1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 62 #include <trace/events/kvm.h> 63 64 #include <asm/debugreg.h> 65 #include <asm/msr.h> 66 #include <asm/desc.h> 67 #include <asm/mce.h> 68 #include <linux/kernel_stat.h> 69 #include <asm/fpu/internal.h> /* Ugh! */ 70 #include <asm/pvclock.h> 71 #include <asm/div64.h> 72 #include <asm/irq_remapping.h> 73 #include <asm/mshyperv.h> 74 #include <asm/hypervisor.h> 75 #include <asm/tlbflush.h> 76 #include <asm/intel_pt.h> 77 #include <asm/emulate_prefix.h> 78 #include <clocksource/hyperv_timer.h> 79 80 #define CREATE_TRACE_POINTS 81 #include "trace.h" 82 83 #define MAX_IO_MSRS 256 84 #define KVM_MAX_MCE_BANKS 32 85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 87 88 #define emul_to_vcpu(ctxt) \ 89 ((struct kvm_vcpu *)(ctxt)->vcpu) 90 91 /* EFER defaults: 92 * - enable syscall per default because its emulated by KVM 93 * - enable LME and LMA per default on 64 bit KVM 94 */ 95 #ifdef CONFIG_X86_64 96 static 97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 98 #else 99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 100 #endif 101 102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 103 104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 105 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 106 107 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 108 static void process_nmi(struct kvm_vcpu *vcpu); 109 static void process_smi(struct kvm_vcpu *vcpu); 110 static void enter_smm(struct kvm_vcpu *vcpu); 111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 112 static void store_regs(struct kvm_vcpu *vcpu); 113 static int sync_regs(struct kvm_vcpu *vcpu); 114 115 struct kvm_x86_ops kvm_x86_ops __read_mostly; 116 EXPORT_SYMBOL_GPL(kvm_x86_ops); 117 118 #define KVM_X86_OP(func) \ 119 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 120 *(((struct kvm_x86_ops *)0)->func)); 121 #define KVM_X86_OP_NULL KVM_X86_OP 122 #include <asm/kvm-x86-ops.h> 123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current); 126 127 static bool __read_mostly ignore_msrs = 0; 128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 129 130 bool __read_mostly report_ignored_msrs = true; 131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 132 EXPORT_SYMBOL_GPL(report_ignored_msrs); 133 134 unsigned int min_timer_period_us = 200; 135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 136 137 static bool __read_mostly kvmclock_periodic_sync = true; 138 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 139 140 bool __read_mostly kvm_has_tsc_control; 141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 142 u32 __read_mostly kvm_max_guest_tsc_khz; 143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 144 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 146 u64 __read_mostly kvm_max_tsc_scaling_ratio; 147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 148 u64 __read_mostly kvm_default_tsc_scaling_ratio; 149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 150 bool __read_mostly kvm_has_bus_lock_exit; 151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 152 153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 154 static u32 __read_mostly tsc_tolerance_ppm = 250; 155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 156 157 /* 158 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 159 * adaptive tuning starting from default advancment of 1000ns. '0' disables 160 * advancement entirely. Any other value is used as-is and disables adaptive 161 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 162 */ 163 static int __read_mostly lapic_timer_advance_ns = -1; 164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 165 166 static bool __read_mostly vector_hashing = true; 167 module_param(vector_hashing, bool, S_IRUGO); 168 169 bool __read_mostly enable_vmware_backdoor = false; 170 module_param(enable_vmware_backdoor, bool, S_IRUGO); 171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 172 173 static bool __read_mostly force_emulation_prefix = false; 174 module_param(force_emulation_prefix, bool, S_IRUGO); 175 176 int __read_mostly pi_inject_timer = -1; 177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 178 179 /* 180 * Restoring the host value for MSRs that are only consumed when running in 181 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 182 * returns to userspace, i.e. the kernel can run with the guest's value. 183 */ 184 #define KVM_MAX_NR_USER_RETURN_MSRS 16 185 186 struct kvm_user_return_msrs_global { 187 int nr; 188 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS]; 189 }; 190 191 struct kvm_user_return_msrs { 192 struct user_return_notifier urn; 193 bool registered; 194 struct kvm_user_return_msr_values { 195 u64 host; 196 u64 curr; 197 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 198 }; 199 200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global; 201 static struct kvm_user_return_msrs __percpu *user_return_msrs; 202 203 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 204 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 205 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 206 | XFEATURE_MASK_PKRU) 207 208 u64 __read_mostly host_efer; 209 EXPORT_SYMBOL_GPL(host_efer); 210 211 bool __read_mostly allow_smaller_maxphyaddr = 0; 212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 213 214 u64 __read_mostly host_xss; 215 EXPORT_SYMBOL_GPL(host_xss); 216 u64 __read_mostly supported_xss; 217 EXPORT_SYMBOL_GPL(supported_xss); 218 219 struct kvm_stats_debugfs_item debugfs_entries[] = { 220 VCPU_STAT("pf_fixed", pf_fixed), 221 VCPU_STAT("pf_guest", pf_guest), 222 VCPU_STAT("tlb_flush", tlb_flush), 223 VCPU_STAT("invlpg", invlpg), 224 VCPU_STAT("exits", exits), 225 VCPU_STAT("io_exits", io_exits), 226 VCPU_STAT("mmio_exits", mmio_exits), 227 VCPU_STAT("signal_exits", signal_exits), 228 VCPU_STAT("irq_window", irq_window_exits), 229 VCPU_STAT("nmi_window", nmi_window_exits), 230 VCPU_STAT("halt_exits", halt_exits), 231 VCPU_STAT("halt_successful_poll", halt_successful_poll), 232 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 233 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 234 VCPU_STAT("halt_wakeup", halt_wakeup), 235 VCPU_STAT("hypercalls", hypercalls), 236 VCPU_STAT("request_irq", request_irq_exits), 237 VCPU_STAT("irq_exits", irq_exits), 238 VCPU_STAT("host_state_reload", host_state_reload), 239 VCPU_STAT("fpu_reload", fpu_reload), 240 VCPU_STAT("insn_emulation", insn_emulation), 241 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 242 VCPU_STAT("irq_injections", irq_injections), 243 VCPU_STAT("nmi_injections", nmi_injections), 244 VCPU_STAT("req_event", req_event), 245 VCPU_STAT("l1d_flush", l1d_flush), 246 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 247 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 248 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 249 VM_STAT("mmu_pte_write", mmu_pte_write), 250 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 251 VM_STAT("mmu_flooded", mmu_flooded), 252 VM_STAT("mmu_recycled", mmu_recycled), 253 VM_STAT("mmu_cache_miss", mmu_cache_miss), 254 VM_STAT("mmu_unsync", mmu_unsync), 255 VM_STAT("remote_tlb_flush", remote_tlb_flush), 256 VM_STAT("largepages", lpages, .mode = 0444), 257 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 258 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 259 { NULL } 260 }; 261 262 u64 __read_mostly host_xcr0; 263 u64 __read_mostly supported_xcr0; 264 EXPORT_SYMBOL_GPL(supported_xcr0); 265 266 static struct kmem_cache *x86_fpu_cache; 267 268 static struct kmem_cache *x86_emulator_cache; 269 270 /* 271 * When called, it means the previous get/set msr reached an invalid msr. 272 * Return true if we want to ignore/silent this failed msr access. 273 */ 274 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 275 u64 data, bool write) 276 { 277 const char *op = write ? "wrmsr" : "rdmsr"; 278 279 if (ignore_msrs) { 280 if (report_ignored_msrs) 281 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 282 op, msr, data); 283 /* Mask the error */ 284 return true; 285 } else { 286 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 287 op, msr, data); 288 return false; 289 } 290 } 291 292 static struct kmem_cache *kvm_alloc_emulator_cache(void) 293 { 294 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 295 unsigned int size = sizeof(struct x86_emulate_ctxt); 296 297 return kmem_cache_create_usercopy("x86_emulator", size, 298 __alignof__(struct x86_emulate_ctxt), 299 SLAB_ACCOUNT, useroffset, 300 size - useroffset, NULL); 301 } 302 303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 304 305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 306 { 307 int i; 308 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 309 vcpu->arch.apf.gfns[i] = ~0; 310 } 311 312 static void kvm_on_user_return(struct user_return_notifier *urn) 313 { 314 unsigned slot; 315 struct kvm_user_return_msrs *msrs 316 = container_of(urn, struct kvm_user_return_msrs, urn); 317 struct kvm_user_return_msr_values *values; 318 unsigned long flags; 319 320 /* 321 * Disabling irqs at this point since the following code could be 322 * interrupted and executed through kvm_arch_hardware_disable() 323 */ 324 local_irq_save(flags); 325 if (msrs->registered) { 326 msrs->registered = false; 327 user_return_notifier_unregister(urn); 328 } 329 local_irq_restore(flags); 330 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) { 331 values = &msrs->values[slot]; 332 if (values->host != values->curr) { 333 wrmsrl(user_return_msrs_global.msrs[slot], values->host); 334 values->curr = values->host; 335 } 336 } 337 } 338 339 void kvm_define_user_return_msr(unsigned slot, u32 msr) 340 { 341 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS); 342 user_return_msrs_global.msrs[slot] = msr; 343 if (slot >= user_return_msrs_global.nr) 344 user_return_msrs_global.nr = slot + 1; 345 } 346 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr); 347 348 static void kvm_user_return_msr_cpu_online(void) 349 { 350 unsigned int cpu = smp_processor_id(); 351 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 352 u64 value; 353 int i; 354 355 for (i = 0; i < user_return_msrs_global.nr; ++i) { 356 rdmsrl_safe(user_return_msrs_global.msrs[i], &value); 357 msrs->values[i].host = value; 358 msrs->values[i].curr = value; 359 } 360 } 361 362 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 363 { 364 unsigned int cpu = smp_processor_id(); 365 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 366 int err; 367 368 value = (value & mask) | (msrs->values[slot].host & ~mask); 369 if (value == msrs->values[slot].curr) 370 return 0; 371 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value); 372 if (err) 373 return 1; 374 375 msrs->values[slot].curr = value; 376 if (!msrs->registered) { 377 msrs->urn.on_user_return = kvm_on_user_return; 378 user_return_notifier_register(&msrs->urn); 379 msrs->registered = true; 380 } 381 return 0; 382 } 383 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 384 385 static void drop_user_return_notifiers(void) 386 { 387 unsigned int cpu = smp_processor_id(); 388 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 389 390 if (msrs->registered) 391 kvm_on_user_return(&msrs->urn); 392 } 393 394 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 395 { 396 return vcpu->arch.apic_base; 397 } 398 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 399 400 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 401 { 402 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 403 } 404 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 405 406 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 407 { 408 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 409 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 410 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 411 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 412 413 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 414 return 1; 415 if (!msr_info->host_initiated) { 416 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 417 return 1; 418 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 419 return 1; 420 } 421 422 kvm_lapic_set_base(vcpu, msr_info->data); 423 kvm_recalculate_apic_map(vcpu->kvm); 424 return 0; 425 } 426 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 427 428 asmlinkage __visible noinstr void kvm_spurious_fault(void) 429 { 430 /* Fault while not rebooting. We want the trace. */ 431 BUG_ON(!kvm_rebooting); 432 } 433 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 434 435 #define EXCPT_BENIGN 0 436 #define EXCPT_CONTRIBUTORY 1 437 #define EXCPT_PF 2 438 439 static int exception_class(int vector) 440 { 441 switch (vector) { 442 case PF_VECTOR: 443 return EXCPT_PF; 444 case DE_VECTOR: 445 case TS_VECTOR: 446 case NP_VECTOR: 447 case SS_VECTOR: 448 case GP_VECTOR: 449 return EXCPT_CONTRIBUTORY; 450 default: 451 break; 452 } 453 return EXCPT_BENIGN; 454 } 455 456 #define EXCPT_FAULT 0 457 #define EXCPT_TRAP 1 458 #define EXCPT_ABORT 2 459 #define EXCPT_INTERRUPT 3 460 461 static int exception_type(int vector) 462 { 463 unsigned int mask; 464 465 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 466 return EXCPT_INTERRUPT; 467 468 mask = 1 << vector; 469 470 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 471 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 472 return EXCPT_TRAP; 473 474 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 475 return EXCPT_ABORT; 476 477 /* Reserved exceptions will result in fault */ 478 return EXCPT_FAULT; 479 } 480 481 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 482 { 483 unsigned nr = vcpu->arch.exception.nr; 484 bool has_payload = vcpu->arch.exception.has_payload; 485 unsigned long payload = vcpu->arch.exception.payload; 486 487 if (!has_payload) 488 return; 489 490 switch (nr) { 491 case DB_VECTOR: 492 /* 493 * "Certain debug exceptions may clear bit 0-3. The 494 * remaining contents of the DR6 register are never 495 * cleared by the processor". 496 */ 497 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 498 /* 499 * In order to reflect the #DB exception payload in guest 500 * dr6, three components need to be considered: active low 501 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 502 * DR6_BS and DR6_BT) 503 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 504 * In the target guest dr6: 505 * FIXED_1 bits should always be set. 506 * Active low bits should be cleared if 1-setting in payload. 507 * Active high bits should be set if 1-setting in payload. 508 * 509 * Note, the payload is compatible with the pending debug 510 * exceptions/exit qualification under VMX, that active_low bits 511 * are active high in payload. 512 * So they need to be flipped for DR6. 513 */ 514 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 515 vcpu->arch.dr6 |= payload; 516 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 517 518 /* 519 * The #DB payload is defined as compatible with the 'pending 520 * debug exceptions' field under VMX, not DR6. While bit 12 is 521 * defined in the 'pending debug exceptions' field (enabled 522 * breakpoint), it is reserved and must be zero in DR6. 523 */ 524 vcpu->arch.dr6 &= ~BIT(12); 525 break; 526 case PF_VECTOR: 527 vcpu->arch.cr2 = payload; 528 break; 529 } 530 531 vcpu->arch.exception.has_payload = false; 532 vcpu->arch.exception.payload = 0; 533 } 534 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 535 536 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 537 unsigned nr, bool has_error, u32 error_code, 538 bool has_payload, unsigned long payload, bool reinject) 539 { 540 u32 prev_nr; 541 int class1, class2; 542 543 kvm_make_request(KVM_REQ_EVENT, vcpu); 544 545 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 546 queue: 547 if (has_error && !is_protmode(vcpu)) 548 has_error = false; 549 if (reinject) { 550 /* 551 * On vmentry, vcpu->arch.exception.pending is only 552 * true if an event injection was blocked by 553 * nested_run_pending. In that case, however, 554 * vcpu_enter_guest requests an immediate exit, 555 * and the guest shouldn't proceed far enough to 556 * need reinjection. 557 */ 558 WARN_ON_ONCE(vcpu->arch.exception.pending); 559 vcpu->arch.exception.injected = true; 560 if (WARN_ON_ONCE(has_payload)) { 561 /* 562 * A reinjected event has already 563 * delivered its payload. 564 */ 565 has_payload = false; 566 payload = 0; 567 } 568 } else { 569 vcpu->arch.exception.pending = true; 570 vcpu->arch.exception.injected = false; 571 } 572 vcpu->arch.exception.has_error_code = has_error; 573 vcpu->arch.exception.nr = nr; 574 vcpu->arch.exception.error_code = error_code; 575 vcpu->arch.exception.has_payload = has_payload; 576 vcpu->arch.exception.payload = payload; 577 if (!is_guest_mode(vcpu)) 578 kvm_deliver_exception_payload(vcpu); 579 return; 580 } 581 582 /* to check exception */ 583 prev_nr = vcpu->arch.exception.nr; 584 if (prev_nr == DF_VECTOR) { 585 /* triple fault -> shutdown */ 586 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 587 return; 588 } 589 class1 = exception_class(prev_nr); 590 class2 = exception_class(nr); 591 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 592 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 593 /* 594 * Generate double fault per SDM Table 5-5. Set 595 * exception.pending = true so that the double fault 596 * can trigger a nested vmexit. 597 */ 598 vcpu->arch.exception.pending = true; 599 vcpu->arch.exception.injected = false; 600 vcpu->arch.exception.has_error_code = true; 601 vcpu->arch.exception.nr = DF_VECTOR; 602 vcpu->arch.exception.error_code = 0; 603 vcpu->arch.exception.has_payload = false; 604 vcpu->arch.exception.payload = 0; 605 } else 606 /* replace previous exception with a new one in a hope 607 that instruction re-execution will regenerate lost 608 exception */ 609 goto queue; 610 } 611 612 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 613 { 614 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 615 } 616 EXPORT_SYMBOL_GPL(kvm_queue_exception); 617 618 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 619 { 620 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 621 } 622 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 623 624 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 625 unsigned long payload) 626 { 627 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 628 } 629 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 630 631 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 632 u32 error_code, unsigned long payload) 633 { 634 kvm_multiple_exception(vcpu, nr, true, error_code, 635 true, payload, false); 636 } 637 638 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 639 { 640 if (err) 641 kvm_inject_gp(vcpu, 0); 642 else 643 return kvm_skip_emulated_instruction(vcpu); 644 645 return 1; 646 } 647 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 648 649 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 650 { 651 ++vcpu->stat.pf_guest; 652 vcpu->arch.exception.nested_apf = 653 is_guest_mode(vcpu) && fault->async_page_fault; 654 if (vcpu->arch.exception.nested_apf) { 655 vcpu->arch.apf.nested_apf_token = fault->address; 656 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 657 } else { 658 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 659 fault->address); 660 } 661 } 662 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 663 664 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 665 struct x86_exception *fault) 666 { 667 struct kvm_mmu *fault_mmu; 668 WARN_ON_ONCE(fault->vector != PF_VECTOR); 669 670 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 671 vcpu->arch.walk_mmu; 672 673 /* 674 * Invalidate the TLB entry for the faulting address, if it exists, 675 * else the access will fault indefinitely (and to emulate hardware). 676 */ 677 if ((fault->error_code & PFERR_PRESENT_MASK) && 678 !(fault->error_code & PFERR_RSVD_MASK)) 679 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 680 fault_mmu->root_hpa); 681 682 fault_mmu->inject_page_fault(vcpu, fault); 683 return fault->nested_page_fault; 684 } 685 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 686 687 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 688 { 689 atomic_inc(&vcpu->arch.nmi_queued); 690 kvm_make_request(KVM_REQ_NMI, vcpu); 691 } 692 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 693 694 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 695 { 696 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 697 } 698 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 699 700 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 701 { 702 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 703 } 704 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 705 706 /* 707 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 708 * a #GP and return false. 709 */ 710 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 711 { 712 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 713 return true; 714 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 715 return false; 716 } 717 EXPORT_SYMBOL_GPL(kvm_require_cpl); 718 719 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 720 { 721 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 722 return true; 723 724 kvm_queue_exception(vcpu, UD_VECTOR); 725 return false; 726 } 727 EXPORT_SYMBOL_GPL(kvm_require_dr); 728 729 /* 730 * This function will be used to read from the physical memory of the currently 731 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 732 * can read from guest physical or from the guest's guest physical memory. 733 */ 734 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 735 gfn_t ngfn, void *data, int offset, int len, 736 u32 access) 737 { 738 struct x86_exception exception; 739 gfn_t real_gfn; 740 gpa_t ngpa; 741 742 ngpa = gfn_to_gpa(ngfn); 743 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 744 if (real_gfn == UNMAPPED_GVA) 745 return -EFAULT; 746 747 real_gfn = gpa_to_gfn(real_gfn); 748 749 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 750 } 751 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 752 753 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 754 void *data, int offset, int len, u32 access) 755 { 756 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 757 data, offset, len, access); 758 } 759 760 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 761 { 762 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 763 } 764 765 /* 766 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 767 */ 768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 769 { 770 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 771 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 772 int i; 773 int ret; 774 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 775 776 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 777 offset * sizeof(u64), sizeof(pdpte), 778 PFERR_USER_MASK|PFERR_WRITE_MASK); 779 if (ret < 0) { 780 ret = 0; 781 goto out; 782 } 783 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 784 if ((pdpte[i] & PT_PRESENT_MASK) && 785 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 786 ret = 0; 787 goto out; 788 } 789 } 790 ret = 1; 791 792 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 793 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 794 795 out: 796 797 return ret; 798 } 799 EXPORT_SYMBOL_GPL(load_pdptrs); 800 801 bool pdptrs_changed(struct kvm_vcpu *vcpu) 802 { 803 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 804 int offset; 805 gfn_t gfn; 806 int r; 807 808 if (!is_pae_paging(vcpu)) 809 return false; 810 811 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 812 return true; 813 814 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 815 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 816 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 817 PFERR_USER_MASK | PFERR_WRITE_MASK); 818 if (r < 0) 819 return true; 820 821 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 822 } 823 EXPORT_SYMBOL_GPL(pdptrs_changed); 824 825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 826 { 827 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 828 829 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 830 kvm_clear_async_pf_completion_queue(vcpu); 831 kvm_async_pf_hash_reset(vcpu); 832 } 833 834 if ((cr0 ^ old_cr0) & update_bits) 835 kvm_mmu_reset_context(vcpu); 836 837 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 838 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 839 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 840 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 841 } 842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 843 844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 845 { 846 unsigned long old_cr0 = kvm_read_cr0(vcpu); 847 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 848 849 cr0 |= X86_CR0_ET; 850 851 #ifdef CONFIG_X86_64 852 if (cr0 & 0xffffffff00000000UL) 853 return 1; 854 #endif 855 856 cr0 &= ~CR0_RESERVED_BITS; 857 858 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 859 return 1; 860 861 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 862 return 1; 863 864 #ifdef CONFIG_X86_64 865 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 866 (cr0 & X86_CR0_PG)) { 867 int cs_db, cs_l; 868 869 if (!is_pae(vcpu)) 870 return 1; 871 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 872 if (cs_l) 873 return 1; 874 } 875 #endif 876 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 877 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 878 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 879 return 1; 880 881 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 882 return 1; 883 884 static_call(kvm_x86_set_cr0)(vcpu, cr0); 885 886 kvm_post_set_cr0(vcpu, old_cr0, cr0); 887 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(kvm_set_cr0); 891 892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 893 { 894 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 895 } 896 EXPORT_SYMBOL_GPL(kvm_lmsw); 897 898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 899 { 900 if (vcpu->arch.guest_state_protected) 901 return; 902 903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 904 905 if (vcpu->arch.xcr0 != host_xcr0) 906 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 907 908 if (vcpu->arch.xsaves_enabled && 909 vcpu->arch.ia32_xss != host_xss) 910 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 911 } 912 913 if (static_cpu_has(X86_FEATURE_PKU) && 914 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 915 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 916 vcpu->arch.pkru != vcpu->arch.host_pkru) 917 __write_pkru(vcpu->arch.pkru); 918 } 919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 920 921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 922 { 923 if (vcpu->arch.guest_state_protected) 924 return; 925 926 if (static_cpu_has(X86_FEATURE_PKU) && 927 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 928 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 929 vcpu->arch.pkru = rdpkru(); 930 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 931 __write_pkru(vcpu->arch.host_pkru); 932 } 933 934 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 935 936 if (vcpu->arch.xcr0 != host_xcr0) 937 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 938 939 if (vcpu->arch.xsaves_enabled && 940 vcpu->arch.ia32_xss != host_xss) 941 wrmsrl(MSR_IA32_XSS, host_xss); 942 } 943 944 } 945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 946 947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 948 { 949 u64 xcr0 = xcr; 950 u64 old_xcr0 = vcpu->arch.xcr0; 951 u64 valid_bits; 952 953 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 954 if (index != XCR_XFEATURE_ENABLED_MASK) 955 return 1; 956 if (!(xcr0 & XFEATURE_MASK_FP)) 957 return 1; 958 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 959 return 1; 960 961 /* 962 * Do not allow the guest to set bits that we do not support 963 * saving. However, xcr0 bit 0 is always set, even if the 964 * emulated CPU does not support XSAVE (see fx_init). 965 */ 966 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 967 if (xcr0 & ~valid_bits) 968 return 1; 969 970 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 971 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 972 return 1; 973 974 if (xcr0 & XFEATURE_MASK_AVX512) { 975 if (!(xcr0 & XFEATURE_MASK_YMM)) 976 return 1; 977 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 978 return 1; 979 } 980 vcpu->arch.xcr0 = xcr0; 981 982 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 983 kvm_update_cpuid_runtime(vcpu); 984 return 0; 985 } 986 987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 988 { 989 if (static_call(kvm_x86_get_cpl)(vcpu) == 0) 990 return __kvm_set_xcr(vcpu, index, xcr); 991 992 return 1; 993 } 994 EXPORT_SYMBOL_GPL(kvm_set_xcr); 995 996 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 997 { 998 if (cr4 & cr4_reserved_bits) 999 return false; 1000 1001 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1002 return false; 1003 1004 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1005 } 1006 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1007 1008 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1009 { 1010 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 1011 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 1012 1013 if (((cr4 ^ old_cr4) & mmu_role_bits) || 1014 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1015 kvm_mmu_reset_context(vcpu); 1016 } 1017 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1018 1019 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1020 { 1021 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1022 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 1023 X86_CR4_SMEP; 1024 1025 if (!kvm_is_valid_cr4(vcpu, cr4)) 1026 return 1; 1027 1028 if (is_long_mode(vcpu)) { 1029 if (!(cr4 & X86_CR4_PAE)) 1030 return 1; 1031 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1032 return 1; 1033 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1034 && ((cr4 ^ old_cr4) & pdptr_bits) 1035 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 1036 kvm_read_cr3(vcpu))) 1037 return 1; 1038 1039 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1040 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1041 return 1; 1042 1043 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1044 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1045 return 1; 1046 } 1047 1048 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1049 1050 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1051 1052 return 0; 1053 } 1054 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1055 1056 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1057 { 1058 bool skip_tlb_flush = false; 1059 #ifdef CONFIG_X86_64 1060 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1061 1062 if (pcid_enabled) { 1063 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1064 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1065 } 1066 #endif 1067 1068 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1069 if (!skip_tlb_flush) { 1070 kvm_mmu_sync_roots(vcpu); 1071 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1072 } 1073 return 0; 1074 } 1075 1076 if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1077 return 1; 1078 else if (is_pae_paging(vcpu) && 1079 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1080 return 1; 1081 1082 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1083 vcpu->arch.cr3 = cr3; 1084 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1085 1086 return 0; 1087 } 1088 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1089 1090 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1091 { 1092 if (cr8 & CR8_RESERVED_BITS) 1093 return 1; 1094 if (lapic_in_kernel(vcpu)) 1095 kvm_lapic_set_tpr(vcpu, cr8); 1096 else 1097 vcpu->arch.cr8 = cr8; 1098 return 0; 1099 } 1100 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1101 1102 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1103 { 1104 if (lapic_in_kernel(vcpu)) 1105 return kvm_lapic_get_cr8(vcpu); 1106 else 1107 return vcpu->arch.cr8; 1108 } 1109 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1110 1111 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1112 { 1113 int i; 1114 1115 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1116 for (i = 0; i < KVM_NR_DB_REGS; i++) 1117 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1118 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1119 } 1120 } 1121 1122 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1123 { 1124 unsigned long dr7; 1125 1126 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1127 dr7 = vcpu->arch.guest_debug_dr7; 1128 else 1129 dr7 = vcpu->arch.dr7; 1130 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1131 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1132 if (dr7 & DR7_BP_EN_MASK) 1133 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1136 1137 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1138 { 1139 u64 fixed = DR6_FIXED_1; 1140 1141 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1142 fixed |= DR6_RTM; 1143 return fixed; 1144 } 1145 1146 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1147 { 1148 size_t size = ARRAY_SIZE(vcpu->arch.db); 1149 1150 switch (dr) { 1151 case 0 ... 3: 1152 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1153 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1154 vcpu->arch.eff_db[dr] = val; 1155 break; 1156 case 4: 1157 case 6: 1158 if (!kvm_dr6_valid(val)) 1159 return 1; /* #GP */ 1160 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1161 break; 1162 case 5: 1163 default: /* 7 */ 1164 if (!kvm_dr7_valid(val)) 1165 return 1; /* #GP */ 1166 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1167 kvm_update_dr7(vcpu); 1168 break; 1169 } 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(kvm_set_dr); 1174 1175 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1176 { 1177 size_t size = ARRAY_SIZE(vcpu->arch.db); 1178 1179 switch (dr) { 1180 case 0 ... 3: 1181 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1182 break; 1183 case 4: 1184 case 6: 1185 *val = vcpu->arch.dr6; 1186 break; 1187 case 5: 1188 default: /* 7 */ 1189 *val = vcpu->arch.dr7; 1190 break; 1191 } 1192 } 1193 EXPORT_SYMBOL_GPL(kvm_get_dr); 1194 1195 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1196 { 1197 u32 ecx = kvm_rcx_read(vcpu); 1198 u64 data; 1199 int err; 1200 1201 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1202 if (err) 1203 return err; 1204 kvm_rax_write(vcpu, (u32)data); 1205 kvm_rdx_write(vcpu, data >> 32); 1206 return err; 1207 } 1208 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1209 1210 /* 1211 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1212 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1213 * 1214 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1215 * extract the supported MSRs from the related const lists. 1216 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1217 * capabilities of the host cpu. This capabilities test skips MSRs that are 1218 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1219 * may depend on host virtualization features rather than host cpu features. 1220 */ 1221 1222 static const u32 msrs_to_save_all[] = { 1223 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1224 MSR_STAR, 1225 #ifdef CONFIG_X86_64 1226 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1227 #endif 1228 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1229 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1230 MSR_IA32_SPEC_CTRL, 1231 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1232 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1233 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1234 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1235 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1236 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1237 MSR_IA32_UMWAIT_CONTROL, 1238 1239 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1240 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1241 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1242 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1243 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1244 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1245 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1246 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1247 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1248 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1249 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1250 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1251 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1252 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1253 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1254 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1255 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1256 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1257 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1258 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1259 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1260 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1261 }; 1262 1263 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1264 static unsigned num_msrs_to_save; 1265 1266 static const u32 emulated_msrs_all[] = { 1267 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1268 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1269 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1270 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1271 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1272 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1273 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1274 HV_X64_MSR_RESET, 1275 HV_X64_MSR_VP_INDEX, 1276 HV_X64_MSR_VP_RUNTIME, 1277 HV_X64_MSR_SCONTROL, 1278 HV_X64_MSR_STIMER0_CONFIG, 1279 HV_X64_MSR_VP_ASSIST_PAGE, 1280 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1281 HV_X64_MSR_TSC_EMULATION_STATUS, 1282 HV_X64_MSR_SYNDBG_OPTIONS, 1283 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1284 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1285 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1286 1287 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1288 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1289 1290 MSR_IA32_TSC_ADJUST, 1291 MSR_IA32_TSCDEADLINE, 1292 MSR_IA32_ARCH_CAPABILITIES, 1293 MSR_IA32_PERF_CAPABILITIES, 1294 MSR_IA32_MISC_ENABLE, 1295 MSR_IA32_MCG_STATUS, 1296 MSR_IA32_MCG_CTL, 1297 MSR_IA32_MCG_EXT_CTL, 1298 MSR_IA32_SMBASE, 1299 MSR_SMI_COUNT, 1300 MSR_PLATFORM_INFO, 1301 MSR_MISC_FEATURES_ENABLES, 1302 MSR_AMD64_VIRT_SPEC_CTRL, 1303 MSR_IA32_POWER_CTL, 1304 MSR_IA32_UCODE_REV, 1305 1306 /* 1307 * The following list leaves out MSRs whose values are determined 1308 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1309 * We always support the "true" VMX control MSRs, even if the host 1310 * processor does not, so I am putting these registers here rather 1311 * than in msrs_to_save_all. 1312 */ 1313 MSR_IA32_VMX_BASIC, 1314 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1315 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1316 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1317 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1318 MSR_IA32_VMX_MISC, 1319 MSR_IA32_VMX_CR0_FIXED0, 1320 MSR_IA32_VMX_CR4_FIXED0, 1321 MSR_IA32_VMX_VMCS_ENUM, 1322 MSR_IA32_VMX_PROCBASED_CTLS2, 1323 MSR_IA32_VMX_EPT_VPID_CAP, 1324 MSR_IA32_VMX_VMFUNC, 1325 1326 MSR_K7_HWCR, 1327 MSR_KVM_POLL_CONTROL, 1328 }; 1329 1330 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1331 static unsigned num_emulated_msrs; 1332 1333 /* 1334 * List of msr numbers which are used to expose MSR-based features that 1335 * can be used by a hypervisor to validate requested CPU features. 1336 */ 1337 static const u32 msr_based_features_all[] = { 1338 MSR_IA32_VMX_BASIC, 1339 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1340 MSR_IA32_VMX_PINBASED_CTLS, 1341 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1342 MSR_IA32_VMX_PROCBASED_CTLS, 1343 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1344 MSR_IA32_VMX_EXIT_CTLS, 1345 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1346 MSR_IA32_VMX_ENTRY_CTLS, 1347 MSR_IA32_VMX_MISC, 1348 MSR_IA32_VMX_CR0_FIXED0, 1349 MSR_IA32_VMX_CR0_FIXED1, 1350 MSR_IA32_VMX_CR4_FIXED0, 1351 MSR_IA32_VMX_CR4_FIXED1, 1352 MSR_IA32_VMX_VMCS_ENUM, 1353 MSR_IA32_VMX_PROCBASED_CTLS2, 1354 MSR_IA32_VMX_EPT_VPID_CAP, 1355 MSR_IA32_VMX_VMFUNC, 1356 1357 MSR_F10H_DECFG, 1358 MSR_IA32_UCODE_REV, 1359 MSR_IA32_ARCH_CAPABILITIES, 1360 MSR_IA32_PERF_CAPABILITIES, 1361 }; 1362 1363 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1364 static unsigned int num_msr_based_features; 1365 1366 static u64 kvm_get_arch_capabilities(void) 1367 { 1368 u64 data = 0; 1369 1370 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1371 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1372 1373 /* 1374 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1375 * the nested hypervisor runs with NX huge pages. If it is not, 1376 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1377 * L1 guests, so it need not worry about its own (L2) guests. 1378 */ 1379 data |= ARCH_CAP_PSCHANGE_MC_NO; 1380 1381 /* 1382 * If we're doing cache flushes (either "always" or "cond") 1383 * we will do one whenever the guest does a vmlaunch/vmresume. 1384 * If an outer hypervisor is doing the cache flush for us 1385 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1386 * capability to the guest too, and if EPT is disabled we're not 1387 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1388 * require a nested hypervisor to do a flush of its own. 1389 */ 1390 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1391 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1392 1393 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1394 data |= ARCH_CAP_RDCL_NO; 1395 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1396 data |= ARCH_CAP_SSB_NO; 1397 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1398 data |= ARCH_CAP_MDS_NO; 1399 1400 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1401 /* 1402 * If RTM=0 because the kernel has disabled TSX, the host might 1403 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1404 * and therefore knows that there cannot be TAA) but keep 1405 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1406 * and we want to allow migrating those guests to tsx=off hosts. 1407 */ 1408 data &= ~ARCH_CAP_TAA_NO; 1409 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1410 data |= ARCH_CAP_TAA_NO; 1411 } else { 1412 /* 1413 * Nothing to do here; we emulate TSX_CTRL if present on the 1414 * host so the guest can choose between disabling TSX or 1415 * using VERW to clear CPU buffers. 