xref: /openbmc/linux/arch/x86/kvm/x86.c (revision bf070bb0)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73 
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78 
79 #define emul_to_vcpu(ctxt) \
80 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92 
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95 
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98 
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103 
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106 
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109 
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112 
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115 
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32  __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64  __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126 
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130 
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134 
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "req_event", VCPU_STAT(req_event) },
184 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
185 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
186 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
187 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
188 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
189 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
190 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
191 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
192 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
193 	{ "largepages", VM_STAT(lpages) },
194 	{ "max_mmu_page_hash_collisions",
195 		VM_STAT(max_mmu_page_hash_collisions) },
196 	{ NULL }
197 };
198 
199 u64 __read_mostly host_xcr0;
200 
201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
202 
203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
204 {
205 	int i;
206 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
207 		vcpu->arch.apf.gfns[i] = ~0;
208 }
209 
210 static void kvm_on_user_return(struct user_return_notifier *urn)
211 {
212 	unsigned slot;
213 	struct kvm_shared_msrs *locals
214 		= container_of(urn, struct kvm_shared_msrs, urn);
215 	struct kvm_shared_msr_values *values;
216 	unsigned long flags;
217 
218 	/*
219 	 * Disabling irqs at this point since the following code could be
220 	 * interrupted and executed through kvm_arch_hardware_disable()
221 	 */
222 	local_irq_save(flags);
223 	if (locals->registered) {
224 		locals->registered = false;
225 		user_return_notifier_unregister(urn);
226 	}
227 	local_irq_restore(flags);
228 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
229 		values = &locals->values[slot];
230 		if (values->host != values->curr) {
231 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
232 			values->curr = values->host;
233 		}
234 	}
235 }
236 
237 static void shared_msr_update(unsigned slot, u32 msr)
238 {
239 	u64 value;
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 
243 	/* only read, and nobody should modify it at this time,
244 	 * so don't need lock */
245 	if (slot >= shared_msrs_global.nr) {
246 		printk(KERN_ERR "kvm: invalid MSR slot!");
247 		return;
248 	}
249 	rdmsrl_safe(msr, &value);
250 	smsr->values[slot].host = value;
251 	smsr->values[slot].curr = value;
252 }
253 
254 void kvm_define_shared_msr(unsigned slot, u32 msr)
255 {
256 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
257 	shared_msrs_global.msrs[slot] = msr;
258 	if (slot >= shared_msrs_global.nr)
259 		shared_msrs_global.nr = slot + 1;
260 }
261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
262 
263 static void kvm_shared_msr_cpu_online(void)
264 {
265 	unsigned i;
266 
267 	for (i = 0; i < shared_msrs_global.nr; ++i)
268 		shared_msr_update(i, shared_msrs_global.msrs[i]);
269 }
270 
271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
272 {
273 	unsigned int cpu = smp_processor_id();
274 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
275 	int err;
276 
277 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
278 		return 0;
279 	smsr->values[slot].curr = value;
280 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
281 	if (err)
282 		return 1;
283 
284 	if (!smsr->registered) {
285 		smsr->urn.on_user_return = kvm_on_user_return;
286 		user_return_notifier_register(&smsr->urn);
287 		smsr->registered = true;
288 	}
289 	return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
292 
293 static void drop_user_return_notifiers(void)
294 {
295 	unsigned int cpu = smp_processor_id();
296 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
297 
298 	if (smsr->registered)
299 		kvm_on_user_return(&smsr->urn);
300 }
301 
302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
303 {
304 	return vcpu->arch.apic_base;
305 }
306 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
307 
308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
309 {
310 	u64 old_state = vcpu->arch.apic_base &
311 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
312 	u64 new_state = msr_info->data &
313 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
315 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
316 
317 	if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
318 		return 1;
319 	if (!msr_info->host_initiated &&
320 	    ((new_state == MSR_IA32_APICBASE_ENABLE &&
321 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
322 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
323 	      old_state == 0)))
324 		return 1;
325 
326 	kvm_lapic_set_base(vcpu, msr_info->data);
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
330 
331 asmlinkage __visible void kvm_spurious_fault(void)
332 {
333 	/* Fault while not rebooting.  We want the trace. */
334 	BUG();
335 }
336 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
337 
338 #define EXCPT_BENIGN		0
339 #define EXCPT_CONTRIBUTORY	1
340 #define EXCPT_PF		2
341 
342 static int exception_class(int vector)
343 {
344 	switch (vector) {
345 	case PF_VECTOR:
346 		return EXCPT_PF;
347 	case DE_VECTOR:
348 	case TS_VECTOR:
349 	case NP_VECTOR:
350 	case SS_VECTOR:
351 	case GP_VECTOR:
352 		return EXCPT_CONTRIBUTORY;
353 	default:
354 		break;
355 	}
356 	return EXCPT_BENIGN;
357 }
358 
359 #define EXCPT_FAULT		0
360 #define EXCPT_TRAP		1
361 #define EXCPT_ABORT		2
362 #define EXCPT_INTERRUPT		3
363 
364 static int exception_type(int vector)
365 {
366 	unsigned int mask;
367 
368 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
369 		return EXCPT_INTERRUPT;
370 
371 	mask = 1 << vector;
372 
373 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
374 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
375 		return EXCPT_TRAP;
376 
377 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
378 		return EXCPT_ABORT;
379 
380 	/* Reserved exceptions will result in fault */
381 	return EXCPT_FAULT;
382 }
383 
384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
385 		unsigned nr, bool has_error, u32 error_code,
386 		bool reinject)
387 {
388 	u32 prev_nr;
389 	int class1, class2;
390 
391 	kvm_make_request(KVM_REQ_EVENT, vcpu);
392 
393 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
394 	queue:
395 		if (has_error && !is_protmode(vcpu))
396 			has_error = false;
397 		if (reinject) {
398 			/*
399 			 * On vmentry, vcpu->arch.exception.pending is only
400 			 * true if an event injection was blocked by
401 			 * nested_run_pending.  In that case, however,
402 			 * vcpu_enter_guest requests an immediate exit,
403 			 * and the guest shouldn't proceed far enough to
404 			 * need reinjection.
405 			 */
406 			WARN_ON_ONCE(vcpu->arch.exception.pending);
407 			vcpu->arch.exception.injected = true;
408 		} else {
409 			vcpu->arch.exception.pending = true;
410 			vcpu->arch.exception.injected = false;
411 		}
412 		vcpu->arch.exception.has_error_code = has_error;
413 		vcpu->arch.exception.nr = nr;
414 		vcpu->arch.exception.error_code = error_code;
415 		return;
416 	}
417 
418 	/* to check exception */
419 	prev_nr = vcpu->arch.exception.nr;
420 	if (prev_nr == DF_VECTOR) {
421 		/* triple fault -> shutdown */
422 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
423 		return;
424 	}
425 	class1 = exception_class(prev_nr);
426 	class2 = exception_class(nr);
427 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
428 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
429 		/*
430 		 * Generate double fault per SDM Table 5-5.  Set
431 		 * exception.pending = true so that the double fault
432 		 * can trigger a nested vmexit.
433 		 */
434 		vcpu->arch.exception.pending = true;
435 		vcpu->arch.exception.injected = false;
436 		vcpu->arch.exception.has_error_code = true;
437 		vcpu->arch.exception.nr = DF_VECTOR;
438 		vcpu->arch.exception.error_code = 0;
439 	} else
440 		/* replace previous exception with a new one in a hope
441 		   that instruction re-execution will regenerate lost
442 		   exception */
443 		goto queue;
444 }
445 
446 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
447 {
448 	kvm_multiple_exception(vcpu, nr, false, 0, false);
449 }
450 EXPORT_SYMBOL_GPL(kvm_queue_exception);
451 
452 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
453 {
454 	kvm_multiple_exception(vcpu, nr, false, 0, true);
455 }
456 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
457 
458 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
459 {
460 	if (err)
461 		kvm_inject_gp(vcpu, 0);
462 	else
463 		return kvm_skip_emulated_instruction(vcpu);
464 
465 	return 1;
466 }
467 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
468 
469 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
470 {
471 	++vcpu->stat.pf_guest;
472 	vcpu->arch.exception.nested_apf =
473 		is_guest_mode(vcpu) && fault->async_page_fault;
474 	if (vcpu->arch.exception.nested_apf)
475 		vcpu->arch.apf.nested_apf_token = fault->address;
476 	else
477 		vcpu->arch.cr2 = fault->address;
478 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
479 }
480 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
481 
482 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
485 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
486 	else
487 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
488 
489 	return fault->nested_page_fault;
490 }
491 
492 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
493 {
494 	atomic_inc(&vcpu->arch.nmi_queued);
495 	kvm_make_request(KVM_REQ_NMI, vcpu);
496 }
497 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
498 
499 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
500 {
501 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
502 }
503 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
504 
505 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
506 {
507 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
508 }
509 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
510 
511 /*
512  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
513  * a #GP and return false.
514  */
515 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
516 {
517 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
518 		return true;
519 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
520 	return false;
521 }
522 EXPORT_SYMBOL_GPL(kvm_require_cpl);
523 
524 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
525 {
526 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
527 		return true;
528 
529 	kvm_queue_exception(vcpu, UD_VECTOR);
530 	return false;
531 }
532 EXPORT_SYMBOL_GPL(kvm_require_dr);
533 
534 /*
535  * This function will be used to read from the physical memory of the currently
536  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
537  * can read from guest physical or from the guest's guest physical memory.
538  */
539 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
540 			    gfn_t ngfn, void *data, int offset, int len,
541 			    u32 access)
542 {
543 	struct x86_exception exception;
544 	gfn_t real_gfn;
545 	gpa_t ngpa;
546 
547 	ngpa     = gfn_to_gpa(ngfn);
548 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
549 	if (real_gfn == UNMAPPED_GVA)
550 		return -EFAULT;
551 
552 	real_gfn = gpa_to_gfn(real_gfn);
553 
554 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
555 }
556 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
557 
558 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
559 			       void *data, int offset, int len, u32 access)
560 {
561 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
562 				       data, offset, len, access);
563 }
564 
565 /*
566  * Load the pae pdptrs.  Return true is they are all valid.
567  */
568 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
569 {
570 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
571 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
572 	int i;
573 	int ret;
574 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
575 
576 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
577 				      offset * sizeof(u64), sizeof(pdpte),
578 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
579 	if (ret < 0) {
580 		ret = 0;
581 		goto out;
582 	}
583 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
584 		if ((pdpte[i] & PT_PRESENT_MASK) &&
585 		    (pdpte[i] &
586 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
587 			ret = 0;
588 			goto out;
589 		}
590 	}
591 	ret = 1;
592 
593 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
594 	__set_bit(VCPU_EXREG_PDPTR,
595 		  (unsigned long *)&vcpu->arch.regs_avail);
596 	__set_bit(VCPU_EXREG_PDPTR,
597 		  (unsigned long *)&vcpu->arch.regs_dirty);
598 out:
599 
600 	return ret;
601 }
602 EXPORT_SYMBOL_GPL(load_pdptrs);
603 
604 bool pdptrs_changed(struct kvm_vcpu *vcpu)
605 {
606 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
607 	bool changed = true;
608 	int offset;
609 	gfn_t gfn;
610 	int r;
611 
612 	if (is_long_mode(vcpu) || !is_pae(vcpu))
613 		return false;
614 
615 	if (!test_bit(VCPU_EXREG_PDPTR,
616 		      (unsigned long *)&vcpu->arch.regs_avail))
617 		return true;
618 
619 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
620 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
621 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
622 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
623 	if (r < 0)
624 		goto out;
625 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
626 out:
627 
628 	return changed;
629 }
630 EXPORT_SYMBOL_GPL(pdptrs_changed);
631 
632 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
633 {
634 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
635 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
636 
637 	cr0 |= X86_CR0_ET;
638 
639 #ifdef CONFIG_X86_64
640 	if (cr0 & 0xffffffff00000000UL)
641 		return 1;
642 #endif
643 
644 	cr0 &= ~CR0_RESERVED_BITS;
645 
646 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
647 		return 1;
648 
649 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
650 		return 1;
651 
652 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
653 #ifdef CONFIG_X86_64
654 		if ((vcpu->arch.efer & EFER_LME)) {
655 			int cs_db, cs_l;
656 
657 			if (!is_pae(vcpu))
658 				return 1;
659 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
660 			if (cs_l)
661 				return 1;
662 		} else
663 #endif
664 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
665 						 kvm_read_cr3(vcpu)))
666 			return 1;
667 	}
668 
669 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
670 		return 1;
671 
672 	kvm_x86_ops->set_cr0(vcpu, cr0);
673 
674 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
675 		kvm_clear_async_pf_completion_queue(vcpu);
676 		kvm_async_pf_hash_reset(vcpu);
677 	}
678 
679 	if ((cr0 ^ old_cr0) & update_bits)
680 		kvm_mmu_reset_context(vcpu);
681 
682 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
683 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
684 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
685 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
686 
687 	return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr0);
690 
691 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
692 {
693 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
694 }
695 EXPORT_SYMBOL_GPL(kvm_lmsw);
696 
697 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
698 {
699 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
700 			!vcpu->guest_xcr0_loaded) {
701 		/* kvm_set_xcr() also depends on this */
702 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
703 		vcpu->guest_xcr0_loaded = 1;
704 	}
705 }
706 
707 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
708 {
709 	if (vcpu->guest_xcr0_loaded) {
710 		if (vcpu->arch.xcr0 != host_xcr0)
711 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
712 		vcpu->guest_xcr0_loaded = 0;
713 	}
714 }
715 
716 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
717 {
718 	u64 xcr0 = xcr;
719 	u64 old_xcr0 = vcpu->arch.xcr0;
720 	u64 valid_bits;
721 
722 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
723 	if (index != XCR_XFEATURE_ENABLED_MASK)
724 		return 1;
725 	if (!(xcr0 & XFEATURE_MASK_FP))
726 		return 1;
727 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
728 		return 1;
729 
730 	/*
731 	 * Do not allow the guest to set bits that we do not support
732 	 * saving.  However, xcr0 bit 0 is always set, even if the
733 	 * emulated CPU does not support XSAVE (see fx_init).
734 	 */
735 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
736 	if (xcr0 & ~valid_bits)
737 		return 1;
738 
739 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
740 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
741 		return 1;
742 
743 	if (xcr0 & XFEATURE_MASK_AVX512) {
744 		if (!(xcr0 & XFEATURE_MASK_YMM))
745 			return 1;
746 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
747 			return 1;
748 	}
749 	vcpu->arch.xcr0 = xcr0;
750 
751 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
752 		kvm_update_cpuid(vcpu);
753 	return 0;
754 }
755 
756 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
757 {
758 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
759 	    __kvm_set_xcr(vcpu, index, xcr)) {
760 		kvm_inject_gp(vcpu, 0);
761 		return 1;
762 	}
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_xcr);
766 
767 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
768 {
769 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
770 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
771 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
772 
773 	if (cr4 & CR4_RESERVED_BITS)
774 		return 1;
775 
776 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
777 		return 1;
778 
779 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
780 		return 1;
781 
782 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
783 		return 1;
784 
785 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
786 		return 1;
787 
788 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
789 		return 1;
790 
791 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
792 		return 1;
793 
794 	if (is_long_mode(vcpu)) {
795 		if (!(cr4 & X86_CR4_PAE))
796 			return 1;
797 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
798 		   && ((cr4 ^ old_cr4) & pdptr_bits)
799 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
800 				   kvm_read_cr3(vcpu)))
801 		return 1;
802 
803 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
804 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
805 			return 1;
806 
807 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
808 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
809 			return 1;
810 	}
811 
812 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
813 		return 1;
814 
815 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
816 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
817 		kvm_mmu_reset_context(vcpu);
818 
819 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
820 		kvm_update_cpuid(vcpu);
821 
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(kvm_set_cr4);
825 
826 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
827 {
828 #ifdef CONFIG_X86_64
829 	cr3 &= ~CR3_PCID_INVD;
830 #endif
831 
832 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
833 		kvm_mmu_sync_roots(vcpu);
834 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
835 		return 0;
836 	}
837 
838 	if (is_long_mode(vcpu) &&
839 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
840 		return 1;
841 	else if (is_pae(vcpu) && is_paging(vcpu) &&
842 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
843 		return 1;
844 
845 	vcpu->arch.cr3 = cr3;
846 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
847 	kvm_mmu_new_cr3(vcpu);
848 	return 0;
849 }
850 EXPORT_SYMBOL_GPL(kvm_set_cr3);
851 
852 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
853 {
854 	if (cr8 & CR8_RESERVED_BITS)
855 		return 1;
856 	if (lapic_in_kernel(vcpu))
857 		kvm_lapic_set_tpr(vcpu, cr8);
858 	else
859 		vcpu->arch.cr8 = cr8;
860 	return 0;
861 }
862 EXPORT_SYMBOL_GPL(kvm_set_cr8);
863 
864 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
865 {
866 	if (lapic_in_kernel(vcpu))
867 		return kvm_lapic_get_cr8(vcpu);
868 	else
869 		return vcpu->arch.cr8;
870 }
871 EXPORT_SYMBOL_GPL(kvm_get_cr8);
872 
873 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
874 {
875 	int i;
876 
877 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
878 		for (i = 0; i < KVM_NR_DB_REGS; i++)
879 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
880 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
881 	}
882 }
883 
884 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
885 {
886 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
887 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
888 }
889 
890 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
891 {
892 	unsigned long dr7;
893 
894 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
895 		dr7 = vcpu->arch.guest_debug_dr7;
896 	else
897 		dr7 = vcpu->arch.dr7;
898 	kvm_x86_ops->set_dr7(vcpu, dr7);
899 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
900 	if (dr7 & DR7_BP_EN_MASK)
901 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
902 }
903 
904 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
905 {
906 	u64 fixed = DR6_FIXED_1;
907 
908 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
909 		fixed |= DR6_RTM;
910 	return fixed;
911 }
912 
913 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915 	switch (dr) {
916 	case 0 ... 3:
917 		vcpu->arch.db[dr] = val;
918 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919 			vcpu->arch.eff_db[dr] = val;
920 		break;
921 	case 4:
922 		/* fall through */
923 	case 6:
924 		if (val & 0xffffffff00000000ULL)
925 			return -1; /* #GP */
926 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
927 		kvm_update_dr6(vcpu);
928 		break;
929 	case 5:
930 		/* fall through */
931 	default: /* 7 */
932 		if (val & 0xffffffff00000000ULL)
933 			return -1; /* #GP */
934 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
935 		kvm_update_dr7(vcpu);
936 		break;
937 	}
938 
939 	return 0;
940 }
941 
942 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
943 {
944 	if (__kvm_set_dr(vcpu, dr, val)) {
945 		kvm_inject_gp(vcpu, 0);
946 		return 1;
947 	}
948 	return 0;
949 }
950 EXPORT_SYMBOL_GPL(kvm_set_dr);
951 
952 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
953 {
954 	switch (dr) {
955 	case 0 ... 3:
956 		*val = vcpu->arch.db[dr];
957 		break;
958 	case 4:
959 		/* fall through */
960 	case 6:
961 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
962 			*val = vcpu->arch.dr6;
963 		else
964 			*val = kvm_x86_ops->get_dr6(vcpu);
965 		break;
966 	case 5:
967 		/* fall through */
968 	default: /* 7 */
969 		*val = vcpu->arch.dr7;
970 		break;
971 	}
972 	return 0;
973 }
974 EXPORT_SYMBOL_GPL(kvm_get_dr);
975 
976 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
977 {
978 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
979 	u64 data;
980 	int err;
981 
982 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
983 	if (err)
984 		return err;
985 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
986 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
987 	return err;
988 }
989 EXPORT_SYMBOL_GPL(kvm_rdpmc);
990 
991 /*
992  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
993  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
994  *
995  * This list is modified at module load time to reflect the
996  * capabilities of the host cpu. This capabilities test skips MSRs that are
997  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
998  * may depend on host virtualization features rather than host cpu features.
999  */
1000 
1001 static u32 msrs_to_save[] = {
1002 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1003 	MSR_STAR,
1004 #ifdef CONFIG_X86_64
1005 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1006 #endif
1007 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1008 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1009 };
1010 
1011 static unsigned num_msrs_to_save;
1012 
1013 static u32 emulated_msrs[] = {
1014 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1015 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1016 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1017 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1018 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1019 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1020 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1021 	HV_X64_MSR_RESET,
1022 	HV_X64_MSR_VP_INDEX,
1023 	HV_X64_MSR_VP_RUNTIME,
1024 	HV_X64_MSR_SCONTROL,
1025 	HV_X64_MSR_STIMER0_CONFIG,
1026 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1027 	MSR_KVM_PV_EOI_EN,
1028 
1029 	MSR_IA32_TSC_ADJUST,
1030 	MSR_IA32_TSCDEADLINE,
1031 	MSR_IA32_MISC_ENABLE,
1032 	MSR_IA32_MCG_STATUS,
1033 	MSR_IA32_MCG_CTL,
1034 	MSR_IA32_MCG_EXT_CTL,
1035 	MSR_IA32_SMBASE,
1036 	MSR_PLATFORM_INFO,
1037 	MSR_MISC_FEATURES_ENABLES,
1038 };
1039 
1040 static unsigned num_emulated_msrs;
1041 
1042 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1043 {
1044 	if (efer & efer_reserved_bits)
1045 		return false;
1046 
1047 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1048 			return false;
1049 
1050 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1051 			return false;
1052 
1053 	return true;
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1056 
1057 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1058 {
1059 	u64 old_efer = vcpu->arch.efer;
1060 
1061 	if (!kvm_valid_efer(vcpu, efer))
1062 		return 1;
1063 
1064 	if (is_paging(vcpu)
1065 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1066 		return 1;
1067 
1068 	efer &= ~EFER_LMA;
1069 	efer |= vcpu->arch.efer & EFER_LMA;
1070 
1071 	kvm_x86_ops->set_efer(vcpu, efer);
1072 
1073 	/* Update reserved bits */
1074 	if ((efer ^ old_efer) & EFER_NX)
1075 		kvm_mmu_reset_context(vcpu);
1076 
1077 	return 0;
1078 }
1079 
1080 void kvm_enable_efer_bits(u64 mask)
1081 {
1082        efer_reserved_bits &= ~mask;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1085 
1086 /*
1087  * Writes msr value into into the appropriate "register".
1088  * Returns 0 on success, non-0 otherwise.
1089  * Assumes vcpu_load() was already called.
1090  */
1091 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1092 {
1093 	switch (msr->index) {
1094 	case MSR_FS_BASE:
1095 	case MSR_GS_BASE:
1096 	case MSR_KERNEL_GS_BASE:
1097 	case MSR_CSTAR:
1098 	case MSR_LSTAR:
1099 		if (is_noncanonical_address(msr->data, vcpu))
1100 			return 1;
1101 		break;
1102 	case MSR_IA32_SYSENTER_EIP:
1103 	case MSR_IA32_SYSENTER_ESP:
1104 		/*
1105 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1106 		 * non-canonical address is written on Intel but not on
1107 		 * AMD (which ignores the top 32-bits, because it does
1108 		 * not implement 64-bit SYSENTER).
1109 		 *
1110 		 * 64-bit code should hence be able to write a non-canonical
1111 		 * value on AMD.  Making the address canonical ensures that
1112 		 * vmentry does not fail on Intel after writing a non-canonical
1113 		 * value, and that something deterministic happens if the guest
1114 		 * invokes 64-bit SYSENTER.
1115 		 */
1116 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1117 	}
1118 	return kvm_x86_ops->set_msr(vcpu, msr);
1119 }
1120 EXPORT_SYMBOL_GPL(kvm_set_msr);
1121 
1122 /*
1123  * Adapt set_msr() to msr_io()'s calling convention
1124  */
1125 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1126 {
1127 	struct msr_data msr;
1128 	int r;
1129 
1130 	msr.index = index;
1131 	msr.host_initiated = true;
1132 	r = kvm_get_msr(vcpu, &msr);
1133 	if (r)
1134 		return r;
1135 
1136 	*data = msr.data;
1137 	return 0;
1138 }
1139 
1140 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1141 {
1142 	struct msr_data msr;
1143 
1144 	msr.data = *data;
1145 	msr.index = index;
1146 	msr.host_initiated = true;
1147 	return kvm_set_msr(vcpu, &msr);
1148 }
1149 
1150 #ifdef CONFIG_X86_64
1151 struct pvclock_gtod_data {
1152 	seqcount_t	seq;
1153 
1154 	struct { /* extract of a clocksource struct */
1155 		int vclock_mode;
1156 		u64	cycle_last;
1157 		u64	mask;
1158 		u32	mult;
1159 		u32	shift;
1160 	} clock;
1161 
1162 	u64		boot_ns;
1163 	u64		nsec_base;
1164 	u64		wall_time_sec;
1165 };
1166 
1167 static struct pvclock_gtod_data pvclock_gtod_data;
1168 
1169 static void update_pvclock_gtod(struct timekeeper *tk)
1170 {
1171 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1172 	u64 boot_ns;
1173 
1174 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1175 
1176 	write_seqcount_begin(&vdata->seq);
1177 
1178 	/* copy pvclock gtod data */
1179 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1180 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1181 	vdata->clock.mask		= tk->tkr_mono.mask;
1182 	vdata->clock.mult		= tk->tkr_mono.mult;
1183 	vdata->clock.shift		= tk->tkr_mono.shift;
1184 
1185 	vdata->boot_ns			= boot_ns;
1186 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1187 
1188 	vdata->wall_time_sec            = tk->xtime_sec;
1189 
1190 	write_seqcount_end(&vdata->seq);
1191 }
1192 #endif
1193 
1194 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1195 {
1196 	/*
1197 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1198 	 * vcpu_enter_guest.  This function is only called from
1199 	 * the physical CPU that is running vcpu.
1200 	 */
1201 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1202 }
1203 
1204 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1205 {
1206 	int version;
1207 	int r;
1208 	struct pvclock_wall_clock wc;
1209 	struct timespec64 boot;
1210 
1211 	if (!wall_clock)
1212 		return;
1213 
1214 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1215 	if (r)
1216 		return;
1217 
1218 	if (version & 1)
1219 		++version;  /* first time write, random junk */
1220 
1221 	++version;
1222 
1223 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1224 		return;
1225 
1226 	/*
1227 	 * The guest calculates current wall clock time by adding
1228 	 * system time (updated by kvm_guest_time_update below) to the
1229 	 * wall clock specified here.  guest system time equals host
1230 	 * system time for us, thus we must fill in host boot time here.
1231 	 */
1232 	getboottime64(&boot);
1233 
1234 	if (kvm->arch.kvmclock_offset) {
1235 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1236 		boot = timespec64_sub(boot, ts);
1237 	}
1238 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1239 	wc.nsec = boot.tv_nsec;
1240 	wc.version = version;
1241 
1242 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1243 
1244 	version++;
1245 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1246 }
1247 
1248 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1249 {
1250 	do_shl32_div32(dividend, divisor);
1251 	return dividend;
1252 }
1253 
1254 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1255 			       s8 *pshift, u32 *pmultiplier)
1256 {
1257 	uint64_t scaled64;
1258 	int32_t  shift = 0;
1259 	uint64_t tps64;
1260 	uint32_t tps32;
1261 
1262 	tps64 = base_hz;
1263 	scaled64 = scaled_hz;
1264 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1265 		tps64 >>= 1;
1266 		shift--;
1267 	}
1268 
1269 	tps32 = (uint32_t)tps64;
1270 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1271 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1272 			scaled64 >>= 1;
1273 		else
1274 			tps32 <<= 1;
1275 		shift++;
1276 	}
1277 
1278 	*pshift = shift;
1279 	*pmultiplier = div_frac(scaled64, tps32);
1280 
1281 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1282 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1283 }
1284 
1285 #ifdef CONFIG_X86_64
1286 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1287 #endif
1288 
1289 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1290 static unsigned long max_tsc_khz;
1291 
1292 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1293 {
1294 	u64 v = (u64)khz * (1000000 + ppm);
1295 	do_div(v, 1000000);
1296 	return v;
1297 }
1298 
1299 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1300 {
1301 	u64 ratio;
1302 
1303 	/* Guest TSC same frequency as host TSC? */
1304 	if (!scale) {
1305 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1306 		return 0;
1307 	}
1308 
1309 	/* TSC scaling supported? */
1310 	if (!kvm_has_tsc_control) {
1311 		if (user_tsc_khz > tsc_khz) {
1312 			vcpu->arch.tsc_catchup = 1;
1313 			vcpu->arch.tsc_always_catchup = 1;
1314 			return 0;
1315 		} else {
1316 			WARN(1, "user requested TSC rate below hardware speed\n");
1317 			return -1;
1318 		}
1319 	}
1320 
1321 	/* TSC scaling required  - calculate ratio */
1322 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1323 				user_tsc_khz, tsc_khz);
1324 
1325 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1326 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1327 			  user_tsc_khz);
1328 		return -1;
1329 	}
1330 
1331 	vcpu->arch.tsc_scaling_ratio = ratio;
1332 	return 0;
1333 }
1334 
1335 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1336 {
1337 	u32 thresh_lo, thresh_hi;
1338 	int use_scaling = 0;
1339 
1340 	/* tsc_khz can be zero if TSC calibration fails */
1341 	if (user_tsc_khz == 0) {
1342 		/* set tsc_scaling_ratio to a safe value */
1343 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1344 		return -1;
1345 	}
1346 
1347 	/* Compute a scale to convert nanoseconds in TSC cycles */
1348 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1349 			   &vcpu->arch.virtual_tsc_shift,
1350 			   &vcpu->arch.virtual_tsc_mult);
1351 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1352 
1353 	/*
1354 	 * Compute the variation in TSC rate which is acceptable
1355 	 * within the range of tolerance and decide if the
1356 	 * rate being applied is within that bounds of the hardware
1357 	 * rate.  If so, no scaling or compensation need be done.
