1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "mmu.h" 22 #include "i8254.h" 23 #include "tss.h" 24 #include "kvm_cache_regs.h" 25 #include "x86.h" 26 #include "cpuid.h" 27 #include "pmu.h" 28 #include "hyperv.h" 29 30 #include <linux/clocksource.h> 31 #include <linux/interrupt.h> 32 #include <linux/kvm.h> 33 #include <linux/fs.h> 34 #include <linux/vmalloc.h> 35 #include <linux/export.h> 36 #include <linux/moduleparam.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <linux/kvm_irqfd.h> 52 #include <linux/irqbypass.h> 53 #include <linux/sched/stat.h> 54 #include <linux/sched/isolation.h> 55 #include <linux/mem_encrypt.h> 56 57 #include <trace/events/kvm.h> 58 59 #include <asm/debugreg.h> 60 #include <asm/msr.h> 61 #include <asm/desc.h> 62 #include <asm/mce.h> 63 #include <linux/kernel_stat.h> 64 #include <asm/fpu/internal.h> /* Ugh! */ 65 #include <asm/pvclock.h> 66 #include <asm/div64.h> 67 #include <asm/irq_remapping.h> 68 #include <asm/mshyperv.h> 69 #include <asm/hypervisor.h> 70 #include <asm/intel_pt.h> 71 #include <clocksource/hyperv_timer.h> 72 73 #define CREATE_TRACE_POINTS 74 #include "trace.h" 75 76 #define MAX_IO_MSRS 256 77 #define KVM_MAX_MCE_BANKS 32 78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 80 81 #define emul_to_vcpu(ctxt) \ 82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 83 84 /* EFER defaults: 85 * - enable syscall per default because its emulated by KVM 86 * - enable LME and LMA per default on 64 bit KVM 87 */ 88 #ifdef CONFIG_X86_64 89 static 90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 91 #else 92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 93 #endif 94 95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 97 98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 100 101 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 102 static void process_nmi(struct kvm_vcpu *vcpu); 103 static void enter_smm(struct kvm_vcpu *vcpu); 104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 105 static void store_regs(struct kvm_vcpu *vcpu); 106 static int sync_regs(struct kvm_vcpu *vcpu); 107 108 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 109 EXPORT_SYMBOL_GPL(kvm_x86_ops); 110 111 static bool __read_mostly ignore_msrs = 0; 112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 113 114 static bool __read_mostly report_ignored_msrs = true; 115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 116 117 unsigned int min_timer_period_us = 200; 118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 119 120 static bool __read_mostly kvmclock_periodic_sync = true; 121 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 122 123 bool __read_mostly kvm_has_tsc_control; 124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 125 u32 __read_mostly kvm_max_guest_tsc_khz; 126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 129 u64 __read_mostly kvm_max_tsc_scaling_ratio; 130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 131 u64 __read_mostly kvm_default_tsc_scaling_ratio; 132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 133 134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 135 static u32 __read_mostly tsc_tolerance_ppm = 250; 136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 137 138 /* 139 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 140 * adaptive tuning starting from default advancment of 1000ns. '0' disables 141 * advancement entirely. Any other value is used as-is and disables adaptive 142 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 143 */ 144 static int __read_mostly lapic_timer_advance_ns = -1; 145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 146 147 static bool __read_mostly vector_hashing = true; 148 module_param(vector_hashing, bool, S_IRUGO); 149 150 bool __read_mostly enable_vmware_backdoor = false; 151 module_param(enable_vmware_backdoor, bool, S_IRUGO); 152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 153 154 static bool __read_mostly force_emulation_prefix = false; 155 module_param(force_emulation_prefix, bool, S_IRUGO); 156 157 int __read_mostly pi_inject_timer = -1; 158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 159 160 #define KVM_NR_SHARED_MSRS 16 161 162 struct kvm_shared_msrs_global { 163 int nr; 164 u32 msrs[KVM_NR_SHARED_MSRS]; 165 }; 166 167 struct kvm_shared_msrs { 168 struct user_return_notifier urn; 169 bool registered; 170 struct kvm_shared_msr_values { 171 u64 host; 172 u64 curr; 173 } values[KVM_NR_SHARED_MSRS]; 174 }; 175 176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 177 static struct kvm_shared_msrs __percpu *shared_msrs; 178 179 struct kvm_stats_debugfs_item debugfs_entries[] = { 180 { "pf_fixed", VCPU_STAT(pf_fixed) }, 181 { "pf_guest", VCPU_STAT(pf_guest) }, 182 { "tlb_flush", VCPU_STAT(tlb_flush) }, 183 { "invlpg", VCPU_STAT(invlpg) }, 184 { "exits", VCPU_STAT(exits) }, 185 { "io_exits", VCPU_STAT(io_exits) }, 186 { "mmio_exits", VCPU_STAT(mmio_exits) }, 187 { "signal_exits", VCPU_STAT(signal_exits) }, 188 { "irq_window", VCPU_STAT(irq_window_exits) }, 189 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 190 { "halt_exits", VCPU_STAT(halt_exits) }, 191 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 192 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 193 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 194 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 195 { "hypercalls", VCPU_STAT(hypercalls) }, 196 { "request_irq", VCPU_STAT(request_irq_exits) }, 197 { "irq_exits", VCPU_STAT(irq_exits) }, 198 { "host_state_reload", VCPU_STAT(host_state_reload) }, 199 { "fpu_reload", VCPU_STAT(fpu_reload) }, 200 { "insn_emulation", VCPU_STAT(insn_emulation) }, 201 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 202 { "irq_injections", VCPU_STAT(irq_injections) }, 203 { "nmi_injections", VCPU_STAT(nmi_injections) }, 204 { "req_event", VCPU_STAT(req_event) }, 205 { "l1d_flush", VCPU_STAT(l1d_flush) }, 206 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 207 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 208 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 209 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 210 { "mmu_flooded", VM_STAT(mmu_flooded) }, 211 { "mmu_recycled", VM_STAT(mmu_recycled) }, 212 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 213 { "mmu_unsync", VM_STAT(mmu_unsync) }, 214 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 215 { "largepages", VM_STAT(lpages) }, 216 { "max_mmu_page_hash_collisions", 217 VM_STAT(max_mmu_page_hash_collisions) }, 218 { NULL } 219 }; 220 221 u64 __read_mostly host_xcr0; 222 223 struct kmem_cache *x86_fpu_cache; 224 EXPORT_SYMBOL_GPL(x86_fpu_cache); 225 226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 227 228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 229 { 230 int i; 231 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 232 vcpu->arch.apf.gfns[i] = ~0; 233 } 234 235 static void kvm_on_user_return(struct user_return_notifier *urn) 236 { 237 unsigned slot; 238 struct kvm_shared_msrs *locals 239 = container_of(urn, struct kvm_shared_msrs, urn); 240 struct kvm_shared_msr_values *values; 241 unsigned long flags; 242 243 /* 244 * Disabling irqs at this point since the following code could be 245 * interrupted and executed through kvm_arch_hardware_disable() 246 */ 247 local_irq_save(flags); 248 if (locals->registered) { 249 locals->registered = false; 250 user_return_notifier_unregister(urn); 251 } 252 local_irq_restore(flags); 253 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 254 values = &locals->values[slot]; 255 if (values->host != values->curr) { 256 wrmsrl(shared_msrs_global.msrs[slot], values->host); 257 values->curr = values->host; 258 } 259 } 260 } 261 262 static void shared_msr_update(unsigned slot, u32 msr) 263 { 264 u64 value; 265 unsigned int cpu = smp_processor_id(); 266 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 267 268 /* only read, and nobody should modify it at this time, 269 * so don't need lock */ 270 if (slot >= shared_msrs_global.nr) { 271 printk(KERN_ERR "kvm: invalid MSR slot!"); 272 return; 273 } 274 rdmsrl_safe(msr, &value); 275 smsr->values[slot].host = value; 276 smsr->values[slot].curr = value; 277 } 278 279 void kvm_define_shared_msr(unsigned slot, u32 msr) 280 { 281 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 282 shared_msrs_global.msrs[slot] = msr; 283 if (slot >= shared_msrs_global.nr) 284 shared_msrs_global.nr = slot + 1; 285 } 286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 287 288 static void kvm_shared_msr_cpu_online(void) 289 { 290 unsigned i; 291 292 for (i = 0; i < shared_msrs_global.nr; ++i) 293 shared_msr_update(i, shared_msrs_global.msrs[i]); 294 } 295 296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 297 { 298 unsigned int cpu = smp_processor_id(); 299 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 300 int err; 301 302 if (((value ^ smsr->values[slot].curr) & mask) == 0) 303 return 0; 304 smsr->values[slot].curr = value; 305 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 306 if (err) 307 return 1; 308 309 if (!smsr->registered) { 310 smsr->urn.on_user_return = kvm_on_user_return; 311 user_return_notifier_register(&smsr->urn); 312 smsr->registered = true; 313 } 314 return 0; 315 } 316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 317 318 static void drop_user_return_notifiers(void) 319 { 320 unsigned int cpu = smp_processor_id(); 321 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 322 323 if (smsr->registered) 324 kvm_on_user_return(&smsr->urn); 325 } 326 327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 328 { 329 return vcpu->arch.apic_base; 330 } 331 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 332 333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 334 { 335 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 336 } 337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 338 339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 340 { 341 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 342 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 343 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 344 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 345 346 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 347 return 1; 348 if (!msr_info->host_initiated) { 349 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 350 return 1; 351 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 352 return 1; 353 } 354 355 kvm_lapic_set_base(vcpu, msr_info->data); 356 return 0; 357 } 358 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 359 360 asmlinkage __visible void kvm_spurious_fault(void) 361 { 362 /* Fault while not rebooting. We want the trace. */ 363 if (!kvm_rebooting) 364 BUG(); 365 } 366 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 367 368 #define EXCPT_BENIGN 0 369 #define EXCPT_CONTRIBUTORY 1 370 #define EXCPT_PF 2 371 372 static int exception_class(int vector) 373 { 374 switch (vector) { 375 case PF_VECTOR: 376 return EXCPT_PF; 377 case DE_VECTOR: 378 case TS_VECTOR: 379 case NP_VECTOR: 380 case SS_VECTOR: 381 case GP_VECTOR: 382 return EXCPT_CONTRIBUTORY; 383 default: 384 break; 385 } 386 return EXCPT_BENIGN; 387 } 388 389 #define EXCPT_FAULT 0 390 #define EXCPT_TRAP 1 391 #define EXCPT_ABORT 2 392 #define EXCPT_INTERRUPT 3 393 394 static int exception_type(int vector) 395 { 396 unsigned int mask; 397 398 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 399 return EXCPT_INTERRUPT; 400 401 mask = 1 << vector; 402 403 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 404 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 405 return EXCPT_TRAP; 406 407 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 408 return EXCPT_ABORT; 409 410 /* Reserved exceptions will result in fault */ 411 return EXCPT_FAULT; 412 } 413 414 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 415 { 416 unsigned nr = vcpu->arch.exception.nr; 417 bool has_payload = vcpu->arch.exception.has_payload; 418 unsigned long payload = vcpu->arch.exception.payload; 419 420 if (!has_payload) 421 return; 422 423 switch (nr) { 424 case DB_VECTOR: 425 /* 426 * "Certain debug exceptions may clear bit 0-3. The 427 * remaining contents of the DR6 register are never 428 * cleared by the processor". 429 */ 430 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 431 /* 432 * DR6.RTM is set by all #DB exceptions that don't clear it. 433 */ 434 vcpu->arch.dr6 |= DR6_RTM; 435 vcpu->arch.dr6 |= payload; 436 /* 437 * Bit 16 should be set in the payload whenever the #DB 438 * exception should clear DR6.RTM. This makes the payload 439 * compatible with the pending debug exceptions under VMX. 440 * Though not currently documented in the SDM, this also 441 * makes the payload compatible with the exit qualification 442 * for #DB exceptions under VMX. 443 */ 444 vcpu->arch.dr6 ^= payload & DR6_RTM; 445 break; 446 case PF_VECTOR: 447 vcpu->arch.cr2 = payload; 448 break; 449 } 450 451 vcpu->arch.exception.has_payload = false; 452 vcpu->arch.exception.payload = 0; 453 } 454 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 455 456 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 457 unsigned nr, bool has_error, u32 error_code, 458 bool has_payload, unsigned long payload, bool reinject) 459 { 460 u32 prev_nr; 461 int class1, class2; 462 463 kvm_make_request(KVM_REQ_EVENT, vcpu); 464 465 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 466 queue: 467 if (has_error && !is_protmode(vcpu)) 468 has_error = false; 469 if (reinject) { 470 /* 471 * On vmentry, vcpu->arch.exception.pending is only 472 * true if an event injection was blocked by 473 * nested_run_pending. In that case, however, 474 * vcpu_enter_guest requests an immediate exit, 475 * and the guest shouldn't proceed far enough to 476 * need reinjection. 477 */ 478 WARN_ON_ONCE(vcpu->arch.exception.pending); 479 vcpu->arch.exception.injected = true; 480 if (WARN_ON_ONCE(has_payload)) { 481 /* 482 * A reinjected event has already 483 * delivered its payload. 484 */ 485 has_payload = false; 486 payload = 0; 487 } 488 } else { 489 vcpu->arch.exception.pending = true; 490 vcpu->arch.exception.injected = false; 491 } 492 vcpu->arch.exception.has_error_code = has_error; 493 vcpu->arch.exception.nr = nr; 494 vcpu->arch.exception.error_code = error_code; 495 vcpu->arch.exception.has_payload = has_payload; 496 vcpu->arch.exception.payload = payload; 497 /* 498 * In guest mode, payload delivery should be deferred, 499 * so that the L1 hypervisor can intercept #PF before 500 * CR2 is modified (or intercept #DB before DR6 is 501 * modified under nVMX). However, for ABI 502 * compatibility with KVM_GET_VCPU_EVENTS and 503 * KVM_SET_VCPU_EVENTS, we can't delay payload 504 * delivery unless userspace has enabled this 505 * functionality via the per-VM capability, 506 * KVM_CAP_EXCEPTION_PAYLOAD. 507 */ 508 if (!vcpu->kvm->arch.exception_payload_enabled || 509 !is_guest_mode(vcpu)) 510 kvm_deliver_exception_payload(vcpu); 511 return; 512 } 513 514 /* to check exception */ 515 prev_nr = vcpu->arch.exception.nr; 516 if (prev_nr == DF_VECTOR) { 517 /* triple fault -> shutdown */ 518 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 519 return; 520 } 521 class1 = exception_class(prev_nr); 522 class2 = exception_class(nr); 523 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 524 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 525 /* 526 * Generate double fault per SDM Table 5-5. Set 527 * exception.pending = true so that the double fault 528 * can trigger a nested vmexit. 529 */ 530 vcpu->arch.exception.pending = true; 531 vcpu->arch.exception.injected = false; 532 vcpu->arch.exception.has_error_code = true; 533 vcpu->arch.exception.nr = DF_VECTOR; 534 vcpu->arch.exception.error_code = 0; 535 vcpu->arch.exception.has_payload = false; 536 vcpu->arch.exception.payload = 0; 537 } else 538 /* replace previous exception with a new one in a hope 539 that instruction re-execution will regenerate lost 540 exception */ 541 goto queue; 542 } 543 544 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 545 { 546 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 547 } 548 EXPORT_SYMBOL_GPL(kvm_queue_exception); 549 550 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 551 { 552 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 553 } 554 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 555 556 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 557 unsigned long payload) 558 { 559 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 560 } 561 562 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 563 u32 error_code, unsigned long payload) 564 { 565 kvm_multiple_exception(vcpu, nr, true, error_code, 566 true, payload, false); 567 } 568 569 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 570 { 571 if (err) 572 kvm_inject_gp(vcpu, 0); 573 else 574 return kvm_skip_emulated_instruction(vcpu); 575 576 return 1; 577 } 578 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 579 580 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 581 { 582 ++vcpu->stat.pf_guest; 583 vcpu->arch.exception.nested_apf = 584 is_guest_mode(vcpu) && fault->async_page_fault; 585 if (vcpu->arch.exception.nested_apf) { 586 vcpu->arch.apf.nested_apf_token = fault->address; 587 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 588 } else { 589 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 590 fault->address); 591 } 592 } 593 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 594 595 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 596 { 597 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 598 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 599 else 600 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 601 602 return fault->nested_page_fault; 603 } 604 605 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 606 { 607 atomic_inc(&vcpu->arch.nmi_queued); 608 kvm_make_request(KVM_REQ_NMI, vcpu); 609 } 610 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 611 612 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 613 { 614 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 615 } 616 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 617 618 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 619 { 620 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 621 } 622 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 623 624 /* 625 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 626 * a #GP and return false. 627 */ 628 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 629 { 630 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 631 return true; 632 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 633 return false; 634 } 635 EXPORT_SYMBOL_GPL(kvm_require_cpl); 636 637 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 638 { 639 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 640 return true; 641 642 kvm_queue_exception(vcpu, UD_VECTOR); 643 return false; 644 } 645 EXPORT_SYMBOL_GPL(kvm_require_dr); 646 647 /* 648 * This function will be used to read from the physical memory of the currently 649 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 650 * can read from guest physical or from the guest's guest physical memory. 651 */ 652 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 653 gfn_t ngfn, void *data, int offset, int len, 654 u32 access) 655 { 656 struct x86_exception exception; 657 gfn_t real_gfn; 658 gpa_t ngpa; 659 660 ngpa = gfn_to_gpa(ngfn); 661 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 662 if (real_gfn == UNMAPPED_GVA) 663 return -EFAULT; 664 665 real_gfn = gpa_to_gfn(real_gfn); 666 667 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 668 } 669 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 670 671 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 672 void *data, int offset, int len, u32 access) 673 { 674 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 675 data, offset, len, access); 676 } 677 678 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 679 { 680 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 681 rsvd_bits(1, 2); 682 } 683 684 /* 685 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 686 */ 687 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 688 { 689 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 690 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 691 int i; 692 int ret; 693 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 694 695 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 696 offset * sizeof(u64), sizeof(pdpte), 697 PFERR_USER_MASK|PFERR_WRITE_MASK); 698 if (ret < 0) { 699 ret = 0; 700 goto out; 701 } 702 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 703 if ((pdpte[i] & PT_PRESENT_MASK) && 704 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 705 ret = 0; 706 goto out; 707 } 708 } 709 ret = 1; 710 711 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 712 __set_bit(VCPU_EXREG_PDPTR, 713 (unsigned long *)&vcpu->arch.regs_avail); 714 __set_bit(VCPU_EXREG_PDPTR, 715 (unsigned long *)&vcpu->arch.regs_dirty); 716 out: 717 718 return ret; 719 } 720 EXPORT_SYMBOL_GPL(load_pdptrs); 721 722 bool pdptrs_changed(struct kvm_vcpu *vcpu) 723 { 724 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 725 bool changed = true; 726 int offset; 727 gfn_t gfn; 728 int r; 729 730 if (!is_pae_paging(vcpu)) 731 return false; 732 733 if (!test_bit(VCPU_EXREG_PDPTR, 734 (unsigned long *)&vcpu->arch.regs_avail)) 735 return true; 736 737 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 738 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 739 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 740 PFERR_USER_MASK | PFERR_WRITE_MASK); 741 if (r < 0) 742 goto out; 743 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 744 out: 745 746 return changed; 747 } 748 EXPORT_SYMBOL_GPL(pdptrs_changed); 749 750 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 751 { 752 unsigned long old_cr0 = kvm_read_cr0(vcpu); 753 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 754 755 cr0 |= X86_CR0_ET; 756 757 #ifdef CONFIG_X86_64 758 if (cr0 & 0xffffffff00000000UL) 759 return 1; 760 #endif 761 762 cr0 &= ~CR0_RESERVED_BITS; 763 764 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 765 return 1; 766 767 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 768 return 1; 769 770 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 771 #ifdef CONFIG_X86_64 772 if ((vcpu->arch.efer & EFER_LME)) { 773 int cs_db, cs_l; 774 775 if (!is_pae(vcpu)) 776 return 1; 777 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 778 if (cs_l) 779 return 1; 780 } else 781 #endif 782 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 783 kvm_read_cr3(vcpu))) 784 return 1; 785 } 786 787 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 788 return 1; 789 790 kvm_x86_ops->set_cr0(vcpu, cr0); 791 792 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 793 kvm_clear_async_pf_completion_queue(vcpu); 794 kvm_async_pf_hash_reset(vcpu); 795 } 796 797 if ((cr0 ^ old_cr0) & update_bits) 798 kvm_mmu_reset_context(vcpu); 799 800 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 801 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 802 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 803 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 804 805 return 0; 806 } 807 EXPORT_SYMBOL_GPL(kvm_set_cr0); 808 809 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 810 { 811 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 812 } 813 EXPORT_SYMBOL_GPL(kvm_lmsw); 814 815 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 816 { 817 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 818 !vcpu->guest_xcr0_loaded) { 819 /* kvm_set_xcr() also depends on this */ 820 if (vcpu->arch.xcr0 != host_xcr0) 821 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 822 vcpu->guest_xcr0_loaded = 1; 823 } 824 } 825 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0); 826 827 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 828 { 829 if (vcpu->guest_xcr0_loaded) { 830 if (vcpu->arch.xcr0 != host_xcr0) 831 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 832 vcpu->guest_xcr0_loaded = 0; 833 } 834 } 835 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0); 836 837 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 838 { 839 u64 xcr0 = xcr; 840 u64 old_xcr0 = vcpu->arch.xcr0; 841 u64 valid_bits; 842 843 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 844 if (index != XCR_XFEATURE_ENABLED_MASK) 845 return 1; 846 if (!(xcr0 & XFEATURE_MASK_FP)) 847 return 1; 848 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 849 return 1; 850 851 /* 852 * Do not allow the guest to set bits that we do not support 853 * saving. However, xcr0 bit 0 is always set, even if the 854 * emulated CPU does not support XSAVE (see fx_init). 855 */ 856 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 857 if (xcr0 & ~valid_bits) 858 return 1; 859 860 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 861 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 862 return 1; 863 864 if (xcr0 & XFEATURE_MASK_AVX512) { 865 if (!(xcr0 & XFEATURE_MASK_YMM)) 866 return 1; 867 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 868 return 1; 869 } 870 vcpu->arch.xcr0 = xcr0; 871 872 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 873 kvm_update_cpuid(vcpu); 874 return 0; 875 } 876 877 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 878 { 879 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 880 __kvm_set_xcr(vcpu, index, xcr)) { 881 kvm_inject_gp(vcpu, 0); 882 return 1; 883 } 884 return 0; 885 } 886 EXPORT_SYMBOL_GPL(kvm_set_xcr); 887 888 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 889 { 890 unsigned long old_cr4 = kvm_read_cr4(vcpu); 891 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 892 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 893 894 if (cr4 & CR4_RESERVED_BITS) 895 return 1; 896 897 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) 898 return 1; 899 900 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) 901 return 1; 902 903 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) 904 return 1; 905 906 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) 907 return 1; 908 909 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) 910 return 1; 911 912 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) 913 return 1; 914 915 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) 916 return 1; 917 918 if (is_long_mode(vcpu)) { 919 if (!(cr4 & X86_CR4_PAE)) 920 return 1; 921 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 922 && ((cr4 ^ old_cr4) & pdptr_bits) 923 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 924 kvm_read_cr3(vcpu))) 925 return 1; 926 927 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 928 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 929 return 1; 930 931 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 932 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 933 return 1; 934 } 935 936 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 937 return 1; 938 939 if (((cr4 ^ old_cr4) & pdptr_bits) || 940 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 941 kvm_mmu_reset_context(vcpu); 942 943 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 944 kvm_update_cpuid(vcpu); 945 946 return 0; 947 } 948 EXPORT_SYMBOL_GPL(kvm_set_cr4); 949 950 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 951 { 952 bool skip_tlb_flush = false; 953 #ifdef CONFIG_X86_64 954 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 955 956 if (pcid_enabled) { 957 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 958 cr3 &= ~X86_CR3_PCID_NOFLUSH; 959 } 960 #endif 961 962 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 963 if (!skip_tlb_flush) { 964 kvm_mmu_sync_roots(vcpu); 965 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 966 } 967 return 0; 968 } 969 970 if (is_long_mode(vcpu) && 971 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 972 return 1; 973 else if (is_pae_paging(vcpu) && 974 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 975 return 1; 976 977 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); 978 vcpu->arch.cr3 = cr3; 979 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 980 981 return 0; 982 } 983 EXPORT_SYMBOL_GPL(kvm_set_cr3); 984 985 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 986 { 987 if (cr8 & CR8_RESERVED_BITS) 988 return 1; 989 if (lapic_in_kernel(vcpu)) 990 kvm_lapic_set_tpr(vcpu, cr8); 991 else 992 vcpu->arch.cr8 = cr8; 993 return 0; 994 } 995 EXPORT_SYMBOL_GPL(kvm_set_cr8); 996 997 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 998 { 999 if (lapic_in_kernel(vcpu)) 1000 return kvm_lapic_get_cr8(vcpu); 1001 else 1002 return vcpu->arch.cr8; 1003 } 1004 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1005 1006 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1007 { 1008 int i; 1009 1010 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1011 for (i = 0; i < KVM_NR_DB_REGS; i++) 1012 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1013 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1014 } 1015 } 1016 1017 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 1018 { 1019 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1020 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 1021 } 1022 1023 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 1024 { 1025 unsigned long dr7; 1026 1027 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1028 dr7 = vcpu->arch.guest_debug_dr7; 1029 else 1030 dr7 = vcpu->arch.dr7; 1031 kvm_x86_ops->set_dr7(vcpu, dr7); 1032 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1033 if (dr7 & DR7_BP_EN_MASK) 1034 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1035 } 1036 1037 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1038 { 1039 u64 fixed = DR6_FIXED_1; 1040 1041 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1042 fixed |= DR6_RTM; 1043 return fixed; 1044 } 1045 1046 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1047 { 1048 switch (dr) { 1049 case 0 ... 3: 1050 vcpu->arch.db[dr] = val; 1051 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1052 vcpu->arch.eff_db[dr] = val; 1053 break; 1054 case 4: 1055 /* fall through */ 1056 case 6: 1057 if (val & 0xffffffff00000000ULL) 1058 return -1; /* #GP */ 1059 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1060 kvm_update_dr6(vcpu); 1061 break; 1062 case 5: 1063 /* fall through */ 1064 default: /* 7 */ 1065 if (val & 0xffffffff00000000ULL) 1066 return -1; /* #GP */ 1067 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1068 kvm_update_dr7(vcpu); 1069 break; 1070 } 1071 1072 return 0; 1073 } 1074 1075 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1076 { 1077 if (__kvm_set_dr(vcpu, dr, val)) { 1078 kvm_inject_gp(vcpu, 0); 1079 return 1; 1080 } 1081 return 0; 1082 } 1083 EXPORT_SYMBOL_GPL(kvm_set_dr); 1084 1085 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1086 { 1087 switch (dr) { 1088 case 0 ... 3: 1089 *val = vcpu->arch.db[dr]; 1090 break; 1091 case 4: 1092 /* fall through */ 1093 case 6: 1094 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1095 *val = vcpu->arch.dr6; 1096 else 1097 *val = kvm_x86_ops->get_dr6(vcpu); 1098 break; 1099 case 5: 1100 /* fall through */ 1101 default: /* 7 */ 1102 *val = vcpu->arch.dr7; 1103 break; 1104 } 1105 return 0; 1106 } 1107 EXPORT_SYMBOL_GPL(kvm_get_dr); 1108 1109 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1110 { 1111 u32 ecx = kvm_rcx_read(vcpu); 1112 u64 data; 1113 int err; 1114 1115 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1116 if (err) 1117 return err; 1118 kvm_rax_write(vcpu, (u32)data); 1119 kvm_rdx_write(vcpu, data >> 32); 1120 return err; 1121 } 1122 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1123 1124 /* 1125 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1126 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1127 * 1128 * This list is modified at module load time to reflect the 1129 * capabilities of the host cpu. This capabilities test skips MSRs that are 1130 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 1131 * may depend on host virtualization features rather than host cpu features. 1132 */ 1133 1134 static u32 msrs_to_save[] = { 1135 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1136 MSR_STAR, 1137 #ifdef CONFIG_X86_64 1138 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1139 #endif 1140 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1141 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1142 MSR_IA32_SPEC_CTRL, 1143 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1144 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1145 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1146 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1147 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1148 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1149 MSR_IA32_UMWAIT_CONTROL, 1150 1151 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1152 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1153 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1154 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1155 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1156 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1157 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1158 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1159 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1160 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1161 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1162 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1163 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1164 MSR_ARCH_PERFMON_PERFCTR0 + 18, MSR_ARCH_PERFMON_PERFCTR0 + 19, 1165 MSR_ARCH_PERFMON_PERFCTR0 + 20, MSR_ARCH_PERFMON_PERFCTR0 + 21, 1166 MSR_ARCH_PERFMON_PERFCTR0 + 22, MSR_ARCH_PERFMON_PERFCTR0 + 23, 1167 MSR_ARCH_PERFMON_PERFCTR0 + 24, MSR_ARCH_PERFMON_PERFCTR0 + 25, 1168 MSR_ARCH_PERFMON_PERFCTR0 + 26, MSR_ARCH_PERFMON_PERFCTR0 + 27, 1169 MSR_ARCH_PERFMON_PERFCTR0 + 28, MSR_ARCH_PERFMON_PERFCTR0 + 29, 1170 MSR_ARCH_PERFMON_PERFCTR0 + 30, MSR_ARCH_PERFMON_PERFCTR0 + 31, 1171 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1172 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1173 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1174 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1175 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1176 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1177 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1178 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1179 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1180 MSR_ARCH_PERFMON_EVENTSEL0 + 18, MSR_ARCH_PERFMON_EVENTSEL0 + 19, 1181 MSR_ARCH_PERFMON_EVENTSEL0 + 20, MSR_ARCH_PERFMON_EVENTSEL0 + 21, 1182 MSR_ARCH_PERFMON_EVENTSEL0 + 22, MSR_ARCH_PERFMON_EVENTSEL0 + 23, 1183 MSR_ARCH_PERFMON_EVENTSEL0 + 24, MSR_ARCH_PERFMON_EVENTSEL0 + 25, 1184 MSR_ARCH_PERFMON_EVENTSEL0 + 26, MSR_ARCH_PERFMON_EVENTSEL0 + 27, 1185 MSR_ARCH_PERFMON_EVENTSEL0 + 28, MSR_ARCH_PERFMON_EVENTSEL0 + 29, 1186 MSR_ARCH_PERFMON_EVENTSEL0 + 30, MSR_ARCH_PERFMON_EVENTSEL0 + 31, 1187 }; 1188 1189 static unsigned num_msrs_to_save; 1190 1191 static u32 emulated_msrs[] = { 1192 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1193 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1194 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1195 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1196 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1197 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1198 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1199 HV_X64_MSR_RESET, 1200 HV_X64_MSR_VP_INDEX, 1201 HV_X64_MSR_VP_RUNTIME, 1202 HV_X64_MSR_SCONTROL, 1203 HV_X64_MSR_STIMER0_CONFIG, 1204 HV_X64_MSR_VP_ASSIST_PAGE, 1205 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1206 HV_X64_MSR_TSC_EMULATION_STATUS, 1207 1208 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1209 MSR_KVM_PV_EOI_EN, 1210 1211 MSR_IA32_TSC_ADJUST, 1212 MSR_IA32_TSCDEADLINE, 1213 MSR_IA32_ARCH_CAPABILITIES, 1214 MSR_IA32_MISC_ENABLE, 1215 MSR_IA32_MCG_STATUS, 1216 MSR_IA32_MCG_CTL, 1217 MSR_IA32_MCG_EXT_CTL, 1218 MSR_IA32_SMBASE, 1219 MSR_SMI_COUNT, 1220 MSR_PLATFORM_INFO, 1221 MSR_MISC_FEATURES_ENABLES, 1222 MSR_AMD64_VIRT_SPEC_CTRL, 1223 MSR_IA32_POWER_CTL, 1224 1225 /* 1226 * The following list leaves out MSRs whose values are determined 1227 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1228 * We always support the "true" VMX control MSRs, even if the host 1229 * processor does not, so I am putting these registers here rather 1230 * than in msrs_to_save. 1231 */ 1232 MSR_IA32_VMX_BASIC, 1233 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1234 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1235 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1236 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1237 MSR_IA32_VMX_MISC, 1238 MSR_IA32_VMX_CR0_FIXED0, 1239 MSR_IA32_VMX_CR4_FIXED0, 1240 MSR_IA32_VMX_VMCS_ENUM, 1241 MSR_IA32_VMX_PROCBASED_CTLS2, 1242 MSR_IA32_VMX_EPT_VPID_CAP, 1243 MSR_IA32_VMX_VMFUNC, 1244 1245 MSR_K7_HWCR, 1246 MSR_KVM_POLL_CONTROL, 1247 }; 1248 1249 static unsigned num_emulated_msrs; 1250 1251 /* 1252 * List of msr numbers which are used to expose MSR-based features that 1253 * can be used by a hypervisor to validate requested CPU features. 