1416 */ 1417 } 1418 1419 return data; 1420 } 1421 1422 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1423 { 1424 switch (msr->index) { 1425 case MSR_IA32_ARCH_CAPABILITIES: 1426 msr->data = kvm_get_arch_capabilities(); 1427 break; 1428 case MSR_IA32_UCODE_REV: 1429 rdmsrl_safe(msr->index, &msr->data); 1430 break; 1431 default: 1432 return static_call(kvm_x86_get_msr_feature)(msr); 1433 } 1434 return 0; 1435 } 1436 1437 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1438 { 1439 struct kvm_msr_entry msr; 1440 int r; 1441 1442 msr.index = index; 1443 r = kvm_get_msr_feature(&msr); 1444 1445 if (r == KVM_MSR_RET_INVALID) { 1446 /* Unconditionally clear the output for simplicity */ 1447 *data = 0; 1448 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1449 r = 0; 1450 } 1451 1452 if (r) 1453 return r; 1454 1455 *data = msr.data; 1456 1457 return 0; 1458 } 1459 1460 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1461 { 1462 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1463 return false; 1464 1465 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1466 return false; 1467 1468 if (efer & (EFER_LME | EFER_LMA) && 1469 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1470 return false; 1471 1472 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1473 return false; 1474 1475 return true; 1476 1477 } 1478 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1479 { 1480 if (efer & efer_reserved_bits) 1481 return false; 1482 1483 return __kvm_valid_efer(vcpu, efer); 1484 } 1485 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1486 1487 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1488 { 1489 u64 old_efer = vcpu->arch.efer; 1490 u64 efer = msr_info->data; 1491 int r; 1492 1493 if (efer & efer_reserved_bits) 1494 return 1; 1495 1496 if (!msr_info->host_initiated) { 1497 if (!__kvm_valid_efer(vcpu, efer)) 1498 return 1; 1499 1500 if (is_paging(vcpu) && 1501 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1502 return 1; 1503 } 1504 1505 efer &= ~EFER_LMA; 1506 efer |= vcpu->arch.efer & EFER_LMA; 1507 1508 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1509 if (r) { 1510 WARN_ON(r > 0); 1511 return r; 1512 } 1513 1514 /* Update reserved bits */ 1515 if ((efer ^ old_efer) & EFER_NX) 1516 kvm_mmu_reset_context(vcpu); 1517 1518 return 0; 1519 } 1520 1521 void kvm_enable_efer_bits(u64 mask) 1522 { 1523 efer_reserved_bits &= ~mask; 1524 } 1525 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1526 1527 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1528 { 1529 struct kvm_x86_msr_filter *msr_filter; 1530 struct msr_bitmap_range *ranges; 1531 struct kvm *kvm = vcpu->kvm; 1532 bool allowed; 1533 int idx; 1534 u32 i; 1535 1536 /* x2APIC MSRs do not support filtering. */ 1537 if (index >= 0x800 && index <= 0x8ff) 1538 return true; 1539 1540 idx = srcu_read_lock(&kvm->srcu); 1541 1542 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1543 if (!msr_filter) { 1544 allowed = true; 1545 goto out; 1546 } 1547 1548 allowed = msr_filter->default_allow; 1549 ranges = msr_filter->ranges; 1550 1551 for (i = 0; i < msr_filter->count; i++) { 1552 u32 start = ranges[i].base; 1553 u32 end = start + ranges[i].nmsrs; 1554 u32 flags = ranges[i].flags; 1555 unsigned long *bitmap = ranges[i].bitmap; 1556 1557 if ((index >= start) && (index < end) && (flags & type)) { 1558 allowed = !!test_bit(index - start, bitmap); 1559 break; 1560 } 1561 } 1562 1563 out: 1564 srcu_read_unlock(&kvm->srcu, idx); 1565 1566 return allowed; 1567 } 1568 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1569 1570 /* 1571 * Write @data into the MSR specified by @index. Select MSR specific fault 1572 * checks are bypassed if @host_initiated is %true. 1573 * Returns 0 on success, non-0 otherwise. 1574 * Assumes vcpu_load() was already called. 1575 */ 1576 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1577 bool host_initiated) 1578 { 1579 struct msr_data msr; 1580 1581 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1582 return KVM_MSR_RET_FILTERED; 1583 1584 switch (index) { 1585 case MSR_FS_BASE: 1586 case MSR_GS_BASE: 1587 case MSR_KERNEL_GS_BASE: 1588 case MSR_CSTAR: 1589 case MSR_LSTAR: 1590 if (is_noncanonical_address(data, vcpu)) 1591 return 1; 1592 break; 1593 case MSR_IA32_SYSENTER_EIP: 1594 case MSR_IA32_SYSENTER_ESP: 1595 /* 1596 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1597 * non-canonical address is written on Intel but not on 1598 * AMD (which ignores the top 32-bits, because it does 1599 * not implement 64-bit SYSENTER). 1600 * 1601 * 64-bit code should hence be able to write a non-canonical 1602 * value on AMD. Making the address canonical ensures that 1603 * vmentry does not fail on Intel after writing a non-canonical 1604 * value, and that something deterministic happens if the guest 1605 * invokes 64-bit SYSENTER. 1606 */ 1607 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1608 } 1609 1610 msr.data = data; 1611 msr.index = index; 1612 msr.host_initiated = host_initiated; 1613 1614 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1615 } 1616 1617 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1618 u32 index, u64 data, bool host_initiated) 1619 { 1620 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1621 1622 if (ret == KVM_MSR_RET_INVALID) 1623 if (kvm_msr_ignored_check(vcpu, index, data, true)) 1624 ret = 0; 1625 1626 return ret; 1627 } 1628 1629 /* 1630 * Read the MSR specified by @index into @data. Select MSR specific fault 1631 * checks are bypassed if @host_initiated is %true. 1632 * Returns 0 on success, non-0 otherwise. 1633 * Assumes vcpu_load() was already called. 1634 */ 1635 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1636 bool host_initiated) 1637 { 1638 struct msr_data msr; 1639 int ret; 1640 1641 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1642 return KVM_MSR_RET_FILTERED; 1643 1644 msr.index = index; 1645 msr.host_initiated = host_initiated; 1646 1647 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1648 if (!ret) 1649 *data = msr.data; 1650 return ret; 1651 } 1652 1653 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1654 u32 index, u64 *data, bool host_initiated) 1655 { 1656 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1657 1658 if (ret == KVM_MSR_RET_INVALID) { 1659 /* Unconditionally clear *data for simplicity */ 1660 *data = 0; 1661 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1662 ret = 0; 1663 } 1664 1665 return ret; 1666 } 1667 1668 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1669 { 1670 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1671 } 1672 EXPORT_SYMBOL_GPL(kvm_get_msr); 1673 1674 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1675 { 1676 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1677 } 1678 EXPORT_SYMBOL_GPL(kvm_set_msr); 1679 1680 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1681 { 1682 int err = vcpu->run->msr.error; 1683 if (!err) { 1684 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1685 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1686 } 1687 1688 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err); 1689 } 1690 1691 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1692 { 1693 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1694 } 1695 1696 static u64 kvm_msr_reason(int r) 1697 { 1698 switch (r) { 1699 case KVM_MSR_RET_INVALID: 1700 return KVM_MSR_EXIT_REASON_UNKNOWN; 1701 case KVM_MSR_RET_FILTERED: 1702 return KVM_MSR_EXIT_REASON_FILTER; 1703 default: 1704 return KVM_MSR_EXIT_REASON_INVAL; 1705 } 1706 } 1707 1708 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1709 u32 exit_reason, u64 data, 1710 int (*completion)(struct kvm_vcpu *vcpu), 1711 int r) 1712 { 1713 u64 msr_reason = kvm_msr_reason(r); 1714 1715 /* Check if the user wanted to know about this MSR fault */ 1716 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1717 return 0; 1718 1719 vcpu->run->exit_reason = exit_reason; 1720 vcpu->run->msr.error = 0; 1721 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1722 vcpu->run->msr.reason = msr_reason; 1723 vcpu->run->msr.index = index; 1724 vcpu->run->msr.data = data; 1725 vcpu->arch.complete_userspace_io = completion; 1726 1727 return 1; 1728 } 1729 1730 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1731 { 1732 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1733 complete_emulated_rdmsr, r); 1734 } 1735 1736 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1737 { 1738 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1739 complete_emulated_wrmsr, r); 1740 } 1741 1742 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1743 { 1744 u32 ecx = kvm_rcx_read(vcpu); 1745 u64 data; 1746 int r; 1747 1748 r = kvm_get_msr(vcpu, ecx, &data); 1749 1750 /* MSR read failed? See if we should ask user space */ 1751 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1752 /* Bounce to user space */ 1753 return 0; 1754 } 1755 1756 if (!r) { 1757 trace_kvm_msr_read(ecx, data); 1758 1759 kvm_rax_write(vcpu, data & -1u); 1760 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1761 } else { 1762 trace_kvm_msr_read_ex(ecx); 1763 } 1764 1765 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1766 } 1767 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1768 1769 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1770 { 1771 u32 ecx = kvm_rcx_read(vcpu); 1772 u64 data = kvm_read_edx_eax(vcpu); 1773 int r; 1774 1775 r = kvm_set_msr(vcpu, ecx, data); 1776 1777 /* MSR write failed? See if we should ask user space */ 1778 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1779 /* Bounce to user space */ 1780 return 0; 1781 1782 /* Signal all other negative errors to userspace */ 1783 if (r < 0) 1784 return r; 1785 1786 if (!r) 1787 trace_kvm_msr_write(ecx, data); 1788 else 1789 trace_kvm_msr_write_ex(ecx, data); 1790 1791 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1794 1795 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1796 { 1797 xfer_to_guest_mode_prepare(); 1798 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1799 xfer_to_guest_mode_work_pending(); 1800 } 1801 1802 /* 1803 * The fast path for frequent and performance sensitive wrmsr emulation, 1804 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1805 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1806 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1807 * other cases which must be called after interrupts are enabled on the host. 1808 */ 1809 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1810 { 1811 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1812 return 1; 1813 1814 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1815 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1816 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1817 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1818 1819 data &= ~(1 << 12); 1820 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1821 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1822 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1823 trace_kvm_apic_write(APIC_ICR, (u32)data); 1824 return 0; 1825 } 1826 1827 return 1; 1828 } 1829 1830 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1831 { 1832 if (!kvm_can_use_hv_timer(vcpu)) 1833 return 1; 1834 1835 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1836 return 0; 1837 } 1838 1839 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1840 { 1841 u32 msr = kvm_rcx_read(vcpu); 1842 u64 data; 1843 fastpath_t ret = EXIT_FASTPATH_NONE; 1844 1845 switch (msr) { 1846 case APIC_BASE_MSR + (APIC_ICR >> 4): 1847 data = kvm_read_edx_eax(vcpu); 1848 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1849 kvm_skip_emulated_instruction(vcpu); 1850 ret = EXIT_FASTPATH_EXIT_HANDLED; 1851 } 1852 break; 1853 case MSR_IA32_TSCDEADLINE: 1854 data = kvm_read_edx_eax(vcpu); 1855 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1856 kvm_skip_emulated_instruction(vcpu); 1857 ret = EXIT_FASTPATH_REENTER_GUEST; 1858 } 1859 break; 1860 default: 1861 break; 1862 } 1863 1864 if (ret != EXIT_FASTPATH_NONE) 1865 trace_kvm_msr_write(msr, data); 1866 1867 return ret; 1868 } 1869 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1870 1871 /* 1872 * Adapt set_msr() to msr_io()'s calling convention 1873 */ 1874 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1875 { 1876 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1877 } 1878 1879 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1880 { 1881 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1882 } 1883 1884 #ifdef CONFIG_X86_64 1885 struct pvclock_clock { 1886 int vclock_mode; 1887 u64 cycle_last; 1888 u64 mask; 1889 u32 mult; 1890 u32 shift; 1891 u64 base_cycles; 1892 u64 offset; 1893 }; 1894 1895 struct pvclock_gtod_data { 1896 seqcount_t seq; 1897 1898 struct pvclock_clock clock; /* extract of a clocksource struct */ 1899 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1900 1901 ktime_t offs_boot; 1902 u64 wall_time_sec; 1903 }; 1904 1905 static struct pvclock_gtod_data pvclock_gtod_data; 1906 1907 static void update_pvclock_gtod(struct timekeeper *tk) 1908 { 1909 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1910 1911 write_seqcount_begin(&vdata->seq); 1912 1913 /* copy pvclock gtod data */ 1914 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1915 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1916 vdata->clock.mask = tk->tkr_mono.mask; 1917 vdata->clock.mult = tk->tkr_mono.mult; 1918 vdata->clock.shift = tk->tkr_mono.shift; 1919 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1920 vdata->clock.offset = tk->tkr_mono.base; 1921 1922 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1923 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1924 vdata->raw_clock.mask = tk->tkr_raw.mask; 1925 vdata->raw_clock.mult = tk->tkr_raw.mult; 1926 vdata->raw_clock.shift = tk->tkr_raw.shift; 1927 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1928 vdata->raw_clock.offset = tk->tkr_raw.base; 1929 1930 vdata->wall_time_sec = tk->xtime_sec; 1931 1932 vdata->offs_boot = tk->offs_boot; 1933 1934 write_seqcount_end(&vdata->seq); 1935 } 1936 1937 static s64 get_kvmclock_base_ns(void) 1938 { 1939 /* Count up from boot time, but with the frequency of the raw clock. */ 1940 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1941 } 1942 #else 1943 static s64 get_kvmclock_base_ns(void) 1944 { 1945 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1946 return ktime_get_boottime_ns(); 1947 } 1948 #endif 1949 1950 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 1951 { 1952 int version; 1953 int r; 1954 struct pvclock_wall_clock wc; 1955 u32 wc_sec_hi; 1956 u64 wall_nsec; 1957 1958 if (!wall_clock) 1959 return; 1960 1961 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1962 if (r) 1963 return; 1964 1965 if (version & 1) 1966 ++version; /* first time write, random junk */ 1967 1968 ++version; 1969 1970 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1971 return; 1972 1973 /* 1974 * The guest calculates current wall clock time by adding 1975 * system time (updated by kvm_guest_time_update below) to the 1976 * wall clock specified here. We do the reverse here. 1977 */ 1978 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1979 1980 wc.nsec = do_div(wall_nsec, 1000000000); 1981 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1982 wc.version = version; 1983 1984 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1985 1986 if (sec_hi_ofs) { 1987 wc_sec_hi = wall_nsec >> 32; 1988 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 1989 &wc_sec_hi, sizeof(wc_sec_hi)); 1990 } 1991 1992 version++; 1993 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1994 } 1995 1996 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 1997 bool old_msr, bool host_initiated) 1998 { 1999 struct kvm_arch *ka = &vcpu->kvm->arch; 2000 2001 if (vcpu->vcpu_id == 0 && !host_initiated) { 2002 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2003 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2004 2005 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2006 } 2007 2008 vcpu->arch.time = system_time; 2009 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2010 2011 /* we verify if the enable bit is set... */ 2012 vcpu->arch.pv_time_enabled = false; 2013 if (!(system_time & 1)) 2014 return; 2015 2016 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2017 &vcpu->arch.pv_time, system_time & ~1ULL, 2018 sizeof(struct pvclock_vcpu_time_info))) 2019 vcpu->arch.pv_time_enabled = true; 2020 2021 return; 2022 } 2023 2024 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2025 { 2026 do_shl32_div32(dividend, divisor); 2027 return dividend; 2028 } 2029 2030 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2031 s8 *pshift, u32 *pmultiplier) 2032 { 2033 uint64_t scaled64; 2034 int32_t shift = 0; 2035 uint64_t tps64; 2036 uint32_t tps32; 2037 2038 tps64 = base_hz; 2039 scaled64 = scaled_hz; 2040 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2041 tps64 >>= 1; 2042 shift--; 2043 } 2044 2045 tps32 = (uint32_t)tps64; 2046 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2047 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2048 scaled64 >>= 1; 2049 else 2050 tps32 <<= 1; 2051 shift++; 2052 } 2053 2054 *pshift = shift; 2055 *pmultiplier = div_frac(scaled64, tps32); 2056 } 2057 2058 #ifdef CONFIG_X86_64 2059 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2060 #endif 2061 2062 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2063 static unsigned long max_tsc_khz; 2064 2065 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2066 { 2067 u64 v = (u64)khz * (1000000 + ppm); 2068 do_div(v, 1000000); 2069 return v; 2070 } 2071 2072 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2073 { 2074 u64 ratio; 2075 2076 /* Guest TSC same frequency as host TSC? */ 2077 if (!scale) { 2078 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2079 return 0; 2080 } 2081 2082 /* TSC scaling supported? */ 2083 if (!kvm_has_tsc_control) { 2084 if (user_tsc_khz > tsc_khz) { 2085 vcpu->arch.tsc_catchup = 1; 2086 vcpu->arch.tsc_always_catchup = 1; 2087 return 0; 2088 } else { 2089 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2090 return -1; 2091 } 2092 } 2093 2094 /* TSC scaling required - calculate ratio */ 2095 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2096 user_tsc_khz, tsc_khz); 2097 2098 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2099 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2100 user_tsc_khz); 2101 return -1; 2102 } 2103 2104 vcpu->arch.tsc_scaling_ratio = ratio; 2105 return 0; 2106 } 2107 2108 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2109 { 2110 u32 thresh_lo, thresh_hi; 2111 int use_scaling = 0; 2112 2113 /* tsc_khz can be zero if TSC calibration fails */ 2114 if (user_tsc_khz == 0) { 2115 /* set tsc_scaling_ratio to a safe value */ 2116 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2117 return -1; 2118 } 2119 2120 /* Compute a scale to convert nanoseconds in TSC cycles */ 2121 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2122 &vcpu->arch.virtual_tsc_shift, 2123 &vcpu->arch.virtual_tsc_mult); 2124 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2125 2126 /* 2127 * Compute the variation in TSC rate which is acceptable 2128 * within the range of tolerance and decide if the 2129 * rate being applied is within that bounds of the hardware 2130 * rate. If so, no scaling or compensation need be done. 2131 */ 2132 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2133 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2134 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2135 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2136 use_scaling = 1; 2137 } 2138 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2139 } 2140 2141 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2142 { 2143 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2144 vcpu->arch.virtual_tsc_mult, 2145 vcpu->arch.virtual_tsc_shift); 2146 tsc += vcpu->arch.this_tsc_write; 2147 return tsc; 2148 } 2149 2150 static inline int gtod_is_based_on_tsc(int mode) 2151 { 2152 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2153 } 2154 2155 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2156 { 2157 #ifdef CONFIG_X86_64 2158 bool vcpus_matched; 2159 struct kvm_arch *ka = &vcpu->kvm->arch; 2160 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2161 2162 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2163 atomic_read(&vcpu->kvm->online_vcpus)); 2164 2165 /* 2166 * Once the masterclock is enabled, always perform request in 2167 * order to update it. 2168 * 2169 * In order to enable masterclock, the host clocksource must be TSC 2170 * and the vcpus need to have matched TSCs. When that happens, 2171 * perform request to enable masterclock. 2172 */ 2173 if (ka->use_master_clock || 2174 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2175 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2176 2177 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2178 atomic_read(&vcpu->kvm->online_vcpus), 2179 ka->use_master_clock, gtod->clock.vclock_mode); 2180 #endif 2181 } 2182 2183 /* 2184 * Multiply tsc by a fixed point number represented by ratio. 2185 * 2186 * The most significant 64-N bits (mult) of ratio represent the 2187 * integral part of the fixed point number; the remaining N bits 2188 * (frac) represent the fractional part, ie. ratio represents a fixed 2189 * point number (mult + frac * 2^(-N)). 2190 * 2191 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2192 */ 2193 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2194 { 2195 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2196 } 2197 2198 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2199 { 2200 u64 _tsc = tsc; 2201 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2202 2203 if (ratio != kvm_default_tsc_scaling_ratio) 2204 _tsc = __scale_tsc(ratio, tsc); 2205 2206 return _tsc; 2207 } 2208 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2209 2210 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2211 { 2212 u64 tsc; 2213 2214 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2215 2216 return target_tsc - tsc; 2217 } 2218 2219 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2220 { 2221 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2222 } 2223 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2224 2225 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2226 { 2227 vcpu->arch.l1_tsc_offset = offset; 2228 vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset); 2229 } 2230 2231 static inline bool kvm_check_tsc_unstable(void) 2232 { 2233 #ifdef CONFIG_X86_64 2234 /* 2235 * TSC is marked unstable when we're running on Hyper-V, 2236 * 'TSC page' clocksource is good. 2237 */ 2238 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2239 return false; 2240 #endif 2241 return check_tsc_unstable(); 2242 } 2243 2244 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2245 { 2246 struct kvm *kvm = vcpu->kvm; 2247 u64 offset, ns, elapsed; 2248 unsigned long flags; 2249 bool matched; 2250 bool already_matched; 2251 bool synchronizing = false; 2252 2253 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2254 offset = kvm_compute_tsc_offset(vcpu, data); 2255 ns = get_kvmclock_base_ns(); 2256 elapsed = ns - kvm->arch.last_tsc_nsec; 2257 2258 if (vcpu->arch.virtual_tsc_khz) { 2259 if (data == 0) { 2260 /* 2261 * detection of vcpu initialization -- need to sync 2262 * with other vCPUs. This particularly helps to keep 2263 * kvm_clock stable after CPU hotplug 2264 */ 2265 synchronizing = true; 2266 } else { 2267 u64 tsc_exp = kvm->arch.last_tsc_write + 2268 nsec_to_cycles(vcpu, elapsed); 2269 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2270 /* 2271 * Special case: TSC write with a small delta (1 second) 2272 * of virtual cycle time against real time is 2273 * interpreted as an attempt to synchronize the CPU. 2274 */ 2275 synchronizing = data < tsc_exp + tsc_hz && 2276 data + tsc_hz > tsc_exp; 2277 } 2278 } 2279 2280 /* 2281 * For a reliable TSC, we can match TSC offsets, and for an unstable 2282 * TSC, we add elapsed time in this computation. We could let the 2283 * compensation code attempt to catch up if we fall behind, but 2284 * it's better to try to match offsets from the beginning. 2285 */ 2286 if (synchronizing && 2287 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2288 if (!kvm_check_tsc_unstable()) { 2289 offset = kvm->arch.cur_tsc_offset; 2290 } else { 2291 u64 delta = nsec_to_cycles(vcpu, elapsed); 2292 data += delta; 2293 offset = kvm_compute_tsc_offset(vcpu, data); 2294 } 2295 matched = true; 2296 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2297 } else { 2298 /* 2299 * We split periods of matched TSC writes into generations. 2300 * For each generation, we track the original measured 2301 * nanosecond time, offset, and write, so if TSCs are in 2302 * sync, we can match exact offset, and if not, we can match 2303 * exact software computation in compute_guest_tsc() 2304 * 2305 * These values are tracked in kvm->arch.cur_xxx variables. 2306 */ 2307 kvm->arch.cur_tsc_generation++; 2308 kvm->arch.cur_tsc_nsec = ns; 2309 kvm->arch.cur_tsc_write = data; 2310 kvm->arch.cur_tsc_offset = offset; 2311 matched = false; 2312 } 2313 2314 /* 2315 * We also track th most recent recorded KHZ, write and time to 2316 * allow the matching interval to be extended at each write. 2317 */ 2318 kvm->arch.last_tsc_nsec = ns; 2319 kvm->arch.last_tsc_write = data; 2320 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2321 2322 vcpu->arch.last_guest_tsc = data; 2323 2324 /* Keep track of which generation this VCPU has synchronized to */ 2325 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2326 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2327 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2328 2329 kvm_vcpu_write_tsc_offset(vcpu, offset); 2330 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2331 2332 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2333 if (!matched) { 2334 kvm->arch.nr_vcpus_matched_tsc = 0; 2335 } else if (!already_matched) { 2336 kvm->arch.nr_vcpus_matched_tsc++; 2337 } 2338 2339 kvm_track_tsc_matching(vcpu); 2340 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2341 } 2342 2343 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2344 s64 adjustment) 2345 { 2346 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2347 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2348 } 2349 2350 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2351 { 2352 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2353 WARN_ON(adjustment < 0); 2354 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2355 adjust_tsc_offset_guest(vcpu, adjustment); 2356 } 2357 2358 #ifdef CONFIG_X86_64 2359 2360 static u64 read_tsc(void) 2361 { 2362 u64 ret = (u64)rdtsc_ordered(); 2363 u64 last = pvclock_gtod_data.clock.cycle_last; 2364 2365 if (likely(ret >= last)) 2366 return ret; 2367 2368 /* 2369 * GCC likes to generate cmov here, but this branch is extremely 2370 * predictable (it's just a function of time and the likely is 2371 * very likely) and there's a data dependence, so force GCC 2372 * to generate a branch instead. I don't barrier() because 2373 * we don't actually need a barrier, and if this function 2374 * ever gets inlined it will generate worse code. 2375 */ 2376 asm volatile (""); 2377 return last; 2378 } 2379 2380 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2381 int *mode) 2382 { 2383 long v; 2384 u64 tsc_pg_val; 2385 2386 switch (clock->vclock_mode) { 2387 case VDSO_CLOCKMODE_HVCLOCK: 2388 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2389 tsc_timestamp); 2390 if (tsc_pg_val != U64_MAX) { 2391 /* TSC page valid */ 2392 *mode = VDSO_CLOCKMODE_HVCLOCK; 2393 v = (tsc_pg_val - clock->cycle_last) & 2394 clock->mask; 2395 } else { 2396 /* TSC page invalid */ 2397 *mode = VDSO_CLOCKMODE_NONE; 2398 } 2399 break; 2400 case VDSO_CLOCKMODE_TSC: 2401 *mode = VDSO_CLOCKMODE_TSC; 2402 *tsc_timestamp = read_tsc(); 2403 v = (*tsc_timestamp - clock->cycle_last) & 2404 clock->mask; 2405 break; 2406 default: 2407 *mode = VDSO_CLOCKMODE_NONE; 2408 } 2409 2410 if (*mode == VDSO_CLOCKMODE_NONE) 2411 *tsc_timestamp = v = 0; 2412 2413 return v * clock->mult; 2414 } 2415 2416 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2417 { 2418 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2419 unsigned long seq; 2420 int mode; 2421 u64 ns; 2422 2423 do { 2424 seq = read_seqcount_begin(>od->seq); 2425 ns = gtod->raw_clock.base_cycles; 2426 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2427 ns >>= gtod->raw_clock.shift; 2428 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2429 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2430 *t = ns; 2431 2432 return mode; 2433 } 2434 2435 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2436 { 2437 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2438 unsigned long seq; 2439 int mode; 2440 u64 ns; 2441 2442 do { 2443 seq = read_seqcount_begin(>od->seq); 2444 ts->tv_sec = gtod->wall_time_sec; 2445 ns = gtod->clock.base_cycles; 2446 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2447 ns >>= gtod->clock.shift; 2448 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2449 2450 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2451 ts->tv_nsec = ns; 2452 2453 return mode; 2454 } 2455 2456 /* returns true if host is using TSC based clocksource */ 2457 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2458 { 2459 /* checked again under seqlock below */ 2460 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2461 return false; 2462 2463 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2464 tsc_timestamp)); 2465 } 2466 2467 /* returns true if host is using TSC based clocksource */ 2468 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2469 u64 *tsc_timestamp) 2470 { 2471 /* checked again under seqlock below */ 2472 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2473 return false; 2474 2475 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2476 } 2477 #endif 2478 2479 /* 2480 * 2481 * Assuming a stable TSC across physical CPUS, and a stable TSC 2482 * across virtual CPUs, the following condition is possible. 2483 * Each numbered line represents an event visible to both 2484 * CPUs at the next numbered event. 2485 * 2486 * "timespecX" represents host monotonic time. "tscX" represents 2487 * RDTSC value. 2488 * 2489 * VCPU0 on CPU0 | VCPU1 on CPU1 2490 * 2491 * 1. read timespec0,tsc0 2492 * 2. | timespec1 = timespec0 + N 2493 * | tsc1 = tsc0 + M 2494 * 3. transition to guest | transition to guest 2495 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2496 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2497 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2498 * 2499 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2500 * 2501 * - ret0 < ret1 2502 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2503 * ... 2504 * - 0 < N - M => M < N 2505 * 2506 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2507 * always the case (the difference between two distinct xtime instances 2508 * might be smaller then the difference between corresponding TSC reads, 2509 * when updating guest vcpus pvclock areas). 2510 * 2511 * To avoid that problem, do not allow visibility of distinct 2512 * system_timestamp/tsc_timestamp values simultaneously: use a master 2513 * copy of host monotonic time values. Update that master copy 2514 * in lockstep. 2515 * 2516 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2517 * 2518 */ 2519 2520 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2521 { 2522 #ifdef CONFIG_X86_64 2523 struct kvm_arch *ka = &kvm->arch; 2524 int vclock_mode; 2525 bool host_tsc_clocksource, vcpus_matched; 2526 2527 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2528 atomic_read(&kvm->online_vcpus)); 2529 2530 /* 2531 * If the host uses TSC clock, then passthrough TSC as stable 2532 * to the guest. 2533 */ 2534 host_tsc_clocksource = kvm_get_time_and_clockread( 2535 &ka->master_kernel_ns, 2536 &ka->master_cycle_now); 2537 2538 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2539 && !ka->backwards_tsc_observed 2540 && !ka->boot_vcpu_runs_old_kvmclock; 2541 2542 if (ka->use_master_clock) 2543 atomic_set(&kvm_guest_has_master_clock, 1); 2544 2545 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2546 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2547 vcpus_matched); 2548 #endif 2549 } 2550 2551 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2552 { 2553 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2554 } 2555 2556 static void kvm_gen_update_masterclock(struct kvm *kvm) 2557 { 2558 #ifdef CONFIG_X86_64 2559 int i; 2560 struct kvm_vcpu *vcpu; 2561 struct kvm_arch *ka = &kvm->arch; 2562 2563 kvm_hv_invalidate_tsc_page(kvm); 2564 2565 spin_lock(&ka->pvclock_gtod_sync_lock); 2566 kvm_make_mclock_inprogress_request(kvm); 2567 /* no guest entries from this point */ 2568 pvclock_update_vm_gtod_copy(kvm); 2569 2570 kvm_for_each_vcpu(i, vcpu, kvm) 2571 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2572 2573 /* guest entries allowed */ 2574 kvm_for_each_vcpu(i, vcpu, kvm) 2575 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2576 2577 spin_unlock(&ka->pvclock_gtod_sync_lock); 2578 #endif 2579 } 2580 2581 u64 get_kvmclock_ns(struct kvm *kvm) 2582 { 2583 struct kvm_arch *ka = &kvm->arch; 2584 struct pvclock_vcpu_time_info hv_clock; 2585 u64 ret; 2586 2587 spin_lock(&ka->pvclock_gtod_sync_lock); 2588 if (!ka->use_master_clock) { 2589 spin_unlock(&ka->pvclock_gtod_sync_lock); 2590 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2591 } 2592 2593 hv_clock.tsc_timestamp = ka->master_cycle_now; 2594 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2595 spin_unlock(&ka->pvclock_gtod_sync_lock); 2596 2597 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2598 get_cpu(); 2599 2600 if (__this_cpu_read(cpu_tsc_khz)) { 2601 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2602 &hv_clock.tsc_shift, 2603 &hv_clock.tsc_to_system_mul); 2604 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2605 } else 2606 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2607 2608 put_cpu(); 2609 2610 return ret; 2611 } 2612 2613 static void kvm_setup_pvclock_page(struct kvm_vcpu *v, 2614 struct gfn_to_hva_cache *cache, 2615 unsigned int offset) 2616 { 2617 struct kvm_vcpu_arch *vcpu = &v->arch; 2618 struct pvclock_vcpu_time_info guest_hv_clock; 2619 2620 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache, 2621 &guest_hv_clock, offset, sizeof(guest_hv_clock)))) 2622 return; 2623 2624 /* This VCPU is paused, but it's legal for a guest to read another 2625 * VCPU's kvmclock, so we really have to follow the specification where 2626 * it says that version is odd if data is being modified, and even after 2627 * it is consistent. 2628 * 2629 * Version field updates must be kept separate. This is because 2630 * kvm_write_guest_cached might use a "rep movs" instruction, and 2631 * writes within a string instruction are weakly ordered. So there 2632 * are three writes overall. 2633 * 2634 * As a small optimization, only write the version field in the first 2635 * and third write. The vcpu->pv_time cache is still valid, because the 2636 * version field is the first in the struct. 2637 */ 2638 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2639 2640 if (guest_hv_clock.version & 1) 2641 ++guest_hv_clock.version; /* first time write, random junk */ 2642 2643 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2644 kvm_write_guest_offset_cached(v->kvm, cache, 2645 &vcpu->hv_clock, offset, 2646 sizeof(vcpu->hv_clock.version)); 2647 2648 smp_wmb(); 2649 2650 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2651 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2652 2653 if (vcpu->pvclock_set_guest_stopped_request) { 2654 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2655 vcpu->pvclock_set_guest_stopped_request = false; 2656 } 2657 2658 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2659 2660 kvm_write_guest_offset_cached(v->kvm, cache, 2661 &vcpu->hv_clock, offset, 2662 sizeof(vcpu->hv_clock)); 2663 2664 smp_wmb(); 2665 2666 vcpu->hv_clock.version++; 2667 kvm_write_guest_offset_cached(v->kvm, cache, 2668 &vcpu->hv_clock, offset, 2669 sizeof(vcpu->hv_clock.version)); 2670 } 2671 2672 static int kvm_guest_time_update(struct kvm_vcpu *v) 2673 { 2674 unsigned long flags, tgt_tsc_khz; 2675 struct kvm_vcpu_arch *vcpu = &v->arch; 2676 struct kvm_arch *ka = &v->kvm->arch; 2677 s64 kernel_ns; 2678 u64 tsc_timestamp, host_tsc; 2679 u8 pvclock_flags; 2680 bool use_master_clock; 2681 2682 kernel_ns = 0; 2683 host_tsc = 0; 2684 2685 /* 2686 * If the host uses TSC clock, then passthrough TSC as stable 2687 * to the guest. 2688 */ 2689 spin_lock(&ka->pvclock_gtod_sync_lock); 2690 use_master_clock = ka->use_master_clock; 2691 if (use_master_clock) { 2692 host_tsc = ka->master_cycle_now; 2693 kernel_ns = ka->master_kernel_ns; 2694 } 2695 spin_unlock(&ka->pvclock_gtod_sync_lock); 2696 2697 /* Keep irq disabled to prevent changes to the clock */ 2698 local_irq_save(flags); 2699 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2700 if (unlikely(tgt_tsc_khz == 0)) { 2701 local_irq_restore(flags); 2702 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2703 return 1; 2704 } 2705 if (!use_master_clock) { 2706 host_tsc = rdtsc(); 2707 kernel_ns = get_kvmclock_base_ns(); 2708 } 2709 2710 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2711 2712 /* 2713 * We may have to catch up the TSC to match elapsed wall clock 2714 * time for two reasons, even if kvmclock is used. 2715 * 1) CPU could have been running below the maximum TSC rate 2716 * 2) Broken TSC compensation resets the base at each VCPU 2717 * entry to avoid unknown leaps of TSC even when running 2718 * again on the same CPU. This may cause apparent elapsed 2719 * time to disappear, and the guest to stand still or run 2720 * very slowly. 2721 */ 2722 if (vcpu->tsc_catchup) { 2723 u64 tsc = compute_guest_tsc(v, kernel_ns); 2724 if (tsc > tsc_timestamp) { 2725 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2726 tsc_timestamp = tsc; 2727 } 2728 } 2729 2730 local_irq_restore(flags); 2731 2732 /* With all the info we got, fill in the values */ 2733 2734 if (kvm_has_tsc_control) 2735 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2736 2737 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2738 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2739 &vcpu->hv_clock.tsc_shift, 2740 &vcpu->hv_clock.tsc_to_system_mul); 2741 vcpu->hw_tsc_khz = tgt_tsc_khz; 2742 } 2743 2744 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2745 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2746 vcpu->last_guest_tsc = tsc_timestamp; 2747 2748 /* If the host uses TSC clocksource, then it is stable */ 2749 pvclock_flags = 0; 2750 if (use_master_clock) 2751 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2752 2753 vcpu->hv_clock.flags = pvclock_flags; 2754 2755 if (vcpu->pv_time_enabled) 2756 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0); 2757 if (vcpu->xen.vcpu_info_set) 2758 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache, 2759 offsetof(struct compat_vcpu_info, time)); 2760 if (vcpu->xen.vcpu_time_info_set) 2761 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0); 2762 if (v == kvm_get_vcpu(v->kvm, 0)) 2763 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2764 return 0; 2765 } 2766 2767 /* 2768 * kvmclock updates which are isolated to a given vcpu, such as 2769 * vcpu->cpu migration, should not allow system_timestamp from 2770 * the rest of the vcpus to remain static. Otherwise ntp frequency 2771 * correction applies to one vcpu's system_timestamp but not 2772 * the others. 2773 * 2774 * So in those cases, request a kvmclock update for all vcpus. 2775 * We need to rate-limit these requests though, as they can 2776 * considerably slow guests that have a large number of vcpus. 2777 * The time for a remote vcpu to update its kvmclock is bound 2778 * by the delay we use to rate-limit the updates. 2779 */ 2780 2781 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2782 2783 static void kvmclock_update_fn(struct work_struct *work) 2784 { 2785 int i; 2786 struct delayed_work *dwork = to_delayed_work(work); 2787 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2788 kvmclock_update_work); 2789 struct kvm *kvm = container_of(ka, struct kvm, arch); 2790 struct kvm_vcpu *vcpu; 2791 2792 kvm_for_each_vcpu(i, vcpu, kvm) { 2793 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2794 kvm_vcpu_kick(vcpu); 2795 } 2796 } 2797 2798 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2799 { 2800 struct kvm *kvm = v->kvm; 2801 2802 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2803 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2804 KVMCLOCK_UPDATE_DELAY); 2805 } 2806 2807 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2808 2809 static void kvmclock_sync_fn(struct work_struct *work) 2810 { 2811 struct delayed_work *dwork = to_delayed_work(work); 2812 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2813 kvmclock_sync_work); 2814 struct kvm *kvm = container_of(ka, struct kvm, arch); 2815 2816 if (!kvmclock_periodic_sync) 2817 return; 2818 2819 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2820 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2821 KVMCLOCK_SYNC_PERIOD); 2822 } 2823 2824 /* 2825 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2826 */ 2827 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2828 { 2829 /* McStatusWrEn enabled? */ 2830 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2831 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2832 2833 return false; 2834 } 2835 2836 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2837 { 2838 u64 mcg_cap = vcpu->arch.mcg_cap; 2839 unsigned bank_num = mcg_cap & 0xff; 2840 u32 msr = msr_info->index; 2841 u64 data = msr_info->data; 2842 2843 switch (msr) { 2844 case MSR_IA32_MCG_STATUS: 2845 vcpu->arch.mcg_status = data; 2846 break; 2847 case MSR_IA32_MCG_CTL: 2848 if (!(mcg_cap & MCG_CTL_P) && 2849 (data || !msr_info->host_initiated)) 2850 return 1; 2851 if (data != 0 && data != ~(u64)0) 2852 return 1; 2853 vcpu->arch.mcg_ctl = data; 2854 break; 2855 default: 2856 if (msr >= MSR_IA32_MC0_CTL && 2857 msr < MSR_IA32_MCx_CTL(bank_num)) { 2858 u32 offset = array_index_nospec( 2859 msr - MSR_IA32_MC0_CTL, 2860 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2861 2862 /* only 0 or all 1s can be written to IA32_MCi_CTL 2863 * some Linux kernels though clear bit 10 in bank 4 to 2864 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2865 * this to avoid an uncatched #GP in the guest 2866 */ 2867 if ((offset & 0x3) == 0 && 2868 data != 0 && (data | (1 << 10)) != ~(u64)0) 2869 return -1; 2870 2871 /* MCi_STATUS */ 2872 if (!msr_info->host_initiated && 2873 (offset & 0x3) == 1 && data != 0) { 2874 if (!can_set_mci_status(vcpu)) 2875 return -1; 2876 } 2877 2878 vcpu->arch.mce_banks[offset] = data; 2879 break; 2880 } 2881 return 1; 2882 } 2883 return 0; 2884 } 2885 2886 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2887 { 2888 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2889 2890 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2891 } 2892 2893 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2894 { 2895 gpa_t gpa = data & ~0x3f; 2896 2897 /* Bits 4:5 are reserved, Should be zero */ 2898 if (data & 0x30) 2899 return 1; 2900 2901 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 2902 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 2903 return 1; 2904 2905 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 2906 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 2907 return 1; 2908 2909 if (!lapic_in_kernel(vcpu)) 2910 return data ? 