xref: /openbmc/linux/arch/x86/kvm/x86.c (revision bf3608f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define emul_to_vcpu(ctxt) \
94 	((struct kvm_vcpu *)(ctxt)->vcpu)
95 
96 /* EFER defaults:
97  * - enable syscall per default because its emulated by KVM
98  * - enable LME and LMA per default on 64 bit KVM
99  */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106 
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108 
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110 
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113 
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
122 
123 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
125 
126 struct kvm_x86_ops kvm_x86_ops __read_mostly;
127 EXPORT_SYMBOL_GPL(kvm_x86_ops);
128 
129 #define KVM_X86_OP(func)					     \
130 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
131 				*(((struct kvm_x86_ops *)0)->func));
132 #define KVM_X86_OP_NULL KVM_X86_OP
133 #include <asm/kvm-x86-ops.h>
134 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
136 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
137 
138 static bool __read_mostly ignore_msrs = 0;
139 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
140 
141 bool __read_mostly report_ignored_msrs = true;
142 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
143 EXPORT_SYMBOL_GPL(report_ignored_msrs);
144 
145 unsigned int min_timer_period_us = 200;
146 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
147 
148 static bool __read_mostly kvmclock_periodic_sync = true;
149 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
150 
151 bool __read_mostly kvm_has_tsc_control;
152 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
153 u32  __read_mostly kvm_max_guest_tsc_khz;
154 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
155 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
156 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
157 u64  __read_mostly kvm_max_tsc_scaling_ratio;
158 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
159 u64 __read_mostly kvm_default_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
161 bool __read_mostly kvm_has_bus_lock_exit;
162 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
163 
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
167 
168 /*
169  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
170  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
171  * advancement entirely.  Any other value is used as-is and disables adaptive
172  * tuning, i.e. allows privileged userspace to set an exact advancement time.
173  */
174 static int __read_mostly lapic_timer_advance_ns = -1;
175 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
176 
177 static bool __read_mostly vector_hashing = true;
178 module_param(vector_hashing, bool, S_IRUGO);
179 
180 bool __read_mostly enable_vmware_backdoor = false;
181 module_param(enable_vmware_backdoor, bool, S_IRUGO);
182 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
183 
184 static bool __read_mostly force_emulation_prefix = false;
185 module_param(force_emulation_prefix, bool, S_IRUGO);
186 
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189 
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194 
195 /*
196  * Restoring the host value for MSRs that are only consumed when running in
197  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
198  * returns to userspace, i.e. the kernel can run with the guest's value.
199  */
200 #define KVM_MAX_NR_USER_RETURN_MSRS 16
201 
202 struct kvm_user_return_msrs {
203 	struct user_return_notifier urn;
204 	bool registered;
205 	struct kvm_user_return_msr_values {
206 		u64 host;
207 		u64 curr;
208 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
209 };
210 
211 u32 __read_mostly kvm_nr_uret_msrs;
212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
214 static struct kvm_user_return_msrs __percpu *user_return_msrs;
215 
216 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
217 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
218 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
219 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
220 
221 u64 __read_mostly host_efer;
222 EXPORT_SYMBOL_GPL(host_efer);
223 
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226 
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229 
230 u64 __read_mostly host_xss;
231 EXPORT_SYMBOL_GPL(host_xss);
232 u64 __read_mostly supported_xss;
233 EXPORT_SYMBOL_GPL(supported_xss);
234 
235 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
236 	KVM_GENERIC_VM_STATS(),
237 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
238 	STATS_DESC_COUNTER(VM, mmu_pte_write),
239 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
240 	STATS_DESC_COUNTER(VM, mmu_flooded),
241 	STATS_DESC_COUNTER(VM, mmu_recycled),
242 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
243 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
244 	STATS_DESC_ICOUNTER(VM, pages_4k),
245 	STATS_DESC_ICOUNTER(VM, pages_2m),
246 	STATS_DESC_ICOUNTER(VM, pages_1g),
247 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
248 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
249 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
250 };
251 
252 const struct kvm_stats_header kvm_vm_stats_header = {
253 	.name_size = KVM_STATS_NAME_SIZE,
254 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
255 	.id_offset = sizeof(struct kvm_stats_header),
256 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
257 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
258 		       sizeof(kvm_vm_stats_desc),
259 };
260 
261 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
262 	KVM_GENERIC_VCPU_STATS(),
263 	STATS_DESC_COUNTER(VCPU, pf_fixed),
264 	STATS_DESC_COUNTER(VCPU, pf_guest),
265 	STATS_DESC_COUNTER(VCPU, tlb_flush),
266 	STATS_DESC_COUNTER(VCPU, invlpg),
267 	STATS_DESC_COUNTER(VCPU, exits),
268 	STATS_DESC_COUNTER(VCPU, io_exits),
269 	STATS_DESC_COUNTER(VCPU, mmio_exits),
270 	STATS_DESC_COUNTER(VCPU, signal_exits),
271 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 	STATS_DESC_COUNTER(VCPU, l1d_flush),
274 	STATS_DESC_COUNTER(VCPU, halt_exits),
275 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 	STATS_DESC_COUNTER(VCPU, irq_exits),
277 	STATS_DESC_COUNTER(VCPU, host_state_reload),
278 	STATS_DESC_COUNTER(VCPU, fpu_reload),
279 	STATS_DESC_COUNTER(VCPU, insn_emulation),
280 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 	STATS_DESC_COUNTER(VCPU, hypercalls),
282 	STATS_DESC_COUNTER(VCPU, irq_injections),
283 	STATS_DESC_COUNTER(VCPU, nmi_injections),
284 	STATS_DESC_COUNTER(VCPU, req_event),
285 	STATS_DESC_COUNTER(VCPU, nested_run),
286 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
289 };
290 
291 const struct kvm_stats_header kvm_vcpu_stats_header = {
292 	.name_size = KVM_STATS_NAME_SIZE,
293 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
294 	.id_offset = sizeof(struct kvm_stats_header),
295 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
296 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
297 		       sizeof(kvm_vcpu_stats_desc),
298 };
299 
300 u64 __read_mostly host_xcr0;
301 u64 __read_mostly supported_xcr0;
302 EXPORT_SYMBOL_GPL(supported_xcr0);
303 
304 static struct kmem_cache *x86_emulator_cache;
305 
306 /*
307  * When called, it means the previous get/set msr reached an invalid msr.
308  * Return true if we want to ignore/silent this failed msr access.
309  */
310 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
311 {
312 	const char *op = write ? "wrmsr" : "rdmsr";
313 
314 	if (ignore_msrs) {
315 		if (report_ignored_msrs)
316 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
317 				      op, msr, data);
318 		/* Mask the error */
319 		return true;
320 	} else {
321 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		return false;
324 	}
325 }
326 
327 static struct kmem_cache *kvm_alloc_emulator_cache(void)
328 {
329 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
330 	unsigned int size = sizeof(struct x86_emulate_ctxt);
331 
332 	return kmem_cache_create_usercopy("x86_emulator", size,
333 					  __alignof__(struct x86_emulate_ctxt),
334 					  SLAB_ACCOUNT, useroffset,
335 					  size - useroffset, NULL);
336 }
337 
338 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
339 
340 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
341 {
342 	int i;
343 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
344 		vcpu->arch.apf.gfns[i] = ~0;
345 }
346 
347 static void kvm_on_user_return(struct user_return_notifier *urn)
348 {
349 	unsigned slot;
350 	struct kvm_user_return_msrs *msrs
351 		= container_of(urn, struct kvm_user_return_msrs, urn);
352 	struct kvm_user_return_msr_values *values;
353 	unsigned long flags;
354 
355 	/*
356 	 * Disabling irqs at this point since the following code could be
357 	 * interrupted and executed through kvm_arch_hardware_disable()
358 	 */
359 	local_irq_save(flags);
360 	if (msrs->registered) {
361 		msrs->registered = false;
362 		user_return_notifier_unregister(urn);
363 	}
364 	local_irq_restore(flags);
365 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
366 		values = &msrs->values[slot];
367 		if (values->host != values->curr) {
368 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
369 			values->curr = values->host;
370 		}
371 	}
372 }
373 
374 static int kvm_probe_user_return_msr(u32 msr)
375 {
376 	u64 val;
377 	int ret;
378 
379 	preempt_disable();
380 	ret = rdmsrl_safe(msr, &val);
381 	if (ret)
382 		goto out;
383 	ret = wrmsrl_safe(msr, val);
384 out:
385 	preempt_enable();
386 	return ret;
387 }
388 
389 int kvm_add_user_return_msr(u32 msr)
390 {
391 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
392 
393 	if (kvm_probe_user_return_msr(msr))
394 		return -1;
395 
396 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
397 	return kvm_nr_uret_msrs++;
398 }
399 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
400 
401 int kvm_find_user_return_msr(u32 msr)
402 {
403 	int i;
404 
405 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
406 		if (kvm_uret_msrs_list[i] == msr)
407 			return i;
408 	}
409 	return -1;
410 }
411 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
412 
413 static void kvm_user_return_msr_cpu_online(void)
414 {
415 	unsigned int cpu = smp_processor_id();
416 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
417 	u64 value;
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
422 		msrs->values[i].host = value;
423 		msrs->values[i].curr = value;
424 	}
425 }
426 
427 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
428 {
429 	unsigned int cpu = smp_processor_id();
430 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 	int err;
432 
433 	value = (value & mask) | (msrs->values[slot].host & ~mask);
434 	if (value == msrs->values[slot].curr)
435 		return 0;
436 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
437 	if (err)
438 		return 1;
439 
440 	msrs->values[slot].curr = value;
441 	if (!msrs->registered) {
442 		msrs->urn.on_user_return = kvm_on_user_return;
443 		user_return_notifier_register(&msrs->urn);
444 		msrs->registered = true;
445 	}
446 	return 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
449 
450 static void drop_user_return_notifiers(void)
451 {
452 	unsigned int cpu = smp_processor_id();
453 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
454 
455 	if (msrs->registered)
456 		kvm_on_user_return(&msrs->urn);
457 }
458 
459 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
460 {
461 	return vcpu->arch.apic_base;
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
464 
465 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
466 {
467 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
470 
471 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
472 {
473 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
474 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
475 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
476 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
477 
478 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
479 		return 1;
480 	if (!msr_info->host_initiated) {
481 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
482 			return 1;
483 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
484 			return 1;
485 	}
486 
487 	kvm_lapic_set_base(vcpu, msr_info->data);
488 	kvm_recalculate_apic_map(vcpu->kvm);
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
492 
493 /*
494  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
495  *
496  * Hardware virtualization extension instructions may fault if a reboot turns
497  * off virtualization while processes are running.  Usually after catching the
498  * fault we just panic; during reboot instead the instruction is ignored.
499  */
500 noinstr void kvm_spurious_fault(void)
501 {
502 	/* Fault while not rebooting.  We want the trace. */
503 	BUG_ON(!kvm_rebooting);
504 }
505 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
506 
507 #define EXCPT_BENIGN		0
508 #define EXCPT_CONTRIBUTORY	1
509 #define EXCPT_PF		2
510 
511 static int exception_class(int vector)
512 {
513 	switch (vector) {
514 	case PF_VECTOR:
515 		return EXCPT_PF;
516 	case DE_VECTOR:
517 	case TS_VECTOR:
518 	case NP_VECTOR:
519 	case SS_VECTOR:
520 	case GP_VECTOR:
521 		return EXCPT_CONTRIBUTORY;
522 	default:
523 		break;
524 	}
525 	return EXCPT_BENIGN;
526 }
527 
528 #define EXCPT_FAULT		0
529 #define EXCPT_TRAP		1
530 #define EXCPT_ABORT		2
531 #define EXCPT_INTERRUPT		3
532 
533 static int exception_type(int vector)
534 {
535 	unsigned int mask;
536 
537 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
538 		return EXCPT_INTERRUPT;
539 
540 	mask = 1 << vector;
541 
542 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
543 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
544 		return EXCPT_TRAP;
545 
546 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
547 		return EXCPT_ABORT;
548 
549 	/* Reserved exceptions will result in fault */
550 	return EXCPT_FAULT;
551 }
552 
553 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
554 {
555 	unsigned nr = vcpu->arch.exception.nr;
556 	bool has_payload = vcpu->arch.exception.has_payload;
557 	unsigned long payload = vcpu->arch.exception.payload;
558 
559 	if (!has_payload)
560 		return;
561 
562 	switch (nr) {
563 	case DB_VECTOR:
564 		/*
565 		 * "Certain debug exceptions may clear bit 0-3.  The
566 		 * remaining contents of the DR6 register are never
567 		 * cleared by the processor".
568 		 */
569 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
570 		/*
571 		 * In order to reflect the #DB exception payload in guest
572 		 * dr6, three components need to be considered: active low
573 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
574 		 * DR6_BS and DR6_BT)
575 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
576 		 * In the target guest dr6:
577 		 * FIXED_1 bits should always be set.
578 		 * Active low bits should be cleared if 1-setting in payload.
579 		 * Active high bits should be set if 1-setting in payload.
580 		 *
581 		 * Note, the payload is compatible with the pending debug
582 		 * exceptions/exit qualification under VMX, that active_low bits
583 		 * are active high in payload.
584 		 * So they need to be flipped for DR6.
585 		 */
586 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
587 		vcpu->arch.dr6 |= payload;
588 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
589 
590 		/*
591 		 * The #DB payload is defined as compatible with the 'pending
592 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
593 		 * defined in the 'pending debug exceptions' field (enabled
594 		 * breakpoint), it is reserved and must be zero in DR6.
595 		 */
596 		vcpu->arch.dr6 &= ~BIT(12);
597 		break;
598 	case PF_VECTOR:
599 		vcpu->arch.cr2 = payload;
600 		break;
601 	}
602 
603 	vcpu->arch.exception.has_payload = false;
604 	vcpu->arch.exception.payload = 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
607 
608 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
609 		unsigned nr, bool has_error, u32 error_code,
610 	        bool has_payload, unsigned long payload, bool reinject)
611 {
612 	u32 prev_nr;
613 	int class1, class2;
614 
615 	kvm_make_request(KVM_REQ_EVENT, vcpu);
616 
617 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
618 	queue:
619 		if (reinject) {
620 			/*
621 			 * On vmentry, vcpu->arch.exception.pending is only
622 			 * true if an event injection was blocked by
623 			 * nested_run_pending.  In that case, however,
624 			 * vcpu_enter_guest requests an immediate exit,
625 			 * and the guest shouldn't proceed far enough to
626 			 * need reinjection.
627 			 */
628 			WARN_ON_ONCE(vcpu->arch.exception.pending);
629 			vcpu->arch.exception.injected = true;
630 			if (WARN_ON_ONCE(has_payload)) {
631 				/*
632 				 * A reinjected event has already
633 				 * delivered its payload.
634 				 */
635 				has_payload = false;
636 				payload = 0;
637 			}
638 		} else {
639 			vcpu->arch.exception.pending = true;
640 			vcpu->arch.exception.injected = false;
641 		}
642 		vcpu->arch.exception.has_error_code = has_error;
643 		vcpu->arch.exception.nr = nr;
644 		vcpu->arch.exception.error_code = error_code;
645 		vcpu->arch.exception.has_payload = has_payload;
646 		vcpu->arch.exception.payload = payload;
647 		if (!is_guest_mode(vcpu))
648 			kvm_deliver_exception_payload(vcpu);
649 		return;
650 	}
651 
652 	/* to check exception */
653 	prev_nr = vcpu->arch.exception.nr;
654 	if (prev_nr == DF_VECTOR) {
655 		/* triple fault -> shutdown */
656 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
657 		return;
658 	}
659 	class1 = exception_class(prev_nr);
660 	class2 = exception_class(nr);
661 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
662 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
663 		/*
664 		 * Generate double fault per SDM Table 5-5.  Set
665 		 * exception.pending = true so that the double fault
666 		 * can trigger a nested vmexit.
667 		 */
668 		vcpu->arch.exception.pending = true;
669 		vcpu->arch.exception.injected = false;
670 		vcpu->arch.exception.has_error_code = true;
671 		vcpu->arch.exception.nr = DF_VECTOR;
672 		vcpu->arch.exception.error_code = 0;
673 		vcpu->arch.exception.has_payload = false;
674 		vcpu->arch.exception.payload = 0;
675 	} else
676 		/* replace previous exception with a new one in a hope
677 		   that instruction re-execution will regenerate lost
678 		   exception */
679 		goto queue;
680 }
681 
682 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
685 }
686 EXPORT_SYMBOL_GPL(kvm_queue_exception);
687 
688 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
691 }
692 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
693 
694 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
695 			   unsigned long payload)
696 {
697 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
700 
701 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
702 				    u32 error_code, unsigned long payload)
703 {
704 	kvm_multiple_exception(vcpu, nr, true, error_code,
705 			       true, payload, false);
706 }
707 
708 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
709 {
710 	if (err)
711 		kvm_inject_gp(vcpu, 0);
712 	else
713 		return kvm_skip_emulated_instruction(vcpu);
714 
715 	return 1;
716 }
717 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
718 
719 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
720 {
721 	if (err) {
722 		kvm_inject_gp(vcpu, 0);
723 		return 1;
724 	}
725 
726 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
727 				       EMULTYPE_COMPLETE_USER_EXIT);
728 }
729 
730 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
731 {
732 	++vcpu->stat.pf_guest;
733 	vcpu->arch.exception.nested_apf =
734 		is_guest_mode(vcpu) && fault->async_page_fault;
735 	if (vcpu->arch.exception.nested_apf) {
736 		vcpu->arch.apf.nested_apf_token = fault->address;
737 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
738 	} else {
739 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
740 					fault->address);
741 	}
742 }
743 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
744 
745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
746 				    struct x86_exception *fault)
747 {
748 	struct kvm_mmu *fault_mmu;
749 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
750 
751 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
752 					       vcpu->arch.walk_mmu;
753 
754 	/*
755 	 * Invalidate the TLB entry for the faulting address, if it exists,
756 	 * else the access will fault indefinitely (and to emulate hardware).
757 	 */
758 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
759 	    !(fault->error_code & PFERR_RSVD_MASK))
760 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
761 				       fault_mmu->root_hpa);
762 
763 	fault_mmu->inject_page_fault(vcpu, fault);
764 	return fault->nested_page_fault;
765 }
766 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
767 
768 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
769 {
770 	atomic_inc(&vcpu->arch.nmi_queued);
771 	kvm_make_request(KVM_REQ_NMI, vcpu);
772 }
773 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
774 
775 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
776 {
777 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
778 }
779 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
780 
781 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
784 }
785 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
786 
787 /*
788  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
789  * a #GP and return false.
790  */
791 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
792 {
793 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
794 		return true;
795 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
796 	return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_require_cpl);
799 
800 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
801 {
802 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
803 		return true;
804 
805 	kvm_queue_exception(vcpu, UD_VECTOR);
806 	return false;
807 }
808 EXPORT_SYMBOL_GPL(kvm_require_dr);
809 
810 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
811 {
812 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
813 }
814 
815 /*
816  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
817  */
818 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
819 {
820 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
821 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
822 	gpa_t real_gpa;
823 	int i;
824 	int ret;
825 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
826 
827 	/*
828 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
829 	 * to an L1 GPA.
830 	 */
831 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
832 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
833 	if (real_gpa == UNMAPPED_GVA)
834 		return 0;
835 
836 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
837 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
838 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
839 	if (ret < 0)
840 		return 0;
841 
842 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
843 		if ((pdpte[i] & PT_PRESENT_MASK) &&
844 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
845 			return 0;
846 		}
847 	}
848 
849 	/*
850 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
851 	 * Shadow page roots need to be reconstructed instead.
852 	 */
853 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
854 		kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
855 
856 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
857 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
858 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
859 	vcpu->arch.pdptrs_from_userspace = false;
860 
861 	return 1;
862 }
863 EXPORT_SYMBOL_GPL(load_pdptrs);
864 
865 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
866 {
867 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
868 		kvm_clear_async_pf_completion_queue(vcpu);
869 		kvm_async_pf_hash_reset(vcpu);
870 	}
871 
872 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
873 		kvm_mmu_reset_context(vcpu);
874 
875 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
876 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
877 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
878 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
879 }
880 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
881 
882 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
883 {
884 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
885 
886 	cr0 |= X86_CR0_ET;
887 
888 #ifdef CONFIG_X86_64
889 	if (cr0 & 0xffffffff00000000UL)
890 		return 1;
891 #endif
892 
893 	cr0 &= ~CR0_RESERVED_BITS;
894 
895 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
896 		return 1;
897 
898 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
899 		return 1;
900 
901 #ifdef CONFIG_X86_64
902 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
903 	    (cr0 & X86_CR0_PG)) {
904 		int cs_db, cs_l;
905 
906 		if (!is_pae(vcpu))
907 			return 1;
908 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
909 		if (cs_l)
910 			return 1;
911 	}
912 #endif
913 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
914 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
915 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
916 		return 1;
917 
918 	if (!(cr0 & X86_CR0_PG) &&
919 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
920 		return 1;
921 
922 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
923 
924 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
925 
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_cr0);
929 
930 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
931 {
932 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
933 }
934 EXPORT_SYMBOL_GPL(kvm_lmsw);
935 
936 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
937 {
938 	if (vcpu->arch.guest_state_protected)
939 		return;
940 
941 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
942 
943 		if (vcpu->arch.xcr0 != host_xcr0)
944 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
945 
946 		if (vcpu->arch.xsaves_enabled &&
947 		    vcpu->arch.ia32_xss != host_xss)
948 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
949 	}
950 
951 	if (static_cpu_has(X86_FEATURE_PKU) &&
952 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
953 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
954 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
955 		write_pkru(vcpu->arch.pkru);
956 }
957 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
958 
959 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
960 {
961 	if (vcpu->arch.guest_state_protected)
962 		return;
963 
964 	if (static_cpu_has(X86_FEATURE_PKU) &&
965 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
967 		vcpu->arch.pkru = rdpkru();
968 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
969 			write_pkru(vcpu->arch.host_pkru);
970 	}
971 
972 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
973 
974 		if (vcpu->arch.xcr0 != host_xcr0)
975 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
976 
977 		if (vcpu->arch.xsaves_enabled &&
978 		    vcpu->arch.ia32_xss != host_xss)
979 			wrmsrl(MSR_IA32_XSS, host_xss);
980 	}
981 
982 }
983 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
984 
985 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
986 {
987 	u64 xcr0 = xcr;
988 	u64 old_xcr0 = vcpu->arch.xcr0;
989 	u64 valid_bits;
990 
991 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
992 	if (index != XCR_XFEATURE_ENABLED_MASK)
993 		return 1;
994 	if (!(xcr0 & XFEATURE_MASK_FP))
995 		return 1;
996 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
997 		return 1;
998 
999 	/*
1000 	 * Do not allow the guest to set bits that we do not support
1001 	 * saving.  However, xcr0 bit 0 is always set, even if the
1002 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1003 	 */
1004 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1005 	if (xcr0 & ~valid_bits)
1006 		return 1;
1007 
1008 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1009 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1010 		return 1;
1011 
1012 	if (xcr0 & XFEATURE_MASK_AVX512) {
1013 		if (!(xcr0 & XFEATURE_MASK_YMM))
1014 			return 1;
1015 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1016 			return 1;
1017 	}
1018 
1019 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1020 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1021 		return 1;
1022 
1023 	vcpu->arch.xcr0 = xcr0;
1024 
1025 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1026 		kvm_update_cpuid_runtime(vcpu);
1027 	return 0;
1028 }
1029 
1030 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1031 {
1032 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1033 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1034 		kvm_inject_gp(vcpu, 0);
1035 		return 1;
1036 	}
1037 
1038 	return kvm_skip_emulated_instruction(vcpu);
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1041 
1042 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1043 {
1044 	if (cr4 & cr4_reserved_bits)
1045 		return false;
1046 
1047 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1048 		return false;
1049 
1050 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1053 
1054 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1055 {
1056 	/*
1057 	 * If any role bit is changed, the MMU needs to be reset.
1058 	 *
1059 	 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1060 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1061 	 * according to the SDM; however, stale prev_roots could be reused
1062 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1063 	 * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1064 	 * is slow, but changing CR4.PCIDE is a rare case.
1065 	 *
1066 	 * If CR4.PGE is changed, the guest TLB must be flushed.
1067 	 *
1068 	 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1069 	 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1070 	 * the usage of "else if".
1071 	 */
1072 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1073 		kvm_mmu_reset_context(vcpu);
1074 	else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1075 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1076 	else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1077 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1080 
1081 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1082 {
1083 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1084 
1085 	if (!kvm_is_valid_cr4(vcpu, cr4))
1086 		return 1;
1087 
1088 	if (is_long_mode(vcpu)) {
1089 		if (!(cr4 & X86_CR4_PAE))
1090 			return 1;
1091 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1092 			return 1;
1093 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1094 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1095 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1096 		return 1;
1097 
1098 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1099 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1100 			return 1;
1101 
1102 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1103 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1104 			return 1;
1105 	}
1106 
1107 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1108 
1109 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1110 
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1114 
1115 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1116 {
1117 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1118 	unsigned long roots_to_free = 0;
1119 	int i;
1120 
1121 	/*
1122 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1123 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1124 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1125 	 * the invalidation, but the guest's TLB entries need to be flushed as
1126 	 * the CPU may have cached entries in its TLB for the target PCID.
1127 	 */
1128 	if (unlikely(tdp_enabled)) {
1129 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1130 		return;
1131 	}
1132 
1133 	/*
1134 	 * If neither the current CR3 nor any of the prev_roots use the given
1135 	 * PCID, then nothing needs to be done here because a resync will
1136 	 * happen anyway before switching to any other CR3.
1137 	 */
1138 	if (kvm_get_active_pcid(vcpu) == pcid) {
1139 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1140 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1141 	}
1142 
1143 	/*
1144 	 * If PCID is disabled, there is no need to free prev_roots even if the
1145 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1146 	 * with PCIDE=0.
1147 	 */
1148 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1149 		return;
1150 
1151 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1152 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1153 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1154 
1155 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1156 }
1157 
1158 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1159 {
1160 	bool skip_tlb_flush = false;
1161 	unsigned long pcid = 0;
1162 #ifdef CONFIG_X86_64
1163 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1164 
1165 	if (pcid_enabled) {
1166 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1167 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1168 		pcid = cr3 & X86_CR3_PCID_MASK;
1169 	}
1170 #endif
1171 
1172 	/* PDPTRs are always reloaded for PAE paging. */
1173 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1174 		goto handle_tlb_flush;
1175 
1176 	/*
1177 	 * Do not condition the GPA check on long mode, this helper is used to
1178 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1179 	 * the current vCPU mode is accurate.
1180 	 */
1181 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1182 		return 1;
1183 
1184 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1185 		return 1;
1186 
1187 	if (cr3 != kvm_read_cr3(vcpu))
1188 		kvm_mmu_new_pgd(vcpu, cr3);
1189 
1190 	vcpu->arch.cr3 = cr3;
1191 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1192 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1193 
1194 handle_tlb_flush:
1195 	/*
1196 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1197 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1198 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1199 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1200 	 * i.e. only PCID=0 can be relevant.
1201 	 */
1202 	if (!skip_tlb_flush)
1203 		kvm_invalidate_pcid(vcpu, pcid);
1204 
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1208 
1209 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1210 {
1211 	if (cr8 & CR8_RESERVED_BITS)
1212 		return 1;
1213 	if (lapic_in_kernel(vcpu))
1214 		kvm_lapic_set_tpr(vcpu, cr8);
1215 	else
1216 		vcpu->arch.cr8 = cr8;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1220 
1221 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1222 {
1223 	if (lapic_in_kernel(vcpu))
1224 		return kvm_lapic_get_cr8(vcpu);
1225 	else
1226 		return vcpu->arch.cr8;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1229 
1230 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1231 {
1232 	int i;
1233 
1234 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1235 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1236 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1237 	}
1238 }
1239 
1240 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1241 {
1242 	unsigned long dr7;
1243 
1244 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1245 		dr7 = vcpu->arch.guest_debug_dr7;
1246 	else
1247 		dr7 = vcpu->arch.dr7;
1248 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1249 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1250 	if (dr7 & DR7_BP_EN_MASK)
1251 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1254 
1255 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1256 {
1257 	u64 fixed = DR6_FIXED_1;
1258 
1259 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1260 		fixed |= DR6_RTM;
1261 
1262 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1263 		fixed |= DR6_BUS_LOCK;
1264 	return fixed;
1265 }
1266 
1267 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1268 {
1269 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1270 
1271 	switch (dr) {
1272 	case 0 ... 3:
1273 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1274 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1275 			vcpu->arch.eff_db[dr] = val;
1276 		break;
1277 	case 4:
1278 	case 6:
1279 		if (!kvm_dr6_valid(val))
1280 			return 1; /* #GP */
1281 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1282 		break;
1283 	case 5:
1284 	default: /* 7 */
1285 		if (!kvm_dr7_valid(val))
1286 			return 1; /* #GP */
1287 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1288 		kvm_update_dr7(vcpu);
1289 		break;
1290 	}
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_set_dr);
1295 
1296 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1297 {
1298 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1299 
1300 	switch (dr) {
1301 	case 0 ... 3:
1302 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1303 		break;
1304 	case 4:
1305 	case 6:
1306 		*val = vcpu->arch.dr6;
1307 		break;
1308 	case 5:
1309 	default: /* 7 */
1310 		*val = vcpu->arch.dr7;
1311 		break;
1312 	}
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_get_dr);
1315 
1316 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1317 {
1318 	u32 ecx = kvm_rcx_read(vcpu);
1319 	u64 data;
1320 
1321 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1322 		kvm_inject_gp(vcpu, 0);
1323 		return 1;
1324 	}
1325 
1326 	kvm_rax_write(vcpu, (u32)data);
1327 	kvm_rdx_write(vcpu, data >> 32);
1328 	return kvm_skip_emulated_instruction(vcpu);
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1331 
1332 /*
1333  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1334  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1335  *
1336  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1337  * extract the supported MSRs from the related const lists.
1338  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1339  * capabilities of the host cpu. This capabilities test skips MSRs that are
1340  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1341  * may depend on host virtualization features rather than host cpu features.
1342  */
1343 
1344 static const u32 msrs_to_save_all[] = {
1345 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1346 	MSR_STAR,
1347 #ifdef CONFIG_X86_64
1348 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1349 #endif
1350 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1351 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1352 	MSR_IA32_SPEC_CTRL,
1353 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1354 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1355 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1356 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1357 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1358 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1359 	MSR_IA32_UMWAIT_CONTROL,
1360 
1361 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1362 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1363 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1364 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1365 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1366 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1367 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1368 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1369 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1370 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1371 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1372 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1373 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1374 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1375 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1376 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1377 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1378 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1379 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1380 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1381 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1382 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1383 
1384 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1385 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1386 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1387 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1388 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1389 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1390 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1391 };
1392 
1393 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1394 static unsigned num_msrs_to_save;
1395 
1396 static const u32 emulated_msrs_all[] = {
1397 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1398 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1399 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1400 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1401 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1402 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1403 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1404 	HV_X64_MSR_RESET,
1405 	HV_X64_MSR_VP_INDEX,
1406 	HV_X64_MSR_VP_RUNTIME,
1407 	HV_X64_MSR_SCONTROL,
1408 	HV_X64_MSR_STIMER0_CONFIG,
1409 	HV_X64_MSR_VP_ASSIST_PAGE,
1410 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1411 	HV_X64_MSR_TSC_EMULATION_STATUS,
1412 	HV_X64_MSR_SYNDBG_OPTIONS,
1413 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1414 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1415 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1416 
1417 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1418 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1419 
1420 	MSR_IA32_TSC_ADJUST,
1421 	MSR_IA32_TSC_DEADLINE,
1422 	MSR_IA32_ARCH_CAPABILITIES,
1423 	MSR_IA32_PERF_CAPABILITIES,
1424 	MSR_IA32_MISC_ENABLE,
1425 	MSR_IA32_MCG_STATUS,
1426 	MSR_IA32_MCG_CTL,
1427 	MSR_IA32_MCG_EXT_CTL,
1428 	MSR_IA32_SMBASE,
1429 	MSR_SMI_COUNT,
1430 	MSR_PLATFORM_INFO,
1431 	MSR_MISC_FEATURES_ENABLES,
1432 	MSR_AMD64_VIRT_SPEC_CTRL,
1433 	MSR_AMD64_TSC_RATIO,
1434 	MSR_IA32_POWER_CTL,
1435 	MSR_IA32_UCODE_REV,
1436 
1437 	/*
1438 	 * The following list leaves out MSRs whose values are determined
1439 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1440 	 * We always support the "true" VMX control MSRs, even if the host
1441 	 * processor does not, so I am putting these registers here rather
1442 	 * than in msrs_to_save_all.
1443 	 */
1444 	MSR_IA32_VMX_BASIC,
1445 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1446 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1447 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1448 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1449 	MSR_IA32_VMX_MISC,
1450 	MSR_IA32_VMX_CR0_FIXED0,
1451 	MSR_IA32_VMX_CR4_FIXED0,
1452 	MSR_IA32_VMX_VMCS_ENUM,
1453 	MSR_IA32_VMX_PROCBASED_CTLS2,
1454 	MSR_IA32_VMX_EPT_VPID_CAP,
1455 	MSR_IA32_VMX_VMFUNC,
1456 
1457 	MSR_K7_HWCR,
1458 	MSR_KVM_POLL_CONTROL,
1459 };
1460 
1461 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1462 static unsigned num_emulated_msrs;
1463 
1464 /*
1465  * List of msr numbers which are used to expose MSR-based features that
1466  * can be used by a hypervisor to validate requested CPU features.
1467  */
1468 static const u32 msr_based_features_all[] = {
1469 	MSR_IA32_VMX_BASIC,
1470 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1471 	MSR_IA32_VMX_PINBASED_CTLS,
1472 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1473 	MSR_IA32_VMX_PROCBASED_CTLS,
1474 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1475 	MSR_IA32_VMX_EXIT_CTLS,
1476 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1477 	MSR_IA32_VMX_ENTRY_CTLS,
1478 	MSR_IA32_VMX_MISC,
1479 	MSR_IA32_VMX_CR0_FIXED0,
1480 	MSR_IA32_VMX_CR0_FIXED1,
1481 	MSR_IA32_VMX_CR4_FIXED0,
1482 	MSR_IA32_VMX_CR4_FIXED1,
1483 	MSR_IA32_VMX_VMCS_ENUM,
1484 	MSR_IA32_VMX_PROCBASED_CTLS2,
1485 	MSR_IA32_VMX_EPT_VPID_CAP,
1486 	MSR_IA32_VMX_VMFUNC,
1487 
1488 	MSR_F10H_DECFG,
1489 	MSR_IA32_UCODE_REV,
1490 	MSR_IA32_ARCH_CAPABILITIES,
1491 	MSR_IA32_PERF_CAPABILITIES,
1492 };
1493 
1494 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1495 static unsigned int num_msr_based_features;
1496 
1497 static u64 kvm_get_arch_capabilities(void)
1498 {
1499 	u64 data = 0;
1500 
1501 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1502 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1503 
1504 	/*
1505 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1506 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1507 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1508 	 * L1 guests, so it need not worry about its own (L2) guests.
1509 	 */
1510 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1511 
1512 	/*
1513 	 * If we're doing cache flushes (either "always" or "cond")
1514 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1515 	 * If an outer hypervisor is doing the cache flush for us
1516 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1517 	 * capability to the guest too, and if EPT is disabled we're not
1518 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1519 	 * require a nested hypervisor to do a flush of its own.
1520 	 */
1521 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1522 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1523 
1524 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1525 		data |= ARCH_CAP_RDCL_NO;
1526 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1527 		data |= ARCH_CAP_SSB_NO;
1528 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1529 		data |= ARCH_CAP_MDS_NO;
1530 
1531 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1532 		/*
1533 		 * If RTM=0 because the kernel has disabled TSX, the host might
1534 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1535 		 * and therefore knows that there cannot be TAA) but keep
1536 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1537 		 * and we want to allow migrating those guests to tsx=off hosts.
1538 		 */
1539 		data &= ~ARCH_CAP_TAA_NO;
1540 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1541 		data |= ARCH_CAP_TAA_NO;
1542 	} else {
1543 		/*
1544 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1545 		 * host so the guest can choose between disabling TSX or
1546 		 * using VERW to clear CPU buffers.
1547 		 */
1548 	}
1549 
1550 	return data;
1551 }
1552 
1553 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1554 {
1555 	switch (msr->index) {
1556 	case MSR_IA32_ARCH_CAPABILITIES:
1557 		msr->data = kvm_get_arch_capabilities();
1558 		break;
1559 	case MSR_IA32_UCODE_REV:
1560 		rdmsrl_safe(msr->index, &msr->data);
1561 		break;
1562 	default:
1563 		return static_call(kvm_x86_get_msr_feature)(msr);
1564 	}
1565 	return 0;
1566 }
1567 
1568 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1569 {
1570 	struct kvm_msr_entry msr;
1571 	int r;
1572 
1573 	msr.index = index;
1574 	r = kvm_get_msr_feature(&msr);
1575 
1576 	if (r == KVM_MSR_RET_INVALID) {
1577 		/* Unconditionally clear the output for simplicity */
1578 		*data = 0;
1579 		if (kvm_msr_ignored_check(index, 0, false))
1580 			r = 0;
1581 	}
1582 
1583 	if (r)
1584 		return r;
1585 
1586 	*data = msr.data;
1587 
1588 	return 0;
1589 }
1590 
1591 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1592 {
1593 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1594 		return false;
1595 
1596 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1597 		return false;
1598 
1599 	if (efer & (EFER_LME | EFER_LMA) &&
1600 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1601 		return false;
1602 
1603 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1604 		return false;
1605 
1606 	return true;
1607 
1608 }
1609 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1610 {
1611 	if (efer & efer_reserved_bits)
1612 		return false;
1613 
1614 	return __kvm_valid_efer(vcpu, efer);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1617 
1618 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1619 {
1620 	u64 old_efer = vcpu->arch.efer;
1621 	u64 efer = msr_info->data;
1622 	int r;
1623 
1624 	if (efer & efer_reserved_bits)
1625 		return 1;
1626 
1627 	if (!msr_info->host_initiated) {
1628 		if (!__kvm_valid_efer(vcpu, efer))
1629 			return 1;
1630 
1631 		if (is_paging(vcpu) &&
1632 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1633 			return 1;
1634 	}
1635 
1636 	efer &= ~EFER_LMA;
1637 	efer |= vcpu->arch.efer & EFER_LMA;
1638 
1639 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1640 	if (r) {
1641 		WARN_ON(r > 0);
1642 		return r;
1643 	}
1644 
1645 	/* Update reserved bits */
1646 	if ((efer ^ old_efer) & EFER_NX)
1647 		kvm_mmu_reset_context(vcpu);
1648 
1649 	return 0;
1650 }
1651 
1652 void kvm_enable_efer_bits(u64 mask)
1653 {
1654        efer_reserved_bits &= ~mask;
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1657 
1658 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1659 {
1660 	struct kvm_x86_msr_filter *msr_filter;
1661 	struct msr_bitmap_range *ranges;
1662 	struct kvm *kvm = vcpu->kvm;
1663 	bool allowed;
1664 	int idx;
1665 	u32 i;
1666 
1667 	/* x2APIC MSRs do not support filtering. */
1668 	if (index >= 0x800 && index <= 0x8ff)
1669 		return true;
1670 
1671 	idx = srcu_read_lock(&kvm->srcu);
1672 
1673 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1674 	if (!msr_filter) {
1675 		allowed = true;
1676 		goto out;
1677 	}
1678 
1679 	allowed = msr_filter->default_allow;
1680 	ranges = msr_filter->ranges;
1681 
1682 	for (i = 0; i < msr_filter->count; i++) {
1683 		u32 start = ranges[i].base;
1684 		u32 end = start + ranges[i].nmsrs;
1685 		u32 flags = ranges[i].flags;
1686 		unsigned long *bitmap = ranges[i].bitmap;
1687 
1688 		if ((index >= start) && (index < end) && (flags & type)) {
1689 			allowed = !!test_bit(index - start, bitmap);
1690 			break;
1691 		}
1692 	}
1693 
1694 out:
1695 	srcu_read_unlock(&kvm->srcu, idx);
1696 
1697 	return allowed;
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1700 
1701 /*
1702  * Write @data into the MSR specified by @index.  Select MSR specific fault
1703  * checks are bypassed if @host_initiated is %true.
1704  * Returns 0 on success, non-0 otherwise.
1705  * Assumes vcpu_load() was already called.
1706  */
1707 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1708 			 bool host_initiated)
1709 {
1710 	struct msr_data msr;
1711 
1712 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1713 		return KVM_MSR_RET_FILTERED;
1714 
1715 	switch (index) {
1716 	case MSR_FS_BASE:
1717 	case MSR_GS_BASE:
1718 	case MSR_KERNEL_GS_BASE:
1719 	case MSR_CSTAR:
1720 	case MSR_LSTAR:
1721 		if (is_noncanonical_address(data, vcpu))
1722 			return 1;
1723 		break;
1724 	case MSR_IA32_SYSENTER_EIP:
1725 	case MSR_IA32_SYSENTER_ESP:
1726 		/*
1727 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1728 		 * non-canonical address is written on Intel but not on
1729 		 * AMD (which ignores the top 32-bits, because it does
1730 		 * not implement 64-bit SYSENTER).
1731 		 *
1732 		 * 64-bit code should hence be able to write a non-canonical
1733 		 * value on AMD.  Making the address canonical ensures that
1734 		 * vmentry does not fail on Intel after writing a non-canonical
1735 		 * value, and that something deterministic happens if the guest
1736 		 * invokes 64-bit SYSENTER.
1737 		 */
1738 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1739 		break;
1740 	case MSR_TSC_AUX:
1741 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1742 			return 1;
1743 
1744 		if (!host_initiated &&
1745 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1746 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1747 			return 1;
1748 
1749 		/*
1750 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1751 		 * incomplete and conflicting architectural behavior.  Current
1752 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1753 		 * reserved and always read as zeros.  Enforce Intel's reserved
1754 		 * bits check if and only if the guest CPU is Intel, and clear
1755 		 * the bits in all other cases.  This ensures cross-vendor
1756 		 * migration will provide consistent behavior for the guest.
1757 		 */
1758 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1759 			return 1;
1760 
1761 		data = (u32)data;
1762 		break;
1763 	}
1764 
1765 	msr.data = data;
1766 	msr.index = index;
1767 	msr.host_initiated = host_initiated;
1768 
1769 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1770 }
1771 
1772 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1773 				     u32 index, u64 data, bool host_initiated)
1774 {
1775 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1776 
1777 	if (ret == KVM_MSR_RET_INVALID)
1778 		if (kvm_msr_ignored_check(index, data, true))
1779 			ret = 0;
1780 
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Read the MSR specified by @index into @data.  Select MSR specific fault
1786  * checks are bypassed if @host_initiated is %true.
1787  * Returns 0 on success, non-0 otherwise.
1788  * Assumes vcpu_load() was already called.
