1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "mmu.h" 22 #include "i8254.h" 23 #include "tss.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "x86.h" 27 #include "cpuid.h" 28 #include "pmu.h" 29 #include "hyperv.h" 30 #include "lapic.h" 31 32 #include <linux/clocksource.h> 33 #include <linux/interrupt.h> 34 #include <linux/kvm.h> 35 #include <linux/fs.h> 36 #include <linux/vmalloc.h> 37 #include <linux/export.h> 38 #include <linux/moduleparam.h> 39 #include <linux/mman.h> 40 #include <linux/highmem.h> 41 #include <linux/iommu.h> 42 #include <linux/intel-iommu.h> 43 #include <linux/cpufreq.h> 44 #include <linux/user-return-notifier.h> 45 #include <linux/srcu.h> 46 #include <linux/slab.h> 47 #include <linux/perf_event.h> 48 #include <linux/uaccess.h> 49 #include <linux/hash.h> 50 #include <linux/pci.h> 51 #include <linux/timekeeper_internal.h> 52 #include <linux/pvclock_gtod.h> 53 #include <linux/kvm_irqfd.h> 54 #include <linux/irqbypass.h> 55 #include <linux/sched/stat.h> 56 #include <linux/sched/isolation.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 #include <asm/mshyperv.h> 71 #include <asm/hypervisor.h> 72 #include <asm/intel_pt.h> 73 #include <asm/emulate_prefix.h> 74 #include <clocksource/hyperv_timer.h> 75 76 #define CREATE_TRACE_POINTS 77 #include "trace.h" 78 79 #define MAX_IO_MSRS 256 80 #define KVM_MAX_MCE_BANKS 32 81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 83 84 #define emul_to_vcpu(ctxt) \ 85 ((struct kvm_vcpu *)(ctxt)->vcpu) 86 87 /* EFER defaults: 88 * - enable syscall per default because its emulated by KVM 89 * - enable LME and LMA per default on 64 bit KVM 90 */ 91 #ifdef CONFIG_X86_64 92 static 93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 94 #else 95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 96 #endif 97 98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 99 100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ 101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ 102 103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107 static void process_nmi(struct kvm_vcpu *vcpu); 108 static void enter_smm(struct kvm_vcpu *vcpu); 109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 110 static void store_regs(struct kvm_vcpu *vcpu); 111 static int sync_regs(struct kvm_vcpu *vcpu); 112 113 struct kvm_x86_ops kvm_x86_ops __read_mostly; 114 EXPORT_SYMBOL_GPL(kvm_x86_ops); 115 116 static bool __read_mostly ignore_msrs = 0; 117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 118 119 static bool __read_mostly report_ignored_msrs = true; 120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 121 122 unsigned int min_timer_period_us = 200; 123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 124 125 static bool __read_mostly kvmclock_periodic_sync = true; 126 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 127 128 bool __read_mostly kvm_has_tsc_control; 129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 130 u32 __read_mostly kvm_max_guest_tsc_khz; 131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 134 u64 __read_mostly kvm_max_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 136 u64 __read_mostly kvm_default_tsc_scaling_ratio; 137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 138 139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 140 static u32 __read_mostly tsc_tolerance_ppm = 250; 141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 142 143 /* 144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 145 * adaptive tuning starting from default advancment of 1000ns. '0' disables 146 * advancement entirely. Any other value is used as-is and disables adaptive 147 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 148 */ 149 static int __read_mostly lapic_timer_advance_ns = -1; 150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly vector_hashing = true; 153 module_param(vector_hashing, bool, S_IRUGO); 154 155 bool __read_mostly enable_vmware_backdoor = false; 156 module_param(enable_vmware_backdoor, bool, S_IRUGO); 157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 158 159 static bool __read_mostly force_emulation_prefix = false; 160 module_param(force_emulation_prefix, bool, S_IRUGO); 161 162 int __read_mostly pi_inject_timer = -1; 163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 164 165 #define KVM_NR_SHARED_MSRS 16 166 167 struct kvm_shared_msrs_global { 168 int nr; 169 u32 msrs[KVM_NR_SHARED_MSRS]; 170 }; 171 172 struct kvm_shared_msrs { 173 struct user_return_notifier urn; 174 bool registered; 175 struct kvm_shared_msr_values { 176 u64 host; 177 u64 curr; 178 } values[KVM_NR_SHARED_MSRS]; 179 }; 180 181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 182 static struct kvm_shared_msrs __percpu *shared_msrs; 183 184 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 185 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 186 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 187 | XFEATURE_MASK_PKRU) 188 189 u64 __read_mostly host_efer; 190 EXPORT_SYMBOL_GPL(host_efer); 191 192 static u64 __read_mostly host_xss; 193 u64 __read_mostly supported_xss; 194 EXPORT_SYMBOL_GPL(supported_xss); 195 196 struct kvm_stats_debugfs_item debugfs_entries[] = { 197 { "pf_fixed", VCPU_STAT(pf_fixed) }, 198 { "pf_guest", VCPU_STAT(pf_guest) }, 199 { "tlb_flush", VCPU_STAT(tlb_flush) }, 200 { "invlpg", VCPU_STAT(invlpg) }, 201 { "exits", VCPU_STAT(exits) }, 202 { "io_exits", VCPU_STAT(io_exits) }, 203 { "mmio_exits", VCPU_STAT(mmio_exits) }, 204 { "signal_exits", VCPU_STAT(signal_exits) }, 205 { "irq_window", VCPU_STAT(irq_window_exits) }, 206 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 207 { "halt_exits", VCPU_STAT(halt_exits) }, 208 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 209 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 210 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 211 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 212 { "hypercalls", VCPU_STAT(hypercalls) }, 213 { "request_irq", VCPU_STAT(request_irq_exits) }, 214 { "irq_exits", VCPU_STAT(irq_exits) }, 215 { "host_state_reload", VCPU_STAT(host_state_reload) }, 216 { "fpu_reload", VCPU_STAT(fpu_reload) }, 217 { "insn_emulation", VCPU_STAT(insn_emulation) }, 218 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 219 { "irq_injections", VCPU_STAT(irq_injections) }, 220 { "nmi_injections", VCPU_STAT(nmi_injections) }, 221 { "req_event", VCPU_STAT(req_event) }, 222 { "l1d_flush", VCPU_STAT(l1d_flush) }, 223 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 224 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 225 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 226 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 227 { "mmu_flooded", VM_STAT(mmu_flooded) }, 228 { "mmu_recycled", VM_STAT(mmu_recycled) }, 229 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 230 { "mmu_unsync", VM_STAT(mmu_unsync) }, 231 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 232 { "largepages", VM_STAT(lpages, .mode = 0444) }, 233 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) }, 234 { "max_mmu_page_hash_collisions", 235 VM_STAT(max_mmu_page_hash_collisions) }, 236 { NULL } 237 }; 238 239 u64 __read_mostly host_xcr0; 240 u64 __read_mostly supported_xcr0; 241 EXPORT_SYMBOL_GPL(supported_xcr0); 242 243 struct kmem_cache *x86_fpu_cache; 244 EXPORT_SYMBOL_GPL(x86_fpu_cache); 245 246 static struct kmem_cache *x86_emulator_cache; 247 248 static struct kmem_cache *kvm_alloc_emulator_cache(void) 249 { 250 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 251 unsigned int size = sizeof(struct x86_emulate_ctxt); 252 253 return kmem_cache_create_usercopy("x86_emulator", size, 254 __alignof__(struct x86_emulate_ctxt), 255 SLAB_ACCOUNT, useroffset, 256 size - useroffset, NULL); 257 } 258 259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 260 261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 262 { 263 int i; 264 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 265 vcpu->arch.apf.gfns[i] = ~0; 266 } 267 268 static void kvm_on_user_return(struct user_return_notifier *urn) 269 { 270 unsigned slot; 271 struct kvm_shared_msrs *locals 272 = container_of(urn, struct kvm_shared_msrs, urn); 273 struct kvm_shared_msr_values *values; 274 unsigned long flags; 275 276 /* 277 * Disabling irqs at this point since the following code could be 278 * interrupted and executed through kvm_arch_hardware_disable() 279 */ 280 local_irq_save(flags); 281 if (locals->registered) { 282 locals->registered = false; 283 user_return_notifier_unregister(urn); 284 } 285 local_irq_restore(flags); 286 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 287 values = &locals->values[slot]; 288 if (values->host != values->curr) { 289 wrmsrl(shared_msrs_global.msrs[slot], values->host); 290 values->curr = values->host; 291 } 292 } 293 } 294 295 void kvm_define_shared_msr(unsigned slot, u32 msr) 296 { 297 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 298 shared_msrs_global.msrs[slot] = msr; 299 if (slot >= shared_msrs_global.nr) 300 shared_msrs_global.nr = slot + 1; 301 } 302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 303 304 static void kvm_shared_msr_cpu_online(void) 305 { 306 unsigned int cpu = smp_processor_id(); 307 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 308 u64 value; 309 int i; 310 311 for (i = 0; i < shared_msrs_global.nr; ++i) { 312 rdmsrl_safe(shared_msrs_global.msrs[i], &value); 313 smsr->values[i].host = value; 314 smsr->values[i].curr = value; 315 } 316 } 317 318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 319 { 320 unsigned int cpu = smp_processor_id(); 321 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 322 int err; 323 324 value = (value & mask) | (smsr->values[slot].host & ~mask); 325 if (value == smsr->values[slot].curr) 326 return 0; 327 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 328 if (err) 329 return 1; 330 331 smsr->values[slot].curr = value; 332 if (!smsr->registered) { 333 smsr->urn.on_user_return = kvm_on_user_return; 334 user_return_notifier_register(&smsr->urn); 335 smsr->registered = true; 336 } 337 return 0; 338 } 339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 340 341 static void drop_user_return_notifiers(void) 342 { 343 unsigned int cpu = smp_processor_id(); 344 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 345 346 if (smsr->registered) 347 kvm_on_user_return(&smsr->urn); 348 } 349 350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 351 { 352 return vcpu->arch.apic_base; 353 } 354 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 355 356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 357 { 358 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 359 } 360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 361 362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 363 { 364 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 365 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 366 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 367 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 368 369 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 370 return 1; 371 if (!msr_info->host_initiated) { 372 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 373 return 1; 374 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 375 return 1; 376 } 377 378 kvm_lapic_set_base(vcpu, msr_info->data); 379 kvm_recalculate_apic_map(vcpu->kvm); 380 return 0; 381 } 382 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 383 384 asmlinkage __visible void kvm_spurious_fault(void) 385 { 386 /* Fault while not rebooting. We want the trace. */ 387 BUG_ON(!kvm_rebooting); 388 } 389 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 390 391 #define EXCPT_BENIGN 0 392 #define EXCPT_CONTRIBUTORY 1 393 #define EXCPT_PF 2 394 395 static int exception_class(int vector) 396 { 397 switch (vector) { 398 case PF_VECTOR: 399 return EXCPT_PF; 400 case DE_VECTOR: 401 case TS_VECTOR: 402 case NP_VECTOR: 403 case SS_VECTOR: 404 case GP_VECTOR: 405 return EXCPT_CONTRIBUTORY; 406 default: 407 break; 408 } 409 return EXCPT_BENIGN; 410 } 411 412 #define EXCPT_FAULT 0 413 #define EXCPT_TRAP 1 414 #define EXCPT_ABORT 2 415 #define EXCPT_INTERRUPT 3 416 417 static int exception_type(int vector) 418 { 419 unsigned int mask; 420 421 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 422 return EXCPT_INTERRUPT; 423 424 mask = 1 << vector; 425 426 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 427 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 428 return EXCPT_TRAP; 429 430 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 431 return EXCPT_ABORT; 432 433 /* Reserved exceptions will result in fault */ 434 return EXCPT_FAULT; 435 } 436 437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 438 { 439 unsigned nr = vcpu->arch.exception.nr; 440 bool has_payload = vcpu->arch.exception.has_payload; 441 unsigned long payload = vcpu->arch.exception.payload; 442 443 if (!has_payload) 444 return; 445 446 switch (nr) { 447 case DB_VECTOR: 448 /* 449 * "Certain debug exceptions may clear bit 0-3. The 450 * remaining contents of the DR6 register are never 451 * cleared by the processor". 452 */ 453 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 454 /* 455 * DR6.RTM is set by all #DB exceptions that don't clear it. 456 */ 457 vcpu->arch.dr6 |= DR6_RTM; 458 vcpu->arch.dr6 |= payload; 459 /* 460 * Bit 16 should be set in the payload whenever the #DB 461 * exception should clear DR6.RTM. This makes the payload 462 * compatible with the pending debug exceptions under VMX. 463 * Though not currently documented in the SDM, this also 464 * makes the payload compatible with the exit qualification 465 * for #DB exceptions under VMX. 466 */ 467 vcpu->arch.dr6 ^= payload & DR6_RTM; 468 469 /* 470 * The #DB payload is defined as compatible with the 'pending 471 * debug exceptions' field under VMX, not DR6. While bit 12 is 472 * defined in the 'pending debug exceptions' field (enabled 473 * breakpoint), it is reserved and must be zero in DR6. 