1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 bool kvm_has_tsc_control; 98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 99 u32 kvm_max_guest_tsc_khz; 100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 101 102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 103 static u32 tsc_tolerance_ppm = 250; 104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 105 106 #define KVM_NR_SHARED_MSRS 16 107 108 struct kvm_shared_msrs_global { 109 int nr; 110 u32 msrs[KVM_NR_SHARED_MSRS]; 111 }; 112 113 struct kvm_shared_msrs { 114 struct user_return_notifier urn; 115 bool registered; 116 struct kvm_shared_msr_values { 117 u64 host; 118 u64 curr; 119 } values[KVM_NR_SHARED_MSRS]; 120 }; 121 122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 123 static struct kvm_shared_msrs __percpu *shared_msrs; 124 125 struct kvm_stats_debugfs_item debugfs_entries[] = { 126 { "pf_fixed", VCPU_STAT(pf_fixed) }, 127 { "pf_guest", VCPU_STAT(pf_guest) }, 128 { "tlb_flush", VCPU_STAT(tlb_flush) }, 129 { "invlpg", VCPU_STAT(invlpg) }, 130 { "exits", VCPU_STAT(exits) }, 131 { "io_exits", VCPU_STAT(io_exits) }, 132 { "mmio_exits", VCPU_STAT(mmio_exits) }, 133 { "signal_exits", VCPU_STAT(signal_exits) }, 134 { "irq_window", VCPU_STAT(irq_window_exits) }, 135 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 136 { "halt_exits", VCPU_STAT(halt_exits) }, 137 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 138 { "hypercalls", VCPU_STAT(hypercalls) }, 139 { "request_irq", VCPU_STAT(request_irq_exits) }, 140 { "irq_exits", VCPU_STAT(irq_exits) }, 141 { "host_state_reload", VCPU_STAT(host_state_reload) }, 142 { "efer_reload", VCPU_STAT(efer_reload) }, 143 { "fpu_reload", VCPU_STAT(fpu_reload) }, 144 { "insn_emulation", VCPU_STAT(insn_emulation) }, 145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 146 { "irq_injections", VCPU_STAT(irq_injections) }, 147 { "nmi_injections", VCPU_STAT(nmi_injections) }, 148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 149 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 152 { "mmu_flooded", VM_STAT(mmu_flooded) }, 153 { "mmu_recycled", VM_STAT(mmu_recycled) }, 154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 155 { "mmu_unsync", VM_STAT(mmu_unsync) }, 156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 157 { "largepages", VM_STAT(lpages) }, 158 { NULL } 159 }; 160 161 u64 __read_mostly host_xcr0; 162 163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 164 165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu); 166 167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 168 { 169 int i; 170 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 171 vcpu->arch.apf.gfns[i] = ~0; 172 } 173 174 static void kvm_on_user_return(struct user_return_notifier *urn) 175 { 176 unsigned slot; 177 struct kvm_shared_msrs *locals 178 = container_of(urn, struct kvm_shared_msrs, urn); 179 struct kvm_shared_msr_values *values; 180 181 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 182 values = &locals->values[slot]; 183 if (values->host != values->curr) { 184 wrmsrl(shared_msrs_global.msrs[slot], values->host); 185 values->curr = values->host; 186 } 187 } 188 locals->registered = false; 189 user_return_notifier_unregister(urn); 190 } 191 192 static void shared_msr_update(unsigned slot, u32 msr) 193 { 194 u64 value; 195 unsigned int cpu = smp_processor_id(); 196 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 197 198 /* only read, and nobody should modify it at this time, 199 * so don't need lock */ 200 if (slot >= shared_msrs_global.nr) { 201 printk(KERN_ERR "kvm: invalid MSR slot!"); 202 return; 203 } 204 rdmsrl_safe(msr, &value); 205 smsr->values[slot].host = value; 206 smsr->values[slot].curr = value; 207 } 208 209 void kvm_define_shared_msr(unsigned slot, u32 msr) 210 { 211 if (slot >= shared_msrs_global.nr) 212 shared_msrs_global.nr = slot + 1; 213 shared_msrs_global.msrs[slot] = msr; 214 /* we need ensured the shared_msr_global have been updated */ 215 smp_wmb(); 216 } 217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 218 219 static void kvm_shared_msr_cpu_online(void) 220 { 221 unsigned i; 222 223 for (i = 0; i < shared_msrs_global.nr; ++i) 224 shared_msr_update(i, shared_msrs_global.msrs[i]); 225 } 226 227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 228 { 229 unsigned int cpu = smp_processor_id(); 230 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 231 232 if (((value ^ smsr->values[slot].curr) & mask) == 0) 233 return; 234 smsr->values[slot].curr = value; 235 wrmsrl(shared_msrs_global.msrs[slot], value); 236 if (!smsr->registered) { 237 smsr->urn.on_user_return = kvm_on_user_return; 238 user_return_notifier_register(&smsr->urn); 239 smsr->registered = true; 240 } 241 } 242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 243 244 static void drop_user_return_notifiers(void *ignore) 245 { 246 unsigned int cpu = smp_processor_id(); 247 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 248 249 if (smsr->registered) 250 kvm_on_user_return(&smsr->urn); 251 } 252 253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 254 { 255 return vcpu->arch.apic_base; 256 } 257 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 258 259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 260 { 261 /* TODO: reserve bits check */ 262 kvm_lapic_set_base(vcpu, data); 263 } 264 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 265 266 #define EXCPT_BENIGN 0 267 #define EXCPT_CONTRIBUTORY 1 268 #define EXCPT_PF 2 269 270 static int exception_class(int vector) 271 { 272 switch (vector) { 273 case PF_VECTOR: 274 return EXCPT_PF; 275 case DE_VECTOR: 276 case TS_VECTOR: 277 case NP_VECTOR: 278 case SS_VECTOR: 279 case GP_VECTOR: 280 return EXCPT_CONTRIBUTORY; 281 default: 282 break; 283 } 284 return EXCPT_BENIGN; 285 } 286 287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 288 unsigned nr, bool has_error, u32 error_code, 289 bool reinject) 290 { 291 u32 prev_nr; 292 int class1, class2; 293 294 kvm_make_request(KVM_REQ_EVENT, vcpu); 295 296 if (!vcpu->arch.exception.pending) { 297 queue: 298 vcpu->arch.exception.pending = true; 299 vcpu->arch.exception.has_error_code = has_error; 300 vcpu->arch.exception.nr = nr; 301 vcpu->arch.exception.error_code = error_code; 302 vcpu->arch.exception.reinject = reinject; 303 return; 304 } 305 306 /* to check exception */ 307 prev_nr = vcpu->arch.exception.nr; 308 if (prev_nr == DF_VECTOR) { 309 /* triple fault -> shutdown */ 310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 311 return; 312 } 313 class1 = exception_class(prev_nr); 314 class2 = exception_class(nr); 315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 317 /* generate double fault per SDM Table 5-5 */ 318 vcpu->arch.exception.pending = true; 319 vcpu->arch.exception.has_error_code = true; 320 vcpu->arch.exception.nr = DF_VECTOR; 321 vcpu->arch.exception.error_code = 0; 322 } else 323 /* replace previous exception with a new one in a hope 324 that instruction re-execution will regenerate lost 325 exception */ 326 goto queue; 327 } 328 329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, false); 332 } 333 EXPORT_SYMBOL_GPL(kvm_queue_exception); 334 335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 336 { 337 kvm_multiple_exception(vcpu, nr, false, 0, true); 338 } 339 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 340 341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 342 { 343 if (err) 344 kvm_inject_gp(vcpu, 0); 345 else 346 kvm_x86_ops->skip_emulated_instruction(vcpu); 347 } 348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 349 350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 351 { 352 ++vcpu->stat.pf_guest; 353 vcpu->arch.cr2 = fault->address; 354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 355 } 356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 357 358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 362 else 363 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 364 } 365 366 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 367 { 368 atomic_inc(&vcpu->arch.nmi_queued); 369 kvm_make_request(KVM_REQ_NMI, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 372 373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, false); 376 } 377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 378 379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 380 { 381 kvm_multiple_exception(vcpu, nr, true, error_code, true); 382 } 383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 384 385 /* 386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 387 * a #GP and return false. 388 */ 389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 390 { 391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 392 return true; 393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 394 return false; 395 } 396 EXPORT_SYMBOL_GPL(kvm_require_cpl); 397 398 /* 399 * This function will be used to read from the physical memory of the currently 400 * running guest. The difference to kvm_read_guest_page is that this function 401 * can read from guest physical or from the guest's guest physical memory. 402 */ 403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 404 gfn_t ngfn, void *data, int offset, int len, 405 u32 access) 406 { 407 gfn_t real_gfn; 408 gpa_t ngpa; 409 410 ngpa = gfn_to_gpa(ngfn); 411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 412 if (real_gfn == UNMAPPED_GVA) 413 return -EFAULT; 414 415 real_gfn = gpa_to_gfn(real_gfn); 416 417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 418 } 419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 420 421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 422 void *data, int offset, int len, u32 access) 423 { 424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 425 data, offset, len, access); 426 } 427 428 /* 429 * Load the pae pdptrs. Return true is they are all valid. 430 */ 431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 432 { 433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 435 int i; 436 int ret; 437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 438 439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 440 offset * sizeof(u64), sizeof(pdpte), 441 PFERR_USER_MASK|PFERR_WRITE_MASK); 442 if (ret < 0) { 443 ret = 0; 444 goto out; 445 } 446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 447 if (is_present_gpte(pdpte[i]) && 448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 449 ret = 0; 450 goto out; 451 } 452 } 453 ret = 1; 454 455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 456 __set_bit(VCPU_EXREG_PDPTR, 457 (unsigned long *)&vcpu->arch.regs_avail); 458 __set_bit(VCPU_EXREG_PDPTR, 459 (unsigned long *)&vcpu->arch.regs_dirty); 460 out: 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(load_pdptrs); 465 466 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 467 { 468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 469 bool changed = true; 470 int offset; 471 gfn_t gfn; 472 int r; 473 474 if (is_long_mode(vcpu) || !is_pae(vcpu)) 475 return false; 476 477 if (!test_bit(VCPU_EXREG_PDPTR, 478 (unsigned long *)&vcpu->arch.regs_avail)) 479 return true; 480 481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 484 PFERR_USER_MASK | PFERR_WRITE_MASK); 485 if (r < 0) 486 goto out; 487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 488 out: 489 490 return changed; 491 } 492 493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 494 { 495 unsigned long old_cr0 = kvm_read_cr0(vcpu); 496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 497 X86_CR0_CD | X86_CR0_NW; 498 499 cr0 |= X86_CR0_ET; 500 501 #ifdef CONFIG_X86_64 502 if (cr0 & 0xffffffff00000000UL) 503 return 1; 504 #endif 505 506 cr0 &= ~CR0_RESERVED_BITS; 507 508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 509 return 1; 510 511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 512 return 1; 513 514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 515 #ifdef CONFIG_X86_64 516 if ((vcpu->arch.efer & EFER_LME)) { 517 int cs_db, cs_l; 518 519 if (!is_pae(vcpu)) 520 return 1; 521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 522 if (cs_l) 523 return 1; 524 } else 525 #endif 526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 527 kvm_read_cr3(vcpu))) 528 return 1; 529 } 530 531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 532 return 1; 533 534 kvm_x86_ops->set_cr0(vcpu, cr0); 535 536 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 537 kvm_clear_async_pf_completion_queue(vcpu); 538 kvm_async_pf_hash_reset(vcpu); 539 } 540 541 if ((cr0 ^ old_cr0) & update_bits) 542 kvm_mmu_reset_context(vcpu); 543 return 0; 544 } 545 EXPORT_SYMBOL_GPL(kvm_set_cr0); 546 547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 548 { 549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 550 } 551 EXPORT_SYMBOL_GPL(kvm_lmsw); 552 553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 554 { 555 u64 xcr0; 556 557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 558 if (index != XCR_XFEATURE_ENABLED_MASK) 559 return 1; 560 xcr0 = xcr; 561 if (kvm_x86_ops->get_cpl(vcpu) != 0) 562 return 1; 563 if (!(xcr0 & XSTATE_FP)) 564 return 1; 565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 566 return 1; 567 if (xcr0 & ~host_xcr0) 568 return 1; 569 vcpu->arch.xcr0 = xcr0; 570 vcpu->guest_xcr0_loaded = 0; 571 return 0; 572 } 573 574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 575 { 576 if (__kvm_set_xcr(vcpu, index, xcr)) { 577 kvm_inject_gp(vcpu, 0); 578 return 1; 579 } 580 return 0; 581 } 582 EXPORT_SYMBOL_GPL(kvm_set_xcr); 583 584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 585 { 586 unsigned long old_cr4 = kvm_read_cr4(vcpu); 587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 588 X86_CR4_PAE | X86_CR4_SMEP; 589 if (cr4 & CR4_RESERVED_BITS) 590 return 1; 591 592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 593 return 1; 594 595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 596 return 1; 597 598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 599 return 1; 600 601 if (is_long_mode(vcpu)) { 602 if (!(cr4 & X86_CR4_PAE)) 603 return 1; 604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 605 && ((cr4 ^ old_cr4) & pdptr_bits) 606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 607 kvm_read_cr3(vcpu))) 608 return 1; 609 610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 611 if (!guest_cpuid_has_pcid(vcpu)) 612 return 1; 613 614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 616 return 1; 617 } 618 619 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 620 return 1; 621 622 if (((cr4 ^ old_cr4) & pdptr_bits) || 623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 624 kvm_mmu_reset_context(vcpu); 625 626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 627 kvm_update_cpuid(vcpu); 628 629 return 0; 630 } 631 EXPORT_SYMBOL_GPL(kvm_set_cr4); 632 633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 634 { 635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 636 kvm_mmu_sync_roots(vcpu); 637 kvm_mmu_flush_tlb(vcpu); 638 return 0; 639 } 640 641 if (is_long_mode(vcpu)) { 642 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 644 return 1; 645 } else 646 if (cr3 & CR3_L_MODE_RESERVED_BITS) 647 return 1; 648 } else { 649 if (is_pae(vcpu)) { 650 if (cr3 & CR3_PAE_RESERVED_BITS) 651 return 1; 652 if (is_paging(vcpu) && 653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 654 return 1; 655 } 656 /* 657 * We don't check reserved bits in nonpae mode, because 658 * this isn't enforced, and VMware depends on this. 659 */ 660 } 661 662 /* 663 * Does the new cr3 value map to physical memory? (Note, we 664 * catch an invalid cr3 even in real-mode, because it would 665 * cause trouble later on when we turn on paging anyway.) 666 * 667 * A real CPU would silently accept an invalid cr3 and would 668 * attempt to use it - with largely undefined (and often hard 669 * to debug) behavior on the guest side. 670 */ 671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 672 return 1; 673 vcpu->arch.cr3 = cr3; 674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 675 vcpu->arch.mmu.new_cr3(vcpu); 676 return 0; 677 } 678 EXPORT_SYMBOL_GPL(kvm_set_cr3); 679 680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 681 { 682 if (cr8 & CR8_RESERVED_BITS) 683 return 1; 684 if (irqchip_in_kernel(vcpu->kvm)) 685 kvm_lapic_set_tpr(vcpu, cr8); 686 else 687 vcpu->arch.cr8 = cr8; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(kvm_set_cr8); 691 692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 693 { 694 if (irqchip_in_kernel(vcpu->kvm)) 695 return kvm_lapic_get_cr8(vcpu); 696 else 697 return vcpu->arch.cr8; 698 } 699 EXPORT_SYMBOL_GPL(kvm_get_cr8); 700 701 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 702 { 703 unsigned long dr7; 704 705 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 706 dr7 = vcpu->arch.guest_debug_dr7; 707 else 708 dr7 = vcpu->arch.dr7; 709 kvm_x86_ops->set_dr7(vcpu, dr7); 710 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 711 } 712 713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 714 { 715 switch (dr) { 716 case 0 ... 3: 717 vcpu->arch.db[dr] = val; 718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 719 vcpu->arch.eff_db[dr] = val; 720 break; 721 case 4: 722 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 723 return 1; /* #UD */ 724 /* fall through */ 725 case 6: 726 if (val & 0xffffffff00000000ULL) 727 return -1; /* #GP */ 728 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 729 break; 730 case 5: 731 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 732 return 1; /* #UD */ 733 /* fall through */ 734 default: /* 7 */ 735 if (val & 0xffffffff00000000ULL) 736 return -1; /* #GP */ 737 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 738 kvm_update_dr7(vcpu); 739 break; 740 } 741 742 return 0; 743 } 744 745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 746 { 747 int res; 748 749 res = __kvm_set_dr(vcpu, dr, val); 750 if (res > 0) 751 kvm_queue_exception(vcpu, UD_VECTOR); 752 else if (res < 0) 753 kvm_inject_gp(vcpu, 0); 754 755 return res; 756 } 757 EXPORT_SYMBOL_GPL(kvm_set_dr); 758 759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 760 { 761 switch (dr) { 762 case 0 ... 3: 763 *val = vcpu->arch.db[dr]; 764 break; 765 case 4: 766 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 767 return 1; 768 /* fall through */ 769 case 6: 770 *val = vcpu->arch.dr6; 771 break; 772 case 5: 773 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 774 return 1; 775 /* fall through */ 776 default: /* 7 */ 777 *val = vcpu->arch.dr7; 778 break; 779 } 780 781 return 0; 782 } 783 784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 785 { 786 if (_kvm_get_dr(vcpu, dr, val)) { 787 kvm_queue_exception(vcpu, UD_VECTOR); 788 return 1; 789 } 790 return 0; 791 } 792 EXPORT_SYMBOL_GPL(kvm_get_dr); 793 794 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 795 { 796 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 797 u64 data; 798 int err; 799 800 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 801 if (err) 802 return err; 803 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 804 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 805 return err; 806 } 807 EXPORT_SYMBOL_GPL(kvm_rdpmc); 808 809 /* 810 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 811 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 812 * 813 * This list is modified at module load time to reflect the 814 * capabilities of the host cpu. This capabilities test skips MSRs that are 815 * kvm-specific. Those are put in the beginning of the list. 816 */ 817 818 #define KVM_SAVE_MSRS_BEGIN 10 819 static u32 msrs_to_save[] = { 820 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 821 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 822 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 823 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 824 MSR_KVM_PV_EOI_EN, 825 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 826 MSR_STAR, 827 #ifdef CONFIG_X86_64 828 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 829 #endif 830 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 831 }; 832 833 static unsigned num_msrs_to_save; 834 835 static const u32 emulated_msrs[] = { 836 MSR_IA32_TSC_ADJUST, 837 MSR_IA32_TSCDEADLINE, 838 MSR_IA32_MISC_ENABLE, 839 MSR_IA32_MCG_STATUS, 840 MSR_IA32_MCG_CTL, 841 }; 842 843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 844 { 845 u64 old_efer = vcpu->arch.efer; 846 847 if (efer & efer_reserved_bits) 848 return 1; 849 850 if (is_paging(vcpu) 851 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 852 return 1; 853 854 if (efer & EFER_FFXSR) { 855 struct kvm_cpuid_entry2 *feat; 856 857 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 858 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 859 return 1; 860 } 861 862 if (efer & EFER_SVME) { 863 struct kvm_cpuid_entry2 *feat; 864 865 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 866 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 867 return 1; 868 } 869 870 efer &= ~EFER_LMA; 871 efer |= vcpu->arch.efer & EFER_LMA; 872 873 kvm_x86_ops->set_efer(vcpu, efer); 874 875 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 876 877 /* Update reserved bits */ 878 if ((efer ^ old_efer) & EFER_NX) 879 kvm_mmu_reset_context(vcpu); 880 881 return 0; 882 } 883 884 void kvm_enable_efer_bits(u64 mask) 885 { 886 efer_reserved_bits &= ~mask; 887 } 888 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 889 890 891 /* 892 * Writes msr value into into the appropriate "register". 893 * Returns 0 on success, non-0 otherwise. 894 * Assumes vcpu_load() was already called. 