1 : 0; 2911 2912 vcpu->arch.apf.msr_en_val = data; 2913 2914 if (!kvm_pv_async_pf_enabled(vcpu)) { 2915 kvm_clear_async_pf_completion_queue(vcpu); 2916 kvm_async_pf_hash_reset(vcpu); 2917 return 0; 2918 } 2919 2920 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2921 sizeof(u64))) 2922 return 1; 2923 2924 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2925 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2926 2927 kvm_async_pf_wakeup_all(vcpu); 2928 2929 return 0; 2930 } 2931 2932 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2933 { 2934 /* Bits 8-63 are reserved */ 2935 if (data >> 8) 2936 return 1; 2937 2938 if (!lapic_in_kernel(vcpu)) 2939 return 1; 2940 2941 vcpu->arch.apf.msr_int_val = data; 2942 2943 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2944 2945 return 0; 2946 } 2947 2948 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2949 { 2950 vcpu->arch.pv_time_enabled = false; 2951 vcpu->arch.time = 0; 2952 } 2953 2954 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2955 { 2956 ++vcpu->stat.tlb_flush; 2957 static_call(kvm_x86_tlb_flush_all)(vcpu); 2958 } 2959 2960 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2961 { 2962 ++vcpu->stat.tlb_flush; 2963 static_call(kvm_x86_tlb_flush_guest)(vcpu); 2964 } 2965 2966 static void record_steal_time(struct kvm_vcpu *vcpu) 2967 { 2968 struct kvm_host_map map; 2969 struct kvm_steal_time *st; 2970 2971 if (kvm_xen_msr_enabled(vcpu->kvm)) { 2972 kvm_xen_runstate_set_running(vcpu); 2973 return; 2974 } 2975 2976 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2977 return; 2978 2979 /* -EAGAIN is returned in atomic context so we can just return. */ 2980 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2981 &map, &vcpu->arch.st.cache, false)) 2982 return; 2983 2984 st = map.hva + 2985 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2986 2987 /* 2988 * Doing a TLB flush here, on the guest's behalf, can avoid 2989 * expensive IPIs. 2990 */ 2991 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 2992 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2993 st->preempted & KVM_VCPU_FLUSH_TLB); 2994 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2995 kvm_vcpu_flush_tlb_guest(vcpu); 2996 } 2997 2998 vcpu->arch.st.preempted = 0; 2999 3000 if (st->version & 1) 3001 st->version += 1; /* first time write, random junk */ 3002 3003 st->version += 1; 3004 3005 smp_wmb(); 3006 3007 st->steal += current->sched_info.run_delay - 3008 vcpu->arch.st.last_steal; 3009 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3010 3011 smp_wmb(); 3012 3013 st->version += 1; 3014 3015 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 3016 } 3017 3018 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3019 { 3020 bool pr = false; 3021 u32 msr = msr_info->index; 3022 u64 data = msr_info->data; 3023 3024 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3025 return kvm_xen_write_hypercall_page(vcpu, data); 3026 3027 switch (msr) { 3028 case MSR_AMD64_NB_CFG: 3029 case MSR_IA32_UCODE_WRITE: 3030 case MSR_VM_HSAVE_PA: 3031 case MSR_AMD64_PATCH_LOADER: 3032 case MSR_AMD64_BU_CFG2: 3033 case MSR_AMD64_DC_CFG: 3034 case MSR_F15H_EX_CFG: 3035 break; 3036 3037 case MSR_IA32_UCODE_REV: 3038 if (msr_info->host_initiated) 3039 vcpu->arch.microcode_version = data; 3040 break; 3041 case MSR_IA32_ARCH_CAPABILITIES: 3042 if (!msr_info->host_initiated) 3043 return 1; 3044 vcpu->arch.arch_capabilities = data; 3045 break; 3046 case MSR_IA32_PERF_CAPABILITIES: { 3047 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3048 3049 if (!msr_info->host_initiated) 3050 return 1; 3051 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 3052 return 1; 3053 if (data & ~msr_ent.data) 3054 return 1; 3055 3056 vcpu->arch.perf_capabilities = data; 3057 3058 return 0; 3059 } 3060 case MSR_EFER: 3061 return set_efer(vcpu, msr_info); 3062 case MSR_K7_HWCR: 3063 data &= ~(u64)0x40; /* ignore flush filter disable */ 3064 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3065 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3066 3067 /* Handle McStatusWrEn */ 3068 if (data == BIT_ULL(18)) { 3069 vcpu->arch.msr_hwcr = data; 3070 } else if (data != 0) { 3071 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3072 data); 3073 return 1; 3074 } 3075 break; 3076 case MSR_FAM10H_MMIO_CONF_BASE: 3077 if (data != 0) { 3078 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3079 "0x%llx\n", data); 3080 return 1; 3081 } 3082 break; 3083 case 0x200 ... 0x2ff: 3084 return kvm_mtrr_set_msr(vcpu, msr, data); 3085 case MSR_IA32_APICBASE: 3086 return kvm_set_apic_base(vcpu, msr_info); 3087 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3088 return kvm_x2apic_msr_write(vcpu, msr, data); 3089 case MSR_IA32_TSCDEADLINE: 3090 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3091 break; 3092 case MSR_IA32_TSC_ADJUST: 3093 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3094 if (!msr_info->host_initiated) { 3095 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3096 adjust_tsc_offset_guest(vcpu, adj); 3097 } 3098 vcpu->arch.ia32_tsc_adjust_msr = data; 3099 } 3100 break; 3101 case MSR_IA32_MISC_ENABLE: 3102 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3103 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3104 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3105 return 1; 3106 vcpu->arch.ia32_misc_enable_msr = data; 3107 kvm_update_cpuid_runtime(vcpu); 3108 } else { 3109 vcpu->arch.ia32_misc_enable_msr = data; 3110 } 3111 break; 3112 case MSR_IA32_SMBASE: 3113 if (!msr_info->host_initiated) 3114 return 1; 3115 vcpu->arch.smbase = data; 3116 break; 3117 case MSR_IA32_POWER_CTL: 3118 vcpu->arch.msr_ia32_power_ctl = data; 3119 break; 3120 case MSR_IA32_TSC: 3121 if (msr_info->host_initiated) { 3122 kvm_synchronize_tsc(vcpu, data); 3123 } else { 3124 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3125 adjust_tsc_offset_guest(vcpu, adj); 3126 vcpu->arch.ia32_tsc_adjust_msr += adj; 3127 } 3128 break; 3129 case MSR_IA32_XSS: 3130 if (!msr_info->host_initiated && 3131 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3132 return 1; 3133 /* 3134 * KVM supports exposing PT to the guest, but does not support 3135 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3136 * XSAVES/XRSTORS to save/restore PT MSRs. 3137 */ 3138 if (data & ~supported_xss) 3139 return 1; 3140 vcpu->arch.ia32_xss = data; 3141 break; 3142 case MSR_SMI_COUNT: 3143 if (!msr_info->host_initiated) 3144 return 1; 3145 vcpu->arch.smi_count = data; 3146 break; 3147 case MSR_KVM_WALL_CLOCK_NEW: 3148 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3149 return 1; 3150 3151 vcpu->kvm->arch.wall_clock = data; 3152 kvm_write_wall_clock(vcpu->kvm, data, 0); 3153 break; 3154 case MSR_KVM_WALL_CLOCK: 3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3156 return 1; 3157 3158 vcpu->kvm->arch.wall_clock = data; 3159 kvm_write_wall_clock(vcpu->kvm, data, 0); 3160 break; 3161 case MSR_KVM_SYSTEM_TIME_NEW: 3162 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3163 return 1; 3164 3165 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3166 break; 3167 case MSR_KVM_SYSTEM_TIME: 3168 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3169 return 1; 3170 3171 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3172 break; 3173 case MSR_KVM_ASYNC_PF_EN: 3174 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3175 return 1; 3176 3177 if (kvm_pv_enable_async_pf(vcpu, data)) 3178 return 1; 3179 break; 3180 case MSR_KVM_ASYNC_PF_INT: 3181 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3182 return 1; 3183 3184 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3185 return 1; 3186 break; 3187 case MSR_KVM_ASYNC_PF_ACK: 3188 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3189 return 1; 3190 if (data & 0x1) { 3191 vcpu->arch.apf.pageready_pending = false; 3192 kvm_check_async_pf_completion(vcpu); 3193 } 3194 break; 3195 case MSR_KVM_STEAL_TIME: 3196 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3197 return 1; 3198 3199 if (unlikely(!sched_info_on())) 3200 return 1; 3201 3202 if (data & KVM_STEAL_RESERVED_MASK) 3203 return 1; 3204 3205 vcpu->arch.st.msr_val = data; 3206 3207 if (!(data & KVM_MSR_ENABLED)) 3208 break; 3209 3210 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3211 3212 break; 3213 case MSR_KVM_PV_EOI_EN: 3214 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3215 return 1; 3216 3217 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3218 return 1; 3219 break; 3220 3221 case MSR_KVM_POLL_CONTROL: 3222 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3223 return 1; 3224 3225 /* only enable bit supported */ 3226 if (data & (-1ULL << 1)) 3227 return 1; 3228 3229 vcpu->arch.msr_kvm_poll_control = data; 3230 break; 3231 3232 case MSR_IA32_MCG_CTL: 3233 case MSR_IA32_MCG_STATUS: 3234 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3235 return set_msr_mce(vcpu, msr_info); 3236 3237 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3238 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3239 pr = true; 3240 fallthrough; 3241 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3242 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3243 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3244 return kvm_pmu_set_msr(vcpu, msr_info); 3245 3246 if (pr || data != 0) 3247 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3248 "0x%x data 0x%llx\n", msr, data); 3249 break; 3250 case MSR_K7_CLK_CTL: 3251 /* 3252 * Ignore all writes to this no longer documented MSR. 3253 * Writes are only relevant for old K7 processors, 3254 * all pre-dating SVM, but a recommended workaround from 3255 * AMD for these chips. It is possible to specify the 3256 * affected processor models on the command line, hence 3257 * the need to ignore the workaround. 3258 */ 3259 break; 3260 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3261 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3262 case HV_X64_MSR_SYNDBG_OPTIONS: 3263 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3264 case HV_X64_MSR_CRASH_CTL: 3265 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3266 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3267 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3268 case HV_X64_MSR_TSC_EMULATION_STATUS: 3269 return kvm_hv_set_msr_common(vcpu, msr, data, 3270 msr_info->host_initiated); 3271 case MSR_IA32_BBL_CR_CTL3: 3272 /* Drop writes to this legacy MSR -- see rdmsr 3273 * counterpart for further detail. 3274 */ 3275 if (report_ignored_msrs) 3276 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3277 msr, data); 3278 break; 3279 case MSR_AMD64_OSVW_ID_LENGTH: 3280 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3281 return 1; 3282 vcpu->arch.osvw.length = data; 3283 break; 3284 case MSR_AMD64_OSVW_STATUS: 3285 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3286 return 1; 3287 vcpu->arch.osvw.status = data; 3288 break; 3289 case MSR_PLATFORM_INFO: 3290 if (!msr_info->host_initiated || 3291 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3292 cpuid_fault_enabled(vcpu))) 3293 return 1; 3294 vcpu->arch.msr_platform_info = data; 3295 break; 3296 case MSR_MISC_FEATURES_ENABLES: 3297 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3298 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3299 !supports_cpuid_fault(vcpu))) 3300 return 1; 3301 vcpu->arch.msr_misc_features_enables = data; 3302 break; 3303 default: 3304 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3305 return kvm_pmu_set_msr(vcpu, msr_info); 3306 return KVM_MSR_RET_INVALID; 3307 } 3308 return 0; 3309 } 3310 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3311 3312 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3313 { 3314 u64 data; 3315 u64 mcg_cap = vcpu->arch.mcg_cap; 3316 unsigned bank_num = mcg_cap & 0xff; 3317 3318 switch (msr) { 3319 case MSR_IA32_P5_MC_ADDR: 3320 case MSR_IA32_P5_MC_TYPE: 3321 data = 0; 3322 break; 3323 case MSR_IA32_MCG_CAP: 3324 data = vcpu->arch.mcg_cap; 3325 break; 3326 case MSR_IA32_MCG_CTL: 3327 if (!(mcg_cap & MCG_CTL_P) && !host) 3328 return 1; 3329 data = vcpu->arch.mcg_ctl; 3330 break; 3331 case MSR_IA32_MCG_STATUS: 3332 data = vcpu->arch.mcg_status; 3333 break; 3334 default: 3335 if (msr >= MSR_IA32_MC0_CTL && 3336 msr < MSR_IA32_MCx_CTL(bank_num)) { 3337 u32 offset = array_index_nospec( 3338 msr - MSR_IA32_MC0_CTL, 3339 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3340 3341 data = vcpu->arch.mce_banks[offset]; 3342 break; 3343 } 3344 return 1; 3345 } 3346 *pdata = data; 3347 return 0; 3348 } 3349 3350 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3351 { 3352 switch (msr_info->index) { 3353 case MSR_IA32_PLATFORM_ID: 3354 case MSR_IA32_EBL_CR_POWERON: 3355 case MSR_IA32_LASTBRANCHFROMIP: 3356 case MSR_IA32_LASTBRANCHTOIP: 3357 case MSR_IA32_LASTINTFROMIP: 3358 case MSR_IA32_LASTINTTOIP: 3359 case MSR_K8_SYSCFG: 3360 case MSR_K8_TSEG_ADDR: 3361 case MSR_K8_TSEG_MASK: 3362 case MSR_VM_HSAVE_PA: 3363 case MSR_K8_INT_PENDING_MSG: 3364 case MSR_AMD64_NB_CFG: 3365 case MSR_FAM10H_MMIO_CONF_BASE: 3366 case MSR_AMD64_BU_CFG2: 3367 case MSR_IA32_PERF_CTL: 3368 case MSR_AMD64_DC_CFG: 3369 case MSR_F15H_EX_CFG: 3370 /* 3371 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3372 * limit) MSRs. Just return 0, as we do not want to expose the host 3373 * data here. Do not conditionalize this on CPUID, as KVM does not do 3374 * so for existing CPU-specific MSRs. 3375 */ 3376 case MSR_RAPL_POWER_UNIT: 3377 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3378 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3379 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3380 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3381 msr_info->data = 0; 3382 break; 3383 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3384 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3385 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3386 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3387 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3388 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3389 return kvm_pmu_get_msr(vcpu, msr_info); 3390 msr_info->data = 0; 3391 break; 3392 case MSR_IA32_UCODE_REV: 3393 msr_info->data = vcpu->arch.microcode_version; 3394 break; 3395 case MSR_IA32_ARCH_CAPABILITIES: 3396 if (!msr_info->host_initiated && 3397 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3398 return 1; 3399 msr_info->data = vcpu->arch.arch_capabilities; 3400 break; 3401 case MSR_IA32_PERF_CAPABILITIES: 3402 if (!msr_info->host_initiated && 3403 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3404 return 1; 3405 msr_info->data = vcpu->arch.perf_capabilities; 3406 break; 3407 case MSR_IA32_POWER_CTL: 3408 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3409 break; 3410 case MSR_IA32_TSC: { 3411 /* 3412 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3413 * even when not intercepted. AMD manual doesn't explicitly 3414 * state this but appears to behave the same. 3415 * 3416 * On userspace reads and writes, however, we unconditionally 3417 * return L1's TSC value to ensure backwards-compatible 3418 * behavior for migration. 3419 */ 3420 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset : 3421 vcpu->arch.tsc_offset; 3422 3423 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset; 3424 break; 3425 } 3426 case MSR_MTRRcap: 3427 case 0x200 ... 0x2ff: 3428 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3429 case 0xcd: /* fsb frequency */ 3430 msr_info->data = 3; 3431 break; 3432 /* 3433 * MSR_EBC_FREQUENCY_ID 3434 * Conservative value valid for even the basic CPU models. 3435 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3436 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3437 * and 266MHz for model 3, or 4. Set Core Clock 3438 * Frequency to System Bus Frequency Ratio to 1 (bits 3439 * 31:24) even though these are only valid for CPU 3440 * models > 2, however guests may end up dividing or 3441 * multiplying by zero otherwise. 3442 */ 3443 case MSR_EBC_FREQUENCY_ID: 3444 msr_info->data = 1 << 24; 3445 break; 3446 case MSR_IA32_APICBASE: 3447 msr_info->data = kvm_get_apic_base(vcpu); 3448 break; 3449 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3450 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3451 case MSR_IA32_TSCDEADLINE: 3452 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3453 break; 3454 case MSR_IA32_TSC_ADJUST: 3455 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3456 break; 3457 case MSR_IA32_MISC_ENABLE: 3458 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3459 break; 3460 case MSR_IA32_SMBASE: 3461 if (!msr_info->host_initiated) 3462 return 1; 3463 msr_info->data = vcpu->arch.smbase; 3464 break; 3465 case MSR_SMI_COUNT: 3466 msr_info->data = vcpu->arch.smi_count; 3467 break; 3468 case MSR_IA32_PERF_STATUS: 3469 /* TSC increment by tick */ 3470 msr_info->data = 1000ULL; 3471 /* CPU multiplier */ 3472 msr_info->data |= (((uint64_t)4ULL) << 40); 3473 break; 3474 case MSR_EFER: 3475 msr_info->data = vcpu->arch.efer; 3476 break; 3477 case MSR_KVM_WALL_CLOCK: 3478 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3479 return 1; 3480 3481 msr_info->data = vcpu->kvm->arch.wall_clock; 3482 break; 3483 case MSR_KVM_WALL_CLOCK_NEW: 3484 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3485 return 1; 3486 3487 msr_info->data = vcpu->kvm->arch.wall_clock; 3488 break; 3489 case MSR_KVM_SYSTEM_TIME: 3490 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3491 return 1; 3492 3493 msr_info->data = vcpu->arch.time; 3494 break; 3495 case MSR_KVM_SYSTEM_TIME_NEW: 3496 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3497 return 1; 3498 3499 msr_info->data = vcpu->arch.time; 3500 break; 3501 case MSR_KVM_ASYNC_PF_EN: 3502 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3503 return 1; 3504 3505 msr_info->data = vcpu->arch.apf.msr_en_val; 3506 break; 3507 case MSR_KVM_ASYNC_PF_INT: 3508 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3509 return 1; 3510 3511 msr_info->data = vcpu->arch.apf.msr_int_val; 3512 break; 3513 case MSR_KVM_ASYNC_PF_ACK: 3514 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3515 return 1; 3516 3517 msr_info->data = 0; 3518 break; 3519 case MSR_KVM_STEAL_TIME: 3520 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3521 return 1; 3522 3523 msr_info->data = vcpu->arch.st.msr_val; 3524 break; 3525 case MSR_KVM_PV_EOI_EN: 3526 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3527 return 1; 3528 3529 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3530 break; 3531 case MSR_KVM_POLL_CONTROL: 3532 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3533 return 1; 3534 3535 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3536 break; 3537 case MSR_IA32_P5_MC_ADDR: 3538 case MSR_IA32_P5_MC_TYPE: 3539 case MSR_IA32_MCG_CAP: 3540 case MSR_IA32_MCG_CTL: 3541 case MSR_IA32_MCG_STATUS: 3542 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3543 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3544 msr_info->host_initiated); 3545 case MSR_IA32_XSS: 3546 if (!msr_info->host_initiated && 3547 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3548 return 1; 3549 msr_info->data = vcpu->arch.ia32_xss; 3550 break; 3551 case MSR_K7_CLK_CTL: 3552 /* 3553 * Provide expected ramp-up count for K7. All other 3554 * are set to zero, indicating minimum divisors for 3555 * every field. 3556 * 3557 * This prevents guest kernels on AMD host with CPU 3558 * type 6, model 8 and higher from exploding due to 3559 * the rdmsr failing. 3560 */ 3561 msr_info->data = 0x20000000; 3562 break; 3563 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3564 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3565 case HV_X64_MSR_SYNDBG_OPTIONS: 3566 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3567 case HV_X64_MSR_CRASH_CTL: 3568 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3569 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3570 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3571 case HV_X64_MSR_TSC_EMULATION_STATUS: 3572 return kvm_hv_get_msr_common(vcpu, 3573 msr_info->index, &msr_info->data, 3574 msr_info->host_initiated); 3575 case MSR_IA32_BBL_CR_CTL3: 3576 /* This legacy MSR exists but isn't fully documented in current 3577 * silicon. It is however accessed by winxp in very narrow 3578 * scenarios where it sets bit #19, itself documented as 3579 * a "reserved" bit. Best effort attempt to source coherent 3580 * read data here should the balance of the register be 3581 * interpreted by the guest: 3582 * 3583 * L2 cache control register 3: 64GB range, 256KB size, 3584 * enabled, latency 0x1, configured 3585 */ 3586 msr_info->data = 0xbe702111; 3587 break; 3588 case MSR_AMD64_OSVW_ID_LENGTH: 3589 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3590 return 1; 3591 msr_info->data = vcpu->arch.osvw.length; 3592 break; 3593 case MSR_AMD64_OSVW_STATUS: 3594 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3595 return 1; 3596 msr_info->data = vcpu->arch.osvw.status; 3597 break; 3598 case MSR_PLATFORM_INFO: 3599 if (!msr_info->host_initiated && 3600 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3601 return 1; 3602 msr_info->data = vcpu->arch.msr_platform_info; 3603 break; 3604 case MSR_MISC_FEATURES_ENABLES: 3605 msr_info->data = vcpu->arch.msr_misc_features_enables; 3606 break; 3607 case MSR_K7_HWCR: 3608 msr_info->data = vcpu->arch.msr_hwcr; 3609 break; 3610 default: 3611 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3612 return kvm_pmu_get_msr(vcpu, msr_info); 3613 return KVM_MSR_RET_INVALID; 3614 } 3615 return 0; 3616 } 3617 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3618 3619 /* 3620 * Read or write a bunch of msrs. All parameters are kernel addresses. 3621 * 3622 * @return number of msrs set successfully. 3623 */ 3624 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3625 struct kvm_msr_entry *entries, 3626 int (*do_msr)(struct kvm_vcpu *vcpu, 3627 unsigned index, u64 *data)) 3628 { 3629 int i; 3630 3631 for (i = 0; i < msrs->nmsrs; ++i) 3632 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3633 break; 3634 3635 return i; 3636 } 3637 3638 /* 3639 * Read or write a bunch of msrs. Parameters are user addresses. 3640 * 3641 * @return number of msrs set successfully. 3642 */ 3643 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3644 int (*do_msr)(struct kvm_vcpu *vcpu, 3645 unsigned index, u64 *data), 3646 int writeback) 3647 { 3648 struct kvm_msrs msrs; 3649 struct kvm_msr_entry *entries; 3650 int r, n; 3651 unsigned size; 3652 3653 r = -EFAULT; 3654 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3655 goto out; 3656 3657 r = -E2BIG; 3658 if (msrs.nmsrs >= MAX_IO_MSRS) 3659 goto out; 3660 3661 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3662 entries = memdup_user(user_msrs->entries, size); 3663 if (IS_ERR(entries)) { 3664 r = PTR_ERR(entries); 3665 goto out; 3666 } 3667 3668 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3669 if (r < 0) 3670 goto out_free; 3671 3672 r = -EFAULT; 3673 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3674 goto out_free; 3675 3676 r = n; 3677 3678 out_free: 3679 kfree(entries); 3680 out: 3681 return r; 3682 } 3683 3684 static inline bool kvm_can_mwait_in_guest(void) 3685 { 3686 return boot_cpu_has(X86_FEATURE_MWAIT) && 3687 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3688 boot_cpu_has(X86_FEATURE_ARAT); 3689 } 3690 3691 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 3692 struct kvm_cpuid2 __user *cpuid_arg) 3693 { 3694 struct kvm_cpuid2 cpuid; 3695 int r; 3696 3697 r = -EFAULT; 3698 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3699 return r; 3700 3701 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3702 if (r) 3703 return r; 3704 3705 r = -EFAULT; 3706 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3707 return r; 3708 3709 return 0; 3710 } 3711 3712 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3713 { 3714 int r = 0; 3715 3716 switch (ext) { 3717 case KVM_CAP_IRQCHIP: 3718 case KVM_CAP_HLT: 3719 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3720 case KVM_CAP_SET_TSS_ADDR: 3721 case KVM_CAP_EXT_CPUID: 3722 case KVM_CAP_EXT_EMUL_CPUID: 3723 case KVM_CAP_CLOCKSOURCE: 3724 case KVM_CAP_PIT: 3725 case KVM_CAP_NOP_IO_DELAY: 3726 case KVM_CAP_MP_STATE: 3727 case KVM_CAP_SYNC_MMU: 3728 case KVM_CAP_USER_NMI: 3729 case KVM_CAP_REINJECT_CONTROL: 3730 case KVM_CAP_IRQ_INJECT_STATUS: 3731 case KVM_CAP_IOEVENTFD: 3732 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3733 case KVM_CAP_PIT2: 3734 case KVM_CAP_PIT_STATE2: 3735 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3736 case KVM_CAP_VCPU_EVENTS: 3737 case KVM_CAP_HYPERV: 3738 case KVM_CAP_HYPERV_VAPIC: 3739 case KVM_CAP_HYPERV_SPIN: 3740 case KVM_CAP_HYPERV_SYNIC: 3741 case KVM_CAP_HYPERV_SYNIC2: 3742 case KVM_CAP_HYPERV_VP_INDEX: 3743 case KVM_CAP_HYPERV_EVENTFD: 3744 case KVM_CAP_HYPERV_TLBFLUSH: 3745 case KVM_CAP_HYPERV_SEND_IPI: 3746 case KVM_CAP_HYPERV_CPUID: 3747 case KVM_CAP_SYS_HYPERV_CPUID: 3748 case KVM_CAP_PCI_SEGMENT: 3749 case KVM_CAP_DEBUGREGS: 3750 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3751 case KVM_CAP_XSAVE: 3752 case KVM_CAP_ASYNC_PF: 3753 case KVM_CAP_ASYNC_PF_INT: 3754 case KVM_CAP_GET_TSC_KHZ: 3755 case KVM_CAP_KVMCLOCK_CTRL: 3756 case KVM_CAP_READONLY_MEM: 3757 case KVM_CAP_HYPERV_TIME: 3758 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3759 case KVM_CAP_TSC_DEADLINE_TIMER: 3760 case KVM_CAP_DISABLE_QUIRKS: 3761 case KVM_CAP_SET_BOOT_CPU_ID: 3762 case KVM_CAP_SPLIT_IRQCHIP: 3763 case KVM_CAP_IMMEDIATE_EXIT: 3764 case KVM_CAP_PMU_EVENT_FILTER: 3765 case KVM_CAP_GET_MSR_FEATURES: 3766 case KVM_CAP_MSR_PLATFORM_INFO: 3767 case KVM_CAP_EXCEPTION_PAYLOAD: 3768 case KVM_CAP_SET_GUEST_DEBUG: 3769 case KVM_CAP_LAST_CPU: 3770 case KVM_CAP_X86_USER_SPACE_MSR: 3771 case KVM_CAP_X86_MSR_FILTER: 3772 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 3773 r = 1; 3774 break; 3775 #ifdef CONFIG_KVM_XEN 3776 case KVM_CAP_XEN_HVM: 3777 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 3778 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 3779 KVM_XEN_HVM_CONFIG_SHARED_INFO; 3780 if (sched_info_on()) 3781 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 3782 break; 3783 #endif 3784 case KVM_CAP_SYNC_REGS: 3785 r = KVM_SYNC_X86_VALID_FIELDS; 3786 break; 3787 case KVM_CAP_ADJUST_CLOCK: 3788 r = KVM_CLOCK_TSC_STABLE; 3789 break; 3790 case KVM_CAP_X86_DISABLE_EXITS: 3791 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3792 KVM_X86_DISABLE_EXITS_CSTATE; 3793 if(kvm_can_mwait_in_guest()) 3794 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3795 break; 3796 case KVM_CAP_X86_SMM: 3797 /* SMBASE is usually relocated above 1M on modern chipsets, 3798 * and SMM handlers might indeed rely on 4G segment limits, 3799 * so do not report SMM to be available if real mode is 3800 * emulated via vm86 mode. Still, do not go to great lengths 3801 * to avoid userspace's usage of the feature, because it is a 3802 * fringe case that is not enabled except via specific settings 3803 * of the module parameters. 3804 */ 3805 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 3806 break; 3807 case KVM_CAP_VAPIC: 3808 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)(); 3809 break; 3810 case KVM_CAP_NR_VCPUS: 3811 r = KVM_SOFT_MAX_VCPUS; 3812 break; 3813 case KVM_CAP_MAX_VCPUS: 3814 r = KVM_MAX_VCPUS; 3815 break; 3816 case KVM_CAP_MAX_VCPU_ID: 3817 r = KVM_MAX_VCPU_ID; 3818 break; 3819 case KVM_CAP_PV_MMU: /* obsolete */ 3820 r = 0; 3821 break; 3822 case KVM_CAP_MCE: 3823 r = KVM_MAX_MCE_BANKS; 3824 break; 3825 case KVM_CAP_XCRS: 3826 r = boot_cpu_has(X86_FEATURE_XSAVE); 3827 break; 3828 case KVM_CAP_TSC_CONTROL: 3829 r = kvm_has_tsc_control; 3830 break; 3831 case KVM_CAP_X2APIC_API: 3832 r = KVM_X2APIC_API_VALID_FLAGS; 3833 break; 3834 case KVM_CAP_NESTED_STATE: 3835 r = kvm_x86_ops.nested_ops->get_state ? 3836 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3837 break; 3838 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3839 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3840 break; 3841 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3842 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3843 break; 3844 case KVM_CAP_SMALLER_MAXPHYADDR: 3845 r = (int) allow_smaller_maxphyaddr; 3846 break; 3847 case KVM_CAP_STEAL_TIME: 3848 r = sched_info_on(); 3849 break; 3850 case KVM_CAP_X86_BUS_LOCK_EXIT: 3851 if (kvm_has_bus_lock_exit) 3852 r = KVM_BUS_LOCK_DETECTION_OFF | 3853 KVM_BUS_LOCK_DETECTION_EXIT; 3854 else 3855 r = 0; 3856 break; 3857 default: 3858 break; 3859 } 3860 return r; 3861 3862 } 3863 3864 long kvm_arch_dev_ioctl(struct file *filp, 3865 unsigned int ioctl, unsigned long arg) 3866 { 3867 void __user *argp = (void __user *)arg; 3868 long r; 3869 3870 switch (ioctl) { 3871 case KVM_GET_MSR_INDEX_LIST: { 3872 struct kvm_msr_list __user *user_msr_list = argp; 3873 struct kvm_msr_list msr_list; 3874 unsigned n; 3875 3876 r = -EFAULT; 3877 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3878 goto out; 3879 n = msr_list.nmsrs; 3880 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3881 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3882 goto out; 3883 r = -E2BIG; 3884 if (n < msr_list.nmsrs) 3885 goto out; 3886 r = -EFAULT; 3887 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3888 num_msrs_to_save * sizeof(u32))) 3889 goto out; 3890 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3891 &emulated_msrs, 3892 num_emulated_msrs * sizeof(u32))) 3893 goto out; 3894 r = 0; 3895 break; 3896 } 3897 case KVM_GET_SUPPORTED_CPUID: 3898 case KVM_GET_EMULATED_CPUID: { 3899 struct kvm_cpuid2 __user *cpuid_arg = argp; 3900 struct kvm_cpuid2 cpuid; 3901 3902 r = -EFAULT; 3903 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3904 goto out; 3905 3906 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3907 ioctl); 3908 if (r) 3909 goto out; 3910 3911 r = -EFAULT; 3912 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3913 goto out; 3914 r = 0; 3915 break; 3916 } 3917 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3918 r = -EFAULT; 3919 if (copy_to_user(argp, &kvm_mce_cap_supported, 3920 sizeof(kvm_mce_cap_supported))) 3921 goto out; 3922 r = 0; 3923 break; 3924 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3925 struct kvm_msr_list __user *user_msr_list = argp; 3926 struct kvm_msr_list msr_list; 3927 unsigned int n; 3928 3929 r = -EFAULT; 3930 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3931 goto out; 3932 n = msr_list.nmsrs; 3933 msr_list.nmsrs = num_msr_based_features; 3934 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3935 goto out; 3936 r = -E2BIG; 3937 if (n < msr_list.nmsrs) 3938 goto out; 3939 r = -EFAULT; 3940 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3941 num_msr_based_features * sizeof(u32))) 3942 goto out; 3943 r = 0; 3944 break; 3945 } 3946 case KVM_GET_MSRS: 3947 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3948 break; 3949 case KVM_GET_SUPPORTED_HV_CPUID: 3950 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 3951 break; 3952 default: 3953 r = -EINVAL; 3954 break; 3955 } 3956 out: 3957 return r; 3958 } 3959 3960 static void wbinvd_ipi(void *garbage) 3961 { 3962 wbinvd(); 3963 } 3964 3965 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3966 { 3967 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3968 } 3969 3970 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3971 { 3972 /* Address WBINVD may be executed by guest */ 3973 if (need_emulate_wbinvd(vcpu)) { 3974 if (static_call(kvm_x86_has_wbinvd_exit)()) 3975 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3976 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3977 smp_call_function_single(vcpu->cpu, 3978 wbinvd_ipi, NULL, 1); 3979 } 3980 3981 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 3982 3983 /* Save host pkru register if supported */ 3984 vcpu->arch.host_pkru = read_pkru(); 3985 3986 /* Apply any externally detected TSC adjustments (due to suspend) */ 3987 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3988 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3989 vcpu->arch.tsc_offset_adjustment = 0; 3990 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3991 } 3992 3993 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3994 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3995 rdtsc() - vcpu->arch.last_host_tsc; 3996 if (tsc_delta < 0) 3997 mark_tsc_unstable("KVM discovered backwards TSC"); 3998 3999 if (kvm_check_tsc_unstable()) { 4000 u64 offset = kvm_compute_tsc_offset(vcpu, 4001 vcpu->arch.last_guest_tsc); 4002 kvm_vcpu_write_tsc_offset(vcpu, offset); 4003 vcpu->arch.tsc_catchup = 1; 4004 } 4005 4006 if (kvm_lapic_hv_timer_in_use(vcpu)) 4007 kvm_lapic_restart_hv_timer(vcpu); 4008 4009 /* 4010 * On a host with synchronized TSC, there is no need to update 4011 * kvmclock on vcpu->cpu migration 4012 */ 4013 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4014 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4015 if (vcpu->cpu != cpu) 4016 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4017 vcpu->cpu = cpu; 4018 } 4019 4020 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4021 } 4022 4023 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4024 { 4025 struct kvm_host_map map; 4026 struct kvm_steal_time *st; 4027 int idx; 4028 4029 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4030 return; 4031 4032 if (vcpu->arch.st.preempted) 4033 return; 4034 4035 /* 4036 * Take the srcu lock as memslots will be accessed to check the gfn 4037 * cache generation against the memslots generation. 4038 */ 4039 idx = srcu_read_lock(&vcpu->kvm->srcu); 4040 4041 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 4042 &vcpu->arch.st.cache, true)) 4043 goto out; 4044 4045 st = map.hva + 4046 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 4047 4048 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4049 4050 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 4051 4052 out: 4053 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4054 } 4055 4056 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4057 { 4058 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4059 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4060 4061 if (kvm_xen_msr_enabled(vcpu->kvm)) 4062 kvm_xen_runstate_set_preempted(vcpu); 4063 else 4064 kvm_steal_time_set_preempted(vcpu); 4065 4066 static_call(kvm_x86_vcpu_put)(vcpu); 4067 vcpu->arch.last_host_tsc = rdtsc(); 4068 /* 4069 * If userspace has set any breakpoints or watchpoints, dr6 is restored 4070 * on every vmexit, but if not, we might have a stale dr6 from the 4071 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 4072 */ 4073 set_debugreg(0, 6); 4074 } 4075 4076 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4077 struct kvm_lapic_state *s) 4078 { 4079 if (vcpu->arch.apicv_active) 4080 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 4081 4082 return kvm_apic_get_state(vcpu, s); 4083 } 4084 4085 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4086 struct kvm_lapic_state *s) 4087 { 4088 int r; 4089 4090 r = kvm_apic_set_state(vcpu, s); 4091 if (r) 4092 return r; 4093 update_cr8_intercept(vcpu); 4094 4095 return 0; 4096 } 4097 4098 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4099 { 4100 /* 4101 * We can accept userspace's request for interrupt injection 4102 * as long as we have a place to store the interrupt number. 4103 * The actual injection will happen when the CPU is able to 4104 * deliver the interrupt. 4105 */ 4106 if (kvm_cpu_has_extint(vcpu)) 4107 return false; 4108 4109 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4110 return (!lapic_in_kernel(vcpu) || 4111 kvm_apic_accept_pic_intr(vcpu)); 4112 } 4113 4114 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4115 { 4116 return kvm_arch_interrupt_allowed(vcpu) && 4117 kvm_cpu_accept_dm_intr(vcpu); 4118 } 4119 4120 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4121 struct kvm_interrupt *irq) 4122 { 4123 if (irq->irq >= KVM_NR_INTERRUPTS) 4124 return -EINVAL; 4125 4126 if (!irqchip_in_kernel(vcpu->kvm)) { 4127 kvm_queue_interrupt(vcpu, irq->irq, false); 4128 kvm_make_request(KVM_REQ_EVENT, vcpu); 4129 return 0; 4130 } 4131 4132 /* 4133 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4134 * fail for in-kernel 8259. 4135 */ 4136 if (pic_in_kernel(vcpu->kvm)) 4137 return -ENXIO; 4138 4139 if (vcpu->arch.pending_external_vector != -1) 4140 return -EEXIST; 4141 4142 vcpu->arch.pending_external_vector = irq->irq; 4143 kvm_make_request(KVM_REQ_EVENT, vcpu); 4144 return 0; 4145 } 4146 4147 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4148 { 4149 kvm_inject_nmi(vcpu); 4150 4151 return 0; 4152 } 4153 4154 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4155 { 4156 kvm_make_request(KVM_REQ_SMI, vcpu); 4157 4158 return 0; 4159 } 4160 4161 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4162 struct kvm_tpr_access_ctl *tac) 4163 { 4164 if (tac->flags) 4165 return -EINVAL; 4166 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4167 return 0; 4168 } 4169 4170 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4171 u64 mcg_cap) 4172 { 4173 int r; 4174 unsigned bank_num = mcg_cap & 0xff, bank; 4175 4176 r = -EINVAL; 4177 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4178 goto out; 4179 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4180 goto out; 4181 r = 0; 4182 vcpu->arch.mcg_cap = mcg_cap; 4183 /* Init IA32_MCG_CTL to all 1s */ 4184 if (mcg_cap & MCG_CTL_P) 4185 vcpu->arch.mcg_ctl = ~(u64)0; 4186 /* Init IA32_MCi_CTL to all 1s */ 4187 for (bank = 0; bank < bank_num; bank++) 4188 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4189 4190 static_call(kvm_x86_setup_mce)(vcpu); 4191 out: 4192 return r; 4193 } 4194 4195 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4196 struct kvm_x86_mce *mce) 4197 { 4198 u64 mcg_cap = vcpu->arch.mcg_cap; 4199 unsigned bank_num = mcg_cap & 0xff; 4200 u64 *banks = vcpu->arch.mce_banks; 4201 4202 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4203 return -EINVAL; 4204 /* 4205 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4206 * reporting is disabled 4207 */ 4208 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4209 vcpu->arch.mcg_ctl != ~(u64)0) 4210 return 0; 4211 banks += 4 * mce->bank; 4212 /* 4213 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4214 * reporting is disabled for the bank 4215 */ 4216 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4217 return 0; 4218 if (mce->status & MCI_STATUS_UC) { 4219 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4220 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4221 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4222 return 0; 4223 } 4224 if (banks[1] & MCI_STATUS_VAL) 4225 mce->status |= MCI_STATUS_OVER; 4226 banks[2] = mce->addr; 4227 banks[3] = mce->misc; 4228 vcpu->arch.mcg_status = mce->mcg_status; 4229 banks[1] = mce->status; 4230 kvm_queue_exception(vcpu, MC_VECTOR); 4231 } else if (!(banks[1] & MCI_STATUS_VAL) 4232 || !(banks[1] & MCI_STATUS_UC)) { 4233 if (banks[1] & MCI_STATUS_VAL) 4234 mce->status |= MCI_STATUS_OVER; 4235 banks[2] = mce->addr; 4236 banks[3] = mce->misc; 4237 banks[1] = mce->status; 4238 } else 4239 banks[1] |= MCI_STATUS_OVER; 4240 return 0; 4241 } 4242 4243 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4244 struct kvm_vcpu_events *events) 4245 { 4246 process_nmi(vcpu); 4247 4248 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4249 process_smi(vcpu); 4250 4251 /* 4252 * In guest mode, payload delivery should be deferred, 4253 * so that the L1 hypervisor can intercept #PF before 4254 * CR2 is modified (or intercept #DB before DR6 is 4255 * modified under nVMX). Unless the per-VM capability, 4256 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4257 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4258 * opportunistically defer the exception payload, deliver it if the 4259 * capability hasn't been requested before processing a 4260 * KVM_GET_VCPU_EVENTS. 4261 */ 4262 if (!vcpu->kvm->arch.exception_payload_enabled && 4263 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4264 kvm_deliver_exception_payload(vcpu); 4265 4266 /* 4267 * The API doesn't provide the instruction length for software 4268 * exceptions, so don't report them. As long as the guest RIP 4269 * isn't advanced, we should expect to encounter the exception 4270 * again. 