1254 */ 1255 static u32 msr_based_features[] = { 1256 MSR_IA32_VMX_BASIC, 1257 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1258 MSR_IA32_VMX_PINBASED_CTLS, 1259 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1260 MSR_IA32_VMX_PROCBASED_CTLS, 1261 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1262 MSR_IA32_VMX_EXIT_CTLS, 1263 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1264 MSR_IA32_VMX_ENTRY_CTLS, 1265 MSR_IA32_VMX_MISC, 1266 MSR_IA32_VMX_CR0_FIXED0, 1267 MSR_IA32_VMX_CR0_FIXED1, 1268 MSR_IA32_VMX_CR4_FIXED0, 1269 MSR_IA32_VMX_CR4_FIXED1, 1270 MSR_IA32_VMX_VMCS_ENUM, 1271 MSR_IA32_VMX_PROCBASED_CTLS2, 1272 MSR_IA32_VMX_EPT_VPID_CAP, 1273 MSR_IA32_VMX_VMFUNC, 1274 1275 MSR_F10H_DECFG, 1276 MSR_IA32_UCODE_REV, 1277 MSR_IA32_ARCH_CAPABILITIES, 1278 }; 1279 1280 static unsigned int num_msr_based_features; 1281 1282 static u64 kvm_get_arch_capabilities(void) 1283 { 1284 u64 data = 0; 1285 1286 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1287 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1288 1289 /* 1290 * If we're doing cache flushes (either "always" or "cond") 1291 * we will do one whenever the guest does a vmlaunch/vmresume. 1292 * If an outer hypervisor is doing the cache flush for us 1293 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1294 * capability to the guest too, and if EPT is disabled we're not 1295 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1296 * require a nested hypervisor to do a flush of its own. 1297 */ 1298 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1299 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1300 1301 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1302 data |= ARCH_CAP_RDCL_NO; 1303 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1304 data |= ARCH_CAP_SSB_NO; 1305 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1306 data |= ARCH_CAP_MDS_NO; 1307 1308 return data; 1309 } 1310 1311 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1312 { 1313 switch (msr->index) { 1314 case MSR_IA32_ARCH_CAPABILITIES: 1315 msr->data = kvm_get_arch_capabilities(); 1316 break; 1317 case MSR_IA32_UCODE_REV: 1318 rdmsrl_safe(msr->index, &msr->data); 1319 break; 1320 default: 1321 if (kvm_x86_ops->get_msr_feature(msr)) 1322 return 1; 1323 } 1324 return 0; 1325 } 1326 1327 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1328 { 1329 struct kvm_msr_entry msr; 1330 int r; 1331 1332 msr.index = index; 1333 r = kvm_get_msr_feature(&msr); 1334 if (r) 1335 return r; 1336 1337 *data = msr.data; 1338 1339 return 0; 1340 } 1341 1342 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1343 { 1344 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1345 return false; 1346 1347 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1348 return false; 1349 1350 if (efer & (EFER_LME | EFER_LMA) && 1351 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1352 return false; 1353 1354 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1355 return false; 1356 1357 return true; 1358 1359 } 1360 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1361 { 1362 if (efer & efer_reserved_bits) 1363 return false; 1364 1365 return __kvm_valid_efer(vcpu, efer); 1366 } 1367 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1368 1369 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1370 { 1371 u64 old_efer = vcpu->arch.efer; 1372 u64 efer = msr_info->data; 1373 1374 if (efer & efer_reserved_bits) 1375 return 1; 1376 1377 if (!msr_info->host_initiated) { 1378 if (!__kvm_valid_efer(vcpu, efer)) 1379 return 1; 1380 1381 if (is_paging(vcpu) && 1382 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1383 return 1; 1384 } 1385 1386 efer &= ~EFER_LMA; 1387 efer |= vcpu->arch.efer & EFER_LMA; 1388 1389 kvm_x86_ops->set_efer(vcpu, efer); 1390 1391 /* Update reserved bits */ 1392 if ((efer ^ old_efer) & EFER_NX) 1393 kvm_mmu_reset_context(vcpu); 1394 1395 return 0; 1396 } 1397 1398 void kvm_enable_efer_bits(u64 mask) 1399 { 1400 efer_reserved_bits &= ~mask; 1401 } 1402 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1403 1404 /* 1405 * Write @data into the MSR specified by @index. Select MSR specific fault 1406 * checks are bypassed if @host_initiated is %true. 1407 * Returns 0 on success, non-0 otherwise. 1408 * Assumes vcpu_load() was already called. 1409 */ 1410 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1411 bool host_initiated) 1412 { 1413 struct msr_data msr; 1414 1415 switch (index) { 1416 case MSR_FS_BASE: 1417 case MSR_GS_BASE: 1418 case MSR_KERNEL_GS_BASE: 1419 case MSR_CSTAR: 1420 case MSR_LSTAR: 1421 if (is_noncanonical_address(data, vcpu)) 1422 return 1; 1423 break; 1424 case MSR_IA32_SYSENTER_EIP: 1425 case MSR_IA32_SYSENTER_ESP: 1426 /* 1427 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1428 * non-canonical address is written on Intel but not on 1429 * AMD (which ignores the top 32-bits, because it does 1430 * not implement 64-bit SYSENTER). 1431 * 1432 * 64-bit code should hence be able to write a non-canonical 1433 * value on AMD. Making the address canonical ensures that 1434 * vmentry does not fail on Intel after writing a non-canonical 1435 * value, and that something deterministic happens if the guest 1436 * invokes 64-bit SYSENTER. 1437 */ 1438 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1439 } 1440 1441 msr.data = data; 1442 msr.index = index; 1443 msr.host_initiated = host_initiated; 1444 1445 return kvm_x86_ops->set_msr(vcpu, &msr); 1446 } 1447 1448 /* 1449 * Read the MSR specified by @index into @data. Select MSR specific fault 1450 * checks are bypassed if @host_initiated is %true. 1451 * Returns 0 on success, non-0 otherwise. 1452 * Assumes vcpu_load() was already called. 1453 */ 1454 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1455 bool host_initiated) 1456 { 1457 struct msr_data msr; 1458 int ret; 1459 1460 msr.index = index; 1461 msr.host_initiated = host_initiated; 1462 1463 ret = kvm_x86_ops->get_msr(vcpu, &msr); 1464 if (!ret) 1465 *data = msr.data; 1466 return ret; 1467 } 1468 1469 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1470 { 1471 return __kvm_get_msr(vcpu, index, data, false); 1472 } 1473 EXPORT_SYMBOL_GPL(kvm_get_msr); 1474 1475 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1476 { 1477 return __kvm_set_msr(vcpu, index, data, false); 1478 } 1479 EXPORT_SYMBOL_GPL(kvm_set_msr); 1480 1481 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1482 { 1483 u32 ecx = kvm_rcx_read(vcpu); 1484 u64 data; 1485 1486 if (kvm_get_msr(vcpu, ecx, &data)) { 1487 trace_kvm_msr_read_ex(ecx); 1488 kvm_inject_gp(vcpu, 0); 1489 return 1; 1490 } 1491 1492 trace_kvm_msr_read(ecx, data); 1493 1494 kvm_rax_write(vcpu, data & -1u); 1495 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1496 return kvm_skip_emulated_instruction(vcpu); 1497 } 1498 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1499 1500 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1501 { 1502 u32 ecx = kvm_rcx_read(vcpu); 1503 u64 data = kvm_read_edx_eax(vcpu); 1504 1505 if (kvm_set_msr(vcpu, ecx, data)) { 1506 trace_kvm_msr_write_ex(ecx, data); 1507 kvm_inject_gp(vcpu, 0); 1508 return 1; 1509 } 1510 1511 trace_kvm_msr_write(ecx, data); 1512 return kvm_skip_emulated_instruction(vcpu); 1513 } 1514 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1515 1516 /* 1517 * Adapt set_msr() to msr_io()'s calling convention 1518 */ 1519 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1520 { 1521 return __kvm_get_msr(vcpu, index, data, true); 1522 } 1523 1524 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1525 { 1526 return __kvm_set_msr(vcpu, index, *data, true); 1527 } 1528 1529 #ifdef CONFIG_X86_64 1530 struct pvclock_gtod_data { 1531 seqcount_t seq; 1532 1533 struct { /* extract of a clocksource struct */ 1534 int vclock_mode; 1535 u64 cycle_last; 1536 u64 mask; 1537 u32 mult; 1538 u32 shift; 1539 } clock; 1540 1541 u64 boot_ns; 1542 u64 nsec_base; 1543 u64 wall_time_sec; 1544 }; 1545 1546 static struct pvclock_gtod_data pvclock_gtod_data; 1547 1548 static void update_pvclock_gtod(struct timekeeper *tk) 1549 { 1550 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1551 u64 boot_ns; 1552 1553 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1554 1555 write_seqcount_begin(&vdata->seq); 1556 1557 /* copy pvclock gtod data */ 1558 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1559 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1560 vdata->clock.mask = tk->tkr_mono.mask; 1561 vdata->clock.mult = tk->tkr_mono.mult; 1562 vdata->clock.shift = tk->tkr_mono.shift; 1563 1564 vdata->boot_ns = boot_ns; 1565 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1566 1567 vdata->wall_time_sec = tk->xtime_sec; 1568 1569 write_seqcount_end(&vdata->seq); 1570 } 1571 #endif 1572 1573 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1574 { 1575 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1576 kvm_vcpu_kick(vcpu); 1577 } 1578 1579 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1580 { 1581 int version; 1582 int r; 1583 struct pvclock_wall_clock wc; 1584 struct timespec64 boot; 1585 1586 if (!wall_clock) 1587 return; 1588 1589 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1590 if (r) 1591 return; 1592 1593 if (version & 1) 1594 ++version; /* first time write, random junk */ 1595 1596 ++version; 1597 1598 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1599 return; 1600 1601 /* 1602 * The guest calculates current wall clock time by adding 1603 * system time (updated by kvm_guest_time_update below) to the 1604 * wall clock specified here. guest system time equals host 1605 * system time for us, thus we must fill in host boot time here. 1606 */ 1607 getboottime64(&boot); 1608 1609 if (kvm->arch.kvmclock_offset) { 1610 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1611 boot = timespec64_sub(boot, ts); 1612 } 1613 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1614 wc.nsec = boot.tv_nsec; 1615 wc.version = version; 1616 1617 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1618 1619 version++; 1620 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1621 } 1622 1623 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1624 { 1625 do_shl32_div32(dividend, divisor); 1626 return dividend; 1627 } 1628 1629 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1630 s8 *pshift, u32 *pmultiplier) 1631 { 1632 uint64_t scaled64; 1633 int32_t shift = 0; 1634 uint64_t tps64; 1635 uint32_t tps32; 1636 1637 tps64 = base_hz; 1638 scaled64 = scaled_hz; 1639 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1640 tps64 >>= 1; 1641 shift--; 1642 } 1643 1644 tps32 = (uint32_t)tps64; 1645 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1646 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1647 scaled64 >>= 1; 1648 else 1649 tps32 <<= 1; 1650 shift++; 1651 } 1652 1653 *pshift = shift; 1654 *pmultiplier = div_frac(scaled64, tps32); 1655 } 1656 1657 #ifdef CONFIG_X86_64 1658 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1659 #endif 1660 1661 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1662 static unsigned long max_tsc_khz; 1663 1664 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1665 { 1666 u64 v = (u64)khz * (1000000 + ppm); 1667 do_div(v, 1000000); 1668 return v; 1669 } 1670 1671 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1672 { 1673 u64 ratio; 1674 1675 /* Guest TSC same frequency as host TSC? */ 1676 if (!scale) { 1677 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1678 return 0; 1679 } 1680 1681 /* TSC scaling supported? */ 1682 if (!kvm_has_tsc_control) { 1683 if (user_tsc_khz > tsc_khz) { 1684 vcpu->arch.tsc_catchup = 1; 1685 vcpu->arch.tsc_always_catchup = 1; 1686 return 0; 1687 } else { 1688 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1689 return -1; 1690 } 1691 } 1692 1693 /* TSC scaling required - calculate ratio */ 1694 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1695 user_tsc_khz, tsc_khz); 1696 1697 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1698 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1699 user_tsc_khz); 1700 return -1; 1701 } 1702 1703 vcpu->arch.tsc_scaling_ratio = ratio; 1704 return 0; 1705 } 1706 1707 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1708 { 1709 u32 thresh_lo, thresh_hi; 1710 int use_scaling = 0; 1711 1712 /* tsc_khz can be zero if TSC calibration fails */ 1713 if (user_tsc_khz == 0) { 1714 /* set tsc_scaling_ratio to a safe value */ 1715 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1716 return -1; 1717 } 1718 1719 /* Compute a scale to convert nanoseconds in TSC cycles */ 1720 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1721 &vcpu->arch.virtual_tsc_shift, 1722 &vcpu->arch.virtual_tsc_mult); 1723 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1724 1725 /* 1726 * Compute the variation in TSC rate which is acceptable 1727 * within the range of tolerance and decide if the 1728 * rate being applied is within that bounds of the hardware 1729 * rate. If so, no scaling or compensation need be done. 1730 */ 1731 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1732 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1733 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1734 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1735 use_scaling = 1; 1736 } 1737 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1738 } 1739 1740 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1741 { 1742 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1743 vcpu->arch.virtual_tsc_mult, 1744 vcpu->arch.virtual_tsc_shift); 1745 tsc += vcpu->arch.this_tsc_write; 1746 return tsc; 1747 } 1748 1749 static inline int gtod_is_based_on_tsc(int mode) 1750 { 1751 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; 1752 } 1753 1754 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1755 { 1756 #ifdef CONFIG_X86_64 1757 bool vcpus_matched; 1758 struct kvm_arch *ka = &vcpu->kvm->arch; 1759 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1760 1761 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1762 atomic_read(&vcpu->kvm->online_vcpus)); 1763 1764 /* 1765 * Once the masterclock is enabled, always perform request in 1766 * order to update it. 1767 * 1768 * In order to enable masterclock, the host clocksource must be TSC 1769 * and the vcpus need to have matched TSCs. When that happens, 1770 * perform request to enable masterclock. 1771 */ 1772 if (ka->use_master_clock || 1773 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1774 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1775 1776 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1777 atomic_read(&vcpu->kvm->online_vcpus), 1778 ka->use_master_clock, gtod->clock.vclock_mode); 1779 #endif 1780 } 1781 1782 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1783 { 1784 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1785 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1786 } 1787 1788 /* 1789 * Multiply tsc by a fixed point number represented by ratio. 1790 * 1791 * The most significant 64-N bits (mult) of ratio represent the 1792 * integral part of the fixed point number; the remaining N bits 1793 * (frac) represent the fractional part, ie. ratio represents a fixed 1794 * point number (mult + frac * 2^(-N)). 1795 * 1796 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1797 */ 1798 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1799 { 1800 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1801 } 1802 1803 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1804 { 1805 u64 _tsc = tsc; 1806 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1807 1808 if (ratio != kvm_default_tsc_scaling_ratio) 1809 _tsc = __scale_tsc(ratio, tsc); 1810 1811 return _tsc; 1812 } 1813 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1814 1815 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1816 { 1817 u64 tsc; 1818 1819 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1820 1821 return target_tsc - tsc; 1822 } 1823 1824 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1825 { 1826 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1827 1828 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1829 } 1830 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1831 1832 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1833 { 1834 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset); 1835 } 1836 1837 static inline bool kvm_check_tsc_unstable(void) 1838 { 1839 #ifdef CONFIG_X86_64 1840 /* 1841 * TSC is marked unstable when we're running on Hyper-V, 1842 * 'TSC page' clocksource is good. 1843 */ 1844 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) 1845 return false; 1846 #endif 1847 return check_tsc_unstable(); 1848 } 1849 1850 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1851 { 1852 struct kvm *kvm = vcpu->kvm; 1853 u64 offset, ns, elapsed; 1854 unsigned long flags; 1855 bool matched; 1856 bool already_matched; 1857 u64 data = msr->data; 1858 bool synchronizing = false; 1859 1860 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1861 offset = kvm_compute_tsc_offset(vcpu, data); 1862 ns = ktime_get_boottime_ns(); 1863 elapsed = ns - kvm->arch.last_tsc_nsec; 1864 1865 if (vcpu->arch.virtual_tsc_khz) { 1866 if (data == 0 && msr->host_initiated) { 1867 /* 1868 * detection of vcpu initialization -- need to sync 1869 * with other vCPUs. This particularly helps to keep 1870 * kvm_clock stable after CPU hotplug 1871 */ 1872 synchronizing = true; 1873 } else { 1874 u64 tsc_exp = kvm->arch.last_tsc_write + 1875 nsec_to_cycles(vcpu, elapsed); 1876 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1877 /* 1878 * Special case: TSC write with a small delta (1 second) 1879 * of virtual cycle time against real time is 1880 * interpreted as an attempt to synchronize the CPU. 1881 */ 1882 synchronizing = data < tsc_exp + tsc_hz && 1883 data + tsc_hz > tsc_exp; 1884 } 1885 } 1886 1887 /* 1888 * For a reliable TSC, we can match TSC offsets, and for an unstable 1889 * TSC, we add elapsed time in this computation. We could let the 1890 * compensation code attempt to catch up if we fall behind, but 1891 * it's better to try to match offsets from the beginning. 1892 */ 1893 if (synchronizing && 1894 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1895 if (!kvm_check_tsc_unstable()) { 1896 offset = kvm->arch.cur_tsc_offset; 1897 } else { 1898 u64 delta = nsec_to_cycles(vcpu, elapsed); 1899 data += delta; 1900 offset = kvm_compute_tsc_offset(vcpu, data); 1901 } 1902 matched = true; 1903 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1904 } else { 1905 /* 1906 * We split periods of matched TSC writes into generations. 1907 * For each generation, we track the original measured 1908 * nanosecond time, offset, and write, so if TSCs are in 1909 * sync, we can match exact offset, and if not, we can match 1910 * exact software computation in compute_guest_tsc() 1911 * 1912 * These values are tracked in kvm->arch.cur_xxx variables. 1913 */ 1914 kvm->arch.cur_tsc_generation++; 1915 kvm->arch.cur_tsc_nsec = ns; 1916 kvm->arch.cur_tsc_write = data; 1917 kvm->arch.cur_tsc_offset = offset; 1918 matched = false; 1919 } 1920 1921 /* 1922 * We also track th most recent recorded KHZ, write and time to 1923 * allow the matching interval to be extended at each write. 1924 */ 1925 kvm->arch.last_tsc_nsec = ns; 1926 kvm->arch.last_tsc_write = data; 1927 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1928 1929 vcpu->arch.last_guest_tsc = data; 1930 1931 /* Keep track of which generation this VCPU has synchronized to */ 1932 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1933 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1934 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1935 1936 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 1937 update_ia32_tsc_adjust_msr(vcpu, offset); 1938 1939 kvm_vcpu_write_tsc_offset(vcpu, offset); 1940 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1941 1942 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1943 if (!matched) { 1944 kvm->arch.nr_vcpus_matched_tsc = 0; 1945 } else if (!already_matched) { 1946 kvm->arch.nr_vcpus_matched_tsc++; 1947 } 1948 1949 kvm_track_tsc_matching(vcpu); 1950 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1951 } 1952 1953 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1954 1955 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1956 s64 adjustment) 1957 { 1958 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); 1959 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 1960 } 1961 1962 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1963 { 1964 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1965 WARN_ON(adjustment < 0); 1966 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1967 adjust_tsc_offset_guest(vcpu, adjustment); 1968 } 1969 1970 #ifdef CONFIG_X86_64 1971 1972 static u64 read_tsc(void) 1973 { 1974 u64 ret = (u64)rdtsc_ordered(); 1975 u64 last = pvclock_gtod_data.clock.cycle_last; 1976 1977 if (likely(ret >= last)) 1978 return ret; 1979 1980 /* 1981 * GCC likes to generate cmov here, but this branch is extremely 1982 * predictable (it's just a function of time and the likely is 1983 * very likely) and there's a data dependence, so force GCC 1984 * to generate a branch instead. I don't barrier() because 1985 * we don't actually need a barrier, and if this function 1986 * ever gets inlined it will generate worse code. 1987 */ 1988 asm volatile (""); 1989 return last; 1990 } 1991 1992 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) 1993 { 1994 long v; 1995 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1996 u64 tsc_pg_val; 1997 1998 switch (gtod->clock.vclock_mode) { 1999 case VCLOCK_HVCLOCK: 2000 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2001 tsc_timestamp); 2002 if (tsc_pg_val != U64_MAX) { 2003 /* TSC page valid */ 2004 *mode = VCLOCK_HVCLOCK; 2005 v = (tsc_pg_val - gtod->clock.cycle_last) & 2006 gtod->clock.mask; 2007 } else { 2008 /* TSC page invalid */ 2009 *mode = VCLOCK_NONE; 2010 } 2011 break; 2012 case VCLOCK_TSC: 2013 *mode = VCLOCK_TSC; 2014 *tsc_timestamp = read_tsc(); 2015 v = (*tsc_timestamp - gtod->clock.cycle_last) & 2016 gtod->clock.mask; 2017 break; 2018 default: 2019 *mode = VCLOCK_NONE; 2020 } 2021 2022 if (*mode == VCLOCK_NONE) 2023 *tsc_timestamp = v = 0; 2024 2025 return v * gtod->clock.mult; 2026 } 2027 2028 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) 2029 { 2030 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2031 unsigned long seq; 2032 int mode; 2033 u64 ns; 2034 2035 do { 2036 seq = read_seqcount_begin(>od->seq); 2037 ns = gtod->nsec_base; 2038 ns += vgettsc(tsc_timestamp, &mode); 2039 ns >>= gtod->clock.shift; 2040 ns += gtod->boot_ns; 2041 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2042 *t = ns; 2043 2044 return mode; 2045 } 2046 2047 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2048 { 2049 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2050 unsigned long seq; 2051 int mode; 2052 u64 ns; 2053 2054 do { 2055 seq = read_seqcount_begin(>od->seq); 2056 ts->tv_sec = gtod->wall_time_sec; 2057 ns = gtod->nsec_base; 2058 ns += vgettsc(tsc_timestamp, &mode); 2059 ns >>= gtod->clock.shift; 2060 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2061 2062 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2063 ts->tv_nsec = ns; 2064 2065 return mode; 2066 } 2067 2068 /* returns true if host is using TSC based clocksource */ 2069 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2070 { 2071 /* checked again under seqlock below */ 2072 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2073 return false; 2074 2075 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, 2076 tsc_timestamp)); 2077 } 2078 2079 /* returns true if host is using TSC based clocksource */ 2080 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2081 u64 *tsc_timestamp) 2082 { 2083 /* checked again under seqlock below */ 2084 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2085 return false; 2086 2087 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2088 } 2089 #endif 2090 2091 /* 2092 * 2093 * Assuming a stable TSC across physical CPUS, and a stable TSC 2094 * across virtual CPUs, the following condition is possible. 2095 * Each numbered line represents an event visible to both 2096 * CPUs at the next numbered event. 2097 * 2098 * "timespecX" represents host monotonic time. "tscX" represents 2099 * RDTSC value. 2100 * 2101 * VCPU0 on CPU0 | VCPU1 on CPU1 2102 * 2103 * 1. read timespec0,tsc0 2104 * 2. | timespec1 = timespec0 + N 2105 * | tsc1 = tsc0 + M 2106 * 3. transition to guest | transition to guest 2107 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2108 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2109 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2110 * 2111 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2112 * 2113 * - ret0 < ret1 2114 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2115 * ... 2116 * - 0 < N - M => M < N 2117 * 2118 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2119 * always the case (the difference between two distinct xtime instances 2120 * might be smaller then the difference between corresponding TSC reads, 2121 * when updating guest vcpus pvclock areas). 2122 * 2123 * To avoid that problem, do not allow visibility of distinct 2124 * system_timestamp/tsc_timestamp values simultaneously: use a master 2125 * copy of host monotonic time values. Update that master copy 2126 * in lockstep. 2127 * 2128 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2129 * 2130 */ 2131 2132 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2133 { 2134 #ifdef CONFIG_X86_64 2135 struct kvm_arch *ka = &kvm->arch; 2136 int vclock_mode; 2137 bool host_tsc_clocksource, vcpus_matched; 2138 2139 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2140 atomic_read(&kvm->online_vcpus)); 2141 2142 /* 2143 * If the host uses TSC clock, then passthrough TSC as stable 2144 * to the guest. 2145 */ 2146 host_tsc_clocksource = kvm_get_time_and_clockread( 2147 &ka->master_kernel_ns, 2148 &ka->master_cycle_now); 2149 2150 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2151 && !ka->backwards_tsc_observed 2152 && !ka->boot_vcpu_runs_old_kvmclock; 2153 2154 if (ka->use_master_clock) 2155 atomic_set(&kvm_guest_has_master_clock, 1); 2156 2157 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2158 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2159 vcpus_matched); 2160 #endif 2161 } 2162 2163 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2164 { 2165 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2166 } 2167 2168 static void kvm_gen_update_masterclock(struct kvm *kvm) 2169 { 2170 #ifdef CONFIG_X86_64 2171 int i; 2172 struct kvm_vcpu *vcpu; 2173 struct kvm_arch *ka = &kvm->arch; 2174 2175 spin_lock(&ka->pvclock_gtod_sync_lock); 2176 kvm_make_mclock_inprogress_request(kvm); 2177 /* no guest entries from this point */ 2178 pvclock_update_vm_gtod_copy(kvm); 2179 2180 kvm_for_each_vcpu(i, vcpu, kvm) 2181 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2182 2183 /* guest entries allowed */ 2184 kvm_for_each_vcpu(i, vcpu, kvm) 2185 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2186 2187 spin_unlock(&ka->pvclock_gtod_sync_lock); 2188 #endif 2189 } 2190 2191 u64 get_kvmclock_ns(struct kvm *kvm) 2192 { 2193 struct kvm_arch *ka = &kvm->arch; 2194 struct pvclock_vcpu_time_info hv_clock; 2195 u64 ret; 2196 2197 spin_lock(&ka->pvclock_gtod_sync_lock); 2198 if (!ka->use_master_clock) { 2199 spin_unlock(&ka->pvclock_gtod_sync_lock); 2200 return ktime_get_boottime_ns() + ka->kvmclock_offset; 2201 } 2202 2203 hv_clock.tsc_timestamp = ka->master_cycle_now; 2204 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2205 spin_unlock(&ka->pvclock_gtod_sync_lock); 2206 2207 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2208 get_cpu(); 2209 2210 if (__this_cpu_read(cpu_tsc_khz)) { 2211 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2212 &hv_clock.tsc_shift, 2213 &hv_clock.tsc_to_system_mul); 2214 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2215 } else 2216 ret = ktime_get_boottime_ns() + ka->kvmclock_offset; 2217 2218 put_cpu(); 2219 2220 return ret; 2221 } 2222 2223 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2224 { 2225 struct kvm_vcpu_arch *vcpu = &v->arch; 2226 struct pvclock_vcpu_time_info guest_hv_clock; 2227 2228 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2229 &guest_hv_clock, sizeof(guest_hv_clock)))) 2230 return; 2231 2232 /* This VCPU is paused, but it's legal for a guest to read another 2233 * VCPU's kvmclock, so we really have to follow the specification where 2234 * it says that version is odd if data is being modified, and even after 2235 * it is consistent. 2236 * 2237 * Version field updates must be kept separate. This is because 2238 * kvm_write_guest_cached might use a "rep movs" instruction, and 2239 * writes within a string instruction are weakly ordered. So there 2240 * are three writes overall. 2241 * 2242 * As a small optimization, only write the version field in the first 2243 * and third write. The vcpu->pv_time cache is still valid, because the 2244 * version field is the first in the struct. 2245 */ 2246 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2247 2248 if (guest_hv_clock.version & 1) 2249 ++guest_hv_clock.version; /* first time write, random junk */ 2250 2251 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2252 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2253 &vcpu->hv_clock, 2254 sizeof(vcpu->hv_clock.version)); 2255 2256 smp_wmb(); 2257 2258 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2259 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2260 2261 if (vcpu->pvclock_set_guest_stopped_request) { 2262 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2263 vcpu->pvclock_set_guest_stopped_request = false; 2264 } 2265 2266 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2267 2268 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2269 &vcpu->hv_clock, 2270 sizeof(vcpu->hv_clock)); 2271 2272 smp_wmb(); 2273 2274 vcpu->hv_clock.version++; 2275 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2276 &vcpu->hv_clock, 2277 sizeof(vcpu->hv_clock.version)); 2278 } 2279 2280 static int kvm_guest_time_update(struct kvm_vcpu *v) 2281 { 2282 unsigned long flags, tgt_tsc_khz; 2283 struct kvm_vcpu_arch *vcpu = &v->arch; 2284 struct kvm_arch *ka = &v->kvm->arch; 2285 s64 kernel_ns; 2286 u64 tsc_timestamp, host_tsc; 2287 u8 pvclock_flags; 2288 bool use_master_clock; 2289 2290 kernel_ns = 0; 2291 host_tsc = 0; 2292 2293 /* 2294 * If the host uses TSC clock, then passthrough TSC as stable 2295 * to the guest. 2296 */ 2297 spin_lock(&ka->pvclock_gtod_sync_lock); 2298 use_master_clock = ka->use_master_clock; 2299 if (use_master_clock) { 2300 host_tsc = ka->master_cycle_now; 2301 kernel_ns = ka->master_kernel_ns; 2302 } 2303 spin_unlock(&ka->pvclock_gtod_sync_lock); 2304 2305 /* Keep irq disabled to prevent changes to the clock */ 2306 local_irq_save(flags); 2307 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2308 if (unlikely(tgt_tsc_khz == 0)) { 2309 local_irq_restore(flags); 2310 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2311 return 1; 2312 } 2313 if (!use_master_clock) { 2314 host_tsc = rdtsc(); 2315 kernel_ns = ktime_get_boottime_ns(); 2316 } 2317 2318 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2319 2320 /* 2321 * We may have to catch up the TSC to match elapsed wall clock 2322 * time for two reasons, even if kvmclock is used. 2323 * 1) CPU could have been running below the maximum TSC rate 2324 * 2) Broken TSC compensation resets the base at each VCPU 2325 * entry to avoid unknown leaps of TSC even when running 2326 * again on the same CPU. This may cause apparent elapsed 2327 * time to disappear, and the guest to stand still or run 2328 * very slowly. 2329 */ 2330 if (vcpu->tsc_catchup) { 2331 u64 tsc = compute_guest_tsc(v, kernel_ns); 2332 if (tsc > tsc_timestamp) { 2333 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2334 tsc_timestamp = tsc; 2335 } 2336 } 2337 2338 local_irq_restore(flags); 2339 2340 /* With all the info we got, fill in the values */ 2341 2342 if (kvm_has_tsc_control) 2343 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2344 2345 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2346 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2347 &vcpu->hv_clock.tsc_shift, 2348 &vcpu->hv_clock.tsc_to_system_mul); 2349 vcpu->hw_tsc_khz = tgt_tsc_khz; 2350 } 2351 2352 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2353 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2354 vcpu->last_guest_tsc = tsc_timestamp; 2355 2356 /* If the host uses TSC clocksource, then it is stable */ 2357 pvclock_flags = 0; 2358 if (use_master_clock) 2359 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2360 2361 vcpu->hv_clock.flags = pvclock_flags; 2362 2363 if (vcpu->pv_time_enabled) 2364 kvm_setup_pvclock_page(v); 2365 if (v == kvm_get_vcpu(v->kvm, 0)) 2366 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2367 return 0; 2368 } 2369 2370 /* 2371 * kvmclock updates which are isolated to a given vcpu, such as 2372 * vcpu->cpu migration, should not allow system_timestamp from 2373 * the rest of the vcpus to remain static. Otherwise ntp frequency 2374 * correction applies to one vcpu's system_timestamp but not 2375 * the others. 2376 * 2377 * So in those cases, request a kvmclock update for all vcpus. 2378 * We need to rate-limit these requests though, as they can 2379 * considerably slow guests that have a large number of vcpus. 2380 * The time for a remote vcpu to update its kvmclock is bound 2381 * by the delay we use to rate-limit the updates. 2382 */ 2383 2384 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2385 2386 static void kvmclock_update_fn(struct work_struct *work) 2387 { 2388 int i; 2389 struct delayed_work *dwork = to_delayed_work(work); 2390 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2391 kvmclock_update_work); 2392 struct kvm *kvm = container_of(ka, struct kvm, arch); 2393 struct kvm_vcpu *vcpu; 2394 2395 kvm_for_each_vcpu(i, vcpu, kvm) { 2396 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2397 kvm_vcpu_kick(vcpu); 2398 } 2399 } 2400 2401 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2402 { 2403 struct kvm *kvm = v->kvm; 2404 2405 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2406 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2407 KVMCLOCK_UPDATE_DELAY); 2408 } 2409 2410 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2411 2412 static void kvmclock_sync_fn(struct work_struct *work) 2413 { 2414 struct delayed_work *dwork = to_delayed_work(work); 2415 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2416 kvmclock_sync_work); 2417 struct kvm *kvm = container_of(ka, struct kvm, arch); 2418 2419 if (!kvmclock_periodic_sync) 2420 return; 2421 2422 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2423 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2424 KVMCLOCK_SYNC_PERIOD); 2425 } 2426 2427 /* 2428 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2429 */ 2430 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2431 { 2432 /* McStatusWrEn enabled? */ 2433 if (guest_cpuid_is_amd(vcpu)) 2434 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2435 2436 return false; 2437 } 2438 2439 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2440 { 2441 u64 mcg_cap = vcpu->arch.mcg_cap; 2442 unsigned bank_num = mcg_cap & 0xff; 2443 u32 msr = msr_info->index; 2444 u64 data = msr_info->data; 2445 2446 switch (msr) { 2447 case MSR_IA32_MCG_STATUS: 2448 vcpu->arch.mcg_status = data; 2449 break; 2450 case MSR_IA32_MCG_CTL: 2451 if (!