895 */ 896 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 897 { 898 return kvm_x86_ops->set_msr(vcpu, msr); 899 } 900 901 /* 902 * Adapt set_msr() to msr_io()'s calling convention 903 */ 904 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 905 { 906 struct msr_data msr; 907 908 msr.data = *data; 909 msr.index = index; 910 msr.host_initiated = true; 911 return kvm_set_msr(vcpu, &msr); 912 } 913 914 #ifdef CONFIG_X86_64 915 struct pvclock_gtod_data { 916 seqcount_t seq; 917 918 struct { /* extract of a clocksource struct */ 919 int vclock_mode; 920 cycle_t cycle_last; 921 cycle_t mask; 922 u32 mult; 923 u32 shift; 924 } clock; 925 926 /* open coded 'struct timespec' */ 927 u64 monotonic_time_snsec; 928 time_t monotonic_time_sec; 929 }; 930 931 static struct pvclock_gtod_data pvclock_gtod_data; 932 933 static void update_pvclock_gtod(struct timekeeper *tk) 934 { 935 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 936 937 write_seqcount_begin(&vdata->seq); 938 939 /* copy pvclock gtod data */ 940 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 941 vdata->clock.cycle_last = tk->clock->cycle_last; 942 vdata->clock.mask = tk->clock->mask; 943 vdata->clock.mult = tk->mult; 944 vdata->clock.shift = tk->shift; 945 946 vdata->monotonic_time_sec = tk->xtime_sec 947 + tk->wall_to_monotonic.tv_sec; 948 vdata->monotonic_time_snsec = tk->xtime_nsec 949 + (tk->wall_to_monotonic.tv_nsec 950 << tk->shift); 951 while (vdata->monotonic_time_snsec >= 952 (((u64)NSEC_PER_SEC) << tk->shift)) { 953 vdata->monotonic_time_snsec -= 954 ((u64)NSEC_PER_SEC) << tk->shift; 955 vdata->monotonic_time_sec++; 956 } 957 958 write_seqcount_end(&vdata->seq); 959 } 960 #endif 961 962 963 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 964 { 965 int version; 966 int r; 967 struct pvclock_wall_clock wc; 968 struct timespec boot; 969 970 if (!wall_clock) 971 return; 972 973 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 974 if (r) 975 return; 976 977 if (version & 1) 978 ++version; /* first time write, random junk */ 979 980 ++version; 981 982 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 983 984 /* 985 * The guest calculates current wall clock time by adding 986 * system time (updated by kvm_guest_time_update below) to the 987 * wall clock specified here. guest system time equals host 988 * system time for us, thus we must fill in host boot time here. 989 */ 990 getboottime(&boot); 991 992 if (kvm->arch.kvmclock_offset) { 993 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 994 boot = timespec_sub(boot, ts); 995 } 996 wc.sec = boot.tv_sec; 997 wc.nsec = boot.tv_nsec; 998 wc.version = version; 999 1000 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1001 1002 version++; 1003 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1004 } 1005 1006 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1007 { 1008 uint32_t quotient, remainder; 1009 1010 /* Don't try to replace with do_div(), this one calculates 1011 * "(dividend << 32) / divisor" */ 1012 __asm__ ( "divl %4" 1013 : "=a" (quotient), "=d" (remainder) 1014 : "0" (0), "1" (dividend), "r" (divisor) ); 1015 return quotient; 1016 } 1017 1018 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1019 s8 *pshift, u32 *pmultiplier) 1020 { 1021 uint64_t scaled64; 1022 int32_t shift = 0; 1023 uint64_t tps64; 1024 uint32_t tps32; 1025 1026 tps64 = base_khz * 1000LL; 1027 scaled64 = scaled_khz * 1000LL; 1028 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1029 tps64 >>= 1; 1030 shift--; 1031 } 1032 1033 tps32 = (uint32_t)tps64; 1034 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1035 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1036 scaled64 >>= 1; 1037 else 1038 tps32 <<= 1; 1039 shift++; 1040 } 1041 1042 *pshift = shift; 1043 *pmultiplier = div_frac(scaled64, tps32); 1044 1045 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1046 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1047 } 1048 1049 static inline u64 get_kernel_ns(void) 1050 { 1051 struct timespec ts; 1052 1053 WARN_ON(preemptible()); 1054 ktime_get_ts(&ts); 1055 monotonic_to_bootbased(&ts); 1056 return timespec_to_ns(&ts); 1057 } 1058 1059 #ifdef CONFIG_X86_64 1060 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1061 #endif 1062 1063 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1064 unsigned long max_tsc_khz; 1065 1066 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1067 { 1068 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1069 vcpu->arch.virtual_tsc_shift); 1070 } 1071 1072 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1073 { 1074 u64 v = (u64)khz * (1000000 + ppm); 1075 do_div(v, 1000000); 1076 return v; 1077 } 1078 1079 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1080 { 1081 u32 thresh_lo, thresh_hi; 1082 int use_scaling = 0; 1083 1084 /* Compute a scale to convert nanoseconds in TSC cycles */ 1085 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1086 &vcpu->arch.virtual_tsc_shift, 1087 &vcpu->arch.virtual_tsc_mult); 1088 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1089 1090 /* 1091 * Compute the variation in TSC rate which is acceptable 1092 * within the range of tolerance and decide if the 1093 * rate being applied is within that bounds of the hardware 1094 * rate. If so, no scaling or compensation need be done. 1095 */ 1096 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1097 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1098 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1099 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1100 use_scaling = 1; 1101 } 1102 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1103 } 1104 1105 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1106 { 1107 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1108 vcpu->arch.virtual_tsc_mult, 1109 vcpu->arch.virtual_tsc_shift); 1110 tsc += vcpu->arch.this_tsc_write; 1111 return tsc; 1112 } 1113 1114 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1115 { 1116 #ifdef CONFIG_X86_64 1117 bool vcpus_matched; 1118 bool do_request = false; 1119 struct kvm_arch *ka = &vcpu->kvm->arch; 1120 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1121 1122 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1123 atomic_read(&vcpu->kvm->online_vcpus)); 1124 1125 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1126 if (!ka->use_master_clock) 1127 do_request = 1; 1128 1129 if (!vcpus_matched && ka->use_master_clock) 1130 do_request = 1; 1131 1132 if (do_request) 1133 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1134 1135 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1136 atomic_read(&vcpu->kvm->online_vcpus), 1137 ka->use_master_clock, gtod->clock.vclock_mode); 1138 #endif 1139 } 1140 1141 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1142 { 1143 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1144 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1145 } 1146 1147 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1148 { 1149 struct kvm *kvm = vcpu->kvm; 1150 u64 offset, ns, elapsed; 1151 unsigned long flags; 1152 s64 usdiff; 1153 bool matched; 1154 u64 data = msr->data; 1155 1156 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1157 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1158 ns = get_kernel_ns(); 1159 elapsed = ns - kvm->arch.last_tsc_nsec; 1160 1161 /* n.b - signed multiplication and division required */ 1162 usdiff = data - kvm->arch.last_tsc_write; 1163 #ifdef CONFIG_X86_64 1164 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1165 #else 1166 /* do_div() only does unsigned */ 1167 asm("idivl %2; xor %%edx, %%edx" 1168 : "=A"(usdiff) 1169 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1170 #endif 1171 do_div(elapsed, 1000); 1172 usdiff -= elapsed; 1173 if (usdiff < 0) 1174 usdiff = -usdiff; 1175 1176 /* 1177 * Special case: TSC write with a small delta (1 second) of virtual 1178 * cycle time against real time is interpreted as an attempt to 1179 * synchronize the CPU. 1180 * 1181 * For a reliable TSC, we can match TSC offsets, and for an unstable 1182 * TSC, we add elapsed time in this computation. We could let the 1183 * compensation code attempt to catch up if we fall behind, but 1184 * it's better to try to match offsets from the beginning. 1185 */ 1186 if (usdiff < USEC_PER_SEC && 1187 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1188 if (!check_tsc_unstable()) { 1189 offset = kvm->arch.cur_tsc_offset; 1190 pr_debug("kvm: matched tsc offset for %llu\n", data); 1191 } else { 1192 u64 delta = nsec_to_cycles(vcpu, elapsed); 1193 data += delta; 1194 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1195 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1196 } 1197 matched = true; 1198 } else { 1199 /* 1200 * We split periods of matched TSC writes into generations. 1201 * For each generation, we track the original measured 1202 * nanosecond time, offset, and write, so if TSCs are in 1203 * sync, we can match exact offset, and if not, we can match 1204 * exact software computation in compute_guest_tsc() 1205 * 1206 * These values are tracked in kvm->arch.cur_xxx variables. 1207 */ 1208 kvm->arch.cur_tsc_generation++; 1209 kvm->arch.cur_tsc_nsec = ns; 1210 kvm->arch.cur_tsc_write = data; 1211 kvm->arch.cur_tsc_offset = offset; 1212 matched = false; 1213 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1214 kvm->arch.cur_tsc_generation, data); 1215 } 1216 1217 /* 1218 * We also track th most recent recorded KHZ, write and time to 1219 * allow the matching interval to be extended at each write. 1220 */ 1221 kvm->arch.last_tsc_nsec = ns; 1222 kvm->arch.last_tsc_write = data; 1223 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1224 1225 /* Reset of TSC must disable overshoot protection below */ 1226 vcpu->arch.hv_clock.tsc_timestamp = 0; 1227 vcpu->arch.last_guest_tsc = data; 1228 1229 /* Keep track of which generation this VCPU has synchronized to */ 1230 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1231 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1232 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1233 1234 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1235 update_ia32_tsc_adjust_msr(vcpu, offset); 1236 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1237 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1238 1239 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1240 if (matched) 1241 kvm->arch.nr_vcpus_matched_tsc++; 1242 else 1243 kvm->arch.nr_vcpus_matched_tsc = 0; 1244 1245 kvm_track_tsc_matching(vcpu); 1246 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1247 } 1248 1249 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1250 1251 #ifdef CONFIG_X86_64 1252 1253 static cycle_t read_tsc(void) 1254 { 1255 cycle_t ret; 1256 u64 last; 1257 1258 /* 1259 * Empirically, a fence (of type that depends on the CPU) 1260 * before rdtsc is enough to ensure that rdtsc is ordered 1261 * with respect to loads. The various CPU manuals are unclear 1262 * as to whether rdtsc can be reordered with later loads, 1263 * but no one has ever seen it happen. 1264 */ 1265 rdtsc_barrier(); 1266 ret = (cycle_t)vget_cycles(); 1267 1268 last = pvclock_gtod_data.clock.cycle_last; 1269 1270 if (likely(ret >= last)) 1271 return ret; 1272 1273 /* 1274 * GCC likes to generate cmov here, but this branch is extremely 1275 * predictable (it's just a funciton of time and the likely is 1276 * very likely) and there's a data dependence, so force GCC 1277 * to generate a branch instead. I don't barrier() because 1278 * we don't actually need a barrier, and if this function 1279 * ever gets inlined it will generate worse code. 1280 */ 1281 asm volatile (""); 1282 return last; 1283 } 1284 1285 static inline u64 vgettsc(cycle_t *cycle_now) 1286 { 1287 long v; 1288 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1289 1290 *cycle_now = read_tsc(); 1291 1292 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1293 return v * gtod->clock.mult; 1294 } 1295 1296 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1297 { 1298 unsigned long seq; 1299 u64 ns; 1300 int mode; 1301 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1302 1303 ts->tv_nsec = 0; 1304 do { 1305 seq = read_seqcount_begin(>od->seq); 1306 mode = gtod->clock.vclock_mode; 1307 ts->tv_sec = gtod->monotonic_time_sec; 1308 ns = gtod->monotonic_time_snsec; 1309 ns += vgettsc(cycle_now); 1310 ns >>= gtod->clock.shift; 1311 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1312 timespec_add_ns(ts, ns); 1313 1314 return mode; 1315 } 1316 1317 /* returns true if host is using tsc clocksource */ 1318 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1319 { 1320 struct timespec ts; 1321 1322 /* checked again under seqlock below */ 1323 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1324 return false; 1325 1326 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1327 return false; 1328 1329 monotonic_to_bootbased(&ts); 1330 *kernel_ns = timespec_to_ns(&ts); 1331 1332 return true; 1333 } 1334 #endif 1335 1336 /* 1337 * 1338 * Assuming a stable TSC across physical CPUS, and a stable TSC 1339 * across virtual CPUs, the following condition is possible. 1340 * Each numbered line represents an event visible to both 1341 * CPUs at the next numbered event. 1342 * 1343 * "timespecX" represents host monotonic time. "tscX" represents 1344 * RDTSC value. 1345 * 1346 * VCPU0 on CPU0 | VCPU1 on CPU1 1347 * 1348 * 1. read timespec0,tsc0 1349 * 2. | timespec1 = timespec0 + N 1350 * | tsc1 = tsc0 + M 1351 * 3. transition to guest | transition to guest 1352 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1353 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1354 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1355 * 1356 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1357 * 1358 * - ret0 < ret1 1359 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1360 * ... 1361 * - 0 < N - M => M < N 1362 * 1363 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1364 * always the case (the difference between two distinct xtime instances 1365 * might be smaller then the difference between corresponding TSC reads, 1366 * when updating guest vcpus pvclock areas). 1367 * 1368 * To avoid that problem, do not allow visibility of distinct 1369 * system_timestamp/tsc_timestamp values simultaneously: use a master 1370 * copy of host monotonic time values. Update that master copy 1371 * in lockstep. 1372 * 1373 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1374 * 1375 */ 1376 1377 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1378 { 1379 #ifdef CONFIG_X86_64 1380 struct kvm_arch *ka = &kvm->arch; 1381 int vclock_mode; 1382 bool host_tsc_clocksource, vcpus_matched; 1383 1384 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1385 atomic_read(&kvm->online_vcpus)); 1386 1387 /* 1388 * If the host uses TSC clock, then passthrough TSC as stable 1389 * to the guest. 1390 */ 1391 host_tsc_clocksource = kvm_get_time_and_clockread( 1392 &ka->master_kernel_ns, 1393 &ka->master_cycle_now); 1394 1395 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1396 1397 if (ka->use_master_clock) 1398 atomic_set(&kvm_guest_has_master_clock, 1); 1399 1400 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1401 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1402 vcpus_matched); 1403 #endif 1404 } 1405 1406 static int kvm_guest_time_update(struct kvm_vcpu *v) 1407 { 1408 unsigned long flags, this_tsc_khz; 1409 struct kvm_vcpu_arch *vcpu = &v->arch; 1410 struct kvm_arch *ka = &v->kvm->arch; 1411 void *shared_kaddr; 1412 s64 kernel_ns, max_kernel_ns; 1413 u64 tsc_timestamp, host_tsc; 1414 struct pvclock_vcpu_time_info *guest_hv_clock; 1415 u8 pvclock_flags; 1416 bool use_master_clock; 1417 1418 kernel_ns = 0; 1419 host_tsc = 0; 1420 1421 /* Keep irq disabled to prevent changes to the clock */ 1422 local_irq_save(flags); 1423 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1424 if (unlikely(this_tsc_khz == 0)) { 1425 local_irq_restore(flags); 1426 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1427 return 1; 1428 } 1429 1430 /* 1431 * If the host uses TSC clock, then passthrough TSC as stable 1432 * to the guest. 1433 */ 1434 spin_lock(&ka->pvclock_gtod_sync_lock); 1435 use_master_clock = ka->use_master_clock; 1436 if (use_master_clock) { 1437 host_tsc = ka->master_cycle_now; 1438 kernel_ns = ka->master_kernel_ns; 1439 } 1440 spin_unlock(&ka->pvclock_gtod_sync_lock); 1441 if (!use_master_clock) { 1442 host_tsc = native_read_tsc(); 1443 kernel_ns = get_kernel_ns(); 1444 } 1445 1446 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1447 1448 /* 1449 * We may have to catch up the TSC to match elapsed wall clock 1450 * time for two reasons, even if kvmclock is used. 1451 * 1) CPU could have been running below the maximum TSC rate 1452 * 2) Broken TSC compensation resets the base at each VCPU 1453 * entry to avoid unknown leaps of TSC even when running 1454 * again on the same CPU. This may cause apparent elapsed 1455 * time to disappear, and the guest to stand still or run 1456 * very slowly. 1457 */ 1458 if (vcpu->tsc_catchup) { 1459 u64 tsc = compute_guest_tsc(v, kernel_ns); 1460 if (tsc > tsc_timestamp) { 1461 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1462 tsc_timestamp = tsc; 1463 } 1464 } 1465 1466 local_irq_restore(flags); 1467 1468 if (!vcpu->time_page) 1469 return 0; 1470 1471 /* 1472 * Time as measured by the TSC may go backwards when resetting the base 1473 * tsc_timestamp. The reason for this is that the TSC resolution is 1474 * higher than the resolution of the other clock scales. Thus, many 1475 * possible measurments of the TSC correspond to one measurement of any 1476 * other clock, and so a spread of values is possible. This is not a 1477 * problem for the computation of the nanosecond clock; with TSC rates 1478 * around 1GHZ, there can only be a few cycles which correspond to one 1479 * nanosecond value, and any path through this code will inevitably 1480 * take longer than that. However, with the kernel_ns value itself, 1481 * the precision may be much lower, down to HZ granularity. If the 1482 * first sampling of TSC against kernel_ns ends in the low part of the 1483 * range, and the second in the high end of the range, we can get: 1484 * 1485 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1486 * 1487 * As the sampling errors potentially range in the thousands of cycles, 1488 * it is possible such a time value has already been observed by the 1489 * guest. To protect against this, we must compute the system time as 1490 * observed by the guest and ensure the new system time is greater. 1491 */ 1492 max_kernel_ns = 0; 1493 if (vcpu->hv_clock.tsc_timestamp) { 1494 max_kernel_ns = vcpu->last_guest_tsc - 1495 vcpu->hv_clock.tsc_timestamp; 1496 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1497 vcpu->hv_clock.tsc_to_system_mul, 1498 vcpu->hv_clock.tsc_shift); 1499 max_kernel_ns += vcpu->last_kernel_ns; 1500 } 1501 1502 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1503 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1504 &vcpu->hv_clock.tsc_shift, 1505 &vcpu->hv_clock.tsc_to_system_mul); 1506 vcpu->hw_tsc_khz = this_tsc_khz; 1507 } 1508 1509 /* with a master <monotonic time, tsc value> tuple, 1510 * pvclock clock reads always increase at the (scaled) rate 1511 * of guest TSC - no need to deal with sampling errors. 1512 */ 1513 if (!use_master_clock) { 1514 if (max_kernel_ns > kernel_ns) 1515 kernel_ns = max_kernel_ns; 1516 } 1517 /* With all the info we got, fill in the values */ 1518 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1519 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1520 vcpu->last_kernel_ns = kernel_ns; 1521 vcpu->last_guest_tsc = tsc_timestamp; 1522 1523 /* 1524 * The interface expects us to write an even number signaling that the 1525 * update is finished. Since the guest won't see the intermediate 1526 * state, we just increase by 2 at the end. 1527 */ 1528 vcpu->hv_clock.version += 2; 1529 1530 shared_kaddr = kmap_atomic(vcpu->time_page); 1531 1532 guest_hv_clock = shared_kaddr + vcpu->time_offset; 1533 1534 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1535 pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 1536 1537 if (vcpu->pvclock_set_guest_stopped_request) { 1538 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1539 vcpu->pvclock_set_guest_stopped_request = false; 1540 } 1541 1542 /* If the host uses TSC clocksource, then it is stable */ 1543 if (use_master_clock) 1544 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1545 1546 vcpu->hv_clock.flags = pvclock_flags; 1547 1548 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1549 sizeof(vcpu->hv_clock)); 1550 1551 kunmap_atomic(shared_kaddr); 1552 1553 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1554 return 0; 1555 } 1556 1557 static bool msr_mtrr_valid(unsigned msr) 1558 { 1559 switch (msr) { 1560 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1561 case MSR_MTRRfix64K_00000: 1562 case MSR_MTRRfix16K_80000: 1563 case MSR_MTRRfix16K_A0000: 1564 case MSR_MTRRfix4K_C0000: 1565 case MSR_MTRRfix4K_C8000: 1566 case MSR_MTRRfix4K_D0000: 1567 case MSR_MTRRfix4K_D8000: 1568 case MSR_MTRRfix4K_E0000: 1569 case MSR_MTRRfix4K_E8000: 1570 case MSR_MTRRfix4K_F0000: 1571 case MSR_MTRRfix4K_F8000: 1572 case MSR_MTRRdefType: 1573 case MSR_IA32_CR_PAT: 1574 return true; 1575 case 0x2f8: 1576 return true; 1577 } 1578 return false; 1579 } 1580 1581 static bool valid_pat_type(unsigned t) 1582 { 1583 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1584 } 1585 1586 static bool valid_mtrr_type(unsigned t) 1587 { 1588 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1589 } 1590 1591 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1592 { 1593 int i; 1594 1595 if (!msr_mtrr_valid(msr)) 1596 return false; 1597 1598 if (msr == MSR_IA32_CR_PAT) { 1599 for (i = 0; i < 8; i++) 1600 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1601 return false; 1602 return true; 1603 } else if (msr == MSR_MTRRdefType) { 1604 if (data & ~0xcff) 1605 return false; 1606 return valid_mtrr_type(data & 0xff); 1607 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1608 for (i = 0; i < 8 ; i++) 1609 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1610 return false; 1611 return true; 1612 } 1613 1614 /* variable MTRRs */ 1615 return valid_mtrr_type(data & 0xff); 1616 } 1617 1618 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1619 { 1620 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1621 1622 if (!mtrr_valid(vcpu, msr, data)) 1623 return 1; 1624 1625 if (msr == MSR_MTRRdefType) { 1626 vcpu->arch.mtrr_state.def_type = data; 1627 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1628 } else if (msr == MSR_MTRRfix64K_00000) 1629 p[0] = data; 1630 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1631 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1632 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1633 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1634 else if (msr == MSR_IA32_CR_PAT) 1635 vcpu->arch.pat = data; 1636 else { /* Variable MTRRs */ 1637 int idx, is_mtrr_mask; 1638 u64 *pt; 1639 1640 idx = (msr - 0x200) / 2; 1641 is_mtrr_mask = msr - 0x200 - 2 * idx; 1642 if (!is_mtrr_mask) 1643 pt = 1644 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1645 else 1646 pt = 1647 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1648 *pt = data; 1649 } 1650 1651 kvm_mmu_reset_context(vcpu); 1652 return 0; 1653 } 1654 1655 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1656 { 1657 u64 mcg_cap = vcpu->arch.mcg_cap; 1658 unsigned bank_num = mcg_cap & 0xff; 1659 1660 switch (msr) { 1661 case MSR_IA32_MCG_STATUS: 1662 vcpu->arch.mcg_status = data; 1663 break; 1664 case MSR_IA32_MCG_CTL: 1665 if (!(mcg_cap & MCG_CTL_P)) 1666 return 1; 1667 if (data != 0 && data != ~(u64)0) 1668 return -1; 1669 vcpu->arch.mcg_ctl = data; 1670 break; 1671 default: 1672 if (msr >= MSR_IA32_MC0_CTL && 1673 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1674 u32 offset = msr - MSR_IA32_MC0_CTL; 1675 /* only 0 or all 1s can be written to IA32_MCi_CTL 1676 * some Linux kernels though clear bit 10 in bank 4 to 1677 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1678 * this to avoid an uncatched #GP in the guest 1679 */ 1680 if ((offset & 0x3) == 0 && 1681 data != 0 && (data | (1 << 10)) != ~(u64)0) 1682 return -1; 1683 vcpu->arch.mce_banks[offset] = data; 1684 break; 1685 } 1686 return 1; 1687 } 1688 return 0; 1689 } 1690 1691 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1692 { 1693 struct kvm *kvm = vcpu->kvm; 1694 int lm = is_long_mode(vcpu); 1695 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1696 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1697 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1698 : kvm->arch.xen_hvm_config.blob_size_32; 1699 u32 page_num = data & ~PAGE_MASK; 1700 u64 page_addr = data & PAGE_MASK; 1701 u8 *page; 1702 int r; 1703 1704 r = -E2BIG; 1705 if (page_num >= blob_size) 1706 goto out; 1707 r = -ENOMEM; 1708 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1709 if (IS_ERR(page)) { 1710 r = PTR_ERR(page); 1711 goto out; 1712 } 1713 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1714 goto out_free; 1715 r = 0; 1716 out_free: 1717 kfree(page); 1718 out: 1719 return r; 1720 } 1721 1722 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1723 { 1724 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1725 } 1726 1727 static bool kvm_hv_msr_partition_wide(u32 msr) 1728 { 1729 bool r = false; 1730 switch (msr) { 1731 case HV_X64_MSR_GUEST_OS_ID: 1732 case HV_X64_MSR_HYPERCALL: 1733 r = true; 1734 break; 1735 } 1736 1737 return r; 1738 } 1739 1740 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1741 { 1742 struct kvm *kvm = vcpu->kvm; 1743 1744 switch (msr) { 1745 case HV_X64_MSR_GUEST_OS_ID: 1746 kvm->arch.hv_guest_os_id = data; 1747 /* setting guest os id to zero disables hypercall page */ 1748 if (!kvm->arch.hv_guest_os_id) 1749 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1750 break; 1751 case HV_X64_MSR_HYPERCALL: { 1752 u64 gfn; 1753 unsigned long addr; 1754 u8 instructions[4]; 1755 1756 /* if guest os id is not set hypercall should remain disabled */ 1757 if (!kvm->arch.hv_guest_os_id) 1758 break; 1759 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1760 kvm->arch.hv_hypercall = data; 1761 break; 1762 } 1763 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1764 addr = gfn_to_hva(kvm, gfn); 1765 if (kvm_is_error_hva(addr)) 1766 return 1; 1767 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1768 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1769 if (__copy_to_user((void __user *)addr, instructions, 4)) 1770 return 1; 1771 kvm->arch.hv_hypercall = data; 1772 break; 1773 } 1774 default: 1775 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1776 "data 0x%llx\n", msr, data); 1777 return 1; 1778 } 1779 return 0; 1780 } 1781 1782 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1783 { 1784 switch (msr) { 1785 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1786 unsigned long addr; 1787 1788 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1789 vcpu->arch.hv_vapic = data; 1790 break; 1791 } 1792 addr = gfn_to_hva(vcpu->kvm, data >> 1793 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1794 if (kvm_is_error_hva(addr)) 1795 return 1; 1796 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1797 return 1; 1798 vcpu->arch.hv_vapic = data; 1799 break; 1800 } 1801 case HV_X64_MSR_EOI: 1802 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1803 case HV_X64_MSR_ICR: 1804 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1805 case HV_X64_MSR_TPR: 1806 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1807 default: 1808 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1809 "data 0x%llx\n", msr, data); 1810 return 1; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1817 { 1818 gpa_t gpa = data & ~0x3f; 1819 1820 /* Bits 2:5 are reserved, Should be zero */ 1821 if (data & 0x3c) 1822 return 1; 1823 1824 vcpu->arch.apf.msr_val = data; 1825 1826 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1827 kvm_clear_async_pf_completion_queue(vcpu); 1828 kvm_async_pf_hash_reset(vcpu); 1829 return 0; 1830 } 1831 1832 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1833 return 1; 1834 1835 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1836 kvm_async_pf_wakeup_all(vcpu); 1837 return 0; 1838 } 1839 1840 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1841 { 1842 if (vcpu->arch.time_page) { 1843 kvm_release_page_dirty(vcpu->arch.time_page); 1844 vcpu->arch.time_page = NULL; 1845 } 1846 } 1847 1848 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1849 { 1850 u64 delta; 1851 1852 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1853 return; 1854 1855 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1856 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1857 vcpu->arch.st.accum_steal = delta; 1858 } 1859 1860 static void record_steal_time(struct kvm_vcpu *vcpu) 1861 { 1862 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1863 return; 1864 1865 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1866 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1867 return; 1868 1869 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1870 vcpu->arch.st.steal.version += 2; 1871 vcpu->arch.st.accum_steal = 0; 1872 1873 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1874 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1875 } 1876 1877 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1878 { 1879 bool pr = false; 1880 u32 msr = msr_info->index; 1881 u64 data = msr_info->data; 1882 1883 switch (msr) { 1884 case MSR_EFER: 1885 return set_efer(vcpu, data); 1886 case MSR_K7_HWCR: 1887 data &= ~(u64)0x40; /* ignore flush filter disable */ 1888 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1889 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1890 if (data != 0) { 1891 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1892 data); 1893 return 1; 1894 } 1895 break; 1896 case MSR_FAM10H_MMIO_CONF_BASE: 1897 if (data != 0) { 1898 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1899 "0x%llx\n", data); 1900 return 1; 1901 } 1902 break; 1903 case MSR_AMD64_NB_CFG: 1904 break; 1905 case MSR_IA32_DEBUGCTLMSR: 1906 if (!data) { 1907 /* We support the non-activated case already */ 1908 break; 1909 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1910 /* Values other than LBR and BTF are vendor-specific, 1911 thus reserved and should throw a #GP */ 1912 return 1; 1913 } 1914 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1915 __func__, data); 1916 break; 1917 case MSR_IA32_UCODE_REV: 1918 case MSR_IA32_UCODE_WRITE: 1919 case MSR_VM_HSAVE_PA: 1920 case MSR_AMD64_PATCH_LOADER: 1921 break; 1922 case 0x200 ... 