1789  */
1790 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1791 		  bool host_initiated)
1792 {
1793 	struct msr_data msr;
1794 	int ret;
1795 
1796 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1797 		return KVM_MSR_RET_FILTERED;
1798 
1799 	switch (index) {
1800 	case MSR_TSC_AUX:
1801 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1802 			return 1;
1803 
1804 		if (!host_initiated &&
1805 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1806 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1807 			return 1;
1808 		break;
1809 	}
1810 
1811 	msr.index = index;
1812 	msr.host_initiated = host_initiated;
1813 
1814 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1815 	if (!ret)
1816 		*data = msr.data;
1817 	return ret;
1818 }
1819 
1820 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1821 				     u32 index, u64 *data, bool host_initiated)
1822 {
1823 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1824 
1825 	if (ret == KVM_MSR_RET_INVALID) {
1826 		/* Unconditionally clear *data for simplicity */
1827 		*data = 0;
1828 		if (kvm_msr_ignored_check(index, 0, false))
1829 			ret = 0;
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1836 {
1837 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_get_msr);
1840 
1841 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1842 {
1843 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_set_msr);
1846 
1847 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1848 {
1849 	if (!vcpu->run->msr.error) {
1850 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1851 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1852 	}
1853 }
1854 
1855 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1856 {
1857 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1858 }
1859 
1860 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1861 {
1862 	complete_userspace_rdmsr(vcpu);
1863 	return complete_emulated_msr_access(vcpu);
1864 }
1865 
1866 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1867 {
1868 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1869 }
1870 
1871 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1872 {
1873 	complete_userspace_rdmsr(vcpu);
1874 	return complete_fast_msr_access(vcpu);
1875 }
1876 
1877 static u64 kvm_msr_reason(int r)
1878 {
1879 	switch (r) {
1880 	case KVM_MSR_RET_INVALID:
1881 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1882 	case KVM_MSR_RET_FILTERED:
1883 		return KVM_MSR_EXIT_REASON_FILTER;
1884 	default:
1885 		return KVM_MSR_EXIT_REASON_INVAL;
1886 	}
1887 }
1888 
1889 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1890 			      u32 exit_reason, u64 data,
1891 			      int (*completion)(struct kvm_vcpu *vcpu),
1892 			      int r)
1893 {
1894 	u64 msr_reason = kvm_msr_reason(r);
1895 
1896 	/* Check if the user wanted to know about this MSR fault */
1897 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1898 		return 0;
1899 
1900 	vcpu->run->exit_reason = exit_reason;
1901 	vcpu->run->msr.error = 0;
1902 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1903 	vcpu->run->msr.reason = msr_reason;
1904 	vcpu->run->msr.index = index;
1905 	vcpu->run->msr.data = data;
1906 	vcpu->arch.complete_userspace_io = completion;
1907 
1908 	return 1;
1909 }
1910 
1911 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1912 {
1913 	u32 ecx = kvm_rcx_read(vcpu);
1914 	u64 data;
1915 	int r;
1916 
1917 	r = kvm_get_msr(vcpu, ecx, &data);
1918 
1919 	if (!r) {
1920 		trace_kvm_msr_read(ecx, data);
1921 
1922 		kvm_rax_write(vcpu, data & -1u);
1923 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1924 	} else {
1925 		/* MSR read failed? See if we should ask user space */
1926 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1927 				       complete_fast_rdmsr, r))
1928 			return 0;
1929 		trace_kvm_msr_read_ex(ecx);
1930 	}
1931 
1932 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1935 
1936 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1937 {
1938 	u32 ecx = kvm_rcx_read(vcpu);
1939 	u64 data = kvm_read_edx_eax(vcpu);
1940 	int r;
1941 
1942 	r = kvm_set_msr(vcpu, ecx, data);
1943 
1944 	if (!r) {
1945 		trace_kvm_msr_write(ecx, data);
1946 	} else {
1947 		/* MSR write failed? See if we should ask user space */
1948 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1949 				       complete_fast_msr_access, r))
1950 			return 0;
1951 		/* Signal all other negative errors to userspace */
1952 		if (r < 0)
1953 			return r;
1954 		trace_kvm_msr_write_ex(ecx, data);
1955 	}
1956 
1957 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1960 
1961 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1962 {
1963 	return kvm_skip_emulated_instruction(vcpu);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1966 
1967 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1968 {
1969 	/* Treat an INVD instruction as a NOP and just skip it. */
1970 	return kvm_emulate_as_nop(vcpu);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1973 
1974 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1975 {
1976 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1977 	return kvm_emulate_as_nop(vcpu);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1980 
1981 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1982 {
1983 	kvm_queue_exception(vcpu, UD_VECTOR);
1984 	return 1;
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1987 
1988 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1989 {
1990 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1991 	return kvm_emulate_as_nop(vcpu);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1994 
1995 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1996 {
1997 	xfer_to_guest_mode_prepare();
1998 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1999 		xfer_to_guest_mode_work_pending();
2000 }
2001 
2002 /*
2003  * The fast path for frequent and performance sensitive wrmsr emulation,
2004  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2005  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2006  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2007  * other cases which must be called after interrupts are enabled on the host.
2008  */
2009 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2010 {
2011 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2012 		return 1;
2013 
2014 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2015 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2016 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2017 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
2018 
2019 		data &= ~(1 << 12);
2020 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2021 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2022 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2023 		trace_kvm_apic_write(APIC_ICR, (u32)data);
2024 		return 0;
2025 	}
2026 
2027 	return 1;
2028 }
2029 
2030 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2031 {
2032 	if (!kvm_can_use_hv_timer(vcpu))
2033 		return 1;
2034 
2035 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2036 	return 0;
2037 }
2038 
2039 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2040 {
2041 	u32 msr = kvm_rcx_read(vcpu);
2042 	u64 data;
2043 	fastpath_t ret = EXIT_FASTPATH_NONE;
2044 
2045 	switch (msr) {
2046 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2047 		data = kvm_read_edx_eax(vcpu);
2048 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2049 			kvm_skip_emulated_instruction(vcpu);
2050 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2051 		}
2052 		break;
2053 	case MSR_IA32_TSC_DEADLINE:
2054 		data = kvm_read_edx_eax(vcpu);
2055 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2056 			kvm_skip_emulated_instruction(vcpu);
2057 			ret = EXIT_FASTPATH_REENTER_GUEST;
2058 		}
2059 		break;
2060 	default:
2061 		break;
2062 	}
2063 
2064 	if (ret != EXIT_FASTPATH_NONE)
2065 		trace_kvm_msr_write(msr, data);
2066 
2067 	return ret;
2068 }
2069 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2070 
2071 /*
2072  * Adapt set_msr() to msr_io()'s calling convention
2073  */
2074 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2075 {
2076 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2077 }
2078 
2079 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2080 {
2081 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2082 }
2083 
2084 #ifdef CONFIG_X86_64
2085 struct pvclock_clock {
2086 	int vclock_mode;
2087 	u64 cycle_last;
2088 	u64 mask;
2089 	u32 mult;
2090 	u32 shift;
2091 	u64 base_cycles;
2092 	u64 offset;
2093 };
2094 
2095 struct pvclock_gtod_data {
2096 	seqcount_t	seq;
2097 
2098 	struct pvclock_clock clock; /* extract of a clocksource struct */
2099 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2100 
2101 	ktime_t		offs_boot;
2102 	u64		wall_time_sec;
2103 };
2104 
2105 static struct pvclock_gtod_data pvclock_gtod_data;
2106 
2107 static void update_pvclock_gtod(struct timekeeper *tk)
2108 {
2109 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2110 
2111 	write_seqcount_begin(&vdata->seq);
2112 
2113 	/* copy pvclock gtod data */
2114 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2115 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2116 	vdata->clock.mask		= tk->tkr_mono.mask;
2117 	vdata->clock.mult		= tk->tkr_mono.mult;
2118 	vdata->clock.shift		= tk->tkr_mono.shift;
2119 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2120 	vdata->clock.offset		= tk->tkr_mono.base;
2121 
2122 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2123 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2124 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2125 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2126 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2127 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2128 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2129 
2130 	vdata->wall_time_sec            = tk->xtime_sec;
2131 
2132 	vdata->offs_boot		= tk->offs_boot;
2133 
2134 	write_seqcount_end(&vdata->seq);
2135 }
2136 
2137 static s64 get_kvmclock_base_ns(void)
2138 {
2139 	/* Count up from boot time, but with the frequency of the raw clock.  */
2140 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2141 }
2142 #else
2143 static s64 get_kvmclock_base_ns(void)
2144 {
2145 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2146 	return ktime_get_boottime_ns();
2147 }
2148 #endif
2149 
2150 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2151 {
2152 	int version;
2153 	int r;
2154 	struct pvclock_wall_clock wc;
2155 	u32 wc_sec_hi;
2156 	u64 wall_nsec;
2157 
2158 	if (!wall_clock)
2159 		return;
2160 
2161 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2162 	if (r)
2163 		return;
2164 
2165 	if (version & 1)
2166 		++version;  /* first time write, random junk */
2167 
2168 	++version;
2169 
2170 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2171 		return;
2172 
2173 	/*
2174 	 * The guest calculates current wall clock time by adding
2175 	 * system time (updated by kvm_guest_time_update below) to the
2176 	 * wall clock specified here.  We do the reverse here.
2177 	 */
2178 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2179 
2180 	wc.nsec = do_div(wall_nsec, 1000000000);
2181 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2182 	wc.version = version;
2183 
2184 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2185 
2186 	if (sec_hi_ofs) {
2187 		wc_sec_hi = wall_nsec >> 32;
2188 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2189 				&wc_sec_hi, sizeof(wc_sec_hi));
2190 	}
2191 
2192 	version++;
2193 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2194 }
2195 
2196 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2197 				  bool old_msr, bool host_initiated)
2198 {
2199 	struct kvm_arch *ka = &vcpu->kvm->arch;
2200 
2201 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2202 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2203 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2204 
2205 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2206 	}
2207 
2208 	vcpu->arch.time = system_time;
2209 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2210 
2211 	/* we verify if the enable bit is set... */
2212 	vcpu->arch.pv_time_enabled = false;
2213 	if (!(system_time & 1))
2214 		return;
2215 
2216 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2217 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2218 				       sizeof(struct pvclock_vcpu_time_info)))
2219 		vcpu->arch.pv_time_enabled = true;
2220 
2221 	return;
2222 }
2223 
2224 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2225 {
2226 	do_shl32_div32(dividend, divisor);
2227 	return dividend;
2228 }
2229 
2230 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2231 			       s8 *pshift, u32 *pmultiplier)
2232 {
2233 	uint64_t scaled64;
2234 	int32_t  shift = 0;
2235 	uint64_t tps64;
2236 	uint32_t tps32;
2237 
2238 	tps64 = base_hz;
2239 	scaled64 = scaled_hz;
2240 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2241 		tps64 >>= 1;
2242 		shift--;
2243 	}
2244 
2245 	tps32 = (uint32_t)tps64;
2246 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2247 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2248 			scaled64 >>= 1;
2249 		else
2250 			tps32 <<= 1;
2251 		shift++;
2252 	}
2253 
2254 	*pshift = shift;
2255 	*pmultiplier = div_frac(scaled64, tps32);
2256 }
2257 
2258 #ifdef CONFIG_X86_64
2259 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2260 #endif
2261 
2262 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2263 static unsigned long max_tsc_khz;
2264 
2265 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2266 {
2267 	u64 v = (u64)khz * (1000000 + ppm);
2268 	do_div(v, 1000000);
2269 	return v;
2270 }
2271 
2272 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2273 
2274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2275 {
2276 	u64 ratio;
2277 
2278 	/* Guest TSC same frequency as host TSC? */
2279 	if (!scale) {
2280 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2281 		return 0;
2282 	}
2283 
2284 	/* TSC scaling supported? */
2285 	if (!kvm_has_tsc_control) {
2286 		if (user_tsc_khz > tsc_khz) {
2287 			vcpu->arch.tsc_catchup = 1;
2288 			vcpu->arch.tsc_always_catchup = 1;
2289 			return 0;
2290 		} else {
2291 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2292 			return -1;
2293 		}
2294 	}
2295 
2296 	/* TSC scaling required  - calculate ratio */
2297 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2298 				user_tsc_khz, tsc_khz);
2299 
2300 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2301 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2302 			            user_tsc_khz);
2303 		return -1;
2304 	}
2305 
2306 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2307 	return 0;
2308 }
2309 
2310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2311 {
2312 	u32 thresh_lo, thresh_hi;
2313 	int use_scaling = 0;
2314 
2315 	/* tsc_khz can be zero if TSC calibration fails */
2316 	if (user_tsc_khz == 0) {
2317 		/* set tsc_scaling_ratio to a safe value */
2318 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2319 		return -1;
2320 	}
2321 
2322 	/* Compute a scale to convert nanoseconds in TSC cycles */
2323 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2324 			   &vcpu->arch.virtual_tsc_shift,
2325 			   &vcpu->arch.virtual_tsc_mult);
2326 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2327 
2328 	/*
2329 	 * Compute the variation in TSC rate which is acceptable
2330 	 * within the range of tolerance and decide if the
2331 	 * rate being applied is within that bounds of the hardware
2332 	 * rate.  If so, no scaling or compensation need be done.
2333 	 */
2334 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2335 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2336 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2337 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2338 		use_scaling = 1;
2339 	}
2340 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2341 }
2342 
2343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2344 {
2345 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2346 				      vcpu->arch.virtual_tsc_mult,
2347 				      vcpu->arch.virtual_tsc_shift);
2348 	tsc += vcpu->arch.this_tsc_write;
2349 	return tsc;
2350 }
2351 
2352 static inline int gtod_is_based_on_tsc(int mode)
2353 {
2354 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2355 }
2356 
2357 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2358 {
2359 #ifdef CONFIG_X86_64
2360 	bool vcpus_matched;
2361 	struct kvm_arch *ka = &vcpu->kvm->arch;
2362 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2363 
2364 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2365 			 atomic_read(&vcpu->kvm->online_vcpus));
2366 
2367 	/*
2368 	 * Once the masterclock is enabled, always perform request in
2369 	 * order to update it.
2370 	 *
2371 	 * In order to enable masterclock, the host clocksource must be TSC
2372 	 * and the vcpus need to have matched TSCs.  When that happens,
2373 	 * perform request to enable masterclock.
2374 	 */
2375 	if (ka->use_master_clock ||
2376 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2377 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2378 
2379 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2380 			    atomic_read(&vcpu->kvm->online_vcpus),
2381 		            ka->use_master_clock, gtod->clock.vclock_mode);
2382 #endif
2383 }
2384 
2385 /*
2386  * Multiply tsc by a fixed point number represented by ratio.
2387  *
2388  * The most significant 64-N bits (mult) of ratio represent the
2389  * integral part of the fixed point number; the remaining N bits
2390  * (frac) represent the fractional part, ie. ratio represents a fixed
2391  * point number (mult + frac * 2^(-N)).
2392  *
2393  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2394  */
2395 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2396 {
2397 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2398 }
2399 
2400 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2401 {
2402 	u64 _tsc = tsc;
2403 
2404 	if (ratio != kvm_default_tsc_scaling_ratio)
2405 		_tsc = __scale_tsc(ratio, tsc);
2406 
2407 	return _tsc;
2408 }
2409 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2410 
2411 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2412 {
2413 	u64 tsc;
2414 
2415 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2416 
2417 	return target_tsc - tsc;
2418 }
2419 
2420 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2421 {
2422 	return vcpu->arch.l1_tsc_offset +
2423 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2424 }
2425 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2426 
2427 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2428 {
2429 	u64 nested_offset;
2430 
2431 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2432 		nested_offset = l1_offset;
2433 	else
2434 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2435 						kvm_tsc_scaling_ratio_frac_bits);
2436 
2437 	nested_offset += l2_offset;
2438 	return nested_offset;
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2441 
2442 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2443 {
2444 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2445 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2446 				       kvm_tsc_scaling_ratio_frac_bits);
2447 
2448 	return l1_multiplier;
2449 }
2450 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2451 
2452 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2453 {
2454 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2455 				   vcpu->arch.l1_tsc_offset,
2456 				   l1_offset);
2457 
2458 	vcpu->arch.l1_tsc_offset = l1_offset;
2459 
2460 	/*
2461 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2462 	 * according to the spec this should set L1's TSC (as opposed to
2463 	 * setting L1's offset for L2).
2464 	 */
2465 	if (is_guest_mode(vcpu))
2466 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2467 			l1_offset,
2468 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2469 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2470 	else
2471 		vcpu->arch.tsc_offset = l1_offset;
2472 
2473 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2474 }
2475 
2476 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2477 {
2478 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2479 
2480 	/* Userspace is changing the multiplier while L2 is active */
2481 	if (is_guest_mode(vcpu))
2482 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2483 			l1_multiplier,
2484 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2485 	else
2486 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2487 
2488 	if (kvm_has_tsc_control)
2489 		static_call(kvm_x86_write_tsc_multiplier)(
2490 			vcpu, vcpu->arch.tsc_scaling_ratio);
2491 }
2492 
2493 static inline bool kvm_check_tsc_unstable(void)
2494 {
2495 #ifdef CONFIG_X86_64
2496 	/*
2497 	 * TSC is marked unstable when we're running on Hyper-V,
2498 	 * 'TSC page' clocksource is good.
2499 	 */
2500 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2501 		return false;
2502 #endif
2503 	return check_tsc_unstable();
2504 }
2505 
2506 /*
2507  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2508  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2509  * participates in.
2510  */
2511 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2512 				  u64 ns, bool matched)
2513 {
2514 	struct kvm *kvm = vcpu->kvm;
2515 
2516 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2517 
2518 	/*
2519 	 * We also track th most recent recorded KHZ, write and time to
2520 	 * allow the matching interval to be extended at each write.
2521 	 */
2522 	kvm->arch.last_tsc_nsec = ns;
2523 	kvm->arch.last_tsc_write = tsc;
2524 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2525 	kvm->arch.last_tsc_offset = offset;
2526 
2527 	vcpu->arch.last_guest_tsc = tsc;
2528 
2529 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2530 
2531 	if (!matched) {
2532 		/*
2533 		 * We split periods of matched TSC writes into generations.
2534 		 * For each generation, we track the original measured
2535 		 * nanosecond time, offset, and write, so if TSCs are in
2536 		 * sync, we can match exact offset, and if not, we can match
2537 		 * exact software computation in compute_guest_tsc()
2538 		 *
2539 		 * These values are tracked in kvm->arch.cur_xxx variables.
2540 		 */
2541 		kvm->arch.cur_tsc_generation++;
2542 		kvm->arch.cur_tsc_nsec = ns;
2543 		kvm->arch.cur_tsc_write = tsc;
2544 		kvm->arch.cur_tsc_offset = offset;
2545 		kvm->arch.nr_vcpus_matched_tsc = 0;
2546 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2547 		kvm->arch.nr_vcpus_matched_tsc++;
2548 	}
2549 
2550 	/* Keep track of which generation this VCPU has synchronized to */
2551 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2552 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2553 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2554 
2555 	kvm_track_tsc_matching(vcpu);
2556 }
2557 
2558 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2559 {
2560 	struct kvm *kvm = vcpu->kvm;
2561 	u64 offset, ns, elapsed;
2562 	unsigned long flags;
2563 	bool matched = false;
2564 	bool synchronizing = false;
2565 
2566 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2567 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2568 	ns = get_kvmclock_base_ns();
2569 	elapsed = ns - kvm->arch.last_tsc_nsec;
2570 
2571 	if (vcpu->arch.virtual_tsc_khz) {
2572 		if (data == 0) {
2573 			/*
2574 			 * detection of vcpu initialization -- need to sync
2575 			 * with other vCPUs. This particularly helps to keep
2576 			 * kvm_clock stable after CPU hotplug
2577 			 */
2578 			synchronizing = true;
2579 		} else {
2580 			u64 tsc_exp = kvm->arch.last_tsc_write +
2581 						nsec_to_cycles(vcpu, elapsed);
2582 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2583 			/*
2584 			 * Special case: TSC write with a small delta (1 second)
2585 			 * of virtual cycle time against real time is
2586 			 * interpreted as an attempt to synchronize the CPU.
2587 			 */
2588 			synchronizing = data < tsc_exp + tsc_hz &&
2589 					data + tsc_hz > tsc_exp;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2595 	 * TSC, we add elapsed time in this computation.  We could let the
2596 	 * compensation code attempt to catch up if we fall behind, but
2597 	 * it's better to try to match offsets from the beginning.
2598          */
2599 	if (synchronizing &&
2600 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2601 		if (!kvm_check_tsc_unstable()) {
2602 			offset = kvm->arch.cur_tsc_offset;
2603 		} else {
2604 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2605 			data += delta;
2606 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2607 		}
2608 		matched = true;
2609 	}
2610 
2611 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2612 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2613 }
2614 
2615 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2616 					   s64 adjustment)
2617 {
2618 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2619 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2620 }
2621 
2622 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2623 {
2624 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2625 		WARN_ON(adjustment < 0);
2626 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2627 				   vcpu->arch.l1_tsc_scaling_ratio);
2628 	adjust_tsc_offset_guest(vcpu, adjustment);
2629 }
2630 
2631 #ifdef CONFIG_X86_64
2632 
2633 static u64 read_tsc(void)
2634 {
2635 	u64 ret = (u64)rdtsc_ordered();
2636 	u64 last = pvclock_gtod_data.clock.cycle_last;
2637 
2638 	if (likely(ret >= last))
2639 		return ret;
2640 
2641 	/*
2642 	 * GCC likes to generate cmov here, but this branch is extremely
2643 	 * predictable (it's just a function of time and the likely is
2644 	 * very likely) and there's a data dependence, so force GCC
2645 	 * to generate a branch instead.  I don't barrier() because
2646 	 * we don't actually need a barrier, and if this function
2647 	 * ever gets inlined it will generate worse code.
2648 	 */
2649 	asm volatile ("");
2650 	return last;
2651 }
2652 
2653 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2654 			  int *mode)
2655 {
2656 	long v;
2657 	u64 tsc_pg_val;
2658 
2659 	switch (clock->vclock_mode) {
2660 	case VDSO_CLOCKMODE_HVCLOCK:
2661 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2662 						  tsc_timestamp);
2663 		if (tsc_pg_val != U64_MAX) {
2664 			/* TSC page valid */
2665 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2666 			v = (tsc_pg_val - clock->cycle_last) &
2667 				clock->mask;
2668 		} else {
2669 			/* TSC page invalid */
2670 			*mode = VDSO_CLOCKMODE_NONE;
2671 		}
2672 		break;
2673 	case VDSO_CLOCKMODE_TSC:
2674 		*mode = VDSO_CLOCKMODE_TSC;
2675 		*tsc_timestamp = read_tsc();
2676 		v = (*tsc_timestamp - clock->cycle_last) &
2677 			clock->mask;
2678 		break;
2679 	default:
2680 		*mode = VDSO_CLOCKMODE_NONE;
2681 	}
2682 
2683 	if (*mode == VDSO_CLOCKMODE_NONE)
2684 		*tsc_timestamp = v = 0;
2685 
2686 	return v * clock->mult;
2687 }
2688 
2689 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2690 {
2691 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2692 	unsigned long seq;
2693 	int mode;
2694 	u64 ns;
2695 
2696 	do {
2697 		seq = read_seqcount_begin(&gtod->seq);
2698 		ns = gtod->raw_clock.base_cycles;
2699 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2700 		ns >>= gtod->raw_clock.shift;
2701 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2702 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2703 	*t = ns;
2704 
2705 	return mode;
2706 }
2707 
2708 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2709 {
2710 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2711 	unsigned long seq;
2712 	int mode;
2713 	u64 ns;
2714 
2715 	do {
2716 		seq = read_seqcount_begin(&gtod->seq);
2717 		ts->tv_sec = gtod->wall_time_sec;
2718 		ns = gtod->clock.base_cycles;
2719 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2720 		ns >>= gtod->clock.shift;
2721 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2722 
2723 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2724 	ts->tv_nsec = ns;
2725 
2726 	return mode;
2727 }
2728 
2729 /* returns true if host is using TSC based clocksource */
2730 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2731 {
2732 	/* checked again under seqlock below */
2733 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2734 		return false;
2735 
2736 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2737 						      tsc_timestamp));
2738 }
2739 
2740 /* returns true if host is using TSC based clocksource */
2741 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2742 					   u64 *tsc_timestamp)
2743 {
2744 	/* checked again under seqlock below */
2745 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2746 		return false;
2747 
2748 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2749 }
2750 #endif
2751 
2752 /*
2753  *
2754  * Assuming a stable TSC across physical CPUS, and a stable TSC
2755  * across virtual CPUs, the following condition is possible.
2756  * Each numbered line represents an event visible to both
2757  * CPUs at the next numbered event.
2758  *
2759  * "timespecX" represents host monotonic time. "tscX" represents
2760  * RDTSC value.
2761  *
2762  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2763  *
2764  * 1.  read timespec0,tsc0
2765  * 2.					| timespec1 = timespec0 + N
2766  * 					| tsc1 = tsc0 + M
2767  * 3. transition to guest		| transition to guest
2768  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2769  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2770  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2771  *
2772  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2773  *
2774  * 	- ret0 < ret1
2775  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2776  *		...
2777  *	- 0 < N - M => M < N
2778  *
2779  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2780  * always the case (the difference between two distinct xtime instances
2781  * might be smaller then the difference between corresponding TSC reads,
2782  * when updating guest vcpus pvclock areas).
2783  *
2784  * To avoid that problem, do not allow visibility of distinct
2785  * system_timestamp/tsc_timestamp values simultaneously: use a master
2786  * copy of host monotonic time values. Update that master copy
2787  * in lockstep.
2788  *
2789  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2790  *
2791  */
2792 
2793 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2794 {
2795 #ifdef CONFIG_X86_64
2796 	struct kvm_arch *ka = &kvm->arch;
2797 	int vclock_mode;
2798 	bool host_tsc_clocksource, vcpus_matched;
2799 
2800 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2801 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2802 			atomic_read(&kvm->online_vcpus));
2803 
2804 	/*
2805 	 * If the host uses TSC clock, then passthrough TSC as stable
2806 	 * to the guest.
2807 	 */
2808 	host_tsc_clocksource = kvm_get_time_and_clockread(
2809 					&ka->master_kernel_ns,
2810 					&ka->master_cycle_now);
2811 
2812 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2813 				&& !ka->backwards_tsc_observed
2814 				&& !ka->boot_vcpu_runs_old_kvmclock;
2815 
2816 	if (ka->use_master_clock)
2817 		atomic_set(&kvm_guest_has_master_clock, 1);
2818 
2819 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2820 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2821 					vcpus_matched);
2822 #endif
2823 }
2824 
2825 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2826 {
2827 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2828 }
2829 
2830 static void __kvm_start_pvclock_update(struct kvm *kvm)
2831 {
2832 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2833 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2834 }
2835 
2836 static void kvm_start_pvclock_update(struct kvm *kvm)
2837 {
2838 	kvm_make_mclock_inprogress_request(kvm);
2839 
2840 	/* no guest entries from this point */
2841 	__kvm_start_pvclock_update(kvm);
2842 }
2843 
2844 static void kvm_end_pvclock_update(struct kvm *kvm)
2845 {
2846 	struct kvm_arch *ka = &kvm->arch;
2847 	struct kvm_vcpu *vcpu;
2848 	unsigned long i;
2849 
2850 	write_seqcount_end(&ka->pvclock_sc);
2851 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2852 	kvm_for_each_vcpu(i, vcpu, kvm)
2853 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2854 
2855 	/* guest entries allowed */
2856 	kvm_for_each_vcpu(i, vcpu, kvm)
2857 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2858 }
2859 
2860 static void kvm_update_masterclock(struct kvm *kvm)
2861 {
2862 	kvm_hv_invalidate_tsc_page(kvm);
2863 	kvm_start_pvclock_update(kvm);
2864 	pvclock_update_vm_gtod_copy(kvm);
2865 	kvm_end_pvclock_update(kvm);
2866 }
2867 
2868 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2869 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2870 {
2871 	struct kvm_arch *ka = &kvm->arch;
2872 	struct pvclock_vcpu_time_info hv_clock;
2873 
2874 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2875 	get_cpu();
2876 
2877 	data->flags = 0;
2878 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2879 #ifdef CONFIG_X86_64
2880 		struct timespec64 ts;
2881 
2882 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2883 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2884 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2885 		} else
2886 #endif
2887 		data->host_tsc = rdtsc();
2888 
2889 		data->flags |= KVM_CLOCK_TSC_STABLE;
2890 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2891 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2892 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2893 				   &hv_clock.tsc_shift,
2894 				   &hv_clock.tsc_to_system_mul);
2895 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2896 	} else {
2897 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2898 	}
2899 
2900 	put_cpu();
2901 }
2902 
2903 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2904 {
2905 	struct kvm_arch *ka = &kvm->arch;
2906 	unsigned seq;
2907 
2908 	do {
2909 		seq = read_seqcount_begin(&ka->pvclock_sc);
2910 		__get_kvmclock(kvm, data);
2911 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2912 }
2913 
2914 u64 get_kvmclock_ns(struct kvm *kvm)
2915 {
2916 	struct kvm_clock_data data;
2917 
2918 	get_kvmclock(kvm, &data);
2919 	return data.clock;
2920 }
2921 
2922 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2923 				   struct gfn_to_hva_cache *cache,
2924 				   unsigned int offset)
2925 {
2926 	struct kvm_vcpu_arch *vcpu = &v->arch;
2927 	struct pvclock_vcpu_time_info guest_hv_clock;
2928 
2929 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2930 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2931 		return;
2932 
2933 	/* This VCPU is paused, but it's legal for a guest to read another
2934 	 * VCPU's kvmclock, so we really have to follow the specification where
2935 	 * it says that version is odd if data is being modified, and even after
2936 	 * it is consistent.
2937 	 *
2938 	 * Version field updates must be kept separate.  This is because
2939 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2940 	 * writes within a string instruction are weakly ordered.  So there
2941 	 * are three writes overall.
2942 	 *
2943 	 * As a small optimization, only write the version field in the first
2944 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2945 	 * version field is the first in the struct.
2946 	 */
2947 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2948 
2949 	if (guest_hv_clock.version & 1)
2950 		++guest_hv_clock.version;  /* first time write, random junk */
2951 
2952 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2953 	kvm_write_guest_offset_cached(v->kvm, cache,
2954 				      &vcpu->hv_clock, offset,
2955 				      sizeof(vcpu->hv_clock.version));
2956 
2957 	smp_wmb();
2958 
2959 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2960 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2961 
2962 	if (vcpu->pvclock_set_guest_stopped_request) {
2963 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2964 		vcpu->pvclock_set_guest_stopped_request = false;
2965 	}
2966 
2967 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2968 
2969 	kvm_write_guest_offset_cached(v->kvm, cache,
2970 				      &vcpu->hv_clock, offset,
2971 				      sizeof(vcpu->hv_clock));
2972 
2973 	smp_wmb();
2974 
2975 	vcpu->hv_clock.version++;
2976 	kvm_write_guest_offset_cached(v->kvm, cache,
2977 				     &vcpu->hv_clock, offset,
2978 				     sizeof(vcpu->hv_clock.version));
2979 }
2980 
2981 static int kvm_guest_time_update(struct kvm_vcpu *v)
2982 {
2983 	unsigned long flags, tgt_tsc_khz;
2984 	unsigned seq;
2985 	struct kvm_vcpu_arch *vcpu = &v->arch;
2986 	struct kvm_arch *ka = &v->kvm->arch;
2987 	s64 kernel_ns;
2988 	u64 tsc_timestamp, host_tsc;
2989 	u8 pvclock_flags;
2990 	bool use_master_clock;
2991 
2992 	kernel_ns = 0;
2993 	host_tsc = 0;
2994 
2995 	/*
2996 	 * If the host uses TSC clock, then passthrough TSC as stable
2997 	 * to the guest.
2998 	 */
2999 	do {
3000 		seq = read_seqcount_begin(&ka->pvclock_sc);
3001 		use_master_clock = ka->use_master_clock;
3002 		if (use_master_clock) {
3003 			host_tsc = ka->master_cycle_now;
3004 			kernel_ns = ka->master_kernel_ns;
3005 		}
3006 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3007 
3008 	/* Keep irq disabled to prevent changes to the clock */
3009 	local_irq_save(flags);
3010 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3011 	if (unlikely(tgt_tsc_khz == 0)) {
3012 		local_irq_restore(flags);
3013 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3014 		return 1;
3015 	}
3016 	if (!use_master_clock) {
3017 		host_tsc = rdtsc();
3018 		kernel_ns = get_kvmclock_base_ns();
3019 	}
3020 
3021 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3022 
3023 	/*
3024 	 * We may have to catch up the TSC to match elapsed wall clock
3025 	 * time for two reasons, even if kvmclock is used.
3026 	 *   1) CPU could have been running below the maximum TSC rate
3027 	 *   2) Broken TSC compensation resets the base at each VCPU
3028 	 *      entry to avoid unknown leaps of TSC even when running
3029 	 *      again on the same CPU.  This may cause apparent elapsed
3030 	 *      time to disappear, and the guest to stand still or run
3031 	 *	very slowly.
3032 	 */
3033 	if (vcpu->tsc_catchup) {
3034 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3035 		if (tsc > tsc_timestamp) {
3036 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3037 			tsc_timestamp = tsc;
3038 		}
3039 	}
3040 
3041 	local_irq_restore(flags);
3042 
3043 	/* With all the info we got, fill in the values */
3044 
3045 	if (kvm_has_tsc_control)
3046 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3047 					    v->arch.l1_tsc_scaling_ratio);
3048 
3049 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3050 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3051 				   &vcpu->hv_clock.tsc_shift,
3052 				   &vcpu->hv_clock.tsc_to_system_mul);
3053 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3054 	}
3055 
3056 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3057 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3058 	vcpu->last_guest_tsc = tsc_timestamp;
3059 
3060 	/* If the host uses TSC clocksource, then it is stable */
3061 	pvclock_flags = 0;
3062 	if (use_master_clock)
3063 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3064 
3065 	vcpu->hv_clock.flags = pvclock_flags;
3066 
3067 	if (vcpu->pv_time_enabled)
3068 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3069 	if (vcpu->xen.vcpu_info_set)
3070 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3071 				       offsetof(struct compat_vcpu_info, time));
3072 	if (vcpu->xen.vcpu_time_info_set)
3073 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3074 	if (!v->vcpu_idx)
3075 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3076 	return 0;
3077 }
3078 
3079 /*
3080  * kvmclock updates which are isolated to a given vcpu, such as
3081  * vcpu->cpu migration, should not allow system_timestamp from
3082  * the rest of the vcpus to remain static. Otherwise ntp frequency
3083  * correction applies to one vcpu's system_timestamp but not
3084  * the others.
3085  *
3086  * So in those cases, request a kvmclock update for all vcpus.
3087  * We need to rate-limit these requests though, as they can
3088  * considerably slow guests that have a large number of vcpus.
3089  * The time for a remote vcpu to update its kvmclock is bound
3090  * by the delay we use to rate-limit the updates.
3091  */
3092 
3093 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3094 
3095 static void kvmclock_update_fn(struct work_struct *work)
3096 {
3097 	unsigned long i;
3098 	struct delayed_work *dwork = to_delayed_work(work);
3099 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3100 					   kvmclock_update_work);
3101 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3102 	struct kvm_vcpu *vcpu;
3103 
3104 	kvm_for_each_vcpu(i, vcpu, kvm) {
3105 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3106 		kvm_vcpu_kick(vcpu);
3107 	}
3108 }
3109 
3110 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3111 {
3112 	struct kvm *kvm = v->kvm;
3113 
3114 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3115 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3116 					KVMCLOCK_UPDATE_DELAY);
3117 }
3118 
3119 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3120 
3121 static void kvmclock_sync_fn(struct work_struct *work)
3122 {
3123 	struct delayed_work *dwork = to_delayed_work(work);
3124 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3125 					   kvmclock_sync_work);
3126 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3127 
3128 	if (!kvmclock_periodic_sync)
3129 		return;
3130 
3131 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3132 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3133 					KVMCLOCK_SYNC_PERIOD);
3134 }
3135 
3136 /*
3137  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3138  */
3139 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3140 {
3141 	/* McStatusWrEn enabled? */
3142 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3143 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3144 
3145 	return false;
3146 }
3147 
3148 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3149 {
3150 	u64 mcg_cap = vcpu->arch.mcg_cap;
3151 	unsigned bank_num = mcg_cap & 0xff;
3152 	u32 msr = msr_info->index;
3153 	u64 data = msr_info->data;
3154 
3155 	switch (msr) {
3156 	case MSR_IA32_MCG_STATUS:
3157 		vcpu->arch.mcg_status = data;
3158 		break;
3159 	case MSR_IA32_MCG_CTL:
3160 		if (!(mcg_cap & MCG_CTL_P) &&
3161 		    (data || !msr_info->host_initiated))
3162 			return 1;
3163 		if (data != 0 && data != ~(u64)0)
3164 			return 1;
3165 		vcpu->arch.mcg_ctl = data;
3166 		break;
3167 	default:
3168 		if (msr >= MSR_IA32_MC0_CTL &&
3169 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3170 			u32 offset = array_index_nospec(
3171 				msr - MSR_IA32_MC0_CTL,
3172 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3173 
3174 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3175 			 * some Linux kernels though clear bit 10 in bank 4 to
3176 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3177 			 * this to avoid an uncatched #GP in the guest
3178 			 */
3179 			if ((offset & 0x3) == 0 &&
3180 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3181 				return -1;
3182 
3183 			/* MCi_STATUS */
3184 			if (!msr_info->host_initiated &&
3185 			    (offset & 0x3) == 1 && data != 0) {
3186 				if (!can_set_mci_status(vcpu))
3187 					return -1;
3188 			}
3189 
3190 			vcpu->arch.mce_banks[offset] = data;
3191 			break;
3192 		}
3193 		return 1;
3194 	}
3195 	return 0;
3196 }
3197 
3198 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3199 {
3200 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3201 
3202 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3203 }
3204 
3205 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3206 {
3207 	gpa_t gpa = data & ~0x3f;
3208 
3209 	/* Bits 4:5 are reserved, Should be zero */
3210 	if (data & 0x30)
3211 		return 1;
3212 
3213 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3214 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3215 		return 1;
3216 
3217 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3218 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3219 		return 1;
3220 
3221 	if (!lapic_in_kernel(vcpu))
3222 		return data ? 1 : 0;
3223 
3224 	vcpu->arch.apf.msr_en_val = data;
3225 
3226 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3227 		kvm_clear_async_pf_completion_queue(vcpu);
3228 		kvm_async_pf_hash_reset(vcpu);
3229 		return 0;
3230 	}
3231 
3232 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3233 					sizeof(u64)))
3234 		return 1;
3235 
3236 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3237 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3238 
3239 	kvm_async_pf_wakeup_all(vcpu);
3240 
3241 	return 0;
3242 }
3243 
3244 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3245 {
3246 	/* Bits 8-63 are reserved */
3247 	if (data >> 8)
3248 		return 1;
3249 
3250 	if (!lapic_in_kernel(vcpu))
3251 		return 1;
3252 
3253 	vcpu->arch.apf.msr_int_val = data;
3254 
3255 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3256 
3257 	return 0;
3258 }
3259 
3260 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3261 {
3262 	vcpu->arch.pv_time_enabled = false;
3263 	vcpu->arch.time = 0;
3264 }
3265 
3266 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3267 {
3268 	++vcpu->stat.tlb_flush;
3269 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3270 }
3271 
3272 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3273 {
3274 	++vcpu->stat.tlb_flush;
3275 
3276 	if (!tdp_enabled) {
3277 		/*
3278 		 * A TLB flush on behalf of the guest is equivalent to
3279 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3280 		 * a forced sync of the shadow page tables.  Ensure all the
3281 		 * roots are synced and the guest TLB in hardware is clean.
3282 		 */
3283 		kvm_mmu_sync_roots(vcpu);
3284 		kvm_mmu_sync_prev_roots(vcpu);
3285 	}
3286 
3287 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3288 }
3289 
3290 
3291 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3292 {
3293 	++vcpu->stat.tlb_flush;
3294 	static_call(kvm_x86_tlb_flush_current)(vcpu);
3295 }
3296 
3297 /*
3298  * Service "local" TLB flush requests, which are specific to the current MMU
3299  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3300  * TLB flushes that are targeted at an MMU context also need to be serviced
3301  * prior before nested VM-Enter/VM-Exit.
3302  */
3303 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3304 {
3305 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3306 		kvm_vcpu_flush_tlb_current(vcpu);
3307 
3308 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3309 		kvm_vcpu_flush_tlb_guest(vcpu);
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3312 
3313 static void record_steal_time(struct kvm_vcpu *vcpu)
3314 {
3315 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3316 	struct kvm_steal_time __user *st;
3317 	struct kvm_memslots *slots;
3318 	u64 steal;
3319 	u32 version;
3320 
3321 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3322 		kvm_xen_runstate_set_running(vcpu);
3323 		return;
3324 	}
3325 
3326 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3327 		return;
3328 
3329 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3330 		return;
3331 
3332 	slots = kvm_memslots(vcpu->kvm);
3333 
3334 	if (unlikely(slots->generation != ghc->generation ||
3335 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3336 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3337 
3338 		/* We rely on the fact that it fits in a single page. */
3339 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3340 
3341 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3342 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3343 			return;
3344 	}
3345 
3346 	st = (struct kvm_steal_time __user *)ghc->hva;
3347 	/*
3348 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3349 	 * expensive IPIs.
3350 	 */
3351 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3352 		u8 st_preempted = 0;
3353 		int err = -EFAULT;
3354 
3355 		if (!user_access_begin(st, sizeof(*st)))
3356 			return;
3357 
3358 		asm volatile("1: xchgb %0, %2\n"
3359 			     "xor %1, %1\n"
3360 			     "2:\n"
3361 			     _ASM_EXTABLE_UA(1b, 2b)
3362 			     : "+q" (st_preempted),
3363 			       "+&r" (err),
3364 			       "+m" (st->preempted));
3365 		if (err)
3366 			goto out;
3367 
3368 		user_access_end();
3369 
3370 		vcpu->arch.st.preempted = 0;
3371 
3372 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3373 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3374 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3375 			kvm_vcpu_flush_tlb_guest(vcpu);
3376 
3377 		if (!user_access_begin(st, sizeof(*st)))
3378 			goto dirty;
3379 	} else {
3380 		if (!user_access_begin(st, sizeof(*st)))
3381 			return;
3382 
3383 		unsafe_put_user(0, &st->preempted, out);
3384 		vcpu->arch.st.preempted = 0;
3385 	}
3386 
3387 	unsafe_get_user(version, &st->version, out);
3388 	if (version & 1)
3389 		version += 1;  /* first time write, random junk */
3390 
3391 	version += 1;
3392 	unsafe_put_user(version, &st->version, out);
3393 
3394 	smp_wmb();
3395 
3396 	unsafe_get_user(steal, &st->steal, out);
3397 	steal += current->sched_info.run_delay -
3398 		vcpu->arch.st.last_steal;
3399 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3400 	unsafe_put_user(steal, &st->steal, out);
3401 
3402 	version += 1;
3403 	unsafe_put_user(version, &st->version, out);
3404 
3405  out:
3406 	user_access_end();
3407  dirty:
3408 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3409 }
3410 
3411 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3412 {
3413 	bool pr = false;
3414 	u32 msr = msr_info->index;
3415 	u64 data = msr_info->data;
3416 
3417 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3418 		return kvm_xen_write_hypercall_page(vcpu, data);
3419 
3420 	switch (msr) {
3421 	case MSR_AMD64_NB_CFG:
3422 	case MSR_IA32_UCODE_WRITE:
3423 	case MSR_VM_HSAVE_PA:
3424 	case MSR_AMD64_PATCH_LOADER:
3425 	case MSR_AMD64_BU_CFG2:
3426 	case MSR_AMD64_DC_CFG:
3427 	case MSR_F15H_EX_CFG:
3428 		break;
3429 
3430 	case MSR_IA32_UCODE_REV:
3431 		if (msr_info->host_initiated)
3432 			vcpu->arch.microcode_version = data;
3433 		break;
3434 	case MSR_IA32_ARCH_CAPABILITIES:
3435 		if (!msr_info->host_initiated)
3436 			return 1;
3437 		vcpu->arch.arch_capabilities = data;
3438 		break;
3439 	case MSR_IA32_PERF_CAPABILITIES: {
3440 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3441 
3442 		if (!msr_info->host_initiated)
3443 			return 1;
3444 		if (kvm_get_msr_feature(&msr_ent))
3445 			return 1;
3446 		if (data & ~msr_ent.data)
3447 			return 1;
3448 
3449 		vcpu->arch.perf_capabilities = data;
3450 
3451 		return 0;
3452 		}
3453 	case MSR_EFER:
3454 		return set_efer(vcpu, msr_info);
3455 	case MSR_K7_HWCR:
3456 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3457 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3458 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3459 
3460 		/* Handle McStatusWrEn */
3461 		if (data == BIT_ULL(18)) {
3462 			vcpu->arch.msr_hwcr = data;
3463 		} else if (data != 0) {
3464 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3465 				    data);
3466 			return 1;
3467 		}
3468 		break;
3469 	case MSR_FAM10H_MMIO_CONF_BASE:
3470 		if (data != 0) {
3471 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3472 				    "0x%llx\n", data);
3473 			return 1;
3474 		}
3475 		break;
3476 	case 0x200 ... 0x2ff:
3477 		return kvm_mtrr_set_msr(vcpu, msr, data);
3478 	case MSR_IA32_APICBASE:
3479 		return kvm_set_apic_base(vcpu, msr_info);
3480 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3481 		return kvm_x2apic_msr_write(vcpu, msr, data);
3482 	case MSR_IA32_TSC_DEADLINE:
3483 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3484 		break;
3485 	case MSR_IA32_TSC_ADJUST:
3486 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3487 			if (!msr_info->host_initiated) {
3488 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3489 				adjust_tsc_offset_guest(vcpu, adj);
3490 				/* Before back to guest, tsc_timestamp must be adjusted
3491 				 * as well, otherwise guest's percpu pvclock time could jump.