(mcg_cap & MCG_CTL_P) && 2452 (data || !msr_info->host_initiated)) 2453 return 1; 2454 if (data != 0 && data != ~(u64)0) 2455 return 1; 2456 vcpu->arch.mcg_ctl = data; 2457 break; 2458 default: 2459 if (msr >= MSR_IA32_MC0_CTL && 2460 msr < MSR_IA32_MCx_CTL(bank_num)) { 2461 u32 offset = msr - MSR_IA32_MC0_CTL; 2462 /* only 0 or all 1s can be written to IA32_MCi_CTL 2463 * some Linux kernels though clear bit 10 in bank 4 to 2464 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2465 * this to avoid an uncatched #GP in the guest 2466 */ 2467 if ((offset & 0x3) == 0 && 2468 data != 0 && (data | (1 << 10)) != ~(u64)0) 2469 return -1; 2470 2471 /* MCi_STATUS */ 2472 if (!msr_info->host_initiated && 2473 (offset & 0x3) == 1 && data != 0) { 2474 if (!can_set_mci_status(vcpu)) 2475 return -1; 2476 } 2477 2478 vcpu->arch.mce_banks[offset] = data; 2479 break; 2480 } 2481 return 1; 2482 } 2483 return 0; 2484 } 2485 2486 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2487 { 2488 struct kvm *kvm = vcpu->kvm; 2489 int lm = is_long_mode(vcpu); 2490 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2491 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2492 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2493 : kvm->arch.xen_hvm_config.blob_size_32; 2494 u32 page_num = data & ~PAGE_MASK; 2495 u64 page_addr = data & PAGE_MASK; 2496 u8 *page; 2497 int r; 2498 2499 r = -E2BIG; 2500 if (page_num >= blob_size) 2501 goto out; 2502 r = -ENOMEM; 2503 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2504 if (IS_ERR(page)) { 2505 r = PTR_ERR(page); 2506 goto out; 2507 } 2508 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2509 goto out_free; 2510 r = 0; 2511 out_free: 2512 kfree(page); 2513 out: 2514 return r; 2515 } 2516 2517 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2518 { 2519 gpa_t gpa = data & ~0x3f; 2520 2521 /* Bits 3:5 are reserved, Should be zero */ 2522 if (data & 0x38) 2523 return 1; 2524 2525 vcpu->arch.apf.msr_val = data; 2526 2527 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2528 kvm_clear_async_pf_completion_queue(vcpu); 2529 kvm_async_pf_hash_reset(vcpu); 2530 return 0; 2531 } 2532 2533 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2534 sizeof(u32))) 2535 return 1; 2536 2537 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2538 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2539 kvm_async_pf_wakeup_all(vcpu); 2540 return 0; 2541 } 2542 2543 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2544 { 2545 vcpu->arch.pv_time_enabled = false; 2546 } 2547 2548 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2549 { 2550 ++vcpu->stat.tlb_flush; 2551 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); 2552 } 2553 2554 static void record_steal_time(struct kvm_vcpu *vcpu) 2555 { 2556 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2557 return; 2558 2559 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2560 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2561 return; 2562 2563 /* 2564 * Doing a TLB flush here, on the guest's behalf, can avoid 2565 * expensive IPIs. 2566 */ 2567 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2568 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB); 2569 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) 2570 kvm_vcpu_flush_tlb(vcpu, false); 2571 2572 if (vcpu->arch.st.steal.version & 1) 2573 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2574 2575 vcpu->arch.st.steal.version += 1; 2576 2577 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2578 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2579 2580 smp_wmb(); 2581 2582 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2583 vcpu->arch.st.last_steal; 2584 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2585 2586 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2587 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2588 2589 smp_wmb(); 2590 2591 vcpu->arch.st.steal.version += 1; 2592 2593 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2594 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2595 } 2596 2597 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2598 { 2599 bool pr = false; 2600 u32 msr = msr_info->index; 2601 u64 data = msr_info->data; 2602 2603 switch (msr) { 2604 case MSR_AMD64_NB_CFG: 2605 case MSR_IA32_UCODE_WRITE: 2606 case MSR_VM_HSAVE_PA: 2607 case MSR_AMD64_PATCH_LOADER: 2608 case MSR_AMD64_BU_CFG2: 2609 case MSR_AMD64_DC_CFG: 2610 case MSR_F15H_EX_CFG: 2611 break; 2612 2613 case MSR_IA32_UCODE_REV: 2614 if (msr_info->host_initiated) 2615 vcpu->arch.microcode_version = data; 2616 break; 2617 case MSR_IA32_ARCH_CAPABILITIES: 2618 if (!msr_info->host_initiated) 2619 return 1; 2620 vcpu->arch.arch_capabilities = data; 2621 break; 2622 case MSR_EFER: 2623 return set_efer(vcpu, msr_info); 2624 case MSR_K7_HWCR: 2625 data &= ~(u64)0x40; /* ignore flush filter disable */ 2626 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2627 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2628 2629 /* Handle McStatusWrEn */ 2630 if (data == BIT_ULL(18)) { 2631 vcpu->arch.msr_hwcr = data; 2632 } else if (data != 0) { 2633 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2634 data); 2635 return 1; 2636 } 2637 break; 2638 case MSR_FAM10H_MMIO_CONF_BASE: 2639 if (data != 0) { 2640 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2641 "0x%llx\n", data); 2642 return 1; 2643 } 2644 break; 2645 case MSR_IA32_DEBUGCTLMSR: 2646 if (!data) { 2647 /* We support the non-activated case already */ 2648 break; 2649 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2650 /* Values other than LBR and BTF are vendor-specific, 2651 thus reserved and should throw a #GP */ 2652 return 1; 2653 } 2654 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2655 __func__, data); 2656 break; 2657 case 0x200 ... 0x2ff: 2658 return kvm_mtrr_set_msr(vcpu, msr, data); 2659 case MSR_IA32_APICBASE: 2660 return kvm_set_apic_base(vcpu, msr_info); 2661 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2662 return kvm_x2apic_msr_write(vcpu, msr, data); 2663 case MSR_IA32_TSCDEADLINE: 2664 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2665 break; 2666 case MSR_IA32_TSC_ADJUST: 2667 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2668 if (!msr_info->host_initiated) { 2669 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2670 adjust_tsc_offset_guest(vcpu, adj); 2671 } 2672 vcpu->arch.ia32_tsc_adjust_msr = data; 2673 } 2674 break; 2675 case MSR_IA32_MISC_ENABLE: 2676 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2677 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2678 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2679 return 1; 2680 vcpu->arch.ia32_misc_enable_msr = data; 2681 kvm_update_cpuid(vcpu); 2682 } else { 2683 vcpu->arch.ia32_misc_enable_msr = data; 2684 } 2685 break; 2686 case MSR_IA32_SMBASE: 2687 if (!msr_info->host_initiated) 2688 return 1; 2689 vcpu->arch.smbase = data; 2690 break; 2691 case MSR_IA32_POWER_CTL: 2692 vcpu->arch.msr_ia32_power_ctl = data; 2693 break; 2694 case MSR_IA32_TSC: 2695 kvm_write_tsc(vcpu, msr_info); 2696 break; 2697 case MSR_SMI_COUNT: 2698 if (!msr_info->host_initiated) 2699 return 1; 2700 vcpu->arch.smi_count = data; 2701 break; 2702 case MSR_KVM_WALL_CLOCK_NEW: 2703 case MSR_KVM_WALL_CLOCK: 2704 vcpu->kvm->arch.wall_clock = data; 2705 kvm_write_wall_clock(vcpu->kvm, data); 2706 break; 2707 case MSR_KVM_SYSTEM_TIME_NEW: 2708 case MSR_KVM_SYSTEM_TIME: { 2709 struct kvm_arch *ka = &vcpu->kvm->arch; 2710 2711 kvmclock_reset(vcpu); 2712 2713 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2714 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2715 2716 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2717 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2718 2719 ka->boot_vcpu_runs_old_kvmclock = tmp; 2720 } 2721 2722 vcpu->arch.time = data; 2723 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2724 2725 /* we verify if the enable bit is set... */ 2726 if (!(data & 1)) 2727 break; 2728 2729 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2730 &vcpu->arch.pv_time, data & ~1ULL, 2731 sizeof(struct pvclock_vcpu_time_info))) 2732 vcpu->arch.pv_time_enabled = false; 2733 else 2734 vcpu->arch.pv_time_enabled = true; 2735 2736 break; 2737 } 2738 case MSR_KVM_ASYNC_PF_EN: 2739 if (kvm_pv_enable_async_pf(vcpu, data)) 2740 return 1; 2741 break; 2742 case MSR_KVM_STEAL_TIME: 2743 2744 if (unlikely(!sched_info_on())) 2745 return 1; 2746 2747 if (data & KVM_STEAL_RESERVED_MASK) 2748 return 1; 2749 2750 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2751 data & KVM_STEAL_VALID_BITS, 2752 sizeof(struct kvm_steal_time))) 2753 return 1; 2754 2755 vcpu->arch.st.msr_val = data; 2756 2757 if (!(data & KVM_MSR_ENABLED)) 2758 break; 2759 2760 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2761 2762 break; 2763 case MSR_KVM_PV_EOI_EN: 2764 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2765 return 1; 2766 break; 2767 2768 case MSR_KVM_POLL_CONTROL: 2769 /* only enable bit supported */ 2770 if (data & (-1ULL << 1)) 2771 return 1; 2772 2773 vcpu->arch.msr_kvm_poll_control = data; 2774 break; 2775 2776 case MSR_IA32_MCG_CTL: 2777 case MSR_IA32_MCG_STATUS: 2778 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2779 return set_msr_mce(vcpu, msr_info); 2780 2781 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2782 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2783 pr = true; /* fall through */ 2784 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2785 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2786 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2787 return kvm_pmu_set_msr(vcpu, msr_info); 2788 2789 if (pr || data != 0) 2790 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2791 "0x%x data 0x%llx\n", msr, data); 2792 break; 2793 case MSR_K7_CLK_CTL: 2794 /* 2795 * Ignore all writes to this no longer documented MSR. 2796 * Writes are only relevant for old K7 processors, 2797 * all pre-dating SVM, but a recommended workaround from 2798 * AMD for these chips. It is possible to specify the 2799 * affected processor models on the command line, hence 2800 * the need to ignore the workaround. 2801 */ 2802 break; 2803 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2804 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2805 case HV_X64_MSR_CRASH_CTL: 2806 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2807 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2808 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2809 case HV_X64_MSR_TSC_EMULATION_STATUS: 2810 return kvm_hv_set_msr_common(vcpu, msr, data, 2811 msr_info->host_initiated); 2812 case MSR_IA32_BBL_CR_CTL3: 2813 /* Drop writes to this legacy MSR -- see rdmsr 2814 * counterpart for further detail. 2815 */ 2816 if (report_ignored_msrs) 2817 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2818 msr, data); 2819 break; 2820 case MSR_AMD64_OSVW_ID_LENGTH: 2821 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2822 return 1; 2823 vcpu->arch.osvw.length = data; 2824 break; 2825 case MSR_AMD64_OSVW_STATUS: 2826 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2827 return 1; 2828 vcpu->arch.osvw.status = data; 2829 break; 2830 case MSR_PLATFORM_INFO: 2831 if (!msr_info->host_initiated || 2832 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2833 cpuid_fault_enabled(vcpu))) 2834 return 1; 2835 vcpu->arch.msr_platform_info = data; 2836 break; 2837 case MSR_MISC_FEATURES_ENABLES: 2838 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2839 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2840 !supports_cpuid_fault(vcpu))) 2841 return 1; 2842 vcpu->arch.msr_misc_features_enables = data; 2843 break; 2844 default: 2845 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2846 return xen_hvm_config(vcpu, data); 2847 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2848 return kvm_pmu_set_msr(vcpu, msr_info); 2849 if (!ignore_msrs) { 2850 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2851 msr, data); 2852 return 1; 2853 } else { 2854 if (report_ignored_msrs) 2855 vcpu_unimpl(vcpu, 2856 "ignored wrmsr: 0x%x data 0x%llx\n", 2857 msr, data); 2858 break; 2859 } 2860 } 2861 return 0; 2862 } 2863 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2864 2865 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 2866 { 2867 u64 data; 2868 u64 mcg_cap = vcpu->arch.mcg_cap; 2869 unsigned bank_num = mcg_cap & 0xff; 2870 2871 switch (msr) { 2872 case MSR_IA32_P5_MC_ADDR: 2873 case MSR_IA32_P5_MC_TYPE: 2874 data = 0; 2875 break; 2876 case MSR_IA32_MCG_CAP: 2877 data = vcpu->arch.mcg_cap; 2878 break; 2879 case MSR_IA32_MCG_CTL: 2880 if (!(mcg_cap & MCG_CTL_P) && !host) 2881 return 1; 2882 data = vcpu->arch.mcg_ctl; 2883 break; 2884 case MSR_IA32_MCG_STATUS: 2885 data = vcpu->arch.mcg_status; 2886 break; 2887 default: 2888 if (msr >= MSR_IA32_MC0_CTL && 2889 msr < MSR_IA32_MCx_CTL(bank_num)) { 2890 u32 offset = msr - MSR_IA32_MC0_CTL; 2891 data = vcpu->arch.mce_banks[offset]; 2892 break; 2893 } 2894 return 1; 2895 } 2896 *pdata = data; 2897 return 0; 2898 } 2899 2900 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2901 { 2902 switch (msr_info->index) { 2903 case MSR_IA32_PLATFORM_ID: 2904 case MSR_IA32_EBL_CR_POWERON: 2905 case MSR_IA32_DEBUGCTLMSR: 2906 case MSR_IA32_LASTBRANCHFROMIP: 2907 case MSR_IA32_LASTBRANCHTOIP: 2908 case MSR_IA32_LASTINTFROMIP: 2909 case MSR_IA32_LASTINTTOIP: 2910 case MSR_K8_SYSCFG: 2911 case MSR_K8_TSEG_ADDR: 2912 case MSR_K8_TSEG_MASK: 2913 case MSR_VM_HSAVE_PA: 2914 case MSR_K8_INT_PENDING_MSG: 2915 case MSR_AMD64_NB_CFG: 2916 case MSR_FAM10H_MMIO_CONF_BASE: 2917 case MSR_AMD64_BU_CFG2: 2918 case MSR_IA32_PERF_CTL: 2919 case MSR_AMD64_DC_CFG: 2920 case MSR_F15H_EX_CFG: 2921 msr_info->data = 0; 2922 break; 2923 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 2924 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2925 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2926 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2927 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2928 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2929 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2930 msr_info->data = 0; 2931 break; 2932 case MSR_IA32_UCODE_REV: 2933 msr_info->data = vcpu->arch.microcode_version; 2934 break; 2935 case MSR_IA32_ARCH_CAPABILITIES: 2936 if (!msr_info->host_initiated && 2937 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 2938 return 1; 2939 msr_info->data = vcpu->arch.arch_capabilities; 2940 break; 2941 case MSR_IA32_POWER_CTL: 2942 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 2943 break; 2944 case MSR_IA32_TSC: 2945 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 2946 break; 2947 case MSR_MTRRcap: 2948 case 0x200 ... 0x2ff: 2949 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2950 case 0xcd: /* fsb frequency */ 2951 msr_info->data = 3; 2952 break; 2953 /* 2954 * MSR_EBC_FREQUENCY_ID 2955 * Conservative value valid for even the basic CPU models. 2956 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2957 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2958 * and 266MHz for model 3, or 4. Set Core Clock 2959 * Frequency to System Bus Frequency Ratio to 1 (bits 2960 * 31:24) even though these are only valid for CPU 2961 * models > 2, however guests may end up dividing or 2962 * multiplying by zero otherwise. 2963 */ 2964 case MSR_EBC_FREQUENCY_ID: 2965 msr_info->data = 1 << 24; 2966 break; 2967 case MSR_IA32_APICBASE: 2968 msr_info->data = kvm_get_apic_base(vcpu); 2969 break; 2970 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2971 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2972 break; 2973 case MSR_IA32_TSCDEADLINE: 2974 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2975 break; 2976 case MSR_IA32_TSC_ADJUST: 2977 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2978 break; 2979 case MSR_IA32_MISC_ENABLE: 2980 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2981 break; 2982 case MSR_IA32_SMBASE: 2983 if (!msr_info->host_initiated) 2984 return 1; 2985 msr_info->data = vcpu->arch.smbase; 2986 break; 2987 case MSR_SMI_COUNT: 2988 msr_info->data = vcpu->arch.smi_count; 2989 break; 2990 case MSR_IA32_PERF_STATUS: 2991 /* TSC increment by tick */ 2992 msr_info->data = 1000ULL; 2993 /* CPU multiplier */ 2994 msr_info->data |= (((uint64_t)4ULL) << 40); 2995 break; 2996 case MSR_EFER: 2997 msr_info->data = vcpu->arch.efer; 2998 break; 2999 case MSR_KVM_WALL_CLOCK: 3000 case MSR_KVM_WALL_CLOCK_NEW: 3001 msr_info->data = vcpu->kvm->arch.wall_clock; 3002 break; 3003 case MSR_KVM_SYSTEM_TIME: 3004 case MSR_KVM_SYSTEM_TIME_NEW: 3005 msr_info->data = vcpu->arch.time; 3006 break; 3007 case MSR_KVM_ASYNC_PF_EN: 3008 msr_info->data = vcpu->arch.apf.msr_val; 3009 break; 3010 case MSR_KVM_STEAL_TIME: 3011 msr_info->data = vcpu->arch.st.msr_val; 3012 break; 3013 case MSR_KVM_PV_EOI_EN: 3014 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3015 break; 3016 case MSR_KVM_POLL_CONTROL: 3017 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3018 break; 3019 case MSR_IA32_P5_MC_ADDR: 3020 case MSR_IA32_P5_MC_TYPE: 3021 case MSR_IA32_MCG_CAP: 3022 case MSR_IA32_MCG_CTL: 3023 case MSR_IA32_MCG_STATUS: 3024 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3025 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3026 msr_info->host_initiated); 3027 case MSR_K7_CLK_CTL: 3028 /* 3029 * Provide expected ramp-up count for K7. All other 3030 * are set to zero, indicating minimum divisors for 3031 * every field. 3032 * 3033 * This prevents guest kernels on AMD host with CPU 3034 * type 6, model 8 and higher from exploding due to 3035 * the rdmsr failing. 3036 */ 3037 msr_info->data = 0x20000000; 3038 break; 3039 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3040 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3041 case HV_X64_MSR_CRASH_CTL: 3042 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3043 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3044 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3045 case HV_X64_MSR_TSC_EMULATION_STATUS: 3046 return kvm_hv_get_msr_common(vcpu, 3047 msr_info->index, &msr_info->data, 3048 msr_info->host_initiated); 3049 break; 3050 case MSR_IA32_BBL_CR_CTL3: 3051 /* This legacy MSR exists but isn't fully documented in current 3052 * silicon. It is however accessed by winxp in very narrow 3053 * scenarios where it sets bit #19, itself documented as 3054 * a "reserved" bit. Best effort attempt to source coherent 3055 * read data here should the balance of the register be 3056 * interpreted by the guest: 3057 * 3058 * L2 cache control register 3: 64GB range, 256KB size, 3059 * enabled, latency 0x1, configured 3060 */ 3061 msr_info->data = 0xbe702111; 3062 break; 3063 case MSR_AMD64_OSVW_ID_LENGTH: 3064 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3065 return 1; 3066 msr_info->data = vcpu->arch.osvw.length; 3067 break; 3068 case MSR_AMD64_OSVW_STATUS: 3069 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3070 return 1; 3071 msr_info->data = vcpu->arch.osvw.status; 3072 break; 3073 case MSR_PLATFORM_INFO: 3074 if (!msr_info->host_initiated && 3075 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3076 return 1; 3077 msr_info->data = vcpu->arch.msr_platform_info; 3078 break; 3079 case MSR_MISC_FEATURES_ENABLES: 3080 msr_info->data = vcpu->arch.msr_misc_features_enables; 3081 break; 3082 case MSR_K7_HWCR: 3083 msr_info->data = vcpu->arch.msr_hwcr; 3084 break; 3085 default: 3086 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3087 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3088 if (!ignore_msrs) { 3089 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3090 msr_info->index); 3091 return 1; 3092 } else { 3093 if (report_ignored_msrs) 3094 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3095 msr_info->index); 3096 msr_info->data = 0; 3097 } 3098 break; 3099 } 3100 return 0; 3101 } 3102 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3103 3104 /* 3105 * Read or write a bunch of msrs. All parameters are kernel addresses. 3106 * 3107 * @return number of msrs set successfully. 3108 */ 3109 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3110 struct kvm_msr_entry *entries, 3111 int (*do_msr)(struct kvm_vcpu *vcpu, 3112 unsigned index, u64 *data)) 3113 { 3114 int i; 3115 3116 for (i = 0; i < msrs->nmsrs; ++i) 3117 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3118 break; 3119 3120 return i; 3121 } 3122 3123 /* 3124 * Read or write a bunch of msrs. Parameters are user addresses. 3125 * 3126 * @return number of msrs set successfully. 3127 */ 3128 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3129 int (*do_msr)(struct kvm_vcpu *vcpu, 3130 unsigned index, u64 *data), 3131 int writeback) 3132 { 3133 struct kvm_msrs msrs; 3134 struct kvm_msr_entry *entries; 3135 int r, n; 3136 unsigned size; 3137 3138 r = -EFAULT; 3139 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3140 goto out; 3141 3142 r = -E2BIG; 3143 if (msrs.nmsrs >= MAX_IO_MSRS) 3144 goto out; 3145 3146 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3147 entries = memdup_user(user_msrs->entries, size); 3148 if (IS_ERR(entries)) { 3149 r = PTR_ERR(entries); 3150 goto out; 3151 } 3152 3153 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3154 if (r < 0) 3155 goto out_free; 3156 3157 r = -EFAULT; 3158 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3159 goto out_free; 3160 3161 r = n; 3162 3163 out_free: 3164 kfree(entries); 3165 out: 3166 return r; 3167 } 3168 3169 static inline bool kvm_can_mwait_in_guest(void) 3170 { 3171 return boot_cpu_has(X86_FEATURE_MWAIT) && 3172 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3173 boot_cpu_has(X86_FEATURE_ARAT); 3174 } 3175 3176 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3177 { 3178 int r = 0; 3179 3180 switch (ext) { 3181 case KVM_CAP_IRQCHIP: 3182 case KVM_CAP_HLT: 3183 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3184 case KVM_CAP_SET_TSS_ADDR: 3185 case KVM_CAP_EXT_CPUID: 3186 case KVM_CAP_EXT_EMUL_CPUID: 3187 case KVM_CAP_CLOCKSOURCE: 3188 case KVM_CAP_PIT: 3189 case KVM_CAP_NOP_IO_DELAY: 3190 case KVM_CAP_MP_STATE: 3191 case KVM_CAP_SYNC_MMU: 3192 case KVM_CAP_USER_NMI: 3193 case KVM_CAP_REINJECT_CONTROL: 3194 case KVM_CAP_IRQ_INJECT_STATUS: 3195 case KVM_CAP_IOEVENTFD: 3196 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3197 case KVM_CAP_PIT2: 3198 case KVM_CAP_PIT_STATE2: 3199 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3200 case KVM_CAP_XEN_HVM: 3201 case KVM_CAP_VCPU_EVENTS: 3202 case KVM_CAP_HYPERV: 3203 case KVM_CAP_HYPERV_VAPIC: 3204 case KVM_CAP_HYPERV_SPIN: 3205 case KVM_CAP_HYPERV_SYNIC: 3206 case KVM_CAP_HYPERV_SYNIC2: 3207 case KVM_CAP_HYPERV_VP_INDEX: 3208 case KVM_CAP_HYPERV_EVENTFD: 3209 case KVM_CAP_HYPERV_TLBFLUSH: 3210 case KVM_CAP_HYPERV_SEND_IPI: 3211 case KVM_CAP_HYPERV_CPUID: 3212 case KVM_CAP_PCI_SEGMENT: 3213 case KVM_CAP_DEBUGREGS: 3214 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3215 case KVM_CAP_XSAVE: 3216 case KVM_CAP_ASYNC_PF: 3217 case KVM_CAP_GET_TSC_KHZ: 3218 case KVM_CAP_KVMCLOCK_CTRL: 3219 case KVM_CAP_READONLY_MEM: 3220 case KVM_CAP_HYPERV_TIME: 3221 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3222 case KVM_CAP_TSC_DEADLINE_TIMER: 3223 case KVM_CAP_DISABLE_QUIRKS: 3224 case KVM_CAP_SET_BOOT_CPU_ID: 3225 case KVM_CAP_SPLIT_IRQCHIP: 3226 case KVM_CAP_IMMEDIATE_EXIT: 3227 case KVM_CAP_PMU_EVENT_FILTER: 3228 case KVM_CAP_GET_MSR_FEATURES: 3229 case KVM_CAP_MSR_PLATFORM_INFO: 3230 case KVM_CAP_EXCEPTION_PAYLOAD: 3231 r = 1; 3232 break; 3233 case KVM_CAP_SYNC_REGS: 3234 r = KVM_SYNC_X86_VALID_FIELDS; 3235 break; 3236 case KVM_CAP_ADJUST_CLOCK: 3237 r = KVM_CLOCK_TSC_STABLE; 3238 break; 3239 case KVM_CAP_X86_DISABLE_EXITS: 3240 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3241 KVM_X86_DISABLE_EXITS_CSTATE; 3242 if(kvm_can_mwait_in_guest()) 3243 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3244 break; 3245 case KVM_CAP_X86_SMM: 3246 /* SMBASE is usually relocated above 1M on modern chipsets, 3247 * and SMM handlers might indeed rely on 4G segment limits, 3248 * so do not report SMM to be available if real mode is 3249 * emulated via vm86 mode. Still, do not go to great lengths 3250 * to avoid userspace's usage of the feature, because it is a 3251 * fringe case that is not enabled except via specific settings 3252 * of the module parameters. 3253 */ 3254 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); 3255 break; 3256 case KVM_CAP_VAPIC: 3257 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 3258 break; 3259 case KVM_CAP_NR_VCPUS: 3260 r = KVM_SOFT_MAX_VCPUS; 3261 break; 3262 case KVM_CAP_MAX_VCPUS: 3263 r = KVM_MAX_VCPUS; 3264 break; 3265 case KVM_CAP_MAX_VCPU_ID: 3266 r = KVM_MAX_VCPU_ID; 3267 break; 3268 case KVM_CAP_PV_MMU: /* obsolete */ 3269 r = 0; 3270 break; 3271 case KVM_CAP_MCE: 3272 r = KVM_MAX_MCE_BANKS; 3273 break; 3274 case KVM_CAP_XCRS: 3275 r = boot_cpu_has(X86_FEATURE_XSAVE); 3276 break; 3277 case KVM_CAP_TSC_CONTROL: 3278 r = kvm_has_tsc_control; 3279 break; 3280 case KVM_CAP_X2APIC_API: 3281 r = KVM_X2APIC_API_VALID_FLAGS; 3282 break; 3283 case KVM_CAP_NESTED_STATE: 3284 r = kvm_x86_ops->get_nested_state ? 3285 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0; 3286 break; 3287 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3288 r = kvm_x86_ops->enable_direct_tlbflush != NULL; 3289 break; 3290 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3291 r = kvm_x86_ops->nested_enable_evmcs != NULL; 3292 break; 3293 default: 3294 break; 3295 } 3296 return r; 3297 3298 } 3299 3300 long kvm_arch_dev_ioctl(struct file *filp, 3301 unsigned int ioctl, unsigned long arg) 3302 { 3303 void __user *argp = (void __user *)arg; 3304 long r; 3305 3306 switch (ioctl) { 3307 case KVM_GET_MSR_INDEX_LIST: { 3308 struct kvm_msr_list __user *user_msr_list = argp; 3309 struct kvm_msr_list msr_list; 3310 unsigned n; 3311 3312 r = -EFAULT; 3313 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3314 goto out; 3315 n = msr_list.nmsrs; 3316 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3317 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3318 goto out; 3319 r = -E2BIG; 3320 if (n < msr_list.nmsrs) 3321 goto out; 3322 r = -EFAULT; 3323 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3324 num_msrs_to_save * sizeof(u32))) 3325 goto out; 3326 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3327 &emulated_msrs, 3328 num_emulated_msrs * sizeof(u32))) 3329 goto out; 3330 r = 0; 3331 break; 3332 } 3333 case KVM_GET_SUPPORTED_CPUID: 3334 case KVM_GET_EMULATED_CPUID: { 3335 struct kvm_cpuid2 __user *cpuid_arg = argp; 3336 struct kvm_cpuid2 cpuid; 3337 3338 r = -EFAULT; 3339 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3340 goto out; 3341 3342 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3343 ioctl); 3344 if (r) 3345 goto out; 3346 3347 r = -EFAULT; 3348 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3349 goto out; 3350 r = 0; 3351 break; 3352 } 3353 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 3354 r = -EFAULT; 3355 if (copy_to_user(argp, &kvm_mce_cap_supported, 3356 sizeof(kvm_mce_cap_supported))) 3357 goto out; 3358 r = 0; 3359 break; 3360 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3361 struct kvm_msr_list __user *user_msr_list = argp; 3362 struct kvm_msr_list msr_list; 3363 unsigned int n; 3364 3365 r = -EFAULT; 3366 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3367 goto out; 3368 n = msr_list.nmsrs; 3369 msr_list.nmsrs = num_msr_based_features; 3370 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3371 goto out; 3372 r = -E2BIG; 3373 if (n < msr_list.nmsrs) 3374 goto out; 3375 r = -EFAULT; 3376 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3377 num_msr_based_features * sizeof(u32))) 3378 goto out; 3379 r = 0; 3380 break; 3381 } 3382 case KVM_GET_MSRS: 3383 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3384 break; 3385 } 3386 default: 3387 r = -EINVAL; 3388 } 3389 out: 3390 return r; 3391 } 3392 3393 static void wbinvd_ipi(void *garbage) 3394 { 3395 wbinvd(); 3396 } 3397 3398 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3399 { 3400 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3401 } 3402 3403 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3404 { 3405 /* Address WBINVD may be executed by guest */ 3406 if (need_emulate_wbinvd(vcpu)) { 3407 if (kvm_x86_ops->has_wbinvd_exit()) 3408 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3409 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3410 smp_call_function_single(vcpu->cpu, 3411 wbinvd_ipi, NULL, 1); 3412 } 3413 3414 kvm_x86_ops->vcpu_load(vcpu, cpu); 3415 3416 fpregs_assert_state_consistent(); 3417 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 3418 switch_fpu_return(); 3419 3420 /* Apply any externally detected TSC adjustments (due to suspend) */ 3421 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3422 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3423 vcpu->arch.tsc_offset_adjustment = 0; 3424 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3425 } 3426 3427 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3428 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3429 rdtsc() - vcpu->arch.last_host_tsc; 3430 if (tsc_delta < 0) 3431 mark_tsc_unstable("KVM discovered backwards TSC"); 3432 3433 if (kvm_check_tsc_unstable()) { 3434 u64 offset = kvm_compute_tsc_offset(vcpu, 3435 vcpu->arch.last_guest_tsc); 3436 kvm_vcpu_write_tsc_offset(vcpu, offset); 3437 vcpu->arch.tsc_catchup = 1; 3438 } 3439 3440 if (kvm_lapic_hv_timer_in_use(vcpu)) 3441 kvm_lapic_restart_hv_timer(vcpu); 3442 3443 /* 3444 * On a host with synchronized TSC, there is no need to update 3445 * kvmclock on vcpu->cpu migration 3446 */ 3447 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3448 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3449 if (vcpu->cpu != cpu) 3450 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3451 vcpu->cpu = cpu; 3452 } 3453 3454 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3455 } 3456 3457 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3458 { 3459 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3460 return; 3461 3462 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; 3463 3464 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 3465 &vcpu->arch.st.steal.preempted, 3466 offsetof(struct kvm_steal_time, preempted), 3467 sizeof(vcpu->arch.st.steal.preempted)); 3468 } 3469 3470 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3471 { 3472 int idx; 3473 3474 if (vcpu->preempted) 3475 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 3476 3477 /* 3478 * Disable page faults because we're in atomic context here. 3479 * kvm_write_guest_offset_cached() would call might_fault() 3480 * that relies on pagefault_disable() to tell if there's a 3481 * bug. NOTE: the write to guest memory may not go through if 3482 * during postcopy live migration or if there's heavy guest 3483 * paging. 3484 */ 3485 pagefault_disable(); 3486 /* 3487 * kvm_memslots() will be called by 3488 * kvm_write_guest_offset_cached() so take the srcu lock. 3489 */ 3490 idx = srcu_read_lock(&vcpu->kvm->srcu); 3491 kvm_steal_time_set_preempted(vcpu); 3492 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3493 pagefault_enable(); 3494 kvm_x86_ops->vcpu_put(vcpu); 3495 vcpu->arch.last_host_tsc = rdtsc(); 3496 /* 3497 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3498 * on every vmexit, but if not, we might have a stale dr6 from the 3499 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3500 */ 3501 set_debugreg(0, 6); 3502 } 3503 3504 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3505 struct kvm_lapic_state *s) 3506 { 3507 if (vcpu->arch.apicv_active) 3508 kvm_x86_ops->sync_pir_to_irr(vcpu); 3509 3510 return kvm_apic_get_state(vcpu, s); 3511 } 3512 3513 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3514 struct kvm_lapic_state *s) 3515 { 3516 int r; 3517 3518 r = kvm_apic_set_state(vcpu, s); 3519 if (r) 3520 return r; 3521 update_cr8_intercept(vcpu); 3522 3523 return 0; 3524 } 3525 3526 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3527 { 3528 return (!lapic_in_kernel(vcpu) || 3529 kvm_apic_accept_pic_intr(vcpu)); 3530 } 3531 3532 /* 3533 * if userspace requested an interrupt window, check that the 3534 * interrupt window is open. 3535 * 3536 * No need to exit to userspace if we already have an interrupt queued. 3537 */ 3538 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3539 { 3540 return kvm_arch_interrupt_allowed(vcpu) && 3541 !kvm_cpu_has_interrupt(vcpu) && 3542 !kvm_event_needs_reinjection(vcpu) && 3543 kvm_cpu_accept_dm_intr(vcpu); 3544 } 3545 3546 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3547 struct kvm_interrupt *irq) 3548 { 3549 if (irq->irq >= KVM_NR_INTERRUPTS) 3550 return -EINVAL; 3551 3552 if (!irqchip_in_kernel(vcpu->kvm)) { 3553 kvm_queue_interrupt(vcpu, irq->irq, false); 3554 kvm_make_request(KVM_REQ_EVENT, vcpu); 3555 return 0; 3556 } 3557 3558 /* 3559 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3560 * fail for in-kernel 8259. 3561 */ 3562 if (pic_in_kernel(vcpu->kvm)) 3563 return -ENXIO; 3564 3565 if (vcpu->arch.pending_external_vector != -1) 3566 return -EEXIST; 3567 3568 vcpu->arch.pending_external_vector = irq->irq; 3569 kvm_make_request(KVM_REQ_EVENT, vcpu); 3570 return 0; 3571 } 3572 3573 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3574 { 3575 kvm_inject_nmi(vcpu); 3576 3577 return 0; 3578 } 3579 3580 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3581 { 3582 kvm_make_request(KVM_REQ_SMI, vcpu); 3583 3584 return 0; 3585 } 3586 3587 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3588 struct kvm_tpr_access_ctl *tac) 3589 { 3590 if (tac->flags) 3591 return -EINVAL; 3592 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3593 return 0; 3594 } 3595 3596 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3597 u64 mcg_cap) 3598 { 3599 int r; 3600 unsigned bank_num = mcg_cap & 0xff, bank; 3601 3602 r = -EINVAL; 3603 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3604 goto out; 3605 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3606 goto out; 3607 r = 0; 3608 vcpu->arch.mcg_cap = mcg_cap; 3609 /* Init IA32_MCG_CTL to all 1s */ 3610 if (mcg_cap & MCG_CTL_P) 3611 vcpu->arch.mcg_ctl = ~(u64)0; 3612 /* Init IA32_MCi_CTL to all 1s */ 3613 for (bank = 0; bank < bank_num; bank++) 3614 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3615 3616 kvm_x86_ops->setup_mce(vcpu); 3617 out: 3618 return r; 3619 } 3620 3621 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3622 struct kvm_x86_mce *mce) 3623 { 3624 u64 mcg_cap = vcpu->arch.mcg_cap; 3625 unsigned bank_num = mcg_cap & 0xff; 3626 u64 *banks = vcpu->arch.mce_banks; 3627 3628 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3629 return -EINVAL; 3630 /* 3631 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3632 * reporting is disabled 3633 */ 3634 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3635 vcpu->arch.mcg_ctl != ~(u64)0) 3636 return 0; 3637 banks += 4 * mce->bank; 3638 /* 3639 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3640 * reporting is disabled for the bank 3641 */ 3642 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3643 return 0; 3644 if (mce->status & MCI_STATUS_UC) { 3645 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3646 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3647 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3648 return 0; 3649 } 3650 if (banks[1] & MCI_STATUS_VAL) 3651 mce->status |= MCI_STATUS_OVER; 3652 banks[2] = mce->addr; 3653 banks[3] = mce->misc; 3654 vcpu->arch.mcg_status = mce->mcg_status; 3655 banks[1] = mce->status; 3656 kvm_queue_exception(vcpu, MC_VECTOR); 3657 } else if (!(banks[1] & MCI_STATUS_VAL) 3658 || !(banks[1] & MCI_STATUS_UC)) { 3659 if (banks[1] & MCI_STATUS_VAL) 3660 mce->status |= MCI_STATUS_OVER; 3661 banks[2] = mce->addr; 3662 banks[3] = mce->misc; 3663 banks[1] = mce->status; 3664 } else 3665 banks[1] |= MCI_STATUS_OVER; 3666 return 0; 3667 } 3668 3669 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3670 struct kvm_vcpu_events *events) 3671 { 3672 process_nmi(vcpu); 3673 3674 /* 3675 * The API doesn't provide the instruction length for software 3676 * exceptions, so don't report them. As long as the guest RIP 3677 * isn't advanced, we should expect to encounter the exception 3678 * again. 