474 */ 475 vcpu->arch.dr6 &= ~BIT(12); 476 break; 477 case PF_VECTOR: 478 vcpu->arch.cr2 = payload; 479 break; 480 } 481 482 vcpu->arch.exception.has_payload = false; 483 vcpu->arch.exception.payload = 0; 484 } 485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 486 487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 488 unsigned nr, bool has_error, u32 error_code, 489 bool has_payload, unsigned long payload, bool reinject) 490 { 491 u32 prev_nr; 492 int class1, class2; 493 494 kvm_make_request(KVM_REQ_EVENT, vcpu); 495 496 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 497 queue: 498 if (has_error && !is_protmode(vcpu)) 499 has_error = false; 500 if (reinject) { 501 /* 502 * On vmentry, vcpu->arch.exception.pending is only 503 * true if an event injection was blocked by 504 * nested_run_pending. In that case, however, 505 * vcpu_enter_guest requests an immediate exit, 506 * and the guest shouldn't proceed far enough to 507 * need reinjection. 508 */ 509 WARN_ON_ONCE(vcpu->arch.exception.pending); 510 vcpu->arch.exception.injected = true; 511 if (WARN_ON_ONCE(has_payload)) { 512 /* 513 * A reinjected event has already 514 * delivered its payload. 515 */ 516 has_payload = false; 517 payload = 0; 518 } 519 } else { 520 vcpu->arch.exception.pending = true; 521 vcpu->arch.exception.injected = false; 522 } 523 vcpu->arch.exception.has_error_code = has_error; 524 vcpu->arch.exception.nr = nr; 525 vcpu->arch.exception.error_code = error_code; 526 vcpu->arch.exception.has_payload = has_payload; 527 vcpu->arch.exception.payload = payload; 528 if (!is_guest_mode(vcpu)) 529 kvm_deliver_exception_payload(vcpu); 530 return; 531 } 532 533 /* to check exception */ 534 prev_nr = vcpu->arch.exception.nr; 535 if (prev_nr == DF_VECTOR) { 536 /* triple fault -> shutdown */ 537 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 538 return; 539 } 540 class1 = exception_class(prev_nr); 541 class2 = exception_class(nr); 542 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 543 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 544 /* 545 * Generate double fault per SDM Table 5-5. Set 546 * exception.pending = true so that the double fault 547 * can trigger a nested vmexit. 548 */ 549 vcpu->arch.exception.pending = true; 550 vcpu->arch.exception.injected = false; 551 vcpu->arch.exception.has_error_code = true; 552 vcpu->arch.exception.nr = DF_VECTOR; 553 vcpu->arch.exception.error_code = 0; 554 vcpu->arch.exception.has_payload = false; 555 vcpu->arch.exception.payload = 0; 556 } else 557 /* replace previous exception with a new one in a hope 558 that instruction re-execution will regenerate lost 559 exception */ 560 goto queue; 561 } 562 563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 564 { 565 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 566 } 567 EXPORT_SYMBOL_GPL(kvm_queue_exception); 568 569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 570 { 571 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 572 } 573 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 574 575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 576 unsigned long payload) 577 { 578 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 579 } 580 581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 582 u32 error_code, unsigned long payload) 583 { 584 kvm_multiple_exception(vcpu, nr, true, error_code, 585 true, payload, false); 586 } 587 588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 589 { 590 if (err) 591 kvm_inject_gp(vcpu, 0); 592 else 593 return kvm_skip_emulated_instruction(vcpu); 594 595 return 1; 596 } 597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 598 599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 600 { 601 ++vcpu->stat.pf_guest; 602 vcpu->arch.exception.nested_apf = 603 is_guest_mode(vcpu) && fault->async_page_fault; 604 if (vcpu->arch.exception.nested_apf) { 605 vcpu->arch.apf.nested_apf_token = fault->address; 606 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 607 } else { 608 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 609 fault->address); 610 } 611 } 612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 613 614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 615 { 616 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 617 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 618 else 619 vcpu->arch.mmu->inject_page_fault(vcpu, fault); 620 621 return fault->nested_page_fault; 622 } 623 624 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 625 { 626 atomic_inc(&vcpu->arch.nmi_queued); 627 kvm_make_request(KVM_REQ_NMI, vcpu); 628 } 629 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 630 631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 632 { 633 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 634 } 635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 636 637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 638 { 639 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 640 } 641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 642 643 /* 644 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 645 * a #GP and return false. 646 */ 647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 648 { 649 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 650 return true; 651 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 652 return false; 653 } 654 EXPORT_SYMBOL_GPL(kvm_require_cpl); 655 656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 657 { 658 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 659 return true; 660 661 kvm_queue_exception(vcpu, UD_VECTOR); 662 return false; 663 } 664 EXPORT_SYMBOL_GPL(kvm_require_dr); 665 666 /* 667 * This function will be used to read from the physical memory of the currently 668 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 669 * can read from guest physical or from the guest's guest physical memory. 670 */ 671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 672 gfn_t ngfn, void *data, int offset, int len, 673 u32 access) 674 { 675 struct x86_exception exception; 676 gfn_t real_gfn; 677 gpa_t ngpa; 678 679 ngpa = gfn_to_gpa(ngfn); 680 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 681 if (real_gfn == UNMAPPED_GVA) 682 return -EFAULT; 683 684 real_gfn = gpa_to_gfn(real_gfn); 685 686 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 687 } 688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 689 690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 691 void *data, int offset, int len, u32 access) 692 { 693 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 694 data, offset, len, access); 695 } 696 697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 698 { 699 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 700 rsvd_bits(1, 2); 701 } 702 703 /* 704 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 705 */ 706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 707 { 708 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 709 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 710 int i; 711 int ret; 712 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 713 714 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 715 offset * sizeof(u64), sizeof(pdpte), 716 PFERR_USER_MASK|PFERR_WRITE_MASK); 717 if (ret < 0) { 718 ret = 0; 719 goto out; 720 } 721 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 722 if ((pdpte[i] & PT_PRESENT_MASK) && 723 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 724 ret = 0; 725 goto out; 726 } 727 } 728 ret = 1; 729 730 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 731 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 732 733 out: 734 735 return ret; 736 } 737 EXPORT_SYMBOL_GPL(load_pdptrs); 738 739 bool pdptrs_changed(struct kvm_vcpu *vcpu) 740 { 741 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 742 int offset; 743 gfn_t gfn; 744 int r; 745 746 if (!is_pae_paging(vcpu)) 747 return false; 748 749 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 750 return true; 751 752 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 753 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 754 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 755 PFERR_USER_MASK | PFERR_WRITE_MASK); 756 if (r < 0) 757 return true; 758 759 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 760 } 761 EXPORT_SYMBOL_GPL(pdptrs_changed); 762 763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 764 { 765 unsigned long old_cr0 = kvm_read_cr0(vcpu); 766 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 767 768 cr0 |= X86_CR0_ET; 769 770 #ifdef CONFIG_X86_64 771 if (cr0 & 0xffffffff00000000UL) 772 return 1; 773 #endif 774 775 cr0 &= ~CR0_RESERVED_BITS; 776 777 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 778 return 1; 779 780 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 781 return 1; 782 783 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 784 #ifdef CONFIG_X86_64 785 if ((vcpu->arch.efer & EFER_LME)) { 786 int cs_db, cs_l; 787 788 if (!is_pae(vcpu)) 789 return 1; 790 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 791 if (cs_l) 792 return 1; 793 } else 794 #endif 795 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 796 kvm_read_cr3(vcpu))) 797 return 1; 798 } 799 800 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 801 return 1; 802 803 kvm_x86_ops.set_cr0(vcpu, cr0); 804 805 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 806 kvm_clear_async_pf_completion_queue(vcpu); 807 kvm_async_pf_hash_reset(vcpu); 808 } 809 810 if ((cr0 ^ old_cr0) & update_bits) 811 kvm_mmu_reset_context(vcpu); 812 813 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 814 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 815 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 816 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 817 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(kvm_set_cr0); 821 822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 823 { 824 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 825 } 826 EXPORT_SYMBOL_GPL(kvm_lmsw); 827 828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 829 { 830 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 831 832 if (vcpu->arch.xcr0 != host_xcr0) 833 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 834 835 if (vcpu->arch.xsaves_enabled && 836 vcpu->arch.ia32_xss != host_xss) 837 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 838 } 839 } 840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 841 842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 843 { 844 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 845 846 if (vcpu->arch.xcr0 != host_xcr0) 847 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 848 849 if (vcpu->arch.xsaves_enabled && 850 vcpu->arch.ia32_xss != host_xss) 851 wrmsrl(MSR_IA32_XSS, host_xss); 852 } 853 854 } 855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 856 857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 858 { 859 u64 xcr0 = xcr; 860 u64 old_xcr0 = vcpu->arch.xcr0; 861 u64 valid_bits; 862 863 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 864 if (index != XCR_XFEATURE_ENABLED_MASK) 865 return 1; 866 if (!(xcr0 & XFEATURE_MASK_FP)) 867 return 1; 868 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 869 return 1; 870 871 /* 872 * Do not allow the guest to set bits that we do not support 873 * saving. However, xcr0 bit 0 is always set, even if the 874 * emulated CPU does not support XSAVE (see fx_init). 875 */ 876 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 877 if (xcr0 & ~valid_bits) 878 return 1; 879 880 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 881 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 882 return 1; 883 884 if (xcr0 & XFEATURE_MASK_AVX512) { 885 if (!(xcr0 & XFEATURE_MASK_YMM)) 886 return 1; 887 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 888 return 1; 889 } 890 vcpu->arch.xcr0 = xcr0; 891 892 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 893 kvm_update_cpuid(vcpu); 894 return 0; 895 } 896 897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 898 { 899 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 900 __kvm_set_xcr(vcpu, index, xcr)) { 901 kvm_inject_gp(vcpu, 0); 902 return 1; 903 } 904 return 0; 905 } 906 EXPORT_SYMBOL_GPL(kvm_set_xcr); 907 908 #define __cr4_reserved_bits(__cpu_has, __c) \ 909 ({ \ 910 u64 __reserved_bits = CR4_RESERVED_BITS; \ 911 \ 912 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 913 __reserved_bits |= X86_CR4_OSXSAVE; \ 914 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 915 __reserved_bits |= X86_CR4_SMEP; \ 916 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 917 __reserved_bits |= X86_CR4_SMAP; \ 918 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 919 __reserved_bits |= X86_CR4_FSGSBASE; \ 920 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 921 __reserved_bits |= X86_CR4_PKE; \ 922 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 923 __reserved_bits |= X86_CR4_LA57; \ 924 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 925 __reserved_bits |= X86_CR4_UMIP; \ 926 __reserved_bits; \ 927 }) 928 929 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c) 930 { 931 u64 reserved_bits = __cr4_reserved_bits(cpu_has, c); 932 933 if (kvm_cpu_cap_has(X86_FEATURE_LA57)) 934 reserved_bits &= ~X86_CR4_LA57; 935 936 if (kvm_cpu_cap_has(X86_FEATURE_UMIP)) 937 reserved_bits &= ~X86_CR4_UMIP; 938 939 return reserved_bits; 940 } 941 942 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 943 { 944 if (cr4 & cr4_reserved_bits) 945 return -EINVAL; 946 947 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu)) 948 return -EINVAL; 949 950 return 0; 951 } 952 953 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 954 { 955 unsigned long old_cr4 = kvm_read_cr4(vcpu); 956 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 957 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 958 959 if (kvm_valid_cr4(vcpu, cr4)) 960 return 1; 961 962 if (is_long_mode(vcpu)) { 963 if (!