /* 9775 * When APICv gets disabled, we may still have injected interrupts 9776 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9777 * still active when the interrupt got accepted. Make sure 9778 * inject_pending_event() is called to check for that. 9779 */ 9780 if (!vcpu->arch.apicv_active) 9781 kvm_make_request(KVM_REQ_EVENT, vcpu); 9782 9783 out: 9784 up_read(&vcpu->kvm->arch.apicv_update_lock); 9785 } 9786 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9787 9788 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9789 enum kvm_apicv_inhibit reason, bool set) 9790 { 9791 unsigned long old, new; 9792 9793 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9794 9795 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 9796 return; 9797 9798 old = new = kvm->arch.apicv_inhibit_reasons; 9799 9800 set_or_clear_apicv_inhibit(&new, reason, set); 9801 9802 if (!!old != !!new) { 9803 /* 9804 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9805 * false positives in the sanity check WARN in svm_vcpu_run(). 9806 * This task will wait for all vCPUs to ack the kick IRQ before 9807 * updating apicv_inhibit_reasons, and all other vCPUs will 9808 * block on acquiring apicv_update_lock so that vCPUs can't 9809 * redo svm_vcpu_run() without seeing the new inhibit state. 9810 * 9811 * Note, holding apicv_update_lock and taking it in the read 9812 * side (handling the request) also prevents other vCPUs from 9813 * servicing the request with a stale apicv_inhibit_reasons. 9814 */ 9815 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9816 kvm->arch.apicv_inhibit_reasons = new; 9817 if (new) { 9818 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9819 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9820 } 9821 } else { 9822 kvm->arch.apicv_inhibit_reasons = new; 9823 } 9824 } 9825 9826 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9827 enum kvm_apicv_inhibit reason, bool set) 9828 { 9829 if (!enable_apicv) 9830 return; 9831 9832 down_write(&kvm->arch.apicv_update_lock); 9833 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 9834 up_write(&kvm->arch.apicv_update_lock); 9835 } 9836 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 9837 9838 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9839 { 9840 if (!kvm_apic_present(vcpu)) 9841 return; 9842 9843 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9844 9845 if (irqchip_split(vcpu->kvm)) 9846 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9847 else { 9848 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9849 if (ioapic_in_kernel(vcpu->kvm)) 9850 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9851 } 9852 9853 if (is_guest_mode(vcpu)) 9854 vcpu->arch.load_eoi_exitmap_pending = true; 9855 else 9856 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9857 } 9858 9859 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9860 { 9861 u64 eoi_exit_bitmap[4]; 9862 9863 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9864 return; 9865 9866 if (to_hv_vcpu(vcpu)) { 9867 bitmap_or((ulong *)eoi_exit_bitmap, 9868 vcpu->arch.ioapic_handled_vectors, 9869 to_hv_synic(vcpu)->vec_bitmap, 256); 9870 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9871 return; 9872 } 9873 9874 static_call_cond(kvm_x86_load_eoi_exitmap)( 9875 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9876 } 9877 9878 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9879 unsigned long start, unsigned long end) 9880 { 9881 unsigned long apic_address; 9882 9883 /* 9884 * The physical address of apic access page is stored in the VMCS. 9885 * Update it when it becomes invalid. 9886 */ 9887 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9888 if (start <= apic_address && apic_address < end) 9889 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9890 } 9891 9892 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 9893 { 9894 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 9895 } 9896 9897 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9898 { 9899 if (!lapic_in_kernel(vcpu)) 9900 return; 9901 9902 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 9903 } 9904 9905 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9906 { 9907 smp_send_reschedule(vcpu->cpu); 9908 } 9909 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9910 9911 /* 9912 * Called within kvm->srcu read side. 9913 * Returns 1 to let vcpu_run() continue the guest execution loop without 9914 * exiting to the userspace. Otherwise, the value will be returned to the 9915 * userspace. 9916 */ 9917 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9918 { 9919 int r; 9920 bool req_int_win = 9921 dm_request_for_irq_injection(vcpu) && 9922 kvm_cpu_accept_dm_intr(vcpu); 9923 fastpath_t exit_fastpath; 9924 9925 bool req_immediate_exit = false; 9926 9927 /* Forbid vmenter if vcpu dirty ring is soft-full */ 9928 if (unlikely(vcpu->kvm->dirty_ring_size && 9929 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 9930 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 9931 trace_kvm_dirty_ring_exit(vcpu); 9932 r = 0; 9933 goto out; 9934 } 9935 9936 if (kvm_request_pending(vcpu)) { 9937 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 9938 r = -EIO; 9939 goto out; 9940 } 9941 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 9942 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 9943 r = 0; 9944 goto out; 9945 } 9946 } 9947 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 9948 kvm_mmu_free_obsolete_roots(vcpu); 9949 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 9950 __kvm_migrate_timers(vcpu); 9951 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 9952 kvm_update_masterclock(vcpu->kvm); 9953 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 9954 kvm_gen_kvmclock_update(vcpu); 9955 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 9956 r = kvm_guest_time_update(vcpu); 9957 if (unlikely(r)) 9958 goto out; 9959 } 9960 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 9961 kvm_mmu_sync_roots(vcpu); 9962 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 9963 kvm_mmu_load_pgd(vcpu); 9964 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 9965 kvm_vcpu_flush_tlb_all(vcpu); 9966 9967 /* Flushing all ASIDs flushes the current ASID... */ 9968 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 9969 } 9970 kvm_service_local_tlb_flush_requests(vcpu); 9971 9972 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 9973 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 9974 r = 0; 9975 goto out; 9976 } 9977 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9978 if (is_guest_mode(vcpu)) { 9979 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9980 } else { 9981 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 9982 vcpu->mmio_needed = 0; 9983 r = 0; 9984 goto out; 9985 } 9986 } 9987 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 9988 /* Page is swapped out. Do synthetic halt */ 9989 vcpu->arch.apf.halted = true; 9990 r = 1; 9991 goto out; 9992 } 9993 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 9994 record_steal_time(vcpu); 9995 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 9996 process_smi(vcpu); 9997 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 9998 process_nmi(vcpu); 9999 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10000 kvm_pmu_handle_event(vcpu); 10001 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10002 kvm_pmu_deliver_pmi(vcpu); 10003 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10004 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10005 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10006 vcpu->arch.ioapic_handled_vectors)) { 10007 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10008 vcpu->run->eoi.vector = 10009 vcpu->arch.pending_ioapic_eoi; 10010 r = 0; 10011 goto out; 10012 } 10013 } 10014 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10015 vcpu_scan_ioapic(vcpu); 10016 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10017 vcpu_load_eoi_exitmap(vcpu); 10018 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10019 kvm_vcpu_reload_apic_access_page(vcpu); 10020 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10021 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10022 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10023 vcpu->run->system_event.ndata = 0; 10024 r = 0; 10025 goto out; 10026 } 10027 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10028 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10029 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10030 vcpu->run->system_event.ndata = 0; 10031 r = 0; 10032 goto out; 10033 } 10034 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10035 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10036 10037 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10038 vcpu->run->hyperv = hv_vcpu->exit; 10039 r = 0; 10040 goto out; 10041 } 10042 10043 /* 10044 * KVM_REQ_HV_STIMER has to be processed after 10045 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10046 * depend on the guest clock being up-to-date 10047 */ 10048 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10049 kvm_hv_process_stimers(vcpu); 10050 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10051 kvm_vcpu_update_apicv(vcpu); 10052 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10053 kvm_check_async_pf_completion(vcpu); 10054 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10055 static_call(kvm_x86_msr_filter_changed)(vcpu); 10056 10057 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10058 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10059 } 10060 10061 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10062 kvm_xen_has_interrupt(vcpu)) { 10063 ++vcpu->stat.req_event; 10064 r = kvm_apic_accept_events(vcpu); 10065 if (r < 0) { 10066 r = 0; 10067 goto out; 10068 } 10069 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10070 r = 1; 10071 goto out; 10072 } 10073 10074 r = inject_pending_event(vcpu, &req_immediate_exit); 10075 if (r < 0) { 10076 r = 0; 10077 goto out; 10078 } 10079 if (req_int_win) 10080 static_call(kvm_x86_enable_irq_window)(vcpu); 10081 10082 if (kvm_lapic_enabled(vcpu)) { 10083 update_cr8_intercept(vcpu); 10084 kvm_lapic_sync_to_vapic(vcpu); 10085 } 10086 } 10087 10088 r = kvm_mmu_reload(vcpu); 10089 if (unlikely(r)) { 10090 goto cancel_injection; 10091 } 10092 10093 preempt_disable(); 10094 10095 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10096 10097 /* 10098 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10099 * IPI are then delayed after guest entry, which ensures that they 10100 * result in virtual interrupt delivery. 10101 */ 10102 local_irq_disable(); 10103 10104 /* Store vcpu->apicv_active before vcpu->mode. */ 10105 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10106 10107 kvm_vcpu_srcu_read_unlock(vcpu); 10108 10109 /* 10110 * 1) We should set ->mode before checking ->requests. Please see 10111 * the comment in kvm_vcpu_exiting_guest_mode(). 10112 * 10113 * 2) For APICv, we should set ->mode before checking PID.ON. This 10114 * pairs with the memory barrier implicit in pi_test_and_set_on 10115 * (see vmx_deliver_posted_interrupt). 10116 * 10117 * 3) This also orders the write to mode from any reads to the page 10118 * tables done while the VCPU is running. Please see the comment 10119 * in kvm_flush_remote_tlbs. 10120 */ 10121 smp_mb__after_srcu_read_unlock(); 10122 10123 /* 10124 * Process pending posted interrupts to handle the case where the 10125 * notification IRQ arrived in the host, or was never sent (because the 10126 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10127 * status, KVM doesn't update assigned devices when APICv is inhibited, 10128 * i.e. they can post interrupts even if APICv is temporarily disabled. 10129 */ 10130 if (kvm_lapic_enabled(vcpu)) 10131 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10132 10133 if (kvm_vcpu_exit_request(vcpu)) { 10134 vcpu->mode = OUTSIDE_GUEST_MODE; 10135 smp_wmb(); 10136 local_irq_enable(); 10137 preempt_enable(); 10138 kvm_vcpu_srcu_read_lock(vcpu); 10139 r = 1; 10140 goto cancel_injection; 10141 } 10142 10143 if (req_immediate_exit) { 10144 kvm_make_request(KVM_REQ_EVENT, vcpu); 10145 static_call(kvm_x86_request_immediate_exit)(vcpu); 10146 } 10147 10148 fpregs_assert_state_consistent(); 10149 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10150 switch_fpu_return(); 10151 10152 if (vcpu->arch.guest_fpu.xfd_err) 10153 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10154 10155 if (unlikely(vcpu->arch.switch_db_regs)) { 10156 set_debugreg(0, 7); 10157 set_debugreg(vcpu->arch.eff_db[0], 0); 10158 set_debugreg(vcpu->arch.eff_db[1], 1); 10159 set_debugreg(vcpu->arch.eff_db[2], 2); 10160 set_debugreg(vcpu->arch.eff_db[3], 3); 10161 } else if (unlikely(hw_breakpoint_active())) { 10162 set_debugreg(0, 7); 10163 } 10164 10165 guest_timing_enter_irqoff(); 10166 10167 for (;;) { 10168 /* 10169 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10170 * update must kick and wait for all vCPUs before toggling the 10171 * per-VM state, and responsing vCPUs must wait for the update 10172 * to complete before servicing KVM_REQ_APICV_UPDATE. 