3679 */ 3680 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3681 events->exception.injected = 0; 3682 events->exception.pending = 0; 3683 } else { 3684 events->exception.injected = vcpu->arch.exception.injected; 3685 events->exception.pending = vcpu->arch.exception.pending; 3686 /* 3687 * For ABI compatibility, deliberately conflate 3688 * pending and injected exceptions when 3689 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3690 */ 3691 if (!vcpu->kvm->arch.exception_payload_enabled) 3692 events->exception.injected |= 3693 vcpu->arch.exception.pending; 3694 } 3695 events->exception.nr = vcpu->arch.exception.nr; 3696 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3697 events->exception.error_code = vcpu->arch.exception.error_code; 3698 events->exception_has_payload = vcpu->arch.exception.has_payload; 3699 events->exception_payload = vcpu->arch.exception.payload; 3700 3701 events->interrupt.injected = 3702 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3703 events->interrupt.nr = vcpu->arch.interrupt.nr; 3704 events->interrupt.soft = 0; 3705 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3706 3707 events->nmi.injected = vcpu->arch.nmi_injected; 3708 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3709 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3710 events->nmi.pad = 0; 3711 3712 events->sipi_vector = 0; /* never valid when reporting to user space */ 3713 3714 events->smi.smm = is_smm(vcpu); 3715 events->smi.pending = vcpu->arch.smi_pending; 3716 events->smi.smm_inside_nmi = 3717 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3718 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3719 3720 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3721 | KVM_VCPUEVENT_VALID_SHADOW 3722 | KVM_VCPUEVENT_VALID_SMM); 3723 if (vcpu->kvm->arch.exception_payload_enabled) 3724 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3725 3726 memset(&events->reserved, 0, sizeof(events->reserved)); 3727 } 3728 3729 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3730 3731 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3732 struct kvm_vcpu_events *events) 3733 { 3734 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3735 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3736 | KVM_VCPUEVENT_VALID_SHADOW 3737 | KVM_VCPUEVENT_VALID_SMM 3738 | KVM_VCPUEVENT_VALID_PAYLOAD)) 3739 return -EINVAL; 3740 3741 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3742 if (!vcpu->kvm->arch.exception_payload_enabled) 3743 return -EINVAL; 3744 if (events->exception.pending) 3745 events->exception.injected = 0; 3746 else 3747 events->exception_has_payload = 0; 3748 } else { 3749 events->exception.pending = 0; 3750 events->exception_has_payload = 0; 3751 } 3752 3753 if ((events->exception.injected || events->exception.pending) && 3754 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3755 return -EINVAL; 3756 3757 /* INITs are latched while in SMM */ 3758 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3759 (events->smi.smm || events->smi.pending) && 3760 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3761 return -EINVAL; 3762 3763 process_nmi(vcpu); 3764 vcpu->arch.exception.injected = events->exception.injected; 3765 vcpu->arch.exception.pending = events->exception.pending; 3766 vcpu->arch.exception.nr = events->exception.nr; 3767 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3768 vcpu->arch.exception.error_code = events->exception.error_code; 3769 vcpu->arch.exception.has_payload = events->exception_has_payload; 3770 vcpu->arch.exception.payload = events->exception_payload; 3771 3772 vcpu->arch.interrupt.injected = events->interrupt.injected; 3773 vcpu->arch.interrupt.nr = events->interrupt.nr; 3774 vcpu->arch.interrupt.soft = events->interrupt.soft; 3775 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3776 kvm_x86_ops->set_interrupt_shadow(vcpu, 3777 events->interrupt.shadow); 3778 3779 vcpu->arch.nmi_injected = events->nmi.injected; 3780 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3781 vcpu->arch.nmi_pending = events->nmi.pending; 3782 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3783 3784 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3785 lapic_in_kernel(vcpu)) 3786 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3787 3788 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3789 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 3790 if (events->smi.smm) 3791 vcpu->arch.hflags |= HF_SMM_MASK; 3792 else 3793 vcpu->arch.hflags &= ~HF_SMM_MASK; 3794 kvm_smm_changed(vcpu); 3795 } 3796 3797 vcpu->arch.smi_pending = events->smi.pending; 3798 3799 if (events->smi.smm) { 3800 if (events->smi.smm_inside_nmi) 3801 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3802 else 3803 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3804 if (lapic_in_kernel(vcpu)) { 3805 if (events->smi.latched_init) 3806 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3807 else 3808 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3809 } 3810 } 3811 } 3812 3813 kvm_make_request(KVM_REQ_EVENT, vcpu); 3814 3815 return 0; 3816 } 3817 3818 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3819 struct kvm_debugregs *dbgregs) 3820 { 3821 unsigned long val; 3822 3823 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3824 kvm_get_dr(vcpu, 6, &val); 3825 dbgregs->dr6 = val; 3826 dbgregs->dr7 = vcpu->arch.dr7; 3827 dbgregs->flags = 0; 3828 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3829 } 3830 3831 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3832 struct kvm_debugregs *dbgregs) 3833 { 3834 if (dbgregs->flags) 3835 return -EINVAL; 3836 3837 if (dbgregs->dr6 & ~0xffffffffull) 3838 return -EINVAL; 3839 if (dbgregs->dr7 & ~0xffffffffull) 3840 return -EINVAL; 3841 3842 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3843 kvm_update_dr0123(vcpu); 3844 vcpu->arch.dr6 = dbgregs->dr6; 3845 kvm_update_dr6(vcpu); 3846 vcpu->arch.dr7 = dbgregs->dr7; 3847 kvm_update_dr7(vcpu); 3848 3849 return 0; 3850 } 3851 3852 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3853 3854 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3855 { 3856 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3857 u64 xstate_bv = xsave->header.xfeatures; 3858 u64 valid; 3859 3860 /* 3861 * Copy legacy XSAVE area, to avoid complications with CPUID 3862 * leaves 0 and 1 in the loop below. 3863 */ 3864 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3865 3866 /* Set XSTATE_BV */ 3867 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3868 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3869 3870 /* 3871 * Copy each region from the possibly compacted offset to the 3872 * non-compacted offset. 3873 */ 3874 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3875 while (valid) { 3876 u64 xfeature_mask = valid & -valid; 3877 int xfeature_nr = fls64(xfeature_mask) - 1; 3878 void *src = get_xsave_addr(xsave, xfeature_nr); 3879 3880 if (src) { 3881 u32 size, offset, ecx, edx; 3882 cpuid_count(XSTATE_CPUID, xfeature_nr, 3883 &size, &offset, &ecx, &edx); 3884 if (xfeature_nr == XFEATURE_PKRU) 3885 memcpy(dest + offset, &vcpu->arch.pkru, 3886 sizeof(vcpu->arch.pkru)); 3887 else 3888 memcpy(dest + offset, src, size); 3889 3890 } 3891 3892 valid -= xfeature_mask; 3893 } 3894 } 3895 3896 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3897 { 3898 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 3899 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3900 u64 valid; 3901 3902 /* 3903 * Copy legacy XSAVE area, to avoid complications with CPUID 3904 * leaves 0 and 1 in the loop below. 3905 */ 3906 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3907 3908 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3909 xsave->header.xfeatures = xstate_bv; 3910 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3911 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3912 3913 /* 3914 * Copy each region from the non-compacted offset to the 3915 * possibly compacted offset. 3916 */ 3917 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3918 while (valid) { 3919 u64 xfeature_mask = valid & -valid; 3920 int xfeature_nr = fls64(xfeature_mask) - 1; 3921 void *dest = get_xsave_addr(xsave, xfeature_nr); 3922 3923 if (dest) { 3924 u32 size, offset, ecx, edx; 3925 cpuid_count(XSTATE_CPUID, xfeature_nr, 3926 &size, &offset, &ecx, &edx); 3927 if (xfeature_nr == XFEATURE_PKRU) 3928 memcpy(&vcpu->arch.pkru, src + offset, 3929 sizeof(vcpu->arch.pkru)); 3930 else 3931 memcpy(dest, src + offset, size); 3932 } 3933 3934 valid -= xfeature_mask; 3935 } 3936 } 3937 3938 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3939 struct kvm_xsave *guest_xsave) 3940 { 3941 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3942 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3943 fill_xsave((u8 *) guest_xsave->region, vcpu); 3944 } else { 3945 memcpy(guest_xsave->region, 3946 &vcpu->arch.guest_fpu->state.fxsave, 3947 sizeof(struct fxregs_state)); 3948 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3949 XFEATURE_MASK_FPSSE; 3950 } 3951 } 3952 3953 #define XSAVE_MXCSR_OFFSET 24 3954 3955 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3956 struct kvm_xsave *guest_xsave) 3957 { 3958 u64 xstate_bv = 3959 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3960 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3961 3962 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3963 /* 3964 * Here we allow setting states that are not present in 3965 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3966 * with old userspace. 3967 */ 3968 if (xstate_bv & ~kvm_supported_xcr0() || 3969 mxcsr & ~mxcsr_feature_mask) 3970 return -EINVAL; 3971 load_xsave(vcpu, (u8 *)guest_xsave->region); 3972 } else { 3973 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3974 mxcsr & ~mxcsr_feature_mask) 3975 return -EINVAL; 3976 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 3977 guest_xsave->region, sizeof(struct fxregs_state)); 3978 } 3979 return 0; 3980 } 3981 3982 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3983 struct kvm_xcrs *guest_xcrs) 3984 { 3985 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3986 guest_xcrs->nr_xcrs = 0; 3987 return; 3988 } 3989 3990 guest_xcrs->nr_xcrs = 1; 3991 guest_xcrs->flags = 0; 3992 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3993 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3994 } 3995 3996 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3997 struct kvm_xcrs *guest_xcrs) 3998 { 3999 int i, r = 0; 4000 4001 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4002 return -EINVAL; 4003 4004 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4005 return -EINVAL; 4006 4007 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4008 /* Only support XCR0 currently */ 4009 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4010 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4011 guest_xcrs->xcrs[i].value); 4012 break; 4013 } 4014 if (r) 4015 r = -EINVAL; 4016 return r; 4017 } 4018 4019 /* 4020 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4021 * stopped by the hypervisor. This function will be called from the host only. 4022 * EINVAL is returned when the host attempts to set the flag for a guest that 4023 * does not support pv clocks. 4024 */ 4025 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4026 { 4027 if (!vcpu->arch.pv_time_enabled) 4028 return -EINVAL; 4029 vcpu->arch.pvclock_set_guest_stopped_request = true; 4030 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4031 return 0; 4032 } 4033 4034 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4035 struct kvm_enable_cap *cap) 4036 { 4037 int r; 4038 uint16_t vmcs_version; 4039 void __user *user_ptr; 4040 4041 if (cap->flags) 4042 return -EINVAL; 4043 4044 switch (cap->cap) { 4045 case KVM_CAP_HYPERV_SYNIC2: 4046 if (cap->args[0]) 4047 return -EINVAL; 4048 /* fall through */ 4049 4050 case KVM_CAP_HYPERV_SYNIC: 4051 if (!irqchip_in_kernel(vcpu->kvm)) 4052 return -EINVAL; 4053 return kvm_hv_activate_synic(vcpu, cap->cap == 4054 KVM_CAP_HYPERV_SYNIC2); 4055 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4056 if (!kvm_x86_ops->nested_enable_evmcs) 4057 return -ENOTTY; 4058 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); 4059 if (!r) { 4060 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4061 if (copy_to_user(user_ptr, &vmcs_version, 4062 sizeof(vmcs_version))) 4063 r = -EFAULT; 4064 } 4065 return r; 4066 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4067 if (!kvm_x86_ops->enable_direct_tlbflush) 4068 return -ENOTTY; 4069 4070 return kvm_x86_ops->enable_direct_tlbflush(vcpu); 4071 4072 default: 4073 return -EINVAL; 4074 } 4075 } 4076 4077 long kvm_arch_vcpu_ioctl(struct file *filp, 4078 unsigned int ioctl, unsigned long arg) 4079 { 4080 struct kvm_vcpu *vcpu = filp->private_data; 4081 void __user *argp = (void __user *)arg; 4082 int r; 4083 union { 4084 struct kvm_lapic_state *lapic; 4085 struct kvm_xsave *xsave; 4086 struct kvm_xcrs *xcrs; 4087 void *buffer; 4088 } u; 4089 4090 vcpu_load(vcpu); 4091 4092 u.buffer = NULL; 4093 switch (ioctl) { 4094 case KVM_GET_LAPIC: { 4095 r = -EINVAL; 4096 if (!lapic_in_kernel(vcpu)) 4097 goto out; 4098 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4099 GFP_KERNEL_ACCOUNT); 4100 4101 r = -ENOMEM; 4102 if (!u.lapic) 4103 goto out; 4104 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4105 if (r) 4106 goto out; 4107 r = -EFAULT; 4108 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4109 goto out; 4110 r = 0; 4111 break; 4112 } 4113 case KVM_SET_LAPIC: { 4114 r = -EINVAL; 4115 if (!lapic_in_kernel(vcpu)) 4116 goto out; 4117 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4118 if (IS_ERR(u.lapic)) { 4119 r = PTR_ERR(u.lapic); 4120 goto out_nofree; 4121 } 4122 4123 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4124 break; 4125 } 4126 case KVM_INTERRUPT: { 4127 struct kvm_interrupt irq; 4128 4129 r = -EFAULT; 4130 if (copy_from_user(&irq, argp, sizeof(irq))) 4131 goto out; 4132 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4133 break; 4134 } 4135 case KVM_NMI: { 4136 r = kvm_vcpu_ioctl_nmi(vcpu); 4137 break; 4138 } 4139 case KVM_SMI: { 4140 r = kvm_vcpu_ioctl_smi(vcpu); 4141 break; 4142 } 4143 case KVM_SET_CPUID: { 4144 struct kvm_cpuid __user *cpuid_arg = argp; 4145 struct kvm_cpuid cpuid; 4146 4147 r = -EFAULT; 4148 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4149 goto out; 4150 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4151 break; 4152 } 4153 case KVM_SET_CPUID2: { 4154 struct kvm_cpuid2 __user *cpuid_arg = argp; 4155 struct kvm_cpuid2 cpuid; 4156 4157 r = -EFAULT; 4158 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4159 goto out; 4160 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4161 cpuid_arg->entries); 4162 break; 4163 } 4164 case KVM_GET_CPUID2: { 4165 struct kvm_cpuid2 __user *cpuid_arg = argp; 4166 struct kvm_cpuid2 cpuid; 4167 4168 r = -EFAULT; 4169 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4170 goto out; 4171 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4172 cpuid_arg->entries); 4173 if (r) 4174 goto out; 4175 r = -EFAULT; 4176 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4177 goto out; 4178 r = 0; 4179 break; 4180 } 4181 case KVM_GET_MSRS: { 4182 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4183 r = msr_io(vcpu, argp, do_get_msr, 1); 4184 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4185 break; 4186 } 4187 case KVM_SET_MSRS: { 4188 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4189 r = msr_io(vcpu, argp, do_set_msr, 0); 4190 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4191 break; 4192 } 4193 case KVM_TPR_ACCESS_REPORTING: { 4194 struct kvm_tpr_access_ctl tac; 4195 4196 r = -EFAULT; 4197 if (copy_from_user(&tac, argp, sizeof(tac))) 4198 goto out; 4199 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4200 if (r) 4201 goto out; 4202 r = -EFAULT; 4203 if (copy_to_user(argp, &tac, sizeof(tac))) 4204 goto out; 4205 r = 0; 4206 break; 4207 }; 4208 case KVM_SET_VAPIC_ADDR: { 4209 struct kvm_vapic_addr va; 4210 int idx; 4211 4212 r = -EINVAL; 4213 if (!lapic_in_kernel(vcpu)) 4214 goto out; 4215 r = -EFAULT; 4216 if (copy_from_user(&va, argp, sizeof(va))) 4217 goto out; 4218 idx = srcu_read_lock(&vcpu->kvm->srcu); 4219 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4220 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4221 break; 4222 } 4223 case KVM_X86_SETUP_MCE: { 4224 u64 mcg_cap; 4225 4226 r = -EFAULT; 4227 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4228 goto out; 4229 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4230 break; 4231 } 4232 case KVM_X86_SET_MCE: { 4233 struct kvm_x86_mce mce; 4234 4235 r = -EFAULT; 4236 if (copy_from_user(&mce, argp, sizeof(mce))) 4237 goto out; 4238 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4239 break; 4240 } 4241 case KVM_GET_VCPU_EVENTS: { 4242 struct kvm_vcpu_events events; 4243 4244 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4245 4246 r = -EFAULT; 4247 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4248 break; 4249 r = 0; 4250 break; 4251 } 4252 case KVM_SET_VCPU_EVENTS: { 4253 struct kvm_vcpu_events events; 4254 4255 r = -EFAULT; 4256 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4257 break; 4258 4259 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4260 break; 4261 } 4262 case KVM_GET_DEBUGREGS: { 4263 struct kvm_debugregs dbgregs; 4264 4265 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4266 4267 r = -EFAULT; 4268 if (copy_to_user(argp, &dbgregs, 4269 sizeof(struct kvm_debugregs))) 4270 break; 4271 r = 0; 4272 break; 4273 } 4274 case KVM_SET_DEBUGREGS: { 4275 struct kvm_debugregs dbgregs; 4276 4277 r = -EFAULT; 4278 if (copy_from_user(&dbgregs, argp, 4279 sizeof(struct kvm_debugregs))) 4280 break; 4281 4282 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4283 break; 4284 } 4285 case KVM_GET_XSAVE: { 4286 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4287 r = -ENOMEM; 4288 if (!u.xsave) 4289 break; 4290 4291 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4292 4293 r = -EFAULT; 4294 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4295 break; 4296 r = 0; 4297 break; 4298 } 4299 case KVM_SET_XSAVE: { 4300 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4301 if (IS_ERR(u.xsave)) { 4302 r = PTR_ERR(u.xsave); 4303 goto out_nofree; 4304 } 4305 4306 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4307 break; 4308 } 4309 case KVM_GET_XCRS: { 4310 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4311 r = -ENOMEM; 4312 if (!u.xcrs) 4313 break; 4314 4315 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4316 4317 r = -EFAULT; 4318 if (copy_to_user(argp, u.xcrs, 4319 sizeof(struct kvm_xcrs))) 4320 break; 4321 r = 0; 4322 break; 4323 } 4324 case KVM_SET_XCRS: { 4325 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4326 if (IS_ERR(u.xcrs)) { 4327 r = PTR_ERR(u.xcrs); 4328 goto out_nofree; 4329 } 4330 4331 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4332 break; 4333 } 4334 case KVM_SET_TSC_KHZ: { 4335 u32 user_tsc_khz; 4336 4337 r = -EINVAL; 4338 user_tsc_khz = (u32)arg; 4339 4340 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4341 goto out; 4342 4343 if (user_tsc_khz == 0) 4344 user_tsc_khz = tsc_khz; 4345 4346 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4347 r = 0; 4348 4349 goto out; 4350 } 4351 case KVM_GET_TSC_KHZ: { 4352 r = vcpu->arch.virtual_tsc_khz; 4353 goto out; 4354 } 4355 case KVM_KVMCLOCK_CTRL: { 4356 r = kvm_set_guest_paused(vcpu); 4357 goto out; 4358 } 4359 case KVM_ENABLE_CAP: { 4360 struct kvm_enable_cap cap; 4361 4362 r = -EFAULT; 4363 if (copy_from_user(&cap, argp, sizeof(cap))) 4364 goto out; 4365 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4366 break; 4367 } 4368 case KVM_GET_NESTED_STATE: { 4369 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4370 u32 user_data_size; 4371 4372 r = -EINVAL; 4373 if (!kvm_x86_ops->get_nested_state) 4374 break; 4375 4376 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4377 r = -EFAULT; 4378 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4379 break; 4380 4381 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state, 4382 user_data_size); 4383 if (r < 0) 4384 break; 4385 4386 if (r > user_data_size) { 4387 if (put_user(r, &user_kvm_nested_state->size)) 4388 r = -EFAULT; 4389 else 4390 r = -E2BIG; 4391 break; 4392 } 4393 4394 r = 0; 4395 break; 4396 } 4397 case KVM_SET_NESTED_STATE: { 4398 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4399 struct kvm_nested_state kvm_state; 4400 4401 r = -EINVAL; 4402 if (!kvm_x86_ops->set_nested_state) 4403 break; 4404 4405 r = -EFAULT; 4406 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4407 break; 4408 4409 r = -EINVAL; 4410 if (kvm_state.size < sizeof(kvm_state)) 4411 break; 4412 4413 if (kvm_state.flags & 4414 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4415 | KVM_STATE_NESTED_EVMCS)) 4416 break; 4417 4418 /* nested_run_pending implies guest_mode. */ 4419 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4420 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4421 break; 4422 4423 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); 4424 break; 4425 } 4426 case KVM_GET_SUPPORTED_HV_CPUID: { 4427 struct kvm_cpuid2 __user *cpuid_arg = argp; 4428 struct kvm_cpuid2 cpuid; 4429 4430 r = -EFAULT; 4431 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4432 goto out; 4433 4434 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4435 cpuid_arg->entries); 4436 if (r) 4437 goto out; 4438 4439 r = -EFAULT; 4440 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4441 goto out; 4442 r = 0; 4443 break; 4444 } 4445 default: 4446 r = -EINVAL; 4447 } 4448 out: 4449 kfree(u.buffer); 4450 out_nofree: 4451 vcpu_put(vcpu); 4452 return r; 4453 } 4454 4455 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4456 { 4457 return VM_FAULT_SIGBUS; 4458 } 4459 4460 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4461 { 4462 int ret; 4463 4464 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4465 return -EINVAL; 4466 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 4467 return ret; 4468 } 4469 4470 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4471 u64 ident_addr) 4472 { 4473 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); 4474 } 4475 4476 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4477 unsigned long kvm_nr_mmu_pages) 4478 { 4479 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4480 return -EINVAL; 4481 4482 mutex_lock(&kvm->slots_lock); 4483 4484 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4485 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4486 4487 mutex_unlock(&kvm->slots_lock); 4488 return 0; 4489 } 4490 4491 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4492 { 4493 return kvm->arch.n_max_mmu_pages; 4494 } 4495 4496 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4497 { 4498 struct kvm_pic *pic = kvm->arch.vpic; 4499 int r; 4500 4501 r = 0; 4502 switch (chip->chip_id) { 4503 case KVM_IRQCHIP_PIC_MASTER: 4504 memcpy(&chip->chip.pic, &pic->pics[0], 4505 sizeof(struct kvm_pic_state)); 4506 break; 4507 case KVM_IRQCHIP_PIC_SLAVE: 4508 memcpy(&chip->chip.pic, &pic->pics[1], 4509 sizeof(struct kvm_pic_state)); 4510 break; 4511 case KVM_IRQCHIP_IOAPIC: 4512 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4513 break; 4514 default: 4515 r = -EINVAL; 4516 break; 4517 } 4518 return r; 4519 } 4520 4521 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4522 { 4523 struct kvm_pic *pic = kvm->arch.vpic; 4524 int r; 4525 4526 r = 0; 4527 switch (chip->chip_id) { 4528 case KVM_IRQCHIP_PIC_MASTER: 4529 spin_lock(&pic->lock); 4530 memcpy(&pic->pics[0], &chip->chip.pic, 4531 sizeof(struct kvm_pic_state)); 4532 spin_unlock(&pic->lock); 4533 break; 4534 case KVM_IRQCHIP_PIC_SLAVE: 4535 spin_lock(&pic->lock); 4536 memcpy(&pic->pics[1], &chip->chip.pic, 4537 sizeof(struct kvm_pic_state)); 4538 spin_unlock(&pic->lock); 4539 break; 4540 case KVM_IRQCHIP_IOAPIC: 4541 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4542 break; 4543 default: 4544 r = -EINVAL; 4545 break; 4546 } 4547 kvm_pic_update_irq(pic); 4548 return r; 4549 } 4550 4551 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4552 { 4553 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4554 4555 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4556 4557 mutex_lock(&kps->lock); 4558 memcpy(ps, &kps->channels, sizeof(*ps)); 4559 mutex_unlock(&kps->lock); 4560 return 0; 4561 } 4562 4563 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4564 { 4565 int i; 4566 struct kvm_pit *pit = kvm->arch.vpit; 4567 4568 mutex_lock(&pit->pit_state.lock); 4569 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4570 for (i = 0; i < 3; i++) 4571 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4572 mutex_unlock(&pit->pit_state.lock); 4573 return 0; 4574 } 4575 4576 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4577 { 4578 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4579 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4580 sizeof(ps->channels)); 4581 ps->flags = kvm->arch.vpit->pit_state.flags; 4582 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4583 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4584 return 0; 4585 } 4586 4587 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4588 { 4589 int start = 0; 4590 int i; 4591 u32 prev_legacy, cur_legacy; 4592 struct kvm_pit *pit = kvm->arch.vpit; 4593 4594 mutex_lock(&pit->pit_state.lock); 4595 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4596 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4597 if (!prev_legacy && cur_legacy) 4598 start = 1; 4599 memcpy(&pit->pit_state.channels, &ps->channels, 4600 sizeof(pit->pit_state.channels)); 4601 pit->pit_state.flags = ps->flags; 4602 for (i = 0; i < 3; i++) 4603 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4604 start && i == 0); 4605 mutex_unlock(&pit->pit_state.lock); 4606 return 0; 4607 } 4608 4609 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4610 struct kvm_reinject_control *control) 4611 { 4612 struct kvm_pit *pit = kvm->arch.vpit; 4613 4614 if (!pit) 4615 return -ENXIO; 4616 4617 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4618 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4619 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4620 */ 4621 mutex_lock(&pit->pit_state.lock); 4622 kvm_pit_set_reinject(pit, control->pit_reinject); 4623 mutex_unlock(&pit->pit_state.lock); 4624 4625 return 0; 4626 } 4627 4628 /** 4629 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 4630 * @kvm: kvm instance 4631 * @log: slot id and address to which we copy the log 4632 * 4633 * Steps 1-4 below provide general overview of dirty page logging. See 4634 * kvm_get_dirty_log_protect() function description for additional details. 4635 * 4636 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 4637 * always flush the TLB (step 4) even if previous step failed and the dirty 4638 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 4639 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 4640 * writes will be marked dirty for next log read. 4641 * 4642 * 1. Take a snapshot of the bit and clear it if needed. 4643 * 2. Write protect the corresponding page. 4644 * 3. Copy the snapshot to the userspace. 4645 * 4. Flush TLB's if needed. 4646 */ 4647 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 4648 { 4649 bool flush = false; 4650 int r; 4651 4652 mutex_lock(&kvm->slots_lock); 4653 4654 /* 4655 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4656 */ 4657 if (kvm_x86_ops->flush_log_dirty) 4658 kvm_x86_ops->flush_log_dirty(kvm); 4659 4660 r = kvm_get_dirty_log_protect(kvm, log, &flush); 4661 4662 /* 4663 * All the TLBs can be flushed out of mmu lock, see the comments in 4664 * kvm_mmu_slot_remove_write_access(). 4665 */ 4666 lockdep_assert_held(&kvm->slots_lock); 4667 if (flush) 4668 kvm_flush_remote_tlbs(kvm); 4669 4670 mutex_unlock(&kvm->slots_lock); 4671 return r; 4672 } 4673 4674 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) 4675 { 4676 bool flush = false; 4677 int r; 4678 4679 mutex_lock(&kvm->slots_lock); 4680 4681 /* 4682 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4683 */ 4684 if (kvm_x86_ops->flush_log_dirty) 4685 kvm_x86_ops->flush_log_dirty(kvm); 4686 4687 r = kvm_clear_dirty_log_protect(kvm, log, &flush); 4688 4689 /* 4690 * All the TLBs can be flushed out of mmu lock, see the comments in 4691 * kvm_mmu_slot_remove_write_access(). 4692 */ 4693 lockdep_assert_held(&kvm->slots_lock); 4694 if (flush) 4695 kvm_flush_remote_tlbs(kvm); 4696 4697 mutex_unlock(&kvm->slots_lock); 4698 return r; 4699 } 4700 4701 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4702 bool line_status) 4703 { 4704 if (!irqchip_in_kernel(kvm)) 4705 return -ENXIO; 4706 4707 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4708 irq_event->irq, irq_event->level, 4709 line_status); 4710 return 0; 4711 } 4712 4713 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4714 struct kvm_enable_cap *cap) 4715 { 4716 int r; 4717 4718 if (cap->flags) 4719 return -EINVAL; 4720 4721 switch (cap->cap) { 4722 case KVM_CAP_DISABLE_QUIRKS: 4723 kvm->arch.disabled_quirks = cap->args[0]; 4724 r = 0; 4725 break; 4726 case KVM_CAP_SPLIT_IRQCHIP: { 4727 mutex_lock(&kvm->lock); 4728 r = -EINVAL; 4729 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4730 goto split_irqchip_unlock; 4731 r = -EEXIST; 4732 if (irqchip_in_kernel(kvm)) 4733 goto split_irqchip_unlock; 4734 if (kvm->created_vcpus) 4735 goto split_irqchip_unlock; 4736 r = kvm_setup_empty_irq_routing(kvm); 4737 if (r) 4738 goto split_irqchip_unlock; 4739 /* Pairs with irqchip_in_kernel. */ 4740 smp_wmb(); 4741 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4742 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4743 r = 0; 4744 split_irqchip_unlock: 4745 mutex_unlock(&kvm->lock); 4746 break; 4747 } 4748 case KVM_CAP_X2APIC_API: 4749 r = -EINVAL; 4750 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4751 break; 4752 4753 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4754 kvm->arch.x2apic_format = true; 4755 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4756 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4757 4758 r = 0; 4759 break; 4760 case KVM_CAP_X86_DISABLE_EXITS: 4761 r = -EINVAL; 4762 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4763 break; 4764 4765 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4766 kvm_can_mwait_in_guest()) 4767 kvm->arch.mwait_in_guest = true; 4768 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4769 kvm->arch.hlt_in_guest = true; 4770 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4771 kvm->arch.pause_in_guest = true; 4772 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4773 kvm->arch.cstate_in_guest = true; 4774 r = 0; 4775 break; 4776 case KVM_CAP_MSR_PLATFORM_INFO: 4777 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4778 r = 0; 4779 break; 4780 case KVM_CAP_EXCEPTION_PAYLOAD: 4781 kvm->arch.exception_payload_enabled = cap->args[0]; 4782 r = 0; 4783 break; 4784 default: 4785 r = -EINVAL; 4786 break; 4787 } 4788 return r; 4789 } 4790 4791 long kvm_arch_vm_ioctl(struct file *filp, 4792 unsigned int ioctl, unsigned long arg) 4793 { 4794 struct kvm *kvm = filp->private_data; 4795 void __user *argp = (void __user *)arg; 4796 int r = -ENOTTY; 4797 /* 4798 * This union makes it completely explicit to gcc-3.x 4799 * that these two variables' stack usage should be 4800 * combined, not added together. 4801 */ 4802 union { 4803 struct kvm_pit_state ps; 4804 struct kvm_pit_state2 ps2; 4805 struct kvm_pit_config pit_config; 4806 } u; 4807 4808 switch (ioctl) { 4809 case KVM_SET_TSS_ADDR: 4810 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4811 break; 4812 case KVM_SET_IDENTITY_MAP_ADDR: { 4813 u64 ident_addr; 4814 4815 mutex_lock(&kvm->lock); 4816 r = -EINVAL; 4817 if (kvm->created_vcpus) 4818 goto set_identity_unlock; 4819 r = -EFAULT; 4820 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 4821 goto set_identity_unlock; 4822 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4823 set_identity_unlock: 4824 mutex_unlock(&kvm->lock); 4825 break; 4826 } 4827 case KVM_SET_NR_MMU_PAGES: 4828 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4829 break; 4830 case KVM_GET_NR_MMU_PAGES: 4831 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4832 break; 4833 case KVM_CREATE_IRQCHIP: { 4834 mutex_lock(&kvm->lock); 4835 4836 r = -EEXIST; 4837 if (irqchip_in_kernel(kvm)) 4838 goto create_irqchip_unlock; 4839 4840 r = -EINVAL; 4841 if (kvm->created_vcpus) 4842 goto create_irqchip_unlock; 4843 4844 r = kvm_pic_init(kvm); 4845 if (r) 4846 goto create_irqchip_unlock; 4847 4848 r = kvm_ioapic_init(kvm); 4849 if (r) { 4850 kvm_pic_destroy(kvm); 4851 goto create_irqchip_unlock; 4852 } 4853 4854 r = kvm_setup_default_irq_routing(kvm); 4855 if (r) { 4856 kvm_ioapic_destroy(kvm); 4857 kvm_pic_destroy(kvm); 4858 goto create_irqchip_unlock; 4859 } 4860 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4861 smp_wmb(); 4862 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4863 create_irqchip_unlock: 4864 mutex_unlock(&kvm->lock); 4865 break; 4866 } 4867 case KVM_CREATE_PIT: 4868 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4869 goto create_pit; 4870 case KVM_CREATE_PIT2: 4871 r = -EFAULT; 4872 if (copy_from_user(&u.pit_config, argp, 4873 sizeof(struct kvm_pit_config))) 4874 goto out; 4875 create_pit: 4876 mutex_lock(&kvm->lock); 4877 r = -EEXIST; 4878 if (kvm->arch.vpit) 4879 goto create_pit_unlock; 4880 r = -ENOMEM; 4881 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4882 if (kvm->arch.vpit) 4883 r = 0; 4884 create_pit_unlock: 4885 mutex_unlock(&kvm->lock); 4886 break; 4887 case KVM_GET_IRQCHIP: { 4888 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4889 struct kvm_irqchip *chip; 4890 4891 chip = memdup_user(argp, sizeof(*chip)); 4892 if (IS_ERR(chip)) { 4893 r = PTR_ERR(chip); 4894 goto out; 4895 } 4896 4897 r = -ENXIO; 4898 if (!irqchip_kernel(kvm)) 4899 goto get_irqchip_out; 4900 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4901 if (r) 4902 goto get_irqchip_out; 4903 r = -EFAULT; 4904 if (copy_to_user(argp, chip, sizeof(*chip))) 4905 goto get_irqchip_out; 4906 r = 0; 4907 get_irqchip_out: 4908 kfree(chip); 4909 break; 4910 } 4911 case KVM_SET_IRQCHIP: { 4912 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4913 struct kvm_irqchip *chip; 4914 4915 chip = memdup_user(argp, sizeof(*chip)); 4916 if (IS_ERR(chip)) { 4917 r = PTR_ERR(chip); 4918 goto out; 4919 } 4920 4921 r = -ENXIO; 4922 if (!irqchip_kernel(kvm)) 4923 goto set_irqchip_out; 4924 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4925 if (r) 4926 goto set_irqchip_out; 4927 r = 0; 4928 set_irqchip_out: 4929 kfree(chip); 4930 break; 4931 } 4932 case KVM_GET_PIT: { 4933 r = -EFAULT; 4934 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4935 goto out; 4936 r = -ENXIO; 4937 if (!kvm->arch.vpit) 4938 goto out; 4939 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4940 if (r) 4941 goto out; 4942 r = -EFAULT; 4943 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4944 goto out; 4945 r = 0; 4946 break; 4947 } 4948 case KVM_SET_PIT: { 4949 r = -EFAULT; 4950 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 4951 goto out; 4952 r = -ENXIO; 4953 if (!kvm->arch.vpit) 4954 goto out; 4955 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4956 break; 4957 } 4958 case KVM_GET_PIT2: { 4959 r = -ENXIO; 4960 if (!kvm->arch.vpit) 4961 goto out; 4962 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4963 if (r) 4964 goto out; 4965 r = -EFAULT; 4966 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4967 goto out; 4968 r = 0; 4969 break; 4970 } 4971 case KVM_SET_PIT2: { 4972 r = -EFAULT; 4973 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4974 goto out; 4975 r = -ENXIO; 4976 if (!kvm->arch.vpit) 4977 goto out; 4978 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4979 break; 4980 } 4981 case KVM_REINJECT_CONTROL: { 4982 struct kvm_reinject_control control; 4983 r = -EFAULT; 4984 if (copy_from_user(&control, argp, sizeof(control))) 4985 goto out; 4986 r = kvm_vm_ioctl_reinject(kvm, &control); 4987 break; 4988 } 4989 case KVM_SET_BOOT_CPU_ID: 4990 r = 0; 4991 mutex_lock(&kvm->lock); 4992 if (kvm->created_vcpus) 4993 r = -EBUSY; 4994 else 4995 kvm->arch.bsp_vcpu_id = arg; 4996 mutex_unlock(&kvm->lock); 4997 break; 4998 case KVM_XEN_HVM_CONFIG: { 4999 struct kvm_xen_hvm_config xhc; 5000 r = -EFAULT; 5001 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5002 goto out; 5003 r = -EINVAL; 5004 if (xhc.flags) 5005 goto out; 5006 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5007 r = 0; 5008 break; 5009 } 5010 case KVM_SET_CLOCK: { 5011 struct kvm_clock_data user_ns; 5012 u64 now_ns; 5013 5014 r = -EFAULT; 5015 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5016 goto out; 5017 5018 r = -EINVAL; 5019 if (user_ns.flags) 5020 goto out; 5021 5022 r = 0; 5023 /* 5024 * TODO: userspace has to take care of races with VCPU_RUN, so 5025 * kvm_gen_update_masterclock() can be cut down to locked 5026 * pvclock_update_vm_gtod_copy(). 5027 */ 5028 kvm_gen_update_masterclock(kvm); 5029 now_ns = get_kvmclock_ns(kvm); 5030 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5031 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5032 break; 5033 } 5034 case KVM_GET_CLOCK: { 5035 struct kvm_clock_data user_ns; 5036 u64 now_ns; 5037 5038 now_ns = get_kvmclock_ns(kvm); 5039 user_ns.clock = now_ns; 5040 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5041 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5042 5043 r = -EFAULT; 5044 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5045 goto out; 5046 r = 0; 5047 break; 5048 } 5049 case KVM_MEMORY_ENCRYPT_OP: { 5050 r = -ENOTTY; 5051 if (kvm_x86_ops->mem_enc_op) 5052 r = kvm_x86_ops->mem_enc_op(kvm, argp); 5053 break; 5054 } 5055 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5056 struct kvm_enc_region region; 5057 5058 r = -EFAULT; 5059 if (copy_from_user(®ion, argp, sizeof(region))) 5060 goto out; 5061 5062 r = -ENOTTY; 5063 if (kvm_x86_ops->mem_enc_reg_region) 5064 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); 5065 break; 5066 } 5067 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5068 struct kvm_enc_region region; 5069 5070 r = -EFAULT; 5071 if (copy_from_user(®ion, argp, sizeof(region))) 5072 goto out; 5073 5074 r = -ENOTTY; 5075 if (kvm_x86_ops->mem_enc_unreg_region) 5076 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); 5077 break; 5078 } 5079 case KVM_HYPERV_EVENTFD: { 5080 struct kvm_hyperv_eventfd hvevfd; 5081 5082 r = -EFAULT; 5083 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5084 goto out; 5085 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5086 break; 5087 } 5088 case KVM_SET_PMU_EVENT_FILTER: 5089 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5090 break; 5091 default: 5092 r = -ENOTTY; 5093 } 5094 out: 5095 return r; 5096 } 5097 5098 static void kvm_init_msr_list(void) 5099 { 5100 u32 dummy[2]; 5101 unsigned i, j; 5102 5103 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5104 "Please update the fixed PMCs in msrs_to_save[]"); 5105 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_GENERIC != 32, 5106 "Please update the generic perfctr/eventsel MSRs in msrs_to_save[]"); 5107 5108 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 5109 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 5110 continue; 5111 5112 /* 5113 * Even MSRs that are valid in the host may not be exposed 5114 * to the guests in some cases. 