1358 	 */
1359 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1360 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1361 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1362 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1363 		use_scaling = 1;
1364 	}
1365 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1366 }
1367 
1368 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1369 {
1370 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1371 				      vcpu->arch.virtual_tsc_mult,
1372 				      vcpu->arch.virtual_tsc_shift);
1373 	tsc += vcpu->arch.this_tsc_write;
1374 	return tsc;
1375 }
1376 
1377 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1378 {
1379 #ifdef CONFIG_X86_64
1380 	bool vcpus_matched;
1381 	struct kvm_arch *ka = &vcpu->kvm->arch;
1382 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1383 
1384 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385 			 atomic_read(&vcpu->kvm->online_vcpus));
1386 
1387 	/*
1388 	 * Once the masterclock is enabled, always perform request in
1389 	 * order to update it.
1390 	 *
1391 	 * In order to enable masterclock, the host clocksource must be TSC
1392 	 * and the vcpus need to have matched TSCs.  When that happens,
1393 	 * perform request to enable masterclock.
1394 	 */
1395 	if (ka->use_master_clock ||
1396 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1397 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1398 
1399 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1400 			    atomic_read(&vcpu->kvm->online_vcpus),
1401 		            ka->use_master_clock, gtod->clock.vclock_mode);
1402 #endif
1403 }
1404 
1405 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1406 {
1407 	u64 curr_offset = vcpu->arch.tsc_offset;
1408 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1409 }
1410 
1411 /*
1412  * Multiply tsc by a fixed point number represented by ratio.
1413  *
1414  * The most significant 64-N bits (mult) of ratio represent the
1415  * integral part of the fixed point number; the remaining N bits
1416  * (frac) represent the fractional part, ie. ratio represents a fixed
1417  * point number (mult + frac * 2^(-N)).
1418  *
1419  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1420  */
1421 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1422 {
1423 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1424 }
1425 
1426 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1427 {
1428 	u64 _tsc = tsc;
1429 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1430 
1431 	if (ratio != kvm_default_tsc_scaling_ratio)
1432 		_tsc = __scale_tsc(ratio, tsc);
1433 
1434 	return _tsc;
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1437 
1438 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1439 {
1440 	u64 tsc;
1441 
1442 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1443 
1444 	return target_tsc - tsc;
1445 }
1446 
1447 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1448 {
1449 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1452 
1453 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1454 {
1455 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1456 	vcpu->arch.tsc_offset = offset;
1457 }
1458 
1459 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1460 {
1461 	struct kvm *kvm = vcpu->kvm;
1462 	u64 offset, ns, elapsed;
1463 	unsigned long flags;
1464 	bool matched;
1465 	bool already_matched;
1466 	u64 data = msr->data;
1467 	bool synchronizing = false;
1468 
1469 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1470 	offset = kvm_compute_tsc_offset(vcpu, data);
1471 	ns = ktime_get_boot_ns();
1472 	elapsed = ns - kvm->arch.last_tsc_nsec;
1473 
1474 	if (vcpu->arch.virtual_tsc_khz) {
1475 		if (data == 0 && msr->host_initiated) {
1476 			/*
1477 			 * detection of vcpu initialization -- need to sync
1478 			 * with other vCPUs. This particularly helps to keep
1479 			 * kvm_clock stable after CPU hotplug
1480 			 */
1481 			synchronizing = true;
1482 		} else {
1483 			u64 tsc_exp = kvm->arch.last_tsc_write +
1484 						nsec_to_cycles(vcpu, elapsed);
1485 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1486 			/*
1487 			 * Special case: TSC write with a small delta (1 second)
1488 			 * of virtual cycle time against real time is
1489 			 * interpreted as an attempt to synchronize the CPU.
1490 			 */
1491 			synchronizing = data < tsc_exp + tsc_hz &&
1492 					data + tsc_hz > tsc_exp;
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1498 	 * TSC, we add elapsed time in this computation.  We could let the
1499 	 * compensation code attempt to catch up if we fall behind, but
1500 	 * it's better to try to match offsets from the beginning.
1501          */
1502 	if (synchronizing &&
1503 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1504 		if (!check_tsc_unstable()) {
1505 			offset = kvm->arch.cur_tsc_offset;
1506 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1507 		} else {
1508 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1509 			data += delta;
1510 			offset = kvm_compute_tsc_offset(vcpu, data);
1511 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512 		}
1513 		matched = true;
1514 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515 	} else {
1516 		/*
1517 		 * We split periods of matched TSC writes into generations.
1518 		 * For each generation, we track the original measured
1519 		 * nanosecond time, offset, and write, so if TSCs are in
1520 		 * sync, we can match exact offset, and if not, we can match
1521 		 * exact software computation in compute_guest_tsc()
1522 		 *
1523 		 * These values are tracked in kvm->arch.cur_xxx variables.
1524 		 */
1525 		kvm->arch.cur_tsc_generation++;
1526 		kvm->arch.cur_tsc_nsec = ns;
1527 		kvm->arch.cur_tsc_write = data;
1528 		kvm->arch.cur_tsc_offset = offset;
1529 		matched = false;
1530 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1531 			 kvm->arch.cur_tsc_generation, data);
1532 	}
1533 
1534 	/*
1535 	 * We also track th most recent recorded KHZ, write and time to
1536 	 * allow the matching interval to be extended at each write.
1537 	 */
1538 	kvm->arch.last_tsc_nsec = ns;
1539 	kvm->arch.last_tsc_write = data;
1540 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1541 
1542 	vcpu->arch.last_guest_tsc = data;
1543 
1544 	/* Keep track of which generation this VCPU has synchronized to */
1545 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1546 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1547 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1548 
1549 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1550 		update_ia32_tsc_adjust_msr(vcpu, offset);
1551 
1552 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1553 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1554 
1555 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1556 	if (!matched) {
1557 		kvm->arch.nr_vcpus_matched_tsc = 0;
1558 	} else if (!already_matched) {
1559 		kvm->arch.nr_vcpus_matched_tsc++;
1560 	}
1561 
1562 	kvm_track_tsc_matching(vcpu);
1563 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1564 }
1565 
1566 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1567 
1568 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1569 					   s64 adjustment)
1570 {
1571 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1572 }
1573 
1574 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1575 {
1576 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1577 		WARN_ON(adjustment < 0);
1578 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1579 	adjust_tsc_offset_guest(vcpu, adjustment);
1580 }
1581 
1582 #ifdef CONFIG_X86_64
1583 
1584 static u64 read_tsc(void)
1585 {
1586 	u64 ret = (u64)rdtsc_ordered();
1587 	u64 last = pvclock_gtod_data.clock.cycle_last;
1588 
1589 	if (likely(ret >= last))
1590 		return ret;
1591 
1592 	/*
1593 	 * GCC likes to generate cmov here, but this branch is extremely
1594 	 * predictable (it's just a function of time and the likely is
1595 	 * very likely) and there's a data dependence, so force GCC
1596 	 * to generate a branch instead.  I don't barrier() because
1597 	 * we don't actually need a barrier, and if this function
1598 	 * ever gets inlined it will generate worse code.
1599 	 */
1600 	asm volatile ("");
1601 	return last;
1602 }
1603 
1604 static inline u64 vgettsc(u64 *cycle_now)
1605 {
1606 	long v;
1607 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1608 
1609 	*cycle_now = read_tsc();
1610 
1611 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1612 	return v * gtod->clock.mult;
1613 }
1614 
1615 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1616 {
1617 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1618 	unsigned long seq;
1619 	int mode;
1620 	u64 ns;
1621 
1622 	do {
1623 		seq = read_seqcount_begin(&gtod->seq);
1624 		mode = gtod->clock.vclock_mode;
1625 		ns = gtod->nsec_base;
1626 		ns += vgettsc(cycle_now);
1627 		ns >>= gtod->clock.shift;
1628 		ns += gtod->boot_ns;
1629 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1630 	*t = ns;
1631 
1632 	return mode;
1633 }
1634 
1635 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1636 {
1637 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1638 	unsigned long seq;
1639 	int mode;
1640 	u64 ns;
1641 
1642 	do {
1643 		seq = read_seqcount_begin(&gtod->seq);
1644 		mode = gtod->clock.vclock_mode;
1645 		ts->tv_sec = gtod->wall_time_sec;
1646 		ns = gtod->nsec_base;
1647 		ns += vgettsc(cycle_now);
1648 		ns >>= gtod->clock.shift;
1649 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1650 
1651 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1652 	ts->tv_nsec = ns;
1653 
1654 	return mode;
1655 }
1656 
1657 /* returns true if host is using tsc clocksource */
1658 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1659 {
1660 	/* checked again under seqlock below */
1661 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1662 		return false;
1663 
1664 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1665 }
1666 
1667 /* returns true if host is using tsc clocksource */
1668 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1669 					   u64 *cycle_now)
1670 {
1671 	/* checked again under seqlock below */
1672 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1673 		return false;
1674 
1675 	return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1676 }
1677 #endif
1678 
1679 /*
1680  *
1681  * Assuming a stable TSC across physical CPUS, and a stable TSC
1682  * across virtual CPUs, the following condition is possible.
1683  * Each numbered line represents an event visible to both
1684  * CPUs at the next numbered event.
1685  *
1686  * "timespecX" represents host monotonic time. "tscX" represents
1687  * RDTSC value.
1688  *
1689  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1690  *
1691  * 1.  read timespec0,tsc0
1692  * 2.					| timespec1 = timespec0 + N
1693  * 					| tsc1 = tsc0 + M
1694  * 3. transition to guest		| transition to guest
1695  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1696  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1697  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1698  *
1699  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1700  *
1701  * 	- ret0 < ret1
1702  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1703  *		...
1704  *	- 0 < N - M => M < N
1705  *
1706  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1707  * always the case (the difference between two distinct xtime instances
1708  * might be smaller then the difference between corresponding TSC reads,
1709  * when updating guest vcpus pvclock areas).
1710  *
1711  * To avoid that problem, do not allow visibility of distinct
1712  * system_timestamp/tsc_timestamp values simultaneously: use a master
1713  * copy of host monotonic time values. Update that master copy
1714  * in lockstep.
1715  *
1716  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1717  *
1718  */
1719 
1720 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1721 {
1722 #ifdef CONFIG_X86_64
1723 	struct kvm_arch *ka = &kvm->arch;
1724 	int vclock_mode;
1725 	bool host_tsc_clocksource, vcpus_matched;
1726 
1727 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1728 			atomic_read(&kvm->online_vcpus));
1729 
1730 	/*
1731 	 * If the host uses TSC clock, then passthrough TSC as stable
1732 	 * to the guest.
1733 	 */
1734 	host_tsc_clocksource = kvm_get_time_and_clockread(
1735 					&ka->master_kernel_ns,
1736 					&ka->master_cycle_now);
1737 
1738 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1739 				&& !ka->backwards_tsc_observed
1740 				&& !ka->boot_vcpu_runs_old_kvmclock;
1741 
1742 	if (ka->use_master_clock)
1743 		atomic_set(&kvm_guest_has_master_clock, 1);
1744 
1745 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1746 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1747 					vcpus_matched);
1748 #endif
1749 }
1750 
1751 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1752 {
1753 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1754 }
1755 
1756 static void kvm_gen_update_masterclock(struct kvm *kvm)
1757 {
1758 #ifdef CONFIG_X86_64
1759 	int i;
1760 	struct kvm_vcpu *vcpu;
1761 	struct kvm_arch *ka = &kvm->arch;
1762 
1763 	spin_lock(&ka->pvclock_gtod_sync_lock);
1764 	kvm_make_mclock_inprogress_request(kvm);
1765 	/* no guest entries from this point */
1766 	pvclock_update_vm_gtod_copy(kvm);
1767 
1768 	kvm_for_each_vcpu(i, vcpu, kvm)
1769 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1770 
1771 	/* guest entries allowed */
1772 	kvm_for_each_vcpu(i, vcpu, kvm)
1773 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1774 
1775 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1776 #endif
1777 }
1778 
1779 u64 get_kvmclock_ns(struct kvm *kvm)
1780 {
1781 	struct kvm_arch *ka = &kvm->arch;
1782 	struct pvclock_vcpu_time_info hv_clock;
1783 	u64 ret;
1784 
1785 	spin_lock(&ka->pvclock_gtod_sync_lock);
1786 	if (!ka->use_master_clock) {
1787 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1788 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1789 	}
1790 
1791 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1792 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1793 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1794 
1795 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1796 	get_cpu();
1797 
1798 	kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1799 			   &hv_clock.tsc_shift,
1800 			   &hv_clock.tsc_to_system_mul);
1801 	ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1802 
1803 	put_cpu();
1804 
1805 	return ret;
1806 }
1807 
1808 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1809 {
1810 	struct kvm_vcpu_arch *vcpu = &v->arch;
1811 	struct pvclock_vcpu_time_info guest_hv_clock;
1812 
1813 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1814 		&guest_hv_clock, sizeof(guest_hv_clock))))
1815 		return;
1816 
1817 	/* This VCPU is paused, but it's legal for a guest to read another
1818 	 * VCPU's kvmclock, so we really have to follow the specification where
1819 	 * it says that version is odd if data is being modified, and even after
1820 	 * it is consistent.
1821 	 *
1822 	 * Version field updates must be kept separate.  This is because
1823 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1824 	 * writes within a string instruction are weakly ordered.  So there
1825 	 * are three writes overall.
1826 	 *
1827 	 * As a small optimization, only write the version field in the first
1828 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1829 	 * version field is the first in the struct.
1830 	 */
1831 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1832 
1833 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1834 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835 				&vcpu->hv_clock,
1836 				sizeof(vcpu->hv_clock.version));
1837 
1838 	smp_wmb();
1839 
1840 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1841 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1842 
1843 	if (vcpu->pvclock_set_guest_stopped_request) {
1844 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1845 		vcpu->pvclock_set_guest_stopped_request = false;
1846 	}
1847 
1848 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1849 
1850 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1851 				&vcpu->hv_clock,
1852 				sizeof(vcpu->hv_clock));
1853 
1854 	smp_wmb();
1855 
1856 	vcpu->hv_clock.version++;
1857 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1858 				&vcpu->hv_clock,
1859 				sizeof(vcpu->hv_clock.version));
1860 }
1861 
1862 static int kvm_guest_time_update(struct kvm_vcpu *v)
1863 {
1864 	unsigned long flags, tgt_tsc_khz;
1865 	struct kvm_vcpu_arch *vcpu = &v->arch;
1866 	struct kvm_arch *ka = &v->kvm->arch;
1867 	s64 kernel_ns;
1868 	u64 tsc_timestamp, host_tsc;
1869 	u8 pvclock_flags;
1870 	bool use_master_clock;
1871 
1872 	kernel_ns = 0;
1873 	host_tsc = 0;
1874 
1875 	/*
1876 	 * If the host uses TSC clock, then passthrough TSC as stable
1877 	 * to the guest.
1878 	 */
1879 	spin_lock(&ka->pvclock_gtod_sync_lock);
1880 	use_master_clock = ka->use_master_clock;
1881 	if (use_master_clock) {
1882 		host_tsc = ka->master_cycle_now;
1883 		kernel_ns = ka->master_kernel_ns;
1884 	}
1885 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1886 
1887 	/* Keep irq disabled to prevent changes to the clock */
1888 	local_irq_save(flags);
1889 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1890 	if (unlikely(tgt_tsc_khz == 0)) {
1891 		local_irq_restore(flags);
1892 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1893 		return 1;
1894 	}
1895 	if (!use_master_clock) {
1896 		host_tsc = rdtsc();
1897 		kernel_ns = ktime_get_boot_ns();
1898 	}
1899 
1900 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1901 
1902 	/*
1903 	 * We may have to catch up the TSC to match elapsed wall clock
1904 	 * time for two reasons, even if kvmclock is used.
1905 	 *   1) CPU could have been running below the maximum TSC rate
1906 	 *   2) Broken TSC compensation resets the base at each VCPU
1907 	 *      entry to avoid unknown leaps of TSC even when running
1908 	 *      again on the same CPU.  This may cause apparent elapsed
1909 	 *      time to disappear, and the guest to stand still or run
1910 	 *	very slowly.
1911 	 */
1912 	if (vcpu->tsc_catchup) {
1913 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1914 		if (tsc > tsc_timestamp) {
1915 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1916 			tsc_timestamp = tsc;
1917 		}
1918 	}
1919 
1920 	local_irq_restore(flags);
1921 
1922 	/* With all the info we got, fill in the values */
1923 
1924 	if (kvm_has_tsc_control)
1925 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1926 
1927 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1928 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1929 				   &vcpu->hv_clock.tsc_shift,
1930 				   &vcpu->hv_clock.tsc_to_system_mul);
1931 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1932 	}
1933 
1934 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1935 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1936 	vcpu->last_guest_tsc = tsc_timestamp;
1937 
1938 	/* If the host uses TSC clocksource, then it is stable */
1939 	pvclock_flags = 0;
1940 	if (use_master_clock)
1941 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1942 
1943 	vcpu->hv_clock.flags = pvclock_flags;
1944 
1945 	if (vcpu->pv_time_enabled)
1946 		kvm_setup_pvclock_page(v);
1947 	if (v == kvm_get_vcpu(v->kvm, 0))
1948 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1949 	return 0;
1950 }
1951 
1952 /*
1953  * kvmclock updates which are isolated to a given vcpu, such as
1954  * vcpu->cpu migration, should not allow system_timestamp from
1955  * the rest of the vcpus to remain static. Otherwise ntp frequency
1956  * correction applies to one vcpu's system_timestamp but not
1957  * the others.
1958  *
1959  * So in those cases, request a kvmclock update for all vcpus.
1960  * We need to rate-limit these requests though, as they can
1961  * considerably slow guests that have a large number of vcpus.
1962  * The time for a remote vcpu to update its kvmclock is bound
1963  * by the delay we use to rate-limit the updates.
1964  */
1965 
1966 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1967 
1968 static void kvmclock_update_fn(struct work_struct *work)
1969 {
1970 	int i;
1971 	struct delayed_work *dwork = to_delayed_work(work);
1972 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973 					   kvmclock_update_work);
1974 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1975 	struct kvm_vcpu *vcpu;
1976 
1977 	kvm_for_each_vcpu(i, vcpu, kvm) {
1978 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1979 		kvm_vcpu_kick(vcpu);
1980 	}
1981 }
1982 
1983 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1984 {
1985 	struct kvm *kvm = v->kvm;
1986 
1987 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1988 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1989 					KVMCLOCK_UPDATE_DELAY);
1990 }
1991 
1992 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1993 
1994 static void kvmclock_sync_fn(struct work_struct *work)
1995 {
1996 	struct delayed_work *dwork = to_delayed_work(work);
1997 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1998 					   kvmclock_sync_work);
1999 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2000 
2001 	if (!kvmclock_periodic_sync)
2002 		return;
2003 
2004 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2005 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2006 					KVMCLOCK_SYNC_PERIOD);
2007 }
2008 
2009 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2010 {
2011 	u64 mcg_cap = vcpu->arch.mcg_cap;
2012 	unsigned bank_num = mcg_cap & 0xff;
2013 	u32 msr = msr_info->index;
2014 	u64 data = msr_info->data;
2015 
2016 	switch (msr) {
2017 	case MSR_IA32_MCG_STATUS:
2018 		vcpu->arch.mcg_status = data;
2019 		break;
2020 	case MSR_IA32_MCG_CTL:
2021 		if (!(mcg_cap & MCG_CTL_P))
2022 			return 1;
2023 		if (data != 0 && data != ~(u64)0)
2024 			return -1;
2025 		vcpu->arch.mcg_ctl = data;
2026 		break;
2027 	default:
2028 		if (msr >= MSR_IA32_MC0_CTL &&
2029 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2030 			u32 offset = msr - MSR_IA32_MC0_CTL;
2031 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2032 			 * some Linux kernels though clear bit 10 in bank 4 to
2033 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2034 			 * this to avoid an uncatched #GP in the guest
2035 			 */
2036 			if ((offset & 0x3) == 0 &&
2037 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2038 				return -1;
2039 			if (!msr_info->host_initiated &&
2040 				(offset & 0x3) == 1 && data != 0)
2041 				return -1;
2042 			vcpu->arch.mce_banks[offset] = data;
2043 			break;
2044 		}
2045 		return 1;
2046 	}
2047 	return 0;
2048 }
2049 
2050 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2051 {
2052 	struct kvm *kvm = vcpu->kvm;
2053 	int lm = is_long_mode(vcpu);
2054 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2055 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2056 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2057 		: kvm->arch.xen_hvm_config.blob_size_32;
2058 	u32 page_num = data & ~PAGE_MASK;
2059 	u64 page_addr = data & PAGE_MASK;
2060 	u8 *page;
2061 	int r;
2062 
2063 	r = -E2BIG;
2064 	if (page_num >= blob_size)
2065 		goto out;
2066 	r = -ENOMEM;
2067 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2068 	if (IS_ERR(page)) {
2069 		r = PTR_ERR(page);
2070 		goto out;
2071 	}
2072 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2073 		goto out_free;
2074 	r = 0;
2075 out_free:
2076 	kfree(page);
2077 out:
2078 	return r;
2079 }
2080 
2081 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2082 {
2083 	gpa_t gpa = data & ~0x3f;
2084 
2085 	/* Bits 3:5 are reserved, Should be zero */
2086 	if (data & 0x38)
2087 		return 1;
2088 
2089 	vcpu->arch.apf.msr_val = data;
2090 
2091 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2092 		kvm_clear_async_pf_completion_queue(vcpu);
2093 		kvm_async_pf_hash_reset(vcpu);
2094 		return 0;
2095 	}
2096 
2097 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2098 					sizeof(u32)))
2099 		return 1;
2100 
2101 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2102 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2103 	kvm_async_pf_wakeup_all(vcpu);
2104 	return 0;
2105 }
2106 
2107 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2108 {
2109 	vcpu->arch.pv_time_enabled = false;
2110 }
2111 
2112 static void record_steal_time(struct kvm_vcpu *vcpu)
2113 {
2114 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2115 		return;
2116 
2117 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2118 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2119 		return;
2120 
2121 	vcpu->arch.st.steal.preempted = 0;
2122 
2123 	if (vcpu->arch.st.steal.version & 1)
2124 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2125 
2126 	vcpu->arch.st.steal.version += 1;
2127 
2128 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2129 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2130 
2131 	smp_wmb();
2132 
2133 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2134 		vcpu->arch.st.last_steal;
2135 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2136 
2137 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2138 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2139 
2140 	smp_wmb();
2141 
2142 	vcpu->arch.st.steal.version += 1;
2143 
2144 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2145 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2146 }
2147 
2148 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2149 {
2150 	bool pr = false;
2151 	u32 msr = msr_info->index;
2152 	u64 data = msr_info->data;
2153 
2154 	switch (msr) {
2155 	case MSR_AMD64_NB_CFG:
2156 	case MSR_IA32_UCODE_REV:
2157 	case MSR_IA32_UCODE_WRITE:
2158 	case MSR_VM_HSAVE_PA:
2159 	case MSR_AMD64_PATCH_LOADER:
2160 	case MSR_AMD64_BU_CFG2:
2161 	case MSR_AMD64_DC_CFG:
2162 		break;
2163 
2164 	case MSR_EFER:
2165 		return set_efer(vcpu, data);
2166 	case MSR_K7_HWCR:
2167 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2168 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2169 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2170 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2171 		if (data != 0) {
2172 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2173 				    data);
2174 			return 1;
2175 		}
2176 		break;
2177 	case MSR_FAM10H_MMIO_CONF_BASE:
2178 		if (data != 0) {
2179 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2180 				    "0x%llx\n", data);
2181 			return 1;
2182 		}
2183 		break;
2184 	case MSR_IA32_DEBUGCTLMSR:
2185 		if (!data) {
2186 			/* We support the non-activated case already */
2187 			break;
2188 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2189 			/* Values other than LBR and BTF are vendor-specific,
2190 			   thus reserved and should throw a #GP */
2191 			return 1;
2192 		}
2193 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2194 			    __func__, data);
2195 		break;
2196 	case 0x200 ... 0x2ff:
2197 		return kvm_mtrr_set_msr(vcpu, msr, data);
2198 	case MSR_IA32_APICBASE:
2199 		return kvm_set_apic_base(vcpu, msr_info);
2200 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2201 		return kvm_x2apic_msr_write(vcpu, msr, data);
2202 	case MSR_IA32_TSCDEADLINE:
2203 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2204 		break;
2205 	case MSR_IA32_TSC_ADJUST:
2206 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2207 			if (!msr_info->host_initiated) {
2208 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2209 				adjust_tsc_offset_guest(vcpu, adj);
2210 			}
2211 			vcpu->arch.ia32_tsc_adjust_msr = data;
2212 		}
2213 		break;
2214 	case MSR_IA32_MISC_ENABLE:
2215 		vcpu->arch.ia32_misc_enable_msr = data;
2216 		break;
2217 	case MSR_IA32_SMBASE:
2218 		if (!msr_info->host_initiated)
2219 			return 1;
2220 		vcpu->arch.smbase = data;
2221 		break;
2222 	case MSR_KVM_WALL_CLOCK_NEW:
2223 	case MSR_KVM_WALL_CLOCK:
2224 		vcpu->kvm->arch.wall_clock = data;
2225 		kvm_write_wall_clock(vcpu->kvm, data);
2226 		break;
2227 	case MSR_KVM_SYSTEM_TIME_NEW:
2228 	case MSR_KVM_SYSTEM_TIME: {
2229 		struct kvm_arch *ka = &vcpu->kvm->arch;
2230 
2231 		kvmclock_reset(vcpu);
2232 
2233 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2234 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2235 
2236 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2237 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2238 
2239 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2240 		}
2241 
2242 		vcpu->arch.time = data;
2243 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2244 
2245 		/* we verify if the enable bit is set... */
2246 		if (!(data & 1))
2247 			break;
2248 
2249 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2250 		     &vcpu->arch.pv_time, data & ~1ULL,
2251 		     sizeof(struct pvclock_vcpu_time_info)))
2252 			vcpu->arch.pv_time_enabled = false;
2253 		else
2254 			vcpu->arch.pv_time_enabled = true;
2255 
2256 		break;
2257 	}
2258 	case MSR_KVM_ASYNC_PF_EN:
2259 		if (kvm_pv_enable_async_pf(vcpu, data))
2260 			return 1;
2261 		break;
2262 	case MSR_KVM_STEAL_TIME:
2263 
2264 		if (unlikely(!sched_info_on()))
2265 			return 1;
2266 
2267 		if (data & KVM_STEAL_RESERVED_MASK)
2268 			return 1;
2269 
2270 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2271 						data & KVM_STEAL_VALID_BITS,
2272 						sizeof(struct kvm_steal_time)))
2273 			return 1;
2274 
2275 		vcpu->arch.st.msr_val = data;
2276 
2277 		if (!(data & KVM_MSR_ENABLED))
2278 			break;
2279 
2280 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2281 
2282 		break;
2283 	case MSR_KVM_PV_EOI_EN:
2284 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2285 			return 1;
2286 		break;
2287 
2288 	case MSR_IA32_MCG_CTL:
2289 	case MSR_IA32_MCG_STATUS:
2290 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2291 		return set_msr_mce(vcpu, msr_info);
2292 
2293 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2294 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2295 		pr = true; /* fall through */
2296 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2297 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2298 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2299 			return kvm_pmu_set_msr(vcpu, msr_info);
2300 
2301 		if (pr || data != 0)
2302 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2303 				    "0x%x data 0x%llx\n", msr, data);
2304 		break;
2305 	case MSR_K7_CLK_CTL:
2306 		/*
2307 		 * Ignore all writes to this no longer documented MSR.
2308 		 * Writes are only relevant for old K7 processors,
2309 		 * all pre-dating SVM, but a recommended workaround from
2310 		 * AMD for these chips. It is possible to specify the
2311 		 * affected processor models on the command line, hence
2312 		 * the need to ignore the workaround.
2313 		 */
2314 		break;
2315 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2316 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2317 	case HV_X64_MSR_CRASH_CTL:
2318 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2319 		return kvm_hv_set_msr_common(vcpu, msr, data,
2320 					     msr_info->host_initiated);
2321 	case MSR_IA32_BBL_CR_CTL3:
2322 		/* Drop writes to this legacy MSR -- see rdmsr
2323 		 * counterpart for further detail.
2324 		 */
2325 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2326 		break;
2327 	case MSR_AMD64_OSVW_ID_LENGTH:
2328 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2329 			return 1;
2330 		vcpu->arch.osvw.length = data;
2331 		break;
2332 	case MSR_AMD64_OSVW_STATUS:
2333 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2334 			return 1;
2335 		vcpu->arch.osvw.status = data;
2336 		break;
2337 	case MSR_PLATFORM_INFO:
2338 		if (!msr_info->host_initiated ||
2339 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2340 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2341 		     cpuid_fault_enabled(vcpu)))
2342 			return 1;
2343 		vcpu->arch.msr_platform_info = data;
2344 		break;
2345 	case MSR_MISC_FEATURES_ENABLES:
2346 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2347 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2348 		     !supports_cpuid_fault(vcpu)))
2349 			return 1;
2350 		vcpu->arch.msr_misc_features_enables = data;
2351 		break;
2352 	default:
2353 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2354 			return xen_hvm_config(vcpu, data);
2355 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2356 			return kvm_pmu_set_msr(vcpu, msr_info);
2357 		if (!ignore_msrs) {
2358 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2359 				    msr, data);
2360 			return 1;
2361 		} else {
2362 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2363 				    msr, data);
2364 			break;
2365 		}
2366 	}
2367 	return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2370 
2371 
2372 /*
2373  * Reads an msr value (of 'msr_index') into 'pdata'.
2374  * Returns 0 on success, non-0 otherwise.
2375  * Assumes vcpu_load() was already called.