3492 				 */
3493 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3494 			}
3495 			vcpu->arch.ia32_tsc_adjust_msr = data;
3496 		}
3497 		break;
3498 	case MSR_IA32_MISC_ENABLE:
3499 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3500 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3501 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3502 				return 1;
3503 			vcpu->arch.ia32_misc_enable_msr = data;
3504 			kvm_update_cpuid_runtime(vcpu);
3505 		} else {
3506 			vcpu->arch.ia32_misc_enable_msr = data;
3507 		}
3508 		break;
3509 	case MSR_IA32_SMBASE:
3510 		if (!msr_info->host_initiated)
3511 			return 1;
3512 		vcpu->arch.smbase = data;
3513 		break;
3514 	case MSR_IA32_POWER_CTL:
3515 		vcpu->arch.msr_ia32_power_ctl = data;
3516 		break;
3517 	case MSR_IA32_TSC:
3518 		if (msr_info->host_initiated) {
3519 			kvm_synchronize_tsc(vcpu, data);
3520 		} else {
3521 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3522 			adjust_tsc_offset_guest(vcpu, adj);
3523 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3524 		}
3525 		break;
3526 	case MSR_IA32_XSS:
3527 		if (!msr_info->host_initiated &&
3528 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3529 			return 1;
3530 		/*
3531 		 * KVM supports exposing PT to the guest, but does not support
3532 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3533 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3534 		 */
3535 		if (data & ~supported_xss)
3536 			return 1;
3537 		vcpu->arch.ia32_xss = data;
3538 		kvm_update_cpuid_runtime(vcpu);
3539 		break;
3540 	case MSR_SMI_COUNT:
3541 		if (!msr_info->host_initiated)
3542 			return 1;
3543 		vcpu->arch.smi_count = data;
3544 		break;
3545 	case MSR_KVM_WALL_CLOCK_NEW:
3546 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3547 			return 1;
3548 
3549 		vcpu->kvm->arch.wall_clock = data;
3550 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3551 		break;
3552 	case MSR_KVM_WALL_CLOCK:
3553 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3554 			return 1;
3555 
3556 		vcpu->kvm->arch.wall_clock = data;
3557 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3558 		break;
3559 	case MSR_KVM_SYSTEM_TIME_NEW:
3560 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3561 			return 1;
3562 
3563 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3564 		break;
3565 	case MSR_KVM_SYSTEM_TIME:
3566 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3567 			return 1;
3568 
3569 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3570 		break;
3571 	case MSR_KVM_ASYNC_PF_EN:
3572 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3573 			return 1;
3574 
3575 		if (kvm_pv_enable_async_pf(vcpu, data))
3576 			return 1;
3577 		break;
3578 	case MSR_KVM_ASYNC_PF_INT:
3579 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3580 			return 1;
3581 
3582 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3583 			return 1;
3584 		break;
3585 	case MSR_KVM_ASYNC_PF_ACK:
3586 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3587 			return 1;
3588 		if (data & 0x1) {
3589 			vcpu->arch.apf.pageready_pending = false;
3590 			kvm_check_async_pf_completion(vcpu);
3591 		}
3592 		break;
3593 	case MSR_KVM_STEAL_TIME:
3594 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3595 			return 1;
3596 
3597 		if (unlikely(!sched_info_on()))
3598 			return 1;
3599 
3600 		if (data & KVM_STEAL_RESERVED_MASK)
3601 			return 1;
3602 
3603 		vcpu->arch.st.msr_val = data;
3604 
3605 		if (!(data & KVM_MSR_ENABLED))
3606 			break;
3607 
3608 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3609 
3610 		break;
3611 	case MSR_KVM_PV_EOI_EN:
3612 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3613 			return 1;
3614 
3615 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3616 			return 1;
3617 		break;
3618 
3619 	case MSR_KVM_POLL_CONTROL:
3620 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3621 			return 1;
3622 
3623 		/* only enable bit supported */
3624 		if (data & (-1ULL << 1))
3625 			return 1;
3626 
3627 		vcpu->arch.msr_kvm_poll_control = data;
3628 		break;
3629 
3630 	case MSR_IA32_MCG_CTL:
3631 	case MSR_IA32_MCG_STATUS:
3632 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3633 		return set_msr_mce(vcpu, msr_info);
3634 
3635 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3636 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3637 		pr = true;
3638 		fallthrough;
3639 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3640 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3641 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3642 			return kvm_pmu_set_msr(vcpu, msr_info);
3643 
3644 		if (pr || data != 0)
3645 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3646 				    "0x%x data 0x%llx\n", msr, data);
3647 		break;
3648 	case MSR_K7_CLK_CTL:
3649 		/*
3650 		 * Ignore all writes to this no longer documented MSR.
3651 		 * Writes are only relevant for old K7 processors,
3652 		 * all pre-dating SVM, but a recommended workaround from
3653 		 * AMD for these chips. It is possible to specify the
3654 		 * affected processor models on the command line, hence
3655 		 * the need to ignore the workaround.
3656 		 */
3657 		break;
3658 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3659 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3660 	case HV_X64_MSR_SYNDBG_OPTIONS:
3661 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3662 	case HV_X64_MSR_CRASH_CTL:
3663 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3664 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3665 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3666 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3667 		return kvm_hv_set_msr_common(vcpu, msr, data,
3668 					     msr_info->host_initiated);
3669 	case MSR_IA32_BBL_CR_CTL3:
3670 		/* Drop writes to this legacy MSR -- see rdmsr
3671 		 * counterpart for further detail.
3672 		 */
3673 		if (report_ignored_msrs)
3674 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3675 				msr, data);
3676 		break;
3677 	case MSR_AMD64_OSVW_ID_LENGTH:
3678 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3679 			return 1;
3680 		vcpu->arch.osvw.length = data;
3681 		break;
3682 	case MSR_AMD64_OSVW_STATUS:
3683 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3684 			return 1;
3685 		vcpu->arch.osvw.status = data;
3686 		break;
3687 	case MSR_PLATFORM_INFO:
3688 		if (!msr_info->host_initiated ||
3689 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3690 		     cpuid_fault_enabled(vcpu)))
3691 			return 1;
3692 		vcpu->arch.msr_platform_info = data;
3693 		break;
3694 	case MSR_MISC_FEATURES_ENABLES:
3695 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3696 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3697 		     !supports_cpuid_fault(vcpu)))
3698 			return 1;
3699 		vcpu->arch.msr_misc_features_enables = data;
3700 		break;
3701 #ifdef CONFIG_X86_64
3702 	case MSR_IA32_XFD:
3703 		if (!msr_info->host_initiated &&
3704 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3705 			return 1;
3706 
3707 		if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3708 			     vcpu->arch.guest_supported_xcr0))
3709 			return 1;
3710 
3711 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3712 		break;
3713 	case MSR_IA32_XFD_ERR:
3714 		if (!msr_info->host_initiated &&
3715 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3716 			return 1;
3717 
3718 		if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3719 			     vcpu->arch.guest_supported_xcr0))
3720 			return 1;
3721 
3722 		vcpu->arch.guest_fpu.xfd_err = data;
3723 		break;
3724 #endif
3725 	default:
3726 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3727 			return kvm_pmu_set_msr(vcpu, msr_info);
3728 		return KVM_MSR_RET_INVALID;
3729 	}
3730 	return 0;
3731 }
3732 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3733 
3734 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3735 {
3736 	u64 data;
3737 	u64 mcg_cap = vcpu->arch.mcg_cap;
3738 	unsigned bank_num = mcg_cap & 0xff;
3739 
3740 	switch (msr) {
3741 	case MSR_IA32_P5_MC_ADDR:
3742 	case MSR_IA32_P5_MC_TYPE:
3743 		data = 0;
3744 		break;
3745 	case MSR_IA32_MCG_CAP:
3746 		data = vcpu->arch.mcg_cap;
3747 		break;
3748 	case MSR_IA32_MCG_CTL:
3749 		if (!(mcg_cap & MCG_CTL_P) && !host)
3750 			return 1;
3751 		data = vcpu->arch.mcg_ctl;
3752 		break;
3753 	case MSR_IA32_MCG_STATUS:
3754 		data = vcpu->arch.mcg_status;
3755 		break;
3756 	default:
3757 		if (msr >= MSR_IA32_MC0_CTL &&
3758 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3759 			u32 offset = array_index_nospec(
3760 				msr - MSR_IA32_MC0_CTL,
3761 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3762 
3763 			data = vcpu->arch.mce_banks[offset];
3764 			break;
3765 		}
3766 		return 1;
3767 	}
3768 	*pdata = data;
3769 	return 0;
3770 }
3771 
3772 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3773 {
3774 	switch (msr_info->index) {
3775 	case MSR_IA32_PLATFORM_ID:
3776 	case MSR_IA32_EBL_CR_POWERON:
3777 	case MSR_IA32_LASTBRANCHFROMIP:
3778 	case MSR_IA32_LASTBRANCHTOIP:
3779 	case MSR_IA32_LASTINTFROMIP:
3780 	case MSR_IA32_LASTINTTOIP:
3781 	case MSR_AMD64_SYSCFG:
3782 	case MSR_K8_TSEG_ADDR:
3783 	case MSR_K8_TSEG_MASK:
3784 	case MSR_VM_HSAVE_PA:
3785 	case MSR_K8_INT_PENDING_MSG:
3786 	case MSR_AMD64_NB_CFG:
3787 	case MSR_FAM10H_MMIO_CONF_BASE:
3788 	case MSR_AMD64_BU_CFG2:
3789 	case MSR_IA32_PERF_CTL:
3790 	case MSR_AMD64_DC_CFG:
3791 	case MSR_F15H_EX_CFG:
3792 	/*
3793 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3794 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3795 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3796 	 * so for existing CPU-specific MSRs.
3797 	 */
3798 	case MSR_RAPL_POWER_UNIT:
3799 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3800 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3801 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3802 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3803 		msr_info->data = 0;
3804 		break;
3805 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3806 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3807 			return kvm_pmu_get_msr(vcpu, msr_info);
3808 		if (!msr_info->host_initiated)
3809 			return 1;
3810 		msr_info->data = 0;
3811 		break;
3812 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3813 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3814 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3815 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3816 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3817 			return kvm_pmu_get_msr(vcpu, msr_info);
3818 		msr_info->data = 0;
3819 		break;
3820 	case MSR_IA32_UCODE_REV:
3821 		msr_info->data = vcpu->arch.microcode_version;
3822 		break;
3823 	case MSR_IA32_ARCH_CAPABILITIES:
3824 		if (!msr_info->host_initiated &&
3825 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3826 			return 1;
3827 		msr_info->data = vcpu->arch.arch_capabilities;
3828 		break;
3829 	case MSR_IA32_PERF_CAPABILITIES:
3830 		if (!msr_info->host_initiated &&
3831 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3832 			return 1;
3833 		msr_info->data = vcpu->arch.perf_capabilities;
3834 		break;
3835 	case MSR_IA32_POWER_CTL:
3836 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3837 		break;
3838 	case MSR_IA32_TSC: {
3839 		/*
3840 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3841 		 * even when not intercepted. AMD manual doesn't explicitly
3842 		 * state this but appears to behave the same.
3843 		 *
3844 		 * On userspace reads and writes, however, we unconditionally
3845 		 * return L1's TSC value to ensure backwards-compatible
3846 		 * behavior for migration.
3847 		 */
3848 		u64 offset, ratio;
3849 
3850 		if (msr_info->host_initiated) {
3851 			offset = vcpu->arch.l1_tsc_offset;
3852 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3853 		} else {
3854 			offset = vcpu->arch.tsc_offset;
3855 			ratio = vcpu->arch.tsc_scaling_ratio;
3856 		}
3857 
3858 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3859 		break;
3860 	}
3861 	case MSR_MTRRcap:
3862 	case 0x200 ... 0x2ff:
3863 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3864 	case 0xcd: /* fsb frequency */
3865 		msr_info->data = 3;
3866 		break;
3867 		/*
3868 		 * MSR_EBC_FREQUENCY_ID
3869 		 * Conservative value valid for even the basic CPU models.
3870 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3871 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3872 		 * and 266MHz for model 3, or 4. Set Core Clock
3873 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3874 		 * 31:24) even though these are only valid for CPU
3875 		 * models > 2, however guests may end up dividing or
3876 		 * multiplying by zero otherwise.
3877 		 */
3878 	case MSR_EBC_FREQUENCY_ID:
3879 		msr_info->data = 1 << 24;
3880 		break;
3881 	case MSR_IA32_APICBASE:
3882 		msr_info->data = kvm_get_apic_base(vcpu);
3883 		break;
3884 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3885 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3886 	case MSR_IA32_TSC_DEADLINE:
3887 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3888 		break;
3889 	case MSR_IA32_TSC_ADJUST:
3890 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3891 		break;
3892 	case MSR_IA32_MISC_ENABLE:
3893 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3894 		break;
3895 	case MSR_IA32_SMBASE:
3896 		if (!msr_info->host_initiated)
3897 			return 1;
3898 		msr_info->data = vcpu->arch.smbase;
3899 		break;
3900 	case MSR_SMI_COUNT:
3901 		msr_info->data = vcpu->arch.smi_count;
3902 		break;
3903 	case MSR_IA32_PERF_STATUS:
3904 		/* TSC increment by tick */
3905 		msr_info->data = 1000ULL;
3906 		/* CPU multiplier */
3907 		msr_info->data |= (((uint64_t)4ULL) << 40);
3908 		break;
3909 	case MSR_EFER:
3910 		msr_info->data = vcpu->arch.efer;
3911 		break;
3912 	case MSR_KVM_WALL_CLOCK:
3913 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3914 			return 1;
3915 
3916 		msr_info->data = vcpu->kvm->arch.wall_clock;
3917 		break;
3918 	case MSR_KVM_WALL_CLOCK_NEW:
3919 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3920 			return 1;
3921 
3922 		msr_info->data = vcpu->kvm->arch.wall_clock;
3923 		break;
3924 	case MSR_KVM_SYSTEM_TIME:
3925 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3926 			return 1;
3927 
3928 		msr_info->data = vcpu->arch.time;
3929 		break;
3930 	case MSR_KVM_SYSTEM_TIME_NEW:
3931 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3932 			return 1;
3933 
3934 		msr_info->data = vcpu->arch.time;
3935 		break;
3936 	case MSR_KVM_ASYNC_PF_EN:
3937 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3938 			return 1;
3939 
3940 		msr_info->data = vcpu->arch.apf.msr_en_val;
3941 		break;
3942 	case MSR_KVM_ASYNC_PF_INT:
3943 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3944 			return 1;
3945 
3946 		msr_info->data = vcpu->arch.apf.msr_int_val;
3947 		break;
3948 	case MSR_KVM_ASYNC_PF_ACK:
3949 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3950 			return 1;
3951 
3952 		msr_info->data = 0;
3953 		break;
3954 	case MSR_KVM_STEAL_TIME:
3955 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3956 			return 1;
3957 
3958 		msr_info->data = vcpu->arch.st.msr_val;
3959 		break;
3960 	case MSR_KVM_PV_EOI_EN:
3961 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3962 			return 1;
3963 
3964 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3965 		break;
3966 	case MSR_KVM_POLL_CONTROL:
3967 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3968 			return 1;
3969 
3970 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3971 		break;
3972 	case MSR_IA32_P5_MC_ADDR:
3973 	case MSR_IA32_P5_MC_TYPE:
3974 	case MSR_IA32_MCG_CAP:
3975 	case MSR_IA32_MCG_CTL:
3976 	case MSR_IA32_MCG_STATUS:
3977 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3978 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3979 				   msr_info->host_initiated);
3980 	case MSR_IA32_XSS:
3981 		if (!msr_info->host_initiated &&
3982 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3983 			return 1;
3984 		msr_info->data = vcpu->arch.ia32_xss;
3985 		break;
3986 	case MSR_K7_CLK_CTL:
3987 		/*
3988 		 * Provide expected ramp-up count for K7. All other
3989 		 * are set to zero, indicating minimum divisors for
3990 		 * every field.
3991 		 *
3992 		 * This prevents guest kernels on AMD host with CPU
3993 		 * type 6, model 8 and higher from exploding due to
3994 		 * the rdmsr failing.
3995 		 */
3996 		msr_info->data = 0x20000000;
3997 		break;
3998 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3999 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4000 	case HV_X64_MSR_SYNDBG_OPTIONS:
4001 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4002 	case HV_X64_MSR_CRASH_CTL:
4003 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4004 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4005 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4006 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4007 		return kvm_hv_get_msr_common(vcpu,
4008 					     msr_info->index, &msr_info->data,
4009 					     msr_info->host_initiated);
4010 	case MSR_IA32_BBL_CR_CTL3:
4011 		/* This legacy MSR exists but isn't fully documented in current
4012 		 * silicon.  It is however accessed by winxp in very narrow
4013 		 * scenarios where it sets bit #19, itself documented as
4014 		 * a "reserved" bit.  Best effort attempt to source coherent
4015 		 * read data here should the balance of the register be
4016 		 * interpreted by the guest:
4017 		 *
4018 		 * L2 cache control register 3: 64GB range, 256KB size,
4019 		 * enabled, latency 0x1, configured
4020 		 */
4021 		msr_info->data = 0xbe702111;
4022 		break;
4023 	case MSR_AMD64_OSVW_ID_LENGTH:
4024 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4025 			return 1;
4026 		msr_info->data = vcpu->arch.osvw.length;
4027 		break;
4028 	case MSR_AMD64_OSVW_STATUS:
4029 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4030 			return 1;
4031 		msr_info->data = vcpu->arch.osvw.status;
4032 		break;
4033 	case MSR_PLATFORM_INFO:
4034 		if (!msr_info->host_initiated &&
4035 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4036 			return 1;
4037 		msr_info->data = vcpu->arch.msr_platform_info;
4038 		break;
4039 	case MSR_MISC_FEATURES_ENABLES:
4040 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4041 		break;
4042 	case MSR_K7_HWCR:
4043 		msr_info->data = vcpu->arch.msr_hwcr;
4044 		break;
4045 #ifdef CONFIG_X86_64
4046 	case MSR_IA32_XFD:
4047 		if (!msr_info->host_initiated &&
4048 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4049 			return 1;
4050 
4051 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4052 		break;
4053 	case MSR_IA32_XFD_ERR:
4054 		if (!msr_info->host_initiated &&
4055 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4056 			return 1;
4057 
4058 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4059 		break;
4060 #endif
4061 	default:
4062 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4063 			return kvm_pmu_get_msr(vcpu, msr_info);
4064 		return KVM_MSR_RET_INVALID;
4065 	}
4066 	return 0;
4067 }
4068 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4069 
4070 /*
4071  * Read or write a bunch of msrs. All parameters are kernel addresses.
4072  *
4073  * @return number of msrs set successfully.
4074  */
4075 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4076 		    struct kvm_msr_entry *entries,
4077 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4078 				  unsigned index, u64 *data))
4079 {
4080 	int i;
4081 
4082 	for (i = 0; i < msrs->nmsrs; ++i)
4083 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4084 			break;
4085 
4086 	return i;
4087 }
4088 
4089 /*
4090  * Read or write a bunch of msrs. Parameters are user addresses.
4091  *
4092  * @return number of msrs set successfully.
4093  */
4094 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4095 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4096 				unsigned index, u64 *data),
4097 		  int writeback)
4098 {
4099 	struct kvm_msrs msrs;
4100 	struct kvm_msr_entry *entries;
4101 	int r, n;
4102 	unsigned size;
4103 
4104 	r = -EFAULT;
4105 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4106 		goto out;
4107 
4108 	r = -E2BIG;
4109 	if (msrs.nmsrs >= MAX_IO_MSRS)
4110 		goto out;
4111 
4112 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4113 	entries = memdup_user(user_msrs->entries, size);
4114 	if (IS_ERR(entries)) {
4115 		r = PTR_ERR(entries);
4116 		goto out;
4117 	}
4118 
4119 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4120 	if (r < 0)
4121 		goto out_free;
4122 
4123 	r = -EFAULT;
4124 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4125 		goto out_free;
4126 
4127 	r = n;
4128 
4129 out_free:
4130 	kfree(entries);
4131 out:
4132 	return r;
4133 }
4134 
4135 static inline bool kvm_can_mwait_in_guest(void)
4136 {
4137 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4138 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4139 		boot_cpu_has(X86_FEATURE_ARAT);
4140 }
4141 
4142 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4143 					    struct kvm_cpuid2 __user *cpuid_arg)
4144 {
4145 	struct kvm_cpuid2 cpuid;
4146 	int r;
4147 
4148 	r = -EFAULT;
4149 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4150 		return r;
4151 
4152 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4153 	if (r)
4154 		return r;
4155 
4156 	r = -EFAULT;
4157 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4158 		return r;
4159 
4160 	return 0;
4161 }
4162 
4163 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4164 {
4165 	int r = 0;
4166 
4167 	switch (ext) {
4168 	case KVM_CAP_IRQCHIP:
4169 	case KVM_CAP_HLT:
4170 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4171 	case KVM_CAP_SET_TSS_ADDR:
4172 	case KVM_CAP_EXT_CPUID:
4173 	case KVM_CAP_EXT_EMUL_CPUID:
4174 	case KVM_CAP_CLOCKSOURCE:
4175 	case KVM_CAP_PIT:
4176 	case KVM_CAP_NOP_IO_DELAY:
4177 	case KVM_CAP_MP_STATE:
4178 	case KVM_CAP_SYNC_MMU:
4179 	case KVM_CAP_USER_NMI:
4180 	case KVM_CAP_REINJECT_CONTROL:
4181 	case KVM_CAP_IRQ_INJECT_STATUS:
4182 	case KVM_CAP_IOEVENTFD:
4183 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4184 	case KVM_CAP_PIT2:
4185 	case KVM_CAP_PIT_STATE2:
4186 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4187 	case KVM_CAP_VCPU_EVENTS:
4188 	case KVM_CAP_HYPERV:
4189 	case KVM_CAP_HYPERV_VAPIC:
4190 	case KVM_CAP_HYPERV_SPIN:
4191 	case KVM_CAP_HYPERV_SYNIC:
4192 	case KVM_CAP_HYPERV_SYNIC2:
4193 	case KVM_CAP_HYPERV_VP_INDEX:
4194 	case KVM_CAP_HYPERV_EVENTFD:
4195 	case KVM_CAP_HYPERV_TLBFLUSH:
4196 	case KVM_CAP_HYPERV_SEND_IPI:
4197 	case KVM_CAP_HYPERV_CPUID:
4198 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4199 	case KVM_CAP_SYS_HYPERV_CPUID:
4200 	case KVM_CAP_PCI_SEGMENT:
4201 	case KVM_CAP_DEBUGREGS:
4202 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4203 	case KVM_CAP_XSAVE:
4204 	case KVM_CAP_ASYNC_PF:
4205 	case KVM_CAP_ASYNC_PF_INT:
4206 	case KVM_CAP_GET_TSC_KHZ:
4207 	case KVM_CAP_KVMCLOCK_CTRL:
4208 	case KVM_CAP_READONLY_MEM:
4209 	case KVM_CAP_HYPERV_TIME:
4210 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4211 	case KVM_CAP_TSC_DEADLINE_TIMER:
4212 	case KVM_CAP_DISABLE_QUIRKS:
4213 	case KVM_CAP_SET_BOOT_CPU_ID:
4214  	case KVM_CAP_SPLIT_IRQCHIP:
4215 	case KVM_CAP_IMMEDIATE_EXIT:
4216 	case KVM_CAP_PMU_EVENT_FILTER:
4217 	case KVM_CAP_GET_MSR_FEATURES:
4218 	case KVM_CAP_MSR_PLATFORM_INFO:
4219 	case KVM_CAP_EXCEPTION_PAYLOAD:
4220 	case KVM_CAP_SET_GUEST_DEBUG:
4221 	case KVM_CAP_LAST_CPU:
4222 	case KVM_CAP_X86_USER_SPACE_MSR:
4223 	case KVM_CAP_X86_MSR_FILTER:
4224 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4225 #ifdef CONFIG_X86_SGX_KVM
4226 	case KVM_CAP_SGX_ATTRIBUTE:
4227 #endif
4228 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4229 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4230 	case KVM_CAP_SREGS2:
4231 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4232 	case KVM_CAP_VCPU_ATTRIBUTES:
4233 	case KVM_CAP_SYS_ATTRIBUTES:
4234 		r = 1;
4235 		break;
4236 	case KVM_CAP_EXIT_HYPERCALL:
4237 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4238 		break;
4239 	case KVM_CAP_SET_GUEST_DEBUG2:
4240 		return KVM_GUESTDBG_VALID_MASK;
4241 #ifdef CONFIG_KVM_XEN
4242 	case KVM_CAP_XEN_HVM:
4243 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4244 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4245 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4246 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4247 		if (sched_info_on())
4248 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4249 		break;
4250 #endif
4251 	case KVM_CAP_SYNC_REGS:
4252 		r = KVM_SYNC_X86_VALID_FIELDS;
4253 		break;
4254 	case KVM_CAP_ADJUST_CLOCK:
4255 		r = KVM_CLOCK_VALID_FLAGS;
4256 		break;
4257 	case KVM_CAP_X86_DISABLE_EXITS:
4258 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4259 		      KVM_X86_DISABLE_EXITS_CSTATE;
4260 		if(kvm_can_mwait_in_guest())
4261 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4262 		break;
4263 	case KVM_CAP_X86_SMM:
4264 		/* SMBASE is usually relocated above 1M on modern chipsets,
4265 		 * and SMM handlers might indeed rely on 4G segment limits,
4266 		 * so do not report SMM to be available if real mode is
4267 		 * emulated via vm86 mode.  Still, do not go to great lengths
4268 		 * to avoid userspace's usage of the feature, because it is a
4269 		 * fringe case that is not enabled except via specific settings
4270 		 * of the module parameters.
4271 		 */
4272 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4273 		break;
4274 	case KVM_CAP_VAPIC:
4275 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4276 		break;
4277 	case KVM_CAP_NR_VCPUS:
4278 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4279 		break;
4280 	case KVM_CAP_MAX_VCPUS:
4281 		r = KVM_MAX_VCPUS;
4282 		break;
4283 	case KVM_CAP_MAX_VCPU_ID:
4284 		r = KVM_MAX_VCPU_IDS;
4285 		break;
4286 	case KVM_CAP_PV_MMU:	/* obsolete */
4287 		r = 0;
4288 		break;
4289 	case KVM_CAP_MCE:
4290 		r = KVM_MAX_MCE_BANKS;
4291 		break;
4292 	case KVM_CAP_XCRS:
4293 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4294 		break;
4295 	case KVM_CAP_TSC_CONTROL:
4296 		r = kvm_has_tsc_control;
4297 		break;
4298 	case KVM_CAP_X2APIC_API:
4299 		r = KVM_X2APIC_API_VALID_FLAGS;
4300 		break;
4301 	case KVM_CAP_NESTED_STATE:
4302 		r = kvm_x86_ops.nested_ops->get_state ?
4303 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4304 		break;
4305 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4306 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4307 		break;
4308 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4309 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4310 		break;
4311 	case KVM_CAP_SMALLER_MAXPHYADDR:
4312 		r = (int) allow_smaller_maxphyaddr;
4313 		break;
4314 	case KVM_CAP_STEAL_TIME:
4315 		r = sched_info_on();
4316 		break;
4317 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4318 		if (kvm_has_bus_lock_exit)
4319 			r = KVM_BUS_LOCK_DETECTION_OFF |
4320 			    KVM_BUS_LOCK_DETECTION_EXIT;
4321 		else
4322 			r = 0;
4323 		break;
4324 	case KVM_CAP_XSAVE2: {
4325 		u64 guest_perm = xstate_get_guest_group_perm();
4326 
4327 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4328 		if (r < sizeof(struct kvm_xsave))
4329 			r = sizeof(struct kvm_xsave);
4330 		break;
4331 	}
4332 	default:
4333 		break;
4334 	}
4335 	return r;
4336 }
4337 
4338 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4339 {
4340 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4341 
4342 	if ((u64)(unsigned long)uaddr != attr->addr)
4343 		return ERR_PTR(-EFAULT);
4344 	return uaddr;
4345 }
4346 
4347 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4348 {
4349 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4350 
4351 	if (attr->group)
4352 		return -ENXIO;
4353 
4354 	if (IS_ERR(uaddr))
4355 		return PTR_ERR(uaddr);
4356 
4357 	switch (attr->attr) {
4358 	case KVM_X86_XCOMP_GUEST_SUPP:
4359 		if (put_user(supported_xcr0, uaddr))
4360 			return -EFAULT;
4361 		return 0;
4362 	default:
4363 		return -ENXIO;
4364 		break;
4365 	}
4366 }
4367 
4368 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4369 {
4370 	if (attr->group)
4371 		return -ENXIO;
4372 
4373 	switch (attr->attr) {
4374 	case KVM_X86_XCOMP_GUEST_SUPP:
4375 		return 0;
4376 	default:
4377 		return -ENXIO;
4378 	}
4379 }
4380 
4381 long kvm_arch_dev_ioctl(struct file *filp,
4382 			unsigned int ioctl, unsigned long arg)
4383 {
4384 	void __user *argp = (void __user *)arg;
4385 	long r;
4386 
4387 	switch (ioctl) {
4388 	case KVM_GET_MSR_INDEX_LIST: {
4389 		struct kvm_msr_list __user *user_msr_list = argp;
4390 		struct kvm_msr_list msr_list;
4391 		unsigned n;
4392 
4393 		r = -EFAULT;
4394 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4395 			goto out;
4396 		n = msr_list.nmsrs;
4397 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4398 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4399 			goto out;
4400 		r = -E2BIG;
4401 		if (n < msr_list.nmsrs)
4402 			goto out;
4403 		r = -EFAULT;
4404 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4405 				 num_msrs_to_save * sizeof(u32)))
4406 			goto out;
4407 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4408 				 &emulated_msrs,
4409 				 num_emulated_msrs * sizeof(u32)))
4410 			goto out;
4411 		r = 0;
4412 		break;
4413 	}
4414 	case KVM_GET_SUPPORTED_CPUID:
4415 	case KVM_GET_EMULATED_CPUID: {
4416 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4417 		struct kvm_cpuid2 cpuid;
4418 
4419 		r = -EFAULT;
4420 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4421 			goto out;
4422 
4423 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4424 					    ioctl);
4425 		if (r)
4426 			goto out;
4427 
4428 		r = -EFAULT;
4429 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4430 			goto out;
4431 		r = 0;
4432 		break;
4433 	}
4434 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4435 		r = -EFAULT;
4436 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4437 				 sizeof(kvm_mce_cap_supported)))
4438 			goto out;
4439 		r = 0;
4440 		break;
4441 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4442 		struct kvm_msr_list __user *user_msr_list = argp;
4443 		struct kvm_msr_list msr_list;
4444 		unsigned int n;
4445 
4446 		r = -EFAULT;
4447 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4448 			goto out;
4449 		n = msr_list.nmsrs;
4450 		msr_list.nmsrs = num_msr_based_features;
4451 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4452 			goto out;
4453 		r = -E2BIG;
4454 		if (n < msr_list.nmsrs)
4455 			goto out;
4456 		r = -EFAULT;
4457 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4458 				 num_msr_based_features * sizeof(u32)))
4459 			goto out;
4460 		r = 0;
4461 		break;
4462 	}
4463 	case KVM_GET_MSRS:
4464 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4465 		break;
4466 	case KVM_GET_SUPPORTED_HV_CPUID:
4467 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4468 		break;
4469 	case KVM_GET_DEVICE_ATTR: {
4470 		struct kvm_device_attr attr;
4471 		r = -EFAULT;
4472 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4473 			break;
4474 		r = kvm_x86_dev_get_attr(&attr);
4475 		break;
4476 	}
4477 	case KVM_HAS_DEVICE_ATTR: {
4478 		struct kvm_device_attr attr;
4479 		r = -EFAULT;
4480 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4481 			break;
4482 		r = kvm_x86_dev_has_attr(&attr);
4483 		break;
4484 	}
4485 	default:
4486 		r = -EINVAL;
4487 		break;
4488 	}
4489 out:
4490 	return r;
4491 }
4492 
4493 static void wbinvd_ipi(void *garbage)
4494 {
4495 	wbinvd();
4496 }
4497 
4498 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4499 {
4500 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4501 }
4502 
4503 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4504 {
4505 	/* Address WBINVD may be executed by guest */
4506 	if (need_emulate_wbinvd(vcpu)) {
4507 		if (static_call(kvm_x86_has_wbinvd_exit)())
4508 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4509 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4510 			smp_call_function_single(vcpu->cpu,
4511 					wbinvd_ipi, NULL, 1);
4512 	}
4513 
4514 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4515 
4516 	/* Save host pkru register if supported */
4517 	vcpu->arch.host_pkru = read_pkru();
4518 
4519 	/* Apply any externally detected TSC adjustments (due to suspend) */
4520 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4521 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4522 		vcpu->arch.tsc_offset_adjustment = 0;
4523 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4524 	}
4525 
4526 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4527 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4528 				rdtsc() - vcpu->arch.last_host_tsc;
4529 		if (tsc_delta < 0)
4530 			mark_tsc_unstable("KVM discovered backwards TSC");
4531 
4532 		if (kvm_check_tsc_unstable()) {
4533 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4534 						vcpu->arch.last_guest_tsc);
4535 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4536 			vcpu->arch.tsc_catchup = 1;
4537 		}
4538 
4539 		if (kvm_lapic_hv_timer_in_use(vcpu))
4540 			kvm_lapic_restart_hv_timer(vcpu);
4541 
4542 		/*
4543 		 * On a host with synchronized TSC, there is no need to update
4544 		 * kvmclock on vcpu->cpu migration
4545 		 */
4546 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4547 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4548 		if (vcpu->cpu != cpu)
4549 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4550 		vcpu->cpu = cpu;
4551 	}
4552 
4553 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4554 }
4555 
4556 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4557 {
4558 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4559 	struct kvm_steal_time __user *st;
4560 	struct kvm_memslots *slots;
4561 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4562 
4563 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4564 		return;
4565 
4566 	if (vcpu->arch.st.preempted)
4567 		return;
4568 
4569 	/* This happens on process exit */
4570 	if (unlikely(current->mm != vcpu->kvm->mm))
4571 		return;
4572 
4573 	slots = kvm_memslots(vcpu->kvm);
4574 
4575 	if (unlikely(slots->generation != ghc->generation ||
4576 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4577 		return;
4578 
4579 	st = (struct kvm_steal_time __user *)ghc->hva;
4580 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4581 
4582 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4583 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4584 
4585 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4586 }
4587 
4588 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4589 {
4590 	int idx;
4591 
4592 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4593 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4594 
4595 	/*
4596 	 * Take the srcu lock as memslots will be accessed to check the gfn
4597 	 * cache generation against the memslots generation.
4598 	 */
4599 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4600 	if (kvm_xen_msr_enabled(vcpu->kvm))
4601 		kvm_xen_runstate_set_preempted(vcpu);
4602 	else
4603 		kvm_steal_time_set_preempted(vcpu);
4604 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4605 
4606 	static_call(kvm_x86_vcpu_put)(vcpu);
4607 	vcpu->arch.last_host_tsc = rdtsc();
4608 }
4609 
4610 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4611 				    struct kvm_lapic_state *s)
4612 {
4613 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4614 
4615 	return kvm_apic_get_state(vcpu, s);
4616 }
4617 
4618 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4619 				    struct kvm_lapic_state *s)
4620 {
4621 	int r;
4622 
4623 	r = kvm_apic_set_state(vcpu, s);
4624 	if (r)
4625 		return r;
4626 	update_cr8_intercept(vcpu);
4627 
4628 	return 0;
4629 }
4630 
4631 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4632 {
4633 	/*
4634 	 * We can accept userspace's request for interrupt injection
4635 	 * as long as we have a place to store the interrupt number.
4636 	 * The actual injection will happen when the CPU is able to
4637 	 * deliver the interrupt.
4638 	 */
4639 	if (kvm_cpu_has_extint(vcpu))
4640 		return false;
4641 
4642 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4643 	return (!lapic_in_kernel(vcpu) ||
4644 		kvm_apic_accept_pic_intr(vcpu));
4645 }
4646 
4647 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4648 {
4649 	/*
4650 	 * Do not cause an interrupt window exit if an exception
4651 	 * is pending or an event needs reinjection; userspace
4652 	 * might want to inject the interrupt manually using KVM_SET_REGS
4653 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4654 	 * instruction boundary and with no events half-injected.
4655 	 */
4656 	return (kvm_arch_interrupt_allowed(vcpu) &&
4657 		kvm_cpu_accept_dm_intr(vcpu) &&
4658 		!kvm_event_needs_reinjection(vcpu) &&
4659 		!vcpu->arch.exception.pending);
4660 }
4661 
4662 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4663 				    struct kvm_interrupt *irq)
4664 {
4665 	if (irq->irq >= KVM_NR_INTERRUPTS)
4666 		return -EINVAL;
4667 
4668 	if (!irqchip_in_kernel(vcpu->kvm)) {
4669 		kvm_queue_interrupt(vcpu, irq->irq, false);
4670 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4671 		return 0;
4672 	}
4673 
4674 	/*
4675 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4676 	 * fail for in-kernel 8259.
4677 	 */
4678 	if (pic_in_kernel(vcpu->kvm))
4679 		return -ENXIO;
4680 
4681 	if (vcpu->arch.pending_external_vector != -1)
4682 		return -EEXIST;
4683 
4684 	vcpu->arch.pending_external_vector = irq->irq;
4685 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4686 	return 0;
4687 }
4688 
4689 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4690 {
4691 	kvm_inject_nmi(vcpu);
4692 
4693 	return 0;
4694 }
4695 
4696 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4697 {
4698 	kvm_make_request(KVM_REQ_SMI, vcpu);
4699 
4700 	return 0;
4701 }
4702 
4703 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4704 					   struct kvm_tpr_access_ctl *tac)
4705 {
4706 	if (tac->flags)
4707 		return -EINVAL;
4708 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4709 	return 0;
4710 }
4711 
4712 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4713 					u64 mcg_cap)
4714 {
4715 	int r;
4716 	unsigned bank_num = mcg_cap & 0xff, bank;
4717 
4718 	r = -EINVAL;
4719 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4720 		goto out;
4721 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4722 		goto out;
4723 	r = 0;
4724 	vcpu->arch.mcg_cap = mcg_cap;
4725 	/* Init IA32_MCG_CTL to all 1s */
4726 	if (mcg_cap & MCG_CTL_P)
4727 		vcpu->arch.mcg_ctl = ~(u64)0;
4728 	/* Init IA32_MCi_CTL to all 1s */
4729 	for (bank = 0; bank < bank_num; bank++)
4730 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4731 
4732 	static_call(kvm_x86_setup_mce)(vcpu);
4733 out:
4734 	return r;
4735 }
4736 
4737 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4738 				      struct kvm_x86_mce *mce)
4739 {
4740 	u64 mcg_cap = vcpu->arch.mcg_cap;
4741 	unsigned bank_num = mcg_cap & 0xff;
4742 	u64 *banks = vcpu->arch.mce_banks;
4743 
4744 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4745 		return -EINVAL;
4746 	/*
4747 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4748 	 * reporting is disabled
4749 	 */
4750 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4751 	    vcpu->arch.mcg_ctl != ~(u64)0)
4752 		return 0;
4753 	banks += 4 * mce->bank;
4754 	/*
4755 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4756 	 * reporting is disabled for the bank
4757 	 */
4758 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4759 		return 0;
4760 	if (mce->status & MCI_STATUS_UC) {
4761 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4762 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4763 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4764 			return 0;
4765 		}
4766 		if (banks[1] & MCI_STATUS_VAL)
4767 			mce->status |= MCI_STATUS_OVER;
4768 		banks[2] = mce->addr;
4769 		banks[3] = mce->misc;
4770 		vcpu->arch.mcg_status = mce->mcg_status;
4771 		banks[1] = mce->status;
4772 		kvm_queue_exception(vcpu, MC_VECTOR);
4773 	} else if (!(banks[1] & MCI_STATUS_VAL)
4774 		   || !(banks[1] & MCI_STATUS_UC)) {
4775 		if (banks[1] & MCI_STATUS_VAL)
4776 			mce->status |= MCI_STATUS_OVER;
4777 		banks[2] = mce->addr;
4778 		banks[3] = mce->misc;
4779 		banks[1] = mce->status;
4780 	} else
4781 		banks[1] |= MCI_STATUS_OVER;
4782 	return 0;
4783 }
4784 
4785 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4786 					       struct kvm_vcpu_events *events)
4787 {
4788 	process_nmi(vcpu);
4789 
4790 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4791 		process_smi(vcpu);
4792 
4793 	/*
4794 	 * In guest mode, payload delivery should be deferred,
4795 	 * so that the L1 hypervisor can intercept #PF before
4796 	 * CR2 is modified (or intercept #DB before DR6 is
4797 	 * modified under nVMX). Unless the per-VM capability,
4798 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4799 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4800 	 * opportunistically defer the exception payload, deliver it if the
4801 	 * capability hasn't been requested before processing a
4802 	 * KVM_GET_VCPU_EVENTS.