4271 */ 4272 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4273 events->exception.injected = 0; 4274 events->exception.pending = 0; 4275 } else { 4276 events->exception.injected = vcpu->arch.exception.injected; 4277 events->exception.pending = vcpu->arch.exception.pending; 4278 /* 4279 * For ABI compatibility, deliberately conflate 4280 * pending and injected exceptions when 4281 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4282 */ 4283 if (!vcpu->kvm->arch.exception_payload_enabled) 4284 events->exception.injected |= 4285 vcpu->arch.exception.pending; 4286 } 4287 events->exception.nr = vcpu->arch.exception.nr; 4288 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4289 events->exception.error_code = vcpu->arch.exception.error_code; 4290 events->exception_has_payload = vcpu->arch.exception.has_payload; 4291 events->exception_payload = vcpu->arch.exception.payload; 4292 4293 events->interrupt.injected = 4294 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4295 events->interrupt.nr = vcpu->arch.interrupt.nr; 4296 events->interrupt.soft = 0; 4297 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4298 4299 events->nmi.injected = vcpu->arch.nmi_injected; 4300 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4301 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4302 events->nmi.pad = 0; 4303 4304 events->sipi_vector = 0; /* never valid when reporting to user space */ 4305 4306 events->smi.smm = is_smm(vcpu); 4307 events->smi.pending = vcpu->arch.smi_pending; 4308 events->smi.smm_inside_nmi = 4309 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4310 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4311 4312 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4313 | KVM_VCPUEVENT_VALID_SHADOW 4314 | KVM_VCPUEVENT_VALID_SMM); 4315 if (vcpu->kvm->arch.exception_payload_enabled) 4316 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4317 4318 memset(&events->reserved, 0, sizeof(events->reserved)); 4319 } 4320 4321 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4322 4323 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4324 struct kvm_vcpu_events *events) 4325 { 4326 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4327 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4328 | KVM_VCPUEVENT_VALID_SHADOW 4329 | KVM_VCPUEVENT_VALID_SMM 4330 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4331 return -EINVAL; 4332 4333 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4334 if (!vcpu->kvm->arch.exception_payload_enabled) 4335 return -EINVAL; 4336 if (events->exception.pending) 4337 events->exception.injected = 0; 4338 else 4339 events->exception_has_payload = 0; 4340 } else { 4341 events->exception.pending = 0; 4342 events->exception_has_payload = 0; 4343 } 4344 4345 if ((events->exception.injected || events->exception.pending) && 4346 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4347 return -EINVAL; 4348 4349 /* INITs are latched while in SMM */ 4350 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4351 (events->smi.smm || events->smi.pending) && 4352 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4353 return -EINVAL; 4354 4355 process_nmi(vcpu); 4356 vcpu->arch.exception.injected = events->exception.injected; 4357 vcpu->arch.exception.pending = events->exception.pending; 4358 vcpu->arch.exception.nr = events->exception.nr; 4359 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4360 vcpu->arch.exception.error_code = events->exception.error_code; 4361 vcpu->arch.exception.has_payload = events->exception_has_payload; 4362 vcpu->arch.exception.payload = events->exception_payload; 4363 4364 vcpu->arch.interrupt.injected = events->interrupt.injected; 4365 vcpu->arch.interrupt.nr = events->interrupt.nr; 4366 vcpu->arch.interrupt.soft = events->interrupt.soft; 4367 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4368 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4369 events->interrupt.shadow); 4370 4371 vcpu->arch.nmi_injected = events->nmi.injected; 4372 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4373 vcpu->arch.nmi_pending = events->nmi.pending; 4374 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4375 4376 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4377 lapic_in_kernel(vcpu)) 4378 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4379 4380 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4381 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4382 if (events->smi.smm) 4383 vcpu->arch.hflags |= HF_SMM_MASK; 4384 else 4385 vcpu->arch.hflags &= ~HF_SMM_MASK; 4386 kvm_smm_changed(vcpu); 4387 } 4388 4389 vcpu->arch.smi_pending = events->smi.pending; 4390 4391 if (events->smi.smm) { 4392 if (events->smi.smm_inside_nmi) 4393 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4394 else 4395 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4396 } 4397 4398 if (lapic_in_kernel(vcpu)) { 4399 if (events->smi.latched_init) 4400 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4401 else 4402 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4403 } 4404 } 4405 4406 kvm_make_request(KVM_REQ_EVENT, vcpu); 4407 4408 return 0; 4409 } 4410 4411 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4412 struct kvm_debugregs *dbgregs) 4413 { 4414 unsigned long val; 4415 4416 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4417 kvm_get_dr(vcpu, 6, &val); 4418 dbgregs->dr6 = val; 4419 dbgregs->dr7 = vcpu->arch.dr7; 4420 dbgregs->flags = 0; 4421 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4422 } 4423 4424 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4425 struct kvm_debugregs *dbgregs) 4426 { 4427 if (dbgregs->flags) 4428 return -EINVAL; 4429 4430 if (!kvm_dr6_valid(dbgregs->dr6)) 4431 return -EINVAL; 4432 if (!kvm_dr7_valid(dbgregs->dr7)) 4433 return -EINVAL; 4434 4435 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4436 kvm_update_dr0123(vcpu); 4437 vcpu->arch.dr6 = dbgregs->dr6; 4438 vcpu->arch.dr7 = dbgregs->dr7; 4439 kvm_update_dr7(vcpu); 4440 4441 return 0; 4442 } 4443 4444 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4445 4446 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4447 { 4448 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4449 u64 xstate_bv = xsave->header.xfeatures; 4450 u64 valid; 4451 4452 /* 4453 * Copy legacy XSAVE area, to avoid complications with CPUID 4454 * leaves 0 and 1 in the loop below. 4455 */ 4456 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4457 4458 /* Set XSTATE_BV */ 4459 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4460 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4461 4462 /* 4463 * Copy each region from the possibly compacted offset to the 4464 * non-compacted offset. 4465 */ 4466 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4467 while (valid) { 4468 u64 xfeature_mask = valid & -valid; 4469 int xfeature_nr = fls64(xfeature_mask) - 1; 4470 void *src = get_xsave_addr(xsave, xfeature_nr); 4471 4472 if (src) { 4473 u32 size, offset, ecx, edx; 4474 cpuid_count(XSTATE_CPUID, xfeature_nr, 4475 &size, &offset, &ecx, &edx); 4476 if (xfeature_nr == XFEATURE_PKRU) 4477 memcpy(dest + offset, &vcpu->arch.pkru, 4478 sizeof(vcpu->arch.pkru)); 4479 else 4480 memcpy(dest + offset, src, size); 4481 4482 } 4483 4484 valid -= xfeature_mask; 4485 } 4486 } 4487 4488 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4489 { 4490 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4491 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4492 u64 valid; 4493 4494 /* 4495 * Copy legacy XSAVE area, to avoid complications with CPUID 4496 * leaves 0 and 1 in the loop below. 4497 */ 4498 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4499 4500 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4501 xsave->header.xfeatures = xstate_bv; 4502 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4503 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4504 4505 /* 4506 * Copy each region from the non-compacted offset to the 4507 * possibly compacted offset. 4508 */ 4509 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4510 while (valid) { 4511 u64 xfeature_mask = valid & -valid; 4512 int xfeature_nr = fls64(xfeature_mask) - 1; 4513 void *dest = get_xsave_addr(xsave, xfeature_nr); 4514 4515 if (dest) { 4516 u32 size, offset, ecx, edx; 4517 cpuid_count(XSTATE_CPUID, xfeature_nr, 4518 &size, &offset, &ecx, &edx); 4519 if (xfeature_nr == XFEATURE_PKRU) 4520 memcpy(&vcpu->arch.pkru, src + offset, 4521 sizeof(vcpu->arch.pkru)); 4522 else 4523 memcpy(dest, src + offset, size); 4524 } 4525 4526 valid -= xfeature_mask; 4527 } 4528 } 4529 4530 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4531 struct kvm_xsave *guest_xsave) 4532 { 4533 if (!vcpu->arch.guest_fpu) 4534 return; 4535 4536 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4537 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4538 fill_xsave((u8 *) guest_xsave->region, vcpu); 4539 } else { 4540 memcpy(guest_xsave->region, 4541 &vcpu->arch.guest_fpu->state.fxsave, 4542 sizeof(struct fxregs_state)); 4543 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4544 XFEATURE_MASK_FPSSE; 4545 } 4546 } 4547 4548 #define XSAVE_MXCSR_OFFSET 24 4549 4550 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4551 struct kvm_xsave *guest_xsave) 4552 { 4553 u64 xstate_bv; 4554 u32 mxcsr; 4555 4556 if (!vcpu->arch.guest_fpu) 4557 return 0; 4558 4559 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4560 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4561 4562 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4563 /* 4564 * Here we allow setting states that are not present in 4565 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4566 * with old userspace. 4567 */ 4568 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4569 return -EINVAL; 4570 load_xsave(vcpu, (u8 *)guest_xsave->region); 4571 } else { 4572 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4573 mxcsr & ~mxcsr_feature_mask) 4574 return -EINVAL; 4575 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4576 guest_xsave->region, sizeof(struct fxregs_state)); 4577 } 4578 return 0; 4579 } 4580 4581 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4582 struct kvm_xcrs *guest_xcrs) 4583 { 4584 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4585 guest_xcrs->nr_xcrs = 0; 4586 return; 4587 } 4588 4589 guest_xcrs->nr_xcrs = 1; 4590 guest_xcrs->flags = 0; 4591 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4592 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4593 } 4594 4595 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4596 struct kvm_xcrs *guest_xcrs) 4597 { 4598 int i, r = 0; 4599 4600 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4601 return -EINVAL; 4602 4603 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4604 return -EINVAL; 4605 4606 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4607 /* Only support XCR0 currently */ 4608 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4609 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4610 guest_xcrs->xcrs[i].value); 4611 break; 4612 } 4613 if (r) 4614 r = -EINVAL; 4615 return r; 4616 } 4617 4618 /* 4619 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4620 * stopped by the hypervisor. This function will be called from the host only. 4621 * EINVAL is returned when the host attempts to set the flag for a guest that 4622 * does not support pv clocks. 4623 */ 4624 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4625 { 4626 if (!vcpu->arch.pv_time_enabled) 4627 return -EINVAL; 4628 vcpu->arch.pvclock_set_guest_stopped_request = true; 4629 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4630 return 0; 4631 } 4632 4633 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4634 struct kvm_enable_cap *cap) 4635 { 4636 int r; 4637 uint16_t vmcs_version; 4638 void __user *user_ptr; 4639 4640 if (cap->flags) 4641 return -EINVAL; 4642 4643 switch (cap->cap) { 4644 case KVM_CAP_HYPERV_SYNIC2: 4645 if (cap->args[0]) 4646 return -EINVAL; 4647 fallthrough; 4648 4649 case KVM_CAP_HYPERV_SYNIC: 4650 if (!irqchip_in_kernel(vcpu->kvm)) 4651 return -EINVAL; 4652 return kvm_hv_activate_synic(vcpu, cap->cap == 4653 KVM_CAP_HYPERV_SYNIC2); 4654 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4655 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4656 return -ENOTTY; 4657 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4658 if (!r) { 4659 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4660 if (copy_to_user(user_ptr, &vmcs_version, 4661 sizeof(vmcs_version))) 4662 r = -EFAULT; 4663 } 4664 return r; 4665 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4666 if (!kvm_x86_ops.enable_direct_tlbflush) 4667 return -ENOTTY; 4668 4669 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 4670 4671 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4672 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4673 if (vcpu->arch.pv_cpuid.enforce) 4674 kvm_update_pv_runtime(vcpu); 4675 4676 return 0; 4677 4678 default: 4679 return -EINVAL; 4680 } 4681 } 4682 4683 long kvm_arch_vcpu_ioctl(struct file *filp, 4684 unsigned int ioctl, unsigned long arg) 4685 { 4686 struct kvm_vcpu *vcpu = filp->private_data; 4687 void __user *argp = (void __user *)arg; 4688 int r; 4689 union { 4690 struct kvm_lapic_state *lapic; 4691 struct kvm_xsave *xsave; 4692 struct kvm_xcrs *xcrs; 4693 void *buffer; 4694 } u; 4695 4696 vcpu_load(vcpu); 4697 4698 u.buffer = NULL; 4699 switch (ioctl) { 4700 case KVM_GET_LAPIC: { 4701 r = -EINVAL; 4702 if (!lapic_in_kernel(vcpu)) 4703 goto out; 4704 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4705 GFP_KERNEL_ACCOUNT); 4706 4707 r = -ENOMEM; 4708 if (!u.lapic) 4709 goto out; 4710 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4711 if (r) 4712 goto out; 4713 r = -EFAULT; 4714 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4715 goto out; 4716 r = 0; 4717 break; 4718 } 4719 case KVM_SET_LAPIC: { 4720 r = -EINVAL; 4721 if (!lapic_in_kernel(vcpu)) 4722 goto out; 4723 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4724 if (IS_ERR(u.lapic)) { 4725 r = PTR_ERR(u.lapic); 4726 goto out_nofree; 4727 } 4728 4729 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4730 break; 4731 } 4732 case KVM_INTERRUPT: { 4733 struct kvm_interrupt irq; 4734 4735 r = -EFAULT; 4736 if (copy_from_user(&irq, argp, sizeof(irq))) 4737 goto out; 4738 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4739 break; 4740 } 4741 case KVM_NMI: { 4742 r = kvm_vcpu_ioctl_nmi(vcpu); 4743 break; 4744 } 4745 case KVM_SMI: { 4746 r = kvm_vcpu_ioctl_smi(vcpu); 4747 break; 4748 } 4749 case KVM_SET_CPUID: { 4750 struct kvm_cpuid __user *cpuid_arg = argp; 4751 struct kvm_cpuid cpuid; 4752 4753 r = -EFAULT; 4754 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4755 goto out; 4756 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4757 break; 4758 } 4759 case KVM_SET_CPUID2: { 4760 struct kvm_cpuid2 __user *cpuid_arg = argp; 4761 struct kvm_cpuid2 cpuid; 4762 4763 r = -EFAULT; 4764 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4765 goto out; 4766 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4767 cpuid_arg->entries); 4768 break; 4769 } 4770 case KVM_GET_CPUID2: { 4771 struct kvm_cpuid2 __user *cpuid_arg = argp; 4772 struct kvm_cpuid2 cpuid; 4773 4774 r = -EFAULT; 4775 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4776 goto out; 4777 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4778 cpuid_arg->entries); 4779 if (r) 4780 goto out; 4781 r = -EFAULT; 4782 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4783 goto out; 4784 r = 0; 4785 break; 4786 } 4787 case KVM_GET_MSRS: { 4788 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4789 r = msr_io(vcpu, argp, do_get_msr, 1); 4790 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4791 break; 4792 } 4793 case KVM_SET_MSRS: { 4794 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4795 r = msr_io(vcpu, argp, do_set_msr, 0); 4796 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4797 break; 4798 } 4799 case KVM_TPR_ACCESS_REPORTING: { 4800 struct kvm_tpr_access_ctl tac; 4801 4802 r = -EFAULT; 4803 if (copy_from_user(&tac, argp, sizeof(tac))) 4804 goto out; 4805 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4806 if (r) 4807 goto out; 4808 r = -EFAULT; 4809 if (copy_to_user(argp, &tac, sizeof(tac))) 4810 goto out; 4811 r = 0; 4812 break; 4813 }; 4814 case KVM_SET_VAPIC_ADDR: { 4815 struct kvm_vapic_addr va; 4816 int idx; 4817 4818 r = -EINVAL; 4819 if (!lapic_in_kernel(vcpu)) 4820 goto out; 4821 r = -EFAULT; 4822 if (copy_from_user(&va, argp, sizeof(va))) 4823 goto out; 4824 idx = srcu_read_lock(&vcpu->kvm->srcu); 4825 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4826 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4827 break; 4828 } 4829 case KVM_X86_SETUP_MCE: { 4830 u64 mcg_cap; 4831 4832 r = -EFAULT; 4833 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4834 goto out; 4835 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4836 break; 4837 } 4838 case KVM_X86_SET_MCE: { 4839 struct kvm_x86_mce mce; 4840 4841 r = -EFAULT; 4842 if (copy_from_user(&mce, argp, sizeof(mce))) 4843 goto out; 4844 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4845 break; 4846 } 4847 case KVM_GET_VCPU_EVENTS: { 4848 struct kvm_vcpu_events events; 4849 4850 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4851 4852 r = -EFAULT; 4853 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4854 break; 4855 r = 0; 4856 break; 4857 } 4858 case KVM_SET_VCPU_EVENTS: { 4859 struct kvm_vcpu_events events; 4860 4861 r = -EFAULT; 4862 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4863 break; 4864 4865 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4866 break; 4867 } 4868 case KVM_GET_DEBUGREGS: { 4869 struct kvm_debugregs dbgregs; 4870 4871 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4872 4873 r = -EFAULT; 4874 if (copy_to_user(argp, &dbgregs, 4875 sizeof(struct kvm_debugregs))) 4876 break; 4877 r = 0; 4878 break; 4879 } 4880 case KVM_SET_DEBUGREGS: { 4881 struct kvm_debugregs dbgregs; 4882 4883 r = -EFAULT; 4884 if (copy_from_user(&dbgregs, argp, 4885 sizeof(struct kvm_debugregs))) 4886 break; 4887 4888 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4889 break; 4890 } 4891 case KVM_GET_XSAVE: { 4892 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4893 r = -ENOMEM; 4894 if (!u.xsave) 4895 break; 4896 4897 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4898 4899 r = -EFAULT; 4900 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4901 break; 4902 r = 0; 4903 break; 4904 } 4905 case KVM_SET_XSAVE: { 4906 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4907 if (IS_ERR(u.xsave)) { 4908 r = PTR_ERR(u.xsave); 4909 goto out_nofree; 4910 } 4911 4912 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4913 break; 4914 } 4915 case KVM_GET_XCRS: { 4916 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4917 r = -ENOMEM; 4918 if (!u.xcrs) 4919 break; 4920 4921 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4922 4923 r = -EFAULT; 4924 if (copy_to_user(argp, u.xcrs, 4925 sizeof(struct kvm_xcrs))) 4926 break; 4927 r = 0; 4928 break; 4929 } 4930 case KVM_SET_XCRS: { 4931 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4932 if (IS_ERR(u.xcrs)) { 4933 r = PTR_ERR(u.xcrs); 4934 goto out_nofree; 4935 } 4936 4937 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4938 break; 4939 } 4940 case KVM_SET_TSC_KHZ: { 4941 u32 user_tsc_khz; 4942 4943 r = -EINVAL; 4944 user_tsc_khz = (u32)arg; 4945 4946 if (kvm_has_tsc_control && 4947 user_tsc_khz >= kvm_max_guest_tsc_khz) 4948 goto out; 4949 4950 if (user_tsc_khz == 0) 4951 user_tsc_khz = tsc_khz; 4952 4953 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4954 r = 0; 4955 4956 goto out; 4957 } 4958 case KVM_GET_TSC_KHZ: { 4959 r = vcpu->arch.virtual_tsc_khz; 4960 goto out; 4961 } 4962 case KVM_KVMCLOCK_CTRL: { 4963 r = kvm_set_guest_paused(vcpu); 4964 goto out; 4965 } 4966 case KVM_ENABLE_CAP: { 4967 struct kvm_enable_cap cap; 4968 4969 r = -EFAULT; 4970 if (copy_from_user(&cap, argp, sizeof(cap))) 4971 goto out; 4972 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4973 break; 4974 } 4975 case KVM_GET_NESTED_STATE: { 4976 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4977 u32 user_data_size; 4978 4979 r = -EINVAL; 4980 if (!kvm_x86_ops.nested_ops->get_state) 4981 break; 4982 4983 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4984 r = -EFAULT; 4985 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4986 break; 4987 4988 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4989 user_data_size); 4990 if (r < 0) 4991 break; 4992 4993 if (r > user_data_size) { 4994 if (put_user(r, &user_kvm_nested_state->size)) 4995 r = -EFAULT; 4996 else 4997 r = -E2BIG; 4998 break; 4999 } 5000 5001 r = 0; 5002 break; 5003 } 5004 case KVM_SET_NESTED_STATE: { 5005 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5006 struct kvm_nested_state kvm_state; 5007 int idx; 5008 5009 r = -EINVAL; 5010 if (!kvm_x86_ops.nested_ops->set_state) 5011 break; 5012 5013 r = -EFAULT; 5014 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5015 break; 5016 5017 r = -EINVAL; 5018 if (kvm_state.size < sizeof(kvm_state)) 5019 break; 5020 5021 if (kvm_state.flags & 5022 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5023 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5024 | KVM_STATE_NESTED_GIF_SET)) 5025 break; 5026 5027 /* nested_run_pending implies guest_mode. */ 5028 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5029 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5030 break; 5031 5032 idx = srcu_read_lock(&vcpu->kvm->srcu); 5033 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5034 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5035 break; 5036 } 5037 case KVM_GET_SUPPORTED_HV_CPUID: 5038 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5039 break; 5040 #ifdef CONFIG_KVM_XEN 5041 case KVM_XEN_VCPU_GET_ATTR: { 5042 struct kvm_xen_vcpu_attr xva; 5043 5044 r = -EFAULT; 5045 if (copy_from_user(&xva, argp, sizeof(xva))) 5046 goto out; 5047 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5048 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5049 r = -EFAULT; 5050 break; 5051 } 5052 case KVM_XEN_VCPU_SET_ATTR: { 5053 struct kvm_xen_vcpu_attr xva; 5054 5055 r = -EFAULT; 5056 if (copy_from_user(&xva, argp, sizeof(xva))) 5057 goto out; 5058 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5059 break; 5060 } 5061 #endif 5062 default: 5063 r = -EINVAL; 5064 } 5065 out: 5066 kfree(u.buffer); 5067 out_nofree: 5068 vcpu_put(vcpu); 5069 return r; 5070 } 5071 5072 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5073 { 5074 return VM_FAULT_SIGBUS; 5075 } 5076 5077 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5078 { 5079 int ret; 5080 5081 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5082 return -EINVAL; 5083 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5084 return ret; 5085 } 5086 5087 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5088 u64 ident_addr) 5089 { 5090 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5091 } 5092 5093 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5094 unsigned long kvm_nr_mmu_pages) 5095 { 5096 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5097 return -EINVAL; 5098 5099 mutex_lock(&kvm->slots_lock); 5100 5101 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5102 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5103 5104 mutex_unlock(&kvm->slots_lock); 5105 return 0; 5106 } 5107 5108 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5109 { 5110 return kvm->arch.n_max_mmu_pages; 5111 } 5112 5113 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5114 { 5115 struct kvm_pic *pic = kvm->arch.vpic; 5116 int r; 5117 5118 r = 0; 5119 switch (chip->chip_id) { 5120 case KVM_IRQCHIP_PIC_MASTER: 5121 memcpy(&chip->chip.pic, &pic->pics[0], 5122 sizeof(struct kvm_pic_state)); 5123 break; 5124 case KVM_IRQCHIP_PIC_SLAVE: 5125 memcpy(&chip->chip.pic, &pic->pics[1], 5126 sizeof(struct kvm_pic_state)); 5127 break; 5128 case KVM_IRQCHIP_IOAPIC: 5129 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5130 break; 5131 default: 5132 r = -EINVAL; 5133 break; 5134 } 5135 return r; 5136 } 5137 5138 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5139 { 5140 struct kvm_pic *pic = kvm->arch.vpic; 5141 int r; 5142 5143 r = 0; 5144 switch (chip->chip_id) { 5145 case KVM_IRQCHIP_PIC_MASTER: 5146 spin_lock(&pic->lock); 5147 memcpy(&pic->pics[0], &chip->chip.pic, 5148 sizeof(struct kvm_pic_state)); 5149 spin_unlock(&pic->lock); 5150 break; 5151 case KVM_IRQCHIP_PIC_SLAVE: 5152 spin_lock(&pic->lock); 5153 memcpy(&pic->pics[1], &chip->chip.pic, 5154 sizeof(struct kvm_pic_state)); 5155 spin_unlock(&pic->lock); 5156 break; 5157 case KVM_IRQCHIP_IOAPIC: 5158 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5159 break; 5160 default: 5161 r = -EINVAL; 5162 break; 5163 } 5164 kvm_pic_update_irq(pic); 5165 return r; 5166 } 5167 5168 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5169 { 5170 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5171 5172 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5173 5174 mutex_lock(&kps->lock); 5175 memcpy(ps, &kps->channels, sizeof(*ps)); 5176 mutex_unlock(&kps->lock); 5177 return 0; 5178 } 5179 5180 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5181 { 5182 int i; 5183 struct kvm_pit *pit = kvm->arch.vpit; 5184 5185 mutex_lock(&pit->pit_state.lock); 5186 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5187 for (i = 0; i < 3; i++) 5188 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5189 mutex_unlock(&pit->pit_state.lock); 5190 return 0; 5191 } 5192 5193 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5194 { 5195 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5196 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5197 sizeof(ps->channels)); 5198 ps->flags = kvm->arch.vpit->pit_state.flags; 5199 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5200 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5201 return 0; 5202 } 5203 5204 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5205 { 5206 int start = 0; 5207 int i; 5208 u32 prev_legacy, cur_legacy; 5209 struct kvm_pit *pit = kvm->arch.vpit; 5210 5211 mutex_lock(&pit->pit_state.lock); 5212 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5213 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5214 if (!prev_legacy && cur_legacy) 5215 start = 1; 5216 memcpy(&pit->pit_state.channels, &ps->channels, 5217 sizeof(pit->pit_state.channels)); 5218 pit->pit_state.flags = ps->flags; 5219 for (i = 0; i < 3; i++) 5220 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5221 start && i == 0); 5222 mutex_unlock(&pit->pit_state.lock); 5223 return 0; 5224 } 5225 5226 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5227 struct kvm_reinject_control *control) 5228 { 5229 struct kvm_pit *pit = kvm->arch.vpit; 5230 5231 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5232 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5233 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5234 */ 5235 mutex_lock(&pit->pit_state.lock); 5236 kvm_pit_set_reinject(pit, control->pit_reinject); 5237 mutex_unlock(&pit->pit_state.lock); 5238 5239 return 0; 5240 } 5241 5242 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5243 { 5244 5245 /* 5246 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5247 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5248 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5249 * VM-Exit. 5250 */ 5251 struct kvm_vcpu *vcpu; 5252 int i; 5253 5254 kvm_for_each_vcpu(i, vcpu, kvm) 5255 kvm_vcpu_kick(vcpu); 5256 } 5257 5258 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5259 bool line_status) 5260 { 5261 if (!irqchip_in_kernel(kvm)) 5262 return -ENXIO; 5263 5264 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5265 irq_event->irq, irq_event->level, 5266 line_status); 5267 return 0; 5268 } 5269 5270 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5271 struct kvm_enable_cap *cap) 5272 { 5273 int r; 5274 5275 if (cap->flags) 5276 return -EINVAL; 5277 5278 switch (cap->cap) { 5279 case KVM_CAP_DISABLE_QUIRKS: 5280 kvm->arch.disabled_quirks = cap->args[0]; 5281 r = 0; 5282 break; 5283 case KVM_CAP_SPLIT_IRQCHIP: { 5284 mutex_lock(&kvm->lock); 5285 r = -EINVAL; 5286 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5287 goto split_irqchip_unlock; 5288 r = -EEXIST; 5289 if (irqchip_in_kernel(kvm)) 5290 goto split_irqchip_unlock; 5291 if (kvm->created_vcpus) 5292 goto split_irqchip_unlock; 5293 r = kvm_setup_empty_irq_routing(kvm); 5294 if (r) 5295 goto split_irqchip_unlock; 5296 /* Pairs with irqchip_in_kernel. */ 5297 smp_wmb(); 5298 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5299 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5300 r = 0; 5301 split_irqchip_unlock: 5302 mutex_unlock(&kvm->lock); 5303 break; 5304 } 5305 case KVM_CAP_X2APIC_API: 5306 r = -EINVAL; 5307 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5308 break; 5309 5310 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5311 kvm->arch.x2apic_format = true; 5312 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5313 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5314 5315 r = 0; 5316 break; 5317 case KVM_CAP_X86_DISABLE_EXITS: 5318 r = -EINVAL; 5319 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5320 break; 5321 5322 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5323 kvm_can_mwait_in_guest()) 5324 kvm->arch.mwait_in_guest = true; 5325 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5326 kvm->arch.hlt_in_guest = true; 5327 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5328 kvm->arch.pause_in_guest = true; 5329 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5330 kvm->arch.cstate_in_guest = true; 5331 r = 0; 5332 break; 5333 case KVM_CAP_MSR_PLATFORM_INFO: 5334 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5335 r = 0; 5336 break; 5337 case KVM_CAP_EXCEPTION_PAYLOAD: 5338 kvm->arch.exception_payload_enabled = cap->args[0]; 5339 r = 0; 5340 break; 5341 case KVM_CAP_X86_USER_SPACE_MSR: 5342 kvm->arch.user_space_msr_mask = cap->args[0]; 5343 r = 0; 5344 break; 5345 case KVM_CAP_X86_BUS_LOCK_EXIT: 5346 r = -EINVAL; 5347 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 5348 break; 5349 5350 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 5351 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 5352 break; 5353 5354 if (kvm_has_bus_lock_exit && 5355 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 5356 kvm->arch.bus_lock_detection_enabled = true; 5357 r = 0; 5358 break; 5359 default: 5360 r = -EINVAL; 5361 break; 5362 } 5363 return r; 5364 } 5365 5366 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 5367 { 5368 struct kvm_x86_msr_filter *msr_filter; 5369 5370 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 5371 if (!msr_filter) 5372 return NULL; 5373 5374 msr_filter->default_allow = default_allow; 5375 return msr_filter; 5376 } 5377 5378 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 5379 { 5380 u32 i; 5381 5382 if (!msr_filter) 5383 return; 5384 5385 for (i = 0; i < msr_filter->count; i++) 5386 kfree(msr_filter->ranges[i].bitmap); 5387 5388 kfree(msr_filter); 5389 } 5390 5391 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 5392 struct kvm_msr_filter_range *user_range) 5393 { 5394 struct msr_bitmap_range range; 5395 unsigned long *bitmap = NULL; 5396 size_t bitmap_size; 5397 int r; 5398 5399 if (!user_range->nmsrs) 5400 return 0; 5401 5402 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5403 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5404 return -EINVAL; 5405 5406 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5407 if (IS_ERR(bitmap)) 5408 return PTR_ERR(bitmap); 5409 5410 range = (struct msr_bitmap_range) { 5411 .flags = user_range->flags, 5412 .base = user_range->base, 5413 .nmsrs = user_range->nmsrs, 5414 .bitmap = bitmap, 5415 }; 5416 5417 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) { 5418 r = -EINVAL; 5419 goto err; 5420 } 5421 5422 if (!range.flags) { 5423 r = -EINVAL; 5424 goto err; 5425 } 5426 5427 /* Everything ok, add this range identifier. */ 5428 msr_filter->ranges[msr_filter->count] = range; 5429 msr_filter->count++; 5430 5431 return 0; 5432 err: 5433 kfree(bitmap); 5434 return r; 5435 } 5436 5437 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 5438 { 5439 struct kvm_msr_filter __user *user_msr_filter = argp; 5440 struct kvm_x86_msr_filter *new_filter, *old_filter; 5441 struct kvm_msr_filter filter; 5442 bool default_allow; 5443 bool empty = true; 5444 int r = 0; 5445 u32 i; 5446 5447 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5448 return -EFAULT; 5449 5450 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 5451 empty &= !filter.ranges[i].nmsrs; 5452 5453 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 5454 if (empty && !default_allow) 5455 return -EINVAL; 5456 5457 new_filter = kvm_alloc_msr_filter(default_allow); 5458 if (!new_filter) 5459 return -ENOMEM; 5460 5461 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5462 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 5463 if (r) { 5464 kvm_free_msr_filter(new_filter); 5465 return r; 5466 } 5467 } 5468 5469 mutex_lock(&kvm->lock); 5470 5471 /* The per-VM filter is protected by kvm->lock... */ 5472 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 5473 5474 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 5475 synchronize_srcu(&kvm->srcu); 5476 5477 kvm_free_msr_filter(old_filter); 5478 5479 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5480 mutex_unlock(&kvm->lock); 5481 5482 return 0; 5483 } 5484 5485 long kvm_arch_vm_ioctl(struct file *filp, 5486 unsigned int ioctl, unsigned long arg) 5487 { 5488 struct kvm *kvm = filp->private_data; 5489 void __user *argp = (void __user *)arg; 5490 int r = -ENOTTY; 5491 /* 5492 * This union makes it completely explicit to gcc-3.x 5493 * that these two variables' stack usage should be 5494 * combined, not added together. 5495 */ 5496 union { 5497 struct kvm_pit_state ps; 5498 struct kvm_pit_state2 ps2; 5499 struct kvm_pit_config pit_config; 5500 } u; 5501 5502 switch (ioctl) { 5503 case KVM_SET_TSS_ADDR: 5504 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5505 break; 5506 case KVM_SET_IDENTITY_MAP_ADDR: { 5507 u64 ident_addr; 5508 5509 mutex_lock(&kvm->lock); 5510 r = -EINVAL; 5511 if (kvm->created_vcpus) 5512 goto set_identity_unlock; 5513 r = -EFAULT; 5514 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5515 goto set_identity_unlock; 5516 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5517 set_identity_unlock: 5518 mutex_unlock(&kvm->lock); 5519 break; 5520 } 5521 case KVM_SET_NR_MMU_PAGES: 5522 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5523 break; 5524 case KVM_GET_NR_MMU_PAGES: 5525 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5526 break; 5527 case KVM_CREATE_IRQCHIP: { 5528 mutex_lock(&kvm->lock); 5529 5530 r = -EEXIST; 5531 if (irqchip_in_kernel(kvm)) 5532 goto create_irqchip_unlock; 5533 5534 r = -EINVAL; 5535 if (kvm->created_vcpus) 5536 goto create_irqchip_unlock; 5537 5538 r = kvm_pic_init(kvm); 5539 if (r) 5540 goto create_irqchip_unlock; 5541 5542 r = kvm_ioapic_init(kvm); 5543 if (r) { 5544 kvm_pic_destroy(kvm); 5545 goto create_irqchip_unlock; 5546 } 5547 5548 r = kvm_setup_default_irq_routing(kvm); 5549 if (r) { 5550 kvm_ioapic_destroy(kvm); 5551 kvm_pic_destroy(kvm); 5552 goto create_irqchip_unlock; 5553 } 5554 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5555 smp_wmb(); 5556 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5557 create_irqchip_unlock: 5558 mutex_unlock(&kvm->lock); 5559 break; 5560 } 5561 case KVM_CREATE_PIT: 5562 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5563 goto create_pit; 5564 case KVM_CREATE_PIT2: 5565 r = -EFAULT; 5566 if (copy_from_user(&u.pit_config, argp, 5567 sizeof(struct kvm_pit_config))) 5568 goto out; 5569 create_pit: 5570 mutex_lock(&kvm->lock); 5571 r = -EEXIST; 5572 if (kvm->arch.vpit) 5573 goto create_pit_unlock; 5574 r = -ENOMEM; 5575 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5576 if (kvm->arch.vpit) 5577 r = 0; 5578 create_pit_unlock: 5579 mutex_unlock(&kvm->lock); 5580 break; 5581 case KVM_GET_IRQCHIP: { 5582 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5583 struct kvm_irqchip *chip; 5584 5585 chip = memdup_user(argp, sizeof(*chip)); 5586 if (IS_ERR(chip)) { 5587 r = PTR_ERR(chip); 5588 goto out; 5589 } 5590 5591 r = -ENXIO; 5592 if (!irqchip_kernel(kvm)) 5593 goto get_irqchip_out; 5594 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5595 if (r) 5596 goto get_irqchip_out; 5597 r = -EFAULT; 5598 if (copy_to_user(argp, chip, sizeof(*chip))) 5599 goto get_irqchip_out; 5600 r = 0; 5601 get_irqchip_out: 5602 kfree(chip); 5603 break; 5604 } 5605 case KVM_SET_IRQCHIP: { 5606 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5607 struct kvm_irqchip *chip; 5608 5609 chip = memdup_user(argp, sizeof(*chip)); 5610 if (IS_ERR(chip)) { 5611 r = PTR_ERR(chip); 5612 goto out; 5613 } 5614 5615 r = -ENXIO; 5616 if (!irqchip_kernel(kvm)) 5617 goto set_irqchip_out; 5618 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5619 set_irqchip_out: 5620 kfree(chip); 5621 break; 5622 } 5623 case KVM_GET_PIT: { 5624 r = -EFAULT; 5625 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5626 goto out; 5627 r = -ENXIO; 5628 if (!kvm->arch.vpit) 5629 goto out; 5630 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5631 if (r) 5632 goto out; 5633 r = -EFAULT; 5634 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5635 goto out; 5636 r = 0; 5637 break; 5638 } 5639 case KVM_SET_PIT: { 5640 r = -EFAULT; 5641 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5642 goto out; 5643 mutex_lock(&kvm->lock); 5644 r = -ENXIO; 5645 if (!kvm->arch.vpit) 5646 goto set_pit_out; 5647 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5648 set_pit_out: 5649 mutex_unlock(&kvm->lock); 5650 break; 5651 } 5652 case KVM_GET_PIT2: { 5653 r = -ENXIO; 5654 if (!kvm->arch.vpit) 5655 goto out; 5656 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5657 if (r) 5658 goto out; 5659 r = -EFAULT; 5660 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5661 goto out; 5662 r = 0; 5663 break; 5664 } 5665 case KVM_SET_PIT2: { 5666 r = -EFAULT; 5667 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5668 goto out; 5669 mutex_lock(&kvm->lock); 5670 r = -ENXIO; 5671 if (!kvm->arch.vpit) 5672 goto set_pit2_out; 5673 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5674 set_pit2_out: 5675 mutex_unlock(&kvm->lock); 5676 break; 5677 } 5678 case KVM_REINJECT_CONTROL: { 5679 struct kvm_reinject_control control; 5680 r = -EFAULT; 5681 if (copy_from_user(&control, argp, sizeof(control))) 5682 goto out; 5683 r = -ENXIO; 5684 if (!kvm->arch.vpit) 5685 goto out; 5686 r = kvm_vm_ioctl_reinject(kvm, &control); 5687 break; 5688 } 5689 case KVM_SET_BOOT_CPU_ID: 5690 r = 0; 5691 mutex_lock(&kvm->lock); 5692 if (kvm->created_vcpus) 5693 r = -EBUSY; 5694 else 5695 kvm->arch.bsp_vcpu_id = arg; 5696 mutex_unlock(&kvm->lock); 5697 break; 5698 #ifdef CONFIG_KVM_XEN 5699 case KVM_XEN_HVM_CONFIG: { 5700 struct kvm_xen_hvm_config xhc; 5701 r = -EFAULT; 5702 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5703 goto out; 5704 r = kvm_xen_hvm_config(kvm, &xhc); 5705 break; 5706 } 5707 case KVM_XEN_HVM_GET_ATTR: { 5708 struct kvm_xen_hvm_attr xha; 5709 5710 r = -EFAULT; 5711 if (copy_from_user(&xha, argp, sizeof(xha))) 5712 goto out; 5713 r = kvm_xen_hvm_get_attr(kvm, &xha); 5714 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 5715 r = -EFAULT; 5716 break; 5717 } 5718 case KVM_XEN_HVM_SET_ATTR: { 5719 struct kvm_xen_hvm_attr xha; 5720 5721 r = -EFAULT; 5722 if (copy_from_user(&xha, argp, sizeof(xha))) 5723 goto out; 5724 r = kvm_xen_hvm_set_attr(kvm, &xha); 5725 break; 5726 } 5727 #endif 5728 case KVM_SET_CLOCK: { 5729 struct kvm_clock_data user_ns; 5730 u64 now_ns; 5731 5732 r = -EFAULT; 5733 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5734 goto out; 5735 5736 r = -EINVAL; 5737 if (user_ns.flags) 5738 goto out; 5739 5740 r = 0; 5741 /* 5742 * TODO: userspace has to take care of races with VCPU_RUN, so 5743 * kvm_gen_update_masterclock() can be cut down to locked 5744 * pvclock_update_vm_gtod_copy(). 5745 */ 5746 kvm_gen_update_masterclock(kvm); 5747 now_ns = get_kvmclock_ns(kvm); 5748 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5749 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5750 break; 5751 } 5752 case KVM_GET_CLOCK: { 5753 struct kvm_clock_data user_ns; 5754 u64 now_ns; 5755 5756 now_ns = get_kvmclock_ns(kvm); 5757 user_ns.clock = now_ns; 5758 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5759 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5760 5761 r = -EFAULT; 5762 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5763 goto out; 5764 r = 0; 5765 break; 5766 } 5767 case KVM_MEMORY_ENCRYPT_OP: { 5768 r = -ENOTTY; 5769 if (kvm_x86_ops.mem_enc_op) 5770 r = static_call(kvm_x86_mem_enc_op)(kvm, argp); 5771 break; 5772 } 5773 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5774 struct kvm_enc_region region; 5775 5776 r = -EFAULT; 5777 if (copy_from_user(®ion, argp, sizeof(region))) 5778 goto out; 5779 5780 r = -ENOTTY; 5781 if (kvm_x86_ops.mem_enc_reg_region) 5782 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion); 5783 break; 5784 } 5785 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5786 struct kvm_enc_region region; 5787 5788 r = -EFAULT; 5789 if (copy_from_user(®ion, argp, sizeof(region))) 5790 goto out; 5791 5792 r = -ENOTTY; 5793 if (kvm_x86_ops.mem_enc_unreg_region) 5794 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion); 5795 break; 5796 } 5797 case KVM_HYPERV_EVENTFD: { 5798 struct kvm_hyperv_eventfd hvevfd; 5799 5800 r = -EFAULT; 5801 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5802 goto out; 5803 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5804 break; 5805 } 5806 case KVM_SET_PMU_EVENT_FILTER: 5807 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5808 break; 5809 case KVM_X86_SET_MSR_FILTER: 5810 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 5811 break; 5812 default: 5813 r = -ENOTTY; 5814 } 5815 out: 5816 return r; 5817 } 5818 5819 static void kvm_init_msr_list(void) 5820 { 5821 struct x86_pmu_capability x86_pmu; 5822 u32 dummy[2]; 5823 unsigned i; 5824 5825 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5826 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5827 5828 perf_get_x86_pmu_capability(&x86_pmu); 5829 5830 num_msrs_to_save = 0; 5831 num_emulated_msrs = 0; 5832 num_msr_based_features = 0; 5833 5834 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5835 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5836 continue; 5837 5838 /* 5839 * Even MSRs that are valid in the host may not be exposed 5840 * to the guests in some cases. 5841 */ 5842 switch (msrs_to_save_all[i]) { 5843 case MSR_IA32_BNDCFGS: 5844 if (!kvm_mpx_supported()) 5845 continue; 5846 break; 5847 case MSR_TSC_AUX: 5848 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5849 continue; 5850 break; 5851 case MSR_IA32_UMWAIT_CONTROL: 5852 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5853 continue; 5854 break; 5855 case MSR_IA32_RTIT_CTL: 5856 case MSR_IA32_RTIT_STATUS: 5857 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5858 continue; 5859 break; 5860 case MSR_IA32_RTIT_CR3_MATCH: 5861 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5862 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5863 continue; 5864 break; 5865 case MSR_IA32_RTIT_OUTPUT_BASE: 5866 case MSR_IA32_RTIT_OUTPUT_MASK: 5867 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5868 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5869 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5870 continue; 5871 break; 5872 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5873 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5874 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5875 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5876 continue; 5877 break; 5878 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5879 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5880 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5881 continue; 5882 break; 5883 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5884 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5885 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5886 continue; 5887 break; 5888 default: 5889 break; 5890 } 5891 5892 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5893 } 5894 5895 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5896 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 5897 continue; 5898 5899 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5900 } 5901 5902 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5903 struct kvm_msr_entry msr; 5904 5905 msr.index = msr_based_features_all[i]; 5906 if (kvm_get_msr_feature(&msr)) 5907 continue; 5908 5909 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5910 } 5911 } 5912 5913 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5914 const void *v) 5915 { 5916 int handled = 0; 5917 int n; 5918 5919 do { 5920 n = min(len, 8); 5921 if (!(lapic_in_kernel(vcpu) && 5922 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5923 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5924 break; 5925 handled += n; 5926 addr += n; 5927 len -= n; 5928 v += n; 5929 } while (len); 5930 5931 return handled; 5932 } 5933 5934 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5935 { 5936 int handled = 0; 5937 int n; 5938 5939 do { 5940 n = min(len, 8); 5941 if (!