10173 */ 10174 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu)); 10175 10176 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10177 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10178 break; 10179 10180 if (kvm_lapic_enabled(vcpu)) 10181 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10182 10183 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10184 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10185 break; 10186 } 10187 } 10188 10189 /* 10190 * Do this here before restoring debug registers on the host. And 10191 * since we do this before handling the vmexit, a DR access vmexit 10192 * can (a) read the correct value of the debug registers, (b) set 10193 * KVM_DEBUGREG_WONT_EXIT again. 10194 */ 10195 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10196 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10197 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10198 kvm_update_dr0123(vcpu); 10199 kvm_update_dr7(vcpu); 10200 } 10201 10202 /* 10203 * If the guest has used debug registers, at least dr7 10204 * will be disabled while returning to the host. 10205 * If we don't have active breakpoints in the host, we don't 10206 * care about the messed up debug address registers. But if 10207 * we have some of them active, restore the old state. 10208 */ 10209 if (hw_breakpoint_active()) 10210 hw_breakpoint_restore(); 10211 10212 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10213 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10214 10215 vcpu->mode = OUTSIDE_GUEST_MODE; 10216 smp_wmb(); 10217 10218 /* 10219 * Sync xfd before calling handle_exit_irqoff() which may 10220 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10221 * in #NM irqoff handler). 10222 */ 10223 if (vcpu->arch.xfd_no_write_intercept) 10224 fpu_sync_guest_vmexit_xfd_state(); 10225 10226 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10227 10228 if (vcpu->arch.guest_fpu.xfd_err) 10229 wrmsrl(MSR_IA32_XFD_ERR, 0); 10230 10231 /* 10232 * Consume any pending interrupts, including the possible source of 10233 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10234 * An instruction is required after local_irq_enable() to fully unblock 10235 * interrupts on processors that implement an interrupt shadow, the 10236 * stat.exits increment will do nicely. 10237 */ 10238 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10239 local_irq_enable(); 10240 ++vcpu->stat.exits; 10241 local_irq_disable(); 10242 kvm_after_interrupt(vcpu); 10243 10244 /* 10245 * Wait until after servicing IRQs to account guest time so that any 10246 * ticks that occurred while running the guest are properly accounted 10247 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10248 * of accounting via context tracking, but the loss of accuracy is 10249 * acceptable for all known use cases. 10250 */ 10251 guest_timing_exit_irqoff(); 10252 10253 if (lapic_in_kernel(vcpu)) { 10254 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 10255 if (delta != S64_MIN) { 10256 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 10257 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 10258 } 10259 } 10260 10261 local_irq_enable(); 10262 preempt_enable(); 10263 10264 kvm_vcpu_srcu_read_lock(vcpu); 10265 10266 /* 10267 * Profile KVM exit RIPs: 10268 */ 10269 if (unlikely(prof_on == KVM_PROFILING)) { 10270 unsigned long rip = kvm_rip_read(vcpu); 10271 profile_hit(KVM_PROFILING, (void *)rip); 10272 } 10273 10274 if (unlikely(vcpu->arch.tsc_always_catchup)) 10275 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10276 10277 if (vcpu->arch.apic_attention) 10278 kvm_lapic_sync_from_vapic(vcpu); 10279 10280 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10281 return r; 10282 10283 cancel_injection: 10284 if (req_immediate_exit) 10285 kvm_make_request(KVM_REQ_EVENT, vcpu); 10286 static_call(kvm_x86_cancel_injection)(vcpu); 10287 if (unlikely(vcpu->arch.apic_attention)) 10288 kvm_lapic_sync_from_vapic(vcpu); 10289 out: 10290 return r; 10291 } 10292 10293 /* Called within kvm->srcu read side. */ 10294 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10295 { 10296 bool hv_timer; 10297 10298 if (!kvm_arch_vcpu_runnable(vcpu)) { 10299 /* 10300 * Switch to the software timer before halt-polling/blocking as 10301 * the guest's timer may be a break event for the vCPU, and the 10302 * hypervisor timer runs only when the CPU is in guest mode. 10303 * Switch before halt-polling so that KVM recognizes an expired 10304 * timer before blocking. 10305 */ 10306 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10307 if (hv_timer) 10308 kvm_lapic_switch_to_sw_timer(vcpu); 10309 10310 kvm_vcpu_srcu_read_unlock(vcpu); 10311 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10312 kvm_vcpu_halt(vcpu); 10313 else 10314 kvm_vcpu_block(vcpu); 10315 kvm_vcpu_srcu_read_lock(vcpu); 10316 10317 if (hv_timer) 10318 kvm_lapic_switch_to_hv_timer(vcpu); 10319 10320 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10321 return 1; 10322 } 10323 10324 if (kvm_apic_accept_events(vcpu) < 0) 10325 return 0; 10326 switch(vcpu->arch.mp_state) { 10327 case KVM_MP_STATE_HALTED: 10328 case KVM_MP_STATE_AP_RESET_HOLD: 10329 vcpu->arch.pv.pv_unhalted = false; 10330 vcpu->arch.mp_state = 10331 KVM_MP_STATE_RUNNABLE; 10332 fallthrough; 10333 case KVM_MP_STATE_RUNNABLE: 10334 vcpu->arch.apf.halted = false; 10335 break; 10336 case KVM_MP_STATE_INIT_RECEIVED: 10337 break; 10338 default: 10339 return -EINTR; 10340 } 10341 return 1; 10342 } 10343 10344 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10345 { 10346 if (is_guest_mode(vcpu)) 10347 kvm_check_nested_events(vcpu); 10348 10349 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10350 !vcpu->arch.apf.halted); 10351 } 10352 10353 /* Called within kvm->srcu read side. */ 10354 static int vcpu_run(struct kvm_vcpu *vcpu) 10355 { 10356 int r; 10357 10358 vcpu->arch.l1tf_flush_l1d = true; 10359 10360 for (;;) { 10361 if (kvm_vcpu_running(vcpu)) { 10362 r = vcpu_enter_guest(vcpu); 10363 } else { 10364 r = vcpu_block(vcpu); 10365 } 10366 10367 if (r <= 0) 10368 break; 10369 10370 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10371 if (kvm_cpu_has_pending_timer(vcpu)) 10372 kvm_inject_pending_timer_irqs(vcpu); 10373 10374 if (dm_request_for_irq_injection(vcpu) && 10375 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10376 r = 0; 10377 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10378 ++vcpu->stat.request_irq_exits; 10379 break; 10380 } 10381 10382 if (__xfer_to_guest_mode_work_pending()) { 10383 kvm_vcpu_srcu_read_unlock(vcpu); 10384 r = xfer_to_guest_mode_handle_work(vcpu); 10385 kvm_vcpu_srcu_read_lock(vcpu); 10386 if (r) 10387 return r; 10388 } 10389 } 10390 10391 return r; 10392 } 10393 10394 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10395 { 10396 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10397 } 10398 10399 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10400 { 10401 BUG_ON(!vcpu->arch.pio.count); 10402 10403 return complete_emulated_io(vcpu); 10404 } 10405 10406 /* 10407 * Implements the following, as a state machine: 10408 * 10409 * read: 10410 * for each fragment 10411 * for each mmio piece in the fragment 10412 * write gpa, len 10413 * exit 10414 * copy data 10415 * execute insn 10416 * 10417 * write: 10418 * for each fragment 10419 * for each mmio piece in the fragment 10420 * write gpa, len 10421 * copy data 10422 * exit 10423 */ 10424 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10425 { 10426 struct kvm_run *run = vcpu->run; 10427 struct kvm_mmio_fragment *frag; 10428 unsigned len; 10429 10430 BUG_ON(!vcpu->mmio_needed); 10431 10432 /* Complete previous fragment */ 10433 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10434 len = min(8u, frag->len); 10435 if (!vcpu->mmio_is_write) 10436 memcpy(frag->data, run->mmio.data, len); 10437 10438 if (frag->len <= 8) { 10439 /* Switch to the next fragment. */ 10440 frag++; 10441 vcpu->mmio_cur_fragment++; 10442 } else { 10443 /* Go forward to the next mmio piece. */ 10444 frag->data += len; 10445 frag->gpa += len; 10446 frag->len -= len; 10447 } 10448 10449 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10450 vcpu->mmio_needed = 0; 10451 10452 /* FIXME: return into emulator if single-stepping. */ 10453 if (vcpu->mmio_is_write) 10454 return 1; 10455 vcpu->mmio_read_completed = 1; 10456 return complete_emulated_io(vcpu); 10457 } 10458 10459 run->exit_reason = KVM_EXIT_MMIO; 10460 run->mmio.phys_addr = frag->gpa; 10461 if (vcpu->mmio_is_write) 10462 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10463 run->mmio.len = min(8u, frag->len); 10464 run->mmio.is_write = vcpu->mmio_is_write; 10465 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10466 return 0; 10467 } 10468 10469 /* Swap (qemu) user FPU context for the guest FPU context. */ 10470 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10471 { 10472 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10473 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10474 trace_kvm_fpu(1); 10475 } 10476 10477 /* When vcpu_run ends, restore user space FPU context. */ 10478 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10479 { 10480 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10481 ++vcpu->stat.fpu_reload; 10482 trace_kvm_fpu(0); 10483 } 10484 10485 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10486 { 10487 struct kvm_run *kvm_run = vcpu->run; 10488 int r; 10489 10490 vcpu_load(vcpu); 10491 kvm_sigset_activate(vcpu); 10492 kvm_run->flags = 0; 10493 kvm_load_guest_fpu(vcpu); 10494 10495 kvm_vcpu_srcu_read_lock(vcpu); 10496 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10497 if (kvm_run->immediate_exit) { 10498 r = -EINTR; 10499 goto out; 10500 } 10501 /* 10502 * It should be impossible for the hypervisor timer to be in 10503 * use before KVM has ever run the vCPU. 10504 */ 10505 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10506 10507 kvm_vcpu_srcu_read_unlock(vcpu); 10508 kvm_vcpu_block(vcpu); 10509 kvm_vcpu_srcu_read_lock(vcpu); 10510 10511 if (kvm_apic_accept_events(vcpu) < 0) { 10512 r = 0; 10513 goto out; 10514 } 10515 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10516 r = -EAGAIN; 10517 if (signal_pending(current)) { 10518 r = -EINTR; 10519 kvm_run->exit_reason = KVM_EXIT_INTR; 10520 ++vcpu->stat.signal_exits; 10521 } 10522 goto out; 10523 } 10524 10525 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10526 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10527 r = -EINVAL; 10528 goto out; 10529 } 10530 10531 if (kvm_run->kvm_dirty_regs) { 10532 r = sync_regs(vcpu); 10533 if (r != 0) 10534 goto out; 10535 } 10536 10537 /* re-sync apic's tpr */ 10538 if (!lapic_in_kernel(vcpu)) { 10539 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10540 r = -EINVAL; 10541 goto out; 10542 } 10543 } 10544 10545 if (unlikely(vcpu->arch.complete_userspace_io)) { 10546 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10547 vcpu->arch.complete_userspace_io = NULL; 10548 r = cui(vcpu); 10549 if (r <= 0) 10550 goto out; 10551 } else 10552 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10553 10554 if (kvm_run->immediate_exit) { 10555 r = -EINTR; 10556 goto out; 10557 } 10558 10559 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10560 if (r <= 0) 10561 goto out; 10562 10563 r = vcpu_run(vcpu); 10564 10565 out: 10566 kvm_put_guest_fpu(vcpu); 10567 if (kvm_run->kvm_valid_regs) 10568 store_regs(vcpu); 10569 post_kvm_run_save(vcpu); 10570 kvm_vcpu_srcu_read_unlock(vcpu); 10571 10572 kvm_sigset_deactivate(vcpu); 10573 vcpu_put(vcpu); 10574 return r; 10575 } 10576 10577 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10578 { 10579 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10580 /* 10581 * We are here if userspace calls get_regs() in the middle of 10582 * instruction emulation. Registers state needs to be copied 10583 * back from emulation context to vcpu. Userspace shouldn't do 10584 * that usually, but some bad designed PV devices (vmware 10585 * backdoor interface) need this to work 10586 */ 10587 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10588 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10589 } 10590 regs->rax = kvm_rax_read(vcpu); 10591 regs->rbx = kvm_rbx_read(vcpu); 10592 regs->rcx = kvm_rcx_read(vcpu); 10593 regs->rdx = kvm_rdx_read(vcpu); 10594 regs->rsi = kvm_rsi_read(vcpu); 10595 regs->rdi = kvm_rdi_read(vcpu); 10596 regs->rsp = kvm_rsp_read(vcpu); 10597 regs->rbp = kvm_rbp_read(vcpu); 10598 #ifdef CONFIG_X86_64 10599 regs->r8 = kvm_r8_read(vcpu); 10600 regs->r9 = kvm_r9_read(vcpu); 10601 regs->r10 = kvm_r10_read(vcpu); 10602 regs->r11 = kvm_r11_read(vcpu); 10603 regs->r12 = kvm_r12_read(vcpu); 10604 regs->r13 = kvm_r13_read(vcpu); 10605 regs->r14 = kvm_r14_read(vcpu); 10606 regs->r15 = kvm_r15_read(vcpu); 10607 #endif 10608 10609 regs->rip = kvm_rip_read(vcpu); 10610 regs->rflags = kvm_get_rflags(vcpu); 10611 } 10612 10613 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10614 { 10615 vcpu_load(vcpu); 10616 __get_regs(vcpu, regs); 10617 vcpu_put(vcpu); 10618 return 0; 10619 } 10620 10621 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10622 { 10623 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10624 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10625 10626 kvm_rax_write(vcpu, regs->rax); 10627 kvm_rbx_write(vcpu, regs->rbx); 10628 kvm_rcx_write(vcpu, regs->rcx); 10629 kvm_rdx_write(vcpu, regs->rdx); 10630 kvm_rsi_write(vcpu, regs->rsi); 10631 kvm_rdi_write(vcpu, regs->rdi); 10632 kvm_rsp_write(vcpu, regs->rsp); 10633 kvm_rbp_write(vcpu, regs->rbp); 10634 #ifdef CONFIG_X86_64 10635 kvm_r8_write(vcpu, regs->r8); 10636 kvm_r9_write(vcpu, regs->r9); 10637 kvm_r10_write(vcpu, regs->r10); 10638 kvm_r11_write(vcpu, regs->r11); 10639 kvm_r12_write(vcpu, regs->r12); 10640 kvm_r13_write(vcpu, regs->r13); 10641 kvm_r14_write(vcpu, regs->r14); 10642 kvm_r15_write(vcpu, regs->r15); 10643 #endif 10644 10645 kvm_rip_write(vcpu, regs->rip); 10646 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10647 10648 vcpu->arch.exception.pending = false; 10649 10650 kvm_make_request(KVM_REQ_EVENT, vcpu); 10651 } 10652 10653 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10654 { 10655 vcpu_load(vcpu); 10656 __set_regs(vcpu, regs); 10657 vcpu_put(vcpu); 10658 return 0; 10659 } 10660 10661 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10662 { 10663 struct desc_ptr dt; 10664 10665 if (vcpu->arch.guest_state_protected) 10666 goto skip_protected_regs; 10667 10668 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10669 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10670 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10671 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10672 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10673 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10674 10675 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10676 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10677 10678 static_call(kvm_x86_get_idt)(vcpu, &dt); 10679 sregs->idt.limit = dt.size; 10680 sregs->idt.base = dt.address; 10681 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10682 sregs->gdt.limit = dt.size; 10683 sregs->gdt.base = dt.address; 10684 10685 sregs->cr2 = vcpu->arch.cr2; 10686 sregs->cr3 = kvm_read_cr3(vcpu); 10687 10688 skip_protected_regs: 10689 sregs->cr0 = kvm_read_cr0(vcpu); 10690 sregs->cr4 = kvm_read_cr4(vcpu); 10691 sregs->cr8 = kvm_get_cr8(vcpu); 10692 sregs->efer = vcpu->arch.efer; 10693 sregs->apic_base = kvm_get_apic_base(vcpu); 10694 } 10695 10696 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10697 { 10698 __get_sregs_common(vcpu, sregs); 10699 10700 if (vcpu->arch.guest_state_protected) 10701 return; 10702 10703 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10704 set_bit(vcpu->arch.interrupt.nr, 10705 (unsigned long *)sregs->interrupt_bitmap); 10706 } 10707 10708 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10709 { 10710 int i; 10711 10712 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10713 10714 if (vcpu->arch.guest_state_protected) 10715 return; 10716 10717 if (is_pae_paging(vcpu)) { 10718 for (i = 0 ; i < 4 ; i++) 10719 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10720 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10721 } 10722 } 10723 10724 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10725 struct kvm_sregs *sregs) 10726 { 10727 vcpu_load(vcpu); 10728 __get_sregs(vcpu, sregs); 10729 vcpu_put(vcpu); 10730 return 0; 10731 } 10732 10733 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10734 struct kvm_mp_state *mp_state) 10735 { 10736 int r; 10737 10738 vcpu_load(vcpu); 10739 if (kvm_mpx_supported()) 10740 kvm_load_guest_fpu(vcpu); 10741 10742 r = kvm_apic_accept_events(vcpu); 10743 if (r < 0) 10744 goto out; 10745 r = 0; 10746 10747 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10748 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10749 vcpu->arch.pv.pv_unhalted) 10750 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10751 else 10752 mp_state->mp_state = vcpu->arch.mp_state; 10753 10754 out: 10755 if (kvm_mpx_supported()) 10756 kvm_put_guest_fpu(vcpu); 10757 vcpu_put(vcpu); 10758 return r; 10759 } 10760 10761 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10762 struct kvm_mp_state *mp_state) 10763 { 10764 int ret = -EINVAL; 10765 10766 vcpu_load(vcpu); 10767 10768 if (!lapic_in_kernel(vcpu) && 10769 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10770 goto out; 10771 10772 /* 10773 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10774 * INIT state; latched init should be reported using 10775 * KVM_SET_VCPU_EVENTS, so reject it here. 10776 */ 10777 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10778 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10779 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10780 goto out; 10781 10782 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10783 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10784 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10785 } else 10786 vcpu->arch.mp_state = mp_state->mp_state; 10787 kvm_make_request(KVM_REQ_EVENT, vcpu); 10788 10789 ret = 0; 10790 out: 10791 vcpu_put(vcpu); 10792 return ret; 10793 } 10794 10795 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10796 int reason, bool has_error_code, u32 error_code) 10797 { 10798 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10799 int ret; 10800 10801 init_emulate_ctxt(vcpu); 10802 10803 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10804 has_error_code, error_code); 10805 if (ret) { 10806 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10807 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10808 vcpu->run->internal.ndata = 0; 10809 return 0; 10810 } 10811 10812 kvm_rip_write(vcpu, ctxt->eip); 10813 kvm_set_rflags(vcpu, ctxt->eflags); 10814 return 1; 10815 } 10816 EXPORT_SYMBOL_GPL(kvm_task_switch); 10817 10818 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10819 { 10820 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10821 /* 10822 * When EFER.LME and CR0.PG are set, the processor is in 10823 * 64-bit mode (though maybe in a 32-bit code segment). 10824 * CR4.PAE and EFER.LMA must be set. 10825 */ 10826 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10827 return false; 10828 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10829 return false; 10830 } else { 10831 /* 10832 * Not in 64-bit mode: EFER.LMA is clear and the code 10833 * segment cannot be 64-bit. 10834 */ 10835 if (sregs->efer & EFER_LMA || sregs->cs.l) 10836 return false; 10837 } 10838 10839 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10840 } 10841 10842 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10843 int *mmu_reset_needed, bool update_pdptrs) 10844 { 10845 struct msr_data apic_base_msr; 10846 int idx; 10847 struct desc_ptr dt; 10848 10849 if (!kvm_is_valid_sregs(vcpu, sregs)) 10850 return -EINVAL; 10851 10852 apic_base_msr.data = sregs->apic_base; 10853 apic_base_msr.host_initiated = true; 10854 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10855 return -EINVAL; 10856 10857 if (vcpu->arch.guest_state_protected) 10858 return 0; 10859 10860 dt.size = sregs->idt.limit; 10861 dt.address = sregs->idt.base; 10862 static_call(kvm_x86_set_idt)(vcpu, &dt); 10863 dt.size = sregs->gdt.limit; 10864 dt.address = sregs->gdt.base; 10865 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10866 10867 vcpu->arch.cr2 = sregs->cr2; 10868 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10869 vcpu->arch.cr3 = sregs->cr3; 10870 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10871 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10872 10873 kvm_set_cr8(vcpu, sregs->cr8); 10874 10875 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10876 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10877 10878 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10879 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10880 vcpu->arch.cr0 = sregs->cr0; 10881 10882 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10883 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10884 10885 if (update_pdptrs) { 10886 idx = srcu_read_lock(&vcpu->kvm->srcu); 10887 if (is_pae_paging(vcpu)) { 10888 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 10889 *mmu_reset_needed = 1; 10890 } 10891 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10892 } 10893 10894 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10895 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10896 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10897 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10898 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10899 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10900 10901 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10902 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10903 10904 update_cr8_intercept(vcpu); 10905 10906 /* Older userspace won't unhalt the vcpu on reset. */ 10907 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10908 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 10909 !is_protmode(vcpu)) 10910 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10911 10912 return 0; 10913 } 10914 10915 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10916 { 10917 int pending_vec, max_bits; 10918 int mmu_reset_needed = 0; 10919 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 10920 10921 if (ret) 10922 return ret; 10923 10924 if (mmu_reset_needed) 10925 kvm_mmu_reset_context(vcpu); 10926 10927 max_bits = KVM_NR_INTERRUPTS; 10928 pending_vec = find_first_bit( 10929 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 10930 10931 if (pending_vec < max_bits) { 10932 kvm_queue_interrupt(vcpu, pending_vec, false); 10933 pr_debug("Set back pending irq %d\n", pending_vec); 10934 kvm_make_request(KVM_REQ_EVENT, vcpu); 10935 } 10936 return 0; 10937 } 10938 10939 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10940 { 10941 int mmu_reset_needed = 0; 10942 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 10943 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 10944 !