4803 	 */
4804 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4805 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4806 		kvm_deliver_exception_payload(vcpu);
4807 
4808 	/*
4809 	 * The API doesn't provide the instruction length for software
4810 	 * exceptions, so don't report them. As long as the guest RIP
4811 	 * isn't advanced, we should expect to encounter the exception
4812 	 * again.
4813 	 */
4814 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4815 		events->exception.injected = 0;
4816 		events->exception.pending = 0;
4817 	} else {
4818 		events->exception.injected = vcpu->arch.exception.injected;
4819 		events->exception.pending = vcpu->arch.exception.pending;
4820 		/*
4821 		 * For ABI compatibility, deliberately conflate
4822 		 * pending and injected exceptions when
4823 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4824 		 */
4825 		if (!vcpu->kvm->arch.exception_payload_enabled)
4826 			events->exception.injected |=
4827 				vcpu->arch.exception.pending;
4828 	}
4829 	events->exception.nr = vcpu->arch.exception.nr;
4830 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4831 	events->exception.error_code = vcpu->arch.exception.error_code;
4832 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4833 	events->exception_payload = vcpu->arch.exception.payload;
4834 
4835 	events->interrupt.injected =
4836 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4837 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4838 	events->interrupt.soft = 0;
4839 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4840 
4841 	events->nmi.injected = vcpu->arch.nmi_injected;
4842 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4843 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4844 	events->nmi.pad = 0;
4845 
4846 	events->sipi_vector = 0; /* never valid when reporting to user space */
4847 
4848 	events->smi.smm = is_smm(vcpu);
4849 	events->smi.pending = vcpu->arch.smi_pending;
4850 	events->smi.smm_inside_nmi =
4851 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4852 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4853 
4854 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4855 			 | KVM_VCPUEVENT_VALID_SHADOW
4856 			 | KVM_VCPUEVENT_VALID_SMM);
4857 	if (vcpu->kvm->arch.exception_payload_enabled)
4858 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4859 
4860 	memset(&events->reserved, 0, sizeof(events->reserved));
4861 }
4862 
4863 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4864 
4865 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4866 					      struct kvm_vcpu_events *events)
4867 {
4868 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4869 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4870 			      | KVM_VCPUEVENT_VALID_SHADOW
4871 			      | KVM_VCPUEVENT_VALID_SMM
4872 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4873 		return -EINVAL;
4874 
4875 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4876 		if (!vcpu->kvm->arch.exception_payload_enabled)
4877 			return -EINVAL;
4878 		if (events->exception.pending)
4879 			events->exception.injected = 0;
4880 		else
4881 			events->exception_has_payload = 0;
4882 	} else {
4883 		events->exception.pending = 0;
4884 		events->exception_has_payload = 0;
4885 	}
4886 
4887 	if ((events->exception.injected || events->exception.pending) &&
4888 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4889 		return -EINVAL;
4890 
4891 	/* INITs are latched while in SMM */
4892 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4893 	    (events->smi.smm || events->smi.pending) &&
4894 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4895 		return -EINVAL;
4896 
4897 	process_nmi(vcpu);
4898 	vcpu->arch.exception.injected = events->exception.injected;
4899 	vcpu->arch.exception.pending = events->exception.pending;
4900 	vcpu->arch.exception.nr = events->exception.nr;
4901 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4902 	vcpu->arch.exception.error_code = events->exception.error_code;
4903 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4904 	vcpu->arch.exception.payload = events->exception_payload;
4905 
4906 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4907 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4908 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4909 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4910 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4911 						events->interrupt.shadow);
4912 
4913 	vcpu->arch.nmi_injected = events->nmi.injected;
4914 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4915 		vcpu->arch.nmi_pending = events->nmi.pending;
4916 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4917 
4918 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4919 	    lapic_in_kernel(vcpu))
4920 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4921 
4922 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4923 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4924 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4925 			kvm_smm_changed(vcpu, events->smi.smm);
4926 		}
4927 
4928 		vcpu->arch.smi_pending = events->smi.pending;
4929 
4930 		if (events->smi.smm) {
4931 			if (events->smi.smm_inside_nmi)
4932 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4933 			else
4934 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4935 		}
4936 
4937 		if (lapic_in_kernel(vcpu)) {
4938 			if (events->smi.latched_init)
4939 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4940 			else
4941 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4942 		}
4943 	}
4944 
4945 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4946 
4947 	return 0;
4948 }
4949 
4950 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4951 					     struct kvm_debugregs *dbgregs)
4952 {
4953 	unsigned long val;
4954 
4955 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4956 	kvm_get_dr(vcpu, 6, &val);
4957 	dbgregs->dr6 = val;
4958 	dbgregs->dr7 = vcpu->arch.dr7;
4959 	dbgregs->flags = 0;
4960 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4961 }
4962 
4963 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4964 					    struct kvm_debugregs *dbgregs)
4965 {
4966 	if (dbgregs->flags)
4967 		return -EINVAL;
4968 
4969 	if (!kvm_dr6_valid(dbgregs->dr6))
4970 		return -EINVAL;
4971 	if (!kvm_dr7_valid(dbgregs->dr7))
4972 		return -EINVAL;
4973 
4974 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4975 	kvm_update_dr0123(vcpu);
4976 	vcpu->arch.dr6 = dbgregs->dr6;
4977 	vcpu->arch.dr7 = dbgregs->dr7;
4978 	kvm_update_dr7(vcpu);
4979 
4980 	return 0;
4981 }
4982 
4983 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4984 					 struct kvm_xsave *guest_xsave)
4985 {
4986 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4987 		return;
4988 
4989 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4990 				       guest_xsave->region,
4991 				       sizeof(guest_xsave->region),
4992 				       vcpu->arch.pkru);
4993 }
4994 
4995 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
4996 					  u8 *state, unsigned int size)
4997 {
4998 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4999 		return;
5000 
5001 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5002 				       state, size, vcpu->arch.pkru);
5003 }
5004 
5005 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5006 					struct kvm_xsave *guest_xsave)
5007 {
5008 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5009 		return 0;
5010 
5011 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5012 					      guest_xsave->region,
5013 					      supported_xcr0, &vcpu->arch.pkru);
5014 }
5015 
5016 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5017 					struct kvm_xcrs *guest_xcrs)
5018 {
5019 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5020 		guest_xcrs->nr_xcrs = 0;
5021 		return;
5022 	}
5023 
5024 	guest_xcrs->nr_xcrs = 1;
5025 	guest_xcrs->flags = 0;
5026 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5027 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5028 }
5029 
5030 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5031 				       struct kvm_xcrs *guest_xcrs)
5032 {
5033 	int i, r = 0;
5034 
5035 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5036 		return -EINVAL;
5037 
5038 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5039 		return -EINVAL;
5040 
5041 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5042 		/* Only support XCR0 currently */
5043 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5044 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5045 				guest_xcrs->xcrs[i].value);
5046 			break;
5047 		}
5048 	if (r)
5049 		r = -EINVAL;
5050 	return r;
5051 }
5052 
5053 /*
5054  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5055  * stopped by the hypervisor.  This function will be called from the host only.
5056  * EINVAL is returned when the host attempts to set the flag for a guest that
5057  * does not support pv clocks.
5058  */
5059 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5060 {
5061 	if (!vcpu->arch.pv_time_enabled)
5062 		return -EINVAL;
5063 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5064 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5065 	return 0;
5066 }
5067 
5068 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5069 				 struct kvm_device_attr *attr)
5070 {
5071 	int r;
5072 
5073 	switch (attr->attr) {
5074 	case KVM_VCPU_TSC_OFFSET:
5075 		r = 0;
5076 		break;
5077 	default:
5078 		r = -ENXIO;
5079 	}
5080 
5081 	return r;
5082 }
5083 
5084 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5085 				 struct kvm_device_attr *attr)
5086 {
5087 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5088 	int r;
5089 
5090 	if (IS_ERR(uaddr))
5091 		return PTR_ERR(uaddr);
5092 
5093 	switch (attr->attr) {
5094 	case KVM_VCPU_TSC_OFFSET:
5095 		r = -EFAULT;
5096 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5097 			break;
5098 		r = 0;
5099 		break;
5100 	default:
5101 		r = -ENXIO;
5102 	}
5103 
5104 	return r;
5105 }
5106 
5107 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5108 				 struct kvm_device_attr *attr)
5109 {
5110 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5111 	struct kvm *kvm = vcpu->kvm;
5112 	int r;
5113 
5114 	if (IS_ERR(uaddr))
5115 		return PTR_ERR(uaddr);
5116 
5117 	switch (attr->attr) {
5118 	case KVM_VCPU_TSC_OFFSET: {
5119 		u64 offset, tsc, ns;
5120 		unsigned long flags;
5121 		bool matched;
5122 
5123 		r = -EFAULT;
5124 		if (get_user(offset, uaddr))
5125 			break;
5126 
5127 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5128 
5129 		matched = (vcpu->arch.virtual_tsc_khz &&
5130 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5131 			   kvm->arch.last_tsc_offset == offset);
5132 
5133 		tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5134 		ns = get_kvmclock_base_ns();
5135 
5136 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5137 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5138 
5139 		r = 0;
5140 		break;
5141 	}
5142 	default:
5143 		r = -ENXIO;
5144 	}
5145 
5146 	return r;
5147 }
5148 
5149 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5150 				      unsigned int ioctl,
5151 				      void __user *argp)
5152 {
5153 	struct kvm_device_attr attr;
5154 	int r;
5155 
5156 	if (copy_from_user(&attr, argp, sizeof(attr)))
5157 		return -EFAULT;
5158 
5159 	if (attr.group != KVM_VCPU_TSC_CTRL)
5160 		return -ENXIO;
5161 
5162 	switch (ioctl) {
5163 	case KVM_HAS_DEVICE_ATTR:
5164 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5165 		break;
5166 	case KVM_GET_DEVICE_ATTR:
5167 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5168 		break;
5169 	case KVM_SET_DEVICE_ATTR:
5170 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5171 		break;
5172 	}
5173 
5174 	return r;
5175 }
5176 
5177 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5178 				     struct kvm_enable_cap *cap)
5179 {
5180 	int r;
5181 	uint16_t vmcs_version;
5182 	void __user *user_ptr;
5183 
5184 	if (cap->flags)
5185 		return -EINVAL;
5186 
5187 	switch (cap->cap) {
5188 	case KVM_CAP_HYPERV_SYNIC2:
5189 		if (cap->args[0])
5190 			return -EINVAL;
5191 		fallthrough;
5192 
5193 	case KVM_CAP_HYPERV_SYNIC:
5194 		if (!irqchip_in_kernel(vcpu->kvm))
5195 			return -EINVAL;
5196 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5197 					     KVM_CAP_HYPERV_SYNIC2);
5198 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5199 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5200 			return -ENOTTY;
5201 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5202 		if (!r) {
5203 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5204 			if (copy_to_user(user_ptr, &vmcs_version,
5205 					 sizeof(vmcs_version)))
5206 				r = -EFAULT;
5207 		}
5208 		return r;
5209 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5210 		if (!kvm_x86_ops.enable_direct_tlbflush)
5211 			return -ENOTTY;
5212 
5213 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5214 
5215 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5216 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5217 
5218 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5219 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5220 		if (vcpu->arch.pv_cpuid.enforce)
5221 			kvm_update_pv_runtime(vcpu);
5222 
5223 		return 0;
5224 	default:
5225 		return -EINVAL;
5226 	}
5227 }
5228 
5229 long kvm_arch_vcpu_ioctl(struct file *filp,
5230 			 unsigned int ioctl, unsigned long arg)
5231 {
5232 	struct kvm_vcpu *vcpu = filp->private_data;
5233 	void __user *argp = (void __user *)arg;
5234 	int r;
5235 	union {
5236 		struct kvm_sregs2 *sregs2;
5237 		struct kvm_lapic_state *lapic;
5238 		struct kvm_xsave *xsave;
5239 		struct kvm_xcrs *xcrs;
5240 		void *buffer;
5241 	} u;
5242 
5243 	vcpu_load(vcpu);
5244 
5245 	u.buffer = NULL;
5246 	switch (ioctl) {
5247 	case KVM_GET_LAPIC: {
5248 		r = -EINVAL;
5249 		if (!lapic_in_kernel(vcpu))
5250 			goto out;
5251 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5252 				GFP_KERNEL_ACCOUNT);
5253 
5254 		r = -ENOMEM;
5255 		if (!u.lapic)
5256 			goto out;
5257 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5258 		if (r)
5259 			goto out;
5260 		r = -EFAULT;
5261 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5262 			goto out;
5263 		r = 0;
5264 		break;
5265 	}
5266 	case KVM_SET_LAPIC: {
5267 		r = -EINVAL;
5268 		if (!lapic_in_kernel(vcpu))
5269 			goto out;
5270 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5271 		if (IS_ERR(u.lapic)) {
5272 			r = PTR_ERR(u.lapic);
5273 			goto out_nofree;
5274 		}
5275 
5276 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5277 		break;
5278 	}
5279 	case KVM_INTERRUPT: {
5280 		struct kvm_interrupt irq;
5281 
5282 		r = -EFAULT;
5283 		if (copy_from_user(&irq, argp, sizeof(irq)))
5284 			goto out;
5285 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5286 		break;
5287 	}
5288 	case KVM_NMI: {
5289 		r = kvm_vcpu_ioctl_nmi(vcpu);
5290 		break;
5291 	}
5292 	case KVM_SMI: {
5293 		r = kvm_vcpu_ioctl_smi(vcpu);
5294 		break;
5295 	}
5296 	case KVM_SET_CPUID: {
5297 		struct kvm_cpuid __user *cpuid_arg = argp;
5298 		struct kvm_cpuid cpuid;
5299 
5300 		r = -EFAULT;
5301 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5302 			goto out;
5303 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5304 		break;
5305 	}
5306 	case KVM_SET_CPUID2: {
5307 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5308 		struct kvm_cpuid2 cpuid;
5309 
5310 		r = -EFAULT;
5311 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5312 			goto out;
5313 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5314 					      cpuid_arg->entries);
5315 		break;
5316 	}
5317 	case KVM_GET_CPUID2: {
5318 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5319 		struct kvm_cpuid2 cpuid;
5320 
5321 		r = -EFAULT;
5322 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5323 			goto out;
5324 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5325 					      cpuid_arg->entries);
5326 		if (r)
5327 			goto out;
5328 		r = -EFAULT;
5329 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5330 			goto out;
5331 		r = 0;
5332 		break;
5333 	}
5334 	case KVM_GET_MSRS: {
5335 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5336 		r = msr_io(vcpu, argp, do_get_msr, 1);
5337 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5338 		break;
5339 	}
5340 	case KVM_SET_MSRS: {
5341 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5342 		r = msr_io(vcpu, argp, do_set_msr, 0);
5343 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5344 		break;
5345 	}
5346 	case KVM_TPR_ACCESS_REPORTING: {
5347 		struct kvm_tpr_access_ctl tac;
5348 
5349 		r = -EFAULT;
5350 		if (copy_from_user(&tac, argp, sizeof(tac)))
5351 			goto out;
5352 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5353 		if (r)
5354 			goto out;
5355 		r = -EFAULT;
5356 		if (copy_to_user(argp, &tac, sizeof(tac)))
5357 			goto out;
5358 		r = 0;
5359 		break;
5360 	};
5361 	case KVM_SET_VAPIC_ADDR: {
5362 		struct kvm_vapic_addr va;
5363 		int idx;
5364 
5365 		r = -EINVAL;
5366 		if (!lapic_in_kernel(vcpu))
5367 			goto out;
5368 		r = -EFAULT;
5369 		if (copy_from_user(&va, argp, sizeof(va)))
5370 			goto out;
5371 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5372 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5373 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5374 		break;
5375 	}
5376 	case KVM_X86_SETUP_MCE: {
5377 		u64 mcg_cap;
5378 
5379 		r = -EFAULT;
5380 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5381 			goto out;
5382 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5383 		break;
5384 	}
5385 	case KVM_X86_SET_MCE: {
5386 		struct kvm_x86_mce mce;
5387 
5388 		r = -EFAULT;
5389 		if (copy_from_user(&mce, argp, sizeof(mce)))
5390 			goto out;
5391 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5392 		break;
5393 	}
5394 	case KVM_GET_VCPU_EVENTS: {
5395 		struct kvm_vcpu_events events;
5396 
5397 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5398 
5399 		r = -EFAULT;
5400 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5401 			break;
5402 		r = 0;
5403 		break;
5404 	}
5405 	case KVM_SET_VCPU_EVENTS: {
5406 		struct kvm_vcpu_events events;
5407 
5408 		r = -EFAULT;
5409 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5410 			break;
5411 
5412 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5413 		break;
5414 	}
5415 	case KVM_GET_DEBUGREGS: {
5416 		struct kvm_debugregs dbgregs;
5417 
5418 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5419 
5420 		r = -EFAULT;
5421 		if (copy_to_user(argp, &dbgregs,
5422 				 sizeof(struct kvm_debugregs)))
5423 			break;
5424 		r = 0;
5425 		break;
5426 	}
5427 	case KVM_SET_DEBUGREGS: {
5428 		struct kvm_debugregs dbgregs;
5429 
5430 		r = -EFAULT;
5431 		if (copy_from_user(&dbgregs, argp,
5432 				   sizeof(struct kvm_debugregs)))
5433 			break;
5434 
5435 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5436 		break;
5437 	}
5438 	case KVM_GET_XSAVE: {
5439 		r = -EINVAL;
5440 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5441 			break;
5442 
5443 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5444 		r = -ENOMEM;
5445 		if (!u.xsave)
5446 			break;
5447 
5448 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5449 
5450 		r = -EFAULT;
5451 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5452 			break;
5453 		r = 0;
5454 		break;
5455 	}
5456 	case KVM_SET_XSAVE: {
5457 		int size = vcpu->arch.guest_fpu.uabi_size;
5458 
5459 		u.xsave = memdup_user(argp, size);
5460 		if (IS_ERR(u.xsave)) {
5461 			r = PTR_ERR(u.xsave);
5462 			goto out_nofree;
5463 		}
5464 
5465 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5466 		break;
5467 	}
5468 
5469 	case KVM_GET_XSAVE2: {
5470 		int size = vcpu->arch.guest_fpu.uabi_size;
5471 
5472 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5473 		r = -ENOMEM;
5474 		if (!u.xsave)
5475 			break;
5476 
5477 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5478 
5479 		r = -EFAULT;
5480 		if (copy_to_user(argp, u.xsave, size))
5481 			break;
5482 
5483 		r = 0;
5484 		break;
5485 	}
5486 
5487 	case KVM_GET_XCRS: {
5488 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5489 		r = -ENOMEM;
5490 		if (!u.xcrs)
5491 			break;
5492 
5493 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5494 
5495 		r = -EFAULT;
5496 		if (copy_to_user(argp, u.xcrs,
5497 				 sizeof(struct kvm_xcrs)))
5498 			break;
5499 		r = 0;
5500 		break;
5501 	}
5502 	case KVM_SET_XCRS: {
5503 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5504 		if (IS_ERR(u.xcrs)) {
5505 			r = PTR_ERR(u.xcrs);
5506 			goto out_nofree;
5507 		}
5508 
5509 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5510 		break;
5511 	}
5512 	case KVM_SET_TSC_KHZ: {
5513 		u32 user_tsc_khz;
5514 
5515 		r = -EINVAL;
5516 		user_tsc_khz = (u32)arg;
5517 
5518 		if (kvm_has_tsc_control &&
5519 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5520 			goto out;
5521 
5522 		if (user_tsc_khz == 0)
5523 			user_tsc_khz = tsc_khz;
5524 
5525 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5526 			r = 0;
5527 
5528 		goto out;
5529 	}
5530 	case KVM_GET_TSC_KHZ: {
5531 		r = vcpu->arch.virtual_tsc_khz;
5532 		goto out;
5533 	}
5534 	case KVM_KVMCLOCK_CTRL: {
5535 		r = kvm_set_guest_paused(vcpu);
5536 		goto out;
5537 	}
5538 	case KVM_ENABLE_CAP: {
5539 		struct kvm_enable_cap cap;
5540 
5541 		r = -EFAULT;
5542 		if (copy_from_user(&cap, argp, sizeof(cap)))
5543 			goto out;
5544 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5545 		break;
5546 	}
5547 	case KVM_GET_NESTED_STATE: {
5548 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5549 		u32 user_data_size;
5550 
5551 		r = -EINVAL;
5552 		if (!kvm_x86_ops.nested_ops->get_state)
5553 			break;
5554 
5555 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5556 		r = -EFAULT;
5557 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5558 			break;
5559 
5560 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5561 						     user_data_size);
5562 		if (r < 0)
5563 			break;
5564 
5565 		if (r > user_data_size) {
5566 			if (put_user(r, &user_kvm_nested_state->size))
5567 				r = -EFAULT;
5568 			else
5569 				r = -E2BIG;
5570 			break;
5571 		}
5572 
5573 		r = 0;
5574 		break;
5575 	}
5576 	case KVM_SET_NESTED_STATE: {
5577 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5578 		struct kvm_nested_state kvm_state;
5579 		int idx;
5580 
5581 		r = -EINVAL;
5582 		if (!kvm_x86_ops.nested_ops->set_state)
5583 			break;
5584 
5585 		r = -EFAULT;
5586 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5587 			break;
5588 
5589 		r = -EINVAL;
5590 		if (kvm_state.size < sizeof(kvm_state))
5591 			break;
5592 
5593 		if (kvm_state.flags &
5594 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5595 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5596 		      | KVM_STATE_NESTED_GIF_SET))
5597 			break;
5598 
5599 		/* nested_run_pending implies guest_mode.  */
5600 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5601 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5602 			break;
5603 
5604 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5605 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5606 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5607 		break;
5608 	}
5609 	case KVM_GET_SUPPORTED_HV_CPUID:
5610 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5611 		break;
5612 #ifdef CONFIG_KVM_XEN
5613 	case KVM_XEN_VCPU_GET_ATTR: {
5614 		struct kvm_xen_vcpu_attr xva;
5615 
5616 		r = -EFAULT;
5617 		if (copy_from_user(&xva, argp, sizeof(xva)))
5618 			goto out;
5619 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5620 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5621 			r = -EFAULT;
5622 		break;
5623 	}
5624 	case KVM_XEN_VCPU_SET_ATTR: {
5625 		struct kvm_xen_vcpu_attr xva;
5626 
5627 		r = -EFAULT;
5628 		if (copy_from_user(&xva, argp, sizeof(xva)))
5629 			goto out;
5630 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5631 		break;
5632 	}
5633 #endif
5634 	case KVM_GET_SREGS2: {
5635 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5636 		r = -ENOMEM;
5637 		if (!u.sregs2)
5638 			goto out;
5639 		__get_sregs2(vcpu, u.sregs2);
5640 		r = -EFAULT;
5641 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5642 			goto out;
5643 		r = 0;
5644 		break;
5645 	}
5646 	case KVM_SET_SREGS2: {
5647 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5648 		if (IS_ERR(u.sregs2)) {
5649 			r = PTR_ERR(u.sregs2);
5650 			u.sregs2 = NULL;
5651 			goto out;
5652 		}
5653 		r = __set_sregs2(vcpu, u.sregs2);
5654 		break;
5655 	}
5656 	case KVM_HAS_DEVICE_ATTR:
5657 	case KVM_GET_DEVICE_ATTR:
5658 	case KVM_SET_DEVICE_ATTR:
5659 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5660 		break;
5661 	default:
5662 		r = -EINVAL;
5663 	}
5664 out:
5665 	kfree(u.buffer);
5666 out_nofree:
5667 	vcpu_put(vcpu);
5668 	return r;
5669 }
5670 
5671 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5672 {
5673 	return VM_FAULT_SIGBUS;
5674 }
5675 
5676 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5677 {
5678 	int ret;
5679 
5680 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5681 		return -EINVAL;
5682 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5683 	return ret;
5684 }
5685 
5686 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5687 					      u64 ident_addr)
5688 {
5689 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5690 }
5691 
5692 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5693 					 unsigned long kvm_nr_mmu_pages)
5694 {
5695 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5696 		return -EINVAL;
5697 
5698 	mutex_lock(&kvm->slots_lock);
5699 
5700 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5701 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5702 
5703 	mutex_unlock(&kvm->slots_lock);
5704 	return 0;
5705 }
5706 
5707 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5708 {
5709 	return kvm->arch.n_max_mmu_pages;
5710 }
5711 
5712 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5713 {
5714 	struct kvm_pic *pic = kvm->arch.vpic;
5715 	int r;
5716 
5717 	r = 0;
5718 	switch (chip->chip_id) {
5719 	case KVM_IRQCHIP_PIC_MASTER:
5720 		memcpy(&chip->chip.pic, &pic->pics[0],
5721 			sizeof(struct kvm_pic_state));
5722 		break;
5723 	case KVM_IRQCHIP_PIC_SLAVE:
5724 		memcpy(&chip->chip.pic, &pic->pics[1],
5725 			sizeof(struct kvm_pic_state));
5726 		break;
5727 	case KVM_IRQCHIP_IOAPIC:
5728 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5729 		break;
5730 	default:
5731 		r = -EINVAL;
5732 		break;
5733 	}
5734 	return r;
5735 }
5736 
5737 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5738 {
5739 	struct kvm_pic *pic = kvm->arch.vpic;
5740 	int r;
5741 
5742 	r = 0;
5743 	switch (chip->chip_id) {
5744 	case KVM_IRQCHIP_PIC_MASTER:
5745 		spin_lock(&pic->lock);
5746 		memcpy(&pic->pics[0], &chip->chip.pic,
5747 			sizeof(struct kvm_pic_state));
5748 		spin_unlock(&pic->lock);
5749 		break;
5750 	case KVM_IRQCHIP_PIC_SLAVE:
5751 		spin_lock(&pic->lock);
5752 		memcpy(&pic->pics[1], &chip->chip.pic,
5753 			sizeof(struct kvm_pic_state));
5754 		spin_unlock(&pic->lock);
5755 		break;
5756 	case KVM_IRQCHIP_IOAPIC:
5757 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5758 		break;
5759 	default:
5760 		r = -EINVAL;
5761 		break;
5762 	}
5763 	kvm_pic_update_irq(pic);
5764 	return r;
5765 }
5766 
5767 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5768 {
5769 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5770 
5771 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5772 
5773 	mutex_lock(&kps->lock);
5774 	memcpy(ps, &kps->channels, sizeof(*ps));
5775 	mutex_unlock(&kps->lock);
5776 	return 0;
5777 }
5778 
5779 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5780 {
5781 	int i;
5782 	struct kvm_pit *pit = kvm->arch.vpit;
5783 
5784 	mutex_lock(&pit->pit_state.lock);
5785 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5786 	for (i = 0; i < 3; i++)
5787 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5788 	mutex_unlock(&pit->pit_state.lock);
5789 	return 0;
5790 }
5791 
5792 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5793 {
5794 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5795 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5796 		sizeof(ps->channels));
5797 	ps->flags = kvm->arch.vpit->pit_state.flags;
5798 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5799 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5800 	return 0;
5801 }
5802 
5803 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5804 {
5805 	int start = 0;
5806 	int i;
5807 	u32 prev_legacy, cur_legacy;
5808 	struct kvm_pit *pit = kvm->arch.vpit;
5809 
5810 	mutex_lock(&pit->pit_state.lock);
5811 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5812 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5813 	if (!prev_legacy && cur_legacy)
5814 		start = 1;
5815 	memcpy(&pit->pit_state.channels, &ps->channels,
5816 	       sizeof(pit->pit_state.channels));
5817 	pit->pit_state.flags = ps->flags;
5818 	for (i = 0; i < 3; i++)
5819 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5820 				   start && i == 0);
5821 	mutex_unlock(&pit->pit_state.lock);
5822 	return 0;
5823 }
5824 
5825 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5826 				 struct kvm_reinject_control *control)
5827 {
5828 	struct kvm_pit *pit = kvm->arch.vpit;
5829 
5830 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5831 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5832 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5833 	 */
5834 	mutex_lock(&pit->pit_state.lock);
5835 	kvm_pit_set_reinject(pit, control->pit_reinject);
5836 	mutex_unlock(&pit->pit_state.lock);
5837 
5838 	return 0;
5839 }
5840 
5841 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5842 {
5843 
5844 	/*
5845 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5846 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5847 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5848 	 * VM-Exit.
5849 	 */
5850 	struct kvm_vcpu *vcpu;
5851 	unsigned long i;
5852 
5853 	kvm_for_each_vcpu(i, vcpu, kvm)
5854 		kvm_vcpu_kick(vcpu);
5855 }
5856 
5857 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5858 			bool line_status)
5859 {
5860 	if (!irqchip_in_kernel(kvm))
5861 		return -ENXIO;
5862 
5863 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5864 					irq_event->irq, irq_event->level,
5865 					line_status);
5866 	return 0;
5867 }
5868 
5869 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5870 			    struct kvm_enable_cap *cap)
5871 {
5872 	int r;
5873 
5874 	if (cap->flags)
5875 		return -EINVAL;
5876 
5877 	switch (cap->cap) {
5878 	case KVM_CAP_DISABLE_QUIRKS:
5879 		kvm->arch.disabled_quirks = cap->args[0];
5880 		r = 0;
5881 		break;
5882 	case KVM_CAP_SPLIT_IRQCHIP: {
5883 		mutex_lock(&kvm->lock);
5884 		r = -EINVAL;
5885 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5886 			goto split_irqchip_unlock;
5887 		r = -EEXIST;
5888 		if (irqchip_in_kernel(kvm))
5889 			goto split_irqchip_unlock;
5890 		if (kvm->created_vcpus)
5891 			goto split_irqchip_unlock;
5892 		r = kvm_setup_empty_irq_routing(kvm);
5893 		if (r)
5894 			goto split_irqchip_unlock;
5895 		/* Pairs with irqchip_in_kernel. */
5896 		smp_wmb();
5897 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5898 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5899 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5900 		r = 0;
5901 split_irqchip_unlock:
5902 		mutex_unlock(&kvm->lock);
5903 		break;
5904 	}
5905 	case KVM_CAP_X2APIC_API:
5906 		r = -EINVAL;
5907 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5908 			break;
5909 
5910 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5911 			kvm->arch.x2apic_format = true;
5912 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5913 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5914 
5915 		r = 0;
5916 		break;
5917 	case KVM_CAP_X86_DISABLE_EXITS:
5918 		r = -EINVAL;
5919 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5920 			break;
5921 
5922 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5923 			kvm_can_mwait_in_guest())
5924 			kvm->arch.mwait_in_guest = true;
5925 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5926 			kvm->arch.hlt_in_guest = true;
5927 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5928 			kvm->arch.pause_in_guest = true;
5929 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5930 			kvm->arch.cstate_in_guest = true;
5931 		r = 0;
5932 		break;
5933 	case KVM_CAP_MSR_PLATFORM_INFO:
5934 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5935 		r = 0;
5936 		break;
5937 	case KVM_CAP_EXCEPTION_PAYLOAD:
5938 		kvm->arch.exception_payload_enabled = cap->args[0];
5939 		r = 0;
5940 		break;
5941 	case KVM_CAP_X86_USER_SPACE_MSR:
5942 		kvm->arch.user_space_msr_mask = cap->args[0];
5943 		r = 0;
5944 		break;
5945 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5946 		r = -EINVAL;
5947 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5948 			break;
5949 
5950 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5951 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5952 			break;
5953 
5954 		if (kvm_has_bus_lock_exit &&
5955 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5956 			kvm->arch.bus_lock_detection_enabled = true;
5957 		r = 0;
5958 		break;
5959 #ifdef CONFIG_X86_SGX_KVM
5960 	case KVM_CAP_SGX_ATTRIBUTE: {
5961 		unsigned long allowed_attributes = 0;
5962 
5963 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5964 		if (r)
5965 			break;
5966 
5967 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5968 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5969 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5970 			kvm->arch.sgx_provisioning_allowed = true;
5971 		else
5972 			r = -EINVAL;
5973 		break;
5974 	}
5975 #endif
5976 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5977 		r = -EINVAL;
5978 		if (kvm_x86_ops.vm_copy_enc_context_from)
5979 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5980 		return r;
5981 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5982 		r = -EINVAL;
5983 		if (kvm_x86_ops.vm_move_enc_context_from)
5984 			r = kvm_x86_ops.vm_move_enc_context_from(
5985 				kvm, cap->args[0]);
5986 		return r;
5987 	case KVM_CAP_EXIT_HYPERCALL:
5988 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5989 			r = -EINVAL;
5990 			break;
5991 		}
5992 		kvm->arch.hypercall_exit_enabled = cap->args[0];
5993 		r = 0;
5994 		break;
5995 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5996 		r = -EINVAL;
5997 		if (cap->args[0] & ~1)
5998 			break;
5999 		kvm->arch.exit_on_emulation_error = cap->args[0];
6000 		r = 0;
6001 		break;
6002 	default:
6003 		r = -EINVAL;
6004 		break;
6005 	}
6006 	return r;
6007 }
6008 
6009 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6010 {
6011 	struct kvm_x86_msr_filter *msr_filter;
6012 
6013 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6014 	if (!msr_filter)
6015 		return NULL;
6016 
6017 	msr_filter->default_allow = default_allow;
6018 	return msr_filter;
6019 }
6020 
6021 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6022 {
6023 	u32 i;
6024 
6025 	if (!msr_filter)
6026 		return;
6027 
6028 	for (i = 0; i < msr_filter->count; i++)
6029 		kfree(msr_filter->ranges[i].bitmap);
6030 
6031 	kfree(msr_filter);
6032 }
6033 
6034 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6035 			      struct kvm_msr_filter_range *user_range)
6036 {
6037 	unsigned long *bitmap = NULL;
6038 	size_t bitmap_size;
6039 
6040 	if (!user_range->nmsrs)
6041 		return 0;
6042 
6043 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6044 		return -EINVAL;
6045 
6046 	if (!user_range->flags)
6047 		return -EINVAL;
6048 
6049 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6050 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6051 		return -EINVAL;
6052 
6053 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6054 	if (IS_ERR(bitmap))
6055 		return PTR_ERR(bitmap);
6056 
6057 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6058 		.flags = user_range->flags,
6059 		.base = user_range->base,
6060 		.nmsrs = user_range->nmsrs,
6061 		.bitmap = bitmap,
6062 	};
6063 
6064 	msr_filter->count++;
6065 	return 0;
6066 }
6067 
6068 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6069 {
6070 	struct kvm_msr_filter __user *user_msr_filter = argp;
6071 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6072 	struct kvm_msr_filter filter;
6073 	bool default_allow;
6074 	bool empty = true;
6075 	int r = 0;
6076 	u32 i;
6077 
6078 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6079 		return -EFAULT;
6080 
6081 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6082 		empty &= !filter.ranges[i].nmsrs;
6083 
6084 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6085 	if (empty && !default_allow)
6086 		return -EINVAL;
6087 
6088 	new_filter = kvm_alloc_msr_filter(default_allow);
6089 	if (!new_filter)
6090 		return -ENOMEM;
6091 
6092 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6093 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6094 		if (r) {
6095 			kvm_free_msr_filter(new_filter);
6096 			return r;
6097 		}
6098 	}
6099 
6100 	mutex_lock(&kvm->lock);
6101 
6102 	/* The per-VM filter is protected by kvm->lock... */
6103 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6104 
6105 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6106 	synchronize_srcu(&kvm->srcu);
6107 
6108 	kvm_free_msr_filter(old_filter);
6109 
6110 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6111 	mutex_unlock(&kvm->lock);
6112 
6113 	return 0;
6114 }
6115 
6116 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6117 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6118 {
6119 	struct kvm_vcpu *vcpu;
6120 	unsigned long i;
6121 	int ret = 0;
6122 
6123 	mutex_lock(&kvm->lock);
6124 	kvm_for_each_vcpu(i, vcpu, kvm) {
6125 		if (!vcpu->arch.pv_time_enabled)
6126 			continue;
6127 
6128 		ret = kvm_set_guest_paused(vcpu);
6129 		if (ret) {
6130 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6131 				vcpu->vcpu_id, ret);
6132 			break;
6133 		}
6134 	}
6135 	mutex_unlock(&kvm->lock);
6136 
6137 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6138 }
6139 
6140 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6141 {
6142 	switch (state) {
6143 	case PM_HIBERNATION_PREPARE:
6144 	case PM_SUSPEND_PREPARE:
6145 		return kvm_arch_suspend_notifier(kvm);
6146 	}
6147 
6148 	return NOTIFY_DONE;
6149 }
6150 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6151 
6152 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6153 {
6154 	struct kvm_clock_data data = { 0 };
6155 
6156 	get_kvmclock(kvm, &data);
6157 	if (copy_to_user(argp, &data, sizeof(data)))
6158 		return -EFAULT;
6159 
6160 	return 0;
6161 }
6162 
6163 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6164 {
6165 	struct kvm_arch *ka = &kvm->arch;
6166 	struct kvm_clock_data data;
6167 	u64 now_raw_ns;
6168 
6169 	if (copy_from_user(&data, argp, sizeof(data)))
6170 		return -EFAULT;
6171 
6172 	/*
6173 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6174 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6175 	 */
6176 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6177 		return -EINVAL;
6178 
6179 	kvm_hv_invalidate_tsc_page(kvm);
6180 	kvm_start_pvclock_update(kvm);
6181 	pvclock_update_vm_gtod_copy(kvm);
6182 
6183 	/*
6184 	 * This pairs with kvm_guest_time_update(): when masterclock is
6185 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6186 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6187 	 * is slightly ahead) here we risk going negative on unsigned
6188 	 * 'system_time' when 'data.clock' is very small.
6189 	 */
6190 	if (data.flags & KVM_CLOCK_REALTIME) {
6191 		u64 now_real_ns = ktime_get_real_ns();
6192 
6193 		/*
6194 		 * Avoid stepping the kvmclock backwards.
6195 		 */
6196 		if (now_real_ns > data.realtime)
6197 			data.clock += now_real_ns - data.realtime;
6198 	}
6199 
6200 	if (ka->use_master_clock)
6201 		now_raw_ns = ka->master_kernel_ns;
6202 	else
6203 		now_raw_ns = get_kvmclock_base_ns();
6204 	ka->kvmclock_offset = data.clock - now_raw_ns;
6205 	kvm_end_pvclock_update(kvm);
6206 	return 0;
6207 }
6208 
6209 long kvm_arch_vm_ioctl(struct file *filp,
6210 		       unsigned int ioctl, unsigned long arg)
6211 {
6212 	struct kvm *kvm = filp->private_data;
6213 	void __user *argp = (void __user *)arg;
6214 	int r = -ENOTTY;
6215 	/*
6216 	 * This union makes it completely explicit to gcc-3.x
6217 	 * that these two variables' stack usage should be
6218 	 * combined, not added together.