(lapic_in_kernel(vcpu) && 5942 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5943 addr, n, v)) 5944 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5945 break; 5946 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5947 handled += n; 5948 addr += n; 5949 len -= n; 5950 v += n; 5951 } while (len); 5952 5953 return handled; 5954 } 5955 5956 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5957 struct kvm_segment *var, int seg) 5958 { 5959 static_call(kvm_x86_set_segment)(vcpu, var, seg); 5960 } 5961 5962 void kvm_get_segment(struct kvm_vcpu *vcpu, 5963 struct kvm_segment *var, int seg) 5964 { 5965 static_call(kvm_x86_get_segment)(vcpu, var, seg); 5966 } 5967 5968 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5969 struct x86_exception *exception) 5970 { 5971 gpa_t t_gpa; 5972 5973 BUG_ON(!mmu_is_nested(vcpu)); 5974 5975 /* NPT walks are always user-walks */ 5976 access |= PFERR_USER_MASK; 5977 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5978 5979 return t_gpa; 5980 } 5981 5982 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5983 struct x86_exception *exception) 5984 { 5985 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 5986 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5987 } 5988 5989 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5990 struct x86_exception *exception) 5991 { 5992 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 5993 access |= PFERR_FETCH_MASK; 5994 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5995 } 5996 5997 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5998 struct x86_exception *exception) 5999 { 6000 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6001 access |= PFERR_WRITE_MASK; 6002 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6003 } 6004 6005 /* uses this to access any guest's mapped memory without checking CPL */ 6006 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6007 struct x86_exception *exception) 6008 { 6009 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 6010 } 6011 6012 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6013 struct kvm_vcpu *vcpu, u32 access, 6014 struct x86_exception *exception) 6015 { 6016 void *data = val; 6017 int r = X86EMUL_CONTINUE; 6018 6019 while (bytes) { 6020 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 6021 exception); 6022 unsigned offset = addr & (PAGE_SIZE-1); 6023 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6024 int ret; 6025 6026 if (gpa == UNMAPPED_GVA) 6027 return X86EMUL_PROPAGATE_FAULT; 6028 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6029 offset, toread); 6030 if (ret < 0) { 6031 r = X86EMUL_IO_NEEDED; 6032 goto out; 6033 } 6034 6035 bytes -= toread; 6036 data += toread; 6037 addr += toread; 6038 } 6039 out: 6040 return r; 6041 } 6042 6043 /* used for instruction fetching */ 6044 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6045 gva_t addr, void *val, unsigned int bytes, 6046 struct x86_exception *exception) 6047 { 6048 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6049 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6050 unsigned offset; 6051 int ret; 6052 6053 /* Inline kvm_read_guest_virt_helper for speed. */ 6054 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 6055 exception); 6056 if (unlikely(gpa == UNMAPPED_GVA)) 6057 return X86EMUL_PROPAGATE_FAULT; 6058 6059 offset = addr & (PAGE_SIZE-1); 6060 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6061 bytes = (unsigned)PAGE_SIZE - offset; 6062 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6063 offset, bytes); 6064 if (unlikely(ret < 0)) 6065 return X86EMUL_IO_NEEDED; 6066 6067 return X86EMUL_CONTINUE; 6068 } 6069 6070 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6071 gva_t addr, void *val, unsigned int bytes, 6072 struct x86_exception *exception) 6073 { 6074 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6075 6076 /* 6077 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6078 * is returned, but our callers are not ready for that and they blindly 6079 * call kvm_inject_page_fault. Ensure that they at least do not leak 6080 * uninitialized kernel stack memory into cr2 and error code. 6081 */ 6082 memset(exception, 0, sizeof(*exception)); 6083 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6084 exception); 6085 } 6086 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6087 6088 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6089 gva_t addr, void *val, unsigned int bytes, 6090 struct x86_exception *exception, bool system) 6091 { 6092 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6093 u32 access = 0; 6094 6095 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6096 access |= PFERR_USER_MASK; 6097 6098 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6099 } 6100 6101 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6102 unsigned long addr, void *val, unsigned int bytes) 6103 { 6104 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6105 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6106 6107 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6108 } 6109 6110 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6111 struct kvm_vcpu *vcpu, u32 access, 6112 struct x86_exception *exception) 6113 { 6114 void *data = val; 6115 int r = X86EMUL_CONTINUE; 6116 6117 while (bytes) { 6118 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 6119 access, 6120 exception); 6121 unsigned offset = addr & (PAGE_SIZE-1); 6122 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6123 int ret; 6124 6125 if (gpa == UNMAPPED_GVA) 6126 return X86EMUL_PROPAGATE_FAULT; 6127 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6128 if (ret < 0) { 6129 r = X86EMUL_IO_NEEDED; 6130 goto out; 6131 } 6132 6133 bytes -= towrite; 6134 data += towrite; 6135 addr += towrite; 6136 } 6137 out: 6138 return r; 6139 } 6140 6141 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6142 unsigned int bytes, struct x86_exception *exception, 6143 bool system) 6144 { 6145 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6146 u32 access = PFERR_WRITE_MASK; 6147 6148 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6149 access |= PFERR_USER_MASK; 6150 6151 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6152 access, exception); 6153 } 6154 6155 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6156 unsigned int bytes, struct x86_exception *exception) 6157 { 6158 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6159 vcpu->arch.l1tf_flush_l1d = true; 6160 6161 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6162 PFERR_WRITE_MASK, exception); 6163 } 6164 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6165 6166 int handle_ud(struct kvm_vcpu *vcpu) 6167 { 6168 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6169 int emul_type = EMULTYPE_TRAP_UD; 6170 char sig[5]; /* ud2; .ascii "kvm" */ 6171 struct x86_exception e; 6172 6173 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0))) 6174 return 1; 6175 6176 if (force_emulation_prefix && 6177 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6178 sig, sizeof(sig), &e) == 0 && 6179 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6180 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6181 emul_type = EMULTYPE_TRAP_UD_FORCED; 6182 } 6183 6184 return kvm_emulate_instruction(vcpu, emul_type); 6185 } 6186 EXPORT_SYMBOL_GPL(handle_ud); 6187 6188 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6189 gpa_t gpa, bool write) 6190 { 6191 /* For APIC access vmexit */ 6192 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6193 return 1; 6194 6195 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6196 trace_vcpu_match_mmio(gva, gpa, write, true); 6197 return 1; 6198 } 6199 6200 return 0; 6201 } 6202 6203 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6204 gpa_t *gpa, struct x86_exception *exception, 6205 bool write) 6206 { 6207 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 6208 | (write ? PFERR_WRITE_MASK : 0); 6209 6210 /* 6211 * currently PKRU is only applied to ept enabled guest so 6212 * there is no pkey in EPT page table for L1 guest or EPT 6213 * shadow page table for L2 guest. 6214 */ 6215 if (vcpu_match_mmio_gva(vcpu, gva) 6216 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6217 vcpu->arch.mmio_access, 0, access)) { 6218 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6219 (gva & (PAGE_SIZE - 1)); 6220 trace_vcpu_match_mmio(gva, *gpa, write, false); 6221 return 1; 6222 } 6223 6224 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6225 6226 if (*gpa == UNMAPPED_GVA) 6227 return -1; 6228 6229 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6230 } 6231 6232 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6233 const void *val, int bytes) 6234 { 6235 int ret; 6236 6237 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6238 if (ret < 0) 6239 return 0; 6240 kvm_page_track_write(vcpu, gpa, val, bytes); 6241 return 1; 6242 } 6243 6244 struct read_write_emulator_ops { 6245 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6246 int bytes); 6247 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6248 void *val, int bytes); 6249 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6250 int bytes, void *val); 6251 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6252 void *val, int bytes); 6253 bool write; 6254 }; 6255 6256 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6257 { 6258 if (vcpu->mmio_read_completed) { 6259 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6260 vcpu->mmio_fragments[0].gpa, val); 6261 vcpu->mmio_read_completed = 0; 6262 return 1; 6263 } 6264 6265 return 0; 6266 } 6267 6268 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6269 void *val, int bytes) 6270 { 6271 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6272 } 6273 6274 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6275 void *val, int bytes) 6276 { 6277 return emulator_write_phys(vcpu, gpa, val, bytes); 6278 } 6279 6280 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6281 { 6282 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6283 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6284 } 6285 6286 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6287 void *val, int bytes) 6288 { 6289 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6290 return X86EMUL_IO_NEEDED; 6291 } 6292 6293 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6294 void *val, int bytes) 6295 { 6296 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6297 6298 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6299 return X86EMUL_CONTINUE; 6300 } 6301 6302 static const struct read_write_emulator_ops read_emultor = { 6303 .read_write_prepare = read_prepare, 6304 .read_write_emulate = read_emulate, 6305 .read_write_mmio = vcpu_mmio_read, 6306 .read_write_exit_mmio = read_exit_mmio, 6307 }; 6308 6309 static const struct read_write_emulator_ops write_emultor = { 6310 .read_write_emulate = write_emulate, 6311 .read_write_mmio = write_mmio, 6312 .read_write_exit_mmio = write_exit_mmio, 6313 .write = true, 6314 }; 6315 6316 static int emulator_read_write_onepage(unsigned long addr, void *val, 6317 unsigned int bytes, 6318 struct x86_exception *exception, 6319 struct kvm_vcpu *vcpu, 6320 const struct read_write_emulator_ops *ops) 6321 { 6322 gpa_t gpa; 6323 int handled, ret; 6324 bool write = ops->write; 6325 struct kvm_mmio_fragment *frag; 6326 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6327 6328 /* 6329 * If the exit was due to a NPF we may already have a GPA. 6330 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6331 * Note, this cannot be used on string operations since string 6332 * operation using rep will only have the initial GPA from the NPF 6333 * occurred. 6334 */ 6335 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6336 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6337 gpa = ctxt->gpa_val; 6338 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6339 } else { 6340 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6341 if (ret < 0) 6342 return X86EMUL_PROPAGATE_FAULT; 6343 } 6344 6345 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6346 return X86EMUL_CONTINUE; 6347 6348 /* 6349 * Is this MMIO handled locally? 6350 */ 6351 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6352 if (handled == bytes) 6353 return X86EMUL_CONTINUE; 6354 6355 gpa += handled; 6356 bytes -= handled; 6357 val += handled; 6358 6359 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6360 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6361 frag->gpa = gpa; 6362 frag->data = val; 6363 frag->len = bytes; 6364 return X86EMUL_CONTINUE; 6365 } 6366 6367 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6368 unsigned long addr, 6369 void *val, unsigned int bytes, 6370 struct x86_exception *exception, 6371 const struct read_write_emulator_ops *ops) 6372 { 6373 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6374 gpa_t gpa; 6375 int rc; 6376 6377 if (ops->read_write_prepare && 6378 ops->read_write_prepare(vcpu, val, bytes)) 6379 return X86EMUL_CONTINUE; 6380 6381 vcpu->mmio_nr_fragments = 0; 6382 6383 /* Crossing a page boundary? */ 6384 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6385 int now; 6386 6387 now = -addr & ~PAGE_MASK; 6388 rc = emulator_read_write_onepage(addr, val, now, exception, 6389 vcpu, ops); 6390 6391 if (rc != X86EMUL_CONTINUE) 6392 return rc; 6393 addr += now; 6394 if (ctxt->mode != X86EMUL_MODE_PROT64) 6395 addr = (u32)addr; 6396 val += now; 6397 bytes -= now; 6398 } 6399 6400 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6401 vcpu, ops); 6402 if (rc != X86EMUL_CONTINUE) 6403 return rc; 6404 6405 if (!vcpu->mmio_nr_fragments) 6406 return rc; 6407 6408 gpa = vcpu->mmio_fragments[0].gpa; 6409 6410 vcpu->mmio_needed = 1; 6411 vcpu->mmio_cur_fragment = 0; 6412 6413 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6414 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6415 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6416 vcpu->run->mmio.phys_addr = gpa; 6417 6418 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6419 } 6420 6421 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6422 unsigned long addr, 6423 void *val, 6424 unsigned int bytes, 6425 struct x86_exception *exception) 6426 { 6427 return emulator_read_write(ctxt, addr, val, bytes, 6428 exception, &read_emultor); 6429 } 6430 6431 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6432 unsigned long addr, 6433 const void *val, 6434 unsigned int bytes, 6435 struct x86_exception *exception) 6436 { 6437 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6438 exception, &write_emultor); 6439 } 6440 6441 #define CMPXCHG_TYPE(t, ptr, old, new) \ 6442 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6443 6444 #ifdef CONFIG_X86_64 6445 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6446 #else 6447 # define CMPXCHG64(ptr, old, new) \ 6448 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6449 #endif 6450 6451 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6452 unsigned long addr, 6453 const void *old, 6454 const void *new, 6455 unsigned int bytes, 6456 struct x86_exception *exception) 6457 { 6458 struct kvm_host_map map; 6459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6460 u64 page_line_mask; 6461 gpa_t gpa; 6462 char *kaddr; 6463 bool exchanged; 6464 6465 /* guests cmpxchg8b have to be emulated atomically */ 6466 if (bytes > 8 || (bytes & (bytes - 1))) 6467 goto emul_write; 6468 6469 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6470 6471 if (gpa == UNMAPPED_GVA || 6472 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6473 goto emul_write; 6474 6475 /* 6476 * Emulate the atomic as a straight write to avoid #AC if SLD is 6477 * enabled in the host and the access splits a cache line. 6478 */ 6479 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6480 page_line_mask = ~(cache_line_size() - 1); 6481 else 6482 page_line_mask = PAGE_MASK; 6483 6484 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6485 goto emul_write; 6486 6487 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6488 goto emul_write; 6489 6490 kaddr = map.hva + offset_in_page(gpa); 6491 6492 switch (bytes) { 6493 case 1: 6494 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6495 break; 6496 case 2: 6497 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6498 break; 6499 case 4: 6500 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6501 break; 6502 case 8: 6503 exchanged = CMPXCHG64(kaddr, old, new); 6504 break; 6505 default: 6506 BUG(); 6507 } 6508 6509 kvm_vcpu_unmap(vcpu, &map, true); 6510 6511 if (!exchanged) 6512 return X86EMUL_CMPXCHG_FAILED; 6513 6514 kvm_page_track_write(vcpu, gpa, new, bytes); 6515 6516 return X86EMUL_CONTINUE; 6517 6518 emul_write: 6519 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6520 6521 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6522 } 6523 6524 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6525 { 6526 int r = 0, i; 6527 6528 for (i = 0; i < vcpu->arch.pio.count; i++) { 6529 if (vcpu->arch.pio.in) 6530 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6531 vcpu->arch.pio.size, pd); 6532 else 6533 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6534 vcpu->arch.pio.port, vcpu->arch.pio.size, 6535 pd); 6536 if (r) 6537 break; 6538 pd += vcpu->arch.pio.size; 6539 } 6540 return r; 6541 } 6542 6543 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6544 unsigned short port, void *val, 6545 unsigned int count, bool in) 6546 { 6547 vcpu->arch.pio.port = port; 6548 vcpu->arch.pio.in = in; 6549 vcpu->arch.pio.count = count; 6550 vcpu->arch.pio.size = size; 6551 6552 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6553 vcpu->arch.pio.count = 0; 6554 return 1; 6555 } 6556 6557 vcpu->run->exit_reason = KVM_EXIT_IO; 6558 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6559 vcpu->run->io.size = size; 6560 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6561 vcpu->run->io.count = count; 6562 vcpu->run->io.port = port; 6563 6564 return 0; 6565 } 6566 6567 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6568 unsigned short port, void *val, unsigned int count) 6569 { 6570 int ret; 6571 6572 if (vcpu->arch.pio.count) 6573 goto data_avail; 6574 6575 memset(vcpu->arch.pio_data, 0, size * count); 6576 6577 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6578 if (ret) { 6579 data_avail: 6580 memcpy(val, vcpu->arch.pio_data, size * count); 6581 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6582 vcpu->arch.pio.count = 0; 6583 return 1; 6584 } 6585 6586 return 0; 6587 } 6588 6589 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6590 int size, unsigned short port, void *val, 6591 unsigned int count) 6592 { 6593 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6594 6595 } 6596 6597 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6598 unsigned short port, const void *val, 6599 unsigned int count) 6600 { 6601 memcpy(vcpu->arch.pio_data, val, size * count); 6602 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6603 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6604 } 6605 6606 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6607 int size, unsigned short port, 6608 const void *val, unsigned int count) 6609 { 6610 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6611 } 6612 6613 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6614 { 6615 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 6616 } 6617 6618 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6619 { 6620 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6621 } 6622 6623 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6624 { 6625 if (!need_emulate_wbinvd(vcpu)) 6626 return X86EMUL_CONTINUE; 6627 6628 if (static_call(kvm_x86_has_wbinvd_exit)()) { 6629 int cpu = get_cpu(); 6630 6631 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6632 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 6633 wbinvd_ipi, NULL, 1); 6634 put_cpu(); 6635 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6636 } else 6637 wbinvd(); 6638 return X86EMUL_CONTINUE; 6639 } 6640 6641 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6642 { 6643 kvm_emulate_wbinvd_noskip(vcpu); 6644 return kvm_skip_emulated_instruction(vcpu); 6645 } 6646 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6647 6648 6649 6650 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6651 { 6652 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6653 } 6654 6655 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6656 unsigned long *dest) 6657 { 6658 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6659 } 6660 6661 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6662 unsigned long value) 6663 { 6664 6665 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6666 } 6667 6668 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6669 { 6670 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6671 } 6672 6673 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6674 { 6675 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6676 unsigned long value; 6677 6678 switch (cr) { 6679 case 0: 6680 value = kvm_read_cr0(vcpu); 6681 break; 6682 case 2: 6683 value = vcpu->arch.cr2; 6684 break; 6685 case 3: 6686 value = kvm_read_cr3(vcpu); 6687 break; 6688 case 4: 6689 value = kvm_read_cr4(vcpu); 6690 break; 6691 case 8: 6692 value = kvm_get_cr8(vcpu); 6693 break; 6694 default: 6695 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6696 return 0; 6697 } 6698 6699 return value; 6700 } 6701 6702 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6703 { 6704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6705 int res = 0; 6706 6707 switch (cr) { 6708 case 0: 6709 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6710 break; 6711 case 2: 6712 vcpu->arch.cr2 = val; 6713 break; 6714 case 3: 6715 res = kvm_set_cr3(vcpu, val); 6716 break; 6717 case 4: 6718 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6719 break; 6720 case 8: 6721 res = kvm_set_cr8(vcpu, val); 6722 break; 6723 default: 6724 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6725 res = -1; 6726 } 6727 6728 return res; 6729 } 6730 6731 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6732 { 6733 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 6734 } 6735 6736 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6737 { 6738 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 6739 } 6740 6741 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6742 { 6743 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 6744 } 6745 6746 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6747 { 6748 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 6749 } 6750 6751 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6752 { 6753 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 6754 } 6755 6756 static unsigned long emulator_get_cached_segment_base( 6757 struct x86_emulate_ctxt *ctxt, int seg) 6758 { 6759 return get_segment_base(emul_to_vcpu(ctxt), seg); 6760 } 6761 6762 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6763 struct desc_struct *desc, u32 *base3, 6764 int seg) 6765 { 6766 struct kvm_segment var; 6767 6768 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6769 *selector = var.selector; 6770 6771 if (var.unusable) { 6772 memset(desc, 0, sizeof(*desc)); 6773 if (base3) 6774 *base3 = 0; 6775 return false; 6776 } 6777 6778 if (var.g) 6779 var.limit >>= 12; 6780 set_desc_limit(desc, var.limit); 6781 set_desc_base(desc, (unsigned long)var.base); 6782 #ifdef CONFIG_X86_64 6783 if (base3) 6784 *base3 = var.base >> 32; 6785 #endif 6786 desc->type = var.type; 6787 desc->s = var.s; 6788 desc->dpl = var.dpl; 6789 desc->p = var.present; 6790 desc->avl = var.avl; 6791 desc->l = var.l; 6792 desc->d = var.db; 6793 desc->g = var.g; 6794 6795 return true; 6796 } 6797 6798 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6799 struct desc_struct *desc, u32 base3, 6800 int seg) 6801 { 6802 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6803 struct kvm_segment var; 6804 6805 var.selector = selector; 6806 var.base = get_desc_base(desc); 6807 #ifdef CONFIG_X86_64 6808 var.base |= ((u64)base3) << 32; 6809 #endif 6810 var.limit = get_desc_limit(desc); 6811 if (desc->g) 6812 var.limit = (var.limit << 12) | 0xfff; 6813 var.type = desc->type; 6814 var.dpl = desc->dpl; 6815 var.db = desc->d; 6816 var.s = desc->s; 6817 var.l = desc->l; 6818 var.g = desc->g; 6819 var.avl = desc->avl; 6820 var.present = desc->p; 6821 var.unusable = !var.present; 6822 var.padding = 0; 6823 6824 kvm_set_segment(vcpu, &var, seg); 6825 return; 6826 } 6827 6828 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6829 u32 msr_index, u64 *pdata) 6830 { 6831 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6832 int r; 6833 6834 r = kvm_get_msr(vcpu, msr_index, pdata); 6835 6836 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 6837 /* Bounce to user space */ 6838 return X86EMUL_IO_NEEDED; 6839 } 6840 6841 return r; 6842 } 6843 6844 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6845 u32 msr_index, u64 data) 6846 { 6847 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6848 int r; 6849 6850 r = kvm_set_msr(vcpu, msr_index, data); 6851 6852 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 6853 /* Bounce to user space */ 6854 return X86EMUL_IO_NEEDED; 6855 } 6856 6857 return r; 6858 } 6859 6860 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6861 { 6862 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6863 6864 return vcpu->arch.smbase; 6865 } 6866 6867 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6868 { 6869 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6870 6871 vcpu->arch.smbase = smbase; 6872 } 6873 6874 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6875 u32 pmc) 6876 { 6877 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6878 } 6879 6880 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6881 u32 pmc, u64 *pdata) 6882 { 6883 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6884 } 6885 6886 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6887 { 6888 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6889 } 6890 6891 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6892 struct x86_instruction_info *info, 6893 enum x86_intercept_stage stage) 6894 { 6895 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 6896 &ctxt->exception); 6897 } 6898 6899 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6900 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6901 bool exact_only) 6902 { 6903 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6904 } 6905 6906 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6907 { 6908 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6909 } 6910 6911 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6912 { 6913 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6914 } 6915 6916 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6917 { 6918 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6919 } 6920 6921 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6922 { 6923 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6924 } 6925 6926 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6927 { 6928 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6929 } 6930 6931 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6932 { 6933 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 6934 } 6935 6936 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6937 { 6938 return emul_to_vcpu(ctxt)->arch.hflags; 6939 } 6940 6941 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6942 { 6943 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6944 } 6945 6946 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6947 const char *smstate) 6948 { 6949 return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate); 6950 } 6951 6952 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6953 { 6954 kvm_smm_changed(emul_to_vcpu(ctxt)); 6955 } 6956 6957 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6958 { 6959 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6960 } 6961 6962 static const struct x86_emulate_ops emulate_ops = { 6963 .read_gpr = emulator_read_gpr, 6964 .write_gpr = emulator_write_gpr, 6965 .read_std = emulator_read_std, 6966 .write_std = emulator_write_std, 6967 .read_phys = kvm_read_guest_phys_system, 6968 .fetch = kvm_fetch_guest_virt, 6969 .read_emulated = emulator_read_emulated, 6970 .write_emulated = emulator_write_emulated, 6971 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6972 .invlpg = emulator_invlpg, 6973 .pio_in_emulated = emulator_pio_in_emulated, 6974 .pio_out_emulated = emulator_pio_out_emulated, 6975 .get_segment = emulator_get_segment, 6976 .set_segment = emulator_set_segment, 6977 .get_cached_segment_base = emulator_get_cached_segment_base, 6978 .get_gdt = emulator_get_gdt, 6979 .get_idt = emulator_get_idt, 6980 .set_gdt = emulator_set_gdt, 6981 .set_idt = emulator_set_idt, 6982 .get_cr = emulator_get_cr, 6983 .set_cr = emulator_set_cr, 6984 .cpl = emulator_get_cpl, 6985 .get_dr = emulator_get_dr, 6986 .set_dr = emulator_set_dr, 6987 .get_smbase = emulator_get_smbase, 6988 .set_smbase = emulator_set_smbase, 6989 .set_msr = emulator_set_msr, 6990 .get_msr = emulator_get_msr, 6991 .check_pmc = emulator_check_pmc, 6992 .read_pmc = emulator_read_pmc, 6993 .halt = emulator_halt, 6994 .wbinvd = emulator_wbinvd, 6995 .fix_hypercall = emulator_fix_hypercall, 6996 .intercept = emulator_intercept, 6997 .get_cpuid = emulator_get_cpuid, 6998 .guest_has_long_mode = emulator_guest_has_long_mode, 6999 .guest_has_movbe = emulator_guest_has_movbe, 7000 .guest_has_fxsr = emulator_guest_has_fxsr, 7001 .set_nmi_mask = emulator_set_nmi_mask, 7002 .get_hflags = emulator_get_hflags, 7003 .set_hflags = emulator_set_hflags, 7004 .pre_leave_smm = emulator_pre_leave_smm, 7005 .post_leave_smm = emulator_post_leave_smm, 7006 .set_xcr = emulator_set_xcr, 7007 }; 7008 7009 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7010 { 7011 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7012 /* 7013 * an sti; sti; sequence only disable interrupts for the first 7014 * instruction. So, if the last instruction, be it emulated or 7015 * not, left the system with the INT_STI flag enabled, it 7016 * means that the last instruction is an sti. We should not 7017 * leave the flag on in this case. The same goes for mov ss 7018 */ 7019 if (int_shadow & mask) 7020 mask = 0; 7021 if (unlikely(int_shadow || mask)) { 7022 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7023 if (!mask) 7024 kvm_make_request(KVM_REQ_EVENT, vcpu); 7025 } 7026 } 7027 7028 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7029 { 7030 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7031 if (ctxt->exception.vector == PF_VECTOR) 7032 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7033 7034 if (ctxt->exception.error_code_valid) 7035 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7036 ctxt->exception.error_code); 7037 else 7038 kvm_queue_exception(vcpu, ctxt->exception.vector); 7039 return false; 7040 } 7041 7042 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7043 { 7044 struct x86_emulate_ctxt *ctxt; 7045 7046 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7047 if (!ctxt) { 7048 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7049 return NULL; 7050 } 7051 7052 ctxt->vcpu = vcpu; 7053 ctxt->ops = &emulate_ops; 7054 vcpu->arch.emulate_ctxt = ctxt; 7055 7056 return ctxt; 7057 } 7058 7059 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7060 { 7061 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7062 int cs_db, cs_l; 7063 7064 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7065 7066 ctxt->gpa_available = false; 7067 ctxt->eflags = kvm_get_rflags(vcpu); 7068 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7069 7070 ctxt->eip = kvm_rip_read(vcpu); 7071 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7072 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7073 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7074 cs_db ? X86EMUL_MODE_PROT32 : 7075 X86EMUL_MODE_PROT16; 7076 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7077 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7078 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7079 7080 init_decode_cache(ctxt); 7081 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7082 } 7083 7084 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7085 { 7086 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7087 int ret; 7088 7089 init_emulate_ctxt(vcpu); 7090 7091 ctxt->op_bytes = 2; 7092 ctxt->ad_bytes = 2; 7093 ctxt->_eip = ctxt->eip + inc_eip; 7094 ret = emulate_int_real(ctxt, irq); 7095 7096 if (ret != X86EMUL_CONTINUE) { 7097 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7098 } else { 7099 ctxt->eip = ctxt->_eip; 7100 kvm_rip_write(vcpu, ctxt->eip); 7101 kvm_set_rflags(vcpu, ctxt->eflags); 7102 } 7103 } 7104 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7105 7106 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 7107 { 7108 ++vcpu->stat.insn_emulation_fail; 7109 trace_kvm_emulate_insn_failed(vcpu); 7110 7111 if (emulation_type & EMULTYPE_VMWARE_GP) { 7112 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7113 return 1; 7114 } 7115 7116 if (emulation_type & EMULTYPE_SKIP) { 7117 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7118 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7119 vcpu->run->internal.ndata = 0; 7120 return 0; 7121 } 7122 7123 kvm_queue_exception(vcpu, UD_VECTOR); 7124 7125 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 7126 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7127 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7128 vcpu->run->internal.ndata = 0; 7129 return 0; 7130 } 7131 7132 return 1; 7133 } 7134 7135 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7136 bool write_fault_to_shadow_pgtable, 7137 int emulation_type) 7138 { 7139 gpa_t gpa = cr2_or_gpa; 7140 kvm_pfn_t pfn; 7141 7142 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7143 return false; 7144 7145 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7146 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7147 return false; 7148 7149 if (!vcpu->arch.mmu->direct_map) { 7150 /* 7151 * Write permission should be allowed since only 7152 * write access need to be emulated. 7153 */ 7154 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7155 7156 /* 7157 * If the mapping is invalid in guest, let cpu retry 7158 * it to generate fault. 7159 */ 7160 if (gpa == UNMAPPED_GVA) 7161 return true; 7162 } 7163 7164 /* 7165 * Do not retry the unhandleable instruction if it faults on the 7166 * readonly host memory, otherwise it will goto a infinite loop: 7167 * retry instruction -> write #PF -> emulation fail -> retry 7168 * instruction -> ... 7169 */ 7170 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7171 7172 /* 7173 * If the instruction failed on the error pfn, it can not be fixed, 7174 * report the error to userspace. 7175 */ 7176 if (is_error_noslot_pfn(pfn)) 7177 return false; 7178 7179 kvm_release_pfn_clean(pfn); 7180 7181 /* The instructions are well-emulated on direct mmu. */ 7182 if (vcpu->arch.mmu->direct_map) { 7183 unsigned int indirect_shadow_pages; 7184 7185 write_lock(&vcpu->kvm->mmu_lock); 7186 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7187 write_unlock(&vcpu->kvm->mmu_lock); 7188 7189 if (indirect_shadow_pages) 7190 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7191 7192 return true; 7193 } 7194 7195 /* 7196 * if emulation was due to access to shadowed page table 7197 * and it failed try to unshadow page and re-enter the 7198 * guest to let CPU execute the instruction. 7199 */ 7200 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7201 7202 /* 7203 * If the access faults on its page table, it can not 7204 * be fixed by unprotecting shadow page and it should 7205 * be reported to userspace. 7206 */ 7207 return !write_fault_to_shadow_pgtable; 7208 } 7209 7210 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7211 gpa_t cr2_or_gpa, int emulation_type) 7212 { 7213 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7214 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7215 7216 last_retry_eip = vcpu->arch.last_retry_eip; 7217 last_retry_addr = vcpu->arch.last_retry_addr; 7218 7219 /* 7220 * If the emulation is caused by #PF and it is non-page_table 7221 * writing instruction, it means the VM-EXIT is caused by shadow 7222 * page protected, we can zap the shadow page and retry this 7223 * instruction directly. 7224 * 7225 * Note: if the guest uses a non-page-table modifying instruction 7226 * on the PDE that points to the instruction, then we will unmap 7227 * the instruction and go to an infinite loop. So, we cache the 7228 * last retried eip and the last fault address, if we meet the eip 7229 * and the address again, we can break out of the potential infinite 7230 * loop. 7231 */ 7232 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7233 7234 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7235 return false; 7236 7237 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7238 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7239 return false; 7240 7241 if (x86_page_table_writing_insn(ctxt)) 7242 return false; 7243 7244 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7245 return false; 7246 7247 vcpu->arch.last_retry_eip = ctxt->eip; 7248 vcpu->arch.last_retry_addr = cr2_or_gpa; 7249 7250 if (!vcpu->arch.mmu->direct_map) 7251 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7252 7253 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7254 7255 return true; 7256 } 7257 7258 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7259 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7260 7261 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 7262 { 7263 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 7264 /* This is a good place to trace that we are exiting SMM. */ 7265 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 7266 7267 /* Process a latched INIT or SMI, if any. */ 7268 kvm_make_request(KVM_REQ_EVENT, vcpu); 7269 } 7270 7271 kvm_mmu_reset_context(vcpu); 7272 } 7273 7274 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7275 unsigned long *db) 7276 { 7277 u32 dr6 = 0; 7278 int i; 7279 u32 enable, rwlen; 7280 7281 enable = dr7; 7282 rwlen = dr7 >> 16; 7283 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7284 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7285 dr6 |= (1 << i); 7286 return dr6; 7287 } 7288 7289 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7290 { 7291 struct kvm_run *kvm_run = vcpu->run; 7292 7293 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7294 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 7295 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7296 kvm_run->debug.arch.exception = DB_VECTOR; 7297 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7298 return 0; 7299 } 7300 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7301 return 1; 7302 } 7303 7304 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7305 { 7306 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 7307 int r; 7308 7309 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 7310 if (unlikely(!r)) 7311 return 0; 7312 7313 /* 7314 * rflags is the old, "raw" value of the flags. The new value has 7315 * not been saved yet. 7316 * 7317 * This is correct even for TF set by the guest, because "the 7318 * processor will not generate this exception after the instruction 7319 * that sets the TF flag". 7320 */ 7321 if (unlikely(rflags & X86_EFLAGS_TF)) 7322 r = kvm_vcpu_do_singlestep(vcpu); 7323 return r; 7324 } 7325 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7326 7327 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 7328 { 7329 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7330 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7331 struct kvm_run *kvm_run = vcpu->run; 7332 unsigned long eip = kvm_get_linear_rip(vcpu); 7333 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7334 vcpu->arch.guest_debug_dr7, 7335 vcpu->arch.eff_db); 7336 7337 if (dr6 != 0) { 7338 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 7339 kvm_run->debug.arch.pc = eip; 7340 kvm_run->debug.arch.exception = DB_VECTOR; 7341 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7342 *r = 0; 7343 return true; 7344 } 7345 } 7346 7347 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7348 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7349 unsigned long eip = kvm_get_linear_rip(vcpu); 7350 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7351 vcpu->arch.dr7, 7352 vcpu->arch.db); 7353 7354 if (dr6 != 0) { 7355 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7356 *r = 1; 7357 return true; 7358 } 7359 } 7360 7361 return false; 7362 } 7363 7364 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7365 { 7366 switch (ctxt->opcode_len) { 7367 case 1: 7368 switch (ctxt->b) { 7369 case 0xe4: /* IN */ 7370 case 0xe5: 7371 case 0xec: 7372 case 0xed: 7373 case 0xe6: /* OUT */ 7374 case 0xe7: 7375 case 0xee: 7376 case 0xef: 7377 case 0x6c: /* INS */ 7378 case 0x6d: 7379 case 0x6e: /* OUTS */ 7380 case 0x6f: 7381 return true; 7382 } 7383 break; 7384 case 2: 7385 switch (ctxt->b) { 7386 case 0x33: /* RDPMC */ 7387 return true; 7388 } 7389 break; 7390 } 7391 7392 return false; 7393 } 7394 7395 /* 7396 * Decode to be emulated instruction. Return EMULATION_OK if success. 7397 */ 7398 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 7399 void *insn, int insn_len) 7400 { 7401 int r = EMULATION_OK; 7402 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7403 7404 init_emulate_ctxt(vcpu); 7405 7406 /* 7407 * We will reenter on the same instruction since we do not set 7408 * complete_userspace_io. This does not handle watchpoints yet, 7409 * those would be handled in the emulate_ops. 7410 */ 7411 if (!(emulation_type & EMULTYPE_SKIP) && 7412 kvm_vcpu_check_breakpoint(vcpu, &r)) 7413 return r; 7414 7415 ctxt->interruptibility = 0; 7416 ctxt->have_exception = false; 7417 ctxt->exception.vector = -1; 7418 ctxt->perm_ok = false; 7419 7420 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 7421 7422 r = x86_decode_insn(ctxt, insn, insn_len); 7423 7424 trace_kvm_emulate_insn_start(vcpu); 7425 ++vcpu->stat.insn_emulation; 7426 7427 return r; 7428 } 7429 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 7430 7431 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7432 int emulation_type, void *insn, int insn_len) 7433 { 7434 int r; 7435 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7436 bool writeback = true; 7437 bool write_fault_to_spt; 7438 7439 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len))) 7440 return 1; 7441 7442 vcpu->arch.l1tf_flush_l1d = true; 7443 7444 /* 7445 * Clear write_fault_to_shadow_pgtable here to ensure it is 7446 * never reused. 7447 */ 7448 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7449 vcpu->arch.write_fault_to_shadow_pgtable = false; 7450 7451 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7452 kvm_clear_exception_queue(vcpu); 7453 7454 r = x86_decode_emulated_instruction(vcpu, emulation_type, 7455 insn, insn_len); 7456 if (r != EMULATION_OK) { 7457 if ((emulation_type & EMULTYPE_TRAP_UD) || 7458 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7459 kvm_queue_exception(vcpu, UD_VECTOR); 7460 return 1; 7461 } 7462 if (reexecute_instruction(vcpu, cr2_or_gpa, 7463 write_fault_to_spt, 7464 emulation_type)) 7465 return 1; 7466 if (ctxt->have_exception) { 7467 /* 7468 * #UD should result in just EMULATION_FAILED, and trap-like 7469 * exception should not be encountered during decode. 