(cr4 & X86_CR4_PAE)) 964 return 1; 965 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 966 && ((cr4 ^ old_cr4) & pdptr_bits) 967 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 968 kvm_read_cr3(vcpu))) 969 return 1; 970 971 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 972 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 973 return 1; 974 975 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 976 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 977 return 1; 978 } 979 980 if (kvm_x86_ops.set_cr4(vcpu, cr4)) 981 return 1; 982 983 if (((cr4 ^ old_cr4) & pdptr_bits) || 984 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 985 kvm_mmu_reset_context(vcpu); 986 987 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 988 kvm_update_cpuid(vcpu); 989 990 return 0; 991 } 992 EXPORT_SYMBOL_GPL(kvm_set_cr4); 993 994 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 995 { 996 bool skip_tlb_flush = false; 997 #ifdef CONFIG_X86_64 998 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 999 1000 if (pcid_enabled) { 1001 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1002 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1003 } 1004 #endif 1005 1006 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1007 if (!skip_tlb_flush) { 1008 kvm_mmu_sync_roots(vcpu); 1009 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1010 } 1011 return 0; 1012 } 1013 1014 if (is_long_mode(vcpu) && 1015 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) 1016 return 1; 1017 else if (is_pae_paging(vcpu) && 1018 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1019 return 1; 1020 1021 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); 1022 vcpu->arch.cr3 = cr3; 1023 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1024 1025 return 0; 1026 } 1027 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1028 1029 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1030 { 1031 if (cr8 & CR8_RESERVED_BITS) 1032 return 1; 1033 if (lapic_in_kernel(vcpu)) 1034 kvm_lapic_set_tpr(vcpu, cr8); 1035 else 1036 vcpu->arch.cr8 = cr8; 1037 return 0; 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1040 1041 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1042 { 1043 if (lapic_in_kernel(vcpu)) 1044 return kvm_lapic_get_cr8(vcpu); 1045 else 1046 return vcpu->arch.cr8; 1047 } 1048 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1049 1050 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1051 { 1052 int i; 1053 1054 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1055 for (i = 0; i < KVM_NR_DB_REGS; i++) 1056 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1057 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1058 } 1059 } 1060 1061 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 1062 { 1063 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1064 kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6); 1065 } 1066 1067 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 1068 { 1069 unsigned long dr7; 1070 1071 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1072 dr7 = vcpu->arch.guest_debug_dr7; 1073 else 1074 dr7 = vcpu->arch.dr7; 1075 kvm_x86_ops.set_dr7(vcpu, dr7); 1076 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1077 if (dr7 & DR7_BP_EN_MASK) 1078 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1079 } 1080 1081 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1082 { 1083 u64 fixed = DR6_FIXED_1; 1084 1085 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1086 fixed |= DR6_RTM; 1087 return fixed; 1088 } 1089 1090 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1091 { 1092 size_t size = ARRAY_SIZE(vcpu->arch.db); 1093 1094 switch (dr) { 1095 case 0 ... 3: 1096 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1097 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1098 vcpu->arch.eff_db[dr] = val; 1099 break; 1100 case 4: 1101 /* fall through */ 1102 case 6: 1103 if (val & 0xffffffff00000000ULL) 1104 return -1; /* #GP */ 1105 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1106 kvm_update_dr6(vcpu); 1107 break; 1108 case 5: 1109 /* fall through */ 1110 default: /* 7 */ 1111 if (!kvm_dr7_valid(val)) 1112 return -1; /* #GP */ 1113 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1114 kvm_update_dr7(vcpu); 1115 break; 1116 } 1117 1118 return 0; 1119 } 1120 1121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1122 { 1123 if (__kvm_set_dr(vcpu, dr, val)) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 return 0; 1128 } 1129 EXPORT_SYMBOL_GPL(kvm_set_dr); 1130 1131 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1132 { 1133 size_t size = ARRAY_SIZE(vcpu->arch.db); 1134 1135 switch (dr) { 1136 case 0 ... 3: 1137 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1138 break; 1139 case 4: 1140 /* fall through */ 1141 case 6: 1142 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1143 *val = vcpu->arch.dr6; 1144 else 1145 *val = kvm_x86_ops.get_dr6(vcpu); 1146 break; 1147 case 5: 1148 /* fall through */ 1149 default: /* 7 */ 1150 *val = vcpu->arch.dr7; 1151 break; 1152 } 1153 return 0; 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_get_dr); 1156 1157 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1158 { 1159 u32 ecx = kvm_rcx_read(vcpu); 1160 u64 data; 1161 int err; 1162 1163 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1164 if (err) 1165 return err; 1166 kvm_rax_write(vcpu, (u32)data); 1167 kvm_rdx_write(vcpu, data >> 32); 1168 return err; 1169 } 1170 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1171 1172 /* 1173 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1174 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1175 * 1176 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1177 * extract the supported MSRs from the related const lists. 1178 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1179 * capabilities of the host cpu. This capabilities test skips MSRs that are 1180 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1181 * may depend on host virtualization features rather than host cpu features. 1182 */ 1183 1184 static const u32 msrs_to_save_all[] = { 1185 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1186 MSR_STAR, 1187 #ifdef CONFIG_X86_64 1188 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1189 #endif 1190 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1191 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1192 MSR_IA32_SPEC_CTRL, 1193 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1194 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1195 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1196 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1197 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1198 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1199 MSR_IA32_UMWAIT_CONTROL, 1200 1201 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1202 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1203 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1204 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1205 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1206 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1207 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1208 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1209 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1210 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1211 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1212 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1213 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1214 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1215 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1216 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1217 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1218 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1219 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1220 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1221 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1222 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1223 }; 1224 1225 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1226 static unsigned num_msrs_to_save; 1227 1228 static const u32 emulated_msrs_all[] = { 1229 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1230 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1231 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1232 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1233 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1234 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1235 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1236 HV_X64_MSR_RESET, 1237 HV_X64_MSR_VP_INDEX, 1238 HV_X64_MSR_VP_RUNTIME, 1239 HV_X64_MSR_SCONTROL, 1240 HV_X64_MSR_STIMER0_CONFIG, 1241 HV_X64_MSR_VP_ASSIST_PAGE, 1242 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1243 HV_X64_MSR_TSC_EMULATION_STATUS, 1244 1245 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1246 MSR_KVM_PV_EOI_EN, 1247 1248 MSR_IA32_TSC_ADJUST, 1249 MSR_IA32_TSCDEADLINE, 1250 MSR_IA32_ARCH_CAPABILITIES, 1251 MSR_IA32_MISC_ENABLE, 1252 MSR_IA32_MCG_STATUS, 1253 MSR_IA32_MCG_CTL, 1254 MSR_IA32_MCG_EXT_CTL, 1255 MSR_IA32_SMBASE, 1256 MSR_SMI_COUNT, 1257 MSR_PLATFORM_INFO, 1258 MSR_MISC_FEATURES_ENABLES, 1259 MSR_AMD64_VIRT_SPEC_CTRL, 1260 MSR_IA32_POWER_CTL, 1261 MSR_IA32_UCODE_REV, 1262 1263 /* 1264 * The following list leaves out MSRs whose values are determined 1265 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1266 * We always support the "true" VMX control MSRs, even if the host 1267 * processor does not, so I am putting these registers here rather 1268 * than in msrs_to_save_all. 1269 */ 1270 MSR_IA32_VMX_BASIC, 1271 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1272 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1273 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1274 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1275 MSR_IA32_VMX_MISC, 1276 MSR_IA32_VMX_CR0_FIXED0, 1277 MSR_IA32_VMX_CR4_FIXED0, 1278 MSR_IA32_VMX_VMCS_ENUM, 1279 MSR_IA32_VMX_PROCBASED_CTLS2, 1280 MSR_IA32_VMX_EPT_VPID_CAP, 1281 MSR_IA32_VMX_VMFUNC, 1282 1283 MSR_K7_HWCR, 1284 MSR_KVM_POLL_CONTROL, 1285 }; 1286 1287 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1288 static unsigned num_emulated_msrs; 1289 1290 /* 1291 * List of msr numbers which are used to expose MSR-based features that 1292 * can be used by a hypervisor to validate requested CPU features. 1293 */ 1294 static const u32 msr_based_features_all[] = { 1295 MSR_IA32_VMX_BASIC, 1296 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1297 MSR_IA32_VMX_PINBASED_CTLS, 1298 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1299 MSR_IA32_VMX_PROCBASED_CTLS, 1300 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1301 MSR_IA32_VMX_EXIT_CTLS, 1302 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1303 MSR_IA32_VMX_ENTRY_CTLS, 1304 MSR_IA32_VMX_MISC, 1305 MSR_IA32_VMX_CR0_FIXED0, 1306 MSR_IA32_VMX_CR0_FIXED1, 1307 MSR_IA32_VMX_CR4_FIXED0, 1308 MSR_IA32_VMX_CR4_FIXED1, 1309 MSR_IA32_VMX_VMCS_ENUM, 1310 MSR_IA32_VMX_PROCBASED_CTLS2, 1311 MSR_IA32_VMX_EPT_VPID_CAP, 1312 MSR_IA32_VMX_VMFUNC, 1313 1314 MSR_F10H_DECFG, 1315 MSR_IA32_UCODE_REV, 1316 MSR_IA32_ARCH_CAPABILITIES, 1317 }; 1318 1319 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1320 static unsigned int num_msr_based_features; 1321 1322 static u64 kvm_get_arch_capabilities(void) 1323 { 1324 u64 data = 0; 1325 1326 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1327 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1328 1329 /* 1330 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1331 * the nested hypervisor runs with NX huge pages. If it is not, 1332 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1333 * L1 guests, so it need not worry about its own (L2) guests. 1334 */ 1335 data |= ARCH_CAP_PSCHANGE_MC_NO; 1336 1337 /* 1338 * If we're doing cache flushes (either "always" or "cond") 1339 * we will do one whenever the guest does a vmlaunch/vmresume. 1340 * If an outer hypervisor is doing the cache flush for us 1341 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1342 * capability to the guest too, and if EPT is disabled we're not 1343 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1344 * require a nested hypervisor to do a flush of its own. 1345 */ 1346 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1347 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1348 1349 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1350 data |= ARCH_CAP_RDCL_NO; 1351 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1352 data |= ARCH_CAP_SSB_NO; 1353 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1354 data |= ARCH_CAP_MDS_NO; 1355 1356 /* 1357 * On TAA affected systems: 1358 * - nothing to do if TSX is disabled on the host. 1359 * - we emulate TSX_CTRL if present on the host. 1360 * This lets the guest use VERW to clear CPU buffers. 1361 */ 1362 if (!boot_cpu_has(X86_FEATURE_RTM)) 1363 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1364 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1365 data |= ARCH_CAP_TAA_NO; 1366 1367 return data; 1368 } 1369 1370 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1371 { 1372 switch (msr->index) { 1373 case MSR_IA32_ARCH_CAPABILITIES: 1374 msr->data = kvm_get_arch_capabilities(); 1375 break; 1376 case MSR_IA32_UCODE_REV: 1377 rdmsrl_safe(msr->index, &msr->data); 1378 break; 1379 default: 1380 if (kvm_x86_ops.get_msr_feature(msr)) 1381 return 1; 1382 } 1383 return 0; 1384 } 1385 1386 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1387 { 1388 struct kvm_msr_entry msr; 1389 int r; 1390 1391 msr.index = index; 1392 r = kvm_get_msr_feature(&msr); 1393 if (r) 1394 return r; 1395 1396 *data = msr.data; 1397 1398 return 0; 1399 } 1400 1401 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1402 { 1403 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1404 return false; 1405 1406 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1407 return false; 1408 1409 if (efer & (EFER_LME | EFER_LMA) && 1410 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1411 return false; 1412 1413 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1414 return false; 1415 1416 return true; 1417 1418 } 1419 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1420 { 1421 if (efer & efer_reserved_bits) 1422 return false; 1423 1424 return __kvm_valid_efer(vcpu, efer); 1425 } 1426 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1427 1428 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1429 { 1430 u64 old_efer = vcpu->arch.efer; 1431 u64 efer = msr_info->data; 1432 1433 if (efer & efer_reserved_bits) 1434 return 1; 1435 1436 if (!msr_info->host_initiated) { 1437 if (!