5115 */ 5116 switch (msrs_to_save[i]) { 5117 case MSR_IA32_BNDCFGS: 5118 if (!kvm_mpx_supported()) 5119 continue; 5120 break; 5121 case MSR_TSC_AUX: 5122 if (!kvm_x86_ops->rdtscp_supported()) 5123 continue; 5124 break; 5125 case MSR_IA32_RTIT_CTL: 5126 case MSR_IA32_RTIT_STATUS: 5127 if (!kvm_x86_ops->pt_supported()) 5128 continue; 5129 break; 5130 case MSR_IA32_RTIT_CR3_MATCH: 5131 if (!kvm_x86_ops->pt_supported() || 5132 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5133 continue; 5134 break; 5135 case MSR_IA32_RTIT_OUTPUT_BASE: 5136 case MSR_IA32_RTIT_OUTPUT_MASK: 5137 if (!kvm_x86_ops->pt_supported() || 5138 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5139 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5140 continue; 5141 break; 5142 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { 5143 if (!kvm_x86_ops->pt_supported() || 5144 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >= 5145 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5146 continue; 5147 break; 5148 } 5149 default: 5150 break; 5151 } 5152 5153 if (j < i) 5154 msrs_to_save[j] = msrs_to_save[i]; 5155 j++; 5156 } 5157 num_msrs_to_save = j; 5158 5159 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 5160 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i])) 5161 continue; 5162 5163 if (j < i) 5164 emulated_msrs[j] = emulated_msrs[i]; 5165 j++; 5166 } 5167 num_emulated_msrs = j; 5168 5169 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { 5170 struct kvm_msr_entry msr; 5171 5172 msr.index = msr_based_features[i]; 5173 if (kvm_get_msr_feature(&msr)) 5174 continue; 5175 5176 if (j < i) 5177 msr_based_features[j] = msr_based_features[i]; 5178 j++; 5179 } 5180 num_msr_based_features = j; 5181 } 5182 5183 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5184 const void *v) 5185 { 5186 int handled = 0; 5187 int n; 5188 5189 do { 5190 n = min(len, 8); 5191 if (!(lapic_in_kernel(vcpu) && 5192 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5193 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5194 break; 5195 handled += n; 5196 addr += n; 5197 len -= n; 5198 v += n; 5199 } while (len); 5200 5201 return handled; 5202 } 5203 5204 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5205 { 5206 int handled = 0; 5207 int n; 5208 5209 do { 5210 n = min(len, 8); 5211 if (!(lapic_in_kernel(vcpu) && 5212 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5213 addr, n, v)) 5214 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5215 break; 5216 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5217 handled += n; 5218 addr += n; 5219 len -= n; 5220 v += n; 5221 } while (len); 5222 5223 return handled; 5224 } 5225 5226 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5227 struct kvm_segment *var, int seg) 5228 { 5229 kvm_x86_ops->set_segment(vcpu, var, seg); 5230 } 5231 5232 void kvm_get_segment(struct kvm_vcpu *vcpu, 5233 struct kvm_segment *var, int seg) 5234 { 5235 kvm_x86_ops->get_segment(vcpu, var, seg); 5236 } 5237 5238 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5239 struct x86_exception *exception) 5240 { 5241 gpa_t t_gpa; 5242 5243 BUG_ON(!mmu_is_nested(vcpu)); 5244 5245 /* NPT walks are always user-walks */ 5246 access |= PFERR_USER_MASK; 5247 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5248 5249 return t_gpa; 5250 } 5251 5252 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5253 struct x86_exception *exception) 5254 { 5255 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5256 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5257 } 5258 5259 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5260 struct x86_exception *exception) 5261 { 5262 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5263 access |= PFERR_FETCH_MASK; 5264 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5265 } 5266 5267 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5268 struct x86_exception *exception) 5269 { 5270 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5271 access |= PFERR_WRITE_MASK; 5272 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5273 } 5274 5275 /* uses this to access any guest's mapped memory without checking CPL */ 5276 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5277 struct x86_exception *exception) 5278 { 5279 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5280 } 5281 5282 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5283 struct kvm_vcpu *vcpu, u32 access, 5284 struct x86_exception *exception) 5285 { 5286 void *data = val; 5287 int r = X86EMUL_CONTINUE; 5288 5289 while (bytes) { 5290 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5291 exception); 5292 unsigned offset = addr & (PAGE_SIZE-1); 5293 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5294 int ret; 5295 5296 if (gpa == UNMAPPED_GVA) 5297 return X86EMUL_PROPAGATE_FAULT; 5298 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5299 offset, toread); 5300 if (ret < 0) { 5301 r = X86EMUL_IO_NEEDED; 5302 goto out; 5303 } 5304 5305 bytes -= toread; 5306 data += toread; 5307 addr += toread; 5308 } 5309 out: 5310 return r; 5311 } 5312 5313 /* used for instruction fetching */ 5314 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5315 gva_t addr, void *val, unsigned int bytes, 5316 struct x86_exception *exception) 5317 { 5318 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5319 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5320 unsigned offset; 5321 int ret; 5322 5323 /* Inline kvm_read_guest_virt_helper for speed. */ 5324 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5325 exception); 5326 if (unlikely(gpa == UNMAPPED_GVA)) 5327 return X86EMUL_PROPAGATE_FAULT; 5328 5329 offset = addr & (PAGE_SIZE-1); 5330 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5331 bytes = (unsigned)PAGE_SIZE - offset; 5332 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5333 offset, bytes); 5334 if (unlikely(ret < 0)) 5335 return X86EMUL_IO_NEEDED; 5336 5337 return X86EMUL_CONTINUE; 5338 } 5339 5340 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5341 gva_t addr, void *val, unsigned int bytes, 5342 struct x86_exception *exception) 5343 { 5344 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5345 5346 /* 5347 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5348 * is returned, but our callers are not ready for that and they blindly 5349 * call kvm_inject_page_fault. Ensure that they at least do not leak 5350 * uninitialized kernel stack memory into cr2 and error code. 5351 */ 5352 memset(exception, 0, sizeof(*exception)); 5353 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5354 exception); 5355 } 5356 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5357 5358 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5359 gva_t addr, void *val, unsigned int bytes, 5360 struct x86_exception *exception, bool system) 5361 { 5362 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5363 u32 access = 0; 5364 5365 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5366 access |= PFERR_USER_MASK; 5367 5368 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5369 } 5370 5371 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5372 unsigned long addr, void *val, unsigned int bytes) 5373 { 5374 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5375 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5376 5377 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5378 } 5379 5380 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5381 struct kvm_vcpu *vcpu, u32 access, 5382 struct x86_exception *exception) 5383 { 5384 void *data = val; 5385 int r = X86EMUL_CONTINUE; 5386 5387 while (bytes) { 5388 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5389 access, 5390 exception); 5391 unsigned offset = addr & (PAGE_SIZE-1); 5392 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5393 int ret; 5394 5395 if (gpa == UNMAPPED_GVA) 5396 return X86EMUL_PROPAGATE_FAULT; 5397 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5398 if (ret < 0) { 5399 r = X86EMUL_IO_NEEDED; 5400 goto out; 5401 } 5402 5403 bytes -= towrite; 5404 data += towrite; 5405 addr += towrite; 5406 } 5407 out: 5408 return r; 5409 } 5410 5411 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5412 unsigned int bytes, struct x86_exception *exception, 5413 bool system) 5414 { 5415 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5416 u32 access = PFERR_WRITE_MASK; 5417 5418 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) 5419 access |= PFERR_USER_MASK; 5420 5421 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5422 access, exception); 5423 } 5424 5425 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5426 unsigned int bytes, struct x86_exception *exception) 5427 { 5428 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5429 vcpu->arch.l1tf_flush_l1d = true; 5430 5431 /* 5432 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5433 * is returned, but our callers are not ready for that and they blindly 5434 * call kvm_inject_page_fault. Ensure that they at least do not leak 5435 * uninitialized kernel stack memory into cr2 and error code. 5436 */ 5437 memset(exception, 0, sizeof(*exception)); 5438 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5439 PFERR_WRITE_MASK, exception); 5440 } 5441 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5442 5443 int handle_ud(struct kvm_vcpu *vcpu) 5444 { 5445 int emul_type = EMULTYPE_TRAP_UD; 5446 char sig[5]; /* ud2; .ascii "kvm" */ 5447 struct x86_exception e; 5448 5449 if (force_emulation_prefix && 5450 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5451 sig, sizeof(sig), &e) == 0 && 5452 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) { 5453 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5454 emul_type = EMULTYPE_TRAP_UD_FORCED; 5455 } 5456 5457 return kvm_emulate_instruction(vcpu, emul_type); 5458 } 5459 EXPORT_SYMBOL_GPL(handle_ud); 5460 5461 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5462 gpa_t gpa, bool write) 5463 { 5464 /* For APIC access vmexit */ 5465 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5466 return 1; 5467 5468 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5469 trace_vcpu_match_mmio(gva, gpa, write, true); 5470 return 1; 5471 } 5472 5473 return 0; 5474 } 5475 5476 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5477 gpa_t *gpa, struct x86_exception *exception, 5478 bool write) 5479 { 5480 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5481 | (write ? PFERR_WRITE_MASK : 0); 5482 5483 /* 5484 * currently PKRU is only applied to ept enabled guest so 5485 * there is no pkey in EPT page table for L1 guest or EPT 5486 * shadow page table for L2 guest. 5487 */ 5488 if (vcpu_match_mmio_gva(vcpu, gva) 5489 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5490 vcpu->arch.mmio_access, 0, access)) { 5491 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5492 (gva & (PAGE_SIZE - 1)); 5493 trace_vcpu_match_mmio(gva, *gpa, write, false); 5494 return 1; 5495 } 5496 5497 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5498 5499 if (*gpa == UNMAPPED_GVA) 5500 return -1; 5501 5502 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5503 } 5504 5505 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5506 const void *val, int bytes) 5507 { 5508 int ret; 5509 5510 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5511 if (ret < 0) 5512 return 0; 5513 kvm_page_track_write(vcpu, gpa, val, bytes); 5514 return 1; 5515 } 5516 5517 struct read_write_emulator_ops { 5518 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5519 int bytes); 5520 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5521 void *val, int bytes); 5522 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5523 int bytes, void *val); 5524 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5525 void *val, int bytes); 5526 bool write; 5527 }; 5528 5529 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5530 { 5531 if (vcpu->mmio_read_completed) { 5532 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5533 vcpu->mmio_fragments[0].gpa, val); 5534 vcpu->mmio_read_completed = 0; 5535 return 1; 5536 } 5537 5538 return 0; 5539 } 5540 5541 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5542 void *val, int bytes) 5543 { 5544 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5545 } 5546 5547 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5548 void *val, int bytes) 5549 { 5550 return emulator_write_phys(vcpu, gpa, val, bytes); 5551 } 5552 5553 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5554 { 5555 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5556 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5557 } 5558 5559 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5560 void *val, int bytes) 5561 { 5562 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5563 return X86EMUL_IO_NEEDED; 5564 } 5565 5566 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5567 void *val, int bytes) 5568 { 5569 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5570 5571 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5572 return X86EMUL_CONTINUE; 5573 } 5574 5575 static const struct read_write_emulator_ops read_emultor = { 5576 .read_write_prepare = read_prepare, 5577 .read_write_emulate = read_emulate, 5578 .read_write_mmio = vcpu_mmio_read, 5579 .read_write_exit_mmio = read_exit_mmio, 5580 }; 5581 5582 static const struct read_write_emulator_ops write_emultor = { 5583 .read_write_emulate = write_emulate, 5584 .read_write_mmio = write_mmio, 5585 .read_write_exit_mmio = write_exit_mmio, 5586 .write = true, 5587 }; 5588 5589 static int emulator_read_write_onepage(unsigned long addr, void *val, 5590 unsigned int bytes, 5591 struct x86_exception *exception, 5592 struct kvm_vcpu *vcpu, 5593 const struct read_write_emulator_ops *ops) 5594 { 5595 gpa_t gpa; 5596 int handled, ret; 5597 bool write = ops->write; 5598 struct kvm_mmio_fragment *frag; 5599 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5600 5601 /* 5602 * If the exit was due to a NPF we may already have a GPA. 5603 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5604 * Note, this cannot be used on string operations since string 5605 * operation using rep will only have the initial GPA from the NPF 5606 * occurred. 5607 */ 5608 if (vcpu->arch.gpa_available && 5609 emulator_can_use_gpa(ctxt) && 5610 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 5611 gpa = vcpu->arch.gpa_val; 5612 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5613 } else { 5614 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5615 if (ret < 0) 5616 return X86EMUL_PROPAGATE_FAULT; 5617 } 5618 5619 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5620 return X86EMUL_CONTINUE; 5621 5622 /* 5623 * Is this MMIO handled locally? 5624 */ 5625 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5626 if (handled == bytes) 5627 return X86EMUL_CONTINUE; 5628 5629 gpa += handled; 5630 bytes -= handled; 5631 val += handled; 5632 5633 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5634 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5635 frag->gpa = gpa; 5636 frag->data = val; 5637 frag->len = bytes; 5638 return X86EMUL_CONTINUE; 5639 } 5640 5641 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5642 unsigned long addr, 5643 void *val, unsigned int bytes, 5644 struct x86_exception *exception, 5645 const struct read_write_emulator_ops *ops) 5646 { 5647 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5648 gpa_t gpa; 5649 int rc; 5650 5651 if (ops->read_write_prepare && 5652 ops->read_write_prepare(vcpu, val, bytes)) 5653 return X86EMUL_CONTINUE; 5654 5655 vcpu->mmio_nr_fragments = 0; 5656 5657 /* Crossing a page boundary? */ 5658 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5659 int now; 5660 5661 now = -addr & ~PAGE_MASK; 5662 rc = emulator_read_write_onepage(addr, val, now, exception, 5663 vcpu, ops); 5664 5665 if (rc != X86EMUL_CONTINUE) 5666 return rc; 5667 addr += now; 5668 if (ctxt->mode != X86EMUL_MODE_PROT64) 5669 addr = (u32)addr; 5670 val += now; 5671 bytes -= now; 5672 } 5673 5674 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5675 vcpu, ops); 5676 if (rc != X86EMUL_CONTINUE) 5677 return rc; 5678 5679 if (!vcpu->mmio_nr_fragments) 5680 return rc; 5681 5682 gpa = vcpu->mmio_fragments[0].gpa; 5683 5684 vcpu->mmio_needed = 1; 5685 vcpu->mmio_cur_fragment = 0; 5686 5687 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5688 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5689 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5690 vcpu->run->mmio.phys_addr = gpa; 5691 5692 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5693 } 5694 5695 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5696 unsigned long addr, 5697 void *val, 5698 unsigned int bytes, 5699 struct x86_exception *exception) 5700 { 5701 return emulator_read_write(ctxt, addr, val, bytes, 5702 exception, &read_emultor); 5703 } 5704 5705 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5706 unsigned long addr, 5707 const void *val, 5708 unsigned int bytes, 5709 struct x86_exception *exception) 5710 { 5711 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5712 exception, &write_emultor); 5713 } 5714 5715 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5716 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5717 5718 #ifdef CONFIG_X86_64 5719 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5720 #else 5721 # define CMPXCHG64(ptr, old, new) \ 5722 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5723 #endif 5724 5725 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5726 unsigned long addr, 5727 const void *old, 5728 const void *new, 5729 unsigned int bytes, 5730 struct x86_exception *exception) 5731 { 5732 struct kvm_host_map map; 5733 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5734 gpa_t gpa; 5735 char *kaddr; 5736 bool exchanged; 5737 5738 /* guests cmpxchg8b have to be emulated atomically */ 5739 if (bytes > 8 || (bytes & (bytes - 1))) 5740 goto emul_write; 5741 5742 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5743 5744 if (gpa == UNMAPPED_GVA || 5745 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5746 goto emul_write; 5747 5748 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 5749 goto emul_write; 5750 5751 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5752 goto emul_write; 5753 5754 kaddr = map.hva + offset_in_page(gpa); 5755 5756 switch (bytes) { 5757 case 1: 5758 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5759 break; 5760 case 2: 5761 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5762 break; 5763 case 4: 5764 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5765 break; 5766 case 8: 5767 exchanged = CMPXCHG64(kaddr, old, new); 5768 break; 5769 default: 5770 BUG(); 5771 } 5772 5773 kvm_vcpu_unmap(vcpu, &map, true); 5774 5775 if (!exchanged) 5776 return X86EMUL_CMPXCHG_FAILED; 5777 5778 kvm_page_track_write(vcpu, gpa, new, bytes); 5779 5780 return X86EMUL_CONTINUE; 5781 5782 emul_write: 5783 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5784 5785 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5786 } 5787 5788 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5789 { 5790 int r = 0, i; 5791 5792 for (i = 0; i < vcpu->arch.pio.count; i++) { 5793 if (vcpu->arch.pio.in) 5794 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5795 vcpu->arch.pio.size, pd); 5796 else 5797 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5798 vcpu->arch.pio.port, vcpu->arch.pio.size, 5799 pd); 5800 if (r) 5801 break; 5802 pd += vcpu->arch.pio.size; 5803 } 5804 return r; 5805 } 5806 5807 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5808 unsigned short port, void *val, 5809 unsigned int count, bool in) 5810 { 5811 vcpu->arch.pio.port = port; 5812 vcpu->arch.pio.in = in; 5813 vcpu->arch.pio.count = count; 5814 vcpu->arch.pio.size = size; 5815 5816 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5817 vcpu->arch.pio.count = 0; 5818 return 1; 5819 } 5820 5821 vcpu->run->exit_reason = KVM_EXIT_IO; 5822 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5823 vcpu->run->io.size = size; 5824 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5825 vcpu->run->io.count = count; 5826 vcpu->run->io.port = port; 5827 5828 return 0; 5829 } 5830 5831 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5832 int size, unsigned short port, void *val, 5833 unsigned int count) 5834 { 5835 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5836 int ret; 5837 5838 if (vcpu->arch.pio.count) 5839 goto data_avail; 5840 5841 memset(vcpu->arch.pio_data, 0, size * count); 5842 5843 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5844 if (ret) { 5845 data_avail: 5846 memcpy(val, vcpu->arch.pio_data, size * count); 5847 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5848 vcpu->arch.pio.count = 0; 5849 return 1; 5850 } 5851 5852 return 0; 5853 } 5854 5855 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 5856 int size, unsigned short port, 5857 const void *val, unsigned int count) 5858 { 5859 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5860 5861 memcpy(vcpu->arch.pio_data, val, size * count); 5862 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 5863 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 5864 } 5865 5866 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 5867 { 5868 return kvm_x86_ops->get_segment_base(vcpu, seg); 5869 } 5870 5871 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 5872 { 5873 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 5874 } 5875 5876 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 5877 { 5878 if (!need_emulate_wbinvd(vcpu)) 5879 return X86EMUL_CONTINUE; 5880 5881 if (kvm_x86_ops->has_wbinvd_exit()) { 5882 int cpu = get_cpu(); 5883 5884 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5885 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 5886 wbinvd_ipi, NULL, 1); 5887 put_cpu(); 5888 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 5889 } else 5890 wbinvd(); 5891 return X86EMUL_CONTINUE; 5892 } 5893 5894 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 5895 { 5896 kvm_emulate_wbinvd_noskip(vcpu); 5897 return kvm_skip_emulated_instruction(vcpu); 5898 } 5899 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 5900 5901 5902 5903 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 5904 { 5905 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 5906 } 5907 5908 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 5909 unsigned long *dest) 5910 { 5911 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 5912 } 5913 5914 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 5915 unsigned long value) 5916 { 5917 5918 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 5919 } 5920 5921 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 5922 { 5923 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 5924 } 5925 5926 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5927 { 5928 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5929 unsigned long value; 5930 5931 switch (cr) { 5932 case 0: 5933 value = kvm_read_cr0(vcpu); 5934 break; 5935 case 2: 5936 value = vcpu->arch.cr2; 5937 break; 5938 case 3: 5939 value = kvm_read_cr3(vcpu); 5940 break; 5941 case 4: 5942 value = kvm_read_cr4(vcpu); 5943 break; 5944 case 8: 5945 value = kvm_get_cr8(vcpu); 5946 break; 5947 default: 5948 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5949 return 0; 5950 } 5951 5952 return value; 5953 } 5954 5955 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5956 { 5957 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5958 int res = 0; 5959 5960 switch (cr) { 5961 case 0: 5962 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5963 break; 5964 case 2: 5965 vcpu->arch.cr2 = val; 5966 break; 5967 case 3: 5968 res = kvm_set_cr3(vcpu, val); 5969 break; 5970 case 4: 5971 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5972 break; 5973 case 8: 5974 res = kvm_set_cr8(vcpu, val); 5975 break; 5976 default: 5977 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5978 res = -1; 5979 } 5980 5981 return res; 5982 } 5983 5984 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5985 { 5986 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5987 } 5988 5989 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5990 { 5991 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5992 } 5993 5994 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5995 { 5996 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5997 } 5998 5999 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6000 { 6001 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 6002 } 6003 6004 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6005 { 6006 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 6007 } 6008 6009 static unsigned long emulator_get_cached_segment_base( 6010 struct x86_emulate_ctxt *ctxt, int seg) 6011 { 6012 return get_segment_base(emul_to_vcpu(ctxt), seg); 6013 } 6014 6015 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6016 struct desc_struct *desc, u32 *base3, 6017 int seg) 6018 { 6019 struct kvm_segment var; 6020 6021 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6022 *selector = var.selector; 6023 6024 if (var.unusable) { 6025 memset(desc, 0, sizeof(*desc)); 6026 if (base3) 6027 *base3 = 0; 6028 return false; 6029 } 6030 6031 if (var.g) 6032 var.limit >>= 12; 6033 set_desc_limit(desc, var.limit); 6034 set_desc_base(desc, (unsigned long)var.base); 6035 #ifdef CONFIG_X86_64 6036 if (base3) 6037 *base3 = var.base >> 32; 6038 #endif 6039 desc->type = var.type; 6040 desc->s = var.s; 6041 desc->dpl = var.dpl; 6042 desc->p = var.present; 6043 desc->avl = var.avl; 6044 desc->l = var.l; 6045 desc->d = var.db; 6046 desc->g = var.g; 6047 6048 return true; 6049 } 6050 6051 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6052 struct desc_struct *desc, u32 base3, 6053 int seg) 6054 { 6055 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6056 struct kvm_segment var; 6057 6058 var.selector = selector; 6059 var.base = get_desc_base(desc); 6060 #ifdef CONFIG_X86_64 6061 var.base |= ((u64)base3) << 32; 6062 #endif 6063 var.limit = get_desc_limit(desc); 6064 if (desc->g) 6065 var.limit = (var.limit << 12) | 0xfff; 6066 var.type = desc->type; 6067 var.dpl = desc->dpl; 6068 var.db = desc->d; 6069 var.s = desc->s; 6070 var.l = desc->l; 6071 var.g = desc->g; 6072 var.avl = desc->avl; 6073 var.present = desc->p; 6074 var.unusable = !var.present; 6075 var.padding = 0; 6076 6077 kvm_set_segment(vcpu, &var, seg); 6078 return; 6079 } 6080 6081 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6082 u32 msr_index, u64 *pdata) 6083 { 6084 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6085 } 6086 6087 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6088 u32 msr_index, u64 data) 6089 { 6090 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6091 } 6092 6093 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6094 { 6095 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6096 6097 return vcpu->arch.smbase; 6098 } 6099 6100 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6101 { 6102 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6103 6104 vcpu->arch.smbase = smbase; 6105 } 6106 6107 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6108 u32 pmc) 6109 { 6110 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 6111 } 6112 6113 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6114 u32 pmc, u64 *pdata) 6115 { 6116 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6117 } 6118 6119 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6120 { 6121 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6122 } 6123 6124 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6125 struct x86_instruction_info *info, 6126 enum x86_intercept_stage stage) 6127 { 6128 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 6129 } 6130 6131 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6132 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 6133 { 6134 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 6135 } 6136 6137 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6138 { 6139 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6140 } 6141 6142 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6143 { 6144 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6145 } 6146 6147 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6148 { 6149 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 6150 } 6151 6152 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6153 { 6154 return emul_to_vcpu(ctxt)->arch.hflags; 6155 } 6156 6157 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6158 { 6159 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6160 } 6161 6162 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6163 const char *smstate) 6164 { 6165 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6166 } 6167 6168 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6169 { 6170 kvm_smm_changed(emul_to_vcpu(ctxt)); 6171 } 6172 6173 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6174 { 6175 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6176 } 6177 6178 static const struct x86_emulate_ops emulate_ops = { 6179 .read_gpr = emulator_read_gpr, 6180 .write_gpr = emulator_write_gpr, 6181 .read_std = emulator_read_std, 6182 .write_std = emulator_write_std, 6183 .read_phys = kvm_read_guest_phys_system, 6184 .fetch = kvm_fetch_guest_virt, 6185 .read_emulated = emulator_read_emulated, 6186 .write_emulated = emulator_write_emulated, 6187 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6188 .invlpg = emulator_invlpg, 6189 .pio_in_emulated = emulator_pio_in_emulated, 6190 .pio_out_emulated = emulator_pio_out_emulated, 6191 .get_segment = emulator_get_segment, 6192 .set_segment = emulator_set_segment, 6193 .get_cached_segment_base = emulator_get_cached_segment_base, 6194 .get_gdt = emulator_get_gdt, 6195 .get_idt = emulator_get_idt, 6196 .set_gdt = emulator_set_gdt, 6197 .set_idt = emulator_set_idt, 6198 .get_cr = emulator_get_cr, 6199 .set_cr = emulator_set_cr, 6200 .cpl = emulator_get_cpl, 6201 .get_dr = emulator_get_dr, 6202 .set_dr = emulator_set_dr, 6203 .get_smbase = emulator_get_smbase, 6204 .set_smbase = emulator_set_smbase, 6205 .set_msr = emulator_set_msr, 6206 .get_msr = emulator_get_msr, 6207 .check_pmc = emulator_check_pmc, 6208 .read_pmc = emulator_read_pmc, 6209 .halt = emulator_halt, 6210 .wbinvd = emulator_wbinvd, 6211 .fix_hypercall = emulator_fix_hypercall, 6212 .intercept = emulator_intercept, 6213 .get_cpuid = emulator_get_cpuid, 6214 .set_nmi_mask = emulator_set_nmi_mask, 6215 .get_hflags = emulator_get_hflags, 6216 .set_hflags = emulator_set_hflags, 6217 .pre_leave_smm = emulator_pre_leave_smm, 6218 .post_leave_smm = emulator_post_leave_smm, 6219 .set_xcr = emulator_set_xcr, 6220 }; 6221 6222 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6223 { 6224 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 6225 /* 6226 * an sti; sti; sequence only disable interrupts for the first 6227 * instruction. So, if the last instruction, be it emulated or 6228 * not, left the system with the INT_STI flag enabled, it 6229 * means that the last instruction is an sti. We should not 6230 * leave the flag on in this case. The same goes for mov ss 6231 */ 6232 if (int_shadow & mask) 6233 mask = 0; 6234 if (unlikely(int_shadow || mask)) { 6235 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 6236 if (!mask) 6237 kvm_make_request(KVM_REQ_EVENT, vcpu); 6238 } 6239 } 6240 6241 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6242 { 6243 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6244 if (ctxt->exception.vector == PF_VECTOR) 6245 return kvm_propagate_fault(vcpu, &ctxt->exception); 6246 6247 if (ctxt->exception.error_code_valid) 6248 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6249 ctxt->exception.error_code); 6250 else 6251 kvm_queue_exception(vcpu, ctxt->exception.vector); 6252 return false; 6253 } 6254 6255 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6256 { 6257 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6258 int cs_db, cs_l; 6259 6260 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6261 6262 ctxt->eflags = kvm_get_rflags(vcpu); 6263 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6264 6265 ctxt->eip = kvm_rip_read(vcpu); 6266 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6267 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6268 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6269 cs_db ? X86EMUL_MODE_PROT32 : 6270 X86EMUL_MODE_PROT16; 6271 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6272 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6273 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6274 6275 init_decode_cache(ctxt); 6276 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6277 } 6278 6279 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6280 { 6281 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6282 int ret; 6283 6284 init_emulate_ctxt(vcpu); 6285 6286 ctxt->op_bytes = 2; 6287 ctxt->ad_bytes = 2; 6288 ctxt->_eip = ctxt->eip + inc_eip; 6289 ret = emulate_int_real(ctxt, irq); 6290 6291 if (ret != X86EMUL_CONTINUE) { 6292 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6293 } else { 6294 ctxt->eip = ctxt->_eip; 6295 kvm_rip_write(vcpu, ctxt->eip); 6296 kvm_set_rflags(vcpu, ctxt->eflags); 6297 } 6298 } 6299 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6300 6301 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6302 { 6303 ++vcpu->stat.insn_emulation_fail; 6304 trace_kvm_emulate_insn_failed(vcpu); 6305 6306 if (emulation_type & EMULTYPE_VMWARE_GP) { 6307 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6308 return 1; 6309 } 6310 6311 if (emulation_type & EMULTYPE_SKIP) { 6312 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6313 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6314 vcpu->run->internal.ndata = 0; 6315 return 0; 6316 } 6317 6318 kvm_queue_exception(vcpu, UD_VECTOR); 6319 6320 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 6321 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6322 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6323 vcpu->run->internal.ndata = 0; 6324 return 0; 6325 } 6326 6327 return 1; 6328 } 6329 6330 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 6331 bool write_fault_to_shadow_pgtable, 6332 int emulation_type) 6333 { 6334 gpa_t gpa = cr2; 6335 kvm_pfn_t pfn; 6336 6337 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6338 return false; 6339 6340 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6341 return false; 6342 6343 if (!vcpu->arch.mmu->direct_map) { 6344 /* 6345 * Write permission should be allowed since only 6346 * write access need to be emulated. 6347 */ 6348 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 6349 6350 /* 6351 * If the mapping is invalid in guest, let cpu retry 6352 * it to generate fault. 6353 */ 6354 if (gpa == UNMAPPED_GVA) 6355 return true; 6356 } 6357 6358 /* 6359 * Do not retry the unhandleable instruction if it faults on the 6360 * readonly host memory, otherwise it will goto a infinite loop: 6361 * retry instruction -> write #PF -> emulation fail -> retry 6362 * instruction -> ... 6363 */ 6364 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6365 6366 /* 6367 * If the instruction failed on the error pfn, it can not be fixed, 6368 * report the error to userspace. 6369 */ 6370 if (is_error_noslot_pfn(pfn)) 6371 return false; 6372 6373 kvm_release_pfn_clean(pfn); 6374 6375 /* The instructions are well-emulated on direct mmu. */ 6376 if (vcpu->arch.mmu->direct_map) { 6377 unsigned int indirect_shadow_pages; 6378 6379 spin_lock(&vcpu->kvm->mmu_lock); 6380 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6381 spin_unlock(&vcpu->kvm->mmu_lock); 6382 6383 if (indirect_shadow_pages) 6384 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6385 6386 return true; 6387 } 6388 6389 /* 6390 * if emulation was due to access to shadowed page table 6391 * and it failed try to unshadow page and re-enter the 6392 * guest to let CPU execute the instruction. 6393 */ 6394 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6395 6396 /* 6397 * If the access faults on its page table, it can not 6398 * be fixed by unprotecting shadow page and it should 6399 * be reported to userspace. 6400 */ 6401 return !write_fault_to_shadow_pgtable; 6402 } 6403 6404 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6405 unsigned long cr2, int emulation_type) 6406 { 6407 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6408 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 6409 6410 last_retry_eip = vcpu->arch.last_retry_eip; 6411 last_retry_addr = vcpu->arch.last_retry_addr; 6412 6413 /* 6414 * If the emulation is caused by #PF and it is non-page_table 6415 * writing instruction, it means the VM-EXIT is caused by shadow 6416 * page protected, we can zap the shadow page and retry this 6417 * instruction directly. 