0x2ff: 1923 return set_msr_mtrr(vcpu, msr, data); 1924 case MSR_IA32_APICBASE: 1925 kvm_set_apic_base(vcpu, data); 1926 break; 1927 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1928 return kvm_x2apic_msr_write(vcpu, msr, data); 1929 case MSR_IA32_TSCDEADLINE: 1930 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1931 break; 1932 case MSR_IA32_TSC_ADJUST: 1933 if (guest_cpuid_has_tsc_adjust(vcpu)) { 1934 if (!msr_info->host_initiated) { 1935 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 1936 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 1937 } 1938 vcpu->arch.ia32_tsc_adjust_msr = data; 1939 } 1940 break; 1941 case MSR_IA32_MISC_ENABLE: 1942 vcpu->arch.ia32_misc_enable_msr = data; 1943 break; 1944 case MSR_KVM_WALL_CLOCK_NEW: 1945 case MSR_KVM_WALL_CLOCK: 1946 vcpu->kvm->arch.wall_clock = data; 1947 kvm_write_wall_clock(vcpu->kvm, data); 1948 break; 1949 case MSR_KVM_SYSTEM_TIME_NEW: 1950 case MSR_KVM_SYSTEM_TIME: { 1951 kvmclock_reset(vcpu); 1952 1953 vcpu->arch.time = data; 1954 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1955 1956 /* we verify if the enable bit is set... */ 1957 if (!(data & 1)) 1958 break; 1959 1960 /* ...but clean it before doing the actual write */ 1961 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1962 1963 vcpu->arch.time_page = 1964 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1965 1966 if (is_error_page(vcpu->arch.time_page)) 1967 vcpu->arch.time_page = NULL; 1968 1969 break; 1970 } 1971 case MSR_KVM_ASYNC_PF_EN: 1972 if (kvm_pv_enable_async_pf(vcpu, data)) 1973 return 1; 1974 break; 1975 case MSR_KVM_STEAL_TIME: 1976 1977 if (unlikely(!sched_info_on())) 1978 return 1; 1979 1980 if (data & KVM_STEAL_RESERVED_MASK) 1981 return 1; 1982 1983 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1984 data & KVM_STEAL_VALID_BITS)) 1985 return 1; 1986 1987 vcpu->arch.st.msr_val = data; 1988 1989 if (!(data & KVM_MSR_ENABLED)) 1990 break; 1991 1992 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1993 1994 preempt_disable(); 1995 accumulate_steal_time(vcpu); 1996 preempt_enable(); 1997 1998 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1999 2000 break; 2001 case MSR_KVM_PV_EOI_EN: 2002 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2003 return 1; 2004 break; 2005 2006 case MSR_IA32_MCG_CTL: 2007 case MSR_IA32_MCG_STATUS: 2008 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2009 return set_msr_mce(vcpu, msr, data); 2010 2011 /* Performance counters are not protected by a CPUID bit, 2012 * so we should check all of them in the generic path for the sake of 2013 * cross vendor migration. 2014 * Writing a zero into the event select MSRs disables them, 2015 * which we perfectly emulate ;-). Any other value should be at least 2016 * reported, some guests depend on them. 2017 */ 2018 case MSR_K7_EVNTSEL0: 2019 case MSR_K7_EVNTSEL1: 2020 case MSR_K7_EVNTSEL2: 2021 case MSR_K7_EVNTSEL3: 2022 if (data != 0) 2023 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2024 "0x%x data 0x%llx\n", msr, data); 2025 break; 2026 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2027 * so we ignore writes to make it happy. 2028 */ 2029 case MSR_K7_PERFCTR0: 2030 case MSR_K7_PERFCTR1: 2031 case MSR_K7_PERFCTR2: 2032 case MSR_K7_PERFCTR3: 2033 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2034 "0x%x data 0x%llx\n", msr, data); 2035 break; 2036 case MSR_P6_PERFCTR0: 2037 case MSR_P6_PERFCTR1: 2038 pr = true; 2039 case MSR_P6_EVNTSEL0: 2040 case MSR_P6_EVNTSEL1: 2041 if (kvm_pmu_msr(vcpu, msr)) 2042 return kvm_pmu_set_msr(vcpu, msr, data); 2043 2044 if (pr || data != 0) 2045 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2046 "0x%x data 0x%llx\n", msr, data); 2047 break; 2048 case MSR_K7_CLK_CTL: 2049 /* 2050 * Ignore all writes to this no longer documented MSR. 2051 * Writes are only relevant for old K7 processors, 2052 * all pre-dating SVM, but a recommended workaround from 2053 * AMD for these chips. It is possible to specify the 2054 * affected processor models on the command line, hence 2055 * the need to ignore the workaround. 2056 */ 2057 break; 2058 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2059 if (kvm_hv_msr_partition_wide(msr)) { 2060 int r; 2061 mutex_lock(&vcpu->kvm->lock); 2062 r = set_msr_hyperv_pw(vcpu, msr, data); 2063 mutex_unlock(&vcpu->kvm->lock); 2064 return r; 2065 } else 2066 return set_msr_hyperv(vcpu, msr, data); 2067 break; 2068 case MSR_IA32_BBL_CR_CTL3: 2069 /* Drop writes to this legacy MSR -- see rdmsr 2070 * counterpart for further detail. 2071 */ 2072 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2073 break; 2074 case MSR_AMD64_OSVW_ID_LENGTH: 2075 if (!guest_cpuid_has_osvw(vcpu)) 2076 return 1; 2077 vcpu->arch.osvw.length = data; 2078 break; 2079 case MSR_AMD64_OSVW_STATUS: 2080 if (!guest_cpuid_has_osvw(vcpu)) 2081 return 1; 2082 vcpu->arch.osvw.status = data; 2083 break; 2084 default: 2085 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2086 return xen_hvm_config(vcpu, data); 2087 if (kvm_pmu_msr(vcpu, msr)) 2088 return kvm_pmu_set_msr(vcpu, msr, data); 2089 if (!ignore_msrs) { 2090 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2091 msr, data); 2092 return 1; 2093 } else { 2094 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2095 msr, data); 2096 break; 2097 } 2098 } 2099 return 0; 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2102 2103 2104 /* 2105 * Reads an msr value (of 'msr_index') into 'pdata'. 2106 * Returns 0 on success, non-0 otherwise. 2107 * Assumes vcpu_load() was already called. 2108 */ 2109 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2110 { 2111 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2112 } 2113 2114 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2115 { 2116 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2117 2118 if (!msr_mtrr_valid(msr)) 2119 return 1; 2120 2121 if (msr == MSR_MTRRdefType) 2122 *pdata = vcpu->arch.mtrr_state.def_type + 2123 (vcpu->arch.mtrr_state.enabled << 10); 2124 else if (msr == MSR_MTRRfix64K_00000) 2125 *pdata = p[0]; 2126 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2127 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2128 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2129 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2130 else if (msr == MSR_IA32_CR_PAT) 2131 *pdata = vcpu->arch.pat; 2132 else { /* Variable MTRRs */ 2133 int idx, is_mtrr_mask; 2134 u64 *pt; 2135 2136 idx = (msr - 0x200) / 2; 2137 is_mtrr_mask = msr - 0x200 - 2 * idx; 2138 if (!is_mtrr_mask) 2139 pt = 2140 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2141 else 2142 pt = 2143 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2144 *pdata = *pt; 2145 } 2146 2147 return 0; 2148 } 2149 2150 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2151 { 2152 u64 data; 2153 u64 mcg_cap = vcpu->arch.mcg_cap; 2154 unsigned bank_num = mcg_cap & 0xff; 2155 2156 switch (msr) { 2157 case MSR_IA32_P5_MC_ADDR: 2158 case MSR_IA32_P5_MC_TYPE: 2159 data = 0; 2160 break; 2161 case MSR_IA32_MCG_CAP: 2162 data = vcpu->arch.mcg_cap; 2163 break; 2164 case MSR_IA32_MCG_CTL: 2165 if (!(mcg_cap & MCG_CTL_P)) 2166 return 1; 2167 data = vcpu->arch.mcg_ctl; 2168 break; 2169 case MSR_IA32_MCG_STATUS: 2170 data = vcpu->arch.mcg_status; 2171 break; 2172 default: 2173 if (msr >= MSR_IA32_MC0_CTL && 2174 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2175 u32 offset = msr - MSR_IA32_MC0_CTL; 2176 data = vcpu->arch.mce_banks[offset]; 2177 break; 2178 } 2179 return 1; 2180 } 2181 *pdata = data; 2182 return 0; 2183 } 2184 2185 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2186 { 2187 u64 data = 0; 2188 struct kvm *kvm = vcpu->kvm; 2189 2190 switch (msr) { 2191 case HV_X64_MSR_GUEST_OS_ID: 2192 data = kvm->arch.hv_guest_os_id; 2193 break; 2194 case HV_X64_MSR_HYPERCALL: 2195 data = kvm->arch.hv_hypercall; 2196 break; 2197 default: 2198 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2199 return 1; 2200 } 2201 2202 *pdata = data; 2203 return 0; 2204 } 2205 2206 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2207 { 2208 u64 data = 0; 2209 2210 switch (msr) { 2211 case HV_X64_MSR_VP_INDEX: { 2212 int r; 2213 struct kvm_vcpu *v; 2214 kvm_for_each_vcpu(r, v, vcpu->kvm) 2215 if (v == vcpu) 2216 data = r; 2217 break; 2218 } 2219 case HV_X64_MSR_EOI: 2220 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2221 case HV_X64_MSR_ICR: 2222 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2223 case HV_X64_MSR_TPR: 2224 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2225 case HV_X64_MSR_APIC_ASSIST_PAGE: 2226 data = vcpu->arch.hv_vapic; 2227 break; 2228 default: 2229 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2230 return 1; 2231 } 2232 *pdata = data; 2233 return 0; 2234 } 2235 2236 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2237 { 2238 u64 data; 2239 2240 switch (msr) { 2241 case MSR_IA32_PLATFORM_ID: 2242 case MSR_IA32_EBL_CR_POWERON: 2243 case MSR_IA32_DEBUGCTLMSR: 2244 case MSR_IA32_LASTBRANCHFROMIP: 2245 case MSR_IA32_LASTBRANCHTOIP: 2246 case MSR_IA32_LASTINTFROMIP: 2247 case MSR_IA32_LASTINTTOIP: 2248 case MSR_K8_SYSCFG: 2249 case MSR_K7_HWCR: 2250 case MSR_VM_HSAVE_PA: 2251 case MSR_K7_EVNTSEL0: 2252 case MSR_K7_PERFCTR0: 2253 case MSR_K8_INT_PENDING_MSG: 2254 case MSR_AMD64_NB_CFG: 2255 case MSR_FAM10H_MMIO_CONF_BASE: 2256 data = 0; 2257 break; 2258 case MSR_P6_PERFCTR0: 2259 case MSR_P6_PERFCTR1: 2260 case MSR_P6_EVNTSEL0: 2261 case MSR_P6_EVNTSEL1: 2262 if (kvm_pmu_msr(vcpu, msr)) 2263 return kvm_pmu_get_msr(vcpu, msr, pdata); 2264 data = 0; 2265 break; 2266 case MSR_IA32_UCODE_REV: 2267 data = 0x100000000ULL; 2268 break; 2269 case MSR_MTRRcap: 2270 data = 0x500 | KVM_NR_VAR_MTRR; 2271 break; 2272 case 0x200 ... 0x2ff: 2273 return get_msr_mtrr(vcpu, msr, pdata); 2274 case 0xcd: /* fsb frequency */ 2275 data = 3; 2276 break; 2277 /* 2278 * MSR_EBC_FREQUENCY_ID 2279 * Conservative value valid for even the basic CPU models. 2280 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2281 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2282 * and 266MHz for model 3, or 4. Set Core Clock 2283 * Frequency to System Bus Frequency Ratio to 1 (bits 2284 * 31:24) even though these are only valid for CPU 2285 * models > 2, however guests may end up dividing or 2286 * multiplying by zero otherwise. 2287 */ 2288 case MSR_EBC_FREQUENCY_ID: 2289 data = 1 << 24; 2290 break; 2291 case MSR_IA32_APICBASE: 2292 data = kvm_get_apic_base(vcpu); 2293 break; 2294 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2295 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2296 break; 2297 case MSR_IA32_TSCDEADLINE: 2298 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2299 break; 2300 case MSR_IA32_TSC_ADJUST: 2301 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2302 break; 2303 case MSR_IA32_MISC_ENABLE: 2304 data = vcpu->arch.ia32_misc_enable_msr; 2305 break; 2306 case MSR_IA32_PERF_STATUS: 2307 /* TSC increment by tick */ 2308 data = 1000ULL; 2309 /* CPU multiplier */ 2310 data |= (((uint64_t)4ULL) << 40); 2311 break; 2312 case MSR_EFER: 2313 data = vcpu->arch.efer; 2314 break; 2315 case MSR_KVM_WALL_CLOCK: 2316 case MSR_KVM_WALL_CLOCK_NEW: 2317 data = vcpu->kvm->arch.wall_clock; 2318 break; 2319 case MSR_KVM_SYSTEM_TIME: 2320 case MSR_KVM_SYSTEM_TIME_NEW: 2321 data = vcpu->arch.time; 2322 break; 2323 case MSR_KVM_ASYNC_PF_EN: 2324 data = vcpu->arch.apf.msr_val; 2325 break; 2326 case MSR_KVM_STEAL_TIME: 2327 data = vcpu->arch.st.msr_val; 2328 break; 2329 case MSR_KVM_PV_EOI_EN: 2330 data = vcpu->arch.pv_eoi.msr_val; 2331 break; 2332 case MSR_IA32_P5_MC_ADDR: 2333 case MSR_IA32_P5_MC_TYPE: 2334 case MSR_IA32_MCG_CAP: 2335 case MSR_IA32_MCG_CTL: 2336 case MSR_IA32_MCG_STATUS: 2337 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2338 return get_msr_mce(vcpu, msr, pdata); 2339 case MSR_K7_CLK_CTL: 2340 /* 2341 * Provide expected ramp-up count for K7. All other 2342 * are set to zero, indicating minimum divisors for 2343 * every field. 2344 * 2345 * This prevents guest kernels on AMD host with CPU 2346 * type 6, model 8 and higher from exploding due to 2347 * the rdmsr failing. 2348 */ 2349 data = 0x20000000; 2350 break; 2351 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2352 if (kvm_hv_msr_partition_wide(msr)) { 2353 int r; 2354 mutex_lock(&vcpu->kvm->lock); 2355 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2356 mutex_unlock(&vcpu->kvm->lock); 2357 return r; 2358 } else 2359 return get_msr_hyperv(vcpu, msr, pdata); 2360 break; 2361 case MSR_IA32_BBL_CR_CTL3: 2362 /* This legacy MSR exists but isn't fully documented in current 2363 * silicon. It is however accessed by winxp in very narrow 2364 * scenarios where it sets bit #19, itself documented as 2365 * a "reserved" bit. Best effort attempt to source coherent 2366 * read data here should the balance of the register be 2367 * interpreted by the guest: 2368 * 2369 * L2 cache control register 3: 64GB range, 256KB size, 2370 * enabled, latency 0x1, configured 2371 */ 2372 data = 0xbe702111; 2373 break; 2374 case MSR_AMD64_OSVW_ID_LENGTH: 2375 if (!guest_cpuid_has_osvw(vcpu)) 2376 return 1; 2377 data = vcpu->arch.osvw.length; 2378 break; 2379 case MSR_AMD64_OSVW_STATUS: 2380 if (!guest_cpuid_has_osvw(vcpu)) 2381 return 1; 2382 data = vcpu->arch.osvw.status; 2383 break; 2384 default: 2385 if (kvm_pmu_msr(vcpu, msr)) 2386 return kvm_pmu_get_msr(vcpu, msr, pdata); 2387 if (!ignore_msrs) { 2388 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2389 return 1; 2390 } else { 2391 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2392 data = 0; 2393 } 2394 break; 2395 } 2396 *pdata = data; 2397 return 0; 2398 } 2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2400 2401 /* 2402 * Read or write a bunch of msrs. All parameters are kernel addresses. 2403 * 2404 * @return number of msrs set successfully. 2405 */ 2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2407 struct kvm_msr_entry *entries, 2408 int (*do_msr)(struct kvm_vcpu *vcpu, 2409 unsigned index, u64 *data)) 2410 { 2411 int i, idx; 2412 2413 idx = srcu_read_lock(&vcpu->kvm->srcu); 2414 for (i = 0; i < msrs->nmsrs; ++i) 2415 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2416 break; 2417 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2418 2419 return i; 2420 } 2421 2422 /* 2423 * Read or write a bunch of msrs. Parameters are user addresses. 2424 * 2425 * @return number of msrs set successfully. 2426 */ 2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2428 int (*do_msr)(struct kvm_vcpu *vcpu, 2429 unsigned index, u64 *data), 2430 int writeback) 2431 { 2432 struct kvm_msrs msrs; 2433 struct kvm_msr_entry *entries; 2434 int r, n; 2435 unsigned size; 2436 2437 r = -EFAULT; 2438 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2439 goto out; 2440 2441 r = -E2BIG; 2442 if (msrs.nmsrs >= MAX_IO_MSRS) 2443 goto out; 2444 2445 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2446 entries = memdup_user(user_msrs->entries, size); 2447 if (IS_ERR(entries)) { 2448 r = PTR_ERR(entries); 2449 goto out; 2450 } 2451 2452 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2453 if (r < 0) 2454 goto out_free; 2455 2456 r = -EFAULT; 2457 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2458 goto out_free; 2459 2460 r = n; 2461 2462 out_free: 2463 kfree(entries); 2464 out: 2465 return r; 2466 } 2467 2468 int kvm_dev_ioctl_check_extension(long ext) 2469 { 2470 int r; 2471 2472 switch (ext) { 2473 case KVM_CAP_IRQCHIP: 2474 case KVM_CAP_HLT: 2475 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2476 case KVM_CAP_SET_TSS_ADDR: 2477 case KVM_CAP_EXT_CPUID: 2478 case KVM_CAP_CLOCKSOURCE: 2479 case KVM_CAP_PIT: 2480 case KVM_CAP_NOP_IO_DELAY: 2481 case KVM_CAP_MP_STATE: 2482 case KVM_CAP_SYNC_MMU: 2483 case KVM_CAP_USER_NMI: 2484 case KVM_CAP_REINJECT_CONTROL: 2485 case KVM_CAP_IRQ_INJECT_STATUS: 2486 case KVM_CAP_ASSIGN_DEV_IRQ: 2487 case KVM_CAP_IRQFD: 2488 case KVM_CAP_IOEVENTFD: 2489 case KVM_CAP_PIT2: 2490 case KVM_CAP_PIT_STATE2: 2491 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2492 case KVM_CAP_XEN_HVM: 2493 case KVM_CAP_ADJUST_CLOCK: 2494 case KVM_CAP_VCPU_EVENTS: 2495 case KVM_CAP_HYPERV: 2496 case KVM_CAP_HYPERV_VAPIC: 2497 case KVM_CAP_HYPERV_SPIN: 2498 case KVM_CAP_PCI_SEGMENT: 2499 case KVM_CAP_DEBUGREGS: 2500 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2501 case KVM_CAP_XSAVE: 2502 case KVM_CAP_ASYNC_PF: 2503 case KVM_CAP_GET_TSC_KHZ: 2504 case KVM_CAP_PCI_2_3: 2505 case KVM_CAP_KVMCLOCK_CTRL: 2506 case KVM_CAP_READONLY_MEM: 2507 case KVM_CAP_IRQFD_RESAMPLE: 2508 r = 1; 2509 break; 2510 case KVM_CAP_COALESCED_MMIO: 2511 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2512 break; 2513 case KVM_CAP_VAPIC: 2514 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2515 break; 2516 case KVM_CAP_NR_VCPUS: 2517 r = KVM_SOFT_MAX_VCPUS; 2518 break; 2519 case KVM_CAP_MAX_VCPUS: 2520 r = KVM_MAX_VCPUS; 2521 break; 2522 case KVM_CAP_NR_MEMSLOTS: 2523 r = KVM_MEMORY_SLOTS; 2524 break; 2525 case KVM_CAP_PV_MMU: /* obsolete */ 2526 r = 0; 2527 break; 2528 case KVM_CAP_IOMMU: 2529 r = iommu_present(&pci_bus_type); 2530 break; 2531 case KVM_CAP_MCE: 2532 r = KVM_MAX_MCE_BANKS; 2533 break; 2534 case KVM_CAP_XCRS: 2535 r = cpu_has_xsave; 2536 break; 2537 case KVM_CAP_TSC_CONTROL: 2538 r = kvm_has_tsc_control; 2539 break; 2540 case KVM_CAP_TSC_DEADLINE_TIMER: 2541 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2542 break; 2543 default: 2544 r = 0; 2545 break; 2546 } 2547 return r; 2548 2549 } 2550 2551 long kvm_arch_dev_ioctl(struct file *filp, 2552 unsigned int ioctl, unsigned long arg) 2553 { 2554 void __user *argp = (void __user *)arg; 2555 long r; 2556 2557 switch (ioctl) { 2558 case KVM_GET_MSR_INDEX_LIST: { 2559 struct kvm_msr_list __user *user_msr_list = argp; 2560 struct kvm_msr_list msr_list; 2561 unsigned n; 2562 2563 r = -EFAULT; 2564 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2565 goto out; 2566 n = msr_list.nmsrs; 2567 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2568 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2569 goto out; 2570 r = -E2BIG; 2571 if (n < msr_list.nmsrs) 2572 goto out; 2573 r = -EFAULT; 2574 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2575 num_msrs_to_save * sizeof(u32))) 2576 goto out; 2577 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2578 &emulated_msrs, 2579 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2580 goto out; 2581 r = 0; 2582 break; 2583 } 2584 case KVM_GET_SUPPORTED_CPUID: { 2585 struct kvm_cpuid2 __user *cpuid_arg = argp; 2586 struct kvm_cpuid2 cpuid; 2587 2588 r = -EFAULT; 2589 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2590 goto out; 2591 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2592 cpuid_arg->entries); 2593 if (r) 2594 goto out; 2595 2596 r = -EFAULT; 2597 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2598 goto out; 2599 r = 0; 2600 break; 2601 } 2602 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2603 u64 mce_cap; 2604 2605 mce_cap = KVM_MCE_CAP_SUPPORTED; 2606 r = -EFAULT; 2607 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2608 goto out; 2609 r = 0; 2610 break; 2611 } 2612 default: 2613 r = -EINVAL; 2614 } 2615 out: 2616 return r; 2617 } 2618 2619 static void wbinvd_ipi(void *garbage) 2620 { 2621 wbinvd(); 2622 } 2623 2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2625 { 2626 return vcpu->kvm->arch.iommu_domain && 2627 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2628 } 2629 2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2631 { 2632 /* Address WBINVD may be executed by guest */ 2633 if (need_emulate_wbinvd(vcpu)) { 2634 if (kvm_x86_ops->has_wbinvd_exit()) 2635 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2636 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2637 smp_call_function_single(vcpu->cpu, 2638 wbinvd_ipi, NULL, 1); 2639 } 2640 2641 kvm_x86_ops->vcpu_load(vcpu, cpu); 2642 2643 /* Apply any externally detected TSC adjustments (due to suspend) */ 2644 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2645 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2646 vcpu->arch.tsc_offset_adjustment = 0; 2647 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2648 } 2649 2650 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2651 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2652 native_read_tsc() - vcpu->arch.last_host_tsc; 2653 if (tsc_delta < 0) 2654 mark_tsc_unstable("KVM discovered backwards TSC"); 2655 if (check_tsc_unstable()) { 2656 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2657 vcpu->arch.last_guest_tsc); 2658 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2659 vcpu->arch.tsc_catchup = 1; 2660 } 2661 /* 2662 * On a host with synchronized TSC, there is no need to update 2663 * kvmclock on vcpu->cpu migration 2664 */ 2665 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2667 if (vcpu->cpu != cpu) 2668 kvm_migrate_timers(vcpu); 2669 vcpu->cpu = cpu; 2670 } 2671 2672 accumulate_steal_time(vcpu); 2673 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2674 } 2675 2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2677 { 2678 kvm_x86_ops->vcpu_put(vcpu); 2679 kvm_put_guest_fpu(vcpu); 2680 vcpu->arch.last_host_tsc = native_read_tsc(); 2681 } 2682 2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2684 struct kvm_lapic_state *s) 2685 { 2686 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2687 2688 return 0; 2689 } 2690 2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2692 struct kvm_lapic_state *s) 2693 { 2694 kvm_apic_post_state_restore(vcpu, s); 2695 update_cr8_intercept(vcpu); 2696 2697 return 0; 2698 } 2699 2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2701 struct kvm_interrupt *irq) 2702 { 2703 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS) 2704 return -EINVAL; 2705 if (irqchip_in_kernel(vcpu->kvm)) 2706 return -ENXIO; 2707 2708 kvm_queue_interrupt(vcpu, irq->irq, false); 2709 kvm_make_request(KVM_REQ_EVENT, vcpu); 2710 2711 return 0; 2712 } 2713 2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2715 { 2716 kvm_inject_nmi(vcpu); 2717 2718 return 0; 2719 } 2720 2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2722 struct kvm_tpr_access_ctl *tac) 2723 { 2724 if (tac->flags) 2725 return -EINVAL; 2726 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2727 return 0; 2728 } 2729 2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2731 u64 mcg_cap) 2732 { 2733 int r; 2734 unsigned bank_num = mcg_cap & 0xff, bank; 2735 2736 r = -EINVAL; 2737 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2738 goto out; 2739 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2740 goto out; 2741 r = 0; 2742 vcpu->arch.mcg_cap = mcg_cap; 2743 /* Init IA32_MCG_CTL to all 1s */ 2744 if (mcg_cap & MCG_CTL_P) 2745 vcpu->arch.mcg_ctl = ~(u64)0; 2746 /* Init IA32_MCi_CTL to all 1s */ 2747 for (bank = 0; bank < bank_num; bank++) 2748 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2749 out: 2750 return r; 2751 } 2752 2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2754 struct kvm_x86_mce *mce) 2755 { 2756 u64 mcg_cap = vcpu->arch.mcg_cap; 2757 unsigned bank_num = mcg_cap & 0xff; 2758 u64 *banks = vcpu->arch.mce_banks; 2759 2760 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2761 return -EINVAL; 2762 /* 2763 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2764 * reporting is disabled 2765 */ 2766 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2767 vcpu->arch.mcg_ctl != ~(u64)0) 2768 return 0; 2769 banks += 4 * mce->bank; 2770 /* 2771 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2772 * reporting is disabled for the bank 2773 */ 2774 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2775 return 0; 2776 if (mce->status & MCI_STATUS_UC) { 2777 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2778 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2779 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2780 return 0; 2781 } 2782 if (banks[1] & MCI_STATUS_VAL) 2783 mce->status |= MCI_STATUS_OVER; 2784 banks[2] = mce->addr; 2785 banks[3] = mce->misc; 2786 vcpu->arch.mcg_status = mce->mcg_status; 2787 banks[1] = mce->status; 2788 kvm_queue_exception(vcpu, MC_VECTOR); 2789 } else if (!