2376  */
2377 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2378 {
2379 	return kvm_x86_ops->get_msr(vcpu, msr);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_get_msr);
2382 
2383 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2384 {
2385 	u64 data;
2386 	u64 mcg_cap = vcpu->arch.mcg_cap;
2387 	unsigned bank_num = mcg_cap & 0xff;
2388 
2389 	switch (msr) {
2390 	case MSR_IA32_P5_MC_ADDR:
2391 	case MSR_IA32_P5_MC_TYPE:
2392 		data = 0;
2393 		break;
2394 	case MSR_IA32_MCG_CAP:
2395 		data = vcpu->arch.mcg_cap;
2396 		break;
2397 	case MSR_IA32_MCG_CTL:
2398 		if (!(mcg_cap & MCG_CTL_P))
2399 			return 1;
2400 		data = vcpu->arch.mcg_ctl;
2401 		break;
2402 	case MSR_IA32_MCG_STATUS:
2403 		data = vcpu->arch.mcg_status;
2404 		break;
2405 	default:
2406 		if (msr >= MSR_IA32_MC0_CTL &&
2407 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2408 			u32 offset = msr - MSR_IA32_MC0_CTL;
2409 			data = vcpu->arch.mce_banks[offset];
2410 			break;
2411 		}
2412 		return 1;
2413 	}
2414 	*pdata = data;
2415 	return 0;
2416 }
2417 
2418 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2419 {
2420 	switch (msr_info->index) {
2421 	case MSR_IA32_PLATFORM_ID:
2422 	case MSR_IA32_EBL_CR_POWERON:
2423 	case MSR_IA32_DEBUGCTLMSR:
2424 	case MSR_IA32_LASTBRANCHFROMIP:
2425 	case MSR_IA32_LASTBRANCHTOIP:
2426 	case MSR_IA32_LASTINTFROMIP:
2427 	case MSR_IA32_LASTINTTOIP:
2428 	case MSR_K8_SYSCFG:
2429 	case MSR_K8_TSEG_ADDR:
2430 	case MSR_K8_TSEG_MASK:
2431 	case MSR_K7_HWCR:
2432 	case MSR_VM_HSAVE_PA:
2433 	case MSR_K8_INT_PENDING_MSG:
2434 	case MSR_AMD64_NB_CFG:
2435 	case MSR_FAM10H_MMIO_CONF_BASE:
2436 	case MSR_AMD64_BU_CFG2:
2437 	case MSR_IA32_PERF_CTL:
2438 	case MSR_AMD64_DC_CFG:
2439 		msr_info->data = 0;
2440 		break;
2441 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2442 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2443 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2444 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2445 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2446 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2447 		msr_info->data = 0;
2448 		break;
2449 	case MSR_IA32_UCODE_REV:
2450 		msr_info->data = 0x100000000ULL;
2451 		break;
2452 	case MSR_MTRRcap:
2453 	case 0x200 ... 0x2ff:
2454 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2455 	case 0xcd: /* fsb frequency */
2456 		msr_info->data = 3;
2457 		break;
2458 		/*
2459 		 * MSR_EBC_FREQUENCY_ID
2460 		 * Conservative value valid for even the basic CPU models.
2461 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2462 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2463 		 * and 266MHz for model 3, or 4. Set Core Clock
2464 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2465 		 * 31:24) even though these are only valid for CPU
2466 		 * models > 2, however guests may end up dividing or
2467 		 * multiplying by zero otherwise.
2468 		 */
2469 	case MSR_EBC_FREQUENCY_ID:
2470 		msr_info->data = 1 << 24;
2471 		break;
2472 	case MSR_IA32_APICBASE:
2473 		msr_info->data = kvm_get_apic_base(vcpu);
2474 		break;
2475 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2476 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2477 		break;
2478 	case MSR_IA32_TSCDEADLINE:
2479 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2480 		break;
2481 	case MSR_IA32_TSC_ADJUST:
2482 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2483 		break;
2484 	case MSR_IA32_MISC_ENABLE:
2485 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2486 		break;
2487 	case MSR_IA32_SMBASE:
2488 		if (!msr_info->host_initiated)
2489 			return 1;
2490 		msr_info->data = vcpu->arch.smbase;
2491 		break;
2492 	case MSR_IA32_PERF_STATUS:
2493 		/* TSC increment by tick */
2494 		msr_info->data = 1000ULL;
2495 		/* CPU multiplier */
2496 		msr_info->data |= (((uint64_t)4ULL) << 40);
2497 		break;
2498 	case MSR_EFER:
2499 		msr_info->data = vcpu->arch.efer;
2500 		break;
2501 	case MSR_KVM_WALL_CLOCK:
2502 	case MSR_KVM_WALL_CLOCK_NEW:
2503 		msr_info->data = vcpu->kvm->arch.wall_clock;
2504 		break;
2505 	case MSR_KVM_SYSTEM_TIME:
2506 	case MSR_KVM_SYSTEM_TIME_NEW:
2507 		msr_info->data = vcpu->arch.time;
2508 		break;
2509 	case MSR_KVM_ASYNC_PF_EN:
2510 		msr_info->data = vcpu->arch.apf.msr_val;
2511 		break;
2512 	case MSR_KVM_STEAL_TIME:
2513 		msr_info->data = vcpu->arch.st.msr_val;
2514 		break;
2515 	case MSR_KVM_PV_EOI_EN:
2516 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2517 		break;
2518 	case MSR_IA32_P5_MC_ADDR:
2519 	case MSR_IA32_P5_MC_TYPE:
2520 	case MSR_IA32_MCG_CAP:
2521 	case MSR_IA32_MCG_CTL:
2522 	case MSR_IA32_MCG_STATUS:
2523 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2524 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2525 	case MSR_K7_CLK_CTL:
2526 		/*
2527 		 * Provide expected ramp-up count for K7. All other
2528 		 * are set to zero, indicating minimum divisors for
2529 		 * every field.
2530 		 *
2531 		 * This prevents guest kernels on AMD host with CPU
2532 		 * type 6, model 8 and higher from exploding due to
2533 		 * the rdmsr failing.
2534 		 */
2535 		msr_info->data = 0x20000000;
2536 		break;
2537 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2538 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2539 	case HV_X64_MSR_CRASH_CTL:
2540 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2541 		return kvm_hv_get_msr_common(vcpu,
2542 					     msr_info->index, &msr_info->data);
2543 		break;
2544 	case MSR_IA32_BBL_CR_CTL3:
2545 		/* This legacy MSR exists but isn't fully documented in current
2546 		 * silicon.  It is however accessed by winxp in very narrow
2547 		 * scenarios where it sets bit #19, itself documented as
2548 		 * a "reserved" bit.  Best effort attempt to source coherent
2549 		 * read data here should the balance of the register be
2550 		 * interpreted by the guest:
2551 		 *
2552 		 * L2 cache control register 3: 64GB range, 256KB size,
2553 		 * enabled, latency 0x1, configured
2554 		 */
2555 		msr_info->data = 0xbe702111;
2556 		break;
2557 	case MSR_AMD64_OSVW_ID_LENGTH:
2558 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2559 			return 1;
2560 		msr_info->data = vcpu->arch.osvw.length;
2561 		break;
2562 	case MSR_AMD64_OSVW_STATUS:
2563 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2564 			return 1;
2565 		msr_info->data = vcpu->arch.osvw.status;
2566 		break;
2567 	case MSR_PLATFORM_INFO:
2568 		msr_info->data = vcpu->arch.msr_platform_info;
2569 		break;
2570 	case MSR_MISC_FEATURES_ENABLES:
2571 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2572 		break;
2573 	default:
2574 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2575 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2576 		if (!ignore_msrs) {
2577 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2578 					       msr_info->index);
2579 			return 1;
2580 		} else {
2581 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2582 			msr_info->data = 0;
2583 		}
2584 		break;
2585 	}
2586 	return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2589 
2590 /*
2591  * Read or write a bunch of msrs. All parameters are kernel addresses.
2592  *
2593  * @return number of msrs set successfully.
2594  */
2595 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2596 		    struct kvm_msr_entry *entries,
2597 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2598 				  unsigned index, u64 *data))
2599 {
2600 	int i, idx;
2601 
2602 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2603 	for (i = 0; i < msrs->nmsrs; ++i)
2604 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2605 			break;
2606 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2607 
2608 	return i;
2609 }
2610 
2611 /*
2612  * Read or write a bunch of msrs. Parameters are user addresses.
2613  *
2614  * @return number of msrs set successfully.
2615  */
2616 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2617 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2618 				unsigned index, u64 *data),
2619 		  int writeback)
2620 {
2621 	struct kvm_msrs msrs;
2622 	struct kvm_msr_entry *entries;
2623 	int r, n;
2624 	unsigned size;
2625 
2626 	r = -EFAULT;
2627 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2628 		goto out;
2629 
2630 	r = -E2BIG;
2631 	if (msrs.nmsrs >= MAX_IO_MSRS)
2632 		goto out;
2633 
2634 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2635 	entries = memdup_user(user_msrs->entries, size);
2636 	if (IS_ERR(entries)) {
2637 		r = PTR_ERR(entries);
2638 		goto out;
2639 	}
2640 
2641 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2642 	if (r < 0)
2643 		goto out_free;
2644 
2645 	r = -EFAULT;
2646 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2647 		goto out_free;
2648 
2649 	r = n;
2650 
2651 out_free:
2652 	kfree(entries);
2653 out:
2654 	return r;
2655 }
2656 
2657 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2658 {
2659 	int r;
2660 
2661 	switch (ext) {
2662 	case KVM_CAP_IRQCHIP:
2663 	case KVM_CAP_HLT:
2664 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2665 	case KVM_CAP_SET_TSS_ADDR:
2666 	case KVM_CAP_EXT_CPUID:
2667 	case KVM_CAP_EXT_EMUL_CPUID:
2668 	case KVM_CAP_CLOCKSOURCE:
2669 	case KVM_CAP_PIT:
2670 	case KVM_CAP_NOP_IO_DELAY:
2671 	case KVM_CAP_MP_STATE:
2672 	case KVM_CAP_SYNC_MMU:
2673 	case KVM_CAP_USER_NMI:
2674 	case KVM_CAP_REINJECT_CONTROL:
2675 	case KVM_CAP_IRQ_INJECT_STATUS:
2676 	case KVM_CAP_IOEVENTFD:
2677 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2678 	case KVM_CAP_PIT2:
2679 	case KVM_CAP_PIT_STATE2:
2680 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2681 	case KVM_CAP_XEN_HVM:
2682 	case KVM_CAP_VCPU_EVENTS:
2683 	case KVM_CAP_HYPERV:
2684 	case KVM_CAP_HYPERV_VAPIC:
2685 	case KVM_CAP_HYPERV_SPIN:
2686 	case KVM_CAP_HYPERV_SYNIC:
2687 	case KVM_CAP_HYPERV_SYNIC2:
2688 	case KVM_CAP_HYPERV_VP_INDEX:
2689 	case KVM_CAP_PCI_SEGMENT:
2690 	case KVM_CAP_DEBUGREGS:
2691 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2692 	case KVM_CAP_XSAVE:
2693 	case KVM_CAP_ASYNC_PF:
2694 	case KVM_CAP_GET_TSC_KHZ:
2695 	case KVM_CAP_KVMCLOCK_CTRL:
2696 	case KVM_CAP_READONLY_MEM:
2697 	case KVM_CAP_HYPERV_TIME:
2698 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2699 	case KVM_CAP_TSC_DEADLINE_TIMER:
2700 	case KVM_CAP_ENABLE_CAP_VM:
2701 	case KVM_CAP_DISABLE_QUIRKS:
2702 	case KVM_CAP_SET_BOOT_CPU_ID:
2703  	case KVM_CAP_SPLIT_IRQCHIP:
2704 	case KVM_CAP_IMMEDIATE_EXIT:
2705 		r = 1;
2706 		break;
2707 	case KVM_CAP_ADJUST_CLOCK:
2708 		r = KVM_CLOCK_TSC_STABLE;
2709 		break;
2710 	case KVM_CAP_X86_GUEST_MWAIT:
2711 		r = kvm_mwait_in_guest();
2712 		break;
2713 	case KVM_CAP_X86_SMM:
2714 		/* SMBASE is usually relocated above 1M on modern chipsets,
2715 		 * and SMM handlers might indeed rely on 4G segment limits,
2716 		 * so do not report SMM to be available if real mode is
2717 		 * emulated via vm86 mode.  Still, do not go to great lengths
2718 		 * to avoid userspace's usage of the feature, because it is a
2719 		 * fringe case that is not enabled except via specific settings
2720 		 * of the module parameters.
2721 		 */
2722 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2723 		break;
2724 	case KVM_CAP_VAPIC:
2725 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2726 		break;
2727 	case KVM_CAP_NR_VCPUS:
2728 		r = KVM_SOFT_MAX_VCPUS;
2729 		break;
2730 	case KVM_CAP_MAX_VCPUS:
2731 		r = KVM_MAX_VCPUS;
2732 		break;
2733 	case KVM_CAP_NR_MEMSLOTS:
2734 		r = KVM_USER_MEM_SLOTS;
2735 		break;
2736 	case KVM_CAP_PV_MMU:	/* obsolete */
2737 		r = 0;
2738 		break;
2739 	case KVM_CAP_MCE:
2740 		r = KVM_MAX_MCE_BANKS;
2741 		break;
2742 	case KVM_CAP_XCRS:
2743 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2744 		break;
2745 	case KVM_CAP_TSC_CONTROL:
2746 		r = kvm_has_tsc_control;
2747 		break;
2748 	case KVM_CAP_X2APIC_API:
2749 		r = KVM_X2APIC_API_VALID_FLAGS;
2750 		break;
2751 	default:
2752 		r = 0;
2753 		break;
2754 	}
2755 	return r;
2756 
2757 }
2758 
2759 long kvm_arch_dev_ioctl(struct file *filp,
2760 			unsigned int ioctl, unsigned long arg)
2761 {
2762 	void __user *argp = (void __user *)arg;
2763 	long r;
2764 
2765 	switch (ioctl) {
2766 	case KVM_GET_MSR_INDEX_LIST: {
2767 		struct kvm_msr_list __user *user_msr_list = argp;
2768 		struct kvm_msr_list msr_list;
2769 		unsigned n;
2770 
2771 		r = -EFAULT;
2772 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2773 			goto out;
2774 		n = msr_list.nmsrs;
2775 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2776 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2777 			goto out;
2778 		r = -E2BIG;
2779 		if (n < msr_list.nmsrs)
2780 			goto out;
2781 		r = -EFAULT;
2782 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2783 				 num_msrs_to_save * sizeof(u32)))
2784 			goto out;
2785 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2786 				 &emulated_msrs,
2787 				 num_emulated_msrs * sizeof(u32)))
2788 			goto out;
2789 		r = 0;
2790 		break;
2791 	}
2792 	case KVM_GET_SUPPORTED_CPUID:
2793 	case KVM_GET_EMULATED_CPUID: {
2794 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2795 		struct kvm_cpuid2 cpuid;
2796 
2797 		r = -EFAULT;
2798 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2799 			goto out;
2800 
2801 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2802 					    ioctl);
2803 		if (r)
2804 			goto out;
2805 
2806 		r = -EFAULT;
2807 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2808 			goto out;
2809 		r = 0;
2810 		break;
2811 	}
2812 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2813 		r = -EFAULT;
2814 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2815 				 sizeof(kvm_mce_cap_supported)))
2816 			goto out;
2817 		r = 0;
2818 		break;
2819 	}
2820 	default:
2821 		r = -EINVAL;
2822 	}
2823 out:
2824 	return r;
2825 }
2826 
2827 static void wbinvd_ipi(void *garbage)
2828 {
2829 	wbinvd();
2830 }
2831 
2832 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2833 {
2834 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2835 }
2836 
2837 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2838 {
2839 	/* Address WBINVD may be executed by guest */
2840 	if (need_emulate_wbinvd(vcpu)) {
2841 		if (kvm_x86_ops->has_wbinvd_exit())
2842 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2843 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2844 			smp_call_function_single(vcpu->cpu,
2845 					wbinvd_ipi, NULL, 1);
2846 	}
2847 
2848 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2849 
2850 	/* Apply any externally detected TSC adjustments (due to suspend) */
2851 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2852 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2853 		vcpu->arch.tsc_offset_adjustment = 0;
2854 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2855 	}
2856 
2857 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2858 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2859 				rdtsc() - vcpu->arch.last_host_tsc;
2860 		if (tsc_delta < 0)
2861 			mark_tsc_unstable("KVM discovered backwards TSC");
2862 
2863 		if (check_tsc_unstable()) {
2864 			u64 offset = kvm_compute_tsc_offset(vcpu,
2865 						vcpu->arch.last_guest_tsc);
2866 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2867 			vcpu->arch.tsc_catchup = 1;
2868 		}
2869 
2870 		if (kvm_lapic_hv_timer_in_use(vcpu))
2871 			kvm_lapic_restart_hv_timer(vcpu);
2872 
2873 		/*
2874 		 * On a host with synchronized TSC, there is no need to update
2875 		 * kvmclock on vcpu->cpu migration
2876 		 */
2877 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2878 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2879 		if (vcpu->cpu != cpu)
2880 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2881 		vcpu->cpu = cpu;
2882 	}
2883 
2884 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2885 }
2886 
2887 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2888 {
2889 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2890 		return;
2891 
2892 	vcpu->arch.st.steal.preempted = 1;
2893 
2894 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2895 			&vcpu->arch.st.steal.preempted,
2896 			offsetof(struct kvm_steal_time, preempted),
2897 			sizeof(vcpu->arch.st.steal.preempted));
2898 }
2899 
2900 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2901 {
2902 	int idx;
2903 
2904 	if (vcpu->preempted)
2905 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2906 
2907 	/*
2908 	 * Disable page faults because we're in atomic context here.
2909 	 * kvm_write_guest_offset_cached() would call might_fault()
2910 	 * that relies on pagefault_disable() to tell if there's a
2911 	 * bug. NOTE: the write to guest memory may not go through if
2912 	 * during postcopy live migration or if there's heavy guest
2913 	 * paging.
2914 	 */
2915 	pagefault_disable();
2916 	/*
2917 	 * kvm_memslots() will be called by
2918 	 * kvm_write_guest_offset_cached() so take the srcu lock.
2919 	 */
2920 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2921 	kvm_steal_time_set_preempted(vcpu);
2922 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2923 	pagefault_enable();
2924 	kvm_x86_ops->vcpu_put(vcpu);
2925 	kvm_put_guest_fpu(vcpu);
2926 	vcpu->arch.last_host_tsc = rdtsc();
2927 }
2928 
2929 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2930 				    struct kvm_lapic_state *s)
2931 {
2932 	if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2933 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2934 
2935 	return kvm_apic_get_state(vcpu, s);
2936 }
2937 
2938 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2939 				    struct kvm_lapic_state *s)
2940 {
2941 	int r;
2942 
2943 	r = kvm_apic_set_state(vcpu, s);
2944 	if (r)
2945 		return r;
2946 	update_cr8_intercept(vcpu);
2947 
2948 	return 0;
2949 }
2950 
2951 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2952 {
2953 	return (!lapic_in_kernel(vcpu) ||
2954 		kvm_apic_accept_pic_intr(vcpu));
2955 }
2956 
2957 /*
2958  * if userspace requested an interrupt window, check that the
2959  * interrupt window is open.
2960  *
2961  * No need to exit to userspace if we already have an interrupt queued.
2962  */
2963 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2964 {
2965 	return kvm_arch_interrupt_allowed(vcpu) &&
2966 		!kvm_cpu_has_interrupt(vcpu) &&
2967 		!kvm_event_needs_reinjection(vcpu) &&
2968 		kvm_cpu_accept_dm_intr(vcpu);
2969 }
2970 
2971 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2972 				    struct kvm_interrupt *irq)
2973 {
2974 	if (irq->irq >= KVM_NR_INTERRUPTS)
2975 		return -EINVAL;
2976 
2977 	if (!irqchip_in_kernel(vcpu->kvm)) {
2978 		kvm_queue_interrupt(vcpu, irq->irq, false);
2979 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2980 		return 0;
2981 	}
2982 
2983 	/*
2984 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2985 	 * fail for in-kernel 8259.
2986 	 */
2987 	if (pic_in_kernel(vcpu->kvm))
2988 		return -ENXIO;
2989 
2990 	if (vcpu->arch.pending_external_vector != -1)
2991 		return -EEXIST;
2992 
2993 	vcpu->arch.pending_external_vector = irq->irq;
2994 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2995 	return 0;
2996 }
2997 
2998 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2999 {
3000 	kvm_inject_nmi(vcpu);
3001 
3002 	return 0;
3003 }
3004 
3005 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3006 {
3007 	kvm_make_request(KVM_REQ_SMI, vcpu);
3008 
3009 	return 0;
3010 }
3011 
3012 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3013 					   struct kvm_tpr_access_ctl *tac)
3014 {
3015 	if (tac->flags)
3016 		return -EINVAL;
3017 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3018 	return 0;
3019 }
3020 
3021 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3022 					u64 mcg_cap)
3023 {
3024 	int r;
3025 	unsigned bank_num = mcg_cap & 0xff, bank;
3026 
3027 	r = -EINVAL;
3028 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3029 		goto out;
3030 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3031 		goto out;
3032 	r = 0;
3033 	vcpu->arch.mcg_cap = mcg_cap;
3034 	/* Init IA32_MCG_CTL to all 1s */
3035 	if (mcg_cap & MCG_CTL_P)
3036 		vcpu->arch.mcg_ctl = ~(u64)0;
3037 	/* Init IA32_MCi_CTL to all 1s */
3038 	for (bank = 0; bank < bank_num; bank++)
3039 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3040 
3041 	if (kvm_x86_ops->setup_mce)
3042 		kvm_x86_ops->setup_mce(vcpu);
3043 out:
3044 	return r;
3045 }
3046 
3047 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3048 				      struct kvm_x86_mce *mce)
3049 {
3050 	u64 mcg_cap = vcpu->arch.mcg_cap;
3051 	unsigned bank_num = mcg_cap & 0xff;
3052 	u64 *banks = vcpu->arch.mce_banks;
3053 
3054 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3055 		return -EINVAL;
3056 	/*
3057 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3058 	 * reporting is disabled
3059 	 */
3060 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3061 	    vcpu->arch.mcg_ctl != ~(u64)0)
3062 		return 0;
3063 	banks += 4 * mce->bank;
3064 	/*
3065 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3066 	 * reporting is disabled for the bank
3067 	 */
3068 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3069 		return 0;
3070 	if (mce->status & MCI_STATUS_UC) {
3071 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3072 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3073 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3074 			return 0;
3075 		}
3076 		if (banks[1] & MCI_STATUS_VAL)
3077 			mce->status |= MCI_STATUS_OVER;
3078 		banks[2] = mce->addr;
3079 		banks[3] = mce->misc;
3080 		vcpu->arch.mcg_status = mce->mcg_status;
3081 		banks[1] = mce->status;
3082 		kvm_queue_exception(vcpu, MC_VECTOR);
3083 	} else if (!(banks[1] & MCI_STATUS_VAL)
3084 		   || !(banks[1] & MCI_STATUS_UC)) {
3085 		if (banks[1] & MCI_STATUS_VAL)
3086 			mce->status |= MCI_STATUS_OVER;
3087 		banks[2] = mce->addr;
3088 		banks[3] = mce->misc;
3089 		banks[1] = mce->status;
3090 	} else
3091 		banks[1] |= MCI_STATUS_OVER;
3092 	return 0;
3093 }
3094 
3095 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3096 					       struct kvm_vcpu_events *events)
3097 {
3098 	process_nmi(vcpu);
3099 	/*
3100 	 * FIXME: pass injected and pending separately.  This is only
3101 	 * needed for nested virtualization, whose state cannot be
3102 	 * migrated yet.  For now we can combine them.
3103 	 */
3104 	events->exception.injected =
3105 		(vcpu->arch.exception.pending ||
3106 		 vcpu->arch.exception.injected) &&
3107 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3108 	events->exception.nr = vcpu->arch.exception.nr;
3109 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3110 	events->exception.pad = 0;
3111 	events->exception.error_code = vcpu->arch.exception.error_code;
3112 
3113 	events->interrupt.injected =
3114 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3115 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3116 	events->interrupt.soft = 0;
3117 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3118 
3119 	events->nmi.injected = vcpu->arch.nmi_injected;
3120 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3121 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3122 	events->nmi.pad = 0;
3123 
3124 	events->sipi_vector = 0; /* never valid when reporting to user space */
3125 
3126 	events->smi.smm = is_smm(vcpu);
3127 	events->smi.pending = vcpu->arch.smi_pending;
3128 	events->smi.smm_inside_nmi =
3129 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3130 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3131 
3132 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3133 			 | KVM_VCPUEVENT_VALID_SHADOW
3134 			 | KVM_VCPUEVENT_VALID_SMM);
3135 	memset(&events->reserved, 0, sizeof(events->reserved));
3136 }
3137 
3138 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3139 
3140 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3141 					      struct kvm_vcpu_events *events)
3142 {
3143 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3144 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3145 			      | KVM_VCPUEVENT_VALID_SHADOW
3146 			      | KVM_VCPUEVENT_VALID_SMM))
3147 		return -EINVAL;
3148 
3149 	if (events->exception.injected &&
3150 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3151 	     is_guest_mode(vcpu)))
3152 		return -EINVAL;
3153 
3154 	/* INITs are latched while in SMM */
3155 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3156 	    (events->smi.smm || events->smi.pending) &&
3157 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3158 		return -EINVAL;
3159 
3160 	process_nmi(vcpu);
3161 	vcpu->arch.exception.injected = false;
3162 	vcpu->arch.exception.pending = events->exception.injected;
3163 	vcpu->arch.exception.nr = events->exception.nr;
3164 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3165 	vcpu->arch.exception.error_code = events->exception.error_code;
3166 
3167 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3168 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3169 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3170 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3171 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3172 						  events->interrupt.shadow);
3173 
3174 	vcpu->arch.nmi_injected = events->nmi.injected;
3175 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3176 		vcpu->arch.nmi_pending = events->nmi.pending;
3177 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3178 
3179 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3180 	    lapic_in_kernel(vcpu))
3181 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3182 
3183 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3184 		u32 hflags = vcpu->arch.hflags;
3185 		if (events->smi.smm)
3186 			hflags |= HF_SMM_MASK;
3187 		else
3188 			hflags &= ~HF_SMM_MASK;
3189 		kvm_set_hflags(vcpu, hflags);
3190 
3191 		vcpu->arch.smi_pending = events->smi.pending;
3192 
3193 		if (events->smi.smm) {
3194 			if (events->smi.smm_inside_nmi)
3195 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3196 			else
3197 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3198 			if (lapic_in_kernel(vcpu)) {
3199 				if (events->smi.latched_init)
3200 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3201 				else
3202 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3203 			}
3204 		}
3205 	}
3206 
3207 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3208 
3209 	return 0;
3210 }
3211 
3212 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3213 					     struct kvm_debugregs *dbgregs)
3214 {
3215 	unsigned long val;
3216 
3217 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3218 	kvm_get_dr(vcpu, 6, &val);
3219 	dbgregs->dr6 = val;
3220 	dbgregs->dr7 = vcpu->arch.dr7;
3221 	dbgregs->flags = 0;
3222 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3223 }
3224 
3225 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3226 					    struct kvm_debugregs *dbgregs)
3227 {
3228 	if (dbgregs->flags)
3229 		return -EINVAL;
3230 
3231 	if (dbgregs->dr6 & ~0xffffffffull)
3232 		return -EINVAL;
3233 	if (dbgregs->dr7 & ~0xffffffffull)
3234 		return -EINVAL;
3235 
3236 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3237 	kvm_update_dr0123(vcpu);
3238 	vcpu->arch.dr6 = dbgregs->dr6;
3239 	kvm_update_dr6(vcpu);
3240 	vcpu->arch.dr7 = dbgregs->dr7;
3241 	kvm_update_dr7(vcpu);
3242 
3243 	return 0;
3244 }
3245 
3246 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3247 
3248 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3249 {
3250 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3251 	u64 xstate_bv = xsave->header.xfeatures;
3252 	u64 valid;
3253 
3254 	/*
3255 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3256 	 * leaves 0 and 1 in the loop below.
3257 	 */
3258 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3259 
3260 	/* Set XSTATE_BV */
3261 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3262 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3263 
3264 	/*
3265 	 * Copy each region from the possibly compacted offset to the
3266 	 * non-compacted offset.
3267 	 */
3268 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3269 	while (valid) {
3270 		u64 feature = valid & -valid;
3271 		int index = fls64(feature) - 1;
3272 		void *src = get_xsave_addr(xsave, feature);
3273 
3274 		if (src) {
3275 			u32 size, offset, ecx, edx;
3276 			cpuid_count(XSTATE_CPUID, index,
3277 				    &size, &offset, &ecx, &edx);
3278 			if (feature == XFEATURE_MASK_PKRU)
3279 				memcpy(dest + offset, &vcpu->arch.pkru,
3280 				       sizeof(vcpu->arch.pkru));
3281 			else
3282 				memcpy(dest + offset, src, size);
3283 
3284 		}
3285 
3286 		valid -= feature;
3287 	}
3288 }
3289 
3290 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3291 {
3292 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3293 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3294 	u64 valid;
3295 
3296 	/*
3297 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3298 	 * leaves 0 and 1 in the loop below.
3299 	 */
3300 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3301 
3302 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3303 	xsave->header.xfeatures = xstate_bv;
3304 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3305 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3306 
3307 	/*
3308 	 * Copy each region from the non-compacted offset to the
3309 	 * possibly compacted offset.
3310 	 */
3311 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3312 	while (valid) {
3313 		u64 feature = valid & -valid;
3314 		int index = fls64(feature) - 1;
3315 		void *dest = get_xsave_addr(xsave, feature);
3316 
3317 		if (dest) {
3318 			u32 size, offset, ecx, edx;
3319 			cpuid_count(XSTATE_CPUID, index,
3320 				    &size, &offset, &ecx, &edx);
3321 			if (feature == XFEATURE_MASK_PKRU)
3322 				memcpy(&vcpu->arch.pkru, src + offset,
3323 				       sizeof(vcpu->arch.pkru));
3324 			else
3325 				memcpy(dest, src + offset, size);
3326 		}
3327 
3328 		valid -= feature;
3329 	}
3330 }
3331 
3332 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3333 					 struct kvm_xsave *guest_xsave)
3334 {
3335 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3336 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3337 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3338 	} else {
3339 		memcpy(guest_xsave->region,
3340 			&vcpu->arch.guest_fpu.state.fxsave,
3341 			sizeof(struct fxregs_state));
3342 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3343 			XFEATURE_MASK_FPSSE;
3344 	}
3345 }
3346 
3347 #define XSAVE_MXCSR_OFFSET 24
3348 
3349 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3350 					struct kvm_xsave *guest_xsave)
3351 {
3352 	u64 xstate_bv =
3353 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3354 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3355 
3356 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3357 		/*
3358 		 * Here we allow setting states that are not present in
3359 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3360 		 * with old userspace.