__kvm_valid_efer(vcpu, efer)) 1438 return 1; 1439 1440 if (is_paging(vcpu) && 1441 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1442 return 1; 1443 } 1444 1445 efer &= ~EFER_LMA; 1446 efer |= vcpu->arch.efer & EFER_LMA; 1447 1448 kvm_x86_ops.set_efer(vcpu, efer); 1449 1450 /* Update reserved bits */ 1451 if ((efer ^ old_efer) & EFER_NX) 1452 kvm_mmu_reset_context(vcpu); 1453 1454 return 0; 1455 } 1456 1457 void kvm_enable_efer_bits(u64 mask) 1458 { 1459 efer_reserved_bits &= ~mask; 1460 } 1461 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1462 1463 /* 1464 * Write @data into the MSR specified by @index. Select MSR specific fault 1465 * checks are bypassed if @host_initiated is %true. 1466 * Returns 0 on success, non-0 otherwise. 1467 * Assumes vcpu_load() was already called. 1468 */ 1469 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1470 bool host_initiated) 1471 { 1472 struct msr_data msr; 1473 1474 switch (index) { 1475 case MSR_FS_BASE: 1476 case MSR_GS_BASE: 1477 case MSR_KERNEL_GS_BASE: 1478 case MSR_CSTAR: 1479 case MSR_LSTAR: 1480 if (is_noncanonical_address(data, vcpu)) 1481 return 1; 1482 break; 1483 case MSR_IA32_SYSENTER_EIP: 1484 case MSR_IA32_SYSENTER_ESP: 1485 /* 1486 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1487 * non-canonical address is written on Intel but not on 1488 * AMD (which ignores the top 32-bits, because it does 1489 * not implement 64-bit SYSENTER). 1490 * 1491 * 64-bit code should hence be able to write a non-canonical 1492 * value on AMD. Making the address canonical ensures that 1493 * vmentry does not fail on Intel after writing a non-canonical 1494 * value, and that something deterministic happens if the guest 1495 * invokes 64-bit SYSENTER. 1496 */ 1497 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1498 } 1499 1500 msr.data = data; 1501 msr.index = index; 1502 msr.host_initiated = host_initiated; 1503 1504 return kvm_x86_ops.set_msr(vcpu, &msr); 1505 } 1506 1507 /* 1508 * Read the MSR specified by @index into @data. Select MSR specific fault 1509 * checks are bypassed if @host_initiated is %true. 1510 * Returns 0 on success, non-0 otherwise. 1511 * Assumes vcpu_load() was already called. 1512 */ 1513 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1514 bool host_initiated) 1515 { 1516 struct msr_data msr; 1517 int ret; 1518 1519 msr.index = index; 1520 msr.host_initiated = host_initiated; 1521 1522 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1523 if (!ret) 1524 *data = msr.data; 1525 return ret; 1526 } 1527 1528 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1529 { 1530 return __kvm_get_msr(vcpu, index, data, false); 1531 } 1532 EXPORT_SYMBOL_GPL(kvm_get_msr); 1533 1534 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1535 { 1536 return __kvm_set_msr(vcpu, index, data, false); 1537 } 1538 EXPORT_SYMBOL_GPL(kvm_set_msr); 1539 1540 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1541 { 1542 u32 ecx = kvm_rcx_read(vcpu); 1543 u64 data; 1544 1545 if (kvm_get_msr(vcpu, ecx, &data)) { 1546 trace_kvm_msr_read_ex(ecx); 1547 kvm_inject_gp(vcpu, 0); 1548 return 1; 1549 } 1550 1551 trace_kvm_msr_read(ecx, data); 1552 1553 kvm_rax_write(vcpu, data & -1u); 1554 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1555 return kvm_skip_emulated_instruction(vcpu); 1556 } 1557 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1558 1559 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1560 { 1561 u32 ecx = kvm_rcx_read(vcpu); 1562 u64 data = kvm_read_edx_eax(vcpu); 1563 1564 if (kvm_set_msr(vcpu, ecx, data)) { 1565 trace_kvm_msr_write_ex(ecx, data); 1566 kvm_inject_gp(vcpu, 0); 1567 return 1; 1568 } 1569 1570 trace_kvm_msr_write(ecx, data); 1571 return kvm_skip_emulated_instruction(vcpu); 1572 } 1573 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1574 1575 /* 1576 * The fast path for frequent and performance sensitive wrmsr emulation, 1577 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1578 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1579 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1580 * other cases which must be called after interrupts are enabled on the host. 1581 */ 1582 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1583 { 1584 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1585 return 1; 1586 1587 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1588 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1589 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1590 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1591 1592 data &= ~(1 << 12); 1593 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1594 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1595 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1596 trace_kvm_apic_write(APIC_ICR, (u32)data); 1597 return 0; 1598 } 1599 1600 return 1; 1601 } 1602 1603 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1604 { 1605 u32 msr = kvm_rcx_read(vcpu); 1606 u64 data; 1607 int ret = 0; 1608 1609 switch (msr) { 1610 case APIC_BASE_MSR + (APIC_ICR >> 4): 1611 data = kvm_read_edx_eax(vcpu); 1612 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 1613 break; 1614 default: 1615 return EXIT_FASTPATH_NONE; 1616 } 1617 1618 if (!ret) { 1619 trace_kvm_msr_write(msr, data); 1620 return EXIT_FASTPATH_SKIP_EMUL_INS; 1621 } 1622 1623 return EXIT_FASTPATH_NONE; 1624 } 1625 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1626 1627 /* 1628 * Adapt set_msr() to msr_io()'s calling convention 1629 */ 1630 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1631 { 1632 return __kvm_get_msr(vcpu, index, data, true); 1633 } 1634 1635 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1636 { 1637 return __kvm_set_msr(vcpu, index, *data, true); 1638 } 1639 1640 #ifdef CONFIG_X86_64 1641 struct pvclock_clock { 1642 int vclock_mode; 1643 u64 cycle_last; 1644 u64 mask; 1645 u32 mult; 1646 u32 shift; 1647 u64 base_cycles; 1648 u64 offset; 1649 }; 1650 1651 struct pvclock_gtod_data { 1652 seqcount_t seq; 1653 1654 struct pvclock_clock clock; /* extract of a clocksource struct */ 1655 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1656 1657 ktime_t offs_boot; 1658 u64 wall_time_sec; 1659 }; 1660 1661 static struct pvclock_gtod_data pvclock_gtod_data; 1662 1663 static void update_pvclock_gtod(struct timekeeper *tk) 1664 { 1665 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1666 1667 write_seqcount_begin(&vdata->seq); 1668 1669 /* copy pvclock gtod data */ 1670 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1671 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1672 vdata->clock.mask = tk->tkr_mono.mask; 1673 vdata->clock.mult = tk->tkr_mono.mult; 1674 vdata->clock.shift = tk->tkr_mono.shift; 1675 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1676 vdata->clock.offset = tk->tkr_mono.base; 1677 1678 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1679 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1680 vdata->raw_clock.mask = tk->tkr_raw.mask; 1681 vdata->raw_clock.mult = tk->tkr_raw.mult; 1682 vdata->raw_clock.shift = tk->tkr_raw.shift; 1683 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1684 vdata->raw_clock.offset = tk->tkr_raw.base; 1685 1686 vdata->wall_time_sec = tk->xtime_sec; 1687 1688 vdata->offs_boot = tk->offs_boot; 1689 1690 write_seqcount_end(&vdata->seq); 1691 } 1692 1693 static s64 get_kvmclock_base_ns(void) 1694 { 1695 /* Count up from boot time, but with the frequency of the raw clock. */ 1696 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1697 } 1698 #else 1699 static s64 get_kvmclock_base_ns(void) 1700 { 1701 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1702 return ktime_get_boottime_ns(); 1703 } 1704 #endif 1705 1706 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1707 { 1708 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1709 kvm_vcpu_kick(vcpu); 1710 } 1711 1712 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1713 { 1714 int version; 1715 int r; 1716 struct pvclock_wall_clock wc; 1717 u64 wall_nsec; 1718 1719 if (!wall_clock) 1720 return; 1721 1722 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1723 if (r) 1724 return; 1725 1726 if (version & 1) 1727 ++version; /* first time write, random junk */ 1728 1729 ++version; 1730 1731 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1732 return; 1733 1734 /* 1735 * The guest calculates current wall clock time by adding 1736 * system time (updated by kvm_guest_time_update below) to the 1737 * wall clock specified here. We do the reverse here. 1738 */ 1739 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1740 1741 wc.nsec = do_div(wall_nsec, 1000000000); 1742 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1743 wc.version = version; 1744 1745 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1746 1747 version++; 1748 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1749 } 1750 1751 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1752 { 1753 do_shl32_div32(dividend, divisor); 1754 return dividend; 1755 } 1756 1757 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1758 s8 *pshift, u32 *pmultiplier) 1759 { 1760 uint64_t scaled64; 1761 int32_t shift = 0; 1762 uint64_t tps64; 1763 uint32_t tps32; 1764 1765 tps64 = base_hz; 1766 scaled64 = scaled_hz; 1767 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1768 tps64 >>= 1; 1769 shift--; 1770 } 1771 1772 tps32 = (uint32_t)tps64; 1773 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1774 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1775 scaled64 >>= 1; 1776 else 1777 tps32 <<= 1; 1778 shift++; 1779 } 1780 1781 *pshift = shift; 1782 *pmultiplier = div_frac(scaled64, tps32); 1783 } 1784 1785 #ifdef CONFIG_X86_64 1786 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1787 #endif 1788 1789 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1790 static unsigned long max_tsc_khz; 1791 1792 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1793 { 1794 u64 v = (u64)khz * (1000000 + ppm); 1795 do_div(v, 1000000); 1796 return v; 1797 } 1798 1799 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1800 { 1801 u64 ratio; 1802 1803 /* Guest TSC same frequency as host TSC? */ 1804 if (!scale) { 1805 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1806 return 0; 1807 } 1808 1809 /* TSC scaling supported? */ 1810 if (!kvm_has_tsc_control) { 1811 if (user_tsc_khz > tsc_khz) { 1812 vcpu->arch.tsc_catchup = 1; 1813 vcpu->arch.tsc_always_catchup = 1; 1814 return 0; 1815 } else { 1816 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 1817 return -1; 1818 } 1819 } 1820 1821 /* TSC scaling required - calculate ratio */ 1822 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1823 user_tsc_khz, tsc_khz); 1824 1825 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1826 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1827 user_tsc_khz); 1828 return -1; 1829 } 1830 1831 vcpu->arch.tsc_scaling_ratio = ratio; 1832 return 0; 1833 } 1834 1835 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1836 { 1837 u32 thresh_lo, thresh_hi; 1838 int use_scaling = 0; 1839 1840 /* tsc_khz can be zero if TSC calibration fails */ 1841 if (user_tsc_khz == 0) { 1842 /* set tsc_scaling_ratio to a safe value */ 1843 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1844 return -1; 1845 } 1846 1847 /* Compute a scale to convert nanoseconds in TSC cycles */ 1848 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1849 &vcpu->arch.virtual_tsc_shift, 1850 &vcpu->arch.virtual_tsc_mult); 1851 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1852 1853 /* 1854 * Compute the variation in TSC rate which is acceptable 1855 * within the range of tolerance and decide if the 1856 * rate being applied is within that bounds of the hardware 1857 * rate. If so, no scaling or compensation need be done. 1858 */ 1859 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1860 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1861 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1862 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1863 use_scaling = 1; 1864 } 1865 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1866 } 1867 1868 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1869 { 1870 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1871 vcpu->arch.virtual_tsc_mult, 1872 vcpu->arch.virtual_tsc_shift); 1873 tsc += vcpu->arch.this_tsc_write; 1874 return tsc; 1875 } 1876 1877 static inline int gtod_is_based_on_tsc(int mode) 1878 { 1879 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 1880 } 1881 1882 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1883 { 1884 #ifdef CONFIG_X86_64 1885 bool vcpus_matched; 1886 struct kvm_arch *ka = &vcpu->kvm->arch; 1887 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1888 1889 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1890 atomic_read(&vcpu->kvm->online_vcpus)); 1891 1892 /* 1893 * Once the masterclock is enabled, always perform request in 1894 * order to update it. 1895 * 1896 * In order to enable masterclock, the host clocksource must be TSC 1897 * and the vcpus need to have matched TSCs. When that happens, 1898 * perform request to enable masterclock. 1899 */ 1900 if (ka->use_master_clock || 1901 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 1902 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1903 1904 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1905 atomic_read(&vcpu->kvm->online_vcpus), 1906 ka->use_master_clock, gtod->clock.vclock_mode); 1907 #endif 1908 } 1909 1910 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1911 { 1912 u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu); 1913 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1914 } 1915 1916 /* 1917 * Multiply tsc by a fixed point number represented by ratio. 1918 * 1919 * The most significant 64-N bits (mult) of ratio represent the 1920 * integral part of the fixed point number; the remaining N bits 1921 * (frac) represent the fractional part, ie. ratio represents a fixed 1922 * point number (mult + frac * 2^(-N)). 