xref: /openbmc/linux/arch/x86/kvm/x86.c (revision b4bd2aaf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_guest),
271 	STATS_DESC_COUNTER(VCPU, tlb_flush),
272 	STATS_DESC_COUNTER(VCPU, invlpg),
273 	STATS_DESC_COUNTER(VCPU, exits),
274 	STATS_DESC_COUNTER(VCPU, io_exits),
275 	STATS_DESC_COUNTER(VCPU, mmio_exits),
276 	STATS_DESC_COUNTER(VCPU, signal_exits),
277 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
278 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279 	STATS_DESC_COUNTER(VCPU, l1d_flush),
280 	STATS_DESC_COUNTER(VCPU, halt_exits),
281 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_exits),
283 	STATS_DESC_COUNTER(VCPU, host_state_reload),
284 	STATS_DESC_COUNTER(VCPU, fpu_reload),
285 	STATS_DESC_COUNTER(VCPU, insn_emulation),
286 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287 	STATS_DESC_COUNTER(VCPU, hypercalls),
288 	STATS_DESC_COUNTER(VCPU, irq_injections),
289 	STATS_DESC_COUNTER(VCPU, nmi_injections),
290 	STATS_DESC_COUNTER(VCPU, req_event),
291 	STATS_DESC_COUNTER(VCPU, nested_run),
292 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296 
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 	.name_size = KVM_STATS_NAME_SIZE,
299 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 	.id_offset = sizeof(struct kvm_stats_header),
301 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 		       sizeof(kvm_vcpu_stats_desc),
304 };
305 
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309 
310 static struct kmem_cache *x86_emulator_cache;
311 
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318 	const char *op = write ? "wrmsr" : "rdmsr";
319 
320 	if (ignore_msrs) {
321 		if (report_ignored_msrs)
322 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323 				      op, msr, data);
324 		/* Mask the error */
325 		return true;
326 	} else {
327 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		return false;
330 	}
331 }
332 
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336 	unsigned int size = sizeof(struct x86_emulate_ctxt);
337 
338 	return kmem_cache_create_usercopy("x86_emulator", size,
339 					  __alignof__(struct x86_emulate_ctxt),
340 					  SLAB_ACCOUNT, useroffset,
341 					  size - useroffset, NULL);
342 }
343 
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345 
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348 	int i;
349 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350 		vcpu->arch.apf.gfns[i] = ~0;
351 }
352 
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355 	unsigned slot;
356 	struct kvm_user_return_msrs *msrs
357 		= container_of(urn, struct kvm_user_return_msrs, urn);
358 	struct kvm_user_return_msr_values *values;
359 	unsigned long flags;
360 
361 	/*
362 	 * Disabling irqs at this point since the following code could be
363 	 * interrupted and executed through kvm_arch_hardware_disable()
364 	 */
365 	local_irq_save(flags);
366 	if (msrs->registered) {
367 		msrs->registered = false;
368 		user_return_notifier_unregister(urn);
369 	}
370 	local_irq_restore(flags);
371 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372 		values = &msrs->values[slot];
373 		if (values->host != values->curr) {
374 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
375 			values->curr = values->host;
376 		}
377 	}
378 }
379 
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382 	u64 val;
383 	int ret;
384 
385 	preempt_disable();
386 	ret = rdmsrl_safe(msr, &val);
387 	if (ret)
388 		goto out;
389 	ret = wrmsrl_safe(msr, val);
390 out:
391 	preempt_enable();
392 	return ret;
393 }
394 
395 int kvm_add_user_return_msr(u32 msr)
396 {
397 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398 
399 	if (kvm_probe_user_return_msr(msr))
400 		return -1;
401 
402 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403 	return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406 
407 int kvm_find_user_return_msr(u32 msr)
408 {
409 	int i;
410 
411 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412 		if (kvm_uret_msrs_list[i] == msr)
413 			return i;
414 	}
415 	return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418 
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421 	unsigned int cpu = smp_processor_id();
422 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423 	u64 value;
424 	int i;
425 
426 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428 		msrs->values[i].host = value;
429 		msrs->values[i].curr = value;
430 	}
431 }
432 
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435 	unsigned int cpu = smp_processor_id();
436 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437 	int err;
438 
439 	value = (value & mask) | (msrs->values[slot].host & ~mask);
440 	if (value == msrs->values[slot].curr)
441 		return 0;
442 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443 	if (err)
444 		return 1;
445 
446 	msrs->values[slot].curr = value;
447 	if (!msrs->registered) {
448 		msrs->urn.on_user_return = kvm_on_user_return;
449 		user_return_notifier_register(&msrs->urn);
450 		msrs->registered = true;
451 	}
452 	return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455 
456 static void drop_user_return_notifiers(void)
457 {
458 	unsigned int cpu = smp_processor_id();
459 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460 
461 	if (msrs->registered)
462 		kvm_on_user_return(&msrs->urn);
463 }
464 
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467 	return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470 
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476 
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483 
484 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485 		return 1;
486 	if (!msr_info->host_initiated) {
487 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488 			return 1;
489 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490 			return 1;
491 	}
492 
493 	kvm_lapic_set_base(vcpu, msr_info->data);
494 	kvm_recalculate_apic_map(vcpu->kvm);
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498 
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508 	/* Fault while not rebooting.  We want the trace. */
509 	BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512 
513 #define EXCPT_BENIGN		0
514 #define EXCPT_CONTRIBUTORY	1
515 #define EXCPT_PF		2
516 
517 static int exception_class(int vector)
518 {
519 	switch (vector) {
520 	case PF_VECTOR:
521 		return EXCPT_PF;
522 	case DE_VECTOR:
523 	case TS_VECTOR:
524 	case NP_VECTOR:
525 	case SS_VECTOR:
526 	case GP_VECTOR:
527 		return EXCPT_CONTRIBUTORY;
528 	default:
529 		break;
530 	}
531 	return EXCPT_BENIGN;
532 }
533 
534 #define EXCPT_FAULT		0
535 #define EXCPT_TRAP		1
536 #define EXCPT_ABORT		2
537 #define EXCPT_INTERRUPT		3
538 
539 static int exception_type(int vector)
540 {
541 	unsigned int mask;
542 
543 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544 		return EXCPT_INTERRUPT;
545 
546 	mask = 1 << vector;
547 
548 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
549 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550 		return EXCPT_TRAP;
551 
552 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553 		return EXCPT_ABORT;
554 
555 	/* Reserved exceptions will result in fault */
556 	return EXCPT_FAULT;
557 }
558 
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561 	unsigned nr = vcpu->arch.exception.nr;
562 	bool has_payload = vcpu->arch.exception.has_payload;
563 	unsigned long payload = vcpu->arch.exception.payload;
564 
565 	if (!has_payload)
566 		return;
567 
568 	switch (nr) {
569 	case DB_VECTOR:
570 		/*
571 		 * "Certain debug exceptions may clear bit 0-3.  The
572 		 * remaining contents of the DR6 register are never
573 		 * cleared by the processor".
574 		 */
575 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576 		/*
577 		 * In order to reflect the #DB exception payload in guest
578 		 * dr6, three components need to be considered: active low
579 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580 		 * DR6_BS and DR6_BT)
581 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582 		 * In the target guest dr6:
583 		 * FIXED_1 bits should always be set.
584 		 * Active low bits should be cleared if 1-setting in payload.
585 		 * Active high bits should be set if 1-setting in payload.
586 		 *
587 		 * Note, the payload is compatible with the pending debug
588 		 * exceptions/exit qualification under VMX, that active_low bits
589 		 * are active high in payload.
590 		 * So they need to be flipped for DR6.
591 		 */
592 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593 		vcpu->arch.dr6 |= payload;
594 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595 
596 		/*
597 		 * The #DB payload is defined as compatible with the 'pending
598 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
599 		 * defined in the 'pending debug exceptions' field (enabled
600 		 * breakpoint), it is reserved and must be zero in DR6.
601 		 */
602 		vcpu->arch.dr6 &= ~BIT(12);
603 		break;
604 	case PF_VECTOR:
605 		vcpu->arch.cr2 = payload;
606 		break;
607 	}
608 
609 	vcpu->arch.exception.has_payload = false;
610 	vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613 
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615 		unsigned nr, bool has_error, u32 error_code,
616 	        bool has_payload, unsigned long payload, bool reinject)
617 {
618 	u32 prev_nr;
619 	int class1, class2;
620 
621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
622 
623 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624 	queue:
625 		if (reinject) {
626 			/*
627 			 * On vmentry, vcpu->arch.exception.pending is only
628 			 * true if an event injection was blocked by
629 			 * nested_run_pending.  In that case, however,
630 			 * vcpu_enter_guest requests an immediate exit,
631 			 * and the guest shouldn't proceed far enough to
632 			 * need reinjection.
633 			 */
634 			WARN_ON_ONCE(vcpu->arch.exception.pending);
635 			vcpu->arch.exception.injected = true;
636 			if (WARN_ON_ONCE(has_payload)) {
637 				/*
638 				 * A reinjected event has already
639 				 * delivered its payload.
640 				 */
641 				has_payload = false;
642 				payload = 0;
643 			}
644 		} else {
645 			vcpu->arch.exception.pending = true;
646 			vcpu->arch.exception.injected = false;
647 		}
648 		vcpu->arch.exception.has_error_code = has_error;
649 		vcpu->arch.exception.nr = nr;
650 		vcpu->arch.exception.error_code = error_code;
651 		vcpu->arch.exception.has_payload = has_payload;
652 		vcpu->arch.exception.payload = payload;
653 		if (!is_guest_mode(vcpu))
654 			kvm_deliver_exception_payload(vcpu);
655 		return;
656 	}
657 
658 	/* to check exception */
659 	prev_nr = vcpu->arch.exception.nr;
660 	if (prev_nr == DF_VECTOR) {
661 		/* triple fault -> shutdown */
662 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663 		return;
664 	}
665 	class1 = exception_class(prev_nr);
666 	class2 = exception_class(nr);
667 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669 		/*
670 		 * Generate double fault per SDM Table 5-5.  Set
671 		 * exception.pending = true so that the double fault
672 		 * can trigger a nested vmexit.
673 		 */
674 		vcpu->arch.exception.pending = true;
675 		vcpu->arch.exception.injected = false;
676 		vcpu->arch.exception.has_error_code = true;
677 		vcpu->arch.exception.nr = DF_VECTOR;
678 		vcpu->arch.exception.error_code = 0;
679 		vcpu->arch.exception.has_payload = false;
680 		vcpu->arch.exception.payload = 0;
681 	} else
682 		/* replace previous exception with a new one in a hope
683 		   that instruction re-execution will regenerate lost
684 		   exception */
685 		goto queue;
686 }
687 
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693 
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699 
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701 			   unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706 
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708 				    u32 error_code, unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, true, error_code,
711 			       true, payload, false);
712 }
713 
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716 	if (err)
717 		kvm_inject_gp(vcpu, 0);
718 	else
719 		return kvm_skip_emulated_instruction(vcpu);
720 
721 	return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724 
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727 	if (err) {
728 		kvm_inject_gp(vcpu, 0);
729 		return 1;
730 	}
731 
732 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733 				       EMULTYPE_COMPLETE_USER_EXIT);
734 }
735 
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738 	++vcpu->stat.pf_guest;
739 	vcpu->arch.exception.nested_apf =
740 		is_guest_mode(vcpu) && fault->async_page_fault;
741 	if (vcpu->arch.exception.nested_apf) {
742 		vcpu->arch.apf.nested_apf_token = fault->address;
743 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744 	} else {
745 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746 					fault->address);
747 	}
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750 
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752 				    struct x86_exception *fault)
753 {
754 	struct kvm_mmu *fault_mmu;
755 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
756 
757 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758 					       vcpu->arch.walk_mmu;
759 
760 	/*
761 	 * Invalidate the TLB entry for the faulting address, if it exists,
762 	 * else the access will fault indefinitely (and to emulate hardware).
763 	 */
764 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
765 	    !(fault->error_code & PFERR_RSVD_MASK))
766 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767 				       fault_mmu->root.hpa);
768 
769 	fault_mmu->inject_page_fault(vcpu, fault);
770 	return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773 
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776 	atomic_inc(&vcpu->arch.nmi_queued);
777 	kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780 
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786 
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792 
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800 		return true;
801 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802 	return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805 
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809 		return true;
810 
811 	kvm_queue_exception(vcpu, UD_VECTOR);
812 	return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815 
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820 
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 	gpa_t real_gpa;
829 	int i;
830 	int ret;
831 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832 
833 	/*
834 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835 	 * to an L1 GPA.
836 	 */
837 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839 	if (real_gpa == UNMAPPED_GVA)
840 		return 0;
841 
842 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
845 	if (ret < 0)
846 		return 0;
847 
848 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849 		if ((pdpte[i] & PT_PRESENT_MASK) &&
850 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851 			return 0;
852 		}
853 	}
854 
855 	/*
856 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857 	 * Shadow page roots need to be reconstructed instead.
858 	 */
859 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
861 
862 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865 	vcpu->arch.pdptrs_from_userspace = false;
866 
867 	return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870 
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 
877 		/*
878 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
879 		 * perspective.
880 		 */
881 		if (!(cr0 & X86_CR0_PG))
882 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
883 	}
884 
885 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
886 		kvm_mmu_reset_context(vcpu);
887 
888 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
889 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
890 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
891 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
892 }
893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
894 
895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
896 {
897 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
898 
899 	cr0 |= X86_CR0_ET;
900 
901 #ifdef CONFIG_X86_64
902 	if (cr0 & 0xffffffff00000000UL)
903 		return 1;
904 #endif
905 
906 	cr0 &= ~CR0_RESERVED_BITS;
907 
908 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
909 		return 1;
910 
911 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
912 		return 1;
913 
914 #ifdef CONFIG_X86_64
915 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
916 	    (cr0 & X86_CR0_PG)) {
917 		int cs_db, cs_l;
918 
919 		if (!is_pae(vcpu))
920 			return 1;
921 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
922 		if (cs_l)
923 			return 1;
924 	}
925 #endif
926 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
927 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
928 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
929 		return 1;
930 
931 	if (!(cr0 & X86_CR0_PG) &&
932 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
933 		return 1;
934 
935 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
936 
937 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_cr0);
942 
943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
944 {
945 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
946 }
947 EXPORT_SYMBOL_GPL(kvm_lmsw);
948 
949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
950 {
951 	if (vcpu->arch.guest_state_protected)
952 		return;
953 
954 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
955 
956 		if (vcpu->arch.xcr0 != host_xcr0)
957 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
958 
959 		if (vcpu->arch.xsaves_enabled &&
960 		    vcpu->arch.ia32_xss != host_xss)
961 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
962 	}
963 
964 	if (static_cpu_has(X86_FEATURE_PKU) &&
965 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
967 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
968 		write_pkru(vcpu->arch.pkru);
969 }
970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
971 
972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
973 {
974 	if (vcpu->arch.guest_state_protected)
975 		return;
976 
977 	if (static_cpu_has(X86_FEATURE_PKU) &&
978 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
979 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
980 		vcpu->arch.pkru = rdpkru();
981 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
982 			write_pkru(vcpu->arch.host_pkru);
983 	}
984 
985 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
986 
987 		if (vcpu->arch.xcr0 != host_xcr0)
988 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
989 
990 		if (vcpu->arch.xsaves_enabled &&
991 		    vcpu->arch.ia32_xss != host_xss)
992 			wrmsrl(MSR_IA32_XSS, host_xss);
993 	}
994 
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
997 
998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
999 {
1000 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1001 }
1002 
1003 #ifdef CONFIG_X86_64
1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1005 {
1006 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1007 }
1008 #endif
1009 
1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1011 {
1012 	u64 xcr0 = xcr;
1013 	u64 old_xcr0 = vcpu->arch.xcr0;
1014 	u64 valid_bits;
1015 
1016 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1017 	if (index != XCR_XFEATURE_ENABLED_MASK)
1018 		return 1;
1019 	if (!(xcr0 & XFEATURE_MASK_FP))
1020 		return 1;
1021 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1022 		return 1;
1023 
1024 	/*
1025 	 * Do not allow the guest to set bits that we do not support
1026 	 * saving.  However, xcr0 bit 0 is always set, even if the
1027 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1028 	 */
1029 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1030 	if (xcr0 & ~valid_bits)
1031 		return 1;
1032 
1033 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1034 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1035 		return 1;
1036 
1037 	if (xcr0 & XFEATURE_MASK_AVX512) {
1038 		if (!(xcr0 & XFEATURE_MASK_YMM))
1039 			return 1;
1040 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1041 			return 1;
1042 	}
1043 
1044 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1045 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1046 		return 1;
1047 
1048 	vcpu->arch.xcr0 = xcr0;
1049 
1050 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1051 		kvm_update_cpuid_runtime(vcpu);
1052 	return 0;
1053 }
1054 
1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1056 {
1057 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1058 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1059 		kvm_inject_gp(vcpu, 0);
1060 		return 1;
1061 	}
1062 
1063 	return kvm_skip_emulated_instruction(vcpu);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1066 
1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1068 {
1069 	if (cr4 & cr4_reserved_bits)
1070 		return false;
1071 
1072 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1073 		return false;
1074 
1075 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1078 
1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1082 		kvm_mmu_reset_context(vcpu);
1083 
1084 	/*
1085 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1086 	 * according to the SDM; however, stale prev_roots could be reused
1087 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1088 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1089 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1090 	 * so fall through.
1091 	 */
1092 	if (!tdp_enabled &&
1093 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1094 		kvm_mmu_unload(vcpu);
1095 
1096 	/*
1097 	 * The TLB has to be flushed for all PCIDs if any of the following
1098 	 * (architecturally required) changes happen:
1099 	 * - CR4.PCIDE is changed from 1 to 0
1100 	 * - CR4.PGE is toggled
1101 	 *
1102 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1103 	 */
1104 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1105 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1106 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1107 
1108 	/*
1109 	 * The TLB has to be flushed for the current PCID if any of the
1110 	 * following (architecturally required) changes happen:
1111 	 * - CR4.SMEP is changed from 0 to 1
1112 	 * - CR4.PAE is toggled
1113 	 */
1114 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1115 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1116 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1117 
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1120 
1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1122 {
1123 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1124 
1125 	if (!kvm_is_valid_cr4(vcpu, cr4))
1126 		return 1;
1127 
1128 	if (is_long_mode(vcpu)) {
1129 		if (!(cr4 & X86_CR4_PAE))
1130 			return 1;
1131 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1132 			return 1;
1133 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1134 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1135 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1136 		return 1;
1137 
1138 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1139 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1140 			return 1;
1141 
1142 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1143 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1144 			return 1;
1145 	}
1146 
1147 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1148 
1149 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1154 
1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1156 {
1157 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1158 	unsigned long roots_to_free = 0;
1159 	int i;
1160 
1161 	/*
1162 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1163 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1164 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1165 	 * the invalidation, but the guest's TLB entries need to be flushed as
1166 	 * the CPU may have cached entries in its TLB for the target PCID.
1167 	 */
1168 	if (unlikely(tdp_enabled)) {
1169 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * If neither the current CR3 nor any of the prev_roots use the given
1175 	 * PCID, then nothing needs to be done here because a resync will
1176 	 * happen anyway before switching to any other CR3.
1177 	 */
1178 	if (kvm_get_active_pcid(vcpu) == pcid) {
1179 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1180 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1181 	}
1182 
1183 	/*
1184 	 * If PCID is disabled, there is no need to free prev_roots even if the
1185 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1186 	 * with PCIDE=0.
1187 	 */
1188 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1189 		return;
1190 
1191 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1192 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1193 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1194 
1195 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1196 }
1197 
1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1199 {
1200 	bool skip_tlb_flush = false;
1201 	unsigned long pcid = 0;
1202 #ifdef CONFIG_X86_64
1203 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1204 
1205 	if (pcid_enabled) {
1206 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1207 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1208 		pcid = cr3 & X86_CR3_PCID_MASK;
1209 	}
1210 #endif
1211 
1212 	/* PDPTRs are always reloaded for PAE paging. */
1213 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1214 		goto handle_tlb_flush;
1215 
1216 	/*
1217 	 * Do not condition the GPA check on long mode, this helper is used to
1218 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1219 	 * the current vCPU mode is accurate.
1220 	 */
1221 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1222 		return 1;
1223 
1224 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1225 		return 1;
1226 
1227 	if (cr3 != kvm_read_cr3(vcpu))
1228 		kvm_mmu_new_pgd(vcpu, cr3);
1229 
1230 	vcpu->arch.cr3 = cr3;
1231 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1232 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1233 
1234 handle_tlb_flush:
1235 	/*
1236 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1237 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1238 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1239 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1240 	 * i.e. only PCID=0 can be relevant.
1241 	 */
1242 	if (!skip_tlb_flush)
1243 		kvm_invalidate_pcid(vcpu, pcid);
1244 
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1248 
1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1250 {
1251 	if (cr8 & CR8_RESERVED_BITS)
1252 		return 1;
1253 	if (lapic_in_kernel(vcpu))
1254 		kvm_lapic_set_tpr(vcpu, cr8);
1255 	else
1256 		vcpu->arch.cr8 = cr8;
1257 	return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1260 
1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1262 {
1263 	if (lapic_in_kernel(vcpu))
1264 		return kvm_lapic_get_cr8(vcpu);
1265 	else
1266 		return vcpu->arch.cr8;
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1269 
1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1271 {
1272 	int i;
1273 
1274 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1275 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1276 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1277 	}
1278 }
1279 
1280 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1281 {
1282 	unsigned long dr7;
1283 
1284 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1285 		dr7 = vcpu->arch.guest_debug_dr7;
1286 	else
1287 		dr7 = vcpu->arch.dr7;
1288 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1289 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1290 	if (dr7 & DR7_BP_EN_MASK)
1291 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1294 
1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1296 {
1297 	u64 fixed = DR6_FIXED_1;
1298 
1299 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1300 		fixed |= DR6_RTM;
1301 
1302 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1303 		fixed |= DR6_BUS_LOCK;
1304 	return fixed;
1305 }
1306 
1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1308 {
1309 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1310 
1311 	switch (dr) {
1312 	case 0 ... 3:
1313 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1314 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1315 			vcpu->arch.eff_db[dr] = val;
1316 		break;
1317 	case 4:
1318 	case 6:
1319 		if (!kvm_dr6_valid(val))
1320 			return 1; /* #GP */
1321 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1322 		break;
1323 	case 5:
1324 	default: /* 7 */
1325 		if (!kvm_dr7_valid(val))
1326 			return 1; /* #GP */
1327 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1328 		kvm_update_dr7(vcpu);
1329 		break;
1330 	}
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_dr);
1335 
1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1337 {
1338 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1339 
1340 	switch (dr) {
1341 	case 0 ... 3:
1342 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1343 		break;
1344 	case 4:
1345 	case 6:
1346 		*val = vcpu->arch.dr6;
1347 		break;
1348 	case 5:
1349 	default: /* 7 */
1350 		*val = vcpu->arch.dr7;
1351 		break;
1352 	}
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_get_dr);
1355 
1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1357 {
1358 	u32 ecx = kvm_rcx_read(vcpu);
1359 	u64 data;
1360 
1361 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1362 		kvm_inject_gp(vcpu, 0);
1363 		return 1;
1364 	}
1365 
1366 	kvm_rax_write(vcpu, (u32)data);
1367 	kvm_rdx_write(vcpu, data >> 32);
1368 	return kvm_skip_emulated_instruction(vcpu);
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1371 
1372 /*
1373  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1374  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1375  *
1376  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1377  * extract the supported MSRs from the related const lists.
1378  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1379  * capabilities of the host cpu. This capabilities test skips MSRs that are
1380  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1381  * may depend on host virtualization features rather than host cpu features.
1382  */
1383 
1384 static const u32 msrs_to_save_all[] = {
1385 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1386 	MSR_STAR,
1387 #ifdef CONFIG_X86_64
1388 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1389 #endif
1390 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1391 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1392 	MSR_IA32_SPEC_CTRL,
1393 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1394 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1395 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1396 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1397 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1398 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1399 	MSR_IA32_UMWAIT_CONTROL,
1400 
1401 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1402 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1403 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1404 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1405 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1406 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1407 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1408 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1409 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1410 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1411 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1412 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1413 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1414 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1415 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1416 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1417 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1418 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1419 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1420 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1421 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1422 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1423 
1424 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1425 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1426 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1427 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1428 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1429 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1430 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1431 };
1432 
1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1434 static unsigned num_msrs_to_save;
1435 
1436 static const u32 emulated_msrs_all[] = {
1437 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1438 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1439 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1440 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1441 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1442 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1443 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1444 	HV_X64_MSR_RESET,
1445 	HV_X64_MSR_VP_INDEX,
1446 	HV_X64_MSR_VP_RUNTIME,
1447 	HV_X64_MSR_SCONTROL,
1448 	HV_X64_MSR_STIMER0_CONFIG,
1449 	HV_X64_MSR_VP_ASSIST_PAGE,
1450 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1451 	HV_X64_MSR_TSC_EMULATION_STATUS,
1452 	HV_X64_MSR_SYNDBG_OPTIONS,
1453 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1454 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1455 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1456 
1457 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1458 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1459 
1460 	MSR_IA32_TSC_ADJUST,
1461 	MSR_IA32_TSC_DEADLINE,
1462 	MSR_IA32_ARCH_CAPABILITIES,
1463 	MSR_IA32_PERF_CAPABILITIES,
1464 	MSR_IA32_MISC_ENABLE,
1465 	MSR_IA32_MCG_STATUS,
1466 	MSR_IA32_MCG_CTL,
1467 	MSR_IA32_MCG_EXT_CTL,
1468 	MSR_IA32_SMBASE,
1469 	MSR_SMI_COUNT,
1470 	MSR_PLATFORM_INFO,
1471 	MSR_MISC_FEATURES_ENABLES,
1472 	MSR_AMD64_VIRT_SPEC_CTRL,
1473 	MSR_AMD64_TSC_RATIO,
1474 	MSR_IA32_POWER_CTL,
1475 	MSR_IA32_UCODE_REV,
1476 
1477 	/*
1478 	 * The following list leaves out MSRs whose values are determined
1479 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1480 	 * We always support the "true" VMX control MSRs, even if the host
1481 	 * processor does not, so I am putting these registers here rather
1482 	 * than in msrs_to_save_all.
1483 	 */
1484 	MSR_IA32_VMX_BASIC,
1485 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1486 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1488 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1489 	MSR_IA32_VMX_MISC,
1490 	MSR_IA32_VMX_CR0_FIXED0,
1491 	MSR_IA32_VMX_CR4_FIXED0,
1492 	MSR_IA32_VMX_VMCS_ENUM,
1493 	MSR_IA32_VMX_PROCBASED_CTLS2,
1494 	MSR_IA32_VMX_EPT_VPID_CAP,
1495 	MSR_IA32_VMX_VMFUNC,
1496 
1497 	MSR_K7_HWCR,
1498 	MSR_KVM_POLL_CONTROL,
1499 };
1500 
1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1502 static unsigned num_emulated_msrs;
1503 
1504 /*
1505  * List of msr numbers which are used to expose MSR-based features that
1506  * can be used by a hypervisor to validate requested CPU features.
1507  */
1508 static const u32 msr_based_features_all[] = {
1509 	MSR_IA32_VMX_BASIC,
1510 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1511 	MSR_IA32_VMX_PINBASED_CTLS,
1512 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1513 	MSR_IA32_VMX_PROCBASED_CTLS,
1514 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1515 	MSR_IA32_VMX_EXIT_CTLS,
1516 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1517 	MSR_IA32_VMX_ENTRY_CTLS,
1518 	MSR_IA32_VMX_MISC,
1519 	MSR_IA32_VMX_CR0_FIXED0,
1520 	MSR_IA32_VMX_CR0_FIXED1,
1521 	MSR_IA32_VMX_CR4_FIXED0,
1522 	MSR_IA32_VMX_CR4_FIXED1,
1523 	MSR_IA32_VMX_VMCS_ENUM,
1524 	MSR_IA32_VMX_PROCBASED_CTLS2,
1525 	MSR_IA32_VMX_EPT_VPID_CAP,
1526 	MSR_IA32_VMX_VMFUNC,
1527 
1528 	MSR_F10H_DECFG,
1529 	MSR_IA32_UCODE_REV,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 };
1533 
1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1535 static unsigned int num_msr_based_features;
1536 
1537 static u64 kvm_get_arch_capabilities(void)
1538 {
1539 	u64 data = 0;
1540 
1541 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1542 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1543 
1544 	/*
1545 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1546 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1547 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1548 	 * L1 guests, so it need not worry about its own (L2) guests.
1549 	 */
1550 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1551 
1552 	/*
1553 	 * If we're doing cache flushes (either "always" or "cond")
1554 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1555 	 * If an outer hypervisor is doing the cache flush for us
1556 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1557 	 * capability to the guest too, and if EPT is disabled we're not
1558 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1559 	 * require a nested hypervisor to do a flush of its own.
1560 	 */
1561 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1562 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1563 
1564 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1565 		data |= ARCH_CAP_RDCL_NO;
1566 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1567 		data |= ARCH_CAP_SSB_NO;
1568 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1569 		data |= ARCH_CAP_MDS_NO;
1570 
1571 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1572 		/*
1573 		 * If RTM=0 because the kernel has disabled TSX, the host might
1574 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1575 		 * and therefore knows that there cannot be TAA) but keep
1576 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1577 		 * and we want to allow migrating those guests to tsx=off hosts.
1578 		 */
1579 		data &= ~ARCH_CAP_TAA_NO;
1580 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1581 		data |= ARCH_CAP_TAA_NO;
1582 	} else {
1583 		/*
1584 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1585 		 * host so the guest can choose between disabling TSX or
1586 		 * using VERW to clear CPU buffers.
1587 		 */
1588 	}
1589 
1590 	return data;
1591 }
1592 
1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1594 {
1595 	switch (msr->index) {
1596 	case MSR_IA32_ARCH_CAPABILITIES:
1597 		msr->data = kvm_get_arch_capabilities();
1598 		break;
1599 	case MSR_IA32_UCODE_REV:
1600 		rdmsrl_safe(msr->index, &msr->data);
1601 		break;
1602 	default:
1603 		return static_call(kvm_x86_get_msr_feature)(msr);
1604 	}
1605 	return 0;
1606 }
1607 
1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609 {
1610 	struct kvm_msr_entry msr;
1611 	int r;
1612 
1613 	msr.index = index;
1614 	r = kvm_get_msr_feature(&msr);
1615 
1616 	if (r == KVM_MSR_RET_INVALID) {
1617 		/* Unconditionally clear the output for simplicity */
1618 		*data = 0;
1619 		if (kvm_msr_ignored_check(index, 0, false))
1620 			r = 0;
1621 	}
1622 
1623 	if (r)
1624 		return r;
1625 
1626 	*data = msr.data;
1627 
1628 	return 0;
1629 }
1630 
1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1632 {
1633 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1634 		return false;
1635 
1636 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1637 		return false;
1638 
1639 	if (efer & (EFER_LME | EFER_LMA) &&
1640 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1641 		return false;
1642 
1643 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1644 		return false;
1645 
1646 	return true;
1647 
1648 }
1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651 	if (efer & efer_reserved_bits)
1652 		return false;
1653 
1654 	return __kvm_valid_efer(vcpu, efer);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1657 
1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1659 {
1660 	u64 old_efer = vcpu->arch.efer;
1661 	u64 efer = msr_info->data;
1662 	int r;
1663 
1664 	if (efer & efer_reserved_bits)
1665 		return 1;
1666 
1667 	if (!msr_info->host_initiated) {
1668 		if (!__kvm_valid_efer(vcpu, efer))
1669 			return 1;
1670 
1671 		if (is_paging(vcpu) &&
1672 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1673 			return 1;
1674 	}
1675 
1676 	efer &= ~EFER_LMA;
1677 	efer |= vcpu->arch.efer & EFER_LMA;
1678 
1679 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1680 	if (r) {
1681 		WARN_ON(r > 0);
1682 		return r;
1683 	}
1684 
1685 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1686 		kvm_mmu_reset_context(vcpu);
1687 
1688 	return 0;
1689 }
1690 
1691 void kvm_enable_efer_bits(u64 mask)
1692 {
1693        efer_reserved_bits &= ~mask;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1696 
1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1698 {
1699 	struct kvm_x86_msr_filter *msr_filter;
1700 	struct msr_bitmap_range *ranges;
1701 	struct kvm *kvm = vcpu->kvm;
1702 	bool allowed;
1703 	int idx;
1704 	u32 i;
1705 
1706 	/* x2APIC MSRs do not support filtering. */
1707 	if (index >= 0x800 && index <= 0x8ff)
1708 		return true;
1709 
1710 	idx = srcu_read_lock(&kvm->srcu);
1711 
1712 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1713 	if (!msr_filter) {
1714 		allowed = true;
1715 		goto out;
1716 	}
1717 
1718 	allowed = msr_filter->default_allow;
1719 	ranges = msr_filter->ranges;
1720 
1721 	for (i = 0; i < msr_filter->count; i++) {
1722 		u32 start = ranges[i].base;
1723 		u32 end = start + ranges[i].nmsrs;
1724 		u32 flags = ranges[i].flags;
1725 		unsigned long *bitmap = ranges[i].bitmap;
1726 
1727 		if ((index >= start) && (index < end) && (flags & type)) {
1728 			allowed = !!test_bit(index - start, bitmap);
1729 			break;
1730 		}
1731 	}
1732 
1733 out:
1734 	srcu_read_unlock(&kvm->srcu, idx);
1735 
1736 	return allowed;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1739 
1740 /*
1741  * Write @data into the MSR specified by @index.  Select MSR specific fault
1742  * checks are bypassed if @host_initiated is %true.
1743  * Returns 0 on success, non-0 otherwise.
1744  * Assumes vcpu_load() was already called.
1745  */
1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1747 			 bool host_initiated)
1748 {
1749 	struct msr_data msr;
1750 
1751 	switch (index) {
1752 	case MSR_FS_BASE:
1753 	case MSR_GS_BASE:
1754 	case MSR_KERNEL_GS_BASE:
1755 	case MSR_CSTAR:
1756 	case MSR_LSTAR:
1757 		if (is_noncanonical_address(data, vcpu))
1758 			return 1;
1759 		break;
1760 	case MSR_IA32_SYSENTER_EIP:
1761 	case MSR_IA32_SYSENTER_ESP:
1762 		/*
1763 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1764 		 * non-canonical address is written on Intel but not on
1765 		 * AMD (which ignores the top 32-bits, because it does
1766 		 * not implement 64-bit SYSENTER).
1767 		 *
1768 		 * 64-bit code should hence be able to write a non-canonical
1769 		 * value on AMD.  Making the address canonical ensures that
1770 		 * vmentry does not fail on Intel after writing a non-canonical
1771 		 * value, and that something deterministic happens if the guest
1772 		 * invokes 64-bit SYSENTER.
1773 		 */
1774 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1775 		break;
1776 	case MSR_TSC_AUX:
1777 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1778 			return 1;
1779 
1780 		if (!host_initiated &&
1781 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1782 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1783 			return 1;
1784 
1785 		/*
1786 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1787 		 * incomplete and conflicting architectural behavior.  Current
1788 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1789 		 * reserved and always read as zeros.  Enforce Intel's reserved
1790 		 * bits check if and only if the guest CPU is Intel, and clear
1791 		 * the bits in all other cases.  This ensures cross-vendor
1792 		 * migration will provide consistent behavior for the guest.
1793 		 */
1794 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1795 			return 1;
1796 
1797 		data = (u32)data;
1798 		break;
1799 	}
1800 
1801 	msr.data = data;
1802 	msr.index = index;
1803 	msr.host_initiated = host_initiated;
1804 
1805 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1806 }
1807 
1808 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1809 				     u32 index, u64 data, bool host_initiated)
1810 {
1811 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1812 
1813 	if (ret == KVM_MSR_RET_INVALID)
1814 		if (kvm_msr_ignored_check(index, data, true))
1815 			ret = 0;
1816 
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Read the MSR specified by @index into @data.  Select MSR specific fault
1822  * checks are bypassed if @host_initiated is %true.
1823  * Returns 0 on success, non-0 otherwise.
1824  * Assumes vcpu_load() was already called.
1825  */
1826 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1827 		  bool host_initiated)
1828 {
1829 	struct msr_data msr;
1830 	int ret;
1831 
1832 	switch (index) {
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 		break;
1842 	}
1843 
1844 	msr.index = index;
1845 	msr.host_initiated = host_initiated;
1846 
1847 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1848 	if (!ret)
1849 		*data = msr.data;
1850 	return ret;
1851 }
1852 
1853 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1854 				     u32 index, u64 *data, bool host_initiated)
1855 {
1856 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1857 
1858 	if (ret == KVM_MSR_RET_INVALID) {
1859 		/* Unconditionally clear *data for simplicity */
1860 		*data = 0;
1861 		if (kvm_msr_ignored_check(index, 0, false))
1862 			ret = 0;
1863 	}
1864 
1865 	return ret;
1866 }
1867 
1868 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1869 {
1870 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1871 		return KVM_MSR_RET_FILTERED;
1872 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1873 }
1874 
1875 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1876 {
1877 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1878 		return KVM_MSR_RET_FILTERED;
1879 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1880 }
1881 
1882 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1883 {
1884 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_get_msr);
1887 
1888 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1889 {
1890 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_set_msr);
1893 
1894 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1895 {
1896 	if (!vcpu->run->msr.error) {
1897 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1898 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1899 	}
1900 }
1901 
1902 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1903 {
1904 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1905 }
1906 
1907 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1908 {
1909 	complete_userspace_rdmsr(vcpu);
1910 	return complete_emulated_msr_access(vcpu);
1911 }
1912 
1913 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1914 {
1915 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1916 }
1917 
1918 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1919 {
1920 	complete_userspace_rdmsr(vcpu);
1921 	return complete_fast_msr_access(vcpu);
1922 }
1923 
1924 static u64 kvm_msr_reason(int r)
1925 {
1926 	switch (r) {
1927 	case KVM_MSR_RET_INVALID:
1928 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1929 	case KVM_MSR_RET_FILTERED:
1930 		return KVM_MSR_EXIT_REASON_FILTER;
1931 	default:
1932 		return KVM_MSR_EXIT_REASON_INVAL;
1933 	}
1934 }
1935 
1936 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1937 			      u32 exit_reason, u64 data,
1938 			      int (*completion)(struct kvm_vcpu *vcpu),
1939 			      int r)
1940 {
1941 	u64 msr_reason = kvm_msr_reason(r);
1942 
1943 	/* Check if the user wanted to know about this MSR fault */
1944 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1945 		return 0;
1946 
1947 	vcpu->run->exit_reason = exit_reason;
1948 	vcpu->run->msr.error = 0;
1949 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1950 	vcpu->run->msr.reason = msr_reason;
1951 	vcpu->run->msr.index = index;
1952 	vcpu->run->msr.data = data;
1953 	vcpu->arch.complete_userspace_io = completion;
1954 
1955 	return 1;
1956 }
1957 
1958 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1959 {
1960 	u32 ecx = kvm_rcx_read(vcpu);
1961 	u64 data;
1962 	int r;
1963 
1964 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1965 
1966 	if (!r) {
1967 		trace_kvm_msr_read(ecx, data);
1968 
1969 		kvm_rax_write(vcpu, data & -1u);
1970 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1971 	} else {
1972 		/* MSR read failed? See if we should ask user space */
1973 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1974 				       complete_fast_rdmsr, r))
1975 			return 0;
1976 		trace_kvm_msr_read_ex(ecx);
1977 	}
1978 
1979 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1982 
1983 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1984 {
1985 	u32 ecx = kvm_rcx_read(vcpu);
1986 	u64 data = kvm_read_edx_eax(vcpu);
1987 	int r;
1988 
1989 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
1990 
1991 	if (!r) {
1992 		trace_kvm_msr_write(ecx, data);
1993 	} else {
1994 		/* MSR write failed? See if we should ask user space */
1995 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1996 				       complete_fast_msr_access, r))
1997 			return 0;
1998 		/* Signal all other negative errors to userspace */
1999 		if (r < 0)
2000 			return r;
2001 		trace_kvm_msr_write_ex(ecx, data);
2002 	}
2003 
2004 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2007 
2008 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2009 {
2010 	return kvm_skip_emulated_instruction(vcpu);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2013 
2014 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2015 {
2016 	/* Treat an INVD instruction as a NOP and just skip it. */
2017 	return kvm_emulate_as_nop(vcpu);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2020 
2021 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2022 {
2023 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2024 	return kvm_emulate_as_nop(vcpu);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2027 
2028 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2029 {
2030 	kvm_queue_exception(vcpu, UD_VECTOR);
2031 	return 1;
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2034 
2035 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2036 {
2037 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2038 	return kvm_emulate_as_nop(vcpu);
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2041 
2042 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2043 {
2044 	xfer_to_guest_mode_prepare();
2045 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2046 		xfer_to_guest_mode_work_pending();
2047 }
2048 
2049 /*
2050  * The fast path for frequent and performance sensitive wrmsr emulation,
2051  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2052  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2053  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2054  * other cases which must be called after interrupts are enabled on the host.