3361 		 */
3362 		if (xstate_bv & ~kvm_supported_xcr0() ||
3363 			mxcsr & ~mxcsr_feature_mask)
3364 			return -EINVAL;
3365 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3366 	} else {
3367 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3368 			mxcsr & ~mxcsr_feature_mask)
3369 			return -EINVAL;
3370 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3371 			guest_xsave->region, sizeof(struct fxregs_state));
3372 	}
3373 	return 0;
3374 }
3375 
3376 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3377 					struct kvm_xcrs *guest_xcrs)
3378 {
3379 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3380 		guest_xcrs->nr_xcrs = 0;
3381 		return;
3382 	}
3383 
3384 	guest_xcrs->nr_xcrs = 1;
3385 	guest_xcrs->flags = 0;
3386 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3387 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3388 }
3389 
3390 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3391 				       struct kvm_xcrs *guest_xcrs)
3392 {
3393 	int i, r = 0;
3394 
3395 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3396 		return -EINVAL;
3397 
3398 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3399 		return -EINVAL;
3400 
3401 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3402 		/* Only support XCR0 currently */
3403 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3404 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3405 				guest_xcrs->xcrs[i].value);
3406 			break;
3407 		}
3408 	if (r)
3409 		r = -EINVAL;
3410 	return r;
3411 }
3412 
3413 /*
3414  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3415  * stopped by the hypervisor.  This function will be called from the host only.
3416  * EINVAL is returned when the host attempts to set the flag for a guest that
3417  * does not support pv clocks.
3418  */
3419 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3420 {
3421 	if (!vcpu->arch.pv_time_enabled)
3422 		return -EINVAL;
3423 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3424 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3425 	return 0;
3426 }
3427 
3428 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3429 				     struct kvm_enable_cap *cap)
3430 {
3431 	if (cap->flags)
3432 		return -EINVAL;
3433 
3434 	switch (cap->cap) {
3435 	case KVM_CAP_HYPERV_SYNIC2:
3436 		if (cap->args[0])
3437 			return -EINVAL;
3438 	case KVM_CAP_HYPERV_SYNIC:
3439 		if (!irqchip_in_kernel(vcpu->kvm))
3440 			return -EINVAL;
3441 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3442 					     KVM_CAP_HYPERV_SYNIC2);
3443 	default:
3444 		return -EINVAL;
3445 	}
3446 }
3447 
3448 long kvm_arch_vcpu_ioctl(struct file *filp,
3449 			 unsigned int ioctl, unsigned long arg)
3450 {
3451 	struct kvm_vcpu *vcpu = filp->private_data;
3452 	void __user *argp = (void __user *)arg;
3453 	int r;
3454 	union {
3455 		struct kvm_lapic_state *lapic;
3456 		struct kvm_xsave *xsave;
3457 		struct kvm_xcrs *xcrs;
3458 		void *buffer;
3459 	} u;
3460 
3461 	u.buffer = NULL;
3462 	switch (ioctl) {
3463 	case KVM_GET_LAPIC: {
3464 		r = -EINVAL;
3465 		if (!lapic_in_kernel(vcpu))
3466 			goto out;
3467 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3468 
3469 		r = -ENOMEM;
3470 		if (!u.lapic)
3471 			goto out;
3472 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3473 		if (r)
3474 			goto out;
3475 		r = -EFAULT;
3476 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3477 			goto out;
3478 		r = 0;
3479 		break;
3480 	}
3481 	case KVM_SET_LAPIC: {
3482 		r = -EINVAL;
3483 		if (!lapic_in_kernel(vcpu))
3484 			goto out;
3485 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3486 		if (IS_ERR(u.lapic))
3487 			return PTR_ERR(u.lapic);
3488 
3489 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3490 		break;
3491 	}
3492 	case KVM_INTERRUPT: {
3493 		struct kvm_interrupt irq;
3494 
3495 		r = -EFAULT;
3496 		if (copy_from_user(&irq, argp, sizeof irq))
3497 			goto out;
3498 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3499 		break;
3500 	}
3501 	case KVM_NMI: {
3502 		r = kvm_vcpu_ioctl_nmi(vcpu);
3503 		break;
3504 	}
3505 	case KVM_SMI: {
3506 		r = kvm_vcpu_ioctl_smi(vcpu);
3507 		break;
3508 	}
3509 	case KVM_SET_CPUID: {
3510 		struct kvm_cpuid __user *cpuid_arg = argp;
3511 		struct kvm_cpuid cpuid;
3512 
3513 		r = -EFAULT;
3514 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3515 			goto out;
3516 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3517 		break;
3518 	}
3519 	case KVM_SET_CPUID2: {
3520 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3521 		struct kvm_cpuid2 cpuid;
3522 
3523 		r = -EFAULT;
3524 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3525 			goto out;
3526 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3527 					      cpuid_arg->entries);
3528 		break;
3529 	}
3530 	case KVM_GET_CPUID2: {
3531 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3532 		struct kvm_cpuid2 cpuid;
3533 
3534 		r = -EFAULT;
3535 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3536 			goto out;
3537 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3538 					      cpuid_arg->entries);
3539 		if (r)
3540 			goto out;
3541 		r = -EFAULT;
3542 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3543 			goto out;
3544 		r = 0;
3545 		break;
3546 	}
3547 	case KVM_GET_MSRS:
3548 		r = msr_io(vcpu, argp, do_get_msr, 1);
3549 		break;
3550 	case KVM_SET_MSRS:
3551 		r = msr_io(vcpu, argp, do_set_msr, 0);
3552 		break;
3553 	case KVM_TPR_ACCESS_REPORTING: {
3554 		struct kvm_tpr_access_ctl tac;
3555 
3556 		r = -EFAULT;
3557 		if (copy_from_user(&tac, argp, sizeof tac))
3558 			goto out;
3559 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3560 		if (r)
3561 			goto out;
3562 		r = -EFAULT;
3563 		if (copy_to_user(argp, &tac, sizeof tac))
3564 			goto out;
3565 		r = 0;
3566 		break;
3567 	};
3568 	case KVM_SET_VAPIC_ADDR: {
3569 		struct kvm_vapic_addr va;
3570 		int idx;
3571 
3572 		r = -EINVAL;
3573 		if (!lapic_in_kernel(vcpu))
3574 			goto out;
3575 		r = -EFAULT;
3576 		if (copy_from_user(&va, argp, sizeof va))
3577 			goto out;
3578 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3579 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3580 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3581 		break;
3582 	}
3583 	case KVM_X86_SETUP_MCE: {
3584 		u64 mcg_cap;
3585 
3586 		r = -EFAULT;
3587 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3588 			goto out;
3589 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3590 		break;
3591 	}
3592 	case KVM_X86_SET_MCE: {
3593 		struct kvm_x86_mce mce;
3594 
3595 		r = -EFAULT;
3596 		if (copy_from_user(&mce, argp, sizeof mce))
3597 			goto out;
3598 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3599 		break;
3600 	}
3601 	case KVM_GET_VCPU_EVENTS: {
3602 		struct kvm_vcpu_events events;
3603 
3604 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3605 
3606 		r = -EFAULT;
3607 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3608 			break;
3609 		r = 0;
3610 		break;
3611 	}
3612 	case KVM_SET_VCPU_EVENTS: {
3613 		struct kvm_vcpu_events events;
3614 
3615 		r = -EFAULT;
3616 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3617 			break;
3618 
3619 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3620 		break;
3621 	}
3622 	case KVM_GET_DEBUGREGS: {
3623 		struct kvm_debugregs dbgregs;
3624 
3625 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3626 
3627 		r = -EFAULT;
3628 		if (copy_to_user(argp, &dbgregs,
3629 				 sizeof(struct kvm_debugregs)))
3630 			break;
3631 		r = 0;
3632 		break;
3633 	}
3634 	case KVM_SET_DEBUGREGS: {
3635 		struct kvm_debugregs dbgregs;
3636 
3637 		r = -EFAULT;
3638 		if (copy_from_user(&dbgregs, argp,
3639 				   sizeof(struct kvm_debugregs)))
3640 			break;
3641 
3642 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3643 		break;
3644 	}
3645 	case KVM_GET_XSAVE: {
3646 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3647 		r = -ENOMEM;
3648 		if (!u.xsave)
3649 			break;
3650 
3651 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3652 
3653 		r = -EFAULT;
3654 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3655 			break;
3656 		r = 0;
3657 		break;
3658 	}
3659 	case KVM_SET_XSAVE: {
3660 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3661 		if (IS_ERR(u.xsave))
3662 			return PTR_ERR(u.xsave);
3663 
3664 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3665 		break;
3666 	}
3667 	case KVM_GET_XCRS: {
3668 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3669 		r = -ENOMEM;
3670 		if (!u.xcrs)
3671 			break;
3672 
3673 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3674 
3675 		r = -EFAULT;
3676 		if (copy_to_user(argp, u.xcrs,
3677 				 sizeof(struct kvm_xcrs)))
3678 			break;
3679 		r = 0;
3680 		break;
3681 	}
3682 	case KVM_SET_XCRS: {
3683 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3684 		if (IS_ERR(u.xcrs))
3685 			return PTR_ERR(u.xcrs);
3686 
3687 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3688 		break;
3689 	}
3690 	case KVM_SET_TSC_KHZ: {
3691 		u32 user_tsc_khz;
3692 
3693 		r = -EINVAL;
3694 		user_tsc_khz = (u32)arg;
3695 
3696 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3697 			goto out;
3698 
3699 		if (user_tsc_khz == 0)
3700 			user_tsc_khz = tsc_khz;
3701 
3702 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3703 			r = 0;
3704 
3705 		goto out;
3706 	}
3707 	case KVM_GET_TSC_KHZ: {
3708 		r = vcpu->arch.virtual_tsc_khz;
3709 		goto out;
3710 	}
3711 	case KVM_KVMCLOCK_CTRL: {
3712 		r = kvm_set_guest_paused(vcpu);
3713 		goto out;
3714 	}
3715 	case KVM_ENABLE_CAP: {
3716 		struct kvm_enable_cap cap;
3717 
3718 		r = -EFAULT;
3719 		if (copy_from_user(&cap, argp, sizeof(cap)))
3720 			goto out;
3721 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3722 		break;
3723 	}
3724 	default:
3725 		r = -EINVAL;
3726 	}
3727 out:
3728 	kfree(u.buffer);
3729 	return r;
3730 }
3731 
3732 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3733 {
3734 	return VM_FAULT_SIGBUS;
3735 }
3736 
3737 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3738 {
3739 	int ret;
3740 
3741 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3742 		return -EINVAL;
3743 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3744 	return ret;
3745 }
3746 
3747 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3748 					      u64 ident_addr)
3749 {
3750 	kvm->arch.ept_identity_map_addr = ident_addr;
3751 	return 0;
3752 }
3753 
3754 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3755 					  u32 kvm_nr_mmu_pages)
3756 {
3757 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3758 		return -EINVAL;
3759 
3760 	mutex_lock(&kvm->slots_lock);
3761 
3762 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3763 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3764 
3765 	mutex_unlock(&kvm->slots_lock);
3766 	return 0;
3767 }
3768 
3769 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3770 {
3771 	return kvm->arch.n_max_mmu_pages;
3772 }
3773 
3774 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3775 {
3776 	struct kvm_pic *pic = kvm->arch.vpic;
3777 	int r;
3778 
3779 	r = 0;
3780 	switch (chip->chip_id) {
3781 	case KVM_IRQCHIP_PIC_MASTER:
3782 		memcpy(&chip->chip.pic, &pic->pics[0],
3783 			sizeof(struct kvm_pic_state));
3784 		break;
3785 	case KVM_IRQCHIP_PIC_SLAVE:
3786 		memcpy(&chip->chip.pic, &pic->pics[1],
3787 			sizeof(struct kvm_pic_state));
3788 		break;
3789 	case KVM_IRQCHIP_IOAPIC:
3790 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
3791 		break;
3792 	default:
3793 		r = -EINVAL;
3794 		break;
3795 	}
3796 	return r;
3797 }
3798 
3799 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3800 {
3801 	struct kvm_pic *pic = kvm->arch.vpic;
3802 	int r;
3803 
3804 	r = 0;
3805 	switch (chip->chip_id) {
3806 	case KVM_IRQCHIP_PIC_MASTER:
3807 		spin_lock(&pic->lock);
3808 		memcpy(&pic->pics[0], &chip->chip.pic,
3809 			sizeof(struct kvm_pic_state));
3810 		spin_unlock(&pic->lock);
3811 		break;
3812 	case KVM_IRQCHIP_PIC_SLAVE:
3813 		spin_lock(&pic->lock);
3814 		memcpy(&pic->pics[1], &chip->chip.pic,
3815 			sizeof(struct kvm_pic_state));
3816 		spin_unlock(&pic->lock);
3817 		break;
3818 	case KVM_IRQCHIP_IOAPIC:
3819 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
3820 		break;
3821 	default:
3822 		r = -EINVAL;
3823 		break;
3824 	}
3825 	kvm_pic_update_irq(pic);
3826 	return r;
3827 }
3828 
3829 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3830 {
3831 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3832 
3833 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3834 
3835 	mutex_lock(&kps->lock);
3836 	memcpy(ps, &kps->channels, sizeof(*ps));
3837 	mutex_unlock(&kps->lock);
3838 	return 0;
3839 }
3840 
3841 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3842 {
3843 	int i;
3844 	struct kvm_pit *pit = kvm->arch.vpit;
3845 
3846 	mutex_lock(&pit->pit_state.lock);
3847 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3848 	for (i = 0; i < 3; i++)
3849 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3850 	mutex_unlock(&pit->pit_state.lock);
3851 	return 0;
3852 }
3853 
3854 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3855 {
3856 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3857 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3858 		sizeof(ps->channels));
3859 	ps->flags = kvm->arch.vpit->pit_state.flags;
3860 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3861 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3862 	return 0;
3863 }
3864 
3865 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3866 {
3867 	int start = 0;
3868 	int i;
3869 	u32 prev_legacy, cur_legacy;
3870 	struct kvm_pit *pit = kvm->arch.vpit;
3871 
3872 	mutex_lock(&pit->pit_state.lock);
3873 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3874 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3875 	if (!prev_legacy && cur_legacy)
3876 		start = 1;
3877 	memcpy(&pit->pit_state.channels, &ps->channels,
3878 	       sizeof(pit->pit_state.channels));
3879 	pit->pit_state.flags = ps->flags;
3880 	for (i = 0; i < 3; i++)
3881 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3882 				   start && i == 0);
3883 	mutex_unlock(&pit->pit_state.lock);
3884 	return 0;
3885 }
3886 
3887 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3888 				 struct kvm_reinject_control *control)
3889 {
3890 	struct kvm_pit *pit = kvm->arch.vpit;
3891 
3892 	if (!pit)
3893 		return -ENXIO;
3894 
3895 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3896 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3897 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3898 	 */
3899 	mutex_lock(&pit->pit_state.lock);
3900 	kvm_pit_set_reinject(pit, control->pit_reinject);
3901 	mutex_unlock(&pit->pit_state.lock);
3902 
3903 	return 0;
3904 }
3905 
3906 /**
3907  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3908  * @kvm: kvm instance
3909  * @log: slot id and address to which we copy the log
3910  *
3911  * Steps 1-4 below provide general overview of dirty page logging. See
3912  * kvm_get_dirty_log_protect() function description for additional details.
3913  *
3914  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3915  * always flush the TLB (step 4) even if previous step failed  and the dirty
3916  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3917  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3918  * writes will be marked dirty for next log read.
3919  *
3920  *   1. Take a snapshot of the bit and clear it if needed.
3921  *   2. Write protect the corresponding page.
3922  *   3. Copy the snapshot to the userspace.
3923  *   4. Flush TLB's if needed.
3924  */
3925 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3926 {
3927 	bool is_dirty = false;
3928 	int r;
3929 
3930 	mutex_lock(&kvm->slots_lock);
3931 
3932 	/*
3933 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3934 	 */
3935 	if (kvm_x86_ops->flush_log_dirty)
3936 		kvm_x86_ops->flush_log_dirty(kvm);
3937 
3938 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3939 
3940 	/*
3941 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3942 	 * kvm_mmu_slot_remove_write_access().
3943 	 */
3944 	lockdep_assert_held(&kvm->slots_lock);
3945 	if (is_dirty)
3946 		kvm_flush_remote_tlbs(kvm);
3947 
3948 	mutex_unlock(&kvm->slots_lock);
3949 	return r;
3950 }
3951 
3952 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3953 			bool line_status)
3954 {
3955 	if (!irqchip_in_kernel(kvm))
3956 		return -ENXIO;
3957 
3958 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3959 					irq_event->irq, irq_event->level,
3960 					line_status);
3961 	return 0;
3962 }
3963 
3964 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3965 				   struct kvm_enable_cap *cap)
3966 {
3967 	int r;
3968 
3969 	if (cap->flags)
3970 		return -EINVAL;
3971 
3972 	switch (cap->cap) {
3973 	case KVM_CAP_DISABLE_QUIRKS:
3974 		kvm->arch.disabled_quirks = cap->args[0];
3975 		r = 0;
3976 		break;
3977 	case KVM_CAP_SPLIT_IRQCHIP: {
3978 		mutex_lock(&kvm->lock);
3979 		r = -EINVAL;
3980 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3981 			goto split_irqchip_unlock;
3982 		r = -EEXIST;
3983 		if (irqchip_in_kernel(kvm))
3984 			goto split_irqchip_unlock;
3985 		if (kvm->created_vcpus)
3986 			goto split_irqchip_unlock;
3987 		r = kvm_setup_empty_irq_routing(kvm);
3988 		if (r)
3989 			goto split_irqchip_unlock;
3990 		/* Pairs with irqchip_in_kernel. */
3991 		smp_wmb();
3992 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3993 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3994 		r = 0;
3995 split_irqchip_unlock:
3996 		mutex_unlock(&kvm->lock);
3997 		break;
3998 	}
3999 	case KVM_CAP_X2APIC_API:
4000 		r = -EINVAL;
4001 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4002 			break;
4003 
4004 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4005 			kvm->arch.x2apic_format = true;
4006 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4007 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4008 
4009 		r = 0;
4010 		break;
4011 	default:
4012 		r = -EINVAL;
4013 		break;
4014 	}
4015 	return r;
4016 }
4017 
4018 long kvm_arch_vm_ioctl(struct file *filp,
4019 		       unsigned int ioctl, unsigned long arg)
4020 {
4021 	struct kvm *kvm = filp->private_data;
4022 	void __user *argp = (void __user *)arg;
4023 	int r = -ENOTTY;
4024 	/*
4025 	 * This union makes it completely explicit to gcc-3.x
4026 	 * that these two variables' stack usage should be
4027 	 * combined, not added together.
4028 	 */
4029 	union {
4030 		struct kvm_pit_state ps;
4031 		struct kvm_pit_state2 ps2;
4032 		struct kvm_pit_config pit_config;
4033 	} u;
4034 
4035 	switch (ioctl) {
4036 	case KVM_SET_TSS_ADDR:
4037 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4038 		break;
4039 	case KVM_SET_IDENTITY_MAP_ADDR: {
4040 		u64 ident_addr;
4041 
4042 		mutex_lock(&kvm->lock);
4043 		r = -EINVAL;
4044 		if (kvm->created_vcpus)
4045 			goto set_identity_unlock;
4046 		r = -EFAULT;
4047 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4048 			goto set_identity_unlock;
4049 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4050 set_identity_unlock:
4051 		mutex_unlock(&kvm->lock);
4052 		break;
4053 	}
4054 	case KVM_SET_NR_MMU_PAGES:
4055 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4056 		break;
4057 	case KVM_GET_NR_MMU_PAGES:
4058 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4059 		break;
4060 	case KVM_CREATE_IRQCHIP: {
4061 		mutex_lock(&kvm->lock);
4062 
4063 		r = -EEXIST;
4064 		if (irqchip_in_kernel(kvm))
4065 			goto create_irqchip_unlock;
4066 
4067 		r = -EINVAL;
4068 		if (kvm->created_vcpus)
4069 			goto create_irqchip_unlock;
4070 
4071 		r = kvm_pic_init(kvm);
4072 		if (r)
4073 			goto create_irqchip_unlock;
4074 
4075 		r = kvm_ioapic_init(kvm);
4076 		if (r) {
4077 			kvm_pic_destroy(kvm);
4078 			goto create_irqchip_unlock;
4079 		}
4080 
4081 		r = kvm_setup_default_irq_routing(kvm);
4082 		if (r) {
4083 			kvm_ioapic_destroy(kvm);
4084 			kvm_pic_destroy(kvm);
4085 			goto create_irqchip_unlock;
4086 		}
4087 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4088 		smp_wmb();
4089 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4090 	create_irqchip_unlock:
4091 		mutex_unlock(&kvm->lock);
4092 		break;
4093 	}
4094 	case KVM_CREATE_PIT:
4095 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4096 		goto create_pit;
4097 	case KVM_CREATE_PIT2:
4098 		r = -EFAULT;
4099 		if (copy_from_user(&u.pit_config, argp,
4100 				   sizeof(struct kvm_pit_config)))
4101 			goto out;
4102 	create_pit:
4103 		mutex_lock(&kvm->lock);
4104 		r = -EEXIST;
4105 		if (kvm->arch.vpit)
4106 			goto create_pit_unlock;
4107 		r = -ENOMEM;
4108 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4109 		if (kvm->arch.vpit)
4110 			r = 0;
4111 	create_pit_unlock:
4112 		mutex_unlock(&kvm->lock);
4113 		break;
4114 	case KVM_GET_IRQCHIP: {
4115 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4116 		struct kvm_irqchip *chip;
4117 
4118 		chip = memdup_user(argp, sizeof(*chip));
4119 		if (IS_ERR(chip)) {
4120 			r = PTR_ERR(chip);
4121 			goto out;
4122 		}
4123 
4124 		r = -ENXIO;
4125 		if (!irqchip_kernel(kvm))
4126 			goto get_irqchip_out;
4127 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4128 		if (r)
4129 			goto get_irqchip_out;
4130 		r = -EFAULT;
4131 		if (copy_to_user(argp, chip, sizeof *chip))
4132 			goto get_irqchip_out;
4133 		r = 0;
4134 	get_irqchip_out:
4135 		kfree(chip);
4136 		break;
4137 	}
4138 	case KVM_SET_IRQCHIP: {
4139 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4140 		struct kvm_irqchip *chip;
4141 
4142 		chip = memdup_user(argp, sizeof(*chip));
4143 		if (IS_ERR(chip)) {
4144 			r = PTR_ERR(chip);
4145 			goto out;
4146 		}
4147 
4148 		r = -ENXIO;
4149 		if (!irqchip_kernel(kvm))
4150 			goto set_irqchip_out;
4151 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4152 		if (r)
4153 			goto set_irqchip_out;
4154 		r = 0;
4155 	set_irqchip_out:
4156 		kfree(chip);
4157 		break;
4158 	}
4159 	case KVM_GET_PIT: {
4160 		r = -EFAULT;
4161 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4162 			goto out;
4163 		r = -ENXIO;
4164 		if (!kvm->arch.vpit)
4165 			goto out;
4166 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4167 		if (r)
4168 			goto out;
4169 		r = -EFAULT;
4170 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4171 			goto out;
4172 		r = 0;
4173 		break;
4174 	}
4175 	case KVM_SET_PIT: {
4176 		r = -EFAULT;
4177 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4178 			goto out;
4179 		r = -ENXIO;
4180 		if (!kvm->arch.vpit)
4181 			goto out;
4182 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4183 		break;
4184 	}
4185 	case KVM_GET_PIT2: {
4186 		r = -ENXIO;
4187 		if (!kvm->arch.vpit)
4188 			goto out;
4189 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4190 		if (r)
4191 			goto out;
4192 		r = -EFAULT;
4193 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4194 			goto out;
4195 		r = 0;
4196 		break;
4197 	}
4198 	case KVM_SET_PIT2: {
4199 		r = -EFAULT;
4200 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4201 			goto out;
4202 		r = -ENXIO;
4203 		if (!kvm->arch.vpit)
4204 			goto out;
4205 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4206 		break;
4207 	}
4208 	case KVM_REINJECT_CONTROL: {
4209 		struct kvm_reinject_control control;
4210 		r =  -EFAULT;
4211 		if (copy_from_user(&control, argp, sizeof(control)))
4212 			goto out;
4213 		r = kvm_vm_ioctl_reinject(kvm, &control);
4214 		break;
4215 	}
4216 	case KVM_SET_BOOT_CPU_ID:
4217 		r = 0;
4218 		mutex_lock(&kvm->lock);
4219 		if (kvm->created_vcpus)
4220 			r = -EBUSY;
4221 		else
4222 			kvm->arch.bsp_vcpu_id = arg;
4223 		mutex_unlock(&kvm->lock);
4224 		break;
4225 	case KVM_XEN_HVM_CONFIG: {
4226 		r = -EFAULT;
4227 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4228 				   sizeof(struct kvm_xen_hvm_config)))
4229 			goto out;
4230 		r = -EINVAL;
4231 		if (kvm->arch.xen_hvm_config.flags)
4232 			goto out;
4233 		r = 0;
4234 		break;
4235 	}
4236 	case KVM_SET_CLOCK: {
4237 		struct kvm_clock_data user_ns;
4238 		u64 now_ns;
4239 
4240 		r = -EFAULT;
4241 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4242 			goto out;
4243 
4244 		r = -EINVAL;
4245 		if (user_ns.flags)
4246 			goto out;
4247 
4248 		r = 0;
4249 		/*
4250 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4251 		 * kvm_gen_update_masterclock() can be cut down to locked
4252 		 * pvclock_update_vm_gtod_copy().
4253 		 */
4254 		kvm_gen_update_masterclock(kvm);
4255 		now_ns = get_kvmclock_ns(kvm);
4256 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4257 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4258 		break;
4259 	}
4260 	case KVM_GET_CLOCK: {
4261 		struct kvm_clock_data user_ns;
4262 		u64 now_ns;
4263 
4264 		now_ns = get_kvmclock_ns(kvm);
4265 		user_ns.clock = now_ns;
4266 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4267 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4268 
4269 		r = -EFAULT;
4270 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4271 			goto out;
4272 		r = 0;
4273 		break;
4274 	}
4275 	case KVM_ENABLE_CAP: {
4276 		struct kvm_enable_cap cap;
4277 
4278 		r = -EFAULT;
4279 		if (copy_from_user(&cap, argp, sizeof(cap)))
4280 			goto out;
4281 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4282 		break;
4283 	}
4284 	default:
4285 		r = -ENOTTY;
4286 	}
4287 out:
4288 	return r;
4289 }
4290 
4291 static void kvm_init_msr_list(void)
4292 {
4293 	u32 dummy[2];
4294 	unsigned i, j;
4295 
4296 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4297 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4298 			continue;
4299 
4300 		/*
4301 		 * Even MSRs that are valid in the host may not be exposed
4302 		 * to the guests in some cases.