1923 * 1924 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1925 */ 1926 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1927 { 1928 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1929 } 1930 1931 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1932 { 1933 u64 _tsc = tsc; 1934 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1935 1936 if (ratio != kvm_default_tsc_scaling_ratio) 1937 _tsc = __scale_tsc(ratio, tsc); 1938 1939 return _tsc; 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1942 1943 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1944 { 1945 u64 tsc; 1946 1947 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1948 1949 return target_tsc - tsc; 1950 } 1951 1952 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1953 { 1954 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu); 1955 1956 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1957 } 1958 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1959 1960 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1961 { 1962 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 1963 } 1964 1965 static inline bool kvm_check_tsc_unstable(void) 1966 { 1967 #ifdef CONFIG_X86_64 1968 /* 1969 * TSC is marked unstable when we're running on Hyper-V, 1970 * 'TSC page' clocksource is good. 1971 */ 1972 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 1973 return false; 1974 #endif 1975 return check_tsc_unstable(); 1976 } 1977 1978 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1979 { 1980 struct kvm *kvm = vcpu->kvm; 1981 u64 offset, ns, elapsed; 1982 unsigned long flags; 1983 bool matched; 1984 bool already_matched; 1985 u64 data = msr->data; 1986 bool synchronizing = false; 1987 1988 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1989 offset = kvm_compute_tsc_offset(vcpu, data); 1990 ns = get_kvmclock_base_ns(); 1991 elapsed = ns - kvm->arch.last_tsc_nsec; 1992 1993 if (vcpu->arch.virtual_tsc_khz) { 1994 if (data == 0 && msr->host_initiated) { 1995 /* 1996 * detection of vcpu initialization -- need to sync 1997 * with other vCPUs. This particularly helps to keep 1998 * kvm_clock stable after CPU hotplug 1999 */ 2000 synchronizing = true; 2001 } else { 2002 u64 tsc_exp = kvm->arch.last_tsc_write + 2003 nsec_to_cycles(vcpu, elapsed); 2004 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2005 /* 2006 * Special case: TSC write with a small delta (1 second) 2007 * of virtual cycle time against real time is 2008 * interpreted as an attempt to synchronize the CPU. 2009 */ 2010 synchronizing = data < tsc_exp + tsc_hz && 2011 data + tsc_hz > tsc_exp; 2012 } 2013 } 2014 2015 /* 2016 * For a reliable TSC, we can match TSC offsets, and for an unstable 2017 * TSC, we add elapsed time in this computation. We could let the 2018 * compensation code attempt to catch up if we fall behind, but 2019 * it's better to try to match offsets from the beginning. 2020 */ 2021 if (synchronizing && 2022 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2023 if (!kvm_check_tsc_unstable()) { 2024 offset = kvm->arch.cur_tsc_offset; 2025 } else { 2026 u64 delta = nsec_to_cycles(vcpu, elapsed); 2027 data += delta; 2028 offset = kvm_compute_tsc_offset(vcpu, data); 2029 } 2030 matched = true; 2031 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2032 } else { 2033 /* 2034 * We split periods of matched TSC writes into generations. 2035 * For each generation, we track the original measured 2036 * nanosecond time, offset, and write, so if TSCs are in 2037 * sync, we can match exact offset, and if not, we can match 2038 * exact software computation in compute_guest_tsc() 2039 * 2040 * These values are tracked in kvm->arch.cur_xxx variables. 2041 */ 2042 kvm->arch.cur_tsc_generation++; 2043 kvm->arch.cur_tsc_nsec = ns; 2044 kvm->arch.cur_tsc_write = data; 2045 kvm->arch.cur_tsc_offset = offset; 2046 matched = false; 2047 } 2048 2049 /* 2050 * We also track th most recent recorded KHZ, write and time to 2051 * allow the matching interval to be extended at each write. 2052 */ 2053 kvm->arch.last_tsc_nsec = ns; 2054 kvm->arch.last_tsc_write = data; 2055 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2056 2057 vcpu->arch.last_guest_tsc = data; 2058 2059 /* Keep track of which generation this VCPU has synchronized to */ 2060 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2061 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2062 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2063 2064 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 2065 update_ia32_tsc_adjust_msr(vcpu, offset); 2066 2067 kvm_vcpu_write_tsc_offset(vcpu, offset); 2068 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2069 2070 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2071 if (!matched) { 2072 kvm->arch.nr_vcpus_matched_tsc = 0; 2073 } else if (!already_matched) { 2074 kvm->arch.nr_vcpus_matched_tsc++; 2075 } 2076 2077 kvm_track_tsc_matching(vcpu); 2078 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2079 } 2080 2081 EXPORT_SYMBOL_GPL(kvm_write_tsc); 2082 2083 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2084 s64 adjustment) 2085 { 2086 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu); 2087 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2088 } 2089 2090 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2091 { 2092 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2093 WARN_ON(adjustment < 0); 2094 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2095 adjust_tsc_offset_guest(vcpu, adjustment); 2096 } 2097 2098 #ifdef CONFIG_X86_64 2099 2100 static u64 read_tsc(void) 2101 { 2102 u64 ret = (u64)rdtsc_ordered(); 2103 u64 last = pvclock_gtod_data.clock.cycle_last; 2104 2105 if (likely(ret >= last)) 2106 return ret; 2107 2108 /* 2109 * GCC likes to generate cmov here, but this branch is extremely 2110 * predictable (it's just a function of time and the likely is 2111 * very likely) and there's a data dependence, so force GCC 2112 * to generate a branch instead. I don't barrier() because 2113 * we don't actually need a barrier, and if this function 2114 * ever gets inlined it will generate worse code. 2115 */ 2116 asm volatile (""); 2117 return last; 2118 } 2119 2120 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2121 int *mode) 2122 { 2123 long v; 2124 u64 tsc_pg_val; 2125 2126 switch (clock->vclock_mode) { 2127 case VDSO_CLOCKMODE_HVCLOCK: 2128 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2129 tsc_timestamp); 2130 if (tsc_pg_val != U64_MAX) { 2131 /* TSC page valid */ 2132 *mode = VDSO_CLOCKMODE_HVCLOCK; 2133 v = (tsc_pg_val - clock->cycle_last) & 2134 clock->mask; 2135 } else { 2136 /* TSC page invalid */ 2137 *mode = VDSO_CLOCKMODE_NONE; 2138 } 2139 break; 2140 case VDSO_CLOCKMODE_TSC: 2141 *mode = VDSO_CLOCKMODE_TSC; 2142 *tsc_timestamp = read_tsc(); 2143 v = (*tsc_timestamp - clock->cycle_last) & 2144 clock->mask; 2145 break; 2146 default: 2147 *mode = VDSO_CLOCKMODE_NONE; 2148 } 2149 2150 if (*mode == VDSO_CLOCKMODE_NONE) 2151 *tsc_timestamp = v = 0; 2152 2153 return v * clock->mult; 2154 } 2155 2156 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2157 { 2158 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2159 unsigned long seq; 2160 int mode; 2161 u64 ns; 2162 2163 do { 2164 seq = read_seqcount_begin(>od->seq); 2165 ns = gtod->raw_clock.base_cycles; 2166 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2167 ns >>= gtod->raw_clock.shift; 2168 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2169 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2170 *t = ns; 2171 2172 return mode; 2173 } 2174 2175 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2176 { 2177 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2178 unsigned long seq; 2179 int mode; 2180 u64 ns; 2181 2182 do { 2183 seq = read_seqcount_begin(>od->seq); 2184 ts->tv_sec = gtod->wall_time_sec; 2185 ns = gtod->clock.base_cycles; 2186 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2187 ns >>= gtod->clock.shift; 2188 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2189 2190 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2191 ts->tv_nsec = ns; 2192 2193 return mode; 2194 } 2195 2196 /* returns true if host is using TSC based clocksource */ 2197 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2198 { 2199 /* checked again under seqlock below */ 2200 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2201 return false; 2202 2203 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2204 tsc_timestamp)); 2205 } 2206 2207 /* returns true if host is using TSC based clocksource */ 2208 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2209 u64 *tsc_timestamp) 2210 { 2211 /* checked again under seqlock below */ 2212 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2213 return false; 2214 2215 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2216 } 2217 #endif 2218 2219 /* 2220 * 2221 * Assuming a stable TSC across physical CPUS, and a stable TSC 2222 * across virtual CPUs, the following condition is possible. 2223 * Each numbered line represents an event visible to both 2224 * CPUs at the next numbered event. 2225 * 2226 * "timespecX" represents host monotonic time. "tscX" represents 2227 * RDTSC value. 2228 * 2229 * VCPU0 on CPU0 | VCPU1 on CPU1 2230 * 2231 * 1. read timespec0,tsc0 2232 * 2. | timespec1 = timespec0 + N 2233 * | tsc1 = tsc0 + M 2234 * 3. transition to guest | transition to guest 2235 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2236 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2237 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2238 * 2239 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2240 * 2241 * - ret0 < ret1 2242 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2243 * ... 2244 * - 0 < N - M => M < N 2245 * 2246 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2247 * always the case (the difference between two distinct xtime instances 2248 * might be smaller then the difference between corresponding TSC reads, 2249 * when updating guest vcpus pvclock areas). 2250 * 2251 * To avoid that problem, do not allow visibility of distinct 2252 * system_timestamp/tsc_timestamp values simultaneously: use a master 2253 * copy of host monotonic time values. Update that master copy 2254 * in lockstep. 2255 * 2256 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2257 * 2258 */ 2259 2260 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2261 { 2262 #ifdef CONFIG_X86_64 2263 struct kvm_arch *ka = &kvm->arch; 2264 int vclock_mode; 2265 bool host_tsc_clocksource, vcpus_matched; 2266 2267 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2268 atomic_read(&kvm->online_vcpus)); 2269 2270 /* 2271 * If the host uses TSC clock, then passthrough TSC as stable 2272 * to the guest. 2273 */ 2274 host_tsc_clocksource = kvm_get_time_and_clockread( 2275 &ka->master_kernel_ns, 2276 &ka->master_cycle_now); 2277 2278 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2279 && !ka->backwards_tsc_observed 2280 && !ka->boot_vcpu_runs_old_kvmclock; 2281 2282 if (ka->use_master_clock) 2283 atomic_set(&kvm_guest_has_master_clock, 1); 2284 2285 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2286 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2287 vcpus_matched); 2288 #endif 2289 } 2290 2291 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2292 { 2293 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2294 } 2295 2296 static void kvm_gen_update_masterclock(struct kvm *kvm) 2297 { 2298 #ifdef CONFIG_X86_64 2299 int i; 2300 struct kvm_vcpu *vcpu; 2301 struct kvm_arch *ka = &kvm->arch; 2302 2303 spin_lock(&ka->pvclock_gtod_sync_lock); 2304 kvm_make_mclock_inprogress_request(kvm); 2305 /* no guest entries from this point */ 2306 pvclock_update_vm_gtod_copy(kvm); 2307 2308 kvm_for_each_vcpu(i, vcpu, kvm) 2309 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2310 2311 /* guest entries allowed */ 2312 kvm_for_each_vcpu(i, vcpu, kvm) 2313 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2314 2315 spin_unlock(&ka->pvclock_gtod_sync_lock); 2316 #endif 2317 } 2318 2319 u64 get_kvmclock_ns(struct kvm *kvm) 2320 { 2321 struct kvm_arch *ka = &kvm->arch; 2322 struct pvclock_vcpu_time_info hv_clock; 2323 u64 ret; 2324 2325 spin_lock(&ka->pvclock_gtod_sync_lock); 2326 if (!ka->use_master_clock) { 2327 spin_unlock(&ka->pvclock_gtod_sync_lock); 2328 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2329 } 2330 2331 hv_clock.tsc_timestamp = ka->master_cycle_now; 2332 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2333 spin_unlock(&ka->pvclock_gtod_sync_lock); 2334 2335 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2336 get_cpu(); 2337 2338 if (__this_cpu_read(cpu_tsc_khz)) { 2339 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2340 &hv_clock.tsc_shift, 2341 &hv_clock.tsc_to_system_mul); 2342 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2343 } else 2344 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2345 2346 put_cpu(); 2347 2348 return ret; 2349 } 2350 2351 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2352 { 2353 struct kvm_vcpu_arch *vcpu = &v->arch; 2354 struct pvclock_vcpu_time_info guest_hv_clock; 2355 2356 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2357 &guest_hv_clock, sizeof(guest_hv_clock)))) 2358 return; 2359 2360 /* This VCPU is paused, but it's legal for a guest to read another 2361 * VCPU's kvmclock, so we really have to follow the specification where 2362 * it says that version is odd if data is being modified, and even after 2363 * it is consistent. 2364 * 2365 * Version field updates must be kept separate. This is because 2366 * kvm_write_guest_cached might use a "rep movs" instruction, and 2367 * writes within a string instruction are weakly ordered. So there 2368 * are three writes overall. 2369 * 2370 * As a small optimization, only write the version field in the first 2371 * and third write. The vcpu->pv_time cache is still valid, because the 2372 * version field is the first in the struct. 