7470 */ 7471 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7472 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7473 inject_emulated_exception(vcpu); 7474 return 1; 7475 } 7476 return handle_emulation_failure(vcpu, emulation_type); 7477 } 7478 } 7479 7480 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7481 !is_vmware_backdoor_opcode(ctxt)) { 7482 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7483 return 1; 7484 } 7485 7486 /* 7487 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7488 * for kvm_skip_emulated_instruction(). The caller is responsible for 7489 * updating interruptibility state and injecting single-step #DBs. 7490 */ 7491 if (emulation_type & EMULTYPE_SKIP) { 7492 kvm_rip_write(vcpu, ctxt->_eip); 7493 if (ctxt->eflags & X86_EFLAGS_RF) 7494 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7495 return 1; 7496 } 7497 7498 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7499 return 1; 7500 7501 /* this is needed for vmware backdoor interface to work since it 7502 changes registers values during IO operation */ 7503 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7504 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7505 emulator_invalidate_register_cache(ctxt); 7506 } 7507 7508 restart: 7509 if (emulation_type & EMULTYPE_PF) { 7510 /* Save the faulting GPA (cr2) in the address field */ 7511 ctxt->exception.address = cr2_or_gpa; 7512 7513 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7514 if (vcpu->arch.mmu->direct_map) { 7515 ctxt->gpa_available = true; 7516 ctxt->gpa_val = cr2_or_gpa; 7517 } 7518 } else { 7519 /* Sanitize the address out of an abundance of paranoia. */ 7520 ctxt->exception.address = 0; 7521 } 7522 7523 r = x86_emulate_insn(ctxt); 7524 7525 if (r == EMULATION_INTERCEPTED) 7526 return 1; 7527 7528 if (r == EMULATION_FAILED) { 7529 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7530 emulation_type)) 7531 return 1; 7532 7533 return handle_emulation_failure(vcpu, emulation_type); 7534 } 7535 7536 if (ctxt->have_exception) { 7537 r = 1; 7538 if (inject_emulated_exception(vcpu)) 7539 return r; 7540 } else if (vcpu->arch.pio.count) { 7541 if (!vcpu->arch.pio.in) { 7542 /* FIXME: return into emulator if single-stepping. */ 7543 vcpu->arch.pio.count = 0; 7544 } else { 7545 writeback = false; 7546 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7547 } 7548 r = 0; 7549 } else if (vcpu->mmio_needed) { 7550 ++vcpu->stat.mmio_exits; 7551 7552 if (!vcpu->mmio_is_write) 7553 writeback = false; 7554 r = 0; 7555 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7556 } else if (r == EMULATION_RESTART) 7557 goto restart; 7558 else 7559 r = 1; 7560 7561 if (writeback) { 7562 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 7563 toggle_interruptibility(vcpu, ctxt->interruptibility); 7564 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7565 if (!ctxt->have_exception || 7566 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7567 kvm_rip_write(vcpu, ctxt->eip); 7568 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7569 r = kvm_vcpu_do_singlestep(vcpu); 7570 if (kvm_x86_ops.update_emulated_instruction) 7571 static_call(kvm_x86_update_emulated_instruction)(vcpu); 7572 __kvm_set_rflags(vcpu, ctxt->eflags); 7573 } 7574 7575 /* 7576 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7577 * do nothing, and it will be requested again as soon as 7578 * the shadow expires. But we still need to check here, 7579 * because POPF has no interrupt shadow. 7580 */ 7581 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7582 kvm_make_request(KVM_REQ_EVENT, vcpu); 7583 } else 7584 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7585 7586 return r; 7587 } 7588 7589 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7590 { 7591 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7592 } 7593 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7594 7595 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7596 void *insn, int insn_len) 7597 { 7598 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7599 } 7600 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7601 7602 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7603 { 7604 vcpu->arch.pio.count = 0; 7605 return 1; 7606 } 7607 7608 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7609 { 7610 vcpu->arch.pio.count = 0; 7611 7612 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7613 return 1; 7614 7615 return kvm_skip_emulated_instruction(vcpu); 7616 } 7617 7618 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7619 unsigned short port) 7620 { 7621 unsigned long val = kvm_rax_read(vcpu); 7622 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7623 7624 if (ret) 7625 return ret; 7626 7627 /* 7628 * Workaround userspace that relies on old KVM behavior of %rip being 7629 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7630 */ 7631 if (port == 0x7e && 7632 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7633 vcpu->arch.complete_userspace_io = 7634 complete_fast_pio_out_port_0x7e; 7635 kvm_skip_emulated_instruction(vcpu); 7636 } else { 7637 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7638 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7639 } 7640 return 0; 7641 } 7642 7643 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7644 { 7645 unsigned long val; 7646 7647 /* We should only ever be called with arch.pio.count equal to 1 */ 7648 BUG_ON(vcpu->arch.pio.count != 1); 7649 7650 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7651 vcpu->arch.pio.count = 0; 7652 return 1; 7653 } 7654 7655 /* For size less than 4 we merge, else we zero extend */ 7656 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7657 7658 /* 7659 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7660 * the copy and tracing 7661 */ 7662 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7663 kvm_rax_write(vcpu, val); 7664 7665 return kvm_skip_emulated_instruction(vcpu); 7666 } 7667 7668 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7669 unsigned short port) 7670 { 7671 unsigned long val; 7672 int ret; 7673 7674 /* For size less than 4 we merge, else we zero extend */ 7675 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7676 7677 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7678 if (ret) { 7679 kvm_rax_write(vcpu, val); 7680 return ret; 7681 } 7682 7683 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7684 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7685 7686 return 0; 7687 } 7688 7689 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7690 { 7691 int ret; 7692 7693 if (in) 7694 ret = kvm_fast_pio_in(vcpu, size, port); 7695 else 7696 ret = kvm_fast_pio_out(vcpu, size, port); 7697 return ret && kvm_skip_emulated_instruction(vcpu); 7698 } 7699 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7700 7701 static int kvmclock_cpu_down_prep(unsigned int cpu) 7702 { 7703 __this_cpu_write(cpu_tsc_khz, 0); 7704 return 0; 7705 } 7706 7707 static void tsc_khz_changed(void *data) 7708 { 7709 struct cpufreq_freqs *freq = data; 7710 unsigned long khz = 0; 7711 7712 if (data) 7713 khz = freq->new; 7714 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7715 khz = cpufreq_quick_get(raw_smp_processor_id()); 7716 if (!khz) 7717 khz = tsc_khz; 7718 __this_cpu_write(cpu_tsc_khz, khz); 7719 } 7720 7721 #ifdef CONFIG_X86_64 7722 static void kvm_hyperv_tsc_notifier(void) 7723 { 7724 struct kvm *kvm; 7725 struct kvm_vcpu *vcpu; 7726 int cpu; 7727 7728 mutex_lock(&kvm_lock); 7729 list_for_each_entry(kvm, &vm_list, vm_list) 7730 kvm_make_mclock_inprogress_request(kvm); 7731 7732 hyperv_stop_tsc_emulation(); 7733 7734 /* TSC frequency always matches when on Hyper-V */ 7735 for_each_present_cpu(cpu) 7736 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7737 kvm_max_guest_tsc_khz = tsc_khz; 7738 7739 list_for_each_entry(kvm, &vm_list, vm_list) { 7740 struct kvm_arch *ka = &kvm->arch; 7741 7742 spin_lock(&ka->pvclock_gtod_sync_lock); 7743 7744 pvclock_update_vm_gtod_copy(kvm); 7745 7746 kvm_for_each_vcpu(cpu, vcpu, kvm) 7747 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7748 7749 kvm_for_each_vcpu(cpu, vcpu, kvm) 7750 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7751 7752 spin_unlock(&ka->pvclock_gtod_sync_lock); 7753 } 7754 mutex_unlock(&kvm_lock); 7755 } 7756 #endif 7757 7758 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7759 { 7760 struct kvm *kvm; 7761 struct kvm_vcpu *vcpu; 7762 int i, send_ipi = 0; 7763 7764 /* 7765 * We allow guests to temporarily run on slowing clocks, 7766 * provided we notify them after, or to run on accelerating 7767 * clocks, provided we notify them before. Thus time never 7768 * goes backwards. 7769 * 7770 * However, we have a problem. We can't atomically update 7771 * the frequency of a given CPU from this function; it is 7772 * merely a notifier, which can be called from any CPU. 7773 * Changing the TSC frequency at arbitrary points in time 7774 * requires a recomputation of local variables related to 7775 * the TSC for each VCPU. We must flag these local variables 7776 * to be updated and be sure the update takes place with the 7777 * new frequency before any guests proceed. 7778 * 7779 * Unfortunately, the combination of hotplug CPU and frequency 7780 * change creates an intractable locking scenario; the order 7781 * of when these callouts happen is undefined with respect to 7782 * CPU hotplug, and they can race with each other. As such, 7783 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7784 * undefined; you can actually have a CPU frequency change take 7785 * place in between the computation of X and the setting of the 7786 * variable. To protect against this problem, all updates of 7787 * the per_cpu tsc_khz variable are done in an interrupt 7788 * protected IPI, and all callers wishing to update the value 7789 * must wait for a synchronous IPI to complete (which is trivial 7790 * if the caller is on the CPU already). This establishes the 7791 * necessary total order on variable updates. 7792 * 7793 * Note that because a guest time update may take place 7794 * anytime after the setting of the VCPU's request bit, the 7795 * correct TSC value must be set before the request. However, 7796 * to ensure the update actually makes it to any guest which 7797 * starts running in hardware virtualization between the set 7798 * and the acquisition of the spinlock, we must also ping the 7799 * CPU after setting the request bit. 7800 * 7801 */ 7802 7803 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7804 7805 mutex_lock(&kvm_lock); 7806 list_for_each_entry(kvm, &vm_list, vm_list) { 7807 kvm_for_each_vcpu(i, vcpu, kvm) { 7808 if (vcpu->cpu != cpu) 7809 continue; 7810 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7811 if (vcpu->cpu != raw_smp_processor_id()) 7812 send_ipi = 1; 7813 } 7814 } 7815 mutex_unlock(&kvm_lock); 7816 7817 if (freq->old < freq->new && send_ipi) { 7818 /* 7819 * We upscale the frequency. Must make the guest 7820 * doesn't see old kvmclock values while running with 7821 * the new frequency, otherwise we risk the guest sees 7822 * time go backwards. 7823 * 7824 * In case we update the frequency for another cpu 7825 * (which might be in guest context) send an interrupt 7826 * to kick the cpu out of guest context. Next time 7827 * guest context is entered kvmclock will be updated, 7828 * so the guest will not see stale values. 7829 */ 7830 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7831 } 7832 } 7833 7834 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7835 void *data) 7836 { 7837 struct cpufreq_freqs *freq = data; 7838 int cpu; 7839 7840 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7841 return 0; 7842 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7843 return 0; 7844 7845 for_each_cpu(cpu, freq->policy->cpus) 7846 __kvmclock_cpufreq_notifier(freq, cpu); 7847 7848 return 0; 7849 } 7850 7851 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7852 .notifier_call = kvmclock_cpufreq_notifier 7853 }; 7854 7855 static int kvmclock_cpu_online(unsigned int cpu) 7856 { 7857 tsc_khz_changed(NULL); 7858 return 0; 7859 } 7860 7861 static void kvm_timer_init(void) 7862 { 7863 max_tsc_khz = tsc_khz; 7864 7865 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7866 #ifdef CONFIG_CPU_FREQ 7867 struct cpufreq_policy *policy; 7868 int cpu; 7869 7870 cpu = get_cpu(); 7871 policy = cpufreq_cpu_get(cpu); 7872 if (policy) { 7873 if (policy->cpuinfo.max_freq) 7874 max_tsc_khz = policy->cpuinfo.max_freq; 7875 cpufreq_cpu_put(policy); 7876 } 7877 put_cpu(); 7878 #endif 7879 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7880 CPUFREQ_TRANSITION_NOTIFIER); 7881 } 7882 7883 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7884 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7885 } 7886 7887 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7888 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7889 7890 int kvm_is_in_guest(void) 7891 { 7892 return __this_cpu_read(current_vcpu) != NULL; 7893 } 7894 7895 static int kvm_is_user_mode(void) 7896 { 7897 int user_mode = 3; 7898 7899 if (__this_cpu_read(current_vcpu)) 7900 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu)); 7901 7902 return user_mode != 0; 7903 } 7904 7905 static unsigned long kvm_get_guest_ip(void) 7906 { 7907 unsigned long ip = 0; 7908 7909 if (__this_cpu_read(current_vcpu)) 7910 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7911 7912 return ip; 7913 } 7914 7915 static void kvm_handle_intel_pt_intr(void) 7916 { 7917 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7918 7919 kvm_make_request(KVM_REQ_PMI, vcpu); 7920 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7921 (unsigned long *)&vcpu->arch.pmu.global_status); 7922 } 7923 7924 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7925 .is_in_guest = kvm_is_in_guest, 7926 .is_user_mode = kvm_is_user_mode, 7927 .get_guest_ip = kvm_get_guest_ip, 7928 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7929 }; 7930 7931 #ifdef CONFIG_X86_64 7932 static void pvclock_gtod_update_fn(struct work_struct *work) 7933 { 7934 struct kvm *kvm; 7935 7936 struct kvm_vcpu *vcpu; 7937 int i; 7938 7939 mutex_lock(&kvm_lock); 7940 list_for_each_entry(kvm, &vm_list, vm_list) 7941 kvm_for_each_vcpu(i, vcpu, kvm) 7942 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7943 atomic_set(&kvm_guest_has_master_clock, 0); 7944 mutex_unlock(&kvm_lock); 7945 } 7946 7947 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7948 7949 /* 7950 * Notification about pvclock gtod data update. 7951 */ 7952 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7953 void *priv) 7954 { 7955 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7956 struct timekeeper *tk = priv; 7957 7958 update_pvclock_gtod(tk); 7959 7960 /* disable master clock if host does not trust, or does not 7961 * use, TSC based clocksource. 7962 */ 7963 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7964 atomic_read(&kvm_guest_has_master_clock) != 0) 7965 queue_work(system_long_wq, &pvclock_gtod_work); 7966 7967 return 0; 7968 } 7969 7970 static struct notifier_block pvclock_gtod_notifier = { 7971 .notifier_call = pvclock_gtod_notify, 7972 }; 7973 #endif 7974 7975 int kvm_arch_init(void *opaque) 7976 { 7977 struct kvm_x86_init_ops *ops = opaque; 7978 int r; 7979 7980 if (kvm_x86_ops.hardware_enable) { 7981 printk(KERN_ERR "kvm: already loaded the other module\n"); 7982 r = -EEXIST; 7983 goto out; 7984 } 7985 7986 if (!ops->cpu_has_kvm_support()) { 7987 pr_err_ratelimited("kvm: no hardware support\n"); 7988 r = -EOPNOTSUPP; 7989 goto out; 7990 } 7991 if (ops->disabled_by_bios()) { 7992 pr_err_ratelimited("kvm: disabled by bios\n"); 7993 r = -EOPNOTSUPP; 7994 goto out; 7995 } 7996 7997 /* 7998 * KVM explicitly assumes that the guest has an FPU and 7999 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8000 * vCPU's FPU state as a fxregs_state struct. 8001 */ 8002 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8003 printk(KERN_ERR "kvm: inadequate fpu\n"); 8004 r = -EOPNOTSUPP; 8005 goto out; 8006 } 8007 8008 r = -ENOMEM; 8009 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 8010 __alignof__(struct fpu), SLAB_ACCOUNT, 8011 NULL); 8012 if (!x86_fpu_cache) { 8013 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 8014 goto out; 8015 } 8016 8017 x86_emulator_cache = kvm_alloc_emulator_cache(); 8018 if (!x86_emulator_cache) { 8019 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8020 goto out_free_x86_fpu_cache; 8021 } 8022 8023 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8024 if (!user_return_msrs) { 8025 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8026 goto out_free_x86_emulator_cache; 8027 } 8028 8029 r = kvm_mmu_module_init(); 8030 if (r) 8031 goto out_free_percpu; 8032 8033 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 8034 PT_DIRTY_MASK, PT64_NX_MASK, 0, 8035 PT_PRESENT_MASK, 0, sme_me_mask); 8036 kvm_timer_init(); 8037 8038 perf_register_guest_info_callbacks(&kvm_guest_cbs); 8039 8040 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8041 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8042 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8043 } 8044 8045 if (pi_inject_timer == -1) 8046 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 8047 #ifdef CONFIG_X86_64 8048 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8049 8050 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8051 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8052 #endif 8053 8054 return 0; 8055 8056 out_free_percpu: 8057 free_percpu(user_return_msrs); 8058 out_free_x86_emulator_cache: 8059 kmem_cache_destroy(x86_emulator_cache); 8060 out_free_x86_fpu_cache: 8061 kmem_cache_destroy(x86_fpu_cache); 8062 out: 8063 return r; 8064 } 8065 8066 void kvm_arch_exit(void) 8067 { 8068 #ifdef CONFIG_X86_64 8069 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8070 clear_hv_tscchange_cb(); 8071 #endif 8072 kvm_lapic_exit(); 8073 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 8074 8075 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8076 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8077 CPUFREQ_TRANSITION_NOTIFIER); 8078 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8079 #ifdef CONFIG_X86_64 8080 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8081 #endif 8082 kvm_x86_ops.hardware_enable = NULL; 8083 kvm_mmu_module_exit(); 8084 free_percpu(user_return_msrs); 8085 kmem_cache_destroy(x86_fpu_cache); 8086 #ifdef CONFIG_KVM_XEN 8087 static_key_deferred_flush(&kvm_xen_enabled); 8088 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 8089 #endif 8090 } 8091 8092 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason) 8093 { 8094 ++vcpu->stat.halt_exits; 8095 if (lapic_in_kernel(vcpu)) { 8096 vcpu->arch.mp_state = state; 8097 return 1; 8098 } else { 8099 vcpu->run->exit_reason = reason; 8100 return 0; 8101 } 8102 } 8103 8104 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 8105 { 8106 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 8107 } 8108 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 8109 8110 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 8111 { 8112 int ret = kvm_skip_emulated_instruction(vcpu); 8113 /* 8114 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 8115 * KVM_EXIT_DEBUG here. 8116 */ 8117 return kvm_vcpu_halt(vcpu) && ret; 8118 } 8119 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 8120 8121 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 8122 { 8123 int ret = kvm_skip_emulated_instruction(vcpu); 8124 8125 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret; 8126 } 8127 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 8128 8129 #ifdef CONFIG_X86_64 8130 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 8131 unsigned long clock_type) 8132 { 8133 struct kvm_clock_pairing clock_pairing; 8134 struct timespec64 ts; 8135 u64 cycle; 8136 int ret; 8137 8138 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 8139 return -KVM_EOPNOTSUPP; 8140 8141 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 8142 return -KVM_EOPNOTSUPP; 8143 8144 clock_pairing.sec = ts.tv_sec; 8145 clock_pairing.nsec = ts.tv_nsec; 8146 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 8147 clock_pairing.flags = 0; 8148 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8149 8150 ret = 0; 8151 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8152 sizeof(struct kvm_clock_pairing))) 8153 ret = -KVM_EFAULT; 8154 8155 return ret; 8156 } 8157 #endif 8158 8159 /* 8160 * kvm_pv_kick_cpu_op: Kick a vcpu. 8161 * 8162 * @apicid - apicid of vcpu to be kicked. 8163 */ 8164 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8165 { 8166 struct kvm_lapic_irq lapic_irq; 8167 8168 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8169 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8170 lapic_irq.level = 0; 8171 lapic_irq.dest_id = apicid; 8172 lapic_irq.msi_redir_hint = false; 8173 8174 lapic_irq.delivery_mode = APIC_DM_REMRD; 8175 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8176 } 8177 8178 bool kvm_apicv_activated(struct kvm *kvm) 8179 { 8180 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8181 } 8182 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8183 8184 void kvm_apicv_init(struct kvm *kvm, bool enable) 8185 { 8186 if (enable) 8187 clear_bit(APICV_INHIBIT_REASON_DISABLE, 8188 &kvm->arch.apicv_inhibit_reasons); 8189 else 8190 set_bit(APICV_INHIBIT_REASON_DISABLE, 8191 &kvm->arch.apicv_inhibit_reasons); 8192 } 8193 EXPORT_SYMBOL_GPL(kvm_apicv_init); 8194 8195 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 8196 { 8197 struct kvm_vcpu *target = NULL; 8198 struct kvm_apic_map *map; 8199 8200 rcu_read_lock(); 8201 map = rcu_dereference(kvm->arch.apic_map); 8202 8203 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8204 target = map->phys_map[dest_id]->vcpu; 8205 8206 rcu_read_unlock(); 8207 8208 if (target && READ_ONCE(target->ready)) 8209 kvm_vcpu_yield_to(target); 8210 } 8211 8212 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8213 { 8214 unsigned long nr, a0, a1, a2, a3, ret; 8215 int op_64_bit; 8216 8217 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 8218 return kvm_xen_hypercall(vcpu); 8219 8220 if (kvm_hv_hypercall_enabled(vcpu)) 8221 return kvm_hv_hypercall(vcpu); 8222 8223 nr = kvm_rax_read(vcpu); 8224 a0 = kvm_rbx_read(vcpu); 8225 a1 = kvm_rcx_read(vcpu); 8226 a2 = kvm_rdx_read(vcpu); 8227 a3 = kvm_rsi_read(vcpu); 8228 8229 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8230 8231 op_64_bit = is_64_bit_mode(vcpu); 8232 if (!op_64_bit) { 8233 nr &= 0xFFFFFFFF; 8234 a0 &= 0xFFFFFFFF; 8235 a1 &= 0xFFFFFFFF; 8236 a2 &= 0xFFFFFFFF; 8237 a3 &= 0xFFFFFFFF; 8238 } 8239 8240 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 8241 ret = -KVM_EPERM; 8242 goto out; 8243 } 8244 8245 ret = -KVM_ENOSYS; 8246 8247 switch (nr) { 8248 case KVM_HC_VAPIC_POLL_IRQ: 8249 ret = 0; 8250 break; 8251 case KVM_HC_KICK_CPU: 8252 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8253 break; 8254 8255 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8256 kvm_sched_yield(vcpu->kvm, a1); 8257 ret = 0; 8258 break; 8259 #ifdef CONFIG_X86_64 8260 case KVM_HC_CLOCK_PAIRING: 8261 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8262 break; 8263 #endif 8264 case KVM_HC_SEND_IPI: 8265 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8266 break; 8267 8268 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8269 break; 8270 case KVM_HC_SCHED_YIELD: 8271 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8272 break; 8273 8274 kvm_sched_yield(vcpu->kvm, a0); 8275 ret = 0; 8276 break; 8277 default: 8278 ret = -KVM_ENOSYS; 8279 break; 8280 } 8281 out: 8282 if (!op_64_bit) 8283 ret = (u32)ret; 8284 kvm_rax_write(vcpu, ret); 8285 8286 ++vcpu->stat.hypercalls; 8287 return kvm_skip_emulated_instruction(vcpu); 8288 } 8289 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8290 8291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8292 { 8293 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8294 char instruction[3]; 8295 unsigned long rip = kvm_rip_read(vcpu); 8296 8297 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 8298 8299 return emulator_write_emulated(ctxt, rip, instruction, 3, 8300 &ctxt->exception); 8301 } 8302 8303 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8304 { 8305 return vcpu->run->request_interrupt_window && 8306 likely(!pic_in_kernel(vcpu->kvm)); 8307 } 8308 8309 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8310 { 8311 struct kvm_run *kvm_run = vcpu->run; 8312 8313 /* 8314 * if_flag is obsolete and useless, so do not bother 8315 * setting it for SEV-ES guests. Userspace can just 8316 * use kvm_run->ready_for_interrupt_injection. 8317 */ 8318 kvm_run->if_flag = !vcpu->arch.guest_state_protected 8319 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8320 8321 kvm_run->cr8 = kvm_get_cr8(vcpu); 8322 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8323 kvm_run->ready_for_interrupt_injection = 8324 pic_in_kernel(vcpu->kvm) || 8325 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8326 8327 if (is_smm(vcpu)) 8328 kvm_run->flags |= KVM_RUN_X86_SMM; 8329 } 8330 8331 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8332 { 8333 int max_irr, tpr; 8334 8335 if (!kvm_x86_ops.update_cr8_intercept) 8336 return; 8337 8338 if (!lapic_in_kernel(vcpu)) 8339 return; 8340 8341 if (vcpu->arch.apicv_active) 8342 return; 8343 8344 if (!vcpu->arch.apic->vapic_addr) 8345 max_irr = kvm_lapic_find_highest_irr(vcpu); 8346 else 8347 max_irr = -1; 8348 8349 if (max_irr != -1) 8350 max_irr >>= 4; 8351 8352 tpr = kvm_lapic_get_cr8(vcpu); 8353 8354 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 8355 } 8356 8357 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8358 { 8359 int r; 8360 bool can_inject = true; 8361 8362 /* try to reinject previous events if any */ 8363 8364 if (vcpu->arch.exception.injected) { 8365 static_call(kvm_x86_queue_exception)(vcpu); 8366 can_inject = false; 8367 } 8368 /* 8369 * Do not inject an NMI or interrupt if there is a pending 8370 * exception. Exceptions and interrupts are recognized at 8371 * instruction boundaries, i.e. the start of an instruction. 8372 * Trap-like exceptions, e.g. #DB, have higher priority than 8373 * NMIs and interrupts, i.e. traps are recognized before an 8374 * NMI/interrupt that's pending on the same instruction. 8375 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8376 * priority, but are only generated (pended) during instruction 8377 * execution, i.e. a pending fault-like exception means the 8378 * fault occurred on the *previous* instruction and must be 8379 * serviced prior to recognizing any new events in order to 8380 * fully complete the previous instruction. 8381 */ 8382 else if (!vcpu->arch.exception.pending) { 8383 if (vcpu->arch.nmi_injected) { 8384 static_call(kvm_x86_set_nmi)(vcpu); 8385 can_inject = false; 8386 } else if (vcpu->arch.interrupt.injected) { 8387 static_call(kvm_x86_set_irq)(vcpu); 8388 can_inject = false; 8389 } 8390 } 8391 8392 WARN_ON_ONCE(vcpu->arch.exception.injected && 8393 vcpu->arch.exception.pending); 8394 8395 /* 8396 * Call check_nested_events() even if we reinjected a previous event 8397 * in order for caller to determine if it should require immediate-exit 8398 * from L2 to L1 due to pending L1 events which require exit 8399 * from L2 to L1. 8400 */ 8401 if (is_guest_mode(vcpu)) { 8402 r = kvm_x86_ops.nested_ops->check_events(vcpu); 8403 if (r < 0) 8404 goto busy; 8405 } 8406 8407 /* try to inject new event if pending */ 8408 if (vcpu->arch.exception.pending) { 8409 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8410 vcpu->arch.exception.has_error_code, 8411 vcpu->arch.exception.error_code); 8412 8413 vcpu->arch.exception.pending = false; 8414 vcpu->arch.exception.injected = true; 8415 8416 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8417 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8418 X86_EFLAGS_RF); 8419 8420 if (vcpu->arch.exception.nr == DB_VECTOR) { 8421 kvm_deliver_exception_payload(vcpu); 8422 if (vcpu->arch.dr7 & DR7_GD) { 8423 vcpu->arch.dr7 &= ~DR7_GD; 8424 kvm_update_dr7(vcpu); 8425 } 8426 } 8427 8428 static_call(kvm_x86_queue_exception)(vcpu); 8429 can_inject = false; 8430 } 8431 8432 /* 8433 * Finally, inject interrupt events. If an event cannot be injected 8434 * due to architectural conditions (e.g. IF=0) a window-open exit 8435 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8436 * and can architecturally be injected, but we cannot do it right now: 8437 * an interrupt could have arrived just now and we have to inject it 8438 * as a vmexit, or there could already an event in the queue, which is 8439 * indicated by can_inject. In that case we request an immediate exit 8440 * in order to make progress and get back here for another iteration. 8441 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8442 */ 8443 if (vcpu->arch.smi_pending) { 8444 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 8445 if (r < 0) 8446 goto busy; 8447 if (r) { 8448 vcpu->arch.smi_pending = false; 8449 ++vcpu->arch.smi_count; 8450 enter_smm(vcpu); 8451 can_inject = false; 8452 } else 8453 static_call(kvm_x86_enable_smi_window)(vcpu); 8454 } 8455 8456 if (vcpu->arch.nmi_pending) { 8457 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 8458 if (r < 0) 8459 goto busy; 8460 if (r) { 8461 --vcpu->arch.nmi_pending; 8462 vcpu->arch.nmi_injected = true; 8463 static_call(kvm_x86_set_nmi)(vcpu); 8464 can_inject = false; 8465 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 8466 } 8467 if (vcpu->arch.nmi_pending) 8468 static_call(kvm_x86_enable_nmi_window)(vcpu); 8469 } 8470 8471 if (kvm_cpu_has_injectable_intr(vcpu)) { 8472 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 8473 if (r < 0) 8474 goto busy; 8475 if (r) { 8476 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8477 static_call(kvm_x86_set_irq)(vcpu); 8478 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 8479 } 8480 if (kvm_cpu_has_injectable_intr(vcpu)) 8481 static_call(kvm_x86_enable_irq_window)(vcpu); 8482 } 8483 8484 if (is_guest_mode(vcpu) && 8485 kvm_x86_ops.nested_ops->hv_timer_pending && 8486 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8487 *req_immediate_exit = true; 8488 8489 WARN_ON(vcpu->arch.exception.pending); 8490 return; 8491 8492 busy: 8493 *req_immediate_exit = true; 8494 return; 8495 } 8496 8497 static void process_nmi(struct kvm_vcpu *vcpu) 8498 { 8499 unsigned limit = 2; 8500 8501 /* 8502 * x86 is limited to one NMI running, and one NMI pending after it. 8503 * If an NMI is already in progress, limit further NMIs to just one. 8504 * Otherwise, allow two (and we'll inject the first one immediately). 8505 */ 8506 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 8507 limit = 1; 8508 8509 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8510 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8511 kvm_make_request(KVM_REQ_EVENT, vcpu); 8512 } 8513 8514 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8515 { 8516 u32 flags = 0; 8517 flags |= seg->g << 23; 8518 flags |= seg->db << 22; 8519 flags |= seg->l << 21; 8520 flags |= seg->avl << 20; 8521 flags |= seg->present << 15; 8522 flags |= seg->dpl << 13; 8523 flags |= seg->s << 12; 8524 flags |= seg->type << 8; 8525 return flags; 8526 } 8527 8528 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8529 { 8530 struct kvm_segment seg; 8531 int offset; 8532 8533 kvm_get_segment(vcpu, &seg, n); 8534 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8535 8536 if (n < 3) 8537 offset = 0x7f84 + n * 12; 8538 else 8539 offset = 0x7f2c + (n - 3) * 12; 8540 8541 put_smstate(u32, buf, offset + 8, seg.base); 8542 put_smstate(u32, buf, offset + 4, seg.limit); 8543 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8544 } 8545 8546 #ifdef CONFIG_X86_64 8547 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8548 { 8549 struct kvm_segment seg; 8550 int offset; 8551 u16 flags; 8552 8553 kvm_get_segment(vcpu, &seg, n); 8554 offset = 0x7e00 + n * 16; 8555 8556 flags = enter_smm_get_segment_flags(&seg) >> 8; 8557 put_smstate(u16, buf, offset, seg.selector); 8558 put_smstate(u16, buf, offset + 2, flags); 8559 put_smstate(u32, buf, offset + 4, seg.limit); 8560 put_smstate(u64, buf, offset + 8, seg.base); 8561 } 8562 #endif 8563 8564 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8565 { 8566 struct desc_ptr dt; 8567 struct kvm_segment seg; 8568 unsigned long val; 8569 int i; 8570 8571 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8572 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8573 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8574 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8575 8576 for (i = 0; i < 8; i++) 8577 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8578 8579 kvm_get_dr(vcpu, 6, &val); 8580 put_smstate(u32, buf, 0x7fcc, (u32)val); 8581 kvm_get_dr(vcpu, 7, &val); 8582 put_smstate(u32, buf, 0x7fc8, (u32)val); 8583 8584 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8585 put_smstate(u32, buf, 0x7fc4, seg.selector); 8586 put_smstate(u32, buf, 0x7f64, seg.base); 8587 put_smstate(u32, buf, 0x7f60, seg.limit); 8588 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8589 8590 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8591 put_smstate(u32, buf, 0x7fc0, seg.selector); 8592 put_smstate(u32, buf, 0x7f80, seg.base); 8593 put_smstate(u32, buf, 0x7f7c, seg.limit); 8594 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8595 8596 static_call(kvm_x86_get_gdt)(vcpu, &dt); 8597 put_smstate(u32, buf, 0x7f74, dt.address); 8598 put_smstate(u32, buf, 0x7f70, dt.size); 8599 8600 static_call(kvm_x86_get_idt)(vcpu, &dt); 8601 put_smstate(u32, buf, 0x7f58, dt.address); 8602 put_smstate(u32, buf, 0x7f54, dt.size); 8603 8604 for (i = 0; i < 6; i++) 8605 enter_smm_save_seg_32(vcpu, buf, i); 8606 8607 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8608 8609 /* revision id */ 8610 put_smstate(u32, buf, 0x7efc, 0x00020000); 8611 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8612 } 8613 8614 #ifdef CONFIG_X86_64 8615 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8616 { 8617 struct desc_ptr dt; 8618 struct kvm_segment seg; 8619 unsigned long val; 8620 int i; 8621 8622 for (i = 0; i < 16; i++) 8623 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8624 8625 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8626 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8627 8628 kvm_get_dr(vcpu, 6, &val); 8629 put_smstate(u64, buf, 0x7f68, val); 8630 kvm_get_dr(vcpu, 7, &val); 8631 put_smstate(u64, buf, 0x7f60, val); 8632 8633 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8634 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8635 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8636 8637 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8638 8639 /* revision id */ 8640 put_smstate(u32, buf, 0x7efc, 0x00020064); 8641 8642 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8643 8644 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8645 put_smstate(u16, buf, 0x7e90, seg.selector); 8646 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8647 put_smstate(u32, buf, 0x7e94, seg.limit); 8648 put_smstate(u64, buf, 0x7e98, seg.base); 8649 8650 static_call(kvm_x86_get_idt)(vcpu, &dt); 8651 put_smstate(u32, buf, 0x7e84, dt.size); 8652 put_smstate(u64, buf, 0x7e88, dt.address); 8653 8654 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8655 put_smstate(u16, buf, 0x7e70, seg.selector); 8656 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8657 put_smstate(u32, buf, 0x7e74, seg.limit); 8658 put_smstate(u64, buf, 0x7e78, seg.base); 8659 8660 static_call(kvm_x86_get_gdt)(vcpu, &dt); 8661 put_smstate(u32, buf, 0x7e64, dt.size); 8662 put_smstate(u64, buf, 0x7e68, dt.address); 8663 8664 for (i = 0; i < 6; i++) 8665 enter_smm_save_seg_64(vcpu, buf, i); 8666 } 8667 #endif 8668 8669 static void enter_smm(struct kvm_vcpu *vcpu) 8670 { 8671 struct kvm_segment cs, ds; 8672 struct desc_ptr dt; 8673 char buf[512]; 8674 u32 cr0; 8675 8676 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8677 memset(buf, 0, 512); 8678 #ifdef CONFIG_X86_64 8679 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8680 enter_smm_save_state_64(vcpu, buf); 8681 else 8682 #endif 8683 enter_smm_save_state_32(vcpu, buf); 8684 8685 /* 8686 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8687 * vCPU state (e.g. leave guest mode) after we've saved the state into 8688 * the SMM state-save area. 8689 */ 8690 static_call(kvm_x86_pre_enter_smm)(vcpu, buf); 8691 8692 vcpu->arch.hflags |= HF_SMM_MASK; 8693 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8694 8695 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 8696 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8697 else 8698 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 8699 8700 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8701 kvm_rip_write(vcpu, 0x8000); 8702 8703 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8704 static_call(kvm_x86_set_cr0)(vcpu, cr0); 8705 vcpu->arch.cr0 = cr0; 8706 8707 static_call(kvm_x86_set_cr4)(vcpu, 0); 8708 8709 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8710 dt.address = dt.size = 0; 8711 static_call(kvm_x86_set_idt)(vcpu, &dt); 8712 8713 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8714 8715 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8716 cs.base = vcpu->arch.smbase; 8717 8718 ds.selector = 0; 8719 ds.base = 0; 8720 8721 cs.limit = ds.limit = 0xffffffff; 8722 cs.type = ds.type = 0x3; 8723 cs.dpl = ds.dpl = 0; 8724 cs.db = ds.db = 0; 8725 cs.s = ds.s = 1; 8726 cs.l = ds.l = 0; 8727 cs.g = ds.g = 1; 8728 cs.avl = ds.avl = 0; 8729 cs.present = ds.present = 1; 8730 cs.unusable = ds.unusable = 0; 8731 cs.padding = ds.padding = 0; 8732 8733 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8734 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8735 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8736 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8737 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8738 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8739 8740 #ifdef CONFIG_X86_64 8741 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8742 static_call(kvm_x86_set_efer)(vcpu, 0); 8743 #endif 8744 8745 kvm_update_cpuid_runtime(vcpu); 8746 kvm_mmu_reset_context(vcpu); 8747 } 8748 8749 static void process_smi(struct kvm_vcpu *vcpu) 8750 { 8751 vcpu->arch.smi_pending = true; 8752 kvm_make_request(KVM_REQ_EVENT, vcpu); 8753 } 8754 8755 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8756 unsigned long *vcpu_bitmap) 8757 { 8758 cpumask_var_t cpus; 8759 8760 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8761 8762 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8763 NULL, vcpu_bitmap, cpus); 8764 8765 free_cpumask_var(cpus); 8766 } 8767 8768 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8769 { 8770 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8771 } 8772 8773 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8774 { 8775 if (!lapic_in_kernel(vcpu)) 8776 return; 8777 8778 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8779 kvm_apic_update_apicv(vcpu); 8780 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 8781 } 8782 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8783 8784 /* 8785 * NOTE: Do not hold any lock prior to calling this. 8786 * 8787 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8788 * locked, because it calls __x86_set_memory_region() which does 8789 * synchronize_srcu(&kvm->srcu). 8790 */ 8791 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8792 { 8793 struct kvm_vcpu *except; 8794 unsigned long old, new, expected; 8795 8796 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8797 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit)) 8798 return; 8799 8800 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8801 do { 8802 expected = new = old; 8803 if (activate) 8804 __clear_bit(bit, &new); 8805 else 8806 __set_bit(bit, &new); 8807 if (new == old) 8808 break; 8809 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8810 } while (old != expected); 8811 8812 if (!!old == !!new) 8813 return; 8814 8815 trace_kvm_apicv_update_request(activate, bit); 8816 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8817 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate); 8818 8819 /* 8820 * Sending request to update APICV for all other vcpus, 8821 * while update the calling vcpu immediately instead of 8822 * waiting for another #VMEXIT to handle the request. 8823 */ 8824 except = kvm_get_running_vcpu(); 8825 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8826 except); 8827 if (except) 8828 kvm_vcpu_update_apicv(except); 8829 } 8830 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8831 8832 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8833 { 8834 if (!kvm_apic_present(vcpu)) 8835 return; 8836 8837 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8838 8839 if (irqchip_split(vcpu->kvm)) 8840 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8841 else { 8842 if (vcpu->arch.apicv_active) 8843 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 8844 if (ioapic_in_kernel(vcpu->kvm)) 8845 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8846 } 8847 8848 if (is_guest_mode(vcpu)) 8849 vcpu->arch.load_eoi_exitmap_pending = true; 8850 else 8851 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8852 } 8853 8854 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8855 { 8856 u64 eoi_exit_bitmap[4]; 8857 8858 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8859 return; 8860 8861 if (to_hv_vcpu(vcpu)) 8862 bitmap_or((ulong *)eoi_exit_bitmap, 8863 vcpu->arch.ioapic_handled_vectors, 8864 to_hv_synic(vcpu)->vec_bitmap, 256); 8865 8866 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 8867 } 8868 8869 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8870 unsigned long start, unsigned long end) 8871 { 8872 unsigned long apic_address; 8873 8874 /* 8875 * The physical address of apic access page is stored in the VMCS. 8876 * Update it when it becomes invalid. 8877 */ 8878 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8879 if (start <= apic_address && apic_address < end) 8880 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8881 } 8882 8883 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8884 { 8885 if (!lapic_in_kernel(vcpu)) 8886 return; 8887 8888 if (!kvm_x86_ops.set_apic_access_page_addr) 8889 return; 8890 8891 static_call(kvm_x86_set_apic_access_page_addr)(vcpu); 8892 } 8893 8894 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8895 { 8896 smp_send_reschedule(vcpu->cpu); 8897 } 8898 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8899 8900 /* 8901 * Returns 1 to let vcpu_run() continue the guest execution loop without 8902 * exiting to the userspace. Otherwise, the value will be returned to the 8903 * userspace. 