4303 		 */
4304 		switch (msrs_to_save[i]) {
4305 		case MSR_IA32_BNDCFGS:
4306 			if (!kvm_x86_ops->mpx_supported())
4307 				continue;
4308 			break;
4309 		case MSR_TSC_AUX:
4310 			if (!kvm_x86_ops->rdtscp_supported())
4311 				continue;
4312 			break;
4313 		default:
4314 			break;
4315 		}
4316 
4317 		if (j < i)
4318 			msrs_to_save[j] = msrs_to_save[i];
4319 		j++;
4320 	}
4321 	num_msrs_to_save = j;
4322 
4323 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4324 		switch (emulated_msrs[i]) {
4325 		case MSR_IA32_SMBASE:
4326 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4327 				continue;
4328 			break;
4329 		default:
4330 			break;
4331 		}
4332 
4333 		if (j < i)
4334 			emulated_msrs[j] = emulated_msrs[i];
4335 		j++;
4336 	}
4337 	num_emulated_msrs = j;
4338 }
4339 
4340 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4341 			   const void *v)
4342 {
4343 	int handled = 0;
4344 	int n;
4345 
4346 	do {
4347 		n = min(len, 8);
4348 		if (!(lapic_in_kernel(vcpu) &&
4349 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4350 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4351 			break;
4352 		handled += n;
4353 		addr += n;
4354 		len -= n;
4355 		v += n;
4356 	} while (len);
4357 
4358 	return handled;
4359 }
4360 
4361 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4362 {
4363 	int handled = 0;
4364 	int n;
4365 
4366 	do {
4367 		n = min(len, 8);
4368 		if (!(lapic_in_kernel(vcpu) &&
4369 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4370 					 addr, n, v))
4371 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4372 			break;
4373 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4374 		handled += n;
4375 		addr += n;
4376 		len -= n;
4377 		v += n;
4378 	} while (len);
4379 
4380 	return handled;
4381 }
4382 
4383 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4384 			struct kvm_segment *var, int seg)
4385 {
4386 	kvm_x86_ops->set_segment(vcpu, var, seg);
4387 }
4388 
4389 void kvm_get_segment(struct kvm_vcpu *vcpu,
4390 		     struct kvm_segment *var, int seg)
4391 {
4392 	kvm_x86_ops->get_segment(vcpu, var, seg);
4393 }
4394 
4395 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4396 			   struct x86_exception *exception)
4397 {
4398 	gpa_t t_gpa;
4399 
4400 	BUG_ON(!mmu_is_nested(vcpu));
4401 
4402 	/* NPT walks are always user-walks */
4403 	access |= PFERR_USER_MASK;
4404 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4405 
4406 	return t_gpa;
4407 }
4408 
4409 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4410 			      struct x86_exception *exception)
4411 {
4412 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4413 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4414 }
4415 
4416  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4417 				struct x86_exception *exception)
4418 {
4419 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4420 	access |= PFERR_FETCH_MASK;
4421 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4422 }
4423 
4424 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4425 			       struct x86_exception *exception)
4426 {
4427 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4428 	access |= PFERR_WRITE_MASK;
4429 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4430 }
4431 
4432 /* uses this to access any guest's mapped memory without checking CPL */
4433 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4434 				struct x86_exception *exception)
4435 {
4436 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4437 }
4438 
4439 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4440 				      struct kvm_vcpu *vcpu, u32 access,
4441 				      struct x86_exception *exception)
4442 {
4443 	void *data = val;
4444 	int r = X86EMUL_CONTINUE;
4445 
4446 	while (bytes) {
4447 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4448 							    exception);
4449 		unsigned offset = addr & (PAGE_SIZE-1);
4450 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4451 		int ret;
4452 
4453 		if (gpa == UNMAPPED_GVA)
4454 			return X86EMUL_PROPAGATE_FAULT;
4455 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4456 					       offset, toread);
4457 		if (ret < 0) {
4458 			r = X86EMUL_IO_NEEDED;
4459 			goto out;
4460 		}
4461 
4462 		bytes -= toread;
4463 		data += toread;
4464 		addr += toread;
4465 	}
4466 out:
4467 	return r;
4468 }
4469 
4470 /* used for instruction fetching */
4471 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4472 				gva_t addr, void *val, unsigned int bytes,
4473 				struct x86_exception *exception)
4474 {
4475 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4477 	unsigned offset;
4478 	int ret;
4479 
4480 	/* Inline kvm_read_guest_virt_helper for speed.  */
4481 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4482 						    exception);
4483 	if (unlikely(gpa == UNMAPPED_GVA))
4484 		return X86EMUL_PROPAGATE_FAULT;
4485 
4486 	offset = addr & (PAGE_SIZE-1);
4487 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4488 		bytes = (unsigned)PAGE_SIZE - offset;
4489 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4490 				       offset, bytes);
4491 	if (unlikely(ret < 0))
4492 		return X86EMUL_IO_NEEDED;
4493 
4494 	return X86EMUL_CONTINUE;
4495 }
4496 
4497 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4498 			       gva_t addr, void *val, unsigned int bytes,
4499 			       struct x86_exception *exception)
4500 {
4501 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4502 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4503 
4504 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4505 					  exception);
4506 }
4507 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4508 
4509 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4510 				      gva_t addr, void *val, unsigned int bytes,
4511 				      struct x86_exception *exception)
4512 {
4513 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4514 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4515 }
4516 
4517 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4518 		unsigned long addr, void *val, unsigned int bytes)
4519 {
4520 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4522 
4523 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4524 }
4525 
4526 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4527 				       gva_t addr, void *val,
4528 				       unsigned int bytes,
4529 				       struct x86_exception *exception)
4530 {
4531 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4532 	void *data = val;
4533 	int r = X86EMUL_CONTINUE;
4534 
4535 	while (bytes) {
4536 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4537 							     PFERR_WRITE_MASK,
4538 							     exception);
4539 		unsigned offset = addr & (PAGE_SIZE-1);
4540 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4541 		int ret;
4542 
4543 		if (gpa == UNMAPPED_GVA)
4544 			return X86EMUL_PROPAGATE_FAULT;
4545 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4546 		if (ret < 0) {
4547 			r = X86EMUL_IO_NEEDED;
4548 			goto out;
4549 		}
4550 
4551 		bytes -= towrite;
4552 		data += towrite;
4553 		addr += towrite;
4554 	}
4555 out:
4556 	return r;
4557 }
4558 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4559 
4560 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4561 			    gpa_t gpa, bool write)
4562 {
4563 	/* For APIC access vmexit */
4564 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4565 		return 1;
4566 
4567 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4568 		trace_vcpu_match_mmio(gva, gpa, write, true);
4569 		return 1;
4570 	}
4571 
4572 	return 0;
4573 }
4574 
4575 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4576 				gpa_t *gpa, struct x86_exception *exception,
4577 				bool write)
4578 {
4579 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4580 		| (write ? PFERR_WRITE_MASK : 0);
4581 
4582 	/*
4583 	 * currently PKRU is only applied to ept enabled guest so
4584 	 * there is no pkey in EPT page table for L1 guest or EPT
4585 	 * shadow page table for L2 guest.
4586 	 */
4587 	if (vcpu_match_mmio_gva(vcpu, gva)
4588 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4589 				 vcpu->arch.access, 0, access)) {
4590 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4591 					(gva & (PAGE_SIZE - 1));
4592 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4593 		return 1;
4594 	}
4595 
4596 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4597 
4598 	if (*gpa == UNMAPPED_GVA)
4599 		return -1;
4600 
4601 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4602 }
4603 
4604 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4605 			const void *val, int bytes)
4606 {
4607 	int ret;
4608 
4609 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4610 	if (ret < 0)
4611 		return 0;
4612 	kvm_page_track_write(vcpu, gpa, val, bytes);
4613 	return 1;
4614 }
4615 
4616 struct read_write_emulator_ops {
4617 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4618 				  int bytes);
4619 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4620 				  void *val, int bytes);
4621 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4622 			       int bytes, void *val);
4623 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4624 				    void *val, int bytes);
4625 	bool write;
4626 };
4627 
4628 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4629 {
4630 	if (vcpu->mmio_read_completed) {
4631 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4632 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4633 		vcpu->mmio_read_completed = 0;
4634 		return 1;
4635 	}
4636 
4637 	return 0;
4638 }
4639 
4640 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4641 			void *val, int bytes)
4642 {
4643 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4644 }
4645 
4646 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4647 			 void *val, int bytes)
4648 {
4649 	return emulator_write_phys(vcpu, gpa, val, bytes);
4650 }
4651 
4652 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4653 {
4654 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4655 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4656 }
4657 
4658 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4659 			  void *val, int bytes)
4660 {
4661 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4662 	return X86EMUL_IO_NEEDED;
4663 }
4664 
4665 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4666 			   void *val, int bytes)
4667 {
4668 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4669 
4670 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4671 	return X86EMUL_CONTINUE;
4672 }
4673 
4674 static const struct read_write_emulator_ops read_emultor = {
4675 	.read_write_prepare = read_prepare,
4676 	.read_write_emulate = read_emulate,
4677 	.read_write_mmio = vcpu_mmio_read,
4678 	.read_write_exit_mmio = read_exit_mmio,
4679 };
4680 
4681 static const struct read_write_emulator_ops write_emultor = {
4682 	.read_write_emulate = write_emulate,
4683 	.read_write_mmio = write_mmio,
4684 	.read_write_exit_mmio = write_exit_mmio,
4685 	.write = true,
4686 };
4687 
4688 static int emulator_read_write_onepage(unsigned long addr, void *val,
4689 				       unsigned int bytes,
4690 				       struct x86_exception *exception,
4691 				       struct kvm_vcpu *vcpu,
4692 				       const struct read_write_emulator_ops *ops)
4693 {
4694 	gpa_t gpa;
4695 	int handled, ret;
4696 	bool write = ops->write;
4697 	struct kvm_mmio_fragment *frag;
4698 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4699 
4700 	/*
4701 	 * If the exit was due to a NPF we may already have a GPA.
4702 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4703 	 * Note, this cannot be used on string operations since string
4704 	 * operation using rep will only have the initial GPA from the NPF
4705 	 * occurred.
4706 	 */
4707 	if (vcpu->arch.gpa_available &&
4708 	    emulator_can_use_gpa(ctxt) &&
4709 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4710 		gpa = vcpu->arch.gpa_val;
4711 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4712 	} else {
4713 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4714 		if (ret < 0)
4715 			return X86EMUL_PROPAGATE_FAULT;
4716 	}
4717 
4718 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4719 		return X86EMUL_CONTINUE;
4720 
4721 	/*
4722 	 * Is this MMIO handled locally?
4723 	 */
4724 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4725 	if (handled == bytes)
4726 		return X86EMUL_CONTINUE;
4727 
4728 	gpa += handled;
4729 	bytes -= handled;
4730 	val += handled;
4731 
4732 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4733 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4734 	frag->gpa = gpa;
4735 	frag->data = val;
4736 	frag->len = bytes;
4737 	return X86EMUL_CONTINUE;
4738 }
4739 
4740 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4741 			unsigned long addr,
4742 			void *val, unsigned int bytes,
4743 			struct x86_exception *exception,
4744 			const struct read_write_emulator_ops *ops)
4745 {
4746 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4747 	gpa_t gpa;
4748 	int rc;
4749 
4750 	if (ops->read_write_prepare &&
4751 		  ops->read_write_prepare(vcpu, val, bytes))
4752 		return X86EMUL_CONTINUE;
4753 
4754 	vcpu->mmio_nr_fragments = 0;
4755 
4756 	/* Crossing a page boundary? */
4757 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4758 		int now;
4759 
4760 		now = -addr & ~PAGE_MASK;
4761 		rc = emulator_read_write_onepage(addr, val, now, exception,
4762 						 vcpu, ops);
4763 
4764 		if (rc != X86EMUL_CONTINUE)
4765 			return rc;
4766 		addr += now;
4767 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4768 			addr = (u32)addr;
4769 		val += now;
4770 		bytes -= now;
4771 	}
4772 
4773 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4774 					 vcpu, ops);
4775 	if (rc != X86EMUL_CONTINUE)
4776 		return rc;
4777 
4778 	if (!vcpu->mmio_nr_fragments)
4779 		return rc;
4780 
4781 	gpa = vcpu->mmio_fragments[0].gpa;
4782 
4783 	vcpu->mmio_needed = 1;
4784 	vcpu->mmio_cur_fragment = 0;
4785 
4786 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4787 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4788 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4789 	vcpu->run->mmio.phys_addr = gpa;
4790 
4791 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4792 }
4793 
4794 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4795 				  unsigned long addr,
4796 				  void *val,
4797 				  unsigned int bytes,
4798 				  struct x86_exception *exception)
4799 {
4800 	return emulator_read_write(ctxt, addr, val, bytes,
4801 				   exception, &read_emultor);
4802 }
4803 
4804 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4805 			    unsigned long addr,
4806 			    const void *val,
4807 			    unsigned int bytes,
4808 			    struct x86_exception *exception)
4809 {
4810 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4811 				   exception, &write_emultor);
4812 }
4813 
4814 #define CMPXCHG_TYPE(t, ptr, old, new) \
4815 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4816 
4817 #ifdef CONFIG_X86_64
4818 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4819 #else
4820 #  define CMPXCHG64(ptr, old, new) \
4821 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4822 #endif
4823 
4824 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4825 				     unsigned long addr,
4826 				     const void *old,
4827 				     const void *new,
4828 				     unsigned int bytes,
4829 				     struct x86_exception *exception)
4830 {
4831 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4832 	gpa_t gpa;
4833 	struct page *page;
4834 	char *kaddr;
4835 	bool exchanged;
4836 
4837 	/* guests cmpxchg8b have to be emulated atomically */
4838 	if (bytes > 8 || (bytes & (bytes - 1)))
4839 		goto emul_write;
4840 
4841 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4842 
4843 	if (gpa == UNMAPPED_GVA ||
4844 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4845 		goto emul_write;
4846 
4847 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4848 		goto emul_write;
4849 
4850 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4851 	if (is_error_page(page))
4852 		goto emul_write;
4853 
4854 	kaddr = kmap_atomic(page);
4855 	kaddr += offset_in_page(gpa);
4856 	switch (bytes) {
4857 	case 1:
4858 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4859 		break;
4860 	case 2:
4861 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4862 		break;
4863 	case 4:
4864 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4865 		break;
4866 	case 8:
4867 		exchanged = CMPXCHG64(kaddr, old, new);
4868 		break;
4869 	default:
4870 		BUG();
4871 	}
4872 	kunmap_atomic(kaddr);
4873 	kvm_release_page_dirty(page);
4874 
4875 	if (!exchanged)
4876 		return X86EMUL_CMPXCHG_FAILED;
4877 
4878 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4879 	kvm_page_track_write(vcpu, gpa, new, bytes);
4880 
4881 	return X86EMUL_CONTINUE;
4882 
4883 emul_write:
4884 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4885 
4886 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4887 }
4888 
4889 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4890 {
4891 	int r = 0, i;
4892 
4893 	for (i = 0; i < vcpu->arch.pio.count; i++) {
4894 		if (vcpu->arch.pio.in)
4895 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4896 					    vcpu->arch.pio.size, pd);
4897 		else
4898 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4899 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
4900 					     pd);
4901 		if (r)
4902 			break;
4903 		pd += vcpu->arch.pio.size;
4904 	}
4905 	return r;
4906 }
4907 
4908 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4909 			       unsigned short port, void *val,
4910 			       unsigned int count, bool in)
4911 {
4912 	vcpu->arch.pio.port = port;
4913 	vcpu->arch.pio.in = in;
4914 	vcpu->arch.pio.count  = count;
4915 	vcpu->arch.pio.size = size;
4916 
4917 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4918 		vcpu->arch.pio.count = 0;
4919 		return 1;
4920 	}
4921 
4922 	vcpu->run->exit_reason = KVM_EXIT_IO;
4923 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4924 	vcpu->run->io.size = size;
4925 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4926 	vcpu->run->io.count = count;
4927 	vcpu->run->io.port = port;
4928 
4929 	return 0;
4930 }
4931 
4932 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4933 				    int size, unsigned short port, void *val,
4934 				    unsigned int count)
4935 {
4936 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4937 	int ret;
4938 
4939 	if (vcpu->arch.pio.count)
4940 		goto data_avail;
4941 
4942 	memset(vcpu->arch.pio_data, 0, size * count);
4943 
4944 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4945 	if (ret) {
4946 data_avail:
4947 		memcpy(val, vcpu->arch.pio_data, size * count);
4948 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4949 		vcpu->arch.pio.count = 0;
4950 		return 1;
4951 	}
4952 
4953 	return 0;
4954 }
4955 
4956 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4957 				     int size, unsigned short port,
4958 				     const void *val, unsigned int count)
4959 {
4960 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961 
4962 	memcpy(vcpu->arch.pio_data, val, size * count);
4963 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4964 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4965 }
4966 
4967 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4968 {
4969 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4970 }
4971 
4972 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4973 {
4974 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4975 }
4976 
4977 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4978 {
4979 	if (!need_emulate_wbinvd(vcpu))
4980 		return X86EMUL_CONTINUE;
4981 
4982 	if (kvm_x86_ops->has_wbinvd_exit()) {
4983 		int cpu = get_cpu();
4984 
4985 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4986 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4987 				wbinvd_ipi, NULL, 1);
4988 		put_cpu();
4989 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4990 	} else
4991 		wbinvd();
4992 	return X86EMUL_CONTINUE;
4993 }
4994 
4995 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4996 {
4997 	kvm_emulate_wbinvd_noskip(vcpu);
4998 	return kvm_skip_emulated_instruction(vcpu);
4999 }
5000 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5001 
5002 
5003 
5004 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5005 {
5006 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5007 }
5008 
5009 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5010 			   unsigned long *dest)
5011 {
5012 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5013 }
5014 
5015 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5016 			   unsigned long value)
5017 {
5018 
5019 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5020 }
5021 
5022 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5023 {
5024 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5025 }
5026 
5027 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5028 {
5029 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5030 	unsigned long value;
5031 
5032 	switch (cr) {
5033 	case 0:
5034 		value = kvm_read_cr0(vcpu);
5035 		break;
5036 	case 2:
5037 		value = vcpu->arch.cr2;
5038 		break;
5039 	case 3:
5040 		value = kvm_read_cr3(vcpu);
5041 		break;
5042 	case 4:
5043 		value = kvm_read_cr4(vcpu);
5044 		break;
5045 	case 8:
5046 		value = kvm_get_cr8(vcpu);
5047 		break;
5048 	default:
5049 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5050 		return 0;
5051 	}
5052 
5053 	return value;
5054 }
5055 
5056 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5057 {
5058 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5059 	int res = 0;
5060 
5061 	switch (cr) {
5062 	case 0:
5063 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5064 		break;
5065 	case 2:
5066 		vcpu->arch.cr2 = val;
5067 		break;
5068 	case 3:
5069 		res = kvm_set_cr3(vcpu, val);
5070 		break;
5071 	case 4:
5072 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5073 		break;
5074 	case 8:
5075 		res = kvm_set_cr8(vcpu, val);
5076 		break;
5077 	default:
5078 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5079 		res = -1;
5080 	}
5081 
5082 	return res;
5083 }
5084 
5085 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5086 {
5087 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5088 }
5089 
5090 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5091 {
5092 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5093 }
5094 
5095 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5096 {
5097 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5098 }
5099 
5100 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5101 {
5102 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5103 }
5104 
5105 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5106 {
5107 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5108 }
5109 
5110 static unsigned long emulator_get_cached_segment_base(
5111 	struct x86_emulate_ctxt *ctxt, int seg)
5112 {
5113 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5114 }
5115 
5116 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5117 				 struct desc_struct *desc, u32 *base3,
5118 				 int seg)
5119 {
5120 	struct kvm_segment var;
5121 
5122 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5123 	*selector = var.selector;
5124 
5125 	if (var.unusable) {
5126 		memset(desc, 0, sizeof(*desc));
5127 		if (base3)
5128 			*base3 = 0;
5129 		return false;
5130 	}
5131 
5132 	if (var.g)
5133 		var.limit >>= 12;
5134 	set_desc_limit(desc, var.limit);
5135 	set_desc_base(desc, (unsigned long)var.base);
5136 #ifdef CONFIG_X86_64
5137 	if (base3)
5138 		*base3 = var.base >> 32;
5139 #endif
5140 	desc->type = var.type;
5141 	desc->s = var.s;
5142 	desc->dpl = var.dpl;
5143 	desc->p = var.present;
5144 	desc->avl = var.avl;
5145 	desc->l = var.l;
5146 	desc->d = var.db;
5147 	desc->g = var.g;
5148 
5149 	return true;
5150 }
5151 
5152 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5153 				 struct desc_struct *desc, u32 base3,
5154 				 int seg)
5155 {
5156 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5157 	struct kvm_segment var;
5158 
5159 	var.selector = selector;
5160 	var.base = get_desc_base(desc);
5161 #ifdef CONFIG_X86_64
5162 	var.base |= ((u64)base3) << 32;
5163 #endif
5164 	var.limit = get_desc_limit(desc);
5165 	if (desc->g)
5166 		var.limit = (var.limit << 12) | 0xfff;
5167 	var.type = desc->type;
5168 	var.dpl = desc->dpl;
5169 	var.db = desc->d;
5170 	var.s = desc->s;
5171 	var.l = desc->l;
5172 	var.g = desc->g;
5173 	var.avl = desc->avl;
5174 	var.present = desc->p;
5175 	var.unusable = !var.present;
5176 	var.padding = 0;
5177 
5178 	kvm_set_segment(vcpu, &var, seg);
5179 	return;
5180 }
5181 
5182 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5183 			    u32 msr_index, u64 *pdata)
5184 {
5185 	struct msr_data msr;
5186 	int r;
5187 
5188 	msr.index = msr_index;
5189 	msr.host_initiated = false;
5190 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5191 	if (r)
5192 		return r;
5193 
5194 	*pdata = msr.data;
5195 	return 0;
5196 }
5197 
5198 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5199 			    u32 msr_index, u64 data)
5200 {
5201 	struct msr_data msr;
5202 
5203 	msr.data = data;
5204 	msr.index = msr_index;
5205 	msr.host_initiated = false;
5206 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5207 }
5208 
5209 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5210 {
5211 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5212 
5213 	return vcpu->arch.smbase;
5214 }
5215 
5216 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5217 {
5218 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5219 
5220 	vcpu->arch.smbase = smbase;
5221 }
5222 
5223 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5224 			      u32 pmc)
5225 {
5226 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5227 }
5228 
5229 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5230 			     u32 pmc, u64 *pdata)
5231 {
5232 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5233 }
5234 
5235 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5236 {
5237 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5238 }
5239 
5240 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5241 {
5242 	preempt_disable();
5243 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5244 }
5245 
5246 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5247 {
5248 	preempt_enable();
5249 }
5250 
5251 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5252 			      struct x86_instruction_info *info,
5253 			      enum x86_intercept_stage stage)
5254 {
5255 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5256 }
5257 
5258 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5259 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5260 {
5261 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5262 }
5263 
5264 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5265 {
5266 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5267 }
5268 
5269 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5270 {
5271 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5272 }
5273 
5274 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5275 {
5276 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5277 }
5278 
5279 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5280 {
5281 	return emul_to_vcpu(ctxt)->arch.hflags;
5282 }
5283 
5284 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5285 {
5286 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5287 }
5288 
5289 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5290 {
5291 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5292 }
5293 
5294 static const struct x86_emulate_ops emulate_ops = {
5295 	.read_gpr            = emulator_read_gpr,
5296 	.write_gpr           = emulator_write_gpr,
5297 	.read_std            = kvm_read_guest_virt_system,
5298 	.write_std           = kvm_write_guest_virt_system,
5299 	.read_phys           = kvm_read_guest_phys_system,
5300 	.fetch               = kvm_fetch_guest_virt,
5301 	.read_emulated       = emulator_read_emulated,
5302 	.write_emulated      = emulator_write_emulated,
5303 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5304 	.invlpg              = emulator_invlpg,
5305 	.pio_in_emulated     = emulator_pio_in_emulated,
5306 	.pio_out_emulated    = emulator_pio_out_emulated,
5307 	.get_segment         = emulator_get_segment,
5308 	.set_segment         = emulator_set_segment,
5309 	.get_cached_segment_base = emulator_get_cached_segment_base,
5310 	.get_gdt             = emulator_get_gdt,
5311 	.get_idt	     = emulator_get_idt,
5312 	.set_gdt             = emulator_set_gdt,
5313 	.set_idt	     = emulator_set_idt,
5314 	.get_cr              = emulator_get_cr,
5315 	.set_cr              = emulator_set_cr,
5316 	.cpl                 = emulator_get_cpl,
5317 	.get_dr              = emulator_get_dr,
5318 	.set_dr              = emulator_set_dr,
5319 	.get_smbase          = emulator_get_smbase,
5320 	.set_smbase          = emulator_set_smbase,
5321 	.set_msr             = emulator_set_msr,
5322 	.get_msr             = emulator_get_msr,
5323 	.check_pmc	     = emulator_check_pmc,
5324 	.read_pmc            = emulator_read_pmc,
5325 	.halt                = emulator_halt,
5326 	.wbinvd              = emulator_wbinvd,
5327 	.fix_hypercall       = emulator_fix_hypercall,
5328 	.get_fpu             = emulator_get_fpu,
5329 	.put_fpu             = emulator_put_fpu,
5330 	.intercept           = emulator_intercept,
5331 	.get_cpuid           = emulator_get_cpuid,
5332 	.set_nmi_mask        = emulator_set_nmi_mask,
5333 	.get_hflags          = emulator_get_hflags,
5334 	.set_hflags          = emulator_set_hflags,
5335 	.pre_leave_smm       = emulator_pre_leave_smm,
5336 };
5337 
5338 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5339 {
5340 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5341 	/*
5342 	 * an sti; sti; sequence only disable interrupts for the first
5343 	 * instruction. So, if the last instruction, be it emulated or
5344 	 * not, left the system with the INT_STI flag enabled, it
5345 	 * means that the last instruction is an sti. We should not
5346 	 * leave the flag on in this case. The same goes for mov ss
5347 	 */
5348 	if (int_shadow & mask)
5349 		mask = 0;
5350 	if (unlikely(int_shadow || mask)) {
5351 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5352 		if (!mask)
5353 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5354 	}
5355 }
5356 
5357 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5358 {
5359 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5360 	if (ctxt->exception.vector == PF_VECTOR)
5361 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5362 
5363 	if (ctxt->exception.error_code_valid)
5364 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5365 				      ctxt->exception.error_code);
5366 	else
5367 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5368 	return false;
5369 }
5370 
5371 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5372 {
5373 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5374 	int cs_db, cs_l;
5375 
5376 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5377 
5378 	ctxt->eflags = kvm_get_rflags(vcpu);
5379 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5380 
5381 	ctxt->eip = kvm_rip_read(vcpu);
5382 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5383 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5384 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5385 		     cs_db				? X86EMUL_MODE_PROT32 :
5386 							  X86EMUL_MODE_PROT16;
5387 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5388 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5389 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5390 
5391 	init_decode_cache(ctxt);
5392 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5393 }
5394 
5395 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5396 {
5397 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5398 	int ret;
5399 
5400 	init_emulate_ctxt(vcpu);
5401 
5402 	ctxt->op_bytes = 2;
5403 	ctxt->ad_bytes = 2;
5404 	ctxt->_eip = ctxt->eip + inc_eip;
5405 	ret = emulate_int_real(ctxt, irq);
5406 
5407 	if (ret != X86EMUL_CONTINUE)
5408 		return EMULATE_FAIL;
5409 
5410 	ctxt->eip = ctxt->_eip;
5411 	kvm_rip_write(vcpu, ctxt->eip);
5412 	kvm_set_rflags(vcpu, ctxt->eflags);
5413 
5414 	if (irq == NMI_VECTOR)
5415 		vcpu->arch.nmi_pending = 0;
5416 	else
5417 		vcpu->arch.interrupt.pending = false;
5418 
5419 	return EMULATE_DONE;
5420 }
5421 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5422 
5423 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5424 {
5425 	int r = EMULATE_DONE;
5426 
5427 	++vcpu->stat.insn_emulation_fail;
5428 	trace_kvm_emulate_insn_failed(vcpu);
5429 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5430 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5431 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5432 		vcpu->run->internal.ndata = 0;
5433 		r = EMULATE_FAIL;
5434 	}
5435 	kvm_queue_exception(vcpu, UD_VECTOR);
5436 
5437 	return r;
5438 }
5439 
5440 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5441 				  bool write_fault_to_shadow_pgtable,
5442 				  int emulation_type)
5443 {
5444 	gpa_t gpa = cr2;
5445 	kvm_pfn_t pfn;
5446 
5447 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5448 		return false;
5449 
5450 	if (!vcpu->arch.mmu.direct_map) {
5451 		/*
5452 		 * Write permission should be allowed since only
5453 		 * write access need to be emulated.
5454 		 */
5455 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5456 
5457 		/*
5458 		 * If the mapping is invalid in guest, let cpu retry
5459 		 * it to generate fault.
5460 		 */
5461 		if (gpa == UNMAPPED_GVA)
5462 			return true;
5463 	}
5464 
5465 	/*
5466 	 * Do not retry the unhandleable instruction if it faults on the
5467 	 * readonly host memory, otherwise it will goto a infinite loop:
5468 	 * retry instruction -> write #PF -> emulation fail -> retry
5469 	 * instruction -> ...
5470 	 */
5471 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5472 
5473 	/*
5474 	 * If the instruction failed on the error pfn, it can not be fixed,
5475 	 * report the error to userspace.
5476 	 */
5477 	if (is_error_noslot_pfn(pfn))
5478 		return false;
5479 
5480 	kvm_release_pfn_clean(pfn);
5481 
5482 	/* The instructions are well-emulated on direct mmu. */
5483 	if (vcpu->arch.mmu.direct_map) {
5484 		unsigned int indirect_shadow_pages;
5485 
5486 		spin_lock(&vcpu->kvm->mmu_lock);
5487 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5488 		spin_unlock(&vcpu->kvm->mmu_lock);
5489 
5490 		if (indirect_shadow_pages)
5491 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5492 
5493 		return true;
5494 	}
5495 
5496 	/*
5497 	 * if emulation was due to access to shadowed page table
5498 	 * and it failed try to unshadow page and re-enter the
5499 	 * guest to let CPU execute the instruction.
5500 	 */
5501 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5502 
5503 	/*
5504 	 * If the access faults on its page table, it can not
5505 	 * be fixed by unprotecting shadow page and it should
5506 	 * be reported to userspace.
5507 	 */
5508 	return !write_fault_to_shadow_pgtable;
5509 }
5510 
5511 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5512 			      unsigned long cr2,  int emulation_type)
5513 {
5514 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5515 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5516 
5517 	last_retry_eip = vcpu->arch.last_retry_eip;
5518 	last_retry_addr = vcpu->arch.last_retry_addr;
5519 
5520 	/*
5521 	 * If the emulation is caused by #PF and it is non-page_table
5522 	 * writing instruction, it means the VM-EXIT is caused by shadow
5523 	 * page protected, we can zap the shadow page and retry this
5524 	 * instruction directly.
5525 	 *
5526 	 * Note: if the guest uses a non-page-table modifying instruction
5527 	 * on the PDE that points to the instruction, then we will unmap
5528 	 * the instruction and go to an infinite loop. So, we cache the
5529 	 * last retried eip and the last fault address, if we meet the eip
5530 	 * and the address again, we can break out of the potential infinite
5531 	 * loop.
5532 	 */
5533 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5534 
5535 	if (!(emulation_type & EMULTYPE_RETRY))
5536 		return false;
5537 
5538 	if (x86_page_table_writing_insn(ctxt))
5539 		return false;
5540 
5541 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5542 		return false;
5543 
5544 	vcpu->arch.last_retry_eip = ctxt->eip;
5545 	vcpu->arch.last_retry_addr = cr2;
5546 
5547 	if (!vcpu->arch.mmu.direct_map)
5548 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5549 
5550 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5551 
5552 	return true;
5553 }
5554 
5555 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5556 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5557 
5558 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5559 {
5560 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5561 		/* This is a good place to trace that we are exiting SMM.  */
5562 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5563 
5564 		/* Process a latched INIT or SMI, if any.  */
5565 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5566 	}
5567 
5568 	kvm_mmu_reset_context(vcpu);
5569 }
5570 
5571 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5572 {
5573 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5574 
5575 	vcpu->arch.hflags = emul_flags;
5576 
5577 	if (changed & HF_SMM_MASK)
5578 		kvm_smm_changed(vcpu);
5579 }
5580 
5581 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5582 				unsigned long *db)
5583 {
5584 	u32 dr6 = 0;
5585 	int i;
5586 	u32 enable, rwlen;
5587 
5588 	enable = dr7;
5589 	rwlen = dr7 >> 16;
5590 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5591 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5592 			dr6 |= (1 << i);
5593 	return dr6;
5594 }
5595 
5596 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5597 {
5598 	struct kvm_run *kvm_run = vcpu->run;
5599 
5600 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5601 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5602 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5603 		kvm_run->debug.arch.exception = DB_VECTOR;
5604 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5605 		*r = EMULATE_USER_EXIT;
5606 	} else {
5607 		/*
5608 		 * "Certain debug exceptions may clear bit 0-3.  The
5609 		 * remaining contents of the DR6 register are never
5610 		 * cleared by the processor".