(banks[1] & MCI_STATUS_VAL) 2790 || !(banks[1] & MCI_STATUS_UC)) { 2791 if (banks[1] & MCI_STATUS_VAL) 2792 mce->status |= MCI_STATUS_OVER; 2793 banks[2] = mce->addr; 2794 banks[3] = mce->misc; 2795 banks[1] = mce->status; 2796 } else 2797 banks[1] |= MCI_STATUS_OVER; 2798 return 0; 2799 } 2800 2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2802 struct kvm_vcpu_events *events) 2803 { 2804 process_nmi(vcpu); 2805 events->exception.injected = 2806 vcpu->arch.exception.pending && 2807 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2808 events->exception.nr = vcpu->arch.exception.nr; 2809 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2810 events->exception.pad = 0; 2811 events->exception.error_code = vcpu->arch.exception.error_code; 2812 2813 events->interrupt.injected = 2814 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2815 events->interrupt.nr = vcpu->arch.interrupt.nr; 2816 events->interrupt.soft = 0; 2817 events->interrupt.shadow = 2818 kvm_x86_ops->get_interrupt_shadow(vcpu, 2819 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2820 2821 events->nmi.injected = vcpu->arch.nmi_injected; 2822 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2823 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2824 events->nmi.pad = 0; 2825 2826 events->sipi_vector = vcpu->arch.sipi_vector; 2827 2828 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2829 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2830 | KVM_VCPUEVENT_VALID_SHADOW); 2831 memset(&events->reserved, 0, sizeof(events->reserved)); 2832 } 2833 2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2835 struct kvm_vcpu_events *events) 2836 { 2837 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2838 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2839 | KVM_VCPUEVENT_VALID_SHADOW)) 2840 return -EINVAL; 2841 2842 process_nmi(vcpu); 2843 vcpu->arch.exception.pending = events->exception.injected; 2844 vcpu->arch.exception.nr = events->exception.nr; 2845 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2846 vcpu->arch.exception.error_code = events->exception.error_code; 2847 2848 vcpu->arch.interrupt.pending = events->interrupt.injected; 2849 vcpu->arch.interrupt.nr = events->interrupt.nr; 2850 vcpu->arch.interrupt.soft = events->interrupt.soft; 2851 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2852 kvm_x86_ops->set_interrupt_shadow(vcpu, 2853 events->interrupt.shadow); 2854 2855 vcpu->arch.nmi_injected = events->nmi.injected; 2856 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2857 vcpu->arch.nmi_pending = events->nmi.pending; 2858 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2859 2860 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2861 vcpu->arch.sipi_vector = events->sipi_vector; 2862 2863 kvm_make_request(KVM_REQ_EVENT, vcpu); 2864 2865 return 0; 2866 } 2867 2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2869 struct kvm_debugregs *dbgregs) 2870 { 2871 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2872 dbgregs->dr6 = vcpu->arch.dr6; 2873 dbgregs->dr7 = vcpu->arch.dr7; 2874 dbgregs->flags = 0; 2875 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2876 } 2877 2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2879 struct kvm_debugregs *dbgregs) 2880 { 2881 if (dbgregs->flags) 2882 return -EINVAL; 2883 2884 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2885 vcpu->arch.dr6 = dbgregs->dr6; 2886 vcpu->arch.dr7 = dbgregs->dr7; 2887 2888 return 0; 2889 } 2890 2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2892 struct kvm_xsave *guest_xsave) 2893 { 2894 if (cpu_has_xsave) 2895 memcpy(guest_xsave->region, 2896 &vcpu->arch.guest_fpu.state->xsave, 2897 xstate_size); 2898 else { 2899 memcpy(guest_xsave->region, 2900 &vcpu->arch.guest_fpu.state->fxsave, 2901 sizeof(struct i387_fxsave_struct)); 2902 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2903 XSTATE_FPSSE; 2904 } 2905 } 2906 2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2908 struct kvm_xsave *guest_xsave) 2909 { 2910 u64 xstate_bv = 2911 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2912 2913 if (cpu_has_xsave) 2914 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2915 guest_xsave->region, xstate_size); 2916 else { 2917 if (xstate_bv & ~XSTATE_FPSSE) 2918 return -EINVAL; 2919 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2920 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2921 } 2922 return 0; 2923 } 2924 2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2926 struct kvm_xcrs *guest_xcrs) 2927 { 2928 if (!cpu_has_xsave) { 2929 guest_xcrs->nr_xcrs = 0; 2930 return; 2931 } 2932 2933 guest_xcrs->nr_xcrs = 1; 2934 guest_xcrs->flags = 0; 2935 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2936 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2937 } 2938 2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2940 struct kvm_xcrs *guest_xcrs) 2941 { 2942 int i, r = 0; 2943 2944 if (!cpu_has_xsave) 2945 return -EINVAL; 2946 2947 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2948 return -EINVAL; 2949 2950 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2951 /* Only support XCR0 currently */ 2952 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2953 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2954 guest_xcrs->xcrs[0].value); 2955 break; 2956 } 2957 if (r) 2958 r = -EINVAL; 2959 return r; 2960 } 2961 2962 /* 2963 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2964 * stopped by the hypervisor. This function will be called from the host only. 2965 * EINVAL is returned when the host attempts to set the flag for a guest that 2966 * does not support pv clocks. 2967 */ 2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2969 { 2970 if (!vcpu->arch.time_page) 2971 return -EINVAL; 2972 vcpu->arch.pvclock_set_guest_stopped_request = true; 2973 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2974 return 0; 2975 } 2976 2977 long kvm_arch_vcpu_ioctl(struct file *filp, 2978 unsigned int ioctl, unsigned long arg) 2979 { 2980 struct kvm_vcpu *vcpu = filp->private_data; 2981 void __user *argp = (void __user *)arg; 2982 int r; 2983 union { 2984 struct kvm_lapic_state *lapic; 2985 struct kvm_xsave *xsave; 2986 struct kvm_xcrs *xcrs; 2987 void *buffer; 2988 } u; 2989 2990 u.buffer = NULL; 2991 switch (ioctl) { 2992 case KVM_GET_LAPIC: { 2993 r = -EINVAL; 2994 if (!vcpu->arch.apic) 2995 goto out; 2996 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2997 2998 r = -ENOMEM; 2999 if (!u.lapic) 3000 goto out; 3001 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3002 if (r) 3003 goto out; 3004 r = -EFAULT; 3005 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3006 goto out; 3007 r = 0; 3008 break; 3009 } 3010 case KVM_SET_LAPIC: { 3011 r = -EINVAL; 3012 if (!vcpu->arch.apic) 3013 goto out; 3014 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3015 if (IS_ERR(u.lapic)) 3016 return PTR_ERR(u.lapic); 3017 3018 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3019 break; 3020 } 3021 case KVM_INTERRUPT: { 3022 struct kvm_interrupt irq; 3023 3024 r = -EFAULT; 3025 if (copy_from_user(&irq, argp, sizeof irq)) 3026 goto out; 3027 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3028 break; 3029 } 3030 case KVM_NMI: { 3031 r = kvm_vcpu_ioctl_nmi(vcpu); 3032 break; 3033 } 3034 case KVM_SET_CPUID: { 3035 struct kvm_cpuid __user *cpuid_arg = argp; 3036 struct kvm_cpuid cpuid; 3037 3038 r = -EFAULT; 3039 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3040 goto out; 3041 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3042 break; 3043 } 3044 case KVM_SET_CPUID2: { 3045 struct kvm_cpuid2 __user *cpuid_arg = argp; 3046 struct kvm_cpuid2 cpuid; 3047 3048 r = -EFAULT; 3049 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3050 goto out; 3051 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3052 cpuid_arg->entries); 3053 break; 3054 } 3055 case KVM_GET_CPUID2: { 3056 struct kvm_cpuid2 __user *cpuid_arg = argp; 3057 struct kvm_cpuid2 cpuid; 3058 3059 r = -EFAULT; 3060 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3061 goto out; 3062 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3063 cpuid_arg->entries); 3064 if (r) 3065 goto out; 3066 r = -EFAULT; 3067 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3068 goto out; 3069 r = 0; 3070 break; 3071 } 3072 case KVM_GET_MSRS: 3073 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3074 break; 3075 case KVM_SET_MSRS: 3076 r = msr_io(vcpu, argp, do_set_msr, 0); 3077 break; 3078 case KVM_TPR_ACCESS_REPORTING: { 3079 struct kvm_tpr_access_ctl tac; 3080 3081 r = -EFAULT; 3082 if (copy_from_user(&tac, argp, sizeof tac)) 3083 goto out; 3084 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3085 if (r) 3086 goto out; 3087 r = -EFAULT; 3088 if (copy_to_user(argp, &tac, sizeof tac)) 3089 goto out; 3090 r = 0; 3091 break; 3092 }; 3093 case KVM_SET_VAPIC_ADDR: { 3094 struct kvm_vapic_addr va; 3095 3096 r = -EINVAL; 3097 if (!irqchip_in_kernel(vcpu->kvm)) 3098 goto out; 3099 r = -EFAULT; 3100 if (copy_from_user(&va, argp, sizeof va)) 3101 goto out; 3102 r = 0; 3103 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3104 break; 3105 } 3106 case KVM_X86_SETUP_MCE: { 3107 u64 mcg_cap; 3108 3109 r = -EFAULT; 3110 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3111 goto out; 3112 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3113 break; 3114 } 3115 case KVM_X86_SET_MCE: { 3116 struct kvm_x86_mce mce; 3117 3118 r = -EFAULT; 3119 if (copy_from_user(&mce, argp, sizeof mce)) 3120 goto out; 3121 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3122 break; 3123 } 3124 case KVM_GET_VCPU_EVENTS: { 3125 struct kvm_vcpu_events events; 3126 3127 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3128 3129 r = -EFAULT; 3130 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3131 break; 3132 r = 0; 3133 break; 3134 } 3135 case KVM_SET_VCPU_EVENTS: { 3136 struct kvm_vcpu_events events; 3137 3138 r = -EFAULT; 3139 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3140 break; 3141 3142 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3143 break; 3144 } 3145 case KVM_GET_DEBUGREGS: { 3146 struct kvm_debugregs dbgregs; 3147 3148 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3149 3150 r = -EFAULT; 3151 if (copy_to_user(argp, &dbgregs, 3152 sizeof(struct kvm_debugregs))) 3153 break; 3154 r = 0; 3155 break; 3156 } 3157 case KVM_SET_DEBUGREGS: { 3158 struct kvm_debugregs dbgregs; 3159 3160 r = -EFAULT; 3161 if (copy_from_user(&dbgregs, argp, 3162 sizeof(struct kvm_debugregs))) 3163 break; 3164 3165 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3166 break; 3167 } 3168 case KVM_GET_XSAVE: { 3169 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3170 r = -ENOMEM; 3171 if (!u.xsave) 3172 break; 3173 3174 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3175 3176 r = -EFAULT; 3177 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3178 break; 3179 r = 0; 3180 break; 3181 } 3182 case KVM_SET_XSAVE: { 3183 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3184 if (IS_ERR(u.xsave)) 3185 return PTR_ERR(u.xsave); 3186 3187 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3188 break; 3189 } 3190 case KVM_GET_XCRS: { 3191 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3192 r = -ENOMEM; 3193 if (!u.xcrs) 3194 break; 3195 3196 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3197 3198 r = -EFAULT; 3199 if (copy_to_user(argp, u.xcrs, 3200 sizeof(struct kvm_xcrs))) 3201 break; 3202 r = 0; 3203 break; 3204 } 3205 case KVM_SET_XCRS: { 3206 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3207 if (IS_ERR(u.xcrs)) 3208 return PTR_ERR(u.xcrs); 3209 3210 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3211 break; 3212 } 3213 case KVM_SET_TSC_KHZ: { 3214 u32 user_tsc_khz; 3215 3216 r = -EINVAL; 3217 user_tsc_khz = (u32)arg; 3218 3219 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3220 goto out; 3221 3222 if (user_tsc_khz == 0) 3223 user_tsc_khz = tsc_khz; 3224 3225 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3226 3227 r = 0; 3228 goto out; 3229 } 3230 case KVM_GET_TSC_KHZ: { 3231 r = vcpu->arch.virtual_tsc_khz; 3232 goto out; 3233 } 3234 case KVM_KVMCLOCK_CTRL: { 3235 r = kvm_set_guest_paused(vcpu); 3236 goto out; 3237 } 3238 default: 3239 r = -EINVAL; 3240 } 3241 out: 3242 kfree(u.buffer); 3243 return r; 3244 } 3245 3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3247 { 3248 return VM_FAULT_SIGBUS; 3249 } 3250 3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3252 { 3253 int ret; 3254 3255 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3256 return -EINVAL; 3257 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3258 return ret; 3259 } 3260 3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3262 u64 ident_addr) 3263 { 3264 kvm->arch.ept_identity_map_addr = ident_addr; 3265 return 0; 3266 } 3267 3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3269 u32 kvm_nr_mmu_pages) 3270 { 3271 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3272 return -EINVAL; 3273 3274 mutex_lock(&kvm->slots_lock); 3275 spin_lock(&kvm->mmu_lock); 3276 3277 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3278 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3279 3280 spin_unlock(&kvm->mmu_lock); 3281 mutex_unlock(&kvm->slots_lock); 3282 return 0; 3283 } 3284 3285 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3286 { 3287 return kvm->arch.n_max_mmu_pages; 3288 } 3289 3290 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3291 { 3292 int r; 3293 3294 r = 0; 3295 switch (chip->chip_id) { 3296 case KVM_IRQCHIP_PIC_MASTER: 3297 memcpy(&chip->chip.pic, 3298 &pic_irqchip(kvm)->pics[0], 3299 sizeof(struct kvm_pic_state)); 3300 break; 3301 case KVM_IRQCHIP_PIC_SLAVE: 3302 memcpy(&chip->chip.pic, 3303 &pic_irqchip(kvm)->pics[1], 3304 sizeof(struct kvm_pic_state)); 3305 break; 3306 case KVM_IRQCHIP_IOAPIC: 3307 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3308 break; 3309 default: 3310 r = -EINVAL; 3311 break; 3312 } 3313 return r; 3314 } 3315 3316 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3317 { 3318 int r; 3319 3320 r = 0; 3321 switch (chip->chip_id) { 3322 case KVM_IRQCHIP_PIC_MASTER: 3323 spin_lock(&pic_irqchip(kvm)->lock); 3324 memcpy(&pic_irqchip(kvm)->pics[0], 3325 &chip->chip.pic, 3326 sizeof(struct kvm_pic_state)); 3327 spin_unlock(&pic_irqchip(kvm)->lock); 3328 break; 3329 case KVM_IRQCHIP_PIC_SLAVE: 3330 spin_lock(&pic_irqchip(kvm)->lock); 3331 memcpy(&pic_irqchip(kvm)->pics[1], 3332 &chip->chip.pic, 3333 sizeof(struct kvm_pic_state)); 3334 spin_unlock(&pic_irqchip(kvm)->lock); 3335 break; 3336 case KVM_IRQCHIP_IOAPIC: 3337 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3338 break; 3339 default: 3340 r = -EINVAL; 3341 break; 3342 } 3343 kvm_pic_update_irq(pic_irqchip(kvm)); 3344 return r; 3345 } 3346 3347 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3348 { 3349 int r = 0; 3350 3351 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3352 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3353 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3354 return r; 3355 } 3356 3357 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3358 { 3359 int r = 0; 3360 3361 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3362 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3363 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3364 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3365 return r; 3366 } 3367 3368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3369 { 3370 int r = 0; 3371 3372 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3373 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3374 sizeof(ps->channels)); 3375 ps->flags = kvm->arch.vpit->pit_state.flags; 3376 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3377 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3378 return r; 3379 } 3380 3381 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3382 { 3383 int r = 0, start = 0; 3384 u32 prev_legacy, cur_legacy; 3385 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3386 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3387 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3388 if (!prev_legacy && cur_legacy) 3389 start = 1; 3390 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3391 sizeof(kvm->arch.vpit->pit_state.channels)); 3392 kvm->arch.vpit->pit_state.flags = ps->flags; 3393 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3394 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3395 return r; 3396 } 3397 3398 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3399 struct kvm_reinject_control *control) 3400 { 3401 if (!kvm->arch.vpit) 3402 return -ENXIO; 3403 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3404 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3405 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3406 return 0; 3407 } 3408 3409 /** 3410 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3411 * @kvm: kvm instance 3412 * @log: slot id and address to which we copy the log 3413 * 3414 * We need to keep it in mind that VCPU threads can write to the bitmap 3415 * concurrently. So, to avoid losing data, we keep the following order for 3416 * each bit: 3417 * 3418 * 1. Take a snapshot of the bit and clear it if needed. 3419 * 2. Write protect the corresponding page. 3420 * 3. Flush TLB's if needed. 3421 * 4. Copy the snapshot to the userspace. 3422 * 3423 * Between 2 and 3, the guest may write to the page using the remaining TLB 3424 * entry. This is not a problem because the page will be reported dirty at 3425 * step 4 using the snapshot taken before and step 3 ensures that successive 3426 * writes will be logged for the next call. 3427 */ 3428 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3429 { 3430 int r; 3431 struct kvm_memory_slot *memslot; 3432 unsigned long n, i; 3433 unsigned long *dirty_bitmap; 3434 unsigned long *dirty_bitmap_buffer; 3435 bool is_dirty = false; 3436 3437 mutex_lock(&kvm->slots_lock); 3438 3439 r = -EINVAL; 3440 if (log->slot >= KVM_MEMORY_SLOTS) 3441 goto out; 3442 3443 memslot = id_to_memslot(kvm->memslots, log->slot); 3444 3445 dirty_bitmap = memslot->dirty_bitmap; 3446 r = -ENOENT; 3447 if (!dirty_bitmap) 3448 goto out; 3449 3450 n = kvm_dirty_bitmap_bytes(memslot); 3451 3452 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3453 memset(dirty_bitmap_buffer, 0, n); 3454 3455 spin_lock(&kvm->mmu_lock); 3456 3457 for (i = 0; i < n / sizeof(long); i++) { 3458 unsigned long mask; 3459 gfn_t offset; 3460 3461 if (!dirty_bitmap[i]) 3462 continue; 3463 3464 is_dirty = true; 3465 3466 mask = xchg(&dirty_bitmap[i], 0); 3467 dirty_bitmap_buffer[i] = mask; 3468 3469 offset = i * BITS_PER_LONG; 3470 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3471 } 3472 if (is_dirty) 3473 kvm_flush_remote_tlbs(kvm); 3474 3475 spin_unlock(&kvm->mmu_lock); 3476 3477 r = -EFAULT; 3478 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3479 goto out; 3480 3481 r = 0; 3482 out: 3483 mutex_unlock(&kvm->slots_lock); 3484 return r; 3485 } 3486 3487 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) 3488 { 3489 if (!irqchip_in_kernel(kvm)) 3490 return -ENXIO; 3491 3492 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3493 irq_event->irq, irq_event->level); 3494 return 0; 3495 } 3496 3497 long kvm_arch_vm_ioctl(struct file *filp, 3498 unsigned int ioctl, unsigned long arg) 3499 { 3500 struct kvm *kvm = filp->private_data; 3501 void __user *argp = (void __user *)arg; 3502 int r = -ENOTTY; 3503 /* 3504 * This union makes it completely explicit to gcc-3.x 3505 * that these two variables' stack usage should be 3506 * combined, not added together. 3507 */ 3508 union { 3509 struct kvm_pit_state ps; 3510 struct kvm_pit_state2 ps2; 3511 struct kvm_pit_config pit_config; 3512 } u; 3513 3514 switch (ioctl) { 3515 case KVM_SET_TSS_ADDR: 3516 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3517 break; 3518 case KVM_SET_IDENTITY_MAP_ADDR: { 3519 u64 ident_addr; 3520 3521 r = -EFAULT; 3522 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3523 goto out; 3524 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3525 break; 3526 } 3527 case KVM_SET_NR_MMU_PAGES: 3528 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3529 break; 3530 case KVM_GET_NR_MMU_PAGES: 3531 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3532 break; 3533 case KVM_CREATE_IRQCHIP: { 3534 struct kvm_pic *vpic; 3535 3536 mutex_lock(&kvm->lock); 3537 r = -EEXIST; 3538 if (kvm->arch.vpic) 3539 goto create_irqchip_unlock; 3540 r = -EINVAL; 3541 if (atomic_read(&kvm->online_vcpus)) 3542 goto create_irqchip_unlock; 3543 r = -ENOMEM; 3544 vpic = kvm_create_pic(kvm); 3545 if (vpic) { 3546 r = kvm_ioapic_init(kvm); 3547 if (r) { 3548 mutex_lock(&kvm->slots_lock); 3549 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3550 &vpic->dev_master); 3551 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3552 &vpic->dev_slave); 3553 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3554 &vpic->dev_eclr); 3555 mutex_unlock(&kvm->slots_lock); 3556 kfree(vpic); 3557 goto create_irqchip_unlock; 3558 } 3559 } else 3560 goto create_irqchip_unlock; 3561 smp_wmb(); 3562 kvm->arch.vpic = vpic; 3563 smp_wmb(); 3564 r = kvm_setup_default_irq_routing(kvm); 3565 if (r) { 3566 mutex_lock(&kvm->slots_lock); 3567 mutex_lock(&kvm->irq_lock); 3568 kvm_ioapic_destroy(kvm); 3569 kvm_destroy_pic(kvm); 3570 mutex_unlock(&kvm->irq_lock); 3571 mutex_unlock(&kvm->slots_lock); 3572 } 3573 create_irqchip_unlock: 3574 mutex_unlock(&kvm->lock); 3575 break; 3576 } 3577 case KVM_CREATE_PIT: 3578 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3579 goto create_pit; 3580 case KVM_CREATE_PIT2: 3581 r = -EFAULT; 3582 if (copy_from_user(&u.pit_config, argp, 3583 sizeof(struct kvm_pit_config))) 3584 goto out; 3585 create_pit: 3586 mutex_lock(&kvm->slots_lock); 3587 r = -EEXIST; 3588 if (kvm->arch.vpit) 3589 goto create_pit_unlock; 3590 r = -ENOMEM; 3591 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3592 if (kvm->arch.vpit) 3593 r = 0; 3594 create_pit_unlock: 3595 mutex_unlock(&kvm->slots_lock); 3596 break; 3597 case KVM_GET_IRQCHIP: { 3598 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3599 struct kvm_irqchip *chip; 3600 3601 chip = memdup_user(argp, sizeof(*chip)); 3602 if (IS_ERR(chip)) { 3603 r = PTR_ERR(chip); 3604 goto out; 3605 } 3606 3607 r = -ENXIO; 3608 if (!irqchip_in_kernel(kvm)) 3609 goto get_irqchip_out; 3610 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3611 if (r) 3612 goto get_irqchip_out; 3613 r = -EFAULT; 3614 if (copy_to_user(argp, chip, sizeof *chip)) 3615 goto get_irqchip_out; 3616 r = 0; 3617 get_irqchip_out: 3618 kfree(chip); 3619 break; 3620 } 3621 case KVM_SET_IRQCHIP: { 3622 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3623 struct kvm_irqchip *chip; 3624 3625 chip = memdup_user(argp, sizeof(*chip)); 3626 if (IS_ERR(chip)) { 3627 r = PTR_ERR(chip); 3628 goto out; 3629 } 3630 3631 r = -ENXIO; 3632 if (!irqchip_in_kernel(kvm)) 3633 goto set_irqchip_out; 3634 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3635 if (r) 3636 goto set_irqchip_out; 3637 r = 0; 3638 set_irqchip_out: 3639 kfree(chip); 3640 break; 3641 } 3642 case KVM_GET_PIT: { 3643 r = -EFAULT; 3644 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3645 goto out; 3646 r = -ENXIO; 3647 if (!kvm->arch.vpit) 3648 goto out; 3649 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3650 if (r) 3651 goto out; 3652 r = -EFAULT; 3653 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3654 goto out; 3655 r = 0; 3656 break; 3657 } 3658 case KVM_SET_PIT: { 3659 r = -EFAULT; 3660 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3661 goto out; 3662 r = -ENXIO; 3663 if (!kvm->arch.vpit) 3664 goto out; 3665 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3666 break; 3667 } 3668 case KVM_GET_PIT2: { 3669 r = -ENXIO; 3670 if (!kvm->arch.vpit) 3671 goto out; 3672 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3673 if (r) 3674 goto out; 3675 r = -EFAULT; 3676 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3677 goto out; 3678 r = 0; 3679 break; 3680 } 3681 case KVM_SET_PIT2: { 3682 r = -EFAULT; 3683 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3684 goto out; 3685 r = -ENXIO; 3686 if (!kvm->arch.vpit) 3687 goto out; 3688 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3689 break; 3690 } 3691 case KVM_REINJECT_CONTROL: { 3692 struct kvm_reinject_control control; 3693 r = -EFAULT; 3694 if (copy_from_user(&control, argp, sizeof(control))) 3695 goto out; 3696 r = kvm_vm_ioctl_reinject(kvm, &control); 3697 break; 3698 } 3699 case KVM_XEN_HVM_CONFIG: { 3700 r = -EFAULT; 3701 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3702 sizeof(struct kvm_xen_hvm_config))) 3703 goto out; 3704 r = -EINVAL; 3705 if (kvm->arch.xen_hvm_config.flags) 3706 goto out; 3707 r = 0; 3708 break; 3709 } 3710 case KVM_SET_CLOCK: { 3711 struct kvm_clock_data user_ns; 3712 u64 now_ns; 3713 s64 delta; 3714 3715 r = -EFAULT; 3716 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3717 goto out; 3718 3719 r = -EINVAL; 3720 if (user_ns.flags) 3721 goto out; 3722 3723 r = 0; 3724 local_irq_disable(); 3725 now_ns = get_kernel_ns(); 3726 delta = user_ns.clock - now_ns; 3727 local_irq_enable(); 3728 kvm->arch.kvmclock_offset = delta; 3729 break; 3730 } 3731 case KVM_GET_CLOCK: { 3732 struct kvm_clock_data user_ns; 3733 u64 now_ns; 3734 3735 local_irq_disable(); 3736 now_ns = get_kernel_ns(); 3737 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3738 local_irq_enable(); 3739 user_ns.flags = 0; 3740 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3741 3742 r = -EFAULT; 3743 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3744 goto out; 3745 r = 0; 3746 break; 3747 } 3748 3749 default: 3750 ; 3751 } 3752 out: 3753 return r; 3754 } 3755 3756 static void kvm_init_msr_list(void) 3757 { 3758 u32 dummy[2]; 3759 unsigned i, j; 3760 3761 /* skip the first msrs in the list. KVM-specific */ 3762 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3763 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3764 continue; 3765 if (j < i) 3766 msrs_to_save[j] = msrs_to_save[i]; 3767 j++; 3768 } 3769 num_msrs_to_save = j; 3770 } 3771 3772 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3773 const void *v) 3774 { 3775 int handled = 0; 3776 int n; 3777 3778 do { 3779 n = min(len, 8); 3780 if (!