6219 	 */
6220 	union {
6221 		struct kvm_pit_state ps;
6222 		struct kvm_pit_state2 ps2;
6223 		struct kvm_pit_config pit_config;
6224 	} u;
6225 
6226 	switch (ioctl) {
6227 	case KVM_SET_TSS_ADDR:
6228 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6229 		break;
6230 	case KVM_SET_IDENTITY_MAP_ADDR: {
6231 		u64 ident_addr;
6232 
6233 		mutex_lock(&kvm->lock);
6234 		r = -EINVAL;
6235 		if (kvm->created_vcpus)
6236 			goto set_identity_unlock;
6237 		r = -EFAULT;
6238 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6239 			goto set_identity_unlock;
6240 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6241 set_identity_unlock:
6242 		mutex_unlock(&kvm->lock);
6243 		break;
6244 	}
6245 	case KVM_SET_NR_MMU_PAGES:
6246 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6247 		break;
6248 	case KVM_GET_NR_MMU_PAGES:
6249 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6250 		break;
6251 	case KVM_CREATE_IRQCHIP: {
6252 		mutex_lock(&kvm->lock);
6253 
6254 		r = -EEXIST;
6255 		if (irqchip_in_kernel(kvm))
6256 			goto create_irqchip_unlock;
6257 
6258 		r = -EINVAL;
6259 		if (kvm->created_vcpus)
6260 			goto create_irqchip_unlock;
6261 
6262 		r = kvm_pic_init(kvm);
6263 		if (r)
6264 			goto create_irqchip_unlock;
6265 
6266 		r = kvm_ioapic_init(kvm);
6267 		if (r) {
6268 			kvm_pic_destroy(kvm);
6269 			goto create_irqchip_unlock;
6270 		}
6271 
6272 		r = kvm_setup_default_irq_routing(kvm);
6273 		if (r) {
6274 			kvm_ioapic_destroy(kvm);
6275 			kvm_pic_destroy(kvm);
6276 			goto create_irqchip_unlock;
6277 		}
6278 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6279 		smp_wmb();
6280 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6281 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6282 	create_irqchip_unlock:
6283 		mutex_unlock(&kvm->lock);
6284 		break;
6285 	}
6286 	case KVM_CREATE_PIT:
6287 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6288 		goto create_pit;
6289 	case KVM_CREATE_PIT2:
6290 		r = -EFAULT;
6291 		if (copy_from_user(&u.pit_config, argp,
6292 				   sizeof(struct kvm_pit_config)))
6293 			goto out;
6294 	create_pit:
6295 		mutex_lock(&kvm->lock);
6296 		r = -EEXIST;
6297 		if (kvm->arch.vpit)
6298 			goto create_pit_unlock;
6299 		r = -ENOMEM;
6300 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6301 		if (kvm->arch.vpit)
6302 			r = 0;
6303 	create_pit_unlock:
6304 		mutex_unlock(&kvm->lock);
6305 		break;
6306 	case KVM_GET_IRQCHIP: {
6307 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6308 		struct kvm_irqchip *chip;
6309 
6310 		chip = memdup_user(argp, sizeof(*chip));
6311 		if (IS_ERR(chip)) {
6312 			r = PTR_ERR(chip);
6313 			goto out;
6314 		}
6315 
6316 		r = -ENXIO;
6317 		if (!irqchip_kernel(kvm))
6318 			goto get_irqchip_out;
6319 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6320 		if (r)
6321 			goto get_irqchip_out;
6322 		r = -EFAULT;
6323 		if (copy_to_user(argp, chip, sizeof(*chip)))
6324 			goto get_irqchip_out;
6325 		r = 0;
6326 	get_irqchip_out:
6327 		kfree(chip);
6328 		break;
6329 	}
6330 	case KVM_SET_IRQCHIP: {
6331 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6332 		struct kvm_irqchip *chip;
6333 
6334 		chip = memdup_user(argp, sizeof(*chip));
6335 		if (IS_ERR(chip)) {
6336 			r = PTR_ERR(chip);
6337 			goto out;
6338 		}
6339 
6340 		r = -ENXIO;
6341 		if (!irqchip_kernel(kvm))
6342 			goto set_irqchip_out;
6343 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6344 	set_irqchip_out:
6345 		kfree(chip);
6346 		break;
6347 	}
6348 	case KVM_GET_PIT: {
6349 		r = -EFAULT;
6350 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6351 			goto out;
6352 		r = -ENXIO;
6353 		if (!kvm->arch.vpit)
6354 			goto out;
6355 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6356 		if (r)
6357 			goto out;
6358 		r = -EFAULT;
6359 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6360 			goto out;
6361 		r = 0;
6362 		break;
6363 	}
6364 	case KVM_SET_PIT: {
6365 		r = -EFAULT;
6366 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6367 			goto out;
6368 		mutex_lock(&kvm->lock);
6369 		r = -ENXIO;
6370 		if (!kvm->arch.vpit)
6371 			goto set_pit_out;
6372 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6373 set_pit_out:
6374 		mutex_unlock(&kvm->lock);
6375 		break;
6376 	}
6377 	case KVM_GET_PIT2: {
6378 		r = -ENXIO;
6379 		if (!kvm->arch.vpit)
6380 			goto out;
6381 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6382 		if (r)
6383 			goto out;
6384 		r = -EFAULT;
6385 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6386 			goto out;
6387 		r = 0;
6388 		break;
6389 	}
6390 	case KVM_SET_PIT2: {
6391 		r = -EFAULT;
6392 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6393 			goto out;
6394 		mutex_lock(&kvm->lock);
6395 		r = -ENXIO;
6396 		if (!kvm->arch.vpit)
6397 			goto set_pit2_out;
6398 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6399 set_pit2_out:
6400 		mutex_unlock(&kvm->lock);
6401 		break;
6402 	}
6403 	case KVM_REINJECT_CONTROL: {
6404 		struct kvm_reinject_control control;
6405 		r =  -EFAULT;
6406 		if (copy_from_user(&control, argp, sizeof(control)))
6407 			goto out;
6408 		r = -ENXIO;
6409 		if (!kvm->arch.vpit)
6410 			goto out;
6411 		r = kvm_vm_ioctl_reinject(kvm, &control);
6412 		break;
6413 	}
6414 	case KVM_SET_BOOT_CPU_ID:
6415 		r = 0;
6416 		mutex_lock(&kvm->lock);
6417 		if (kvm->created_vcpus)
6418 			r = -EBUSY;
6419 		else
6420 			kvm->arch.bsp_vcpu_id = arg;
6421 		mutex_unlock(&kvm->lock);
6422 		break;
6423 #ifdef CONFIG_KVM_XEN
6424 	case KVM_XEN_HVM_CONFIG: {
6425 		struct kvm_xen_hvm_config xhc;
6426 		r = -EFAULT;
6427 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6428 			goto out;
6429 		r = kvm_xen_hvm_config(kvm, &xhc);
6430 		break;
6431 	}
6432 	case KVM_XEN_HVM_GET_ATTR: {
6433 		struct kvm_xen_hvm_attr xha;
6434 
6435 		r = -EFAULT;
6436 		if (copy_from_user(&xha, argp, sizeof(xha)))
6437 			goto out;
6438 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6439 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6440 			r = -EFAULT;
6441 		break;
6442 	}
6443 	case KVM_XEN_HVM_SET_ATTR: {
6444 		struct kvm_xen_hvm_attr xha;
6445 
6446 		r = -EFAULT;
6447 		if (copy_from_user(&xha, argp, sizeof(xha)))
6448 			goto out;
6449 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6450 		break;
6451 	}
6452 #endif
6453 	case KVM_SET_CLOCK:
6454 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6455 		break;
6456 	case KVM_GET_CLOCK:
6457 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6458 		break;
6459 	case KVM_MEMORY_ENCRYPT_OP: {
6460 		r = -ENOTTY;
6461 		if (kvm_x86_ops.mem_enc_op)
6462 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6463 		break;
6464 	}
6465 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6466 		struct kvm_enc_region region;
6467 
6468 		r = -EFAULT;
6469 		if (copy_from_user(&region, argp, sizeof(region)))
6470 			goto out;
6471 
6472 		r = -ENOTTY;
6473 		if (kvm_x86_ops.mem_enc_reg_region)
6474 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6475 		break;
6476 	}
6477 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6478 		struct kvm_enc_region region;
6479 
6480 		r = -EFAULT;
6481 		if (copy_from_user(&region, argp, sizeof(region)))
6482 			goto out;
6483 
6484 		r = -ENOTTY;
6485 		if (kvm_x86_ops.mem_enc_unreg_region)
6486 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6487 		break;
6488 	}
6489 	case KVM_HYPERV_EVENTFD: {
6490 		struct kvm_hyperv_eventfd hvevfd;
6491 
6492 		r = -EFAULT;
6493 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6494 			goto out;
6495 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6496 		break;
6497 	}
6498 	case KVM_SET_PMU_EVENT_FILTER:
6499 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6500 		break;
6501 	case KVM_X86_SET_MSR_FILTER:
6502 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6503 		break;
6504 	default:
6505 		r = -ENOTTY;
6506 	}
6507 out:
6508 	return r;
6509 }
6510 
6511 static void kvm_init_msr_list(void)
6512 {
6513 	struct x86_pmu_capability x86_pmu;
6514 	u32 dummy[2];
6515 	unsigned i;
6516 
6517 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6518 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6519 
6520 	perf_get_x86_pmu_capability(&x86_pmu);
6521 
6522 	num_msrs_to_save = 0;
6523 	num_emulated_msrs = 0;
6524 	num_msr_based_features = 0;
6525 
6526 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6527 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6528 			continue;
6529 
6530 		/*
6531 		 * Even MSRs that are valid in the host may not be exposed
6532 		 * to the guests in some cases.
6533 		 */
6534 		switch (msrs_to_save_all[i]) {
6535 		case MSR_IA32_BNDCFGS:
6536 			if (!kvm_mpx_supported())
6537 				continue;
6538 			break;
6539 		case MSR_TSC_AUX:
6540 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6541 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6542 				continue;
6543 			break;
6544 		case MSR_IA32_UMWAIT_CONTROL:
6545 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6546 				continue;
6547 			break;
6548 		case MSR_IA32_RTIT_CTL:
6549 		case MSR_IA32_RTIT_STATUS:
6550 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6551 				continue;
6552 			break;
6553 		case MSR_IA32_RTIT_CR3_MATCH:
6554 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6555 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6556 				continue;
6557 			break;
6558 		case MSR_IA32_RTIT_OUTPUT_BASE:
6559 		case MSR_IA32_RTIT_OUTPUT_MASK:
6560 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6561 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6562 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6563 				continue;
6564 			break;
6565 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6566 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6567 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6568 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6569 				continue;
6570 			break;
6571 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6572 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6573 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6574 				continue;
6575 			break;
6576 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6577 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6578 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6579 				continue;
6580 			break;
6581 		case MSR_IA32_XFD:
6582 		case MSR_IA32_XFD_ERR:
6583 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6584 				continue;
6585 			break;
6586 		default:
6587 			break;
6588 		}
6589 
6590 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6591 	}
6592 
6593 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6594 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6595 			continue;
6596 
6597 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6598 	}
6599 
6600 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6601 		struct kvm_msr_entry msr;
6602 
6603 		msr.index = msr_based_features_all[i];
6604 		if (kvm_get_msr_feature(&msr))
6605 			continue;
6606 
6607 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6608 	}
6609 }
6610 
6611 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6612 			   const void *v)
6613 {
6614 	int handled = 0;
6615 	int n;
6616 
6617 	do {
6618 		n = min(len, 8);
6619 		if (!(lapic_in_kernel(vcpu) &&
6620 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6621 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6622 			break;
6623 		handled += n;
6624 		addr += n;
6625 		len -= n;
6626 		v += n;
6627 	} while (len);
6628 
6629 	return handled;
6630 }
6631 
6632 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6633 {
6634 	int handled = 0;
6635 	int n;
6636 
6637 	do {
6638 		n = min(len, 8);
6639 		if (!(lapic_in_kernel(vcpu) &&
6640 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6641 					 addr, n, v))
6642 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6643 			break;
6644 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6645 		handled += n;
6646 		addr += n;
6647 		len -= n;
6648 		v += n;
6649 	} while (len);
6650 
6651 	return handled;
6652 }
6653 
6654 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6655 			struct kvm_segment *var, int seg)
6656 {
6657 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6658 }
6659 
6660 void kvm_get_segment(struct kvm_vcpu *vcpu,
6661 		     struct kvm_segment *var, int seg)
6662 {
6663 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6664 }
6665 
6666 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6667 			   struct x86_exception *exception)
6668 {
6669 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6670 	gpa_t t_gpa;
6671 
6672 	BUG_ON(!mmu_is_nested(vcpu));
6673 
6674 	/* NPT walks are always user-walks */
6675 	access |= PFERR_USER_MASK;
6676 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6677 
6678 	return t_gpa;
6679 }
6680 
6681 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6682 			      struct x86_exception *exception)
6683 {
6684 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6685 
6686 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6687 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6688 }
6689 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6690 
6691  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6692 				struct x86_exception *exception)
6693 {
6694 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6695 
6696 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6697 	access |= PFERR_FETCH_MASK;
6698 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6699 }
6700 
6701 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6702 			       struct x86_exception *exception)
6703 {
6704 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6705 
6706 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6707 	access |= PFERR_WRITE_MASK;
6708 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6709 }
6710 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6711 
6712 /* uses this to access any guest's mapped memory without checking CPL */
6713 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6714 				struct x86_exception *exception)
6715 {
6716 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6717 
6718 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6719 }
6720 
6721 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6722 				      struct kvm_vcpu *vcpu, u32 access,
6723 				      struct x86_exception *exception)
6724 {
6725 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6726 	void *data = val;
6727 	int r = X86EMUL_CONTINUE;
6728 
6729 	while (bytes) {
6730 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6731 		unsigned offset = addr & (PAGE_SIZE-1);
6732 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6733 		int ret;
6734 
6735 		if (gpa == UNMAPPED_GVA)
6736 			return X86EMUL_PROPAGATE_FAULT;
6737 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6738 					       offset, toread);
6739 		if (ret < 0) {
6740 			r = X86EMUL_IO_NEEDED;
6741 			goto out;
6742 		}
6743 
6744 		bytes -= toread;
6745 		data += toread;
6746 		addr += toread;
6747 	}
6748 out:
6749 	return r;
6750 }
6751 
6752 /* used for instruction fetching */
6753 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6754 				gva_t addr, void *val, unsigned int bytes,
6755 				struct x86_exception *exception)
6756 {
6757 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6758 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6759 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6760 	unsigned offset;
6761 	int ret;
6762 
6763 	/* Inline kvm_read_guest_virt_helper for speed.  */
6764 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6765 				    exception);
6766 	if (unlikely(gpa == UNMAPPED_GVA))
6767 		return X86EMUL_PROPAGATE_FAULT;
6768 
6769 	offset = addr & (PAGE_SIZE-1);
6770 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6771 		bytes = (unsigned)PAGE_SIZE - offset;
6772 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6773 				       offset, bytes);
6774 	if (unlikely(ret < 0))
6775 		return X86EMUL_IO_NEEDED;
6776 
6777 	return X86EMUL_CONTINUE;
6778 }
6779 
6780 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6781 			       gva_t addr, void *val, unsigned int bytes,
6782 			       struct x86_exception *exception)
6783 {
6784 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6785 
6786 	/*
6787 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6788 	 * is returned, but our callers are not ready for that and they blindly
6789 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6790 	 * uninitialized kernel stack memory into cr2 and error code.
6791 	 */
6792 	memset(exception, 0, sizeof(*exception));
6793 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6794 					  exception);
6795 }
6796 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6797 
6798 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6799 			     gva_t addr, void *val, unsigned int bytes,
6800 			     struct x86_exception *exception, bool system)
6801 {
6802 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6803 	u32 access = 0;
6804 
6805 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6806 		access |= PFERR_USER_MASK;
6807 
6808 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6809 }
6810 
6811 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6812 		unsigned long addr, void *val, unsigned int bytes)
6813 {
6814 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6815 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6816 
6817 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6818 }
6819 
6820 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6821 				      struct kvm_vcpu *vcpu, u32 access,
6822 				      struct x86_exception *exception)
6823 {
6824 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6825 	void *data = val;
6826 	int r = X86EMUL_CONTINUE;
6827 
6828 	while (bytes) {
6829 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6830 		unsigned offset = addr & (PAGE_SIZE-1);
6831 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6832 		int ret;
6833 
6834 		if (gpa == UNMAPPED_GVA)
6835 			return X86EMUL_PROPAGATE_FAULT;
6836 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6837 		if (ret < 0) {
6838 			r = X86EMUL_IO_NEEDED;
6839 			goto out;
6840 		}
6841 
6842 		bytes -= towrite;
6843 		data += towrite;
6844 		addr += towrite;
6845 	}
6846 out:
6847 	return r;
6848 }
6849 
6850 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6851 			      unsigned int bytes, struct x86_exception *exception,
6852 			      bool system)
6853 {
6854 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6855 	u32 access = PFERR_WRITE_MASK;
6856 
6857 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6858 		access |= PFERR_USER_MASK;
6859 
6860 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6861 					   access, exception);
6862 }
6863 
6864 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6865 				unsigned int bytes, struct x86_exception *exception)
6866 {
6867 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6868 	vcpu->arch.l1tf_flush_l1d = true;
6869 
6870 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6871 					   PFERR_WRITE_MASK, exception);
6872 }
6873 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6874 
6875 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6876 				void *insn, int insn_len)
6877 {
6878 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6879 							    insn, insn_len);
6880 }
6881 
6882 int handle_ud(struct kvm_vcpu *vcpu)
6883 {
6884 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6885 	int emul_type = EMULTYPE_TRAP_UD;
6886 	char sig[5]; /* ud2; .ascii "kvm" */
6887 	struct x86_exception e;
6888 
6889 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6890 		return 1;
6891 
6892 	if (force_emulation_prefix &&
6893 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6894 				sig, sizeof(sig), &e) == 0 &&
6895 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6896 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6897 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6898 	}
6899 
6900 	return kvm_emulate_instruction(vcpu, emul_type);
6901 }
6902 EXPORT_SYMBOL_GPL(handle_ud);
6903 
6904 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6905 			    gpa_t gpa, bool write)
6906 {
6907 	/* For APIC access vmexit */
6908 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6909 		return 1;
6910 
6911 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6912 		trace_vcpu_match_mmio(gva, gpa, write, true);
6913 		return 1;
6914 	}
6915 
6916 	return 0;
6917 }
6918 
6919 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6920 				gpa_t *gpa, struct x86_exception *exception,
6921 				bool write)
6922 {
6923 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6924 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6925 		| (write ? PFERR_WRITE_MASK : 0);
6926 
6927 	/*
6928 	 * currently PKRU is only applied to ept enabled guest so
6929 	 * there is no pkey in EPT page table for L1 guest or EPT
6930 	 * shadow page table for L2 guest.
6931 	 */
6932 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6933 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6934 			      vcpu->arch.mmio_access, 0, access))) {
6935 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6936 					(gva & (PAGE_SIZE - 1));
6937 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6938 		return 1;
6939 	}
6940 
6941 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6942 
6943 	if (*gpa == UNMAPPED_GVA)
6944 		return -1;
6945 
6946 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6947 }
6948 
6949 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6950 			const void *val, int bytes)
6951 {
6952 	int ret;
6953 
6954 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6955 	if (ret < 0)
6956 		return 0;
6957 	kvm_page_track_write(vcpu, gpa, val, bytes);
6958 	return 1;
6959 }
6960 
6961 struct read_write_emulator_ops {
6962 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6963 				  int bytes);
6964 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6965 				  void *val, int bytes);
6966 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6967 			       int bytes, void *val);
6968 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6969 				    void *val, int bytes);
6970 	bool write;
6971 };
6972 
6973 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6974 {
6975 	if (vcpu->mmio_read_completed) {
6976 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6977 			       vcpu->mmio_fragments[0].gpa, val);
6978 		vcpu->mmio_read_completed = 0;
6979 		return 1;
6980 	}
6981 
6982 	return 0;
6983 }
6984 
6985 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6986 			void *val, int bytes)
6987 {
6988 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6989 }
6990 
6991 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6992 			 void *val, int bytes)
6993 {
6994 	return emulator_write_phys(vcpu, gpa, val, bytes);
6995 }
6996 
6997 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6998 {
6999 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7000 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7001 }
7002 
7003 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7004 			  void *val, int bytes)
7005 {
7006 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7007 	return X86EMUL_IO_NEEDED;
7008 }
7009 
7010 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7011 			   void *val, int bytes)
7012 {
7013 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7014 
7015 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7016 	return X86EMUL_CONTINUE;
7017 }
7018 
7019 static const struct read_write_emulator_ops read_emultor = {
7020 	.read_write_prepare = read_prepare,
7021 	.read_write_emulate = read_emulate,
7022 	.read_write_mmio = vcpu_mmio_read,
7023 	.read_write_exit_mmio = read_exit_mmio,
7024 };
7025 
7026 static const struct read_write_emulator_ops write_emultor = {
7027 	.read_write_emulate = write_emulate,
7028 	.read_write_mmio = write_mmio,
7029 	.read_write_exit_mmio = write_exit_mmio,
7030 	.write = true,
7031 };
7032 
7033 static int emulator_read_write_onepage(unsigned long addr, void *val,
7034 				       unsigned int bytes,
7035 				       struct x86_exception *exception,
7036 				       struct kvm_vcpu *vcpu,
7037 				       const struct read_write_emulator_ops *ops)
7038 {
7039 	gpa_t gpa;
7040 	int handled, ret;
7041 	bool write = ops->write;
7042 	struct kvm_mmio_fragment *frag;
7043 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7044 
7045 	/*
7046 	 * If the exit was due to a NPF we may already have a GPA.
7047 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7048 	 * Note, this cannot be used on string operations since string
7049 	 * operation using rep will only have the initial GPA from the NPF
7050 	 * occurred.
7051 	 */
7052 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7053 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7054 		gpa = ctxt->gpa_val;
7055 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7056 	} else {
7057 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7058 		if (ret < 0)
7059 			return X86EMUL_PROPAGATE_FAULT;
7060 	}
7061 
7062 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7063 		return X86EMUL_CONTINUE;
7064 
7065 	/*
7066 	 * Is this MMIO handled locally?
7067 	 */
7068 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7069 	if (handled == bytes)
7070 		return X86EMUL_CONTINUE;
7071 
7072 	gpa += handled;
7073 	bytes -= handled;
7074 	val += handled;
7075 
7076 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7077 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7078 	frag->gpa = gpa;
7079 	frag->data = val;
7080 	frag->len = bytes;
7081 	return X86EMUL_CONTINUE;
7082 }
7083 
7084 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7085 			unsigned long addr,
7086 			void *val, unsigned int bytes,
7087 			struct x86_exception *exception,
7088 			const struct read_write_emulator_ops *ops)
7089 {
7090 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7091 	gpa_t gpa;
7092 	int rc;
7093 
7094 	if (ops->read_write_prepare &&
7095 		  ops->read_write_prepare(vcpu, val, bytes))
7096 		return X86EMUL_CONTINUE;
7097 
7098 	vcpu->mmio_nr_fragments = 0;
7099 
7100 	/* Crossing a page boundary? */
7101 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7102 		int now;
7103 
7104 		now = -addr & ~PAGE_MASK;
7105 		rc = emulator_read_write_onepage(addr, val, now, exception,
7106 						 vcpu, ops);
7107 
7108 		if (rc != X86EMUL_CONTINUE)
7109 			return rc;
7110 		addr += now;
7111 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7112 			addr = (u32)addr;
7113 		val += now;
7114 		bytes -= now;
7115 	}
7116 
7117 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7118 					 vcpu, ops);
7119 	if (rc != X86EMUL_CONTINUE)
7120 		return rc;
7121 
7122 	if (!vcpu->mmio_nr_fragments)
7123 		return rc;
7124 
7125 	gpa = vcpu->mmio_fragments[0].gpa;
7126 
7127 	vcpu->mmio_needed = 1;
7128 	vcpu->mmio_cur_fragment = 0;
7129 
7130 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7131 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7132 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7133 	vcpu->run->mmio.phys_addr = gpa;
7134 
7135 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7136 }
7137 
7138 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7139 				  unsigned long addr,
7140 				  void *val,
7141 				  unsigned int bytes,
7142 				  struct x86_exception *exception)
7143 {
7144 	return emulator_read_write(ctxt, addr, val, bytes,
7145 				   exception, &read_emultor);
7146 }
7147 
7148 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7149 			    unsigned long addr,
7150 			    const void *val,
7151 			    unsigned int bytes,
7152 			    struct x86_exception *exception)
7153 {
7154 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7155 				   exception, &write_emultor);
7156 }
7157 
7158 #define CMPXCHG_TYPE(t, ptr, old, new) \
7159 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7160 
7161 #ifdef CONFIG_X86_64
7162 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7163 #else
7164 #  define CMPXCHG64(ptr, old, new) \
7165 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7166 #endif
7167 
7168 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7169 				     unsigned long addr,
7170 				     const void *old,
7171 				     const void *new,
7172 				     unsigned int bytes,
7173 				     struct x86_exception *exception)
7174 {
7175 	struct kvm_host_map map;
7176 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7177 	u64 page_line_mask;
7178 	gpa_t gpa;
7179 	char *kaddr;
7180 	bool exchanged;
7181 
7182 	/* guests cmpxchg8b have to be emulated atomically */
7183 	if (bytes > 8 || (bytes & (bytes - 1)))
7184 		goto emul_write;
7185 
7186 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7187 
7188 	if (gpa == UNMAPPED_GVA ||
7189 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7190 		goto emul_write;
7191 
7192 	/*
7193 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7194 	 * enabled in the host and the access splits a cache line.
7195 	 */
7196 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7197 		page_line_mask = ~(cache_line_size() - 1);
7198 	else
7199 		page_line_mask = PAGE_MASK;
7200 
7201 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7202 		goto emul_write;
7203 
7204 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7205 		goto emul_write;
7206 
7207 	kaddr = map.hva + offset_in_page(gpa);
7208 
7209 	switch (bytes) {
7210 	case 1:
7211 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7212 		break;
7213 	case 2:
7214 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7215 		break;
7216 	case 4:
7217 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7218 		break;
7219 	case 8:
7220 		exchanged = CMPXCHG64(kaddr, old, new);
7221 		break;
7222 	default:
7223 		BUG();
7224 	}
7225 
7226 	kvm_vcpu_unmap(vcpu, &map, true);
7227 
7228 	if (!exchanged)
7229 		return X86EMUL_CMPXCHG_FAILED;
7230 
7231 	kvm_page_track_write(vcpu, gpa, new, bytes);
7232 
7233 	return X86EMUL_CONTINUE;
7234 
7235 emul_write:
7236 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7237 
7238 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7239 }
7240 
7241 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7242 {
7243 	int r = 0, i;
7244 
7245 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7246 		if (vcpu->arch.pio.in)
7247 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7248 					    vcpu->arch.pio.size, pd);
7249 		else
7250 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7251 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7252 					     pd);
7253 		if (r)
7254 			break;
7255 		pd += vcpu->arch.pio.size;
7256 	}
7257 	return r;
7258 }
7259 
7260 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7261 			       unsigned short port,
7262 			       unsigned int count, bool in)
7263 {
7264 	vcpu->arch.pio.port = port;
7265 	vcpu->arch.pio.in = in;
7266 	vcpu->arch.pio.count  = count;
7267 	vcpu->arch.pio.size = size;
7268 
7269 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7270 		return 1;
7271 
7272 	vcpu->run->exit_reason = KVM_EXIT_IO;
7273 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7274 	vcpu->run->io.size = size;
7275 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7276 	vcpu->run->io.count = count;
7277 	vcpu->run->io.port = port;
7278 
7279 	return 0;
7280 }
7281 
7282 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7283 			     unsigned short port, unsigned int count)
7284 {
7285 	WARN_ON(vcpu->arch.pio.count);
7286 	memset(vcpu->arch.pio_data, 0, size * count);
7287 	return emulator_pio_in_out(vcpu, size, port, count, true);
7288 }
7289 
7290 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7291 {
7292 	int size = vcpu->arch.pio.size;
7293 	unsigned count = vcpu->arch.pio.count;
7294 	memcpy(val, vcpu->arch.pio_data, size * count);
7295 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7296 	vcpu->arch.pio.count = 0;
7297 }
7298 
7299 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7300 			   unsigned short port, void *val, unsigned int count)
7301 {
7302 	if (vcpu->arch.pio.count) {
7303 		/*
7304 		 * Complete a previous iteration that required userspace I/O.
7305 		 * Note, @count isn't guaranteed to match pio.count as userspace
7306 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7307 		 * shenanigans as KVM doesn't support modifying the rep count,
7308 		 * and the emulator ensures @count doesn't overflow the buffer.
7309 		 */
7310 	} else {
7311 		int r = __emulator_pio_in(vcpu, size, port, count);
7312 		if (!r)
7313 			return r;
7314 
7315 		/* Results already available, fall through.  */
7316 	}
7317 
7318 	complete_emulator_pio_in(vcpu, val);
7319 	return 1;
7320 }
7321 
7322 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7323 				    int size, unsigned short port, void *val,
7324 				    unsigned int count)
7325 {
7326 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7327 
7328 }
7329 
7330 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7331 			    unsigned short port, const void *val,
7332 			    unsigned int count)
7333 {
7334 	int ret;
7335 
7336 	memcpy(vcpu->arch.pio_data, val, size * count);
7337 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7338 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7339 	if (ret)
7340                 vcpu->arch.pio.count = 0;
7341 
7342         return ret;
7343 }
7344 
7345 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7346 				     int size, unsigned short port,
7347 				     const void *val, unsigned int count)
7348 {
7349 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7350 }
7351 
7352 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7353 {
7354 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7355 }
7356 
7357 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7358 {
7359 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7360 }
7361 
7362 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7363 {
7364 	if (!need_emulate_wbinvd(vcpu))
7365 		return X86EMUL_CONTINUE;
7366 
7367 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7368 		int cpu = get_cpu();
7369 
7370 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7371 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7372 				wbinvd_ipi, NULL, 1);
7373 		put_cpu();
7374 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7375 	} else
7376 		wbinvd();
7377 	return X86EMUL_CONTINUE;
7378 }
7379 
7380 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7381 {
7382 	kvm_emulate_wbinvd_noskip(vcpu);
7383 	return kvm_skip_emulated_instruction(vcpu);
7384 }
7385 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7386 
7387 
7388 
7389 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7390 {
7391 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7392 }
7393 
7394 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7395 			    unsigned long *dest)
7396 {
7397 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7398 }
7399 
7400 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7401 			   unsigned long value)
7402 {
7403 
7404 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7405 }
7406 
7407 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7408 {
7409 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7410 }
7411 
7412 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7413 {
7414 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7415 	unsigned long value;
7416 
7417 	switch (cr) {
7418 	case 0:
7419 		value = kvm_read_cr0(vcpu);
7420 		break;
7421 	case 2:
7422 		value = vcpu->arch.cr2;
7423 		break;
7424 	case 3:
7425 		value = kvm_read_cr3(vcpu);
7426 		break;
7427 	case 4:
7428 		value = kvm_read_cr4(vcpu);
7429 		break;
7430 	case 8:
7431 		value = kvm_get_cr8(vcpu);
7432 		break;
7433 	default:
7434 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7435 		return 0;
7436 	}
7437 
7438 	return value;
7439 }
7440 
7441 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7442 {
7443 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7444 	int res = 0;
7445 
7446 	switch (cr) {
7447 	case 0:
7448 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7449 		break;
7450 	case 2:
7451 		vcpu->arch.cr2 = val;
7452 		break;
7453 	case 3:
7454 		res = kvm_set_cr3(vcpu, val);
7455 		break;
7456 	case 4:
7457 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7458 		break;
7459 	case 8:
7460 		res = kvm_set_cr8(vcpu, val);
7461 		break;
7462 	default:
7463 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7464 		res = -1;
7465 	}
7466 
7467 	return res;
7468 }
7469 
7470 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7471 {
7472 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7473 }
7474 
7475 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7476 {
7477 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7478 }
7479 
7480 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7481 {
7482 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7483 }
7484 
7485 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7486 {
7487 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7488 }
7489 
7490 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7491 {
7492 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7493 }
7494 
7495 static unsigned long emulator_get_cached_segment_base(
7496 	struct x86_emulate_ctxt *ctxt, int seg)
7497 {
7498 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7499 }
7500 
7501 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7502 				 struct desc_struct *desc, u32 *base3,
7503 				 int seg)
7504 {
7505 	struct kvm_segment var;
7506 
7507 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7508 	*selector = var.selector;
7509 
7510 	if (var.unusable) {
7511 		memset(desc, 0, sizeof(*desc));
7512 		if (base3)
7513 			*base3 = 0;
7514 		return false;
7515 	}
7516 
7517 	if (var.g)
7518 		var.limit >>= 12;
7519 	set_desc_limit(desc, var.limit);
7520 	set_desc_base(desc, (unsigned long)var.base);
7521 #ifdef CONFIG_X86_64
7522 	if (base3)
7523 		*base3 = var.base >> 32;
7524 #endif
7525 	desc->type = var.type;
7526 	desc->s = var.s;
7527 	desc->dpl = var.dpl;
7528 	desc->p = var.present;
7529 	desc->avl = var.avl;
7530 	desc->l = var.l;
7531 	desc->d = var.db;
7532 	desc->g = var.g;
7533 
7534 	return true;
7535 }
7536 
7537 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7538 				 struct desc_struct *desc, u32 base3,
7539 				 int seg)
7540 {
7541 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7542 	struct kvm_segment var;
7543 
7544 	var.selector = selector;
7545 	var.base = get_desc_base(desc);
7546 #ifdef CONFIG_X86_64
7547 	var.base |= ((u64)base3) << 32;
7548 #endif
7549 	var.limit = get_desc_limit(desc);
7550 	if (desc->g)
7551 		var.limit = (var.limit << 12) | 0xfff;
7552 	var.type = desc->type;
7553 	var.dpl = desc->dpl;
7554 	var.db = desc->d;
7555 	var.s = desc->s;
7556 	var.l = desc->l;
7557 	var.g = desc->g;
7558 	var.avl = desc->avl;
7559 	var.present = desc->p;
7560 	var.unusable = !var.present;
7561 	var.padding = 0;
7562 
7563 	kvm_set_segment(vcpu, &var, seg);
7564 	return;
7565 }
7566 
7567 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7568 			    u32 msr_index, u64 *pdata)
7569 {
7570 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7571 	int r;
7572 
7573 	r = kvm_get_msr(vcpu, msr_index, pdata);
7574 
7575 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7576 				    complete_emulated_rdmsr, r)) {
7577 		/* Bounce to user space */
7578 		return X86EMUL_IO_NEEDED;
7579 	}
7580 
7581 	return r;
7582 }
7583 
7584 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7585 			    u32 msr_index, u64 data)
7586 {
7587 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7588 	int r;
7589 
7590 	r = kvm_set_msr(vcpu, msr_index, data);
7591 
7592 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7593 				    complete_emulated_msr_access, r)) {
7594 		/* Bounce to user space */
7595 		return X86EMUL_IO_NEEDED;
7596 	}
7597 
7598 	return r;
7599 }
7600 
7601 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7602 {
7603 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7604 
7605 	return vcpu->arch.smbase;
7606 }
7607 
7608 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7609 {
7610 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7611 
7612 	vcpu->arch.smbase = smbase;
7613 }
7614 
7615 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7616 			      u32 pmc)
7617 {
7618 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7619 		return 0;
7620 	return -EINVAL;
7621 }
7622 
7623 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7624 			     u32 pmc, u64 *pdata)
7625 {
7626 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7627 }
7628 
7629 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7630 {
7631 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7632 }
7633 
7634 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7635 			      struct x86_instruction_info *info,
7636 			      enum x86_intercept_stage stage)
7637 {
7638 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7639 					    &ctxt->exception);
7640 }
7641 
7642 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7643 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7644 			      bool exact_only)
7645 {
7646 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7647 }
7648 
7649 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7650 {
7651 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7652 }
7653 
7654 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7655 {
7656 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7657 }
7658 
7659 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7660 {
7661 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7662 }
7663 
7664 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7665 {
7666 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7667 }
7668 
7669 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7670 {
7671 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7672 }
7673 
7674 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7675 {
7676 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7677 }
7678 
7679 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7680 {
7681 	return emul_to_vcpu(ctxt)->arch.hflags;
7682 }
7683 
7684 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7685 {
7686 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7687 
7688 	kvm_smm_changed(vcpu, false);
7689 }
7690 
7691 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7692 				  const char *smstate)
7693 {
7694 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7695 }
7696 
7697 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7698 {
7699 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7700 }
7701 
7702 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7703 {
7704 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7705 }
7706 
7707 static const struct x86_emulate_ops emulate_ops = {
7708 	.read_gpr            = emulator_read_gpr,
7709 	.write_gpr           = emulator_write_gpr,
7710 	.read_std            = emulator_read_std,
7711 	.write_std           = emulator_write_std,
7712 	.read_phys           = kvm_read_guest_phys_system,
7713 	.fetch               = kvm_fetch_guest_virt,
7714 	.read_emulated       = emulator_read_emulated,
7715 	.write_emulated      = emulator_write_emulated,
7716 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7717 	.invlpg              = emulator_invlpg,
7718 	.pio_in_emulated     = emulator_pio_in_emulated,
7719 	.pio_out_emulated    = emulator_pio_out_emulated,
7720 	.get_segment         = emulator_get_segment,
7721 	.set_segment         = emulator_set_segment,
7722 	.get_cached_segment_base = emulator_get_cached_segment_base,
7723 	.get_gdt             = emulator_get_gdt,
7724 	.get_idt	     = emulator_get_idt,
7725 	.set_gdt             = emulator_set_gdt,
7726 	.set_idt	     = emulator_set_idt,
7727 	.get_cr              = emulator_get_cr,
7728 	.set_cr              = emulator_set_cr,
7729 	.cpl                 = emulator_get_cpl,
7730 	.get_dr              = emulator_get_dr,
7731 	.set_dr              = emulator_set_dr,
7732 	.get_smbase          = emulator_get_smbase,
7733 	.set_smbase          = emulator_set_smbase,
7734 	.set_msr             = emulator_set_msr,
7735 	.get_msr             = emulator_get_msr,
7736 	.check_pmc	     = emulator_check_pmc,
7737 	.read_pmc            = emulator_read_pmc,
7738 	.halt                = emulator_halt,
7739 	.wbinvd              = emulator_wbinvd,
7740 	.fix_hypercall       = emulator_fix_hypercall,
7741 	.intercept           = emulator_intercept,
7742 	.get_cpuid           = emulator_get_cpuid,
7743 	.guest_has_long_mode = emulator_guest_has_long_mode,
7744 	.guest_has_movbe     = emulator_guest_has_movbe,
7745 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7746 	.set_nmi_mask        = emulator_set_nmi_mask,
7747 	.get_hflags          = emulator_get_hflags,
7748 	.exiting_smm         = emulator_exiting_smm,
7749 	.leave_smm           = emulator_leave_smm,
7750 	.triple_fault        = emulator_triple_fault,
7751 	.set_xcr             = emulator_set_xcr,
7752 };
7753 
7754 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7755 {
7756 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7757 	/*
7758 	 * an sti; sti; sequence only disable interrupts for the first
7759 	 * instruction. So, if the last instruction, be it emulated or
7760 	 * not, left the system with the INT_STI flag enabled, it
7761 	 * means that the last instruction is an sti. We should not
7762 	 * leave the flag on in this case. The same goes for mov ss
7763 	 */
7764 	if (int_shadow & mask)
7765 		mask = 0;
7766 	if (unlikely(int_shadow || mask)) {
7767 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7768 		if (!mask)
7769 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7770 	}
7771 }
7772 
7773 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7774 {
7775 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7776 	if (ctxt->exception.vector == PF_VECTOR)
7777 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7778 
7779 	if (ctxt->exception.error_code_valid)
7780 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7781 				      ctxt->exception.error_code);
7782 	else
7783 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7784 	return false;
7785 }
7786 
7787 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7788 {
7789 	struct x86_emulate_ctxt *ctxt;
7790 
7791 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7792 	if (!ctxt) {
7793 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7794 		return NULL;
7795 	}
7796 
7797 	ctxt->vcpu = vcpu;
7798 	ctxt->ops = &emulate_ops;
7799 	vcpu->arch.emulate_ctxt = ctxt;
7800 
7801 	return ctxt;
7802 }
7803 
7804 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7805 {
7806 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7807 	int cs_db, cs_l;
7808 
7809 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7810 
7811 	ctxt->gpa_available = false;
7812 	ctxt->eflags = kvm_get_rflags(vcpu);
7813 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7814 
7815 	ctxt->eip = kvm_rip_read(vcpu);
7816 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7817 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7818 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7819 		     cs_db				? X86EMUL_MODE_PROT32 :
7820 							  X86EMUL_MODE_PROT16;
7821 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7822 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7823 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7824 
7825 	ctxt->interruptibility = 0;
7826 	ctxt->have_exception = false;
7827 	ctxt->exception.vector = -1;
7828 	ctxt->perm_ok = false;
7829 
7830 	init_decode_cache(ctxt);
7831 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7832 }
7833 
7834 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7835 {
7836 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7837 	int ret;
7838 
7839 	init_emulate_ctxt(vcpu);
7840 
7841 	ctxt->op_bytes = 2;
7842 	ctxt->ad_bytes = 2;
7843 	ctxt->_eip = ctxt->eip + inc_eip;
7844 	ret = emulate_int_real(ctxt, irq);
7845 
7846 	if (ret != X86EMUL_CONTINUE) {
7847 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7848 	} else {
7849 		ctxt->eip = ctxt->_eip;
7850 		kvm_rip_write(vcpu, ctxt->eip);
7851 		kvm_set_rflags(vcpu, ctxt->eflags);
7852 	}
7853 }
7854 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7855 
7856 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7857 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7858 {
7859 	struct kvm_run *run = vcpu->run;
7860 	u64 info[5];
7861 	u8 info_start;
7862 
7863 	/*
7864 	 * Zero the whole array used to retrieve the exit info, as casting to
7865 	 * u32 for select entries will leave some chunks uninitialized.
7866 	 */
7867 	memset(&info, 0, sizeof(info));
7868 
7869 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7870 					   &info[2], (u32 *)&info[3],
7871 					   (u32 *)&info[4]);
7872 
7873 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7874 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7875 
7876 	/*
7877 	 * There's currently space for 13 entries, but 5 are used for the exit
7878 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7879 	 * when expanding kvm_run.emulation_failure in the future.
7880 	 */
7881 	if (WARN_ON_ONCE(ndata > 4))
7882 		ndata = 4;
7883 
7884 	/* Always include the flags as a 'data' entry. */
7885 	info_start = 1;
7886 	run->emulation_failure.flags = 0;
7887 
7888 	if (insn_size) {
7889 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7890 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7891 		info_start += 2;
7892 		run->emulation_failure.flags |=
7893 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7894 		run->emulation_failure.insn_size = insn_size;
7895 		memset(run->emulation_failure.insn_bytes, 0x90,
7896 		       sizeof(run->emulation_failure.insn_bytes));
7897 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7898 	}
7899 
7900 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7901 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7902 	       ndata * sizeof(data[0]));
7903 
7904 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7905 }
7906 
7907 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7908 {
7909 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7910 
7911 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7912 				       ctxt->fetch.end - ctxt->fetch.data);
7913 }
7914 
7915 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7916 					  u8 ndata)
7917 {
7918 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7919 }
7920 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7921 
7922 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7923 {
7924 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7925 }
7926 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7927 
7928 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7929 {
7930 	struct kvm *kvm = vcpu->kvm;
7931 
7932 	++vcpu->stat.insn_emulation_fail;
7933 	trace_kvm_emulate_insn_failed(vcpu);
7934 
7935 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7936 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7937 		return 1;
7938 	}
7939 
7940 	if (kvm->arch.exit_on_emulation_error ||
7941 	    (emulation_type & EMULTYPE_SKIP)) {
7942 		prepare_emulation_ctxt_failure_exit(vcpu);
7943 		return 0;
7944 	}
7945 
7946 	kvm_queue_exception(vcpu, UD_VECTOR);
7947 
7948 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7949 		prepare_emulation_ctxt_failure_exit(vcpu);
7950 		return 0;
7951 	}
7952 
7953 	return 1;
7954 }
7955 
7956 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7957 				  bool write_fault_to_shadow_pgtable,
7958 				  int emulation_type)
7959 {
7960 	gpa_t gpa = cr2_or_gpa;
7961 	kvm_pfn_t pfn;
7962 
7963 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7964 		return false;
7965 
7966 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7967 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7968 		return false;
7969 
7970 	if (!vcpu->arch.mmu->direct_map) {
7971 		/*
7972 		 * Write permission should be allowed since only
7973 		 * write access need to be emulated.
7974 		 */
7975 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7976 
7977 		/*
7978 		 * If the mapping is invalid in guest, let cpu retry
7979 		 * it to generate fault.
7980 		 */
7981 		if (gpa == UNMAPPED_GVA)
7982 			return true;
7983 	}
7984 
7985 	/*
7986 	 * Do not retry the unhandleable instruction if it faults on the
7987 	 * readonly host memory, otherwise it will goto a infinite loop:
7988 	 * retry instruction -> write #PF -> emulation fail -> retry
7989 	 * instruction -> ...
7990 	 */
7991 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7992 
7993 	/*
7994 	 * If the instruction failed on the error pfn, it can not be fixed,
7995 	 * report the error to userspace.
7996 	 */
7997 	if (is_error_noslot_pfn(pfn))
7998 		return false;
7999 
8000 	kvm_release_pfn_clean(pfn);
8001 
8002 	/* The instructions are well-emulated on direct mmu. */
8003 	if (vcpu->arch.mmu->direct_map) {
8004 		unsigned int indirect_shadow_pages;
8005 
8006 		write_lock(&vcpu->kvm->mmu_lock);
8007 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8008 		write_unlock(&vcpu->kvm->mmu_lock);
8009 
8010 		if (indirect_shadow_pages)
8011 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8012 
8013 		return true;
8014 	}
8015 
8016 	/*
8017 	 * if emulation was due to access to shadowed page table
8018 	 * and it failed try to unshadow page and re-enter the
8019 	 * guest to let CPU execute the instruction.
8020 	 */
8021 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8022 
8023 	/*
8024 	 * If the access faults on its page table, it can not
8025 	 * be fixed by unprotecting shadow page and it should
8026 	 * be reported to userspace.
8027 	 */
8028 	return !write_fault_to_shadow_pgtable;
8029 }
8030 
8031 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8032 			      gpa_t cr2_or_gpa,  int emulation_type)
8033 {
8034 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8035 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8036 
8037 	last_retry_eip = vcpu->arch.last_retry_eip;
8038 	last_retry_addr = vcpu->arch.last_retry_addr;
8039 
8040 	/*
8041 	 * If the emulation is caused by #PF and it is non-page_table
8042 	 * writing instruction, it means the VM-EXIT is caused by shadow
8043 	 * page protected, we can zap the shadow page and retry this
8044 	 * instruction directly.
8045 	 *
8046 	 * Note: if the guest uses a non-page-table modifying instruction
8047 	 * on the PDE that points to the instruction, then we will unmap
8048 	 * the instruction and go to an infinite loop. So, we cache the
8049 	 * last retried eip and the last fault address, if we meet the eip
8050 	 * and the address again, we can break out of the potential infinite
8051 	 * loop.