2055  */
2056 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2057 {
2058 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2059 		return 1;
2060 
2061 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2062 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2063 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2064 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2065 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2066 
2067 	return 1;
2068 }
2069 
2070 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2071 {
2072 	if (!kvm_can_use_hv_timer(vcpu))
2073 		return 1;
2074 
2075 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2076 	return 0;
2077 }
2078 
2079 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2080 {
2081 	u32 msr = kvm_rcx_read(vcpu);
2082 	u64 data;
2083 	fastpath_t ret = EXIT_FASTPATH_NONE;
2084 
2085 	switch (msr) {
2086 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2087 		data = kvm_read_edx_eax(vcpu);
2088 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2089 			kvm_skip_emulated_instruction(vcpu);
2090 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2091 		}
2092 		break;
2093 	case MSR_IA32_TSC_DEADLINE:
2094 		data = kvm_read_edx_eax(vcpu);
2095 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2096 			kvm_skip_emulated_instruction(vcpu);
2097 			ret = EXIT_FASTPATH_REENTER_GUEST;
2098 		}
2099 		break;
2100 	default:
2101 		break;
2102 	}
2103 
2104 	if (ret != EXIT_FASTPATH_NONE)
2105 		trace_kvm_msr_write(msr, data);
2106 
2107 	return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2110 
2111 /*
2112  * Adapt set_msr() to msr_io()'s calling convention
2113  */
2114 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2115 {
2116 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2117 }
2118 
2119 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2120 {
2121 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2122 }
2123 
2124 #ifdef CONFIG_X86_64
2125 struct pvclock_clock {
2126 	int vclock_mode;
2127 	u64 cycle_last;
2128 	u64 mask;
2129 	u32 mult;
2130 	u32 shift;
2131 	u64 base_cycles;
2132 	u64 offset;
2133 };
2134 
2135 struct pvclock_gtod_data {
2136 	seqcount_t	seq;
2137 
2138 	struct pvclock_clock clock; /* extract of a clocksource struct */
2139 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2140 
2141 	ktime_t		offs_boot;
2142 	u64		wall_time_sec;
2143 };
2144 
2145 static struct pvclock_gtod_data pvclock_gtod_data;
2146 
2147 static void update_pvclock_gtod(struct timekeeper *tk)
2148 {
2149 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2150 
2151 	write_seqcount_begin(&vdata->seq);
2152 
2153 	/* copy pvclock gtod data */
2154 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2155 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2156 	vdata->clock.mask		= tk->tkr_mono.mask;
2157 	vdata->clock.mult		= tk->tkr_mono.mult;
2158 	vdata->clock.shift		= tk->tkr_mono.shift;
2159 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2160 	vdata->clock.offset		= tk->tkr_mono.base;
2161 
2162 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2163 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2164 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2165 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2166 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2167 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2168 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2169 
2170 	vdata->wall_time_sec            = tk->xtime_sec;
2171 
2172 	vdata->offs_boot		= tk->offs_boot;
2173 
2174 	write_seqcount_end(&vdata->seq);
2175 }
2176 
2177 static s64 get_kvmclock_base_ns(void)
2178 {
2179 	/* Count up from boot time, but with the frequency of the raw clock.  */
2180 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2181 }
2182 #else
2183 static s64 get_kvmclock_base_ns(void)
2184 {
2185 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2186 	return ktime_get_boottime_ns();
2187 }
2188 #endif
2189 
2190 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2191 {
2192 	int version;
2193 	int r;
2194 	struct pvclock_wall_clock wc;
2195 	u32 wc_sec_hi;
2196 	u64 wall_nsec;
2197 
2198 	if (!wall_clock)
2199 		return;
2200 
2201 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2202 	if (r)
2203 		return;
2204 
2205 	if (version & 1)
2206 		++version;  /* first time write, random junk */
2207 
2208 	++version;
2209 
2210 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2211 		return;
2212 
2213 	/*
2214 	 * The guest calculates current wall clock time by adding
2215 	 * system time (updated by kvm_guest_time_update below) to the
2216 	 * wall clock specified here.  We do the reverse here.
2217 	 */
2218 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2219 
2220 	wc.nsec = do_div(wall_nsec, 1000000000);
2221 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2222 	wc.version = version;
2223 
2224 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2225 
2226 	if (sec_hi_ofs) {
2227 		wc_sec_hi = wall_nsec >> 32;
2228 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2229 				&wc_sec_hi, sizeof(wc_sec_hi));
2230 	}
2231 
2232 	version++;
2233 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2234 }
2235 
2236 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2237 				  bool old_msr, bool host_initiated)
2238 {
2239 	struct kvm_arch *ka = &vcpu->kvm->arch;
2240 
2241 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2242 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2243 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2244 
2245 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2246 	}
2247 
2248 	vcpu->arch.time = system_time;
2249 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2250 
2251 	/* we verify if the enable bit is set... */
2252 	vcpu->arch.pv_time_enabled = false;
2253 	if (!(system_time & 1))
2254 		return;
2255 
2256 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2257 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2258 				       sizeof(struct pvclock_vcpu_time_info)))
2259 		vcpu->arch.pv_time_enabled = true;
2260 
2261 	return;
2262 }
2263 
2264 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2265 {
2266 	do_shl32_div32(dividend, divisor);
2267 	return dividend;
2268 }
2269 
2270 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2271 			       s8 *pshift, u32 *pmultiplier)
2272 {
2273 	uint64_t scaled64;
2274 	int32_t  shift = 0;
2275 	uint64_t tps64;
2276 	uint32_t tps32;
2277 
2278 	tps64 = base_hz;
2279 	scaled64 = scaled_hz;
2280 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2281 		tps64 >>= 1;
2282 		shift--;
2283 	}
2284 
2285 	tps32 = (uint32_t)tps64;
2286 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2287 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2288 			scaled64 >>= 1;
2289 		else
2290 			tps32 <<= 1;
2291 		shift++;
2292 	}
2293 
2294 	*pshift = shift;
2295 	*pmultiplier = div_frac(scaled64, tps32);
2296 }
2297 
2298 #ifdef CONFIG_X86_64
2299 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2300 #endif
2301 
2302 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2303 static unsigned long max_tsc_khz;
2304 
2305 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2306 {
2307 	u64 v = (u64)khz * (1000000 + ppm);
2308 	do_div(v, 1000000);
2309 	return v;
2310 }
2311 
2312 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2313 
2314 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2315 {
2316 	u64 ratio;
2317 
2318 	/* Guest TSC same frequency as host TSC? */
2319 	if (!scale) {
2320 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2321 		return 0;
2322 	}
2323 
2324 	/* TSC scaling supported? */
2325 	if (!kvm_has_tsc_control) {
2326 		if (user_tsc_khz > tsc_khz) {
2327 			vcpu->arch.tsc_catchup = 1;
2328 			vcpu->arch.tsc_always_catchup = 1;
2329 			return 0;
2330 		} else {
2331 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2332 			return -1;
2333 		}
2334 	}
2335 
2336 	/* TSC scaling required  - calculate ratio */
2337 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2338 				user_tsc_khz, tsc_khz);
2339 
2340 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2341 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2342 			            user_tsc_khz);
2343 		return -1;
2344 	}
2345 
2346 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2347 	return 0;
2348 }
2349 
2350 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2351 {
2352 	u32 thresh_lo, thresh_hi;
2353 	int use_scaling = 0;
2354 
2355 	/* tsc_khz can be zero if TSC calibration fails */
2356 	if (user_tsc_khz == 0) {
2357 		/* set tsc_scaling_ratio to a safe value */
2358 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2359 		return -1;
2360 	}
2361 
2362 	/* Compute a scale to convert nanoseconds in TSC cycles */
2363 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2364 			   &vcpu->arch.virtual_tsc_shift,
2365 			   &vcpu->arch.virtual_tsc_mult);
2366 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2367 
2368 	/*
2369 	 * Compute the variation in TSC rate which is acceptable
2370 	 * within the range of tolerance and decide if the
2371 	 * rate being applied is within that bounds of the hardware
2372 	 * rate.  If so, no scaling or compensation need be done.
2373 	 */
2374 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2375 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2376 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2377 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2378 		use_scaling = 1;
2379 	}
2380 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2381 }
2382 
2383 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2384 {
2385 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2386 				      vcpu->arch.virtual_tsc_mult,
2387 				      vcpu->arch.virtual_tsc_shift);
2388 	tsc += vcpu->arch.this_tsc_write;
2389 	return tsc;
2390 }
2391 
2392 #ifdef CONFIG_X86_64
2393 static inline int gtod_is_based_on_tsc(int mode)
2394 {
2395 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2396 }
2397 #endif
2398 
2399 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2400 {
2401 #ifdef CONFIG_X86_64
2402 	bool vcpus_matched;
2403 	struct kvm_arch *ka = &vcpu->kvm->arch;
2404 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2405 
2406 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2407 			 atomic_read(&vcpu->kvm->online_vcpus));
2408 
2409 	/*
2410 	 * Once the masterclock is enabled, always perform request in
2411 	 * order to update it.
2412 	 *
2413 	 * In order to enable masterclock, the host clocksource must be TSC
2414 	 * and the vcpus need to have matched TSCs.  When that happens,
2415 	 * perform request to enable masterclock.
2416 	 */
2417 	if (ka->use_master_clock ||
2418 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2419 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2420 
2421 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2422 			    atomic_read(&vcpu->kvm->online_vcpus),
2423 		            ka->use_master_clock, gtod->clock.vclock_mode);
2424 #endif
2425 }
2426 
2427 /*
2428  * Multiply tsc by a fixed point number represented by ratio.
2429  *
2430  * The most significant 64-N bits (mult) of ratio represent the
2431  * integral part of the fixed point number; the remaining N bits
2432  * (frac) represent the fractional part, ie. ratio represents a fixed
2433  * point number (mult + frac * 2^(-N)).
2434  *
2435  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2436  */
2437 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2438 {
2439 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2440 }
2441 
2442 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2443 {
2444 	u64 _tsc = tsc;
2445 
2446 	if (ratio != kvm_default_tsc_scaling_ratio)
2447 		_tsc = __scale_tsc(ratio, tsc);
2448 
2449 	return _tsc;
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2452 
2453 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2454 {
2455 	u64 tsc;
2456 
2457 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2458 
2459 	return target_tsc - tsc;
2460 }
2461 
2462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2463 {
2464 	return vcpu->arch.l1_tsc_offset +
2465 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2468 
2469 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2470 {
2471 	u64 nested_offset;
2472 
2473 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2474 		nested_offset = l1_offset;
2475 	else
2476 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2477 						kvm_tsc_scaling_ratio_frac_bits);
2478 
2479 	nested_offset += l2_offset;
2480 	return nested_offset;
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2483 
2484 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2485 {
2486 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2487 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2488 				       kvm_tsc_scaling_ratio_frac_bits);
2489 
2490 	return l1_multiplier;
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2493 
2494 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2495 {
2496 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2497 				   vcpu->arch.l1_tsc_offset,
2498 				   l1_offset);
2499 
2500 	vcpu->arch.l1_tsc_offset = l1_offset;
2501 
2502 	/*
2503 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2504 	 * according to the spec this should set L1's TSC (as opposed to
2505 	 * setting L1's offset for L2).
2506 	 */
2507 	if (is_guest_mode(vcpu))
2508 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2509 			l1_offset,
2510 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2511 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2512 	else
2513 		vcpu->arch.tsc_offset = l1_offset;
2514 
2515 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2516 }
2517 
2518 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2519 {
2520 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2521 
2522 	/* Userspace is changing the multiplier while L2 is active */
2523 	if (is_guest_mode(vcpu))
2524 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2525 			l1_multiplier,
2526 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2527 	else
2528 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2529 
2530 	if (kvm_has_tsc_control)
2531 		static_call(kvm_x86_write_tsc_multiplier)(
2532 			vcpu, vcpu->arch.tsc_scaling_ratio);
2533 }
2534 
2535 static inline bool kvm_check_tsc_unstable(void)
2536 {
2537 #ifdef CONFIG_X86_64
2538 	/*
2539 	 * TSC is marked unstable when we're running on Hyper-V,
2540 	 * 'TSC page' clocksource is good.
2541 	 */
2542 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2543 		return false;
2544 #endif
2545 	return check_tsc_unstable();
2546 }
2547 
2548 /*
2549  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2550  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2551  * participates in.
2552  */
2553 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2554 				  u64 ns, bool matched)
2555 {
2556 	struct kvm *kvm = vcpu->kvm;
2557 
2558 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2559 
2560 	/*
2561 	 * We also track th most recent recorded KHZ, write and time to
2562 	 * allow the matching interval to be extended at each write.
2563 	 */
2564 	kvm->arch.last_tsc_nsec = ns;
2565 	kvm->arch.last_tsc_write = tsc;
2566 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2567 	kvm->arch.last_tsc_offset = offset;
2568 
2569 	vcpu->arch.last_guest_tsc = tsc;
2570 
2571 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2572 
2573 	if (!matched) {
2574 		/*
2575 		 * We split periods of matched TSC writes into generations.
2576 		 * For each generation, we track the original measured
2577 		 * nanosecond time, offset, and write, so if TSCs are in
2578 		 * sync, we can match exact offset, and if not, we can match
2579 		 * exact software computation in compute_guest_tsc()
2580 		 *
2581 		 * These values are tracked in kvm->arch.cur_xxx variables.
2582 		 */
2583 		kvm->arch.cur_tsc_generation++;
2584 		kvm->arch.cur_tsc_nsec = ns;
2585 		kvm->arch.cur_tsc_write = tsc;
2586 		kvm->arch.cur_tsc_offset = offset;
2587 		kvm->arch.nr_vcpus_matched_tsc = 0;
2588 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2589 		kvm->arch.nr_vcpus_matched_tsc++;
2590 	}
2591 
2592 	/* Keep track of which generation this VCPU has synchronized to */
2593 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2594 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2595 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2596 
2597 	kvm_track_tsc_matching(vcpu);
2598 }
2599 
2600 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2601 {
2602 	struct kvm *kvm = vcpu->kvm;
2603 	u64 offset, ns, elapsed;
2604 	unsigned long flags;
2605 	bool matched = false;
2606 	bool synchronizing = false;
2607 
2608 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2609 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2610 	ns = get_kvmclock_base_ns();
2611 	elapsed = ns - kvm->arch.last_tsc_nsec;
2612 
2613 	if (vcpu->arch.virtual_tsc_khz) {
2614 		if (data == 0) {
2615 			/*
2616 			 * detection of vcpu initialization -- need to sync
2617 			 * with other vCPUs. This particularly helps to keep
2618 			 * kvm_clock stable after CPU hotplug
2619 			 */
2620 			synchronizing = true;
2621 		} else {
2622 			u64 tsc_exp = kvm->arch.last_tsc_write +
2623 						nsec_to_cycles(vcpu, elapsed);
2624 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2625 			/*
2626 			 * Special case: TSC write with a small delta (1 second)
2627 			 * of virtual cycle time against real time is
2628 			 * interpreted as an attempt to synchronize the CPU.
2629 			 */
2630 			synchronizing = data < tsc_exp + tsc_hz &&
2631 					data + tsc_hz > tsc_exp;
2632 		}
2633 	}
2634 
2635 	/*
2636 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2637 	 * TSC, we add elapsed time in this computation.  We could let the
2638 	 * compensation code attempt to catch up if we fall behind, but
2639 	 * it's better to try to match offsets from the beginning.
2640          */
2641 	if (synchronizing &&
2642 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2643 		if (!kvm_check_tsc_unstable()) {
2644 			offset = kvm->arch.cur_tsc_offset;
2645 		} else {
2646 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2647 			data += delta;
2648 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2649 		}
2650 		matched = true;
2651 	}
2652 
2653 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2654 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2655 }
2656 
2657 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2658 					   s64 adjustment)
2659 {
2660 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2661 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2662 }
2663 
2664 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2665 {
2666 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2667 		WARN_ON(adjustment < 0);
2668 	adjustment = kvm_scale_tsc((u64) adjustment,
2669 				   vcpu->arch.l1_tsc_scaling_ratio);
2670 	adjust_tsc_offset_guest(vcpu, adjustment);
2671 }
2672 
2673 #ifdef CONFIG_X86_64
2674 
2675 static u64 read_tsc(void)
2676 {
2677 	u64 ret = (u64)rdtsc_ordered();
2678 	u64 last = pvclock_gtod_data.clock.cycle_last;
2679 
2680 	if (likely(ret >= last))
2681 		return ret;
2682 
2683 	/*
2684 	 * GCC likes to generate cmov here, but this branch is extremely
2685 	 * predictable (it's just a function of time and the likely is
2686 	 * very likely) and there's a data dependence, so force GCC
2687 	 * to generate a branch instead.  I don't barrier() because
2688 	 * we don't actually need a barrier, and if this function
2689 	 * ever gets inlined it will generate worse code.
2690 	 */
2691 	asm volatile ("");
2692 	return last;
2693 }
2694 
2695 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2696 			  int *mode)
2697 {
2698 	long v;
2699 	u64 tsc_pg_val;
2700 
2701 	switch (clock->vclock_mode) {
2702 	case VDSO_CLOCKMODE_HVCLOCK:
2703 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2704 						  tsc_timestamp);
2705 		if (tsc_pg_val != U64_MAX) {
2706 			/* TSC page valid */
2707 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2708 			v = (tsc_pg_val - clock->cycle_last) &
2709 				clock->mask;
2710 		} else {
2711 			/* TSC page invalid */
2712 			*mode = VDSO_CLOCKMODE_NONE;
2713 		}
2714 		break;
2715 	case VDSO_CLOCKMODE_TSC:
2716 		*mode = VDSO_CLOCKMODE_TSC;
2717 		*tsc_timestamp = read_tsc();
2718 		v = (*tsc_timestamp - clock->cycle_last) &
2719 			clock->mask;
2720 		break;
2721 	default:
2722 		*mode = VDSO_CLOCKMODE_NONE;
2723 	}
2724 
2725 	if (*mode == VDSO_CLOCKMODE_NONE)
2726 		*tsc_timestamp = v = 0;
2727 
2728 	return v * clock->mult;
2729 }
2730 
2731 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2732 {
2733 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2734 	unsigned long seq;
2735 	int mode;
2736 	u64 ns;
2737 
2738 	do {
2739 		seq = read_seqcount_begin(&gtod->seq);
2740 		ns = gtod->raw_clock.base_cycles;
2741 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2742 		ns >>= gtod->raw_clock.shift;
2743 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2744 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2745 	*t = ns;
2746 
2747 	return mode;
2748 }
2749 
2750 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2751 {
2752 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2753 	unsigned long seq;
2754 	int mode;
2755 	u64 ns;
2756 
2757 	do {
2758 		seq = read_seqcount_begin(&gtod->seq);
2759 		ts->tv_sec = gtod->wall_time_sec;
2760 		ns = gtod->clock.base_cycles;
2761 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2762 		ns >>= gtod->clock.shift;
2763 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2764 
2765 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2766 	ts->tv_nsec = ns;
2767 
2768 	return mode;
2769 }
2770 
2771 /* returns true if host is using TSC based clocksource */
2772 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2773 {
2774 	/* checked again under seqlock below */
2775 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2776 		return false;
2777 
2778 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2779 						      tsc_timestamp));
2780 }
2781 
2782 /* returns true if host is using TSC based clocksource */
2783 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2784 					   u64 *tsc_timestamp)
2785 {
2786 	/* checked again under seqlock below */
2787 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2788 		return false;
2789 
2790 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2791 }
2792 #endif
2793 
2794 /*
2795  *
2796  * Assuming a stable TSC across physical CPUS, and a stable TSC
2797  * across virtual CPUs, the following condition is possible.
2798  * Each numbered line represents an event visible to both
2799  * CPUs at the next numbered event.
2800  *
2801  * "timespecX" represents host monotonic time. "tscX" represents
2802  * RDTSC value.
2803  *
2804  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2805  *
2806  * 1.  read timespec0,tsc0
2807  * 2.					| timespec1 = timespec0 + N
2808  * 					| tsc1 = tsc0 + M
2809  * 3. transition to guest		| transition to guest
2810  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2811  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2812  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2813  *
2814  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2815  *
2816  * 	- ret0 < ret1
2817  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2818  *		...
2819  *	- 0 < N - M => M < N
2820  *
2821  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2822  * always the case (the difference between two distinct xtime instances
2823  * might be smaller then the difference between corresponding TSC reads,
2824  * when updating guest vcpus pvclock areas).
2825  *
2826  * To avoid that problem, do not allow visibility of distinct
2827  * system_timestamp/tsc_timestamp values simultaneously: use a master
2828  * copy of host monotonic time values. Update that master copy
2829  * in lockstep.
2830  *
2831  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2832  *
2833  */
2834 
2835 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2836 {
2837 #ifdef CONFIG_X86_64
2838 	struct kvm_arch *ka = &kvm->arch;
2839 	int vclock_mode;
2840 	bool host_tsc_clocksource, vcpus_matched;
2841 
2842 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2843 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2844 			atomic_read(&kvm->online_vcpus));
2845 
2846 	/*
2847 	 * If the host uses TSC clock, then passthrough TSC as stable
2848 	 * to the guest.
2849 	 */
2850 	host_tsc_clocksource = kvm_get_time_and_clockread(
2851 					&ka->master_kernel_ns,
2852 					&ka->master_cycle_now);
2853 
2854 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2855 				&& !ka->backwards_tsc_observed
2856 				&& !ka->boot_vcpu_runs_old_kvmclock;
2857 
2858 	if (ka->use_master_clock)
2859 		atomic_set(&kvm_guest_has_master_clock, 1);
2860 
2861 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2862 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2863 					vcpus_matched);
2864 #endif
2865 }
2866 
2867 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2868 {
2869 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2870 }
2871 
2872 static void __kvm_start_pvclock_update(struct kvm *kvm)
2873 {
2874 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2875 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2876 }
2877 
2878 static void kvm_start_pvclock_update(struct kvm *kvm)
2879 {
2880 	kvm_make_mclock_inprogress_request(kvm);
2881 
2882 	/* no guest entries from this point */
2883 	__kvm_start_pvclock_update(kvm);
2884 }
2885 
2886 static void kvm_end_pvclock_update(struct kvm *kvm)
2887 {
2888 	struct kvm_arch *ka = &kvm->arch;
2889 	struct kvm_vcpu *vcpu;
2890 	unsigned long i;
2891 
2892 	write_seqcount_end(&ka->pvclock_sc);
2893 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2894 	kvm_for_each_vcpu(i, vcpu, kvm)
2895 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2896 
2897 	/* guest entries allowed */
2898 	kvm_for_each_vcpu(i, vcpu, kvm)
2899 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2900 }
2901 
2902 static void kvm_update_masterclock(struct kvm *kvm)
2903 {
2904 	kvm_hv_invalidate_tsc_page(kvm);
2905 	kvm_start_pvclock_update(kvm);
2906 	pvclock_update_vm_gtod_copy(kvm);
2907 	kvm_end_pvclock_update(kvm);
2908 }
2909 
2910 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2911 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2912 {
2913 	struct kvm_arch *ka = &kvm->arch;
2914 	struct pvclock_vcpu_time_info hv_clock;
2915 
2916 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2917 	get_cpu();
2918 
2919 	data->flags = 0;
2920 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2921 #ifdef CONFIG_X86_64
2922 		struct timespec64 ts;
2923 
2924 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2925 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2926 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2927 		} else
2928 #endif
2929 		data->host_tsc = rdtsc();
2930 
2931 		data->flags |= KVM_CLOCK_TSC_STABLE;
2932 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2933 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2934 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2935 				   &hv_clock.tsc_shift,
2936 				   &hv_clock.tsc_to_system_mul);
2937 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2938 	} else {
2939 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2940 	}
2941 
2942 	put_cpu();
2943 }
2944 
2945 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2946 {
2947 	struct kvm_arch *ka = &kvm->arch;
2948 	unsigned seq;
2949 
2950 	do {
2951 		seq = read_seqcount_begin(&ka->pvclock_sc);
2952 		__get_kvmclock(kvm, data);
2953 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2954 }
2955 
2956 u64 get_kvmclock_ns(struct kvm *kvm)
2957 {
2958 	struct kvm_clock_data data;
2959 
2960 	get_kvmclock(kvm, &data);
2961 	return data.clock;
2962 }
2963 
2964 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2965 				   struct gfn_to_hva_cache *cache,
2966 				   unsigned int offset)
2967 {
2968 	struct kvm_vcpu_arch *vcpu = &v->arch;
2969 	struct pvclock_vcpu_time_info guest_hv_clock;
2970 
2971 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2972 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2973 		return;
2974 
2975 	/* This VCPU is paused, but it's legal for a guest to read another
2976 	 * VCPU's kvmclock, so we really have to follow the specification where
2977 	 * it says that version is odd if data is being modified, and even after
2978 	 * it is consistent.
2979 	 *
2980 	 * Version field updates must be kept separate.  This is because
2981 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2982 	 * writes within a string instruction are weakly ordered.  So there
2983 	 * are three writes overall.
2984 	 *
2985 	 * As a small optimization, only write the version field in the first
2986 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2987 	 * version field is the first in the struct.
2988 	 */
2989 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2990 
2991 	if (guest_hv_clock.version & 1)
2992 		++guest_hv_clock.version;  /* first time write, random junk */
2993 
2994 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2995 	kvm_write_guest_offset_cached(v->kvm, cache,
2996 				      &vcpu->hv_clock, offset,
2997 				      sizeof(vcpu->hv_clock.version));
2998 
2999 	smp_wmb();
3000 
3001 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3002 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
3003 
3004 	if (vcpu->pvclock_set_guest_stopped_request) {
3005 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3006 		vcpu->pvclock_set_guest_stopped_request = false;
3007 	}
3008 
3009 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3010 
3011 	kvm_write_guest_offset_cached(v->kvm, cache,
3012 				      &vcpu->hv_clock, offset,
3013 				      sizeof(vcpu->hv_clock));
3014 
3015 	smp_wmb();
3016 
3017 	vcpu->hv_clock.version++;
3018 	kvm_write_guest_offset_cached(v->kvm, cache,
3019 				     &vcpu->hv_clock, offset,
3020 				     sizeof(vcpu->hv_clock.version));
3021 }
3022 
3023 static int kvm_guest_time_update(struct kvm_vcpu *v)
3024 {
3025 	unsigned long flags, tgt_tsc_khz;
3026 	unsigned seq;
3027 	struct kvm_vcpu_arch *vcpu = &v->arch;
3028 	struct kvm_arch *ka = &v->kvm->arch;
3029 	s64 kernel_ns;
3030 	u64 tsc_timestamp, host_tsc;
3031 	u8 pvclock_flags;
3032 	bool use_master_clock;
3033 
3034 	kernel_ns = 0;
3035 	host_tsc = 0;
3036 
3037 	/*
3038 	 * If the host uses TSC clock, then passthrough TSC as stable
3039 	 * to the guest.
3040 	 */
3041 	do {
3042 		seq = read_seqcount_begin(&ka->pvclock_sc);
3043 		use_master_clock = ka->use_master_clock;
3044 		if (use_master_clock) {
3045 			host_tsc = ka->master_cycle_now;
3046 			kernel_ns = ka->master_kernel_ns;
3047 		}
3048 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3049 
3050 	/* Keep irq disabled to prevent changes to the clock */
3051 	local_irq_save(flags);
3052 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3053 	if (unlikely(tgt_tsc_khz == 0)) {
3054 		local_irq_restore(flags);
3055 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3056 		return 1;
3057 	}
3058 	if (!use_master_clock) {
3059 		host_tsc = rdtsc();
3060 		kernel_ns = get_kvmclock_base_ns();
3061 	}
3062 
3063 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3064 
3065 	/*
3066 	 * We may have to catch up the TSC to match elapsed wall clock
3067 	 * time for two reasons, even if kvmclock is used.
3068 	 *   1) CPU could have been running below the maximum TSC rate
3069 	 *   2) Broken TSC compensation resets the base at each VCPU
3070 	 *      entry to avoid unknown leaps of TSC even when running
3071 	 *      again on the same CPU.  This may cause apparent elapsed
3072 	 *      time to disappear, and the guest to stand still or run
3073 	 *	very slowly.
3074 	 */
3075 	if (vcpu->tsc_catchup) {
3076 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3077 		if (tsc > tsc_timestamp) {
3078 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3079 			tsc_timestamp = tsc;
3080 		}
3081 	}
3082 
3083 	local_irq_restore(flags);
3084 
3085 	/* With all the info we got, fill in the values */
3086 
3087 	if (kvm_has_tsc_control)
3088 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3089 					    v->arch.l1_tsc_scaling_ratio);
3090 
3091 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3092 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3093 				   &vcpu->hv_clock.tsc_shift,
3094 				   &vcpu->hv_clock.tsc_to_system_mul);
3095 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3096 	}
3097 
3098 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3099 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3100 	vcpu->last_guest_tsc = tsc_timestamp;
3101 
3102 	/* If the host uses TSC clocksource, then it is stable */
3103 	pvclock_flags = 0;
3104 	if (use_master_clock)
3105 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3106 
3107 	vcpu->hv_clock.flags = pvclock_flags;
3108 
3109 	if (vcpu->pv_time_enabled)
3110 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3111 	if (vcpu->xen.vcpu_info_set)
3112 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3113 				       offsetof(struct compat_vcpu_info, time));
3114 	if (vcpu->xen.vcpu_time_info_set)
3115 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3116 	if (!v->vcpu_idx)
3117 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3118 	return 0;
3119 }
3120 
3121 /*
3122  * kvmclock updates which are isolated to a given vcpu, such as
3123  * vcpu->cpu migration, should not allow system_timestamp from
3124  * the rest of the vcpus to remain static. Otherwise ntp frequency
3125  * correction applies to one vcpu's system_timestamp but not
3126  * the others.
3127  *
3128  * So in those cases, request a kvmclock update for all vcpus.
3129  * We need to rate-limit these requests though, as they can
3130  * considerably slow guests that have a large number of vcpus.
3131  * The time for a remote vcpu to update its kvmclock is bound
3132  * by the delay we use to rate-limit the updates.
3133  */
3134 
3135 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3136 
3137 static void kvmclock_update_fn(struct work_struct *work)
3138 {
3139 	unsigned long i;
3140 	struct delayed_work *dwork = to_delayed_work(work);
3141 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3142 					   kvmclock_update_work);
3143 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3144 	struct kvm_vcpu *vcpu;
3145 
3146 	kvm_for_each_vcpu(i, vcpu, kvm) {
3147 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3148 		kvm_vcpu_kick(vcpu);
3149 	}
3150 }
3151 
3152 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3153 {
3154 	struct kvm *kvm = v->kvm;
3155 
3156 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3157 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3158 					KVMCLOCK_UPDATE_DELAY);
3159 }
3160 
3161 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3162 
3163 static void kvmclock_sync_fn(struct work_struct *work)
3164 {
3165 	struct delayed_work *dwork = to_delayed_work(work);
3166 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3167 					   kvmclock_sync_work);
3168 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3169 
3170 	if (!kvmclock_periodic_sync)
3171 		return;
3172 
3173 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3174 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3175 					KVMCLOCK_SYNC_PERIOD);
3176 }
3177 
3178 /*
3179  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3180  */
3181 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3182 {
3183 	/* McStatusWrEn enabled? */
3184 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3185 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3186 
3187 	return false;
3188 }
3189 
3190 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3191 {
3192 	u64 mcg_cap = vcpu->arch.mcg_cap;
3193 	unsigned bank_num = mcg_cap & 0xff;
3194 	u32 msr = msr_info->index;
3195 	u64 data = msr_info->data;
3196 
3197 	switch (msr) {
3198 	case MSR_IA32_MCG_STATUS:
3199 		vcpu->arch.mcg_status = data;
3200 		break;
3201 	case MSR_IA32_MCG_CTL:
3202 		if (!(mcg_cap & MCG_CTL_P) &&
3203 		    (data || !msr_info->host_initiated))
3204 			return 1;
3205 		if (data != 0 && data != ~(u64)0)
3206 			return 1;
3207 		vcpu->arch.mcg_ctl = data;
3208 		break;
3209 	default:
3210 		if (msr >= MSR_IA32_MC0_CTL &&
3211 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3212 			u32 offset = array_index_nospec(
3213 				msr - MSR_IA32_MC0_CTL,
3214 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3215 
3216 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3217 			 * some Linux kernels though clear bit 10 in bank 4 to
3218 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3219 			 * this to avoid an uncatched #GP in the guest
3220 			 */
3221 			if ((offset & 0x3) == 0 &&
3222 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3223 				return -1;
3224 
3225 			/* MCi_STATUS */
3226 			if (!msr_info->host_initiated &&
3227 			    (offset & 0x3) == 1 && data != 0) {
3228 				if (!can_set_mci_status(vcpu))
3229 					return -1;
3230 			}
3231 
3232 			vcpu->arch.mce_banks[offset] = data;
3233 			break;
3234 		}
3235 		return 1;
3236 	}
3237 	return 0;
3238 }
3239 
3240 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3241 {
3242 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3243 
3244 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3245 }
3246 
3247 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3248 {
3249 	gpa_t gpa = data & ~0x3f;
3250 
3251 	/* Bits 4:5 are reserved, Should be zero */
3252 	if (data & 0x30)
3253 		return 1;
3254 
3255 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3256 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3257 		return 1;
3258 
3259 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3260 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3261 		return 1;
3262 
3263 	if (!lapic_in_kernel(vcpu))
3264 		return data ? 1 : 0;
3265 
3266 	vcpu->arch.apf.msr_en_val = data;
3267 
3268 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3269 		kvm_clear_async_pf_completion_queue(vcpu);
3270 		kvm_async_pf_hash_reset(vcpu);
3271 		return 0;
3272 	}
3273 
3274 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3275 					sizeof(u64)))
3276 		return 1;
3277 
3278 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3279 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3280 
3281 	kvm_async_pf_wakeup_all(vcpu);
3282 
3283 	return 0;
3284 }
3285 
3286 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3287 {
3288 	/* Bits 8-63 are reserved */
3289 	if (data >> 8)
3290 		return 1;
3291 
3292 	if (!lapic_in_kernel(vcpu))
3293 		return 1;
3294 
3295 	vcpu->arch.apf.msr_int_val = data;
3296 
3297 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3298 
3299 	return 0;
3300 }
3301 
3302 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3303 {
3304 	vcpu->arch.pv_time_enabled = false;
3305 	vcpu->arch.time = 0;
3306 }
3307 
3308 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3309 {
3310 	++vcpu->stat.tlb_flush;
3311 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3312 }
3313 
3314 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3315 {
3316 	++vcpu->stat.tlb_flush;
3317 
3318 	if (!tdp_enabled) {
3319 		/*
3320 		 * A TLB flush on behalf of the guest is equivalent to
3321 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3322 		 * a forced sync of the shadow page tables.  Ensure all the
3323 		 * roots are synced and the guest TLB in hardware is clean.
3324 		 */
3325 		kvm_mmu_sync_roots(vcpu);
3326 		kvm_mmu_sync_prev_roots(vcpu);
3327 	}
3328 
3329 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3330 }
3331 
3332 
3333 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3334 {
3335 	++vcpu->stat.tlb_flush;
3336 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3337 }
3338 
3339 /*
3340  * Service "local" TLB flush requests, which are specific to the current MMU
3341  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3342  * TLB flushes that are targeted at an MMU context also need to be serviced
3343  * prior before nested VM-Enter/VM-Exit.
3344  */
3345 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3346 {
3347 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3348 		kvm_vcpu_flush_tlb_current(vcpu);
3349 
3350 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3351 		kvm_vcpu_flush_tlb_guest(vcpu);
3352 }
3353 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3354 
3355 static void record_steal_time(struct kvm_vcpu *vcpu)
3356 {
3357 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3358 	struct kvm_steal_time __user *st;
3359 	struct kvm_memslots *slots;
3360 	u64 steal;
3361 	u32 version;
3362 
3363 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3364 		kvm_xen_runstate_set_running(vcpu);
3365 		return;
3366 	}
3367 
3368 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3369 		return;
3370 
3371 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3372 		return;
3373 
3374 	slots = kvm_memslots(vcpu->kvm);
3375 
3376 	if (unlikely(slots->generation != ghc->generation ||
3377 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3378 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3379 
3380 		/* We rely on the fact that it fits in a single page. */
3381 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3382 
3383 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3384 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3385 			return;
3386 	}
3387 
3388 	st = (struct kvm_steal_time __user *)ghc->hva;
3389 	/*
3390 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3391 	 * expensive IPIs.
3392 	 */
3393 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3394 		u8 st_preempted = 0;
3395 		int err = -EFAULT;
3396 
3397 		if (!user_access_begin(st, sizeof(*st)))
3398 			return;
3399 
3400 		asm volatile("1: xchgb %0, %2\n"
3401 			     "xor %1, %1\n"
3402 			     "2:\n"
3403 			     _ASM_EXTABLE_UA(1b, 2b)
3404 			     : "+q" (st_preempted),
3405 			       "+&r" (err),
3406 			       "+m" (st->preempted));
3407 		if (err)
3408 			goto out;
3409 
3410 		user_access_end();
3411 
3412 		vcpu->arch.st.preempted = 0;
3413 
3414 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3415 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3416 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3417 			kvm_vcpu_flush_tlb_guest(vcpu);
3418 
3419 		if (!user_access_begin(st, sizeof(*st)))
3420 			goto dirty;
3421 	} else {
3422 		if (!user_access_begin(st, sizeof(*st)))
3423 			return;
3424 
3425 		unsafe_put_user(0, &st->preempted, out);
3426 		vcpu->arch.st.preempted = 0;
3427 	}
3428 
3429 	unsafe_get_user(version, &st->version, out);
3430 	if (version & 1)
3431 		version += 1;  /* first time write, random junk */
3432 
3433 	version += 1;
3434 	unsafe_put_user(version, &st->version, out);
3435 
3436 	smp_wmb();
3437 
3438 	unsafe_get_user(steal, &st->steal, out);
3439 	steal += current->sched_info.run_delay -
3440 		vcpu->arch.st.last_steal;
3441 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3442 	unsafe_put_user(steal, &st->steal, out);
3443 
3444 	version += 1;
3445 	unsafe_put_user(version, &st->version, out);
3446 
3447  out:
3448 	user_access_end();
3449  dirty:
3450 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3451 }
3452 
3453 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3454 {
3455 	bool pr = false;
3456 	u32 msr = msr_info->index;
3457 	u64 data = msr_info->data;
3458 
3459 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3460 		return kvm_xen_write_hypercall_page(vcpu, data);
3461 
3462 	switch (msr) {
3463 	case MSR_AMD64_NB_CFG:
3464 	case MSR_IA32_UCODE_WRITE:
3465 	case MSR_VM_HSAVE_PA:
3466 	case MSR_AMD64_PATCH_LOADER:
3467 	case MSR_AMD64_BU_CFG2:
3468 	case MSR_AMD64_DC_CFG:
3469 	case MSR_F15H_EX_CFG:
3470 		break;
3471 
3472 	case MSR_IA32_UCODE_REV:
3473 		if (msr_info->host_initiated)
3474 			vcpu->arch.microcode_version = data;
3475 		break;
3476 	case MSR_IA32_ARCH_CAPABILITIES:
3477 		if (!msr_info->host_initiated)
3478 			return 1;
3479 		vcpu->arch.arch_capabilities = data;
3480 		break;
3481 	case MSR_IA32_PERF_CAPABILITIES: {
3482 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3483 
3484 		if (!msr_info->host_initiated)
3485 			return 1;
3486 		if (kvm_get_msr_feature(&msr_ent))
3487 			return 1;
3488 		if (data & ~msr_ent.data)
3489 			return 1;
3490 
3491 		vcpu->arch.perf_capabilities = data;
3492 
3493 		return 0;
3494 		}
3495 	case MSR_EFER:
3496 		return set_efer(vcpu, msr_info);
3497 	case MSR_K7_HWCR:
3498 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3499 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3500 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3501 
3502 		/* Handle McStatusWrEn */
3503 		if (data == BIT_ULL(18)) {
3504 			vcpu->arch.msr_hwcr = data;
3505 		} else if (data != 0) {
3506 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3507 				    data);
3508 			return 1;
3509 		}
3510 		break;
3511 	case MSR_FAM10H_MMIO_CONF_BASE:
3512 		if (data != 0) {
3513 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3514 				    "0x%llx\n", data);
3515 			return 1;
3516 		}
3517 		break;
3518 	case 0x200 ... 0x2ff:
3519 		return kvm_mtrr_set_msr(vcpu, msr, data);
3520 	case MSR_IA32_APICBASE:
3521 		return kvm_set_apic_base(vcpu, msr_info);
3522 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3523 		return kvm_x2apic_msr_write(vcpu, msr, data);
3524 	case MSR_IA32_TSC_DEADLINE:
3525 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3526 		break;
3527 	case MSR_IA32_TSC_ADJUST:
3528 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3529 			if (!msr_info->host_initiated) {
3530 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3531 				adjust_tsc_offset_guest(vcpu, adj);
3532 				/* Before back to guest, tsc_timestamp must be adjusted
3533 				 * as well, otherwise guest's percpu pvclock time could jump.
3534 				 */
3535 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3536 			}
3537 			vcpu->arch.ia32_tsc_adjust_msr = data;
3538 		}
3539 		break;
3540 	case MSR_IA32_MISC_ENABLE:
3541 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3542 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3543 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3544 				return 1;
3545 			vcpu->arch.ia32_misc_enable_msr = data;
3546 			kvm_update_cpuid_runtime(vcpu);
3547 		} else {
3548 			vcpu->arch.ia32_misc_enable_msr = data;
3549 		}
3550 		break;
3551 	case MSR_IA32_SMBASE:
3552 		if (!msr_info->host_initiated)
3553 			return 1;
3554 		vcpu->arch.smbase = data;
3555 		break;
3556 	case MSR_IA32_POWER_CTL:
3557 		vcpu->arch.msr_ia32_power_ctl = data;
3558 		break;
3559 	case MSR_IA32_TSC:
3560 		if (msr_info->host_initiated) {
3561 			kvm_synchronize_tsc(vcpu, data);
3562 		} else {
3563 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3564 			adjust_tsc_offset_guest(vcpu, adj);
3565 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3566 		}
3567 		break;
3568 	case MSR_IA32_XSS:
3569 		if (!msr_info->host_initiated &&
3570 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3571 			return 1;
3572 		/*
3573 		 * KVM supports exposing PT to the guest, but does not support
3574 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3575 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3576 		 */
3577 		if (data & ~supported_xss)
3578 			return 1;
3579 		vcpu->arch.ia32_xss = data;
3580 		kvm_update_cpuid_runtime(vcpu);
3581 		break;
3582 	case MSR_SMI_COUNT:
3583 		if (!msr_info->host_initiated)
3584 			return 1;
3585 		vcpu->arch.smi_count = data;
3586 		break;
3587 	case MSR_KVM_WALL_CLOCK_NEW:
3588 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3589 			return 1;
3590 
3591 		vcpu->kvm->arch.wall_clock = data;
3592 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3593 		break;
3594 	case MSR_KVM_WALL_CLOCK:
3595 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3596 			return 1;
3597 
3598 		vcpu->kvm->arch.wall_clock = data;
3599 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3600 		break;
3601 	case MSR_KVM_SYSTEM_TIME_NEW:
3602 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3603 			return 1;
3604 
3605 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3606 		break;
3607 	case MSR_KVM_SYSTEM_TIME:
3608 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3609 			return 1;
3610 
3611 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3612 		break;
3613 	case MSR_KVM_ASYNC_PF_EN:
3614 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3615 			return 1;
3616 
3617 		if (kvm_pv_enable_async_pf(vcpu, data))
3618 			return 1;
3619 		break;
3620 	case MSR_KVM_ASYNC_PF_INT:
3621 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3622 			return 1;
3623 
3624 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3625 			return 1;
3626 		break;
3627 	case MSR_KVM_ASYNC_PF_ACK:
3628 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3629 			return 1;
3630 		if (data & 0x1) {
3631 			vcpu->arch.apf.pageready_pending = false;
3632 			kvm_check_async_pf_completion(vcpu);
3633 		}
3634 		break;
3635 	case MSR_KVM_STEAL_TIME:
3636 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3637 			return 1;
3638 
3639 		if (unlikely(!sched_info_on()))
3640 			return 1;
3641 
3642 		if (data & KVM_STEAL_RESERVED_MASK)
3643 			return 1;
3644 
3645 		vcpu->arch.st.msr_val = data;
3646 
3647 		if (!(data & KVM_MSR_ENABLED))
3648 			break;
3649 
3650 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3651 
3652 		break;
3653 	case MSR_KVM_PV_EOI_EN:
3654 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3655 			return 1;
3656 
3657 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3658 			return 1;
3659 		break;
3660 
3661 	case MSR_KVM_POLL_CONTROL:
3662 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3663 			return 1;
3664 
3665 		/* only enable bit supported */
3666 		if (data & (-1ULL << 1))
3667 			return 1;
3668 
3669 		vcpu->arch.msr_kvm_poll_control = data;
3670 		break;
3671 
3672 	case MSR_IA32_MCG_CTL:
3673 	case MSR_IA32_MCG_STATUS:
3674 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3675 		return set_msr_mce(vcpu, msr_info);
3676 
3677 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3678 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3679 		pr = true;
3680 		fallthrough;
3681 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3682 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3683 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3684 			return kvm_pmu_set_msr(vcpu, msr_info);
3685 
3686 		if (pr || data != 0)
3687 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3688 				    "0x%x data 0x%llx\n", msr, data);
3689 		break;
3690 	case MSR_K7_CLK_CTL:
3691 		/*
3692 		 * Ignore all writes to this no longer documented MSR.