6418 * 6419 * Note: if the guest uses a non-page-table modifying instruction 6420 * on the PDE that points to the instruction, then we will unmap 6421 * the instruction and go to an infinite loop. So, we cache the 6422 * last retried eip and the last fault address, if we meet the eip 6423 * and the address again, we can break out of the potential infinite 6424 * loop. 6425 */ 6426 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6427 6428 if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) 6429 return false; 6430 6431 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 6432 return false; 6433 6434 if (x86_page_table_writing_insn(ctxt)) 6435 return false; 6436 6437 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 6438 return false; 6439 6440 vcpu->arch.last_retry_eip = ctxt->eip; 6441 vcpu->arch.last_retry_addr = cr2; 6442 6443 if (!vcpu->arch.mmu->direct_map) 6444 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 6445 6446 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6447 6448 return true; 6449 } 6450 6451 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6452 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6453 6454 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6455 { 6456 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6457 /* This is a good place to trace that we are exiting SMM. */ 6458 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6459 6460 /* Process a latched INIT or SMI, if any. */ 6461 kvm_make_request(KVM_REQ_EVENT, vcpu); 6462 } 6463 6464 kvm_mmu_reset_context(vcpu); 6465 } 6466 6467 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6468 unsigned long *db) 6469 { 6470 u32 dr6 = 0; 6471 int i; 6472 u32 enable, rwlen; 6473 6474 enable = dr7; 6475 rwlen = dr7 >> 16; 6476 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6477 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6478 dr6 |= (1 << i); 6479 return dr6; 6480 } 6481 6482 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6483 { 6484 struct kvm_run *kvm_run = vcpu->run; 6485 6486 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6487 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6488 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 6489 kvm_run->debug.arch.exception = DB_VECTOR; 6490 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6491 return 0; 6492 } 6493 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6494 return 1; 6495 } 6496 6497 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6498 { 6499 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6500 int r; 6501 6502 r = kvm_x86_ops->skip_emulated_instruction(vcpu); 6503 if (unlikely(!r)) 6504 return 0; 6505 6506 /* 6507 * rflags is the old, "raw" value of the flags. The new value has 6508 * not been saved yet. 6509 * 6510 * This is correct even for TF set by the guest, because "the 6511 * processor will not generate this exception after the instruction 6512 * that sets the TF flag". 6513 */ 6514 if (unlikely(rflags & X86_EFLAGS_TF)) 6515 r = kvm_vcpu_do_singlestep(vcpu); 6516 return r; 6517 } 6518 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6519 6520 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6521 { 6522 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6523 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6524 struct kvm_run *kvm_run = vcpu->run; 6525 unsigned long eip = kvm_get_linear_rip(vcpu); 6526 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6527 vcpu->arch.guest_debug_dr7, 6528 vcpu->arch.eff_db); 6529 6530 if (dr6 != 0) { 6531 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6532 kvm_run->debug.arch.pc = eip; 6533 kvm_run->debug.arch.exception = DB_VECTOR; 6534 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6535 *r = 0; 6536 return true; 6537 } 6538 } 6539 6540 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6541 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6542 unsigned long eip = kvm_get_linear_rip(vcpu); 6543 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6544 vcpu->arch.dr7, 6545 vcpu->arch.db); 6546 6547 if (dr6 != 0) { 6548 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 6549 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6550 kvm_queue_exception(vcpu, DB_VECTOR); 6551 *r = 1; 6552 return true; 6553 } 6554 } 6555 6556 return false; 6557 } 6558 6559 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6560 { 6561 switch (ctxt->opcode_len) { 6562 case 1: 6563 switch (ctxt->b) { 6564 case 0xe4: /* IN */ 6565 case 0xe5: 6566 case 0xec: 6567 case 0xed: 6568 case 0xe6: /* OUT */ 6569 case 0xe7: 6570 case 0xee: 6571 case 0xef: 6572 case 0x6c: /* INS */ 6573 case 0x6d: 6574 case 0x6e: /* OUTS */ 6575 case 0x6f: 6576 return true; 6577 } 6578 break; 6579 case 2: 6580 switch (ctxt->b) { 6581 case 0x33: /* RDPMC */ 6582 return true; 6583 } 6584 break; 6585 } 6586 6587 return false; 6588 } 6589 6590 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 6591 unsigned long cr2, 6592 int emulation_type, 6593 void *insn, 6594 int insn_len) 6595 { 6596 int r; 6597 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6598 bool writeback = true; 6599 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6600 6601 vcpu->arch.l1tf_flush_l1d = true; 6602 6603 /* 6604 * Clear write_fault_to_shadow_pgtable here to ensure it is 6605 * never reused. 6606 */ 6607 vcpu->arch.write_fault_to_shadow_pgtable = false; 6608 kvm_clear_exception_queue(vcpu); 6609 6610 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6611 init_emulate_ctxt(vcpu); 6612 6613 /* 6614 * We will reenter on the same instruction since 6615 * we do not set complete_userspace_io. This does not 6616 * handle watchpoints yet, those would be handled in 6617 * the emulate_ops. 6618 */ 6619 if (!(emulation_type & EMULTYPE_SKIP) && 6620 kvm_vcpu_check_breakpoint(vcpu, &r)) 6621 return r; 6622 6623 ctxt->interruptibility = 0; 6624 ctxt->have_exception = false; 6625 ctxt->exception.vector = -1; 6626 ctxt->perm_ok = false; 6627 6628 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6629 6630 r = x86_decode_insn(ctxt, insn, insn_len); 6631 6632 trace_kvm_emulate_insn_start(vcpu); 6633 ++vcpu->stat.insn_emulation; 6634 if (r != EMULATION_OK) { 6635 if ((emulation_type & EMULTYPE_TRAP_UD) || 6636 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6637 kvm_queue_exception(vcpu, UD_VECTOR); 6638 return 1; 6639 } 6640 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6641 emulation_type)) 6642 return 1; 6643 if (ctxt->have_exception) { 6644 /* 6645 * #UD should result in just EMULATION_FAILED, and trap-like 6646 * exception should not be encountered during decode. 6647 */ 6648 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6649 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6650 inject_emulated_exception(vcpu); 6651 return 1; 6652 } 6653 return handle_emulation_failure(vcpu, emulation_type); 6654 } 6655 } 6656 6657 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6658 !is_vmware_backdoor_opcode(ctxt)) { 6659 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6660 return 1; 6661 } 6662 6663 /* 6664 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6665 * for kvm_skip_emulated_instruction(). The caller is responsible for 6666 * updating interruptibility state and injecting single-step #DBs. 6667 */ 6668 if (emulation_type & EMULTYPE_SKIP) { 6669 kvm_rip_write(vcpu, ctxt->_eip); 6670 if (ctxt->eflags & X86_EFLAGS_RF) 6671 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6672 return 1; 6673 } 6674 6675 if (retry_instruction(ctxt, cr2, emulation_type)) 6676 return 1; 6677 6678 /* this is needed for vmware backdoor interface to work since it 6679 changes registers values during IO operation */ 6680 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6681 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6682 emulator_invalidate_register_cache(ctxt); 6683 } 6684 6685 restart: 6686 /* Save the faulting GPA (cr2) in the address field */ 6687 ctxt->exception.address = cr2; 6688 6689 r = x86_emulate_insn(ctxt); 6690 6691 if (r == EMULATION_INTERCEPTED) 6692 return 1; 6693 6694 if (r == EMULATION_FAILED) { 6695 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 6696 emulation_type)) 6697 return 1; 6698 6699 return handle_emulation_failure(vcpu, emulation_type); 6700 } 6701 6702 if (ctxt->have_exception) { 6703 r = 1; 6704 if (inject_emulated_exception(vcpu)) 6705 return r; 6706 } else if (vcpu->arch.pio.count) { 6707 if (!vcpu->arch.pio.in) { 6708 /* FIXME: return into emulator if single-stepping. */ 6709 vcpu->arch.pio.count = 0; 6710 } else { 6711 writeback = false; 6712 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6713 } 6714 r = 0; 6715 } else if (vcpu->mmio_needed) { 6716 ++vcpu->stat.mmio_exits; 6717 6718 if (!vcpu->mmio_is_write) 6719 writeback = false; 6720 r = 0; 6721 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6722 } else if (r == EMULATION_RESTART) 6723 goto restart; 6724 else 6725 r = 1; 6726 6727 if (writeback) { 6728 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 6729 toggle_interruptibility(vcpu, ctxt->interruptibility); 6730 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6731 if (!ctxt->have_exception || 6732 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 6733 kvm_rip_write(vcpu, ctxt->eip); 6734 if (r && ctxt->tf) 6735 r = kvm_vcpu_do_singlestep(vcpu); 6736 __kvm_set_rflags(vcpu, ctxt->eflags); 6737 } 6738 6739 /* 6740 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6741 * do nothing, and it will be requested again as soon as 6742 * the shadow expires. But we still need to check here, 6743 * because POPF has no interrupt shadow. 6744 */ 6745 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6746 kvm_make_request(KVM_REQ_EVENT, vcpu); 6747 } else 6748 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6749 6750 return r; 6751 } 6752 6753 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 6754 { 6755 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 6756 } 6757 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 6758 6759 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 6760 void *insn, int insn_len) 6761 { 6762 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 6763 } 6764 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 6765 6766 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 6767 { 6768 vcpu->arch.pio.count = 0; 6769 return 1; 6770 } 6771 6772 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 6773 { 6774 vcpu->arch.pio.count = 0; 6775 6776 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 6777 return 1; 6778 6779 return kvm_skip_emulated_instruction(vcpu); 6780 } 6781 6782 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6783 unsigned short port) 6784 { 6785 unsigned long val = kvm_rax_read(vcpu); 6786 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 6787 size, port, &val, 1); 6788 if (ret) 6789 return ret; 6790 6791 /* 6792 * Workaround userspace that relies on old KVM behavior of %rip being 6793 * incremented prior to exiting to userspace to handle "OUT 0x7e". 6794 */ 6795 if (port == 0x7e && 6796 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 6797 vcpu->arch.complete_userspace_io = 6798 complete_fast_pio_out_port_0x7e; 6799 kvm_skip_emulated_instruction(vcpu); 6800 } else { 6801 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6802 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 6803 } 6804 return 0; 6805 } 6806 6807 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 6808 { 6809 unsigned long val; 6810 6811 /* We should only ever be called with arch.pio.count equal to 1 */ 6812 BUG_ON(vcpu->arch.pio.count != 1); 6813 6814 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 6815 vcpu->arch.pio.count = 0; 6816 return 1; 6817 } 6818 6819 /* For size less than 4 we merge, else we zero extend */ 6820 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 6821 6822 /* 6823 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 6824 * the copy and tracing 6825 */ 6826 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 6827 vcpu->arch.pio.port, &val, 1); 6828 kvm_rax_write(vcpu, val); 6829 6830 return kvm_skip_emulated_instruction(vcpu); 6831 } 6832 6833 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 6834 unsigned short port) 6835 { 6836 unsigned long val; 6837 int ret; 6838 6839 /* For size less than 4 we merge, else we zero extend */ 6840 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 6841 6842 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 6843 &val, 1); 6844 if (ret) { 6845 kvm_rax_write(vcpu, val); 6846 return ret; 6847 } 6848 6849 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6850 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 6851 6852 return 0; 6853 } 6854 6855 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 6856 { 6857 int ret; 6858 6859 if (in) 6860 ret = kvm_fast_pio_in(vcpu, size, port); 6861 else 6862 ret = kvm_fast_pio_out(vcpu, size, port); 6863 return ret && kvm_skip_emulated_instruction(vcpu); 6864 } 6865 EXPORT_SYMBOL_GPL(kvm_fast_pio); 6866 6867 static int kvmclock_cpu_down_prep(unsigned int cpu) 6868 { 6869 __this_cpu_write(cpu_tsc_khz, 0); 6870 return 0; 6871 } 6872 6873 static void tsc_khz_changed(void *data) 6874 { 6875 struct cpufreq_freqs *freq = data; 6876 unsigned long khz = 0; 6877 6878 if (data) 6879 khz = freq->new; 6880 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6881 khz = cpufreq_quick_get(raw_smp_processor_id()); 6882 if (!khz) 6883 khz = tsc_khz; 6884 __this_cpu_write(cpu_tsc_khz, khz); 6885 } 6886 6887 #ifdef CONFIG_X86_64 6888 static void kvm_hyperv_tsc_notifier(void) 6889 { 6890 struct kvm *kvm; 6891 struct kvm_vcpu *vcpu; 6892 int cpu; 6893 6894 mutex_lock(&kvm_lock); 6895 list_for_each_entry(kvm, &vm_list, vm_list) 6896 kvm_make_mclock_inprogress_request(kvm); 6897 6898 hyperv_stop_tsc_emulation(); 6899 6900 /* TSC frequency always matches when on Hyper-V */ 6901 for_each_present_cpu(cpu) 6902 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 6903 kvm_max_guest_tsc_khz = tsc_khz; 6904 6905 list_for_each_entry(kvm, &vm_list, vm_list) { 6906 struct kvm_arch *ka = &kvm->arch; 6907 6908 spin_lock(&ka->pvclock_gtod_sync_lock); 6909 6910 pvclock_update_vm_gtod_copy(kvm); 6911 6912 kvm_for_each_vcpu(cpu, vcpu, kvm) 6913 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6914 6915 kvm_for_each_vcpu(cpu, vcpu, kvm) 6916 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 6917 6918 spin_unlock(&ka->pvclock_gtod_sync_lock); 6919 } 6920 mutex_unlock(&kvm_lock); 6921 } 6922 #endif 6923 6924 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 6925 { 6926 struct kvm *kvm; 6927 struct kvm_vcpu *vcpu; 6928 int i, send_ipi = 0; 6929 6930 /* 6931 * We allow guests to temporarily run on slowing clocks, 6932 * provided we notify them after, or to run on accelerating 6933 * clocks, provided we notify them before. Thus time never 6934 * goes backwards. 6935 * 6936 * However, we have a problem. We can't atomically update 6937 * the frequency of a given CPU from this function; it is 6938 * merely a notifier, which can be called from any CPU. 6939 * Changing the TSC frequency at arbitrary points in time 6940 * requires a recomputation of local variables related to 6941 * the TSC for each VCPU. We must flag these local variables 6942 * to be updated and be sure the update takes place with the 6943 * new frequency before any guests proceed. 6944 * 6945 * Unfortunately, the combination of hotplug CPU and frequency 6946 * change creates an intractable locking scenario; the order 6947 * of when these callouts happen is undefined with respect to 6948 * CPU hotplug, and they can race with each other. As such, 6949 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 6950 * undefined; you can actually have a CPU frequency change take 6951 * place in between the computation of X and the setting of the 6952 * variable. To protect against this problem, all updates of 6953 * the per_cpu tsc_khz variable are done in an interrupt 6954 * protected IPI, and all callers wishing to update the value 6955 * must wait for a synchronous IPI to complete (which is trivial 6956 * if the caller is on the CPU already). This establishes the 6957 * necessary total order on variable updates. 6958 * 6959 * Note that because a guest time update may take place 6960 * anytime after the setting of the VCPU's request bit, the 6961 * correct TSC value must be set before the request. However, 6962 * to ensure the update actually makes it to any guest which 6963 * starts running in hardware virtualization between the set 6964 * and the acquisition of the spinlock, we must also ping the 6965 * CPU after setting the request bit. 6966 * 6967 */ 6968 6969 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 6970 6971 mutex_lock(&kvm_lock); 6972 list_for_each_entry(kvm, &vm_list, vm_list) { 6973 kvm_for_each_vcpu(i, vcpu, kvm) { 6974 if (vcpu->cpu != cpu) 6975 continue; 6976 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6977 if (vcpu->cpu != raw_smp_processor_id()) 6978 send_ipi = 1; 6979 } 6980 } 6981 mutex_unlock(&kvm_lock); 6982 6983 if (freq->old < freq->new && send_ipi) { 6984 /* 6985 * We upscale the frequency. Must make the guest 6986 * doesn't see old kvmclock values while running with 6987 * the new frequency, otherwise we risk the guest sees 6988 * time go backwards. 6989 * 6990 * In case we update the frequency for another cpu 6991 * (which might be in guest context) send an interrupt 6992 * to kick the cpu out of guest context. Next time 6993 * guest context is entered kvmclock will be updated, 6994 * so the guest will not see stale values. 6995 */ 6996 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 6997 } 6998 } 6999 7000 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7001 void *data) 7002 { 7003 struct cpufreq_freqs *freq = data; 7004 int cpu; 7005 7006 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7007 return 0; 7008 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7009 return 0; 7010 7011 for_each_cpu(cpu, freq->policy->cpus) 7012 __kvmclock_cpufreq_notifier(freq, cpu); 7013 7014 return 0; 7015 } 7016 7017 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7018 .notifier_call = kvmclock_cpufreq_notifier 7019 }; 7020 7021 static int kvmclock_cpu_online(unsigned int cpu) 7022 { 7023 tsc_khz_changed(NULL); 7024 return 0; 7025 } 7026 7027 static void kvm_timer_init(void) 7028 { 7029 max_tsc_khz = tsc_khz; 7030 7031 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7032 #ifdef CONFIG_CPU_FREQ 7033 struct cpufreq_policy policy; 7034 int cpu; 7035 7036 memset(&policy, 0, sizeof(policy)); 7037 cpu = get_cpu(); 7038 cpufreq_get_policy(&policy, cpu); 7039 if (policy.cpuinfo.max_freq) 7040 max_tsc_khz = policy.cpuinfo.max_freq; 7041 put_cpu(); 7042 #endif 7043 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7044 CPUFREQ_TRANSITION_NOTIFIER); 7045 } 7046 7047 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7048 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7049 } 7050 7051 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7052 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7053 7054 int kvm_is_in_guest(void) 7055 { 7056 return __this_cpu_read(current_vcpu) != NULL; 7057 } 7058 7059 static int kvm_is_user_mode(void) 7060 { 7061 int user_mode = 3; 7062 7063 if (__this_cpu_read(current_vcpu)) 7064 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 7065 7066 return user_mode != 0; 7067 } 7068 7069 static unsigned long kvm_get_guest_ip(void) 7070 { 7071 unsigned long ip = 0; 7072 7073 if (__this_cpu_read(current_vcpu)) 7074 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7075 7076 return ip; 7077 } 7078 7079 static void kvm_handle_intel_pt_intr(void) 7080 { 7081 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7082 7083 kvm_make_request(KVM_REQ_PMI, vcpu); 7084 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7085 (unsigned long *)&vcpu->arch.pmu.global_status); 7086 } 7087 7088 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7089 .is_in_guest = kvm_is_in_guest, 7090 .is_user_mode = kvm_is_user_mode, 7091 .get_guest_ip = kvm_get_guest_ip, 7092 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7093 }; 7094 7095 #ifdef CONFIG_X86_64 7096 static void pvclock_gtod_update_fn(struct work_struct *work) 7097 { 7098 struct kvm *kvm; 7099 7100 struct kvm_vcpu *vcpu; 7101 int i; 7102 7103 mutex_lock(&kvm_lock); 7104 list_for_each_entry(kvm, &vm_list, vm_list) 7105 kvm_for_each_vcpu(i, vcpu, kvm) 7106 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7107 atomic_set(&kvm_guest_has_master_clock, 0); 7108 mutex_unlock(&kvm_lock); 7109 } 7110 7111 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7112 7113 /* 7114 * Notification about pvclock gtod data update. 7115 */ 7116 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7117 void *priv) 7118 { 7119 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7120 struct timekeeper *tk = priv; 7121 7122 update_pvclock_gtod(tk); 7123 7124 /* disable master clock if host does not trust, or does not 7125 * use, TSC based clocksource. 7126 */ 7127 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7128 atomic_read(&kvm_guest_has_master_clock) != 0) 7129 queue_work(system_long_wq, &pvclock_gtod_work); 7130 7131 return 0; 7132 } 7133 7134 static struct notifier_block pvclock_gtod_notifier = { 7135 .notifier_call = pvclock_gtod_notify, 7136 }; 7137 #endif 7138 7139 int kvm_arch_init(void *opaque) 7140 { 7141 int r; 7142 struct kvm_x86_ops *ops = opaque; 7143 7144 if (kvm_x86_ops) { 7145 printk(KERN_ERR "kvm: already loaded the other module\n"); 7146 r = -EEXIST; 7147 goto out; 7148 } 7149 7150 if (!ops->cpu_has_kvm_support()) { 7151 printk(KERN_ERR "kvm: no hardware support\n"); 7152 r = -EOPNOTSUPP; 7153 goto out; 7154 } 7155 if (ops->disabled_by_bios()) { 7156 printk(KERN_ERR "kvm: disabled by bios\n"); 7157 r = -EOPNOTSUPP; 7158 goto out; 7159 } 7160 7161 /* 7162 * KVM explicitly assumes that the guest has an FPU and 7163 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7164 * vCPU's FPU state as a fxregs_state struct. 7165 */ 7166 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7167 printk(KERN_ERR "kvm: inadequate fpu\n"); 7168 r = -EOPNOTSUPP; 7169 goto out; 7170 } 7171 7172 r = -ENOMEM; 7173 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7174 __alignof__(struct fpu), SLAB_ACCOUNT, 7175 NULL); 7176 if (!x86_fpu_cache) { 7177 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7178 goto out; 7179 } 7180 7181 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7182 if (!shared_msrs) { 7183 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7184 goto out_free_x86_fpu_cache; 7185 } 7186 7187 r = kvm_mmu_module_init(); 7188 if (r) 7189 goto out_free_percpu; 7190 7191 kvm_x86_ops = ops; 7192 7193 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7194 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7195 PT_PRESENT_MASK, 0, sme_me_mask); 7196 kvm_timer_init(); 7197 7198 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7199 7200 if (boot_cpu_has(X86_FEATURE_XSAVE)) 7201 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7202 7203 kvm_lapic_init(); 7204 if (pi_inject_timer == -1) 7205 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7206 #ifdef CONFIG_X86_64 7207 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7208 7209 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7210 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7211 #endif 7212 7213 return 0; 7214 7215 out_free_percpu: 7216 free_percpu(shared_msrs); 7217 out_free_x86_fpu_cache: 7218 kmem_cache_destroy(x86_fpu_cache); 7219 out: 7220 return r; 7221 } 7222 7223 void kvm_arch_exit(void) 7224 { 7225 #ifdef CONFIG_X86_64 7226 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7227 clear_hv_tscchange_cb(); 7228 #endif 7229 kvm_lapic_exit(); 7230 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7231 7232 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7233 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7234 CPUFREQ_TRANSITION_NOTIFIER); 7235 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7236 #ifdef CONFIG_X86_64 7237 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7238 #endif 7239 kvm_x86_ops = NULL; 7240 kvm_mmu_module_exit(); 7241 free_percpu(shared_msrs); 7242 kmem_cache_destroy(x86_fpu_cache); 7243 } 7244 7245 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7246 { 7247 ++vcpu->stat.halt_exits; 7248 if (lapic_in_kernel(vcpu)) { 7249 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7250 return 1; 7251 } else { 7252 vcpu->run->exit_reason = KVM_EXIT_HLT; 7253 return 0; 7254 } 7255 } 7256 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7257 7258 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7259 { 7260 int ret = kvm_skip_emulated_instruction(vcpu); 7261 /* 7262 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7263 * KVM_EXIT_DEBUG here. 7264 */ 7265 return kvm_vcpu_halt(vcpu) && ret; 7266 } 7267 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7268 7269 #ifdef CONFIG_X86_64 7270 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7271 unsigned long clock_type) 7272 { 7273 struct kvm_clock_pairing clock_pairing; 7274 struct timespec64 ts; 7275 u64 cycle; 7276 int ret; 7277 7278 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7279 return -KVM_EOPNOTSUPP; 7280 7281 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7282 return -KVM_EOPNOTSUPP; 7283 7284 clock_pairing.sec = ts.tv_sec; 7285 clock_pairing.nsec = ts.tv_nsec; 7286 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7287 clock_pairing.flags = 0; 7288 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7289 7290 ret = 0; 7291 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7292 sizeof(struct kvm_clock_pairing))) 7293 ret = -KVM_EFAULT; 7294 7295 return ret; 7296 } 7297 #endif 7298 7299 /* 7300 * kvm_pv_kick_cpu_op: Kick a vcpu. 7301 * 7302 * @apicid - apicid of vcpu to be kicked. 7303 */ 7304 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7305 { 7306 struct kvm_lapic_irq lapic_irq; 7307 7308 lapic_irq.shorthand = 0; 7309 lapic_irq.dest_mode = 0; 7310 lapic_irq.level = 0; 7311 lapic_irq.dest_id = apicid; 7312 lapic_irq.msi_redir_hint = false; 7313 7314 lapic_irq.delivery_mode = APIC_DM_REMRD; 7315 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7316 } 7317 7318 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 7319 { 7320 if (!lapic_in_kernel(vcpu)) { 7321 WARN_ON_ONCE(vcpu->arch.apicv_active); 7322 return; 7323 } 7324 if (!vcpu->arch.apicv_active) 7325 return; 7326 7327 vcpu->arch.apicv_active = false; 7328 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 7329 } 7330 7331 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7332 { 7333 struct kvm_vcpu *target = NULL; 7334 struct kvm_apic_map *map; 7335 7336 rcu_read_lock(); 7337 map = rcu_dereference(kvm->arch.apic_map); 7338 7339 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7340 target = map->phys_map[dest_id]->vcpu; 7341 7342 rcu_read_unlock(); 7343 7344 if (target && READ_ONCE(target->ready)) 7345 kvm_vcpu_yield_to(target); 7346 } 7347 7348 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7349 { 7350 unsigned long nr, a0, a1, a2, a3, ret; 7351 int op_64_bit; 7352 7353 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7354 return kvm_hv_hypercall(vcpu); 7355 7356 nr = kvm_rax_read(vcpu); 7357 a0 = kvm_rbx_read(vcpu); 7358 a1 = kvm_rcx_read(vcpu); 7359 a2 = kvm_rdx_read(vcpu); 7360 a3 = kvm_rsi_read(vcpu); 7361 7362 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7363 7364 op_64_bit = is_64_bit_mode(vcpu); 7365 if (!op_64_bit) { 7366 nr &= 0xFFFFFFFF; 7367 a0 &= 0xFFFFFFFF; 7368 a1 &= 0xFFFFFFFF; 7369 a2 &= 0xFFFFFFFF; 7370 a3 &= 0xFFFFFFFF; 7371 } 7372 7373 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 7374 ret = -KVM_EPERM; 7375 goto out; 7376 } 7377 7378 switch (nr) { 7379 case KVM_HC_VAPIC_POLL_IRQ: 7380 ret = 0; 7381 break; 7382 case KVM_HC_KICK_CPU: 7383 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7384 kvm_sched_yield(vcpu->kvm, a1); 7385 ret = 0; 7386 break; 7387 #ifdef CONFIG_X86_64 7388 case KVM_HC_CLOCK_PAIRING: 7389 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7390 break; 7391 #endif 7392 case KVM_HC_SEND_IPI: 7393 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7394 break; 7395 case KVM_HC_SCHED_YIELD: 7396 kvm_sched_yield(vcpu->kvm, a0); 7397 ret = 0; 7398 break; 7399 default: 7400 ret = -KVM_ENOSYS; 7401 break; 7402 } 7403 out: 7404 if (!op_64_bit) 7405 ret = (u32)ret; 7406 kvm_rax_write(vcpu, ret); 7407 7408 ++vcpu->stat.hypercalls; 7409 return kvm_skip_emulated_instruction(vcpu); 7410 } 7411 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7412 7413 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7414 { 7415 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7416 char instruction[3]; 7417 unsigned long rip = kvm_rip_read(vcpu); 7418 7419 kvm_x86_ops->patch_hypercall(vcpu, instruction); 7420 7421 return emulator_write_emulated(ctxt, rip, instruction, 3, 7422 &ctxt->exception); 7423 } 7424 7425 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7426 { 7427 return vcpu->run->request_interrupt_window && 7428 likely(!pic_in_kernel(vcpu->kvm)); 7429 } 7430 7431 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7432 { 7433 struct kvm_run *kvm_run = vcpu->run; 7434 7435 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7436 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7437 kvm_run->cr8 = kvm_get_cr8(vcpu); 7438 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7439 kvm_run->ready_for_interrupt_injection = 7440 pic_in_kernel(vcpu->kvm) || 7441 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7442 } 7443 7444 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7445 { 7446 int max_irr, tpr; 7447 7448 if (!kvm_x86_ops->update_cr8_intercept) 7449 return; 7450 7451 if (!lapic_in_kernel(vcpu)) 7452 return; 7453 7454 if (vcpu->arch.apicv_active) 7455 return; 7456 7457 if (!vcpu->arch.apic->vapic_addr) 7458 max_irr = kvm_lapic_find_highest_irr(vcpu); 7459 else 7460 max_irr = -1; 7461 7462 if (max_irr != -1) 7463 max_irr >>= 4; 7464 7465 tpr = kvm_lapic_get_cr8(vcpu); 7466 7467 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 7468 } 7469 7470 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 7471 { 7472 int r; 7473 7474 /* try to reinject previous events if any */ 7475 7476 if (vcpu->arch.exception.injected) 7477 kvm_x86_ops->queue_exception(vcpu); 7478 /* 7479 * Do not inject an NMI or interrupt if there is a pending 7480 * exception. Exceptions and interrupts are recognized at 7481 * instruction boundaries, i.e. the start of an instruction. 7482 * Trap-like exceptions, e.g. #DB, have higher priority than 7483 * NMIs and interrupts, i.e. traps are recognized before an 7484 * NMI/interrupt that's pending on the same instruction. 7485 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7486 * priority, but are only generated (pended) during instruction 7487 * execution, i.e. a pending fault-like exception means the 7488 * fault occurred on the *previous* instruction and must be 7489 * serviced prior to recognizing any new events in order to 7490 * fully complete the previous instruction. 7491 */ 7492 else if (!vcpu->arch.exception.pending) { 7493 if (vcpu->arch.nmi_injected) 7494 kvm_x86_ops->set_nmi(vcpu); 7495 else if (vcpu->arch.interrupt.injected) 7496 kvm_x86_ops->set_irq(vcpu); 7497 } 7498 7499 /* 7500 * Call check_nested_events() even if we reinjected a previous event 7501 * in order for caller to determine if it should require immediate-exit 7502 * from L2 to L1 due to pending L1 events which require exit 7503 * from L2 to L1. 7504 */ 7505 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7506 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7507 if (r != 0) 7508 return r; 7509 } 7510 7511 /* try to inject new event if pending */ 7512 if (vcpu->arch.exception.pending) { 7513 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7514 vcpu->arch.exception.has_error_code, 7515 vcpu->arch.exception.error_code); 7516 7517 WARN_ON_ONCE(vcpu->arch.exception.injected); 7518 vcpu->arch.exception.pending = false; 7519 vcpu->arch.exception.injected = true; 7520 7521 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7522 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7523 X86_EFLAGS_RF); 7524 7525 if (vcpu->arch.exception.nr == DB_VECTOR) { 7526 /* 7527 * This code assumes that nSVM doesn't use 7528 * check_nested_events(). If it does, the 7529 * DR6/DR7 changes should happen before L1 7530 * gets a #VMEXIT for an intercepted #DB in 7531 * L2. (Under VMX, on the other hand, the 7532 * DR6/DR7 changes should not happen in the 7533 * event of a VM-exit to L1 for an intercepted 7534 * #DB in L2.) 7535 */ 7536 kvm_deliver_exception_payload(vcpu); 7537 if (vcpu->arch.dr7 & DR7_GD) { 7538 vcpu->arch.dr7 &= ~DR7_GD; 7539 kvm_update_dr7(vcpu); 7540 } 7541 } 7542 7543 kvm_x86_ops->queue_exception(vcpu); 7544 } 7545 7546 /* Don't consider new event if we re-injected an event */ 7547 if (kvm_event_needs_reinjection(vcpu)) 7548 return 0; 7549 7550 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 7551 kvm_x86_ops->smi_allowed(vcpu)) { 7552 vcpu->arch.smi_pending = false; 7553 ++vcpu->arch.smi_count; 7554 enter_smm(vcpu); 7555 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 7556 --vcpu->arch.nmi_pending; 7557 vcpu->arch.nmi_injected = true; 7558 kvm_x86_ops->set_nmi(vcpu); 7559 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 7560 /* 7561 * Because interrupts can be injected asynchronously, we are 7562 * calling check_nested_events again here to avoid a race condition. 7563 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 7564 * proposal and current concerns. Perhaps we should be setting 7565 * KVM_REQ_EVENT only on certain events and not unconditionally? 7566 */ 7567 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 7568 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 7569 if (r != 0) 7570 return r; 7571 } 7572 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 7573 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 7574 false); 7575 kvm_x86_ops->set_irq(vcpu); 7576 } 7577 } 7578 7579 return 0; 7580 } 7581 7582 static void process_nmi(struct kvm_vcpu *vcpu) 7583 { 7584 unsigned limit = 2; 7585 7586 /* 7587 * x86 is limited to one NMI running, and one NMI pending after it. 7588 * If an NMI is already in progress, limit further NMIs to just one. 7589 * Otherwise, allow two (and we'll inject the first one immediately). 