5611 		 */
5612 		vcpu->arch.dr6 &= ~15;
5613 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5614 		kvm_queue_exception(vcpu, DB_VECTOR);
5615 	}
5616 }
5617 
5618 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5619 {
5620 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5621 	int r = EMULATE_DONE;
5622 
5623 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5624 
5625 	/*
5626 	 * rflags is the old, "raw" value of the flags.  The new value has
5627 	 * not been saved yet.
5628 	 *
5629 	 * This is correct even for TF set by the guest, because "the
5630 	 * processor will not generate this exception after the instruction
5631 	 * that sets the TF flag".
5632 	 */
5633 	if (unlikely(rflags & X86_EFLAGS_TF))
5634 		kvm_vcpu_do_singlestep(vcpu, &r);
5635 	return r == EMULATE_DONE;
5636 }
5637 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5638 
5639 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5640 {
5641 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5642 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5643 		struct kvm_run *kvm_run = vcpu->run;
5644 		unsigned long eip = kvm_get_linear_rip(vcpu);
5645 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5646 					   vcpu->arch.guest_debug_dr7,
5647 					   vcpu->arch.eff_db);
5648 
5649 		if (dr6 != 0) {
5650 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5651 			kvm_run->debug.arch.pc = eip;
5652 			kvm_run->debug.arch.exception = DB_VECTOR;
5653 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5654 			*r = EMULATE_USER_EXIT;
5655 			return true;
5656 		}
5657 	}
5658 
5659 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5660 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5661 		unsigned long eip = kvm_get_linear_rip(vcpu);
5662 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5663 					   vcpu->arch.dr7,
5664 					   vcpu->arch.db);
5665 
5666 		if (dr6 != 0) {
5667 			vcpu->arch.dr6 &= ~15;
5668 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5669 			kvm_queue_exception(vcpu, DB_VECTOR);
5670 			*r = EMULATE_DONE;
5671 			return true;
5672 		}
5673 	}
5674 
5675 	return false;
5676 }
5677 
5678 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5679 			    unsigned long cr2,
5680 			    int emulation_type,
5681 			    void *insn,
5682 			    int insn_len)
5683 {
5684 	int r;
5685 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5686 	bool writeback = true;
5687 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5688 
5689 	/*
5690 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5691 	 * never reused.
5692 	 */
5693 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5694 	kvm_clear_exception_queue(vcpu);
5695 
5696 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5697 		init_emulate_ctxt(vcpu);
5698 
5699 		/*
5700 		 * We will reenter on the same instruction since
5701 		 * we do not set complete_userspace_io.  This does not
5702 		 * handle watchpoints yet, those would be handled in
5703 		 * the emulate_ops.
5704 		 */
5705 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5706 			return r;
5707 
5708 		ctxt->interruptibility = 0;
5709 		ctxt->have_exception = false;
5710 		ctxt->exception.vector = -1;
5711 		ctxt->perm_ok = false;
5712 
5713 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5714 
5715 		r = x86_decode_insn(ctxt, insn, insn_len);
5716 
5717 		trace_kvm_emulate_insn_start(vcpu);
5718 		++vcpu->stat.insn_emulation;
5719 		if (r != EMULATION_OK)  {
5720 			if (emulation_type & EMULTYPE_TRAP_UD)
5721 				return EMULATE_FAIL;
5722 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5723 						emulation_type))
5724 				return EMULATE_DONE;
5725 			if (emulation_type & EMULTYPE_SKIP)
5726 				return EMULATE_FAIL;
5727 			return handle_emulation_failure(vcpu);
5728 		}
5729 	}
5730 
5731 	if (emulation_type & EMULTYPE_SKIP) {
5732 		kvm_rip_write(vcpu, ctxt->_eip);
5733 		if (ctxt->eflags & X86_EFLAGS_RF)
5734 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5735 		return EMULATE_DONE;
5736 	}
5737 
5738 	if (retry_instruction(ctxt, cr2, emulation_type))
5739 		return EMULATE_DONE;
5740 
5741 	/* this is needed for vmware backdoor interface to work since it
5742 	   changes registers values  during IO operation */
5743 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5744 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5745 		emulator_invalidate_register_cache(ctxt);
5746 	}
5747 
5748 restart:
5749 	/* Save the faulting GPA (cr2) in the address field */
5750 	ctxt->exception.address = cr2;
5751 
5752 	r = x86_emulate_insn(ctxt);
5753 
5754 	if (r == EMULATION_INTERCEPTED)
5755 		return EMULATE_DONE;
5756 
5757 	if (r == EMULATION_FAILED) {
5758 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5759 					emulation_type))
5760 			return EMULATE_DONE;
5761 
5762 		return handle_emulation_failure(vcpu);
5763 	}
5764 
5765 	if (ctxt->have_exception) {
5766 		r = EMULATE_DONE;
5767 		if (inject_emulated_exception(vcpu))
5768 			return r;
5769 	} else if (vcpu->arch.pio.count) {
5770 		if (!vcpu->arch.pio.in) {
5771 			/* FIXME: return into emulator if single-stepping.  */
5772 			vcpu->arch.pio.count = 0;
5773 		} else {
5774 			writeback = false;
5775 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5776 		}
5777 		r = EMULATE_USER_EXIT;
5778 	} else if (vcpu->mmio_needed) {
5779 		if (!vcpu->mmio_is_write)
5780 			writeback = false;
5781 		r = EMULATE_USER_EXIT;
5782 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5783 	} else if (r == EMULATION_RESTART)
5784 		goto restart;
5785 	else
5786 		r = EMULATE_DONE;
5787 
5788 	if (writeback) {
5789 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5790 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5791 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5792 		kvm_rip_write(vcpu, ctxt->eip);
5793 		if (r == EMULATE_DONE &&
5794 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5795 			kvm_vcpu_do_singlestep(vcpu, &r);
5796 		if (!ctxt->have_exception ||
5797 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5798 			__kvm_set_rflags(vcpu, ctxt->eflags);
5799 
5800 		/*
5801 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5802 		 * do nothing, and it will be requested again as soon as
5803 		 * the shadow expires.  But we still need to check here,
5804 		 * because POPF has no interrupt shadow.
5805 		 */
5806 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5807 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5808 	} else
5809 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5810 
5811 	return r;
5812 }
5813 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5814 
5815 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5816 {
5817 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5818 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5819 					    size, port, &val, 1);
5820 	/* do not return to emulator after return from userspace */
5821 	vcpu->arch.pio.count = 0;
5822 	return ret;
5823 }
5824 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5825 
5826 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5827 {
5828 	unsigned long val;
5829 
5830 	/* We should only ever be called with arch.pio.count equal to 1 */
5831 	BUG_ON(vcpu->arch.pio.count != 1);
5832 
5833 	/* For size less than 4 we merge, else we zero extend */
5834 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5835 					: 0;
5836 
5837 	/*
5838 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5839 	 * the copy and tracing
5840 	 */
5841 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5842 				 vcpu->arch.pio.port, &val, 1);
5843 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5844 
5845 	return 1;
5846 }
5847 
5848 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5849 {
5850 	unsigned long val;
5851 	int ret;
5852 
5853 	/* For size less than 4 we merge, else we zero extend */
5854 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5855 
5856 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5857 				       &val, 1);
5858 	if (ret) {
5859 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5860 		return ret;
5861 	}
5862 
5863 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5864 
5865 	return 0;
5866 }
5867 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5868 
5869 static int kvmclock_cpu_down_prep(unsigned int cpu)
5870 {
5871 	__this_cpu_write(cpu_tsc_khz, 0);
5872 	return 0;
5873 }
5874 
5875 static void tsc_khz_changed(void *data)
5876 {
5877 	struct cpufreq_freqs *freq = data;
5878 	unsigned long khz = 0;
5879 
5880 	if (data)
5881 		khz = freq->new;
5882 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5883 		khz = cpufreq_quick_get(raw_smp_processor_id());
5884 	if (!khz)
5885 		khz = tsc_khz;
5886 	__this_cpu_write(cpu_tsc_khz, khz);
5887 }
5888 
5889 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5890 				     void *data)
5891 {
5892 	struct cpufreq_freqs *freq = data;
5893 	struct kvm *kvm;
5894 	struct kvm_vcpu *vcpu;
5895 	int i, send_ipi = 0;
5896 
5897 	/*
5898 	 * We allow guests to temporarily run on slowing clocks,
5899 	 * provided we notify them after, or to run on accelerating
5900 	 * clocks, provided we notify them before.  Thus time never
5901 	 * goes backwards.
5902 	 *
5903 	 * However, we have a problem.  We can't atomically update
5904 	 * the frequency of a given CPU from this function; it is
5905 	 * merely a notifier, which can be called from any CPU.
5906 	 * Changing the TSC frequency at arbitrary points in time
5907 	 * requires a recomputation of local variables related to
5908 	 * the TSC for each VCPU.  We must flag these local variables
5909 	 * to be updated and be sure the update takes place with the
5910 	 * new frequency before any guests proceed.
5911 	 *
5912 	 * Unfortunately, the combination of hotplug CPU and frequency
5913 	 * change creates an intractable locking scenario; the order
5914 	 * of when these callouts happen is undefined with respect to
5915 	 * CPU hotplug, and they can race with each other.  As such,
5916 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5917 	 * undefined; you can actually have a CPU frequency change take
5918 	 * place in between the computation of X and the setting of the
5919 	 * variable.  To protect against this problem, all updates of
5920 	 * the per_cpu tsc_khz variable are done in an interrupt
5921 	 * protected IPI, and all callers wishing to update the value
5922 	 * must wait for a synchronous IPI to complete (which is trivial
5923 	 * if the caller is on the CPU already).  This establishes the
5924 	 * necessary total order on variable updates.
5925 	 *
5926 	 * Note that because a guest time update may take place
5927 	 * anytime after the setting of the VCPU's request bit, the
5928 	 * correct TSC value must be set before the request.  However,
5929 	 * to ensure the update actually makes it to any guest which
5930 	 * starts running in hardware virtualization between the set
5931 	 * and the acquisition of the spinlock, we must also ping the
5932 	 * CPU after setting the request bit.
5933 	 *
5934 	 */
5935 
5936 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5937 		return 0;
5938 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5939 		return 0;
5940 
5941 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5942 
5943 	spin_lock(&kvm_lock);
5944 	list_for_each_entry(kvm, &vm_list, vm_list) {
5945 		kvm_for_each_vcpu(i, vcpu, kvm) {
5946 			if (vcpu->cpu != freq->cpu)
5947 				continue;
5948 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5949 			if (vcpu->cpu != smp_processor_id())
5950 				send_ipi = 1;
5951 		}
5952 	}
5953 	spin_unlock(&kvm_lock);
5954 
5955 	if (freq->old < freq->new && send_ipi) {
5956 		/*
5957 		 * We upscale the frequency.  Must make the guest
5958 		 * doesn't see old kvmclock values while running with
5959 		 * the new frequency, otherwise we risk the guest sees
5960 		 * time go backwards.
5961 		 *
5962 		 * In case we update the frequency for another cpu
5963 		 * (which might be in guest context) send an interrupt
5964 		 * to kick the cpu out of guest context.  Next time
5965 		 * guest context is entered kvmclock will be updated,
5966 		 * so the guest will not see stale values.
5967 		 */
5968 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5969 	}
5970 	return 0;
5971 }
5972 
5973 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5974 	.notifier_call  = kvmclock_cpufreq_notifier
5975 };
5976 
5977 static int kvmclock_cpu_online(unsigned int cpu)
5978 {
5979 	tsc_khz_changed(NULL);
5980 	return 0;
5981 }
5982 
5983 static void kvm_timer_init(void)
5984 {
5985 	max_tsc_khz = tsc_khz;
5986 
5987 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5988 #ifdef CONFIG_CPU_FREQ
5989 		struct cpufreq_policy policy;
5990 		int cpu;
5991 
5992 		memset(&policy, 0, sizeof(policy));
5993 		cpu = get_cpu();
5994 		cpufreq_get_policy(&policy, cpu);
5995 		if (policy.cpuinfo.max_freq)
5996 			max_tsc_khz = policy.cpuinfo.max_freq;
5997 		put_cpu();
5998 #endif
5999 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6000 					  CPUFREQ_TRANSITION_NOTIFIER);
6001 	}
6002 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6003 
6004 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6005 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6006 }
6007 
6008 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6009 
6010 int kvm_is_in_guest(void)
6011 {
6012 	return __this_cpu_read(current_vcpu) != NULL;
6013 }
6014 
6015 static int kvm_is_user_mode(void)
6016 {
6017 	int user_mode = 3;
6018 
6019 	if (__this_cpu_read(current_vcpu))
6020 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6021 
6022 	return user_mode != 0;
6023 }
6024 
6025 static unsigned long kvm_get_guest_ip(void)
6026 {
6027 	unsigned long ip = 0;
6028 
6029 	if (__this_cpu_read(current_vcpu))
6030 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6031 
6032 	return ip;
6033 }
6034 
6035 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6036 	.is_in_guest		= kvm_is_in_guest,
6037 	.is_user_mode		= kvm_is_user_mode,
6038 	.get_guest_ip		= kvm_get_guest_ip,
6039 };
6040 
6041 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6042 {
6043 	__this_cpu_write(current_vcpu, vcpu);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6046 
6047 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6048 {
6049 	__this_cpu_write(current_vcpu, NULL);
6050 }
6051 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6052 
6053 static void kvm_set_mmio_spte_mask(void)
6054 {
6055 	u64 mask;
6056 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6057 
6058 	/*
6059 	 * Set the reserved bits and the present bit of an paging-structure
6060 	 * entry to generate page fault with PFER.RSV = 1.
6061 	 */
6062 	 /* Mask the reserved physical address bits. */
6063 	mask = rsvd_bits(maxphyaddr, 51);
6064 
6065 	/* Set the present bit. */
6066 	mask |= 1ull;
6067 
6068 #ifdef CONFIG_X86_64
6069 	/*
6070 	 * If reserved bit is not supported, clear the present bit to disable
6071 	 * mmio page fault.
6072 	 */
6073 	if (maxphyaddr == 52)
6074 		mask &= ~1ull;
6075 #endif
6076 
6077 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6078 }
6079 
6080 #ifdef CONFIG_X86_64
6081 static void pvclock_gtod_update_fn(struct work_struct *work)
6082 {
6083 	struct kvm *kvm;
6084 
6085 	struct kvm_vcpu *vcpu;
6086 	int i;
6087 
6088 	spin_lock(&kvm_lock);
6089 	list_for_each_entry(kvm, &vm_list, vm_list)
6090 		kvm_for_each_vcpu(i, vcpu, kvm)
6091 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6092 	atomic_set(&kvm_guest_has_master_clock, 0);
6093 	spin_unlock(&kvm_lock);
6094 }
6095 
6096 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6097 
6098 /*
6099  * Notification about pvclock gtod data update.
6100  */
6101 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6102 			       void *priv)
6103 {
6104 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6105 	struct timekeeper *tk = priv;
6106 
6107 	update_pvclock_gtod(tk);
6108 
6109 	/* disable master clock if host does not trust, or does not
6110 	 * use, TSC clocksource
6111 	 */
6112 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6113 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6114 		queue_work(system_long_wq, &pvclock_gtod_work);
6115 
6116 	return 0;
6117 }
6118 
6119 static struct notifier_block pvclock_gtod_notifier = {
6120 	.notifier_call = pvclock_gtod_notify,
6121 };
6122 #endif
6123 
6124 int kvm_arch_init(void *opaque)
6125 {
6126 	int r;
6127 	struct kvm_x86_ops *ops = opaque;
6128 
6129 	if (kvm_x86_ops) {
6130 		printk(KERN_ERR "kvm: already loaded the other module\n");
6131 		r = -EEXIST;
6132 		goto out;
6133 	}
6134 
6135 	if (!ops->cpu_has_kvm_support()) {
6136 		printk(KERN_ERR "kvm: no hardware support\n");
6137 		r = -EOPNOTSUPP;
6138 		goto out;
6139 	}
6140 	if (ops->disabled_by_bios()) {
6141 		printk(KERN_ERR "kvm: disabled by bios\n");
6142 		r = -EOPNOTSUPP;
6143 		goto out;
6144 	}
6145 
6146 	r = -ENOMEM;
6147 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6148 	if (!shared_msrs) {
6149 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6150 		goto out;
6151 	}
6152 
6153 	r = kvm_mmu_module_init();
6154 	if (r)
6155 		goto out_free_percpu;
6156 
6157 	kvm_set_mmio_spte_mask();
6158 
6159 	kvm_x86_ops = ops;
6160 
6161 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6162 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6163 			PT_PRESENT_MASK, 0, sme_me_mask);
6164 	kvm_timer_init();
6165 
6166 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6167 
6168 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6169 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6170 
6171 	kvm_lapic_init();
6172 #ifdef CONFIG_X86_64
6173 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6174 #endif
6175 
6176 	return 0;
6177 
6178 out_free_percpu:
6179 	free_percpu(shared_msrs);
6180 out:
6181 	return r;
6182 }
6183 
6184 void kvm_arch_exit(void)
6185 {
6186 	kvm_lapic_exit();
6187 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6188 
6189 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6190 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6191 					    CPUFREQ_TRANSITION_NOTIFIER);
6192 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6193 #ifdef CONFIG_X86_64
6194 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6195 #endif
6196 	kvm_x86_ops = NULL;
6197 	kvm_mmu_module_exit();
6198 	free_percpu(shared_msrs);
6199 }
6200 
6201 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6202 {
6203 	++vcpu->stat.halt_exits;
6204 	if (lapic_in_kernel(vcpu)) {
6205 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6206 		return 1;
6207 	} else {
6208 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6209 		return 0;
6210 	}
6211 }
6212 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6213 
6214 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6215 {
6216 	int ret = kvm_skip_emulated_instruction(vcpu);
6217 	/*
6218 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6219 	 * KVM_EXIT_DEBUG here.
6220 	 */
6221 	return kvm_vcpu_halt(vcpu) && ret;
6222 }
6223 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6224 
6225 #ifdef CONFIG_X86_64
6226 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6227 			        unsigned long clock_type)
6228 {
6229 	struct kvm_clock_pairing clock_pairing;
6230 	struct timespec ts;
6231 	u64 cycle;
6232 	int ret;
6233 
6234 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6235 		return -KVM_EOPNOTSUPP;
6236 
6237 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6238 		return -KVM_EOPNOTSUPP;
6239 
6240 	clock_pairing.sec = ts.tv_sec;
6241 	clock_pairing.nsec = ts.tv_nsec;
6242 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6243 	clock_pairing.flags = 0;
6244 
6245 	ret = 0;
6246 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6247 			    sizeof(struct kvm_clock_pairing)))
6248 		ret = -KVM_EFAULT;
6249 
6250 	return ret;
6251 }
6252 #endif
6253 
6254 /*
6255  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6256  *
6257  * @apicid - apicid of vcpu to be kicked.
6258  */
6259 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6260 {
6261 	struct kvm_lapic_irq lapic_irq;
6262 
6263 	lapic_irq.shorthand = 0;
6264 	lapic_irq.dest_mode = 0;
6265 	lapic_irq.level = 0;
6266 	lapic_irq.dest_id = apicid;
6267 	lapic_irq.msi_redir_hint = false;
6268 
6269 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6270 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6271 }
6272 
6273 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6274 {
6275 	vcpu->arch.apicv_active = false;
6276 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6277 }
6278 
6279 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6280 {
6281 	unsigned long nr, a0, a1, a2, a3, ret;
6282 	int op_64_bit, r;
6283 
6284 	r = kvm_skip_emulated_instruction(vcpu);
6285 
6286 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6287 		return kvm_hv_hypercall(vcpu);
6288 
6289 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6290 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6291 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6292 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6293 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6294 
6295 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6296 
6297 	op_64_bit = is_64_bit_mode(vcpu);
6298 	if (!op_64_bit) {
6299 		nr &= 0xFFFFFFFF;
6300 		a0 &= 0xFFFFFFFF;
6301 		a1 &= 0xFFFFFFFF;
6302 		a2 &= 0xFFFFFFFF;
6303 		a3 &= 0xFFFFFFFF;
6304 	}
6305 
6306 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6307 		ret = -KVM_EPERM;
6308 		goto out;
6309 	}
6310 
6311 	switch (nr) {
6312 	case KVM_HC_VAPIC_POLL_IRQ:
6313 		ret = 0;
6314 		break;
6315 	case KVM_HC_KICK_CPU:
6316 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6317 		ret = 0;
6318 		break;
6319 #ifdef CONFIG_X86_64
6320 	case KVM_HC_CLOCK_PAIRING:
6321 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6322 		break;
6323 #endif
6324 	default:
6325 		ret = -KVM_ENOSYS;
6326 		break;
6327 	}
6328 out:
6329 	if (!op_64_bit)
6330 		ret = (u32)ret;
6331 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6332 	++vcpu->stat.hypercalls;
6333 	return r;
6334 }
6335 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6336 
6337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6338 {
6339 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6340 	char instruction[3];
6341 	unsigned long rip = kvm_rip_read(vcpu);
6342 
6343 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6344 
6345 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6346 		&ctxt->exception);
6347 }
6348 
6349 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6350 {
6351 	return vcpu->run->request_interrupt_window &&
6352 		likely(!pic_in_kernel(vcpu->kvm));
6353 }
6354 
6355 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6356 {
6357 	struct kvm_run *kvm_run = vcpu->run;
6358 
6359 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6360 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6361 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6362 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6363 	kvm_run->ready_for_interrupt_injection =
6364 		pic_in_kernel(vcpu->kvm) ||
6365 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6366 }
6367 
6368 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6369 {
6370 	int max_irr, tpr;
6371 
6372 	if (!kvm_x86_ops->update_cr8_intercept)
6373 		return;
6374 
6375 	if (!lapic_in_kernel(vcpu))
6376 		return;
6377 
6378 	if (vcpu->arch.apicv_active)
6379 		return;
6380 
6381 	if (!vcpu->arch.apic->vapic_addr)
6382 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6383 	else
6384 		max_irr = -1;
6385 
6386 	if (max_irr != -1)
6387 		max_irr >>= 4;
6388 
6389 	tpr = kvm_lapic_get_cr8(vcpu);
6390 
6391 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6392 }
6393 
6394 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6395 {
6396 	int r;
6397 
6398 	/* try to reinject previous events if any */
6399 	if (vcpu->arch.exception.injected) {
6400 		kvm_x86_ops->queue_exception(vcpu);
6401 		return 0;
6402 	}
6403 
6404 	/*
6405 	 * Exceptions must be injected immediately, or the exception
6406 	 * frame will have the address of the NMI or interrupt handler.
6407 	 */
6408 	if (!vcpu->arch.exception.pending) {
6409 		if (vcpu->arch.nmi_injected) {
6410 			kvm_x86_ops->set_nmi(vcpu);
6411 			return 0;
6412 		}
6413 
6414 		if (vcpu->arch.interrupt.pending) {
6415 			kvm_x86_ops->set_irq(vcpu);
6416 			return 0;
6417 		}
6418 	}
6419 
6420 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6421 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6422 		if (r != 0)
6423 			return r;
6424 	}
6425 
6426 	/* try to inject new event if pending */
6427 	if (vcpu->arch.exception.pending) {
6428 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6429 					vcpu->arch.exception.has_error_code,
6430 					vcpu->arch.exception.error_code);
6431 
6432 		vcpu->arch.exception.pending = false;
6433 		vcpu->arch.exception.injected = true;
6434 
6435 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6436 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6437 					     X86_EFLAGS_RF);
6438 
6439 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6440 		    (vcpu->arch.dr7 & DR7_GD)) {
6441 			vcpu->arch.dr7 &= ~DR7_GD;
6442 			kvm_update_dr7(vcpu);
6443 		}
6444 
6445 		kvm_x86_ops->queue_exception(vcpu);
6446 	} else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6447 		vcpu->arch.smi_pending = false;
6448 		enter_smm(vcpu);
6449 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6450 		--vcpu->arch.nmi_pending;
6451 		vcpu->arch.nmi_injected = true;
6452 		kvm_x86_ops->set_nmi(vcpu);
6453 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6454 		/*
6455 		 * Because interrupts can be injected asynchronously, we are
6456 		 * calling check_nested_events again here to avoid a race condition.
6457 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6458 		 * proposal and current concerns.  Perhaps we should be setting
6459 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6460 		 */
6461 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6462 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6463 			if (r != 0)
6464 				return r;
6465 		}
6466 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6467 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6468 					    false);
6469 			kvm_x86_ops->set_irq(vcpu);
6470 		}
6471 	}
6472 
6473 	return 0;
6474 }
6475 
6476 static void process_nmi(struct kvm_vcpu *vcpu)
6477 {
6478 	unsigned limit = 2;
6479 
6480 	/*
6481 	 * x86 is limited to one NMI running, and one NMI pending after it.
6482 	 * If an NMI is already in progress, limit further NMIs to just one.
6483 	 * Otherwise, allow two (and we'll inject the first one immediately).
6484 	 */
6485 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6486 		limit = 1;
6487 
6488 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6489 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6490 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6491 }
6492 
6493 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6494 {
6495 	u32 flags = 0;
6496 	flags |= seg->g       << 23;
6497 	flags |= seg->db      << 22;
6498 	flags |= seg->l       << 21;
6499 	flags |= seg->avl     << 20;
6500 	flags |= seg->present << 15;
6501 	flags |= seg->dpl     << 13;
6502 	flags |= seg->s       << 12;
6503 	flags |= seg->type    << 8;
6504 	return flags;
6505 }
6506 
6507 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6508 {
6509 	struct kvm_segment seg;
6510 	int offset;
6511 
6512 	kvm_get_segment(vcpu, &seg, n);
6513 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6514 
6515 	if (n < 3)
6516 		offset = 0x7f84 + n * 12;
6517 	else
6518 		offset = 0x7f2c + (n - 3) * 12;
6519 
6520 	put_smstate(u32, buf, offset + 8, seg.base);
6521 	put_smstate(u32, buf, offset + 4, seg.limit);
6522 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6523 }
6524 
6525 #ifdef CONFIG_X86_64
6526 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6527 {
6528 	struct kvm_segment seg;
6529 	int offset;
6530 	u16 flags;
6531 
6532 	kvm_get_segment(vcpu, &seg, n);
6533 	offset = 0x7e00 + n * 16;
6534 
6535 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6536 	put_smstate(u16, buf, offset, seg.selector);
6537 	put_smstate(u16, buf, offset + 2, flags);
6538 	put_smstate(u32, buf, offset + 4, seg.limit);
6539 	put_smstate(u64, buf, offset + 8, seg.base);
6540 }
6541 #endif
6542 
6543 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6544 {
6545 	struct desc_ptr dt;
6546 	struct kvm_segment seg;
6547 	unsigned long val;
6548 	int i;
6549 
6550 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6551 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6552 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6553 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6554 
6555 	for (i = 0; i < 8; i++)
6556 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6557 
6558 	kvm_get_dr(vcpu, 6, &val);
6559 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6560 	kvm_get_dr(vcpu, 7, &val);
6561 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6562 
6563 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6564 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6565 	put_smstate(u32, buf, 0x7f64, seg.base);
6566 	put_smstate(u32, buf, 0x7f60, seg.limit);
6567 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6568 
6569 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6570 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6571 	put_smstate(u32, buf, 0x7f80, seg.base);
6572 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6573 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6574 
6575 	kvm_x86_ops->get_gdt(vcpu, &dt);
6576 	put_smstate(u32, buf, 0x7f74, dt.address);
6577 	put_smstate(u32, buf, 0x7f70, dt.size);
6578 
6579 	kvm_x86_ops->get_idt(vcpu, &dt);
6580 	put_smstate(u32, buf, 0x7f58, dt.address);
6581 	put_smstate(u32, buf, 0x7f54, dt.size);
6582 
6583 	for (i = 0; i < 6; i++)
6584 		enter_smm_save_seg_32(vcpu, buf, i);
6585 
6586 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6587 
6588 	/* revision id */
6589 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6590 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6591 }
6592 
6593 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6594 {
6595 #ifdef CONFIG_X86_64
6596 	struct desc_ptr dt;
6597 	struct kvm_segment seg;
6598 	unsigned long val;
6599 	int i;
6600 
6601 	for (i = 0; i < 16; i++)
6602 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6603 
6604 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6605 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6606 
6607 	kvm_get_dr(vcpu, 6, &val);
6608 	put_smstate(u64, buf, 0x7f68, val);
6609 	kvm_get_dr(vcpu, 7, &val);
6610 	put_smstate(u64, buf, 0x7f60, val);
6611 
6612 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6613 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6614 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6615 
6616 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6617 
6618 	/* revision id */
6619 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6620 
6621 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6622 
6623 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6624 	put_smstate(u16, buf, 0x7e90, seg.selector);
6625 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6626 	put_smstate(u32, buf, 0x7e94, seg.limit);
6627 	put_smstate(u64, buf, 0x7e98, seg.base);
6628 
6629 	kvm_x86_ops->get_idt(vcpu, &dt);
6630 	put_smstate(u32, buf, 0x7e84, dt.size);
6631 	put_smstate(u64, buf, 0x7e88, dt.address);
6632 
6633 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6634 	put_smstate(u16, buf, 0x7e70, seg.selector);
6635 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6636 	put_smstate(u32, buf, 0x7e74, seg.limit);
6637 	put_smstate(u64, buf, 0x7e78, seg.base);
6638 
6639 	kvm_x86_ops->get_gdt(vcpu, &dt);
6640 	put_smstate(u32, buf, 0x7e64, dt.size);
6641 	put_smstate(u64, buf, 0x7e68, dt.address);
6642 
6643 	for (i = 0; i < 6; i++)
6644 		enter_smm_save_seg_64(vcpu, buf, i);
6645 #else
6646 	WARN_ON_ONCE(1);
6647 #endif
6648 }
6649 
6650 static void enter_smm(struct kvm_vcpu *vcpu)
6651 {
6652 	struct kvm_segment cs, ds;
6653 	struct desc_ptr dt;
6654 	char buf[512];
6655 	u32 cr0;
6656 
6657 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6658 	memset(buf, 0, 512);
6659 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6660 		enter_smm_save_state_64(vcpu, buf);
6661 	else
6662 		enter_smm_save_state_32(vcpu, buf);
6663 
6664 	/*
6665 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6666 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
6667 	 * the SMM state-save area.