8904 */ 8905 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8906 { 8907 int r; 8908 bool req_int_win = 8909 dm_request_for_irq_injection(vcpu) && 8910 kvm_cpu_accept_dm_intr(vcpu); 8911 fastpath_t exit_fastpath; 8912 8913 bool req_immediate_exit = false; 8914 8915 /* Forbid vmenter if vcpu dirty ring is soft-full */ 8916 if (unlikely(vcpu->kvm->dirty_ring_size && 8917 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 8918 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 8919 trace_kvm_dirty_ring_exit(vcpu); 8920 r = 0; 8921 goto out; 8922 } 8923 8924 if (kvm_request_pending(vcpu)) { 8925 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 8926 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 8927 r = 0; 8928 goto out; 8929 } 8930 } 8931 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8932 kvm_mmu_unload(vcpu); 8933 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8934 __kvm_migrate_timers(vcpu); 8935 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8936 kvm_gen_update_masterclock(vcpu->kvm); 8937 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8938 kvm_gen_kvmclock_update(vcpu); 8939 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8940 r = kvm_guest_time_update(vcpu); 8941 if (unlikely(r)) 8942 goto out; 8943 } 8944 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8945 kvm_mmu_sync_roots(vcpu); 8946 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8947 kvm_mmu_load_pgd(vcpu); 8948 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8949 kvm_vcpu_flush_tlb_all(vcpu); 8950 8951 /* Flushing all ASIDs flushes the current ASID... */ 8952 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8953 } 8954 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8955 kvm_vcpu_flush_tlb_current(vcpu); 8956 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8957 kvm_vcpu_flush_tlb_guest(vcpu); 8958 8959 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8960 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8961 r = 0; 8962 goto out; 8963 } 8964 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8965 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8966 vcpu->mmio_needed = 0; 8967 r = 0; 8968 goto out; 8969 } 8970 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8971 /* Page is swapped out. Do synthetic halt */ 8972 vcpu->arch.apf.halted = true; 8973 r = 1; 8974 goto out; 8975 } 8976 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8977 record_steal_time(vcpu); 8978 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8979 process_smi(vcpu); 8980 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8981 process_nmi(vcpu); 8982 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8983 kvm_pmu_handle_event(vcpu); 8984 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8985 kvm_pmu_deliver_pmi(vcpu); 8986 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8987 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8988 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8989 vcpu->arch.ioapic_handled_vectors)) { 8990 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8991 vcpu->run->eoi.vector = 8992 vcpu->arch.pending_ioapic_eoi; 8993 r = 0; 8994 goto out; 8995 } 8996 } 8997 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8998 vcpu_scan_ioapic(vcpu); 8999 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 9000 vcpu_load_eoi_exitmap(vcpu); 9001 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 9002 kvm_vcpu_reload_apic_access_page(vcpu); 9003 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 9004 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9005 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 9006 r = 0; 9007 goto out; 9008 } 9009 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 9010 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9011 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 9012 r = 0; 9013 goto out; 9014 } 9015 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 9016 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 9017 9018 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 9019 vcpu->run->hyperv = hv_vcpu->exit; 9020 r = 0; 9021 goto out; 9022 } 9023 9024 /* 9025 * KVM_REQ_HV_STIMER has to be processed after 9026 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 9027 * depend on the guest clock being up-to-date 9028 */ 9029 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 9030 kvm_hv_process_stimers(vcpu); 9031 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 9032 kvm_vcpu_update_apicv(vcpu); 9033 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 9034 kvm_check_async_pf_completion(vcpu); 9035 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 9036 static_call(kvm_x86_msr_filter_changed)(vcpu); 9037 9038 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 9039 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 9040 } 9041 9042 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 9043 kvm_xen_has_interrupt(vcpu)) { 9044 ++vcpu->stat.req_event; 9045 kvm_apic_accept_events(vcpu); 9046 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 9047 r = 1; 9048 goto out; 9049 } 9050 9051 inject_pending_event(vcpu, &req_immediate_exit); 9052 if (req_int_win) 9053 static_call(kvm_x86_enable_irq_window)(vcpu); 9054 9055 if (kvm_lapic_enabled(vcpu)) { 9056 update_cr8_intercept(vcpu); 9057 kvm_lapic_sync_to_vapic(vcpu); 9058 } 9059 } 9060 9061 r = kvm_mmu_reload(vcpu); 9062 if (unlikely(r)) { 9063 goto cancel_injection; 9064 } 9065 9066 preempt_disable(); 9067 9068 static_call(kvm_x86_prepare_guest_switch)(vcpu); 9069 9070 /* 9071 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 9072 * IPI are then delayed after guest entry, which ensures that they 9073 * result in virtual interrupt delivery. 9074 */ 9075 local_irq_disable(); 9076 vcpu->mode = IN_GUEST_MODE; 9077 9078 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9079 9080 /* 9081 * 1) We should set ->mode before checking ->requests. Please see 9082 * the comment in kvm_vcpu_exiting_guest_mode(). 9083 * 9084 * 2) For APICv, we should set ->mode before checking PID.ON. This 9085 * pairs with the memory barrier implicit in pi_test_and_set_on 9086 * (see vmx_deliver_posted_interrupt). 9087 * 9088 * 3) This also orders the write to mode from any reads to the page 9089 * tables done while the VCPU is running. Please see the comment 9090 * in kvm_flush_remote_tlbs. 9091 */ 9092 smp_mb__after_srcu_read_unlock(); 9093 9094 /* 9095 * This handles the case where a posted interrupt was 9096 * notified with kvm_vcpu_kick. 9097 */ 9098 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 9099 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 9100 9101 if (kvm_vcpu_exit_request(vcpu)) { 9102 vcpu->mode = OUTSIDE_GUEST_MODE; 9103 smp_wmb(); 9104 local_irq_enable(); 9105 preempt_enable(); 9106 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9107 r = 1; 9108 goto cancel_injection; 9109 } 9110 9111 if (req_immediate_exit) { 9112 kvm_make_request(KVM_REQ_EVENT, vcpu); 9113 static_call(kvm_x86_request_immediate_exit)(vcpu); 9114 } 9115 9116 fpregs_assert_state_consistent(); 9117 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9118 switch_fpu_return(); 9119 9120 if (unlikely(vcpu->arch.switch_db_regs)) { 9121 set_debugreg(0, 7); 9122 set_debugreg(vcpu->arch.eff_db[0], 0); 9123 set_debugreg(vcpu->arch.eff_db[1], 1); 9124 set_debugreg(vcpu->arch.eff_db[2], 2); 9125 set_debugreg(vcpu->arch.eff_db[3], 3); 9126 set_debugreg(vcpu->arch.dr6, 6); 9127 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9128 } 9129 9130 for (;;) { 9131 exit_fastpath = static_call(kvm_x86_run)(vcpu); 9132 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 9133 break; 9134 9135 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 9136 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 9137 break; 9138 } 9139 9140 if (vcpu->arch.apicv_active) 9141 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 9142 } 9143 9144 /* 9145 * Do this here before restoring debug registers on the host. And 9146 * since we do this before handling the vmexit, a DR access vmexit 9147 * can (a) read the correct value of the debug registers, (b) set 9148 * KVM_DEBUGREG_WONT_EXIT again. 9149 */ 9150 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 9151 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 9152 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 9153 kvm_update_dr0123(vcpu); 9154 kvm_update_dr7(vcpu); 9155 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9156 } 9157 9158 /* 9159 * If the guest has used debug registers, at least dr7 9160 * will be disabled while returning to the host. 9161 * If we don't have active breakpoints in the host, we don't 9162 * care about the messed up debug address registers. But if 9163 * we have some of them active, restore the old state. 9164 */ 9165 if (hw_breakpoint_active()) 9166 hw_breakpoint_restore(); 9167 9168 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 9169 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 9170 9171 vcpu->mode = OUTSIDE_GUEST_MODE; 9172 smp_wmb(); 9173 9174 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 9175 9176 /* 9177 * Consume any pending interrupts, including the possible source of 9178 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 9179 * An instruction is required after local_irq_enable() to fully unblock 9180 * interrupts on processors that implement an interrupt shadow, the 9181 * stat.exits increment will do nicely. 9182 */ 9183 kvm_before_interrupt(vcpu); 9184 local_irq_enable(); 9185 ++vcpu->stat.exits; 9186 local_irq_disable(); 9187 kvm_after_interrupt(vcpu); 9188 9189 if (lapic_in_kernel(vcpu)) { 9190 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 9191 if (delta != S64_MIN) { 9192 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 9193 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 9194 } 9195 } 9196 9197 local_irq_enable(); 9198 preempt_enable(); 9199 9200 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9201 9202 /* 9203 * Profile KVM exit RIPs: 9204 */ 9205 if (unlikely(prof_on == KVM_PROFILING)) { 9206 unsigned long rip = kvm_rip_read(vcpu); 9207 profile_hit(KVM_PROFILING, (void *)rip); 9208 } 9209 9210 if (unlikely(vcpu->arch.tsc_always_catchup)) 9211 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9212 9213 if (vcpu->arch.apic_attention) 9214 kvm_lapic_sync_from_vapic(vcpu); 9215 9216 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 9217 return r; 9218 9219 cancel_injection: 9220 if (req_immediate_exit) 9221 kvm_make_request(KVM_REQ_EVENT, vcpu); 9222 static_call(kvm_x86_cancel_injection)(vcpu); 9223 if (unlikely(vcpu->arch.apic_attention)) 9224 kvm_lapic_sync_from_vapic(vcpu); 9225 out: 9226 return r; 9227 } 9228 9229 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9230 { 9231 if (!kvm_arch_vcpu_runnable(vcpu) && 9232 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) { 9233 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9234 kvm_vcpu_block(vcpu); 9235 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9236 9237 if (kvm_x86_ops.post_block) 9238 static_call(kvm_x86_post_block)(vcpu); 9239 9240 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9241 return 1; 9242 } 9243 9244 kvm_apic_accept_events(vcpu); 9245 switch(vcpu->arch.mp_state) { 9246 case KVM_MP_STATE_HALTED: 9247 case KVM_MP_STATE_AP_RESET_HOLD: 9248 vcpu->arch.pv.pv_unhalted = false; 9249 vcpu->arch.mp_state = 9250 KVM_MP_STATE_RUNNABLE; 9251 fallthrough; 9252 case KVM_MP_STATE_RUNNABLE: 9253 vcpu->arch.apf.halted = false; 9254 break; 9255 case KVM_MP_STATE_INIT_RECEIVED: 9256 break; 9257 default: 9258 return -EINTR; 9259 } 9260 return 1; 9261 } 9262 9263 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9264 { 9265 if (is_guest_mode(vcpu)) 9266 kvm_x86_ops.nested_ops->check_events(vcpu); 9267 9268 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9269 !vcpu->arch.apf.halted); 9270 } 9271 9272 static int vcpu_run(struct kvm_vcpu *vcpu) 9273 { 9274 int r; 9275 struct kvm *kvm = vcpu->kvm; 9276 9277 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9278 vcpu->arch.l1tf_flush_l1d = true; 9279 9280 for (;;) { 9281 if (kvm_vcpu_running(vcpu)) { 9282 r = vcpu_enter_guest(vcpu); 9283 } else { 9284 r = vcpu_block(kvm, vcpu); 9285 } 9286 9287 if (r <= 0) 9288 break; 9289 9290 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 9291 if (kvm_cpu_has_pending_timer(vcpu)) 9292 kvm_inject_pending_timer_irqs(vcpu); 9293 9294 if (dm_request_for_irq_injection(vcpu) && 9295 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9296 r = 0; 9297 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9298 ++vcpu->stat.request_irq_exits; 9299 break; 9300 } 9301 9302 if (__xfer_to_guest_mode_work_pending()) { 9303 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9304 r = xfer_to_guest_mode_handle_work(vcpu); 9305 if (r) 9306 return r; 9307 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9308 } 9309 } 9310 9311 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9312 9313 return r; 9314 } 9315 9316 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9317 { 9318 int r; 9319 9320 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9321 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9322 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9323 return r; 9324 } 9325 9326 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9327 { 9328 BUG_ON(!vcpu->arch.pio.count); 9329 9330 return complete_emulated_io(vcpu); 9331 } 9332 9333 /* 9334 * Implements the following, as a state machine: 9335 * 9336 * read: 9337 * for each fragment 9338 * for each mmio piece in the fragment 9339 * write gpa, len 9340 * exit 9341 * copy data 9342 * execute insn 9343 * 9344 * write: 9345 * for each fragment 9346 * for each mmio piece in the fragment 9347 * write gpa, len 9348 * copy data 9349 * exit 9350 */ 9351 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9352 { 9353 struct kvm_run *run = vcpu->run; 9354 struct kvm_mmio_fragment *frag; 9355 unsigned len; 9356 9357 BUG_ON(!vcpu->mmio_needed); 9358 9359 /* Complete previous fragment */ 9360 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9361 len = min(8u, frag->len); 9362 if (!vcpu->mmio_is_write) 9363 memcpy(frag->data, run->mmio.data, len); 9364 9365 if (frag->len <= 8) { 9366 /* Switch to the next fragment. */ 9367 frag++; 9368 vcpu->mmio_cur_fragment++; 9369 } else { 9370 /* Go forward to the next mmio piece. */ 9371 frag->data += len; 9372 frag->gpa += len; 9373 frag->len -= len; 9374 } 9375 9376 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9377 vcpu->mmio_needed = 0; 9378 9379 /* FIXME: return into emulator if single-stepping. */ 9380 if (vcpu->mmio_is_write) 9381 return 1; 9382 vcpu->mmio_read_completed = 1; 9383 return complete_emulated_io(vcpu); 9384 } 9385 9386 run->exit_reason = KVM_EXIT_MMIO; 9387 run->mmio.phys_addr = frag->gpa; 9388 if (vcpu->mmio_is_write) 9389 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9390 run->mmio.len = min(8u, frag->len); 9391 run->mmio.is_write = vcpu->mmio_is_write; 9392 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9393 return 0; 9394 } 9395 9396 static void kvm_save_current_fpu(struct fpu *fpu) 9397 { 9398 /* 9399 * If the target FPU state is not resident in the CPU registers, just 9400 * memcpy() from current, else save CPU state directly to the target. 9401 */ 9402 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9403 memcpy(&fpu->state, ¤t->thread.fpu.state, 9404 fpu_kernel_xstate_size); 9405 else 9406 copy_fpregs_to_fpstate(fpu); 9407 } 9408 9409 /* Swap (qemu) user FPU context for the guest FPU context. */ 9410 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9411 { 9412 fpregs_lock(); 9413 9414 kvm_save_current_fpu(vcpu->arch.user_fpu); 9415 9416 /* 9417 * Guests with protected state can't have it set by the hypervisor, 9418 * so skip trying to set it. 9419 */ 9420 if (vcpu->arch.guest_fpu) 9421 /* PKRU is separately restored in kvm_x86_ops.run. */ 9422 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9423 ~XFEATURE_MASK_PKRU); 9424 9425 fpregs_mark_activate(); 9426 fpregs_unlock(); 9427 9428 trace_kvm_fpu(1); 9429 } 9430 9431 /* When vcpu_run ends, restore user space FPU context. */ 9432 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9433 { 9434 fpregs_lock(); 9435 9436 /* 9437 * Guests with protected state can't have it read by the hypervisor, 9438 * so skip trying to save it. 9439 */ 9440 if (vcpu->arch.guest_fpu) 9441 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9442 9443 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9444 9445 fpregs_mark_activate(); 9446 fpregs_unlock(); 9447 9448 ++vcpu->stat.fpu_reload; 9449 trace_kvm_fpu(0); 9450 } 9451 9452 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9453 { 9454 struct kvm_run *kvm_run = vcpu->run; 9455 int r; 9456 9457 vcpu_load(vcpu); 9458 kvm_sigset_activate(vcpu); 9459 kvm_run->flags = 0; 9460 kvm_load_guest_fpu(vcpu); 9461 9462 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9463 if (kvm_run->immediate_exit) { 9464 r = -EINTR; 9465 goto out; 9466 } 9467 kvm_vcpu_block(vcpu); 9468 kvm_apic_accept_events(vcpu); 9469 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9470 r = -EAGAIN; 9471 if (signal_pending(current)) { 9472 r = -EINTR; 9473 kvm_run->exit_reason = KVM_EXIT_INTR; 9474 ++vcpu->stat.signal_exits; 9475 } 9476 goto out; 9477 } 9478 9479 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9480 r = -EINVAL; 9481 goto out; 9482 } 9483 9484 if (kvm_run->kvm_dirty_regs) { 9485 r = sync_regs(vcpu); 9486 if (r != 0) 9487 goto out; 9488 } 9489 9490 /* re-sync apic's tpr */ 9491 if (!lapic_in_kernel(vcpu)) { 9492 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9493 r = -EINVAL; 9494 goto out; 9495 } 9496 } 9497 9498 if (unlikely(vcpu->arch.complete_userspace_io)) { 9499 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9500 vcpu->arch.complete_userspace_io = NULL; 9501 r = cui(vcpu); 9502 if (r <= 0) 9503 goto out; 9504 } else 9505 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9506 9507 if (kvm_run->immediate_exit) 9508 r = -EINTR; 9509 else 9510 r = vcpu_run(vcpu); 9511 9512 out: 9513 kvm_put_guest_fpu(vcpu); 9514 if (kvm_run->kvm_valid_regs) 9515 store_regs(vcpu); 9516 post_kvm_run_save(vcpu); 9517 kvm_sigset_deactivate(vcpu); 9518 9519 vcpu_put(vcpu); 9520 return r; 9521 } 9522 9523 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9524 { 9525 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 9526 /* 9527 * We are here if userspace calls get_regs() in the middle of 9528 * instruction emulation. Registers state needs to be copied 9529 * back from emulation context to vcpu. Userspace shouldn't do 9530 * that usually, but some bad designed PV devices (vmware 9531 * backdoor interface) need this to work 9532 */ 9533 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 9534 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9535 } 9536 regs->rax = kvm_rax_read(vcpu); 9537 regs->rbx = kvm_rbx_read(vcpu); 9538 regs->rcx = kvm_rcx_read(vcpu); 9539 regs->rdx = kvm_rdx_read(vcpu); 9540 regs->rsi = kvm_rsi_read(vcpu); 9541 regs->rdi = kvm_rdi_read(vcpu); 9542 regs->rsp = kvm_rsp_read(vcpu); 9543 regs->rbp = kvm_rbp_read(vcpu); 9544 #ifdef CONFIG_X86_64 9545 regs->r8 = kvm_r8_read(vcpu); 9546 regs->r9 = kvm_r9_read(vcpu); 9547 regs->r10 = kvm_r10_read(vcpu); 9548 regs->r11 = kvm_r11_read(vcpu); 9549 regs->r12 = kvm_r12_read(vcpu); 9550 regs->r13 = kvm_r13_read(vcpu); 9551 regs->r14 = kvm_r14_read(vcpu); 9552 regs->r15 = kvm_r15_read(vcpu); 9553 #endif 9554 9555 regs->rip = kvm_rip_read(vcpu); 9556 regs->rflags = kvm_get_rflags(vcpu); 9557 } 9558 9559 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9560 { 9561 vcpu_load(vcpu); 9562 __get_regs(vcpu, regs); 9563 vcpu_put(vcpu); 9564 return 0; 9565 } 9566 9567 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9568 { 9569 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 9570 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9571 9572 kvm_rax_write(vcpu, regs->rax); 9573 kvm_rbx_write(vcpu, regs->rbx); 9574 kvm_rcx_write(vcpu, regs->rcx); 9575 kvm_rdx_write(vcpu, regs->rdx); 9576 kvm_rsi_write(vcpu, regs->rsi); 9577 kvm_rdi_write(vcpu, regs->rdi); 9578 kvm_rsp_write(vcpu, regs->rsp); 9579 kvm_rbp_write(vcpu, regs->rbp); 9580 #ifdef CONFIG_X86_64 9581 kvm_r8_write(vcpu, regs->r8); 9582 kvm_r9_write(vcpu, regs->r9); 9583 kvm_r10_write(vcpu, regs->r10); 9584 kvm_r11_write(vcpu, regs->r11); 9585 kvm_r12_write(vcpu, regs->r12); 9586 kvm_r13_write(vcpu, regs->r13); 9587 kvm_r14_write(vcpu, regs->r14); 9588 kvm_r15_write(vcpu, regs->r15); 9589 #endif 9590 9591 kvm_rip_write(vcpu, regs->rip); 9592 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9593 9594 vcpu->arch.exception.pending = false; 9595 9596 kvm_make_request(KVM_REQ_EVENT, vcpu); 9597 } 9598 9599 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9600 { 9601 vcpu_load(vcpu); 9602 __set_regs(vcpu, regs); 9603 vcpu_put(vcpu); 9604 return 0; 9605 } 9606 9607 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9608 { 9609 struct kvm_segment cs; 9610 9611 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9612 *db = cs.db; 9613 *l = cs.l; 9614 } 9615 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9616 9617 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9618 { 9619 struct desc_ptr dt; 9620 9621 if (vcpu->arch.guest_state_protected) 9622 goto skip_protected_regs; 9623 9624 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9625 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9626 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9627 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9628 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9629 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9630 9631 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9632 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9633 9634 static_call(kvm_x86_get_idt)(vcpu, &dt); 9635 sregs->idt.limit = dt.size; 9636 sregs->idt.base = dt.address; 9637 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9638 sregs->gdt.limit = dt.size; 9639 sregs->gdt.base = dt.address; 9640 9641 sregs->cr2 = vcpu->arch.cr2; 9642 sregs->cr3 = kvm_read_cr3(vcpu); 9643 9644 skip_protected_regs: 9645 sregs->cr0 = kvm_read_cr0(vcpu); 9646 sregs->cr4 = kvm_read_cr4(vcpu); 9647 sregs->cr8 = kvm_get_cr8(vcpu); 9648 sregs->efer = vcpu->arch.efer; 9649 sregs->apic_base = kvm_get_apic_base(vcpu); 9650 9651 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9652 9653 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9654 set_bit(vcpu->arch.interrupt.nr, 9655 (unsigned long *)sregs->interrupt_bitmap); 9656 } 9657 9658 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9659 struct kvm_sregs *sregs) 9660 { 9661 vcpu_load(vcpu); 9662 __get_sregs(vcpu, sregs); 9663 vcpu_put(vcpu); 9664 return 0; 9665 } 9666 9667 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9668 struct kvm_mp_state *mp_state) 9669 { 9670 vcpu_load(vcpu); 9671 if (kvm_mpx_supported()) 9672 kvm_load_guest_fpu(vcpu); 9673 9674 kvm_apic_accept_events(vcpu); 9675 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 9676 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 9677 vcpu->arch.pv.pv_unhalted) 9678 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9679 else 9680 mp_state->mp_state = vcpu->arch.mp_state; 9681 9682 if (kvm_mpx_supported()) 9683 kvm_put_guest_fpu(vcpu); 9684 vcpu_put(vcpu); 9685 return 0; 9686 } 9687 9688 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9689 struct kvm_mp_state *mp_state) 9690 { 9691 int ret = -EINVAL; 9692 9693 vcpu_load(vcpu); 9694 9695 if (!lapic_in_kernel(vcpu) && 9696 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9697 goto out; 9698 9699 /* 9700 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9701 * INIT state; latched init should be reported using 9702 * KVM_SET_VCPU_EVENTS, so reject it here. 9703 */ 9704 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9705 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9706 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9707 goto out; 9708 9709 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9710 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9711 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9712 } else 9713 vcpu->arch.mp_state = mp_state->mp_state; 9714 kvm_make_request(KVM_REQ_EVENT, vcpu); 9715 9716 ret = 0; 9717 out: 9718 vcpu_put(vcpu); 9719 return ret; 9720 } 9721 9722 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9723 int reason, bool has_error_code, u32 error_code) 9724 { 9725 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9726 int ret; 9727 9728 init_emulate_ctxt(vcpu); 9729 9730 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9731 has_error_code, error_code); 9732 if (ret) { 9733 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9734 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9735 vcpu->run->internal.ndata = 0; 9736 return 0; 9737 } 9738 9739 kvm_rip_write(vcpu, ctxt->eip); 9740 kvm_set_rflags(vcpu, ctxt->eflags); 9741 return 1; 9742 } 9743 EXPORT_SYMBOL_GPL(kvm_task_switch); 9744 9745 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9746 { 9747 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9748 /* 9749 * When EFER.LME and CR0.PG are set, the processor is in 9750 * 64-bit mode (though maybe in a 32-bit code segment). 9751 * CR4.PAE and EFER.LMA must be set. 9752 */ 9753 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 9754 return false; 9755 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 9756 return false; 9757 } else { 9758 /* 9759 * Not in 64-bit mode: EFER.LMA is clear and the code 9760 * segment cannot be 64-bit. 9761 */ 9762 if (sregs->efer & EFER_LMA || sregs->cs.l) 9763 return false; 9764 } 9765 9766 return kvm_is_valid_cr4(vcpu, sregs->cr4); 9767 } 9768 9769 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9770 { 9771 struct msr_data apic_base_msr; 9772 int mmu_reset_needed = 0; 9773 int pending_vec, max_bits, idx; 9774 struct desc_ptr dt; 9775 int ret = -EINVAL; 9776 9777 if (!kvm_is_valid_sregs(vcpu, sregs)) 9778 goto out; 9779 9780 apic_base_msr.data = sregs->apic_base; 9781 apic_base_msr.host_initiated = true; 9782 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9783 goto out; 9784 9785 if (vcpu->arch.guest_state_protected) 9786 goto skip_protected_regs; 9787 9788 dt.size = sregs->idt.limit; 9789 dt.address = sregs->idt.base; 9790 static_call(kvm_x86_set_idt)(vcpu, &dt); 9791 dt.size = sregs->gdt.limit; 9792 dt.address = sregs->gdt.base; 9793 static_call(kvm_x86_set_gdt)(vcpu, &dt); 9794 9795 vcpu->arch.cr2 = sregs->cr2; 9796 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9797 vcpu->arch.cr3 = sregs->cr3; 9798 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9799 9800 kvm_set_cr8(vcpu, sregs->cr8); 9801 9802 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9803 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 9804 9805 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9806 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 9807 vcpu->arch.cr0 = sregs->cr0; 9808 9809 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9810 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 9811 9812 idx = srcu_read_lock(&vcpu->kvm->srcu); 9813 if (is_pae_paging(vcpu)) { 9814 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9815 mmu_reset_needed = 1; 9816 } 9817 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9818 9819 if (mmu_reset_needed) 9820 kvm_mmu_reset_context(vcpu); 9821 9822 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9823 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9824 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9825 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9826 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9827 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9828 9829 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9830 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9831 9832 update_cr8_intercept(vcpu); 9833 9834 /* Older userspace won't unhalt the vcpu on reset. */ 9835 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9836 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9837 !is_protmode(vcpu)) 9838 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9839 9840 skip_protected_regs: 9841 max_bits = KVM_NR_INTERRUPTS; 9842 pending_vec = find_first_bit( 9843 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9844 if (pending_vec < max_bits) { 9845 kvm_queue_interrupt(vcpu, pending_vec, false); 9846 pr_debug("Set back pending irq %d\n", pending_vec); 9847 } 9848 9849 kvm_make_request(KVM_REQ_EVENT, vcpu); 9850 9851 ret = 0; 9852 out: 9853 return ret; 9854 } 9855 9856 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9857 struct kvm_sregs *sregs) 9858 { 9859 int ret; 9860 9861 vcpu_load(vcpu); 9862 ret = __set_sregs(vcpu, sregs); 9863 vcpu_put(vcpu); 9864 return ret; 9865 } 9866 9867 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9868 struct kvm_guest_debug *dbg) 9869 { 9870 unsigned long rflags; 9871 int i, r; 9872 9873 if (vcpu->arch.guest_state_protected) 9874 return -EINVAL; 9875 9876 vcpu_load(vcpu); 9877 9878 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9879 r = -EBUSY; 9880 if (vcpu->arch.exception.pending) 9881 goto out; 9882 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9883 kvm_queue_exception(vcpu, DB_VECTOR); 9884 else 9885 kvm_queue_exception(vcpu, BP_VECTOR); 9886 } 9887 9888 /* 9889 * Read rflags as long as potentially injected trace flags are still 9890 * filtered out. 9891 */ 9892 rflags = kvm_get_rflags(vcpu); 9893 9894 vcpu->guest_debug = dbg->control; 9895 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9896 vcpu->guest_debug = 0; 9897 9898 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9899 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9900 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9901 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9902 } else { 9903 for (i = 0; i < KVM_NR_DB_REGS; i++) 9904 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9905 } 9906 kvm_update_dr7(vcpu); 9907 9908 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9909 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9910 get_segment_base(vcpu, VCPU_SREG_CS); 9911 9912 /* 9913 * Trigger an rflags update that will inject or remove the trace 9914 * flags. 9915 */ 9916 kvm_set_rflags(vcpu, rflags); 9917 9918 static_call(kvm_x86_update_exception_bitmap)(vcpu); 9919 9920 r = 0; 9921 9922 out: 9923 vcpu_put(vcpu); 9924 return r; 9925 } 9926 9927 /* 9928 * Translate a guest virtual address to a guest physical address. 9929 */ 9930 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9931 struct kvm_translation *tr) 9932 { 9933 unsigned long vaddr = tr->linear_address; 9934 gpa_t gpa; 9935 int idx; 9936 9937 vcpu_load(vcpu); 9938 9939 idx = srcu_read_lock(&vcpu->kvm->srcu); 9940 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9941 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9942 tr->physical_address = gpa; 9943 tr->valid = gpa != UNMAPPED_GVA; 9944 tr->writeable = 1; 9945 tr->usermode = 0; 9946 9947 vcpu_put(vcpu); 9948 return 0; 9949 } 9950 9951 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9952 { 9953 struct fxregs_state *fxsave; 9954 9955 if (!vcpu->arch.guest_fpu) 9956 return 0; 9957 9958 vcpu_load(vcpu); 9959 9960 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9961 memcpy(fpu->fpr, fxsave->st_space, 128); 9962 fpu->fcw = fxsave->cwd; 9963 fpu->fsw = fxsave->swd; 9964 fpu->ftwx = fxsave->twd; 9965 fpu->last_opcode = fxsave->fop; 9966 fpu->last_ip = fxsave->rip; 9967 fpu->last_dp = fxsave->rdp; 9968 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9969 9970 vcpu_put(vcpu); 9971 return 0; 9972 } 9973 9974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9975 { 9976 struct fxregs_state *fxsave; 9977 9978 if (!vcpu->arch.guest_fpu) 9979 return 0; 9980 9981 vcpu_load(vcpu); 9982 9983 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9984 9985 memcpy(fxsave->st_space, fpu->fpr, 128); 9986 fxsave->cwd = fpu->fcw; 9987 fxsave->swd = fpu->fsw; 9988 fxsave->twd = fpu->ftwx; 9989 fxsave->fop = fpu->last_opcode; 9990 fxsave->rip = fpu->last_ip; 9991 fxsave->rdp = fpu->last_dp; 9992 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9993 9994 vcpu_put(vcpu); 9995 return 0; 9996 } 9997 9998 static void store_regs(struct kvm_vcpu *vcpu) 9999 { 10000 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 10001 10002 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 10003 __get_regs(vcpu, &vcpu->run->s.regs.regs); 10004 10005 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 10006 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 10007 10008 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 10009 kvm_vcpu_ioctl_x86_get_vcpu_events( 10010 vcpu, &vcpu->run->s.regs.events); 10011 } 10012 10013 static int sync_regs(struct kvm_vcpu *vcpu) 10014 { 10015 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 10016 return -EINVAL; 10017 10018 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 10019 __set_regs(vcpu, &vcpu->run->s.regs.regs); 10020 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 10021 } 10022 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 10023 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 10024 return -EINVAL; 10025 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 10026 } 10027 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 10028 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 10029 vcpu, &vcpu->run->s.regs.events)) 10030 return -EINVAL; 10031 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 10032 } 10033 10034 return 0; 10035 } 10036 10037 static void fx_init(struct kvm_vcpu *vcpu) 10038 { 10039 if (!vcpu->arch.guest_fpu) 10040 return; 10041 10042 fpstate_init(&vcpu->arch.guest_fpu->state); 10043 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10044 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 10045 host_xcr0 | XSTATE_COMPACTION_ENABLED; 10046 10047 /* 10048 * Ensure guest xcr0 is valid for loading 10049 */ 10050 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10051 10052 vcpu->arch.cr0 |= X86_CR0_ET; 10053 } 10054 10055 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu) 10056 { 10057 if (vcpu->arch.guest_fpu) { 10058 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 10059 vcpu->arch.guest_fpu = NULL; 10060 } 10061 } 10062 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu); 10063 10064 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 10065 { 10066 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 10067 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 10068 "guest TSC will not be reliable\n"); 10069 10070 return 0; 10071 } 10072 10073 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 10074 { 10075 struct page *page; 10076 int r; 10077 10078 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 10079 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10080 else 10081 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 10082 10083 kvm_set_tsc_khz(vcpu, max_tsc_khz); 10084 10085 r = kvm_mmu_create(vcpu); 10086 if (r < 0) 10087 return r; 10088 10089 if (irqchip_in_kernel(vcpu->kvm)) { 10090 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 10091 if (r < 0) 10092 goto fail_mmu_destroy; 10093 if (kvm_apicv_activated(vcpu->kvm)) 10094 vcpu->arch.apicv_active = true; 10095 } else 10096 static_branch_inc(&kvm_has_noapic_vcpu); 10097 10098 r = -ENOMEM; 10099 10100 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 10101 if (!page) 10102 goto fail_free_lapic; 10103 vcpu->arch.pio_data = page_address(page); 10104 10105 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 10106 GFP_KERNEL_ACCOUNT); 10107 if (!vcpu->arch.mce_banks) 10108 goto fail_free_pio_data; 10109 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 10110 10111 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 10112 GFP_KERNEL_ACCOUNT)) 10113 goto fail_free_mce_banks; 10114 10115 if (!alloc_emulate_ctxt(vcpu)) 10116 goto free_wbinvd_dirty_mask; 10117 10118 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 10119 GFP_KERNEL_ACCOUNT); 10120 if (!vcpu->arch.user_fpu) { 10121 pr_err("kvm: failed to allocate userspace's fpu\n"); 10122 goto free_emulate_ctxt; 10123 } 10124 10125 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 10126 GFP_KERNEL_ACCOUNT); 10127 if (!vcpu->arch.guest_fpu) { 10128 pr_err("kvm: failed to allocate vcpu's fpu\n"); 10129 goto free_user_fpu; 10130 } 10131 fx_init(vcpu); 10132 10133 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 10134 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 10135 10136 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 10137 10138 kvm_async_pf_hash_reset(vcpu); 10139 kvm_pmu_init(vcpu); 10140 10141 vcpu->arch.pending_external_vector = -1; 10142 vcpu->arch.preempted_in_kernel = false; 10143 10144 r = static_call(kvm_x86_vcpu_create)(vcpu); 10145 if (r) 10146 goto free_guest_fpu; 10147 10148 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 10149 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 10150 kvm_vcpu_mtrr_init(vcpu); 10151 vcpu_load(vcpu); 10152 kvm_vcpu_reset(vcpu, false); 10153 kvm_init_mmu(vcpu, false); 10154 vcpu_put(vcpu); 10155 return 0; 10156 10157 free_guest_fpu: 10158 kvm_free_guest_fpu(vcpu); 10159 free_user_fpu: 10160 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10161 free_emulate_ctxt: 10162 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10163 free_wbinvd_dirty_mask: 10164 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10165 fail_free_mce_banks: 10166 kfree(vcpu->arch.mce_banks); 10167 fail_free_pio_data: 10168 free_page((unsigned long)vcpu->arch.pio_data); 10169 fail_free_lapic: 10170 kvm_free_lapic(vcpu); 10171 fail_mmu_destroy: 10172 kvm_mmu_destroy(vcpu); 10173 return r; 10174 } 10175 10176 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 10177 { 10178 struct kvm *kvm = vcpu->kvm; 10179 10180 if (mutex_lock_killable(&vcpu->mutex)) 10181 return; 10182 vcpu_load(vcpu); 10183 kvm_synchronize_tsc(vcpu, 0); 10184 vcpu_put(vcpu); 10185 10186 /* poll control enabled by default */ 10187 vcpu->arch.msr_kvm_poll_control = 1; 10188 10189 mutex_unlock(&vcpu->mutex); 10190 10191 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 10192 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 10193 KVMCLOCK_SYNC_PERIOD); 10194 } 10195 10196 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 10197 { 10198 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 10199 int idx; 10200 10201 kvm_release_pfn(cache->pfn, cache->dirty, cache); 10202 10203 kvmclock_reset(vcpu); 10204 10205 static_call(kvm_x86_vcpu_free)(vcpu); 10206 10207 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10208 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10209 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10210 kvm_free_guest_fpu(vcpu); 10211 10212 kvm_hv_vcpu_uninit(vcpu); 10213 kvm_pmu_destroy(vcpu); 10214 kfree(vcpu->arch.mce_banks); 10215 kvm_free_lapic(vcpu); 10216 idx = srcu_read_lock(&vcpu->kvm->srcu); 10217 kvm_mmu_destroy(vcpu); 10218 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10219 free_page((unsigned long)vcpu->arch.pio_data); 10220 kvfree(vcpu->arch.cpuid_entries); 10221 if (!lapic_in_kernel(vcpu)) 10222 static_branch_dec(&kvm_has_noapic_vcpu); 10223 } 10224 10225 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 10226 { 10227 kvm_lapic_reset(vcpu, init_event); 10228 10229 vcpu->arch.hflags = 0; 10230 10231 vcpu->arch.smi_pending = 0; 10232 vcpu->arch.smi_count = 0; 10233 atomic_set(&vcpu->arch.nmi_queued, 0); 10234 vcpu->arch.nmi_pending = 0; 10235 vcpu->arch.nmi_injected = false; 10236 kvm_clear_interrupt_queue(vcpu); 10237 kvm_clear_exception_queue(vcpu); 10238 10239 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 10240 kvm_update_dr0123(vcpu); 10241 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 10242 vcpu->arch.dr7 = DR7_FIXED_1; 10243 kvm_update_dr7(vcpu); 10244 10245 vcpu->arch.cr2 = 0; 10246 10247 kvm_make_request(KVM_REQ_EVENT, vcpu); 10248 vcpu->arch.apf.msr_en_val = 0; 10249 vcpu->arch.apf.msr_int_val = 0; 10250 vcpu->arch.st.msr_val = 0; 10251 10252 kvmclock_reset(vcpu); 10253 10254 kvm_clear_async_pf_completion_queue(vcpu); 10255 kvm_async_pf_hash_reset(vcpu); 10256 vcpu->arch.apf.halted = false; 10257 10258 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) { 10259 void *mpx_state_buffer; 10260 10261 /* 10262 * To avoid have the INIT path from kvm_apic_has_events() that be 10263 * called with loaded FPU and does not let userspace fix the state. 10264 */ 10265 if (init_event) 10266 kvm_put_guest_fpu(vcpu); 10267 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10268 XFEATURE_BNDREGS); 10269 if (mpx_state_buffer) 10270 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10271 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10272 XFEATURE_BNDCSR); 10273 if (mpx_state_buffer) 10274 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10275 if (init_event) 10276 kvm_load_guest_fpu(vcpu); 10277 } 10278 10279 if (!init_event) { 10280 kvm_pmu_reset(vcpu); 10281 vcpu->arch.smbase = 0x30000; 10282 10283 vcpu->arch.msr_misc_features_enables = 0; 10284 10285 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10286 } 10287 10288 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10289 vcpu->arch.regs_avail = ~0; 10290 vcpu->arch.regs_dirty = ~0; 10291 10292 vcpu->arch.ia32_xss = 0; 10293 10294 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 10295 } 10296 10297 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10298 { 10299 struct kvm_segment cs; 10300 10301 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10302 cs.selector = vector << 8; 10303 cs.base = vector << 12; 10304 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10305 kvm_rip_write(vcpu, 0); 10306 } 10307 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 10308 10309 int kvm_arch_hardware_enable(void) 10310 { 10311 struct kvm *kvm; 10312 struct kvm_vcpu *vcpu; 10313 int i; 10314 int ret; 10315 u64 local_tsc; 10316 u64 max_tsc = 0; 10317 bool stable, backwards_tsc = false; 10318 10319 kvm_user_return_msr_cpu_online(); 10320 ret = static_call(kvm_x86_hardware_enable)(); 10321 if (ret != 0) 10322 return ret; 10323 10324 local_tsc = rdtsc(); 10325 stable = !kvm_check_tsc_unstable(); 10326 list_for_each_entry(kvm, &vm_list, vm_list) { 10327 kvm_for_each_vcpu(i, vcpu, kvm) { 10328 if (!stable && vcpu->cpu == smp_processor_id()) 10329 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10330 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10331 backwards_tsc = true; 10332 if (vcpu->arch.last_host_tsc > max_tsc) 10333 max_tsc = vcpu->arch.last_host_tsc; 10334 } 10335 } 10336 } 10337 10338 /* 10339 * Sometimes, even reliable TSCs go backwards. This happens on 10340 * platforms that reset TSC during suspend or hibernate actions, but 10341 * maintain synchronization. We must compensate. Fortunately, we can 10342 * detect that condition here, which happens early in CPU bringup, 10343 * before any KVM threads can be running. Unfortunately, we can't 10344 * bring the TSCs fully up to date with real time, as we aren't yet far 10345 * enough into CPU bringup that we know how much real time has actually 10346 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10347 * variables that haven't been updated yet. 10348 * 10349 * So we simply find the maximum observed TSC above, then record the 10350 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10351 * the adjustment will be applied. Note that we accumulate 10352 * adjustments, in case multiple suspend cycles happen before some VCPU 10353 * gets a chance to run again. In the event that no KVM threads get a 10354 * chance to run, we will miss the entire elapsed period, as we'll have 10355 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10356 * loose cycle time. This isn't too big a deal, since the loss will be 10357 * uniform across all VCPUs (not to mention the scenario is extremely 10358 * unlikely). It is possible that a second hibernate recovery happens 10359 * much faster than a first, causing the observed TSC here to be 10360 * smaller; this would require additional padding adjustment, which is 10361 * why we set last_host_tsc to the local tsc observed here. 10362 * 10363 * N.B. - this code below runs only on platforms with reliable TSC, 10364 * as that is the only way backwards_tsc is set above. Also note 10365 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10366 * have the same delta_cyc adjustment applied if backwards_tsc 10367 * is detected. Note further, this adjustment is only done once, 10368 * as we reset last_host_tsc on all VCPUs to stop this from being 10369 * called multiple times (one for each physical CPU bringup). 