(sregs2->efer & EFER_LMA); 10945 int i, ret; 10946 10947 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 10948 return -EINVAL; 10949 10950 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 10951 return -EINVAL; 10952 10953 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 10954 &mmu_reset_needed, !valid_pdptrs); 10955 if (ret) 10956 return ret; 10957 10958 if (valid_pdptrs) { 10959 for (i = 0; i < 4 ; i++) 10960 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 10961 10962 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 10963 mmu_reset_needed = 1; 10964 vcpu->arch.pdptrs_from_userspace = true; 10965 } 10966 if (mmu_reset_needed) 10967 kvm_mmu_reset_context(vcpu); 10968 return 0; 10969 } 10970 10971 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 10972 struct kvm_sregs *sregs) 10973 { 10974 int ret; 10975 10976 vcpu_load(vcpu); 10977 ret = __set_sregs(vcpu, sregs); 10978 vcpu_put(vcpu); 10979 return ret; 10980 } 10981 10982 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 10983 { 10984 bool set = false; 10985 struct kvm_vcpu *vcpu; 10986 unsigned long i; 10987 10988 if (!enable_apicv) 10989 return; 10990 10991 down_write(&kvm->arch.apicv_update_lock); 10992 10993 kvm_for_each_vcpu(i, vcpu, kvm) { 10994 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 10995 set = true; 10996 break; 10997 } 10998 } 10999 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11000 up_write(&kvm->arch.apicv_update_lock); 11001 } 11002 11003 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11004 struct kvm_guest_debug *dbg) 11005 { 11006 unsigned long rflags; 11007 int i, r; 11008 11009 if (vcpu->arch.guest_state_protected) 11010 return -EINVAL; 11011 11012 vcpu_load(vcpu); 11013 11014 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11015 r = -EBUSY; 11016 if (vcpu->arch.exception.pending) 11017 goto out; 11018 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11019 kvm_queue_exception(vcpu, DB_VECTOR); 11020 else 11021 kvm_queue_exception(vcpu, BP_VECTOR); 11022 } 11023 11024 /* 11025 * Read rflags as long as potentially injected trace flags are still 11026 * filtered out. 11027 */ 11028 rflags = kvm_get_rflags(vcpu); 11029 11030 vcpu->guest_debug = dbg->control; 11031 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11032 vcpu->guest_debug = 0; 11033 11034 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11035 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11036 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11037 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11038 } else { 11039 for (i = 0; i < KVM_NR_DB_REGS; i++) 11040 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11041 } 11042 kvm_update_dr7(vcpu); 11043 11044 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11045 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11046 11047 /* 11048 * Trigger an rflags update that will inject or remove the trace 11049 * flags. 11050 */ 11051 kvm_set_rflags(vcpu, rflags); 11052 11053 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11054 11055 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11056 11057 r = 0; 11058 11059 out: 11060 vcpu_put(vcpu); 11061 return r; 11062 } 11063 11064 /* 11065 * Translate a guest virtual address to a guest physical address. 11066 */ 11067 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11068 struct kvm_translation *tr) 11069 { 11070 unsigned long vaddr = tr->linear_address; 11071 gpa_t gpa; 11072 int idx; 11073 11074 vcpu_load(vcpu); 11075 11076 idx = srcu_read_lock(&vcpu->kvm->srcu); 11077 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11078 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11079 tr->physical_address = gpa; 11080 tr->valid = gpa != UNMAPPED_GVA; 11081 tr->writeable = 1; 11082 tr->usermode = 0; 11083 11084 vcpu_put(vcpu); 11085 return 0; 11086 } 11087 11088 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11089 { 11090 struct fxregs_state *fxsave; 11091 11092 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11093 return 0; 11094 11095 vcpu_load(vcpu); 11096 11097 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11098 memcpy(fpu->fpr, fxsave->st_space, 128); 11099 fpu->fcw = fxsave->cwd; 11100 fpu->fsw = fxsave->swd; 11101 fpu->ftwx = fxsave->twd; 11102 fpu->last_opcode = fxsave->fop; 11103 fpu->last_ip = fxsave->rip; 11104 fpu->last_dp = fxsave->rdp; 11105 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11106 11107 vcpu_put(vcpu); 11108 return 0; 11109 } 11110 11111 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11112 { 11113 struct fxregs_state *fxsave; 11114 11115 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11116 return 0; 11117 11118 vcpu_load(vcpu); 11119 11120 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11121 11122 memcpy(fxsave->st_space, fpu->fpr, 128); 11123 fxsave->cwd = fpu->fcw; 11124 fxsave->swd = fpu->fsw; 11125 fxsave->twd = fpu->ftwx; 11126 fxsave->fop = fpu->last_opcode; 11127 fxsave->rip = fpu->last_ip; 11128 fxsave->rdp = fpu->last_dp; 11129 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11130 11131 vcpu_put(vcpu); 11132 return 0; 11133 } 11134 11135 static void store_regs(struct kvm_vcpu *vcpu) 11136 { 11137 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11138 11139 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11140 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11141 11142 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11143 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11144 11145 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11146 kvm_vcpu_ioctl_x86_get_vcpu_events( 11147 vcpu, &vcpu->run->s.regs.events); 11148 } 11149 11150 static int sync_regs(struct kvm_vcpu *vcpu) 11151 { 11152 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11153 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11154 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11155 } 11156 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11157 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11158 return -EINVAL; 11159 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11160 } 11161 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11162 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11163 vcpu, &vcpu->run->s.regs.events)) 11164 return -EINVAL; 11165 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11166 } 11167 11168 return 0; 11169 } 11170 11171 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11172 { 11173 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11174 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11175 "guest TSC will not be reliable\n"); 11176 11177 return 0; 11178 } 11179 11180 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11181 { 11182 struct page *page; 11183 int r; 11184 11185 vcpu->arch.last_vmentry_cpu = -1; 11186 vcpu->arch.regs_avail = ~0; 11187 vcpu->arch.regs_dirty = ~0; 11188 11189 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11190 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11191 else 11192 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11193 11194 r = kvm_mmu_create(vcpu); 11195 if (r < 0) 11196 return r; 11197 11198 if (irqchip_in_kernel(vcpu->kvm)) { 11199 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11200 if (r < 0) 11201 goto fail_mmu_destroy; 11202 11203 /* 11204 * Defer evaluating inhibits until the vCPU is first run, as 11205 * this vCPU will not get notified of any changes until this 11206 * vCPU is visible to other vCPUs (marked online and added to 11207 * the set of vCPUs). Opportunistically mark APICv active as 11208 * VMX in particularly is highly unlikely to have inhibits. 11209 * Ignore the current per-VM APICv state so that vCPU creation 11210 * is guaranteed to run with a deterministic value, the request 11211 * will ensure the vCPU gets the correct state before VM-Entry. 11212 */ 11213 if (enable_apicv) { 11214 vcpu->arch.apicv_active = true; 11215 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11216 } 11217 } else 11218 static_branch_inc(&kvm_has_noapic_vcpu); 11219 11220 r = -ENOMEM; 11221 11222 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11223 if (!page) 11224 goto fail_free_lapic; 11225 vcpu->arch.pio_data = page_address(page); 11226 11227 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11228 GFP_KERNEL_ACCOUNT); 11229 if (!vcpu->arch.mce_banks) 11230 goto fail_free_pio_data; 11231 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11232 11233 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11234 GFP_KERNEL_ACCOUNT)) 11235 goto fail_free_mce_banks; 11236 11237 if (!alloc_emulate_ctxt(vcpu)) 11238 goto free_wbinvd_dirty_mask; 11239 11240 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11241 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11242 goto free_emulate_ctxt; 11243 } 11244 11245 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11246 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11247 11248 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11249 11250 kvm_async_pf_hash_reset(vcpu); 11251 kvm_pmu_init(vcpu); 11252 11253 vcpu->arch.pending_external_vector = -1; 11254 vcpu->arch.preempted_in_kernel = false; 11255 11256 #if IS_ENABLED(CONFIG_HYPERV) 11257 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11258 #endif 11259 11260 r = static_call(kvm_x86_vcpu_create)(vcpu); 11261 if (r) 11262 goto free_guest_fpu; 11263 11264 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11265 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11266 kvm_vcpu_mtrr_init(vcpu); 11267 vcpu_load(vcpu); 11268 kvm_set_tsc_khz(vcpu, max_tsc_khz); 11269 kvm_vcpu_reset(vcpu, false); 11270 kvm_init_mmu(vcpu); 11271 vcpu_put(vcpu); 11272 return 0; 11273 11274 free_guest_fpu: 11275 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11276 free_emulate_ctxt: 11277 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11278 free_wbinvd_dirty_mask: 11279 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11280 fail_free_mce_banks: 11281 kfree(vcpu->arch.mce_banks); 11282 fail_free_pio_data: 11283 free_page((unsigned long)vcpu->arch.pio_data); 11284 fail_free_lapic: 11285 kvm_free_lapic(vcpu); 11286 fail_mmu_destroy: 11287 kvm_mmu_destroy(vcpu); 11288 return r; 11289 } 11290 11291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11292 { 11293 struct kvm *kvm = vcpu->kvm; 11294 11295 if (mutex_lock_killable(&vcpu->mutex)) 11296 return; 11297 vcpu_load(vcpu); 11298 kvm_synchronize_tsc(vcpu, 0); 11299 vcpu_put(vcpu); 11300 11301 /* poll control enabled by default */ 11302 vcpu->arch.msr_kvm_poll_control = 1; 11303 11304 mutex_unlock(&vcpu->mutex); 11305 11306 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11307 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11308 KVMCLOCK_SYNC_PERIOD); 11309 } 11310 11311 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11312 { 11313 int idx; 11314 11315 kvmclock_reset(vcpu); 11316 11317 static_call(kvm_x86_vcpu_free)(vcpu); 11318 11319 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11320 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11321 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11322 11323 kvm_hv_vcpu_uninit(vcpu); 11324 kvm_pmu_destroy(vcpu); 11325 kfree(vcpu->arch.mce_banks); 11326 kvm_free_lapic(vcpu); 11327 idx = srcu_read_lock(&vcpu->kvm->srcu); 11328 kvm_mmu_destroy(vcpu); 11329 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11330 free_page((unsigned long)vcpu->arch.pio_data); 11331 kvfree(vcpu->arch.cpuid_entries); 11332 if (!lapic_in_kernel(vcpu)) 11333 static_branch_dec(&kvm_has_noapic_vcpu); 11334 } 11335 11336 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11337 { 11338 struct kvm_cpuid_entry2 *cpuid_0x1; 11339 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11340 unsigned long new_cr0; 11341 11342 /* 11343 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11344 * to handle side effects. RESET emulation hits those flows and relies 11345 * on emulated/virtualized registers, including those that are loaded 11346 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11347 * to detect improper or missing initialization. 11348 */ 11349 WARN_ON_ONCE(!init_event && 11350 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11351 11352 kvm_lapic_reset(vcpu, init_event); 11353 11354 vcpu->arch.hflags = 0; 11355 11356 vcpu->arch.smi_pending = 0; 11357 vcpu->arch.smi_count = 0; 11358 atomic_set(&vcpu->arch.nmi_queued, 0); 11359 vcpu->arch.nmi_pending = 0; 11360 vcpu->arch.nmi_injected = false; 11361 kvm_clear_interrupt_queue(vcpu); 11362 kvm_clear_exception_queue(vcpu); 11363 11364 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11365 kvm_update_dr0123(vcpu); 11366 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11367 vcpu->arch.dr7 = DR7_FIXED_1; 11368 kvm_update_dr7(vcpu); 11369 11370 vcpu->arch.cr2 = 0; 11371 11372 kvm_make_request(KVM_REQ_EVENT, vcpu); 11373 vcpu->arch.apf.msr_en_val = 0; 11374 vcpu->arch.apf.msr_int_val = 0; 11375 vcpu->arch.st.msr_val = 0; 11376 11377 kvmclock_reset(vcpu); 11378 11379 kvm_clear_async_pf_completion_queue(vcpu); 11380 kvm_async_pf_hash_reset(vcpu); 11381 vcpu->arch.apf.halted = false; 11382 11383 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11384 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11385 11386 /* 11387 * To avoid have the INIT path from kvm_apic_has_events() that be 11388 * called with loaded FPU and does not let userspace fix the state. 