3693 		 * Writes are only relevant for old K7 processors,
3694 		 * all pre-dating SVM, but a recommended workaround from
3695 		 * AMD for these chips. It is possible to specify the
3696 		 * affected processor models on the command line, hence
3697 		 * the need to ignore the workaround.
3698 		 */
3699 		break;
3700 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3701 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3702 	case HV_X64_MSR_SYNDBG_OPTIONS:
3703 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3704 	case HV_X64_MSR_CRASH_CTL:
3705 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3706 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3707 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3708 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3709 		return kvm_hv_set_msr_common(vcpu, msr, data,
3710 					     msr_info->host_initiated);
3711 	case MSR_IA32_BBL_CR_CTL3:
3712 		/* Drop writes to this legacy MSR -- see rdmsr
3713 		 * counterpart for further detail.
3714 		 */
3715 		if (report_ignored_msrs)
3716 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3717 				msr, data);
3718 		break;
3719 	case MSR_AMD64_OSVW_ID_LENGTH:
3720 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3721 			return 1;
3722 		vcpu->arch.osvw.length = data;
3723 		break;
3724 	case MSR_AMD64_OSVW_STATUS:
3725 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3726 			return 1;
3727 		vcpu->arch.osvw.status = data;
3728 		break;
3729 	case MSR_PLATFORM_INFO:
3730 		if (!msr_info->host_initiated ||
3731 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3732 		     cpuid_fault_enabled(vcpu)))
3733 			return 1;
3734 		vcpu->arch.msr_platform_info = data;
3735 		break;
3736 	case MSR_MISC_FEATURES_ENABLES:
3737 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3738 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3739 		     !supports_cpuid_fault(vcpu)))
3740 			return 1;
3741 		vcpu->arch.msr_misc_features_enables = data;
3742 		break;
3743 #ifdef CONFIG_X86_64
3744 	case MSR_IA32_XFD:
3745 		if (!msr_info->host_initiated &&
3746 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3747 			return 1;
3748 
3749 		if (data & ~kvm_guest_supported_xfd(vcpu))
3750 			return 1;
3751 
3752 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3753 		break;
3754 	case MSR_IA32_XFD_ERR:
3755 		if (!msr_info->host_initiated &&
3756 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3757 			return 1;
3758 
3759 		if (data & ~kvm_guest_supported_xfd(vcpu))
3760 			return 1;
3761 
3762 		vcpu->arch.guest_fpu.xfd_err = data;
3763 		break;
3764 #endif
3765 	default:
3766 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3767 			return kvm_pmu_set_msr(vcpu, msr_info);
3768 		return KVM_MSR_RET_INVALID;
3769 	}
3770 	return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3773 
3774 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3775 {
3776 	u64 data;
3777 	u64 mcg_cap = vcpu->arch.mcg_cap;
3778 	unsigned bank_num = mcg_cap & 0xff;
3779 
3780 	switch (msr) {
3781 	case MSR_IA32_P5_MC_ADDR:
3782 	case MSR_IA32_P5_MC_TYPE:
3783 		data = 0;
3784 		break;
3785 	case MSR_IA32_MCG_CAP:
3786 		data = vcpu->arch.mcg_cap;
3787 		break;
3788 	case MSR_IA32_MCG_CTL:
3789 		if (!(mcg_cap & MCG_CTL_P) && !host)
3790 			return 1;
3791 		data = vcpu->arch.mcg_ctl;
3792 		break;
3793 	case MSR_IA32_MCG_STATUS:
3794 		data = vcpu->arch.mcg_status;
3795 		break;
3796 	default:
3797 		if (msr >= MSR_IA32_MC0_CTL &&
3798 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3799 			u32 offset = array_index_nospec(
3800 				msr - MSR_IA32_MC0_CTL,
3801 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3802 
3803 			data = vcpu->arch.mce_banks[offset];
3804 			break;
3805 		}
3806 		return 1;
3807 	}
3808 	*pdata = data;
3809 	return 0;
3810 }
3811 
3812 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3813 {
3814 	switch (msr_info->index) {
3815 	case MSR_IA32_PLATFORM_ID:
3816 	case MSR_IA32_EBL_CR_POWERON:
3817 	case MSR_IA32_LASTBRANCHFROMIP:
3818 	case MSR_IA32_LASTBRANCHTOIP:
3819 	case MSR_IA32_LASTINTFROMIP:
3820 	case MSR_IA32_LASTINTTOIP:
3821 	case MSR_AMD64_SYSCFG:
3822 	case MSR_K8_TSEG_ADDR:
3823 	case MSR_K8_TSEG_MASK:
3824 	case MSR_VM_HSAVE_PA:
3825 	case MSR_K8_INT_PENDING_MSG:
3826 	case MSR_AMD64_NB_CFG:
3827 	case MSR_FAM10H_MMIO_CONF_BASE:
3828 	case MSR_AMD64_BU_CFG2:
3829 	case MSR_IA32_PERF_CTL:
3830 	case MSR_AMD64_DC_CFG:
3831 	case MSR_F15H_EX_CFG:
3832 	/*
3833 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3834 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3835 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3836 	 * so for existing CPU-specific MSRs.
3837 	 */
3838 	case MSR_RAPL_POWER_UNIT:
3839 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3840 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3841 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3842 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3843 		msr_info->data = 0;
3844 		break;
3845 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3846 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3847 			return kvm_pmu_get_msr(vcpu, msr_info);
3848 		if (!msr_info->host_initiated)
3849 			return 1;
3850 		msr_info->data = 0;
3851 		break;
3852 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3853 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3854 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3855 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3856 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3857 			return kvm_pmu_get_msr(vcpu, msr_info);
3858 		msr_info->data = 0;
3859 		break;
3860 	case MSR_IA32_UCODE_REV:
3861 		msr_info->data = vcpu->arch.microcode_version;
3862 		break;
3863 	case MSR_IA32_ARCH_CAPABILITIES:
3864 		if (!msr_info->host_initiated &&
3865 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3866 			return 1;
3867 		msr_info->data = vcpu->arch.arch_capabilities;
3868 		break;
3869 	case MSR_IA32_PERF_CAPABILITIES:
3870 		if (!msr_info->host_initiated &&
3871 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3872 			return 1;
3873 		msr_info->data = vcpu->arch.perf_capabilities;
3874 		break;
3875 	case MSR_IA32_POWER_CTL:
3876 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3877 		break;
3878 	case MSR_IA32_TSC: {
3879 		/*
3880 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3881 		 * even when not intercepted. AMD manual doesn't explicitly
3882 		 * state this but appears to behave the same.
3883 		 *
3884 		 * On userspace reads and writes, however, we unconditionally
3885 		 * return L1's TSC value to ensure backwards-compatible
3886 		 * behavior for migration.
3887 		 */
3888 		u64 offset, ratio;
3889 
3890 		if (msr_info->host_initiated) {
3891 			offset = vcpu->arch.l1_tsc_offset;
3892 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3893 		} else {
3894 			offset = vcpu->arch.tsc_offset;
3895 			ratio = vcpu->arch.tsc_scaling_ratio;
3896 		}
3897 
3898 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3899 		break;
3900 	}
3901 	case MSR_MTRRcap:
3902 	case 0x200 ... 0x2ff:
3903 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3904 	case 0xcd: /* fsb frequency */
3905 		msr_info->data = 3;
3906 		break;
3907 		/*
3908 		 * MSR_EBC_FREQUENCY_ID
3909 		 * Conservative value valid for even the basic CPU models.
3910 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3911 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3912 		 * and 266MHz for model 3, or 4. Set Core Clock
3913 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3914 		 * 31:24) even though these are only valid for CPU
3915 		 * models > 2, however guests may end up dividing or
3916 		 * multiplying by zero otherwise.
3917 		 */
3918 	case MSR_EBC_FREQUENCY_ID:
3919 		msr_info->data = 1 << 24;
3920 		break;
3921 	case MSR_IA32_APICBASE:
3922 		msr_info->data = kvm_get_apic_base(vcpu);
3923 		break;
3924 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3925 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3926 	case MSR_IA32_TSC_DEADLINE:
3927 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3928 		break;
3929 	case MSR_IA32_TSC_ADJUST:
3930 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3931 		break;
3932 	case MSR_IA32_MISC_ENABLE:
3933 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3934 		break;
3935 	case MSR_IA32_SMBASE:
3936 		if (!msr_info->host_initiated)
3937 			return 1;
3938 		msr_info->data = vcpu->arch.smbase;
3939 		break;
3940 	case MSR_SMI_COUNT:
3941 		msr_info->data = vcpu->arch.smi_count;
3942 		break;
3943 	case MSR_IA32_PERF_STATUS:
3944 		/* TSC increment by tick */
3945 		msr_info->data = 1000ULL;
3946 		/* CPU multiplier */
3947 		msr_info->data |= (((uint64_t)4ULL) << 40);
3948 		break;
3949 	case MSR_EFER:
3950 		msr_info->data = vcpu->arch.efer;
3951 		break;
3952 	case MSR_KVM_WALL_CLOCK:
3953 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3954 			return 1;
3955 
3956 		msr_info->data = vcpu->kvm->arch.wall_clock;
3957 		break;
3958 	case MSR_KVM_WALL_CLOCK_NEW:
3959 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3960 			return 1;
3961 
3962 		msr_info->data = vcpu->kvm->arch.wall_clock;
3963 		break;
3964 	case MSR_KVM_SYSTEM_TIME:
3965 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3966 			return 1;
3967 
3968 		msr_info->data = vcpu->arch.time;
3969 		break;
3970 	case MSR_KVM_SYSTEM_TIME_NEW:
3971 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3972 			return 1;
3973 
3974 		msr_info->data = vcpu->arch.time;
3975 		break;
3976 	case MSR_KVM_ASYNC_PF_EN:
3977 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3978 			return 1;
3979 
3980 		msr_info->data = vcpu->arch.apf.msr_en_val;
3981 		break;
3982 	case MSR_KVM_ASYNC_PF_INT:
3983 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3984 			return 1;
3985 
3986 		msr_info->data = vcpu->arch.apf.msr_int_val;
3987 		break;
3988 	case MSR_KVM_ASYNC_PF_ACK:
3989 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3990 			return 1;
3991 
3992 		msr_info->data = 0;
3993 		break;
3994 	case MSR_KVM_STEAL_TIME:
3995 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3996 			return 1;
3997 
3998 		msr_info->data = vcpu->arch.st.msr_val;
3999 		break;
4000 	case MSR_KVM_PV_EOI_EN:
4001 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002 			return 1;
4003 
4004 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4005 		break;
4006 	case MSR_KVM_POLL_CONTROL:
4007 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4008 			return 1;
4009 
4010 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4011 		break;
4012 	case MSR_IA32_P5_MC_ADDR:
4013 	case MSR_IA32_P5_MC_TYPE:
4014 	case MSR_IA32_MCG_CAP:
4015 	case MSR_IA32_MCG_CTL:
4016 	case MSR_IA32_MCG_STATUS:
4017 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4018 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4019 				   msr_info->host_initiated);
4020 	case MSR_IA32_XSS:
4021 		if (!msr_info->host_initiated &&
4022 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4023 			return 1;
4024 		msr_info->data = vcpu->arch.ia32_xss;
4025 		break;
4026 	case MSR_K7_CLK_CTL:
4027 		/*
4028 		 * Provide expected ramp-up count for K7. All other
4029 		 * are set to zero, indicating minimum divisors for
4030 		 * every field.
4031 		 *
4032 		 * This prevents guest kernels on AMD host with CPU
4033 		 * type 6, model 8 and higher from exploding due to
4034 		 * the rdmsr failing.
4035 		 */
4036 		msr_info->data = 0x20000000;
4037 		break;
4038 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4039 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4040 	case HV_X64_MSR_SYNDBG_OPTIONS:
4041 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4042 	case HV_X64_MSR_CRASH_CTL:
4043 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4044 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4045 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4046 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4047 		return kvm_hv_get_msr_common(vcpu,
4048 					     msr_info->index, &msr_info->data,
4049 					     msr_info->host_initiated);
4050 	case MSR_IA32_BBL_CR_CTL3:
4051 		/* This legacy MSR exists but isn't fully documented in current
4052 		 * silicon.  It is however accessed by winxp in very narrow
4053 		 * scenarios where it sets bit #19, itself documented as
4054 		 * a "reserved" bit.  Best effort attempt to source coherent
4055 		 * read data here should the balance of the register be
4056 		 * interpreted by the guest:
4057 		 *
4058 		 * L2 cache control register 3: 64GB range, 256KB size,
4059 		 * enabled, latency 0x1, configured
4060 		 */
4061 		msr_info->data = 0xbe702111;
4062 		break;
4063 	case MSR_AMD64_OSVW_ID_LENGTH:
4064 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4065 			return 1;
4066 		msr_info->data = vcpu->arch.osvw.length;
4067 		break;
4068 	case MSR_AMD64_OSVW_STATUS:
4069 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4070 			return 1;
4071 		msr_info->data = vcpu->arch.osvw.status;
4072 		break;
4073 	case MSR_PLATFORM_INFO:
4074 		if (!msr_info->host_initiated &&
4075 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4076 			return 1;
4077 		msr_info->data = vcpu->arch.msr_platform_info;
4078 		break;
4079 	case MSR_MISC_FEATURES_ENABLES:
4080 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4081 		break;
4082 	case MSR_K7_HWCR:
4083 		msr_info->data = vcpu->arch.msr_hwcr;
4084 		break;
4085 #ifdef CONFIG_X86_64
4086 	case MSR_IA32_XFD:
4087 		if (!msr_info->host_initiated &&
4088 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4089 			return 1;
4090 
4091 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4092 		break;
4093 	case MSR_IA32_XFD_ERR:
4094 		if (!msr_info->host_initiated &&
4095 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4096 			return 1;
4097 
4098 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4099 		break;
4100 #endif
4101 	default:
4102 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4103 			return kvm_pmu_get_msr(vcpu, msr_info);
4104 		return KVM_MSR_RET_INVALID;
4105 	}
4106 	return 0;
4107 }
4108 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4109 
4110 /*
4111  * Read or write a bunch of msrs. All parameters are kernel addresses.
4112  *
4113  * @return number of msrs set successfully.
4114  */
4115 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4116 		    struct kvm_msr_entry *entries,
4117 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4118 				  unsigned index, u64 *data))
4119 {
4120 	int i;
4121 
4122 	for (i = 0; i < msrs->nmsrs; ++i)
4123 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4124 			break;
4125 
4126 	return i;
4127 }
4128 
4129 /*
4130  * Read or write a bunch of msrs. Parameters are user addresses.
4131  *
4132  * @return number of msrs set successfully.
4133  */
4134 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4135 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4136 				unsigned index, u64 *data),
4137 		  int writeback)
4138 {
4139 	struct kvm_msrs msrs;
4140 	struct kvm_msr_entry *entries;
4141 	int r, n;
4142 	unsigned size;
4143 
4144 	r = -EFAULT;
4145 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4146 		goto out;
4147 
4148 	r = -E2BIG;
4149 	if (msrs.nmsrs >= MAX_IO_MSRS)
4150 		goto out;
4151 
4152 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4153 	entries = memdup_user(user_msrs->entries, size);
4154 	if (IS_ERR(entries)) {
4155 		r = PTR_ERR(entries);
4156 		goto out;
4157 	}
4158 
4159 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4160 	if (r < 0)
4161 		goto out_free;
4162 
4163 	r = -EFAULT;
4164 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4165 		goto out_free;
4166 
4167 	r = n;
4168 
4169 out_free:
4170 	kfree(entries);
4171 out:
4172 	return r;
4173 }
4174 
4175 static inline bool kvm_can_mwait_in_guest(void)
4176 {
4177 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4178 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4179 		boot_cpu_has(X86_FEATURE_ARAT);
4180 }
4181 
4182 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4183 					    struct kvm_cpuid2 __user *cpuid_arg)
4184 {
4185 	struct kvm_cpuid2 cpuid;
4186 	int r;
4187 
4188 	r = -EFAULT;
4189 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4190 		return r;
4191 
4192 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4193 	if (r)
4194 		return r;
4195 
4196 	r = -EFAULT;
4197 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4198 		return r;
4199 
4200 	return 0;
4201 }
4202 
4203 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4204 {
4205 	int r = 0;
4206 
4207 	switch (ext) {
4208 	case KVM_CAP_IRQCHIP:
4209 	case KVM_CAP_HLT:
4210 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4211 	case KVM_CAP_SET_TSS_ADDR:
4212 	case KVM_CAP_EXT_CPUID:
4213 	case KVM_CAP_EXT_EMUL_CPUID:
4214 	case KVM_CAP_CLOCKSOURCE:
4215 	case KVM_CAP_PIT:
4216 	case KVM_CAP_NOP_IO_DELAY:
4217 	case KVM_CAP_MP_STATE:
4218 	case KVM_CAP_SYNC_MMU:
4219 	case KVM_CAP_USER_NMI:
4220 	case KVM_CAP_REINJECT_CONTROL:
4221 	case KVM_CAP_IRQ_INJECT_STATUS:
4222 	case KVM_CAP_IOEVENTFD:
4223 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4224 	case KVM_CAP_PIT2:
4225 	case KVM_CAP_PIT_STATE2:
4226 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4227 	case KVM_CAP_VCPU_EVENTS:
4228 	case KVM_CAP_HYPERV:
4229 	case KVM_CAP_HYPERV_VAPIC:
4230 	case KVM_CAP_HYPERV_SPIN:
4231 	case KVM_CAP_HYPERV_SYNIC:
4232 	case KVM_CAP_HYPERV_SYNIC2:
4233 	case KVM_CAP_HYPERV_VP_INDEX:
4234 	case KVM_CAP_HYPERV_EVENTFD:
4235 	case KVM_CAP_HYPERV_TLBFLUSH:
4236 	case KVM_CAP_HYPERV_SEND_IPI:
4237 	case KVM_CAP_HYPERV_CPUID:
4238 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4239 	case KVM_CAP_SYS_HYPERV_CPUID:
4240 	case KVM_CAP_PCI_SEGMENT:
4241 	case KVM_CAP_DEBUGREGS:
4242 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4243 	case KVM_CAP_XSAVE:
4244 	case KVM_CAP_ASYNC_PF:
4245 	case KVM_CAP_ASYNC_PF_INT:
4246 	case KVM_CAP_GET_TSC_KHZ:
4247 	case KVM_CAP_KVMCLOCK_CTRL:
4248 	case KVM_CAP_READONLY_MEM:
4249 	case KVM_CAP_HYPERV_TIME:
4250 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4251 	case KVM_CAP_TSC_DEADLINE_TIMER:
4252 	case KVM_CAP_DISABLE_QUIRKS:
4253 	case KVM_CAP_SET_BOOT_CPU_ID:
4254  	case KVM_CAP_SPLIT_IRQCHIP:
4255 	case KVM_CAP_IMMEDIATE_EXIT:
4256 	case KVM_CAP_PMU_EVENT_FILTER:
4257 	case KVM_CAP_GET_MSR_FEATURES:
4258 	case KVM_CAP_MSR_PLATFORM_INFO:
4259 	case KVM_CAP_EXCEPTION_PAYLOAD:
4260 	case KVM_CAP_SET_GUEST_DEBUG:
4261 	case KVM_CAP_LAST_CPU:
4262 	case KVM_CAP_X86_USER_SPACE_MSR:
4263 	case KVM_CAP_X86_MSR_FILTER:
4264 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4265 #ifdef CONFIG_X86_SGX_KVM
4266 	case KVM_CAP_SGX_ATTRIBUTE:
4267 #endif
4268 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4269 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4270 	case KVM_CAP_SREGS2:
4271 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4272 	case KVM_CAP_VCPU_ATTRIBUTES:
4273 	case KVM_CAP_SYS_ATTRIBUTES:
4274 	case KVM_CAP_VAPIC:
4275 	case KVM_CAP_ENABLE_CAP:
4276 		r = 1;
4277 		break;
4278 	case KVM_CAP_EXIT_HYPERCALL:
4279 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4280 		break;
4281 	case KVM_CAP_SET_GUEST_DEBUG2:
4282 		return KVM_GUESTDBG_VALID_MASK;
4283 #ifdef CONFIG_KVM_XEN
4284 	case KVM_CAP_XEN_HVM:
4285 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4286 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4287 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4288 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4289 		if (sched_info_on())
4290 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4291 		break;
4292 #endif
4293 	case KVM_CAP_SYNC_REGS:
4294 		r = KVM_SYNC_X86_VALID_FIELDS;
4295 		break;
4296 	case KVM_CAP_ADJUST_CLOCK:
4297 		r = KVM_CLOCK_VALID_FLAGS;
4298 		break;
4299 	case KVM_CAP_X86_DISABLE_EXITS:
4300 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4301 		      KVM_X86_DISABLE_EXITS_CSTATE;
4302 		if(kvm_can_mwait_in_guest())
4303 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4304 		break;
4305 	case KVM_CAP_X86_SMM:
4306 		/* SMBASE is usually relocated above 1M on modern chipsets,
4307 		 * and SMM handlers might indeed rely on 4G segment limits,
4308 		 * so do not report SMM to be available if real mode is
4309 		 * emulated via vm86 mode.  Still, do not go to great lengths
4310 		 * to avoid userspace's usage of the feature, because it is a
4311 		 * fringe case that is not enabled except via specific settings
4312 		 * of the module parameters.
4313 		 */
4314 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4315 		break;
4316 	case KVM_CAP_NR_VCPUS:
4317 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4318 		break;
4319 	case KVM_CAP_MAX_VCPUS:
4320 		r = KVM_MAX_VCPUS;
4321 		break;
4322 	case KVM_CAP_MAX_VCPU_ID:
4323 		r = KVM_MAX_VCPU_IDS;
4324 		break;
4325 	case KVM_CAP_PV_MMU:	/* obsolete */
4326 		r = 0;
4327 		break;
4328 	case KVM_CAP_MCE:
4329 		r = KVM_MAX_MCE_BANKS;
4330 		break;
4331 	case KVM_CAP_XCRS:
4332 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4333 		break;
4334 	case KVM_CAP_TSC_CONTROL:
4335 		r = kvm_has_tsc_control;
4336 		break;
4337 	case KVM_CAP_X2APIC_API:
4338 		r = KVM_X2APIC_API_VALID_FLAGS;
4339 		break;
4340 	case KVM_CAP_NESTED_STATE:
4341 		r = kvm_x86_ops.nested_ops->get_state ?
4342 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4343 		break;
4344 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4345 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4346 		break;
4347 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4348 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4349 		break;
4350 	case KVM_CAP_SMALLER_MAXPHYADDR:
4351 		r = (int) allow_smaller_maxphyaddr;
4352 		break;
4353 	case KVM_CAP_STEAL_TIME:
4354 		r = sched_info_on();
4355 		break;
4356 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4357 		if (kvm_has_bus_lock_exit)
4358 			r = KVM_BUS_LOCK_DETECTION_OFF |
4359 			    KVM_BUS_LOCK_DETECTION_EXIT;
4360 		else
4361 			r = 0;
4362 		break;
4363 	case KVM_CAP_XSAVE2: {
4364 		u64 guest_perm = xstate_get_guest_group_perm();
4365 
4366 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4367 		if (r < sizeof(struct kvm_xsave))
4368 			r = sizeof(struct kvm_xsave);
4369 		break;
4370 	case KVM_CAP_PMU_CAPABILITY:
4371 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4372 		break;
4373 	}
4374 	case KVM_CAP_DISABLE_QUIRKS2:
4375 		r = KVM_X86_VALID_QUIRKS;
4376 		break;
4377 	default:
4378 		break;
4379 	}
4380 	return r;
4381 }
4382 
4383 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4384 {
4385 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4386 
4387 	if ((u64)(unsigned long)uaddr != attr->addr)
4388 		return ERR_PTR_USR(-EFAULT);
4389 	return uaddr;
4390 }
4391 
4392 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4393 {
4394 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4395 
4396 	if (attr->group)
4397 		return -ENXIO;
4398 
4399 	if (IS_ERR(uaddr))
4400 		return PTR_ERR(uaddr);
4401 
4402 	switch (attr->attr) {
4403 	case KVM_X86_XCOMP_GUEST_SUPP:
4404 		if (put_user(supported_xcr0, uaddr))
4405 			return -EFAULT;
4406 		return 0;
4407 	default:
4408 		return -ENXIO;
4409 		break;
4410 	}
4411 }
4412 
4413 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4414 {
4415 	if (attr->group)
4416 		return -ENXIO;
4417 
4418 	switch (attr->attr) {
4419 	case KVM_X86_XCOMP_GUEST_SUPP:
4420 		return 0;
4421 	default:
4422 		return -ENXIO;
4423 	}
4424 }
4425 
4426 long kvm_arch_dev_ioctl(struct file *filp,
4427 			unsigned int ioctl, unsigned long arg)
4428 {
4429 	void __user *argp = (void __user *)arg;
4430 	long r;
4431 
4432 	switch (ioctl) {
4433 	case KVM_GET_MSR_INDEX_LIST: {
4434 		struct kvm_msr_list __user *user_msr_list = argp;
4435 		struct kvm_msr_list msr_list;
4436 		unsigned n;
4437 
4438 		r = -EFAULT;
4439 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4440 			goto out;
4441 		n = msr_list.nmsrs;
4442 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4443 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4444 			goto out;
4445 		r = -E2BIG;
4446 		if (n < msr_list.nmsrs)
4447 			goto out;
4448 		r = -EFAULT;
4449 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4450 				 num_msrs_to_save * sizeof(u32)))
4451 			goto out;
4452 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4453 				 &emulated_msrs,
4454 				 num_emulated_msrs * sizeof(u32)))
4455 			goto out;
4456 		r = 0;
4457 		break;
4458 	}
4459 	case KVM_GET_SUPPORTED_CPUID:
4460 	case KVM_GET_EMULATED_CPUID: {
4461 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4462 		struct kvm_cpuid2 cpuid;
4463 
4464 		r = -EFAULT;
4465 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4466 			goto out;
4467 
4468 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4469 					    ioctl);
4470 		if (r)
4471 			goto out;
4472 
4473 		r = -EFAULT;
4474 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4475 			goto out;
4476 		r = 0;
4477 		break;
4478 	}
4479 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4480 		r = -EFAULT;
4481 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4482 				 sizeof(kvm_mce_cap_supported)))
4483 			goto out;
4484 		r = 0;
4485 		break;
4486 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4487 		struct kvm_msr_list __user *user_msr_list = argp;
4488 		struct kvm_msr_list msr_list;
4489 		unsigned int n;
4490 
4491 		r = -EFAULT;
4492 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4493 			goto out;
4494 		n = msr_list.nmsrs;
4495 		msr_list.nmsrs = num_msr_based_features;
4496 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4497 			goto out;
4498 		r = -E2BIG;
4499 		if (n < msr_list.nmsrs)
4500 			goto out;
4501 		r = -EFAULT;
4502 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4503 				 num_msr_based_features * sizeof(u32)))
4504 			goto out;
4505 		r = 0;
4506 		break;
4507 	}
4508 	case KVM_GET_MSRS:
4509 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4510 		break;
4511 	case KVM_GET_SUPPORTED_HV_CPUID:
4512 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4513 		break;
4514 	case KVM_GET_DEVICE_ATTR: {
4515 		struct kvm_device_attr attr;
4516 		r = -EFAULT;
4517 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4518 			break;
4519 		r = kvm_x86_dev_get_attr(&attr);
4520 		break;
4521 	}
4522 	case KVM_HAS_DEVICE_ATTR: {
4523 		struct kvm_device_attr attr;
4524 		r = -EFAULT;
4525 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4526 			break;
4527 		r = kvm_x86_dev_has_attr(&attr);
4528 		break;
4529 	}
4530 	default:
4531 		r = -EINVAL;
4532 		break;
4533 	}
4534 out:
4535 	return r;
4536 }
4537 
4538 static void wbinvd_ipi(void *garbage)
4539 {
4540 	wbinvd();
4541 }
4542 
4543 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4544 {
4545 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4546 }
4547 
4548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4549 {
4550 	/* Address WBINVD may be executed by guest */
4551 	if (need_emulate_wbinvd(vcpu)) {
4552 		if (static_call(kvm_x86_has_wbinvd_exit)())
4553 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4554 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4555 			smp_call_function_single(vcpu->cpu,
4556 					wbinvd_ipi, NULL, 1);
4557 	}
4558 
4559 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4560 
4561 	/* Save host pkru register if supported */
4562 	vcpu->arch.host_pkru = read_pkru();
4563 
4564 	/* Apply any externally detected TSC adjustments (due to suspend) */
4565 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4566 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4567 		vcpu->arch.tsc_offset_adjustment = 0;
4568 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4569 	}
4570 
4571 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4572 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4573 				rdtsc() - vcpu->arch.last_host_tsc;
4574 		if (tsc_delta < 0)
4575 			mark_tsc_unstable("KVM discovered backwards TSC");
4576 
4577 		if (kvm_check_tsc_unstable()) {
4578 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4579 						vcpu->arch.last_guest_tsc);
4580 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4581 			vcpu->arch.tsc_catchup = 1;
4582 		}
4583 
4584 		if (kvm_lapic_hv_timer_in_use(vcpu))
4585 			kvm_lapic_restart_hv_timer(vcpu);
4586 
4587 		/*
4588 		 * On a host with synchronized TSC, there is no need to update
4589 		 * kvmclock on vcpu->cpu migration
4590 		 */
4591 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4592 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4593 		if (vcpu->cpu != cpu)
4594 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4595 		vcpu->cpu = cpu;
4596 	}
4597 
4598 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4599 }
4600 
4601 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4602 {
4603 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4604 	struct kvm_steal_time __user *st;
4605 	struct kvm_memslots *slots;
4606 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4607 
4608 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4609 		return;
4610 
4611 	if (vcpu->arch.st.preempted)
4612 		return;
4613 
4614 	/* This happens on process exit */
4615 	if (unlikely(current->mm != vcpu->kvm->mm))
4616 		return;
4617 
4618 	slots = kvm_memslots(vcpu->kvm);
4619 
4620 	if (unlikely(slots->generation != ghc->generation ||
4621 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4622 		return;
4623 
4624 	st = (struct kvm_steal_time __user *)ghc->hva;
4625 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4626 
4627 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4628 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4629 
4630 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4631 }
4632 
4633 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4634 {
4635 	int idx;
4636 
4637 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4638 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4639 
4640 	/*
4641 	 * Take the srcu lock as memslots will be accessed to check the gfn
4642 	 * cache generation against the memslots generation.
4643 	 */
4644 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4645 	if (kvm_xen_msr_enabled(vcpu->kvm))
4646 		kvm_xen_runstate_set_preempted(vcpu);
4647 	else
4648 		kvm_steal_time_set_preempted(vcpu);
4649 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4650 
4651 	static_call(kvm_x86_vcpu_put)(vcpu);
4652 	vcpu->arch.last_host_tsc = rdtsc();
4653 }
4654 
4655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4656 				    struct kvm_lapic_state *s)
4657 {
4658 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4659 
4660 	return kvm_apic_get_state(vcpu, s);
4661 }
4662 
4663 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4664 				    struct kvm_lapic_state *s)
4665 {
4666 	int r;
4667 
4668 	r = kvm_apic_set_state(vcpu, s);
4669 	if (r)
4670 		return r;
4671 	update_cr8_intercept(vcpu);
4672 
4673 	return 0;
4674 }
4675 
4676 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4677 {
4678 	/*
4679 	 * We can accept userspace's request for interrupt injection
4680 	 * as long as we have a place to store the interrupt number.
4681 	 * The actual injection will happen when the CPU is able to
4682 	 * deliver the interrupt.
4683 	 */
4684 	if (kvm_cpu_has_extint(vcpu))
4685 		return false;
4686 
4687 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4688 	return (!lapic_in_kernel(vcpu) ||
4689 		kvm_apic_accept_pic_intr(vcpu));
4690 }
4691 
4692 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4693 {
4694 	/*
4695 	 * Do not cause an interrupt window exit if an exception
4696 	 * is pending or an event needs reinjection; userspace
4697 	 * might want to inject the interrupt manually using KVM_SET_REGS
4698 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4699 	 * instruction boundary and with no events half-injected.
4700 	 */
4701 	return (kvm_arch_interrupt_allowed(vcpu) &&
4702 		kvm_cpu_accept_dm_intr(vcpu) &&
4703 		!kvm_event_needs_reinjection(vcpu) &&
4704 		!vcpu->arch.exception.pending);
4705 }
4706 
4707 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4708 				    struct kvm_interrupt *irq)
4709 {
4710 	if (irq->irq >= KVM_NR_INTERRUPTS)
4711 		return -EINVAL;
4712 
4713 	if (!irqchip_in_kernel(vcpu->kvm)) {
4714 		kvm_queue_interrupt(vcpu, irq->irq, false);
4715 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4716 		return 0;
4717 	}
4718 
4719 	/*
4720 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4721 	 * fail for in-kernel 8259.
4722 	 */
4723 	if (pic_in_kernel(vcpu->kvm))
4724 		return -ENXIO;
4725 
4726 	if (vcpu->arch.pending_external_vector != -1)
4727 		return -EEXIST;
4728 
4729 	vcpu->arch.pending_external_vector = irq->irq;
4730 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4731 	return 0;
4732 }
4733 
4734 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4735 {
4736 	kvm_inject_nmi(vcpu);
4737 
4738 	return 0;
4739 }
4740 
4741 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4742 {
4743 	kvm_make_request(KVM_REQ_SMI, vcpu);
4744 
4745 	return 0;
4746 }
4747 
4748 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4749 					   struct kvm_tpr_access_ctl *tac)
4750 {
4751 	if (tac->flags)
4752 		return -EINVAL;
4753 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4754 	return 0;
4755 }
4756 
4757 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4758 					u64 mcg_cap)
4759 {
4760 	int r;
4761 	unsigned bank_num = mcg_cap & 0xff, bank;
4762 
4763 	r = -EINVAL;
4764 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4765 		goto out;
4766 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4767 		goto out;
4768 	r = 0;
4769 	vcpu->arch.mcg_cap = mcg_cap;
4770 	/* Init IA32_MCG_CTL to all 1s */
4771 	if (mcg_cap & MCG_CTL_P)
4772 		vcpu->arch.mcg_ctl = ~(u64)0;
4773 	/* Init IA32_MCi_CTL to all 1s */
4774 	for (bank = 0; bank < bank_num; bank++)
4775 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4776 
4777 	static_call(kvm_x86_setup_mce)(vcpu);
4778 out:
4779 	return r;
4780 }
4781 
4782 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4783 				      struct kvm_x86_mce *mce)
4784 {
4785 	u64 mcg_cap = vcpu->arch.mcg_cap;
4786 	unsigned bank_num = mcg_cap & 0xff;
4787 	u64 *banks = vcpu->arch.mce_banks;
4788 
4789 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4790 		return -EINVAL;
4791 	/*
4792 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4793 	 * reporting is disabled
4794 	 */
4795 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4796 	    vcpu->arch.mcg_ctl != ~(u64)0)
4797 		return 0;
4798 	banks += 4 * mce->bank;
4799 	/*
4800 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4801 	 * reporting is disabled for the bank
4802 	 */
4803 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4804 		return 0;
4805 	if (mce->status & MCI_STATUS_UC) {
4806 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4807 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4808 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4809 			return 0;
4810 		}
4811 		if (banks[1] & MCI_STATUS_VAL)
4812 			mce->status |= MCI_STATUS_OVER;
4813 		banks[2] = mce->addr;
4814 		banks[3] = mce->misc;
4815 		vcpu->arch.mcg_status = mce->mcg_status;
4816 		banks[1] = mce->status;
4817 		kvm_queue_exception(vcpu, MC_VECTOR);
4818 	} else if (!(banks[1] & MCI_STATUS_VAL)
4819 		   || !(banks[1] & MCI_STATUS_UC)) {
4820 		if (banks[1] & MCI_STATUS_VAL)
4821 			mce->status |= MCI_STATUS_OVER;
4822 		banks[2] = mce->addr;
4823 		banks[3] = mce->misc;
4824 		banks[1] = mce->status;
4825 	} else
4826 		banks[1] |= MCI_STATUS_OVER;
4827 	return 0;
4828 }
4829 
4830 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4831 					       struct kvm_vcpu_events *events)
4832 {
4833 	process_nmi(vcpu);
4834 
4835 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4836 		process_smi(vcpu);
4837 
4838 	/*
4839 	 * In guest mode, payload delivery should be deferred,
4840 	 * so that the L1 hypervisor can intercept #PF before
4841 	 * CR2 is modified (or intercept #DB before DR6 is
4842 	 * modified under nVMX). Unless the per-VM capability,
4843 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4844 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4845 	 * opportunistically defer the exception payload, deliver it if the
4846 	 * capability hasn't been requested before processing a
4847 	 * KVM_GET_VCPU_EVENTS.
4848 	 */
4849 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4850 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4851 		kvm_deliver_exception_payload(vcpu);
4852 
4853 	/*
4854 	 * The API doesn't provide the instruction length for software
4855 	 * exceptions, so don't report them. As long as the guest RIP
4856 	 * isn't advanced, we should expect to encounter the exception
4857 	 * again.
4858 	 */
4859 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4860 		events->exception.injected = 0;
4861 		events->exception.pending = 0;
4862 	} else {
4863 		events->exception.injected = vcpu->arch.exception.injected;
4864 		events->exception.pending = vcpu->arch.exception.pending;
4865 		/*
4866 		 * For ABI compatibility, deliberately conflate
4867 		 * pending and injected exceptions when
4868 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4869 		 */
4870 		if (!vcpu->kvm->arch.exception_payload_enabled)
4871 			events->exception.injected |=
4872 				vcpu->arch.exception.pending;
4873 	}
4874 	events->exception.nr = vcpu->arch.exception.nr;
4875 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4876 	events->exception.error_code = vcpu->arch.exception.error_code;
4877 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4878 	events->exception_payload = vcpu->arch.exception.payload;
4879 
4880 	events->interrupt.injected =
4881 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4882 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4883 	events->interrupt.soft = 0;
4884 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4885 
4886 	events->nmi.injected = vcpu->arch.nmi_injected;
4887 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4888 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4889 	events->nmi.pad = 0;
4890 
4891 	events->sipi_vector = 0; /* never valid when reporting to user space */
4892 
4893 	events->smi.smm = is_smm(vcpu);
4894 	events->smi.pending = vcpu->arch.smi_pending;
4895 	events->smi.smm_inside_nmi =
4896 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4897 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4898 
4899 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4900 			 | KVM_VCPUEVENT_VALID_SHADOW
4901 			 | KVM_VCPUEVENT_VALID_SMM);
4902 	if (vcpu->kvm->arch.exception_payload_enabled)
4903 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4904 
4905 	memset(&events->reserved, 0, sizeof(events->reserved));
4906 }
4907 
4908 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4909 
4910 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4911 					      struct kvm_vcpu_events *events)
4912 {
4913 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4914 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4915 			      | KVM_VCPUEVENT_VALID_SHADOW
4916 			      | KVM_VCPUEVENT_VALID_SMM
4917 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4918 		return -EINVAL;
4919 
4920 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4921 		if (!vcpu->kvm->arch.exception_payload_enabled)
4922 			return -EINVAL;
4923 		if (events->exception.pending)
4924 			events->exception.injected = 0;
4925 		else
4926 			events->exception_has_payload = 0;
4927 	} else {
4928 		events->exception.pending = 0;
4929 		events->exception_has_payload = 0;
4930 	}
4931 
4932 	if ((events->exception.injected || events->exception.pending) &&
4933 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4934 		return -EINVAL;
4935 
4936 	/* INITs are latched while in SMM */
4937 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4938 	    (events->smi.smm || events->smi.pending) &&
4939 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4940 		return -EINVAL;
4941 
4942 	process_nmi(vcpu);
4943 	vcpu->arch.exception.injected = events->exception.injected;
4944 	vcpu->arch.exception.pending = events->exception.pending;
4945 	vcpu->arch.exception.nr = events->exception.nr;
4946 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4947 	vcpu->arch.exception.error_code = events->exception.error_code;
4948 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4949 	vcpu->arch.exception.payload = events->exception_payload;
4950 
4951 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4952 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4953 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4954 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4955 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4956 						events->interrupt.shadow);
4957 
4958 	vcpu->arch.nmi_injected = events->nmi.injected;
4959 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4960 		vcpu->arch.nmi_pending = events->nmi.pending;
4961 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4962 
4963 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4964 	    lapic_in_kernel(vcpu))
4965 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4966 
4967 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4968 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4969 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4970 			kvm_smm_changed(vcpu, events->smi.smm);
4971 		}
4972 
4973 		vcpu->arch.smi_pending = events->smi.pending;
4974 
4975 		if (events->smi.smm) {
4976 			if (events->smi.smm_inside_nmi)
4977 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4978 			else
4979 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4980 		}
4981 
4982 		if (lapic_in_kernel(vcpu)) {
4983 			if (events->smi.latched_init)
4984 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4985 			else
4986 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4987 		}
4988 	}
4989 
4990 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4991 
4992 	return 0;
4993 }
4994 
4995 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4996 					     struct kvm_debugregs *dbgregs)
4997 {
4998 	unsigned long val;
4999 
5000 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5001 	kvm_get_dr(vcpu, 6, &val);
5002 	dbgregs->dr6 = val;
5003 	dbgregs->dr7 = vcpu->arch.dr7;
5004 	dbgregs->flags = 0;
5005 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5006 }
5007 
5008 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5009 					    struct kvm_debugregs *dbgregs)
5010 {
5011 	if (dbgregs->flags)
5012 		return -EINVAL;
5013 
5014 	if (!kvm_dr6_valid(dbgregs->dr6))
5015 		return -EINVAL;
5016 	if (!kvm_dr7_valid(dbgregs->dr7))
5017 		return -EINVAL;
5018 
5019 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5020 	kvm_update_dr0123(vcpu);
5021 	vcpu->arch.dr6 = dbgregs->dr6;
5022 	vcpu->arch.dr7 = dbgregs->dr7;
5023 	kvm_update_dr7(vcpu);
5024 
5025 	return 0;
5026 }
5027 
5028 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5029 					 struct kvm_xsave *guest_xsave)
5030 {
5031 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5032 		return;
5033 
5034 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5035 				       guest_xsave->region,
5036 				       sizeof(guest_xsave->region),
5037 				       vcpu->arch.pkru);
5038 }
5039 
5040 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5041 					  u8 *state, unsigned int size)
5042 {
5043 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5044 		return;
5045 
5046 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5047 				       state, size, vcpu->arch.pkru);
5048 }
5049 
5050 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5051 					struct kvm_xsave *guest_xsave)
5052 {
5053 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5054 		return 0;
5055 
5056 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5057 					      guest_xsave->region,
5058 					      supported_xcr0, &vcpu->arch.pkru);
5059 }
5060 
5061 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5062 					struct kvm_xcrs *guest_xcrs)
5063 {
5064 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5065 		guest_xcrs->nr_xcrs = 0;
5066 		return;
5067 	}
5068 
5069 	guest_xcrs->nr_xcrs = 1;
5070 	guest_xcrs->flags = 0;
5071 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5072 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5073 }
5074 
5075 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5076 				       struct kvm_xcrs *guest_xcrs)
5077 {
5078 	int i, r = 0;
5079 
5080 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5081 		return -EINVAL;
5082 
5083 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5084 		return -EINVAL;
5085 
5086 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5087 		/* Only support XCR0 currently */
5088 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5089 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5090 				guest_xcrs->xcrs[i].value);
5091 			break;
5092 		}
5093 	if (r)
5094 		r = -EINVAL;
5095 	return r;
5096 }
5097 
5098 /*
5099  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5100  * stopped by the hypervisor.  This function will be called from the host only.