(vcpu->arch.apic && 3781 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3782 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3783 break; 3784 handled += n; 3785 addr += n; 3786 len -= n; 3787 v += n; 3788 } while (len); 3789 3790 return handled; 3791 } 3792 3793 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3794 { 3795 int handled = 0; 3796 int n; 3797 3798 do { 3799 n = min(len, 8); 3800 if (!(vcpu->arch.apic && 3801 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3802 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3803 break; 3804 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3805 handled += n; 3806 addr += n; 3807 len -= n; 3808 v += n; 3809 } while (len); 3810 3811 return handled; 3812 } 3813 3814 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3815 struct kvm_segment *var, int seg) 3816 { 3817 kvm_x86_ops->set_segment(vcpu, var, seg); 3818 } 3819 3820 void kvm_get_segment(struct kvm_vcpu *vcpu, 3821 struct kvm_segment *var, int seg) 3822 { 3823 kvm_x86_ops->get_segment(vcpu, var, seg); 3824 } 3825 3826 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3827 { 3828 gpa_t t_gpa; 3829 struct x86_exception exception; 3830 3831 BUG_ON(!mmu_is_nested(vcpu)); 3832 3833 /* NPT walks are always user-walks */ 3834 access |= PFERR_USER_MASK; 3835 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3836 3837 return t_gpa; 3838 } 3839 3840 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3841 struct x86_exception *exception) 3842 { 3843 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3844 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3845 } 3846 3847 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3848 struct x86_exception *exception) 3849 { 3850 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3851 access |= PFERR_FETCH_MASK; 3852 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3853 } 3854 3855 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3856 struct x86_exception *exception) 3857 { 3858 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3859 access |= PFERR_WRITE_MASK; 3860 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3861 } 3862 3863 /* uses this to access any guest's mapped memory without checking CPL */ 3864 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3865 struct x86_exception *exception) 3866 { 3867 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3868 } 3869 3870 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3871 struct kvm_vcpu *vcpu, u32 access, 3872 struct x86_exception *exception) 3873 { 3874 void *data = val; 3875 int r = X86EMUL_CONTINUE; 3876 3877 while (bytes) { 3878 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3879 exception); 3880 unsigned offset = addr & (PAGE_SIZE-1); 3881 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3882 int ret; 3883 3884 if (gpa == UNMAPPED_GVA) 3885 return X86EMUL_PROPAGATE_FAULT; 3886 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3887 if (ret < 0) { 3888 r = X86EMUL_IO_NEEDED; 3889 goto out; 3890 } 3891 3892 bytes -= toread; 3893 data += toread; 3894 addr += toread; 3895 } 3896 out: 3897 return r; 3898 } 3899 3900 /* used for instruction fetching */ 3901 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3902 gva_t addr, void *val, unsigned int bytes, 3903 struct x86_exception *exception) 3904 { 3905 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3906 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3907 3908 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3909 access | PFERR_FETCH_MASK, 3910 exception); 3911 } 3912 3913 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3914 gva_t addr, void *val, unsigned int bytes, 3915 struct x86_exception *exception) 3916 { 3917 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3918 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3919 3920 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3921 exception); 3922 } 3923 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3924 3925 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3926 gva_t addr, void *val, unsigned int bytes, 3927 struct x86_exception *exception) 3928 { 3929 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3930 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3931 } 3932 3933 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3934 gva_t addr, void *val, 3935 unsigned int bytes, 3936 struct x86_exception *exception) 3937 { 3938 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3939 void *data = val; 3940 int r = X86EMUL_CONTINUE; 3941 3942 while (bytes) { 3943 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3944 PFERR_WRITE_MASK, 3945 exception); 3946 unsigned offset = addr & (PAGE_SIZE-1); 3947 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3948 int ret; 3949 3950 if (gpa == UNMAPPED_GVA) 3951 return X86EMUL_PROPAGATE_FAULT; 3952 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3953 if (ret < 0) { 3954 r = X86EMUL_IO_NEEDED; 3955 goto out; 3956 } 3957 3958 bytes -= towrite; 3959 data += towrite; 3960 addr += towrite; 3961 } 3962 out: 3963 return r; 3964 } 3965 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3966 3967 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3968 gpa_t *gpa, struct x86_exception *exception, 3969 bool write) 3970 { 3971 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 3972 | (write ? PFERR_WRITE_MASK : 0); 3973 3974 if (vcpu_match_mmio_gva(vcpu, gva) 3975 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 3976 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3977 (gva & (PAGE_SIZE - 1)); 3978 trace_vcpu_match_mmio(gva, *gpa, write, false); 3979 return 1; 3980 } 3981 3982 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3983 3984 if (*gpa == UNMAPPED_GVA) 3985 return -1; 3986 3987 /* For APIC access vmexit */ 3988 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3989 return 1; 3990 3991 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3992 trace_vcpu_match_mmio(gva, *gpa, write, true); 3993 return 1; 3994 } 3995 3996 return 0; 3997 } 3998 3999 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4000 const void *val, int bytes) 4001 { 4002 int ret; 4003 4004 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4005 if (ret < 0) 4006 return 0; 4007 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4008 return 1; 4009 } 4010 4011 struct read_write_emulator_ops { 4012 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4013 int bytes); 4014 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4015 void *val, int bytes); 4016 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4017 int bytes, void *val); 4018 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4019 void *val, int bytes); 4020 bool write; 4021 }; 4022 4023 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4024 { 4025 if (vcpu->mmio_read_completed) { 4026 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4027 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4028 vcpu->mmio_read_completed = 0; 4029 return 1; 4030 } 4031 4032 return 0; 4033 } 4034 4035 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4036 void *val, int bytes) 4037 { 4038 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4039 } 4040 4041 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4042 void *val, int bytes) 4043 { 4044 return emulator_write_phys(vcpu, gpa, val, bytes); 4045 } 4046 4047 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4048 { 4049 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4050 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4051 } 4052 4053 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4054 void *val, int bytes) 4055 { 4056 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4057 return X86EMUL_IO_NEEDED; 4058 } 4059 4060 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4061 void *val, int bytes) 4062 { 4063 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4064 4065 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4066 return X86EMUL_CONTINUE; 4067 } 4068 4069 static const struct read_write_emulator_ops read_emultor = { 4070 .read_write_prepare = read_prepare, 4071 .read_write_emulate = read_emulate, 4072 .read_write_mmio = vcpu_mmio_read, 4073 .read_write_exit_mmio = read_exit_mmio, 4074 }; 4075 4076 static const struct read_write_emulator_ops write_emultor = { 4077 .read_write_emulate = write_emulate, 4078 .read_write_mmio = write_mmio, 4079 .read_write_exit_mmio = write_exit_mmio, 4080 .write = true, 4081 }; 4082 4083 static int emulator_read_write_onepage(unsigned long addr, void *val, 4084 unsigned int bytes, 4085 struct x86_exception *exception, 4086 struct kvm_vcpu *vcpu, 4087 const struct read_write_emulator_ops *ops) 4088 { 4089 gpa_t gpa; 4090 int handled, ret; 4091 bool write = ops->write; 4092 struct kvm_mmio_fragment *frag; 4093 4094 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4095 4096 if (ret < 0) 4097 return X86EMUL_PROPAGATE_FAULT; 4098 4099 /* For APIC access vmexit */ 4100 if (ret) 4101 goto mmio; 4102 4103 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4104 return X86EMUL_CONTINUE; 4105 4106 mmio: 4107 /* 4108 * Is this MMIO handled locally? 4109 */ 4110 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4111 if (handled == bytes) 4112 return X86EMUL_CONTINUE; 4113 4114 gpa += handled; 4115 bytes -= handled; 4116 val += handled; 4117 4118 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4119 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4120 frag->gpa = gpa; 4121 frag->data = val; 4122 frag->len = bytes; 4123 return X86EMUL_CONTINUE; 4124 } 4125 4126 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4127 void *val, unsigned int bytes, 4128 struct x86_exception *exception, 4129 const struct read_write_emulator_ops *ops) 4130 { 4131 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4132 gpa_t gpa; 4133 int rc; 4134 4135 if (ops->read_write_prepare && 4136 ops->read_write_prepare(vcpu, val, bytes)) 4137 return X86EMUL_CONTINUE; 4138 4139 vcpu->mmio_nr_fragments = 0; 4140 4141 /* Crossing a page boundary? */ 4142 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4143 int now; 4144 4145 now = -addr & ~PAGE_MASK; 4146 rc = emulator_read_write_onepage(addr, val, now, exception, 4147 vcpu, ops); 4148 4149 if (rc != X86EMUL_CONTINUE) 4150 return rc; 4151 addr += now; 4152 val += now; 4153 bytes -= now; 4154 } 4155 4156 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4157 vcpu, ops); 4158 if (rc != X86EMUL_CONTINUE) 4159 return rc; 4160 4161 if (!vcpu->mmio_nr_fragments) 4162 return rc; 4163 4164 gpa = vcpu->mmio_fragments[0].gpa; 4165 4166 vcpu->mmio_needed = 1; 4167 vcpu->mmio_cur_fragment = 0; 4168 4169 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4170 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4171 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4172 vcpu->run->mmio.phys_addr = gpa; 4173 4174 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4175 } 4176 4177 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4178 unsigned long addr, 4179 void *val, 4180 unsigned int bytes, 4181 struct x86_exception *exception) 4182 { 4183 return emulator_read_write(ctxt, addr, val, bytes, 4184 exception, &read_emultor); 4185 } 4186 4187 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4188 unsigned long addr, 4189 const void *val, 4190 unsigned int bytes, 4191 struct x86_exception *exception) 4192 { 4193 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4194 exception, &write_emultor); 4195 } 4196 4197 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4198 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4199 4200 #ifdef CONFIG_X86_64 4201 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4202 #else 4203 # define CMPXCHG64(ptr, old, new) \ 4204 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4205 #endif 4206 4207 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4208 unsigned long addr, 4209 const void *old, 4210 const void *new, 4211 unsigned int bytes, 4212 struct x86_exception *exception) 4213 { 4214 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4215 gpa_t gpa; 4216 struct page *page; 4217 char *kaddr; 4218 bool exchanged; 4219 4220 /* guests cmpxchg8b have to be emulated atomically */ 4221 if (bytes > 8 || (bytes & (bytes - 1))) 4222 goto emul_write; 4223 4224 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4225 4226 if (gpa == UNMAPPED_GVA || 4227 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4228 goto emul_write; 4229 4230 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4231 goto emul_write; 4232 4233 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4234 if (is_error_page(page)) 4235 goto emul_write; 4236 4237 kaddr = kmap_atomic(page); 4238 kaddr += offset_in_page(gpa); 4239 switch (bytes) { 4240 case 1: 4241 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4242 break; 4243 case 2: 4244 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4245 break; 4246 case 4: 4247 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4248 break; 4249 case 8: 4250 exchanged = CMPXCHG64(kaddr, old, new); 4251 break; 4252 default: 4253 BUG(); 4254 } 4255 kunmap_atomic(kaddr); 4256 kvm_release_page_dirty(page); 4257 4258 if (!exchanged) 4259 return X86EMUL_CMPXCHG_FAILED; 4260 4261 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4262 4263 return X86EMUL_CONTINUE; 4264 4265 emul_write: 4266 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4267 4268 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4269 } 4270 4271 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4272 { 4273 /* TODO: String I/O for in kernel device */ 4274 int r; 4275 4276 if (vcpu->arch.pio.in) 4277 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4278 vcpu->arch.pio.size, pd); 4279 else 4280 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4281 vcpu->arch.pio.port, vcpu->arch.pio.size, 4282 pd); 4283 return r; 4284 } 4285 4286 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4287 unsigned short port, void *val, 4288 unsigned int count, bool in) 4289 { 4290 trace_kvm_pio(!in, port, size, count); 4291 4292 vcpu->arch.pio.port = port; 4293 vcpu->arch.pio.in = in; 4294 vcpu->arch.pio.count = count; 4295 vcpu->arch.pio.size = size; 4296 4297 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4298 vcpu->arch.pio.count = 0; 4299 return 1; 4300 } 4301 4302 vcpu->run->exit_reason = KVM_EXIT_IO; 4303 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4304 vcpu->run->io.size = size; 4305 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4306 vcpu->run->io.count = count; 4307 vcpu->run->io.port = port; 4308 4309 return 0; 4310 } 4311 4312 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4313 int size, unsigned short port, void *val, 4314 unsigned int count) 4315 { 4316 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4317 int ret; 4318 4319 if (vcpu->arch.pio.count) 4320 goto data_avail; 4321 4322 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4323 if (ret) { 4324 data_avail: 4325 memcpy(val, vcpu->arch.pio_data, size * count); 4326 vcpu->arch.pio.count = 0; 4327 return 1; 4328 } 4329 4330 return 0; 4331 } 4332 4333 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4334 int size, unsigned short port, 4335 const void *val, unsigned int count) 4336 { 4337 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4338 4339 memcpy(vcpu->arch.pio_data, val, size * count); 4340 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4341 } 4342 4343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4344 { 4345 return kvm_x86_ops->get_segment_base(vcpu, seg); 4346 } 4347 4348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4349 { 4350 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4351 } 4352 4353 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4354 { 4355 if (!need_emulate_wbinvd(vcpu)) 4356 return X86EMUL_CONTINUE; 4357 4358 if (kvm_x86_ops->has_wbinvd_exit()) { 4359 int cpu = get_cpu(); 4360 4361 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4362 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4363 wbinvd_ipi, NULL, 1); 4364 put_cpu(); 4365 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4366 } else 4367 wbinvd(); 4368 return X86EMUL_CONTINUE; 4369 } 4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4371 4372 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4373 { 4374 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4375 } 4376 4377 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4378 { 4379 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4380 } 4381 4382 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4383 { 4384 4385 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4386 } 4387 4388 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4389 { 4390 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4391 } 4392 4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4394 { 4395 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4396 unsigned long value; 4397 4398 switch (cr) { 4399 case 0: 4400 value = kvm_read_cr0(vcpu); 4401 break; 4402 case 2: 4403 value = vcpu->arch.cr2; 4404 break; 4405 case 3: 4406 value = kvm_read_cr3(vcpu); 4407 break; 4408 case 4: 4409 value = kvm_read_cr4(vcpu); 4410 break; 4411 case 8: 4412 value = kvm_get_cr8(vcpu); 4413 break; 4414 default: 4415 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4416 return 0; 4417 } 4418 4419 return value; 4420 } 4421 4422 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4423 { 4424 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4425 int res = 0; 4426 4427 switch (cr) { 4428 case 0: 4429 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4430 break; 4431 case 2: 4432 vcpu->arch.cr2 = val; 4433 break; 4434 case 3: 4435 res = kvm_set_cr3(vcpu, val); 4436 break; 4437 case 4: 4438 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4439 break; 4440 case 8: 4441 res = kvm_set_cr8(vcpu, val); 4442 break; 4443 default: 4444 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4445 res = -1; 4446 } 4447 4448 return res; 4449 } 4450 4451 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4452 { 4453 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4454 } 4455 4456 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4457 { 4458 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4459 } 4460 4461 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4462 { 4463 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4464 } 4465 4466 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4467 { 4468 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4469 } 4470 4471 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4472 { 4473 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4474 } 4475 4476 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4477 { 4478 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4479 } 4480 4481 static unsigned long emulator_get_cached_segment_base( 4482 struct x86_emulate_ctxt *ctxt, int seg) 4483 { 4484 return get_segment_base(emul_to_vcpu(ctxt), seg); 4485 } 4486 4487 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4488 struct desc_struct *desc, u32 *base3, 4489 int seg) 4490 { 4491 struct kvm_segment var; 4492 4493 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4494 *selector = var.selector; 4495 4496 if (var.unusable) 4497 return false; 4498 4499 if (var.g) 4500 var.limit >>= 12; 4501 set_desc_limit(desc, var.limit); 4502 set_desc_base(desc, (unsigned long)var.base); 4503 #ifdef CONFIG_X86_64 4504 if (base3) 4505 *base3 = var.base >> 32; 4506 #endif 4507 desc->type = var.type; 4508 desc->s = var.s; 4509 desc->dpl = var.dpl; 4510 desc->p = var.present; 4511 desc->avl = var.avl; 4512 desc->l = var.l; 4513 desc->d = var.db; 4514 desc->g = var.g; 4515 4516 return true; 4517 } 4518 4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4520 struct desc_struct *desc, u32 base3, 4521 int seg) 4522 { 4523 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4524 struct kvm_segment var; 4525 4526 var.selector = selector; 4527 var.base = get_desc_base(desc); 4528 #ifdef CONFIG_X86_64 4529 var.base |= ((u64)base3) << 32; 4530 #endif 4531 var.limit = get_desc_limit(desc); 4532 if (desc->g) 4533 var.limit = (var.limit << 12) | 0xfff; 4534 var.type = desc->type; 4535 var.present = desc->p; 4536 var.dpl = desc->dpl; 4537 var.db = desc->d; 4538 var.s = desc->s; 4539 var.l = desc->l; 4540 var.g = desc->g; 4541 var.avl = desc->avl; 4542 var.present = desc->p; 4543 var.unusable = !var.present; 4544 var.padding = 0; 4545 4546 kvm_set_segment(vcpu, &var, seg); 4547 return; 4548 } 4549 4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4551 u32 msr_index, u64 *pdata) 4552 { 4553 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4554 } 4555 4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4557 u32 msr_index, u64 data) 4558 { 4559 struct msr_data msr; 4560 4561 msr.data = data; 4562 msr.index = msr_index; 4563 msr.host_initiated = false; 4564 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4565 } 4566 4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4568 u32 pmc, u64 *pdata) 4569 { 4570 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4571 } 4572 4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4574 { 4575 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4576 } 4577 4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4579 { 4580 preempt_disable(); 4581 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4582 /* 4583 * CR0.TS may reference the host fpu state, not the guest fpu state, 4584 * so it may be clear at this point. 