2373 */ 2374 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2375 2376 if (guest_hv_clock.version & 1) 2377 ++guest_hv_clock.version; /* first time write, random junk */ 2378 2379 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2380 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2381 &vcpu->hv_clock, 2382 sizeof(vcpu->hv_clock.version)); 2383 2384 smp_wmb(); 2385 2386 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2387 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2388 2389 if (vcpu->pvclock_set_guest_stopped_request) { 2390 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2391 vcpu->pvclock_set_guest_stopped_request = false; 2392 } 2393 2394 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2395 2396 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2397 &vcpu->hv_clock, 2398 sizeof(vcpu->hv_clock)); 2399 2400 smp_wmb(); 2401 2402 vcpu->hv_clock.version++; 2403 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2404 &vcpu->hv_clock, 2405 sizeof(vcpu->hv_clock.version)); 2406 } 2407 2408 static int kvm_guest_time_update(struct kvm_vcpu *v) 2409 { 2410 unsigned long flags, tgt_tsc_khz; 2411 struct kvm_vcpu_arch *vcpu = &v->arch; 2412 struct kvm_arch *ka = &v->kvm->arch; 2413 s64 kernel_ns; 2414 u64 tsc_timestamp, host_tsc; 2415 u8 pvclock_flags; 2416 bool use_master_clock; 2417 2418 kernel_ns = 0; 2419 host_tsc = 0; 2420 2421 /* 2422 * If the host uses TSC clock, then passthrough TSC as stable 2423 * to the guest. 2424 */ 2425 spin_lock(&ka->pvclock_gtod_sync_lock); 2426 use_master_clock = ka->use_master_clock; 2427 if (use_master_clock) { 2428 host_tsc = ka->master_cycle_now; 2429 kernel_ns = ka->master_kernel_ns; 2430 } 2431 spin_unlock(&ka->pvclock_gtod_sync_lock); 2432 2433 /* Keep irq disabled to prevent changes to the clock */ 2434 local_irq_save(flags); 2435 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2436 if (unlikely(tgt_tsc_khz == 0)) { 2437 local_irq_restore(flags); 2438 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2439 return 1; 2440 } 2441 if (!use_master_clock) { 2442 host_tsc = rdtsc(); 2443 kernel_ns = get_kvmclock_base_ns(); 2444 } 2445 2446 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2447 2448 /* 2449 * We may have to catch up the TSC to match elapsed wall clock 2450 * time for two reasons, even if kvmclock is used. 2451 * 1) CPU could have been running below the maximum TSC rate 2452 * 2) Broken TSC compensation resets the base at each VCPU 2453 * entry to avoid unknown leaps of TSC even when running 2454 * again on the same CPU. This may cause apparent elapsed 2455 * time to disappear, and the guest to stand still or run 2456 * very slowly. 2457 */ 2458 if (vcpu->tsc_catchup) { 2459 u64 tsc = compute_guest_tsc(v, kernel_ns); 2460 if (tsc > tsc_timestamp) { 2461 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2462 tsc_timestamp = tsc; 2463 } 2464 } 2465 2466 local_irq_restore(flags); 2467 2468 /* With all the info we got, fill in the values */ 2469 2470 if (kvm_has_tsc_control) 2471 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2472 2473 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2474 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2475 &vcpu->hv_clock.tsc_shift, 2476 &vcpu->hv_clock.tsc_to_system_mul); 2477 vcpu->hw_tsc_khz = tgt_tsc_khz; 2478 } 2479 2480 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2481 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2482 vcpu->last_guest_tsc = tsc_timestamp; 2483 2484 /* If the host uses TSC clocksource, then it is stable */ 2485 pvclock_flags = 0; 2486 if (use_master_clock) 2487 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2488 2489 vcpu->hv_clock.flags = pvclock_flags; 2490 2491 if (vcpu->pv_time_enabled) 2492 kvm_setup_pvclock_page(v); 2493 if (v == kvm_get_vcpu(v->kvm, 0)) 2494 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2495 return 0; 2496 } 2497 2498 /* 2499 * kvmclock updates which are isolated to a given vcpu, such as 2500 * vcpu->cpu migration, should not allow system_timestamp from 2501 * the rest of the vcpus to remain static. Otherwise ntp frequency 2502 * correction applies to one vcpu's system_timestamp but not 2503 * the others. 2504 * 2505 * So in those cases, request a kvmclock update for all vcpus. 2506 * We need to rate-limit these requests though, as they can 2507 * considerably slow guests that have a large number of vcpus. 2508 * The time for a remote vcpu to update its kvmclock is bound 2509 * by the delay we use to rate-limit the updates. 2510 */ 2511 2512 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2513 2514 static void kvmclock_update_fn(struct work_struct *work) 2515 { 2516 int i; 2517 struct delayed_work *dwork = to_delayed_work(work); 2518 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2519 kvmclock_update_work); 2520 struct kvm *kvm = container_of(ka, struct kvm, arch); 2521 struct kvm_vcpu *vcpu; 2522 2523 kvm_for_each_vcpu(i, vcpu, kvm) { 2524 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2525 kvm_vcpu_kick(vcpu); 2526 } 2527 } 2528 2529 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2530 { 2531 struct kvm *kvm = v->kvm; 2532 2533 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2534 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2535 KVMCLOCK_UPDATE_DELAY); 2536 } 2537 2538 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2539 2540 static void kvmclock_sync_fn(struct work_struct *work) 2541 { 2542 struct delayed_work *dwork = to_delayed_work(work); 2543 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2544 kvmclock_sync_work); 2545 struct kvm *kvm = container_of(ka, struct kvm, arch); 2546 2547 if (!kvmclock_periodic_sync) 2548 return; 2549 2550 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2551 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2552 KVMCLOCK_SYNC_PERIOD); 2553 } 2554 2555 /* 2556 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2557 */ 2558 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2559 { 2560 /* McStatusWrEn enabled? */ 2561 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2562 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2563 2564 return false; 2565 } 2566 2567 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2568 { 2569 u64 mcg_cap = vcpu->arch.mcg_cap; 2570 unsigned bank_num = mcg_cap & 0xff; 2571 u32 msr = msr_info->index; 2572 u64 data = msr_info->data; 2573 2574 switch (msr) { 2575 case MSR_IA32_MCG_STATUS: 2576 vcpu->arch.mcg_status = data; 2577 break; 2578 case MSR_IA32_MCG_CTL: 2579 if (!(mcg_cap & MCG_CTL_P) && 2580 (data || !msr_info->host_initiated)) 2581 return 1; 2582 if (data != 0 && data != ~(u64)0) 2583 return 1; 2584 vcpu->arch.mcg_ctl = data; 2585 break; 2586 default: 2587 if (msr >= MSR_IA32_MC0_CTL && 2588 msr < MSR_IA32_MCx_CTL(bank_num)) { 2589 u32 offset = array_index_nospec( 2590 msr - MSR_IA32_MC0_CTL, 2591 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2592 2593 /* only 0 or all 1s can be written to IA32_MCi_CTL 2594 * some Linux kernels though clear bit 10 in bank 4 to 2595 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2596 * this to avoid an uncatched #GP in the guest 2597 */ 2598 if ((offset & 0x3) == 0 && 2599 data != 0 && (data | (1 << 10)) != ~(u64)0) 2600 return -1; 2601 2602 /* MCi_STATUS */ 2603 if (!msr_info->host_initiated && 2604 (offset & 0x3) == 1 && data != 0) { 2605 if (!can_set_mci_status(vcpu)) 2606 return -1; 2607 } 2608 2609 vcpu->arch.mce_banks[offset] = data; 2610 break; 2611 } 2612 return 1; 2613 } 2614 return 0; 2615 } 2616 2617 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2618 { 2619 struct kvm *kvm = vcpu->kvm; 2620 int lm = is_long_mode(vcpu); 2621 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2622 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2623 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2624 : kvm->arch.xen_hvm_config.blob_size_32; 2625 u32 page_num = data & ~PAGE_MASK; 2626 u64 page_addr = data & PAGE_MASK; 2627 u8 *page; 2628 int r; 2629 2630 r = -E2BIG; 2631 if (page_num >= blob_size) 2632 goto out; 2633 r = -ENOMEM; 2634 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2635 if (IS_ERR(page)) { 2636 r = PTR_ERR(page); 2637 goto out; 2638 } 2639 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2640 goto out_free; 2641 r = 0; 2642 out_free: 2643 kfree(page); 2644 out: 2645 return r; 2646 } 2647 2648 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2649 { 2650 gpa_t gpa = data & ~0x3f; 2651 2652 /* Bits 3:5 are reserved, Should be zero */ 2653 if (data & 0x38) 2654 return 1; 2655 2656 vcpu->arch.apf.msr_val = data; 2657 2658 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2659 kvm_clear_async_pf_completion_queue(vcpu); 2660 kvm_async_pf_hash_reset(vcpu); 2661 return 0; 2662 } 2663 2664 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2665 sizeof(u32))) 2666 return 1; 2667 2668 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2669 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2670 kvm_async_pf_wakeup_all(vcpu); 2671 return 0; 2672 } 2673 2674 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2675 { 2676 vcpu->arch.pv_time_enabled = false; 2677 vcpu->arch.time = 0; 2678 } 2679 2680 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 2681 { 2682 ++vcpu->stat.tlb_flush; 2683 kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa); 2684 } 2685 2686 static void record_steal_time(struct kvm_vcpu *vcpu) 2687 { 2688 struct kvm_host_map map; 2689 struct kvm_steal_time *st; 2690 2691 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2692 return; 2693 2694 /* -EAGAIN is returned in atomic context so we can just return. */ 2695 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2696 &map, &vcpu->arch.st.cache, false)) 2697 return; 2698 2699 st = map.hva + 2700 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2701 2702 /* 2703 * Doing a TLB flush here, on the guest's behalf, can avoid 2704 * expensive IPIs. 2705 */ 2706 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2707 st->preempted & KVM_VCPU_FLUSH_TLB); 2708 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2709 kvm_vcpu_flush_tlb(vcpu, false); 2710 2711 vcpu->arch.st.preempted = 0; 2712 2713 if (st->version & 1) 2714 st->version += 1; /* first time write, random junk */ 2715 2716 st->version += 1; 2717 2718 smp_wmb(); 2719 2720 st->steal += current->sched_info.run_delay - 2721 vcpu->arch.st.last_steal; 2722 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2723 2724 smp_wmb(); 2725 2726 st->version += 1; 2727 2728 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 2729 } 2730 2731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2732 { 2733 bool pr = false; 2734 u32 msr = msr_info->index; 2735 u64 data = msr_info->data; 2736 2737 switch (msr) { 2738 case MSR_AMD64_NB_CFG: 2739 case MSR_IA32_UCODE_WRITE: 2740 case MSR_VM_HSAVE_PA: 2741 case MSR_AMD64_PATCH_LOADER: 2742 case MSR_AMD64_BU_CFG2: 2743 case MSR_AMD64_DC_CFG: 2744 case MSR_F15H_EX_CFG: 2745 break; 2746 2747 case MSR_IA32_UCODE_REV: 2748 if (msr_info->host_initiated) 2749 vcpu->arch.microcode_version = data; 2750 break; 2751 case MSR_IA32_ARCH_CAPABILITIES: 2752 if (!msr_info->host_initiated) 2753 return 1; 2754 vcpu->arch.arch_capabilities = data; 2755 break; 2756 case MSR_EFER: 2757 return set_efer(vcpu, msr_info); 2758 case MSR_K7_HWCR: 2759 data &= ~(u64)0x40; /* ignore flush filter disable */ 2760 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2761 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2762 2763 /* Handle McStatusWrEn */ 2764 if (data == BIT_ULL(18)) { 2765 vcpu->arch.msr_hwcr = data; 2766 } else if (data != 0) { 2767 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2768 data); 2769 return 1; 2770 } 2771 break; 2772 case MSR_FAM10H_MMIO_CONF_BASE: 2773 if (data != 0) { 2774 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2775 "0x%llx\n", data); 2776 return 1; 2777 } 2778 break; 2779 case MSR_IA32_DEBUGCTLMSR: 2780 if (!data) { 2781 /* We support the non-activated case already */ 2782 break; 2783 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2784 /* Values other than LBR and BTF are vendor-specific, 2785 thus reserved and should throw a #GP */ 2786 return 1; 2787 } 2788 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2789 __func__, data); 2790 break; 2791 case 0x200 ... 0x2ff: 2792 return kvm_mtrr_set_msr(vcpu, msr, data); 2793 case MSR_IA32_APICBASE: 2794 return kvm_set_apic_base(vcpu, msr_info); 2795 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2796 return kvm_x2apic_msr_write(vcpu, msr, data); 2797 case MSR_IA32_TSCDEADLINE: 2798 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2799 break; 2800 case MSR_IA32_TSC_ADJUST: 2801 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2802 if (!msr_info->host_initiated) { 2803 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2804 adjust_tsc_offset_guest(vcpu, adj); 2805 } 2806 vcpu->arch.ia32_tsc_adjust_msr = data; 2807 } 2808 break; 2809 case MSR_IA32_MISC_ENABLE: 2810 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 2811 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 2812 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 2813 return 1; 2814 vcpu->arch.ia32_misc_enable_msr = data; 2815 kvm_update_cpuid(vcpu); 2816 } else { 2817 vcpu->arch.ia32_misc_enable_msr = data; 2818 } 2819 break; 2820 case MSR_IA32_SMBASE: 2821 if (!msr_info->host_initiated) 2822 return 1; 2823 vcpu->arch.smbase = data; 2824 break; 2825 case MSR_IA32_POWER_CTL: 2826 vcpu->arch.msr_ia32_power_ctl = data; 2827 break; 2828 case MSR_IA32_TSC: 2829 kvm_write_tsc(vcpu, msr_info); 2830 break; 2831 case MSR_IA32_XSS: 2832 if (!msr_info->host_initiated && 2833 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 2834 return 1; 2835 /* 2836 * KVM supports exposing PT to the guest, but does not support 2837 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 2838 * XSAVES/XRSTORS to save/restore PT MSRs. 2839 */ 2840 if (data & ~supported_xss) 2841 return 1; 2842 vcpu->arch.ia32_xss = data; 2843 break; 2844 case MSR_SMI_COUNT: 2845 if (!msr_info->host_initiated) 2846 return 1; 2847 vcpu->arch.smi_count = data; 2848 break; 2849 case MSR_KVM_WALL_CLOCK_NEW: 2850 case MSR_KVM_WALL_CLOCK: 2851 vcpu->kvm->arch.wall_clock = data; 2852 kvm_write_wall_clock(vcpu->kvm, data); 2853 break; 2854 case MSR_KVM_SYSTEM_TIME_NEW: 2855 case MSR_KVM_SYSTEM_TIME: { 2856 struct kvm_arch *ka = &vcpu->kvm->arch; 2857 2858 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2859 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2860 2861 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2862 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2863 2864 ka->boot_vcpu_runs_old_kvmclock = tmp; 2865 } 2866 2867 vcpu->arch.time = data; 2868 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2869 2870 /* we verify if the enable bit is set... */ 2871 vcpu->arch.pv_time_enabled = false; 2872 if (!