5101  * EINVAL is returned when the host attempts to set the flag for a guest that
5102  * does not support pv clocks.
5103  */
5104 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5105 {
5106 	if (!vcpu->arch.pv_time_enabled)
5107 		return -EINVAL;
5108 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5109 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5110 	return 0;
5111 }
5112 
5113 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5114 				 struct kvm_device_attr *attr)
5115 {
5116 	int r;
5117 
5118 	switch (attr->attr) {
5119 	case KVM_VCPU_TSC_OFFSET:
5120 		r = 0;
5121 		break;
5122 	default:
5123 		r = -ENXIO;
5124 	}
5125 
5126 	return r;
5127 }
5128 
5129 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5130 				 struct kvm_device_attr *attr)
5131 {
5132 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5133 	int r;
5134 
5135 	if (IS_ERR(uaddr))
5136 		return PTR_ERR(uaddr);
5137 
5138 	switch (attr->attr) {
5139 	case KVM_VCPU_TSC_OFFSET:
5140 		r = -EFAULT;
5141 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5142 			break;
5143 		r = 0;
5144 		break;
5145 	default:
5146 		r = -ENXIO;
5147 	}
5148 
5149 	return r;
5150 }
5151 
5152 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5153 				 struct kvm_device_attr *attr)
5154 {
5155 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5156 	struct kvm *kvm = vcpu->kvm;
5157 	int r;
5158 
5159 	if (IS_ERR(uaddr))
5160 		return PTR_ERR(uaddr);
5161 
5162 	switch (attr->attr) {
5163 	case KVM_VCPU_TSC_OFFSET: {
5164 		u64 offset, tsc, ns;
5165 		unsigned long flags;
5166 		bool matched;
5167 
5168 		r = -EFAULT;
5169 		if (get_user(offset, uaddr))
5170 			break;
5171 
5172 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5173 
5174 		matched = (vcpu->arch.virtual_tsc_khz &&
5175 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5176 			   kvm->arch.last_tsc_offset == offset);
5177 
5178 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5179 		ns = get_kvmclock_base_ns();
5180 
5181 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5182 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5183 
5184 		r = 0;
5185 		break;
5186 	}
5187 	default:
5188 		r = -ENXIO;
5189 	}
5190 
5191 	return r;
5192 }
5193 
5194 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5195 				      unsigned int ioctl,
5196 				      void __user *argp)
5197 {
5198 	struct kvm_device_attr attr;
5199 	int r;
5200 
5201 	if (copy_from_user(&attr, argp, sizeof(attr)))
5202 		return -EFAULT;
5203 
5204 	if (attr.group != KVM_VCPU_TSC_CTRL)
5205 		return -ENXIO;
5206 
5207 	switch (ioctl) {
5208 	case KVM_HAS_DEVICE_ATTR:
5209 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5210 		break;
5211 	case KVM_GET_DEVICE_ATTR:
5212 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5213 		break;
5214 	case KVM_SET_DEVICE_ATTR:
5215 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5216 		break;
5217 	}
5218 
5219 	return r;
5220 }
5221 
5222 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5223 				     struct kvm_enable_cap *cap)
5224 {
5225 	int r;
5226 	uint16_t vmcs_version;
5227 	void __user *user_ptr;
5228 
5229 	if (cap->flags)
5230 		return -EINVAL;
5231 
5232 	switch (cap->cap) {
5233 	case KVM_CAP_HYPERV_SYNIC2:
5234 		if (cap->args[0])
5235 			return -EINVAL;
5236 		fallthrough;
5237 
5238 	case KVM_CAP_HYPERV_SYNIC:
5239 		if (!irqchip_in_kernel(vcpu->kvm))
5240 			return -EINVAL;
5241 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5242 					     KVM_CAP_HYPERV_SYNIC2);
5243 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5244 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5245 			return -ENOTTY;
5246 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5247 		if (!r) {
5248 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5249 			if (copy_to_user(user_ptr, &vmcs_version,
5250 					 sizeof(vmcs_version)))
5251 				r = -EFAULT;
5252 		}
5253 		return r;
5254 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5255 		if (!kvm_x86_ops.enable_direct_tlbflush)
5256 			return -ENOTTY;
5257 
5258 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5259 
5260 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5261 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5262 
5263 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5264 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5265 		if (vcpu->arch.pv_cpuid.enforce)
5266 			kvm_update_pv_runtime(vcpu);
5267 
5268 		return 0;
5269 	default:
5270 		return -EINVAL;
5271 	}
5272 }
5273 
5274 long kvm_arch_vcpu_ioctl(struct file *filp,
5275 			 unsigned int ioctl, unsigned long arg)
5276 {
5277 	struct kvm_vcpu *vcpu = filp->private_data;
5278 	void __user *argp = (void __user *)arg;
5279 	int r;
5280 	union {
5281 		struct kvm_sregs2 *sregs2;
5282 		struct kvm_lapic_state *lapic;
5283 		struct kvm_xsave *xsave;
5284 		struct kvm_xcrs *xcrs;
5285 		void *buffer;
5286 	} u;
5287 
5288 	vcpu_load(vcpu);
5289 
5290 	u.buffer = NULL;
5291 	switch (ioctl) {
5292 	case KVM_GET_LAPIC: {
5293 		r = -EINVAL;
5294 		if (!lapic_in_kernel(vcpu))
5295 			goto out;
5296 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5297 				GFP_KERNEL_ACCOUNT);
5298 
5299 		r = -ENOMEM;
5300 		if (!u.lapic)
5301 			goto out;
5302 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5303 		if (r)
5304 			goto out;
5305 		r = -EFAULT;
5306 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5307 			goto out;
5308 		r = 0;
5309 		break;
5310 	}
5311 	case KVM_SET_LAPIC: {
5312 		r = -EINVAL;
5313 		if (!lapic_in_kernel(vcpu))
5314 			goto out;
5315 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5316 		if (IS_ERR(u.lapic)) {
5317 			r = PTR_ERR(u.lapic);
5318 			goto out_nofree;
5319 		}
5320 
5321 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5322 		break;
5323 	}
5324 	case KVM_INTERRUPT: {
5325 		struct kvm_interrupt irq;
5326 
5327 		r = -EFAULT;
5328 		if (copy_from_user(&irq, argp, sizeof(irq)))
5329 			goto out;
5330 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5331 		break;
5332 	}
5333 	case KVM_NMI: {
5334 		r = kvm_vcpu_ioctl_nmi(vcpu);
5335 		break;
5336 	}
5337 	case KVM_SMI: {
5338 		r = kvm_vcpu_ioctl_smi(vcpu);
5339 		break;
5340 	}
5341 	case KVM_SET_CPUID: {
5342 		struct kvm_cpuid __user *cpuid_arg = argp;
5343 		struct kvm_cpuid cpuid;
5344 
5345 		r = -EFAULT;
5346 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5347 			goto out;
5348 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5349 		break;
5350 	}
5351 	case KVM_SET_CPUID2: {
5352 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5353 		struct kvm_cpuid2 cpuid;
5354 
5355 		r = -EFAULT;
5356 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5357 			goto out;
5358 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5359 					      cpuid_arg->entries);
5360 		break;
5361 	}
5362 	case KVM_GET_CPUID2: {
5363 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5364 		struct kvm_cpuid2 cpuid;
5365 
5366 		r = -EFAULT;
5367 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5368 			goto out;
5369 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5370 					      cpuid_arg->entries);
5371 		if (r)
5372 			goto out;
5373 		r = -EFAULT;
5374 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5375 			goto out;
5376 		r = 0;
5377 		break;
5378 	}
5379 	case KVM_GET_MSRS: {
5380 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5381 		r = msr_io(vcpu, argp, do_get_msr, 1);
5382 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5383 		break;
5384 	}
5385 	case KVM_SET_MSRS: {
5386 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5387 		r = msr_io(vcpu, argp, do_set_msr, 0);
5388 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5389 		break;
5390 	}
5391 	case KVM_TPR_ACCESS_REPORTING: {
5392 		struct kvm_tpr_access_ctl tac;
5393 
5394 		r = -EFAULT;
5395 		if (copy_from_user(&tac, argp, sizeof(tac)))
5396 			goto out;
5397 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5398 		if (r)
5399 			goto out;
5400 		r = -EFAULT;
5401 		if (copy_to_user(argp, &tac, sizeof(tac)))
5402 			goto out;
5403 		r = 0;
5404 		break;
5405 	};
5406 	case KVM_SET_VAPIC_ADDR: {
5407 		struct kvm_vapic_addr va;
5408 		int idx;
5409 
5410 		r = -EINVAL;
5411 		if (!lapic_in_kernel(vcpu))
5412 			goto out;
5413 		r = -EFAULT;
5414 		if (copy_from_user(&va, argp, sizeof(va)))
5415 			goto out;
5416 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5417 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5418 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5419 		break;
5420 	}
5421 	case KVM_X86_SETUP_MCE: {
5422 		u64 mcg_cap;
5423 
5424 		r = -EFAULT;
5425 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5426 			goto out;
5427 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5428 		break;
5429 	}
5430 	case KVM_X86_SET_MCE: {
5431 		struct kvm_x86_mce mce;
5432 
5433 		r = -EFAULT;
5434 		if (copy_from_user(&mce, argp, sizeof(mce)))
5435 			goto out;
5436 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5437 		break;
5438 	}
5439 	case KVM_GET_VCPU_EVENTS: {
5440 		struct kvm_vcpu_events events;
5441 
5442 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5443 
5444 		r = -EFAULT;
5445 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5446 			break;
5447 		r = 0;
5448 		break;
5449 	}
5450 	case KVM_SET_VCPU_EVENTS: {
5451 		struct kvm_vcpu_events events;
5452 
5453 		r = -EFAULT;
5454 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5455 			break;
5456 
5457 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5458 		break;
5459 	}
5460 	case KVM_GET_DEBUGREGS: {
5461 		struct kvm_debugregs dbgregs;
5462 
5463 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5464 
5465 		r = -EFAULT;
5466 		if (copy_to_user(argp, &dbgregs,
5467 				 sizeof(struct kvm_debugregs)))
5468 			break;
5469 		r = 0;
5470 		break;
5471 	}
5472 	case KVM_SET_DEBUGREGS: {
5473 		struct kvm_debugregs dbgregs;
5474 
5475 		r = -EFAULT;
5476 		if (copy_from_user(&dbgregs, argp,
5477 				   sizeof(struct kvm_debugregs)))
5478 			break;
5479 
5480 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5481 		break;
5482 	}
5483 	case KVM_GET_XSAVE: {
5484 		r = -EINVAL;
5485 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5486 			break;
5487 
5488 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5489 		r = -ENOMEM;
5490 		if (!u.xsave)
5491 			break;
5492 
5493 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5494 
5495 		r = -EFAULT;
5496 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5497 			break;
5498 		r = 0;
5499 		break;
5500 	}
5501 	case KVM_SET_XSAVE: {
5502 		int size = vcpu->arch.guest_fpu.uabi_size;
5503 
5504 		u.xsave = memdup_user(argp, size);
5505 		if (IS_ERR(u.xsave)) {
5506 			r = PTR_ERR(u.xsave);
5507 			goto out_nofree;
5508 		}
5509 
5510 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5511 		break;
5512 	}
5513 
5514 	case KVM_GET_XSAVE2: {
5515 		int size = vcpu->arch.guest_fpu.uabi_size;
5516 
5517 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5518 		r = -ENOMEM;
5519 		if (!u.xsave)
5520 			break;
5521 
5522 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5523 
5524 		r = -EFAULT;
5525 		if (copy_to_user(argp, u.xsave, size))
5526 			break;
5527 
5528 		r = 0;
5529 		break;
5530 	}
5531 
5532 	case KVM_GET_XCRS: {
5533 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5534 		r = -ENOMEM;
5535 		if (!u.xcrs)
5536 			break;
5537 
5538 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5539 
5540 		r = -EFAULT;
5541 		if (copy_to_user(argp, u.xcrs,
5542 				 sizeof(struct kvm_xcrs)))
5543 			break;
5544 		r = 0;
5545 		break;
5546 	}
5547 	case KVM_SET_XCRS: {
5548 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5549 		if (IS_ERR(u.xcrs)) {
5550 			r = PTR_ERR(u.xcrs);
5551 			goto out_nofree;
5552 		}
5553 
5554 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5555 		break;
5556 	}
5557 	case KVM_SET_TSC_KHZ: {
5558 		u32 user_tsc_khz;
5559 
5560 		r = -EINVAL;
5561 		user_tsc_khz = (u32)arg;
5562 
5563 		if (kvm_has_tsc_control &&
5564 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5565 			goto out;
5566 
5567 		if (user_tsc_khz == 0)
5568 			user_tsc_khz = tsc_khz;
5569 
5570 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5571 			r = 0;
5572 
5573 		goto out;
5574 	}
5575 	case KVM_GET_TSC_KHZ: {
5576 		r = vcpu->arch.virtual_tsc_khz;
5577 		goto out;
5578 	}
5579 	case KVM_KVMCLOCK_CTRL: {
5580 		r = kvm_set_guest_paused(vcpu);
5581 		goto out;
5582 	}
5583 	case KVM_ENABLE_CAP: {
5584 		struct kvm_enable_cap cap;
5585 
5586 		r = -EFAULT;
5587 		if (copy_from_user(&cap, argp, sizeof(cap)))
5588 			goto out;
5589 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5590 		break;
5591 	}
5592 	case KVM_GET_NESTED_STATE: {
5593 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5594 		u32 user_data_size;
5595 
5596 		r = -EINVAL;
5597 		if (!kvm_x86_ops.nested_ops->get_state)
5598 			break;
5599 
5600 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5601 		r = -EFAULT;
5602 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5603 			break;
5604 
5605 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5606 						     user_data_size);
5607 		if (r < 0)
5608 			break;
5609 
5610 		if (r > user_data_size) {
5611 			if (put_user(r, &user_kvm_nested_state->size))
5612 				r = -EFAULT;
5613 			else
5614 				r = -E2BIG;
5615 			break;
5616 		}
5617 
5618 		r = 0;
5619 		break;
5620 	}
5621 	case KVM_SET_NESTED_STATE: {
5622 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5623 		struct kvm_nested_state kvm_state;
5624 		int idx;
5625 
5626 		r = -EINVAL;
5627 		if (!kvm_x86_ops.nested_ops->set_state)
5628 			break;
5629 
5630 		r = -EFAULT;
5631 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5632 			break;
5633 
5634 		r = -EINVAL;
5635 		if (kvm_state.size < sizeof(kvm_state))
5636 			break;
5637 
5638 		if (kvm_state.flags &
5639 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5640 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5641 		      | KVM_STATE_NESTED_GIF_SET))
5642 			break;
5643 
5644 		/* nested_run_pending implies guest_mode.  */
5645 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5646 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5647 			break;
5648 
5649 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5650 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5651 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5652 		break;
5653 	}
5654 	case KVM_GET_SUPPORTED_HV_CPUID:
5655 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5656 		break;
5657 #ifdef CONFIG_KVM_XEN
5658 	case KVM_XEN_VCPU_GET_ATTR: {
5659 		struct kvm_xen_vcpu_attr xva;
5660 
5661 		r = -EFAULT;
5662 		if (copy_from_user(&xva, argp, sizeof(xva)))
5663 			goto out;
5664 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5665 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5666 			r = -EFAULT;
5667 		break;
5668 	}
5669 	case KVM_XEN_VCPU_SET_ATTR: {
5670 		struct kvm_xen_vcpu_attr xva;
5671 
5672 		r = -EFAULT;
5673 		if (copy_from_user(&xva, argp, sizeof(xva)))
5674 			goto out;
5675 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5676 		break;
5677 	}
5678 #endif
5679 	case KVM_GET_SREGS2: {
5680 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5681 		r = -ENOMEM;
5682 		if (!u.sregs2)
5683 			goto out;
5684 		__get_sregs2(vcpu, u.sregs2);
5685 		r = -EFAULT;
5686 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5687 			goto out;
5688 		r = 0;
5689 		break;
5690 	}
5691 	case KVM_SET_SREGS2: {
5692 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5693 		if (IS_ERR(u.sregs2)) {
5694 			r = PTR_ERR(u.sregs2);
5695 			u.sregs2 = NULL;
5696 			goto out;
5697 		}
5698 		r = __set_sregs2(vcpu, u.sregs2);
5699 		break;
5700 	}
5701 	case KVM_HAS_DEVICE_ATTR:
5702 	case KVM_GET_DEVICE_ATTR:
5703 	case KVM_SET_DEVICE_ATTR:
5704 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5705 		break;
5706 	default:
5707 		r = -EINVAL;
5708 	}
5709 out:
5710 	kfree(u.buffer);
5711 out_nofree:
5712 	vcpu_put(vcpu);
5713 	return r;
5714 }
5715 
5716 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5717 {
5718 	return VM_FAULT_SIGBUS;
5719 }
5720 
5721 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5722 {
5723 	int ret;
5724 
5725 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5726 		return -EINVAL;
5727 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5728 	return ret;
5729 }
5730 
5731 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5732 					      u64 ident_addr)
5733 {
5734 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5735 }
5736 
5737 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5738 					 unsigned long kvm_nr_mmu_pages)
5739 {
5740 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5741 		return -EINVAL;
5742 
5743 	mutex_lock(&kvm->slots_lock);
5744 
5745 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5746 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5747 
5748 	mutex_unlock(&kvm->slots_lock);
5749 	return 0;
5750 }
5751 
5752 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5753 {
5754 	return kvm->arch.n_max_mmu_pages;
5755 }
5756 
5757 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5758 {
5759 	struct kvm_pic *pic = kvm->arch.vpic;
5760 	int r;
5761 
5762 	r = 0;
5763 	switch (chip->chip_id) {
5764 	case KVM_IRQCHIP_PIC_MASTER:
5765 		memcpy(&chip->chip.pic, &pic->pics[0],
5766 			sizeof(struct kvm_pic_state));
5767 		break;
5768 	case KVM_IRQCHIP_PIC_SLAVE:
5769 		memcpy(&chip->chip.pic, &pic->pics[1],
5770 			sizeof(struct kvm_pic_state));
5771 		break;
5772 	case KVM_IRQCHIP_IOAPIC:
5773 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5774 		break;
5775 	default:
5776 		r = -EINVAL;
5777 		break;
5778 	}
5779 	return r;
5780 }
5781 
5782 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5783 {
5784 	struct kvm_pic *pic = kvm->arch.vpic;
5785 	int r;
5786 
5787 	r = 0;
5788 	switch (chip->chip_id) {
5789 	case KVM_IRQCHIP_PIC_MASTER:
5790 		spin_lock(&pic->lock);
5791 		memcpy(&pic->pics[0], &chip->chip.pic,
5792 			sizeof(struct kvm_pic_state));
5793 		spin_unlock(&pic->lock);
5794 		break;
5795 	case KVM_IRQCHIP_PIC_SLAVE:
5796 		spin_lock(&pic->lock);
5797 		memcpy(&pic->pics[1], &chip->chip.pic,
5798 			sizeof(struct kvm_pic_state));
5799 		spin_unlock(&pic->lock);
5800 		break;
5801 	case KVM_IRQCHIP_IOAPIC:
5802 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5803 		break;
5804 	default:
5805 		r = -EINVAL;
5806 		break;
5807 	}
5808 	kvm_pic_update_irq(pic);
5809 	return r;
5810 }
5811 
5812 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5813 {
5814 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5815 
5816 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5817 
5818 	mutex_lock(&kps->lock);
5819 	memcpy(ps, &kps->channels, sizeof(*ps));
5820 	mutex_unlock(&kps->lock);
5821 	return 0;
5822 }
5823 
5824 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5825 {
5826 	int i;
5827 	struct kvm_pit *pit = kvm->arch.vpit;
5828 
5829 	mutex_lock(&pit->pit_state.lock);
5830 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5831 	for (i = 0; i < 3; i++)
5832 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5833 	mutex_unlock(&pit->pit_state.lock);
5834 	return 0;
5835 }
5836 
5837 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5838 {
5839 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5840 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5841 		sizeof(ps->channels));
5842 	ps->flags = kvm->arch.vpit->pit_state.flags;
5843 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5844 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5845 	return 0;
5846 }
5847 
5848 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5849 {
5850 	int start = 0;
5851 	int i;
5852 	u32 prev_legacy, cur_legacy;
5853 	struct kvm_pit *pit = kvm->arch.vpit;
5854 
5855 	mutex_lock(&pit->pit_state.lock);
5856 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5857 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5858 	if (!prev_legacy && cur_legacy)
5859 		start = 1;
5860 	memcpy(&pit->pit_state.channels, &ps->channels,
5861 	       sizeof(pit->pit_state.channels));
5862 	pit->pit_state.flags = ps->flags;
5863 	for (i = 0; i < 3; i++)
5864 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5865 				   start && i == 0);
5866 	mutex_unlock(&pit->pit_state.lock);
5867 	return 0;
5868 }
5869 
5870 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5871 				 struct kvm_reinject_control *control)
5872 {
5873 	struct kvm_pit *pit = kvm->arch.vpit;
5874 
5875 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5876 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5877 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5878 	 */
5879 	mutex_lock(&pit->pit_state.lock);
5880 	kvm_pit_set_reinject(pit, control->pit_reinject);
5881 	mutex_unlock(&pit->pit_state.lock);
5882 
5883 	return 0;
5884 }
5885 
5886 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5887 {
5888 
5889 	/*
5890 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5891 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5892 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5893 	 * VM-Exit.
5894 	 */
5895 	struct kvm_vcpu *vcpu;
5896 	unsigned long i;
5897 
5898 	kvm_for_each_vcpu(i, vcpu, kvm)
5899 		kvm_vcpu_kick(vcpu);
5900 }
5901 
5902 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5903 			bool line_status)
5904 {
5905 	if (!irqchip_in_kernel(kvm))
5906 		return -ENXIO;
5907 
5908 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5909 					irq_event->irq, irq_event->level,
5910 					line_status);
5911 	return 0;
5912 }
5913 
5914 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5915 			    struct kvm_enable_cap *cap)
5916 {
5917 	int r;
5918 
5919 	if (cap->flags)
5920 		return -EINVAL;
5921 
5922 	switch (cap->cap) {
5923 	case KVM_CAP_DISABLE_QUIRKS2:
5924 		r = -EINVAL;
5925 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5926 			break;
5927 		fallthrough;
5928 	case KVM_CAP_DISABLE_QUIRKS:
5929 		kvm->arch.disabled_quirks = cap->args[0];
5930 		r = 0;
5931 		break;
5932 	case KVM_CAP_SPLIT_IRQCHIP: {
5933 		mutex_lock(&kvm->lock);
5934 		r = -EINVAL;
5935 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5936 			goto split_irqchip_unlock;
5937 		r = -EEXIST;
5938 		if (irqchip_in_kernel(kvm))
5939 			goto split_irqchip_unlock;
5940 		if (kvm->created_vcpus)
5941 			goto split_irqchip_unlock;
5942 		r = kvm_setup_empty_irq_routing(kvm);
5943 		if (r)
5944 			goto split_irqchip_unlock;
5945 		/* Pairs with irqchip_in_kernel. */
5946 		smp_wmb();
5947 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5948 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5949 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5950 		r = 0;
5951 split_irqchip_unlock:
5952 		mutex_unlock(&kvm->lock);
5953 		break;
5954 	}
5955 	case KVM_CAP_X2APIC_API:
5956 		r = -EINVAL;
5957 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5958 			break;
5959 
5960 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5961 			kvm->arch.x2apic_format = true;
5962 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5963 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5964 
5965 		r = 0;
5966 		break;
5967 	case KVM_CAP_X86_DISABLE_EXITS:
5968 		r = -EINVAL;
5969 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5970 			break;
5971 
5972 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5973 			kvm_can_mwait_in_guest())
5974 			kvm->arch.mwait_in_guest = true;
5975 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5976 			kvm->arch.hlt_in_guest = true;
5977 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5978 			kvm->arch.pause_in_guest = true;
5979 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5980 			kvm->arch.cstate_in_guest = true;
5981 		r = 0;
5982 		break;
5983 	case KVM_CAP_MSR_PLATFORM_INFO:
5984 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5985 		r = 0;
5986 		break;
5987 	case KVM_CAP_EXCEPTION_PAYLOAD:
5988 		kvm->arch.exception_payload_enabled = cap->args[0];
5989 		r = 0;
5990 		break;
5991 	case KVM_CAP_X86_USER_SPACE_MSR:
5992 		kvm->arch.user_space_msr_mask = cap->args[0];
5993 		r = 0;
5994 		break;
5995 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5996 		r = -EINVAL;
5997 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5998 			break;
5999 
6000 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6001 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6002 			break;
6003 
6004 		if (kvm_has_bus_lock_exit &&
6005 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6006 			kvm->arch.bus_lock_detection_enabled = true;
6007 		r = 0;
6008 		break;
6009 #ifdef CONFIG_X86_SGX_KVM
6010 	case KVM_CAP_SGX_ATTRIBUTE: {
6011 		unsigned long allowed_attributes = 0;
6012 
6013 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6014 		if (r)
6015 			break;
6016 
6017 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6018 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6019 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6020 			kvm->arch.sgx_provisioning_allowed = true;
6021 		else
6022 			r = -EINVAL;
6023 		break;
6024 	}
6025 #endif
6026 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6027 		r = -EINVAL;
6028 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6029 			break;
6030 
6031 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6032 		break;
6033 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6034 		r = -EINVAL;
6035 		if (!kvm_x86_ops.vm_move_enc_context_from)
6036 			break;
6037 
6038 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6039 		break;
6040 	case KVM_CAP_EXIT_HYPERCALL:
6041 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6042 			r = -EINVAL;
6043 			break;
6044 		}
6045 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6046 		r = 0;
6047 		break;
6048 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6049 		r = -EINVAL;
6050 		if (cap->args[0] & ~1)
6051 			break;
6052 		kvm->arch.exit_on_emulation_error = cap->args[0];
6053 		r = 0;
6054 		break;
6055 	case KVM_CAP_PMU_CAPABILITY:
6056 		r = -EINVAL;
6057 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6058 			break;
6059 
6060 		mutex_lock(&kvm->lock);
6061 		if (!kvm->created_vcpus) {
6062 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6063 			r = 0;
6064 		}
6065 		mutex_unlock(&kvm->lock);
6066 		break;
6067 	default:
6068 		r = -EINVAL;
6069 		break;
6070 	}
6071 	return r;
6072 }
6073 
6074 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6075 {
6076 	struct kvm_x86_msr_filter *msr_filter;
6077 
6078 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6079 	if (!msr_filter)
6080 		return NULL;
6081 
6082 	msr_filter->default_allow = default_allow;
6083 	return msr_filter;
6084 }
6085 
6086 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6087 {
6088 	u32 i;
6089 
6090 	if (!msr_filter)
6091 		return;
6092 
6093 	for (i = 0; i < msr_filter->count; i++)
6094 		kfree(msr_filter->ranges[i].bitmap);
6095 
6096 	kfree(msr_filter);
6097 }
6098 
6099 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6100 			      struct kvm_msr_filter_range *user_range)
6101 {
6102 	unsigned long *bitmap = NULL;
6103 	size_t bitmap_size;
6104 
6105 	if (!user_range->nmsrs)
6106 		return 0;
6107 
6108 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6109 		return -EINVAL;
6110 
6111 	if (!user_range->flags)
6112 		return -EINVAL;
6113 
6114 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6115 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6116 		return -EINVAL;
6117 
6118 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6119 	if (IS_ERR(bitmap))
6120 		return PTR_ERR(bitmap);
6121 
6122 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6123 		.flags = user_range->flags,
6124 		.base = user_range->base,
6125 		.nmsrs = user_range->nmsrs,
6126 		.bitmap = bitmap,
6127 	};
6128 
6129 	msr_filter->count++;
6130 	return 0;
6131 }
6132 
6133 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6134 {
6135 	struct kvm_msr_filter __user *user_msr_filter = argp;
6136 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6137 	struct kvm_msr_filter filter;
6138 	bool default_allow;
6139 	bool empty = true;
6140 	int r = 0;
6141 	u32 i;
6142 
6143 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6144 		return -EFAULT;
6145 
6146 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6147 		empty &= !filter.ranges[i].nmsrs;
6148 
6149 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6150 	if (empty && !default_allow)
6151 		return -EINVAL;
6152 
6153 	new_filter = kvm_alloc_msr_filter(default_allow);
6154 	if (!new_filter)
6155 		return -ENOMEM;
6156 
6157 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6158 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6159 		if (r) {
6160 			kvm_free_msr_filter(new_filter);
6161 			return r;
6162 		}
6163 	}
6164 
6165 	mutex_lock(&kvm->lock);
6166 
6167 	/* The per-VM filter is protected by kvm->lock... */
6168 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6169 
6170 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6171 	synchronize_srcu(&kvm->srcu);
6172 
6173 	kvm_free_msr_filter(old_filter);
6174 
6175 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6176 	mutex_unlock(&kvm->lock);
6177 
6178 	return 0;
6179 }
6180 
6181 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6182 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6183 {
6184 	struct kvm_vcpu *vcpu;
6185 	unsigned long i;
6186 	int ret = 0;
6187 
6188 	mutex_lock(&kvm->lock);
6189 	kvm_for_each_vcpu(i, vcpu, kvm) {
6190 		if (!vcpu->arch.pv_time_enabled)
6191 			continue;
6192 
6193 		ret = kvm_set_guest_paused(vcpu);
6194 		if (ret) {
6195 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6196 				vcpu->vcpu_id, ret);
6197 			break;
6198 		}
6199 	}
6200 	mutex_unlock(&kvm->lock);
6201 
6202 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6203 }
6204 
6205 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6206 {
6207 	switch (state) {
6208 	case PM_HIBERNATION_PREPARE:
6209 	case PM_SUSPEND_PREPARE:
6210 		return kvm_arch_suspend_notifier(kvm);
6211 	}
6212 
6213 	return NOTIFY_DONE;
6214 }
6215 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6216 
6217 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6218 {
6219 	struct kvm_clock_data data = { 0 };
6220 
6221 	get_kvmclock(kvm, &data);
6222 	if (copy_to_user(argp, &data, sizeof(data)))
6223 		return -EFAULT;
6224 
6225 	return 0;
6226 }
6227 
6228 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6229 {
6230 	struct kvm_arch *ka = &kvm->arch;
6231 	struct kvm_clock_data data;
6232 	u64 now_raw_ns;
6233 
6234 	if (copy_from_user(&data, argp, sizeof(data)))
6235 		return -EFAULT;
6236 
6237 	/*
6238 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6239 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6240 	 */
6241 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6242 		return -EINVAL;
6243 
6244 	kvm_hv_invalidate_tsc_page(kvm);
6245 	kvm_start_pvclock_update(kvm);
6246 	pvclock_update_vm_gtod_copy(kvm);
6247 
6248 	/*
6249 	 * This pairs with kvm_guest_time_update(): when masterclock is
6250 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6251 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6252 	 * is slightly ahead) here we risk going negative on unsigned
6253 	 * 'system_time' when 'data.clock' is very small.
6254 	 */
6255 	if (data.flags & KVM_CLOCK_REALTIME) {
6256 		u64 now_real_ns = ktime_get_real_ns();
6257 
6258 		/*
6259 		 * Avoid stepping the kvmclock backwards.
6260 		 */
6261 		if (now_real_ns > data.realtime)
6262 			data.clock += now_real_ns - data.realtime;
6263 	}
6264 
6265 	if (ka->use_master_clock)
6266 		now_raw_ns = ka->master_kernel_ns;
6267 	else
6268 		now_raw_ns = get_kvmclock_base_ns();
6269 	ka->kvmclock_offset = data.clock - now_raw_ns;
6270 	kvm_end_pvclock_update(kvm);
6271 	return 0;
6272 }
6273 
6274 long kvm_arch_vm_ioctl(struct file *filp,
6275 		       unsigned int ioctl, unsigned long arg)
6276 {
6277 	struct kvm *kvm = filp->private_data;
6278 	void __user *argp = (void __user *)arg;
6279 	int r = -ENOTTY;
6280 	/*
6281 	 * This union makes it completely explicit to gcc-3.x
6282 	 * that these two variables' stack usage should be
6283 	 * combined, not added together.
6284 	 */
6285 	union {
6286 		struct kvm_pit_state ps;
6287 		struct kvm_pit_state2 ps2;
6288 		struct kvm_pit_config pit_config;
6289 	} u;
6290 
6291 	switch (ioctl) {
6292 	case KVM_SET_TSS_ADDR:
6293 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6294 		break;
6295 	case KVM_SET_IDENTITY_MAP_ADDR: {
6296 		u64 ident_addr;
6297 
6298 		mutex_lock(&kvm->lock);
6299 		r = -EINVAL;
6300 		if (kvm->created_vcpus)
6301 			goto set_identity_unlock;
6302 		r = -EFAULT;
6303 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6304 			goto set_identity_unlock;
6305 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6306 set_identity_unlock:
6307 		mutex_unlock(&kvm->lock);
6308 		break;
6309 	}
6310 	case KVM_SET_NR_MMU_PAGES:
6311 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6312 		break;
6313 	case KVM_GET_NR_MMU_PAGES:
6314 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6315 		break;
6316 	case KVM_CREATE_IRQCHIP: {
6317 		mutex_lock(&kvm->lock);
6318 
6319 		r = -EEXIST;
6320 		if (irqchip_in_kernel(kvm))
6321 			goto create_irqchip_unlock;
6322 
6323 		r = -EINVAL;
6324 		if (kvm->created_vcpus)
6325 			goto create_irqchip_unlock;
6326 
6327 		r = kvm_pic_init(kvm);
6328 		if (r)
6329 			goto create_irqchip_unlock;
6330 
6331 		r = kvm_ioapic_init(kvm);
6332 		if (r) {
6333 			kvm_pic_destroy(kvm);
6334 			goto create_irqchip_unlock;
6335 		}
6336 
6337 		r = kvm_setup_default_irq_routing(kvm);
6338 		if (r) {
6339 			kvm_ioapic_destroy(kvm);
6340 			kvm_pic_destroy(kvm);
6341 			goto create_irqchip_unlock;
6342 		}
6343 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6344 		smp_wmb();
6345 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6346 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6347 	create_irqchip_unlock:
6348 		mutex_unlock(&kvm->lock);
6349 		break;
6350 	}
6351 	case KVM_CREATE_PIT:
6352 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6353 		goto create_pit;
6354 	case KVM_CREATE_PIT2:
6355 		r = -EFAULT;
6356 		if (copy_from_user(&u.pit_config, argp,
6357 				   sizeof(struct kvm_pit_config)))
6358 			goto out;
6359 	create_pit:
6360 		mutex_lock(&kvm->lock);
6361 		r = -EEXIST;
6362 		if (kvm->arch.vpit)
6363 			goto create_pit_unlock;
6364 		r = -ENOMEM;
6365 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6366 		if (kvm->arch.vpit)
6367 			r = 0;
6368 	create_pit_unlock:
6369 		mutex_unlock(&kvm->lock);
6370 		break;
6371 	case KVM_GET_IRQCHIP: {
6372 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6373 		struct kvm_irqchip *chip;
6374 
6375 		chip = memdup_user(argp, sizeof(*chip));
6376 		if (IS_ERR(chip)) {
6377 			r = PTR_ERR(chip);
6378 			goto out;
6379 		}
6380 
6381 		r = -ENXIO;
6382 		if (!irqchip_kernel(kvm))
6383 			goto get_irqchip_out;
6384 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6385 		if (r)
6386 			goto get_irqchip_out;
6387 		r = -EFAULT;
6388 		if (copy_to_user(argp, chip, sizeof(*chip)))
6389 			goto get_irqchip_out;
6390 		r = 0;
6391 	get_irqchip_out:
6392 		kfree(chip);
6393 		break;
6394 	}
6395 	case KVM_SET_IRQCHIP: {
6396 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6397 		struct kvm_irqchip *chip;
6398 
6399 		chip = memdup_user(argp, sizeof(*chip));
6400 		if (IS_ERR(chip)) {
6401 			r = PTR_ERR(chip);
6402 			goto out;
6403 		}
6404 
6405 		r = -ENXIO;
6406 		if (!irqchip_kernel(kvm))
6407 			goto set_irqchip_out;
6408 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6409 	set_irqchip_out:
6410 		kfree(chip);
6411 		break;
6412 	}
6413 	case KVM_GET_PIT: {
6414 		r = -EFAULT;
6415 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6416 			goto out;
6417 		r = -ENXIO;
6418 		if (!kvm->arch.vpit)
6419 			goto out;
6420 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6421 		if (r)
6422 			goto out;
6423 		r = -EFAULT;
6424 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6425 			goto out;
6426 		r = 0;
6427 		break;
6428 	}
6429 	case KVM_SET_PIT: {
6430 		r = -EFAULT;
6431 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6432 			goto out;
6433 		mutex_lock(&kvm->lock);
6434 		r = -ENXIO;
6435 		if (!kvm->arch.vpit)
6436 			goto set_pit_out;
6437 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6438 set_pit_out:
6439 		mutex_unlock(&kvm->lock);
6440 		break;
6441 	}
6442 	case KVM_GET_PIT2: {
6443 		r = -ENXIO;
6444 		if (!kvm->arch.vpit)
6445 			goto out;
6446 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6447 		if (r)
6448 			goto out;
6449 		r = -EFAULT;
6450 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6451 			goto out;
6452 		r = 0;
6453 		break;
6454 	}
6455 	case KVM_SET_PIT2: {
6456 		r = -EFAULT;
6457 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6458 			goto out;
6459 		mutex_lock(&kvm->lock);
6460 		r = -ENXIO;
6461 		if (!kvm->arch.vpit)
6462 			goto set_pit2_out;
6463 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6464 set_pit2_out:
6465 		mutex_unlock(&kvm->lock);
6466 		break;
6467 	}
6468 	case KVM_REINJECT_CONTROL: {
6469 		struct kvm_reinject_control control;
6470 		r =  -EFAULT;
6471 		if (copy_from_user(&control, argp, sizeof(control)))
6472 			goto out;
6473 		r = -ENXIO;
6474 		if (!kvm->arch.vpit)
6475 			goto out;
6476 		r = kvm_vm_ioctl_reinject(kvm, &control);
6477 		break;
6478 	}
6479 	case KVM_SET_BOOT_CPU_ID:
6480 		r = 0;
6481 		mutex_lock(&kvm->lock);
6482 		if (kvm->created_vcpus)
6483 			r = -EBUSY;
6484 		else
6485 			kvm->arch.bsp_vcpu_id = arg;
6486 		mutex_unlock(&kvm->lock);
6487 		break;
6488 #ifdef CONFIG_KVM_XEN
6489 	case KVM_XEN_HVM_CONFIG: {
6490 		struct kvm_xen_hvm_config xhc;
6491 		r = -EFAULT;
6492 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6493 			goto out;
6494 		r = kvm_xen_hvm_config(kvm, &xhc);
6495 		break;
6496 	}
6497 	case KVM_XEN_HVM_GET_ATTR: {
6498 		struct kvm_xen_hvm_attr xha;
6499 
6500 		r = -EFAULT;
6501 		if (copy_from_user(&xha, argp, sizeof(xha)))
6502 			goto out;
6503 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6504 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6505 			r = -EFAULT;
6506 		break;
6507 	}
6508 	case KVM_XEN_HVM_SET_ATTR: {
6509 		struct kvm_xen_hvm_attr xha;
6510 
6511 		r = -EFAULT;
6512 		if (copy_from_user(&xha, argp, sizeof(xha)))
6513 			goto out;
6514 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6515 		break;
6516 	}
6517 #endif
6518 	case KVM_SET_CLOCK:
6519 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6520 		break;
6521 	case KVM_GET_CLOCK:
6522 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6523 		break;
6524 	case KVM_MEMORY_ENCRYPT_OP: {
6525 		r = -ENOTTY;
6526 		if (!kvm_x86_ops.mem_enc_ioctl)
6527 			goto out;
6528 
6529 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6530 		break;
6531 	}
6532 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6533 		struct kvm_enc_region region;
6534 
6535 		r = -EFAULT;
6536 		if (copy_from_user(&region, argp, sizeof(region)))
6537 			goto out;
6538 
6539 		r = -ENOTTY;
6540 		if (!kvm_x86_ops.mem_enc_register_region)
6541 			goto out;
6542 
6543 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6544 		break;
6545 	}
6546 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6547 		struct kvm_enc_region region;
6548 
6549 		r = -EFAULT;
6550 		if (copy_from_user(&region, argp, sizeof(region)))
6551 			goto out;
6552 
6553 		r = -ENOTTY;
6554 		if (!kvm_x86_ops.mem_enc_unregister_region)
6555 			goto out;
6556 
6557 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6558 		break;
6559 	}
6560 	case KVM_HYPERV_EVENTFD: {
6561 		struct kvm_hyperv_eventfd hvevfd;
6562 
6563 		r = -EFAULT;
6564 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6565 			goto out;
6566 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6567 		break;
6568 	}
6569 	case KVM_SET_PMU_EVENT_FILTER:
6570 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6571 		break;
6572 	case KVM_X86_SET_MSR_FILTER:
6573 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6574 		break;
6575 	default:
6576 		r = -ENOTTY;
6577 	}
6578 out:
6579 	return r;
6580 }
6581 
6582 static void kvm_init_msr_list(void)
6583 {
6584 	struct x86_pmu_capability x86_pmu;
6585 	u32 dummy[2];
6586 	unsigned i;
6587 
6588 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6589 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6590 
6591 	perf_get_x86_pmu_capability(&x86_pmu);
6592 
6593 	num_msrs_to_save = 0;
6594 	num_emulated_msrs = 0;
6595 	num_msr_based_features = 0;
6596 
6597 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6598 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6599 			continue;
6600 
6601 		/*
6602 		 * Even MSRs that are valid in the host may not be exposed
6603 		 * to the guests in some cases.