10370 * 10371 * Platforms with unreliable TSCs don't have to deal with this, they 10372 * will be compensated by the logic in vcpu_load, which sets the TSC to 10373 * catchup mode. This will catchup all VCPUs to real time, but cannot 10374 * guarantee that they stay in perfect synchronization. 10375 */ 10376 if (backwards_tsc) { 10377 u64 delta_cyc = max_tsc - local_tsc; 10378 list_for_each_entry(kvm, &vm_list, vm_list) { 10379 kvm->arch.backwards_tsc_observed = true; 10380 kvm_for_each_vcpu(i, vcpu, kvm) { 10381 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10382 vcpu->arch.last_host_tsc = local_tsc; 10383 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10384 } 10385 10386 /* 10387 * We have to disable TSC offset matching.. if you were 10388 * booting a VM while issuing an S4 host suspend.... 10389 * you may have some problem. Solving this issue is 10390 * left as an exercise to the reader. 10391 */ 10392 kvm->arch.last_tsc_nsec = 0; 10393 kvm->arch.last_tsc_write = 0; 10394 } 10395 10396 } 10397 return 0; 10398 } 10399 10400 void kvm_arch_hardware_disable(void) 10401 { 10402 static_call(kvm_x86_hardware_disable)(); 10403 drop_user_return_notifiers(); 10404 } 10405 10406 int kvm_arch_hardware_setup(void *opaque) 10407 { 10408 struct kvm_x86_init_ops *ops = opaque; 10409 int r; 10410 10411 rdmsrl_safe(MSR_EFER, &host_efer); 10412 10413 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10414 rdmsrl(MSR_IA32_XSS, host_xss); 10415 10416 r = ops->hardware_setup(); 10417 if (r != 0) 10418 return r; 10419 10420 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10421 kvm_ops_static_call_update(); 10422 10423 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10424 supported_xss = 0; 10425 10426 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 10427 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 10428 #undef __kvm_cpu_cap_has 10429 10430 if (kvm_has_tsc_control) { 10431 /* 10432 * Make sure the user can only configure tsc_khz values that 10433 * fit into a signed integer. 10434 * A min value is not calculated because it will always 10435 * be 1 on all machines. 10436 */ 10437 u64 max = min(0x7fffffffULL, 10438 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 10439 kvm_max_guest_tsc_khz = max; 10440 10441 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 10442 } 10443 10444 kvm_init_msr_list(); 10445 return 0; 10446 } 10447 10448 void kvm_arch_hardware_unsetup(void) 10449 { 10450 static_call(kvm_x86_hardware_unsetup)(); 10451 } 10452 10453 int kvm_arch_check_processor_compat(void *opaque) 10454 { 10455 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 10456 struct kvm_x86_init_ops *ops = opaque; 10457 10458 WARN_ON(!irqs_disabled()); 10459 10460 if (__cr4_reserved_bits(cpu_has, c) != 10461 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 10462 return -EIO; 10463 10464 return ops->check_processor_compatibility(); 10465 } 10466 10467 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 10468 { 10469 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 10470 } 10471 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 10472 10473 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 10474 { 10475 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 10476 } 10477 10478 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 10479 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 10480 10481 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 10482 { 10483 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 10484 10485 vcpu->arch.l1tf_flush_l1d = true; 10486 if (pmu->version && unlikely(pmu->event_count)) { 10487 pmu->need_cleanup = true; 10488 kvm_make_request(KVM_REQ_PMU, vcpu); 10489 } 10490 static_call(kvm_x86_sched_in)(vcpu, cpu); 10491 } 10492 10493 void kvm_arch_free_vm(struct kvm *kvm) 10494 { 10495 kfree(to_kvm_hv(kvm)->hv_pa_pg); 10496 vfree(kvm); 10497 } 10498 10499 10500 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 10501 { 10502 if (type) 10503 return -EINVAL; 10504 10505 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 10506 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 10507 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 10508 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 10509 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 10510 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 10511 10512 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 10513 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 10514 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 10515 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 10516 &kvm->arch.irq_sources_bitmap); 10517 10518 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 10519 mutex_init(&kvm->arch.apic_map_lock); 10520 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 10521 10522 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 10523 pvclock_update_vm_gtod_copy(kvm); 10524 10525 kvm->arch.guest_can_read_msr_platform_info = true; 10526 10527 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 10528 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 10529 10530 kvm_hv_init_vm(kvm); 10531 kvm_page_track_init(kvm); 10532 kvm_mmu_init_vm(kvm); 10533 10534 return static_call(kvm_x86_vm_init)(kvm); 10535 } 10536 10537 int kvm_arch_post_init_vm(struct kvm *kvm) 10538 { 10539 return kvm_mmu_post_init_vm(kvm); 10540 } 10541 10542 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 10543 { 10544 vcpu_load(vcpu); 10545 kvm_mmu_unload(vcpu); 10546 vcpu_put(vcpu); 10547 } 10548 10549 static void kvm_free_vcpus(struct kvm *kvm) 10550 { 10551 unsigned int i; 10552 struct kvm_vcpu *vcpu; 10553 10554 /* 10555 * Unpin any mmu pages first. 10556 */ 10557 kvm_for_each_vcpu(i, vcpu, kvm) { 10558 kvm_clear_async_pf_completion_queue(vcpu); 10559 kvm_unload_vcpu_mmu(vcpu); 10560 } 10561 kvm_for_each_vcpu(i, vcpu, kvm) 10562 kvm_vcpu_destroy(vcpu); 10563 10564 mutex_lock(&kvm->lock); 10565 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 10566 kvm->vcpus[i] = NULL; 10567 10568 atomic_set(&kvm->online_vcpus, 0); 10569 mutex_unlock(&kvm->lock); 10570 } 10571 10572 void kvm_arch_sync_events(struct kvm *kvm) 10573 { 10574 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 10575 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 10576 kvm_free_pit(kvm); 10577 } 10578 10579 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 10580 10581 /** 10582 * __x86_set_memory_region: Setup KVM internal memory slot 10583 * 10584 * @kvm: the kvm pointer to the VM. 10585 * @id: the slot ID to setup. 10586 * @gpa: the GPA to install the slot (unused when @size == 0). 10587 * @size: the size of the slot. Set to zero to uninstall a slot. 10588 * 10589 * This function helps to setup a KVM internal memory slot. Specify 10590 * @size > 0 to install a new slot, while @size == 0 to uninstall a 10591 * slot. The return code can be one of the following: 10592 * 10593 * HVA: on success (uninstall will return a bogus HVA) 10594 * -errno: on error 10595 * 10596 * The caller should always use IS_ERR() to check the return value 10597 * before use. Note, the KVM internal memory slots are guaranteed to 10598 * remain valid and unchanged until the VM is destroyed, i.e., the 10599 * GPA->HVA translation will not change. However, the HVA is a user 10600 * address, i.e. its accessibility is not guaranteed, and must be 10601 * accessed via __copy_{to,from}_user(). 10602 */ 10603 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 10604 u32 size) 10605 { 10606 int i, r; 10607 unsigned long hva, old_npages; 10608 struct kvm_memslots *slots = kvm_memslots(kvm); 10609 struct kvm_memory_slot *slot; 10610 10611 /* Called with kvm->slots_lock held. */ 10612 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 10613 return ERR_PTR_USR(-EINVAL); 10614 10615 slot = id_to_memslot(slots, id); 10616 if (size) { 10617 if (slot && slot->npages) 10618 return ERR_PTR_USR(-EEXIST); 10619 10620 /* 10621 * MAP_SHARED to prevent internal slot pages from being moved 10622 * by fork()/COW. 10623 */ 10624 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 10625 MAP_SHARED | MAP_ANONYMOUS, 0); 10626 if (IS_ERR((void *)hva)) 10627 return (void __user *)hva; 10628 } else { 10629 if (!slot || !slot->npages) 10630 return NULL; 10631 10632 old_npages = slot->npages; 10633 hva = slot->userspace_addr; 10634 } 10635 10636 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10637 struct kvm_userspace_memory_region m; 10638 10639 m.slot = id | (i << 16); 10640 m.flags = 0; 10641 m.guest_phys_addr = gpa; 10642 m.userspace_addr = hva; 10643 m.memory_size = size; 10644 r = __kvm_set_memory_region(kvm, &m); 10645 if (r < 0) 10646 return ERR_PTR_USR(r); 10647 } 10648 10649 if (!size) 10650 vm_munmap(hva, old_npages * PAGE_SIZE); 10651 10652 return (void __user *)hva; 10653 } 10654 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10655 10656 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10657 { 10658 kvm_mmu_pre_destroy_vm(kvm); 10659 } 10660 10661 void kvm_arch_destroy_vm(struct kvm *kvm) 10662 { 10663 if (current->mm == kvm->mm) { 10664 /* 10665 * Free memory regions allocated on behalf of userspace, 10666 * unless the the memory map has changed due to process exit 10667 * or fd copying. 10668 */ 10669 mutex_lock(&kvm->slots_lock); 10670 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10671 0, 0); 10672 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10673 0, 0); 10674 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10675 mutex_unlock(&kvm->slots_lock); 10676 } 10677 static_call_cond(kvm_x86_vm_destroy)(kvm); 10678 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 10679 kvm_pic_destroy(kvm); 10680 kvm_ioapic_destroy(kvm); 10681 kvm_free_vcpus(kvm); 10682 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10683 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10684 kvm_mmu_uninit_vm(kvm); 10685 kvm_page_track_cleanup(kvm); 10686 kvm_xen_destroy_vm(kvm); 10687 kvm_hv_destroy_vm(kvm); 10688 } 10689 10690 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10691 { 10692 int i; 10693 10694 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10695 kvfree(slot->arch.rmap[i]); 10696 slot->arch.rmap[i] = NULL; 10697 10698 if (i == 0) 10699 continue; 10700 10701 kvfree(slot->arch.lpage_info[i - 1]); 10702 slot->arch.lpage_info[i - 1] = NULL; 10703 } 10704 10705 kvm_page_track_free_memslot(slot); 10706 } 10707 10708 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10709 unsigned long npages) 10710 { 10711 int i; 10712 10713 /* 10714 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10715 * old arrays will be freed by __kvm_set_memory_region() if installing 10716 * the new memslot is successful. 10717 */ 10718 memset(&slot->arch, 0, sizeof(slot->arch)); 10719 10720 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10721 struct kvm_lpage_info *linfo; 10722 unsigned long ugfn; 10723 int lpages; 10724 int level = i + 1; 10725 10726 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10727 slot->base_gfn, level) + 1; 10728 10729 slot->arch.rmap[i] = 10730 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10731 GFP_KERNEL_ACCOUNT); 10732 if (!slot->arch.rmap[i]) 10733 goto out_free; 10734 if (i == 0) 10735 continue; 10736 10737 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10738 if (!linfo) 10739 goto out_free; 10740 10741 slot->arch.lpage_info[i - 1] = linfo; 10742 10743 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10744 linfo[0].disallow_lpage = 1; 10745 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10746 linfo[lpages - 1].disallow_lpage = 1; 10747 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10748 /* 10749 * If the gfn and userspace address are not aligned wrt each 10750 * other, disable large page support for this slot. 10751 */ 10752 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10753 unsigned long j; 10754 10755 for (j = 0; j < lpages; ++j) 10756 linfo[j].disallow_lpage = 1; 10757 } 10758 } 10759 10760 if (kvm_page_track_create_memslot(slot, npages)) 10761 goto out_free; 10762 10763 return 0; 10764 10765 out_free: 10766 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10767 kvfree(slot->arch.rmap[i]); 10768 slot->arch.rmap[i] = NULL; 10769 if (i == 0) 10770 continue; 10771 10772 kvfree(slot->arch.lpage_info[i - 1]); 10773 slot->arch.lpage_info[i - 1] = NULL; 10774 } 10775 return -ENOMEM; 10776 } 10777 10778 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10779 { 10780 struct kvm_vcpu *vcpu; 10781 int i; 10782 10783 /* 10784 * memslots->generation has been incremented. 10785 * mmio generation may have reached its maximum value. 10786 */ 10787 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10788 10789 /* Force re-initialization of steal_time cache */ 10790 kvm_for_each_vcpu(i, vcpu, kvm) 10791 kvm_vcpu_kick(vcpu); 10792 } 10793 10794 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10795 struct kvm_memory_slot *memslot, 10796 const struct kvm_userspace_memory_region *mem, 10797 enum kvm_mr_change change) 10798 { 10799 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10800 return kvm_alloc_memslot_metadata(memslot, 10801 mem->memory_size >> PAGE_SHIFT); 10802 return 0; 10803 } 10804 10805 10806 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 10807 { 10808 struct kvm_arch *ka = &kvm->arch; 10809 10810 if (!kvm_x86_ops.cpu_dirty_log_size) 10811 return; 10812 10813 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 10814 (!enable && --ka->cpu_dirty_logging_count == 0)) 10815 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 10816 10817 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 10818 } 10819 10820 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10821 struct kvm_memory_slot *old, 10822 struct kvm_memory_slot *new, 10823 enum kvm_mr_change change) 10824 { 10825 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES; 10826 10827 /* 10828 * Update CPU dirty logging if dirty logging is being toggled. This 10829 * applies to all operations. 10830 */ 10831 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES) 10832 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 10833 10834 /* 10835 * Nothing more to do for RO slots (which can't be dirtied and can't be 10836 * made writable) or CREATE/MOVE/DELETE of a slot. 10837 * 10838 * For a memslot with dirty logging disabled: 10839 * CREATE: No dirty mappings will already exist. 10840 * MOVE/DELETE: The old mappings will already have been cleaned up by 10841 * kvm_arch_flush_shadow_memslot() 10842 * 10843 * For a memslot with dirty logging enabled: 10844 * CREATE: No shadow pages exist, thus nothing to write-protect 10845 * and no dirty bits to clear. 10846 * MOVE/DELETE: The old mappings will already have been cleaned up by 10847 * kvm_arch_flush_shadow_memslot(). 10848 */ 10849 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10850 return; 10851 10852 /* 10853 * READONLY and non-flags changes were filtered out above, and the only 10854 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 10855 * logging isn't being toggled on or off. 10856 */ 10857 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES))) 10858 return; 10859 10860 if (!log_dirty_pages) { 10861 /* 10862 * Dirty logging tracks sptes in 4k granularity, meaning that 10863 * large sptes have to be split. If live migration succeeds, 10864 * the guest in the source machine will be destroyed and large 10865 * sptes will be created in the destination. However, if the 10866 * guest continues to run in the source machine (for example if 10867 * live migration fails), small sptes will remain around and 10868 * cause bad performance. 10869 * 10870 * Scan sptes if dirty logging has been stopped, dropping those 10871 * which can be collapsed into a single large-page spte. Later 10872 * page faults will create the large-page sptes. 10873 */ 10874 kvm_mmu_zap_collapsible_sptes(kvm, new); 10875 } else { 10876 /* By default, write-protect everything to log writes. */ 10877 int level = PG_LEVEL_4K; 10878 10879 if (kvm_x86_ops.cpu_dirty_log_size) { 10880 /* 10881 * Clear all dirty bits, unless pages are treated as 10882 * dirty from the get-go. 10883 */ 10884 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) 10885 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 10886 10887 /* 10888 * Write-protect large pages on write so that dirty 10889 * logging happens at 4k granularity. No need to 10890 * write-protect small SPTEs since write accesses are 10891 * logged by the CPU via dirty bits. 10892 */ 10893 level = PG_LEVEL_2M; 10894 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) { 10895 /* 10896 * If we're with initial-all-set, we don't need 10897 * to write protect any small page because 10898 * they're reported as dirty already. However 10899 * we still need to write-protect huge pages 10900 * so that the page split can happen lazily on 10901 * the first write to the huge page. 10902 */ 10903 level = PG_LEVEL_2M; 10904 } 10905 kvm_mmu_slot_remove_write_access(kvm, new, level); 10906 } 10907 } 10908 10909 void kvm_arch_commit_memory_region(struct kvm *kvm, 10910 const struct kvm_userspace_memory_region *mem, 10911 struct kvm_memory_slot *old, 10912 const struct kvm_memory_slot *new, 10913 enum kvm_mr_change change) 10914 { 10915 if (!kvm->arch.n_requested_mmu_pages) 10916 kvm_mmu_change_mmu_pages(kvm, 10917 kvm_mmu_calculate_default_mmu_pages(kvm)); 10918 10919 /* 10920 * FIXME: const-ify all uses of struct kvm_memory_slot. 10921 */ 10922 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10923 10924 /* Free the arrays associated with the old memslot. */ 10925 if (change == KVM_MR_MOVE) 10926 kvm_arch_free_memslot(kvm, old); 10927 } 10928 10929 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10930 { 10931 kvm_mmu_zap_all(kvm); 10932 } 10933 10934 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10935 struct kvm_memory_slot *slot) 10936 { 10937 kvm_page_track_flush_slot(kvm, slot); 10938 } 10939 10940 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10941 { 10942 return (is_guest_mode(vcpu) && 10943 kvm_x86_ops.guest_apic_has_interrupt && 10944 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 10945 } 10946 10947 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10948 { 10949 if (!list_empty_careful(&vcpu->async_pf.done)) 10950 return true; 10951 10952 if (kvm_apic_has_events(vcpu)) 10953 return true; 10954 10955 if (vcpu->arch.pv.pv_unhalted) 10956 return true; 10957 10958 if (vcpu->arch.exception.pending) 10959 return true; 10960 10961 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10962 (vcpu->arch.nmi_pending && 10963 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 10964 return true; 10965 10966 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10967 (vcpu->arch.smi_pending && 10968 static_call(kvm_x86_smi_allowed)(vcpu, false))) 10969 return true; 10970 10971 if (kvm_arch_interrupt_allowed(vcpu) && 10972 (kvm_cpu_has_interrupt(vcpu) || 10973 kvm_guest_apic_has_interrupt(vcpu))) 10974 return true; 10975 10976 if (kvm_hv_has_stimer_pending(vcpu)) 10977 return true; 10978 10979 if (is_guest_mode(vcpu) && 10980 kvm_x86_ops.nested_ops->hv_timer_pending && 10981 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10982 return true; 10983 10984 return false; 10985 } 10986 10987 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10988 { 10989 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10990 } 10991 10992 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10993 { 10994 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10995 return true; 10996 10997 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10998 kvm_test_request(KVM_REQ_SMI, vcpu) || 10999 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11000 return true; 11001 11002 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 11003 return true; 11004 11005 return false; 11006 } 11007 11008 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 11009 { 11010 return vcpu->arch.preempted_in_kernel; 11011 } 11012 11013 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 11014 { 11015 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 11016 } 11017 11018 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 11019 { 11020 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 11021 } 11022 11023 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 11024 { 11025 /* Can't read the RIP when guest state is protected, just return 0 */ 11026 if (vcpu->arch.guest_state_protected) 11027 return 0; 11028 11029 if (is_64_bit_mode(vcpu)) 11030 return kvm_rip_read(vcpu); 11031 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 11032 kvm_rip_read(vcpu)); 11033 } 11034 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 11035 11036 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 11037 { 11038 return kvm_get_linear_rip(vcpu) == linear_rip; 11039 } 11040 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 11041 11042 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 11043 { 11044 unsigned long rflags; 11045 11046 rflags = static_call(kvm_x86_get_rflags)(vcpu); 11047 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11048 rflags &= ~X86_EFLAGS_TF; 11049 return rflags; 11050 } 11051 EXPORT_SYMBOL_GPL(kvm_get_rflags); 11052 11053 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 11054 { 11055 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 11056 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 11057 rflags |= X86_EFLAGS_TF; 11058 static_call(kvm_x86_set_rflags)(vcpu, rflags); 11059 } 11060 11061 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 11062 { 11063 __kvm_set_rflags(vcpu, rflags); 11064 kvm_make_request(KVM_REQ_EVENT, vcpu); 11065 } 11066 EXPORT_SYMBOL_GPL(kvm_set_rflags); 11067 11068 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 11069 { 11070 int r; 11071 11072 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 11073 work->wakeup_all) 11074 return; 11075 11076 r = kvm_mmu_reload(vcpu); 11077 if (unlikely(r)) 11078 return; 11079 11080 if (!vcpu->arch.mmu->direct_map && 11081 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 11082 return; 11083 11084 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 11085 } 11086 11087 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 11088 { 11089 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 11090 11091 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 11092 } 11093 11094 static inline u32 kvm_async_pf_next_probe(u32 key) 11095 { 11096 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 11097 } 11098 11099 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11100 { 11101 u32 key = kvm_async_pf_hash_fn(gfn); 11102 11103 while (vcpu->arch.apf.gfns[key] != ~0) 11104 key = kvm_async_pf_next_probe(key); 11105 11106 vcpu->arch.apf.gfns[key] = gfn; 11107 } 11108 11109 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 11110 { 11111 int i; 11112 u32 key = kvm_async_pf_hash_fn(gfn); 11113 11114 for (i = 0; i < ASYNC_PF_PER_VCPU && 11115 (vcpu->arch.apf.gfns[key] != gfn && 11116 vcpu->arch.apf.gfns[key] != ~0); i++) 11117 key = kvm_async_pf_next_probe(key); 11118 11119 return key; 11120 } 11121 11122 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11123 { 11124 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 11125 } 11126 11127 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11128 { 11129 u32 i, j, k; 11130 11131 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 11132 11133 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 11134 return; 11135 11136 while (true) { 11137 vcpu->arch.apf.gfns[i] = ~0; 11138 do { 11139 j = kvm_async_pf_next_probe(j); 11140 if (vcpu->arch.apf.gfns[j] == ~0) 11141 return; 11142 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 11143 /* 11144 * k lies cyclically in ]i,j] 11145 * | i.k.j | 11146 * |....j i.k.| or |.k..j i...| 11147 */ 11148 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 11149 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 11150 i = j; 11151 } 11152 } 11153 11154 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 11155 { 11156 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 11157 11158 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 11159 sizeof(reason)); 11160 } 11161 11162 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 11163 { 11164 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11165 11166 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11167 &token, offset, sizeof(token)); 11168 } 11169 11170 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 11171 { 11172 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11173 u32 val; 11174 11175 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11176 &val, offset, sizeof(val))) 11177 return false; 11178 11179 return !val; 11180 } 11181 11182 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 11183 { 11184 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 11185 return false; 11186 11187 if (!kvm_pv_async_pf_enabled(vcpu) || 11188 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0)) 11189 return false; 11190 11191 return true; 11192 } 11193 11194 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 11195 { 11196 if (unlikely(!lapic_in_kernel(vcpu) || 11197 kvm_event_needs_reinjection(vcpu) || 11198 vcpu->arch.exception.pending)) 11199 return false; 11200 11201 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 11202 return false; 11203 11204 /* 11205 * If interrupts are off we cannot even use an artificial 11206 * halt state. 11207 */ 11208 return kvm_arch_interrupt_allowed(vcpu); 11209 } 11210 11211 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 11212 struct kvm_async_pf *work) 11213 { 11214 struct x86_exception fault; 11215 11216 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 11217 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 11218 11219 if (kvm_can_deliver_async_pf(vcpu) && 11220 !apf_put_user_notpresent(vcpu)) { 11221 fault.vector = PF_VECTOR; 11222 fault.error_code_valid = true; 11223 fault.error_code = 0; 11224 fault.nested_page_fault = false; 11225 fault.address = work->arch.token; 11226 fault.async_page_fault = true; 11227 kvm_inject_page_fault(vcpu, &fault); 11228 return true; 11229 } else { 11230 /* 11231 * It is not possible to deliver a paravirtualized asynchronous 11232 * page fault, but putting the guest in an artificial halt state 11233 * can be beneficial nevertheless: if an interrupt arrives, we 11234 * can deliver it timely and perhaps the guest will schedule 11235 * another process. When the instruction that triggered a page 11236 * fault is retried, hopefully the page will be ready in the host. 11237 */ 11238 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 11239 return false; 11240 } 11241 } 11242 11243 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 11244 struct kvm_async_pf *work) 11245 { 11246 struct kvm_lapic_irq irq = { 11247 .delivery_mode = APIC_DM_FIXED, 11248 .vector = vcpu->arch.apf.vec 11249 }; 11250 11251 if (work->wakeup_all) 11252 work->arch.token = ~0; /* broadcast wakeup */ 11253 else 11254 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 11255 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 11256 11257 if ((work->wakeup_all || work->notpresent_injected) && 11258 kvm_pv_async_pf_enabled(vcpu) && 11259 !apf_put_user_ready(vcpu, work->arch.token)) { 11260 vcpu->arch.apf.pageready_pending = true; 11261 kvm_apic_set_irq(vcpu, &irq, NULL); 11262 } 11263 11264 vcpu->arch.apf.halted = false; 11265 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11266 } 11267 11268 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 11269 { 11270 kvm_make_request(KVM_REQ_APF_READY, vcpu); 11271 if (!vcpu->arch.apf.pageready_pending) 11272 kvm_vcpu_kick(vcpu); 11273 } 11274 11275 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 11276 { 11277 if (!kvm_pv_async_pf_enabled(vcpu)) 11278 return true; 11279 else 11280 return apf_pageready_slot_free(vcpu); 11281 } 11282 11283 void kvm_arch_start_assignment(struct kvm *kvm) 11284 { 11285 atomic_inc(&kvm->arch.assigned_device_count); 11286 } 11287 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 11288 11289 void kvm_arch_end_assignment(struct kvm *kvm) 11290 { 11291 atomic_dec(&kvm->arch.assigned_device_count); 11292 } 11293 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 11294 11295 bool kvm_arch_has_assigned_device(struct kvm *kvm) 11296 { 11297 return atomic_read(&kvm->arch.assigned_device_count); 11298 } 11299 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 11300 11301 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 11302 { 11303 atomic_inc(&kvm->arch.noncoherent_dma_count); 11304 } 11305 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 11306 11307 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 11308 { 11309 atomic_dec(&kvm->arch.noncoherent_dma_count); 11310 } 11311 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11312 11313 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11314 { 11315 return atomic_read(&kvm->arch.noncoherent_dma_count); 11316 } 11317 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11318 11319 bool kvm_arch_has_irq_bypass(void) 11320 { 11321 return true; 11322 } 11323 11324 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11325 struct irq_bypass_producer *prod) 11326 { 11327 struct kvm_kernel_irqfd *irqfd = 11328 container_of(cons, struct kvm_kernel_irqfd, consumer); 11329 int ret; 11330 11331 irqfd->producer = prod; 11332 kvm_arch_start_assignment(irqfd->kvm); 11333 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, 11334 prod->irq, irqfd->gsi, 1); 11335 11336 if (ret) 11337 kvm_arch_end_assignment(irqfd->kvm); 11338 11339 return ret; 11340 } 11341 11342 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11343 struct irq_bypass_producer *prod) 11344 { 11345 int ret; 11346 struct kvm_kernel_irqfd *irqfd = 11347 container_of(cons, struct kvm_kernel_irqfd, consumer); 11348 11349 WARN_ON(irqfd->producer != prod); 11350 irqfd->producer = NULL; 11351 11352 /* 11353 * When producer of consumer is unregistered, we change back to 11354 * remapped mode, so we can re-use the current implementation 11355 * when the irq is masked/disabled or the consumer side (KVM 11356 * int this case doesn't want to receive the interrupts. 11357 */ 11358 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 11359 if (ret) 11360 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 11361 " fails: %d\n", irqfd->consumer.token, ret); 11362 11363 kvm_arch_end_assignment(irqfd->kvm); 11364 } 11365 11366 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 11367 uint32_t guest_irq, bool set) 11368 { 11369 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set); 11370 } 11371 11372 bool kvm_vector_hashing_enabled(void) 11373 { 11374 return vector_hashing; 11375 } 11376 11377 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 11378 { 11379 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 11380 } 11381 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 11382 11383 11384 int kvm_spec_ctrl_test_value(u64 value) 11385 { 11386 /* 11387 * test that setting IA32_SPEC_CTRL to given value 11388 * is allowed by the host processor 11389 */ 11390 11391 u64 saved_value; 11392 unsigned long flags; 11393 int ret = 0; 11394 11395 local_irq_save(flags); 11396 11397 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 11398 ret = 1; 11399 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 11400 ret = 1; 11401 else 11402 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 11403 11404 local_irq_restore(flags); 11405 11406 return ret; 11407 } 11408 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 11409 11410 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 11411 { 11412 struct x86_exception fault; 11413 u32 access = error_code & 11414 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 11415 11416 if (!(error_code & PFERR_PRESENT_MASK) || 11417 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 11418 /* 11419 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 11420 * tables probably do not match the TLB. Just proceed 11421 * with the error code that the processor gave. 11422 */ 11423 fault.vector = PF_VECTOR; 11424 fault.error_code_valid = true; 11425 fault.error_code = error_code; 11426 fault.nested_page_fault = false; 11427 fault.address = gva; 11428 } 11429 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 11430 } 11431 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 11432 11433 /* 11434 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 11435 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 11436 * indicates whether exit to userspace is needed. 11437 */ 11438 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 11439 struct x86_exception *e) 11440 { 11441 if (r == X86EMUL_PROPAGATE_FAULT) { 11442 kvm_inject_emulated_page_fault(vcpu, e); 11443 return 1; 11444 } 11445 11446 /* 11447 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 11448 * while handling a VMX instruction KVM could've handled the request 11449 * correctly by exiting to userspace and performing I/O but there 11450 * doesn't seem to be a real use-case behind such requests, just return 11451 * KVM_EXIT_INTERNAL_ERROR for now. 11452 */ 11453 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11454 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11455 vcpu->run->internal.ndata = 0; 11456 11457 return 0; 11458 } 11459 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 11460 11461 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 11462 { 11463 bool pcid_enabled; 11464 struct x86_exception e; 11465 unsigned i; 11466 unsigned long roots_to_free = 0; 11467 struct { 11468 u64 pcid; 11469 u64 gla; 11470 } operand; 11471 int r; 11472 11473 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 11474 if (r != X86EMUL_CONTINUE) 11475 return kvm_handle_memory_failure(vcpu, r, &e); 11476 11477 if (operand.pcid >> 12 != 0) { 11478 kvm_inject_gp(vcpu, 0); 11479 return 1; 11480 } 11481 11482 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 11483 11484 switch (type) { 11485 case INVPCID_TYPE_INDIV_ADDR: 11486 if ((!pcid_enabled && (operand.pcid != 0)) || 11487 is_noncanonical_address(operand.gla, vcpu)) { 11488 kvm_inject_gp(vcpu, 0); 11489 return 1; 11490 } 11491 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 11492 return kvm_skip_emulated_instruction(vcpu); 11493 11494 case INVPCID_TYPE_SINGLE_CTXT: 11495 if (!pcid_enabled && (operand.pcid != 0)) { 11496 kvm_inject_gp(vcpu, 0); 11497 return 1; 11498 } 11499 11500 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 11501 kvm_mmu_sync_roots(vcpu); 11502 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 11503 } 11504 11505 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 11506 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd) 11507 == operand.pcid) 11508 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 11509 11510 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 11511 /* 11512 * If neither the current cr3 nor any of the prev_roots use the 11513 * given PCID, then nothing needs to be done here because a 11514 * resync will happen anyway before switching to any other CR3. 11515 */ 11516 11517 return kvm_skip_emulated_instruction(vcpu); 11518 11519 case INVPCID_TYPE_ALL_NON_GLOBAL: 11520 /* 11521 * Currently, KVM doesn't mark global entries in the shadow 11522 * page tables, so a non-global flush just degenerates to a 11523 * global flush. If needed, we could optimize this later by 11524 * keeping track of global entries in shadow page tables. 11525 */ 11526 11527 fallthrough; 11528 case INVPCID_TYPE_ALL_INCL_GLOBAL: 11529 kvm_mmu_unload(vcpu); 11530 return kvm_skip_emulated_instruction(vcpu); 11531 11532 default: 11533 BUG(); /* We have already checked above that type <= 3 */ 11534 } 11535 } 11536 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 11537 11538 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 11539 { 11540 struct kvm_run *run = vcpu->run; 11541 struct kvm_mmio_fragment *frag; 11542 unsigned int len; 11543 11544 BUG_ON(!vcpu->mmio_needed); 11545 11546 /* Complete previous fragment */ 11547 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11548 len = min(8u, frag->len); 11549 if (!vcpu->mmio_is_write) 11550 memcpy(frag->data, run->mmio.data, len); 11551 11552 if (frag->len <= 8) { 11553 /* Switch to the next fragment. */ 11554 frag++; 11555 vcpu->mmio_cur_fragment++; 11556 } else { 11557 /* Go forward to the next mmio piece. */ 11558 frag->data += len; 11559 frag->gpa += len; 11560 frag->len -= len; 11561 } 11562 11563 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11564 vcpu->mmio_needed = 0; 11565 11566 // VMG change, at this point, we're always done 11567 // RIP has already been advanced 11568 return 1; 11569 } 11570 11571 // More MMIO is needed 11572 run->mmio.phys_addr = frag->gpa; 11573 run->mmio.len = min(8u, frag->len); 11574 run->mmio.is_write = vcpu->mmio_is_write; 11575 if (run->mmio.is_write) 11576 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11577 run->exit_reason = KVM_EXIT_MMIO; 11578 11579 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 11580 11581 return 0; 11582 } 11583 11584 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 11585 void *data) 11586 { 11587 int handled; 11588 struct kvm_mmio_fragment *frag; 11589 11590 if (!data) 11591 return -EINVAL; 11592 11593 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 11594 if (handled == bytes) 11595 return 1; 11596 11597 bytes -= handled; 11598 gpa += handled; 11599 data += handled; 11600 11601 /*TODO: Check if need to increment number of frags */ 11602 frag = vcpu->mmio_fragments; 11603 vcpu->mmio_nr_fragments = 1; 11604 frag->len = bytes; 11605 frag->gpa = gpa; 11606 frag->data = data; 11607 11608 vcpu->mmio_needed = 1; 11609 vcpu->mmio_cur_fragment = 0; 11610 11611 vcpu->run->mmio.phys_addr = gpa; 11612 vcpu->run->mmio.len = min(8u, frag->len); 11613 vcpu->run->mmio.is_write = 1; 11614 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 11615 vcpu->run->exit_reason = KVM_EXIT_MMIO; 11616 11617 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 11618 11619 return 0; 11620 } 11621 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 11622 11623 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 11624 void *data) 11625 { 11626 int handled; 11627 struct kvm_mmio_fragment *frag; 11628 11629 if (!data) 11630 return -EINVAL; 11631 11632 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 11633 if (handled == bytes) 11634 return 1; 11635 11636 bytes -= handled; 11637 gpa += handled; 11638 data += handled; 11639 11640 /*TODO: Check if need to increment number of frags */ 11641 frag = vcpu->mmio_fragments; 11642 vcpu->mmio_nr_fragments = 1; 11643 frag->len = bytes; 11644 frag->gpa = gpa; 11645 frag->data = data; 11646 11647 vcpu->mmio_needed = 1; 11648 vcpu->mmio_cur_fragment = 0; 11649 11650 vcpu->run->mmio.phys_addr = gpa; 11651 vcpu->run->mmio.len = min(8u, frag->len); 11652 vcpu->run->mmio.is_write = 0; 11653 vcpu->run->exit_reason = KVM_EXIT_MMIO; 11654 11655 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 11656 11657 return 0; 11658 } 11659 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 11660 11661 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 11662 { 11663 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data, 11664 vcpu->arch.pio.count * vcpu->arch.pio.size); 11665 vcpu->arch.pio.count = 0; 11666 11667 return 1; 11668 } 11669 11670 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 11671 unsigned int port, void *data, unsigned int count) 11672 { 11673 int ret; 11674 11675 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port, 11676 data, count); 11677 if (ret) 11678 return ret; 11679 11680 vcpu->arch.pio.count = 0; 11681 11682 return 0; 11683 } 11684 11685 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 11686 unsigned int port, void *data, unsigned int count) 11687 { 11688 int ret; 11689 11690 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port, 11691 data, count); 11692 if (ret) { 11693 vcpu->arch.pio.count = 0; 11694 } else { 11695 vcpu->arch.guest_ins_data = data; 11696 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 11697 } 11698 11699 return 0; 11700 } 11701 11702 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 11703 unsigned int port, void *data, unsigned int count, 11704 int in) 11705 { 11706 return in ? kvm_sev_es_ins(vcpu, size, port, data, count) 11707 : kvm_sev_es_outs(vcpu, size, port, data, count); 11708 } 11709 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 11710 11711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 11712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 11713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 11714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 11715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 11716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 11717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 11718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 11719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 11720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 11721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 11722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 11723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 11724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 11725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 11726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 11727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 11728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 11729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 11730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 11731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 11732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 11733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 11734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 11735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 11736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 11737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 11738