7590 */ 7591 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7592 limit = 1; 7593 7594 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7595 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7596 kvm_make_request(KVM_REQ_EVENT, vcpu); 7597 } 7598 7599 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7600 { 7601 u32 flags = 0; 7602 flags |= seg->g << 23; 7603 flags |= seg->db << 22; 7604 flags |= seg->l << 21; 7605 flags |= seg->avl << 20; 7606 flags |= seg->present << 15; 7607 flags |= seg->dpl << 13; 7608 flags |= seg->s << 12; 7609 flags |= seg->type << 8; 7610 return flags; 7611 } 7612 7613 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7614 { 7615 struct kvm_segment seg; 7616 int offset; 7617 7618 kvm_get_segment(vcpu, &seg, n); 7619 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7620 7621 if (n < 3) 7622 offset = 0x7f84 + n * 12; 7623 else 7624 offset = 0x7f2c + (n - 3) * 12; 7625 7626 put_smstate(u32, buf, offset + 8, seg.base); 7627 put_smstate(u32, buf, offset + 4, seg.limit); 7628 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7629 } 7630 7631 #ifdef CONFIG_X86_64 7632 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7633 { 7634 struct kvm_segment seg; 7635 int offset; 7636 u16 flags; 7637 7638 kvm_get_segment(vcpu, &seg, n); 7639 offset = 0x7e00 + n * 16; 7640 7641 flags = enter_smm_get_segment_flags(&seg) >> 8; 7642 put_smstate(u16, buf, offset, seg.selector); 7643 put_smstate(u16, buf, offset + 2, flags); 7644 put_smstate(u32, buf, offset + 4, seg.limit); 7645 put_smstate(u64, buf, offset + 8, seg.base); 7646 } 7647 #endif 7648 7649 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7650 { 7651 struct desc_ptr dt; 7652 struct kvm_segment seg; 7653 unsigned long val; 7654 int i; 7655 7656 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7657 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7658 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7659 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7660 7661 for (i = 0; i < 8; i++) 7662 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7663 7664 kvm_get_dr(vcpu, 6, &val); 7665 put_smstate(u32, buf, 0x7fcc, (u32)val); 7666 kvm_get_dr(vcpu, 7, &val); 7667 put_smstate(u32, buf, 0x7fc8, (u32)val); 7668 7669 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7670 put_smstate(u32, buf, 0x7fc4, seg.selector); 7671 put_smstate(u32, buf, 0x7f64, seg.base); 7672 put_smstate(u32, buf, 0x7f60, seg.limit); 7673 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7674 7675 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7676 put_smstate(u32, buf, 0x7fc0, seg.selector); 7677 put_smstate(u32, buf, 0x7f80, seg.base); 7678 put_smstate(u32, buf, 0x7f7c, seg.limit); 7679 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7680 7681 kvm_x86_ops->get_gdt(vcpu, &dt); 7682 put_smstate(u32, buf, 0x7f74, dt.address); 7683 put_smstate(u32, buf, 0x7f70, dt.size); 7684 7685 kvm_x86_ops->get_idt(vcpu, &dt); 7686 put_smstate(u32, buf, 0x7f58, dt.address); 7687 put_smstate(u32, buf, 0x7f54, dt.size); 7688 7689 for (i = 0; i < 6; i++) 7690 enter_smm_save_seg_32(vcpu, buf, i); 7691 7692 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7693 7694 /* revision id */ 7695 put_smstate(u32, buf, 0x7efc, 0x00020000); 7696 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7697 } 7698 7699 #ifdef CONFIG_X86_64 7700 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7701 { 7702 struct desc_ptr dt; 7703 struct kvm_segment seg; 7704 unsigned long val; 7705 int i; 7706 7707 for (i = 0; i < 16; i++) 7708 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7709 7710 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7711 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7712 7713 kvm_get_dr(vcpu, 6, &val); 7714 put_smstate(u64, buf, 0x7f68, val); 7715 kvm_get_dr(vcpu, 7, &val); 7716 put_smstate(u64, buf, 0x7f60, val); 7717 7718 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7719 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7720 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7721 7722 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7723 7724 /* revision id */ 7725 put_smstate(u32, buf, 0x7efc, 0x00020064); 7726 7727 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7728 7729 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7730 put_smstate(u16, buf, 0x7e90, seg.selector); 7731 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7732 put_smstate(u32, buf, 0x7e94, seg.limit); 7733 put_smstate(u64, buf, 0x7e98, seg.base); 7734 7735 kvm_x86_ops->get_idt(vcpu, &dt); 7736 put_smstate(u32, buf, 0x7e84, dt.size); 7737 put_smstate(u64, buf, 0x7e88, dt.address); 7738 7739 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7740 put_smstate(u16, buf, 0x7e70, seg.selector); 7741 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7742 put_smstate(u32, buf, 0x7e74, seg.limit); 7743 put_smstate(u64, buf, 0x7e78, seg.base); 7744 7745 kvm_x86_ops->get_gdt(vcpu, &dt); 7746 put_smstate(u32, buf, 0x7e64, dt.size); 7747 put_smstate(u64, buf, 0x7e68, dt.address); 7748 7749 for (i = 0; i < 6; i++) 7750 enter_smm_save_seg_64(vcpu, buf, i); 7751 } 7752 #endif 7753 7754 static void enter_smm(struct kvm_vcpu *vcpu) 7755 { 7756 struct kvm_segment cs, ds; 7757 struct desc_ptr dt; 7758 char buf[512]; 7759 u32 cr0; 7760 7761 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7762 memset(buf, 0, 512); 7763 #ifdef CONFIG_X86_64 7764 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7765 enter_smm_save_state_64(vcpu, buf); 7766 else 7767 #endif 7768 enter_smm_save_state_32(vcpu, buf); 7769 7770 /* 7771 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7772 * vCPU state (e.g. leave guest mode) after we've saved the state into 7773 * the SMM state-save area. 7774 */ 7775 kvm_x86_ops->pre_enter_smm(vcpu, buf); 7776 7777 vcpu->arch.hflags |= HF_SMM_MASK; 7778 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7779 7780 if (kvm_x86_ops->get_nmi_mask(vcpu)) 7781 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7782 else 7783 kvm_x86_ops->set_nmi_mask(vcpu, true); 7784 7785 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7786 kvm_rip_write(vcpu, 0x8000); 7787 7788 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7789 kvm_x86_ops->set_cr0(vcpu, cr0); 7790 vcpu->arch.cr0 = cr0; 7791 7792 kvm_x86_ops->set_cr4(vcpu, 0); 7793 7794 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 7795 dt.address = dt.size = 0; 7796 kvm_x86_ops->set_idt(vcpu, &dt); 7797 7798 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 7799 7800 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 7801 cs.base = vcpu->arch.smbase; 7802 7803 ds.selector = 0; 7804 ds.base = 0; 7805 7806 cs.limit = ds.limit = 0xffffffff; 7807 cs.type = ds.type = 0x3; 7808 cs.dpl = ds.dpl = 0; 7809 cs.db = ds.db = 0; 7810 cs.s = ds.s = 1; 7811 cs.l = ds.l = 0; 7812 cs.g = ds.g = 1; 7813 cs.avl = ds.avl = 0; 7814 cs.present = ds.present = 1; 7815 cs.unusable = ds.unusable = 0; 7816 cs.padding = ds.padding = 0; 7817 7818 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7819 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 7820 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 7821 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 7822 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 7823 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 7824 7825 #ifdef CONFIG_X86_64 7826 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7827 kvm_x86_ops->set_efer(vcpu, 0); 7828 #endif 7829 7830 kvm_update_cpuid(vcpu); 7831 kvm_mmu_reset_context(vcpu); 7832 } 7833 7834 static void process_smi(struct kvm_vcpu *vcpu) 7835 { 7836 vcpu->arch.smi_pending = true; 7837 kvm_make_request(KVM_REQ_EVENT, vcpu); 7838 } 7839 7840 void kvm_make_scan_ioapic_request(struct kvm *kvm) 7841 { 7842 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 7843 } 7844 7845 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 7846 { 7847 if (!kvm_apic_present(vcpu)) 7848 return; 7849 7850 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 7851 7852 if (irqchip_split(vcpu->kvm)) 7853 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 7854 else { 7855 if (vcpu->arch.apicv_active) 7856 kvm_x86_ops->sync_pir_to_irr(vcpu); 7857 if (ioapic_in_kernel(vcpu->kvm)) 7858 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 7859 } 7860 7861 if (is_guest_mode(vcpu)) 7862 vcpu->arch.load_eoi_exitmap_pending = true; 7863 else 7864 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 7865 } 7866 7867 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 7868 { 7869 u64 eoi_exit_bitmap[4]; 7870 7871 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 7872 return; 7873 7874 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 7875 vcpu_to_synic(vcpu)->vec_bitmap, 256); 7876 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 7877 } 7878 7879 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 7880 unsigned long start, unsigned long end, 7881 bool blockable) 7882 { 7883 unsigned long apic_address; 7884 7885 /* 7886 * The physical address of apic access page is stored in the VMCS. 7887 * Update it when it becomes invalid. 7888 */ 7889 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7890 if (start <= apic_address && apic_address < end) 7891 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 7892 7893 return 0; 7894 } 7895 7896 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 7897 { 7898 struct page *page = NULL; 7899 7900 if (!lapic_in_kernel(vcpu)) 7901 return; 7902 7903 if (!kvm_x86_ops->set_apic_access_page_addr) 7904 return; 7905 7906 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 7907 if (is_error_page(page)) 7908 return; 7909 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 7910 7911 /* 7912 * Do not pin apic access page in memory, the MMU notifier 7913 * will call us again if it is migrated or swapped out. 7914 */ 7915 put_page(page); 7916 } 7917 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 7918 7919 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 7920 { 7921 smp_send_reschedule(vcpu->cpu); 7922 } 7923 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 7924 7925 /* 7926 * Returns 1 to let vcpu_run() continue the guest execution loop without 7927 * exiting to the userspace. Otherwise, the value will be returned to the 7928 * userspace. 7929 */ 7930 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 7931 { 7932 int r; 7933 bool req_int_win = 7934 dm_request_for_irq_injection(vcpu) && 7935 kvm_cpu_accept_dm_intr(vcpu); 7936 7937 bool req_immediate_exit = false; 7938 7939 if (kvm_request_pending(vcpu)) { 7940 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) 7941 kvm_x86_ops->get_vmcs12_pages(vcpu); 7942 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 7943 kvm_mmu_unload(vcpu); 7944 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 7945 __kvm_migrate_timers(vcpu); 7946 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 7947 kvm_gen_update_masterclock(vcpu->kvm); 7948 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 7949 kvm_gen_kvmclock_update(vcpu); 7950 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 7951 r = kvm_guest_time_update(vcpu); 7952 if (unlikely(r)) 7953 goto out; 7954 } 7955 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 7956 kvm_mmu_sync_roots(vcpu); 7957 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu)) 7958 kvm_mmu_load_cr3(vcpu); 7959 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 7960 kvm_vcpu_flush_tlb(vcpu, true); 7961 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 7962 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 7963 r = 0; 7964 goto out; 7965 } 7966 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 7967 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 7968 vcpu->mmio_needed = 0; 7969 r = 0; 7970 goto out; 7971 } 7972 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 7973 /* Page is swapped out. Do synthetic halt */ 7974 vcpu->arch.apf.halted = true; 7975 r = 1; 7976 goto out; 7977 } 7978 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 7979 record_steal_time(vcpu); 7980 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 7981 process_smi(vcpu); 7982 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 7983 process_nmi(vcpu); 7984 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 7985 kvm_pmu_handle_event(vcpu); 7986 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 7987 kvm_pmu_deliver_pmi(vcpu); 7988 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 7989 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 7990 if (test_bit(vcpu->arch.pending_ioapic_eoi, 7991 vcpu->arch.ioapic_handled_vectors)) { 7992 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 7993 vcpu->run->eoi.vector = 7994 vcpu->arch.pending_ioapic_eoi; 7995 r = 0; 7996 goto out; 7997 } 7998 } 7999 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8000 vcpu_scan_ioapic(vcpu); 8001 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8002 vcpu_load_eoi_exitmap(vcpu); 8003 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8004 kvm_vcpu_reload_apic_access_page(vcpu); 8005 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8006 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8007 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8008 r = 0; 8009 goto out; 8010 } 8011 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8012 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8013 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8014 r = 0; 8015 goto out; 8016 } 8017 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8018 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8019 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8020 r = 0; 8021 goto out; 8022 } 8023 8024 /* 8025 * KVM_REQ_HV_STIMER has to be processed after 8026 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8027 * depend on the guest clock being up-to-date 8028 */ 8029 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8030 kvm_hv_process_stimers(vcpu); 8031 } 8032 8033 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8034 ++vcpu->stat.req_event; 8035 kvm_apic_accept_events(vcpu); 8036 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8037 r = 1; 8038 goto out; 8039 } 8040 8041 if (inject_pending_event(vcpu, req_int_win) != 0) 8042 req_immediate_exit = true; 8043 else { 8044 /* Enable SMI/NMI/IRQ window open exits if needed. 8045 * 8046 * SMIs have three cases: 8047 * 1) They can be nested, and then there is nothing to 8048 * do here because RSM will cause a vmexit anyway. 8049 * 2) There is an ISA-specific reason why SMI cannot be 8050 * injected, and the moment when this changes can be 8051 * intercepted. 8052 * 3) Or the SMI can be pending because 8053 * inject_pending_event has completed the injection 8054 * of an IRQ or NMI from the previous vmexit, and 8055 * then we request an immediate exit to inject the 8056 * SMI. 8057 */ 8058 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 8059 if (!kvm_x86_ops->enable_smi_window(vcpu)) 8060 req_immediate_exit = true; 8061 if (vcpu->arch.nmi_pending) 8062 kvm_x86_ops->enable_nmi_window(vcpu); 8063 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 8064 kvm_x86_ops->enable_irq_window(vcpu); 8065 WARN_ON(vcpu->arch.exception.pending); 8066 } 8067 8068 if (kvm_lapic_enabled(vcpu)) { 8069 update_cr8_intercept(vcpu); 8070 kvm_lapic_sync_to_vapic(vcpu); 8071 } 8072 } 8073 8074 r = kvm_mmu_reload(vcpu); 8075 if (unlikely(r)) { 8076 goto cancel_injection; 8077 } 8078 8079 preempt_disable(); 8080 8081 kvm_x86_ops->prepare_guest_switch(vcpu); 8082 8083 /* 8084 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8085 * IPI are then delayed after guest entry, which ensures that they 8086 * result in virtual interrupt delivery. 8087 */ 8088 local_irq_disable(); 8089 vcpu->mode = IN_GUEST_MODE; 8090 8091 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8092 8093 /* 8094 * 1) We should set ->mode before checking ->requests. Please see 8095 * the comment in kvm_vcpu_exiting_guest_mode(). 8096 * 8097 * 2) For APICv, we should set ->mode before checking PID.ON. This 8098 * pairs with the memory barrier implicit in pi_test_and_set_on 8099 * (see vmx_deliver_posted_interrupt). 8100 * 8101 * 3) This also orders the write to mode from any reads to the page 8102 * tables done while the VCPU is running. Please see the comment 8103 * in kvm_flush_remote_tlbs. 8104 */ 8105 smp_mb__after_srcu_read_unlock(); 8106 8107 /* 8108 * This handles the case where a posted interrupt was 8109 * notified with kvm_vcpu_kick. 8110 */ 8111 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8112 kvm_x86_ops->sync_pir_to_irr(vcpu); 8113 8114 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 8115 || need_resched() || signal_pending(current)) { 8116 vcpu->mode = OUTSIDE_GUEST_MODE; 8117 smp_wmb(); 8118 local_irq_enable(); 8119 preempt_enable(); 8120 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8121 r = 1; 8122 goto cancel_injection; 8123 } 8124 8125 if (req_immediate_exit) { 8126 kvm_make_request(KVM_REQ_EVENT, vcpu); 8127 kvm_x86_ops->request_immediate_exit(vcpu); 8128 } 8129 8130 trace_kvm_entry(vcpu->vcpu_id); 8131 guest_enter_irqoff(); 8132 8133 /* The preempt notifier should have taken care of the FPU already. */ 8134 WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD)); 8135 8136 if (unlikely(vcpu->arch.switch_db_regs)) { 8137 set_debugreg(0, 7); 8138 set_debugreg(vcpu->arch.eff_db[0], 0); 8139 set_debugreg(vcpu->arch.eff_db[1], 1); 8140 set_debugreg(vcpu->arch.eff_db[2], 2); 8141 set_debugreg(vcpu->arch.eff_db[3], 3); 8142 set_debugreg(vcpu->arch.dr6, 6); 8143 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8144 } 8145 8146 kvm_x86_ops->run(vcpu); 8147 8148 /* 8149 * Do this here before restoring debug registers on the host. And 8150 * since we do this before handling the vmexit, a DR access vmexit 8151 * can (a) read the correct value of the debug registers, (b) set 8152 * KVM_DEBUGREG_WONT_EXIT again. 8153 */ 8154 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8155 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8156 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 8157 kvm_update_dr0123(vcpu); 8158 kvm_update_dr6(vcpu); 8159 kvm_update_dr7(vcpu); 8160 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8161 } 8162 8163 /* 8164 * If the guest has used debug registers, at least dr7 8165 * will be disabled while returning to the host. 8166 * If we don't have active breakpoints in the host, we don't 8167 * care about the messed up debug address registers. But if 8168 * we have some of them active, restore the old state. 8169 */ 8170 if (hw_breakpoint_active()) 8171 hw_breakpoint_restore(); 8172 8173 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8174 8175 vcpu->mode = OUTSIDE_GUEST_MODE; 8176 smp_wmb(); 8177 8178 kvm_x86_ops->handle_exit_irqoff(vcpu); 8179 8180 /* 8181 * Consume any pending interrupts, including the possible source of 8182 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8183 * An instruction is required after local_irq_enable() to fully unblock 8184 * interrupts on processors that implement an interrupt shadow, the 8185 * stat.exits increment will do nicely. 8186 */ 8187 kvm_before_interrupt(vcpu); 8188 local_irq_enable(); 8189 ++vcpu->stat.exits; 8190 local_irq_disable(); 8191 kvm_after_interrupt(vcpu); 8192 8193 guest_exit_irqoff(); 8194 if (lapic_in_kernel(vcpu)) { 8195 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8196 if (delta != S64_MIN) { 8197 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8198 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8199 } 8200 } 8201 8202 local_irq_enable(); 8203 preempt_enable(); 8204 8205 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8206 8207 /* 8208 * Profile KVM exit RIPs: 8209 */ 8210 if (unlikely(prof_on == KVM_PROFILING)) { 8211 unsigned long rip = kvm_rip_read(vcpu); 8212 profile_hit(KVM_PROFILING, (void *)rip); 8213 } 8214 8215 if (unlikely(vcpu->arch.tsc_always_catchup)) 8216 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8217 8218 if (vcpu->arch.apic_attention) 8219 kvm_lapic_sync_from_vapic(vcpu); 8220 8221 vcpu->arch.gpa_available = false; 8222 r = kvm_x86_ops->handle_exit(vcpu); 8223 return r; 8224 8225 cancel_injection: 8226 kvm_x86_ops->cancel_injection(vcpu); 8227 if (unlikely(vcpu->arch.apic_attention)) 8228 kvm_lapic_sync_from_vapic(vcpu); 8229 out: 8230 return r; 8231 } 8232 8233 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8234 { 8235 if (!kvm_arch_vcpu_runnable(vcpu) && 8236 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 8237 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8238 kvm_vcpu_block(vcpu); 8239 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8240 8241 if (kvm_x86_ops->post_block) 8242 kvm_x86_ops->post_block(vcpu); 8243 8244 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8245 return 1; 8246 } 8247 8248 kvm_apic_accept_events(vcpu); 8249 switch(vcpu->arch.mp_state) { 8250 case KVM_MP_STATE_HALTED: 8251 vcpu->arch.pv.pv_unhalted = false; 8252 vcpu->arch.mp_state = 8253 KVM_MP_STATE_RUNNABLE; 8254 /* fall through */ 8255 case KVM_MP_STATE_RUNNABLE: 8256 vcpu->arch.apf.halted = false; 8257 break; 8258 case KVM_MP_STATE_INIT_RECEIVED: 8259 break; 8260 default: 8261 return -EINTR; 8262 break; 8263 } 8264 return 1; 8265 } 8266 8267 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8268 { 8269 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 8270 kvm_x86_ops->check_nested_events(vcpu, false); 8271 8272 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8273 !vcpu->arch.apf.halted); 8274 } 8275 8276 static int vcpu_run(struct kvm_vcpu *vcpu) 8277 { 8278 int r; 8279 struct kvm *kvm = vcpu->kvm; 8280 8281 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8282 vcpu->arch.l1tf_flush_l1d = true; 8283 8284 for (;;) { 8285 if (kvm_vcpu_running(vcpu)) { 8286 r = vcpu_enter_guest(vcpu); 8287 } else { 8288 r = vcpu_block(kvm, vcpu); 8289 } 8290 8291 if (r <= 0) 8292 break; 8293 8294 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8295 if (kvm_cpu_has_pending_timer(vcpu)) 8296 kvm_inject_pending_timer_irqs(vcpu); 8297 8298 if (dm_request_for_irq_injection(vcpu) && 8299 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8300 r = 0; 8301 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8302 ++vcpu->stat.request_irq_exits; 8303 break; 8304 } 8305 8306 kvm_check_async_pf_completion(vcpu); 8307 8308 if (signal_pending(current)) { 8309 r = -EINTR; 8310 vcpu->run->exit_reason = KVM_EXIT_INTR; 8311 ++vcpu->stat.signal_exits; 8312 break; 8313 } 8314 if (need_resched()) { 8315 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8316 cond_resched(); 8317 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8318 } 8319 } 8320 8321 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8322 8323 return r; 8324 } 8325 8326 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8327 { 8328 int r; 8329 8330 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8331 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8332 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8333 return r; 8334 } 8335 8336 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8337 { 8338 BUG_ON(!vcpu->arch.pio.count); 8339 8340 return complete_emulated_io(vcpu); 8341 } 8342 8343 /* 8344 * Implements the following, as a state machine: 8345 * 8346 * read: 8347 * for each fragment 8348 * for each mmio piece in the fragment 8349 * write gpa, len 8350 * exit 8351 * copy data 8352 * execute insn 8353 * 8354 * write: 8355 * for each fragment 8356 * for each mmio piece in the fragment 8357 * write gpa, len 8358 * copy data 8359 * exit 8360 */ 8361 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8362 { 8363 struct kvm_run *run = vcpu->run; 8364 struct kvm_mmio_fragment *frag; 8365 unsigned len; 8366 8367 BUG_ON(!vcpu->mmio_needed); 8368 8369 /* Complete previous fragment */ 8370 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8371 len = min(8u, frag->len); 8372 if (!vcpu->mmio_is_write) 8373 memcpy(frag->data, run->mmio.data, len); 8374 8375 if (frag->len <= 8) { 8376 /* Switch to the next fragment. */ 8377 frag++; 8378 vcpu->mmio_cur_fragment++; 8379 } else { 8380 /* Go forward to the next mmio piece. */ 8381 frag->data += len; 8382 frag->gpa += len; 8383 frag->len -= len; 8384 } 8385 8386 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8387 vcpu->mmio_needed = 0; 8388 8389 /* FIXME: return into emulator if single-stepping. */ 8390 if (vcpu->mmio_is_write) 8391 return 1; 8392 vcpu->mmio_read_completed = 1; 8393 return complete_emulated_io(vcpu); 8394 } 8395 8396 run->exit_reason = KVM_EXIT_MMIO; 8397 run->mmio.phys_addr = frag->gpa; 8398 if (vcpu->mmio_is_write) 8399 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8400 run->mmio.len = min(8u, frag->len); 8401 run->mmio.is_write = vcpu->mmio_is_write; 8402 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8403 return 0; 8404 } 8405 8406 /* Swap (qemu) user FPU context for the guest FPU context. */ 8407 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8408 { 8409 fpregs_lock(); 8410 8411 copy_fpregs_to_fpstate(vcpu->arch.user_fpu); 8412 /* PKRU is separately restored in kvm_x86_ops->run. */ 8413 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8414 ~XFEATURE_MASK_PKRU); 8415 8416 fpregs_mark_activate(); 8417 fpregs_unlock(); 8418 8419 trace_kvm_fpu(1); 8420 } 8421 8422 /* When vcpu_run ends, restore user space FPU context. */ 8423 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8424 { 8425 fpregs_lock(); 8426 8427 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu); 8428 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8429 8430 fpregs_mark_activate(); 8431 fpregs_unlock(); 8432 8433 ++vcpu->stat.fpu_reload; 8434 trace_kvm_fpu(0); 8435 } 8436 8437 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 8438 { 8439 int r; 8440 8441 vcpu_load(vcpu); 8442 kvm_sigset_activate(vcpu); 8443 kvm_load_guest_fpu(vcpu); 8444 8445 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8446 if (kvm_run->immediate_exit) { 8447 r = -EINTR; 8448 goto out; 8449 } 8450 kvm_vcpu_block(vcpu); 8451 kvm_apic_accept_events(vcpu); 8452 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8453 r = -EAGAIN; 8454 if (signal_pending(current)) { 8455 r = -EINTR; 8456 vcpu->run->exit_reason = KVM_EXIT_INTR; 8457 ++vcpu->stat.signal_exits; 8458 } 8459 goto out; 8460 } 8461 8462 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8463 r = -EINVAL; 8464 goto out; 8465 } 8466 8467 if (vcpu->run->kvm_dirty_regs) { 8468 r = sync_regs(vcpu); 8469 if (r != 0) 8470 goto out; 8471 } 8472 8473 /* re-sync apic's tpr */ 8474 if (!lapic_in_kernel(vcpu)) { 8475 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8476 r = -EINVAL; 8477 goto out; 8478 } 8479 } 8480 8481 if (unlikely(vcpu->arch.complete_userspace_io)) { 8482 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8483 vcpu->arch.complete_userspace_io = NULL; 8484 r = cui(vcpu); 8485 if (r <= 0) 8486 goto out; 8487 } else 8488 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8489 8490 if (kvm_run->immediate_exit) 8491 r = -EINTR; 8492 else 8493 r = vcpu_run(vcpu); 8494 8495 out: 8496 kvm_put_guest_fpu(vcpu); 8497 if (vcpu->run->kvm_valid_regs) 8498 store_regs(vcpu); 8499 post_kvm_run_save(vcpu); 8500 kvm_sigset_deactivate(vcpu); 8501 8502 vcpu_put(vcpu); 8503 return r; 8504 } 8505 8506 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8507 { 8508 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8509 /* 8510 * We are here if userspace calls get_regs() in the middle of 8511 * instruction emulation. Registers state needs to be copied 8512 * back from emulation context to vcpu. Userspace shouldn't do 8513 * that usually, but some bad designed PV devices (vmware 8514 * backdoor interface) need this to work 8515 */ 8516 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 8517 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8518 } 8519 regs->rax = kvm_rax_read(vcpu); 8520 regs->rbx = kvm_rbx_read(vcpu); 8521 regs->rcx = kvm_rcx_read(vcpu); 8522 regs->rdx = kvm_rdx_read(vcpu); 8523 regs->rsi = kvm_rsi_read(vcpu); 8524 regs->rdi = kvm_rdi_read(vcpu); 8525 regs->rsp = kvm_rsp_read(vcpu); 8526 regs->rbp = kvm_rbp_read(vcpu); 8527 #ifdef CONFIG_X86_64 8528 regs->r8 = kvm_r8_read(vcpu); 8529 regs->r9 = kvm_r9_read(vcpu); 8530 regs->r10 = kvm_r10_read(vcpu); 8531 regs->r11 = kvm_r11_read(vcpu); 8532 regs->r12 = kvm_r12_read(vcpu); 8533 regs->r13 = kvm_r13_read(vcpu); 8534 regs->r14 = kvm_r14_read(vcpu); 8535 regs->r15 = kvm_r15_read(vcpu); 8536 #endif 8537 8538 regs->rip = kvm_rip_read(vcpu); 8539 regs->rflags = kvm_get_rflags(vcpu); 8540 } 8541 8542 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8543 { 8544 vcpu_load(vcpu); 8545 __get_regs(vcpu, regs); 8546 vcpu_put(vcpu); 8547 return 0; 8548 } 8549 8550 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8551 { 8552 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8553 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8554 8555 kvm_rax_write(vcpu, regs->rax); 8556 kvm_rbx_write(vcpu, regs->rbx); 8557 kvm_rcx_write(vcpu, regs->rcx); 8558 kvm_rdx_write(vcpu, regs->rdx); 8559 kvm_rsi_write(vcpu, regs->rsi); 8560 kvm_rdi_write(vcpu, regs->rdi); 8561 kvm_rsp_write(vcpu, regs->rsp); 8562 kvm_rbp_write(vcpu, regs->rbp); 8563 #ifdef CONFIG_X86_64 8564 kvm_r8_write(vcpu, regs->r8); 8565 kvm_r9_write(vcpu, regs->r9); 8566 kvm_r10_write(vcpu, regs->r10); 8567 kvm_r11_write(vcpu, regs->r11); 8568 kvm_r12_write(vcpu, regs->r12); 8569 kvm_r13_write(vcpu, regs->r13); 8570 kvm_r14_write(vcpu, regs->r14); 8571 kvm_r15_write(vcpu, regs->r15); 8572 #endif 8573 8574 kvm_rip_write(vcpu, regs->rip); 8575 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8576 8577 vcpu->arch.exception.pending = false; 8578 8579 kvm_make_request(KVM_REQ_EVENT, vcpu); 8580 } 8581 8582 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8583 { 8584 vcpu_load(vcpu); 8585 __set_regs(vcpu, regs); 8586 vcpu_put(vcpu); 8587 return 0; 8588 } 8589 8590 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8591 { 8592 struct kvm_segment cs; 8593 8594 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8595 *db = cs.db; 8596 *l = cs.l; 8597 } 8598 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8599 8600 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8601 { 8602 struct desc_ptr dt; 8603 8604 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8605 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8606 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8607 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8608 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8609 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8610 8611 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8612 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8613 8614 kvm_x86_ops->get_idt(vcpu, &dt); 8615 sregs->idt.limit = dt.size; 8616 sregs->idt.base = dt.address; 8617 kvm_x86_ops->get_gdt(vcpu, &dt); 8618 sregs->gdt.limit = dt.size; 8619 sregs->gdt.base = dt.address; 8620 8621 sregs->cr0 = kvm_read_cr0(vcpu); 8622 sregs->cr2 = vcpu->arch.cr2; 8623 sregs->cr3 = kvm_read_cr3(vcpu); 8624 sregs->cr4 = kvm_read_cr4(vcpu); 8625 sregs->cr8 = kvm_get_cr8(vcpu); 8626 sregs->efer = vcpu->arch.efer; 8627 sregs->apic_base = kvm_get_apic_base(vcpu); 8628 8629 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 8630 8631 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 8632 set_bit(vcpu->arch.interrupt.nr, 8633 (unsigned long *)sregs->interrupt_bitmap); 8634 } 8635 8636 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 8637 struct kvm_sregs *sregs) 8638 { 8639 vcpu_load(vcpu); 8640 __get_sregs(vcpu, sregs); 8641 vcpu_put(vcpu); 8642 return 0; 8643 } 8644 8645 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 8646 struct kvm_mp_state *mp_state) 8647 { 8648 vcpu_load(vcpu); 8649 8650 kvm_apic_accept_events(vcpu); 8651 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 8652 vcpu->arch.pv.pv_unhalted) 8653 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 8654 else 8655 mp_state->mp_state = vcpu->arch.mp_state; 8656 8657 vcpu_put(vcpu); 8658 return 0; 8659 } 8660 8661 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 8662 struct kvm_mp_state *mp_state) 8663 { 8664 int ret = -EINVAL; 8665 8666 vcpu_load(vcpu); 8667 8668 if (!lapic_in_kernel(vcpu) && 8669 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 8670 goto out; 8671 8672 /* INITs are latched while in SMM */ 8673 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 8674 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 8675 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 8676 goto out; 8677 8678 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 8679 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 8680 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 8681 } else 8682 vcpu->arch.mp_state = mp_state->mp_state; 8683 kvm_make_request(KVM_REQ_EVENT, vcpu); 8684 8685 ret = 0; 8686 out: 8687 vcpu_put(vcpu); 8688 return ret; 8689 } 8690 8691 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 8692 int reason, bool has_error_code, u32 error_code) 8693 { 8694 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 8695 int ret; 8696 8697 init_emulate_ctxt(vcpu); 8698 8699 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8700 has_error_code, error_code); 8701 if (ret) { 8702 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8703 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 8704 vcpu->run->internal.ndata = 0; 8705 return 0; 8706 } 8707 8708 kvm_rip_write(vcpu, ctxt->eip); 8709 kvm_set_rflags(vcpu, ctxt->eflags); 8710 kvm_make_request(KVM_REQ_EVENT, vcpu); 8711 return 1; 8712 } 8713 EXPORT_SYMBOL_GPL(kvm_task_switch); 8714 8715 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8716 { 8717 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 8718 (sregs->cr4 & X86_CR4_OSXSAVE)) 8719 return -EINVAL; 8720 8721 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 8722 /* 8723 * When EFER.LME and CR0.PG are set, the processor is in 8724 * 64-bit mode (though maybe in a 32-bit code segment). 8725 * CR4.PAE and EFER.LMA must be set. 8726 */ 8727 if (!(sregs->cr4 & X86_CR4_PAE) 8728 || !(sregs->efer & EFER_LMA)) 8729 return -EINVAL; 8730 } else { 8731 /* 8732 * Not in 64-bit mode: EFER.LMA is clear and the code 8733 * segment cannot be 64-bit. 8734 */ 8735 if (sregs->efer & EFER_LMA || sregs->cs.l) 8736 return -EINVAL; 8737 } 8738 8739 return 0; 8740 } 8741 8742 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8743 { 8744 struct msr_data apic_base_msr; 8745 int mmu_reset_needed = 0; 8746 int cpuid_update_needed = 0; 8747 int pending_vec, max_bits, idx; 8748 struct desc_ptr dt; 8749 int ret = -EINVAL; 8750 8751 if (kvm_valid_sregs(vcpu, sregs)) 8752 goto out; 8753 8754 apic_base_msr.data = sregs->apic_base; 8755 apic_base_msr.host_initiated = true; 8756 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 8757 goto out; 8758 8759 dt.size = sregs->idt.limit; 8760 dt.address = sregs->idt.base; 8761 kvm_x86_ops->set_idt(vcpu, &dt); 8762 dt.size = sregs->gdt.limit; 8763 dt.address = sregs->gdt.base; 8764 kvm_x86_ops->set_gdt(vcpu, &dt); 8765 8766 vcpu->arch.cr2 = sregs->cr2; 8767 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 8768 vcpu->arch.cr3 = sregs->cr3; 8769 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 8770 8771 kvm_set_cr8(vcpu, sregs->cr8); 8772 8773 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 8774 kvm_x86_ops->set_efer(vcpu, sregs->efer); 8775 8776 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 8777 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 8778 vcpu->arch.cr0 = sregs->cr0; 8779 8780 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 8781 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 8782 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 8783 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 8784 if (cpuid_update_needed) 8785 kvm_update_cpuid(vcpu); 8786 8787 idx = srcu_read_lock(&vcpu->kvm->srcu); 8788 if (is_pae_paging(vcpu)) { 8789 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 8790 mmu_reset_needed = 1; 8791 } 8792 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8793 8794 if (mmu_reset_needed) 8795 kvm_mmu_reset_context(vcpu); 8796 8797 max_bits = KVM_NR_INTERRUPTS; 8798 pending_vec = find_first_bit( 8799 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 8800 if (pending_vec < max_bits) { 8801 kvm_queue_interrupt(vcpu, pending_vec, false); 8802 pr_debug("Set back pending irq %d\n", pending_vec); 8803 } 8804 8805 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8806 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8807 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8808 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8809 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8810 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8811 8812 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8813 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8814 8815 update_cr8_intercept(vcpu); 8816 8817 /* Older userspace won't unhalt the vcpu on reset. */ 8818 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 8819 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 8820 !is_protmode(vcpu)) 8821 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8822 8823 kvm_make_request(KVM_REQ_EVENT, vcpu); 8824 8825 ret = 0; 8826 out: 8827 return ret; 8828 } 8829 8830 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 8831 struct kvm_sregs *sregs) 8832 { 8833 int ret; 8834 8835 vcpu_load(vcpu); 8836 ret = __set_sregs(vcpu, sregs); 8837 vcpu_put(vcpu); 8838 return ret; 8839 } 8840 8841 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 8842 struct kvm_guest_debug *dbg) 8843 { 8844 unsigned long rflags; 8845 int i, r; 8846 8847 vcpu_load(vcpu); 8848 8849 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 8850 r = -EBUSY; 8851 if (vcpu->arch.exception.pending) 8852 goto out; 8853 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 8854 kvm_queue_exception(vcpu, DB_VECTOR); 8855 else 8856 kvm_queue_exception(vcpu, BP_VECTOR); 8857 } 8858 8859 /* 8860 * Read rflags as long as potentially injected trace flags are still 8861 * filtered out. 8862 */ 8863 rflags = kvm_get_rflags(vcpu); 8864 8865 vcpu->guest_debug = dbg->control; 8866 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 8867 vcpu->guest_debug = 0; 8868 8869 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 8870 for (i = 0; i < KVM_NR_DB_REGS; ++i) 8871 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 8872 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 8873 } else { 8874 for (i = 0; i < KVM_NR_DB_REGS; i++) 8875 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 8876 } 8877 kvm_update_dr7(vcpu); 8878 8879 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8880 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 8881 get_segment_base(vcpu, VCPU_SREG_CS); 8882 8883 /* 8884 * Trigger an rflags update that will inject or remove the trace 8885 * flags. 8886 */ 8887 kvm_set_rflags(vcpu, rflags); 8888 8889 kvm_x86_ops->update_bp_intercept(vcpu); 8890 8891 r = 0; 8892 8893 out: 8894 vcpu_put(vcpu); 8895 return r; 8896 } 8897 8898 /* 8899 * Translate a guest virtual address to a guest physical address. 