6604 		 */
6605 		switch (msrs_to_save_all[i]) {
6606 		case MSR_IA32_BNDCFGS:
6607 			if (!kvm_mpx_supported())
6608 				continue;
6609 			break;
6610 		case MSR_TSC_AUX:
6611 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6612 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6613 				continue;
6614 			break;
6615 		case MSR_IA32_UMWAIT_CONTROL:
6616 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6617 				continue;
6618 			break;
6619 		case MSR_IA32_RTIT_CTL:
6620 		case MSR_IA32_RTIT_STATUS:
6621 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6622 				continue;
6623 			break;
6624 		case MSR_IA32_RTIT_CR3_MATCH:
6625 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6626 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6627 				continue;
6628 			break;
6629 		case MSR_IA32_RTIT_OUTPUT_BASE:
6630 		case MSR_IA32_RTIT_OUTPUT_MASK:
6631 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6632 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6633 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6634 				continue;
6635 			break;
6636 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6637 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6638 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6639 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6640 				continue;
6641 			break;
6642 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6643 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6644 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6645 				continue;
6646 			break;
6647 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6648 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6649 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6650 				continue;
6651 			break;
6652 		case MSR_IA32_XFD:
6653 		case MSR_IA32_XFD_ERR:
6654 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6655 				continue;
6656 			break;
6657 		default:
6658 			break;
6659 		}
6660 
6661 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6662 	}
6663 
6664 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6665 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6666 			continue;
6667 
6668 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6669 	}
6670 
6671 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6672 		struct kvm_msr_entry msr;
6673 
6674 		msr.index = msr_based_features_all[i];
6675 		if (kvm_get_msr_feature(&msr))
6676 			continue;
6677 
6678 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6679 	}
6680 }
6681 
6682 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6683 			   const void *v)
6684 {
6685 	int handled = 0;
6686 	int n;
6687 
6688 	do {
6689 		n = min(len, 8);
6690 		if (!(lapic_in_kernel(vcpu) &&
6691 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6692 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6693 			break;
6694 		handled += n;
6695 		addr += n;
6696 		len -= n;
6697 		v += n;
6698 	} while (len);
6699 
6700 	return handled;
6701 }
6702 
6703 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6704 {
6705 	int handled = 0;
6706 	int n;
6707 
6708 	do {
6709 		n = min(len, 8);
6710 		if (!(lapic_in_kernel(vcpu) &&
6711 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6712 					 addr, n, v))
6713 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6714 			break;
6715 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6716 		handled += n;
6717 		addr += n;
6718 		len -= n;
6719 		v += n;
6720 	} while (len);
6721 
6722 	return handled;
6723 }
6724 
6725 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6726 			struct kvm_segment *var, int seg)
6727 {
6728 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6729 }
6730 
6731 void kvm_get_segment(struct kvm_vcpu *vcpu,
6732 		     struct kvm_segment *var, int seg)
6733 {
6734 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6735 }
6736 
6737 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6738 			   struct x86_exception *exception)
6739 {
6740 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6741 	gpa_t t_gpa;
6742 
6743 	BUG_ON(!mmu_is_nested(vcpu));
6744 
6745 	/* NPT walks are always user-walks */
6746 	access |= PFERR_USER_MASK;
6747 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6748 
6749 	return t_gpa;
6750 }
6751 
6752 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6753 			      struct x86_exception *exception)
6754 {
6755 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6756 
6757 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6758 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6759 }
6760 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6761 
6762  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6763 				struct x86_exception *exception)
6764 {
6765 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6766 
6767 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6768 	access |= PFERR_FETCH_MASK;
6769 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6770 }
6771 
6772 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6773 			       struct x86_exception *exception)
6774 {
6775 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6776 
6777 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6778 	access |= PFERR_WRITE_MASK;
6779 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6780 }
6781 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6782 
6783 /* uses this to access any guest's mapped memory without checking CPL */
6784 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6785 				struct x86_exception *exception)
6786 {
6787 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6788 
6789 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6790 }
6791 
6792 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6793 				      struct kvm_vcpu *vcpu, u64 access,
6794 				      struct x86_exception *exception)
6795 {
6796 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6797 	void *data = val;
6798 	int r = X86EMUL_CONTINUE;
6799 
6800 	while (bytes) {
6801 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6802 		unsigned offset = addr & (PAGE_SIZE-1);
6803 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6804 		int ret;
6805 
6806 		if (gpa == UNMAPPED_GVA)
6807 			return X86EMUL_PROPAGATE_FAULT;
6808 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6809 					       offset, toread);
6810 		if (ret < 0) {
6811 			r = X86EMUL_IO_NEEDED;
6812 			goto out;
6813 		}
6814 
6815 		bytes -= toread;
6816 		data += toread;
6817 		addr += toread;
6818 	}
6819 out:
6820 	return r;
6821 }
6822 
6823 /* used for instruction fetching */
6824 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6825 				gva_t addr, void *val, unsigned int bytes,
6826 				struct x86_exception *exception)
6827 {
6828 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6829 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6830 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6831 	unsigned offset;
6832 	int ret;
6833 
6834 	/* Inline kvm_read_guest_virt_helper for speed.  */
6835 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6836 				    exception);
6837 	if (unlikely(gpa == UNMAPPED_GVA))
6838 		return X86EMUL_PROPAGATE_FAULT;
6839 
6840 	offset = addr & (PAGE_SIZE-1);
6841 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6842 		bytes = (unsigned)PAGE_SIZE - offset;
6843 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6844 				       offset, bytes);
6845 	if (unlikely(ret < 0))
6846 		return X86EMUL_IO_NEEDED;
6847 
6848 	return X86EMUL_CONTINUE;
6849 }
6850 
6851 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6852 			       gva_t addr, void *val, unsigned int bytes,
6853 			       struct x86_exception *exception)
6854 {
6855 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6856 
6857 	/*
6858 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6859 	 * is returned, but our callers are not ready for that and they blindly
6860 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6861 	 * uninitialized kernel stack memory into cr2 and error code.
6862 	 */
6863 	memset(exception, 0, sizeof(*exception));
6864 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6865 					  exception);
6866 }
6867 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6868 
6869 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6870 			     gva_t addr, void *val, unsigned int bytes,
6871 			     struct x86_exception *exception, bool system)
6872 {
6873 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6874 	u64 access = 0;
6875 
6876 	if (system)
6877 		access |= PFERR_IMPLICIT_ACCESS;
6878 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6879 		access |= PFERR_USER_MASK;
6880 
6881 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6882 }
6883 
6884 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6885 		unsigned long addr, void *val, unsigned int bytes)
6886 {
6887 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6888 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6889 
6890 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6891 }
6892 
6893 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6894 				      struct kvm_vcpu *vcpu, u64 access,
6895 				      struct x86_exception *exception)
6896 {
6897 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6898 	void *data = val;
6899 	int r = X86EMUL_CONTINUE;
6900 
6901 	while (bytes) {
6902 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6903 		unsigned offset = addr & (PAGE_SIZE-1);
6904 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6905 		int ret;
6906 
6907 		if (gpa == UNMAPPED_GVA)
6908 			return X86EMUL_PROPAGATE_FAULT;
6909 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6910 		if (ret < 0) {
6911 			r = X86EMUL_IO_NEEDED;
6912 			goto out;
6913 		}
6914 
6915 		bytes -= towrite;
6916 		data += towrite;
6917 		addr += towrite;
6918 	}
6919 out:
6920 	return r;
6921 }
6922 
6923 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6924 			      unsigned int bytes, struct x86_exception *exception,
6925 			      bool system)
6926 {
6927 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6928 	u64 access = PFERR_WRITE_MASK;
6929 
6930 	if (system)
6931 		access |= PFERR_IMPLICIT_ACCESS;
6932 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6933 		access |= PFERR_USER_MASK;
6934 
6935 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6936 					   access, exception);
6937 }
6938 
6939 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6940 				unsigned int bytes, struct x86_exception *exception)
6941 {
6942 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6943 	vcpu->arch.l1tf_flush_l1d = true;
6944 
6945 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6946 					   PFERR_WRITE_MASK, exception);
6947 }
6948 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6949 
6950 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6951 				void *insn, int insn_len)
6952 {
6953 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6954 							    insn, insn_len);
6955 }
6956 
6957 int handle_ud(struct kvm_vcpu *vcpu)
6958 {
6959 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6960 	int emul_type = EMULTYPE_TRAP_UD;
6961 	char sig[5]; /* ud2; .ascii "kvm" */
6962 	struct x86_exception e;
6963 
6964 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6965 		return 1;
6966 
6967 	if (force_emulation_prefix &&
6968 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6969 				sig, sizeof(sig), &e) == 0 &&
6970 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6971 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6972 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6973 	}
6974 
6975 	return kvm_emulate_instruction(vcpu, emul_type);
6976 }
6977 EXPORT_SYMBOL_GPL(handle_ud);
6978 
6979 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6980 			    gpa_t gpa, bool write)
6981 {
6982 	/* For APIC access vmexit */
6983 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6984 		return 1;
6985 
6986 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6987 		trace_vcpu_match_mmio(gva, gpa, write, true);
6988 		return 1;
6989 	}
6990 
6991 	return 0;
6992 }
6993 
6994 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6995 				gpa_t *gpa, struct x86_exception *exception,
6996 				bool write)
6997 {
6998 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6999 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7000 		| (write ? PFERR_WRITE_MASK : 0);
7001 
7002 	/*
7003 	 * currently PKRU is only applied to ept enabled guest so
7004 	 * there is no pkey in EPT page table for L1 guest or EPT
7005 	 * shadow page table for L2 guest.
7006 	 */
7007 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7008 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7009 			      vcpu->arch.mmio_access, 0, access))) {
7010 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7011 					(gva & (PAGE_SIZE - 1));
7012 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7013 		return 1;
7014 	}
7015 
7016 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7017 
7018 	if (*gpa == UNMAPPED_GVA)
7019 		return -1;
7020 
7021 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7022 }
7023 
7024 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7025 			const void *val, int bytes)
7026 {
7027 	int ret;
7028 
7029 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7030 	if (ret < 0)
7031 		return 0;
7032 	kvm_page_track_write(vcpu, gpa, val, bytes);
7033 	return 1;
7034 }
7035 
7036 struct read_write_emulator_ops {
7037 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7038 				  int bytes);
7039 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7040 				  void *val, int bytes);
7041 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7042 			       int bytes, void *val);
7043 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7044 				    void *val, int bytes);
7045 	bool write;
7046 };
7047 
7048 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7049 {
7050 	if (vcpu->mmio_read_completed) {
7051 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7052 			       vcpu->mmio_fragments[0].gpa, val);
7053 		vcpu->mmio_read_completed = 0;
7054 		return 1;
7055 	}
7056 
7057 	return 0;
7058 }
7059 
7060 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7061 			void *val, int bytes)
7062 {
7063 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7064 }
7065 
7066 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7067 			 void *val, int bytes)
7068 {
7069 	return emulator_write_phys(vcpu, gpa, val, bytes);
7070 }
7071 
7072 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7073 {
7074 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7075 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7076 }
7077 
7078 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7079 			  void *val, int bytes)
7080 {
7081 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7082 	return X86EMUL_IO_NEEDED;
7083 }
7084 
7085 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7086 			   void *val, int bytes)
7087 {
7088 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7089 
7090 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7091 	return X86EMUL_CONTINUE;
7092 }
7093 
7094 static const struct read_write_emulator_ops read_emultor = {
7095 	.read_write_prepare = read_prepare,
7096 	.read_write_emulate = read_emulate,
7097 	.read_write_mmio = vcpu_mmio_read,
7098 	.read_write_exit_mmio = read_exit_mmio,
7099 };
7100 
7101 static const struct read_write_emulator_ops write_emultor = {
7102 	.read_write_emulate = write_emulate,
7103 	.read_write_mmio = write_mmio,
7104 	.read_write_exit_mmio = write_exit_mmio,
7105 	.write = true,
7106 };
7107 
7108 static int emulator_read_write_onepage(unsigned long addr, void *val,
7109 				       unsigned int bytes,
7110 				       struct x86_exception *exception,
7111 				       struct kvm_vcpu *vcpu,
7112 				       const struct read_write_emulator_ops *ops)
7113 {
7114 	gpa_t gpa;
7115 	int handled, ret;
7116 	bool write = ops->write;
7117 	struct kvm_mmio_fragment *frag;
7118 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7119 
7120 	/*
7121 	 * If the exit was due to a NPF we may already have a GPA.
7122 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7123 	 * Note, this cannot be used on string operations since string
7124 	 * operation using rep will only have the initial GPA from the NPF
7125 	 * occurred.
7126 	 */
7127 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7128 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7129 		gpa = ctxt->gpa_val;
7130 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7131 	} else {
7132 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7133 		if (ret < 0)
7134 			return X86EMUL_PROPAGATE_FAULT;
7135 	}
7136 
7137 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7138 		return X86EMUL_CONTINUE;
7139 
7140 	/*
7141 	 * Is this MMIO handled locally?
7142 	 */
7143 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7144 	if (handled == bytes)
7145 		return X86EMUL_CONTINUE;
7146 
7147 	gpa += handled;
7148 	bytes -= handled;
7149 	val += handled;
7150 
7151 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7152 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7153 	frag->gpa = gpa;
7154 	frag->data = val;
7155 	frag->len = bytes;
7156 	return X86EMUL_CONTINUE;
7157 }
7158 
7159 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7160 			unsigned long addr,
7161 			void *val, unsigned int bytes,
7162 			struct x86_exception *exception,
7163 			const struct read_write_emulator_ops *ops)
7164 {
7165 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7166 	gpa_t gpa;
7167 	int rc;
7168 
7169 	if (ops->read_write_prepare &&
7170 		  ops->read_write_prepare(vcpu, val, bytes))
7171 		return X86EMUL_CONTINUE;
7172 
7173 	vcpu->mmio_nr_fragments = 0;
7174 
7175 	/* Crossing a page boundary? */
7176 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7177 		int now;
7178 
7179 		now = -addr & ~PAGE_MASK;
7180 		rc = emulator_read_write_onepage(addr, val, now, exception,
7181 						 vcpu, ops);
7182 
7183 		if (rc != X86EMUL_CONTINUE)
7184 			return rc;
7185 		addr += now;
7186 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7187 			addr = (u32)addr;
7188 		val += now;
7189 		bytes -= now;
7190 	}
7191 
7192 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7193 					 vcpu, ops);
7194 	if (rc != X86EMUL_CONTINUE)
7195 		return rc;
7196 
7197 	if (!vcpu->mmio_nr_fragments)
7198 		return rc;
7199 
7200 	gpa = vcpu->mmio_fragments[0].gpa;
7201 
7202 	vcpu->mmio_needed = 1;
7203 	vcpu->mmio_cur_fragment = 0;
7204 
7205 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7206 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7207 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7208 	vcpu->run->mmio.phys_addr = gpa;
7209 
7210 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7211 }
7212 
7213 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7214 				  unsigned long addr,
7215 				  void *val,
7216 				  unsigned int bytes,
7217 				  struct x86_exception *exception)
7218 {
7219 	return emulator_read_write(ctxt, addr, val, bytes,
7220 				   exception, &read_emultor);
7221 }
7222 
7223 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7224 			    unsigned long addr,
7225 			    const void *val,
7226 			    unsigned int bytes,
7227 			    struct x86_exception *exception)
7228 {
7229 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7230 				   exception, &write_emultor);
7231 }
7232 
7233 #define CMPXCHG_TYPE(t, ptr, old, new) \
7234 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7235 
7236 #ifdef CONFIG_X86_64
7237 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7238 #else
7239 #  define CMPXCHG64(ptr, old, new) \
7240 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7241 #endif
7242 
7243 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7244 				     unsigned long addr,
7245 				     const void *old,
7246 				     const void *new,
7247 				     unsigned int bytes,
7248 				     struct x86_exception *exception)
7249 {
7250 	struct kvm_host_map map;
7251 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7252 	u64 page_line_mask;
7253 	gpa_t gpa;
7254 	char *kaddr;
7255 	bool exchanged;
7256 
7257 	/* guests cmpxchg8b have to be emulated atomically */
7258 	if (bytes > 8 || (bytes & (bytes - 1)))
7259 		goto emul_write;
7260 
7261 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7262 
7263 	if (gpa == UNMAPPED_GVA ||
7264 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7265 		goto emul_write;
7266 
7267 	/*
7268 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7269 	 * enabled in the host and the access splits a cache line.
7270 	 */
7271 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7272 		page_line_mask = ~(cache_line_size() - 1);
7273 	else
7274 		page_line_mask = PAGE_MASK;
7275 
7276 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7277 		goto emul_write;
7278 
7279 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7280 		goto emul_write;
7281 
7282 	kaddr = map.hva + offset_in_page(gpa);
7283 
7284 	switch (bytes) {
7285 	case 1:
7286 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7287 		break;
7288 	case 2:
7289 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7290 		break;
7291 	case 4:
7292 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7293 		break;
7294 	case 8:
7295 		exchanged = CMPXCHG64(kaddr, old, new);
7296 		break;
7297 	default:
7298 		BUG();
7299 	}
7300 
7301 	kvm_vcpu_unmap(vcpu, &map, true);
7302 
7303 	if (!exchanged)
7304 		return X86EMUL_CMPXCHG_FAILED;
7305 
7306 	kvm_page_track_write(vcpu, gpa, new, bytes);
7307 
7308 	return X86EMUL_CONTINUE;
7309 
7310 emul_write:
7311 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7312 
7313 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7314 }
7315 
7316 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7317 {
7318 	int r = 0, i;
7319 
7320 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7321 		if (vcpu->arch.pio.in)
7322 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7323 					    vcpu->arch.pio.size, pd);
7324 		else
7325 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7326 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7327 					     pd);
7328 		if (r)
7329 			break;
7330 		pd += vcpu->arch.pio.size;
7331 	}
7332 	return r;
7333 }
7334 
7335 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7336 			       unsigned short port,
7337 			       unsigned int count, bool in)
7338 {
7339 	vcpu->arch.pio.port = port;
7340 	vcpu->arch.pio.in = in;
7341 	vcpu->arch.pio.count  = count;
7342 	vcpu->arch.pio.size = size;
7343 
7344 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7345 		return 1;
7346 
7347 	vcpu->run->exit_reason = KVM_EXIT_IO;
7348 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7349 	vcpu->run->io.size = size;
7350 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7351 	vcpu->run->io.count = count;
7352 	vcpu->run->io.port = port;
7353 
7354 	return 0;
7355 }
7356 
7357 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7358 			     unsigned short port, unsigned int count)
7359 {
7360 	WARN_ON(vcpu->arch.pio.count);
7361 	memset(vcpu->arch.pio_data, 0, size * count);
7362 	return emulator_pio_in_out(vcpu, size, port, count, true);
7363 }
7364 
7365 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7366 {
7367 	int size = vcpu->arch.pio.size;
7368 	unsigned count = vcpu->arch.pio.count;
7369 	memcpy(val, vcpu->arch.pio_data, size * count);
7370 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7371 	vcpu->arch.pio.count = 0;
7372 }
7373 
7374 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7375 			   unsigned short port, void *val, unsigned int count)
7376 {
7377 	if (vcpu->arch.pio.count) {
7378 		/*
7379 		 * Complete a previous iteration that required userspace I/O.
7380 		 * Note, @count isn't guaranteed to match pio.count as userspace
7381 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7382 		 * shenanigans as KVM doesn't support modifying the rep count,
7383 		 * and the emulator ensures @count doesn't overflow the buffer.
7384 		 */
7385 	} else {
7386 		int r = __emulator_pio_in(vcpu, size, port, count);
7387 		if (!r)
7388 			return r;
7389 
7390 		/* Results already available, fall through.  */
7391 	}
7392 
7393 	complete_emulator_pio_in(vcpu, val);
7394 	return 1;
7395 }
7396 
7397 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7398 				    int size, unsigned short port, void *val,
7399 				    unsigned int count)
7400 {
7401 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7402 
7403 }
7404 
7405 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7406 			    unsigned short port, const void *val,
7407 			    unsigned int count)
7408 {
7409 	int ret;
7410 
7411 	memcpy(vcpu->arch.pio_data, val, size * count);
7412 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7413 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7414 	if (ret)
7415                 vcpu->arch.pio.count = 0;
7416 
7417         return ret;
7418 }
7419 
7420 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7421 				     int size, unsigned short port,
7422 				     const void *val, unsigned int count)
7423 {
7424 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7425 }
7426 
7427 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7428 {
7429 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7430 }
7431 
7432 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7433 {
7434 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7435 }
7436 
7437 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7438 {
7439 	if (!need_emulate_wbinvd(vcpu))
7440 		return X86EMUL_CONTINUE;
7441 
7442 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7443 		int cpu = get_cpu();
7444 
7445 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7446 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7447 				wbinvd_ipi, NULL, 1);
7448 		put_cpu();
7449 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7450 	} else
7451 		wbinvd();
7452 	return X86EMUL_CONTINUE;
7453 }
7454 
7455 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7456 {
7457 	kvm_emulate_wbinvd_noskip(vcpu);
7458 	return kvm_skip_emulated_instruction(vcpu);
7459 }
7460 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7461 
7462 
7463 
7464 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7465 {
7466 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7467 }
7468 
7469 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7470 			    unsigned long *dest)
7471 {
7472 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7473 }
7474 
7475 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7476 			   unsigned long value)
7477 {
7478 
7479 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7480 }
7481 
7482 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7483 {
7484 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7485 }
7486 
7487 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7488 {
7489 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7490 	unsigned long value;
7491 
7492 	switch (cr) {
7493 	case 0:
7494 		value = kvm_read_cr0(vcpu);
7495 		break;
7496 	case 2:
7497 		value = vcpu->arch.cr2;
7498 		break;
7499 	case 3:
7500 		value = kvm_read_cr3(vcpu);
7501 		break;
7502 	case 4:
7503 		value = kvm_read_cr4(vcpu);
7504 		break;
7505 	case 8:
7506 		value = kvm_get_cr8(vcpu);
7507 		break;
7508 	default:
7509 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7510 		return 0;
7511 	}
7512 
7513 	return value;
7514 }
7515 
7516 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7517 {
7518 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7519 	int res = 0;
7520 
7521 	switch (cr) {
7522 	case 0:
7523 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7524 		break;
7525 	case 2:
7526 		vcpu->arch.cr2 = val;
7527 		break;
7528 	case 3:
7529 		res = kvm_set_cr3(vcpu, val);
7530 		break;
7531 	case 4:
7532 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7533 		break;
7534 	case 8:
7535 		res = kvm_set_cr8(vcpu, val);
7536 		break;
7537 	default:
7538 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7539 		res = -1;
7540 	}
7541 
7542 	return res;
7543 }
7544 
7545 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7546 {
7547 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7548 }
7549 
7550 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7551 {
7552 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7553 }
7554 
7555 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7556 {
7557 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7558 }
7559 
7560 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7561 {
7562 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7563 }
7564 
7565 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7566 {
7567 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7568 }
7569 
7570 static unsigned long emulator_get_cached_segment_base(
7571 	struct x86_emulate_ctxt *ctxt, int seg)
7572 {
7573 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7574 }
7575 
7576 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7577 				 struct desc_struct *desc, u32 *base3,
7578 				 int seg)
7579 {
7580 	struct kvm_segment var;
7581 
7582 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7583 	*selector = var.selector;
7584 
7585 	if (var.unusable) {
7586 		memset(desc, 0, sizeof(*desc));
7587 		if (base3)
7588 			*base3 = 0;
7589 		return false;
7590 	}
7591 
7592 	if (var.g)
7593 		var.limit >>= 12;
7594 	set_desc_limit(desc, var.limit);
7595 	set_desc_base(desc, (unsigned long)var.base);
7596 #ifdef CONFIG_X86_64
7597 	if (base3)
7598 		*base3 = var.base >> 32;
7599 #endif
7600 	desc->type = var.type;
7601 	desc->s = var.s;
7602 	desc->dpl = var.dpl;
7603 	desc->p = var.present;
7604 	desc->avl = var.avl;
7605 	desc->l = var.l;
7606 	desc->d = var.db;
7607 	desc->g = var.g;
7608 
7609 	return true;
7610 }
7611 
7612 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7613 				 struct desc_struct *desc, u32 base3,
7614 				 int seg)
7615 {
7616 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7617 	struct kvm_segment var;
7618 
7619 	var.selector = selector;
7620 	var.base = get_desc_base(desc);
7621 #ifdef CONFIG_X86_64
7622 	var.base |= ((u64)base3) << 32;
7623 #endif
7624 	var.limit = get_desc_limit(desc);
7625 	if (desc->g)
7626 		var.limit = (var.limit << 12) | 0xfff;
7627 	var.type = desc->type;
7628 	var.dpl = desc->dpl;
7629 	var.db = desc->d;
7630 	var.s = desc->s;
7631 	var.l = desc->l;
7632 	var.g = desc->g;
7633 	var.avl = desc->avl;
7634 	var.present = desc->p;
7635 	var.unusable = !var.present;
7636 	var.padding = 0;
7637 
7638 	kvm_set_segment(vcpu, &var, seg);
7639 	return;
7640 }
7641 
7642 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7643 					u32 msr_index, u64 *pdata)
7644 {
7645 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7646 	int r;
7647 
7648 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7649 
7650 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7651 				    complete_emulated_rdmsr, r)) {
7652 		/* Bounce to user space */
7653 		return X86EMUL_IO_NEEDED;
7654 	}
7655 
7656 	return r;
7657 }
7658 
7659 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7660 					u32 msr_index, u64 data)
7661 {
7662 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7663 	int r;
7664 
7665 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7666 
7667 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7668 				    complete_emulated_msr_access, r)) {
7669 		/* Bounce to user space */
7670 		return X86EMUL_IO_NEEDED;
7671 	}
7672 
7673 	return r;
7674 }
7675 
7676 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7677 			    u32 msr_index, u64 *pdata)
7678 {
7679 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7680 }
7681 
7682 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7683 			    u32 msr_index, u64 data)
7684 {
7685 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7686 }
7687 
7688 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7689 {
7690 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7691 
7692 	return vcpu->arch.smbase;
7693 }
7694 
7695 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7696 {
7697 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7698 
7699 	vcpu->arch.smbase = smbase;
7700 }
7701 
7702 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7703 			      u32 pmc)
7704 {
7705 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7706 		return 0;
7707 	return -EINVAL;
7708 }
7709 
7710 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7711 			     u32 pmc, u64 *pdata)
7712 {
7713 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7714 }
7715 
7716 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7717 {
7718 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7719 }
7720 
7721 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7722 			      struct x86_instruction_info *info,
7723 			      enum x86_intercept_stage stage)
7724 {
7725 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7726 					    &ctxt->exception);
7727 }
7728 
7729 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7730 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7731 			      bool exact_only)
7732 {
7733 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7734 }
7735 
7736 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7737 {
7738 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7739 }
7740 
7741 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7742 {
7743 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7744 }
7745 
7746 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7747 {
7748 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7749 }
7750 
7751 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7752 {
7753 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7754 }
7755 
7756 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7757 {
7758 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7759 }
7760 
7761 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7762 {
7763 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7764 }
7765 
7766 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7767 {
7768 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7769 }
7770 
7771 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7772 {
7773 	return emul_to_vcpu(ctxt)->arch.hflags;
7774 }
7775 
7776 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7777 {
7778 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7779 
7780 	kvm_smm_changed(vcpu, false);
7781 }
7782 
7783 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7784 				  const char *smstate)
7785 {
7786 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7787 }
7788 
7789 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7790 {
7791 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7792 }
7793 
7794 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7795 {
7796 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7797 }
7798 
7799 static const struct x86_emulate_ops emulate_ops = {
7800 	.read_gpr            = emulator_read_gpr,
7801 	.write_gpr           = emulator_write_gpr,
7802 	.read_std            = emulator_read_std,
7803 	.write_std           = emulator_write_std,
7804 	.read_phys           = kvm_read_guest_phys_system,
7805 	.fetch               = kvm_fetch_guest_virt,
7806 	.read_emulated       = emulator_read_emulated,
7807 	.write_emulated      = emulator_write_emulated,
7808 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7809 	.invlpg              = emulator_invlpg,
7810 	.pio_in_emulated     = emulator_pio_in_emulated,
7811 	.pio_out_emulated    = emulator_pio_out_emulated,
7812 	.get_segment         = emulator_get_segment,
7813 	.set_segment         = emulator_set_segment,
7814 	.get_cached_segment_base = emulator_get_cached_segment_base,
7815 	.get_gdt             = emulator_get_gdt,
7816 	.get_idt	     = emulator_get_idt,
7817 	.set_gdt             = emulator_set_gdt,
7818 	.set_idt	     = emulator_set_idt,
7819 	.get_cr              = emulator_get_cr,
7820 	.set_cr              = emulator_set_cr,
7821 	.cpl                 = emulator_get_cpl,
7822 	.get_dr              = emulator_get_dr,
7823 	.set_dr              = emulator_set_dr,
7824 	.get_smbase          = emulator_get_smbase,
7825 	.set_smbase          = emulator_set_smbase,
7826 	.set_msr_with_filter = emulator_set_msr_with_filter,
7827 	.get_msr_with_filter = emulator_get_msr_with_filter,
7828 	.set_msr             = emulator_set_msr,
7829 	.get_msr             = emulator_get_msr,
7830 	.check_pmc	     = emulator_check_pmc,
7831 	.read_pmc            = emulator_read_pmc,
7832 	.halt                = emulator_halt,
7833 	.wbinvd              = emulator_wbinvd,
7834 	.fix_hypercall       = emulator_fix_hypercall,
7835 	.intercept           = emulator_intercept,
7836 	.get_cpuid           = emulator_get_cpuid,
7837 	.guest_has_long_mode = emulator_guest_has_long_mode,
7838 	.guest_has_movbe     = emulator_guest_has_movbe,
7839 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7840 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7841 	.set_nmi_mask        = emulator_set_nmi_mask,
7842 	.get_hflags          = emulator_get_hflags,
7843 	.exiting_smm         = emulator_exiting_smm,
7844 	.leave_smm           = emulator_leave_smm,
7845 	.triple_fault        = emulator_triple_fault,
7846 	.set_xcr             = emulator_set_xcr,
7847 };
7848 
7849 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7850 {
7851 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7852 	/*
7853 	 * an sti; sti; sequence only disable interrupts for the first
7854 	 * instruction. So, if the last instruction, be it emulated or
7855 	 * not, left the system with the INT_STI flag enabled, it
7856 	 * means that the last instruction is an sti. We should not
7857 	 * leave the flag on in this case. The same goes for mov ss
7858 	 */
7859 	if (int_shadow & mask)
7860 		mask = 0;
7861 	if (unlikely(int_shadow || mask)) {
7862 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7863 		if (!mask)
7864 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7865 	}
7866 }
7867 
7868 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7869 {
7870 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7871 	if (ctxt->exception.vector == PF_VECTOR)
7872 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7873 
7874 	if (ctxt->exception.error_code_valid)
7875 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7876 				      ctxt->exception.error_code);
7877 	else
7878 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7879 	return false;
7880 }
7881 
7882 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7883 {
7884 	struct x86_emulate_ctxt *ctxt;
7885 
7886 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7887 	if (!ctxt) {
7888 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7889 		return NULL;
7890 	}
7891 
7892 	ctxt->vcpu = vcpu;
7893 	ctxt->ops = &emulate_ops;
7894 	vcpu->arch.emulate_ctxt = ctxt;
7895 
7896 	return ctxt;
7897 }
7898 
7899 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7900 {
7901 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7902 	int cs_db, cs_l;
7903 
7904 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7905 
7906 	ctxt->gpa_available = false;
7907 	ctxt->eflags = kvm_get_rflags(vcpu);
7908 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7909 
7910 	ctxt->eip = kvm_rip_read(vcpu);
7911 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7912 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7913 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7914 		     cs_db				? X86EMUL_MODE_PROT32 :
7915 							  X86EMUL_MODE_PROT16;
7916 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7917 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7918 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7919 
7920 	ctxt->interruptibility = 0;
7921 	ctxt->have_exception = false;
7922 	ctxt->exception.vector = -1;
7923 	ctxt->perm_ok = false;
7924 
7925 	init_decode_cache(ctxt);
7926 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7927 }
7928 
7929 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7930 {
7931 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7932 	int ret;
7933 
7934 	init_emulate_ctxt(vcpu);
7935 
7936 	ctxt->op_bytes = 2;
7937 	ctxt->ad_bytes = 2;
7938 	ctxt->_eip = ctxt->eip + inc_eip;
7939 	ret = emulate_int_real(ctxt, irq);
7940 
7941 	if (ret != X86EMUL_CONTINUE) {
7942 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7943 	} else {
7944 		ctxt->eip = ctxt->_eip;
7945 		kvm_rip_write(vcpu, ctxt->eip);
7946 		kvm_set_rflags(vcpu, ctxt->eflags);
7947 	}
7948 }
7949 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7950 
7951 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7952 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7953 {
7954 	struct kvm_run *run = vcpu->run;
7955 	u64 info[5];
7956 	u8 info_start;
7957 
7958 	/*
7959 	 * Zero the whole array used to retrieve the exit info, as casting to
7960 	 * u32 for select entries will leave some chunks uninitialized.
7961 	 */
7962 	memset(&info, 0, sizeof(info));
7963 
7964 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7965 					   &info[2], (u32 *)&info[3],
7966 					   (u32 *)&info[4]);
7967 
7968 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7969 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7970 
7971 	/*
7972 	 * There's currently space for 13 entries, but 5 are used for the exit
7973 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7974 	 * when expanding kvm_run.emulation_failure in the future.
7975 	 */
7976 	if (WARN_ON_ONCE(ndata > 4))
7977 		ndata = 4;
7978 
7979 	/* Always include the flags as a 'data' entry. */
7980 	info_start = 1;
7981 	run->emulation_failure.flags = 0;
7982 
7983 	if (insn_size) {
7984 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7985 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7986 		info_start += 2;
7987 		run->emulation_failure.flags |=
7988 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7989 		run->emulation_failure.insn_size = insn_size;
7990 		memset(run->emulation_failure.insn_bytes, 0x90,
7991 		       sizeof(run->emulation_failure.insn_bytes));
7992 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7993 	}
7994 
7995 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7996 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7997 	       ndata * sizeof(data[0]));
7998 
7999 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8000 }
8001 
8002 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8003 {
8004 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8005 
8006 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8007 				       ctxt->fetch.end - ctxt->fetch.data);
8008 }
8009 
8010 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8011 					  u8 ndata)
8012 {
8013 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8014 }
8015 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8016 
8017 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8018 {
8019 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8020 }
8021 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8022 
8023 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8024 {
8025 	struct kvm *kvm = vcpu->kvm;
8026 
8027 	++vcpu->stat.insn_emulation_fail;
8028 	trace_kvm_emulate_insn_failed(vcpu);
8029 
8030 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8031 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8032 		return 1;
8033 	}
8034 
8035 	if (kvm->arch.exit_on_emulation_error ||
8036 	    (emulation_type & EMULTYPE_SKIP)) {
8037 		prepare_emulation_ctxt_failure_exit(vcpu);
8038 		return 0;
8039 	}
8040 
8041 	kvm_queue_exception(vcpu, UD_VECTOR);
8042 
8043 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8044 		prepare_emulation_ctxt_failure_exit(vcpu);
8045 		return 0;
8046 	}
8047 
8048 	return 1;
8049 }
8050 
8051 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8052 				  bool write_fault_to_shadow_pgtable,
8053 				  int emulation_type)
8054 {
8055 	gpa_t gpa = cr2_or_gpa;
8056 	kvm_pfn_t pfn;
8057 
8058 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8059 		return false;
8060 
8061 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8062 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8063 		return false;
8064 
8065 	if (!vcpu->arch.mmu->direct_map) {
8066 		/*
8067 		 * Write permission should be allowed since only
8068 		 * write access need to be emulated.
8069 		 */
8070 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8071 
8072 		/*
8073 		 * If the mapping is invalid in guest, let cpu retry
8074 		 * it to generate fault.
8075 		 */
8076 		if (gpa == UNMAPPED_GVA)
8077 			return true;
8078 	}
8079 
8080 	/*
8081 	 * Do not retry the unhandleable instruction if it faults on the
8082 	 * readonly host memory, otherwise it will goto a infinite loop:
8083 	 * retry instruction -> write #PF -> emulation fail -> retry
8084 	 * instruction -> ...
8085 	 */
8086 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8087 
8088 	/*
8089 	 * If the instruction failed on the error pfn, it can not be fixed,
8090 	 * report the error to userspace.
8091 	 */
8092 	if (is_error_noslot_pfn(pfn))
8093 		return false;
8094 
8095 	kvm_release_pfn_clean(pfn);
8096 
8097 	/* The instructions are well-emulated on direct mmu. */
8098 	if (vcpu->arch.mmu->direct_map) {
8099 		unsigned int indirect_shadow_pages;
8100 
8101 		write_lock(&vcpu->kvm->mmu_lock);
8102 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8103 		write_unlock(&vcpu->kvm->mmu_lock);
8104 
8105 		if (indirect_shadow_pages)
8106 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8107 
8108 		return true;
8109 	}
8110 
8111 	/*
8112 	 * if emulation was due to access to shadowed page table
8113 	 * and it failed try to unshadow page and re-enter the
8114 	 * guest to let CPU execute the instruction.
8115 	 */
8116 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8117 
8118 	/*
8119 	 * If the access faults on its page table, it can not
8120 	 * be fixed by unprotecting shadow page and it should
8121 	 * be reported to userspace.
8122 	 */
8123 	return !write_fault_to_shadow_pgtable;
8124 }
8125 
8126 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8127 			      gpa_t cr2_or_gpa,  int emulation_type)
8128 {
8129 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8130 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8131 
8132 	last_retry_eip = vcpu->arch.last_retry_eip;
8133 	last_retry_addr = vcpu->arch.last_retry_addr;
8134 
8135 	/*
8136 	 * If the emulation is caused by #PF and it is non-page_table
8137 	 * writing instruction, it means the VM-EXIT is caused by shadow
8138 	 * page protected, we can zap the shadow page and retry this
8139 	 * instruction directly.
8140 	 *
8141 	 * Note: if the guest uses a non-page-table modifying instruction
8142 	 * on the PDE that points to the instruction, then we will unmap
8143 	 * the instruction and go to an infinite loop. So, we cache the
8144 	 * last retried eip and the last fault address, if we meet the eip
8145 	 * and the address again, we can break out of the potential infinite
8146 	 * loop.
8147 	 */
8148 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8149 
8150 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8151 		return false;
8152 
8153 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8154 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8155 		return false;
8156 
8157 	if (x86_page_table_writing_insn(ctxt))
8158 		return false;
8159 
8160 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8161 		return false;
8162 
8163 	vcpu->arch.last_retry_eip = ctxt->eip;
8164 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8165 
8166 	if (!vcpu->arch.mmu->direct_map)
8167 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8168 
8169 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8170 
8171 	return true;
8172 }
8173 
8174 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8175 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8176 
8177 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8178 {
8179 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8180 
8181 	if (entering_smm) {
8182 		vcpu->arch.hflags |= HF_SMM_MASK;
8183 	} else {
8184 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8185 
8186 		/* Process a latched INIT or SMI, if any.  */
8187 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8188 
8189 		/*
8190 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8191 		 * on SMM exit we still need to reload them from
8192 		 * guest memory
8193 		 */
8194 		vcpu->arch.pdptrs_from_userspace = false;
8195 	}
8196 
8197 	kvm_mmu_reset_context(vcpu);
8198 }
8199 
8200 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8201 				unsigned long *db)
8202 {
8203 	u32 dr6 = 0;
8204 	int i;
8205 	u32 enable, rwlen;
8206 
8207 	enable = dr7;
8208 	rwlen = dr7 >> 16;
8209 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8210 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8211 			dr6 |= (1 << i);
8212 	return dr6;
8213 }
8214 
8215 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8216 {
8217 	struct kvm_run *kvm_run = vcpu->run;
8218 
8219 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8220 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8221 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8222 		kvm_run->debug.arch.exception = DB_VECTOR;
8223 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8224 		return 0;
8225 	}
8226 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8227 	return 1;
8228 }
8229 
8230 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8231 {
8232 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8233 	int r;
8234 
8235 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8236 	if (unlikely(!r))
8237 		return 0;
8238 
8239 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8240 
8241 	/*
8242 	 * rflags is the old, "raw" value of the flags.  The new value has
8243 	 * not been saved yet.
8244 	 *
8245 	 * This is correct even for TF set by the guest, because "the
8246 	 * processor will not generate this exception after the instruction
8247 	 * that sets the TF flag".
8248 	 */
8249 	if (unlikely(rflags & X86_EFLAGS_TF))
8250 		r = kvm_vcpu_do_singlestep(vcpu);
8251 	return r;
8252 }
8253 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8254 
8255 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8256 {
8257 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8258 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8259 		struct kvm_run *kvm_run = vcpu->run;
8260 		unsigned long eip = kvm_get_linear_rip(vcpu);
8261 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8262 					   vcpu->arch.guest_debug_dr7,
8263 					   vcpu->arch.eff_db);
8264 
8265 		if (dr6 != 0) {
8266 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8267 			kvm_run->debug.arch.pc = eip;
8268 			kvm_run->debug.arch.exception = DB_VECTOR;
8269 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8270 			*r = 0;
8271 			return true;
8272 		}
8273 	}
8274 
8275 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8276 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8277 		unsigned long eip = kvm_get_linear_rip(vcpu);
8278 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8279 					   vcpu->arch.dr7,
8280 					   vcpu->arch.db);
8281 
8282 		if (dr6 != 0) {
8283 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8284 			*r = 1;
8285 			return true;
8286 		}
8287 	}
8288 
8289 	return false;
8290 }
8291 
8292 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8293 {
8294 	switch (ctxt->opcode_len) {
8295 	case 1:
8296 		switch (ctxt->b) {
8297 		case 0xe4:	/* IN */
8298 		case 0xe5:
8299 		case 0xec:
8300 		case 0xed:
8301 		case 0xe6:	/* OUT */
8302 		case 0xe7:
8303 		case 0xee:
8304 		case 0xef:
8305 		case 0x6c:	/* INS */
8306 		case 0x6d:
8307 		case 0x6e:	/* OUTS */
8308 		case 0x6f:
8309 			return true;
8310 		}
8311 		break;
8312 	case 2:
8313 		switch (ctxt->b) {
8314 		case 0x33:	/* RDPMC */
8315 			return true;
8316 		}
8317 		break;
8318 	}
8319 
8320 	return false;
8321 }
8322 
8323 /*
8324  * Decode to be emulated instruction. Return EMULATION_OK if success.