6668 	 */
6669 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
6670 
6671 	vcpu->arch.hflags |= HF_SMM_MASK;
6672 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6673 
6674 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6675 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6676 	else
6677 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6678 
6679 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6680 	kvm_rip_write(vcpu, 0x8000);
6681 
6682 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6683 	kvm_x86_ops->set_cr0(vcpu, cr0);
6684 	vcpu->arch.cr0 = cr0;
6685 
6686 	kvm_x86_ops->set_cr4(vcpu, 0);
6687 
6688 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6689 	dt.address = dt.size = 0;
6690 	kvm_x86_ops->set_idt(vcpu, &dt);
6691 
6692 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6693 
6694 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6695 	cs.base = vcpu->arch.smbase;
6696 
6697 	ds.selector = 0;
6698 	ds.base = 0;
6699 
6700 	cs.limit    = ds.limit = 0xffffffff;
6701 	cs.type     = ds.type = 0x3;
6702 	cs.dpl      = ds.dpl = 0;
6703 	cs.db       = ds.db = 0;
6704 	cs.s        = ds.s = 1;
6705 	cs.l        = ds.l = 0;
6706 	cs.g        = ds.g = 1;
6707 	cs.avl      = ds.avl = 0;
6708 	cs.present  = ds.present = 1;
6709 	cs.unusable = ds.unusable = 0;
6710 	cs.padding  = ds.padding = 0;
6711 
6712 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6713 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6714 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6715 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6716 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6717 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6718 
6719 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6720 		kvm_x86_ops->set_efer(vcpu, 0);
6721 
6722 	kvm_update_cpuid(vcpu);
6723 	kvm_mmu_reset_context(vcpu);
6724 }
6725 
6726 static void process_smi(struct kvm_vcpu *vcpu)
6727 {
6728 	vcpu->arch.smi_pending = true;
6729 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6730 }
6731 
6732 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6733 {
6734 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6735 }
6736 
6737 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6738 {
6739 	u64 eoi_exit_bitmap[4];
6740 
6741 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6742 		return;
6743 
6744 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6745 
6746 	if (irqchip_split(vcpu->kvm))
6747 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6748 	else {
6749 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6750 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6751 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6752 	}
6753 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6754 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6755 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6756 }
6757 
6758 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6759 {
6760 	++vcpu->stat.tlb_flush;
6761 	kvm_x86_ops->tlb_flush(vcpu);
6762 }
6763 
6764 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6765 {
6766 	struct page *page = NULL;
6767 
6768 	if (!lapic_in_kernel(vcpu))
6769 		return;
6770 
6771 	if (!kvm_x86_ops->set_apic_access_page_addr)
6772 		return;
6773 
6774 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6775 	if (is_error_page(page))
6776 		return;
6777 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6778 
6779 	/*
6780 	 * Do not pin apic access page in memory, the MMU notifier
6781 	 * will call us again if it is migrated or swapped out.
6782 	 */
6783 	put_page(page);
6784 }
6785 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6786 
6787 /*
6788  * Returns 1 to let vcpu_run() continue the guest execution loop without
6789  * exiting to the userspace.  Otherwise, the value will be returned to the
6790  * userspace.
6791  */
6792 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6793 {
6794 	int r;
6795 	bool req_int_win =
6796 		dm_request_for_irq_injection(vcpu) &&
6797 		kvm_cpu_accept_dm_intr(vcpu);
6798 
6799 	bool req_immediate_exit = false;
6800 
6801 	if (kvm_request_pending(vcpu)) {
6802 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6803 			kvm_mmu_unload(vcpu);
6804 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6805 			__kvm_migrate_timers(vcpu);
6806 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6807 			kvm_gen_update_masterclock(vcpu->kvm);
6808 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6809 			kvm_gen_kvmclock_update(vcpu);
6810 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6811 			r = kvm_guest_time_update(vcpu);
6812 			if (unlikely(r))
6813 				goto out;
6814 		}
6815 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6816 			kvm_mmu_sync_roots(vcpu);
6817 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6818 			kvm_vcpu_flush_tlb(vcpu);
6819 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6820 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6821 			r = 0;
6822 			goto out;
6823 		}
6824 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6825 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6826 			vcpu->mmio_needed = 0;
6827 			r = 0;
6828 			goto out;
6829 		}
6830 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6831 			/* Page is swapped out. Do synthetic halt */
6832 			vcpu->arch.apf.halted = true;
6833 			r = 1;
6834 			goto out;
6835 		}
6836 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6837 			record_steal_time(vcpu);
6838 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6839 			process_smi(vcpu);
6840 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6841 			process_nmi(vcpu);
6842 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6843 			kvm_pmu_handle_event(vcpu);
6844 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6845 			kvm_pmu_deliver_pmi(vcpu);
6846 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6847 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6848 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6849 				     vcpu->arch.ioapic_handled_vectors)) {
6850 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6851 				vcpu->run->eoi.vector =
6852 						vcpu->arch.pending_ioapic_eoi;
6853 				r = 0;
6854 				goto out;
6855 			}
6856 		}
6857 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6858 			vcpu_scan_ioapic(vcpu);
6859 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6860 			kvm_vcpu_reload_apic_access_page(vcpu);
6861 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6862 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6863 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6864 			r = 0;
6865 			goto out;
6866 		}
6867 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6868 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6869 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6870 			r = 0;
6871 			goto out;
6872 		}
6873 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6874 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6875 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6876 			r = 0;
6877 			goto out;
6878 		}
6879 
6880 		/*
6881 		 * KVM_REQ_HV_STIMER has to be processed after
6882 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6883 		 * depend on the guest clock being up-to-date
6884 		 */
6885 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6886 			kvm_hv_process_stimers(vcpu);
6887 	}
6888 
6889 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6890 		++vcpu->stat.req_event;
6891 		kvm_apic_accept_events(vcpu);
6892 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6893 			r = 1;
6894 			goto out;
6895 		}
6896 
6897 		if (inject_pending_event(vcpu, req_int_win) != 0)
6898 			req_immediate_exit = true;
6899 		else {
6900 			/* Enable SMI/NMI/IRQ window open exits if needed.
6901 			 *
6902 			 * SMIs have three cases:
6903 			 * 1) They can be nested, and then there is nothing to
6904 			 *    do here because RSM will cause a vmexit anyway.
6905 			 * 2) There is an ISA-specific reason why SMI cannot be
6906 			 *    injected, and the moment when this changes can be
6907 			 *    intercepted.
6908 			 * 3) Or the SMI can be pending because
6909 			 *    inject_pending_event has completed the injection
6910 			 *    of an IRQ or NMI from the previous vmexit, and
6911 			 *    then we request an immediate exit to inject the
6912 			 *    SMI.
6913 			 */
6914 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6915 				if (!kvm_x86_ops->enable_smi_window(vcpu))
6916 					req_immediate_exit = true;
6917 			if (vcpu->arch.nmi_pending)
6918 				kvm_x86_ops->enable_nmi_window(vcpu);
6919 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6920 				kvm_x86_ops->enable_irq_window(vcpu);
6921 			WARN_ON(vcpu->arch.exception.pending);
6922 		}
6923 
6924 		if (kvm_lapic_enabled(vcpu)) {
6925 			update_cr8_intercept(vcpu);
6926 			kvm_lapic_sync_to_vapic(vcpu);
6927 		}
6928 	}
6929 
6930 	r = kvm_mmu_reload(vcpu);
6931 	if (unlikely(r)) {
6932 		goto cancel_injection;
6933 	}
6934 
6935 	preempt_disable();
6936 
6937 	kvm_x86_ops->prepare_guest_switch(vcpu);
6938 	kvm_load_guest_fpu(vcpu);
6939 
6940 	/*
6941 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6942 	 * IPI are then delayed after guest entry, which ensures that they
6943 	 * result in virtual interrupt delivery.
6944 	 */
6945 	local_irq_disable();
6946 	vcpu->mode = IN_GUEST_MODE;
6947 
6948 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6949 
6950 	/*
6951 	 * 1) We should set ->mode before checking ->requests.  Please see
6952 	 * the comment in kvm_vcpu_exiting_guest_mode().
6953 	 *
6954 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6955 	 * pairs with the memory barrier implicit in pi_test_and_set_on
6956 	 * (see vmx_deliver_posted_interrupt).
6957 	 *
6958 	 * 3) This also orders the write to mode from any reads to the page
6959 	 * tables done while the VCPU is running.  Please see the comment
6960 	 * in kvm_flush_remote_tlbs.
6961 	 */
6962 	smp_mb__after_srcu_read_unlock();
6963 
6964 	/*
6965 	 * This handles the case where a posted interrupt was
6966 	 * notified with kvm_vcpu_kick.
6967 	 */
6968 	if (kvm_lapic_enabled(vcpu)) {
6969 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6970 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6971 	}
6972 
6973 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6974 	    || need_resched() || signal_pending(current)) {
6975 		vcpu->mode = OUTSIDE_GUEST_MODE;
6976 		smp_wmb();
6977 		local_irq_enable();
6978 		preempt_enable();
6979 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6980 		r = 1;
6981 		goto cancel_injection;
6982 	}
6983 
6984 	kvm_load_guest_xcr0(vcpu);
6985 
6986 	if (req_immediate_exit) {
6987 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6988 		smp_send_reschedule(vcpu->cpu);
6989 	}
6990 
6991 	trace_kvm_entry(vcpu->vcpu_id);
6992 	wait_lapic_expire(vcpu);
6993 	guest_enter_irqoff();
6994 
6995 	if (unlikely(vcpu->arch.switch_db_regs)) {
6996 		set_debugreg(0, 7);
6997 		set_debugreg(vcpu->arch.eff_db[0], 0);
6998 		set_debugreg(vcpu->arch.eff_db[1], 1);
6999 		set_debugreg(vcpu->arch.eff_db[2], 2);
7000 		set_debugreg(vcpu->arch.eff_db[3], 3);
7001 		set_debugreg(vcpu->arch.dr6, 6);
7002 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7003 	}
7004 
7005 	kvm_x86_ops->run(vcpu);
7006 
7007 	/*
7008 	 * Do this here before restoring debug registers on the host.  And
7009 	 * since we do this before handling the vmexit, a DR access vmexit
7010 	 * can (a) read the correct value of the debug registers, (b) set
7011 	 * KVM_DEBUGREG_WONT_EXIT again.
7012 	 */
7013 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7014 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7015 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7016 		kvm_update_dr0123(vcpu);
7017 		kvm_update_dr6(vcpu);
7018 		kvm_update_dr7(vcpu);
7019 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7020 	}
7021 
7022 	/*
7023 	 * If the guest has used debug registers, at least dr7
7024 	 * will be disabled while returning to the host.
7025 	 * If we don't have active breakpoints in the host, we don't
7026 	 * care about the messed up debug address registers. But if
7027 	 * we have some of them active, restore the old state.
7028 	 */
7029 	if (hw_breakpoint_active())
7030 		hw_breakpoint_restore();
7031 
7032 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7033 
7034 	vcpu->mode = OUTSIDE_GUEST_MODE;
7035 	smp_wmb();
7036 
7037 	kvm_put_guest_xcr0(vcpu);
7038 
7039 	kvm_x86_ops->handle_external_intr(vcpu);
7040 
7041 	++vcpu->stat.exits;
7042 
7043 	guest_exit_irqoff();
7044 
7045 	local_irq_enable();
7046 	preempt_enable();
7047 
7048 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7049 
7050 	/*
7051 	 * Profile KVM exit RIPs:
7052 	 */
7053 	if (unlikely(prof_on == KVM_PROFILING)) {
7054 		unsigned long rip = kvm_rip_read(vcpu);
7055 		profile_hit(KVM_PROFILING, (void *)rip);
7056 	}
7057 
7058 	if (unlikely(vcpu->arch.tsc_always_catchup))
7059 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7060 
7061 	if (vcpu->arch.apic_attention)
7062 		kvm_lapic_sync_from_vapic(vcpu);
7063 
7064 	vcpu->arch.gpa_available = false;
7065 	r = kvm_x86_ops->handle_exit(vcpu);
7066 	return r;
7067 
7068 cancel_injection:
7069 	kvm_x86_ops->cancel_injection(vcpu);
7070 	if (unlikely(vcpu->arch.apic_attention))
7071 		kvm_lapic_sync_from_vapic(vcpu);
7072 out:
7073 	return r;
7074 }
7075 
7076 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7077 {
7078 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7079 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7080 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7081 		kvm_vcpu_block(vcpu);
7082 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7083 
7084 		if (kvm_x86_ops->post_block)
7085 			kvm_x86_ops->post_block(vcpu);
7086 
7087 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7088 			return 1;
7089 	}
7090 
7091 	kvm_apic_accept_events(vcpu);
7092 	switch(vcpu->arch.mp_state) {
7093 	case KVM_MP_STATE_HALTED:
7094 		vcpu->arch.pv.pv_unhalted = false;
7095 		vcpu->arch.mp_state =
7096 			KVM_MP_STATE_RUNNABLE;
7097 	case KVM_MP_STATE_RUNNABLE:
7098 		vcpu->arch.apf.halted = false;
7099 		break;
7100 	case KVM_MP_STATE_INIT_RECEIVED:
7101 		break;
7102 	default:
7103 		return -EINTR;
7104 		break;
7105 	}
7106 	return 1;
7107 }
7108 
7109 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7110 {
7111 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7112 		kvm_x86_ops->check_nested_events(vcpu, false);
7113 
7114 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7115 		!vcpu->arch.apf.halted);
7116 }
7117 
7118 static int vcpu_run(struct kvm_vcpu *vcpu)
7119 {
7120 	int r;
7121 	struct kvm *kvm = vcpu->kvm;
7122 
7123 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7124 
7125 	for (;;) {
7126 		if (kvm_vcpu_running(vcpu)) {
7127 			r = vcpu_enter_guest(vcpu);
7128 		} else {
7129 			r = vcpu_block(kvm, vcpu);
7130 		}
7131 
7132 		if (r <= 0)
7133 			break;
7134 
7135 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7136 		if (kvm_cpu_has_pending_timer(vcpu))
7137 			kvm_inject_pending_timer_irqs(vcpu);
7138 
7139 		if (dm_request_for_irq_injection(vcpu) &&
7140 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7141 			r = 0;
7142 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7143 			++vcpu->stat.request_irq_exits;
7144 			break;
7145 		}
7146 
7147 		kvm_check_async_pf_completion(vcpu);
7148 
7149 		if (signal_pending(current)) {
7150 			r = -EINTR;
7151 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7152 			++vcpu->stat.signal_exits;
7153 			break;
7154 		}
7155 		if (need_resched()) {
7156 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7157 			cond_resched();
7158 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7159 		}
7160 	}
7161 
7162 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7163 
7164 	return r;
7165 }
7166 
7167 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7168 {
7169 	int r;
7170 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7171 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7172 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7173 	if (r != EMULATE_DONE)
7174 		return 0;
7175 	return 1;
7176 }
7177 
7178 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7179 {
7180 	BUG_ON(!vcpu->arch.pio.count);
7181 
7182 	return complete_emulated_io(vcpu);
7183 }
7184 
7185 /*
7186  * Implements the following, as a state machine:
7187  *
7188  * read:
7189  *   for each fragment
7190  *     for each mmio piece in the fragment
7191  *       write gpa, len
7192  *       exit
7193  *       copy data
7194  *   execute insn
7195  *
7196  * write:
7197  *   for each fragment
7198  *     for each mmio piece in the fragment
7199  *       write gpa, len
7200  *       copy data
7201  *       exit
7202  */
7203 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7204 {
7205 	struct kvm_run *run = vcpu->run;
7206 	struct kvm_mmio_fragment *frag;
7207 	unsigned len;
7208 
7209 	BUG_ON(!vcpu->mmio_needed);
7210 
7211 	/* Complete previous fragment */
7212 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7213 	len = min(8u, frag->len);
7214 	if (!vcpu->mmio_is_write)
7215 		memcpy(frag->data, run->mmio.data, len);
7216 
7217 	if (frag->len <= 8) {
7218 		/* Switch to the next fragment. */
7219 		frag++;
7220 		vcpu->mmio_cur_fragment++;
7221 	} else {
7222 		/* Go forward to the next mmio piece. */
7223 		frag->data += len;
7224 		frag->gpa += len;
7225 		frag->len -= len;
7226 	}
7227 
7228 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7229 		vcpu->mmio_needed = 0;
7230 
7231 		/* FIXME: return into emulator if single-stepping.  */
7232 		if (vcpu->mmio_is_write)
7233 			return 1;
7234 		vcpu->mmio_read_completed = 1;
7235 		return complete_emulated_io(vcpu);
7236 	}
7237 
7238 	run->exit_reason = KVM_EXIT_MMIO;
7239 	run->mmio.phys_addr = frag->gpa;
7240 	if (vcpu->mmio_is_write)
7241 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7242 	run->mmio.len = min(8u, frag->len);
7243 	run->mmio.is_write = vcpu->mmio_is_write;
7244 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7245 	return 0;
7246 }
7247 
7248 
7249 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7250 {
7251 	struct fpu *fpu = &current->thread.fpu;
7252 	int r;
7253 	sigset_t sigsaved;
7254 
7255 	fpu__initialize(fpu);
7256 
7257 	if (vcpu->sigset_active)
7258 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7259 
7260 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7261 		if (kvm_run->immediate_exit) {
7262 			r = -EINTR;
7263 			goto out;
7264 		}
7265 		kvm_vcpu_block(vcpu);
7266 		kvm_apic_accept_events(vcpu);
7267 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7268 		r = -EAGAIN;
7269 		if (signal_pending(current)) {
7270 			r = -EINTR;
7271 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7272 			++vcpu->stat.signal_exits;
7273 		}
7274 		goto out;
7275 	}
7276 
7277 	/* re-sync apic's tpr */
7278 	if (!lapic_in_kernel(vcpu)) {
7279 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7280 			r = -EINVAL;
7281 			goto out;
7282 		}
7283 	}
7284 
7285 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7286 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7287 		vcpu->arch.complete_userspace_io = NULL;
7288 		r = cui(vcpu);
7289 		if (r <= 0)
7290 			goto out;
7291 	} else
7292 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7293 
7294 	if (kvm_run->immediate_exit)
7295 		r = -EINTR;
7296 	else
7297 		r = vcpu_run(vcpu);
7298 
7299 out:
7300 	post_kvm_run_save(vcpu);
7301 	if (vcpu->sigset_active)
7302 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7303 
7304 	return r;
7305 }
7306 
7307 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7308 {
7309 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7310 		/*
7311 		 * We are here if userspace calls get_regs() in the middle of
7312 		 * instruction emulation. Registers state needs to be copied
7313 		 * back from emulation context to vcpu. Userspace shouldn't do
7314 		 * that usually, but some bad designed PV devices (vmware
7315 		 * backdoor interface) need this to work
7316 		 */
7317 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7318 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7319 	}
7320 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7321 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7322 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7323 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7324 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7325 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7326 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7327 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7328 #ifdef CONFIG_X86_64
7329 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7330 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7331 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7332 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7333 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7334 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7335 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7336 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7337 #endif
7338 
7339 	regs->rip = kvm_rip_read(vcpu);
7340 	regs->rflags = kvm_get_rflags(vcpu);
7341 
7342 	return 0;
7343 }
7344 
7345 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7346 {
7347 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7348 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7349 
7350 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7351 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7352 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7353 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7354 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7355 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7356 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7357 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7358 #ifdef CONFIG_X86_64
7359 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7360 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7361 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7362 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7363 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7364 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7365 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7366 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7367 #endif
7368 
7369 	kvm_rip_write(vcpu, regs->rip);
7370 	kvm_set_rflags(vcpu, regs->rflags);
7371 
7372 	vcpu->arch.exception.pending = false;
7373 
7374 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7375 
7376 	return 0;
7377 }
7378 
7379 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7380 {
7381 	struct kvm_segment cs;
7382 
7383 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7384 	*db = cs.db;
7385 	*l = cs.l;
7386 }
7387 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7388 
7389 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7390 				  struct kvm_sregs *sregs)
7391 {
7392 	struct desc_ptr dt;
7393 
7394 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7395 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7396 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7397 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7398 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7399 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7400 
7401 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7402 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7403 
7404 	kvm_x86_ops->get_idt(vcpu, &dt);
7405 	sregs->idt.limit = dt.size;
7406 	sregs->idt.base = dt.address;
7407 	kvm_x86_ops->get_gdt(vcpu, &dt);
7408 	sregs->gdt.limit = dt.size;
7409 	sregs->gdt.base = dt.address;
7410 
7411 	sregs->cr0 = kvm_read_cr0(vcpu);
7412 	sregs->cr2 = vcpu->arch.cr2;
7413 	sregs->cr3 = kvm_read_cr3(vcpu);
7414 	sregs->cr4 = kvm_read_cr4(vcpu);
7415 	sregs->cr8 = kvm_get_cr8(vcpu);
7416 	sregs->efer = vcpu->arch.efer;
7417 	sregs->apic_base = kvm_get_apic_base(vcpu);
7418 
7419 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7420 
7421 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7422 		set_bit(vcpu->arch.interrupt.nr,
7423 			(unsigned long *)sregs->interrupt_bitmap);
7424 
7425 	return 0;
7426 }
7427 
7428 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7429 				    struct kvm_mp_state *mp_state)
7430 {
7431 	kvm_apic_accept_events(vcpu);
7432 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7433 					vcpu->arch.pv.pv_unhalted)
7434 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7435 	else
7436 		mp_state->mp_state = vcpu->arch.mp_state;
7437 
7438 	return 0;
7439 }
7440 
7441 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7442 				    struct kvm_mp_state *mp_state)
7443 {
7444 	if (!lapic_in_kernel(vcpu) &&
7445 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7446 		return -EINVAL;
7447 
7448 	/* INITs are latched while in SMM */
7449 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7450 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7451 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7452 		return -EINVAL;
7453 
7454 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7455 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7456 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7457 	} else
7458 		vcpu->arch.mp_state = mp_state->mp_state;
7459 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7460 	return 0;
7461 }
7462 
7463 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7464 		    int reason, bool has_error_code, u32 error_code)
7465 {
7466 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7467 	int ret;
7468 
7469 	init_emulate_ctxt(vcpu);
7470 
7471 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7472 				   has_error_code, error_code);
7473 
7474 	if (ret)
7475 		return EMULATE_FAIL;
7476 
7477 	kvm_rip_write(vcpu, ctxt->eip);
7478 	kvm_set_rflags(vcpu, ctxt->eflags);
7479 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7480 	return EMULATE_DONE;
7481 }
7482 EXPORT_SYMBOL_GPL(kvm_task_switch);
7483 
7484 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7485 				  struct kvm_sregs *sregs)
7486 {
7487 	struct msr_data apic_base_msr;
7488 	int mmu_reset_needed = 0;
7489 	int pending_vec, max_bits, idx;
7490 	struct desc_ptr dt;
7491 
7492 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7493 			(sregs->cr4 & X86_CR4_OSXSAVE))
7494 		return -EINVAL;
7495 
7496 	apic_base_msr.data = sregs->apic_base;
7497 	apic_base_msr.host_initiated = true;
7498 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
7499 		return -EINVAL;
7500 
7501 	dt.size = sregs->idt.limit;
7502 	dt.address = sregs->idt.base;
7503 	kvm_x86_ops->set_idt(vcpu, &dt);
7504 	dt.size = sregs->gdt.limit;
7505 	dt.address = sregs->gdt.base;
7506 	kvm_x86_ops->set_gdt(vcpu, &dt);
7507 
7508 	vcpu->arch.cr2 = sregs->cr2;
7509 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7510 	vcpu->arch.cr3 = sregs->cr3;
7511 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7512 
7513 	kvm_set_cr8(vcpu, sregs->cr8);
7514 
7515 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7516 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7517 
7518 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7519 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7520 	vcpu->arch.cr0 = sregs->cr0;
7521 
7522 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7523 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7524 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7525 		kvm_update_cpuid(vcpu);
7526 
7527 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7528 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7529 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7530 		mmu_reset_needed = 1;
7531 	}
7532 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7533 
7534 	if (mmu_reset_needed)
7535 		kvm_mmu_reset_context(vcpu);
7536 
7537 	max_bits = KVM_NR_INTERRUPTS;
7538 	pending_vec = find_first_bit(
7539 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7540 	if (pending_vec < max_bits) {
7541 		kvm_queue_interrupt(vcpu, pending_vec, false);
7542 		pr_debug("Set back pending irq %d\n", pending_vec);
7543 	}
7544 
7545 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7546 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7547 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7548 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7549 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7550 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7551 
7552 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7553 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7554 
7555 	update_cr8_intercept(vcpu);
7556 
7557 	/* Older userspace won't unhalt the vcpu on reset. */
7558 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7559 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7560 	    !is_protmode(vcpu))
7561 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7562 
7563 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7564 
7565 	return 0;
7566 }
7567 
7568 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7569 					struct kvm_guest_debug *dbg)
7570 {
7571 	unsigned long rflags;
7572 	int i, r;
7573 
7574 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7575 		r = -EBUSY;
7576 		if (vcpu->arch.exception.pending)
7577 			goto out;
7578 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7579 			kvm_queue_exception(vcpu, DB_VECTOR);
7580 		else
7581 			kvm_queue_exception(vcpu, BP_VECTOR);
7582 	}
7583 
7584 	/*
7585 	 * Read rflags as long as potentially injected trace flags are still
7586 	 * filtered out.
7587 	 */
7588 	rflags = kvm_get_rflags(vcpu);
7589 
7590 	vcpu->guest_debug = dbg->control;
7591 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7592 		vcpu->guest_debug = 0;
7593 
7594 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7595 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7596 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7597 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7598 	} else {
7599 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7600 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7601 	}
7602 	kvm_update_dr7(vcpu);
7603 
7604 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7605 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7606 			get_segment_base(vcpu, VCPU_SREG_CS);
7607 
7608 	/*
7609 	 * Trigger an rflags update that will inject or remove the trace
7610 	 * flags.
7611 	 */
7612 	kvm_set_rflags(vcpu, rflags);
7613 
7614 	kvm_x86_ops->update_bp_intercept(vcpu);
7615 
7616 	r = 0;
7617 
7618 out:
7619 
7620 	return r;
7621 }
7622 
7623 /*
7624  * Translate a guest virtual address to a guest physical address.
7625  */
7626 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7627 				    struct kvm_translation *tr)
7628 {
7629 	unsigned long vaddr = tr->linear_address;
7630 	gpa_t gpa;
7631 	int idx;
7632 
7633 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7634 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7635 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7636 	tr->physical_address = gpa;
7637 	tr->valid = gpa != UNMAPPED_GVA;
7638 	tr->writeable = 1;
7639 	tr->usermode = 0;
7640 
7641 	return 0;
7642 }
7643 
7644 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7645 {
7646 	struct fxregs_state *fxsave =
7647 			&vcpu->arch.guest_fpu.state.fxsave;
7648 
7649 	memcpy(fpu->fpr, fxsave->st_space, 128);
7650 	fpu->fcw = fxsave->cwd;
7651 	fpu->fsw = fxsave->swd;
7652 	fpu->ftwx = fxsave->twd;
7653 	fpu->last_opcode = fxsave->fop;
7654 	fpu->last_ip = fxsave->rip;
7655 	fpu->last_dp = fxsave->rdp;
7656 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7657 
7658 	return 0;
7659 }
7660 
7661 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7662 {
7663 	struct fxregs_state *fxsave =
7664 			&vcpu->arch.guest_fpu.state.fxsave;
7665 
7666 	memcpy(fxsave->st_space, fpu->fpr, 128);
7667 	fxsave->cwd = fpu->fcw;
7668 	fxsave->swd = fpu->fsw;
7669 	fxsave->twd = fpu->ftwx;
7670 	fxsave->fop = fpu->last_opcode;
7671 	fxsave->rip = fpu->last_ip;
7672 	fxsave->rdp = fpu->last_dp;
7673 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7674 
7675 	return 0;
7676 }
7677 
7678 static void fx_init(struct kvm_vcpu *vcpu)
7679 {
7680 	fpstate_init(&vcpu->arch.guest_fpu.state);
7681 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7682 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7683 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7684 
7685 	/*
7686 	 * Ensure guest xcr0 is valid for loading
7687 	 */
7688 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7689 
7690 	vcpu->arch.cr0 |= X86_CR0_ET;
7691 }
7692 
7693 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7694 {
7695 	if (vcpu->guest_fpu_loaded)
7696 		return;
7697 
7698 	/*
7699 	 * Restore all possible states in the guest,
7700 	 * and assume host would use all available bits.
7701 	 * Guest xcr0 would be loaded later.