8900 */ 8901 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 8902 struct kvm_translation *tr) 8903 { 8904 unsigned long vaddr = tr->linear_address; 8905 gpa_t gpa; 8906 int idx; 8907 8908 vcpu_load(vcpu); 8909 8910 idx = srcu_read_lock(&vcpu->kvm->srcu); 8911 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 8912 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8913 tr->physical_address = gpa; 8914 tr->valid = gpa != UNMAPPED_GVA; 8915 tr->writeable = 1; 8916 tr->usermode = 0; 8917 8918 vcpu_put(vcpu); 8919 return 0; 8920 } 8921 8922 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8923 { 8924 struct fxregs_state *fxsave; 8925 8926 vcpu_load(vcpu); 8927 8928 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 8929 memcpy(fpu->fpr, fxsave->st_space, 128); 8930 fpu->fcw = fxsave->cwd; 8931 fpu->fsw = fxsave->swd; 8932 fpu->ftwx = fxsave->twd; 8933 fpu->last_opcode = fxsave->fop; 8934 fpu->last_ip = fxsave->rip; 8935 fpu->last_dp = fxsave->rdp; 8936 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 8937 8938 vcpu_put(vcpu); 8939 return 0; 8940 } 8941 8942 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 8943 { 8944 struct fxregs_state *fxsave; 8945 8946 vcpu_load(vcpu); 8947 8948 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 8949 8950 memcpy(fxsave->st_space, fpu->fpr, 128); 8951 fxsave->cwd = fpu->fcw; 8952 fxsave->swd = fpu->fsw; 8953 fxsave->twd = fpu->ftwx; 8954 fxsave->fop = fpu->last_opcode; 8955 fxsave->rip = fpu->last_ip; 8956 fxsave->rdp = fpu->last_dp; 8957 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 8958 8959 vcpu_put(vcpu); 8960 return 0; 8961 } 8962 8963 static void store_regs(struct kvm_vcpu *vcpu) 8964 { 8965 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 8966 8967 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 8968 __get_regs(vcpu, &vcpu->run->s.regs.regs); 8969 8970 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 8971 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 8972 8973 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 8974 kvm_vcpu_ioctl_x86_get_vcpu_events( 8975 vcpu, &vcpu->run->s.regs.events); 8976 } 8977 8978 static int sync_regs(struct kvm_vcpu *vcpu) 8979 { 8980 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 8981 return -EINVAL; 8982 8983 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 8984 __set_regs(vcpu, &vcpu->run->s.regs.regs); 8985 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 8986 } 8987 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 8988 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 8989 return -EINVAL; 8990 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 8991 } 8992 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 8993 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 8994 vcpu, &vcpu->run->s.regs.events)) 8995 return -EINVAL; 8996 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 8997 } 8998 8999 return 0; 9000 } 9001 9002 static void fx_init(struct kvm_vcpu *vcpu) 9003 { 9004 fpstate_init(&vcpu->arch.guest_fpu->state); 9005 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9006 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9007 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9008 9009 /* 9010 * Ensure guest xcr0 is valid for loading 9011 */ 9012 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9013 9014 vcpu->arch.cr0 |= X86_CR0_ET; 9015 } 9016 9017 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 9018 { 9019 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 9020 9021 kvmclock_reset(vcpu); 9022 9023 kvm_x86_ops->vcpu_free(vcpu); 9024 free_cpumask_var(wbinvd_dirty_mask); 9025 } 9026 9027 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 9028 unsigned int id) 9029 { 9030 struct kvm_vcpu *vcpu; 9031 9032 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9033 printk_once(KERN_WARNING 9034 "kvm: SMP vm created on host with unstable TSC; " 9035 "guest TSC will not be reliable\n"); 9036 9037 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 9038 9039 return vcpu; 9040 } 9041 9042 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 9043 { 9044 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9045 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9046 kvm_vcpu_mtrr_init(vcpu); 9047 vcpu_load(vcpu); 9048 kvm_vcpu_reset(vcpu, false); 9049 kvm_init_mmu(vcpu, false); 9050 vcpu_put(vcpu); 9051 return 0; 9052 } 9053 9054 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9055 { 9056 struct msr_data msr; 9057 struct kvm *kvm = vcpu->kvm; 9058 9059 kvm_hv_vcpu_postcreate(vcpu); 9060 9061 if (mutex_lock_killable(&vcpu->mutex)) 9062 return; 9063 vcpu_load(vcpu); 9064 msr.data = 0x0; 9065 msr.index = MSR_IA32_TSC; 9066 msr.host_initiated = true; 9067 kvm_write_tsc(vcpu, &msr); 9068 vcpu_put(vcpu); 9069 9070 /* poll control enabled by default */ 9071 vcpu->arch.msr_kvm_poll_control = 1; 9072 9073 mutex_unlock(&vcpu->mutex); 9074 9075 if (!kvmclock_periodic_sync) 9076 return; 9077 9078 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9079 KVMCLOCK_SYNC_PERIOD); 9080 } 9081 9082 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9083 { 9084 vcpu->arch.apf.msr_val = 0; 9085 9086 vcpu_load(vcpu); 9087 kvm_mmu_unload(vcpu); 9088 vcpu_put(vcpu); 9089 9090 kvm_x86_ops->vcpu_free(vcpu); 9091 } 9092 9093 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9094 { 9095 kvm_lapic_reset(vcpu, init_event); 9096 9097 vcpu->arch.hflags = 0; 9098 9099 vcpu->arch.smi_pending = 0; 9100 vcpu->arch.smi_count = 0; 9101 atomic_set(&vcpu->arch.nmi_queued, 0); 9102 vcpu->arch.nmi_pending = 0; 9103 vcpu->arch.nmi_injected = false; 9104 kvm_clear_interrupt_queue(vcpu); 9105 kvm_clear_exception_queue(vcpu); 9106 vcpu->arch.exception.pending = false; 9107 9108 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9109 kvm_update_dr0123(vcpu); 9110 vcpu->arch.dr6 = DR6_INIT; 9111 kvm_update_dr6(vcpu); 9112 vcpu->arch.dr7 = DR7_FIXED_1; 9113 kvm_update_dr7(vcpu); 9114 9115 vcpu->arch.cr2 = 0; 9116 9117 kvm_make_request(KVM_REQ_EVENT, vcpu); 9118 vcpu->arch.apf.msr_val = 0; 9119 vcpu->arch.st.msr_val = 0; 9120 9121 kvmclock_reset(vcpu); 9122 9123 kvm_clear_async_pf_completion_queue(vcpu); 9124 kvm_async_pf_hash_reset(vcpu); 9125 vcpu->arch.apf.halted = false; 9126 9127 if (kvm_mpx_supported()) { 9128 void *mpx_state_buffer; 9129 9130 /* 9131 * To avoid have the INIT path from kvm_apic_has_events() that be 9132 * called with loaded FPU and does not let userspace fix the state. 9133 */ 9134 if (init_event) 9135 kvm_put_guest_fpu(vcpu); 9136 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9137 XFEATURE_BNDREGS); 9138 if (mpx_state_buffer) 9139 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9140 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9141 XFEATURE_BNDCSR); 9142 if (mpx_state_buffer) 9143 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9144 if (init_event) 9145 kvm_load_guest_fpu(vcpu); 9146 } 9147 9148 if (!init_event) { 9149 kvm_pmu_reset(vcpu); 9150 vcpu->arch.smbase = 0x30000; 9151 9152 vcpu->arch.msr_misc_features_enables = 0; 9153 9154 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9155 } 9156 9157 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9158 vcpu->arch.regs_avail = ~0; 9159 vcpu->arch.regs_dirty = ~0; 9160 9161 vcpu->arch.ia32_xss = 0; 9162 9163 kvm_x86_ops->vcpu_reset(vcpu, init_event); 9164 } 9165 9166 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9167 { 9168 struct kvm_segment cs; 9169 9170 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9171 cs.selector = vector << 8; 9172 cs.base = vector << 12; 9173 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9174 kvm_rip_write(vcpu, 0); 9175 } 9176 9177 int kvm_arch_hardware_enable(void) 9178 { 9179 struct kvm *kvm; 9180 struct kvm_vcpu *vcpu; 9181 int i; 9182 int ret; 9183 u64 local_tsc; 9184 u64 max_tsc = 0; 9185 bool stable, backwards_tsc = false; 9186 9187 kvm_shared_msr_cpu_online(); 9188 ret = kvm_x86_ops->hardware_enable(); 9189 if (ret != 0) 9190 return ret; 9191 9192 local_tsc = rdtsc(); 9193 stable = !kvm_check_tsc_unstable(); 9194 list_for_each_entry(kvm, &vm_list, vm_list) { 9195 kvm_for_each_vcpu(i, vcpu, kvm) { 9196 if (!stable && vcpu->cpu == smp_processor_id()) 9197 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9198 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9199 backwards_tsc = true; 9200 if (vcpu->arch.last_host_tsc > max_tsc) 9201 max_tsc = vcpu->arch.last_host_tsc; 9202 } 9203 } 9204 } 9205 9206 /* 9207 * Sometimes, even reliable TSCs go backwards. This happens on 9208 * platforms that reset TSC during suspend or hibernate actions, but 9209 * maintain synchronization. We must compensate. Fortunately, we can 9210 * detect that condition here, which happens early in CPU bringup, 9211 * before any KVM threads can be running. Unfortunately, we can't 9212 * bring the TSCs fully up to date with real time, as we aren't yet far 9213 * enough into CPU bringup that we know how much real time has actually 9214 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9215 * variables that haven't been updated yet. 9216 * 9217 * So we simply find the maximum observed TSC above, then record the 9218 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9219 * the adjustment will be applied. Note that we accumulate 9220 * adjustments, in case multiple suspend cycles happen before some VCPU 9221 * gets a chance to run again. In the event that no KVM threads get a 9222 * chance to run, we will miss the entire elapsed period, as we'll have 9223 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9224 * loose cycle time. This isn't too big a deal, since the loss will be 9225 * uniform across all VCPUs (not to mention the scenario is extremely 9226 * unlikely). It is possible that a second hibernate recovery happens 9227 * much faster than a first, causing the observed TSC here to be 9228 * smaller; this would require additional padding adjustment, which is 9229 * why we set last_host_tsc to the local tsc observed here. 9230 * 9231 * N.B. - this code below runs only on platforms with reliable TSC, 9232 * as that is the only way backwards_tsc is set above. Also note 9233 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9234 * have the same delta_cyc adjustment applied if backwards_tsc 9235 * is detected. Note further, this adjustment is only done once, 9236 * as we reset last_host_tsc on all VCPUs to stop this from being 9237 * called multiple times (one for each physical CPU bringup). 9238 * 9239 * Platforms with unreliable TSCs don't have to deal with this, they 9240 * will be compensated by the logic in vcpu_load, which sets the TSC to 9241 * catchup mode. This will catchup all VCPUs to real time, but cannot 9242 * guarantee that they stay in perfect synchronization. 9243 */ 9244 if (backwards_tsc) { 9245 u64 delta_cyc = max_tsc - local_tsc; 9246 list_for_each_entry(kvm, &vm_list, vm_list) { 9247 kvm->arch.backwards_tsc_observed = true; 9248 kvm_for_each_vcpu(i, vcpu, kvm) { 9249 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9250 vcpu->arch.last_host_tsc = local_tsc; 9251 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9252 } 9253 9254 /* 9255 * We have to disable TSC offset matching.. if you were 9256 * booting a VM while issuing an S4 host suspend.... 9257 * you may have some problem. Solving this issue is 9258 * left as an exercise to the reader. 9259 */ 9260 kvm->arch.last_tsc_nsec = 0; 9261 kvm->arch.last_tsc_write = 0; 9262 } 9263 9264 } 9265 return 0; 9266 } 9267 9268 void kvm_arch_hardware_disable(void) 9269 { 9270 kvm_x86_ops->hardware_disable(); 9271 drop_user_return_notifiers(); 9272 } 9273 9274 int kvm_arch_hardware_setup(void) 9275 { 9276 int r; 9277 9278 r = kvm_x86_ops->hardware_setup(); 9279 if (r != 0) 9280 return r; 9281 9282 if (kvm_has_tsc_control) { 9283 /* 9284 * Make sure the user can only configure tsc_khz values that 9285 * fit into a signed integer. 9286 * A min value is not calculated because it will always 9287 * be 1 on all machines. 9288 */ 9289 u64 max = min(0x7fffffffULL, 9290 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9291 kvm_max_guest_tsc_khz = max; 9292 9293 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9294 } 9295 9296 kvm_init_msr_list(); 9297 return 0; 9298 } 9299 9300 void kvm_arch_hardware_unsetup(void) 9301 { 9302 kvm_x86_ops->hardware_unsetup(); 9303 } 9304 9305 int kvm_arch_check_processor_compat(void) 9306 { 9307 return kvm_x86_ops->check_processor_compatibility(); 9308 } 9309 9310 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9311 { 9312 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9313 } 9314 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9315 9316 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9317 { 9318 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9319 } 9320 9321 struct static_key kvm_no_apic_vcpu __read_mostly; 9322 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9323 9324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 9325 { 9326 struct page *page; 9327 int r; 9328 9329 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 9330 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9331 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9332 else 9333 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9334 9335 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9336 if (!page) { 9337 r = -ENOMEM; 9338 goto fail; 9339 } 9340 vcpu->arch.pio_data = page_address(page); 9341 9342 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9343 9344 r = kvm_mmu_create(vcpu); 9345 if (r < 0) 9346 goto fail_free_pio_data; 9347 9348 if (irqchip_in_kernel(vcpu->kvm)) { 9349 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); 9350 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9351 if (r < 0) 9352 goto fail_mmu_destroy; 9353 } else 9354 static_key_slow_inc(&kvm_no_apic_vcpu); 9355 9356 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9357 GFP_KERNEL_ACCOUNT); 9358 if (!vcpu->arch.mce_banks) { 9359 r = -ENOMEM; 9360 goto fail_free_lapic; 9361 } 9362 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9363 9364 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9365 GFP_KERNEL_ACCOUNT)) { 9366 r = -ENOMEM; 9367 goto fail_free_mce_banks; 9368 } 9369 9370 fx_init(vcpu); 9371 9372 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 9373 9374 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9375 9376 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9377 9378 kvm_async_pf_hash_reset(vcpu); 9379 kvm_pmu_init(vcpu); 9380 9381 vcpu->arch.pending_external_vector = -1; 9382 vcpu->arch.preempted_in_kernel = false; 9383 9384 kvm_hv_vcpu_init(vcpu); 9385 9386 return 0; 9387 9388 fail_free_mce_banks: 9389 kfree(vcpu->arch.mce_banks); 9390 fail_free_lapic: 9391 kvm_free_lapic(vcpu); 9392 fail_mmu_destroy: 9393 kvm_mmu_destroy(vcpu); 9394 fail_free_pio_data: 9395 free_page((unsigned long)vcpu->arch.pio_data); 9396 fail: 9397 return r; 9398 } 9399 9400 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 9401 { 9402 int idx; 9403 9404 kvm_hv_vcpu_uninit(vcpu); 9405 kvm_pmu_destroy(vcpu); 9406 kfree(vcpu->arch.mce_banks); 9407 kvm_free_lapic(vcpu); 9408 idx = srcu_read_lock(&vcpu->kvm->srcu); 9409 kvm_mmu_destroy(vcpu); 9410 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9411 free_page((unsigned long)vcpu->arch.pio_data); 9412 if (!lapic_in_kernel(vcpu)) 9413 static_key_slow_dec(&kvm_no_apic_vcpu); 9414 } 9415 9416 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9417 { 9418 vcpu->arch.l1tf_flush_l1d = true; 9419 kvm_x86_ops->sched_in(vcpu, cpu); 9420 } 9421 9422 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9423 { 9424 if (type) 9425 return -EINVAL; 9426 9427 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9428 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9429 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9430 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9431 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9432 9433 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9434 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9435 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9436 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9437 &kvm->arch.irq_sources_bitmap); 9438 9439 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9440 mutex_init(&kvm->arch.apic_map_lock); 9441 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9442 9443 kvm->arch.kvmclock_offset = -ktime_get_boottime_ns(); 9444 pvclock_update_vm_gtod_copy(kvm); 9445 9446 kvm->arch.guest_can_read_msr_platform_info = true; 9447 9448 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9449 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9450 9451 kvm_hv_init_vm(kvm); 9452 kvm_page_track_init(kvm); 9453 kvm_mmu_init_vm(kvm); 9454 9455 return kvm_x86_ops->vm_init(kvm); 9456 } 9457 9458 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9459 { 9460 vcpu_load(vcpu); 9461 kvm_mmu_unload(vcpu); 9462 vcpu_put(vcpu); 9463 } 9464 9465 static void kvm_free_vcpus(struct kvm *kvm) 9466 { 9467 unsigned int i; 9468 struct kvm_vcpu *vcpu; 9469 9470 /* 9471 * Unpin any mmu pages first. 9472 */ 9473 kvm_for_each_vcpu(i, vcpu, kvm) { 9474 kvm_clear_async_pf_completion_queue(vcpu); 9475 kvm_unload_vcpu_mmu(vcpu); 9476 } 9477 kvm_for_each_vcpu(i, vcpu, kvm) 9478 kvm_arch_vcpu_free(vcpu); 9479 9480 mutex_lock(&kvm->lock); 9481 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9482 kvm->vcpus[i] = NULL; 9483 9484 atomic_set(&kvm->online_vcpus, 0); 9485 mutex_unlock(&kvm->lock); 9486 } 9487 9488 void kvm_arch_sync_events(struct kvm *kvm) 9489 { 9490 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9491 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9492 kvm_free_pit(kvm); 9493 } 9494 9495 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9496 { 9497 int i, r; 9498 unsigned long hva; 9499 struct kvm_memslots *slots = kvm_memslots(kvm); 9500 struct kvm_memory_slot *slot, old; 9501 9502 /* Called with kvm->slots_lock held. */ 9503 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9504 return -EINVAL; 9505 9506 slot = id_to_memslot(slots, id); 9507 if (size) { 9508 if (slot->npages) 9509 return -EEXIST; 9510 9511 /* 9512 * MAP_SHARED to prevent internal slot pages from being moved 9513 * by fork()/COW. 9514 */ 9515 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9516 MAP_SHARED | MAP_ANONYMOUS, 0); 9517 if (IS_ERR((void *)hva)) 9518 return PTR_ERR((void *)hva); 9519 } else { 9520 if (!slot->npages) 9521 return 0; 9522 9523 hva = 0; 9524 } 9525 9526 old = *slot; 9527 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9528 struct kvm_userspace_memory_region m; 9529 9530 m.slot = id | (i << 16); 9531 m.flags = 0; 9532 m.guest_phys_addr = gpa; 9533 m.userspace_addr = hva; 9534 m.memory_size = size; 9535 r = __kvm_set_memory_region(kvm, &m); 9536 if (r < 0) 9537 return r; 9538 } 9539 9540 if (!size) 9541 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 9542 9543 return 0; 9544 } 9545 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9546 9547 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9548 { 9549 int r; 9550 9551 mutex_lock(&kvm->slots_lock); 9552 r = __x86_set_memory_region(kvm, id, gpa, size); 9553 mutex_unlock(&kvm->slots_lock); 9554 9555 return r; 9556 } 9557 EXPORT_SYMBOL_GPL(x86_set_memory_region); 9558 9559 void kvm_arch_destroy_vm(struct kvm *kvm) 9560 { 9561 if (current->mm == kvm->mm) { 9562 /* 9563 * Free memory regions allocated on behalf of userspace, 9564 * unless the the memory map has changed due to process exit 9565 * or fd copying. 9566 */ 9567 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 9568 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 9569 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9570 } 9571 if (kvm_x86_ops->vm_destroy) 9572 kvm_x86_ops->vm_destroy(kvm); 9573 kvm_pic_destroy(kvm); 9574 kvm_ioapic_destroy(kvm); 9575 kvm_free_vcpus(kvm); 9576 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 9577 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 9578 kvm_mmu_uninit_vm(kvm); 9579 kvm_page_track_cleanup(kvm); 9580 kvm_hv_destroy_vm(kvm); 9581 } 9582 9583 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 9584 struct kvm_memory_slot *dont) 9585 { 9586 int i; 9587 9588 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9589 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 9590 kvfree(free->arch.rmap[i]); 9591 free->arch.rmap[i] = NULL; 9592 } 9593 if (i == 0) 9594 continue; 9595 9596 if (!dont || free->arch.lpage_info[i - 1] != 9597 dont->arch.lpage_info[i - 1]) { 9598 kvfree(free->arch.lpage_info[i - 1]); 9599 free->arch.lpage_info[i - 1] = NULL; 9600 } 9601 } 9602 9603 kvm_page_track_free_memslot(free, dont); 9604 } 9605 9606 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 9607 unsigned long npages) 9608 { 9609 int i; 9610 9611 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9612 struct kvm_lpage_info *linfo; 9613 unsigned long ugfn; 9614 int lpages; 9615 int level = i + 1; 9616 9617 lpages = gfn_to_index(slot->base_gfn + npages - 1, 9618 slot->base_gfn, level) + 1; 9619 9620 slot->arch.rmap[i] = 9621 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 9622 GFP_KERNEL_ACCOUNT); 9623 if (!slot->arch.rmap[i]) 9624 goto out_free; 9625 if (i == 0) 9626 continue; 9627 9628 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 9629 if (!linfo) 9630 goto out_free; 9631 9632 slot->arch.lpage_info[i - 1] = linfo; 9633 9634 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 9635 linfo[0].disallow_lpage = 1; 9636 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 9637 linfo[lpages - 1].disallow_lpage = 1; 9638 ugfn = slot->userspace_addr >> PAGE_SHIFT; 9639 /* 9640 * If the gfn and userspace address are not aligned wrt each 9641 * other, or if explicitly asked to, disable large page 9642 * support for this slot 9643 */ 9644 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 9645 !kvm_largepages_enabled()) { 9646 unsigned long j; 9647 9648 for (j = 0; j < lpages; ++j) 9649 linfo[j].disallow_lpage = 1; 9650 } 9651 } 9652 9653 if (kvm_page_track_create_memslot(slot, npages)) 9654 goto out_free; 9655 9656 return 0; 9657 9658 out_free: 9659 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9660 kvfree(slot->arch.rmap[i]); 9661 slot->arch.rmap[i] = NULL; 9662 if (i == 0) 9663 continue; 9664 9665 kvfree(slot->arch.lpage_info[i - 1]); 9666 slot->arch.lpage_info[i - 1] = NULL; 9667 } 9668 return -ENOMEM; 9669 } 9670 9671 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 9672 { 9673 /* 9674 * memslots->generation has been incremented. 9675 * mmio generation may have reached its maximum value. 9676 */ 9677 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 9678 } 9679 9680 int kvm_arch_prepare_memory_region(struct kvm *kvm, 9681 struct kvm_memory_slot *memslot, 9682 const struct kvm_userspace_memory_region *mem, 9683 enum kvm_mr_change change) 9684 { 9685 return 0; 9686 } 9687 9688 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 9689 struct kvm_memory_slot *new) 9690 { 9691 /* Still write protect RO slot */ 9692 if (new->flags & KVM_MEM_READONLY) { 9693 kvm_mmu_slot_remove_write_access(kvm, new); 9694 return; 9695 } 9696 9697 /* 9698 * Call kvm_x86_ops dirty logging hooks when they are valid. 9699 * 9700 * kvm_x86_ops->slot_disable_log_dirty is called when: 9701 * 9702 * - KVM_MR_CREATE with dirty logging is disabled 9703 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 9704 * 9705 * The reason is, in case of PML, we need to set D-bit for any slots 9706 * with dirty logging disabled in order to eliminate unnecessary GPA 9707 * logging in PML buffer (and potential PML buffer full VMEXT). This 9708 * guarantees leaving PML enabled during guest's lifetime won't have 9709 * any additional overhead from PML when guest is running with dirty 9710 * logging disabled for memory slots. 9711 * 9712 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 9713 * to dirty logging mode. 9714 * 9715 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 9716 * 9717 * In case of write protect: 9718 * 9719 * Write protect all pages for dirty logging. 9720 * 9721 * All the sptes including the large sptes which point to this 9722 * slot are set to readonly. We can not create any new large 9723 * spte on this slot until the end of the logging. 9724 * 9725 * See the comments in fast_page_fault(). 9726 */ 9727 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 9728 if (kvm_x86_ops->slot_enable_log_dirty) 9729 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 9730 else 9731 kvm_mmu_slot_remove_write_access(kvm, new); 9732 } else { 9733 if (kvm_x86_ops->slot_disable_log_dirty) 9734 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 9735 } 9736 } 9737 9738 void kvm_arch_commit_memory_region(struct kvm *kvm, 9739 const struct kvm_userspace_memory_region *mem, 9740 const struct kvm_memory_slot *old, 9741 const struct kvm_memory_slot *new, 9742 enum kvm_mr_change change) 9743 { 9744 if (!kvm->arch.n_requested_mmu_pages) 9745 kvm_mmu_change_mmu_pages(kvm, 9746 kvm_mmu_calculate_default_mmu_pages(kvm)); 9747 9748 /* 9749 * Dirty logging tracks sptes in 4k granularity, meaning that large 9750 * sptes have to be split. If live migration is successful, the guest 9751 * in the source machine will be destroyed and large sptes will be 9752 * created in the destination. However, if the guest continues to run 9753 * in the source machine (for example if live migration fails), small 9754 * sptes will remain around and cause bad performance. 9755 * 9756 * Scan sptes if dirty logging has been stopped, dropping those 9757 * which can be collapsed into a single large-page spte. Later 9758 * page faults will create the large-page sptes. 9759 * 9760 * There is no need to do this in any of the following cases: 9761 * CREATE: No dirty mappings will already exist. 9762 * MOVE/DELETE: The old mappings will already have been cleaned up by 9763 * kvm_arch_flush_shadow_memslot() 9764 */ 9765 if (change == KVM_MR_FLAGS_ONLY && 9766 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 9767 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 9768 kvm_mmu_zap_collapsible_sptes(kvm, new); 9769 9770 /* 9771 * Set up write protection and/or dirty logging for the new slot. 9772 * 9773 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 9774 * been zapped so no dirty logging staff is needed for old slot. For 9775 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 9776 * new and it's also covered when dealing with the new slot. 9777 * 9778 * FIXME: const-ify all uses of struct kvm_memory_slot. 9779 */ 9780 if (change != KVM_MR_DELETE) 9781 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 9782 } 9783 9784 void kvm_arch_flush_shadow_all(struct kvm *kvm) 9785 { 9786 kvm_mmu_zap_all(kvm); 9787 } 9788 9789 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 9790 struct kvm_memory_slot *slot) 9791 { 9792 kvm_page_track_flush_slot(kvm, slot); 9793 } 9794 9795 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 9796 { 9797 return (is_guest_mode(vcpu) && 9798 kvm_x86_ops->guest_apic_has_interrupt && 9799 kvm_x86_ops->guest_apic_has_interrupt(vcpu)); 9800 } 9801 9802 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 9803 { 9804 if (!list_empty_careful(&vcpu->async_pf.done)) 9805 return true; 9806 9807 if (kvm_apic_has_events(vcpu)) 9808 return true; 9809 9810 if (vcpu->arch.pv.pv_unhalted) 9811 return true; 9812 9813 if (vcpu->arch.exception.pending) 9814 return true; 9815 9816 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 9817 (vcpu->arch.nmi_pending && 9818 kvm_x86_ops->nmi_allowed(vcpu))) 9819 return true; 9820 9821 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 9822 (vcpu->arch.smi_pending && !is_smm(vcpu))) 9823 return true; 9824 9825 if (kvm_arch_interrupt_allowed(vcpu) && 9826 (kvm_cpu_has_interrupt(vcpu) || 9827 kvm_guest_apic_has_interrupt(vcpu))) 9828 return true; 9829 9830 if (kvm_hv_has_stimer_pending(vcpu)) 9831 return true; 9832 9833 return false; 9834 } 9835 9836 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 9837 { 9838 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 9839 } 9840 9841 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 9842 { 9843 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 9844 return true; 9845 9846 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 9847 kvm_test_request(KVM_REQ_SMI, vcpu) || 9848 kvm_test_request(KVM_REQ_EVENT, vcpu)) 9849 return true; 9850 9851 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu)) 9852 return true; 9853 9854 return false; 9855 } 9856 9857 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 9858 { 9859 return vcpu->arch.preempted_in_kernel; 9860 } 9861 9862 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 9863 { 9864 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 9865 } 9866 9867 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 9868 { 9869 return kvm_x86_ops->interrupt_allowed(vcpu); 9870 } 9871 9872 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 9873 { 9874 if (is_64_bit_mode(vcpu)) 9875 return kvm_rip_read(vcpu); 9876 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 9877 kvm_rip_read(vcpu)); 9878 } 9879 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 9880 9881 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 9882 { 9883 return kvm_get_linear_rip(vcpu) == linear_rip; 9884 } 9885 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 9886 9887 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 9888 { 9889 unsigned long rflags; 9890 9891 rflags = kvm_x86_ops->get_rflags(vcpu); 9892 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9893 rflags &= ~X86_EFLAGS_TF; 9894 return rflags; 9895 } 9896 EXPORT_SYMBOL_GPL(kvm_get_rflags); 9897 9898 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9899 { 9900 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 9901 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 9902 rflags |= X86_EFLAGS_TF; 9903 kvm_x86_ops->set_rflags(vcpu, rflags); 9904 } 9905 9906 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 9907 { 9908 __kvm_set_rflags(vcpu, rflags); 9909 kvm_make_request(KVM_REQ_EVENT, vcpu); 9910 } 9911 EXPORT_SYMBOL_GPL(kvm_set_rflags); 9912 9913 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 9914 { 9915 int r; 9916 9917 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 9918 work->wakeup_all) 9919 return; 9920 9921 r = kvm_mmu_reload(vcpu); 9922 if (unlikely(r)) 9923 return; 9924 9925 if (!vcpu->arch.mmu->direct_map && 9926 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu)) 9927 return; 9928 9929 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true); 9930 } 9931 9932 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 9933 { 9934 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 9935 } 9936 9937 static inline u32 kvm_async_pf_next_probe(u32 key) 9938 { 9939 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 9940 } 9941 9942 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9943 { 9944 u32 key = kvm_async_pf_hash_fn(gfn); 9945 9946 while (vcpu->arch.apf.gfns[key] != ~0) 9947 key = kvm_async_pf_next_probe(key); 9948 9949 vcpu->arch.apf.gfns[key] = gfn; 9950 } 9951 9952 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 9953 { 9954 int i; 9955 u32 key = kvm_async_pf_hash_fn(gfn); 9956 9957 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 9958 (vcpu->arch.apf.gfns[key] != gfn && 9959 vcpu->arch.apf.gfns[key] != ~0); i++) 9960 key = kvm_async_pf_next_probe(key); 9961 9962 return key; 9963 } 9964 9965 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9966 { 9967 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 9968 } 9969 9970 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 9971 { 9972 u32 i, j, k; 9973 9974 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 9975 while (true) { 9976 vcpu->arch.apf.gfns[i] = ~0; 9977 do { 9978 j = kvm_async_pf_next_probe(j); 9979 if (vcpu->arch.apf.gfns[j] == ~0) 9980 return; 9981 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 9982 /* 9983 * k lies cyclically in ]i,j] 9984 * | i.k.j | 9985 * |....j i.k.| or |.k..j i...| 9986 */ 9987 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 9988 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 9989 i = j; 9990 } 9991 } 9992 9993 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 9994 { 9995 9996 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 9997 sizeof(val)); 9998 } 9999 10000 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 10001 { 10002 10003 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 10004 sizeof(u32)); 10005 } 10006 10007 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10008 { 10009 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10010 return false; 10011 10012 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 10013 (vcpu->arch.apf.send_user_only && 10014 kvm_x86_ops->get_cpl(vcpu) == 0)) 10015 return false; 10016 10017 return true; 10018 } 10019 10020 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10021 { 10022 if (unlikely(!lapic_in_kernel(vcpu) || 10023 kvm_event_needs_reinjection(vcpu) || 10024 vcpu->arch.exception.pending)) 10025 return false; 10026 10027 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10028 return false; 10029 10030 /* 10031 * If interrupts are off we cannot even use an artificial 10032 * halt state. 10033 */ 10034 return kvm_x86_ops->interrupt_allowed(vcpu); 10035 } 10036 10037 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10038 struct kvm_async_pf *work) 10039 { 10040 struct x86_exception fault; 10041 10042 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 10043 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10044 10045 if (kvm_can_deliver_async_pf(vcpu) && 10046 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 10047 fault.vector = PF_VECTOR; 10048 fault.error_code_valid = true; 10049 fault.error_code = 0; 10050 fault.nested_page_fault = false; 10051 fault.address = work->arch.token; 10052 fault.async_page_fault = true; 10053 kvm_inject_page_fault(vcpu, &fault); 10054 } else { 10055 /* 10056 * It is not possible to deliver a paravirtualized asynchronous 10057 * page fault, but putting the guest in an artificial halt state 10058 * can be beneficial nevertheless: if an interrupt arrives, we 10059 * can deliver it timely and perhaps the guest will schedule 10060 * another process. When the instruction that triggered a page 10061 * fault is retried, hopefully the page will be ready in the host. 10062 */ 10063 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10064 } 10065 } 10066 10067 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10068 struct kvm_async_pf *work) 10069 { 10070 struct x86_exception fault; 10071 u32 val; 10072 10073 if (work->wakeup_all) 10074 work->arch.token = ~0; /* broadcast wakeup */ 10075 else 10076 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10077 trace_kvm_async_pf_ready(work->arch.token, work->gva); 10078 10079 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 10080 !apf_get_user(vcpu, &val)) { 10081 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 10082 vcpu->arch.exception.pending && 10083 vcpu->arch.exception.nr == PF_VECTOR && 10084 !apf_put_user(vcpu, 0)) { 10085 vcpu->arch.exception.injected = false; 10086 vcpu->arch.exception.pending = false; 10087 vcpu->arch.exception.nr = 0; 10088 vcpu->arch.exception.has_error_code = false; 10089 vcpu->arch.exception.error_code = 0; 10090 vcpu->arch.exception.has_payload = false; 10091 vcpu->arch.exception.payload = 0; 10092 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 10093 fault.vector = PF_VECTOR; 10094 fault.error_code_valid = true; 10095 fault.error_code = 0; 10096 fault.nested_page_fault = false; 10097 fault.address = work->arch.token; 10098 fault.async_page_fault = true; 10099 kvm_inject_page_fault(vcpu, &fault); 10100 } 10101 } 10102 vcpu->arch.apf.halted = false; 10103 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10104 } 10105 10106 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 10107 { 10108 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 10109 return true; 10110 else 10111 return kvm_can_do_async_pf(vcpu); 10112 } 10113 10114 void kvm_arch_start_assignment(struct kvm *kvm) 10115 { 10116 atomic_inc(&kvm->arch.assigned_device_count); 10117 } 10118 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10119 10120 void kvm_arch_end_assignment(struct kvm *kvm) 10121 { 10122 atomic_dec(&kvm->arch.assigned_device_count); 10123 } 10124 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10125 10126 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10127 { 10128 return atomic_read(&kvm->arch.assigned_device_count); 10129 } 10130 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10131 10132 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10133 { 10134 atomic_inc(&kvm->arch.noncoherent_dma_count); 10135 } 10136 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10137 10138 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10139 { 10140 atomic_dec(&kvm->arch.noncoherent_dma_count); 10141 } 10142 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10143 10144 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10145 { 10146 return atomic_read(&kvm->arch.noncoherent_dma_count); 10147 } 10148 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10149 10150 bool kvm_arch_has_irq_bypass(void) 10151 { 10152 return true; 10153 } 10154 10155 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10156 struct irq_bypass_producer *prod) 10157 { 10158 struct kvm_kernel_irqfd *irqfd = 10159 container_of(cons, struct kvm_kernel_irqfd, consumer); 10160 10161 irqfd->producer = prod; 10162 10163 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 10164 prod->irq, irqfd->gsi, 1); 10165 } 10166 10167 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10168 struct irq_bypass_producer *prod) 10169 { 10170 int ret; 10171 struct kvm_kernel_irqfd *irqfd = 10172 container_of(cons, struct kvm_kernel_irqfd, consumer); 10173 10174 WARN_ON(irqfd->producer != prod); 10175 irqfd->producer = NULL; 10176 10177 /* 10178 * When producer of consumer is unregistered, we change back to 10179 * remapped mode, so we can re-use the current implementation 10180 * when the irq is masked/disabled or the consumer side (KVM 10181 * int this case doesn't want to receive the interrupts. 10182 */ 10183 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10184 if (ret) 10185 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10186 " fails: %d\n", irqfd->consumer.token, ret); 10187 } 10188 10189 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10190 uint32_t guest_irq, bool set) 10191 { 10192 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 10193 } 10194 10195 bool kvm_vector_hashing_enabled(void) 10196 { 10197 return vector_hashing; 10198 } 10199 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 10200 10201 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10202 { 10203 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10204 } 10205 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10206 10207 10208 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10209 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10210 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10211 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10212 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10213 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10215 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10216 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10217 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10228