8052 	 */
8053 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8054 
8055 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8056 		return false;
8057 
8058 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8059 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8060 		return false;
8061 
8062 	if (x86_page_table_writing_insn(ctxt))
8063 		return false;
8064 
8065 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8066 		return false;
8067 
8068 	vcpu->arch.last_retry_eip = ctxt->eip;
8069 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8070 
8071 	if (!vcpu->arch.mmu->direct_map)
8072 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8073 
8074 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8075 
8076 	return true;
8077 }
8078 
8079 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8080 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8081 
8082 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8083 {
8084 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8085 
8086 	if (entering_smm) {
8087 		vcpu->arch.hflags |= HF_SMM_MASK;
8088 	} else {
8089 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8090 
8091 		/* Process a latched INIT or SMI, if any.  */
8092 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8093 
8094 		/*
8095 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8096 		 * on SMM exit we still need to reload them from
8097 		 * guest memory
8098 		 */
8099 		vcpu->arch.pdptrs_from_userspace = false;
8100 	}
8101 
8102 	kvm_mmu_reset_context(vcpu);
8103 }
8104 
8105 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8106 				unsigned long *db)
8107 {
8108 	u32 dr6 = 0;
8109 	int i;
8110 	u32 enable, rwlen;
8111 
8112 	enable = dr7;
8113 	rwlen = dr7 >> 16;
8114 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8115 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8116 			dr6 |= (1 << i);
8117 	return dr6;
8118 }
8119 
8120 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8121 {
8122 	struct kvm_run *kvm_run = vcpu->run;
8123 
8124 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8125 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8126 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8127 		kvm_run->debug.arch.exception = DB_VECTOR;
8128 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8129 		return 0;
8130 	}
8131 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8132 	return 1;
8133 }
8134 
8135 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8136 {
8137 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8138 	int r;
8139 
8140 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8141 	if (unlikely(!r))
8142 		return 0;
8143 
8144 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8145 
8146 	/*
8147 	 * rflags is the old, "raw" value of the flags.  The new value has
8148 	 * not been saved yet.
8149 	 *
8150 	 * This is correct even for TF set by the guest, because "the
8151 	 * processor will not generate this exception after the instruction
8152 	 * that sets the TF flag".
8153 	 */
8154 	if (unlikely(rflags & X86_EFLAGS_TF))
8155 		r = kvm_vcpu_do_singlestep(vcpu);
8156 	return r;
8157 }
8158 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8159 
8160 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8161 {
8162 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8163 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8164 		struct kvm_run *kvm_run = vcpu->run;
8165 		unsigned long eip = kvm_get_linear_rip(vcpu);
8166 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8167 					   vcpu->arch.guest_debug_dr7,
8168 					   vcpu->arch.eff_db);
8169 
8170 		if (dr6 != 0) {
8171 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8172 			kvm_run->debug.arch.pc = eip;
8173 			kvm_run->debug.arch.exception = DB_VECTOR;
8174 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8175 			*r = 0;
8176 			return true;
8177 		}
8178 	}
8179 
8180 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8181 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8182 		unsigned long eip = kvm_get_linear_rip(vcpu);
8183 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8184 					   vcpu->arch.dr7,
8185 					   vcpu->arch.db);
8186 
8187 		if (dr6 != 0) {
8188 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8189 			*r = 1;
8190 			return true;
8191 		}
8192 	}
8193 
8194 	return false;
8195 }
8196 
8197 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8198 {
8199 	switch (ctxt->opcode_len) {
8200 	case 1:
8201 		switch (ctxt->b) {
8202 		case 0xe4:	/* IN */
8203 		case 0xe5:
8204 		case 0xec:
8205 		case 0xed:
8206 		case 0xe6:	/* OUT */
8207 		case 0xe7:
8208 		case 0xee:
8209 		case 0xef:
8210 		case 0x6c:	/* INS */
8211 		case 0x6d:
8212 		case 0x6e:	/* OUTS */
8213 		case 0x6f:
8214 			return true;
8215 		}
8216 		break;
8217 	case 2:
8218 		switch (ctxt->b) {
8219 		case 0x33:	/* RDPMC */
8220 			return true;
8221 		}
8222 		break;
8223 	}
8224 
8225 	return false;
8226 }
8227 
8228 /*
8229  * Decode to be emulated instruction. Return EMULATION_OK if success.
8230  */
8231 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8232 				    void *insn, int insn_len)
8233 {
8234 	int r = EMULATION_OK;
8235 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8236 
8237 	init_emulate_ctxt(vcpu);
8238 
8239 	/*
8240 	 * We will reenter on the same instruction since we do not set
8241 	 * complete_userspace_io. This does not handle watchpoints yet,
8242 	 * those would be handled in the emulate_ops.
8243 	 */
8244 	if (!(emulation_type & EMULTYPE_SKIP) &&
8245 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8246 		return r;
8247 
8248 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8249 
8250 	trace_kvm_emulate_insn_start(vcpu);
8251 	++vcpu->stat.insn_emulation;
8252 
8253 	return r;
8254 }
8255 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8256 
8257 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8258 			    int emulation_type, void *insn, int insn_len)
8259 {
8260 	int r;
8261 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8262 	bool writeback = true;
8263 	bool write_fault_to_spt;
8264 
8265 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8266 		return 1;
8267 
8268 	vcpu->arch.l1tf_flush_l1d = true;
8269 
8270 	/*
8271 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8272 	 * never reused.
8273 	 */
8274 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8275 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8276 
8277 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8278 		kvm_clear_exception_queue(vcpu);
8279 
8280 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8281 						    insn, insn_len);
8282 		if (r != EMULATION_OK)  {
8283 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8284 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8285 				kvm_queue_exception(vcpu, UD_VECTOR);
8286 				return 1;
8287 			}
8288 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8289 						  write_fault_to_spt,
8290 						  emulation_type))
8291 				return 1;
8292 			if (ctxt->have_exception) {
8293 				/*
8294 				 * #UD should result in just EMULATION_FAILED, and trap-like
8295 				 * exception should not be encountered during decode.
8296 				 */
8297 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8298 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8299 				inject_emulated_exception(vcpu);
8300 				return 1;
8301 			}
8302 			return handle_emulation_failure(vcpu, emulation_type);
8303 		}
8304 	}
8305 
8306 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8307 	    !is_vmware_backdoor_opcode(ctxt)) {
8308 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8309 		return 1;
8310 	}
8311 
8312 	/*
8313 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8314 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8315 	 * The caller is responsible for updating interruptibility state and
8316 	 * injecting single-step #DBs.
8317 	 */
8318 	if (emulation_type & EMULTYPE_SKIP) {
8319 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8320 			ctxt->eip = (u32)ctxt->_eip;
8321 		else
8322 			ctxt->eip = ctxt->_eip;
8323 
8324 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8325 			r = 1;
8326 			goto writeback;
8327 		}
8328 
8329 		kvm_rip_write(vcpu, ctxt->eip);
8330 		if (ctxt->eflags & X86_EFLAGS_RF)
8331 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8332 		return 1;
8333 	}
8334 
8335 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8336 		return 1;
8337 
8338 	/* this is needed for vmware backdoor interface to work since it
8339 	   changes registers values  during IO operation */
8340 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8341 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8342 		emulator_invalidate_register_cache(ctxt);
8343 	}
8344 
8345 restart:
8346 	if (emulation_type & EMULTYPE_PF) {
8347 		/* Save the faulting GPA (cr2) in the address field */
8348 		ctxt->exception.address = cr2_or_gpa;
8349 
8350 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8351 		if (vcpu->arch.mmu->direct_map) {
8352 			ctxt->gpa_available = true;
8353 			ctxt->gpa_val = cr2_or_gpa;
8354 		}
8355 	} else {
8356 		/* Sanitize the address out of an abundance of paranoia. */
8357 		ctxt->exception.address = 0;
8358 	}
8359 
8360 	r = x86_emulate_insn(ctxt);
8361 
8362 	if (r == EMULATION_INTERCEPTED)
8363 		return 1;
8364 
8365 	if (r == EMULATION_FAILED) {
8366 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8367 					emulation_type))
8368 			return 1;
8369 
8370 		return handle_emulation_failure(vcpu, emulation_type);
8371 	}
8372 
8373 	if (ctxt->have_exception) {
8374 		r = 1;
8375 		if (inject_emulated_exception(vcpu))
8376 			return r;
8377 	} else if (vcpu->arch.pio.count) {
8378 		if (!vcpu->arch.pio.in) {
8379 			/* FIXME: return into emulator if single-stepping.  */
8380 			vcpu->arch.pio.count = 0;
8381 		} else {
8382 			writeback = false;
8383 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8384 		}
8385 		r = 0;
8386 	} else if (vcpu->mmio_needed) {
8387 		++vcpu->stat.mmio_exits;
8388 
8389 		if (!vcpu->mmio_is_write)
8390 			writeback = false;
8391 		r = 0;
8392 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8393 	} else if (vcpu->arch.complete_userspace_io) {
8394 		writeback = false;
8395 		r = 0;
8396 	} else if (r == EMULATION_RESTART)
8397 		goto restart;
8398 	else
8399 		r = 1;
8400 
8401 writeback:
8402 	if (writeback) {
8403 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8404 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8405 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8406 		if (!ctxt->have_exception ||
8407 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8408 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8409 			if (ctxt->is_branch)
8410 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8411 			kvm_rip_write(vcpu, ctxt->eip);
8412 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8413 				r = kvm_vcpu_do_singlestep(vcpu);
8414 			if (kvm_x86_ops.update_emulated_instruction)
8415 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
8416 			__kvm_set_rflags(vcpu, ctxt->eflags);
8417 		}
8418 
8419 		/*
8420 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8421 		 * do nothing, and it will be requested again as soon as
8422 		 * the shadow expires.  But we still need to check here,
8423 		 * because POPF has no interrupt shadow.
8424 		 */
8425 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8426 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8427 	} else
8428 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8429 
8430 	return r;
8431 }
8432 
8433 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8434 {
8435 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8436 }
8437 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8438 
8439 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8440 					void *insn, int insn_len)
8441 {
8442 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8443 }
8444 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8445 
8446 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8447 {
8448 	vcpu->arch.pio.count = 0;
8449 	return 1;
8450 }
8451 
8452 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8453 {
8454 	vcpu->arch.pio.count = 0;
8455 
8456 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8457 		return 1;
8458 
8459 	return kvm_skip_emulated_instruction(vcpu);
8460 }
8461 
8462 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8463 			    unsigned short port)
8464 {
8465 	unsigned long val = kvm_rax_read(vcpu);
8466 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8467 
8468 	if (ret)
8469 		return ret;
8470 
8471 	/*
8472 	 * Workaround userspace that relies on old KVM behavior of %rip being
8473 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8474 	 */
8475 	if (port == 0x7e &&
8476 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8477 		vcpu->arch.complete_userspace_io =
8478 			complete_fast_pio_out_port_0x7e;
8479 		kvm_skip_emulated_instruction(vcpu);
8480 	} else {
8481 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8482 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8483 	}
8484 	return 0;
8485 }
8486 
8487 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8488 {
8489 	unsigned long val;
8490 
8491 	/* We should only ever be called with arch.pio.count equal to 1 */
8492 	BUG_ON(vcpu->arch.pio.count != 1);
8493 
8494 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8495 		vcpu->arch.pio.count = 0;
8496 		return 1;
8497 	}
8498 
8499 	/* For size less than 4 we merge, else we zero extend */
8500 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8501 
8502 	/*
8503 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8504 	 * the copy and tracing
8505 	 */
8506 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8507 	kvm_rax_write(vcpu, val);
8508 
8509 	return kvm_skip_emulated_instruction(vcpu);
8510 }
8511 
8512 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8513 			   unsigned short port)
8514 {
8515 	unsigned long val;
8516 	int ret;
8517 
8518 	/* For size less than 4 we merge, else we zero extend */
8519 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8520 
8521 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8522 	if (ret) {
8523 		kvm_rax_write(vcpu, val);
8524 		return ret;
8525 	}
8526 
8527 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8528 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8529 
8530 	return 0;
8531 }
8532 
8533 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8534 {
8535 	int ret;
8536 
8537 	if (in)
8538 		ret = kvm_fast_pio_in(vcpu, size, port);
8539 	else
8540 		ret = kvm_fast_pio_out(vcpu, size, port);
8541 	return ret && kvm_skip_emulated_instruction(vcpu);
8542 }
8543 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8544 
8545 static int kvmclock_cpu_down_prep(unsigned int cpu)
8546 {
8547 	__this_cpu_write(cpu_tsc_khz, 0);
8548 	return 0;
8549 }
8550 
8551 static void tsc_khz_changed(void *data)
8552 {
8553 	struct cpufreq_freqs *freq = data;
8554 	unsigned long khz = 0;
8555 
8556 	if (data)
8557 		khz = freq->new;
8558 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8559 		khz = cpufreq_quick_get(raw_smp_processor_id());
8560 	if (!khz)
8561 		khz = tsc_khz;
8562 	__this_cpu_write(cpu_tsc_khz, khz);
8563 }
8564 
8565 #ifdef CONFIG_X86_64
8566 static void kvm_hyperv_tsc_notifier(void)
8567 {
8568 	struct kvm *kvm;
8569 	int cpu;
8570 
8571 	mutex_lock(&kvm_lock);
8572 	list_for_each_entry(kvm, &vm_list, vm_list)
8573 		kvm_make_mclock_inprogress_request(kvm);
8574 
8575 	/* no guest entries from this point */
8576 	hyperv_stop_tsc_emulation();
8577 
8578 	/* TSC frequency always matches when on Hyper-V */
8579 	for_each_present_cpu(cpu)
8580 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8581 	kvm_max_guest_tsc_khz = tsc_khz;
8582 
8583 	list_for_each_entry(kvm, &vm_list, vm_list) {
8584 		__kvm_start_pvclock_update(kvm);
8585 		pvclock_update_vm_gtod_copy(kvm);
8586 		kvm_end_pvclock_update(kvm);
8587 	}
8588 
8589 	mutex_unlock(&kvm_lock);
8590 }
8591 #endif
8592 
8593 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8594 {
8595 	struct kvm *kvm;
8596 	struct kvm_vcpu *vcpu;
8597 	int send_ipi = 0;
8598 	unsigned long i;
8599 
8600 	/*
8601 	 * We allow guests to temporarily run on slowing clocks,
8602 	 * provided we notify them after, or to run on accelerating
8603 	 * clocks, provided we notify them before.  Thus time never
8604 	 * goes backwards.
8605 	 *
8606 	 * However, we have a problem.  We can't atomically update
8607 	 * the frequency of a given CPU from this function; it is
8608 	 * merely a notifier, which can be called from any CPU.
8609 	 * Changing the TSC frequency at arbitrary points in time
8610 	 * requires a recomputation of local variables related to
8611 	 * the TSC for each VCPU.  We must flag these local variables
8612 	 * to be updated and be sure the update takes place with the
8613 	 * new frequency before any guests proceed.
8614 	 *
8615 	 * Unfortunately, the combination of hotplug CPU and frequency
8616 	 * change creates an intractable locking scenario; the order
8617 	 * of when these callouts happen is undefined with respect to
8618 	 * CPU hotplug, and they can race with each other.  As such,
8619 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8620 	 * undefined; you can actually have a CPU frequency change take
8621 	 * place in between the computation of X and the setting of the
8622 	 * variable.  To protect against this problem, all updates of
8623 	 * the per_cpu tsc_khz variable are done in an interrupt
8624 	 * protected IPI, and all callers wishing to update the value
8625 	 * must wait for a synchronous IPI to complete (which is trivial
8626 	 * if the caller is on the CPU already).  This establishes the
8627 	 * necessary total order on variable updates.
8628 	 *
8629 	 * Note that because a guest time update may take place
8630 	 * anytime after the setting of the VCPU's request bit, the
8631 	 * correct TSC value must be set before the request.  However,
8632 	 * to ensure the update actually makes it to any guest which
8633 	 * starts running in hardware virtualization between the set
8634 	 * and the acquisition of the spinlock, we must also ping the
8635 	 * CPU after setting the request bit.
8636 	 *
8637 	 */
8638 
8639 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8640 
8641 	mutex_lock(&kvm_lock);
8642 	list_for_each_entry(kvm, &vm_list, vm_list) {
8643 		kvm_for_each_vcpu(i, vcpu, kvm) {
8644 			if (vcpu->cpu != cpu)
8645 				continue;
8646 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8647 			if (vcpu->cpu != raw_smp_processor_id())
8648 				send_ipi = 1;
8649 		}
8650 	}
8651 	mutex_unlock(&kvm_lock);
8652 
8653 	if (freq->old < freq->new && send_ipi) {
8654 		/*
8655 		 * We upscale the frequency.  Must make the guest
8656 		 * doesn't see old kvmclock values while running with
8657 		 * the new frequency, otherwise we risk the guest sees
8658 		 * time go backwards.
8659 		 *
8660 		 * In case we update the frequency for another cpu
8661 		 * (which might be in guest context) send an interrupt
8662 		 * to kick the cpu out of guest context.  Next time
8663 		 * guest context is entered kvmclock will be updated,
8664 		 * so the guest will not see stale values.
8665 		 */
8666 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8667 	}
8668 }
8669 
8670 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8671 				     void *data)
8672 {
8673 	struct cpufreq_freqs *freq = data;
8674 	int cpu;
8675 
8676 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8677 		return 0;
8678 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8679 		return 0;
8680 
8681 	for_each_cpu(cpu, freq->policy->cpus)
8682 		__kvmclock_cpufreq_notifier(freq, cpu);
8683 
8684 	return 0;
8685 }
8686 
8687 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8688 	.notifier_call  = kvmclock_cpufreq_notifier
8689 };
8690 
8691 static int kvmclock_cpu_online(unsigned int cpu)
8692 {
8693 	tsc_khz_changed(NULL);
8694 	return 0;
8695 }
8696 
8697 static void kvm_timer_init(void)
8698 {
8699 	max_tsc_khz = tsc_khz;
8700 
8701 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8702 #ifdef CONFIG_CPU_FREQ
8703 		struct cpufreq_policy *policy;
8704 		int cpu;
8705 
8706 		cpu = get_cpu();
8707 		policy = cpufreq_cpu_get(cpu);
8708 		if (policy) {
8709 			if (policy->cpuinfo.max_freq)
8710 				max_tsc_khz = policy->cpuinfo.max_freq;
8711 			cpufreq_cpu_put(policy);
8712 		}
8713 		put_cpu();
8714 #endif
8715 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8716 					  CPUFREQ_TRANSITION_NOTIFIER);
8717 	}
8718 
8719 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8720 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8721 }
8722 
8723 #ifdef CONFIG_X86_64
8724 static void pvclock_gtod_update_fn(struct work_struct *work)
8725 {
8726 	struct kvm *kvm;
8727 	struct kvm_vcpu *vcpu;
8728 	unsigned long i;
8729 
8730 	mutex_lock(&kvm_lock);
8731 	list_for_each_entry(kvm, &vm_list, vm_list)
8732 		kvm_for_each_vcpu(i, vcpu, kvm)
8733 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8734 	atomic_set(&kvm_guest_has_master_clock, 0);
8735 	mutex_unlock(&kvm_lock);
8736 }
8737 
8738 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8739 
8740 /*
8741  * Indirection to move queue_work() out of the tk_core.seq write held
8742  * region to prevent possible deadlocks against time accessors which
8743  * are invoked with work related locks held.
8744  */
8745 static void pvclock_irq_work_fn(struct irq_work *w)
8746 {
8747 	queue_work(system_long_wq, &pvclock_gtod_work);
8748 }
8749 
8750 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8751 
8752 /*
8753  * Notification about pvclock gtod data update.
8754  */
8755 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8756 			       void *priv)
8757 {
8758 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8759 	struct timekeeper *tk = priv;
8760 
8761 	update_pvclock_gtod(tk);
8762 
8763 	/*
8764 	 * Disable master clock if host does not trust, or does not use,
8765 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8766 	 * this is invoked with tk_core.seq write held.
8767 	 */
8768 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8769 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8770 		irq_work_queue(&pvclock_irq_work);
8771 	return 0;
8772 }
8773 
8774 static struct notifier_block pvclock_gtod_notifier = {
8775 	.notifier_call = pvclock_gtod_notify,
8776 };
8777 #endif
8778 
8779 int kvm_arch_init(void *opaque)
8780 {
8781 	struct kvm_x86_init_ops *ops = opaque;
8782 	int r;
8783 
8784 	if (kvm_x86_ops.hardware_enable) {
8785 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8786 		r = -EEXIST;
8787 		goto out;
8788 	}
8789 
8790 	if (!ops->cpu_has_kvm_support()) {
8791 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8792 				   ops->runtime_ops->name);
8793 		r = -EOPNOTSUPP;
8794 		goto out;
8795 	}
8796 	if (ops->disabled_by_bios()) {
8797 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8798 				   ops->runtime_ops->name);
8799 		r = -EOPNOTSUPP;
8800 		goto out;
8801 	}
8802 
8803 	/*
8804 	 * KVM explicitly assumes that the guest has an FPU and
8805 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8806 	 * vCPU's FPU state as a fxregs_state struct.
8807 	 */
8808 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8809 		printk(KERN_ERR "kvm: inadequate fpu\n");
8810 		r = -EOPNOTSUPP;
8811 		goto out;
8812 	}
8813 
8814 	r = -ENOMEM;
8815 
8816 	x86_emulator_cache = kvm_alloc_emulator_cache();
8817 	if (!x86_emulator_cache) {
8818 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8819 		goto out;
8820 	}
8821 
8822 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8823 	if (!user_return_msrs) {
8824 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8825 		goto out_free_x86_emulator_cache;
8826 	}
8827 	kvm_nr_uret_msrs = 0;
8828 
8829 	r = kvm_mmu_module_init();
8830 	if (r)
8831 		goto out_free_percpu;
8832 
8833 	kvm_timer_init();
8834 
8835 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8836 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8837 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8838 	}
8839 
8840 	if (pi_inject_timer == -1)
8841 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8842 #ifdef CONFIG_X86_64
8843 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8844 
8845 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8846 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8847 #endif
8848 
8849 	return 0;
8850 
8851 out_free_percpu:
8852 	free_percpu(user_return_msrs);
8853 out_free_x86_emulator_cache:
8854 	kmem_cache_destroy(x86_emulator_cache);
8855 out:
8856 	return r;
8857 }
8858 
8859 void kvm_arch_exit(void)
8860 {
8861 #ifdef CONFIG_X86_64
8862 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8863 		clear_hv_tscchange_cb();
8864 #endif
8865 	kvm_lapic_exit();
8866 
8867 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8868 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8869 					    CPUFREQ_TRANSITION_NOTIFIER);
8870 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8871 #ifdef CONFIG_X86_64
8872 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8873 	irq_work_sync(&pvclock_irq_work);
8874 	cancel_work_sync(&pvclock_gtod_work);
8875 #endif
8876 	kvm_x86_ops.hardware_enable = NULL;
8877 	kvm_mmu_module_exit();
8878 	free_percpu(user_return_msrs);
8879 	kmem_cache_destroy(x86_emulator_cache);
8880 #ifdef CONFIG_KVM_XEN
8881 	static_key_deferred_flush(&kvm_xen_enabled);
8882 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8883 #endif
8884 }
8885 
8886 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8887 {
8888 	/*
8889 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8890 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8891 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8892 	 * managed by userspace, in which case userspace is responsible for
8893 	 * handling wake events.
8894 	 */
8895 	++vcpu->stat.halt_exits;
8896 	if (lapic_in_kernel(vcpu)) {
8897 		vcpu->arch.mp_state = state;
8898 		return 1;
8899 	} else {
8900 		vcpu->run->exit_reason = reason;
8901 		return 0;
8902 	}
8903 }
8904 
8905 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8906 {
8907 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8908 }
8909 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8910 
8911 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8912 {
8913 	int ret = kvm_skip_emulated_instruction(vcpu);
8914 	/*
8915 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8916 	 * KVM_EXIT_DEBUG here.
8917 	 */
8918 	return kvm_emulate_halt_noskip(vcpu) && ret;
8919 }
8920 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8921 
8922 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8923 {
8924 	int ret = kvm_skip_emulated_instruction(vcpu);
8925 
8926 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8927 					KVM_EXIT_AP_RESET_HOLD) && ret;
8928 }
8929 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8930 
8931 #ifdef CONFIG_X86_64
8932 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8933 			        unsigned long clock_type)
8934 {
8935 	struct kvm_clock_pairing clock_pairing;
8936 	struct timespec64 ts;
8937 	u64 cycle;
8938 	int ret;
8939 
8940 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8941 		return -KVM_EOPNOTSUPP;
8942 
8943 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8944 		return -KVM_EOPNOTSUPP;
8945 
8946 	clock_pairing.sec = ts.tv_sec;
8947 	clock_pairing.nsec = ts.tv_nsec;
8948 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8949 	clock_pairing.flags = 0;
8950 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8951 
8952 	ret = 0;
8953 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8954 			    sizeof(struct kvm_clock_pairing)))
8955 		ret = -KVM_EFAULT;
8956 
8957 	return ret;
8958 }
8959 #endif
8960 
8961 /*
8962  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8963  *
8964  * @apicid - apicid of vcpu to be kicked.
8965  */
8966 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8967 {
8968 	struct kvm_lapic_irq lapic_irq;
8969 
8970 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8971 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8972 	lapic_irq.level = 0;
8973 	lapic_irq.dest_id = apicid;
8974 	lapic_irq.msi_redir_hint = false;
8975 
8976 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8977 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8978 }
8979 
8980 bool kvm_apicv_activated(struct kvm *kvm)
8981 {
8982 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8983 }
8984 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8985 
8986 static void kvm_apicv_init(struct kvm *kvm)
8987 {
8988 	init_rwsem(&kvm->arch.apicv_update_lock);
8989 
8990 	set_bit(APICV_INHIBIT_REASON_ABSENT,
8991 		&kvm->arch.apicv_inhibit_reasons);
8992 	if (!enable_apicv)
8993 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8994 			&kvm->arch.apicv_inhibit_reasons);
8995 }
8996 
8997 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8998 {
8999 	struct kvm_vcpu *target = NULL;
9000 	struct kvm_apic_map *map;
9001 
9002 	vcpu->stat.directed_yield_attempted++;
9003 
9004 	if (single_task_running())
9005 		goto no_yield;
9006 
9007 	rcu_read_lock();
9008 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9009 
9010 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9011 		target = map->phys_map[dest_id]->vcpu;
9012 
9013 	rcu_read_unlock();
9014 
9015 	if (!target || !READ_ONCE(target->ready))
9016 		goto no_yield;
9017 
9018 	/* Ignore requests to yield to self */
9019 	if (vcpu == target)
9020 		goto no_yield;
9021 
9022 	if (kvm_vcpu_yield_to(target) <= 0)
9023 		goto no_yield;
9024 
9025 	vcpu->stat.directed_yield_successful++;
9026 
9027 no_yield:
9028 	return;
9029 }
9030 
9031 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9032 {
9033 	u64 ret = vcpu->run->hypercall.ret;
9034 
9035 	if (!is_64_bit_mode(vcpu))
9036 		ret = (u32)ret;
9037 	kvm_rax_write(vcpu, ret);
9038 	++vcpu->stat.hypercalls;
9039 	return kvm_skip_emulated_instruction(vcpu);
9040 }
9041 
9042 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9043 {
9044 	unsigned long nr, a0, a1, a2, a3, ret;
9045 	int op_64_bit;
9046 
9047 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9048 		return kvm_xen_hypercall(vcpu);
9049 
9050 	if (kvm_hv_hypercall_enabled(vcpu))
9051 		return kvm_hv_hypercall(vcpu);
9052 
9053 	nr = kvm_rax_read(vcpu);
9054 	a0 = kvm_rbx_read(vcpu);
9055 	a1 = kvm_rcx_read(vcpu);
9056 	a2 = kvm_rdx_read(vcpu);
9057 	a3 = kvm_rsi_read(vcpu);
9058 
9059 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9060 
9061 	op_64_bit = is_64_bit_hypercall(vcpu);
9062 	if (!op_64_bit) {
9063 		nr &= 0xFFFFFFFF;
9064 		a0 &= 0xFFFFFFFF;
9065 		a1 &= 0xFFFFFFFF;
9066 		a2 &= 0xFFFFFFFF;
9067 		a3 &= 0xFFFFFFFF;
9068 	}
9069 
9070 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9071 		ret = -KVM_EPERM;
9072 		goto out;
9073 	}
9074 
9075 	ret = -KVM_ENOSYS;
9076 
9077 	switch (nr) {
9078 	case KVM_HC_VAPIC_POLL_IRQ:
9079 		ret = 0;
9080 		break;
9081 	case KVM_HC_KICK_CPU:
9082 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9083 			break;
9084 
9085 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9086 		kvm_sched_yield(vcpu, a1);
9087 		ret = 0;
9088 		break;
9089 #ifdef CONFIG_X86_64
9090 	case KVM_HC_CLOCK_PAIRING:
9091 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9092 		break;
9093 #endif
9094 	case KVM_HC_SEND_IPI:
9095 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9096 			break;
9097 
9098 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9099 		break;
9100 	case KVM_HC_SCHED_YIELD:
9101 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9102 			break;
9103 
9104 		kvm_sched_yield(vcpu, a0);
9105 		ret = 0;
9106 		break;
9107 	case KVM_HC_MAP_GPA_RANGE: {
9108 		u64 gpa = a0, npages = a1, attrs = a2;
9109 
9110 		ret = -KVM_ENOSYS;
9111 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9112 			break;
9113 
9114 		if (!PAGE_ALIGNED(gpa) || !npages ||
9115 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9116 			ret = -KVM_EINVAL;
9117 			break;
9118 		}
9119 
9120 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9121 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9122 		vcpu->run->hypercall.args[0]  = gpa;
9123 		vcpu->run->hypercall.args[1]  = npages;
9124 		vcpu->run->hypercall.args[2]  = attrs;
9125 		vcpu->run->hypercall.longmode = op_64_bit;
9126 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9127 		return 0;
9128 	}
9129 	default:
9130 		ret = -KVM_ENOSYS;
9131 		break;
9132 	}
9133 out:
9134 	if (!op_64_bit)
9135 		ret = (u32)ret;
9136 	kvm_rax_write(vcpu, ret);
9137 
9138 	++vcpu->stat.hypercalls;
9139 	return kvm_skip_emulated_instruction(vcpu);
9140 }
9141 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9142 
9143 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9144 {
9145 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9146 	char instruction[3];
9147 	unsigned long rip = kvm_rip_read(vcpu);
9148 
9149 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9150 
9151 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9152 		&ctxt->exception);
9153 }
9154 
9155 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9156 {
9157 	return vcpu->run->request_interrupt_window &&
9158 		likely(!pic_in_kernel(vcpu->kvm));
9159 }
9160 
9161 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9162 {
9163 	struct kvm_run *kvm_run = vcpu->run;
9164 
9165 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9166 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9167 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9168 
9169 	/*
9170 	 * The call to kvm_ready_for_interrupt_injection() may end up in
9171 	 * kvm_xen_has_interrupt() which may require the srcu lock to be
9172 	 * held, to protect against changes in the vcpu_info address.
9173 	 */
9174 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9175 	kvm_run->ready_for_interrupt_injection =
9176 		pic_in_kernel(vcpu->kvm) ||
9177 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9178 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9179 
9180 	if (is_smm(vcpu))
9181 		kvm_run->flags |= KVM_RUN_X86_SMM;
9182 }
9183 
9184 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9185 {
9186 	int max_irr, tpr;
9187 
9188 	if (!kvm_x86_ops.update_cr8_intercept)
9189 		return;
9190 
9191 	if (!lapic_in_kernel(vcpu))
9192 		return;
9193 
9194 	if (vcpu->arch.apicv_active)
9195 		return;
9196 
9197 	if (!vcpu->arch.apic->vapic_addr)
9198 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9199 	else
9200 		max_irr = -1;
9201 
9202 	if (max_irr != -1)
9203 		max_irr >>= 4;
9204 
9205 	tpr = kvm_lapic_get_cr8(vcpu);
9206 
9207 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9208 }
9209 
9210 
9211 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9212 {
9213 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9214 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9215 		return 1;
9216 	}
9217 
9218 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9219 }
9220 
9221 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9222 {
9223 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9224 		vcpu->arch.exception.error_code = false;
9225 	static_call(kvm_x86_queue_exception)(vcpu);
9226 }
9227 
9228 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9229 {
9230 	int r;
9231 	bool can_inject = true;
9232 
9233 	/* try to reinject previous events if any */
9234 
9235 	if (vcpu->arch.exception.injected) {
9236 		kvm_inject_exception(vcpu);
9237 		can_inject = false;
9238 	}
9239 	/*
9240 	 * Do not inject an NMI or interrupt if there is a pending
9241 	 * exception.  Exceptions and interrupts are recognized at
9242 	 * instruction boundaries, i.e. the start of an instruction.
9243 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9244 	 * NMIs and interrupts, i.e. traps are recognized before an
9245 	 * NMI/interrupt that's pending on the same instruction.
9246 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9247 	 * priority, but are only generated (pended) during instruction
9248 	 * execution, i.e. a pending fault-like exception means the
9249 	 * fault occurred on the *previous* instruction and must be
9250 	 * serviced prior to recognizing any new events in order to
9251 	 * fully complete the previous instruction.
9252 	 */
9253 	else if (!vcpu->arch.exception.pending) {
9254 		if (vcpu->arch.nmi_injected) {
9255 			static_call(kvm_x86_set_nmi)(vcpu);
9256 			can_inject = false;
9257 		} else if (vcpu->arch.interrupt.injected) {
9258 			static_call(kvm_x86_set_irq)(vcpu);
9259 			can_inject = false;
9260 		}
9261 	}
9262 
9263 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9264 		     vcpu->arch.exception.pending);
9265 
9266 	/*
9267 	 * Call check_nested_events() even if we reinjected a previous event
9268 	 * in order for caller to determine if it should require immediate-exit
9269 	 * from L2 to L1 due to pending L1 events which require exit
9270 	 * from L2 to L1.
9271 	 */
9272 	if (is_guest_mode(vcpu)) {
9273 		r = kvm_check_nested_events(vcpu);
9274 		if (r < 0)
9275 			goto out;
9276 	}
9277 
9278 	/* try to inject new event if pending */
9279 	if (vcpu->arch.exception.pending) {
9280 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9281 					vcpu->arch.exception.has_error_code,
9282 					vcpu->arch.exception.error_code);
9283 
9284 		vcpu->arch.exception.pending = false;
9285 		vcpu->arch.exception.injected = true;
9286 
9287 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9288 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9289 					     X86_EFLAGS_RF);
9290 
9291 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9292 			kvm_deliver_exception_payload(vcpu);
9293 			if (vcpu->arch.dr7 & DR7_GD) {
9294 				vcpu->arch.dr7 &= ~DR7_GD;
9295 				kvm_update_dr7(vcpu);
9296 			}
9297 		}
9298 
9299 		kvm_inject_exception(vcpu);
9300 		can_inject = false;
9301 	}
9302 
9303 	/* Don't inject interrupts if the user asked to avoid doing so */
9304 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9305 		return 0;
9306 
9307 	/*
9308 	 * Finally, inject interrupt events.  If an event cannot be injected
9309 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9310 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9311 	 * and can architecturally be injected, but we cannot do it right now:
9312 	 * an interrupt could have arrived just now and we have to inject it
9313 	 * as a vmexit, or there could already an event in the queue, which is
9314 	 * indicated by can_inject.  In that case we request an immediate exit
9315 	 * in order to make progress and get back here for another iteration.
9316 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9317 	 */
9318 	if (vcpu->arch.smi_pending) {
9319 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9320 		if (r < 0)
9321 			goto out;
9322 		if (r) {
9323 			vcpu->arch.smi_pending = false;
9324 			++vcpu->arch.smi_count;
9325 			enter_smm(vcpu);
9326 			can_inject = false;
9327 		} else
9328 			static_call(kvm_x86_enable_smi_window)(vcpu);
9329 	}
9330 
9331 	if (vcpu->arch.nmi_pending) {
9332 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9333 		if (r < 0)
9334 			goto out;
9335 		if (r) {
9336 			--vcpu->arch.nmi_pending;
9337 			vcpu->arch.nmi_injected = true;
9338 			static_call(kvm_x86_set_nmi)(vcpu);
9339 			can_inject = false;
9340 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9341 		}
9342 		if (vcpu->arch.nmi_pending)
9343 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9344 	}
9345 
9346 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9347 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9348 		if (r < 0)
9349 			goto out;
9350 		if (r) {
9351 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9352 			static_call(kvm_x86_set_irq)(vcpu);
9353 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9354 		}
9355 		if (kvm_cpu_has_injectable_intr(vcpu))
9356 			static_call(kvm_x86_enable_irq_window)(vcpu);
9357 	}
9358 
9359 	if (is_guest_mode(vcpu) &&
9360 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9361 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9362 		*req_immediate_exit = true;
9363 
9364 	WARN_ON(vcpu->arch.exception.pending);
9365 	return 0;
9366 
9367 out:
9368 	if (r == -EBUSY) {
9369 		*req_immediate_exit = true;
9370 		r = 0;
9371 	}
9372 	return r;
9373 }
9374 
9375 static void process_nmi(struct kvm_vcpu *vcpu)
9376 {
9377 	unsigned limit = 2;
9378 
9379 	/*
9380 	 * x86 is limited to one NMI running, and one NMI pending after it.
9381 	 * If an NMI is already in progress, limit further NMIs to just one.
9382 	 * Otherwise, allow two (and we'll inject the first one immediately).
9383 	 */
9384 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9385 		limit = 1;
9386 
9387 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9388 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9389 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9390 }
9391 
9392 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9393 {
9394 	u32 flags = 0;
9395 	flags |= seg->g       << 23;
9396 	flags |= seg->db      << 22;
9397 	flags |= seg->l       << 21;
9398 	flags |= seg->avl     << 20;
9399 	flags |= seg->present << 15;
9400 	flags |= seg->dpl     << 13;
9401 	flags |= seg->s       << 12;
9402 	flags |= seg->type    << 8;
9403 	return flags;
9404 }
9405 
9406 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9407 {
9408 	struct kvm_segment seg;
9409 	int offset;
9410 
9411 	kvm_get_segment(vcpu, &seg, n);
9412 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9413 
9414 	if (n < 3)
9415 		offset = 0x7f84 + n * 12;
9416 	else
9417 		offset = 0x7f2c + (n - 3) * 12;
9418 
9419 	put_smstate(u32, buf, offset + 8, seg.base);
9420 	put_smstate(u32, buf, offset + 4, seg.limit);
9421 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9422 }
9423 
9424 #ifdef CONFIG_X86_64
9425 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9426 {
9427 	struct kvm_segment seg;
9428 	int offset;
9429 	u16 flags;
9430 
9431 	kvm_get_segment(vcpu, &seg, n);
9432 	offset = 0x7e00 + n * 16;
9433 
9434 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9435 	put_smstate(u16, buf, offset, seg.selector);
9436 	put_smstate(u16, buf, offset + 2, flags);
9437 	put_smstate(u32, buf, offset + 4, seg.limit);
9438 	put_smstate(u64, buf, offset + 8, seg.base);
9439 }
9440 #endif
9441 
9442 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9443 {
9444 	struct desc_ptr dt;
9445 	struct kvm_segment seg;
9446 	unsigned long val;
9447 	int i;
9448 
9449 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9450 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9451 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9452 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9453 
9454 	for (i = 0; i < 8; i++)
9455 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9456 
9457 	kvm_get_dr(vcpu, 6, &val);
9458 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9459 	kvm_get_dr(vcpu, 7, &val);
9460 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9461 
9462 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9463 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9464 	put_smstate(u32, buf, 0x7f64, seg.base);
9465 	put_smstate(u32, buf, 0x7f60, seg.limit);
9466 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9467 
9468 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9469 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9470 	put_smstate(u32, buf, 0x7f80, seg.base);
9471 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9472 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9473 
9474 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9475 	put_smstate(u32, buf, 0x7f74, dt.address);
9476 	put_smstate(u32, buf, 0x7f70, dt.size);
9477 
9478 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9479 	put_smstate(u32, buf, 0x7f58, dt.address);
9480 	put_smstate(u32, buf, 0x7f54, dt.size);
9481 
9482 	for (i = 0; i < 6; i++)
9483 		enter_smm_save_seg_32(vcpu, buf, i);
9484 
9485 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9486 
9487 	/* revision id */
9488 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9489 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9490 }
9491 
9492 #ifdef CONFIG_X86_64
9493 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9494 {
9495 	struct desc_ptr dt;
9496 	struct kvm_segment seg;
9497 	unsigned long val;
9498 	int i;
9499 
9500 	for (i = 0; i < 16; i++)
9501 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9502 
9503 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9504 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9505 
9506 	kvm_get_dr(vcpu, 6, &val);
9507 	put_smstate(u64, buf, 0x7f68, val);
9508 	kvm_get_dr(vcpu, 7, &val);
9509 	put_smstate(u64, buf, 0x7f60, val);
9510 
9511 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9512 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9513 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9514 
9515 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9516 
9517 	/* revision id */
9518 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9519 
9520 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9521 
9522 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9523 	put_smstate(u16, buf, 0x7e90, seg.selector);
9524 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9525 	put_smstate(u32, buf, 0x7e94, seg.limit);
9526 	put_smstate(u64, buf, 0x7e98, seg.base);
9527 
9528 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9529 	put_smstate(u32, buf, 0x7e84, dt.size);
9530 	put_smstate(u64, buf, 0x7e88, dt.address);
9531 
9532 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9533 	put_smstate(u16, buf, 0x7e70, seg.selector);
9534 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9535 	put_smstate(u32, buf, 0x7e74, seg.limit);
9536 	put_smstate(u64, buf, 0x7e78, seg.base);
9537 
9538 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9539 	put_smstate(u32, buf, 0x7e64, dt.size);
9540 	put_smstate(u64, buf, 0x7e68, dt.address);
9541 
9542 	for (i = 0; i < 6; i++)
9543 		enter_smm_save_seg_64(vcpu, buf, i);
9544 }
9545 #endif
9546 
9547 static void enter_smm(struct kvm_vcpu *vcpu)
9548 {
9549 	struct kvm_segment cs, ds;
9550 	struct desc_ptr dt;
9551 	unsigned long cr0;
9552 	char buf[512];
9553 
9554 	memset(buf, 0, 512);
9555 #ifdef CONFIG_X86_64
9556 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9557 		enter_smm_save_state_64(vcpu, buf);
9558 	else
9559 #endif
9560 		enter_smm_save_state_32(vcpu, buf);
9561 
9562 	/*
9563 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9564 	 * state (e.g. leave guest mode) after we've saved the state into the
9565 	 * SMM state-save area.
9566 	 */
9567 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9568 
9569 	kvm_smm_changed(vcpu, true);
9570 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9571 
9572 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9573 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9574 	else
9575 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9576 
9577 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9578 	kvm_rip_write(vcpu, 0x8000);
9579 
9580 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9581 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9582 	vcpu->arch.cr0 = cr0;
9583 
9584 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9585 
9586 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9587 	dt.address = dt.size = 0;
9588 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9589 
9590 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9591 
9592 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9593 	cs.base = vcpu->arch.smbase;
9594 
9595 	ds.selector = 0;
9596 	ds.base = 0;
9597 
9598 	cs.limit    = ds.limit = 0xffffffff;
9599 	cs.type     = ds.type = 0x3;
9600 	cs.dpl      = ds.dpl = 0;
9601 	cs.db       = ds.db = 0;
9602 	cs.s        = ds.s = 1;
9603 	cs.l        = ds.l = 0;
9604 	cs.g        = ds.g = 1;
9605 	cs.avl      = ds.avl = 0;
9606 	cs.present  = ds.present = 1;
9607 	cs.unusable = ds.unusable = 0;
9608 	cs.padding  = ds.padding = 0;
9609 
9610 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9611 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9612 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9613 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9614 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9615 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9616 
9617 #ifdef CONFIG_X86_64
9618 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9619 		static_call(kvm_x86_set_efer)(vcpu, 0);
9620 #endif
9621 
9622 	kvm_update_cpuid_runtime(vcpu);
9623 	kvm_mmu_reset_context(vcpu);
9624 }
9625 
9626 static void process_smi(struct kvm_vcpu *vcpu)
9627 {
9628 	vcpu->arch.smi_pending = true;
9629 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9630 }
9631 
9632 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9633 				       unsigned long *vcpu_bitmap)
9634 {
9635 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9636 }
9637 
9638 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9639 {
9640 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9641 }
9642 
9643 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9644 {
9645 	bool activate;
9646 
9647 	if (!lapic_in_kernel(vcpu))
9648 		return;
9649 
9650 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9651 
9652 	activate = kvm_apicv_activated(vcpu->kvm);
9653 	if (vcpu->arch.apicv_active == activate)
9654 		goto out;
9655 
9656 	vcpu->arch.apicv_active = activate;
9657 	kvm_apic_update_apicv(vcpu);
9658 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9659 
9660 	/*
9661 	 * When APICv gets disabled, we may still have injected interrupts
9662 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9663 	 * still active when the interrupt got accepted. Make sure
9664 	 * inject_pending_event() is called to check for that.