11389 */ 11390 if (init_event) 11391 kvm_put_guest_fpu(vcpu); 11392 11393 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11394 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11395 11396 if (init_event) 11397 kvm_load_guest_fpu(vcpu); 11398 } 11399 11400 if (!init_event) { 11401 kvm_pmu_reset(vcpu); 11402 vcpu->arch.smbase = 0x30000; 11403 11404 vcpu->arch.msr_misc_features_enables = 0; 11405 11406 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11407 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11408 } 11409 11410 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11411 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11412 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11413 11414 /* 11415 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11416 * if no CPUID match is found. Note, it's impossible to get a match at 11417 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11418 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11419 * on RESET. But, go through the motions in case that's ever remedied. 11420 */ 11421 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11422 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11423 11424 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11425 11426 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11427 kvm_rip_write(vcpu, 0xfff0); 11428 11429 vcpu->arch.cr3 = 0; 11430 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11431 11432 /* 11433 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11434 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11435 * (or qualify) that with a footnote stating that CD/NW are preserved. 11436 */ 11437 new_cr0 = X86_CR0_ET; 11438 if (init_event) 11439 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11440 else 11441 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11442 11443 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11444 static_call(kvm_x86_set_cr4)(vcpu, 0); 11445 static_call(kvm_x86_set_efer)(vcpu, 0); 11446 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11447 11448 /* 11449 * On the standard CR0/CR4/EFER modification paths, there are several 11450 * complex conditions determining whether the MMU has to be reset and/or 11451 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11452 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11453 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11454 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11455 */ 11456 if (old_cr0 & X86_CR0_PG) { 11457 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11458 kvm_mmu_reset_context(vcpu); 11459 } 11460 11461 /* 11462 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11463 * APM states the TLBs are untouched by INIT, but it also states that 11464 * the TLBs are flushed on "External initialization of the processor." 11465 * Flush the guest TLB regardless of vendor, there is no meaningful 11466 * benefit in relying on the guest to flush the TLB immediately after 11467 * INIT. A spurious TLB flush is benign and likely negligible from a 11468 * performance perspective. 11469 */ 11470 if (init_event) 11471 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11472 } 11473 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11474 11475 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11476 { 11477 struct kvm_segment cs; 11478 11479 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11480 cs.selector = vector << 8; 11481 cs.base = vector << 12; 11482 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11483 kvm_rip_write(vcpu, 0); 11484 } 11485 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11486 11487 int kvm_arch_hardware_enable(void) 11488 { 11489 struct kvm *kvm; 11490 struct kvm_vcpu *vcpu; 11491 unsigned long i; 11492 int ret; 11493 u64 local_tsc; 11494 u64 max_tsc = 0; 11495 bool stable, backwards_tsc = false; 11496 11497 kvm_user_return_msr_cpu_online(); 11498 ret = static_call(kvm_x86_hardware_enable)(); 11499 if (ret != 0) 11500 return ret; 11501 11502 local_tsc = rdtsc(); 11503 stable = !kvm_check_tsc_unstable(); 11504 list_for_each_entry(kvm, &vm_list, vm_list) { 11505 kvm_for_each_vcpu(i, vcpu, kvm) { 11506 if (!stable && vcpu->cpu == smp_processor_id()) 11507 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11508 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11509 backwards_tsc = true; 11510 if (vcpu->arch.last_host_tsc > max_tsc) 11511 max_tsc = vcpu->arch.last_host_tsc; 11512 } 11513 } 11514 } 11515 11516 /* 11517 * Sometimes, even reliable TSCs go backwards. This happens on 11518 * platforms that reset TSC during suspend or hibernate actions, but 11519 * maintain synchronization. We must compensate. Fortunately, we can 11520 * detect that condition here, which happens early in CPU bringup, 11521 * before any KVM threads can be running. Unfortunately, we can't 11522 * bring the TSCs fully up to date with real time, as we aren't yet far 11523 * enough into CPU bringup that we know how much real time has actually 11524 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11525 * variables that haven't been updated yet. 11526 * 11527 * So we simply find the maximum observed TSC above, then record the 11528 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11529 * the adjustment will be applied. Note that we accumulate 11530 * adjustments, in case multiple suspend cycles happen before some VCPU 11531 * gets a chance to run again. In the event that no KVM threads get a 11532 * chance to run, we will miss the entire elapsed period, as we'll have 11533 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11534 * loose cycle time. This isn't too big a deal, since the loss will be 11535 * uniform across all VCPUs (not to mention the scenario is extremely 11536 * unlikely). It is possible that a second hibernate recovery happens 11537 * much faster than a first, causing the observed TSC here to be 11538 * smaller; this would require additional padding adjustment, which is 11539 * why we set last_host_tsc to the local tsc observed here. 11540 * 11541 * N.B. - this code below runs only on platforms with reliable TSC, 11542 * as that is the only way backwards_tsc is set above. Also note 11543 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11544 * have the same delta_cyc adjustment applied if backwards_tsc 11545 * is detected. Note further, this adjustment is only done once, 11546 * as we reset last_host_tsc on all VCPUs to stop this from being 11547 * called multiple times (one for each physical CPU bringup). 11548 * 11549 * Platforms with unreliable TSCs don't have to deal with this, they 11550 * will be compensated by the logic in vcpu_load, which sets the TSC to 11551 * catchup mode. This will catchup all VCPUs to real time, but cannot 11552 * guarantee that they stay in perfect synchronization. 11553 */ 11554 if (backwards_tsc) { 11555 u64 delta_cyc = max_tsc - local_tsc; 11556 list_for_each_entry(kvm, &vm_list, vm_list) { 11557 kvm->arch.backwards_tsc_observed = true; 11558 kvm_for_each_vcpu(i, vcpu, kvm) { 11559 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11560 vcpu->arch.last_host_tsc = local_tsc; 11561 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11562 } 11563 11564 /* 11565 * We have to disable TSC offset matching.. if you were 11566 * booting a VM while issuing an S4 host suspend.... 11567 * you may have some problem. Solving this issue is 11568 * left as an exercise to the reader. 11569 */ 11570 kvm->arch.last_tsc_nsec = 0; 11571 kvm->arch.last_tsc_write = 0; 11572 } 11573 11574 } 11575 return 0; 11576 } 11577 11578 void kvm_arch_hardware_disable(void) 11579 { 11580 static_call(kvm_x86_hardware_disable)(); 11581 drop_user_return_notifiers(); 11582 } 11583 11584 int kvm_arch_hardware_setup(void *opaque) 11585 { 11586 struct kvm_x86_init_ops *ops = opaque; 11587 int r; 11588 11589 rdmsrl_safe(MSR_EFER, &host_efer); 11590 11591 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11592 rdmsrl(MSR_IA32_XSS, host_xss); 11593 11594 r = ops->hardware_setup(); 11595 if (r != 0) 11596 return r; 11597 11598 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11599 kvm_ops_static_call_update(); 11600 11601 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11602 11603 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11604 supported_xss = 0; 11605 11606 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11607 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11608 #undef __kvm_cpu_cap_has 11609 11610 if (kvm_has_tsc_control) { 11611 /* 11612 * Make sure the user can only configure tsc_khz values that 11613 * fit into a signed integer. 11614 * A min value is not calculated because it will always 11615 * be 1 on all machines. 11616 */ 11617 u64 max = min(0x7fffffffULL, 11618 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11619 kvm_max_guest_tsc_khz = max; 11620 } 11621 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11622 kvm_init_msr_list(); 11623 return 0; 11624 } 11625 11626 void kvm_arch_hardware_unsetup(void) 11627 { 11628 kvm_unregister_perf_callbacks(); 11629 11630 static_call(kvm_x86_hardware_unsetup)(); 11631 } 11632 11633 int kvm_arch_check_processor_compat(void *opaque) 11634 { 11635 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11636 struct kvm_x86_init_ops *ops = opaque; 11637 11638 WARN_ON(!irqs_disabled()); 11639 11640 if (__cr4_reserved_bits(cpu_has, c) != 11641 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11642 return -EIO; 11643 11644 return ops->check_processor_compatibility(); 11645 } 11646 11647 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11648 { 11649 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11650 } 11651 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11652 11653 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11654 { 11655 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11656 } 11657 11658 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11659 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11660 11661 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11662 { 11663 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11664 11665 vcpu->arch.l1tf_flush_l1d = true; 11666 if (pmu->version && unlikely(pmu->event_count)) { 11667 pmu->need_cleanup = true; 11668 kvm_make_request(KVM_REQ_PMU, vcpu); 11669 } 11670 static_call(kvm_x86_sched_in)(vcpu, cpu); 11671 } 11672 11673 void kvm_arch_free_vm(struct kvm *kvm) 11674 { 11675 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11676 __kvm_arch_free_vm(kvm); 11677 } 11678 11679 11680 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11681 { 11682 int ret; 11683 unsigned long flags; 11684 11685 if (type) 11686 return -EINVAL; 11687 11688 ret = kvm_page_track_init(kvm); 11689 if (ret) 11690 goto out; 11691 11692 ret = kvm_mmu_init_vm(kvm); 11693 if (ret) 11694 goto out_page_track; 11695 11696 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11697 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11698 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11699 11700 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11701 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11702 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11703 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11704 &kvm->arch.irq_sources_bitmap); 11705 11706 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11707 mutex_init(&kvm->arch.apic_map_lock); 11708 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11709 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11710 11711 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11712 pvclock_update_vm_gtod_copy(kvm); 11713 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11714 11715 kvm->arch.guest_can_read_msr_platform_info = true; 11716 kvm->arch.enable_pmu = enable_pmu; 11717 11718 #if IS_ENABLED(CONFIG_HYPERV) 11719 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11720 kvm->arch.hv_root_tdp = INVALID_PAGE; 11721 #endif 11722 11723 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11724 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11725 11726 kvm_apicv_init(kvm); 11727 kvm_hv_init_vm(kvm); 11728 kvm_xen_init_vm(kvm); 11729 11730 return static_call(kvm_x86_vm_init)(kvm); 11731 11732 out_page_track: 11733 kvm_page_track_cleanup(kvm); 11734 out: 11735 return ret; 11736 } 11737 11738 int kvm_arch_post_init_vm(struct kvm *kvm) 11739 { 11740 return kvm_mmu_post_init_vm(kvm); 11741 } 11742 11743 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11744 { 11745 vcpu_load(vcpu); 11746 kvm_mmu_unload(vcpu); 11747 vcpu_put(vcpu); 11748 } 11749 11750 static void kvm_free_vcpus(struct kvm *kvm) 11751 { 11752 unsigned long i; 11753 struct kvm_vcpu *vcpu; 11754 11755 /* 11756 * Unpin any mmu pages first. 11757 */ 11758 kvm_for_each_vcpu(i, vcpu, kvm) { 11759 kvm_clear_async_pf_completion_queue(vcpu); 11760 kvm_unload_vcpu_mmu(vcpu); 11761 } 11762 11763 kvm_destroy_vcpus(kvm); 11764 } 11765 11766 void kvm_arch_sync_events(struct kvm *kvm) 11767 { 11768 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11769 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11770 kvm_free_pit(kvm); 11771 } 11772 11773 /** 11774 * __x86_set_memory_region: Setup KVM internal memory slot 11775 * 11776 * @kvm: the kvm pointer to the VM. 11777 * @id: the slot ID to setup. 