4585 */ 4586 clts(); 4587 } 4588 4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4590 { 4591 preempt_enable(); 4592 } 4593 4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4595 struct x86_instruction_info *info, 4596 enum x86_intercept_stage stage) 4597 { 4598 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4599 } 4600 4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4602 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4603 { 4604 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4605 } 4606 4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4608 { 4609 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4610 } 4611 4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4613 { 4614 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4615 } 4616 4617 static const struct x86_emulate_ops emulate_ops = { 4618 .read_gpr = emulator_read_gpr, 4619 .write_gpr = emulator_write_gpr, 4620 .read_std = kvm_read_guest_virt_system, 4621 .write_std = kvm_write_guest_virt_system, 4622 .fetch = kvm_fetch_guest_virt, 4623 .read_emulated = emulator_read_emulated, 4624 .write_emulated = emulator_write_emulated, 4625 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4626 .invlpg = emulator_invlpg, 4627 .pio_in_emulated = emulator_pio_in_emulated, 4628 .pio_out_emulated = emulator_pio_out_emulated, 4629 .get_segment = emulator_get_segment, 4630 .set_segment = emulator_set_segment, 4631 .get_cached_segment_base = emulator_get_cached_segment_base, 4632 .get_gdt = emulator_get_gdt, 4633 .get_idt = emulator_get_idt, 4634 .set_gdt = emulator_set_gdt, 4635 .set_idt = emulator_set_idt, 4636 .get_cr = emulator_get_cr, 4637 .set_cr = emulator_set_cr, 4638 .set_rflags = emulator_set_rflags, 4639 .cpl = emulator_get_cpl, 4640 .get_dr = emulator_get_dr, 4641 .set_dr = emulator_set_dr, 4642 .set_msr = emulator_set_msr, 4643 .get_msr = emulator_get_msr, 4644 .read_pmc = emulator_read_pmc, 4645 .halt = emulator_halt, 4646 .wbinvd = emulator_wbinvd, 4647 .fix_hypercall = emulator_fix_hypercall, 4648 .get_fpu = emulator_get_fpu, 4649 .put_fpu = emulator_put_fpu, 4650 .intercept = emulator_intercept, 4651 .get_cpuid = emulator_get_cpuid, 4652 }; 4653 4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4655 { 4656 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4657 /* 4658 * an sti; sti; sequence only disable interrupts for the first 4659 * instruction. So, if the last instruction, be it emulated or 4660 * not, left the system with the INT_STI flag enabled, it 4661 * means that the last instruction is an sti. We should not 4662 * leave the flag on in this case. The same goes for mov ss 4663 */ 4664 if (!(int_shadow & mask)) 4665 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4666 } 4667 4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4669 { 4670 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4671 if (ctxt->exception.vector == PF_VECTOR) 4672 kvm_propagate_fault(vcpu, &ctxt->exception); 4673 else if (ctxt->exception.error_code_valid) 4674 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4675 ctxt->exception.error_code); 4676 else 4677 kvm_queue_exception(vcpu, ctxt->exception.vector); 4678 } 4679 4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4681 { 4682 memset(&ctxt->twobyte, 0, 4683 (void *)&ctxt->_regs - (void *)&ctxt->twobyte); 4684 4685 ctxt->fetch.start = 0; 4686 ctxt->fetch.end = 0; 4687 ctxt->io_read.pos = 0; 4688 ctxt->io_read.end = 0; 4689 ctxt->mem_read.pos = 0; 4690 ctxt->mem_read.end = 0; 4691 } 4692 4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4694 { 4695 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4696 int cs_db, cs_l; 4697 4698 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4699 4700 ctxt->eflags = kvm_get_rflags(vcpu); 4701 ctxt->eip = kvm_rip_read(vcpu); 4702 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4703 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4704 cs_l ? X86EMUL_MODE_PROT64 : 4705 cs_db ? X86EMUL_MODE_PROT32 : 4706 X86EMUL_MODE_PROT16; 4707 ctxt->guest_mode = is_guest_mode(vcpu); 4708 4709 init_decode_cache(ctxt); 4710 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4711 } 4712 4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4714 { 4715 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4716 int ret; 4717 4718 init_emulate_ctxt(vcpu); 4719 4720 ctxt->op_bytes = 2; 4721 ctxt->ad_bytes = 2; 4722 ctxt->_eip = ctxt->eip + inc_eip; 4723 ret = emulate_int_real(ctxt, irq); 4724 4725 if (ret != X86EMUL_CONTINUE) 4726 return EMULATE_FAIL; 4727 4728 ctxt->eip = ctxt->_eip; 4729 kvm_rip_write(vcpu, ctxt->eip); 4730 kvm_set_rflags(vcpu, ctxt->eflags); 4731 4732 if (irq == NMI_VECTOR) 4733 vcpu->arch.nmi_pending = 0; 4734 else 4735 vcpu->arch.interrupt.pending = false; 4736 4737 return EMULATE_DONE; 4738 } 4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4740 4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4742 { 4743 int r = EMULATE_DONE; 4744 4745 ++vcpu->stat.insn_emulation_fail; 4746 trace_kvm_emulate_insn_failed(vcpu); 4747 if (!is_guest_mode(vcpu)) { 4748 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4749 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4750 vcpu->run->internal.ndata = 0; 4751 r = EMULATE_FAIL; 4752 } 4753 kvm_queue_exception(vcpu, UD_VECTOR); 4754 4755 return r; 4756 } 4757 4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4759 { 4760 gpa_t gpa; 4761 pfn_t pfn; 4762 4763 if (tdp_enabled) 4764 return false; 4765 4766 /* 4767 * if emulation was due to access to shadowed page table 4768 * and it failed try to unshadow page and re-enter the 4769 * guest to let CPU execute the instruction. 4770 */ 4771 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4772 return true; 4773 4774 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4775 4776 if (gpa == UNMAPPED_GVA) 4777 return true; /* let cpu generate fault */ 4778 4779 /* 4780 * Do not retry the unhandleable instruction if it faults on the 4781 * readonly host memory, otherwise it will goto a infinite loop: 4782 * retry instruction -> write #PF -> emulation fail -> retry 4783 * instruction -> ... 4784 */ 4785 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4786 if (!is_error_noslot_pfn(pfn)) { 4787 kvm_release_pfn_clean(pfn); 4788 return true; 4789 } 4790 4791 return false; 4792 } 4793 4794 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4795 unsigned long cr2, int emulation_type) 4796 { 4797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4798 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4799 4800 last_retry_eip = vcpu->arch.last_retry_eip; 4801 last_retry_addr = vcpu->arch.last_retry_addr; 4802 4803 /* 4804 * If the emulation is caused by #PF and it is non-page_table 4805 * writing instruction, it means the VM-EXIT is caused by shadow 4806 * page protected, we can zap the shadow page and retry this 4807 * instruction directly. 4808 * 4809 * Note: if the guest uses a non-page-table modifying instruction 4810 * on the PDE that points to the instruction, then we will unmap 4811 * the instruction and go to an infinite loop. So, we cache the 4812 * last retried eip and the last fault address, if we meet the eip 4813 * and the address again, we can break out of the potential infinite 4814 * loop. 4815 */ 4816 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4817 4818 if (!(emulation_type & EMULTYPE_RETRY)) 4819 return false; 4820 4821 if (x86_page_table_writing_insn(ctxt)) 4822 return false; 4823 4824 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4825 return false; 4826 4827 vcpu->arch.last_retry_eip = ctxt->eip; 4828 vcpu->arch.last_retry_addr = cr2; 4829 4830 if (!vcpu->arch.mmu.direct_map) 4831 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4832 4833 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4834 4835 return true; 4836 } 4837 4838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 4839 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 4840 4841 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4842 unsigned long cr2, 4843 int emulation_type, 4844 void *insn, 4845 int insn_len) 4846 { 4847 int r; 4848 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4849 bool writeback = true; 4850 4851 kvm_clear_exception_queue(vcpu); 4852 4853 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4854 init_emulate_ctxt(vcpu); 4855 ctxt->interruptibility = 0; 4856 ctxt->have_exception = false; 4857 ctxt->perm_ok = false; 4858 4859 ctxt->only_vendor_specific_insn 4860 = emulation_type & EMULTYPE_TRAP_UD; 4861 4862 r = x86_decode_insn(ctxt, insn, insn_len); 4863 4864 trace_kvm_emulate_insn_start(vcpu); 4865 ++vcpu->stat.insn_emulation; 4866 if (r != EMULATION_OK) { 4867 if (emulation_type & EMULTYPE_TRAP_UD) 4868 return EMULATE_FAIL; 4869 if (reexecute_instruction(vcpu, cr2)) 4870 return EMULATE_DONE; 4871 if (emulation_type & EMULTYPE_SKIP) 4872 return EMULATE_FAIL; 4873 return handle_emulation_failure(vcpu); 4874 } 4875 } 4876 4877 if (emulation_type & EMULTYPE_SKIP) { 4878 kvm_rip_write(vcpu, ctxt->_eip); 4879 return EMULATE_DONE; 4880 } 4881 4882 if (retry_instruction(ctxt, cr2, emulation_type)) 4883 return EMULATE_DONE; 4884 4885 /* this is needed for vmware backdoor interface to work since it 4886 changes registers values during IO operation */ 4887 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4888 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4889 emulator_invalidate_register_cache(ctxt); 4890 } 4891 4892 restart: 4893 r = x86_emulate_insn(ctxt); 4894 4895 if (r == EMULATION_INTERCEPTED) 4896 return EMULATE_DONE; 4897 4898 if (r == EMULATION_FAILED) { 4899 if (reexecute_instruction(vcpu, cr2)) 4900 return EMULATE_DONE; 4901 4902 return handle_emulation_failure(vcpu); 4903 } 4904 4905 if (ctxt->have_exception) { 4906 inject_emulated_exception(vcpu); 4907 r = EMULATE_DONE; 4908 } else if (vcpu->arch.pio.count) { 4909 if (!vcpu->arch.pio.in) 4910 vcpu->arch.pio.count = 0; 4911 else { 4912 writeback = false; 4913 vcpu->arch.complete_userspace_io = complete_emulated_pio; 4914 } 4915 r = EMULATE_DO_MMIO; 4916 } else if (vcpu->mmio_needed) { 4917 if (!vcpu->mmio_is_write) 4918 writeback = false; 4919 r = EMULATE_DO_MMIO; 4920 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 4921 } else if (r == EMULATION_RESTART) 4922 goto restart; 4923 else 4924 r = EMULATE_DONE; 4925 4926 if (writeback) { 4927 toggle_interruptibility(vcpu, ctxt->interruptibility); 4928 kvm_set_rflags(vcpu, ctxt->eflags); 4929 kvm_make_request(KVM_REQ_EVENT, vcpu); 4930 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4931 kvm_rip_write(vcpu, ctxt->eip); 4932 } else 4933 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4934 4935 return r; 4936 } 4937 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4938 4939 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4940 { 4941 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4942 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4943 size, port, &val, 1); 4944 /* do not return to emulator after return from userspace */ 4945 vcpu->arch.pio.count = 0; 4946 return ret; 4947 } 4948 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4949 4950 static void tsc_bad(void *info) 4951 { 4952 __this_cpu_write(cpu_tsc_khz, 0); 4953 } 4954 4955 static void tsc_khz_changed(void *data) 4956 { 4957 struct cpufreq_freqs *freq = data; 4958 unsigned long khz = 0; 4959 4960 if (data) 4961 khz = freq->new; 4962 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4963 khz = cpufreq_quick_get(raw_smp_processor_id()); 4964 if (!khz) 4965 khz = tsc_khz; 4966 __this_cpu_write(cpu_tsc_khz, khz); 4967 } 4968 4969 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4970 void *data) 4971 { 4972 struct cpufreq_freqs *freq = data; 4973 struct kvm *kvm; 4974 struct kvm_vcpu *vcpu; 4975 int i, send_ipi = 0; 4976 4977 /* 4978 * We allow guests to temporarily run on slowing clocks, 4979 * provided we notify them after, or to run on accelerating 4980 * clocks, provided we notify them before. Thus time never 4981 * goes backwards. 4982 * 4983 * However, we have a problem. We can't atomically update 4984 * the frequency of a given CPU from this function; it is 4985 * merely a notifier, which can be called from any CPU. 4986 * Changing the TSC frequency at arbitrary points in time 4987 * requires a recomputation of local variables related to 4988 * the TSC for each VCPU. We must flag these local variables 4989 * to be updated and be sure the update takes place with the 4990 * new frequency before any guests proceed. 4991 * 4992 * Unfortunately, the combination of hotplug CPU and frequency 4993 * change creates an intractable locking scenario; the order 4994 * of when these callouts happen is undefined with respect to 4995 * CPU hotplug, and they can race with each other. As such, 4996 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4997 * undefined; you can actually have a CPU frequency change take 4998 * place in between the computation of X and the setting of the 4999 * variable. To protect against this problem, all updates of 5000 * the per_cpu tsc_khz variable are done in an interrupt 5001 * protected IPI, and all callers wishing to update the value 5002 * must wait for a synchronous IPI to complete (which is trivial 5003 * if the caller is on the CPU already). This establishes the 5004 * necessary total order on variable updates. 5005 * 5006 * Note that because a guest time update may take place 5007 * anytime after the setting of the VCPU's request bit, the 5008 * correct TSC value must be set before the request. However, 5009 * to ensure the update actually makes it to any guest which 5010 * starts running in hardware virtualization between the set 5011 * and the acquisition of the spinlock, we must also ping the 5012 * CPU after setting the request bit. 5013 * 5014 */ 5015 5016 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5017 return 0; 5018 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5019 return 0; 5020 5021 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5022 5023 raw_spin_lock(&kvm_lock); 5024 list_for_each_entry(kvm, &vm_list, vm_list) { 5025 kvm_for_each_vcpu(i, vcpu, kvm) { 5026 if (vcpu->cpu != freq->cpu) 5027 continue; 5028 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5029 if (vcpu->cpu != smp_processor_id()) 5030 send_ipi = 1; 5031 } 5032 } 5033 raw_spin_unlock(&kvm_lock); 5034 5035 if (freq->old < freq->new && send_ipi) { 5036 /* 5037 * We upscale the frequency. Must make the guest 5038 * doesn't see old kvmclock values while running with 5039 * the new frequency, otherwise we risk the guest sees 5040 * time go backwards. 5041 * 5042 * In case we update the frequency for another cpu 5043 * (which might be in guest context) send an interrupt 5044 * to kick the cpu out of guest context. Next time 5045 * guest context is entered kvmclock will be updated, 5046 * so the guest will not see stale values. 5047 */ 5048 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5049 } 5050 return 0; 5051 } 5052 5053 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5054 .notifier_call = kvmclock_cpufreq_notifier 5055 }; 5056 5057 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5058 unsigned long action, void *hcpu) 5059 { 5060 unsigned int cpu = (unsigned long)hcpu; 5061 5062 switch (action) { 5063 case CPU_ONLINE: 5064 case CPU_DOWN_FAILED: 5065 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5066 break; 5067 case CPU_DOWN_PREPARE: 5068 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5069 break; 5070 } 5071 return NOTIFY_OK; 5072 } 5073 5074 static struct notifier_block kvmclock_cpu_notifier_block = { 5075 .notifier_call = kvmclock_cpu_notifier, 5076 .priority = -INT_MAX 5077 }; 5078 5079 static void kvm_timer_init(void) 5080 { 5081 int cpu; 5082 5083 max_tsc_khz = tsc_khz; 5084 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5085 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5086 #ifdef CONFIG_CPU_FREQ 5087 struct cpufreq_policy policy; 5088 memset(&policy, 0, sizeof(policy)); 5089 cpu = get_cpu(); 5090 cpufreq_get_policy(&policy, cpu); 5091 if (policy.cpuinfo.max_freq) 5092 max_tsc_khz = policy.cpuinfo.max_freq; 5093 put_cpu(); 5094 #endif 5095 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5096 CPUFREQ_TRANSITION_NOTIFIER); 5097 } 5098 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5099 for_each_online_cpu(cpu) 5100 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5101 } 5102 5103 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5104 5105 int kvm_is_in_guest(void) 5106 { 5107 return __this_cpu_read(current_vcpu) != NULL; 5108 } 5109 5110 static int kvm_is_user_mode(void) 5111 { 5112 int user_mode = 3; 5113 5114 if (__this_cpu_read(current_vcpu)) 5115 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5116 5117 return user_mode != 0; 5118 } 5119 5120 static unsigned long kvm_get_guest_ip(void) 5121 { 5122 unsigned long ip = 0; 5123 5124 if (__this_cpu_read(current_vcpu)) 5125 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5126 5127 return ip; 5128 } 5129 5130 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5131 .is_in_guest = kvm_is_in_guest, 5132 .is_user_mode = kvm_is_user_mode, 5133 .get_guest_ip = kvm_get_guest_ip, 5134 }; 5135 5136 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5137 { 5138 __this_cpu_write(current_vcpu, vcpu); 5139 } 5140 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5141 5142 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5143 { 5144 __this_cpu_write(current_vcpu, NULL); 5145 } 5146 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5147 5148 static void kvm_set_mmio_spte_mask(void) 5149 { 5150 u64 mask; 5151 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5152 5153 /* 5154 * Set the reserved bits and the present bit of an paging-structure 5155 * entry to generate page fault with PFER.RSV = 1. 5156 */ 5157 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 5158 mask |= 1ull; 5159 5160 #ifdef CONFIG_X86_64 5161 /* 5162 * If reserved bit is not supported, clear the present bit to disable 5163 * mmio page fault. 5164 */ 5165 if (maxphyaddr == 52) 5166 mask &= ~1ull; 5167 #endif 5168 5169 kvm_mmu_set_mmio_spte_mask(mask); 5170 } 5171 5172 #ifdef CONFIG_X86_64 5173 static void pvclock_gtod_update_fn(struct work_struct *work) 5174 { 5175 struct kvm *kvm; 5176 5177 struct kvm_vcpu *vcpu; 5178 int i; 5179 5180 raw_spin_lock(&kvm_lock); 5181 list_for_each_entry(kvm, &vm_list, vm_list) 5182 kvm_for_each_vcpu(i, vcpu, kvm) 5183 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5184 atomic_set(&kvm_guest_has_master_clock, 0); 5185 raw_spin_unlock(&kvm_lock); 5186 } 5187 5188 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5189 5190 /* 5191 * Notification about pvclock gtod data update. 5192 */ 5193 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5194 void *priv) 5195 { 5196 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5197 struct timekeeper *tk = priv; 5198 5199 update_pvclock_gtod(tk); 5200 5201 /* disable master clock if host does not trust, or does not 5202 * use, TSC clocksource 5203 */ 5204 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5205 atomic_read(&kvm_guest_has_master_clock) != 0) 5206 queue_work(system_long_wq, &pvclock_gtod_work); 5207 5208 return 0; 5209 } 5210 5211 static struct notifier_block pvclock_gtod_notifier = { 5212 .notifier_call = pvclock_gtod_notify, 5213 }; 5214 #endif 5215 5216 int kvm_arch_init(void *opaque) 5217 { 5218 int r; 5219 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 5220 5221 if (kvm_x86_ops) { 5222 printk(KERN_ERR "kvm: already loaded the other module\n"); 5223 r = -EEXIST; 5224 goto out; 5225 } 5226 5227 if (!ops->cpu_has_kvm_support()) { 5228 printk(KERN_ERR "kvm: no hardware support\n"); 5229 r = -EOPNOTSUPP; 5230 goto out; 5231 } 5232 if (ops->disabled_by_bios()) { 5233 printk(KERN_ERR "kvm: disabled by bios\n"); 5234 r = -EOPNOTSUPP; 5235 goto out; 5236 } 5237 5238 r = -ENOMEM; 5239 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5240 if (!shared_msrs) { 5241 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5242 goto out; 5243 } 5244 5245 r = kvm_mmu_module_init(); 5246 if (r) 5247 goto out_free_percpu; 5248 5249 kvm_set_mmio_spte_mask(); 5250 kvm_init_msr_list(); 5251 5252 kvm_x86_ops = ops; 5253 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5254 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5255 5256 kvm_timer_init(); 5257 5258 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5259 5260 if (cpu_has_xsave) 5261 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5262 5263 kvm_lapic_init(); 5264 #ifdef CONFIG_X86_64 5265 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5266 #endif 5267 5268 return 0; 5269 5270 out_free_percpu: 5271 free_percpu(shared_msrs); 5272 out: 5273 return r; 5274 } 5275 5276 void kvm_arch_exit(void) 5277 { 5278 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5279 5280 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5281 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5282 CPUFREQ_TRANSITION_NOTIFIER); 5283 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5284 #ifdef CONFIG_X86_64 5285 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5286 #endif 5287 kvm_x86_ops = NULL; 5288 kvm_mmu_module_exit(); 5289 free_percpu(shared_msrs); 5290 } 5291 5292 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5293 { 5294 ++vcpu->stat.halt_exits; 5295 if (irqchip_in_kernel(vcpu->kvm)) { 5296 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5297 return 1; 5298 } else { 5299 vcpu->run->exit_reason = KVM_EXIT_HLT; 5300 return 0; 5301 } 5302 } 5303 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5304 5305 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5306 { 5307 u64 param, ingpa, outgpa, ret; 5308 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5309 bool fast, longmode; 5310 int cs_db, cs_l; 5311 5312 /* 5313 * hypercall generates UD from non zero cpl and real mode 5314 * per HYPER-V spec 5315 */ 5316 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5317 kvm_queue_exception(vcpu, UD_VECTOR); 5318 return 0; 5319 } 5320 5321 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5322 longmode = is_long_mode(vcpu) && cs_l == 1; 5323 5324 if (!longmode) { 5325 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5326 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5327 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5328 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5329 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5330 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5331 } 5332 #ifdef CONFIG_X86_64 5333 else { 5334 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5335 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5336 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5337 } 5338 #endif 5339 5340 code = param & 0xffff; 5341 fast = (param >> 16) & 0x1; 5342 rep_cnt = (param >> 32) & 0xfff; 5343 rep_idx = (param >> 48) & 0xfff; 5344 5345 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5346 5347 switch (code) { 5348 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5349 kvm_vcpu_on_spin(vcpu); 5350 break; 5351 default: 5352 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5353 break; 5354 } 5355 5356 ret = res | (((u64)rep_done & 0xfff) << 32); 5357 if (longmode) { 5358 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5359 } else { 5360 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5361 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5362 } 5363 5364 return 1; 5365 } 5366 5367 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5368 { 5369 unsigned long nr, a0, a1, a2, a3, ret; 5370 int r = 1; 5371 5372 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5373 return kvm_hv_hypercall(vcpu); 5374 5375 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5376 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5377 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5378 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5379 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5380 5381 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5382 5383 if (!is_long_mode(vcpu)) { 5384 nr &= 0xFFFFFFFF; 5385 a0 &= 0xFFFFFFFF; 5386 a1 &= 0xFFFFFFFF; 5387 a2 &= 0xFFFFFFFF; 5388 a3 &= 0xFFFFFFFF; 5389 } 5390 5391 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5392 ret = -KVM_EPERM; 5393 goto out; 5394 } 5395 5396 switch (nr) { 5397 case KVM_HC_VAPIC_POLL_IRQ: 5398 ret = 0; 5399 break; 5400 default: 5401 ret = -KVM_ENOSYS; 5402 break; 5403 } 5404 out: 5405 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5406 ++vcpu->stat.hypercalls; 5407 return r; 5408 } 5409 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5410 5411 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5412 { 5413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5414 char instruction[3]; 5415 unsigned long rip = kvm_rip_read(vcpu); 5416 5417 /* 5418 * Blow out the MMU to ensure that no other VCPU has an active mapping 5419 * to ensure that the updated hypercall appears atomically across all 5420 * VCPUs. 