8325  */
8326 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8327 				    void *insn, int insn_len)
8328 {
8329 	int r = EMULATION_OK;
8330 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8331 
8332 	init_emulate_ctxt(vcpu);
8333 
8334 	/*
8335 	 * We will reenter on the same instruction since we do not set
8336 	 * complete_userspace_io. This does not handle watchpoints yet,
8337 	 * those would be handled in the emulate_ops.
8338 	 */
8339 	if (!(emulation_type & EMULTYPE_SKIP) &&
8340 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8341 		return r;
8342 
8343 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8344 
8345 	trace_kvm_emulate_insn_start(vcpu);
8346 	++vcpu->stat.insn_emulation;
8347 
8348 	return r;
8349 }
8350 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8351 
8352 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8353 			    int emulation_type, void *insn, int insn_len)
8354 {
8355 	int r;
8356 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8357 	bool writeback = true;
8358 	bool write_fault_to_spt;
8359 
8360 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8361 		return 1;
8362 
8363 	vcpu->arch.l1tf_flush_l1d = true;
8364 
8365 	/*
8366 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8367 	 * never reused.
8368 	 */
8369 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8370 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8371 
8372 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8373 		kvm_clear_exception_queue(vcpu);
8374 
8375 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8376 						    insn, insn_len);
8377 		if (r != EMULATION_OK)  {
8378 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8379 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8380 				kvm_queue_exception(vcpu, UD_VECTOR);
8381 				return 1;
8382 			}
8383 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8384 						  write_fault_to_spt,
8385 						  emulation_type))
8386 				return 1;
8387 			if (ctxt->have_exception) {
8388 				/*
8389 				 * #UD should result in just EMULATION_FAILED, and trap-like
8390 				 * exception should not be encountered during decode.
8391 				 */
8392 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8393 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8394 				inject_emulated_exception(vcpu);
8395 				return 1;
8396 			}
8397 			return handle_emulation_failure(vcpu, emulation_type);
8398 		}
8399 	}
8400 
8401 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8402 	    !is_vmware_backdoor_opcode(ctxt)) {
8403 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8404 		return 1;
8405 	}
8406 
8407 	/*
8408 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8409 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8410 	 * The caller is responsible for updating interruptibility state and
8411 	 * injecting single-step #DBs.
8412 	 */
8413 	if (emulation_type & EMULTYPE_SKIP) {
8414 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8415 			ctxt->eip = (u32)ctxt->_eip;
8416 		else
8417 			ctxt->eip = ctxt->_eip;
8418 
8419 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8420 			r = 1;
8421 			goto writeback;
8422 		}
8423 
8424 		kvm_rip_write(vcpu, ctxt->eip);
8425 		if (ctxt->eflags & X86_EFLAGS_RF)
8426 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8427 		return 1;
8428 	}
8429 
8430 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8431 		return 1;
8432 
8433 	/* this is needed for vmware backdoor interface to work since it
8434 	   changes registers values  during IO operation */
8435 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8436 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8437 		emulator_invalidate_register_cache(ctxt);
8438 	}
8439 
8440 restart:
8441 	if (emulation_type & EMULTYPE_PF) {
8442 		/* Save the faulting GPA (cr2) in the address field */
8443 		ctxt->exception.address = cr2_or_gpa;
8444 
8445 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8446 		if (vcpu->arch.mmu->direct_map) {
8447 			ctxt->gpa_available = true;
8448 			ctxt->gpa_val = cr2_or_gpa;
8449 		}
8450 	} else {
8451 		/* Sanitize the address out of an abundance of paranoia. */
8452 		ctxt->exception.address = 0;
8453 	}
8454 
8455 	r = x86_emulate_insn(ctxt);
8456 
8457 	if (r == EMULATION_INTERCEPTED)
8458 		return 1;
8459 
8460 	if (r == EMULATION_FAILED) {
8461 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8462 					emulation_type))
8463 			return 1;
8464 
8465 		return handle_emulation_failure(vcpu, emulation_type);
8466 	}
8467 
8468 	if (ctxt->have_exception) {
8469 		r = 1;
8470 		if (inject_emulated_exception(vcpu))
8471 			return r;
8472 	} else if (vcpu->arch.pio.count) {
8473 		if (!vcpu->arch.pio.in) {
8474 			/* FIXME: return into emulator if single-stepping.  */
8475 			vcpu->arch.pio.count = 0;
8476 		} else {
8477 			writeback = false;
8478 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8479 		}
8480 		r = 0;
8481 	} else if (vcpu->mmio_needed) {
8482 		++vcpu->stat.mmio_exits;
8483 
8484 		if (!vcpu->mmio_is_write)
8485 			writeback = false;
8486 		r = 0;
8487 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8488 	} else if (vcpu->arch.complete_userspace_io) {
8489 		writeback = false;
8490 		r = 0;
8491 	} else if (r == EMULATION_RESTART)
8492 		goto restart;
8493 	else
8494 		r = 1;
8495 
8496 writeback:
8497 	if (writeback) {
8498 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8499 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8500 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8501 		if (!ctxt->have_exception ||
8502 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8503 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8504 			if (ctxt->is_branch)
8505 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8506 			kvm_rip_write(vcpu, ctxt->eip);
8507 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8508 				r = kvm_vcpu_do_singlestep(vcpu);
8509 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8510 			__kvm_set_rflags(vcpu, ctxt->eflags);
8511 		}
8512 
8513 		/*
8514 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8515 		 * do nothing, and it will be requested again as soon as
8516 		 * the shadow expires.  But we still need to check here,
8517 		 * because POPF has no interrupt shadow.
8518 		 */
8519 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8520 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8521 	} else
8522 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8523 
8524 	return r;
8525 }
8526 
8527 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8528 {
8529 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8530 }
8531 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8532 
8533 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8534 					void *insn, int insn_len)
8535 {
8536 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8537 }
8538 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8539 
8540 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8541 {
8542 	vcpu->arch.pio.count = 0;
8543 	return 1;
8544 }
8545 
8546 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8547 {
8548 	vcpu->arch.pio.count = 0;
8549 
8550 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8551 		return 1;
8552 
8553 	return kvm_skip_emulated_instruction(vcpu);
8554 }
8555 
8556 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8557 			    unsigned short port)
8558 {
8559 	unsigned long val = kvm_rax_read(vcpu);
8560 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8561 
8562 	if (ret)
8563 		return ret;
8564 
8565 	/*
8566 	 * Workaround userspace that relies on old KVM behavior of %rip being
8567 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8568 	 */
8569 	if (port == 0x7e &&
8570 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8571 		vcpu->arch.complete_userspace_io =
8572 			complete_fast_pio_out_port_0x7e;
8573 		kvm_skip_emulated_instruction(vcpu);
8574 	} else {
8575 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8576 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8577 	}
8578 	return 0;
8579 }
8580 
8581 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8582 {
8583 	unsigned long val;
8584 
8585 	/* We should only ever be called with arch.pio.count equal to 1 */
8586 	BUG_ON(vcpu->arch.pio.count != 1);
8587 
8588 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8589 		vcpu->arch.pio.count = 0;
8590 		return 1;
8591 	}
8592 
8593 	/* For size less than 4 we merge, else we zero extend */
8594 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8595 
8596 	/*
8597 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8598 	 * the copy and tracing
8599 	 */
8600 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8601 	kvm_rax_write(vcpu, val);
8602 
8603 	return kvm_skip_emulated_instruction(vcpu);
8604 }
8605 
8606 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8607 			   unsigned short port)
8608 {
8609 	unsigned long val;
8610 	int ret;
8611 
8612 	/* For size less than 4 we merge, else we zero extend */
8613 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8614 
8615 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8616 	if (ret) {
8617 		kvm_rax_write(vcpu, val);
8618 		return ret;
8619 	}
8620 
8621 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8622 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8623 
8624 	return 0;
8625 }
8626 
8627 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8628 {
8629 	int ret;
8630 
8631 	if (in)
8632 		ret = kvm_fast_pio_in(vcpu, size, port);
8633 	else
8634 		ret = kvm_fast_pio_out(vcpu, size, port);
8635 	return ret && kvm_skip_emulated_instruction(vcpu);
8636 }
8637 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8638 
8639 static int kvmclock_cpu_down_prep(unsigned int cpu)
8640 {
8641 	__this_cpu_write(cpu_tsc_khz, 0);
8642 	return 0;
8643 }
8644 
8645 static void tsc_khz_changed(void *data)
8646 {
8647 	struct cpufreq_freqs *freq = data;
8648 	unsigned long khz = 0;
8649 
8650 	if (data)
8651 		khz = freq->new;
8652 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8653 		khz = cpufreq_quick_get(raw_smp_processor_id());
8654 	if (!khz)
8655 		khz = tsc_khz;
8656 	__this_cpu_write(cpu_tsc_khz, khz);
8657 }
8658 
8659 #ifdef CONFIG_X86_64
8660 static void kvm_hyperv_tsc_notifier(void)
8661 {
8662 	struct kvm *kvm;
8663 	int cpu;
8664 
8665 	mutex_lock(&kvm_lock);
8666 	list_for_each_entry(kvm, &vm_list, vm_list)
8667 		kvm_make_mclock_inprogress_request(kvm);
8668 
8669 	/* no guest entries from this point */
8670 	hyperv_stop_tsc_emulation();
8671 
8672 	/* TSC frequency always matches when on Hyper-V */
8673 	for_each_present_cpu(cpu)
8674 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8675 	kvm_max_guest_tsc_khz = tsc_khz;
8676 
8677 	list_for_each_entry(kvm, &vm_list, vm_list) {
8678 		__kvm_start_pvclock_update(kvm);
8679 		pvclock_update_vm_gtod_copy(kvm);
8680 		kvm_end_pvclock_update(kvm);
8681 	}
8682 
8683 	mutex_unlock(&kvm_lock);
8684 }
8685 #endif
8686 
8687 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8688 {
8689 	struct kvm *kvm;
8690 	struct kvm_vcpu *vcpu;
8691 	int send_ipi = 0;
8692 	unsigned long i;
8693 
8694 	/*
8695 	 * We allow guests to temporarily run on slowing clocks,
8696 	 * provided we notify them after, or to run on accelerating
8697 	 * clocks, provided we notify them before.  Thus time never
8698 	 * goes backwards.
8699 	 *
8700 	 * However, we have a problem.  We can't atomically update
8701 	 * the frequency of a given CPU from this function; it is
8702 	 * merely a notifier, which can be called from any CPU.
8703 	 * Changing the TSC frequency at arbitrary points in time
8704 	 * requires a recomputation of local variables related to
8705 	 * the TSC for each VCPU.  We must flag these local variables
8706 	 * to be updated and be sure the update takes place with the
8707 	 * new frequency before any guests proceed.
8708 	 *
8709 	 * Unfortunately, the combination of hotplug CPU and frequency
8710 	 * change creates an intractable locking scenario; the order
8711 	 * of when these callouts happen is undefined with respect to
8712 	 * CPU hotplug, and they can race with each other.  As such,
8713 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8714 	 * undefined; you can actually have a CPU frequency change take
8715 	 * place in between the computation of X and the setting of the
8716 	 * variable.  To protect against this problem, all updates of
8717 	 * the per_cpu tsc_khz variable are done in an interrupt
8718 	 * protected IPI, and all callers wishing to update the value
8719 	 * must wait for a synchronous IPI to complete (which is trivial
8720 	 * if the caller is on the CPU already).  This establishes the
8721 	 * necessary total order on variable updates.
8722 	 *
8723 	 * Note that because a guest time update may take place
8724 	 * anytime after the setting of the VCPU's request bit, the
8725 	 * correct TSC value must be set before the request.  However,
8726 	 * to ensure the update actually makes it to any guest which
8727 	 * starts running in hardware virtualization between the set
8728 	 * and the acquisition of the spinlock, we must also ping the
8729 	 * CPU after setting the request bit.
8730 	 *
8731 	 */
8732 
8733 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8734 
8735 	mutex_lock(&kvm_lock);
8736 	list_for_each_entry(kvm, &vm_list, vm_list) {
8737 		kvm_for_each_vcpu(i, vcpu, kvm) {
8738 			if (vcpu->cpu != cpu)
8739 				continue;
8740 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8741 			if (vcpu->cpu != raw_smp_processor_id())
8742 				send_ipi = 1;
8743 		}
8744 	}
8745 	mutex_unlock(&kvm_lock);
8746 
8747 	if (freq->old < freq->new && send_ipi) {
8748 		/*
8749 		 * We upscale the frequency.  Must make the guest
8750 		 * doesn't see old kvmclock values while running with
8751 		 * the new frequency, otherwise we risk the guest sees
8752 		 * time go backwards.
8753 		 *
8754 		 * In case we update the frequency for another cpu
8755 		 * (which might be in guest context) send an interrupt
8756 		 * to kick the cpu out of guest context.  Next time
8757 		 * guest context is entered kvmclock will be updated,
8758 		 * so the guest will not see stale values.
8759 		 */
8760 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8761 	}
8762 }
8763 
8764 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8765 				     void *data)
8766 {
8767 	struct cpufreq_freqs *freq = data;
8768 	int cpu;
8769 
8770 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8771 		return 0;
8772 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8773 		return 0;
8774 
8775 	for_each_cpu(cpu, freq->policy->cpus)
8776 		__kvmclock_cpufreq_notifier(freq, cpu);
8777 
8778 	return 0;
8779 }
8780 
8781 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8782 	.notifier_call  = kvmclock_cpufreq_notifier
8783 };
8784 
8785 static int kvmclock_cpu_online(unsigned int cpu)
8786 {
8787 	tsc_khz_changed(NULL);
8788 	return 0;
8789 }
8790 
8791 static void kvm_timer_init(void)
8792 {
8793 	max_tsc_khz = tsc_khz;
8794 
8795 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8796 #ifdef CONFIG_CPU_FREQ
8797 		struct cpufreq_policy *policy;
8798 		int cpu;
8799 
8800 		cpu = get_cpu();
8801 		policy = cpufreq_cpu_get(cpu);
8802 		if (policy) {
8803 			if (policy->cpuinfo.max_freq)
8804 				max_tsc_khz = policy->cpuinfo.max_freq;
8805 			cpufreq_cpu_put(policy);
8806 		}
8807 		put_cpu();
8808 #endif
8809 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8810 					  CPUFREQ_TRANSITION_NOTIFIER);
8811 	}
8812 
8813 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8814 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8815 }
8816 
8817 #ifdef CONFIG_X86_64
8818 static void pvclock_gtod_update_fn(struct work_struct *work)
8819 {
8820 	struct kvm *kvm;
8821 	struct kvm_vcpu *vcpu;
8822 	unsigned long i;
8823 
8824 	mutex_lock(&kvm_lock);
8825 	list_for_each_entry(kvm, &vm_list, vm_list)
8826 		kvm_for_each_vcpu(i, vcpu, kvm)
8827 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8828 	atomic_set(&kvm_guest_has_master_clock, 0);
8829 	mutex_unlock(&kvm_lock);
8830 }
8831 
8832 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8833 
8834 /*
8835  * Indirection to move queue_work() out of the tk_core.seq write held
8836  * region to prevent possible deadlocks against time accessors which
8837  * are invoked with work related locks held.
8838  */
8839 static void pvclock_irq_work_fn(struct irq_work *w)
8840 {
8841 	queue_work(system_long_wq, &pvclock_gtod_work);
8842 }
8843 
8844 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8845 
8846 /*
8847  * Notification about pvclock gtod data update.
8848  */
8849 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8850 			       void *priv)
8851 {
8852 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8853 	struct timekeeper *tk = priv;
8854 
8855 	update_pvclock_gtod(tk);
8856 
8857 	/*
8858 	 * Disable master clock if host does not trust, or does not use,
8859 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8860 	 * this is invoked with tk_core.seq write held.
8861 	 */
8862 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8863 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8864 		irq_work_queue(&pvclock_irq_work);
8865 	return 0;
8866 }
8867 
8868 static struct notifier_block pvclock_gtod_notifier = {
8869 	.notifier_call = pvclock_gtod_notify,
8870 };
8871 #endif
8872 
8873 int kvm_arch_init(void *opaque)
8874 {
8875 	struct kvm_x86_init_ops *ops = opaque;
8876 	int r;
8877 
8878 	if (kvm_x86_ops.hardware_enable) {
8879 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8880 		r = -EEXIST;
8881 		goto out;
8882 	}
8883 
8884 	if (!ops->cpu_has_kvm_support()) {
8885 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8886 				   ops->runtime_ops->name);
8887 		r = -EOPNOTSUPP;
8888 		goto out;
8889 	}
8890 	if (ops->disabled_by_bios()) {
8891 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8892 				   ops->runtime_ops->name);
8893 		r = -EOPNOTSUPP;
8894 		goto out;
8895 	}
8896 
8897 	/*
8898 	 * KVM explicitly assumes that the guest has an FPU and
8899 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8900 	 * vCPU's FPU state as a fxregs_state struct.
8901 	 */
8902 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8903 		printk(KERN_ERR "kvm: inadequate fpu\n");
8904 		r = -EOPNOTSUPP;
8905 		goto out;
8906 	}
8907 
8908 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8909 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8910 		r = -EOPNOTSUPP;
8911 		goto out;
8912 	}
8913 
8914 	r = -ENOMEM;
8915 
8916 	x86_emulator_cache = kvm_alloc_emulator_cache();
8917 	if (!x86_emulator_cache) {
8918 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8919 		goto out;
8920 	}
8921 
8922 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8923 	if (!user_return_msrs) {
8924 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8925 		goto out_free_x86_emulator_cache;
8926 	}
8927 	kvm_nr_uret_msrs = 0;
8928 
8929 	r = kvm_mmu_module_init();
8930 	if (r)
8931 		goto out_free_percpu;
8932 
8933 	kvm_timer_init();
8934 
8935 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8936 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8937 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8938 	}
8939 
8940 	if (pi_inject_timer == -1)
8941 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
8942 #ifdef CONFIG_X86_64
8943 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8944 
8945 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8946 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8947 #endif
8948 
8949 	return 0;
8950 
8951 out_free_percpu:
8952 	free_percpu(user_return_msrs);
8953 out_free_x86_emulator_cache:
8954 	kmem_cache_destroy(x86_emulator_cache);
8955 out:
8956 	return r;
8957 }
8958 
8959 void kvm_arch_exit(void)
8960 {
8961 #ifdef CONFIG_X86_64
8962 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8963 		clear_hv_tscchange_cb();
8964 #endif
8965 	kvm_lapic_exit();
8966 
8967 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8968 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8969 					    CPUFREQ_TRANSITION_NOTIFIER);
8970 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8971 #ifdef CONFIG_X86_64
8972 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8973 	irq_work_sync(&pvclock_irq_work);
8974 	cancel_work_sync(&pvclock_gtod_work);
8975 #endif
8976 	kvm_x86_ops.hardware_enable = NULL;
8977 	kvm_mmu_module_exit();
8978 	free_percpu(user_return_msrs);
8979 	kmem_cache_destroy(x86_emulator_cache);
8980 #ifdef CONFIG_KVM_XEN
8981 	static_key_deferred_flush(&kvm_xen_enabled);
8982 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8983 #endif
8984 }
8985 
8986 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8987 {
8988 	/*
8989 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8990 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8991 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8992 	 * managed by userspace, in which case userspace is responsible for
8993 	 * handling wake events.
8994 	 */
8995 	++vcpu->stat.halt_exits;
8996 	if (lapic_in_kernel(vcpu)) {
8997 		vcpu->arch.mp_state = state;
8998 		return 1;
8999 	} else {
9000 		vcpu->run->exit_reason = reason;
9001 		return 0;
9002 	}
9003 }
9004 
9005 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9006 {
9007 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9008 }
9009 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9010 
9011 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9012 {
9013 	int ret = kvm_skip_emulated_instruction(vcpu);
9014 	/*
9015 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9016 	 * KVM_EXIT_DEBUG here.
9017 	 */
9018 	return kvm_emulate_halt_noskip(vcpu) && ret;
9019 }
9020 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9021 
9022 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9023 {
9024 	int ret = kvm_skip_emulated_instruction(vcpu);
9025 
9026 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9027 					KVM_EXIT_AP_RESET_HOLD) && ret;
9028 }
9029 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9030 
9031 #ifdef CONFIG_X86_64
9032 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9033 			        unsigned long clock_type)
9034 {
9035 	struct kvm_clock_pairing clock_pairing;
9036 	struct timespec64 ts;
9037 	u64 cycle;
9038 	int ret;
9039 
9040 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9041 		return -KVM_EOPNOTSUPP;
9042 
9043 	/*
9044 	 * When tsc is in permanent catchup mode guests won't be able to use
9045 	 * pvclock_read_retry loop to get consistent view of pvclock
9046 	 */
9047 	if (vcpu->arch.tsc_always_catchup)
9048 		return -KVM_EOPNOTSUPP;
9049 
9050 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9051 		return -KVM_EOPNOTSUPP;
9052 
9053 	clock_pairing.sec = ts.tv_sec;
9054 	clock_pairing.nsec = ts.tv_nsec;
9055 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9056 	clock_pairing.flags = 0;
9057 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9058 
9059 	ret = 0;
9060 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9061 			    sizeof(struct kvm_clock_pairing)))
9062 		ret = -KVM_EFAULT;
9063 
9064 	return ret;
9065 }
9066 #endif
9067 
9068 /*
9069  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9070  *
9071  * @apicid - apicid of vcpu to be kicked.
9072  */
9073 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9074 {
9075 	struct kvm_lapic_irq lapic_irq;
9076 
9077 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9078 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9079 	lapic_irq.level = 0;
9080 	lapic_irq.dest_id = apicid;
9081 	lapic_irq.msi_redir_hint = false;
9082 
9083 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9084 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9085 }
9086 
9087 bool kvm_apicv_activated(struct kvm *kvm)
9088 {
9089 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9092 
9093 
9094 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9095 				       enum kvm_apicv_inhibit reason, bool set)
9096 {
9097 	if (set)
9098 		__set_bit(reason, inhibits);
9099 	else
9100 		__clear_bit(reason, inhibits);
9101 
9102 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9103 }
9104 
9105 static void kvm_apicv_init(struct kvm *kvm)
9106 {
9107 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9108 
9109 	init_rwsem(&kvm->arch.apicv_update_lock);
9110 
9111 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9112 
9113 	if (!enable_apicv)
9114 		set_or_clear_apicv_inhibit(inhibits,
9115 					   APICV_INHIBIT_REASON_ABSENT, true);
9116 }
9117 
9118 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9119 {
9120 	struct kvm_vcpu *target = NULL;
9121 	struct kvm_apic_map *map;
9122 
9123 	vcpu->stat.directed_yield_attempted++;
9124 
9125 	if (single_task_running())
9126 		goto no_yield;
9127 
9128 	rcu_read_lock();
9129 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9130 
9131 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9132 		target = map->phys_map[dest_id]->vcpu;
9133 
9134 	rcu_read_unlock();
9135 
9136 	if (!target || !READ_ONCE(target->ready))
9137 		goto no_yield;
9138 
9139 	/* Ignore requests to yield to self */
9140 	if (vcpu == target)
9141 		goto no_yield;
9142 
9143 	if (kvm_vcpu_yield_to(target) <= 0)
9144 		goto no_yield;
9145 
9146 	vcpu->stat.directed_yield_successful++;
9147 
9148 no_yield:
9149 	return;
9150 }
9151 
9152 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9153 {
9154 	u64 ret = vcpu->run->hypercall.ret;
9155 
9156 	if (!is_64_bit_mode(vcpu))
9157 		ret = (u32)ret;
9158 	kvm_rax_write(vcpu, ret);
9159 	++vcpu->stat.hypercalls;
9160 	return kvm_skip_emulated_instruction(vcpu);
9161 }
9162 
9163 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9164 {
9165 	unsigned long nr, a0, a1, a2, a3, ret;
9166 	int op_64_bit;
9167 
9168 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9169 		return kvm_xen_hypercall(vcpu);
9170 
9171 	if (kvm_hv_hypercall_enabled(vcpu))
9172 		return kvm_hv_hypercall(vcpu);
9173 
9174 	nr = kvm_rax_read(vcpu);
9175 	a0 = kvm_rbx_read(vcpu);
9176 	a1 = kvm_rcx_read(vcpu);
9177 	a2 = kvm_rdx_read(vcpu);
9178 	a3 = kvm_rsi_read(vcpu);
9179 
9180 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9181 
9182 	op_64_bit = is_64_bit_hypercall(vcpu);
9183 	if (!op_64_bit) {
9184 		nr &= 0xFFFFFFFF;
9185 		a0 &= 0xFFFFFFFF;
9186 		a1 &= 0xFFFFFFFF;
9187 		a2 &= 0xFFFFFFFF;
9188 		a3 &= 0xFFFFFFFF;
9189 	}
9190 
9191 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9192 		ret = -KVM_EPERM;
9193 		goto out;
9194 	}
9195 
9196 	ret = -KVM_ENOSYS;
9197 
9198 	switch (nr) {
9199 	case KVM_HC_VAPIC_POLL_IRQ:
9200 		ret = 0;
9201 		break;
9202 	case KVM_HC_KICK_CPU:
9203 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9204 			break;
9205 
9206 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9207 		kvm_sched_yield(vcpu, a1);
9208 		ret = 0;
9209 		break;
9210 #ifdef CONFIG_X86_64
9211 	case KVM_HC_CLOCK_PAIRING:
9212 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9213 		break;
9214 #endif
9215 	case KVM_HC_SEND_IPI:
9216 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9217 			break;
9218 
9219 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9220 		break;
9221 	case KVM_HC_SCHED_YIELD:
9222 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9223 			break;
9224 
9225 		kvm_sched_yield(vcpu, a0);
9226 		ret = 0;
9227 		break;
9228 	case KVM_HC_MAP_GPA_RANGE: {
9229 		u64 gpa = a0, npages = a1, attrs = a2;
9230 
9231 		ret = -KVM_ENOSYS;
9232 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9233 			break;
9234 
9235 		if (!PAGE_ALIGNED(gpa) || !npages ||
9236 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9237 			ret = -KVM_EINVAL;
9238 			break;
9239 		}
9240 
9241 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9242 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9243 		vcpu->run->hypercall.args[0]  = gpa;
9244 		vcpu->run->hypercall.args[1]  = npages;
9245 		vcpu->run->hypercall.args[2]  = attrs;
9246 		vcpu->run->hypercall.longmode = op_64_bit;
9247 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9248 		return 0;
9249 	}
9250 	default:
9251 		ret = -KVM_ENOSYS;
9252 		break;
9253 	}
9254 out:
9255 	if (!op_64_bit)
9256 		ret = (u32)ret;
9257 	kvm_rax_write(vcpu, ret);
9258 
9259 	++vcpu->stat.hypercalls;
9260 	return kvm_skip_emulated_instruction(vcpu);
9261 }
9262 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9263 
9264 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9265 {
9266 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9267 	char instruction[3];
9268 	unsigned long rip = kvm_rip_read(vcpu);
9269 
9270 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9271 
9272 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9273 		&ctxt->exception);
9274 }
9275 
9276 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9277 {
9278 	return vcpu->run->request_interrupt_window &&
9279 		likely(!pic_in_kernel(vcpu->kvm));
9280 }
9281 
9282 /* Called within kvm->srcu read side.  */
9283 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9284 {
9285 	struct kvm_run *kvm_run = vcpu->run;
9286 
9287 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9288 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9289 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9290 
9291 	kvm_run->ready_for_interrupt_injection =
9292 		pic_in_kernel(vcpu->kvm) ||
9293 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9294 
9295 	if (is_smm(vcpu))
9296 		kvm_run->flags |= KVM_RUN_X86_SMM;
9297 }
9298 
9299 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9300 {
9301 	int max_irr, tpr;
9302 
9303 	if (!kvm_x86_ops.update_cr8_intercept)
9304 		return;
9305 
9306 	if (!lapic_in_kernel(vcpu))
9307 		return;
9308 
9309 	if (vcpu->arch.apicv_active)
9310 		return;
9311 
9312 	if (!vcpu->arch.apic->vapic_addr)
9313 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9314 	else
9315 		max_irr = -1;
9316 
9317 	if (max_irr != -1)
9318 		max_irr >>= 4;
9319 
9320 	tpr = kvm_lapic_get_cr8(vcpu);
9321 
9322 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9323 }
9324 
9325 
9326 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9327 {
9328 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9329 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9330 		return 1;
9331 	}
9332 
9333 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9334 }
9335 
9336 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9337 {
9338 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9339 		vcpu->arch.exception.error_code = false;
9340 	static_call(kvm_x86_queue_exception)(vcpu);
9341 }
9342 
9343 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9344 {
9345 	int r;
9346 	bool can_inject = true;
9347 
9348 	/* try to reinject previous events if any */
9349 
9350 	if (vcpu->arch.exception.injected) {
9351 		kvm_inject_exception(vcpu);
9352 		can_inject = false;
9353 	}
9354 	/*
9355 	 * Do not inject an NMI or interrupt if there is a pending
9356 	 * exception.  Exceptions and interrupts are recognized at
9357 	 * instruction boundaries, i.e. the start of an instruction.
9358 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9359 	 * NMIs and interrupts, i.e. traps are recognized before an
9360 	 * NMI/interrupt that's pending on the same instruction.
9361 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9362 	 * priority, but are only generated (pended) during instruction
9363 	 * execution, i.e. a pending fault-like exception means the
9364 	 * fault occurred on the *previous* instruction and must be
9365 	 * serviced prior to recognizing any new events in order to
9366 	 * fully complete the previous instruction.
9367 	 */
9368 	else if (!vcpu->arch.exception.pending) {
9369 		if (vcpu->arch.nmi_injected) {
9370 			static_call(kvm_x86_inject_nmi)(vcpu);
9371 			can_inject = false;
9372 		} else if (vcpu->arch.interrupt.injected) {
9373 			static_call(kvm_x86_inject_irq)(vcpu);
9374 			can_inject = false;
9375 		}
9376 	}
9377 
9378 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9379 		     vcpu->arch.exception.pending);
9380 
9381 	/*
9382 	 * Call check_nested_events() even if we reinjected a previous event
9383 	 * in order for caller to determine if it should require immediate-exit
9384 	 * from L2 to L1 due to pending L1 events which require exit
9385 	 * from L2 to L1.
9386 	 */
9387 	if (is_guest_mode(vcpu)) {
9388 		r = kvm_check_nested_events(vcpu);
9389 		if (r < 0)
9390 			goto out;
9391 	}
9392 
9393 	/* try to inject new event if pending */
9394 	if (vcpu->arch.exception.pending) {
9395 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9396 					vcpu->arch.exception.has_error_code,
9397 					vcpu->arch.exception.error_code);
9398 
9399 		vcpu->arch.exception.pending = false;
9400 		vcpu->arch.exception.injected = true;
9401 
9402 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9403 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9404 					     X86_EFLAGS_RF);
9405 
9406 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9407 			kvm_deliver_exception_payload(vcpu);
9408 			if (vcpu->arch.dr7 & DR7_GD) {
9409 				vcpu->arch.dr7 &= ~DR7_GD;
9410 				kvm_update_dr7(vcpu);
9411 			}
9412 		}
9413 
9414 		kvm_inject_exception(vcpu);
9415 		can_inject = false;
9416 	}
9417 
9418 	/* Don't inject interrupts if the user asked to avoid doing so */
9419 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9420 		return 0;
9421 
9422 	/*
9423 	 * Finally, inject interrupt events.  If an event cannot be injected
9424 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9425 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9426 	 * and can architecturally be injected, but we cannot do it right now:
9427 	 * an interrupt could have arrived just now and we have to inject it
9428 	 * as a vmexit, or there could already an event in the queue, which is
9429 	 * indicated by can_inject.  In that case we request an immediate exit
9430 	 * in order to make progress and get back here for another iteration.
9431 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9432 	 */
9433 	if (vcpu->arch.smi_pending) {
9434 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9435 		if (r < 0)
9436 			goto out;
9437 		if (r) {
9438 			vcpu->arch.smi_pending = false;
9439 			++vcpu->arch.smi_count;
9440 			enter_smm(vcpu);
9441 			can_inject = false;
9442 		} else
9443 			static_call(kvm_x86_enable_smi_window)(vcpu);
9444 	}
9445 
9446 	if (vcpu->arch.nmi_pending) {
9447 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9448 		if (r < 0)
9449 			goto out;
9450 		if (r) {
9451 			--vcpu->arch.nmi_pending;
9452 			vcpu->arch.nmi_injected = true;
9453 			static_call(kvm_x86_inject_nmi)(vcpu);
9454 			can_inject = false;
9455 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9456 		}
9457 		if (vcpu->arch.nmi_pending)
9458 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9459 	}
9460 
9461 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9462 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9463 		if (r < 0)
9464 			goto out;
9465 		if (r) {
9466 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9467 			static_call(kvm_x86_inject_irq)(vcpu);
9468 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9469 		}
9470 		if (kvm_cpu_has_injectable_intr(vcpu))
9471 			static_call(kvm_x86_enable_irq_window)(vcpu);
9472 	}
9473 
9474 	if (is_guest_mode(vcpu) &&
9475 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9476 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9477 		*req_immediate_exit = true;
9478 
9479 	WARN_ON(vcpu->arch.exception.pending);
9480 	return 0;
9481 
9482 out:
9483 	if (r == -EBUSY) {
9484 		*req_immediate_exit = true;
9485 		r = 0;
9486 	}
9487 	return r;
9488 }
9489 
9490 static void process_nmi(struct kvm_vcpu *vcpu)
9491 {
9492 	unsigned limit = 2;
9493 
9494 	/*
9495 	 * x86 is limited to one NMI running, and one NMI pending after it.
9496 	 * If an NMI is already in progress, limit further NMIs to just one.
9497 	 * Otherwise, allow two (and we'll inject the first one immediately).
9498 	 */
9499 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9500 		limit = 1;
9501 
9502 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9503 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9504 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9505 }
9506 
9507 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9508 {
9509 	u32 flags = 0;
9510 	flags |= seg->g       << 23;
9511 	flags |= seg->db      << 22;
9512 	flags |= seg->l       << 21;
9513 	flags |= seg->avl     << 20;
9514 	flags |= seg->present << 15;
9515 	flags |= seg->dpl     << 13;
9516 	flags |= seg->s       << 12;
9517 	flags |= seg->type    << 8;
9518 	return flags;
9519 }
9520 
9521 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9522 {
9523 	struct kvm_segment seg;
9524 	int offset;
9525 
9526 	kvm_get_segment(vcpu, &seg, n);
9527 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9528 
9529 	if (n < 3)
9530 		offset = 0x7f84 + n * 12;
9531 	else
9532 		offset = 0x7f2c + (n - 3) * 12;
9533 
9534 	put_smstate(u32, buf, offset + 8, seg.base);
9535 	put_smstate(u32, buf, offset + 4, seg.limit);
9536 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9537 }
9538 
9539 #ifdef CONFIG_X86_64
9540 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9541 {
9542 	struct kvm_segment seg;
9543 	int offset;
9544 	u16 flags;
9545 
9546 	kvm_get_segment(vcpu, &seg, n);
9547 	offset = 0x7e00 + n * 16;
9548 
9549 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9550 	put_smstate(u16, buf, offset, seg.selector);
9551 	put_smstate(u16, buf, offset + 2, flags);
9552 	put_smstate(u32, buf, offset + 4, seg.limit);
9553 	put_smstate(u64, buf, offset + 8, seg.base);
9554 }
9555 #endif
9556 
9557 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9558 {
9559 	struct desc_ptr dt;
9560 	struct kvm_segment seg;
9561 	unsigned long val;
9562 	int i;
9563 
9564 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9565 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9566 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9567 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9568 
9569 	for (i = 0; i < 8; i++)
9570 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9571 
9572 	kvm_get_dr(vcpu, 6, &val);
9573 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9574 	kvm_get_dr(vcpu, 7, &val);
9575 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9576 
9577 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9578 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9579 	put_smstate(u32, buf, 0x7f64, seg.base);
9580 	put_smstate(u32, buf, 0x7f60, seg.limit);
9581 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9582 
9583 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9584 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9585 	put_smstate(u32, buf, 0x7f80, seg.base);
9586 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9587 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9588 
9589 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9590 	put_smstate(u32, buf, 0x7f74, dt.address);
9591 	put_smstate(u32, buf, 0x7f70, dt.size);
9592 
9593 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9594 	put_smstate(u32, buf, 0x7f58, dt.address);
9595 	put_smstate(u32, buf, 0x7f54, dt.size);
9596 
9597 	for (i = 0; i < 6; i++)
9598 		enter_smm_save_seg_32(vcpu, buf, i);
9599 
9600 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9601 
9602 	/* revision id */
9603 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9604 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9605 }
9606 
9607 #ifdef CONFIG_X86_64
9608 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9609 {
9610 	struct desc_ptr dt;
9611 	struct kvm_segment seg;
9612 	unsigned long val;
9613 	int i;
9614 
9615 	for (i = 0; i < 16; i++)
9616 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9617 
9618 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9619 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9620 
9621 	kvm_get_dr(vcpu, 6, &val);
9622 	put_smstate(u64, buf, 0x7f68, val);
9623 	kvm_get_dr(vcpu, 7, &val);
9624 	put_smstate(u64, buf, 0x7f60, val);
9625 
9626 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9627 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9628 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9629 
9630 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9631 
9632 	/* revision id */
9633 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9634 
9635 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9636 
9637 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9638 	put_smstate(u16, buf, 0x7e90, seg.selector);
9639 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9640 	put_smstate(u32, buf, 0x7e94, seg.limit);
9641 	put_smstate(u64, buf, 0x7e98, seg.base);
9642 
9643 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9644 	put_smstate(u32, buf, 0x7e84, dt.size);
9645 	put_smstate(u64, buf, 0x7e88, dt.address);
9646 
9647 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9648 	put_smstate(u16, buf, 0x7e70, seg.selector);
9649 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9650 	put_smstate(u32, buf, 0x7e74, seg.limit);
9651 	put_smstate(u64, buf, 0x7e78, seg.base);
9652 
9653 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9654 	put_smstate(u32, buf, 0x7e64, dt.size);
9655 	put_smstate(u64, buf, 0x7e68, dt.address);
9656 
9657 	for (i = 0; i < 6; i++)
9658 		enter_smm_save_seg_64(vcpu, buf, i);
9659 }
9660 #endif
9661 
9662 static void enter_smm(struct kvm_vcpu *vcpu)
9663 {
9664 	struct kvm_segment cs, ds;
9665 	struct desc_ptr dt;
9666 	unsigned long cr0;
9667 	char buf[512];
9668 
9669 	memset(buf, 0, 512);
9670 #ifdef CONFIG_X86_64
9671 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9672 		enter_smm_save_state_64(vcpu, buf);
9673 	else
9674 #endif
9675 		enter_smm_save_state_32(vcpu, buf);
9676 
9677 	/*
9678 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9679 	 * state (e.g. leave guest mode) after we've saved the state into the
9680 	 * SMM state-save area.
9681 	 */
9682 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9683 
9684 	kvm_smm_changed(vcpu, true);
9685 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9686 
9687 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9688 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9689 	else
9690 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9691 
9692 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9693 	kvm_rip_write(vcpu, 0x8000);
9694 
9695 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9696 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9697 	vcpu->arch.cr0 = cr0;
9698 
9699 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9700 
9701 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9702 	dt.address = dt.size = 0;
9703 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9704 
9705 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9706 
9707 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9708 	cs.base = vcpu->arch.smbase;
9709 
9710 	ds.selector = 0;
9711 	ds.base = 0;
9712 
9713 	cs.limit    = ds.limit = 0xffffffff;
9714 	cs.type     = ds.type = 0x3;
9715 	cs.dpl      = ds.dpl = 0;
9716 	cs.db       = ds.db = 0;
9717 	cs.s        = ds.s = 1;
9718 	cs.l        = ds.l = 0;
9719 	cs.g        = ds.g = 1;
9720 	cs.avl      = ds.avl = 0;
9721 	cs.present  = ds.present = 1;
9722 	cs.unusable = ds.unusable = 0;
9723 	cs.padding  = ds.padding = 0;
9724 
9725 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9726 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9727 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9728 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9729 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9730 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9731 
9732 #ifdef CONFIG_X86_64
9733 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9734 		static_call(kvm_x86_set_efer)(vcpu, 0);
9735 #endif
9736 
9737 	kvm_update_cpuid_runtime(vcpu);
9738 	kvm_mmu_reset_context(vcpu);
9739 }
9740 
9741 static void process_smi(struct kvm_vcpu *vcpu)
9742 {
9743 	vcpu->arch.smi_pending = true;
9744 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9745 }
9746 
9747 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9748 				       unsigned long *vcpu_bitmap)
9749 {
9750 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9751 }
9752 
9753 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9754 {
9755 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9756 }
9757 
9758 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9759 {
9760 	bool activate;
9761 
9762 	if (!lapic_in_kernel(vcpu))
9763 		return;
9764 
9765 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9766 
9767 	activate = kvm_apicv_activated(vcpu->kvm);
9768 	if (vcpu->arch.apicv_active == activate)
9769 		goto out;
9770 
9771 	vcpu->arch.apicv_active = activate;
9772 	kvm_apic_update_apicv(vcpu);
9773 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9774 
9775 	/*
9776 	 * When APICv gets disabled, we may still have injected interrupts
9777 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9778 	 * still active when the interrupt got accepted. Make sure
9779 	 * inject_pending_event() is called to check for that.
9780 	 */
9781 	if (!vcpu->arch.apicv_active)
9782 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9783 
9784 out:
9785 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9786 }
9787 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9788 
9789 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9790 				      enum kvm_apicv_inhibit reason, bool set)
9791 {
9792 	unsigned long old, new;
9793 
9794 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9795 
9796 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9797 		return;
9798 
9799 	old = new = kvm->arch.apicv_inhibit_reasons;
9800 
9801 	set_or_clear_apicv_inhibit(&new, reason, set);
9802 
9803 	if (!!old != !!new) {
9804 		/*
9805 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9806 		 * false positives in the sanity check WARN in svm_vcpu_run().