11778 * @gpa: the GPA to install the slot (unused when @size == 0). 11779 * @size: the size of the slot. Set to zero to uninstall a slot. 11780 * 11781 * This function helps to setup a KVM internal memory slot. Specify 11782 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11783 * slot. The return code can be one of the following: 11784 * 11785 * HVA: on success (uninstall will return a bogus HVA) 11786 * -errno: on error 11787 * 11788 * The caller should always use IS_ERR() to check the return value 11789 * before use. Note, the KVM internal memory slots are guaranteed to 11790 * remain valid and unchanged until the VM is destroyed, i.e., the 11791 * GPA->HVA translation will not change. However, the HVA is a user 11792 * address, i.e. its accessibility is not guaranteed, and must be 11793 * accessed via __copy_{to,from}_user(). 11794 */ 11795 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11796 u32 size) 11797 { 11798 int i, r; 11799 unsigned long hva, old_npages; 11800 struct kvm_memslots *slots = kvm_memslots(kvm); 11801 struct kvm_memory_slot *slot; 11802 11803 /* Called with kvm->slots_lock held. */ 11804 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11805 return ERR_PTR_USR(-EINVAL); 11806 11807 slot = id_to_memslot(slots, id); 11808 if (size) { 11809 if (slot && slot->npages) 11810 return ERR_PTR_USR(-EEXIST); 11811 11812 /* 11813 * MAP_SHARED to prevent internal slot pages from being moved 11814 * by fork()/COW. 11815 */ 11816 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11817 MAP_SHARED | MAP_ANONYMOUS, 0); 11818 if (IS_ERR((void *)hva)) 11819 return (void __user *)hva; 11820 } else { 11821 if (!slot || !slot->npages) 11822 return NULL; 11823 11824 old_npages = slot->npages; 11825 hva = slot->userspace_addr; 11826 } 11827 11828 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11829 struct kvm_userspace_memory_region m; 11830 11831 m.slot = id | (i << 16); 11832 m.flags = 0; 11833 m.guest_phys_addr = gpa; 11834 m.userspace_addr = hva; 11835 m.memory_size = size; 11836 r = __kvm_set_memory_region(kvm, &m); 11837 if (r < 0) 11838 return ERR_PTR_USR(r); 11839 } 11840 11841 if (!size) 11842 vm_munmap(hva, old_npages * PAGE_SIZE); 11843 11844 return (void __user *)hva; 11845 } 11846 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11847 11848 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11849 { 11850 kvm_mmu_pre_destroy_vm(kvm); 11851 } 11852 11853 void kvm_arch_destroy_vm(struct kvm *kvm) 11854 { 11855 if (current->mm == kvm->mm) { 11856 /* 11857 * Free memory regions allocated on behalf of userspace, 11858 * unless the the memory map has changed due to process exit 11859 * or fd copying. 11860 */ 11861 mutex_lock(&kvm->slots_lock); 11862 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11863 0, 0); 11864 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11865 0, 0); 11866 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11867 mutex_unlock(&kvm->slots_lock); 11868 } 11869 static_call_cond(kvm_x86_vm_destroy)(kvm); 11870 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11871 kvm_pic_destroy(kvm); 11872 kvm_ioapic_destroy(kvm); 11873 kvm_free_vcpus(kvm); 11874 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11875 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11876 kvm_mmu_uninit_vm(kvm); 11877 kvm_page_track_cleanup(kvm); 11878 kvm_xen_destroy_vm(kvm); 11879 kvm_hv_destroy_vm(kvm); 11880 } 11881 11882 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11883 { 11884 int i; 11885 11886 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11887 kvfree(slot->arch.rmap[i]); 11888 slot->arch.rmap[i] = NULL; 11889 } 11890 } 11891 11892 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 11893 { 11894 int i; 11895 11896 memslot_rmap_free(slot); 11897 11898 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11899 kvfree(slot->arch.lpage_info[i - 1]); 11900 slot->arch.lpage_info[i - 1] = NULL; 11901 } 11902 11903 kvm_page_track_free_memslot(slot); 11904 } 11905 11906 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 11907 { 11908 const int sz = sizeof(*slot->arch.rmap[0]); 11909 int i; 11910 11911 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11912 int level = i + 1; 11913 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11914 11915 if (slot->arch.rmap[i]) 11916 continue; 11917 11918 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 11919 if (!slot->arch.rmap[i]) { 11920 memslot_rmap_free(slot); 11921 return -ENOMEM; 11922 } 11923 } 11924 11925 return 0; 11926 } 11927 11928 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 11929 struct kvm_memory_slot *slot) 11930 { 11931 unsigned long npages = slot->npages; 11932 int i, r; 11933 11934 /* 11935 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 11936 * old arrays will be freed by __kvm_set_memory_region() if installing 11937 * the new memslot is successful. 11938 */ 11939 memset(&slot->arch, 0, sizeof(slot->arch)); 11940 11941 if (kvm_memslots_have_rmaps(kvm)) { 11942 r = memslot_rmap_alloc(slot, npages); 11943 if (r) 11944 return r; 11945 } 11946 11947 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11948 struct kvm_lpage_info *linfo; 11949 unsigned long ugfn; 11950 int lpages; 11951 int level = i + 1; 11952 11953 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11954 11955 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 11956 if (!linfo) 11957 goto out_free; 11958 11959 slot->arch.lpage_info[i - 1] = linfo; 11960 11961 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 11962 linfo[0].disallow_lpage = 1; 11963 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 11964 linfo[lpages - 1].disallow_lpage = 1; 11965 ugfn = slot->userspace_addr >> PAGE_SHIFT; 11966 /* 11967 * If the gfn and userspace address are not aligned wrt each 11968 * other, disable large page support for this slot. 11969 */ 11970 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 11971 unsigned long j; 11972 11973 for (j = 0; j < lpages; ++j) 11974 linfo[j].disallow_lpage = 1; 11975 } 11976 } 11977 11978 if (kvm_page_track_create_memslot(kvm, slot, npages)) 11979 goto out_free; 11980 11981 return 0; 11982 11983 out_free: 11984 memslot_rmap_free(slot); 11985 11986 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11987 kvfree(slot->arch.lpage_info[i - 1]); 11988 slot->arch.lpage_info[i - 1] = NULL; 11989 } 11990 return -ENOMEM; 11991 } 11992 11993 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 11994 { 11995 struct kvm_vcpu *vcpu; 11996 unsigned long i; 11997 11998 /* 11999 * memslots->generation has been incremented. 12000 * mmio generation may have reached its maximum value. 12001 */ 12002 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12003 12004 /* Force re-initialization of steal_time cache */ 12005 kvm_for_each_vcpu(i, vcpu, kvm) 12006 kvm_vcpu_kick(vcpu); 12007 } 12008 12009 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12010 const struct kvm_memory_slot *old, 12011 struct kvm_memory_slot *new, 12012 enum kvm_mr_change change) 12013 { 12014 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12015 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12016 return -EINVAL; 12017 12018 return kvm_alloc_memslot_metadata(kvm, new); 12019 } 12020 12021 if (change == KVM_MR_FLAGS_ONLY) 12022 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12023 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12024 return -EIO; 12025 12026 return 0; 12027 } 12028 12029 12030 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12031 { 12032 struct kvm_arch *ka = &kvm->arch; 12033 12034 if (!kvm_x86_ops.cpu_dirty_log_size) 12035 return; 12036 12037 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12038 (!enable && --ka->cpu_dirty_logging_count == 0)) 12039 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12040 12041 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12042 } 12043 12044 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12045 struct kvm_memory_slot *old, 12046 const struct kvm_memory_slot *new, 12047 enum kvm_mr_change change) 12048 { 12049 u32 old_flags = old ? old->flags : 0; 12050 u32 new_flags = new ? new->flags : 0; 12051 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12052 12053 /* 12054 * Update CPU dirty logging if dirty logging is being toggled. This 12055 * applies to all operations. 12056 */ 12057 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12058 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12059 12060 /* 12061 * Nothing more to do for RO slots (which can't be dirtied and can't be 12062 * made writable) or CREATE/MOVE/DELETE of a slot. 12063 * 12064 * For a memslot with dirty logging disabled: 12065 * CREATE: No dirty mappings will already exist. 12066 * MOVE/DELETE: The old mappings will already have been cleaned up by 12067 * kvm_arch_flush_shadow_memslot() 12068 * 12069 * For a memslot with dirty logging enabled: 12070 * CREATE: No shadow pages exist, thus nothing to write-protect 12071 * and no dirty bits to clear. 12072 * MOVE/DELETE: The old mappings will already have been cleaned up by 12073 * kvm_arch_flush_shadow_memslot(). 12074 */ 12075 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12076 return; 12077 12078 /* 12079 * READONLY and non-flags changes were filtered out above, and the only 12080 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12081 * logging isn't being toggled on or off. 12082 */ 12083 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12084 return; 12085 12086 if (!log_dirty_pages) { 12087 /* 12088 * Dirty logging tracks sptes in 4k granularity, meaning that 12089 * large sptes have to be split. If live migration succeeds, 12090 * the guest in the source machine will be destroyed and large 12091 * sptes will be created in the destination. However, if the 12092 * guest continues to run in the source machine (for example if 12093 * live migration fails), small sptes will remain around and 12094 * cause bad performance. 12095 * 12096 * Scan sptes if dirty logging has been stopped, dropping those 12097 * which can be collapsed into a single large-page spte. Later 12098 * page faults will create the large-page sptes. 12099 */ 12100 kvm_mmu_zap_collapsible_sptes(kvm, new); 12101 } else { 12102 /* 12103 * Initially-all-set does not require write protecting any page, 12104 * because they're all assumed to be dirty. 12105 */ 12106 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12107 return; 12108 12109 if (READ_ONCE(eager_page_split)) 12110 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12111 12112 if (kvm_x86_ops.cpu_dirty_log_size) { 12113 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12114 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12115 } else { 12116 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12117 } 12118 } 12119 } 12120 12121 void kvm_arch_commit_memory_region(struct kvm *kvm, 12122 struct kvm_memory_slot *old, 12123 const struct kvm_memory_slot *new, 12124 enum kvm_mr_change change) 12125 { 12126 if (!kvm->arch.n_requested_mmu_pages && 12127 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12128 unsigned long nr_mmu_pages; 12129 12130 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12131 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12132 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12133 } 12134 12135 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12136 12137 /* Free the arrays associated with the old memslot. */ 12138 if (change == KVM_MR_MOVE) 12139 kvm_arch_free_memslot(kvm, old); 12140 } 12141 12142 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12143 { 12144 kvm_mmu_zap_all(kvm); 12145 } 12146 12147 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12148 struct kvm_memory_slot *slot) 12149 { 12150 kvm_page_track_flush_slot(kvm, slot); 12151 } 12152 12153 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12154 { 12155 return (is_guest_mode(vcpu) && 12156 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12157 } 12158 12159 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12160 { 12161 if (!list_empty_careful(&vcpu->async_pf.done)) 12162 return true; 12163 12164 if (kvm_apic_has_events(vcpu)) 12165 return true; 12166 12167 if (vcpu->arch.pv.pv_unhalted) 12168 return true; 12169 12170 if (vcpu->arch.exception.pending) 12171 