9665 	 */
9666 	if (!vcpu->arch.apicv_active)
9667 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9668 
9669 out:
9670 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9671 }
9672 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9673 
9674 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9675 {
9676 	unsigned long old, new;
9677 
9678 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9679 
9680 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9681 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9682 		return;
9683 
9684 	old = new = kvm->arch.apicv_inhibit_reasons;
9685 
9686 	if (activate)
9687 		__clear_bit(bit, &new);
9688 	else
9689 		__set_bit(bit, &new);
9690 
9691 	if (!!old != !!new) {
9692 		trace_kvm_apicv_update_request(activate, bit);
9693 		/*
9694 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9695 		 * false positives in the sanity check WARN in svm_vcpu_run().
9696 		 * This task will wait for all vCPUs to ack the kick IRQ before
9697 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9698 		 * block on acquiring apicv_update_lock so that vCPUs can't
9699 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9700 		 *
9701 		 * Note, holding apicv_update_lock and taking it in the read
9702 		 * side (handling the request) also prevents other vCPUs from
9703 		 * servicing the request with a stale apicv_inhibit_reasons.
9704 		 */
9705 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9706 		kvm->arch.apicv_inhibit_reasons = new;
9707 		if (new) {
9708 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9709 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9710 		}
9711 	} else
9712 		kvm->arch.apicv_inhibit_reasons = new;
9713 }
9714 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9715 
9716 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9717 {
9718 	down_write(&kvm->arch.apicv_update_lock);
9719 	__kvm_request_apicv_update(kvm, activate, bit);
9720 	up_write(&kvm->arch.apicv_update_lock);
9721 }
9722 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9723 
9724 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9725 {
9726 	if (!kvm_apic_present(vcpu))
9727 		return;
9728 
9729 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9730 
9731 	if (irqchip_split(vcpu->kvm))
9732 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9733 	else {
9734 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9735 		if (ioapic_in_kernel(vcpu->kvm))
9736 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9737 	}
9738 
9739 	if (is_guest_mode(vcpu))
9740 		vcpu->arch.load_eoi_exitmap_pending = true;
9741 	else
9742 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9743 }
9744 
9745 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9746 {
9747 	u64 eoi_exit_bitmap[4];
9748 
9749 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9750 		return;
9751 
9752 	if (to_hv_vcpu(vcpu)) {
9753 		bitmap_or((ulong *)eoi_exit_bitmap,
9754 			  vcpu->arch.ioapic_handled_vectors,
9755 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9756 		static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9757 		return;
9758 	}
9759 
9760 	static_call(kvm_x86_load_eoi_exitmap)(
9761 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9762 }
9763 
9764 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9765 					    unsigned long start, unsigned long end)
9766 {
9767 	unsigned long apic_address;
9768 
9769 	/*
9770 	 * The physical address of apic access page is stored in the VMCS.
9771 	 * Update it when it becomes invalid.
9772 	 */
9773 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9774 	if (start <= apic_address && apic_address < end)
9775 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9776 }
9777 
9778 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9779 {
9780 	if (!lapic_in_kernel(vcpu))
9781 		return;
9782 
9783 	if (!kvm_x86_ops.set_apic_access_page_addr)
9784 		return;
9785 
9786 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9787 }
9788 
9789 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9790 {
9791 	smp_send_reschedule(vcpu->cpu);
9792 }
9793 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9794 
9795 /*
9796  * Returns 1 to let vcpu_run() continue the guest execution loop without
9797  * exiting to the userspace.  Otherwise, the value will be returned to the
9798  * userspace.
9799  */
9800 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9801 {
9802 	int r;
9803 	bool req_int_win =
9804 		dm_request_for_irq_injection(vcpu) &&
9805 		kvm_cpu_accept_dm_intr(vcpu);
9806 	fastpath_t exit_fastpath;
9807 
9808 	bool req_immediate_exit = false;
9809 
9810 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9811 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9812 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9813 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9814 		trace_kvm_dirty_ring_exit(vcpu);
9815 		r = 0;
9816 		goto out;
9817 	}
9818 
9819 	if (kvm_request_pending(vcpu)) {
9820 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9821 			r = -EIO;
9822 			goto out;
9823 		}
9824 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9825 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9826 				r = 0;
9827 				goto out;
9828 			}
9829 		}
9830 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9831 			kvm_mmu_unload(vcpu);
9832 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9833 			__kvm_migrate_timers(vcpu);
9834 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9835 			kvm_update_masterclock(vcpu->kvm);
9836 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9837 			kvm_gen_kvmclock_update(vcpu);
9838 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9839 			r = kvm_guest_time_update(vcpu);
9840 			if (unlikely(r))
9841 				goto out;
9842 		}
9843 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9844 			kvm_mmu_sync_roots(vcpu);
9845 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9846 			kvm_mmu_load_pgd(vcpu);
9847 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9848 			kvm_vcpu_flush_tlb_all(vcpu);
9849 
9850 			/* Flushing all ASIDs flushes the current ASID... */
9851 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9852 		}
9853 		kvm_service_local_tlb_flush_requests(vcpu);
9854 
9855 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9856 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9857 			r = 0;
9858 			goto out;
9859 		}
9860 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9861 			if (is_guest_mode(vcpu)) {
9862 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9863 			} else {
9864 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9865 				vcpu->mmio_needed = 0;
9866 				r = 0;
9867 				goto out;
9868 			}
9869 		}
9870 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9871 			/* Page is swapped out. Do synthetic halt */
9872 			vcpu->arch.apf.halted = true;
9873 			r = 1;
9874 			goto out;
9875 		}
9876 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9877 			record_steal_time(vcpu);
9878 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9879 			process_smi(vcpu);
9880 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9881 			process_nmi(vcpu);
9882 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9883 			kvm_pmu_handle_event(vcpu);
9884 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9885 			kvm_pmu_deliver_pmi(vcpu);
9886 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9887 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9888 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9889 				     vcpu->arch.ioapic_handled_vectors)) {
9890 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9891 				vcpu->run->eoi.vector =
9892 						vcpu->arch.pending_ioapic_eoi;
9893 				r = 0;
9894 				goto out;
9895 			}
9896 		}
9897 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9898 			vcpu_scan_ioapic(vcpu);
9899 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9900 			vcpu_load_eoi_exitmap(vcpu);
9901 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9902 			kvm_vcpu_reload_apic_access_page(vcpu);
9903 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9904 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9905 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9906 			r = 0;
9907 			goto out;
9908 		}
9909 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9910 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9911 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9912 			r = 0;
9913 			goto out;
9914 		}
9915 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9916 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9917 
9918 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9919 			vcpu->run->hyperv = hv_vcpu->exit;
9920 			r = 0;
9921 			goto out;
9922 		}
9923 
9924 		/*
9925 		 * KVM_REQ_HV_STIMER has to be processed after
9926 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9927 		 * depend on the guest clock being up-to-date
9928 		 */
9929 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9930 			kvm_hv_process_stimers(vcpu);
9931 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9932 			kvm_vcpu_update_apicv(vcpu);
9933 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9934 			kvm_check_async_pf_completion(vcpu);
9935 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9936 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9937 
9938 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9939 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9940 	}
9941 
9942 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9943 	    kvm_xen_has_interrupt(vcpu)) {
9944 		++vcpu->stat.req_event;
9945 		r = kvm_apic_accept_events(vcpu);
9946 		if (r < 0) {
9947 			r = 0;
9948 			goto out;
9949 		}
9950 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9951 			r = 1;
9952 			goto out;
9953 		}
9954 
9955 		r = inject_pending_event(vcpu, &req_immediate_exit);
9956 		if (r < 0) {
9957 			r = 0;
9958 			goto out;
9959 		}
9960 		if (req_int_win)
9961 			static_call(kvm_x86_enable_irq_window)(vcpu);
9962 
9963 		if (kvm_lapic_enabled(vcpu)) {
9964 			update_cr8_intercept(vcpu);
9965 			kvm_lapic_sync_to_vapic(vcpu);
9966 		}
9967 	}
9968 
9969 	r = kvm_mmu_reload(vcpu);
9970 	if (unlikely(r)) {
9971 		goto cancel_injection;
9972 	}
9973 
9974 	preempt_disable();
9975 
9976 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9977 
9978 	/*
9979 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9980 	 * IPI are then delayed after guest entry, which ensures that they
9981 	 * result in virtual interrupt delivery.
9982 	 */
9983 	local_irq_disable();
9984 	vcpu->mode = IN_GUEST_MODE;
9985 
9986 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9987 
9988 	/*
9989 	 * 1) We should set ->mode before checking ->requests.  Please see
9990 	 * the comment in kvm_vcpu_exiting_guest_mode().
9991 	 *
9992 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9993 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9994 	 * (see vmx_deliver_posted_interrupt).
9995 	 *
9996 	 * 3) This also orders the write to mode from any reads to the page
9997 	 * tables done while the VCPU is running.  Please see the comment
9998 	 * in kvm_flush_remote_tlbs.
9999 	 */
10000 	smp_mb__after_srcu_read_unlock();
10001 
10002 	/*
10003 	 * Process pending posted interrupts to handle the case where the
10004 	 * notification IRQ arrived in the host, or was never sent (because the
10005 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10006 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10007 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10008 	 */
10009 	if (kvm_lapic_enabled(vcpu))
10010 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10011 
10012 	if (kvm_vcpu_exit_request(vcpu)) {
10013 		vcpu->mode = OUTSIDE_GUEST_MODE;
10014 		smp_wmb();
10015 		local_irq_enable();
10016 		preempt_enable();
10017 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10018 		r = 1;
10019 		goto cancel_injection;
10020 	}
10021 
10022 	if (req_immediate_exit) {
10023 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10024 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10025 	}
10026 
10027 	fpregs_assert_state_consistent();
10028 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10029 		switch_fpu_return();
10030 
10031 	if (vcpu->arch.guest_fpu.xfd_err)
10032 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10033 
10034 	if (unlikely(vcpu->arch.switch_db_regs)) {
10035 		set_debugreg(0, 7);
10036 		set_debugreg(vcpu->arch.eff_db[0], 0);
10037 		set_debugreg(vcpu->arch.eff_db[1], 1);
10038 		set_debugreg(vcpu->arch.eff_db[2], 2);
10039 		set_debugreg(vcpu->arch.eff_db[3], 3);
10040 	} else if (unlikely(hw_breakpoint_active())) {
10041 		set_debugreg(0, 7);
10042 	}
10043 
10044 	for (;;) {
10045 		/*
10046 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10047 		 * update must kick and wait for all vCPUs before toggling the
10048 		 * per-VM state, and responsing vCPUs must wait for the update
10049 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10050 		 */
10051 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10052 
10053 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
10054 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10055 			break;
10056 
10057 		if (kvm_lapic_enabled(vcpu))
10058 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10059 
10060 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10061 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10062 			break;
10063 		}
10064 	}
10065 
10066 	/*
10067 	 * Do this here before restoring debug registers on the host.  And
10068 	 * since we do this before handling the vmexit, a DR access vmexit
10069 	 * can (a) read the correct value of the debug registers, (b) set
10070 	 * KVM_DEBUGREG_WONT_EXIT again.
10071 	 */
10072 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10073 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10074 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10075 		kvm_update_dr0123(vcpu);
10076 		kvm_update_dr7(vcpu);
10077 	}
10078 
10079 	/*
10080 	 * If the guest has used debug registers, at least dr7
10081 	 * will be disabled while returning to the host.
10082 	 * If we don't have active breakpoints in the host, we don't
10083 	 * care about the messed up debug address registers. But if
10084 	 * we have some of them active, restore the old state.
10085 	 */
10086 	if (hw_breakpoint_active())
10087 		hw_breakpoint_restore();
10088 
10089 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10090 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10091 
10092 	vcpu->mode = OUTSIDE_GUEST_MODE;
10093 	smp_wmb();
10094 
10095 	/*
10096 	 * Sync xfd before calling handle_exit_irqoff() which may
10097 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10098 	 * in #NM irqoff handler).
10099 	 */
10100 	if (vcpu->arch.xfd_no_write_intercept)
10101 		fpu_sync_guest_vmexit_xfd_state();
10102 
10103 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10104 
10105 	if (vcpu->arch.guest_fpu.xfd_err)
10106 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10107 
10108 	/*
10109 	 * Consume any pending interrupts, including the possible source of
10110 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10111 	 * An instruction is required after local_irq_enable() to fully unblock
10112 	 * interrupts on processors that implement an interrupt shadow, the
10113 	 * stat.exits increment will do nicely.
10114 	 */
10115 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10116 	local_irq_enable();
10117 	++vcpu->stat.exits;
10118 	local_irq_disable();
10119 	kvm_after_interrupt(vcpu);
10120 
10121 	/*
10122 	 * Wait until after servicing IRQs to account guest time so that any
10123 	 * ticks that occurred while running the guest are properly accounted
10124 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10125 	 * of accounting via context tracking, but the loss of accuracy is
10126 	 * acceptable for all known use cases.
10127 	 */
10128 	vtime_account_guest_exit();
10129 
10130 	if (lapic_in_kernel(vcpu)) {
10131 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10132 		if (delta != S64_MIN) {
10133 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10134 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10135 		}
10136 	}
10137 
10138 	local_irq_enable();
10139 	preempt_enable();
10140 
10141 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10142 
10143 	/*
10144 	 * Profile KVM exit RIPs:
10145 	 */
10146 	if (unlikely(prof_on == KVM_PROFILING)) {
10147 		unsigned long rip = kvm_rip_read(vcpu);
10148 		profile_hit(KVM_PROFILING, (void *)rip);
10149 	}
10150 
10151 	if (unlikely(vcpu->arch.tsc_always_catchup))
10152 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10153 
10154 	if (vcpu->arch.apic_attention)
10155 		kvm_lapic_sync_from_vapic(vcpu);
10156 
10157 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10158 	return r;
10159 
10160 cancel_injection:
10161 	if (req_immediate_exit)
10162 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10163 	static_call(kvm_x86_cancel_injection)(vcpu);
10164 	if (unlikely(vcpu->arch.apic_attention))
10165 		kvm_lapic_sync_from_vapic(vcpu);
10166 out:
10167 	return r;
10168 }
10169 
10170 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10171 {
10172 	bool hv_timer;
10173 
10174 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10175 		/*
10176 		 * Switch to the software timer before halt-polling/blocking as
10177 		 * the guest's timer may be a break event for the vCPU, and the
10178 		 * hypervisor timer runs only when the CPU is in guest mode.
10179 		 * Switch before halt-polling so that KVM recognizes an expired
10180 		 * timer before blocking.
10181 		 */
10182 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10183 		if (hv_timer)
10184 			kvm_lapic_switch_to_sw_timer(vcpu);
10185 
10186 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10187 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10188 			kvm_vcpu_halt(vcpu);
10189 		else
10190 			kvm_vcpu_block(vcpu);
10191 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10192 
10193 		if (hv_timer)
10194 			kvm_lapic_switch_to_hv_timer(vcpu);
10195 
10196 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10197 			return 1;
10198 	}
10199 
10200 	if (kvm_apic_accept_events(vcpu) < 0)
10201 		return 0;
10202 	switch(vcpu->arch.mp_state) {
10203 	case KVM_MP_STATE_HALTED:
10204 	case KVM_MP_STATE_AP_RESET_HOLD:
10205 		vcpu->arch.pv.pv_unhalted = false;
10206 		vcpu->arch.mp_state =
10207 			KVM_MP_STATE_RUNNABLE;
10208 		fallthrough;
10209 	case KVM_MP_STATE_RUNNABLE:
10210 		vcpu->arch.apf.halted = false;
10211 		break;
10212 	case KVM_MP_STATE_INIT_RECEIVED:
10213 		break;
10214 	default:
10215 		return -EINTR;
10216 	}
10217 	return 1;
10218 }
10219 
10220 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10221 {
10222 	if (is_guest_mode(vcpu))
10223 		kvm_check_nested_events(vcpu);
10224 
10225 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10226 		!vcpu->arch.apf.halted);
10227 }
10228 
10229 static int vcpu_run(struct kvm_vcpu *vcpu)
10230 {
10231 	int r;
10232 	struct kvm *kvm = vcpu->kvm;
10233 
10234 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10235 	vcpu->arch.l1tf_flush_l1d = true;
10236 
10237 	for (;;) {
10238 		if (kvm_vcpu_running(vcpu)) {
10239 			r = vcpu_enter_guest(vcpu);
10240 		} else {
10241 			r = vcpu_block(kvm, vcpu);
10242 		}
10243 
10244 		if (r <= 0)
10245 			break;
10246 
10247 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10248 		if (kvm_cpu_has_pending_timer(vcpu))
10249 			kvm_inject_pending_timer_irqs(vcpu);
10250 
10251 		if (dm_request_for_irq_injection(vcpu) &&
10252 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10253 			r = 0;
10254 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10255 			++vcpu->stat.request_irq_exits;
10256 			break;
10257 		}
10258 
10259 		if (__xfer_to_guest_mode_work_pending()) {
10260 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10261 			r = xfer_to_guest_mode_handle_work(vcpu);
10262 			if (r)
10263 				return r;
10264 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10265 		}
10266 	}
10267 
10268 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10269 
10270 	return r;
10271 }
10272 
10273 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10274 {
10275 	int r;
10276 
10277 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10278 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10279 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10280 	return r;
10281 }
10282 
10283 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10284 {
10285 	BUG_ON(!vcpu->arch.pio.count);
10286 
10287 	return complete_emulated_io(vcpu);
10288 }
10289 
10290 /*
10291  * Implements the following, as a state machine:
10292  *
10293  * read:
10294  *   for each fragment
10295  *     for each mmio piece in the fragment
10296  *       write gpa, len
10297  *       exit
10298  *       copy data
10299  *   execute insn
10300  *
10301  * write:
10302  *   for each fragment
10303  *     for each mmio piece in the fragment
10304  *       write gpa, len
10305  *       copy data
10306  *       exit
10307  */
10308 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10309 {
10310 	struct kvm_run *run = vcpu->run;
10311 	struct kvm_mmio_fragment *frag;
10312 	unsigned len;
10313 
10314 	BUG_ON(!vcpu->mmio_needed);
10315 
10316 	/* Complete previous fragment */
10317 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10318 	len = min(8u, frag->len);
10319 	if (!vcpu->mmio_is_write)
10320 		memcpy(frag->data, run->mmio.data, len);
10321 
10322 	if (frag->len <= 8) {
10323 		/* Switch to the next fragment. */
10324 		frag++;
10325 		vcpu->mmio_cur_fragment++;
10326 	} else {
10327 		/* Go forward to the next mmio piece. */
10328 		frag->data += len;
10329 		frag->gpa += len;
10330 		frag->len -= len;
10331 	}
10332 
10333 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10334 		vcpu->mmio_needed = 0;
10335 
10336 		/* FIXME: return into emulator if single-stepping.  */
10337 		if (vcpu->mmio_is_write)
10338 			return 1;
10339 		vcpu->mmio_read_completed = 1;
10340 		return complete_emulated_io(vcpu);
10341 	}
10342 
10343 	run->exit_reason = KVM_EXIT_MMIO;
10344 	run->mmio.phys_addr = frag->gpa;
10345 	if (vcpu->mmio_is_write)
10346 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10347 	run->mmio.len = min(8u, frag->len);
10348 	run->mmio.is_write = vcpu->mmio_is_write;
10349 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10350 	return 0;
10351 }
10352 
10353 /* Swap (qemu) user FPU context for the guest FPU context. */
10354 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10355 {
10356 	/*
10357 	 * Exclude PKRU from restore as restored separately in
10358 	 * kvm_x86_ops.run().
10359 	 */
10360 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10361 	trace_kvm_fpu(1);
10362 }
10363 
10364 /* When vcpu_run ends, restore user space FPU context. */
10365 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10366 {
10367 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10368 	++vcpu->stat.fpu_reload;
10369 	trace_kvm_fpu(0);
10370 }
10371 
10372 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10373 {
10374 	struct kvm_run *kvm_run = vcpu->run;
10375 	int r;
10376 
10377 	vcpu_load(vcpu);
10378 	kvm_sigset_activate(vcpu);
10379 	kvm_run->flags = 0;
10380 	kvm_load_guest_fpu(vcpu);
10381 
10382 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10383 		if (kvm_run->immediate_exit) {
10384 			r = -EINTR;
10385 			goto out;
10386 		}
10387 		/*
10388 		 * It should be impossible for the hypervisor timer to be in
10389 		 * use before KVM has ever run the vCPU.
10390 		 */
10391 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10392 		kvm_vcpu_block(vcpu);
10393 		if (kvm_apic_accept_events(vcpu) < 0) {
10394 			r = 0;
10395 			goto out;
10396 		}
10397 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10398 		r = -EAGAIN;
10399 		if (signal_pending(current)) {
10400 			r = -EINTR;
10401 			kvm_run->exit_reason = KVM_EXIT_INTR;
10402 			++vcpu->stat.signal_exits;
10403 		}
10404 		goto out;
10405 	}
10406 
10407 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10408 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10409 		r = -EINVAL;
10410 		goto out;
10411 	}
10412 
10413 	if (kvm_run->kvm_dirty_regs) {
10414 		r = sync_regs(vcpu);
10415 		if (r != 0)
10416 			goto out;
10417 	}
10418 
10419 	/* re-sync apic's tpr */
10420 	if (!lapic_in_kernel(vcpu)) {
10421 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10422 			r = -EINVAL;
10423 			goto out;
10424 		}
10425 	}
10426 
10427 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10428 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10429 		vcpu->arch.complete_userspace_io = NULL;
10430 		r = cui(vcpu);
10431 		if (r <= 0)
10432 			goto out;
10433 	} else
10434 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10435 
10436 	if (kvm_run->immediate_exit) {
10437 		r = -EINTR;
10438 		goto out;
10439 	}
10440 
10441 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10442 	if (r <= 0)
10443 		goto out;
10444 
10445 	r = vcpu_run(vcpu);
10446 
10447 out:
10448 	kvm_put_guest_fpu(vcpu);
10449 	if (kvm_run->kvm_valid_regs)
10450 		store_regs(vcpu);
10451 	post_kvm_run_save(vcpu);
10452 	kvm_sigset_deactivate(vcpu);
10453 
10454 	vcpu_put(vcpu);
10455 	return r;
10456 }
10457 
10458 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10459 {
10460 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10461 		/*
10462 		 * We are here if userspace calls get_regs() in the middle of
10463 		 * instruction emulation. Registers state needs to be copied
10464 		 * back from emulation context to vcpu. Userspace shouldn't do
10465 		 * that usually, but some bad designed PV devices (vmware
10466 		 * backdoor interface) need this to work
10467 		 */
10468 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10469 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10470 	}
10471 	regs->rax = kvm_rax_read(vcpu);
10472 	regs->rbx = kvm_rbx_read(vcpu);
10473 	regs->rcx = kvm_rcx_read(vcpu);
10474 	regs->rdx = kvm_rdx_read(vcpu);
10475 	regs->rsi = kvm_rsi_read(vcpu);
10476 	regs->rdi = kvm_rdi_read(vcpu);
10477 	regs->rsp = kvm_rsp_read(vcpu);
10478 	regs->rbp = kvm_rbp_read(vcpu);
10479 #ifdef CONFIG_X86_64
10480 	regs->r8 = kvm_r8_read(vcpu);
10481 	regs->r9 = kvm_r9_read(vcpu);
10482 	regs->r10 = kvm_r10_read(vcpu);
10483 	regs->r11 = kvm_r11_read(vcpu);
10484 	regs->r12 = kvm_r12_read(vcpu);
10485 	regs->r13 = kvm_r13_read(vcpu);
10486 	regs->r14 = kvm_r14_read(vcpu);
10487 	regs->r15 = kvm_r15_read(vcpu);
10488 #endif
10489 
10490 	regs->rip = kvm_rip_read(vcpu);
10491 	regs->rflags = kvm_get_rflags(vcpu);
10492 }
10493 
10494 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10495 {
10496 	vcpu_load(vcpu);
10497 	__get_regs(vcpu, regs);
10498 	vcpu_put(vcpu);
10499 	return 0;
10500 }
10501 
10502 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10503 {
10504 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10505 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10506 
10507 	kvm_rax_write(vcpu, regs->rax);
10508 	kvm_rbx_write(vcpu, regs->rbx);
10509 	kvm_rcx_write(vcpu, regs->rcx);
10510 	kvm_rdx_write(vcpu, regs->rdx);
10511 	kvm_rsi_write(vcpu, regs->rsi);
10512 	kvm_rdi_write(vcpu, regs->rdi);
10513 	kvm_rsp_write(vcpu, regs->rsp);
10514 	kvm_rbp_write(vcpu, regs->rbp);
10515 #ifdef CONFIG_X86_64
10516 	kvm_r8_write(vcpu, regs->r8);
10517 	kvm_r9_write(vcpu, regs->r9);
10518 	kvm_r10_write(vcpu, regs->r10);
10519 	kvm_r11_write(vcpu, regs->r11);
10520 	kvm_r12_write(vcpu, regs->r12);
10521 	kvm_r13_write(vcpu, regs->r13);
10522 	kvm_r14_write(vcpu, regs->r14);
10523 	kvm_r15_write(vcpu, regs->r15);
10524 #endif
10525 
10526 	kvm_rip_write(vcpu, regs->rip);
10527 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10528 
10529 	vcpu->arch.exception.pending = false;
10530 
10531 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10532 }
10533 
10534 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10535 {
10536 	vcpu_load(vcpu);
10537 	__set_regs(vcpu, regs);
10538 	vcpu_put(vcpu);
10539 	return 0;
10540 }
10541 
10542 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10543 {
10544 	struct kvm_segment cs;
10545 
10546 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10547 	*db = cs.db;
10548 	*l = cs.l;
10549 }
10550 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10551 
10552 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10553 {
10554 	struct desc_ptr dt;
10555 
10556 	if (vcpu->arch.guest_state_protected)
10557 		goto skip_protected_regs;
10558 
10559 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10560 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10561 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10562 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10563 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10564 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10565 
10566 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10567 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10568 
10569 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10570 	sregs->idt.limit = dt.size;
10571 	sregs->idt.base = dt.address;
10572 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10573 	sregs->gdt.limit = dt.size;
10574 	sregs->gdt.base = dt.address;
10575 
10576 	sregs->cr2 = vcpu->arch.cr2;
10577 	sregs->cr3 = kvm_read_cr3(vcpu);
10578 
10579 skip_protected_regs:
10580 	sregs->cr0 = kvm_read_cr0(vcpu);
10581 	sregs->cr4 = kvm_read_cr4(vcpu);
10582 	sregs->cr8 = kvm_get_cr8(vcpu);
10583 	sregs->efer = vcpu->arch.efer;
10584 	sregs->apic_base = kvm_get_apic_base(vcpu);
10585 }
10586 
10587 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10588 {
10589 	__get_sregs_common(vcpu, sregs);
10590 
10591 	if (vcpu->arch.guest_state_protected)
10592 		return;
10593 
10594 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10595 		set_bit(vcpu->arch.interrupt.nr,
10596 			(unsigned long *)sregs->interrupt_bitmap);
10597 }
10598 
10599 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10600 {
10601 	int i;
10602 
10603 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10604 
10605 	if (vcpu->arch.guest_state_protected)
10606 		return;
10607 
10608 	if (is_pae_paging(vcpu)) {
10609 		for (i = 0 ; i < 4 ; i++)
10610 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10611 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10612 	}
10613 }
10614 
10615 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10616 				  struct kvm_sregs *sregs)
10617 {
10618 	vcpu_load(vcpu);
10619 	__get_sregs(vcpu, sregs);
10620 	vcpu_put(vcpu);
10621 	return 0;
10622 }
10623 
10624 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10625 				    struct kvm_mp_state *mp_state)
10626 {
10627 	int r;
10628 
10629 	vcpu_load(vcpu);
10630 	if (kvm_mpx_supported())
10631 		kvm_load_guest_fpu(vcpu);
10632 
10633 	r = kvm_apic_accept_events(vcpu);
10634 	if (r < 0)
10635 		goto out;
10636 	r = 0;
10637 
10638 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10639 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10640 	    vcpu->arch.pv.pv_unhalted)
10641 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10642 	else
10643 		mp_state->mp_state = vcpu->arch.mp_state;
10644 
10645 out:
10646 	if (kvm_mpx_supported())
10647 		kvm_put_guest_fpu(vcpu);
10648 	vcpu_put(vcpu);
10649 	return r;
10650 }
10651 
10652 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10653 				    struct kvm_mp_state *mp_state)
10654 {
10655 	int ret = -EINVAL;
10656 
10657 	vcpu_load(vcpu);
10658 
10659 	if (!lapic_in_kernel(vcpu) &&
10660 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10661 		goto out;
10662 
10663 	/*
10664 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10665 	 * INIT state; latched init should be reported using
10666 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10667 	 */
10668 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10669 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10670 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10671 		goto out;
10672 
10673 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10674 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10675 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10676 	} else
10677 		vcpu->arch.mp_state = mp_state->mp_state;
10678 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10679 
10680 	ret = 0;
10681 out:
10682 	vcpu_put(vcpu);
10683 	return ret;
10684 }
10685 
10686 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10687 		    int reason, bool has_error_code, u32 error_code)
10688 {
10689 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10690 	int ret;
10691 
10692 	init_emulate_ctxt(vcpu);
10693 
10694 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10695 				   has_error_code, error_code);
10696 	if (ret) {
10697 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10698 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10699 		vcpu->run->internal.ndata = 0;
10700 		return 0;
10701 	}
10702 
10703 	kvm_rip_write(vcpu, ctxt->eip);
10704 	kvm_set_rflags(vcpu, ctxt->eflags);
10705 	return 1;
10706 }
10707 EXPORT_SYMBOL_GPL(kvm_task_switch);
10708 
10709 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10710 {
10711 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10712 		/*
10713 		 * When EFER.LME and CR0.PG are set, the processor is in
10714 		 * 64-bit mode (though maybe in a 32-bit code segment).
10715 		 * CR4.PAE and EFER.LMA must be set.
10716 		 */
10717 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10718 			return false;
10719 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10720 			return false;
10721 	} else {
10722 		/*
10723 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10724 		 * segment cannot be 64-bit.
10725 		 */
10726 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10727 			return false;
10728 	}
10729 
10730 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10731 }
10732 
10733 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10734 		int *mmu_reset_needed, bool update_pdptrs)
10735 {
10736 	struct msr_data apic_base_msr;
10737 	int idx;
10738 	struct desc_ptr dt;
10739 
10740 	if (!kvm_is_valid_sregs(vcpu, sregs))
10741 		return -EINVAL;
10742 
10743 	apic_base_msr.data = sregs->apic_base;
10744 	apic_base_msr.host_initiated = true;
10745 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10746 		return -EINVAL;
10747 
10748 	if (vcpu->arch.guest_state_protected)
10749 		return 0;
10750 
10751 	dt.size = sregs->idt.limit;
10752 	dt.address = sregs->idt.base;
10753 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10754 	dt.size = sregs->gdt.limit;
10755 	dt.address = sregs->gdt.base;
10756 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10757 
10758 	vcpu->arch.cr2 = sregs->cr2;
10759 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10760 	vcpu->arch.cr3 = sregs->cr3;
10761 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10762 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10763 
10764 	kvm_set_cr8(vcpu, sregs->cr8);
10765 
10766 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10767 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10768 
10769 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10770 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10771 	vcpu->arch.cr0 = sregs->cr0;
10772 
10773 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10774 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10775 
10776 	if (update_pdptrs) {
10777 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10778 		if (is_pae_paging(vcpu)) {
10779 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10780 			*mmu_reset_needed = 1;
10781 		}
10782 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10783 	}
10784 
10785 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10786 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10787 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10788 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10789 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10790 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10791 
10792 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10793 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10794 
10795 	update_cr8_intercept(vcpu);
10796 
10797 	/* Older userspace won't unhalt the vcpu on reset. */
10798 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10799 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10800 	    !is_protmode(vcpu))
10801 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10802 
10803 	return 0;
10804 }
10805 
10806 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10807 {
10808 	int pending_vec, max_bits;
10809 	int mmu_reset_needed = 0;
10810 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10811 
10812 	if (ret)
10813 		return ret;
10814 
10815 	if (mmu_reset_needed)
10816 		kvm_mmu_reset_context(vcpu);
10817 
10818 	max_bits = KVM_NR_INTERRUPTS;
10819 	pending_vec = find_first_bit(
10820 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10821 
10822 	if (pending_vec < max_bits) {
10823 		kvm_queue_interrupt(vcpu, pending_vec, false);
10824 		pr_debug("Set back pending irq %d\n", pending_vec);
10825 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10826 	}
10827 	return 0;
10828 }
10829 
10830 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10831 {
10832 	int mmu_reset_needed = 0;
10833 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10834 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10835 		!(sregs2->efer & EFER_LMA);
10836 	int i, ret;
10837 
10838 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10839 		return -EINVAL;
10840 
10841 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10842 		return -EINVAL;
10843 
10844 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10845 				 &mmu_reset_needed, !valid_pdptrs);
10846 	if (ret)
10847 		return ret;
10848 
10849 	if (valid_pdptrs) {
10850 		for (i = 0; i < 4 ; i++)
10851 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10852 
10853 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10854 		mmu_reset_needed = 1;
10855 		vcpu->arch.pdptrs_from_userspace = true;
10856 	}
10857 	if (mmu_reset_needed)
10858 		kvm_mmu_reset_context(vcpu);
10859 	return 0;
10860 }
10861 
10862 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10863 				  struct kvm_sregs *sregs)
10864 {
10865 	int ret;
10866 
10867 	vcpu_load(vcpu);
10868 	ret = __set_sregs(vcpu, sregs);
10869 	vcpu_put(vcpu);
10870 	return ret;
10871 }
10872 
10873 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10874 {
10875 	bool inhibit = false;
10876 	struct kvm_vcpu *vcpu;
10877 	unsigned long i;
10878 
10879 	down_write(&kvm->arch.apicv_update_lock);
10880 
10881 	kvm_for_each_vcpu(i, vcpu, kvm) {
10882 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10883 			inhibit = true;
10884 			break;
10885 		}
10886 	}
10887 	__kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10888 	up_write(&kvm->arch.apicv_update_lock);
10889 }
10890 
10891 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10892 					struct kvm_guest_debug *dbg)
10893 {
10894 	unsigned long rflags;
10895 	int i, r;
10896 
10897 	if (vcpu->arch.guest_state_protected)
10898 		return -EINVAL;
10899 
10900 	vcpu_load(vcpu);
10901 
10902 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10903 		r = -EBUSY;
10904 		if (vcpu->arch.exception.pending)
10905 			goto out;
10906 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10907 			kvm_queue_exception(vcpu, DB_VECTOR);
10908 		else
10909 			kvm_queue_exception(vcpu, BP_VECTOR);
10910 	}
10911 
10912 	/*
10913 	 * Read rflags as long as potentially injected trace flags are still
10914 	 * filtered out.
10915 	 */
10916 	rflags = kvm_get_rflags(vcpu);
10917 
10918 	vcpu->guest_debug = dbg->control;
10919 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10920 		vcpu->guest_debug = 0;
10921 
10922 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10923 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10924 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10925 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10926 	} else {
10927 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10928 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10929 	}
10930 	kvm_update_dr7(vcpu);
10931 
10932 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10933 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10934 
10935 	/*
10936 	 * Trigger an rflags update that will inject or remove the trace
10937 	 * flags.
10938 	 */
10939 	kvm_set_rflags(vcpu, rflags);
10940 
10941 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10942 
10943 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10944 
10945 	r = 0;
10946 
10947 out:
10948 	vcpu_put(vcpu);
10949 	return r;
10950 }
10951 
10952 /*
10953  * Translate a guest virtual address to a guest physical address.
10954  */
10955 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10956 				    struct kvm_translation *tr)
10957 {
10958 	unsigned long vaddr = tr->linear_address;
10959 	gpa_t gpa;
10960 	int idx;
10961 
10962 	vcpu_load(vcpu);
10963 
10964 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10965 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10966 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10967 	tr->physical_address = gpa;
10968 	tr->valid = gpa != UNMAPPED_GVA;
10969 	tr->writeable = 1;
10970 	tr->usermode = 0;
10971 
10972 	vcpu_put(vcpu);
10973 	return 0;
10974 }
10975 
10976 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10977 {
10978 	struct fxregs_state *fxsave;
10979 
10980 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10981 		return 0;
10982 
10983 	vcpu_load(vcpu);
10984 
10985 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10986 	memcpy(fpu->fpr, fxsave->st_space, 128);
10987 	fpu->fcw = fxsave->cwd;
10988 	fpu->fsw = fxsave->swd;
10989 	fpu->ftwx = fxsave->twd;
10990 	fpu->last_opcode = fxsave->fop;
10991 	fpu->last_ip = fxsave->rip;
10992 	fpu->last_dp = fxsave->rdp;
10993 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10994 
10995 	vcpu_put(vcpu);
10996 	return 0;
10997 }
10998 
10999 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11000 {
11001 	struct fxregs_state *fxsave;
11002 
11003 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11004 		return 0;
11005 
11006 	vcpu_load(vcpu);
11007 
11008 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11009 
11010 	memcpy(fxsave->st_space, fpu->fpr, 128);
11011 	fxsave->cwd = fpu->fcw;
11012 	fxsave->swd = fpu->fsw;
11013 	fxsave->twd = fpu->ftwx;
11014 	fxsave->fop = fpu->last_opcode;
11015 	fxsave->rip = fpu->last_ip;
11016 	fxsave->rdp = fpu->last_dp;
11017 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11018 
11019 	vcpu_put(vcpu);
11020 	return 0;
11021 }
11022 
11023 static void store_regs(struct kvm_vcpu *vcpu)
11024 {
11025 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11026 
11027 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11028 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11029 
11030 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11031 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11032 
11033 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11034 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11035 				vcpu, &vcpu->run->s.regs.events);
11036 }
11037 
11038 static int sync_regs(struct kvm_vcpu *vcpu)
11039 {
11040 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11041 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11042 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11043 	}
11044 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11045 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11046 			return -EINVAL;
11047 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11048 	}
11049 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11050 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11051 				vcpu, &vcpu->run->s.regs.events))
11052 			return -EINVAL;
11053 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11054 	}
11055 
11056 	return 0;
11057 }
11058 
11059 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11060 {
11061 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11062 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11063 			     "guest TSC will not be reliable\n");
11064 
11065 	return 0;
11066 }
11067 
11068 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11069 {
11070 	struct page *page;
11071 	int r;
11072 
11073 	vcpu->arch.last_vmentry_cpu = -1;
11074 	vcpu->arch.regs_avail = ~0;
11075 	vcpu->arch.regs_dirty = ~0;
11076 
11077 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11078 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11079 	else
11080 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11081 
11082 	r = kvm_mmu_create(vcpu);
11083 	if (r < 0)
11084 		return r;
11085 
11086 	if (irqchip_in_kernel(vcpu->kvm)) {
11087 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11088 		if (r < 0)
11089 			goto fail_mmu_destroy;
11090 		if (kvm_apicv_activated(vcpu->kvm))
11091 			vcpu->arch.apicv_active = true;
11092 	} else
11093 		static_branch_inc(&kvm_has_noapic_vcpu);
11094 
11095 	r = -ENOMEM;
11096 
11097 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11098 	if (!page)
11099 		goto fail_free_lapic;
11100 	vcpu->arch.pio_data = page_address(page);
11101 
11102 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11103 				       GFP_KERNEL_ACCOUNT);
11104 	if (!vcpu->arch.mce_banks)
11105 		goto fail_free_pio_data;
11106 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11107 
11108 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11109 				GFP_KERNEL_ACCOUNT))
11110 		goto fail_free_mce_banks;
11111 
11112 	if (!alloc_emulate_ctxt(vcpu))
11113 		goto free_wbinvd_dirty_mask;
11114 
11115 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11116 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11117 		goto free_emulate_ctxt;
11118 	}
11119 
11120 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11121 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11122 
11123 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11124 
11125 	kvm_async_pf_hash_reset(vcpu);
11126 	kvm_pmu_init(vcpu);
11127 
11128 	vcpu->arch.pending_external_vector = -1;
11129 	vcpu->arch.preempted_in_kernel = false;
11130 
11131 #if IS_ENABLED(CONFIG_HYPERV)
11132 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11133 #endif
11134 
11135 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11136 	if (r)
11137 		goto free_guest_fpu;
11138 
11139 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11140 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11141 	kvm_vcpu_mtrr_init(vcpu);
11142 	vcpu_load(vcpu);
11143 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11144 	kvm_vcpu_reset(vcpu, false);
11145 	kvm_init_mmu(vcpu);
11146 	vcpu_put(vcpu);
11147 	return 0;
11148 
11149 free_guest_fpu:
11150 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11151 free_emulate_ctxt:
11152 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11153 free_wbinvd_dirty_mask:
11154 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11155 fail_free_mce_banks:
11156 	kfree(vcpu->arch.mce_banks);
11157 fail_free_pio_data:
11158 	free_page((unsigned long)vcpu->arch.pio_data);
11159 fail_free_lapic:
11160 	kvm_free_lapic(vcpu);
11161 fail_mmu_destroy:
11162 	kvm_mmu_destroy(vcpu);
11163 	return r;
11164 }
11165 
11166 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11167 {
11168 	struct kvm *kvm = vcpu->kvm;
11169 
11170 	if (mutex_lock_killable(&vcpu->mutex))
11171 		return;
11172 	vcpu_load(vcpu);
11173 	kvm_synchronize_tsc(vcpu, 0);
11174 	vcpu_put(vcpu);
11175 
11176 	/* poll control enabled by default */
11177 	vcpu->arch.msr_kvm_poll_control = 1;
11178 
11179 	mutex_unlock(&vcpu->mutex);
11180 
11181 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11182 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11183 						KVMCLOCK_SYNC_PERIOD);
11184 }
11185 
11186 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11187 {
11188 	int idx;
11189 
11190 	kvmclock_reset(vcpu);
11191 
11192 	static_call(kvm_x86_vcpu_free)(vcpu);
11193 
11194 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11195 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11196 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11197 
11198 	kvm_hv_vcpu_uninit(vcpu);
11199 	kvm_pmu_destroy(vcpu);
11200 	kfree(vcpu->arch.mce_banks);
11201 	kvm_free_lapic(vcpu);
11202 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11203 	kvm_mmu_destroy(vcpu);
11204 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11205 	free_page((unsigned long)vcpu->arch.pio_data);
11206 	kvfree(vcpu->arch.cpuid_entries);
11207 	if (!lapic_in_kernel(vcpu))
11208 		static_branch_dec(&kvm_has_noapic_vcpu);
11209 }
11210 
11211 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11212 {
11213 	struct kvm_cpuid_entry2 *cpuid_0x1;
11214 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11215 	unsigned long new_cr0;
11216 
11217 	/*
11218 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11219 	 * to handle side effects.  RESET emulation hits those flows and relies
11220 	 * on emulated/virtualized registers, including those that are loaded
11221 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11222 	 * to detect improper or missing initialization.