5421 */ 5422 kvm_mmu_zap_all(vcpu->kvm); 5423 5424 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5425 5426 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5427 } 5428 5429 /* 5430 * Check if userspace requested an interrupt window, and that the 5431 * interrupt window is open. 5432 * 5433 * No need to exit to userspace if we already have an interrupt queued. 5434 */ 5435 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5436 { 5437 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5438 vcpu->run->request_interrupt_window && 5439 kvm_arch_interrupt_allowed(vcpu)); 5440 } 5441 5442 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5443 { 5444 struct kvm_run *kvm_run = vcpu->run; 5445 5446 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5447 kvm_run->cr8 = kvm_get_cr8(vcpu); 5448 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5449 if (irqchip_in_kernel(vcpu->kvm)) 5450 kvm_run->ready_for_interrupt_injection = 1; 5451 else 5452 kvm_run->ready_for_interrupt_injection = 5453 kvm_arch_interrupt_allowed(vcpu) && 5454 !kvm_cpu_has_interrupt(vcpu) && 5455 !kvm_event_needs_reinjection(vcpu); 5456 } 5457 5458 static int vapic_enter(struct kvm_vcpu *vcpu) 5459 { 5460 struct kvm_lapic *apic = vcpu->arch.apic; 5461 struct page *page; 5462 5463 if (!apic || !apic->vapic_addr) 5464 return 0; 5465 5466 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5467 if (is_error_page(page)) 5468 return -EFAULT; 5469 5470 vcpu->arch.apic->vapic_page = page; 5471 return 0; 5472 } 5473 5474 static void vapic_exit(struct kvm_vcpu *vcpu) 5475 { 5476 struct kvm_lapic *apic = vcpu->arch.apic; 5477 int idx; 5478 5479 if (!apic || !apic->vapic_addr) 5480 return; 5481 5482 idx = srcu_read_lock(&vcpu->kvm->srcu); 5483 kvm_release_page_dirty(apic->vapic_page); 5484 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5485 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5486 } 5487 5488 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5489 { 5490 int max_irr, tpr; 5491 5492 if (!kvm_x86_ops->update_cr8_intercept) 5493 return; 5494 5495 if (!vcpu->arch.apic) 5496 return; 5497 5498 if (!vcpu->arch.apic->vapic_addr) 5499 max_irr = kvm_lapic_find_highest_irr(vcpu); 5500 else 5501 max_irr = -1; 5502 5503 if (max_irr != -1) 5504 max_irr >>= 4; 5505 5506 tpr = kvm_lapic_get_cr8(vcpu); 5507 5508 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5509 } 5510 5511 static void inject_pending_event(struct kvm_vcpu *vcpu) 5512 { 5513 /* try to reinject previous events if any */ 5514 if (vcpu->arch.exception.pending) { 5515 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5516 vcpu->arch.exception.has_error_code, 5517 vcpu->arch.exception.error_code); 5518 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5519 vcpu->arch.exception.has_error_code, 5520 vcpu->arch.exception.error_code, 5521 vcpu->arch.exception.reinject); 5522 return; 5523 } 5524 5525 if (vcpu->arch.nmi_injected) { 5526 kvm_x86_ops->set_nmi(vcpu); 5527 return; 5528 } 5529 5530 if (vcpu->arch.interrupt.pending) { 5531 kvm_x86_ops->set_irq(vcpu); 5532 return; 5533 } 5534 5535 /* try to inject new event if pending */ 5536 if (vcpu->arch.nmi_pending) { 5537 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5538 --vcpu->arch.nmi_pending; 5539 vcpu->arch.nmi_injected = true; 5540 kvm_x86_ops->set_nmi(vcpu); 5541 } 5542 } else if (kvm_cpu_has_interrupt(vcpu)) { 5543 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5544 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5545 false); 5546 kvm_x86_ops->set_irq(vcpu); 5547 } 5548 } 5549 } 5550 5551 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5552 { 5553 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5554 !vcpu->guest_xcr0_loaded) { 5555 /* kvm_set_xcr() also depends on this */ 5556 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5557 vcpu->guest_xcr0_loaded = 1; 5558 } 5559 } 5560 5561 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5562 { 5563 if (vcpu->guest_xcr0_loaded) { 5564 if (vcpu->arch.xcr0 != host_xcr0) 5565 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5566 vcpu->guest_xcr0_loaded = 0; 5567 } 5568 } 5569 5570 static void process_nmi(struct kvm_vcpu *vcpu) 5571 { 5572 unsigned limit = 2; 5573 5574 /* 5575 * x86 is limited to one NMI running, and one NMI pending after it. 5576 * If an NMI is already in progress, limit further NMIs to just one. 5577 * Otherwise, allow two (and we'll inject the first one immediately). 5578 */ 5579 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5580 limit = 1; 5581 5582 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5583 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5584 kvm_make_request(KVM_REQ_EVENT, vcpu); 5585 } 5586 5587 static void kvm_gen_update_masterclock(struct kvm *kvm) 5588 { 5589 #ifdef CONFIG_X86_64 5590 int i; 5591 struct kvm_vcpu *vcpu; 5592 struct kvm_arch *ka = &kvm->arch; 5593 5594 spin_lock(&ka->pvclock_gtod_sync_lock); 5595 kvm_make_mclock_inprogress_request(kvm); 5596 /* no guest entries from this point */ 5597 pvclock_update_vm_gtod_copy(kvm); 5598 5599 kvm_for_each_vcpu(i, vcpu, kvm) 5600 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 5601 5602 /* guest entries allowed */ 5603 kvm_for_each_vcpu(i, vcpu, kvm) 5604 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 5605 5606 spin_unlock(&ka->pvclock_gtod_sync_lock); 5607 #endif 5608 } 5609 5610 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5611 { 5612 int r; 5613 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5614 vcpu->run->request_interrupt_window; 5615 bool req_immediate_exit = 0; 5616 5617 if (vcpu->requests) { 5618 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5619 kvm_mmu_unload(vcpu); 5620 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5621 __kvm_migrate_timers(vcpu); 5622 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5623 kvm_gen_update_masterclock(vcpu->kvm); 5624 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5625 r = kvm_guest_time_update(vcpu); 5626 if (unlikely(r)) 5627 goto out; 5628 } 5629 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5630 kvm_mmu_sync_roots(vcpu); 5631 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5632 kvm_x86_ops->tlb_flush(vcpu); 5633 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5634 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5635 r = 0; 5636 goto out; 5637 } 5638 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5639 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5640 r = 0; 5641 goto out; 5642 } 5643 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5644 vcpu->fpu_active = 0; 5645 kvm_x86_ops->fpu_deactivate(vcpu); 5646 } 5647 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5648 /* Page is swapped out. Do synthetic halt */ 5649 vcpu->arch.apf.halted = true; 5650 r = 1; 5651 goto out; 5652 } 5653 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5654 record_steal_time(vcpu); 5655 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5656 process_nmi(vcpu); 5657 req_immediate_exit = 5658 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5659 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5660 kvm_handle_pmu_event(vcpu); 5661 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5662 kvm_deliver_pmi(vcpu); 5663 } 5664 5665 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5666 inject_pending_event(vcpu); 5667 5668 /* enable NMI/IRQ window open exits if needed */ 5669 if (vcpu->arch.nmi_pending) 5670 kvm_x86_ops->enable_nmi_window(vcpu); 5671 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5672 kvm_x86_ops->enable_irq_window(vcpu); 5673 5674 if (kvm_lapic_enabled(vcpu)) { 5675 update_cr8_intercept(vcpu); 5676 kvm_lapic_sync_to_vapic(vcpu); 5677 } 5678 } 5679 5680 r = kvm_mmu_reload(vcpu); 5681 if (unlikely(r)) { 5682 goto cancel_injection; 5683 } 5684 5685 preempt_disable(); 5686 5687 kvm_x86_ops->prepare_guest_switch(vcpu); 5688 if (vcpu->fpu_active) 5689 kvm_load_guest_fpu(vcpu); 5690 kvm_load_guest_xcr0(vcpu); 5691 5692 vcpu->mode = IN_GUEST_MODE; 5693 5694 /* We should set ->mode before check ->requests, 5695 * see the comment in make_all_cpus_request. 5696 */ 5697 smp_mb(); 5698 5699 local_irq_disable(); 5700 5701 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5702 || need_resched() || signal_pending(current)) { 5703 vcpu->mode = OUTSIDE_GUEST_MODE; 5704 smp_wmb(); 5705 local_irq_enable(); 5706 preempt_enable(); 5707 r = 1; 5708 goto cancel_injection; 5709 } 5710 5711 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5712 5713 if (req_immediate_exit) 5714 smp_send_reschedule(vcpu->cpu); 5715 5716 kvm_guest_enter(); 5717 5718 if (unlikely(vcpu->arch.switch_db_regs)) { 5719 set_debugreg(0, 7); 5720 set_debugreg(vcpu->arch.eff_db[0], 0); 5721 set_debugreg(vcpu->arch.eff_db[1], 1); 5722 set_debugreg(vcpu->arch.eff_db[2], 2); 5723 set_debugreg(vcpu->arch.eff_db[3], 3); 5724 } 5725 5726 trace_kvm_entry(vcpu->vcpu_id); 5727 kvm_x86_ops->run(vcpu); 5728 5729 /* 5730 * If the guest has used debug registers, at least dr7 5731 * will be disabled while returning to the host. 5732 * If we don't have active breakpoints in the host, we don't 5733 * care about the messed up debug address registers. But if 5734 * we have some of them active, restore the old state. 5735 */ 5736 if (hw_breakpoint_active()) 5737 hw_breakpoint_restore(); 5738 5739 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 5740 native_read_tsc()); 5741 5742 vcpu->mode = OUTSIDE_GUEST_MODE; 5743 smp_wmb(); 5744 local_irq_enable(); 5745 5746 ++vcpu->stat.exits; 5747 5748 /* 5749 * We must have an instruction between local_irq_enable() and 5750 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5751 * the interrupt shadow. The stat.exits increment will do nicely. 5752 * But we need to prevent reordering, hence this barrier(): 5753 */ 5754 barrier(); 5755 5756 kvm_guest_exit(); 5757 5758 preempt_enable(); 5759 5760 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5761 5762 /* 5763 * Profile KVM exit RIPs: 5764 */ 5765 if (unlikely(prof_on == KVM_PROFILING)) { 5766 unsigned long rip = kvm_rip_read(vcpu); 5767 profile_hit(KVM_PROFILING, (void *)rip); 5768 } 5769 5770 if (unlikely(vcpu->arch.tsc_always_catchup)) 5771 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5772 5773 if (vcpu->arch.apic_attention) 5774 kvm_lapic_sync_from_vapic(vcpu); 5775 5776 r = kvm_x86_ops->handle_exit(vcpu); 5777 return r; 5778 5779 cancel_injection: 5780 kvm_x86_ops->cancel_injection(vcpu); 5781 if (unlikely(vcpu->arch.apic_attention)) 5782 kvm_lapic_sync_from_vapic(vcpu); 5783 out: 5784 return r; 5785 } 5786 5787 5788 static int __vcpu_run(struct kvm_vcpu *vcpu) 5789 { 5790 int r; 5791 struct kvm *kvm = vcpu->kvm; 5792 5793 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5794 pr_debug("vcpu %d received sipi with vector # %x\n", 5795 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5796 kvm_lapic_reset(vcpu); 5797 r = kvm_vcpu_reset(vcpu); 5798 if (r) 5799 return r; 5800 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5801 } 5802 5803 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5804 r = vapic_enter(vcpu); 5805 if (r) { 5806 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5807 return r; 5808 } 5809 5810 r = 1; 5811 while (r > 0) { 5812 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5813 !vcpu->arch.apf.halted) 5814 r = vcpu_enter_guest(vcpu); 5815 else { 5816 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5817 kvm_vcpu_block(vcpu); 5818 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5819 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5820 { 5821 switch(vcpu->arch.mp_state) { 5822 case KVM_MP_STATE_HALTED: 5823 vcpu->arch.mp_state = 5824 KVM_MP_STATE_RUNNABLE; 5825 case KVM_MP_STATE_RUNNABLE: 5826 vcpu->arch.apf.halted = false; 5827 break; 5828 case KVM_MP_STATE_SIPI_RECEIVED: 5829 default: 5830 r = -EINTR; 5831 break; 5832 } 5833 } 5834 } 5835 5836 if (r <= 0) 5837 break; 5838 5839 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5840 if (kvm_cpu_has_pending_timer(vcpu)) 5841 kvm_inject_pending_timer_irqs(vcpu); 5842 5843 if (dm_request_for_irq_injection(vcpu)) { 5844 r = -EINTR; 5845 vcpu->run->exit_reason = KVM_EXIT_INTR; 5846 ++vcpu->stat.request_irq_exits; 5847 } 5848 5849 kvm_check_async_pf_completion(vcpu); 5850 5851 if (signal_pending(current)) { 5852 r = -EINTR; 5853 vcpu->run->exit_reason = KVM_EXIT_INTR; 5854 ++vcpu->stat.signal_exits; 5855 } 5856 if (need_resched()) { 5857 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5858 kvm_resched(vcpu); 5859 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5860 } 5861 } 5862 5863 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5864 5865 vapic_exit(vcpu); 5866 5867 return r; 5868 } 5869 5870 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 5871 { 5872 int r; 5873 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5874 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5875 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5876 if (r != EMULATE_DONE) 5877 return 0; 5878 return 1; 5879 } 5880 5881 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 5882 { 5883 BUG_ON(!vcpu->arch.pio.count); 5884 5885 return complete_emulated_io(vcpu); 5886 } 5887 5888 /* 5889 * Implements the following, as a state machine: 5890 * 5891 * read: 5892 * for each fragment 5893 * for each mmio piece in the fragment 5894 * write gpa, len 5895 * exit 5896 * copy data 5897 * execute insn 5898 * 5899 * write: 5900 * for each fragment 5901 * for each mmio piece in the fragment 5902 * write gpa, len 5903 * copy data 5904 * exit 5905 */ 5906 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 5907 { 5908 struct kvm_run *run = vcpu->run; 5909 struct kvm_mmio_fragment *frag; 5910 unsigned len; 5911 5912 BUG_ON(!vcpu->mmio_needed); 5913 5914 /* Complete previous fragment */ 5915 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 5916 len = min(8u, frag->len); 5917 if (!vcpu->mmio_is_write) 5918 memcpy(frag->data, run->mmio.data, len); 5919 5920 if (frag->len <= 8) { 5921 /* Switch to the next fragment. */ 5922 frag++; 5923 vcpu->mmio_cur_fragment++; 5924 } else { 5925 /* Go forward to the next mmio piece. */ 5926 frag->data += len; 5927 frag->gpa += len; 5928 frag->len -= len; 5929 } 5930 5931 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5932 vcpu->mmio_needed = 0; 5933 if (vcpu->mmio_is_write) 5934 return 1; 5935 vcpu->mmio_read_completed = 1; 5936 return complete_emulated_io(vcpu); 5937 } 5938 5939 run->exit_reason = KVM_EXIT_MMIO; 5940 run->mmio.phys_addr = frag->gpa; 5941 if (vcpu->mmio_is_write) 5942 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 5943 run->mmio.len = min(8u, frag->len); 5944 run->mmio.is_write = vcpu->mmio_is_write; 5945 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5946 return 0; 5947 } 5948 5949 5950 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5951 { 5952 int r; 5953 sigset_t sigsaved; 5954 5955 if (!tsk_used_math(current) && init_fpu(current)) 5956 return -ENOMEM; 5957 5958 if (vcpu->sigset_active) 5959 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5960 5961 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5962 kvm_vcpu_block(vcpu); 5963 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5964 r = -EAGAIN; 5965 goto out; 5966 } 5967 5968 /* re-sync apic's tpr */ 5969 if (!irqchip_in_kernel(vcpu->kvm)) { 5970 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5971 r = -EINVAL; 5972 goto out; 5973 } 5974 } 5975 5976 if (unlikely(vcpu->arch.complete_userspace_io)) { 5977 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 5978 vcpu->arch.complete_userspace_io = NULL; 5979 r = cui(vcpu); 5980 if (r <= 0) 5981 goto out; 5982 } else 5983 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 5984 5985 r = __vcpu_run(vcpu); 5986 5987 out: 5988 post_kvm_run_save(vcpu); 5989 if (vcpu->sigset_active) 5990 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5991 5992 return r; 5993 } 5994 5995 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5996 { 5997 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5998 /* 5999 * We are here if userspace calls get_regs() in the middle of 6000 * instruction emulation. Registers state needs to be copied 6001 * back from emulation context to vcpu. Userspace shouldn't do 6002 * that usually, but some bad designed PV devices (vmware 6003 * backdoor interface) need this to work 6004 */ 6005 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6006 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6007 } 6008 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6009 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6010 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6011 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6012 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6013 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6014 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6015 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6016 #ifdef CONFIG_X86_64 6017 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6018 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6019 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6020 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6021 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6022 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6023 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6024 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6025 #endif 6026 6027 regs->rip = kvm_rip_read(vcpu); 6028 regs->rflags = kvm_get_rflags(vcpu); 6029 6030 return 0; 6031 } 6032 6033 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6034 { 6035 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6036 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6037 6038 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6039 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6040 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6041 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6042 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6043 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6044 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6045 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6046 #ifdef CONFIG_X86_64 6047 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6048 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6049 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6050 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6051 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6052 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6053 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6054 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6055 #endif 6056 6057 kvm_rip_write(vcpu, regs->rip); 6058 kvm_set_rflags(vcpu, regs->rflags); 6059 6060 vcpu->arch.exception.pending = false; 6061 6062 kvm_make_request(KVM_REQ_EVENT, vcpu); 6063 6064 return 0; 6065 } 6066 6067 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6068 { 6069 struct kvm_segment cs; 6070 6071 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6072 *db = cs.db; 6073 *l = cs.l; 6074 } 6075 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6076 6077 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6078 struct kvm_sregs *sregs) 6079 { 6080 struct desc_ptr dt; 6081 6082 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6083 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6084 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6085 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6086 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6087 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6088 6089 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6090 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6091 6092 kvm_x86_ops->get_idt(vcpu, &dt); 6093 sregs->idt.limit = dt.size; 6094 sregs->idt.base = dt.address; 6095 kvm_x86_ops->get_gdt(vcpu, &dt); 6096 sregs->gdt.limit = dt.size; 6097 sregs->gdt.base = dt.address; 6098 6099 sregs->cr0 = kvm_read_cr0(vcpu); 6100 sregs->cr2 = vcpu->arch.cr2; 6101 sregs->cr3 = kvm_read_cr3(vcpu); 6102 sregs->cr4 = kvm_read_cr4(vcpu); 6103 sregs->cr8 = kvm_get_cr8(vcpu); 6104 sregs->efer = vcpu->arch.efer; 6105 sregs->apic_base = kvm_get_apic_base(vcpu); 6106 6107 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6108 6109 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6110 set_bit(vcpu->arch.interrupt.nr, 6111 (unsigned long *)sregs->interrupt_bitmap); 6112 6113 return 0; 6114 } 6115 6116 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6117 struct kvm_mp_state *mp_state) 6118 { 6119 mp_state->mp_state = vcpu->arch.mp_state; 6120 return 0; 6121 } 6122 6123 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6124 struct kvm_mp_state *mp_state) 6125 { 6126 vcpu->arch.mp_state = mp_state->mp_state; 6127 kvm_make_request(KVM_REQ_EVENT, vcpu); 6128 return 0; 6129 } 6130 6131 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6132 int reason, bool has_error_code, u32 error_code) 6133 { 6134 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6135 int ret; 6136 6137 init_emulate_ctxt(vcpu); 6138 6139 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6140 has_error_code, error_code); 6141 6142 if (ret) 6143 return EMULATE_FAIL; 6144 6145 kvm_rip_write(vcpu, ctxt->eip); 6146 kvm_set_rflags(vcpu, ctxt->eflags); 6147 kvm_make_request(KVM_REQ_EVENT, vcpu); 6148 return EMULATE_DONE; 6149 } 6150 EXPORT_SYMBOL_GPL(kvm_task_switch); 6151 6152 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6153 struct kvm_sregs *sregs) 6154 { 6155 int mmu_reset_needed = 0; 6156 int pending_vec, max_bits, idx; 6157 struct desc_ptr dt; 6158 6159 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6160 return -EINVAL; 6161 6162 dt.size = sregs->idt.limit; 6163 dt.address = sregs->idt.base; 6164 kvm_x86_ops->set_idt(vcpu, &dt); 6165 dt.size = sregs->gdt.limit; 6166 dt.address = sregs->gdt.base; 6167 kvm_x86_ops->set_gdt(vcpu, &dt); 6168 6169 vcpu->arch.cr2 = sregs->cr2; 6170 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6171 vcpu->arch.cr3 = sregs->cr3; 6172 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6173 6174 kvm_set_cr8(vcpu, sregs->cr8); 6175 6176 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6177 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6178 kvm_set_apic_base(vcpu, sregs->apic_base); 6179 6180 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6181 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6182 vcpu->arch.cr0 = sregs->cr0; 6183 6184 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6185 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6186 if (sregs->cr4 & X86_CR4_OSXSAVE) 6187 kvm_update_cpuid(vcpu); 6188 6189 idx = srcu_read_lock(&vcpu->kvm->srcu); 6190 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6191 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6192 mmu_reset_needed = 1; 6193 } 6194 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6195 6196 if (mmu_reset_needed) 6197 kvm_mmu_reset_context(vcpu); 6198 6199 max_bits = KVM_NR_INTERRUPTS; 6200 pending_vec = find_first_bit( 6201 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6202 if (pending_vec < max_bits) { 6203 kvm_queue_interrupt(vcpu, pending_vec, false); 6204 pr_debug("Set back pending irq %d\n", pending_vec); 6205 } 6206 6207 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6208 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6209 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6210 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6211 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6212 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6213 6214 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6215 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6216 6217 update_cr8_intercept(vcpu); 6218 6219 /* Older userspace won't unhalt the vcpu on reset. */ 6220 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6221 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6222 !is_protmode(vcpu)) 6223 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6224 6225 kvm_make_request(KVM_REQ_EVENT, vcpu); 6226 6227 return 0; 6228 } 6229 6230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6231 struct kvm_guest_debug *dbg) 6232 { 6233 unsigned long rflags; 6234 int i, r; 6235 6236 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6237 r = -EBUSY; 6238 if (vcpu->arch.exception.pending) 6239 goto out; 6240 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6241 kvm_queue_exception(vcpu, DB_VECTOR); 6242 else 6243 kvm_queue_exception(vcpu, BP_VECTOR); 6244 } 6245 6246 /* 6247 * Read rflags as long as potentially injected trace flags are still 6248 * filtered out. 6249 */ 6250 rflags = kvm_get_rflags(vcpu); 6251 6252 vcpu->guest_debug = dbg->control; 6253 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6254 vcpu->guest_debug = 0; 6255 6256 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6257 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6258 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6259 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6260 } else { 6261 for (i = 0; i < KVM_NR_DB_REGS; i++) 6262 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6263 } 6264 kvm_update_dr7(vcpu); 6265 6266 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6267 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6268 get_segment_base(vcpu, VCPU_SREG_CS); 6269 6270 /* 6271 * Trigger an rflags update that will inject or remove the trace 6272 * flags. 