return true; 12172 12173 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12174 (vcpu->arch.nmi_pending && 12175 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12176 return true; 12177 12178 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12179 (vcpu->arch.smi_pending && 12180 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12181 return true; 12182 12183 if (kvm_arch_interrupt_allowed(vcpu) && 12184 (kvm_cpu_has_interrupt(vcpu) || 12185 kvm_guest_apic_has_interrupt(vcpu))) 12186 return true; 12187 12188 if (kvm_hv_has_stimer_pending(vcpu)) 12189 return true; 12190 12191 if (is_guest_mode(vcpu) && 12192 kvm_x86_ops.nested_ops->hv_timer_pending && 12193 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12194 return true; 12195 12196 return false; 12197 } 12198 12199 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12200 { 12201 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12202 } 12203 12204 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12205 { 12206 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12207 return true; 12208 12209 return false; 12210 } 12211 12212 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12213 { 12214 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12215 return true; 12216 12217 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12218 kvm_test_request(KVM_REQ_SMI, vcpu) || 12219 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12220 return true; 12221 12222 return kvm_arch_dy_has_pending_interrupt(vcpu); 12223 } 12224 12225 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12226 { 12227 if (vcpu->arch.guest_state_protected) 12228 return true; 12229 12230 return vcpu->arch.preempted_in_kernel; 12231 } 12232 12233 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12234 { 12235 return kvm_rip_read(vcpu); 12236 } 12237 12238 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12239 { 12240 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12241 } 12242 12243 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12244 { 12245 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12246 } 12247 12248 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12249 { 12250 /* Can't read the RIP when guest state is protected, just return 0 */ 12251 if (vcpu->arch.guest_state_protected) 12252 return 0; 12253 12254 if (is_64_bit_mode(vcpu)) 12255 return kvm_rip_read(vcpu); 12256 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12257 kvm_rip_read(vcpu)); 12258 } 12259 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12260 12261 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12262 { 12263 return kvm_get_linear_rip(vcpu) == linear_rip; 12264 } 12265 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12266 12267 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12268 { 12269 unsigned long rflags; 12270 12271 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12273 rflags &= ~X86_EFLAGS_TF; 12274 return rflags; 12275 } 12276 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12277 12278 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12279 { 12280 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12281 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12282 rflags |= X86_EFLAGS_TF; 12283 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12284 } 12285 12286 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12287 { 12288 __kvm_set_rflags(vcpu, rflags); 12289 kvm_make_request(KVM_REQ_EVENT, vcpu); 12290 } 12291 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12292 12293 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 12294 { 12295 int r; 12296 12297 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 12298 work->wakeup_all) 12299 return; 12300 12301 r = kvm_mmu_reload(vcpu); 12302 if (unlikely(r)) 12303 return; 12304 12305 if (!vcpu->arch.mmu->direct_map && 12306 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 12307 return; 12308 12309 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 12310 } 12311 12312 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12313 { 12314 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12315 12316 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12317 } 12318 12319 static inline u32 kvm_async_pf_next_probe(u32 key) 12320 { 12321 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12322 } 12323 12324 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12325 { 12326 u32 key = kvm_async_pf_hash_fn(gfn); 12327 12328 while (vcpu->arch.apf.gfns[key] != ~0) 12329 key = kvm_async_pf_next_probe(key); 12330 12331 vcpu->arch.apf.gfns[key] = gfn; 12332 } 12333 12334 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12335 { 12336 int i; 12337 u32 key = kvm_async_pf_hash_fn(gfn); 12338 12339 for (i = 0; i < ASYNC_PF_PER_VCPU && 12340 (vcpu->arch.apf.gfns[key] != gfn && 12341 vcpu->arch.apf.gfns[key] != ~0); i++) 12342 key = kvm_async_pf_next_probe(key); 12343 12344 return key; 12345 } 12346 12347 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12348 { 12349 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12350 } 12351 12352 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12353 { 12354 u32 i, j, k; 12355 12356 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12357 12358 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12359 return; 12360 12361 while (true) { 12362 vcpu->arch.apf.gfns[i] = ~0; 12363 do { 12364 j = kvm_async_pf_next_probe(j); 12365 if (vcpu->arch.apf.gfns[j] == ~0) 12366 return; 12367 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12368 /* 12369 * k lies cyclically in ]i,j] 12370 * | i.k.j | 12371 * |....j i.k.| or |.k..j i...| 12372 */ 12373 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12374 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12375 i = j; 12376 } 12377 } 12378 12379 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12380 { 12381 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12382 12383 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12384 sizeof(reason)); 12385 } 12386 12387 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12388 { 12389 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12390 12391 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12392 &token, offset, sizeof(token)); 12393 } 12394 12395 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12396 { 12397 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12398 u32 val; 12399 12400 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12401 &val, offset, sizeof(val))) 12402 return false; 12403 12404 return !val; 12405 } 12406 12407 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12408 { 12409 12410 if (!kvm_pv_async_pf_enabled(vcpu)) 12411 return false; 12412 12413 if (vcpu->arch.apf.send_user_only && 12414 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12415 return false; 12416 12417 if (is_guest_mode(vcpu)) { 12418 /* 12419 * L1 needs to opt into the special #PF vmexits that are 12420 * used to deliver async page faults. 12421 */ 12422 return vcpu->arch.apf.delivery_as_pf_vmexit; 12423 } else { 12424 /* 12425 * Play it safe in case the guest temporarily disables paging. 12426 * The real mode IDT in particular is unlikely to have a #PF 12427 * exception setup. 12428 */ 12429 return is_paging(vcpu); 12430 } 12431 } 12432 12433 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12434 { 12435 if (unlikely(!lapic_in_kernel(vcpu) || 12436 kvm_event_needs_reinjection(vcpu) || 12437 vcpu->arch.exception.pending)) 12438 return false; 12439 12440 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12441 return false; 12442 12443 /* 12444 * If interrupts are off we cannot even use an artificial 12445 * halt state. 12446 */ 12447 return kvm_arch_interrupt_allowed(vcpu); 12448 } 12449 12450 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12451 struct kvm_async_pf *work) 12452 { 12453 struct x86_exception fault; 12454 12455 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12456 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12457 12458 if (kvm_can_deliver_async_pf(vcpu) && 12459 !apf_put_user_notpresent(vcpu)) { 12460 fault.vector = PF_VECTOR; 12461 fault.error_code_valid = true; 12462 fault.error_code = 0; 12463 fault.nested_page_fault = false; 12464 fault.address = work->arch.token; 12465 fault.async_page_fault = true; 12466 kvm_inject_page_fault(vcpu, &fault); 12467 return true; 12468 } else { 12469 /* 12470 * It is not possible to deliver a paravirtualized asynchronous 12471 * page fault, but putting the guest in an artificial halt state 12472 * can be beneficial nevertheless: if an interrupt arrives, we 12473 * can deliver it timely and perhaps the guest will schedule 12474 * another process. When the instruction that triggered a page 12475 * fault is retried, hopefully the page will be ready in the host. 12476 */ 12477 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12478 return false; 12479 } 12480 } 12481 12482 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12483 struct kvm_async_pf *work) 12484 { 12485 struct kvm_lapic_irq irq = { 12486 .delivery_mode = APIC_DM_FIXED, 12487 .vector = vcpu->arch.apf.vec 12488 }; 12489 12490 if (work->wakeup_all) 12491 work->arch.token = ~0; /* broadcast wakeup */ 12492 else 12493 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12494 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12495 12496 if ((work->wakeup_all || work->notpresent_injected) && 12497 kvm_pv_async_pf_enabled(vcpu) && 12498 !apf_put_user_ready(vcpu, work->arch.token)) { 12499 vcpu->arch.apf.pageready_pending = true; 12500 kvm_apic_set_irq(vcpu, &irq, NULL); 12501 } 12502 12503 vcpu->arch.apf.halted = false; 12504 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12505 } 12506 12507 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12508 { 12509 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12510 if (!vcpu->arch.apf.pageready_pending) 12511 kvm_vcpu_kick(vcpu); 12512 } 12513 12514 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12515 { 12516 if (!kvm_pv_async_pf_enabled(vcpu)) 12517 return true; 12518 else 12519 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12520 } 12521 12522 void kvm_arch_start_assignment(struct kvm *kvm) 12523 { 12524 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12525 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12526 } 12527 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12528 12529 void kvm_arch_end_assignment(struct kvm *kvm) 12530 { 12531 atomic_dec(&kvm->arch.assigned_device_count); 12532 } 12533 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12534 12535 bool kvm_arch_has_assigned_device(struct kvm *kvm) 12536 { 12537 return atomic_read(&kvm->arch.assigned_device_count); 12538 } 12539 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12540 12541 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12542 { 12543 atomic_inc(&kvm->arch.noncoherent_dma_count); 12544 } 12545 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12546 12547 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12548 { 12549 atomic_dec(&kvm->arch.noncoherent_dma_count); 12550 } 12551 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12552 12553 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12554 { 12555 return atomic_read(&kvm->arch.noncoherent_dma_count); 12556 } 12557 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12558 12559 bool kvm_arch_has_irq_bypass(void) 12560 { 12561 return true; 12562 } 12563 12564 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12565 struct irq_bypass_producer *prod) 12566 { 12567 struct kvm_kernel_irqfd *irqfd = 12568 container_of(cons, struct kvm_kernel_irqfd, consumer); 12569 int ret; 12570 12571 irqfd->producer = prod; 12572 kvm_arch_start_assignment(irqfd->kvm); 12573 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12574 prod->irq, irqfd->gsi, 1); 12575 12576 if (ret) 12577 kvm_arch_end_assignment(irqfd->kvm); 12578 12579 return ret; 12580 } 12581 12582 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12583 struct irq_bypass_producer *prod) 12584 { 12585 int ret; 12586 struct kvm_kernel_irqfd *irqfd = 12587 container_of(cons, struct kvm_kernel_irqfd, consumer); 12588 12589 WARN_ON(irqfd->producer != prod); 12590 irqfd->producer = NULL; 12591 12592 /* 12593 * When producer of consumer is unregistered, we change back to 12594 * remapped mode, so we can re-use the current implementation 12595 * when the irq is masked/disabled or the consumer side (KVM 12596 * int this case doesn't want to receive the interrupts. 