11223 	 */
11224 	WARN_ON_ONCE(!init_event &&
11225 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11226 
11227 	kvm_lapic_reset(vcpu, init_event);
11228 
11229 	vcpu->arch.hflags = 0;
11230 
11231 	vcpu->arch.smi_pending = 0;
11232 	vcpu->arch.smi_count = 0;
11233 	atomic_set(&vcpu->arch.nmi_queued, 0);
11234 	vcpu->arch.nmi_pending = 0;
11235 	vcpu->arch.nmi_injected = false;
11236 	kvm_clear_interrupt_queue(vcpu);
11237 	kvm_clear_exception_queue(vcpu);
11238 
11239 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11240 	kvm_update_dr0123(vcpu);
11241 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11242 	vcpu->arch.dr7 = DR7_FIXED_1;
11243 	kvm_update_dr7(vcpu);
11244 
11245 	vcpu->arch.cr2 = 0;
11246 
11247 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11248 	vcpu->arch.apf.msr_en_val = 0;
11249 	vcpu->arch.apf.msr_int_val = 0;
11250 	vcpu->arch.st.msr_val = 0;
11251 
11252 	kvmclock_reset(vcpu);
11253 
11254 	kvm_clear_async_pf_completion_queue(vcpu);
11255 	kvm_async_pf_hash_reset(vcpu);
11256 	vcpu->arch.apf.halted = false;
11257 
11258 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11259 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11260 
11261 		/*
11262 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11263 		 * called with loaded FPU and does not let userspace fix the state.
11264 		 */
11265 		if (init_event)
11266 			kvm_put_guest_fpu(vcpu);
11267 
11268 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11269 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11270 
11271 		if (init_event)
11272 			kvm_load_guest_fpu(vcpu);
11273 	}
11274 
11275 	if (!init_event) {
11276 		kvm_pmu_reset(vcpu);
11277 		vcpu->arch.smbase = 0x30000;
11278 
11279 		vcpu->arch.msr_misc_features_enables = 0;
11280 
11281 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11282 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11283 	}
11284 
11285 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11286 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11287 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11288 
11289 	/*
11290 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11291 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11292 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11293 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11294 	 * on RESET.  But, go through the motions in case that's ever remedied.
11295 	 */
11296 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11297 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11298 
11299 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11300 
11301 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11302 	kvm_rip_write(vcpu, 0xfff0);
11303 
11304 	vcpu->arch.cr3 = 0;
11305 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11306 
11307 	/*
11308 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11309 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11310 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11311 	 */
11312 	new_cr0 = X86_CR0_ET;
11313 	if (init_event)
11314 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11315 	else
11316 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11317 
11318 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11319 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11320 	static_call(kvm_x86_set_efer)(vcpu, 0);
11321 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11322 
11323 	/*
11324 	 * Reset the MMU context if paging was enabled prior to INIT (which is
11325 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11326 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11327 	 * checked because it is unconditionally cleared on INIT and all other
11328 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11329 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11330 	 */
11331 	if (old_cr0 & X86_CR0_PG)
11332 		kvm_mmu_reset_context(vcpu);
11333 
11334 	/*
11335 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11336 	 * APM states the TLBs are untouched by INIT, but it also states that
11337 	 * the TLBs are flushed on "External initialization of the processor."
11338 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11339 	 * benefit in relying on the guest to flush the TLB immediately after
11340 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11341 	 * performance perspective.
11342 	 */
11343 	if (init_event)
11344 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11345 }
11346 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11347 
11348 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11349 {
11350 	struct kvm_segment cs;
11351 
11352 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11353 	cs.selector = vector << 8;
11354 	cs.base = vector << 12;
11355 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11356 	kvm_rip_write(vcpu, 0);
11357 }
11358 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11359 
11360 int kvm_arch_hardware_enable(void)
11361 {
11362 	struct kvm *kvm;
11363 	struct kvm_vcpu *vcpu;
11364 	unsigned long i;
11365 	int ret;
11366 	u64 local_tsc;
11367 	u64 max_tsc = 0;
11368 	bool stable, backwards_tsc = false;
11369 
11370 	kvm_user_return_msr_cpu_online();
11371 	ret = static_call(kvm_x86_hardware_enable)();
11372 	if (ret != 0)
11373 		return ret;
11374 
11375 	local_tsc = rdtsc();
11376 	stable = !kvm_check_tsc_unstable();
11377 	list_for_each_entry(kvm, &vm_list, vm_list) {
11378 		kvm_for_each_vcpu(i, vcpu, kvm) {
11379 			if (!stable && vcpu->cpu == smp_processor_id())
11380 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11381 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11382 				backwards_tsc = true;
11383 				if (vcpu->arch.last_host_tsc > max_tsc)
11384 					max_tsc = vcpu->arch.last_host_tsc;
11385 			}
11386 		}
11387 	}
11388 
11389 	/*
11390 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11391 	 * platforms that reset TSC during suspend or hibernate actions, but
11392 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11393 	 * detect that condition here, which happens early in CPU bringup,
11394 	 * before any KVM threads can be running.  Unfortunately, we can't
11395 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11396 	 * enough into CPU bringup that we know how much real time has actually
11397 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11398 	 * variables that haven't been updated yet.
11399 	 *
11400 	 * So we simply find the maximum observed TSC above, then record the
11401 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11402 	 * the adjustment will be applied.  Note that we accumulate
11403 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11404 	 * gets a chance to run again.  In the event that no KVM threads get a
11405 	 * chance to run, we will miss the entire elapsed period, as we'll have
11406 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11407 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11408 	 * uniform across all VCPUs (not to mention the scenario is extremely
11409 	 * unlikely). It is possible that a second hibernate recovery happens
11410 	 * much faster than a first, causing the observed TSC here to be
11411 	 * smaller; this would require additional padding adjustment, which is
11412 	 * why we set last_host_tsc to the local tsc observed here.
11413 	 *
11414 	 * N.B. - this code below runs only on platforms with reliable TSC,
11415 	 * as that is the only way backwards_tsc is set above.  Also note
11416 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11417 	 * have the same delta_cyc adjustment applied if backwards_tsc
11418 	 * is detected.  Note further, this adjustment is only done once,
11419 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11420 	 * called multiple times (one for each physical CPU bringup).
11421 	 *
11422 	 * Platforms with unreliable TSCs don't have to deal with this, they
11423 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11424 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11425 	 * guarantee that they stay in perfect synchronization.
11426 	 */
11427 	if (backwards_tsc) {
11428 		u64 delta_cyc = max_tsc - local_tsc;
11429 		list_for_each_entry(kvm, &vm_list, vm_list) {
11430 			kvm->arch.backwards_tsc_observed = true;
11431 			kvm_for_each_vcpu(i, vcpu, kvm) {
11432 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11433 				vcpu->arch.last_host_tsc = local_tsc;
11434 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11435 			}
11436 
11437 			/*
11438 			 * We have to disable TSC offset matching.. if you were
11439 			 * booting a VM while issuing an S4 host suspend....
11440 			 * you may have some problem.  Solving this issue is
11441 			 * left as an exercise to the reader.
11442 			 */
11443 			kvm->arch.last_tsc_nsec = 0;
11444 			kvm->arch.last_tsc_write = 0;
11445 		}
11446 
11447 	}
11448 	return 0;
11449 }
11450 
11451 void kvm_arch_hardware_disable(void)
11452 {
11453 	static_call(kvm_x86_hardware_disable)();
11454 	drop_user_return_notifiers();
11455 }
11456 
11457 int kvm_arch_hardware_setup(void *opaque)
11458 {
11459 	struct kvm_x86_init_ops *ops = opaque;
11460 	int r;
11461 
11462 	rdmsrl_safe(MSR_EFER, &host_efer);
11463 
11464 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11465 		rdmsrl(MSR_IA32_XSS, host_xss);
11466 
11467 	r = ops->hardware_setup();
11468 	if (r != 0)
11469 		return r;
11470 
11471 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11472 	kvm_ops_static_call_update();
11473 
11474 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11475 
11476 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11477 		supported_xss = 0;
11478 
11479 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11480 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11481 #undef __kvm_cpu_cap_has
11482 
11483 	if (kvm_has_tsc_control) {
11484 		/*
11485 		 * Make sure the user can only configure tsc_khz values that
11486 		 * fit into a signed integer.
11487 		 * A min value is not calculated because it will always
11488 		 * be 1 on all machines.
11489 		 */
11490 		u64 max = min(0x7fffffffULL,
11491 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11492 		kvm_max_guest_tsc_khz = max;
11493 
11494 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11495 	}
11496 
11497 	kvm_init_msr_list();
11498 	return 0;
11499 }
11500 
11501 void kvm_arch_hardware_unsetup(void)
11502 {
11503 	kvm_unregister_perf_callbacks();
11504 
11505 	static_call(kvm_x86_hardware_unsetup)();
11506 }
11507 
11508 int kvm_arch_check_processor_compat(void *opaque)
11509 {
11510 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11511 	struct kvm_x86_init_ops *ops = opaque;
11512 
11513 	WARN_ON(!irqs_disabled());
11514 
11515 	if (__cr4_reserved_bits(cpu_has, c) !=
11516 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11517 		return -EIO;
11518 
11519 	return ops->check_processor_compatibility();
11520 }
11521 
11522 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11523 {
11524 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11525 }
11526 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11527 
11528 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11529 {
11530 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11531 }
11532 
11533 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11534 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11535 
11536 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11537 {
11538 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11539 
11540 	vcpu->arch.l1tf_flush_l1d = true;
11541 	if (pmu->version && unlikely(pmu->event_count)) {
11542 		pmu->need_cleanup = true;
11543 		kvm_make_request(KVM_REQ_PMU, vcpu);
11544 	}
11545 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11546 }
11547 
11548 void kvm_arch_free_vm(struct kvm *kvm)
11549 {
11550 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11551 	__kvm_arch_free_vm(kvm);
11552 }
11553 
11554 
11555 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11556 {
11557 	int ret;
11558 	unsigned long flags;
11559 
11560 	if (type)
11561 		return -EINVAL;
11562 
11563 	ret = kvm_page_track_init(kvm);
11564 	if (ret)
11565 		return ret;
11566 
11567 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11568 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11569 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11570 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11571 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11572 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11573 
11574 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11575 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11576 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11577 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11578 		&kvm->arch.irq_sources_bitmap);
11579 
11580 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11581 	mutex_init(&kvm->arch.apic_map_lock);
11582 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11583 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11584 
11585 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11586 	pvclock_update_vm_gtod_copy(kvm);
11587 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11588 
11589 	kvm->arch.guest_can_read_msr_platform_info = true;
11590 
11591 #if IS_ENABLED(CONFIG_HYPERV)
11592 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11593 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11594 #endif
11595 
11596 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11597 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11598 
11599 	kvm_apicv_init(kvm);
11600 	kvm_hv_init_vm(kvm);
11601 	kvm_mmu_init_vm(kvm);
11602 	kvm_xen_init_vm(kvm);
11603 
11604 	return static_call(kvm_x86_vm_init)(kvm);
11605 }
11606 
11607 int kvm_arch_post_init_vm(struct kvm *kvm)
11608 {
11609 	return kvm_mmu_post_init_vm(kvm);
11610 }
11611 
11612 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11613 {
11614 	vcpu_load(vcpu);
11615 	kvm_mmu_unload(vcpu);
11616 	vcpu_put(vcpu);
11617 }
11618 
11619 static void kvm_free_vcpus(struct kvm *kvm)
11620 {
11621 	unsigned long i;
11622 	struct kvm_vcpu *vcpu;
11623 
11624 	/*
11625 	 * Unpin any mmu pages first.
11626 	 */
11627 	kvm_for_each_vcpu(i, vcpu, kvm) {
11628 		kvm_clear_async_pf_completion_queue(vcpu);
11629 		kvm_unload_vcpu_mmu(vcpu);
11630 	}
11631 
11632 	kvm_destroy_vcpus(kvm);
11633 }
11634 
11635 void kvm_arch_sync_events(struct kvm *kvm)
11636 {
11637 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11638 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11639 	kvm_free_pit(kvm);
11640 }
11641 
11642 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11643 
11644 /**
11645  * __x86_set_memory_region: Setup KVM internal memory slot
11646  *
11647  * @kvm: the kvm pointer to the VM.
11648  * @id: the slot ID to setup.
11649  * @gpa: the GPA to install the slot (unused when @size == 0).
11650  * @size: the size of the slot. Set to zero to uninstall a slot.
11651  *
11652  * This function helps to setup a KVM internal memory slot.  Specify
11653  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11654  * slot.  The return code can be one of the following:
11655  *
11656  *   HVA:           on success (uninstall will return a bogus HVA)
11657  *   -errno:        on error
11658  *
11659  * The caller should always use IS_ERR() to check the return value
11660  * before use.  Note, the KVM internal memory slots are guaranteed to
11661  * remain valid and unchanged until the VM is destroyed, i.e., the
11662  * GPA->HVA translation will not change.  However, the HVA is a user
11663  * address, i.e. its accessibility is not guaranteed, and must be
11664  * accessed via __copy_{to,from}_user().
11665  */
11666 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11667 				      u32 size)
11668 {
11669 	int i, r;
11670 	unsigned long hva, old_npages;
11671 	struct kvm_memslots *slots = kvm_memslots(kvm);
11672 	struct kvm_memory_slot *slot;
11673 
11674 	/* Called with kvm->slots_lock held.  */
11675 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11676 		return ERR_PTR_USR(-EINVAL);
11677 
11678 	slot = id_to_memslot(slots, id);
11679 	if (size) {
11680 		if (slot && slot->npages)
11681 			return ERR_PTR_USR(-EEXIST);
11682 
11683 		/*
11684 		 * MAP_SHARED to prevent internal slot pages from being moved
11685 		 * by fork()/COW.
11686 		 */
11687 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11688 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11689 		if (IS_ERR((void *)hva))
11690 			return (void __user *)hva;
11691 	} else {
11692 		if (!slot || !slot->npages)
11693 			return NULL;
11694 
11695 		old_npages = slot->npages;
11696 		hva = slot->userspace_addr;
11697 	}
11698 
11699 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11700 		struct kvm_userspace_memory_region m;
11701 
11702 		m.slot = id | (i << 16);
11703 		m.flags = 0;
11704 		m.guest_phys_addr = gpa;
11705 		m.userspace_addr = hva;
11706 		m.memory_size = size;
11707 		r = __kvm_set_memory_region(kvm, &m);
11708 		if (r < 0)
11709 			return ERR_PTR_USR(r);
11710 	}
11711 
11712 	if (!size)
11713 		vm_munmap(hva, old_npages * PAGE_SIZE);
11714 
11715 	return (void __user *)hva;
11716 }
11717 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11718 
11719 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11720 {
11721 	kvm_mmu_pre_destroy_vm(kvm);
11722 }
11723 
11724 void kvm_arch_destroy_vm(struct kvm *kvm)
11725 {
11726 	if (current->mm == kvm->mm) {
11727 		/*
11728 		 * Free memory regions allocated on behalf of userspace,
11729 		 * unless the the memory map has changed due to process exit
11730 		 * or fd copying.
11731 		 */
11732 		mutex_lock(&kvm->slots_lock);
11733 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11734 					0, 0);
11735 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11736 					0, 0);
11737 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11738 		mutex_unlock(&kvm->slots_lock);
11739 	}
11740 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11741 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11742 	kvm_pic_destroy(kvm);
11743 	kvm_ioapic_destroy(kvm);
11744 	kvm_free_vcpus(kvm);
11745 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11746 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11747 	kvm_mmu_uninit_vm(kvm);
11748 	kvm_page_track_cleanup(kvm);
11749 	kvm_xen_destroy_vm(kvm);
11750 	kvm_hv_destroy_vm(kvm);
11751 }
11752 
11753 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11754 {
11755 	int i;
11756 
11757 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11758 		kvfree(slot->arch.rmap[i]);
11759 		slot->arch.rmap[i] = NULL;
11760 	}
11761 }
11762 
11763 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11764 {
11765 	int i;
11766 
11767 	memslot_rmap_free(slot);
11768 
11769 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11770 		kvfree(slot->arch.lpage_info[i - 1]);
11771 		slot->arch.lpage_info[i - 1] = NULL;
11772 	}
11773 
11774 	kvm_page_track_free_memslot(slot);
11775 }
11776 
11777 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11778 {
11779 	const int sz = sizeof(*slot->arch.rmap[0]);
11780 	int i;
11781 
11782 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11783 		int level = i + 1;
11784 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11785 
11786 		if (slot->arch.rmap[i])
11787 			continue;
11788 
11789 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11790 		if (!slot->arch.rmap[i]) {
11791 			memslot_rmap_free(slot);
11792 			return -ENOMEM;
11793 		}
11794 	}
11795 
11796 	return 0;
11797 }
11798 
11799 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11800 				      struct kvm_memory_slot *slot)
11801 {
11802 	unsigned long npages = slot->npages;
11803 	int i, r;
11804 
11805 	/*
11806 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11807 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11808 	 * the new memslot is successful.
11809 	 */
11810 	memset(&slot->arch, 0, sizeof(slot->arch));
11811 
11812 	if (kvm_memslots_have_rmaps(kvm)) {
11813 		r = memslot_rmap_alloc(slot, npages);
11814 		if (r)
11815 			return r;
11816 	}
11817 
11818 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11819 		struct kvm_lpage_info *linfo;
11820 		unsigned long ugfn;
11821 		int lpages;
11822 		int level = i + 1;
11823 
11824 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11825 
11826 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11827 		if (!linfo)
11828 			goto out_free;
11829 
11830 		slot->arch.lpage_info[i - 1] = linfo;
11831 
11832 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11833 			linfo[0].disallow_lpage = 1;
11834 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11835 			linfo[lpages - 1].disallow_lpage = 1;
11836 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11837 		/*
11838 		 * If the gfn and userspace address are not aligned wrt each
11839 		 * other, disable large page support for this slot.
11840 		 */
11841 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11842 			unsigned long j;
11843 
11844 			for (j = 0; j < lpages; ++j)
11845 				linfo[j].disallow_lpage = 1;
11846 		}
11847 	}
11848 
11849 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11850 		goto out_free;
11851 
11852 	return 0;
11853 
11854 out_free:
11855 	memslot_rmap_free(slot);
11856 
11857 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11858 		kvfree(slot->arch.lpage_info[i - 1]);
11859 		slot->arch.lpage_info[i - 1] = NULL;
11860 	}
11861 	return -ENOMEM;
11862 }
11863 
11864 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11865 {
11866 	struct kvm_vcpu *vcpu;
11867 	unsigned long i;
11868 
11869 	/*
11870 	 * memslots->generation has been incremented.
11871 	 * mmio generation may have reached its maximum value.
11872 	 */
11873 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11874 
11875 	/* Force re-initialization of steal_time cache */
11876 	kvm_for_each_vcpu(i, vcpu, kvm)
11877 		kvm_vcpu_kick(vcpu);
11878 }
11879 
11880 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11881 				   const struct kvm_memory_slot *old,
11882 				   struct kvm_memory_slot *new,
11883 				   enum kvm_mr_change change)
11884 {
11885 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11886 		return kvm_alloc_memslot_metadata(kvm, new);
11887 
11888 	if (change == KVM_MR_FLAGS_ONLY)
11889 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
11890 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11891 		return -EIO;
11892 
11893 	return 0;
11894 }
11895 
11896 
11897 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11898 {
11899 	struct kvm_arch *ka = &kvm->arch;
11900 
11901 	if (!kvm_x86_ops.cpu_dirty_log_size)
11902 		return;
11903 
11904 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11905 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11906 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11907 
11908 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11909 }
11910 
11911 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11912 				     struct kvm_memory_slot *old,
11913 				     const struct kvm_memory_slot *new,
11914 				     enum kvm_mr_change change)
11915 {
11916 	u32 old_flags = old ? old->flags : 0;
11917 	u32 new_flags = new ? new->flags : 0;
11918 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11919 
11920 	/*
11921 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11922 	 * applies to all operations.
11923 	 */
11924 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11925 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11926 
11927 	/*
11928 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11929 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11930 	 *
11931 	 * For a memslot with dirty logging disabled:
11932 	 * CREATE:      No dirty mappings will already exist.
11933 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11934 	 *		kvm_arch_flush_shadow_memslot()
11935 	 *
11936 	 * For a memslot with dirty logging enabled:
11937 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11938 	 *		and no dirty bits to clear.
11939 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11940 	 *		kvm_arch_flush_shadow_memslot().
11941 	 */
11942 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11943 		return;
11944 
11945 	/*
11946 	 * READONLY and non-flags changes were filtered out above, and the only
11947 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11948 	 * logging isn't being toggled on or off.
11949 	 */
11950 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11951 		return;
11952 
11953 	if (!log_dirty_pages) {
11954 		/*
11955 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11956 		 * large sptes have to be split.  If live migration succeeds,
11957 		 * the guest in the source machine will be destroyed and large
11958 		 * sptes will be created in the destination.  However, if the
11959 		 * guest continues to run in the source machine (for example if
11960 		 * live migration fails), small sptes will remain around and
11961 		 * cause bad performance.
11962 		 *
11963 		 * Scan sptes if dirty logging has been stopped, dropping those
11964 		 * which can be collapsed into a single large-page spte.  Later
11965 		 * page faults will create the large-page sptes.
11966 		 */
11967 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11968 	} else {
11969 		/*
11970 		 * Initially-all-set does not require write protecting any page,
11971 		 * because they're all assumed to be dirty.
11972 		 */
11973 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11974 			return;
11975 
11976 		if (kvm_x86_ops.cpu_dirty_log_size) {
11977 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11978 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11979 		} else {
11980 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11981 		}
11982 	}
11983 }
11984 
11985 void kvm_arch_commit_memory_region(struct kvm *kvm,
11986 				struct kvm_memory_slot *old,
11987 				const struct kvm_memory_slot *new,
11988 				enum kvm_mr_change change)
11989 {
11990 	if (!kvm->arch.n_requested_mmu_pages &&
11991 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
11992 		unsigned long nr_mmu_pages;
11993 
11994 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
11995 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
11996 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
11997 	}
11998 
11999 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12000 
12001 	/* Free the arrays associated with the old memslot. */
12002 	if (change == KVM_MR_MOVE)
12003 		kvm_arch_free_memslot(kvm, old);
12004 }
12005 
12006 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12007 {
12008 	kvm_mmu_zap_all(kvm);
12009 }
12010 
12011 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12012 				   struct kvm_memory_slot *slot)
12013 {
12014 	kvm_page_track_flush_slot(kvm, slot);
12015 }
12016 
12017 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12018 {
12019 	return (is_guest_mode(vcpu) &&
12020 			kvm_x86_ops.guest_apic_has_interrupt &&
12021 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12022 }
12023 
12024 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12025 {
12026 	if (!list_empty_careful(&vcpu->async_pf.done))
12027 		return true;
12028 
12029 	if (kvm_apic_has_events(vcpu))
12030 		return true;
12031 
12032 	if (vcpu->arch.pv.pv_unhalted)
12033 		return true;
12034 
12035 	if (vcpu->arch.exception.pending)
12036 		return true;
12037 
12038 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12039 	    (vcpu->arch.nmi_pending &&
12040 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12041 		return true;
12042 
12043 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12044 	    (vcpu->arch.smi_pending &&
12045 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12046 		return true;
12047 
12048 	if (kvm_arch_interrupt_allowed(vcpu) &&
12049 	    (kvm_cpu_has_interrupt(vcpu) ||
12050 	    kvm_guest_apic_has_interrupt(vcpu)))
12051 		return true;
12052 
12053 	if (kvm_hv_has_stimer_pending(vcpu))
12054 		return true;
12055 
12056 	if (is_guest_mode(vcpu) &&
12057 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12058 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12059 		return true;
12060 
12061 	return false;
12062 }
12063 
12064 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12065 {
12066 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12067 }
12068 
12069 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12070 {
12071 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12072 		return true;
12073 
12074 	return false;
12075 }
12076 
12077 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12078 {
12079 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12080 		return true;
12081 
12082 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12083 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12084 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12085 		return true;
12086 
12087 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12088 }
12089 
12090 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12091 {
12092 	if (vcpu->arch.guest_state_protected)
12093 		return true;
12094 
12095 	return vcpu->arch.preempted_in_kernel;
12096 }
12097 
12098 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12099 {
12100 	return kvm_rip_read(vcpu);
12101 }
12102 
12103 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12104 {
12105 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12106 }
12107 
12108 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12109 {
12110 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12111 }
12112 
12113 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12114 {
12115 	/* Can't read the RIP when guest state is protected, just return 0 */
12116 	if (vcpu->arch.guest_state_protected)
12117 		return 0;
12118 
12119 	if (is_64_bit_mode(vcpu))
12120 		return kvm_rip_read(vcpu);
12121 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12122 		     kvm_rip_read(vcpu));
12123 }
12124 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12125 
12126 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12127 {
12128 	return kvm_get_linear_rip(vcpu) == linear_rip;
12129 }
12130 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12131 
12132 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12133 {
12134 	unsigned long rflags;
12135 
12136 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12137 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12138 		rflags &= ~X86_EFLAGS_TF;
12139 	return rflags;
12140 }
12141 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12142 
12143 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12144 {
12145 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12146 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12147 		rflags |= X86_EFLAGS_TF;
12148 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12149 }
12150 
12151 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12152 {
12153 	__kvm_set_rflags(vcpu, rflags);
12154 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12155 }
12156 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12157 
12158 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12159 {
12160 	int r;
12161 
12162 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12163 	      work->wakeup_all)
12164 		return;
12165 
12166 	r = kvm_mmu_reload(vcpu);
12167 	if (unlikely(r))
12168 		return;
12169 
12170 	if (!vcpu->arch.mmu->direct_map &&
12171 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12172 		return;
12173 
12174 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12175 }
12176 
12177 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12178 {
12179 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12180 
12181 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12182 }
12183 
12184 static inline u32 kvm_async_pf_next_probe(u32 key)
12185 {
12186 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12187 }
12188 
12189 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12190 {
12191 	u32 key = kvm_async_pf_hash_fn(gfn);
12192 
12193 	while (vcpu->arch.apf.gfns[key] != ~0)
12194 		key = kvm_async_pf_next_probe(key);
12195 
12196 	vcpu->arch.apf.gfns[key] = gfn;
12197 }
12198 
12199 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12200 {
12201 	int i;
12202 	u32 key = kvm_async_pf_hash_fn(gfn);
12203 
12204 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12205 		     (vcpu->arch.apf.gfns[key] != gfn &&
12206 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12207 		key = kvm_async_pf_next_probe(key);
12208 
12209 	return key;
12210 }
12211 
12212 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12213 {
12214 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12215 }
12216 
12217 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12218 {
12219 	u32 i, j, k;
12220 
12221 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12222 
12223 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12224 		return;
12225 
12226 	while (true) {
12227 		vcpu->arch.apf.gfns[i] = ~0;
12228 		do {
12229 			j = kvm_async_pf_next_probe(j);
12230 			if (vcpu->arch.apf.gfns[j] == ~0)
12231 				return;
12232 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12233 			/*
12234 			 * k lies cyclically in ]i,j]
12235 			 * |    i.k.j |
12236 			 * |....j i.k.| or  |.k..j i...|
12237 			 */
12238 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12239 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12240 		i = j;
12241 	}
12242 }
12243 
12244 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12245 {
12246 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12247 
12248 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12249 				      sizeof(reason));
12250 }
12251 
12252 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12253 {
12254 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12255 
12256 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12257 					     &token, offset, sizeof(token));
12258 }
12259 
12260 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12261 {
12262 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12263 	u32 val;
12264 
12265 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12266 					 &val, offset, sizeof(val)))
12267 		return false;
12268 
12269 	return !val;
12270 }
12271 
12272 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12273 {
12274 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12275 		return false;
12276 
12277 	if (!kvm_pv_async_pf_enabled(vcpu) ||
12278 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12279 		return false;
12280 
12281 	return true;
12282 }
12283 
12284 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12285 {
12286 	if (unlikely(!lapic_in_kernel(vcpu) ||
12287 		     kvm_event_needs_reinjection(vcpu) ||
12288 		     vcpu->arch.exception.pending))
12289 		return false;
12290 
12291 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12292 		return false;
12293 
12294 	/*
12295 	 * If interrupts are off we cannot even use an artificial
12296 	 * halt state.
12297 	 */
12298 	return kvm_arch_interrupt_allowed(vcpu);
12299 }
12300 
12301 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12302 				     struct kvm_async_pf *work)
12303 {
12304 	struct x86_exception fault;
12305 
12306 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12307 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12308 
12309 	if (kvm_can_deliver_async_pf(vcpu) &&
12310 	    !apf_put_user_notpresent(vcpu)) {
12311 		fault.vector = PF_VECTOR;
12312 		fault.error_code_valid = true;
12313 		fault.error_code = 0;
12314 		fault.nested_page_fault = false;
12315 		fault.address = work->arch.token;
12316 		fault.async_page_fault = true;
12317 		kvm_inject_page_fault(vcpu, &fault);
12318 		return true;
12319 	} else {
12320 		/*
12321 		 * It is not possible to deliver a paravirtualized asynchronous
12322 		 * page fault, but putting the guest in an artificial halt state
12323 		 * can be beneficial nevertheless: if an interrupt arrives, we
12324 		 * can deliver it timely and perhaps the guest will schedule
12325 		 * another process.  When the instruction that triggered a page
12326 		 * fault is retried, hopefully the page will be ready in the host.
12327 		 */
12328 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12329 		return false;
12330 	}
12331 }
12332 
12333 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12334 				 struct kvm_async_pf *work)
12335 {
12336 	struct kvm_lapic_irq irq = {
12337 		.delivery_mode = APIC_DM_FIXED,
12338 		.vector = vcpu->arch.apf.vec
12339 	};
12340 
12341 	if (work->wakeup_all)
12342 		work->arch.token = ~0; /* broadcast wakeup */
12343 	else
12344 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12345 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12346 
12347 	if ((work->wakeup_all || work->notpresent_injected) &&
12348 	    kvm_pv_async_pf_enabled(vcpu) &&
12349 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12350 		vcpu->arch.apf.pageready_pending = true;
12351 		kvm_apic_set_irq(vcpu, &irq, NULL);
12352 	}
12353 
12354 	vcpu->arch.apf.halted = false;
12355 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12356 }
12357 
12358 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12359 {
12360 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12361 	if (!vcpu->arch.apf.pageready_pending)
12362 		kvm_vcpu_kick(vcpu);
12363 }
12364 
12365 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12366 {
12367 	if (!kvm_pv_async_pf_enabled(vcpu))
12368 		return true;
12369 	else
12370 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12371 }
12372 
12373 void kvm_arch_start_assignment(struct kvm *kvm)
12374 {
12375 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12376 		static_call_cond(kvm_x86_start_assignment)(kvm);
12377 }
12378 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12379 
12380 void kvm_arch_end_assignment(struct kvm *kvm)
12381 {
12382 	atomic_dec(&kvm->arch.assigned_device_count);
12383 }
12384 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12385 
12386 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12387 {
12388 	return atomic_read(&kvm->arch.assigned_device_count);
12389 }
12390 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12391 
12392 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12393 {
12394 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12395 }
12396 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12397 
12398 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12399 {
12400 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12401 }
12402 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12403 
12404 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12405 {
12406 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12407 }
12408 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12409 
12410 bool kvm_arch_has_irq_bypass(void)
12411 {
12412 	return true;
12413 }
12414 
12415 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12416 				      struct irq_bypass_producer *prod)
12417 {
12418 	struct kvm_kernel_irqfd *irqfd =
12419 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12420 	int ret;
12421 
12422 	irqfd->producer = prod;
12423 	kvm_arch_start_assignment(irqfd->kvm);
12424 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12425 					 prod->irq, irqfd->gsi, 1);
12426 
12427 	if (ret)
12428 		kvm_arch_end_assignment(irqfd->kvm);
12429 
12430 	return ret;
12431 }
12432 
12433 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12434 				      struct irq_bypass_producer *prod)
12435 {
12436 	int ret;
12437 	struct kvm_kernel_irqfd *irqfd =
12438 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12439 
12440 	WARN_ON(irqfd->producer != prod);
12441 	irqfd->producer = NULL;
12442 
12443 	/*
12444 	 * When producer of consumer is unregistered, we change back to
12445 	 * remapped mode, so we can re-use the current implementation
12446 	 * when the irq is masked/disabled or the consumer side (KVM
12447 	 * int this case doesn't want to receive the interrupts.
12448 	*/
12449 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12450 	if (ret)
12451 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12452 		       " fails: %d\n", irqfd->consumer.token, ret);
12453 
12454 	kvm_arch_end_assignment(irqfd->kvm);
12455 }
12456 
12457 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12458 				   uint32_t guest_irq, bool set)
12459 {
12460 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12461 }
12462 
12463 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12464 				  struct kvm_kernel_irq_routing_entry *new)
12465 {
12466 	if (new->type != KVM_IRQ_ROUTING_MSI)
12467 		return true;
12468 
12469 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12470 }
12471 
12472 bool kvm_vector_hashing_enabled(void)
12473 {
12474 	return vector_hashing;
12475 }
12476 
12477 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12478 {
12479 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12480 }
12481 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12482 
12483 
12484 int kvm_spec_ctrl_test_value(u64 value)
12485 {
12486 	/*
12487 	 * test that setting IA32_SPEC_CTRL to given value
12488 	 * is allowed by the host processor
12489 	 */
12490 
12491 	u64 saved_value;
12492 	unsigned long flags;
12493 	int ret = 0;
12494 
12495 	local_irq_save(flags);
12496 
12497 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12498 		ret = 1;
12499 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12500 		ret = 1;
12501 	else
12502 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12503 
12504 	local_irq_restore(flags);
12505 
12506 	return ret;
12507 }
12508 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12509 
12510 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12511 {
12512 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12513 	struct x86_exception fault;
12514 	u32 access = error_code &
12515 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12516 
12517 	if (!(error_code & PFERR_PRESENT_MASK) ||
12518 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12519 		/*
12520 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12521 		 * tables probably do not match the TLB.  Just proceed
12522 		 * with the error code that the processor gave.
12523 		 */
12524 		fault.vector = PF_VECTOR;
12525 		fault.error_code_valid = true;
12526 		fault.error_code = error_code;
12527 		fault.nested_page_fault = false;
12528 		fault.address = gva;
12529 	}
12530 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12531 }
12532 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12533 
12534 /*
12535  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12536  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12537  * indicates whether exit to userspace is needed.
12538  */
12539 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12540 			      struct x86_exception *e)
12541 {
12542 	if (r == X86EMUL_PROPAGATE_FAULT) {
12543 		kvm_inject_emulated_page_fault(vcpu, e);
12544 		return 1;
12545 	}
12546 
12547 	/*
12548 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12549 	 * while handling a VMX instruction KVM could've handled the request
12550 	 * correctly by exiting to userspace and performing I/O but there
12551 	 * doesn't seem to be a real use-case behind such requests, just return
12552 	 * KVM_EXIT_INTERNAL_ERROR for now.
12553 	 */
12554 	kvm_prepare_emulation_failure_exit(vcpu);
12555 
12556 	return 0;
12557 }
12558 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12559 
12560 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12561 {
12562 	bool pcid_enabled;
12563 	struct x86_exception e;
12564 	struct {
12565 		u64 pcid;
12566 		u64 gla;
12567 	} operand;
12568 	int r;
12569 
12570 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12571 	if (r != X86EMUL_CONTINUE)
12572 		return kvm_handle_memory_failure(vcpu, r, &e);
12573 
12574 	if (operand.pcid >> 12 != 0) {
12575 		kvm_inject_gp(vcpu, 0);
12576 		return 1;
12577 	}
12578 
12579 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12580 
12581 	switch (type) {
12582 	case INVPCID_TYPE_INDIV_ADDR:
12583 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12584 		    is_noncanonical_address(operand.gla, vcpu)) {
12585 			kvm_inject_gp(vcpu, 0);
12586 			return 1;
12587 		}
12588 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12589 		return kvm_skip_emulated_instruction(vcpu);
12590 
12591 	case INVPCID_TYPE_SINGLE_CTXT:
12592 		if (!pcid_enabled && (operand.pcid != 0)) {
12593 			kvm_inject_gp(vcpu, 0);
12594 			return 1;
12595 		}
12596 
12597 		kvm_invalidate_pcid(vcpu, operand.pcid);
12598 		return kvm_skip_emulated_instruction(vcpu);
12599 
12600 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12601 		/*
12602 		 * Currently, KVM doesn't mark global entries in the shadow
12603 		 * page tables, so a non-global flush just degenerates to a
12604 		 * global flush. If needed, we could optimize this later by
12605 		 * keeping track of global entries in shadow page tables.
12606 		 */
12607 
12608 		fallthrough;
12609 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12610 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12611 		return kvm_skip_emulated_instruction(vcpu);
12612 
12613 	default:
12614 		kvm_inject_gp(vcpu, 0);
12615 		return 1;
12616 	}
12617 }
12618 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12619 
12620 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12621 {
12622 	struct kvm_run *run = vcpu->run;
12623 	struct kvm_mmio_fragment *frag;
12624 	unsigned int len;
12625 
12626 	BUG_ON(!vcpu->mmio_needed);
12627 
12628 	/* Complete previous fragment */
12629 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12630 	len = min(8u, frag->len);
12631 	if (!vcpu->mmio_is_write)
12632 		memcpy(frag->data, run->mmio.data, len);
12633 
12634 	if (frag->len <= 8) {
12635 		/* Switch to the next fragment. */
12636 		frag++;
12637 		vcpu->mmio_cur_fragment++;
12638 	} else {
12639 		/* Go forward to the next mmio piece. */
12640 		frag->data += len;
12641 		frag->gpa += len;
12642 		frag->len -= len;
12643 	}
12644 
12645 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12646 		vcpu->mmio_needed = 0;
12647 
12648 		// VMG change, at this point, we're always done
12649 		// RIP has already been advanced
12650 		return 1;
12651 	}
12652 
12653 	// More MMIO is needed
12654 	run->mmio.phys_addr = frag->gpa;
12655 	run->mmio.len = min(8u, frag->len);
12656 	run->mmio.is_write = vcpu->mmio_is_write;
12657 	if (run->mmio.is_write)
12658 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12659 	run->exit_reason = KVM_EXIT_MMIO;
12660 
12661 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12662 
12663 	return 0;
12664 }
12665 
12666 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12667 			  void *data)
12668 {
12669 	int handled;
12670 	struct kvm_mmio_fragment *frag;
12671 
12672 	if (!data)
12673 		return -EINVAL;
12674 
12675 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12676 	if (handled == bytes)
12677 		return 1;
12678 
12679 	bytes -= handled;
12680 	gpa += handled;
12681 	data += handled;
12682 
12683 	/*TODO: Check if need to increment number of frags */
12684 	frag = vcpu->mmio_fragments;
12685 	vcpu->mmio_nr_fragments = 1;
12686 	frag->len = bytes;
12687 	frag->gpa = gpa;
12688 	frag->data = data;
12689 
12690 	vcpu->mmio_needed = 1;
12691 	vcpu->mmio_cur_fragment = 0;
12692 
12693 	vcpu->run->mmio.phys_addr = gpa;
12694 	vcpu->run->mmio.len = min(8u, frag->len);
12695 	vcpu->run->mmio.is_write = 1;
12696 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12697 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12698 
12699 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12700 
12701 	return 0;
12702 }
12703 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12704 
12705 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12706 			 void *data)
12707 {
12708 	int handled;
12709 	struct kvm_mmio_fragment *frag;
12710 
12711 	if (!data)
12712 		return -EINVAL;
12713 
12714 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12715 	if (handled == bytes)
12716 		return 1;
12717 
12718 	bytes -= handled;
12719 	gpa += handled;
12720 	data += handled;
12721 
12722 	/*TODO: Check if need to increment number of frags */
12723 	frag = vcpu->mmio_fragments;
12724 	vcpu->mmio_nr_fragments = 1;
12725 	frag->len = bytes;
12726 	frag->gpa = gpa;
12727 	frag->data = data;
12728 
12729 	vcpu->mmio_needed = 1;
12730 	vcpu->mmio_cur_fragment = 0;
12731 
12732 	vcpu->run->mmio.phys_addr = gpa;
12733 	vcpu->run->mmio.len = min(8u, frag->len);
12734 	vcpu->run->mmio.is_write = 0;
12735 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12736 
12737 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12738 
12739 	return 0;
12740 }
12741 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12742 
12743 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12744 			   unsigned int port);
12745 
12746 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12747 {
12748 	int size = vcpu->arch.pio.size;
12749 	int port = vcpu->arch.pio.port;
12750 
12751 	vcpu->arch.pio.count = 0;
12752 	if (vcpu->arch.sev_pio_count)
12753 		return kvm_sev_es_outs(vcpu, size, port);
12754 	return 1;
12755 }
12756 
12757 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12758 			   unsigned int port)
12759 {
12760 	for (;;) {
12761 		unsigned int count =
12762 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12763 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12764 
12765 		/* memcpy done already by emulator_pio_out.  */
12766 		vcpu->arch.sev_pio_count -= count;
12767 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12768 		if (!ret)
12769 			break;
12770 
12771 		/* Emulation done by the kernel.  */
12772 		if (!vcpu->arch.sev_pio_count)
12773 			return 1;
12774 	}
12775 
12776 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12777 	return 0;
12778 }
12779 
12780 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12781 			  unsigned int port);
12782 
12783 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12784 {
12785 	unsigned count = vcpu->arch.pio.count;
12786 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12787 	vcpu->arch.sev_pio_count -= count;
12788 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12789 }
12790 
12791 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12792 {
12793 	int size = vcpu->arch.pio.size;
12794 	int port = vcpu->arch.pio.port;
12795 
12796 	advance_sev_es_emulated_ins(vcpu);
12797 	if (vcpu->arch.sev_pio_count)
12798 		return kvm_sev_es_ins(vcpu, size, port);
12799 	return 1;
12800 }
12801 
12802 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12803 			  unsigned int port)
12804 {
12805 	for (;;) {
12806 		unsigned int count =
12807 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12808 		if (!__emulator_pio_in(vcpu, size, port, count))
12809 			break;
12810 
12811 		/* Emulation done by the kernel.  */
12812 		advance_sev_es_emulated_ins(vcpu);
12813 		if (!vcpu->arch.sev_pio_count)
12814 			return 1;
12815 	}
12816 
12817 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12818 	return 0;
12819 }
12820 
12821 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12822 			 unsigned int port, void *data,  unsigned int count,
12823 			 int in)
12824 {
12825 	vcpu->arch.sev_pio_data = data;
12826 	vcpu->arch.sev_pio_count = count;
12827 	return in ? kvm_sev_es_ins(vcpu, size, port)
12828 		  : kvm_sev_es_outs(vcpu, size, port);
12829 }
12830 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12831 
12832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12860