9807 		 * This task will wait for all vCPUs to ack the kick IRQ before
9808 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9809 		 * block on acquiring apicv_update_lock so that vCPUs can't
9810 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9811 		 *
9812 		 * Note, holding apicv_update_lock and taking it in the read
9813 		 * side (handling the request) also prevents other vCPUs from
9814 		 * servicing the request with a stale apicv_inhibit_reasons.
9815 		 */
9816 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9817 		kvm->arch.apicv_inhibit_reasons = new;
9818 		if (new) {
9819 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9820 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9821 		}
9822 	} else {
9823 		kvm->arch.apicv_inhibit_reasons = new;
9824 	}
9825 }
9826 
9827 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9828 				    enum kvm_apicv_inhibit reason, bool set)
9829 {
9830 	if (!enable_apicv)
9831 		return;
9832 
9833 	down_write(&kvm->arch.apicv_update_lock);
9834 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9835 	up_write(&kvm->arch.apicv_update_lock);
9836 }
9837 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9838 
9839 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9840 {
9841 	if (!kvm_apic_present(vcpu))
9842 		return;
9843 
9844 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9845 
9846 	if (irqchip_split(vcpu->kvm))
9847 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9848 	else {
9849 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9850 		if (ioapic_in_kernel(vcpu->kvm))
9851 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9852 	}
9853 
9854 	if (is_guest_mode(vcpu))
9855 		vcpu->arch.load_eoi_exitmap_pending = true;
9856 	else
9857 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9858 }
9859 
9860 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9861 {
9862 	u64 eoi_exit_bitmap[4];
9863 
9864 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9865 		return;
9866 
9867 	if (to_hv_vcpu(vcpu)) {
9868 		bitmap_or((ulong *)eoi_exit_bitmap,
9869 			  vcpu->arch.ioapic_handled_vectors,
9870 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9871 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9872 		return;
9873 	}
9874 
9875 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9876 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9877 }
9878 
9879 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9880 					    unsigned long start, unsigned long end)
9881 {
9882 	unsigned long apic_address;
9883 
9884 	/*
9885 	 * The physical address of apic access page is stored in the VMCS.
9886 	 * Update it when it becomes invalid.
9887 	 */
9888 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9889 	if (start <= apic_address && apic_address < end)
9890 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9891 }
9892 
9893 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9894 {
9895 	if (!lapic_in_kernel(vcpu))
9896 		return;
9897 
9898 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9899 }
9900 
9901 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9902 {
9903 	smp_send_reschedule(vcpu->cpu);
9904 }
9905 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9906 
9907 /*
9908  * Called within kvm->srcu read side.
9909  * Returns 1 to let vcpu_run() continue the guest execution loop without
9910  * exiting to the userspace.  Otherwise, the value will be returned to the
9911  * userspace.
9912  */
9913 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9914 {
9915 	int r;
9916 	bool req_int_win =
9917 		dm_request_for_irq_injection(vcpu) &&
9918 		kvm_cpu_accept_dm_intr(vcpu);
9919 	fastpath_t exit_fastpath;
9920 
9921 	bool req_immediate_exit = false;
9922 
9923 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9924 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9925 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9926 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9927 		trace_kvm_dirty_ring_exit(vcpu);
9928 		r = 0;
9929 		goto out;
9930 	}
9931 
9932 	if (kvm_request_pending(vcpu)) {
9933 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9934 			r = -EIO;
9935 			goto out;
9936 		}
9937 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9938 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9939 				r = 0;
9940 				goto out;
9941 			}
9942 		}
9943 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
9944 			kvm_mmu_free_obsolete_roots(vcpu);
9945 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9946 			__kvm_migrate_timers(vcpu);
9947 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9948 			kvm_update_masterclock(vcpu->kvm);
9949 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9950 			kvm_gen_kvmclock_update(vcpu);
9951 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9952 			r = kvm_guest_time_update(vcpu);
9953 			if (unlikely(r))
9954 				goto out;
9955 		}
9956 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9957 			kvm_mmu_sync_roots(vcpu);
9958 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9959 			kvm_mmu_load_pgd(vcpu);
9960 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9961 			kvm_vcpu_flush_tlb_all(vcpu);
9962 
9963 			/* Flushing all ASIDs flushes the current ASID... */
9964 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9965 		}
9966 		kvm_service_local_tlb_flush_requests(vcpu);
9967 
9968 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9969 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9970 			r = 0;
9971 			goto out;
9972 		}
9973 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9974 			if (is_guest_mode(vcpu)) {
9975 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9976 			} else {
9977 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9978 				vcpu->mmio_needed = 0;
9979 				r = 0;
9980 				goto out;
9981 			}
9982 		}
9983 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9984 			/* Page is swapped out. Do synthetic halt */
9985 			vcpu->arch.apf.halted = true;
9986 			r = 1;
9987 			goto out;
9988 		}
9989 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9990 			record_steal_time(vcpu);
9991 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9992 			process_smi(vcpu);
9993 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9994 			process_nmi(vcpu);
9995 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9996 			kvm_pmu_handle_event(vcpu);
9997 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9998 			kvm_pmu_deliver_pmi(vcpu);
9999 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10000 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10001 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10002 				     vcpu->arch.ioapic_handled_vectors)) {
10003 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10004 				vcpu->run->eoi.vector =
10005 						vcpu->arch.pending_ioapic_eoi;
10006 				r = 0;
10007 				goto out;
10008 			}
10009 		}
10010 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10011 			vcpu_scan_ioapic(vcpu);
10012 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10013 			vcpu_load_eoi_exitmap(vcpu);
10014 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10015 			kvm_vcpu_reload_apic_access_page(vcpu);
10016 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10017 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10018 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10019 			r = 0;
10020 			goto out;
10021 		}
10022 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10023 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10024 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10025 			r = 0;
10026 			goto out;
10027 		}
10028 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10029 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10030 
10031 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10032 			vcpu->run->hyperv = hv_vcpu->exit;
10033 			r = 0;
10034 			goto out;
10035 		}
10036 
10037 		/*
10038 		 * KVM_REQ_HV_STIMER has to be processed after
10039 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10040 		 * depend on the guest clock being up-to-date
10041 		 */
10042 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10043 			kvm_hv_process_stimers(vcpu);
10044 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10045 			kvm_vcpu_update_apicv(vcpu);
10046 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10047 			kvm_check_async_pf_completion(vcpu);
10048 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10049 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10050 
10051 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10052 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10053 	}
10054 
10055 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10056 	    kvm_xen_has_interrupt(vcpu)) {
10057 		++vcpu->stat.req_event;
10058 		r = kvm_apic_accept_events(vcpu);
10059 		if (r < 0) {
10060 			r = 0;
10061 			goto out;
10062 		}
10063 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10064 			r = 1;
10065 			goto out;
10066 		}
10067 
10068 		r = inject_pending_event(vcpu, &req_immediate_exit);
10069 		if (r < 0) {
10070 			r = 0;
10071 			goto out;
10072 		}
10073 		if (req_int_win)
10074 			static_call(kvm_x86_enable_irq_window)(vcpu);
10075 
10076 		if (kvm_lapic_enabled(vcpu)) {
10077 			update_cr8_intercept(vcpu);
10078 			kvm_lapic_sync_to_vapic(vcpu);
10079 		}
10080 	}
10081 
10082 	r = kvm_mmu_reload(vcpu);
10083 	if (unlikely(r)) {
10084 		goto cancel_injection;
10085 	}
10086 
10087 	preempt_disable();
10088 
10089 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10090 
10091 	/*
10092 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10093 	 * IPI are then delayed after guest entry, which ensures that they
10094 	 * result in virtual interrupt delivery.
10095 	 */
10096 	local_irq_disable();
10097 
10098 	/* Store vcpu->apicv_active before vcpu->mode.  */
10099 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10100 
10101 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10102 
10103 	/*
10104 	 * 1) We should set ->mode before checking ->requests.  Please see
10105 	 * the comment in kvm_vcpu_exiting_guest_mode().
10106 	 *
10107 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10108 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10109 	 * (see vmx_deliver_posted_interrupt).
10110 	 *
10111 	 * 3) This also orders the write to mode from any reads to the page
10112 	 * tables done while the VCPU is running.  Please see the comment
10113 	 * in kvm_flush_remote_tlbs.
10114 	 */
10115 	smp_mb__after_srcu_read_unlock();
10116 
10117 	/*
10118 	 * Process pending posted interrupts to handle the case where the
10119 	 * notification IRQ arrived in the host, or was never sent (because the
10120 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10121 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10122 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10123 	 */
10124 	if (kvm_lapic_enabled(vcpu))
10125 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10126 
10127 	if (kvm_vcpu_exit_request(vcpu)) {
10128 		vcpu->mode = OUTSIDE_GUEST_MODE;
10129 		smp_wmb();
10130 		local_irq_enable();
10131 		preempt_enable();
10132 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10133 		r = 1;
10134 		goto cancel_injection;
10135 	}
10136 
10137 	if (req_immediate_exit) {
10138 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10139 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10140 	}
10141 
10142 	fpregs_assert_state_consistent();
10143 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10144 		switch_fpu_return();
10145 
10146 	if (vcpu->arch.guest_fpu.xfd_err)
10147 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10148 
10149 	if (unlikely(vcpu->arch.switch_db_regs)) {
10150 		set_debugreg(0, 7);
10151 		set_debugreg(vcpu->arch.eff_db[0], 0);
10152 		set_debugreg(vcpu->arch.eff_db[1], 1);
10153 		set_debugreg(vcpu->arch.eff_db[2], 2);
10154 		set_debugreg(vcpu->arch.eff_db[3], 3);
10155 	} else if (unlikely(hw_breakpoint_active())) {
10156 		set_debugreg(0, 7);
10157 	}
10158 
10159 	guest_timing_enter_irqoff();
10160 
10161 	for (;;) {
10162 		/*
10163 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10164 		 * update must kick and wait for all vCPUs before toggling the
10165 		 * per-VM state, and responsing vCPUs must wait for the update
10166 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10167 		 */
10168 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10169 
10170 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10171 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10172 			break;
10173 
10174 		if (kvm_lapic_enabled(vcpu))
10175 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10176 
10177 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10178 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10179 			break;
10180 		}
10181 	}
10182 
10183 	/*
10184 	 * Do this here before restoring debug registers on the host.  And
10185 	 * since we do this before handling the vmexit, a DR access vmexit
10186 	 * can (a) read the correct value of the debug registers, (b) set
10187 	 * KVM_DEBUGREG_WONT_EXIT again.
10188 	 */
10189 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10190 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10191 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10192 		kvm_update_dr0123(vcpu);
10193 		kvm_update_dr7(vcpu);
10194 	}
10195 
10196 	/*
10197 	 * If the guest has used debug registers, at least dr7
10198 	 * will be disabled while returning to the host.
10199 	 * If we don't have active breakpoints in the host, we don't
10200 	 * care about the messed up debug address registers. But if
10201 	 * we have some of them active, restore the old state.
10202 	 */
10203 	if (hw_breakpoint_active())
10204 		hw_breakpoint_restore();
10205 
10206 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10207 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10208 
10209 	vcpu->mode = OUTSIDE_GUEST_MODE;
10210 	smp_wmb();
10211 
10212 	/*
10213 	 * Sync xfd before calling handle_exit_irqoff() which may
10214 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10215 	 * in #NM irqoff handler).
10216 	 */
10217 	if (vcpu->arch.xfd_no_write_intercept)
10218 		fpu_sync_guest_vmexit_xfd_state();
10219 
10220 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10221 
10222 	if (vcpu->arch.guest_fpu.xfd_err)
10223 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10224 
10225 	/*
10226 	 * Consume any pending interrupts, including the possible source of
10227 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10228 	 * An instruction is required after local_irq_enable() to fully unblock
10229 	 * interrupts on processors that implement an interrupt shadow, the
10230 	 * stat.exits increment will do nicely.
10231 	 */
10232 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10233 	local_irq_enable();
10234 	++vcpu->stat.exits;
10235 	local_irq_disable();
10236 	kvm_after_interrupt(vcpu);
10237 
10238 	/*
10239 	 * Wait until after servicing IRQs to account guest time so that any
10240 	 * ticks that occurred while running the guest are properly accounted
10241 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10242 	 * of accounting via context tracking, but the loss of accuracy is
10243 	 * acceptable for all known use cases.
10244 	 */
10245 	guest_timing_exit_irqoff();
10246 
10247 	if (lapic_in_kernel(vcpu)) {
10248 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10249 		if (delta != S64_MIN) {
10250 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10251 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10252 		}
10253 	}
10254 
10255 	local_irq_enable();
10256 	preempt_enable();
10257 
10258 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10259 
10260 	/*
10261 	 * Profile KVM exit RIPs:
10262 	 */
10263 	if (unlikely(prof_on == KVM_PROFILING)) {
10264 		unsigned long rip = kvm_rip_read(vcpu);
10265 		profile_hit(KVM_PROFILING, (void *)rip);
10266 	}
10267 
10268 	if (unlikely(vcpu->arch.tsc_always_catchup))
10269 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10270 
10271 	if (vcpu->arch.apic_attention)
10272 		kvm_lapic_sync_from_vapic(vcpu);
10273 
10274 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10275 	return r;
10276 
10277 cancel_injection:
10278 	if (req_immediate_exit)
10279 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10280 	static_call(kvm_x86_cancel_injection)(vcpu);
10281 	if (unlikely(vcpu->arch.apic_attention))
10282 		kvm_lapic_sync_from_vapic(vcpu);
10283 out:
10284 	return r;
10285 }
10286 
10287 /* Called within kvm->srcu read side.  */
10288 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10289 {
10290 	bool hv_timer;
10291 
10292 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10293 		/*
10294 		 * Switch to the software timer before halt-polling/blocking as
10295 		 * the guest's timer may be a break event for the vCPU, and the
10296 		 * hypervisor timer runs only when the CPU is in guest mode.
10297 		 * Switch before halt-polling so that KVM recognizes an expired
10298 		 * timer before blocking.
10299 		 */
10300 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10301 		if (hv_timer)
10302 			kvm_lapic_switch_to_sw_timer(vcpu);
10303 
10304 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10305 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10306 			kvm_vcpu_halt(vcpu);
10307 		else
10308 			kvm_vcpu_block(vcpu);
10309 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10310 
10311 		if (hv_timer)
10312 			kvm_lapic_switch_to_hv_timer(vcpu);
10313 
10314 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10315 			return 1;
10316 	}
10317 
10318 	if (kvm_apic_accept_events(vcpu) < 0)
10319 		return 0;
10320 	switch(vcpu->arch.mp_state) {
10321 	case KVM_MP_STATE_HALTED:
10322 	case KVM_MP_STATE_AP_RESET_HOLD:
10323 		vcpu->arch.pv.pv_unhalted = false;
10324 		vcpu->arch.mp_state =
10325 			KVM_MP_STATE_RUNNABLE;
10326 		fallthrough;
10327 	case KVM_MP_STATE_RUNNABLE:
10328 		vcpu->arch.apf.halted = false;
10329 		break;
10330 	case KVM_MP_STATE_INIT_RECEIVED:
10331 		break;
10332 	default:
10333 		return -EINTR;
10334 	}
10335 	return 1;
10336 }
10337 
10338 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10339 {
10340 	if (is_guest_mode(vcpu))
10341 		kvm_check_nested_events(vcpu);
10342 
10343 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10344 		!vcpu->arch.apf.halted);
10345 }
10346 
10347 /* Called within kvm->srcu read side.  */
10348 static int vcpu_run(struct kvm_vcpu *vcpu)
10349 {
10350 	int r;
10351 	struct kvm *kvm = vcpu->kvm;
10352 
10353 	vcpu->arch.l1tf_flush_l1d = true;
10354 
10355 	for (;;) {
10356 		if (kvm_vcpu_running(vcpu)) {
10357 			r = vcpu_enter_guest(vcpu);
10358 		} else {
10359 			r = vcpu_block(kvm, vcpu);
10360 		}
10361 
10362 		if (r <= 0)
10363 			break;
10364 
10365 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10366 		if (kvm_cpu_has_pending_timer(vcpu))
10367 			kvm_inject_pending_timer_irqs(vcpu);
10368 
10369 		if (dm_request_for_irq_injection(vcpu) &&
10370 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10371 			r = 0;
10372 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10373 			++vcpu->stat.request_irq_exits;
10374 			break;
10375 		}
10376 
10377 		if (__xfer_to_guest_mode_work_pending()) {
10378 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10379 			r = xfer_to_guest_mode_handle_work(vcpu);
10380 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10381 			if (r)
10382 				return r;
10383 		}
10384 	}
10385 
10386 	return r;
10387 }
10388 
10389 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10390 {
10391 	int r;
10392 
10393 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10394 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10395 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10396 	return r;
10397 }
10398 
10399 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10400 {
10401 	BUG_ON(!vcpu->arch.pio.count);
10402 
10403 	return complete_emulated_io(vcpu);
10404 }
10405 
10406 /*
10407  * Implements the following, as a state machine:
10408  *
10409  * read:
10410  *   for each fragment
10411  *     for each mmio piece in the fragment
10412  *       write gpa, len
10413  *       exit
10414  *       copy data
10415  *   execute insn
10416  *
10417  * write:
10418  *   for each fragment
10419  *     for each mmio piece in the fragment
10420  *       write gpa, len
10421  *       copy data
10422  *       exit
10423  */
10424 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10425 {
10426 	struct kvm_run *run = vcpu->run;
10427 	struct kvm_mmio_fragment *frag;
10428 	unsigned len;
10429 
10430 	BUG_ON(!vcpu->mmio_needed);
10431 
10432 	/* Complete previous fragment */
10433 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10434 	len = min(8u, frag->len);
10435 	if (!vcpu->mmio_is_write)
10436 		memcpy(frag->data, run->mmio.data, len);
10437 
10438 	if (frag->len <= 8) {
10439 		/* Switch to the next fragment. */
10440 		frag++;
10441 		vcpu->mmio_cur_fragment++;
10442 	} else {
10443 		/* Go forward to the next mmio piece. */
10444 		frag->data += len;
10445 		frag->gpa += len;
10446 		frag->len -= len;
10447 	}
10448 
10449 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10450 		vcpu->mmio_needed = 0;
10451 
10452 		/* FIXME: return into emulator if single-stepping.  */
10453 		if (vcpu->mmio_is_write)
10454 			return 1;
10455 		vcpu->mmio_read_completed = 1;
10456 		return complete_emulated_io(vcpu);
10457 	}
10458 
10459 	run->exit_reason = KVM_EXIT_MMIO;
10460 	run->mmio.phys_addr = frag->gpa;
10461 	if (vcpu->mmio_is_write)
10462 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10463 	run->mmio.len = min(8u, frag->len);
10464 	run->mmio.is_write = vcpu->mmio_is_write;
10465 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10466 	return 0;
10467 }
10468 
10469 /* Swap (qemu) user FPU context for the guest FPU context. */
10470 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10471 {
10472 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10473 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10474 	trace_kvm_fpu(1);
10475 }
10476 
10477 /* When vcpu_run ends, restore user space FPU context. */
10478 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10479 {
10480 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10481 	++vcpu->stat.fpu_reload;
10482 	trace_kvm_fpu(0);
10483 }
10484 
10485 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10486 {
10487 	struct kvm_run *kvm_run = vcpu->run;
10488 	struct kvm *kvm = vcpu->kvm;
10489 	int r;
10490 
10491 	vcpu_load(vcpu);
10492 	kvm_sigset_activate(vcpu);
10493 	kvm_run->flags = 0;
10494 	kvm_load_guest_fpu(vcpu);
10495 
10496 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10497 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10498 		if (kvm_run->immediate_exit) {
10499 			r = -EINTR;
10500 			goto out;
10501 		}
10502 		/*
10503 		 * It should be impossible for the hypervisor timer to be in
10504 		 * use before KVM has ever run the vCPU.
10505 		 */
10506 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10507 
10508 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10509 		kvm_vcpu_block(vcpu);
10510 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10511 
10512 		if (kvm_apic_accept_events(vcpu) < 0) {
10513 			r = 0;
10514 			goto out;
10515 		}
10516 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10517 		r = -EAGAIN;
10518 		if (signal_pending(current)) {
10519 			r = -EINTR;
10520 			kvm_run->exit_reason = KVM_EXIT_INTR;
10521 			++vcpu->stat.signal_exits;
10522 		}
10523 		goto out;
10524 	}
10525 
10526 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10527 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10528 		r = -EINVAL;
10529 		goto out;
10530 	}
10531 
10532 	if (kvm_run->kvm_dirty_regs) {
10533 		r = sync_regs(vcpu);
10534 		if (r != 0)
10535 			goto out;
10536 	}
10537 
10538 	/* re-sync apic's tpr */
10539 	if (!lapic_in_kernel(vcpu)) {
10540 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10541 			r = -EINVAL;
10542 			goto out;
10543 		}
10544 	}
10545 
10546 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10547 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10548 		vcpu->arch.complete_userspace_io = NULL;
10549 		r = cui(vcpu);
10550 		if (r <= 0)
10551 			goto out;
10552 	} else
10553 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10554 
10555 	if (kvm_run->immediate_exit) {
10556 		r = -EINTR;
10557 		goto out;
10558 	}
10559 
10560 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10561 	if (r <= 0)
10562 		goto out;
10563 
10564 	r = vcpu_run(vcpu);
10565 
10566 out:
10567 	kvm_put_guest_fpu(vcpu);
10568 	if (kvm_run->kvm_valid_regs)
10569 		store_regs(vcpu);
10570 	post_kvm_run_save(vcpu);
10571 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10572 
10573 	kvm_sigset_deactivate(vcpu);
10574 	vcpu_put(vcpu);
10575 	return r;
10576 }
10577 
10578 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10579 {
10580 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10581 		/*
10582 		 * We are here if userspace calls get_regs() in the middle of
10583 		 * instruction emulation. Registers state needs to be copied
10584 		 * back from emulation context to vcpu. Userspace shouldn't do
10585 		 * that usually, but some bad designed PV devices (vmware
10586 		 * backdoor interface) need this to work
10587 		 */
10588 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10589 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10590 	}
10591 	regs->rax = kvm_rax_read(vcpu);
10592 	regs->rbx = kvm_rbx_read(vcpu);
10593 	regs->rcx = kvm_rcx_read(vcpu);
10594 	regs->rdx = kvm_rdx_read(vcpu);
10595 	regs->rsi = kvm_rsi_read(vcpu);
10596 	regs->rdi = kvm_rdi_read(vcpu);
10597 	regs->rsp = kvm_rsp_read(vcpu);
10598 	regs->rbp = kvm_rbp_read(vcpu);
10599 #ifdef CONFIG_X86_64
10600 	regs->r8 = kvm_r8_read(vcpu);
10601 	regs->r9 = kvm_r9_read(vcpu);
10602 	regs->r10 = kvm_r10_read(vcpu);
10603 	regs->r11 = kvm_r11_read(vcpu);
10604 	regs->r12 = kvm_r12_read(vcpu);
10605 	regs->r13 = kvm_r13_read(vcpu);
10606 	regs->r14 = kvm_r14_read(vcpu);
10607 	regs->r15 = kvm_r15_read(vcpu);
10608 #endif
10609 
10610 	regs->rip = kvm_rip_read(vcpu);
10611 	regs->rflags = kvm_get_rflags(vcpu);
10612 }
10613 
10614 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10615 {
10616 	vcpu_load(vcpu);
10617 	__get_regs(vcpu, regs);
10618 	vcpu_put(vcpu);
10619 	return 0;
10620 }
10621 
10622 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10623 {
10624 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10625 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10626 
10627 	kvm_rax_write(vcpu, regs->rax);
10628 	kvm_rbx_write(vcpu, regs->rbx);
10629 	kvm_rcx_write(vcpu, regs->rcx);
10630 	kvm_rdx_write(vcpu, regs->rdx);
10631 	kvm_rsi_write(vcpu, regs->rsi);
10632 	kvm_rdi_write(vcpu, regs->rdi);
10633 	kvm_rsp_write(vcpu, regs->rsp);
10634 	kvm_rbp_write(vcpu, regs->rbp);
10635 #ifdef CONFIG_X86_64
10636 	kvm_r8_write(vcpu, regs->r8);
10637 	kvm_r9_write(vcpu, regs->r9);
10638 	kvm_r10_write(vcpu, regs->r10);
10639 	kvm_r11_write(vcpu, regs->r11);
10640 	kvm_r12_write(vcpu, regs->r12);
10641 	kvm_r13_write(vcpu, regs->r13);
10642 	kvm_r14_write(vcpu, regs->r14);
10643 	kvm_r15_write(vcpu, regs->r15);
10644 #endif
10645 
10646 	kvm_rip_write(vcpu, regs->rip);
10647 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10648 
10649 	vcpu->arch.exception.pending = false;
10650 
10651 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10652 }
10653 
10654 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10655 {
10656 	vcpu_load(vcpu);
10657 	__set_regs(vcpu, regs);
10658 	vcpu_put(vcpu);
10659 	return 0;
10660 }
10661 
10662 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10663 {
10664 	struct desc_ptr dt;
10665 
10666 	if (vcpu->arch.guest_state_protected)
10667 		goto skip_protected_regs;
10668 
10669 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10670 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10671 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10672 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10673 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10674 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10675 
10676 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10677 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10678 
10679 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10680 	sregs->idt.limit = dt.size;
10681 	sregs->idt.base = dt.address;
10682 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10683 	sregs->gdt.limit = dt.size;
10684 	sregs->gdt.base = dt.address;
10685 
10686 	sregs->cr2 = vcpu->arch.cr2;
10687 	sregs->cr3 = kvm_read_cr3(vcpu);
10688 
10689 skip_protected_regs:
10690 	sregs->cr0 = kvm_read_cr0(vcpu);
10691 	sregs->cr4 = kvm_read_cr4(vcpu);
10692 	sregs->cr8 = kvm_get_cr8(vcpu);
10693 	sregs->efer = vcpu->arch.efer;
10694 	sregs->apic_base = kvm_get_apic_base(vcpu);
10695 }
10696 
10697 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10698 {
10699 	__get_sregs_common(vcpu, sregs);
10700 
10701 	if (vcpu->arch.guest_state_protected)
10702 		return;
10703 
10704 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10705 		set_bit(vcpu->arch.interrupt.nr,
10706 			(unsigned long *)sregs->interrupt_bitmap);
10707 }
10708 
10709 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10710 {
10711 	int i;
10712 
10713 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10714 
10715 	if (vcpu->arch.guest_state_protected)
10716 		return;
10717 
10718 	if (is_pae_paging(vcpu)) {
10719 		for (i = 0 ; i < 4 ; i++)
10720 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10721 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10722 	}
10723 }
10724 
10725 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10726 				  struct kvm_sregs *sregs)
10727 {
10728 	vcpu_load(vcpu);
10729 	__get_sregs(vcpu, sregs);
10730 	vcpu_put(vcpu);
10731 	return 0;
10732 }
10733 
10734 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10735 				    struct kvm_mp_state *mp_state)
10736 {
10737 	int r;
10738 
10739 	vcpu_load(vcpu);
10740 	if (kvm_mpx_supported())
10741 		kvm_load_guest_fpu(vcpu);
10742 
10743 	r = kvm_apic_accept_events(vcpu);
10744 	if (r < 0)
10745 		goto out;
10746 	r = 0;
10747 
10748 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10749 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10750 	    vcpu->arch.pv.pv_unhalted)
10751 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10752 	else
10753 		mp_state->mp_state = vcpu->arch.mp_state;
10754 
10755 out:
10756 	if (kvm_mpx_supported())
10757 		kvm_put_guest_fpu(vcpu);
10758 	vcpu_put(vcpu);
10759 	return r;
10760 }
10761 
10762 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10763 				    struct kvm_mp_state *mp_state)
10764 {
10765 	int ret = -EINVAL;
10766 
10767 	vcpu_load(vcpu);
10768 
10769 	if (!lapic_in_kernel(vcpu) &&
10770 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10771 		goto out;
10772 
10773 	/*
10774 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10775 	 * INIT state; latched init should be reported using
10776 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10777 	 */
10778 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10779 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10780 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10781 		goto out;
10782 
10783 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10784 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10785 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10786 	} else
10787 		vcpu->arch.mp_state = mp_state->mp_state;
10788 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10789 
10790 	ret = 0;
10791 out:
10792 	vcpu_put(vcpu);
10793 	return ret;
10794 }
10795 
10796 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10797 		    int reason, bool has_error_code, u32 error_code)
10798 {
10799 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10800 	int ret;
10801 
10802 	init_emulate_ctxt(vcpu);
10803 
10804 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10805 				   has_error_code, error_code);
10806 	if (ret) {
10807 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10808 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10809 		vcpu->run->internal.ndata = 0;
10810 		return 0;
10811 	}
10812 
10813 	kvm_rip_write(vcpu, ctxt->eip);
10814 	kvm_set_rflags(vcpu, ctxt->eflags);
10815 	return 1;
10816 }
10817 EXPORT_SYMBOL_GPL(kvm_task_switch);
10818 
10819 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10820 {
10821 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10822 		/*
10823 		 * When EFER.LME and CR0.PG are set, the processor is in
10824 		 * 64-bit mode (though maybe in a 32-bit code segment).
10825 		 * CR4.PAE and EFER.LMA must be set.
10826 		 */
10827 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10828 			return false;
10829 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10830 			return false;
10831 	} else {
10832 		/*
10833 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10834 		 * segment cannot be 64-bit.
10835 		 */
10836 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10837 			return false;
10838 	}
10839 
10840 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10841 }
10842 
10843 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10844 		int *mmu_reset_needed, bool update_pdptrs)
10845 {
10846 	struct msr_data apic_base_msr;
10847 	int idx;
10848 	struct desc_ptr dt;
10849 
10850 	if (!kvm_is_valid_sregs(vcpu, sregs))
10851 		return -EINVAL;
10852 
10853 	apic_base_msr.data = sregs->apic_base;
10854 	apic_base_msr.host_initiated = true;
10855 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10856 		return -EINVAL;
10857 
10858 	if (vcpu->arch.guest_state_protected)
10859 		return 0;
10860 
10861 	dt.size = sregs->idt.limit;
10862 	dt.address = sregs->idt.base;
10863 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10864 	dt.size = sregs->gdt.limit;
10865 	dt.address = sregs->gdt.base;
10866 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10867 
10868 	vcpu->arch.cr2 = sregs->cr2;
10869 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10870 	vcpu->arch.cr3 = sregs->cr3;
10871 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10872 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10873 
10874 	kvm_set_cr8(vcpu, sregs->cr8);
10875 
10876 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10877 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10878 
10879 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10880 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10881 	vcpu->arch.cr0 = sregs->cr0;
10882 
10883 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10884 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10885 
10886 	if (update_pdptrs) {
10887 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10888 		if (is_pae_paging(vcpu)) {
10889 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10890 			*mmu_reset_needed = 1;
10891 		}
10892 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10893 	}
10894 
10895 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10896 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10897 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10898 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10899 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10900 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10901 
10902 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10903 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10904 
10905 	update_cr8_intercept(vcpu);
10906 
10907 	/* Older userspace won't unhalt the vcpu on reset. */
10908 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10909 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10910 	    !is_protmode(vcpu))
10911 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10912 
10913 	return 0;
10914 }
10915 
10916 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10917 {
10918 	int pending_vec, max_bits;
10919 	int mmu_reset_needed = 0;
10920 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10921 
10922 	if (ret)
10923 		return ret;
10924 
10925 	if (mmu_reset_needed)
10926 		kvm_mmu_reset_context(vcpu);
10927 
10928 	max_bits = KVM_NR_INTERRUPTS;
10929 	pending_vec = find_first_bit(
10930 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10931 
10932 	if (pending_vec < max_bits) {
10933 		kvm_queue_interrupt(vcpu, pending_vec, false);
10934 		pr_debug("Set back pending irq %d\n", pending_vec);
10935 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10936 	}
10937 	return 0;
10938 }
10939 
10940 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10941 {
10942 	int mmu_reset_needed = 0;
10943 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10944 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10945 		!(sregs2->efer & EFER_LMA);
10946 	int i, ret;
10947 
10948 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10949 		return -EINVAL;
10950 
10951 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10952 		return -EINVAL;
10953 
10954 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10955 				 &mmu_reset_needed, !valid_pdptrs);
10956 	if (ret)
10957 		return ret;
10958 
10959 	if (valid_pdptrs) {
10960 		for (i = 0; i < 4 ; i++)
10961 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10962 
10963 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10964 		mmu_reset_needed = 1;
10965 		vcpu->arch.pdptrs_from_userspace = true;
10966 	}
10967 	if (mmu_reset_needed)
10968 		kvm_mmu_reset_context(vcpu);
10969 	return 0;
10970 }
10971 
10972 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10973 				  struct kvm_sregs *sregs)
10974 {
10975 	int ret;
10976 
10977 	vcpu_load(vcpu);
10978 	ret = __set_sregs(vcpu, sregs);
10979 	vcpu_put(vcpu);
10980 	return ret;
10981 }
10982 
10983 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10984 {
10985 	bool set = false;
10986 	struct kvm_vcpu *vcpu;
10987 	unsigned long i;
10988 
10989 	down_write(&kvm->arch.apicv_update_lock);
10990 
10991 	kvm_for_each_vcpu(i, vcpu, kvm) {
10992 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10993 			set = true;
10994 			break;
10995 		}
10996 	}
10997 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
10998 	up_write(&kvm->arch.apicv_update_lock);
10999 }
11000 
11001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11002 					struct kvm_guest_debug *dbg)
11003 {
11004 	unsigned long rflags;
11005 	int i, r;
11006 
11007 	if (vcpu->arch.guest_state_protected)
11008 		return -EINVAL;
11009 
11010 	vcpu_load(vcpu);
11011 
11012 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11013 		r = -EBUSY;
11014 		if (vcpu->arch.exception.pending)
11015 			goto out;
11016 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11017 			kvm_queue_exception(vcpu, DB_VECTOR);
11018 		else
11019 			kvm_queue_exception(vcpu, BP_VECTOR);
11020 	}
11021 
11022 	/*
11023 	 * Read rflags as long as potentially injected trace flags are still
11024 	 * filtered out.
11025 	 */
11026 	rflags = kvm_get_rflags(vcpu);
11027 
11028 	vcpu->guest_debug = dbg->control;
11029 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11030 		vcpu->guest_debug = 0;
11031 
11032 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11033 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11034 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11035 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11036 	} else {
11037 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11038 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11039 	}
11040 	kvm_update_dr7(vcpu);
11041 
11042 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11043 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11044 
11045 	/*
11046 	 * Trigger an rflags update that will inject or remove the trace
11047 	 * flags.
11048 	 */
11049 	kvm_set_rflags(vcpu, rflags);
11050 
11051 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11052 
11053 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11054 
11055 	r = 0;
11056 
11057 out:
11058 	vcpu_put(vcpu);
11059 	return r;
11060 }
11061 
11062 /*
11063  * Translate a guest virtual address to a guest physical address.
11064  */
11065 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11066 				    struct kvm_translation *tr)
11067 {
11068 	unsigned long vaddr = tr->linear_address;
11069 	gpa_t gpa;
11070 	int idx;
11071 
11072 	vcpu_load(vcpu);
11073 
11074 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11075 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11076 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11077 	tr->physical_address = gpa;
11078 	tr->valid = gpa != UNMAPPED_GVA;
11079 	tr->writeable = 1;
11080 	tr->usermode = 0;
11081 
11082 	vcpu_put(vcpu);
11083 	return 0;
11084 }
11085 
11086 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11087 {
11088 	struct fxregs_state *fxsave;
11089 
11090 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11091 		return 0;
11092 
11093 	vcpu_load(vcpu);
11094 
11095 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11096 	memcpy(fpu->fpr, fxsave->st_space, 128);
11097 	fpu->fcw = fxsave->cwd;
11098 	fpu->fsw = fxsave->swd;
11099 	fpu->ftwx = fxsave->twd;
11100 	fpu->last_opcode = fxsave->fop;
11101 	fpu->last_ip = fxsave->rip;
11102 	fpu->last_dp = fxsave->rdp;
11103 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11104 
11105 	vcpu_put(vcpu);
11106 	return 0;
11107 }
11108 
11109 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11110 {
11111 	struct fxregs_state *fxsave;
11112 
11113 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11114 		return 0;
11115 
11116 	vcpu_load(vcpu);
11117 
11118 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11119 
11120 	memcpy(fxsave->st_space, fpu->fpr, 128);
11121 	fxsave->cwd = fpu->fcw;
11122 	fxsave->swd = fpu->fsw;
11123 	fxsave->twd = fpu->ftwx;
11124 	fxsave->fop = fpu->last_opcode;
11125 	fxsave->rip = fpu->last_ip;
11126 	fxsave->rdp = fpu->last_dp;
11127 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11128 
11129 	vcpu_put(vcpu);
11130 	return 0;
11131 }
11132 
11133 static void store_regs(struct kvm_vcpu *vcpu)
11134 {
11135 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11136 
11137 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11138 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11139 
11140 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11141 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11142 
11143 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11144 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11145 				vcpu, &vcpu->run->s.regs.events);
11146 }
11147 
11148 static int sync_regs(struct kvm_vcpu *vcpu)
11149 {
11150 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11151 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11152 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11153 	}
11154 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11155 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11156 			return -EINVAL;
11157 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11158 	}
11159 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11160 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11161 				vcpu, &vcpu->run->s.regs.events))
11162 			return -EINVAL;
11163 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11164 	}
11165 
11166 	return 0;
11167 }
11168 
11169 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11170 {
11171 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11172 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11173 			     "guest TSC will not be reliable\n");
11174 
11175 	return 0;
11176 }
11177 
11178 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11179 {
11180 	struct page *page;
11181 	int r;
11182 
11183 	vcpu->arch.last_vmentry_cpu = -1;
11184 	vcpu->arch.regs_avail = ~0;
11185 	vcpu->arch.regs_dirty = ~0;
11186 
11187 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11188 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11189 	else
11190 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11191 
11192 	r = kvm_mmu_create(vcpu);
11193 	if (r < 0)
11194 		return r;
11195 
11196 	if (irqchip_in_kernel(vcpu->kvm)) {
11197 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11198 		if (r < 0)
11199 			goto fail_mmu_destroy;
11200 		if (kvm_apicv_activated(vcpu->kvm))
11201 			vcpu->arch.apicv_active = true;
11202 	} else
11203 		static_branch_inc(&kvm_has_noapic_vcpu);
11204 
11205 	r = -ENOMEM;
11206 
11207 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11208 	if (!page)
11209 		goto fail_free_lapic;
11210 	vcpu->arch.pio_data = page_address(page);
11211 
11212 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11213 				       GFP_KERNEL_ACCOUNT);
11214 	if (!vcpu->arch.mce_banks)
11215 		goto fail_free_pio_data;
11216 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11217 
11218 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11219 				GFP_KERNEL_ACCOUNT))
11220 		goto fail_free_mce_banks;
11221 
11222 	if (!alloc_emulate_ctxt(vcpu))
11223 		goto free_wbinvd_dirty_mask;
11224 
11225 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11226 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11227 		goto free_emulate_ctxt;
11228 	}
11229 
11230 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11231 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11232 
11233 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11234 
11235 	kvm_async_pf_hash_reset(vcpu);
11236 	kvm_pmu_init(vcpu);
11237 
11238 	vcpu->arch.pending_external_vector = -1;
11239 	vcpu->arch.preempted_in_kernel = false;
11240 
11241 #if IS_ENABLED(CONFIG_HYPERV)
11242 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11243 #endif
11244 
11245 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11246 	if (r)
11247 		goto free_guest_fpu;
11248 
11249 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11250 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11251 	kvm_vcpu_mtrr_init(vcpu);
11252 	vcpu_load(vcpu);
11253 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11254 	kvm_vcpu_reset(vcpu, false);
11255 	kvm_init_mmu(vcpu);
11256 	vcpu_put(vcpu);
11257 	return 0;
11258 
11259 free_guest_fpu:
11260 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11261 free_emulate_ctxt:
11262 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11263 free_wbinvd_dirty_mask:
11264 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11265 fail_free_mce_banks:
11266 	kfree(vcpu->arch.mce_banks);
11267 fail_free_pio_data:
11268 	free_page((unsigned long)vcpu->arch.pio_data);
11269 fail_free_lapic:
11270 	kvm_free_lapic(vcpu);
11271 fail_mmu_destroy:
11272 	kvm_mmu_destroy(vcpu);
11273 	return r;
11274 }
11275 
11276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11277 {
11278 	struct kvm *kvm = vcpu->kvm;
11279 
11280 	if (mutex_lock_killable(&vcpu->mutex))
11281 		return;
11282 	vcpu_load(vcpu);
11283 	kvm_synchronize_tsc(vcpu, 0);
11284 	vcpu_put(vcpu);
11285 
11286 	/* poll control enabled by default */
11287 	vcpu->arch.msr_kvm_poll_control = 1;
11288 
11289 	mutex_unlock(&vcpu->mutex);
11290 
11291 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11292 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11293 						KVMCLOCK_SYNC_PERIOD);
11294 }
11295 
11296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11297 {
11298 	int idx;
11299 
11300 	kvmclock_reset(vcpu);
11301 
11302 	static_call(kvm_x86_vcpu_free)(vcpu);
11303 
11304 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11305 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11306 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11307 
11308 	kvm_hv_vcpu_uninit(vcpu);
11309 	kvm_pmu_destroy(vcpu);
11310 	kfree(vcpu->arch.mce_banks);
11311 	kvm_free_lapic(vcpu);
11312 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11313 	kvm_mmu_destroy(vcpu);
11314 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11315 	free_page((unsigned long)vcpu->arch.pio_data);
11316 	kvfree(vcpu->arch.cpuid_entries);
11317 	if (!lapic_in_kernel(vcpu))
11318 		static_branch_dec(&kvm_has_noapic_vcpu);
11319 }
11320 
11321 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11322 {
11323 	struct kvm_cpuid_entry2 *cpuid_0x1;
11324 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11325 	unsigned long new_cr0;
11326 
11327 	/*
11328 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11329 	 * to handle side effects.  RESET emulation hits those flows and relies
11330 	 * on emulated/virtualized registers, including those that are loaded
11331 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11332 	 * to detect improper or missing initialization.