(data & 1)) 2873 break; 2874 2875 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2876 &vcpu->arch.pv_time, data & ~1ULL, 2877 sizeof(struct pvclock_vcpu_time_info))) 2878 vcpu->arch.pv_time_enabled = true; 2879 2880 break; 2881 } 2882 case MSR_KVM_ASYNC_PF_EN: 2883 if (kvm_pv_enable_async_pf(vcpu, data)) 2884 return 1; 2885 break; 2886 case MSR_KVM_STEAL_TIME: 2887 2888 if (unlikely(!sched_info_on())) 2889 return 1; 2890 2891 if (data & KVM_STEAL_RESERVED_MASK) 2892 return 1; 2893 2894 vcpu->arch.st.msr_val = data; 2895 2896 if (!(data & KVM_MSR_ENABLED)) 2897 break; 2898 2899 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2900 2901 break; 2902 case MSR_KVM_PV_EOI_EN: 2903 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 2904 return 1; 2905 break; 2906 2907 case MSR_KVM_POLL_CONTROL: 2908 /* only enable bit supported */ 2909 if (data & (-1ULL << 1)) 2910 return 1; 2911 2912 vcpu->arch.msr_kvm_poll_control = data; 2913 break; 2914 2915 case MSR_IA32_MCG_CTL: 2916 case MSR_IA32_MCG_STATUS: 2917 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2918 return set_msr_mce(vcpu, msr_info); 2919 2920 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2921 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2922 pr = true; /* fall through */ 2923 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2924 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2925 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2926 return kvm_pmu_set_msr(vcpu, msr_info); 2927 2928 if (pr || data != 0) 2929 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2930 "0x%x data 0x%llx\n", msr, data); 2931 break; 2932 case MSR_K7_CLK_CTL: 2933 /* 2934 * Ignore all writes to this no longer documented MSR. 2935 * Writes are only relevant for old K7 processors, 2936 * all pre-dating SVM, but a recommended workaround from 2937 * AMD for these chips. It is possible to specify the 2938 * affected processor models on the command line, hence 2939 * the need to ignore the workaround. 2940 */ 2941 break; 2942 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2943 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2944 case HV_X64_MSR_CRASH_CTL: 2945 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2946 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2947 case HV_X64_MSR_TSC_EMULATION_CONTROL: 2948 case HV_X64_MSR_TSC_EMULATION_STATUS: 2949 return kvm_hv_set_msr_common(vcpu, msr, data, 2950 msr_info->host_initiated); 2951 case MSR_IA32_BBL_CR_CTL3: 2952 /* Drop writes to this legacy MSR -- see rdmsr 2953 * counterpart for further detail. 2954 */ 2955 if (report_ignored_msrs) 2956 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2957 msr, data); 2958 break; 2959 case MSR_AMD64_OSVW_ID_LENGTH: 2960 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2961 return 1; 2962 vcpu->arch.osvw.length = data; 2963 break; 2964 case MSR_AMD64_OSVW_STATUS: 2965 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2966 return 1; 2967 vcpu->arch.osvw.status = data; 2968 break; 2969 case MSR_PLATFORM_INFO: 2970 if (!msr_info->host_initiated || 2971 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2972 cpuid_fault_enabled(vcpu))) 2973 return 1; 2974 vcpu->arch.msr_platform_info = data; 2975 break; 2976 case MSR_MISC_FEATURES_ENABLES: 2977 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2978 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2979 !supports_cpuid_fault(vcpu))) 2980 return 1; 2981 vcpu->arch.msr_misc_features_enables = data; 2982 break; 2983 default: 2984 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2985 return xen_hvm_config(vcpu, data); 2986 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2987 return kvm_pmu_set_msr(vcpu, msr_info); 2988 if (!ignore_msrs) { 2989 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2990 msr, data); 2991 return 1; 2992 } else { 2993 if (report_ignored_msrs) 2994 vcpu_unimpl(vcpu, 2995 "ignored wrmsr: 0x%x data 0x%llx\n", 2996 msr, data); 2997 break; 2998 } 2999 } 3000 return 0; 3001 } 3002 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3003 3004 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3005 { 3006 u64 data; 3007 u64 mcg_cap = vcpu->arch.mcg_cap; 3008 unsigned bank_num = mcg_cap & 0xff; 3009 3010 switch (msr) { 3011 case MSR_IA32_P5_MC_ADDR: 3012 case MSR_IA32_P5_MC_TYPE: 3013 data = 0; 3014 break; 3015 case MSR_IA32_MCG_CAP: 3016 data = vcpu->arch.mcg_cap; 3017 break; 3018 case MSR_IA32_MCG_CTL: 3019 if (!(mcg_cap & MCG_CTL_P) && !host) 3020 return 1; 3021 data = vcpu->arch.mcg_ctl; 3022 break; 3023 case MSR_IA32_MCG_STATUS: 3024 data = vcpu->arch.mcg_status; 3025 break; 3026 default: 3027 if (msr >= MSR_IA32_MC0_CTL && 3028 msr < MSR_IA32_MCx_CTL(bank_num)) { 3029 u32 offset = array_index_nospec( 3030 msr - MSR_IA32_MC0_CTL, 3031 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3032 3033 data = vcpu->arch.mce_banks[offset]; 3034 break; 3035 } 3036 return 1; 3037 } 3038 *pdata = data; 3039 return 0; 3040 } 3041 3042 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3043 { 3044 switch (msr_info->index) { 3045 case MSR_IA32_PLATFORM_ID: 3046 case MSR_IA32_EBL_CR_POWERON: 3047 case MSR_IA32_DEBUGCTLMSR: 3048 case MSR_IA32_LASTBRANCHFROMIP: 3049 case MSR_IA32_LASTBRANCHTOIP: 3050 case MSR_IA32_LASTINTFROMIP: 3051 case MSR_IA32_LASTINTTOIP: 3052 case MSR_K8_SYSCFG: 3053 case MSR_K8_TSEG_ADDR: 3054 case MSR_K8_TSEG_MASK: 3055 case MSR_VM_HSAVE_PA: 3056 case MSR_K8_INT_PENDING_MSG: 3057 case MSR_AMD64_NB_CFG: 3058 case MSR_FAM10H_MMIO_CONF_BASE: 3059 case MSR_AMD64_BU_CFG2: 3060 case MSR_IA32_PERF_CTL: 3061 case MSR_AMD64_DC_CFG: 3062 case MSR_F15H_EX_CFG: 3063 /* 3064 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3065 * limit) MSRs. Just return 0, as we do not want to expose the host 3066 * data here. Do not conditionalize this on CPUID, as KVM does not do 3067 * so for existing CPU-specific MSRs. 3068 */ 3069 case MSR_RAPL_POWER_UNIT: 3070 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3071 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3072 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3073 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3074 msr_info->data = 0; 3075 break; 3076 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3077 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3078 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3079 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3080 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3081 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3082 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3083 msr_info->data = 0; 3084 break; 3085 case MSR_IA32_UCODE_REV: 3086 msr_info->data = vcpu->arch.microcode_version; 3087 break; 3088 case MSR_IA32_ARCH_CAPABILITIES: 3089 if (!msr_info->host_initiated && 3090 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3091 return 1; 3092 msr_info->data = vcpu->arch.arch_capabilities; 3093 break; 3094 case MSR_IA32_POWER_CTL: 3095 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3096 break; 3097 case MSR_IA32_TSC: 3098 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; 3099 break; 3100 case MSR_MTRRcap: 3101 case 0x200 ... 0x2ff: 3102 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3103 case 0xcd: /* fsb frequency */ 3104 msr_info->data = 3; 3105 break; 3106 /* 3107 * MSR_EBC_FREQUENCY_ID 3108 * Conservative value valid for even the basic CPU models. 3109 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3110 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3111 * and 266MHz for model 3, or 4. Set Core Clock 3112 * Frequency to System Bus Frequency Ratio to 1 (bits 3113 * 31:24) even though these are only valid for CPU 3114 * models > 2, however guests may end up dividing or 3115 * multiplying by zero otherwise. 3116 */ 3117 case MSR_EBC_FREQUENCY_ID: 3118 msr_info->data = 1 << 24; 3119 break; 3120 case MSR_IA32_APICBASE: 3121 msr_info->data = kvm_get_apic_base(vcpu); 3122 break; 3123 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 3124 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3125 case MSR_IA32_TSCDEADLINE: 3126 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3127 break; 3128 case MSR_IA32_TSC_ADJUST: 3129 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3130 break; 3131 case MSR_IA32_MISC_ENABLE: 3132 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3133 break; 3134 case MSR_IA32_SMBASE: 3135 if (!msr_info->host_initiated) 3136 return 1; 3137 msr_info->data = vcpu->arch.smbase; 3138 break; 3139 case MSR_SMI_COUNT: 3140 msr_info->data = vcpu->arch.smi_count; 3141 break; 3142 case MSR_IA32_PERF_STATUS: 3143 /* TSC increment by tick */ 3144 msr_info->data = 1000ULL; 3145 /* CPU multiplier */ 3146 msr_info->data |= (((uint64_t)4ULL) << 40); 3147 break; 3148 case MSR_EFER: 3149 msr_info->data = vcpu->arch.efer; 3150 break; 3151 case MSR_KVM_WALL_CLOCK: 3152 case MSR_KVM_WALL_CLOCK_NEW: 3153 msr_info->data = vcpu->kvm->arch.wall_clock; 3154 break; 3155 case MSR_KVM_SYSTEM_TIME: 3156 case MSR_KVM_SYSTEM_TIME_NEW: 3157 msr_info->data = vcpu->arch.time; 3158 break; 3159 case MSR_KVM_ASYNC_PF_EN: 3160 msr_info->data = vcpu->arch.apf.msr_val; 3161 break; 3162 case MSR_KVM_STEAL_TIME: 3163 msr_info->data = vcpu->arch.st.msr_val; 3164 break; 3165 case MSR_KVM_PV_EOI_EN: 3166 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3167 break; 3168 case MSR_KVM_POLL_CONTROL: 3169 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3170 break; 3171 case MSR_IA32_P5_MC_ADDR: 3172 case MSR_IA32_P5_MC_TYPE: 3173 case MSR_IA32_MCG_CAP: 3174 case MSR_IA32_MCG_CTL: 3175 case MSR_IA32_MCG_STATUS: 3176 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3177 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3178 msr_info->host_initiated); 3179 case MSR_IA32_XSS: 3180 if (!msr_info->host_initiated && 3181 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3182 return 1; 3183 msr_info->data = vcpu->arch.ia32_xss; 3184 break; 3185 case MSR_K7_CLK_CTL: 3186 /* 3187 * Provide expected ramp-up count for K7. All other 3188 * are set to zero, indicating minimum divisors for 3189 * every field. 3190 * 3191 * This prevents guest kernels on AMD host with CPU 3192 * type 6, model 8 and higher from exploding due to 3193 * the rdmsr failing. 3194 */ 3195 msr_info->data = 0x20000000; 3196 break; 3197 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3198 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3199 case HV_X64_MSR_CRASH_CTL: 3200 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3201 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3202 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3203 case HV_X64_MSR_TSC_EMULATION_STATUS: 3204 return kvm_hv_get_msr_common(vcpu, 3205 msr_info->index, &msr_info->data, 3206 msr_info->host_initiated); 3207 case MSR_IA32_BBL_CR_CTL3: 3208 /* This legacy MSR exists but isn't fully documented in current 3209 * silicon. It is however accessed by winxp in very narrow 3210 * scenarios where it sets bit #19, itself documented as 3211 * a "reserved" bit. Best effort attempt to source coherent 3212 * read data here should the balance of the register be 3213 * interpreted by the guest: 3214 * 3215 * L2 cache control register 3: 64GB range, 256KB size, 3216 * enabled, latency 0x1, configured 3217 */ 3218 msr_info->data = 0xbe702111; 3219 break; 3220 case MSR_AMD64_OSVW_ID_LENGTH: 3221 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3222 return 1; 3223 msr_info->data = vcpu->arch.osvw.length; 3224 break; 3225 case MSR_AMD64_OSVW_STATUS: 3226 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3227 return 1; 3228 msr_info->data = vcpu->arch.osvw.status; 3229 break; 3230 case MSR_PLATFORM_INFO: 3231 if (!msr_info->host_initiated && 3232 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3233 return 1; 3234 msr_info->data = vcpu->arch.msr_platform_info; 3235 break; 3236 case MSR_MISC_FEATURES_ENABLES: 3237 msr_info->data = vcpu->arch.msr_misc_features_enables; 3238 break; 3239 case MSR_K7_HWCR: 3240 msr_info->data = vcpu->arch.msr_hwcr; 3241 break; 3242 default: 3243 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3244 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 3245 if (!ignore_msrs) { 3246 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 3247 msr_info->index); 3248 return 1; 3249 } else { 3250 if (report_ignored_msrs) 3251 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 3252 msr_info->index); 3253 msr_info->data = 0; 3254 } 3255 break; 3256 } 3257 return 0; 3258 } 3259 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3260 3261 /* 3262 * Read or write a bunch of msrs. All parameters are kernel addresses. 3263 * 3264 * @return number of msrs set successfully. 3265 */ 3266 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3267 struct kvm_msr_entry *entries, 3268 int (*do_msr)(struct kvm_vcpu *vcpu, 3269 unsigned index, u64 *data)) 3270 { 3271 int i; 3272 3273 for (i = 0; i < msrs->nmsrs; ++i) 3274 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3275 break; 3276 3277 return i; 3278 } 3279 3280 /* 3281 * Read or write a bunch of msrs. Parameters are user addresses. 3282 * 3283 * @return number of msrs set successfully. 