7702 	 */
7703 	vcpu->guest_fpu_loaded = 1;
7704 	__kernel_fpu_begin();
7705 	/* PKRU is separately restored in kvm_x86_ops->run.  */
7706 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7707 				~XFEATURE_MASK_PKRU);
7708 	trace_kvm_fpu(1);
7709 }
7710 
7711 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7712 {
7713 	if (!vcpu->guest_fpu_loaded)
7714 		return;
7715 
7716 	vcpu->guest_fpu_loaded = 0;
7717 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7718 	__kernel_fpu_end();
7719 	++vcpu->stat.fpu_reload;
7720 	trace_kvm_fpu(0);
7721 }
7722 
7723 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7724 {
7725 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7726 
7727 	kvmclock_reset(vcpu);
7728 
7729 	kvm_x86_ops->vcpu_free(vcpu);
7730 	free_cpumask_var(wbinvd_dirty_mask);
7731 }
7732 
7733 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7734 						unsigned int id)
7735 {
7736 	struct kvm_vcpu *vcpu;
7737 
7738 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7739 		printk_once(KERN_WARNING
7740 		"kvm: SMP vm created on host with unstable TSC; "
7741 		"guest TSC will not be reliable\n");
7742 
7743 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7744 
7745 	return vcpu;
7746 }
7747 
7748 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7749 {
7750 	int r;
7751 
7752 	kvm_vcpu_mtrr_init(vcpu);
7753 	r = vcpu_load(vcpu);
7754 	if (r)
7755 		return r;
7756 	kvm_vcpu_reset(vcpu, false);
7757 	kvm_mmu_setup(vcpu);
7758 	vcpu_put(vcpu);
7759 	return r;
7760 }
7761 
7762 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7763 {
7764 	struct msr_data msr;
7765 	struct kvm *kvm = vcpu->kvm;
7766 
7767 	kvm_hv_vcpu_postcreate(vcpu);
7768 
7769 	if (vcpu_load(vcpu))
7770 		return;
7771 	msr.data = 0x0;
7772 	msr.index = MSR_IA32_TSC;
7773 	msr.host_initiated = true;
7774 	kvm_write_tsc(vcpu, &msr);
7775 	vcpu_put(vcpu);
7776 
7777 	if (!kvmclock_periodic_sync)
7778 		return;
7779 
7780 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7781 					KVMCLOCK_SYNC_PERIOD);
7782 }
7783 
7784 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7785 {
7786 	int r;
7787 	vcpu->arch.apf.msr_val = 0;
7788 
7789 	r = vcpu_load(vcpu);
7790 	BUG_ON(r);
7791 	kvm_mmu_unload(vcpu);
7792 	vcpu_put(vcpu);
7793 
7794 	kvm_x86_ops->vcpu_free(vcpu);
7795 }
7796 
7797 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7798 {
7799 	vcpu->arch.hflags = 0;
7800 
7801 	vcpu->arch.smi_pending = 0;
7802 	atomic_set(&vcpu->arch.nmi_queued, 0);
7803 	vcpu->arch.nmi_pending = 0;
7804 	vcpu->arch.nmi_injected = false;
7805 	kvm_clear_interrupt_queue(vcpu);
7806 	kvm_clear_exception_queue(vcpu);
7807 	vcpu->arch.exception.pending = false;
7808 
7809 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7810 	kvm_update_dr0123(vcpu);
7811 	vcpu->arch.dr6 = DR6_INIT;
7812 	kvm_update_dr6(vcpu);
7813 	vcpu->arch.dr7 = DR7_FIXED_1;
7814 	kvm_update_dr7(vcpu);
7815 
7816 	vcpu->arch.cr2 = 0;
7817 
7818 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7819 	vcpu->arch.apf.msr_val = 0;
7820 	vcpu->arch.st.msr_val = 0;
7821 
7822 	kvmclock_reset(vcpu);
7823 
7824 	kvm_clear_async_pf_completion_queue(vcpu);
7825 	kvm_async_pf_hash_reset(vcpu);
7826 	vcpu->arch.apf.halted = false;
7827 
7828 	if (kvm_mpx_supported()) {
7829 		void *mpx_state_buffer;
7830 
7831 		/*
7832 		 * To avoid have the INIT path from kvm_apic_has_events() that be
7833 		 * called with loaded FPU and does not let userspace fix the state.
7834 		 */
7835 		kvm_put_guest_fpu(vcpu);
7836 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7837 					XFEATURE_MASK_BNDREGS);
7838 		if (mpx_state_buffer)
7839 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7840 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7841 					XFEATURE_MASK_BNDCSR);
7842 		if (mpx_state_buffer)
7843 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7844 	}
7845 
7846 	if (!init_event) {
7847 		kvm_pmu_reset(vcpu);
7848 		vcpu->arch.smbase = 0x30000;
7849 
7850 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7851 		vcpu->arch.msr_misc_features_enables = 0;
7852 
7853 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7854 	}
7855 
7856 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7857 	vcpu->arch.regs_avail = ~0;
7858 	vcpu->arch.regs_dirty = ~0;
7859 
7860 	vcpu->arch.ia32_xss = 0;
7861 
7862 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7863 }
7864 
7865 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7866 {
7867 	struct kvm_segment cs;
7868 
7869 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7870 	cs.selector = vector << 8;
7871 	cs.base = vector << 12;
7872 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7873 	kvm_rip_write(vcpu, 0);
7874 }
7875 
7876 int kvm_arch_hardware_enable(void)
7877 {
7878 	struct kvm *kvm;
7879 	struct kvm_vcpu *vcpu;
7880 	int i;
7881 	int ret;
7882 	u64 local_tsc;
7883 	u64 max_tsc = 0;
7884 	bool stable, backwards_tsc = false;
7885 
7886 	kvm_shared_msr_cpu_online();
7887 	ret = kvm_x86_ops->hardware_enable();
7888 	if (ret != 0)
7889 		return ret;
7890 
7891 	local_tsc = rdtsc();
7892 	stable = !check_tsc_unstable();
7893 	list_for_each_entry(kvm, &vm_list, vm_list) {
7894 		kvm_for_each_vcpu(i, vcpu, kvm) {
7895 			if (!stable && vcpu->cpu == smp_processor_id())
7896 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7897 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7898 				backwards_tsc = true;
7899 				if (vcpu->arch.last_host_tsc > max_tsc)
7900 					max_tsc = vcpu->arch.last_host_tsc;
7901 			}
7902 		}
7903 	}
7904 
7905 	/*
7906 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7907 	 * platforms that reset TSC during suspend or hibernate actions, but
7908 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7909 	 * detect that condition here, which happens early in CPU bringup,
7910 	 * before any KVM threads can be running.  Unfortunately, we can't
7911 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7912 	 * enough into CPU bringup that we know how much real time has actually
7913 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7914 	 * variables that haven't been updated yet.
7915 	 *
7916 	 * So we simply find the maximum observed TSC above, then record the
7917 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7918 	 * the adjustment will be applied.  Note that we accumulate
7919 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7920 	 * gets a chance to run again.  In the event that no KVM threads get a
7921 	 * chance to run, we will miss the entire elapsed period, as we'll have
7922 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7923 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7924 	 * uniform across all VCPUs (not to mention the scenario is extremely
7925 	 * unlikely). It is possible that a second hibernate recovery happens
7926 	 * much faster than a first, causing the observed TSC here to be
7927 	 * smaller; this would require additional padding adjustment, which is
7928 	 * why we set last_host_tsc to the local tsc observed here.
7929 	 *
7930 	 * N.B. - this code below runs only on platforms with reliable TSC,
7931 	 * as that is the only way backwards_tsc is set above.  Also note
7932 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7933 	 * have the same delta_cyc adjustment applied if backwards_tsc
7934 	 * is detected.  Note further, this adjustment is only done once,
7935 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7936 	 * called multiple times (one for each physical CPU bringup).
7937 	 *
7938 	 * Platforms with unreliable TSCs don't have to deal with this, they
7939 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7940 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7941 	 * guarantee that they stay in perfect synchronization.
7942 	 */
7943 	if (backwards_tsc) {
7944 		u64 delta_cyc = max_tsc - local_tsc;
7945 		list_for_each_entry(kvm, &vm_list, vm_list) {
7946 			kvm->arch.backwards_tsc_observed = true;
7947 			kvm_for_each_vcpu(i, vcpu, kvm) {
7948 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7949 				vcpu->arch.last_host_tsc = local_tsc;
7950 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7951 			}
7952 
7953 			/*
7954 			 * We have to disable TSC offset matching.. if you were
7955 			 * booting a VM while issuing an S4 host suspend....
7956 			 * you may have some problem.  Solving this issue is
7957 			 * left as an exercise to the reader.
7958 			 */
7959 			kvm->arch.last_tsc_nsec = 0;
7960 			kvm->arch.last_tsc_write = 0;
7961 		}
7962 
7963 	}
7964 	return 0;
7965 }
7966 
7967 void kvm_arch_hardware_disable(void)
7968 {
7969 	kvm_x86_ops->hardware_disable();
7970 	drop_user_return_notifiers();
7971 }
7972 
7973 int kvm_arch_hardware_setup(void)
7974 {
7975 	int r;
7976 
7977 	r = kvm_x86_ops->hardware_setup();
7978 	if (r != 0)
7979 		return r;
7980 
7981 	if (kvm_has_tsc_control) {
7982 		/*
7983 		 * Make sure the user can only configure tsc_khz values that
7984 		 * fit into a signed integer.
7985 		 * A min value is not calculated needed because it will always
7986 		 * be 1 on all machines.
7987 		 */
7988 		u64 max = min(0x7fffffffULL,
7989 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7990 		kvm_max_guest_tsc_khz = max;
7991 
7992 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7993 	}
7994 
7995 	kvm_init_msr_list();
7996 	return 0;
7997 }
7998 
7999 void kvm_arch_hardware_unsetup(void)
8000 {
8001 	kvm_x86_ops->hardware_unsetup();
8002 }
8003 
8004 void kvm_arch_check_processor_compat(void *rtn)
8005 {
8006 	kvm_x86_ops->check_processor_compatibility(rtn);
8007 }
8008 
8009 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8010 {
8011 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8012 }
8013 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8014 
8015 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8016 {
8017 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8018 }
8019 
8020 struct static_key kvm_no_apic_vcpu __read_mostly;
8021 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8022 
8023 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8024 {
8025 	struct page *page;
8026 	int r;
8027 
8028 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8029 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8030 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8031 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8032 	else
8033 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8034 
8035 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8036 	if (!page) {
8037 		r = -ENOMEM;
8038 		goto fail;
8039 	}
8040 	vcpu->arch.pio_data = page_address(page);
8041 
8042 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8043 
8044 	r = kvm_mmu_create(vcpu);
8045 	if (r < 0)
8046 		goto fail_free_pio_data;
8047 
8048 	if (irqchip_in_kernel(vcpu->kvm)) {
8049 		r = kvm_create_lapic(vcpu);
8050 		if (r < 0)
8051 			goto fail_mmu_destroy;
8052 	} else
8053 		static_key_slow_inc(&kvm_no_apic_vcpu);
8054 
8055 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8056 				       GFP_KERNEL);
8057 	if (!vcpu->arch.mce_banks) {
8058 		r = -ENOMEM;
8059 		goto fail_free_lapic;
8060 	}
8061 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8062 
8063 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8064 		r = -ENOMEM;
8065 		goto fail_free_mce_banks;
8066 	}
8067 
8068 	fx_init(vcpu);
8069 
8070 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8071 
8072 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8073 
8074 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8075 
8076 	kvm_async_pf_hash_reset(vcpu);
8077 	kvm_pmu_init(vcpu);
8078 
8079 	vcpu->arch.pending_external_vector = -1;
8080 	vcpu->arch.preempted_in_kernel = false;
8081 
8082 	kvm_hv_vcpu_init(vcpu);
8083 
8084 	return 0;
8085 
8086 fail_free_mce_banks:
8087 	kfree(vcpu->arch.mce_banks);
8088 fail_free_lapic:
8089 	kvm_free_lapic(vcpu);
8090 fail_mmu_destroy:
8091 	kvm_mmu_destroy(vcpu);
8092 fail_free_pio_data:
8093 	free_page((unsigned long)vcpu->arch.pio_data);
8094 fail:
8095 	return r;
8096 }
8097 
8098 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8099 {
8100 	int idx;
8101 
8102 	kvm_hv_vcpu_uninit(vcpu);
8103 	kvm_pmu_destroy(vcpu);
8104 	kfree(vcpu->arch.mce_banks);
8105 	kvm_free_lapic(vcpu);
8106 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8107 	kvm_mmu_destroy(vcpu);
8108 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8109 	free_page((unsigned long)vcpu->arch.pio_data);
8110 	if (!lapic_in_kernel(vcpu))
8111 		static_key_slow_dec(&kvm_no_apic_vcpu);
8112 }
8113 
8114 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8115 {
8116 	kvm_x86_ops->sched_in(vcpu, cpu);
8117 }
8118 
8119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8120 {
8121 	if (type)
8122 		return -EINVAL;
8123 
8124 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8125 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8126 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8127 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8128 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8129 
8130 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8131 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8132 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8133 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8134 		&kvm->arch.irq_sources_bitmap);
8135 
8136 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8137 	mutex_init(&kvm->arch.apic_map_lock);
8138 	mutex_init(&kvm->arch.hyperv.hv_lock);
8139 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8140 
8141 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8142 	pvclock_update_vm_gtod_copy(kvm);
8143 
8144 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8145 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8146 
8147 	kvm_page_track_init(kvm);
8148 	kvm_mmu_init_vm(kvm);
8149 
8150 	if (kvm_x86_ops->vm_init)
8151 		return kvm_x86_ops->vm_init(kvm);
8152 
8153 	return 0;
8154 }
8155 
8156 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8157 {
8158 	int r;
8159 	r = vcpu_load(vcpu);
8160 	BUG_ON(r);
8161 	kvm_mmu_unload(vcpu);
8162 	vcpu_put(vcpu);
8163 }
8164 
8165 static void kvm_free_vcpus(struct kvm *kvm)
8166 {
8167 	unsigned int i;
8168 	struct kvm_vcpu *vcpu;
8169 
8170 	/*
8171 	 * Unpin any mmu pages first.
8172 	 */
8173 	kvm_for_each_vcpu(i, vcpu, kvm) {
8174 		kvm_clear_async_pf_completion_queue(vcpu);
8175 		kvm_unload_vcpu_mmu(vcpu);
8176 	}
8177 	kvm_for_each_vcpu(i, vcpu, kvm)
8178 		kvm_arch_vcpu_free(vcpu);
8179 
8180 	mutex_lock(&kvm->lock);
8181 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8182 		kvm->vcpus[i] = NULL;
8183 
8184 	atomic_set(&kvm->online_vcpus, 0);
8185 	mutex_unlock(&kvm->lock);
8186 }
8187 
8188 void kvm_arch_sync_events(struct kvm *kvm)
8189 {
8190 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8191 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8192 	kvm_free_pit(kvm);
8193 }
8194 
8195 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8196 {
8197 	int i, r;
8198 	unsigned long hva;
8199 	struct kvm_memslots *slots = kvm_memslots(kvm);
8200 	struct kvm_memory_slot *slot, old;
8201 
8202 	/* Called with kvm->slots_lock held.  */
8203 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8204 		return -EINVAL;
8205 
8206 	slot = id_to_memslot(slots, id);
8207 	if (size) {
8208 		if (slot->npages)
8209 			return -EEXIST;
8210 
8211 		/*
8212 		 * MAP_SHARED to prevent internal slot pages from being moved
8213 		 * by fork()/COW.
8214 		 */
8215 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8216 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8217 		if (IS_ERR((void *)hva))
8218 			return PTR_ERR((void *)hva);
8219 	} else {
8220 		if (!slot->npages)
8221 			return 0;
8222 
8223 		hva = 0;
8224 	}
8225 
8226 	old = *slot;
8227 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8228 		struct kvm_userspace_memory_region m;
8229 
8230 		m.slot = id | (i << 16);
8231 		m.flags = 0;
8232 		m.guest_phys_addr = gpa;
8233 		m.userspace_addr = hva;
8234 		m.memory_size = size;
8235 		r = __kvm_set_memory_region(kvm, &m);
8236 		if (r < 0)
8237 			return r;
8238 	}
8239 
8240 	if (!size) {
8241 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8242 		WARN_ON(r < 0);
8243 	}
8244 
8245 	return 0;
8246 }
8247 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8248 
8249 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8250 {
8251 	int r;
8252 
8253 	mutex_lock(&kvm->slots_lock);
8254 	r = __x86_set_memory_region(kvm, id, gpa, size);
8255 	mutex_unlock(&kvm->slots_lock);
8256 
8257 	return r;
8258 }
8259 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8260 
8261 void kvm_arch_destroy_vm(struct kvm *kvm)
8262 {
8263 	if (current->mm == kvm->mm) {
8264 		/*
8265 		 * Free memory regions allocated on behalf of userspace,
8266 		 * unless the the memory map has changed due to process exit
8267 		 * or fd copying.
8268 		 */
8269 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8270 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8271 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8272 	}
8273 	if (kvm_x86_ops->vm_destroy)
8274 		kvm_x86_ops->vm_destroy(kvm);
8275 	kvm_pic_destroy(kvm);
8276 	kvm_ioapic_destroy(kvm);
8277 	kvm_free_vcpus(kvm);
8278 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8279 	kvm_mmu_uninit_vm(kvm);
8280 	kvm_page_track_cleanup(kvm);
8281 }
8282 
8283 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8284 			   struct kvm_memory_slot *dont)
8285 {
8286 	int i;
8287 
8288 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8289 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8290 			kvfree(free->arch.rmap[i]);
8291 			free->arch.rmap[i] = NULL;
8292 		}
8293 		if (i == 0)
8294 			continue;
8295 
8296 		if (!dont || free->arch.lpage_info[i - 1] !=
8297 			     dont->arch.lpage_info[i - 1]) {
8298 			kvfree(free->arch.lpage_info[i - 1]);
8299 			free->arch.lpage_info[i - 1] = NULL;
8300 		}
8301 	}
8302 
8303 	kvm_page_track_free_memslot(free, dont);
8304 }
8305 
8306 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8307 			    unsigned long npages)
8308 {
8309 	int i;
8310 
8311 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8312 		struct kvm_lpage_info *linfo;
8313 		unsigned long ugfn;
8314 		int lpages;
8315 		int level = i + 1;
8316 
8317 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8318 				      slot->base_gfn, level) + 1;
8319 
8320 		slot->arch.rmap[i] =
8321 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8322 		if (!slot->arch.rmap[i])
8323 			goto out_free;
8324 		if (i == 0)
8325 			continue;
8326 
8327 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8328 		if (!linfo)
8329 			goto out_free;
8330 
8331 		slot->arch.lpage_info[i - 1] = linfo;
8332 
8333 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8334 			linfo[0].disallow_lpage = 1;
8335 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8336 			linfo[lpages - 1].disallow_lpage = 1;
8337 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8338 		/*
8339 		 * If the gfn and userspace address are not aligned wrt each
8340 		 * other, or if explicitly asked to, disable large page
8341 		 * support for this slot
8342 		 */
8343 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8344 		    !kvm_largepages_enabled()) {
8345 			unsigned long j;
8346 
8347 			for (j = 0; j < lpages; ++j)
8348 				linfo[j].disallow_lpage = 1;
8349 		}
8350 	}
8351 
8352 	if (kvm_page_track_create_memslot(slot, npages))
8353 		goto out_free;
8354 
8355 	return 0;
8356 
8357 out_free:
8358 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8359 		kvfree(slot->arch.rmap[i]);
8360 		slot->arch.rmap[i] = NULL;
8361 		if (i == 0)
8362 			continue;
8363 
8364 		kvfree(slot->arch.lpage_info[i - 1]);
8365 		slot->arch.lpage_info[i - 1] = NULL;
8366 	}
8367 	return -ENOMEM;
8368 }
8369 
8370 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8371 {
8372 	/*
8373 	 * memslots->generation has been incremented.
8374 	 * mmio generation may have reached its maximum value.
8375 	 */
8376 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8377 }
8378 
8379 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8380 				struct kvm_memory_slot *memslot,
8381 				const struct kvm_userspace_memory_region *mem,
8382 				enum kvm_mr_change change)
8383 {
8384 	return 0;
8385 }
8386 
8387 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8388 				     struct kvm_memory_slot *new)
8389 {
8390 	/* Still write protect RO slot */
8391 	if (new->flags & KVM_MEM_READONLY) {
8392 		kvm_mmu_slot_remove_write_access(kvm, new);
8393 		return;
8394 	}
8395 
8396 	/*
8397 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8398 	 *
8399 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8400 	 *
8401 	 *  - KVM_MR_CREATE with dirty logging is disabled
8402 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8403 	 *
8404 	 * The reason is, in case of PML, we need to set D-bit for any slots
8405 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8406 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8407 	 * guarantees leaving PML enabled during guest's lifetime won't have
8408 	 * any additonal overhead from PML when guest is running with dirty
8409 	 * logging disabled for memory slots.
8410 	 *
8411 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8412 	 * to dirty logging mode.
8413 	 *
8414 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8415 	 *
8416 	 * In case of write protect:
8417 	 *
8418 	 * Write protect all pages for dirty logging.
8419 	 *
8420 	 * All the sptes including the large sptes which point to this
8421 	 * slot are set to readonly. We can not create any new large
8422 	 * spte on this slot until the end of the logging.
8423 	 *
8424 	 * See the comments in fast_page_fault().
8425 	 */
8426 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8427 		if (kvm_x86_ops->slot_enable_log_dirty)
8428 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8429 		else
8430 			kvm_mmu_slot_remove_write_access(kvm, new);
8431 	} else {
8432 		if (kvm_x86_ops->slot_disable_log_dirty)
8433 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8434 	}
8435 }
8436 
8437 void kvm_arch_commit_memory_region(struct kvm *kvm,
8438 				const struct kvm_userspace_memory_region *mem,
8439 				const struct kvm_memory_slot *old,
8440 				const struct kvm_memory_slot *new,
8441 				enum kvm_mr_change change)
8442 {
8443 	int nr_mmu_pages = 0;
8444 
8445 	if (!kvm->arch.n_requested_mmu_pages)
8446 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8447 
8448 	if (nr_mmu_pages)
8449 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8450 
8451 	/*
8452 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8453 	 * sptes have to be split.  If live migration is successful, the guest
8454 	 * in the source machine will be destroyed and large sptes will be
8455 	 * created in the destination. However, if the guest continues to run
8456 	 * in the source machine (for example if live migration fails), small
8457 	 * sptes will remain around and cause bad performance.
8458 	 *
8459 	 * Scan sptes if dirty logging has been stopped, dropping those
8460 	 * which can be collapsed into a single large-page spte.  Later
8461 	 * page faults will create the large-page sptes.
8462 	 */
8463 	if ((change != KVM_MR_DELETE) &&
8464 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8465 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8466 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8467 
8468 	/*
8469 	 * Set up write protection and/or dirty logging for the new slot.
8470 	 *
8471 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8472 	 * been zapped so no dirty logging staff is needed for old slot. For
8473 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8474 	 * new and it's also covered when dealing with the new slot.
8475 	 *
8476 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8477 	 */
8478 	if (change != KVM_MR_DELETE)
8479 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8480 }
8481 
8482 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8483 {
8484 	kvm_mmu_invalidate_zap_all_pages(kvm);
8485 }
8486 
8487 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8488 				   struct kvm_memory_slot *slot)
8489 {
8490 	kvm_page_track_flush_slot(kvm, slot);
8491 }
8492 
8493 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8494 {
8495 	if (!list_empty_careful(&vcpu->async_pf.done))
8496 		return true;
8497 
8498 	if (kvm_apic_has_events(vcpu))
8499 		return true;
8500 
8501 	if (vcpu->arch.pv.pv_unhalted)
8502 		return true;
8503 
8504 	if (vcpu->arch.exception.pending)
8505 		return true;
8506 
8507 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8508 	    (vcpu->arch.nmi_pending &&
8509 	     kvm_x86_ops->nmi_allowed(vcpu)))
8510 		return true;
8511 
8512 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8513 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
8514 		return true;
8515 
8516 	if (kvm_arch_interrupt_allowed(vcpu) &&
8517 	    kvm_cpu_has_interrupt(vcpu))
8518 		return true;
8519 
8520 	if (kvm_hv_has_stimer_pending(vcpu))
8521 		return true;
8522 
8523 	return false;
8524 }
8525 
8526 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8527 {
8528 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8529 }
8530 
8531 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8532 {
8533 	return vcpu->arch.preempted_in_kernel;
8534 }
8535 
8536 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8537 {
8538 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8539 }
8540 
8541 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8542 {
8543 	return kvm_x86_ops->interrupt_allowed(vcpu);
8544 }
8545 
8546 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8547 {
8548 	if (is_64_bit_mode(vcpu))
8549 		return kvm_rip_read(vcpu);
8550 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8551 		     kvm_rip_read(vcpu));
8552 }
8553 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8554 
8555 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8556 {
8557 	return kvm_get_linear_rip(vcpu) == linear_rip;
8558 }
8559 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8560 
8561 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8562 {
8563 	unsigned long rflags;
8564 
8565 	rflags = kvm_x86_ops->get_rflags(vcpu);
8566 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8567 		rflags &= ~X86_EFLAGS_TF;
8568 	return rflags;
8569 }
8570 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8571 
8572 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8573 {
8574 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8575 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8576 		rflags |= X86_EFLAGS_TF;
8577 	kvm_x86_ops->set_rflags(vcpu, rflags);
8578 }
8579 
8580 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8581 {
8582 	__kvm_set_rflags(vcpu, rflags);
8583 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8584 }
8585 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8586 
8587 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8588 {
8589 	int r;
8590 
8591 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8592 	      work->wakeup_all)
8593 		return;
8594 
8595 	r = kvm_mmu_reload(vcpu);
8596 	if (unlikely(r))
8597 		return;
8598 
8599 	if (!vcpu->arch.mmu.direct_map &&
8600 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8601 		return;
8602 
8603 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8604 }
8605 
8606 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8607 {
8608 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8609 }
8610 
8611 static inline u32 kvm_async_pf_next_probe(u32 key)
8612 {
8613 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8614 }
8615 
8616 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8617 {
8618 	u32 key = kvm_async_pf_hash_fn(gfn);
8619 
8620 	while (vcpu->arch.apf.gfns[key] != ~0)
8621 		key = kvm_async_pf_next_probe(key);
8622 
8623 	vcpu->arch.apf.gfns[key] = gfn;
8624 }
8625 
8626 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8627 {
8628 	int i;
8629 	u32 key = kvm_async_pf_hash_fn(gfn);
8630 
8631 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8632 		     (vcpu->arch.apf.gfns[key] != gfn &&
8633 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8634 		key = kvm_async_pf_next_probe(key);
8635 
8636 	return key;
8637 }
8638 
8639 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8640 {
8641 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8642 }
8643 
8644 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8645 {
8646 	u32 i, j, k;
8647 
8648 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8649 	while (true) {
8650 		vcpu->arch.apf.gfns[i] = ~0;
8651 		do {
8652 			j = kvm_async_pf_next_probe(j);
8653 			if (vcpu->arch.apf.gfns[j] == ~0)
8654 				return;
8655 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8656 			/*
8657 			 * k lies cyclically in ]i,j]
8658 			 * |    i.k.j |
8659 			 * |....j i.k.| or  |.k..j i...|
8660 			 */
8661 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8662 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8663 		i = j;
8664 	}
8665 }
8666 
8667 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8668 {
8669 
8670 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8671 				      sizeof(val));
8672 }
8673 
8674 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8675 {
8676 
8677 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8678 				      sizeof(u32));
8679 }
8680 
8681 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8682 				     struct kvm_async_pf *work)
8683 {
8684 	struct x86_exception fault;
8685 
8686 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8687 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8688 
8689 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8690 	    (vcpu->arch.apf.send_user_only &&
8691 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8692 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8693 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8694 		fault.vector = PF_VECTOR;
8695 		fault.error_code_valid = true;
8696 		fault.error_code = 0;
8697 		fault.nested_page_fault = false;
8698 		fault.address = work->arch.token;
8699 		fault.async_page_fault = true;
8700 		kvm_inject_page_fault(vcpu, &fault);
8701 	}
8702 }
8703 
8704 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8705 				 struct kvm_async_pf *work)
8706 {
8707 	struct x86_exception fault;
8708 	u32 val;
8709 
8710 	if (work->wakeup_all)
8711 		work->arch.token = ~0; /* broadcast wakeup */
8712 	else
8713 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8714 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8715 
8716 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8717 	    !apf_get_user(vcpu, &val)) {
8718 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8719 		    vcpu->arch.exception.pending &&
8720 		    vcpu->arch.exception.nr == PF_VECTOR &&
8721 		    !apf_put_user(vcpu, 0)) {
8722 			vcpu->arch.exception.injected = false;
8723 			vcpu->arch.exception.pending = false;
8724 			vcpu->arch.exception.nr = 0;
8725 			vcpu->arch.exception.has_error_code = false;
8726 			vcpu->arch.exception.error_code = 0;
8727 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8728 			fault.vector = PF_VECTOR;
8729 			fault.error_code_valid = true;
8730 			fault.error_code = 0;
8731 			fault.nested_page_fault = false;
8732 			fault.address = work->arch.token;
8733 			fault.async_page_fault = true;
8734 			kvm_inject_page_fault(vcpu, &fault);
8735 		}
8736 	}
8737 	vcpu->arch.apf.halted = false;
8738 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8739 }
8740 
8741 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8742 {
8743 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8744 		return true;
8745 	else
8746 		return kvm_can_do_async_pf(vcpu);
8747 }
8748 
8749 void kvm_arch_start_assignment(struct kvm *kvm)
8750 {
8751 	atomic_inc(&kvm->arch.assigned_device_count);
8752 }
8753 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8754 
8755 void kvm_arch_end_assignment(struct kvm *kvm)
8756 {
8757 	atomic_dec(&kvm->arch.assigned_device_count);
8758 }
8759 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8760 
8761 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8762 {
8763 	return atomic_read(&kvm->arch.assigned_device_count);
8764 }
8765 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8766 
8767 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8768 {
8769 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8770 }
8771 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8772 
8773 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8774 {
8775 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8776 }
8777 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8778 
8779 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8780 {
8781 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8782 }
8783 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8784 
8785 bool kvm_arch_has_irq_bypass(void)
8786 {
8787 	return kvm_x86_ops->update_pi_irte != NULL;
8788 }
8789 
8790 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8791 				      struct irq_bypass_producer *prod)
8792 {
8793 	struct kvm_kernel_irqfd *irqfd =
8794 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8795 
8796 	irqfd->producer = prod;
8797 
8798 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8799 					   prod->irq, irqfd->gsi, 1);
8800 }
8801 
8802 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8803 				      struct irq_bypass_producer *prod)
8804 {
8805 	int ret;
8806 	struct kvm_kernel_irqfd *irqfd =
8807 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8808 
8809 	WARN_ON(irqfd->producer != prod);
8810 	irqfd->producer = NULL;
8811 
8812 	/*
8813 	 * When producer of consumer is unregistered, we change back to
8814 	 * remapped mode, so we can re-use the current implementation
8815 	 * when the irq is masked/disabled or the consumer side (KVM
8816 	 * int this case doesn't want to receive the interrupts.
8817 	*/
8818 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8819 	if (ret)
8820 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8821 		       " fails: %d\n", irqfd->consumer.token, ret);
8822 }
8823 
8824 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8825 				   uint32_t guest_irq, bool set)
8826 {
8827 	if (!kvm_x86_ops->update_pi_irte)
8828 		return -EINVAL;
8829 
8830 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8831 }
8832 
8833 bool kvm_vector_hashing_enabled(void)
8834 {
8835 	return vector_hashing;
8836 }
8837 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8838 
8839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8858