12597 */ 12598 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12599 if (ret) 12600 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12601 " fails: %d\n", irqfd->consumer.token, ret); 12602 12603 kvm_arch_end_assignment(irqfd->kvm); 12604 } 12605 12606 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12607 uint32_t guest_irq, bool set) 12608 { 12609 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 12610 } 12611 12612 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12613 struct kvm_kernel_irq_routing_entry *new) 12614 { 12615 if (new->type != KVM_IRQ_ROUTING_MSI) 12616 return true; 12617 12618 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12619 } 12620 12621 bool kvm_vector_hashing_enabled(void) 12622 { 12623 return vector_hashing; 12624 } 12625 12626 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12627 { 12628 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12629 } 12630 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12631 12632 12633 int kvm_spec_ctrl_test_value(u64 value) 12634 { 12635 /* 12636 * test that setting IA32_SPEC_CTRL to given value 12637 * is allowed by the host processor 12638 */ 12639 12640 u64 saved_value; 12641 unsigned long flags; 12642 int ret = 0; 12643 12644 local_irq_save(flags); 12645 12646 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12647 ret = 1; 12648 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12649 ret = 1; 12650 else 12651 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12652 12653 local_irq_restore(flags); 12654 12655 return ret; 12656 } 12657 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12658 12659 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12660 { 12661 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12662 struct x86_exception fault; 12663 u64 access = error_code & 12664 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12665 12666 if (!(error_code & PFERR_PRESENT_MASK) || 12667 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12668 /* 12669 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12670 * tables probably do not match the TLB. Just proceed 12671 * with the error code that the processor gave. 12672 */ 12673 fault.vector = PF_VECTOR; 12674 fault.error_code_valid = true; 12675 fault.error_code = error_code; 12676 fault.nested_page_fault = false; 12677 fault.address = gva; 12678 } 12679 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12680 } 12681 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12682 12683 /* 12684 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12685 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12686 * indicates whether exit to userspace is needed. 12687 */ 12688 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12689 struct x86_exception *e) 12690 { 12691 if (r == X86EMUL_PROPAGATE_FAULT) { 12692 kvm_inject_emulated_page_fault(vcpu, e); 12693 return 1; 12694 } 12695 12696 /* 12697 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12698 * while handling a VMX instruction KVM could've handled the request 12699 * correctly by exiting to userspace and performing I/O but there 12700 * doesn't seem to be a real use-case behind such requests, just return 12701 * KVM_EXIT_INTERNAL_ERROR for now. 12702 */ 12703 kvm_prepare_emulation_failure_exit(vcpu); 12704 12705 return 0; 12706 } 12707 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12708 12709 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12710 { 12711 bool pcid_enabled; 12712 struct x86_exception e; 12713 struct { 12714 u64 pcid; 12715 u64 gla; 12716 } operand; 12717 int r; 12718 12719 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12720 if (r != X86EMUL_CONTINUE) 12721 return kvm_handle_memory_failure(vcpu, r, &e); 12722 12723 if (operand.pcid >> 12 != 0) { 12724 kvm_inject_gp(vcpu, 0); 12725 return 1; 12726 } 12727 12728 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12729 12730 switch (type) { 12731 case INVPCID_TYPE_INDIV_ADDR: 12732 if ((!pcid_enabled && (operand.pcid != 0)) || 12733 is_noncanonical_address(operand.gla, vcpu)) { 12734 kvm_inject_gp(vcpu, 0); 12735 return 1; 12736 } 12737 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12738 return kvm_skip_emulated_instruction(vcpu); 12739 12740 case INVPCID_TYPE_SINGLE_CTXT: 12741 if (!pcid_enabled && (operand.pcid != 0)) { 12742 kvm_inject_gp(vcpu, 0); 12743 return 1; 12744 } 12745 12746 kvm_invalidate_pcid(vcpu, operand.pcid); 12747 return kvm_skip_emulated_instruction(vcpu); 12748 12749 case INVPCID_TYPE_ALL_NON_GLOBAL: 12750 /* 12751 * Currently, KVM doesn't mark global entries in the shadow 12752 * page tables, so a non-global flush just degenerates to a 12753 * global flush. If needed, we could optimize this later by 12754 * keeping track of global entries in shadow page tables. 12755 */ 12756 12757 fallthrough; 12758 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12759 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12760 return kvm_skip_emulated_instruction(vcpu); 12761 12762 default: 12763 kvm_inject_gp(vcpu, 0); 12764 return 1; 12765 } 12766 } 12767 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12768 12769 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12770 { 12771 struct kvm_run *run = vcpu->run; 12772 struct kvm_mmio_fragment *frag; 12773 unsigned int len; 12774 12775 BUG_ON(!vcpu->mmio_needed); 12776 12777 /* Complete previous fragment */ 12778 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12779 len = min(8u, frag->len); 12780 if (!vcpu->mmio_is_write) 12781 memcpy(frag->data, run->mmio.data, len); 12782 12783 if (frag->len <= 8) { 12784 /* Switch to the next fragment. */ 12785 frag++; 12786 vcpu->mmio_cur_fragment++; 12787 } else { 12788 /* Go forward to the next mmio piece. */ 12789 frag->data += len; 12790 frag->gpa += len; 12791 frag->len -= len; 12792 } 12793 12794 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12795 vcpu->mmio_needed = 0; 12796 12797 // VMG change, at this point, we're always done 12798 // RIP has already been advanced 12799 return 1; 12800 } 12801 12802 // More MMIO is needed 12803 run->mmio.phys_addr = frag->gpa; 12804 run->mmio.len = min(8u, frag->len); 12805 run->mmio.is_write = vcpu->mmio_is_write; 12806 if (run->mmio.is_write) 12807 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12808 run->exit_reason = KVM_EXIT_MMIO; 12809 12810 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12811 12812 return 0; 12813 } 12814 12815 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12816 void *data) 12817 { 12818 int handled; 12819 struct kvm_mmio_fragment *frag; 12820 12821 if (!data) 12822 return -EINVAL; 12823 12824 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12825 if (handled == bytes) 12826 return 1; 12827 12828 bytes -= handled; 12829 gpa += handled; 12830 data += handled; 12831 12832 /*TODO: Check if need to increment number of frags */ 12833 frag = vcpu->mmio_fragments; 12834 vcpu->mmio_nr_fragments = 1; 12835 frag->len = bytes; 12836 frag->gpa = gpa; 12837 frag->data = data; 12838 12839 vcpu->mmio_needed = 1; 12840 vcpu->mmio_cur_fragment = 0; 12841 12842 vcpu->run->mmio.phys_addr = gpa; 12843 vcpu->run->mmio.len = min(8u, frag->len); 12844 vcpu->run->mmio.is_write = 1; 12845 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12846 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12847 12848 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12849 12850 return 0; 12851 } 12852 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12853 12854 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12855 void *data) 12856 { 12857 int handled; 12858 struct kvm_mmio_fragment *frag; 12859 12860 if (!data) 12861 return -EINVAL; 12862 12863 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12864 if (handled == bytes) 12865 return 1; 12866 12867 bytes -= handled; 12868 gpa += handled; 12869 data += handled; 12870 12871 /*TODO: Check if need to increment number of frags */ 12872 frag = vcpu->mmio_fragments; 12873 vcpu->mmio_nr_fragments = 1; 12874 frag->len = bytes; 12875 frag->gpa = gpa; 12876 frag->data = data; 12877 12878 vcpu->mmio_needed = 1; 12879 vcpu->mmio_cur_fragment = 0; 12880 12881 vcpu->run->mmio.phys_addr = gpa; 12882 vcpu->run->mmio.len = min(8u, frag->len); 12883 vcpu->run->mmio.is_write = 0; 12884 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12885 12886 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12887 12888 return 0; 12889 } 12890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12891 12892 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12893 unsigned int port); 12894 12895 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 12896 { 12897 int size = vcpu->arch.pio.size; 12898 int port = vcpu->arch.pio.port; 12899 12900 vcpu->arch.pio.count = 0; 12901 if (vcpu->arch.sev_pio_count) 12902 return kvm_sev_es_outs(vcpu, size, port); 12903 return 1; 12904 } 12905 12906 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12907 unsigned int port) 12908 { 12909 for (;;) { 12910 unsigned int count = 12911 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12912 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 12913 12914 /* memcpy done already by emulator_pio_out. */ 12915 vcpu->arch.sev_pio_count -= count; 12916 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12917 if (!ret) 12918 break; 12919 12920 /* Emulation done by the kernel. */ 12921 if (!vcpu->arch.sev_pio_count) 12922 return 1; 12923 } 12924 12925 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 12926 return 0; 12927 } 12928 12929 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12930 unsigned int port); 12931 12932 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12933 { 12934 unsigned count = vcpu->arch.pio.count; 12935 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 12936 vcpu->arch.sev_pio_count -= count; 12937 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12938 } 12939 12940 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12941 { 12942 int size = vcpu->arch.pio.size; 12943 int port = vcpu->arch.pio.port; 12944 12945 advance_sev_es_emulated_ins(vcpu); 12946 if (vcpu->arch.sev_pio_count) 12947 return kvm_sev_es_ins(vcpu, size, port); 12948 return 1; 12949 } 12950 12951 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12952 unsigned int port) 12953 { 12954 for (;;) { 12955 unsigned int count = 12956 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12957 if (!__emulator_pio_in(vcpu, size, port, count)) 12958 break; 12959 12960 /* Emulation done by the kernel. */ 12961 advance_sev_es_emulated_ins(vcpu); 12962 if (!vcpu->arch.sev_pio_count) 12963 return 1; 12964 } 12965 12966 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 12967 return 0; 12968 } 12969 12970 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 12971 unsigned int port, void *data, unsigned int count, 12972 int in) 12973 { 12974 vcpu->arch.sev_pio_data = data; 12975 vcpu->arch.sev_pio_count = count; 12976 return in ? kvm_sev_es_ins(vcpu, size, port) 12977 : kvm_sev_es_outs(vcpu, size, port); 12978 } 12979 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 12980 12981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 12982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 12983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 12984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 12985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 12986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 12987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 12988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 12989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 12990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 12991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 12992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 12993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 12994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 12995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 12996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 12997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 12998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 12999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13008 13009 static int __init kvm_x86_init(void) 13010 { 13011 kvm_mmu_x86_module_init(); 13012 return 0; 13013 } 13014 module_init(kvm_x86_init); 13015 13016 static void __exit kvm_x86_exit(void) 13017 { 13018 /* 13019 * If module_init() is implemented, module_exit() must also be 13020 * implemented to allow module unload. 13021 */ 13022 } 13023 module_exit(kvm_x86_exit); 13024