11333 	 */
11334 	WARN_ON_ONCE(!init_event &&
11335 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11336 
11337 	kvm_lapic_reset(vcpu, init_event);
11338 
11339 	vcpu->arch.hflags = 0;
11340 
11341 	vcpu->arch.smi_pending = 0;
11342 	vcpu->arch.smi_count = 0;
11343 	atomic_set(&vcpu->arch.nmi_queued, 0);
11344 	vcpu->arch.nmi_pending = 0;
11345 	vcpu->arch.nmi_injected = false;
11346 	kvm_clear_interrupt_queue(vcpu);
11347 	kvm_clear_exception_queue(vcpu);
11348 
11349 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11350 	kvm_update_dr0123(vcpu);
11351 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11352 	vcpu->arch.dr7 = DR7_FIXED_1;
11353 	kvm_update_dr7(vcpu);
11354 
11355 	vcpu->arch.cr2 = 0;
11356 
11357 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11358 	vcpu->arch.apf.msr_en_val = 0;
11359 	vcpu->arch.apf.msr_int_val = 0;
11360 	vcpu->arch.st.msr_val = 0;
11361 
11362 	kvmclock_reset(vcpu);
11363 
11364 	kvm_clear_async_pf_completion_queue(vcpu);
11365 	kvm_async_pf_hash_reset(vcpu);
11366 	vcpu->arch.apf.halted = false;
11367 
11368 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11369 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11370 
11371 		/*
11372 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11373 		 * called with loaded FPU and does not let userspace fix the state.
11374 		 */
11375 		if (init_event)
11376 			kvm_put_guest_fpu(vcpu);
11377 
11378 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11379 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11380 
11381 		if (init_event)
11382 			kvm_load_guest_fpu(vcpu);
11383 	}
11384 
11385 	if (!init_event) {
11386 		kvm_pmu_reset(vcpu);
11387 		vcpu->arch.smbase = 0x30000;
11388 
11389 		vcpu->arch.msr_misc_features_enables = 0;
11390 
11391 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11392 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11393 	}
11394 
11395 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11396 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11397 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11398 
11399 	/*
11400 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11401 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11402 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11403 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11404 	 * on RESET.  But, go through the motions in case that's ever remedied.
11405 	 */
11406 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11407 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11408 
11409 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11410 
11411 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11412 	kvm_rip_write(vcpu, 0xfff0);
11413 
11414 	vcpu->arch.cr3 = 0;
11415 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11416 
11417 	/*
11418 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11419 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11420 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11421 	 */
11422 	new_cr0 = X86_CR0_ET;
11423 	if (init_event)
11424 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11425 	else
11426 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11427 
11428 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11429 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11430 	static_call(kvm_x86_set_efer)(vcpu, 0);
11431 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11432 
11433 	/*
11434 	 * On the standard CR0/CR4/EFER modification paths, there are several
11435 	 * complex conditions determining whether the MMU has to be reset and/or
11436 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11437 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11438 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11439 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11440 	 */
11441 	if (old_cr0 & X86_CR0_PG) {
11442 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11443 		kvm_mmu_reset_context(vcpu);
11444 	}
11445 
11446 	/*
11447 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11448 	 * APM states the TLBs are untouched by INIT, but it also states that
11449 	 * the TLBs are flushed on "External initialization of the processor."
11450 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11451 	 * benefit in relying on the guest to flush the TLB immediately after
11452 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11453 	 * performance perspective.
11454 	 */
11455 	if (init_event)
11456 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11457 }
11458 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11459 
11460 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11461 {
11462 	struct kvm_segment cs;
11463 
11464 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11465 	cs.selector = vector << 8;
11466 	cs.base = vector << 12;
11467 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11468 	kvm_rip_write(vcpu, 0);
11469 }
11470 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11471 
11472 int kvm_arch_hardware_enable(void)
11473 {
11474 	struct kvm *kvm;
11475 	struct kvm_vcpu *vcpu;
11476 	unsigned long i;
11477 	int ret;
11478 	u64 local_tsc;
11479 	u64 max_tsc = 0;
11480 	bool stable, backwards_tsc = false;
11481 
11482 	kvm_user_return_msr_cpu_online();
11483 	ret = static_call(kvm_x86_hardware_enable)();
11484 	if (ret != 0)
11485 		return ret;
11486 
11487 	local_tsc = rdtsc();
11488 	stable = !kvm_check_tsc_unstable();
11489 	list_for_each_entry(kvm, &vm_list, vm_list) {
11490 		kvm_for_each_vcpu(i, vcpu, kvm) {
11491 			if (!stable && vcpu->cpu == smp_processor_id())
11492 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11493 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11494 				backwards_tsc = true;
11495 				if (vcpu->arch.last_host_tsc > max_tsc)
11496 					max_tsc = vcpu->arch.last_host_tsc;
11497 			}
11498 		}
11499 	}
11500 
11501 	/*
11502 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11503 	 * platforms that reset TSC during suspend or hibernate actions, but
11504 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11505 	 * detect that condition here, which happens early in CPU bringup,
11506 	 * before any KVM threads can be running.  Unfortunately, we can't
11507 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11508 	 * enough into CPU bringup that we know how much real time has actually
11509 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11510 	 * variables that haven't been updated yet.
11511 	 *
11512 	 * So we simply find the maximum observed TSC above, then record the
11513 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11514 	 * the adjustment will be applied.  Note that we accumulate
11515 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11516 	 * gets a chance to run again.  In the event that no KVM threads get a
11517 	 * chance to run, we will miss the entire elapsed period, as we'll have
11518 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11519 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11520 	 * uniform across all VCPUs (not to mention the scenario is extremely
11521 	 * unlikely). It is possible that a second hibernate recovery happens
11522 	 * much faster than a first, causing the observed TSC here to be
11523 	 * smaller; this would require additional padding adjustment, which is
11524 	 * why we set last_host_tsc to the local tsc observed here.
11525 	 *
11526 	 * N.B. - this code below runs only on platforms with reliable TSC,
11527 	 * as that is the only way backwards_tsc is set above.  Also note
11528 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11529 	 * have the same delta_cyc adjustment applied if backwards_tsc
11530 	 * is detected.  Note further, this adjustment is only done once,
11531 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11532 	 * called multiple times (one for each physical CPU bringup).
11533 	 *
11534 	 * Platforms with unreliable TSCs don't have to deal with this, they
11535 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11536 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11537 	 * guarantee that they stay in perfect synchronization.
11538 	 */
11539 	if (backwards_tsc) {
11540 		u64 delta_cyc = max_tsc - local_tsc;
11541 		list_for_each_entry(kvm, &vm_list, vm_list) {
11542 			kvm->arch.backwards_tsc_observed = true;
11543 			kvm_for_each_vcpu(i, vcpu, kvm) {
11544 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11545 				vcpu->arch.last_host_tsc = local_tsc;
11546 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11547 			}
11548 
11549 			/*
11550 			 * We have to disable TSC offset matching.. if you were
11551 			 * booting a VM while issuing an S4 host suspend....
11552 			 * you may have some problem.  Solving this issue is
11553 			 * left as an exercise to the reader.
11554 			 */
11555 			kvm->arch.last_tsc_nsec = 0;
11556 			kvm->arch.last_tsc_write = 0;
11557 		}
11558 
11559 	}
11560 	return 0;
11561 }
11562 
11563 void kvm_arch_hardware_disable(void)
11564 {
11565 	static_call(kvm_x86_hardware_disable)();
11566 	drop_user_return_notifiers();
11567 }
11568 
11569 int kvm_arch_hardware_setup(void *opaque)
11570 {
11571 	struct kvm_x86_init_ops *ops = opaque;
11572 	int r;
11573 
11574 	rdmsrl_safe(MSR_EFER, &host_efer);
11575 
11576 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11577 		rdmsrl(MSR_IA32_XSS, host_xss);
11578 
11579 	r = ops->hardware_setup();
11580 	if (r != 0)
11581 		return r;
11582 
11583 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11584 	kvm_ops_static_call_update();
11585 
11586 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11587 
11588 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11589 		supported_xss = 0;
11590 
11591 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11592 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11593 #undef __kvm_cpu_cap_has
11594 
11595 	if (kvm_has_tsc_control) {
11596 		/*
11597 		 * Make sure the user can only configure tsc_khz values that
11598 		 * fit into a signed integer.
11599 		 * A min value is not calculated because it will always
11600 		 * be 1 on all machines.
11601 		 */
11602 		u64 max = min(0x7fffffffULL,
11603 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11604 		kvm_max_guest_tsc_khz = max;
11605 	}
11606 	kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11607 	kvm_init_msr_list();
11608 	return 0;
11609 }
11610 
11611 void kvm_arch_hardware_unsetup(void)
11612 {
11613 	kvm_unregister_perf_callbacks();
11614 
11615 	static_call(kvm_x86_hardware_unsetup)();
11616 }
11617 
11618 int kvm_arch_check_processor_compat(void *opaque)
11619 {
11620 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11621 	struct kvm_x86_init_ops *ops = opaque;
11622 
11623 	WARN_ON(!irqs_disabled());
11624 
11625 	if (__cr4_reserved_bits(cpu_has, c) !=
11626 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11627 		return -EIO;
11628 
11629 	return ops->check_processor_compatibility();
11630 }
11631 
11632 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11633 {
11634 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11635 }
11636 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11637 
11638 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11639 {
11640 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11641 }
11642 
11643 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11644 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11645 
11646 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11647 {
11648 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11649 
11650 	vcpu->arch.l1tf_flush_l1d = true;
11651 	if (pmu->version && unlikely(pmu->event_count)) {
11652 		pmu->need_cleanup = true;
11653 		kvm_make_request(KVM_REQ_PMU, vcpu);
11654 	}
11655 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11656 }
11657 
11658 void kvm_arch_free_vm(struct kvm *kvm)
11659 {
11660 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11661 	__kvm_arch_free_vm(kvm);
11662 }
11663 
11664 
11665 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11666 {
11667 	int ret;
11668 	unsigned long flags;
11669 
11670 	if (type)
11671 		return -EINVAL;
11672 
11673 	ret = kvm_page_track_init(kvm);
11674 	if (ret)
11675 		goto out;
11676 
11677 	ret = kvm_mmu_init_vm(kvm);
11678 	if (ret)
11679 		goto out_page_track;
11680 
11681 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11682 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11683 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11684 
11685 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11686 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11687 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11688 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11689 		&kvm->arch.irq_sources_bitmap);
11690 
11691 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11692 	mutex_init(&kvm->arch.apic_map_lock);
11693 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11694 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11695 
11696 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11697 	pvclock_update_vm_gtod_copy(kvm);
11698 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11699 
11700 	kvm->arch.guest_can_read_msr_platform_info = true;
11701 	kvm->arch.enable_pmu = enable_pmu;
11702 
11703 #if IS_ENABLED(CONFIG_HYPERV)
11704 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11705 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11706 #endif
11707 
11708 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11709 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11710 
11711 	kvm_apicv_init(kvm);
11712 	kvm_hv_init_vm(kvm);
11713 	kvm_xen_init_vm(kvm);
11714 
11715 	return static_call(kvm_x86_vm_init)(kvm);
11716 
11717 out_page_track:
11718 	kvm_page_track_cleanup(kvm);
11719 out:
11720 	return ret;
11721 }
11722 
11723 int kvm_arch_post_init_vm(struct kvm *kvm)
11724 {
11725 	return kvm_mmu_post_init_vm(kvm);
11726 }
11727 
11728 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11729 {
11730 	vcpu_load(vcpu);
11731 	kvm_mmu_unload(vcpu);
11732 	vcpu_put(vcpu);
11733 }
11734 
11735 static void kvm_free_vcpus(struct kvm *kvm)
11736 {
11737 	unsigned long i;
11738 	struct kvm_vcpu *vcpu;
11739 
11740 	/*
11741 	 * Unpin any mmu pages first.
11742 	 */
11743 	kvm_for_each_vcpu(i, vcpu, kvm) {
11744 		kvm_clear_async_pf_completion_queue(vcpu);
11745 		kvm_unload_vcpu_mmu(vcpu);
11746 	}
11747 
11748 	kvm_destroy_vcpus(kvm);
11749 }
11750 
11751 void kvm_arch_sync_events(struct kvm *kvm)
11752 {
11753 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11754 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11755 	kvm_free_pit(kvm);
11756 }
11757 
11758 /**
11759  * __x86_set_memory_region: Setup KVM internal memory slot
11760  *
11761  * @kvm: the kvm pointer to the VM.
11762  * @id: the slot ID to setup.
11763  * @gpa: the GPA to install the slot (unused when @size == 0).
11764  * @size: the size of the slot. Set to zero to uninstall a slot.
11765  *
11766  * This function helps to setup a KVM internal memory slot.  Specify
11767  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11768  * slot.  The return code can be one of the following:
11769  *
11770  *   HVA:           on success (uninstall will return a bogus HVA)
11771  *   -errno:        on error
11772  *
11773  * The caller should always use IS_ERR() to check the return value
11774  * before use.  Note, the KVM internal memory slots are guaranteed to
11775  * remain valid and unchanged until the VM is destroyed, i.e., the
11776  * GPA->HVA translation will not change.  However, the HVA is a user
11777  * address, i.e. its accessibility is not guaranteed, and must be
11778  * accessed via __copy_{to,from}_user().
11779  */
11780 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11781 				      u32 size)
11782 {
11783 	int i, r;
11784 	unsigned long hva, old_npages;
11785 	struct kvm_memslots *slots = kvm_memslots(kvm);
11786 	struct kvm_memory_slot *slot;
11787 
11788 	/* Called with kvm->slots_lock held.  */
11789 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11790 		return ERR_PTR_USR(-EINVAL);
11791 
11792 	slot = id_to_memslot(slots, id);
11793 	if (size) {
11794 		if (slot && slot->npages)
11795 			return ERR_PTR_USR(-EEXIST);
11796 
11797 		/*
11798 		 * MAP_SHARED to prevent internal slot pages from being moved
11799 		 * by fork()/COW.
11800 		 */
11801 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11802 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11803 		if (IS_ERR((void *)hva))
11804 			return (void __user *)hva;
11805 	} else {
11806 		if (!slot || !slot->npages)
11807 			return NULL;
11808 
11809 		old_npages = slot->npages;
11810 		hva = slot->userspace_addr;
11811 	}
11812 
11813 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11814 		struct kvm_userspace_memory_region m;
11815 
11816 		m.slot = id | (i << 16);
11817 		m.flags = 0;
11818 		m.guest_phys_addr = gpa;
11819 		m.userspace_addr = hva;
11820 		m.memory_size = size;
11821 		r = __kvm_set_memory_region(kvm, &m);
11822 		if (r < 0)
11823 			return ERR_PTR_USR(r);
11824 	}
11825 
11826 	if (!size)
11827 		vm_munmap(hva, old_npages * PAGE_SIZE);
11828 
11829 	return (void __user *)hva;
11830 }
11831 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11832 
11833 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11834 {
11835 	kvm_mmu_pre_destroy_vm(kvm);
11836 }
11837 
11838 void kvm_arch_destroy_vm(struct kvm *kvm)
11839 {
11840 	if (current->mm == kvm->mm) {
11841 		/*
11842 		 * Free memory regions allocated on behalf of userspace,
11843 		 * unless the the memory map has changed due to process exit
11844 		 * or fd copying.
11845 		 */
11846 		mutex_lock(&kvm->slots_lock);
11847 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11848 					0, 0);
11849 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11850 					0, 0);
11851 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11852 		mutex_unlock(&kvm->slots_lock);
11853 	}
11854 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11855 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11856 	kvm_pic_destroy(kvm);
11857 	kvm_ioapic_destroy(kvm);
11858 	kvm_free_vcpus(kvm);
11859 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11860 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11861 	kvm_mmu_uninit_vm(kvm);
11862 	kvm_page_track_cleanup(kvm);
11863 	kvm_xen_destroy_vm(kvm);
11864 	kvm_hv_destroy_vm(kvm);
11865 }
11866 
11867 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11868 {
11869 	int i;
11870 
11871 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11872 		kvfree(slot->arch.rmap[i]);
11873 		slot->arch.rmap[i] = NULL;
11874 	}
11875 }
11876 
11877 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11878 {
11879 	int i;
11880 
11881 	memslot_rmap_free(slot);
11882 
11883 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11884 		kvfree(slot->arch.lpage_info[i - 1]);
11885 		slot->arch.lpage_info[i - 1] = NULL;
11886 	}
11887 
11888 	kvm_page_track_free_memslot(slot);
11889 }
11890 
11891 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11892 {
11893 	const int sz = sizeof(*slot->arch.rmap[0]);
11894 	int i;
11895 
11896 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11897 		int level = i + 1;
11898 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11899 
11900 		if (slot->arch.rmap[i])
11901 			continue;
11902 
11903 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11904 		if (!slot->arch.rmap[i]) {
11905 			memslot_rmap_free(slot);
11906 			return -ENOMEM;
11907 		}
11908 	}
11909 
11910 	return 0;
11911 }
11912 
11913 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11914 				      struct kvm_memory_slot *slot)
11915 {
11916 	unsigned long npages = slot->npages;
11917 	int i, r;
11918 
11919 	/*
11920 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11921 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11922 	 * the new memslot is successful.
11923 	 */
11924 	memset(&slot->arch, 0, sizeof(slot->arch));
11925 
11926 	if (kvm_memslots_have_rmaps(kvm)) {
11927 		r = memslot_rmap_alloc(slot, npages);
11928 		if (r)
11929 			return r;
11930 	}
11931 
11932 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11933 		struct kvm_lpage_info *linfo;
11934 		unsigned long ugfn;
11935 		int lpages;
11936 		int level = i + 1;
11937 
11938 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11939 
11940 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11941 		if (!linfo)
11942 			goto out_free;
11943 
11944 		slot->arch.lpage_info[i - 1] = linfo;
11945 
11946 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11947 			linfo[0].disallow_lpage = 1;
11948 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11949 			linfo[lpages - 1].disallow_lpage = 1;
11950 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11951 		/*
11952 		 * If the gfn and userspace address are not aligned wrt each
11953 		 * other, disable large page support for this slot.
11954 		 */
11955 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11956 			unsigned long j;
11957 
11958 			for (j = 0; j < lpages; ++j)
11959 				linfo[j].disallow_lpage = 1;
11960 		}
11961 	}
11962 
11963 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11964 		goto out_free;
11965 
11966 	return 0;
11967 
11968 out_free:
11969 	memslot_rmap_free(slot);
11970 
11971 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11972 		kvfree(slot->arch.lpage_info[i - 1]);
11973 		slot->arch.lpage_info[i - 1] = NULL;
11974 	}
11975 	return -ENOMEM;
11976 }
11977 
11978 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11979 {
11980 	struct kvm_vcpu *vcpu;
11981 	unsigned long i;
11982 
11983 	/*
11984 	 * memslots->generation has been incremented.
11985 	 * mmio generation may have reached its maximum value.
11986 	 */
11987 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11988 
11989 	/* Force re-initialization of steal_time cache */
11990 	kvm_for_each_vcpu(i, vcpu, kvm)
11991 		kvm_vcpu_kick(vcpu);
11992 }
11993 
11994 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11995 				   const struct kvm_memory_slot *old,
11996 				   struct kvm_memory_slot *new,
11997 				   enum kvm_mr_change change)
11998 {
11999 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
12000 		return kvm_alloc_memslot_metadata(kvm, new);
12001 
12002 	if (change == KVM_MR_FLAGS_ONLY)
12003 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12004 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12005 		return -EIO;
12006 
12007 	return 0;
12008 }
12009 
12010 
12011 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12012 {
12013 	struct kvm_arch *ka = &kvm->arch;
12014 
12015 	if (!kvm_x86_ops.cpu_dirty_log_size)
12016 		return;
12017 
12018 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12019 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12020 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12021 
12022 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12023 }
12024 
12025 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12026 				     struct kvm_memory_slot *old,
12027 				     const struct kvm_memory_slot *new,
12028 				     enum kvm_mr_change change)
12029 {
12030 	u32 old_flags = old ? old->flags : 0;
12031 	u32 new_flags = new ? new->flags : 0;
12032 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12033 
12034 	/*
12035 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12036 	 * applies to all operations.
12037 	 */
12038 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12039 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12040 
12041 	/*
12042 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12043 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12044 	 *
12045 	 * For a memslot with dirty logging disabled:
12046 	 * CREATE:      No dirty mappings will already exist.
12047 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12048 	 *		kvm_arch_flush_shadow_memslot()
12049 	 *
12050 	 * For a memslot with dirty logging enabled:
12051 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12052 	 *		and no dirty bits to clear.
12053 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12054 	 *		kvm_arch_flush_shadow_memslot().
12055 	 */
12056 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12057 		return;
12058 
12059 	/*
12060 	 * READONLY and non-flags changes were filtered out above, and the only
12061 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12062 	 * logging isn't being toggled on or off.
12063 	 */
12064 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12065 		return;
12066 
12067 	if (!log_dirty_pages) {
12068 		/*
12069 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12070 		 * large sptes have to be split.  If live migration succeeds,
12071 		 * the guest in the source machine will be destroyed and large
12072 		 * sptes will be created in the destination.  However, if the
12073 		 * guest continues to run in the source machine (for example if
12074 		 * live migration fails), small sptes will remain around and
12075 		 * cause bad performance.
12076 		 *
12077 		 * Scan sptes if dirty logging has been stopped, dropping those
12078 		 * which can be collapsed into a single large-page spte.  Later
12079 		 * page faults will create the large-page sptes.
12080 		 */
12081 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12082 	} else {
12083 		/*
12084 		 * Initially-all-set does not require write protecting any page,
12085 		 * because they're all assumed to be dirty.
12086 		 */
12087 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12088 			return;
12089 
12090 		if (READ_ONCE(eager_page_split))
12091 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12092 
12093 		if (kvm_x86_ops.cpu_dirty_log_size) {
12094 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12095 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12096 		} else {
12097 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12098 		}
12099 	}
12100 }
12101 
12102 void kvm_arch_commit_memory_region(struct kvm *kvm,
12103 				struct kvm_memory_slot *old,
12104 				const struct kvm_memory_slot *new,
12105 				enum kvm_mr_change change)
12106 {
12107 	if (!kvm->arch.n_requested_mmu_pages &&
12108 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12109 		unsigned long nr_mmu_pages;
12110 
12111 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12112 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12113 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12114 	}
12115 
12116 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12117 
12118 	/* Free the arrays associated with the old memslot. */
12119 	if (change == KVM_MR_MOVE)
12120 		kvm_arch_free_memslot(kvm, old);
12121 }
12122 
12123 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12124 {
12125 	kvm_mmu_zap_all(kvm);
12126 }
12127 
12128 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12129 				   struct kvm_memory_slot *slot)
12130 {
12131 	kvm_page_track_flush_slot(kvm, slot);
12132 }
12133 
12134 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12135 {
12136 	return (is_guest_mode(vcpu) &&
12137 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12138 }
12139 
12140 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12141 {
12142 	if (!list_empty_careful(&vcpu->async_pf.done))
12143 		return true;
12144 
12145 	if (kvm_apic_has_events(vcpu))
12146 		return true;
12147 
12148 	if (vcpu->arch.pv.pv_unhalted)
12149 		return true;
12150 
12151 	if (vcpu->arch.exception.pending)
12152 		return true;
12153 
12154 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12155 	    (vcpu->arch.nmi_pending &&
12156 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12157 		return true;
12158 
12159 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12160 	    (vcpu->arch.smi_pending &&
12161 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12162 		return true;
12163 
12164 	if (kvm_arch_interrupt_allowed(vcpu) &&
12165 	    (kvm_cpu_has_interrupt(vcpu) ||
12166 	    kvm_guest_apic_has_interrupt(vcpu)))
12167 		return true;
12168 
12169 	if (kvm_hv_has_stimer_pending(vcpu))
12170 		return true;
12171 
12172 	if (is_guest_mode(vcpu) &&
12173 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12174 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12175 		return true;
12176 
12177 	return false;
12178 }
12179 
12180 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12181 {
12182 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12183 }
12184 
12185 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12186 {
12187 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12188 		return true;
12189 
12190 	return false;
12191 }
12192 
12193 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12194 {
12195 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12196 		return true;
12197 
12198 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12199 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12200 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12201 		return true;
12202 
12203 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12204 }
12205 
12206 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12207 {
12208 	if (vcpu->arch.guest_state_protected)
12209 		return true;
12210 
12211 	return vcpu->arch.preempted_in_kernel;
12212 }
12213 
12214 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12215 {
12216 	return kvm_rip_read(vcpu);
12217 }
12218 
12219 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12220 {
12221 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12222 }
12223 
12224 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12225 {
12226 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12227 }
12228 
12229 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12230 {
12231 	/* Can't read the RIP when guest state is protected, just return 0 */
12232 	if (vcpu->arch.guest_state_protected)
12233 		return 0;
12234 
12235 	if (is_64_bit_mode(vcpu))
12236 		return kvm_rip_read(vcpu);
12237 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12238 		     kvm_rip_read(vcpu));
12239 }
12240 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12241 
12242 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12243 {
12244 	return kvm_get_linear_rip(vcpu) == linear_rip;
12245 }
12246 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12247 
12248 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12249 {
12250 	unsigned long rflags;
12251 
12252 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12253 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12254 		rflags &= ~X86_EFLAGS_TF;
12255 	return rflags;
12256 }
12257 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12258 
12259 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12260 {
12261 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12262 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12263 		rflags |= X86_EFLAGS_TF;
12264 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12265 }
12266 
12267 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12268 {
12269 	__kvm_set_rflags(vcpu, rflags);
12270 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12271 }
12272 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12273 
12274 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12275 {
12276 	int r;
12277 
12278 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12279 	      work->wakeup_all)
12280 		return;
12281 
12282 	r = kvm_mmu_reload(vcpu);
12283 	if (unlikely(r))
12284 		return;
12285 
12286 	if (!vcpu->arch.mmu->direct_map &&
12287 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12288 		return;
12289 
12290 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12291 }
12292 
12293 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12294 {
12295 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12296 
12297 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12298 }
12299 
12300 static inline u32 kvm_async_pf_next_probe(u32 key)
12301 {
12302 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12303 }
12304 
12305 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12306 {
12307 	u32 key = kvm_async_pf_hash_fn(gfn);
12308 
12309 	while (vcpu->arch.apf.gfns[key] != ~0)
12310 		key = kvm_async_pf_next_probe(key);
12311 
12312 	vcpu->arch.apf.gfns[key] = gfn;
12313 }
12314 
12315 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12316 {
12317 	int i;
12318 	u32 key = kvm_async_pf_hash_fn(gfn);
12319 
12320 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12321 		     (vcpu->arch.apf.gfns[key] != gfn &&
12322 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12323 		key = kvm_async_pf_next_probe(key);
12324 
12325 	return key;
12326 }
12327 
12328 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12329 {
12330 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12331 }
12332 
12333 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12334 {
12335 	u32 i, j, k;
12336 
12337 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12338 
12339 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12340 		return;
12341 
12342 	while (true) {
12343 		vcpu->arch.apf.gfns[i] = ~0;
12344 		do {
12345 			j = kvm_async_pf_next_probe(j);
12346 			if (vcpu->arch.apf.gfns[j] == ~0)
12347 				return;
12348 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12349 			/*
12350 			 * k lies cyclically in ]i,j]
12351 			 * |    i.k.j |
12352 			 * |....j i.k.| or  |.k..j i...|
12353 			 */
12354 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12355 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12356 		i = j;
12357 	}
12358 }
12359 
12360 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12361 {
12362 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12363 
12364 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12365 				      sizeof(reason));
12366 }
12367 
12368 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12369 {
12370 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12371 
12372 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12373 					     &token, offset, sizeof(token));
12374 }
12375 
12376 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12377 {
12378 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12379 	u32 val;
12380 
12381 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12382 					 &val, offset, sizeof(val)))
12383 		return false;
12384 
12385 	return !val;
12386 }
12387 
12388 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12389 {
12390 
12391 	if (!kvm_pv_async_pf_enabled(vcpu))
12392 		return false;
12393 
12394 	if (vcpu->arch.apf.send_user_only &&
12395 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12396 		return false;
12397 
12398 	if (is_guest_mode(vcpu)) {
12399 		/*
12400 		 * L1 needs to opt into the special #PF vmexits that are
12401 		 * used to deliver async page faults.
12402 		 */
12403 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12404 	} else {
12405 		/*
12406 		 * Play it safe in case the guest temporarily disables paging.
12407 		 * The real mode IDT in particular is unlikely to have a #PF
12408 		 * exception setup.
12409 		 */
12410 		return is_paging(vcpu);
12411 	}
12412 }
12413 
12414 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12415 {
12416 	if (unlikely(!lapic_in_kernel(vcpu) ||
12417 		     kvm_event_needs_reinjection(vcpu) ||
12418 		     vcpu->arch.exception.pending))
12419 		return false;
12420 
12421 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12422 		return false;
12423 
12424 	/*
12425 	 * If interrupts are off we cannot even use an artificial
12426 	 * halt state.
12427 	 */
12428 	return kvm_arch_interrupt_allowed(vcpu);
12429 }
12430 
12431 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12432 				     struct kvm_async_pf *work)
12433 {
12434 	struct x86_exception fault;
12435 
12436 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12437 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12438 
12439 	if (kvm_can_deliver_async_pf(vcpu) &&
12440 	    !apf_put_user_notpresent(vcpu)) {
12441 		fault.vector = PF_VECTOR;
12442 		fault.error_code_valid = true;
12443 		fault.error_code = 0;
12444 		fault.nested_page_fault = false;
12445 		fault.address = work->arch.token;
12446 		fault.async_page_fault = true;
12447 		kvm_inject_page_fault(vcpu, &fault);
12448 		return true;
12449 	} else {
12450 		/*
12451 		 * It is not possible to deliver a paravirtualized asynchronous
12452 		 * page fault, but putting the guest in an artificial halt state
12453 		 * can be beneficial nevertheless: if an interrupt arrives, we
12454 		 * can deliver it timely and perhaps the guest will schedule
12455 		 * another process.  When the instruction that triggered a page
12456 		 * fault is retried, hopefully the page will be ready in the host.
12457 		 */
12458 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12459 		return false;
12460 	}
12461 }
12462 
12463 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12464 				 struct kvm_async_pf *work)
12465 {
12466 	struct kvm_lapic_irq irq = {
12467 		.delivery_mode = APIC_DM_FIXED,
12468 		.vector = vcpu->arch.apf.vec
12469 	};
12470 
12471 	if (work->wakeup_all)
12472 		work->arch.token = ~0; /* broadcast wakeup */
12473 	else
12474 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12475 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12476 
12477 	if ((work->wakeup_all || work->notpresent_injected) &&
12478 	    kvm_pv_async_pf_enabled(vcpu) &&
12479 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12480 		vcpu->arch.apf.pageready_pending = true;
12481 		kvm_apic_set_irq(vcpu, &irq, NULL);
12482 	}
12483 
12484 	vcpu->arch.apf.halted = false;
12485 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12486 }
12487 
12488 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12489 {
12490 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12491 	if (!vcpu->arch.apf.pageready_pending)
12492 		kvm_vcpu_kick(vcpu);
12493 }
12494 
12495 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12496 {
12497 	if (!kvm_pv_async_pf_enabled(vcpu))
12498 		return true;
12499 	else
12500 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12501 }
12502 
12503 void kvm_arch_start_assignment(struct kvm *kvm)
12504 {
12505 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12506 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12507 }
12508 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12509 
12510 void kvm_arch_end_assignment(struct kvm *kvm)
12511 {
12512 	atomic_dec(&kvm->arch.assigned_device_count);
12513 }
12514 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12515 
12516 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12517 {
12518 	return atomic_read(&kvm->arch.assigned_device_count);
12519 }
12520 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12521 
12522 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12523 {
12524 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12525 }
12526 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12527 
12528 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12529 {
12530 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12531 }
12532 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12533 
12534 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12535 {
12536 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12537 }
12538 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12539 
12540 bool kvm_arch_has_irq_bypass(void)
12541 {
12542 	return true;
12543 }
12544 
12545 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12546 				      struct irq_bypass_producer *prod)
12547 {
12548 	struct kvm_kernel_irqfd *irqfd =
12549 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12550 	int ret;
12551 
12552 	irqfd->producer = prod;
12553 	kvm_arch_start_assignment(irqfd->kvm);
12554 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12555 					 prod->irq, irqfd->gsi, 1);
12556 
12557 	if (ret)
12558 		kvm_arch_end_assignment(irqfd->kvm);
12559 
12560 	return ret;
12561 }
12562 
12563 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12564 				      struct irq_bypass_producer *prod)
12565 {
12566 	int ret;
12567 	struct kvm_kernel_irqfd *irqfd =
12568 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12569 
12570 	WARN_ON(irqfd->producer != prod);
12571 	irqfd->producer = NULL;
12572 
12573 	/*
12574 	 * When producer of consumer is unregistered, we change back to
12575 	 * remapped mode, so we can re-use the current implementation
12576 	 * when the irq is masked/disabled or the consumer side (KVM
12577 	 * int this case doesn't want to receive the interrupts.
12578 	*/
12579 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12580 	if (ret)
12581 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12582 		       " fails: %d\n", irqfd->consumer.token, ret);
12583 
12584 	kvm_arch_end_assignment(irqfd->kvm);
12585 }
12586 
12587 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12588 				   uint32_t guest_irq, bool set)
12589 {
12590 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12591 }
12592 
12593 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12594 				  struct kvm_kernel_irq_routing_entry *new)
12595 {
12596 	if (new->type != KVM_IRQ_ROUTING_MSI)
12597 		return true;
12598 
12599 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12600 }
12601 
12602 bool kvm_vector_hashing_enabled(void)
12603 {
12604 	return vector_hashing;
12605 }
12606 
12607 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12608 {
12609 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12610 }
12611 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12612 
12613 
12614 int kvm_spec_ctrl_test_value(u64 value)
12615 {
12616 	/*
12617 	 * test that setting IA32_SPEC_CTRL to given value
12618 	 * is allowed by the host processor
12619 	 */
12620 
12621 	u64 saved_value;
12622 	unsigned long flags;
12623 	int ret = 0;
12624 
12625 	local_irq_save(flags);
12626 
12627 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12628 		ret = 1;
12629 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12630 		ret = 1;
12631 	else
12632 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12633 
12634 	local_irq_restore(flags);
12635 
12636 	return ret;
12637 }
12638 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12639 
12640 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12641 {
12642 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12643 	struct x86_exception fault;
12644 	u64 access = error_code &
12645 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12646 
12647 	if (!(error_code & PFERR_PRESENT_MASK) ||
12648 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12649 		/*
12650 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12651 		 * tables probably do not match the TLB.  Just proceed
12652 		 * with the error code that the processor gave.
12653 		 */
12654 		fault.vector = PF_VECTOR;
12655 		fault.error_code_valid = true;
12656 		fault.error_code = error_code;
12657 		fault.nested_page_fault = false;
12658 		fault.address = gva;
12659 	}
12660 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12661 }
12662 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12663 
12664 /*
12665  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12666  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12667  * indicates whether exit to userspace is needed.
12668  */
12669 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12670 			      struct x86_exception *e)
12671 {
12672 	if (r == X86EMUL_PROPAGATE_FAULT) {
12673 		kvm_inject_emulated_page_fault(vcpu, e);
12674 		return 1;
12675 	}
12676 
12677 	/*
12678 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12679 	 * while handling a VMX instruction KVM could've handled the request
12680 	 * correctly by exiting to userspace and performing I/O but there
12681 	 * doesn't seem to be a real use-case behind such requests, just return
12682 	 * KVM_EXIT_INTERNAL_ERROR for now.
12683 	 */
12684 	kvm_prepare_emulation_failure_exit(vcpu);
12685 
12686 	return 0;
12687 }
12688 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12689 
12690 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12691 {
12692 	bool pcid_enabled;
12693 	struct x86_exception e;
12694 	struct {
12695 		u64 pcid;
12696 		u64 gla;
12697 	} operand;
12698 	int r;
12699 
12700 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12701 	if (r != X86EMUL_CONTINUE)
12702 		return kvm_handle_memory_failure(vcpu, r, &e);
12703 
12704 	if (operand.pcid >> 12 != 0) {
12705 		kvm_inject_gp(vcpu, 0);
12706 		return 1;
12707 	}
12708 
12709 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12710 
12711 	switch (type) {
12712 	case INVPCID_TYPE_INDIV_ADDR:
12713 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12714 		    is_noncanonical_address(operand.gla, vcpu)) {
12715 			kvm_inject_gp(vcpu, 0);
12716 			return 1;
12717 		}
12718 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12719 		return kvm_skip_emulated_instruction(vcpu);
12720 
12721 	case INVPCID_TYPE_SINGLE_CTXT:
12722 		if (!pcid_enabled && (operand.pcid != 0)) {
12723 			kvm_inject_gp(vcpu, 0);
12724 			return 1;
12725 		}
12726 
12727 		kvm_invalidate_pcid(vcpu, operand.pcid);
12728 		return kvm_skip_emulated_instruction(vcpu);
12729 
12730 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12731 		/*
12732 		 * Currently, KVM doesn't mark global entries in the shadow
12733 		 * page tables, so a non-global flush just degenerates to a
12734 		 * global flush. If needed, we could optimize this later by
12735 		 * keeping track of global entries in shadow page tables.
12736 		 */
12737 
12738 		fallthrough;
12739 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12740 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12741 		return kvm_skip_emulated_instruction(vcpu);
12742 
12743 	default:
12744 		kvm_inject_gp(vcpu, 0);
12745 		return 1;
12746 	}
12747 }
12748 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12749 
12750 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12751 {
12752 	struct kvm_run *run = vcpu->run;
12753 	struct kvm_mmio_fragment *frag;
12754 	unsigned int len;
12755 
12756 	BUG_ON(!vcpu->mmio_needed);
12757 
12758 	/* Complete previous fragment */
12759 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12760 	len = min(8u, frag->len);
12761 	if (!vcpu->mmio_is_write)
12762 		memcpy(frag->data, run->mmio.data, len);
12763 
12764 	if (frag->len <= 8) {
12765 		/* Switch to the next fragment. */
12766 		frag++;
12767 		vcpu->mmio_cur_fragment++;
12768 	} else {
12769 		/* Go forward to the next mmio piece. */
12770 		frag->data += len;
12771 		frag->gpa += len;
12772 		frag->len -= len;
12773 	}
12774 
12775 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12776 		vcpu->mmio_needed = 0;
12777 
12778 		// VMG change, at this point, we're always done
12779 		// RIP has already been advanced
12780 		return 1;
12781 	}
12782 
12783 	// More MMIO is needed
12784 	run->mmio.phys_addr = frag->gpa;
12785 	run->mmio.len = min(8u, frag->len);
12786 	run->mmio.is_write = vcpu->mmio_is_write;
12787 	if (run->mmio.is_write)
12788 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12789 	run->exit_reason = KVM_EXIT_MMIO;
12790 
12791 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12792 
12793 	return 0;
12794 }
12795 
12796 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12797 			  void *data)
12798 {
12799 	int handled;
12800 	struct kvm_mmio_fragment *frag;
12801 
12802 	if (!data)
12803 		return -EINVAL;
12804 
12805 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12806 	if (handled == bytes)
12807 		return 1;
12808 
12809 	bytes -= handled;
12810 	gpa += handled;
12811 	data += handled;
12812 
12813 	/*TODO: Check if need to increment number of frags */
12814 	frag = vcpu->mmio_fragments;
12815 	vcpu->mmio_nr_fragments = 1;
12816 	frag->len = bytes;
12817 	frag->gpa = gpa;
12818 	frag->data = data;
12819 
12820 	vcpu->mmio_needed = 1;
12821 	vcpu->mmio_cur_fragment = 0;
12822 
12823 	vcpu->run->mmio.phys_addr = gpa;
12824 	vcpu->run->mmio.len = min(8u, frag->len);
12825 	vcpu->run->mmio.is_write = 1;
12826 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12827 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12828 
12829 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12830 
12831 	return 0;
12832 }
12833 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12834 
12835 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12836 			 void *data)
12837 {
12838 	int handled;
12839 	struct kvm_mmio_fragment *frag;
12840 
12841 	if (!data)
12842 		return -EINVAL;
12843 
12844 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12845 	if (handled == bytes)
12846 		return 1;
12847 
12848 	bytes -= handled;
12849 	gpa += handled;
12850 	data += handled;
12851 
12852 	/*TODO: Check if need to increment number of frags */
12853 	frag = vcpu->mmio_fragments;
12854 	vcpu->mmio_nr_fragments = 1;
12855 	frag->len = bytes;
12856 	frag->gpa = gpa;
12857 	frag->data = data;
12858 
12859 	vcpu->mmio_needed = 1;
12860 	vcpu->mmio_cur_fragment = 0;
12861 
12862 	vcpu->run->mmio.phys_addr = gpa;
12863 	vcpu->run->mmio.len = min(8u, frag->len);
12864 	vcpu->run->mmio.is_write = 0;
12865 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12866 
12867 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12868 
12869 	return 0;
12870 }
12871 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12872 
12873 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12874 			   unsigned int port);
12875 
12876 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12877 {
12878 	int size = vcpu->arch.pio.size;
12879 	int port = vcpu->arch.pio.port;
12880 
12881 	vcpu->arch.pio.count = 0;
12882 	if (vcpu->arch.sev_pio_count)
12883 		return kvm_sev_es_outs(vcpu, size, port);
12884 	return 1;
12885 }
12886 
12887 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12888 			   unsigned int port)
12889 {
12890 	for (;;) {
12891 		unsigned int count =
12892 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12893 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12894 
12895 		/* memcpy done already by emulator_pio_out.  */
12896 		vcpu->arch.sev_pio_count -= count;
12897 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12898 		if (!ret)
12899 			break;
12900 
12901 		/* Emulation done by the kernel.  */
12902 		if (!vcpu->arch.sev_pio_count)
12903 			return 1;
12904 	}
12905 
12906 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12907 	return 0;
12908 }
12909 
12910 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12911 			  unsigned int port);
12912 
12913 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12914 {
12915 	unsigned count = vcpu->arch.pio.count;
12916 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12917 	vcpu->arch.sev_pio_count -= count;
12918 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12919 }
12920 
12921 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12922 {
12923 	int size = vcpu->arch.pio.size;
12924 	int port = vcpu->arch.pio.port;
12925 
12926 	advance_sev_es_emulated_ins(vcpu);
12927 	if (vcpu->arch.sev_pio_count)
12928 		return kvm_sev_es_ins(vcpu, size, port);
12929 	return 1;
12930 }
12931 
12932 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12933 			  unsigned int port)
12934 {
12935 	for (;;) {
12936 		unsigned int count =
12937 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12938 		if (!__emulator_pio_in(vcpu, size, port, count))
12939 			break;
12940 
12941 		/* Emulation done by the kernel.  */
12942 		advance_sev_es_emulated_ins(vcpu);
12943 		if (!vcpu->arch.sev_pio_count)
12944 			return 1;
12945 	}
12946 
12947 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12948 	return 0;
12949 }
12950 
12951 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12952 			 unsigned int port, void *data,  unsigned int count,
12953 			 int in)
12954 {
12955 	vcpu->arch.sev_pio_data = data;
12956 	vcpu->arch.sev_pio_count = count;
12957 	return in ? kvm_sev_es_ins(vcpu, size, port)
12958 		  : kvm_sev_es_outs(vcpu, size, port);
12959 }
12960 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12961 
12962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12989