6273 */ 6274 kvm_set_rflags(vcpu, rflags); 6275 6276 kvm_x86_ops->update_db_bp_intercept(vcpu); 6277 6278 r = 0; 6279 6280 out: 6281 6282 return r; 6283 } 6284 6285 /* 6286 * Translate a guest virtual address to a guest physical address. 6287 */ 6288 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6289 struct kvm_translation *tr) 6290 { 6291 unsigned long vaddr = tr->linear_address; 6292 gpa_t gpa; 6293 int idx; 6294 6295 idx = srcu_read_lock(&vcpu->kvm->srcu); 6296 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6297 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6298 tr->physical_address = gpa; 6299 tr->valid = gpa != UNMAPPED_GVA; 6300 tr->writeable = 1; 6301 tr->usermode = 0; 6302 6303 return 0; 6304 } 6305 6306 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6307 { 6308 struct i387_fxsave_struct *fxsave = 6309 &vcpu->arch.guest_fpu.state->fxsave; 6310 6311 memcpy(fpu->fpr, fxsave->st_space, 128); 6312 fpu->fcw = fxsave->cwd; 6313 fpu->fsw = fxsave->swd; 6314 fpu->ftwx = fxsave->twd; 6315 fpu->last_opcode = fxsave->fop; 6316 fpu->last_ip = fxsave->rip; 6317 fpu->last_dp = fxsave->rdp; 6318 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6319 6320 return 0; 6321 } 6322 6323 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6324 { 6325 struct i387_fxsave_struct *fxsave = 6326 &vcpu->arch.guest_fpu.state->fxsave; 6327 6328 memcpy(fxsave->st_space, fpu->fpr, 128); 6329 fxsave->cwd = fpu->fcw; 6330 fxsave->swd = fpu->fsw; 6331 fxsave->twd = fpu->ftwx; 6332 fxsave->fop = fpu->last_opcode; 6333 fxsave->rip = fpu->last_ip; 6334 fxsave->rdp = fpu->last_dp; 6335 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6336 6337 return 0; 6338 } 6339 6340 int fx_init(struct kvm_vcpu *vcpu) 6341 { 6342 int err; 6343 6344 err = fpu_alloc(&vcpu->arch.guest_fpu); 6345 if (err) 6346 return err; 6347 6348 fpu_finit(&vcpu->arch.guest_fpu); 6349 6350 /* 6351 * Ensure guest xcr0 is valid for loading 6352 */ 6353 vcpu->arch.xcr0 = XSTATE_FP; 6354 6355 vcpu->arch.cr0 |= X86_CR0_ET; 6356 6357 return 0; 6358 } 6359 EXPORT_SYMBOL_GPL(fx_init); 6360 6361 static void fx_free(struct kvm_vcpu *vcpu) 6362 { 6363 fpu_free(&vcpu->arch.guest_fpu); 6364 } 6365 6366 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6367 { 6368 if (vcpu->guest_fpu_loaded) 6369 return; 6370 6371 /* 6372 * Restore all possible states in the guest, 6373 * and assume host would use all available bits. 6374 * Guest xcr0 would be loaded later. 6375 */ 6376 kvm_put_guest_xcr0(vcpu); 6377 vcpu->guest_fpu_loaded = 1; 6378 __kernel_fpu_begin(); 6379 fpu_restore_checking(&vcpu->arch.guest_fpu); 6380 trace_kvm_fpu(1); 6381 } 6382 6383 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6384 { 6385 kvm_put_guest_xcr0(vcpu); 6386 6387 if (!vcpu->guest_fpu_loaded) 6388 return; 6389 6390 vcpu->guest_fpu_loaded = 0; 6391 fpu_save_init(&vcpu->arch.guest_fpu); 6392 __kernel_fpu_end(); 6393 ++vcpu->stat.fpu_reload; 6394 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6395 trace_kvm_fpu(0); 6396 } 6397 6398 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6399 { 6400 kvmclock_reset(vcpu); 6401 6402 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6403 fx_free(vcpu); 6404 kvm_x86_ops->vcpu_free(vcpu); 6405 } 6406 6407 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6408 unsigned int id) 6409 { 6410 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6411 printk_once(KERN_WARNING 6412 "kvm: SMP vm created on host with unstable TSC; " 6413 "guest TSC will not be reliable\n"); 6414 return kvm_x86_ops->vcpu_create(kvm, id); 6415 } 6416 6417 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6418 { 6419 int r; 6420 6421 vcpu->arch.mtrr_state.have_fixed = 1; 6422 r = vcpu_load(vcpu); 6423 if (r) 6424 return r; 6425 r = kvm_vcpu_reset(vcpu); 6426 if (r == 0) 6427 r = kvm_mmu_setup(vcpu); 6428 vcpu_put(vcpu); 6429 6430 return r; 6431 } 6432 6433 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6434 { 6435 int r; 6436 struct msr_data msr; 6437 6438 r = vcpu_load(vcpu); 6439 if (r) 6440 return r; 6441 msr.data = 0x0; 6442 msr.index = MSR_IA32_TSC; 6443 msr.host_initiated = true; 6444 kvm_write_tsc(vcpu, &msr); 6445 vcpu_put(vcpu); 6446 6447 return r; 6448 } 6449 6450 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6451 { 6452 int r; 6453 vcpu->arch.apf.msr_val = 0; 6454 6455 r = vcpu_load(vcpu); 6456 BUG_ON(r); 6457 kvm_mmu_unload(vcpu); 6458 vcpu_put(vcpu); 6459 6460 fx_free(vcpu); 6461 kvm_x86_ops->vcpu_free(vcpu); 6462 } 6463 6464 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6465 { 6466 atomic_set(&vcpu->arch.nmi_queued, 0); 6467 vcpu->arch.nmi_pending = 0; 6468 vcpu->arch.nmi_injected = false; 6469 6470 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6471 vcpu->arch.dr6 = DR6_FIXED_1; 6472 vcpu->arch.dr7 = DR7_FIXED_1; 6473 kvm_update_dr7(vcpu); 6474 6475 kvm_make_request(KVM_REQ_EVENT, vcpu); 6476 vcpu->arch.apf.msr_val = 0; 6477 vcpu->arch.st.msr_val = 0; 6478 6479 kvmclock_reset(vcpu); 6480 6481 kvm_clear_async_pf_completion_queue(vcpu); 6482 kvm_async_pf_hash_reset(vcpu); 6483 vcpu->arch.apf.halted = false; 6484 6485 kvm_pmu_reset(vcpu); 6486 6487 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6488 vcpu->arch.regs_avail = ~0; 6489 vcpu->arch.regs_dirty = ~0; 6490 6491 return kvm_x86_ops->vcpu_reset(vcpu); 6492 } 6493 6494 int kvm_arch_hardware_enable(void *garbage) 6495 { 6496 struct kvm *kvm; 6497 struct kvm_vcpu *vcpu; 6498 int i; 6499 int ret; 6500 u64 local_tsc; 6501 u64 max_tsc = 0; 6502 bool stable, backwards_tsc = false; 6503 6504 kvm_shared_msr_cpu_online(); 6505 ret = kvm_x86_ops->hardware_enable(garbage); 6506 if (ret != 0) 6507 return ret; 6508 6509 local_tsc = native_read_tsc(); 6510 stable = !check_tsc_unstable(); 6511 list_for_each_entry(kvm, &vm_list, vm_list) { 6512 kvm_for_each_vcpu(i, vcpu, kvm) { 6513 if (!stable && vcpu->cpu == smp_processor_id()) 6514 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6515 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6516 backwards_tsc = true; 6517 if (vcpu->arch.last_host_tsc > max_tsc) 6518 max_tsc = vcpu->arch.last_host_tsc; 6519 } 6520 } 6521 } 6522 6523 /* 6524 * Sometimes, even reliable TSCs go backwards. This happens on 6525 * platforms that reset TSC during suspend or hibernate actions, but 6526 * maintain synchronization. We must compensate. Fortunately, we can 6527 * detect that condition here, which happens early in CPU bringup, 6528 * before any KVM threads can be running. Unfortunately, we can't 6529 * bring the TSCs fully up to date with real time, as we aren't yet far 6530 * enough into CPU bringup that we know how much real time has actually 6531 * elapsed; our helper function, get_kernel_ns() will be using boot 6532 * variables that haven't been updated yet. 6533 * 6534 * So we simply find the maximum observed TSC above, then record the 6535 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6536 * the adjustment will be applied. Note that we accumulate 6537 * adjustments, in case multiple suspend cycles happen before some VCPU 6538 * gets a chance to run again. In the event that no KVM threads get a 6539 * chance to run, we will miss the entire elapsed period, as we'll have 6540 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6541 * loose cycle time. This isn't too big a deal, since the loss will be 6542 * uniform across all VCPUs (not to mention the scenario is extremely 6543 * unlikely). It is possible that a second hibernate recovery happens 6544 * much faster than a first, causing the observed TSC here to be 6545 * smaller; this would require additional padding adjustment, which is 6546 * why we set last_host_tsc to the local tsc observed here. 6547 * 6548 * N.B. - this code below runs only on platforms with reliable TSC, 6549 * as that is the only way backwards_tsc is set above. Also note 6550 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6551 * have the same delta_cyc adjustment applied if backwards_tsc 6552 * is detected. Note further, this adjustment is only done once, 6553 * as we reset last_host_tsc on all VCPUs to stop this from being 6554 * called multiple times (one for each physical CPU bringup). 6555 * 6556 * Platforms with unreliable TSCs don't have to deal with this, they 6557 * will be compensated by the logic in vcpu_load, which sets the TSC to 6558 * catchup mode. This will catchup all VCPUs to real time, but cannot 6559 * guarantee that they stay in perfect synchronization. 6560 */ 6561 if (backwards_tsc) { 6562 u64 delta_cyc = max_tsc - local_tsc; 6563 list_for_each_entry(kvm, &vm_list, vm_list) { 6564 kvm_for_each_vcpu(i, vcpu, kvm) { 6565 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6566 vcpu->arch.last_host_tsc = local_tsc; 6567 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6568 &vcpu->requests); 6569 } 6570 6571 /* 6572 * We have to disable TSC offset matching.. if you were 6573 * booting a VM while issuing an S4 host suspend.... 6574 * you may have some problem. Solving this issue is 6575 * left as an exercise to the reader. 6576 */ 6577 kvm->arch.last_tsc_nsec = 0; 6578 kvm->arch.last_tsc_write = 0; 6579 } 6580 6581 } 6582 return 0; 6583 } 6584 6585 void kvm_arch_hardware_disable(void *garbage) 6586 { 6587 kvm_x86_ops->hardware_disable(garbage); 6588 drop_user_return_notifiers(garbage); 6589 } 6590 6591 int kvm_arch_hardware_setup(void) 6592 { 6593 return kvm_x86_ops->hardware_setup(); 6594 } 6595 6596 void kvm_arch_hardware_unsetup(void) 6597 { 6598 kvm_x86_ops->hardware_unsetup(); 6599 } 6600 6601 void kvm_arch_check_processor_compat(void *rtn) 6602 { 6603 kvm_x86_ops->check_processor_compatibility(rtn); 6604 } 6605 6606 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6607 { 6608 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6609 } 6610 6611 struct static_key kvm_no_apic_vcpu __read_mostly; 6612 6613 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6614 { 6615 struct page *page; 6616 struct kvm *kvm; 6617 int r; 6618 6619 BUG_ON(vcpu->kvm == NULL); 6620 kvm = vcpu->kvm; 6621 6622 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6623 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6624 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6625 else 6626 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6627 6628 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6629 if (!page) { 6630 r = -ENOMEM; 6631 goto fail; 6632 } 6633 vcpu->arch.pio_data = page_address(page); 6634 6635 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6636 6637 r = kvm_mmu_create(vcpu); 6638 if (r < 0) 6639 goto fail_free_pio_data; 6640 6641 if (irqchip_in_kernel(kvm)) { 6642 r = kvm_create_lapic(vcpu); 6643 if (r < 0) 6644 goto fail_mmu_destroy; 6645 } else 6646 static_key_slow_inc(&kvm_no_apic_vcpu); 6647 6648 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6649 GFP_KERNEL); 6650 if (!vcpu->arch.mce_banks) { 6651 r = -ENOMEM; 6652 goto fail_free_lapic; 6653 } 6654 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6655 6656 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6657 goto fail_free_mce_banks; 6658 6659 r = fx_init(vcpu); 6660 if (r) 6661 goto fail_free_wbinvd_dirty_mask; 6662 6663 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 6664 kvm_async_pf_hash_reset(vcpu); 6665 kvm_pmu_init(vcpu); 6666 6667 return 0; 6668 fail_free_wbinvd_dirty_mask: 6669 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6670 fail_free_mce_banks: 6671 kfree(vcpu->arch.mce_banks); 6672 fail_free_lapic: 6673 kvm_free_lapic(vcpu); 6674 fail_mmu_destroy: 6675 kvm_mmu_destroy(vcpu); 6676 fail_free_pio_data: 6677 free_page((unsigned long)vcpu->arch.pio_data); 6678 fail: 6679 return r; 6680 } 6681 6682 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6683 { 6684 int idx; 6685 6686 kvm_pmu_destroy(vcpu); 6687 kfree(vcpu->arch.mce_banks); 6688 kvm_free_lapic(vcpu); 6689 idx = srcu_read_lock(&vcpu->kvm->srcu); 6690 kvm_mmu_destroy(vcpu); 6691 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6692 free_page((unsigned long)vcpu->arch.pio_data); 6693 if (!irqchip_in_kernel(vcpu->kvm)) 6694 static_key_slow_dec(&kvm_no_apic_vcpu); 6695 } 6696 6697 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6698 { 6699 if (type) 6700 return -EINVAL; 6701 6702 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6703 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6704 6705 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6706 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6707 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 6708 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 6709 &kvm->arch.irq_sources_bitmap); 6710 6711 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6712 mutex_init(&kvm->arch.apic_map_lock); 6713 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 6714 6715 pvclock_update_vm_gtod_copy(kvm); 6716 6717 return 0; 6718 } 6719 6720 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6721 { 6722 int r; 6723 r = vcpu_load(vcpu); 6724 BUG_ON(r); 6725 kvm_mmu_unload(vcpu); 6726 vcpu_put(vcpu); 6727 } 6728 6729 static void kvm_free_vcpus(struct kvm *kvm) 6730 { 6731 unsigned int i; 6732 struct kvm_vcpu *vcpu; 6733 6734 /* 6735 * Unpin any mmu pages first. 6736 */ 6737 kvm_for_each_vcpu(i, vcpu, kvm) { 6738 kvm_clear_async_pf_completion_queue(vcpu); 6739 kvm_unload_vcpu_mmu(vcpu); 6740 } 6741 kvm_for_each_vcpu(i, vcpu, kvm) 6742 kvm_arch_vcpu_free(vcpu); 6743 6744 mutex_lock(&kvm->lock); 6745 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6746 kvm->vcpus[i] = NULL; 6747 6748 atomic_set(&kvm->online_vcpus, 0); 6749 mutex_unlock(&kvm->lock); 6750 } 6751 6752 void kvm_arch_sync_events(struct kvm *kvm) 6753 { 6754 kvm_free_all_assigned_devices(kvm); 6755 kvm_free_pit(kvm); 6756 } 6757 6758 void kvm_arch_destroy_vm(struct kvm *kvm) 6759 { 6760 kvm_iommu_unmap_guest(kvm); 6761 kfree(kvm->arch.vpic); 6762 kfree(kvm->arch.vioapic); 6763 kvm_free_vcpus(kvm); 6764 if (kvm->arch.apic_access_page) 6765 put_page(kvm->arch.apic_access_page); 6766 if (kvm->arch.ept_identity_pagetable) 6767 put_page(kvm->arch.ept_identity_pagetable); 6768 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 6769 } 6770 6771 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6772 struct kvm_memory_slot *dont) 6773 { 6774 int i; 6775 6776 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6777 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 6778 kvm_kvfree(free->arch.rmap[i]); 6779 free->arch.rmap[i] = NULL; 6780 } 6781 if (i == 0) 6782 continue; 6783 6784 if (!dont || free->arch.lpage_info[i - 1] != 6785 dont->arch.lpage_info[i - 1]) { 6786 kvm_kvfree(free->arch.lpage_info[i - 1]); 6787 free->arch.lpage_info[i - 1] = NULL; 6788 } 6789 } 6790 } 6791 6792 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6793 { 6794 int i; 6795 6796 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6797 unsigned long ugfn; 6798 int lpages; 6799 int level = i + 1; 6800 6801 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6802 slot->base_gfn, level) + 1; 6803 6804 slot->arch.rmap[i] = 6805 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 6806 if (!slot->arch.rmap[i]) 6807 goto out_free; 6808 if (i == 0) 6809 continue; 6810 6811 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 6812 sizeof(*slot->arch.lpage_info[i - 1])); 6813 if (!slot->arch.lpage_info[i - 1]) 6814 goto out_free; 6815 6816 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6817 slot->arch.lpage_info[i - 1][0].write_count = 1; 6818 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6819 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 6820 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6821 /* 6822 * If the gfn and userspace address are not aligned wrt each 6823 * other, or if explicitly asked to, disable large page 6824 * support for this slot 6825 */ 6826 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6827 !kvm_largepages_enabled()) { 6828 unsigned long j; 6829 6830 for (j = 0; j < lpages; ++j) 6831 slot->arch.lpage_info[i - 1][j].write_count = 1; 6832 } 6833 } 6834 6835 return 0; 6836 6837 out_free: 6838 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6839 kvm_kvfree(slot->arch.rmap[i]); 6840 slot->arch.rmap[i] = NULL; 6841 if (i == 0) 6842 continue; 6843 6844 kvm_kvfree(slot->arch.lpage_info[i - 1]); 6845 slot->arch.lpage_info[i - 1] = NULL; 6846 } 6847 return -ENOMEM; 6848 } 6849 6850 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6851 struct kvm_memory_slot *memslot, 6852 struct kvm_memory_slot old, 6853 struct kvm_userspace_memory_region *mem, 6854 int user_alloc) 6855 { 6856 int npages = memslot->npages; 6857 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6858 6859 /* Prevent internal slot pages from being moved by fork()/COW. */ 6860 if (memslot->id >= KVM_MEMORY_SLOTS) 6861 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6862 6863 /*To keep backward compatibility with older userspace, 6864 *x86 needs to handle !user_alloc case. 6865 */ 6866 if (!user_alloc) { 6867 if (npages && !old.npages) { 6868 unsigned long userspace_addr; 6869 6870 userspace_addr = vm_mmap(NULL, 0, 6871 npages * PAGE_SIZE, 6872 PROT_READ | PROT_WRITE, 6873 map_flags, 6874 0); 6875 6876 if (IS_ERR((void *)userspace_addr)) 6877 return PTR_ERR((void *)userspace_addr); 6878 6879 memslot->userspace_addr = userspace_addr; 6880 } 6881 } 6882 6883 6884 return 0; 6885 } 6886 6887 void kvm_arch_commit_memory_region(struct kvm *kvm, 6888 struct kvm_userspace_memory_region *mem, 6889 struct kvm_memory_slot old, 6890 int user_alloc) 6891 { 6892 6893 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6894 6895 if (!user_alloc && !old.user_alloc && old.npages && !npages) { 6896 int ret; 6897 6898 ret = vm_munmap(old.userspace_addr, 6899 old.npages * PAGE_SIZE); 6900 if (ret < 0) 6901 printk(KERN_WARNING 6902 "kvm_vm_ioctl_set_memory_region: " 6903 "failed to munmap memory\n"); 6904 } 6905 6906 if (!kvm->arch.n_requested_mmu_pages) 6907 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6908 6909 spin_lock(&kvm->mmu_lock); 6910 if (nr_mmu_pages) 6911 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6912 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6913 spin_unlock(&kvm->mmu_lock); 6914 /* 6915 * If memory slot is created, or moved, we need to clear all 6916 * mmio sptes. 6917 */ 6918 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) { 6919 kvm_mmu_zap_all(kvm); 6920 kvm_reload_remote_mmus(kvm); 6921 } 6922 } 6923 6924 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6925 { 6926 kvm_mmu_zap_all(kvm); 6927 kvm_reload_remote_mmus(kvm); 6928 } 6929 6930 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6931 struct kvm_memory_slot *slot) 6932 { 6933 kvm_arch_flush_shadow_all(kvm); 6934 } 6935 6936 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6937 { 6938 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6939 !vcpu->arch.apf.halted) 6940 || !list_empty_careful(&vcpu->async_pf.done) 6941 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6942 || atomic_read(&vcpu->arch.nmi_queued) || 6943 (kvm_arch_interrupt_allowed(vcpu) && 6944 kvm_cpu_has_interrupt(vcpu)); 6945 } 6946 6947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 6948 { 6949 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 6950 } 6951 6952 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6953 { 6954 return kvm_x86_ops->interrupt_allowed(vcpu); 6955 } 6956 6957 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6958 { 6959 unsigned long current_rip = kvm_rip_read(vcpu) + 6960 get_segment_base(vcpu, VCPU_SREG_CS); 6961 6962 return current_rip == linear_rip; 6963 } 6964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6965 6966 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6967 { 6968 unsigned long rflags; 6969 6970 rflags = kvm_x86_ops->get_rflags(vcpu); 6971 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6972 rflags &= ~X86_EFLAGS_TF; 6973 return rflags; 6974 } 6975 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6976 6977 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6978 { 6979 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6980 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6981 rflags |= X86_EFLAGS_TF; 6982 kvm_x86_ops->set_rflags(vcpu, rflags); 6983 kvm_make_request(KVM_REQ_EVENT, vcpu); 6984 } 6985 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6986 6987 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6988 { 6989 int r; 6990 6991 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6992 is_error_page(work->page)) 6993 return; 6994 6995 r = kvm_mmu_reload(vcpu); 6996 if (unlikely(r)) 6997 return; 6998 6999 if (!vcpu->arch.mmu.direct_map && 7000 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7001 return; 7002 7003 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7004 } 7005 7006 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7007 { 7008 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7009 } 7010 7011 static inline u32 kvm_async_pf_next_probe(u32 key) 7012 { 7013 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7014 } 7015 7016 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7017 { 7018 u32 key = kvm_async_pf_hash_fn(gfn); 7019 7020 while (vcpu->arch.apf.gfns[key] != ~0) 7021 key = kvm_async_pf_next_probe(key); 7022 7023 vcpu->arch.apf.gfns[key] = gfn; 7024 } 7025 7026 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7027 { 7028 int i; 7029 u32 key = kvm_async_pf_hash_fn(gfn); 7030 7031 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7032 (vcpu->arch.apf.gfns[key] != gfn && 7033 vcpu->arch.apf.gfns[key] != ~0); i++) 7034 key = kvm_async_pf_next_probe(key); 7035 7036 return key; 7037 } 7038 7039 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7040 { 7041 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7042 } 7043 7044 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7045 { 7046 u32 i, j, k; 7047 7048 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7049 while (true) { 7050 vcpu->arch.apf.gfns[i] = ~0; 7051 do { 7052 j = kvm_async_pf_next_probe(j); 7053 if (vcpu->arch.apf.gfns[j] == ~0) 7054 return; 7055 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7056 /* 7057 * k lies cyclically in ]i,j] 7058 * | i.k.j | 7059 * |....j i.k.| or |.k..j i...| 7060 */ 7061 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7062 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7063 i = j; 7064 } 7065 } 7066 7067 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7068 { 7069 7070 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7071 sizeof(val)); 7072 } 7073 7074 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7075 struct kvm_async_pf *work) 7076 { 7077 struct x86_exception fault; 7078 7079 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7080 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7081 7082 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7083 (vcpu->arch.apf.send_user_only && 7084 kvm_x86_ops->get_cpl(vcpu) == 0)) 7085 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7086 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7087 fault.vector = PF_VECTOR; 7088 fault.error_code_valid = true; 7089 fault.error_code = 0; 7090 fault.nested_page_fault = false; 7091 fault.address = work->arch.token; 7092 kvm_inject_page_fault(vcpu, &fault); 7093 } 7094 } 7095 7096 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7097 struct kvm_async_pf *work) 7098 { 7099 struct x86_exception fault; 7100 7101 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7102 if (is_error_page(work->page)) 7103 work->arch.token = ~0; /* broadcast wakeup */ 7104 else 7105 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7106 7107 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7108 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7109 fault.vector = PF_VECTOR; 7110 fault.error_code_valid = true; 7111 fault.error_code = 0; 7112 fault.nested_page_fault = false; 7113 fault.address = work->arch.token; 7114 kvm_inject_page_fault(vcpu, &fault); 7115 } 7116 vcpu->arch.apf.halted = false; 7117 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7118 } 7119 7120 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7121 { 7122 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7123 return true; 7124 else 7125 return !kvm_event_needs_reinjection(vcpu) && 7126 kvm_x86_ops->interrupt_allowed(vcpu); 7127 } 7128 7129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7141