3284 */ 3285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3286 int (*do_msr)(struct kvm_vcpu *vcpu, 3287 unsigned index, u64 *data), 3288 int writeback) 3289 { 3290 struct kvm_msrs msrs; 3291 struct kvm_msr_entry *entries; 3292 int r, n; 3293 unsigned size; 3294 3295 r = -EFAULT; 3296 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3297 goto out; 3298 3299 r = -E2BIG; 3300 if (msrs.nmsrs >= MAX_IO_MSRS) 3301 goto out; 3302 3303 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3304 entries = memdup_user(user_msrs->entries, size); 3305 if (IS_ERR(entries)) { 3306 r = PTR_ERR(entries); 3307 goto out; 3308 } 3309 3310 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3311 if (r < 0) 3312 goto out_free; 3313 3314 r = -EFAULT; 3315 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3316 goto out_free; 3317 3318 r = n; 3319 3320 out_free: 3321 kfree(entries); 3322 out: 3323 return r; 3324 } 3325 3326 static inline bool kvm_can_mwait_in_guest(void) 3327 { 3328 return boot_cpu_has(X86_FEATURE_MWAIT) && 3329 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3330 boot_cpu_has(X86_FEATURE_ARAT); 3331 } 3332 3333 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3334 { 3335 int r = 0; 3336 3337 switch (ext) { 3338 case KVM_CAP_IRQCHIP: 3339 case KVM_CAP_HLT: 3340 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3341 case KVM_CAP_SET_TSS_ADDR: 3342 case KVM_CAP_EXT_CPUID: 3343 case KVM_CAP_EXT_EMUL_CPUID: 3344 case KVM_CAP_CLOCKSOURCE: 3345 case KVM_CAP_PIT: 3346 case KVM_CAP_NOP_IO_DELAY: 3347 case KVM_CAP_MP_STATE: 3348 case KVM_CAP_SYNC_MMU: 3349 case KVM_CAP_USER_NMI: 3350 case KVM_CAP_REINJECT_CONTROL: 3351 case KVM_CAP_IRQ_INJECT_STATUS: 3352 case KVM_CAP_IOEVENTFD: 3353 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3354 case KVM_CAP_PIT2: 3355 case KVM_CAP_PIT_STATE2: 3356 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3357 case KVM_CAP_XEN_HVM: 3358 case KVM_CAP_VCPU_EVENTS: 3359 case KVM_CAP_HYPERV: 3360 case KVM_CAP_HYPERV_VAPIC: 3361 case KVM_CAP_HYPERV_SPIN: 3362 case KVM_CAP_HYPERV_SYNIC: 3363 case KVM_CAP_HYPERV_SYNIC2: 3364 case KVM_CAP_HYPERV_VP_INDEX: 3365 case KVM_CAP_HYPERV_EVENTFD: 3366 case KVM_CAP_HYPERV_TLBFLUSH: 3367 case KVM_CAP_HYPERV_SEND_IPI: 3368 case KVM_CAP_HYPERV_CPUID: 3369 case KVM_CAP_PCI_SEGMENT: 3370 case KVM_CAP_DEBUGREGS: 3371 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3372 case KVM_CAP_XSAVE: 3373 case KVM_CAP_ASYNC_PF: 3374 case KVM_CAP_GET_TSC_KHZ: 3375 case KVM_CAP_KVMCLOCK_CTRL: 3376 case KVM_CAP_READONLY_MEM: 3377 case KVM_CAP_HYPERV_TIME: 3378 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3379 case KVM_CAP_TSC_DEADLINE_TIMER: 3380 case KVM_CAP_DISABLE_QUIRKS: 3381 case KVM_CAP_SET_BOOT_CPU_ID: 3382 case KVM_CAP_SPLIT_IRQCHIP: 3383 case KVM_CAP_IMMEDIATE_EXIT: 3384 case KVM_CAP_PMU_EVENT_FILTER: 3385 case KVM_CAP_GET_MSR_FEATURES: 3386 case KVM_CAP_MSR_PLATFORM_INFO: 3387 case KVM_CAP_EXCEPTION_PAYLOAD: 3388 r = 1; 3389 break; 3390 case KVM_CAP_SYNC_REGS: 3391 r = KVM_SYNC_X86_VALID_FIELDS; 3392 break; 3393 case KVM_CAP_ADJUST_CLOCK: 3394 r = KVM_CLOCK_TSC_STABLE; 3395 break; 3396 case KVM_CAP_X86_DISABLE_EXITS: 3397 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3398 KVM_X86_DISABLE_EXITS_CSTATE; 3399 if(kvm_can_mwait_in_guest()) 3400 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3401 break; 3402 case KVM_CAP_X86_SMM: 3403 /* SMBASE is usually relocated above 1M on modern chipsets, 3404 * and SMM handlers might indeed rely on 4G segment limits, 3405 * so do not report SMM to be available if real mode is 3406 * emulated via vm86 mode. Still, do not go to great lengths 3407 * to avoid userspace's usage of the feature, because it is a 3408 * fringe case that is not enabled except via specific settings 3409 * of the module parameters. 3410 */ 3411 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE); 3412 break; 3413 case KVM_CAP_VAPIC: 3414 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3415 break; 3416 case KVM_CAP_NR_VCPUS: 3417 r = KVM_SOFT_MAX_VCPUS; 3418 break; 3419 case KVM_CAP_MAX_VCPUS: 3420 r = KVM_MAX_VCPUS; 3421 break; 3422 case KVM_CAP_MAX_VCPU_ID: 3423 r = KVM_MAX_VCPU_ID; 3424 break; 3425 case KVM_CAP_PV_MMU: /* obsolete */ 3426 r = 0; 3427 break; 3428 case KVM_CAP_MCE: 3429 r = KVM_MAX_MCE_BANKS; 3430 break; 3431 case KVM_CAP_XCRS: 3432 r = boot_cpu_has(X86_FEATURE_XSAVE); 3433 break; 3434 case KVM_CAP_TSC_CONTROL: 3435 r = kvm_has_tsc_control; 3436 break; 3437 case KVM_CAP_X2APIC_API: 3438 r = KVM_X2APIC_API_VALID_FLAGS; 3439 break; 3440 case KVM_CAP_NESTED_STATE: 3441 r = kvm_x86_ops.get_nested_state ? 3442 kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0; 3443 break; 3444 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3445 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3446 break; 3447 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3448 r = kvm_x86_ops.nested_enable_evmcs != NULL; 3449 break; 3450 default: 3451 break; 3452 } 3453 return r; 3454 3455 } 3456 3457 long kvm_arch_dev_ioctl(struct file *filp, 3458 unsigned int ioctl, unsigned long arg) 3459 { 3460 void __user *argp = (void __user *)arg; 3461 long r; 3462 3463 switch (ioctl) { 3464 case KVM_GET_MSR_INDEX_LIST: { 3465 struct kvm_msr_list __user *user_msr_list = argp; 3466 struct kvm_msr_list msr_list; 3467 unsigned n; 3468 3469 r = -EFAULT; 3470 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3471 goto out; 3472 n = msr_list.nmsrs; 3473 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3474 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3475 goto out; 3476 r = -E2BIG; 3477 if (n < msr_list.nmsrs) 3478 goto out; 3479 r = -EFAULT; 3480 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3481 num_msrs_to_save * sizeof(u32))) 3482 goto out; 3483 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3484 &emulated_msrs, 3485 num_emulated_msrs * sizeof(u32))) 3486 goto out; 3487 r = 0; 3488 break; 3489 } 3490 case KVM_GET_SUPPORTED_CPUID: 3491 case KVM_GET_EMULATED_CPUID: { 3492 struct kvm_cpuid2 __user *cpuid_arg = argp; 3493 struct kvm_cpuid2 cpuid; 3494 3495 r = -EFAULT; 3496 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3497 goto out; 3498 3499 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3500 ioctl); 3501 if (r) 3502 goto out; 3503 3504 r = -EFAULT; 3505 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3506 goto out; 3507 r = 0; 3508 break; 3509 } 3510 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3511 r = -EFAULT; 3512 if (copy_to_user(argp, &kvm_mce_cap_supported, 3513 sizeof(kvm_mce_cap_supported))) 3514 goto out; 3515 r = 0; 3516 break; 3517 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3518 struct kvm_msr_list __user *user_msr_list = argp; 3519 struct kvm_msr_list msr_list; 3520 unsigned int n; 3521 3522 r = -EFAULT; 3523 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3524 goto out; 3525 n = msr_list.nmsrs; 3526 msr_list.nmsrs = num_msr_based_features; 3527 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3528 goto out; 3529 r = -E2BIG; 3530 if (n < msr_list.nmsrs) 3531 goto out; 3532 r = -EFAULT; 3533 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3534 num_msr_based_features * sizeof(u32))) 3535 goto out; 3536 r = 0; 3537 break; 3538 } 3539 case KVM_GET_MSRS: 3540 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3541 break; 3542 default: 3543 r = -EINVAL; 3544 break; 3545 } 3546 out: 3547 return r; 3548 } 3549 3550 static void wbinvd_ipi(void *garbage) 3551 { 3552 wbinvd(); 3553 } 3554 3555 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3556 { 3557 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3558 } 3559 3560 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3561 { 3562 /* Address WBINVD may be executed by guest */ 3563 if (need_emulate_wbinvd(vcpu)) { 3564 if (kvm_x86_ops.has_wbinvd_exit()) 3565 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3566 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3567 smp_call_function_single(vcpu->cpu, 3568 wbinvd_ipi, NULL, 1); 3569 } 3570 3571 kvm_x86_ops.vcpu_load(vcpu, cpu); 3572 3573 /* Apply any externally detected TSC adjustments (due to suspend) */ 3574 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3575 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3576 vcpu->arch.tsc_offset_adjustment = 0; 3577 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3578 } 3579 3580 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3581 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3582 rdtsc() - vcpu->arch.last_host_tsc; 3583 if (tsc_delta < 0) 3584 mark_tsc_unstable("KVM discovered backwards TSC"); 3585 3586 if (kvm_check_tsc_unstable()) { 3587 u64 offset = kvm_compute_tsc_offset(vcpu, 3588 vcpu->arch.last_guest_tsc); 3589 kvm_vcpu_write_tsc_offset(vcpu, offset); 3590 vcpu->arch.tsc_catchup = 1; 3591 } 3592 3593 if (kvm_lapic_hv_timer_in_use(vcpu)) 3594 kvm_lapic_restart_hv_timer(vcpu); 3595 3596 /* 3597 * On a host with synchronized TSC, there is no need to update 3598 * kvmclock on vcpu->cpu migration 3599 */ 3600 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3601 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3602 if (vcpu->cpu != cpu) 3603 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3604 vcpu->cpu = cpu; 3605 } 3606 3607 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3608 } 3609 3610 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 3611 { 3612 struct kvm_host_map map; 3613 struct kvm_steal_time *st; 3614 3615 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3616 return; 3617 3618 if (vcpu->arch.st.preempted) 3619 return; 3620 3621 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 3622 &vcpu->arch.st.cache, true)) 3623 return; 3624 3625 st = map.hva + 3626 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3627 3628 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 3629 3630 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 3631 } 3632 3633 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3634 { 3635 int idx; 3636 3637 if (vcpu->preempted) 3638 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 3639 3640 /* 3641 * Disable page faults because we're in atomic context here. 3642 * kvm_write_guest_offset_cached() would call might_fault() 3643 * that relies on pagefault_disable() to tell if there's a 3644 * bug. NOTE: the write to guest memory may not go through if 3645 * during postcopy live migration or if there's heavy guest 3646 * paging. 3647 */ 3648 pagefault_disable(); 3649 /* 3650 * kvm_memslots() will be called by 3651 * kvm_write_guest_offset_cached() so take the srcu lock. 3652 */ 3653 idx = srcu_read_lock(&vcpu->kvm->srcu); 3654 kvm_steal_time_set_preempted(vcpu); 3655 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3656 pagefault_enable(); 3657 kvm_x86_ops.vcpu_put(vcpu); 3658 vcpu->arch.last_host_tsc = rdtsc(); 3659 /* 3660 * If userspace has set any breakpoints or watchpoints, dr6 is restored 3661 * on every vmexit, but if not, we might have a stale dr6 from the 3662 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 3663 */ 3664 set_debugreg(0, 6); 3665 } 3666 3667 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 3668 struct kvm_lapic_state *s) 3669 { 3670 if (vcpu->arch.apicv_active) 3671 kvm_x86_ops.sync_pir_to_irr(vcpu); 3672 3673 return kvm_apic_get_state(vcpu, s); 3674 } 3675 3676 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 3677 struct kvm_lapic_state *s) 3678 { 3679 int r; 3680 3681 r = kvm_apic_set_state(vcpu, s); 3682 if (r) 3683 return r; 3684 update_cr8_intercept(vcpu); 3685 3686 return 0; 3687 } 3688 3689 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 3690 { 3691 return (!lapic_in_kernel(vcpu) || 3692 kvm_apic_accept_pic_intr(vcpu)); 3693 } 3694 3695 /* 3696 * if userspace requested an interrupt window, check that the 3697 * interrupt window is open. 3698 * 3699 * No need to exit to userspace if we already have an interrupt queued. 3700 */ 3701 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 3702 { 3703 return kvm_arch_interrupt_allowed(vcpu) && 3704 !kvm_cpu_has_interrupt(vcpu) && 3705 !kvm_event_needs_reinjection(vcpu) && 3706 kvm_cpu_accept_dm_intr(vcpu); 3707 } 3708 3709 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 3710 struct kvm_interrupt *irq) 3711 { 3712 if (irq->irq >= KVM_NR_INTERRUPTS) 3713 return -EINVAL; 3714 3715 if (!irqchip_in_kernel(vcpu->kvm)) { 3716 kvm_queue_interrupt(vcpu, irq->irq, false); 3717 kvm_make_request(KVM_REQ_EVENT, vcpu); 3718 return 0; 3719 } 3720 3721 /* 3722 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3723 * fail for in-kernel 8259. 3724 */ 3725 if (pic_in_kernel(vcpu->kvm)) 3726 return -ENXIO; 3727 3728 if (vcpu->arch.pending_external_vector != -1) 3729 return -EEXIST; 3730 3731 vcpu->arch.pending_external_vector = irq->irq; 3732 kvm_make_request(KVM_REQ_EVENT, vcpu); 3733 return 0; 3734 } 3735 3736 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3737 { 3738 kvm_inject_nmi(vcpu); 3739 3740 return 0; 3741 } 3742 3743 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3744 { 3745 kvm_make_request(KVM_REQ_SMI, vcpu); 3746 3747 return 0; 3748 } 3749 3750 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3751 struct kvm_tpr_access_ctl *tac) 3752 { 3753 if (tac->flags) 3754 return -EINVAL; 3755 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3756 return 0; 3757 } 3758 3759 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3760 u64 mcg_cap) 3761 { 3762 int r; 3763 unsigned bank_num = mcg_cap & 0xff, bank; 3764 3765 r = -EINVAL; 3766 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3767 goto out; 3768 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3769 goto out; 3770 r = 0; 3771 vcpu->arch.mcg_cap = mcg_cap; 3772 /* Init IA32_MCG_CTL to all 1s */ 3773 if (mcg_cap & MCG_CTL_P) 3774 vcpu->arch.mcg_ctl = ~(u64)0; 3775 /* Init IA32_MCi_CTL to all 1s */ 3776 for (bank = 0; bank < bank_num; bank++) 3777 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3778 3779 kvm_x86_ops.setup_mce(vcpu); 3780 out: 3781 return r; 3782 } 3783 3784 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3785 struct kvm_x86_mce *mce) 3786 { 3787 u64 mcg_cap = vcpu->arch.mcg_cap; 3788 unsigned bank_num = mcg_cap & 0xff; 3789 u64 *banks = vcpu->arch.mce_banks; 3790 3791 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3792 return -EINVAL; 3793 /* 3794 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3795 * reporting is disabled 3796 */ 3797 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3798 vcpu->arch.mcg_ctl != ~(u64)0) 3799 return 0; 3800 banks += 4 * mce->bank; 3801 /* 3802 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3803 * reporting is disabled for the bank 3804 */ 3805 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3806 return 0; 3807 if (mce->status & MCI_STATUS_UC) { 3808 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3809 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3810 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3811 return 0; 3812 } 3813 if (banks[1] & MCI_STATUS_VAL) 3814 mce->status |= MCI_STATUS_OVER; 3815 banks[2] = mce->addr; 3816 banks[3] = mce->misc; 3817 vcpu->arch.mcg_status = mce->mcg_status; 3818 banks[1] = mce->status; 3819 kvm_queue_exception(vcpu, MC_VECTOR); 3820 } else if (!(banks[1] & MCI_STATUS_VAL) 3821 || !(banks[1] & MCI_STATUS_UC)) { 3822 if (banks[1] & MCI_STATUS_VAL) 3823 mce->status |= MCI_STATUS_OVER; 3824 banks[2] = mce->addr; 3825 banks[3] = mce->misc; 3826 banks[1] = mce->status; 3827 } else 3828 banks[1] |= MCI_STATUS_OVER; 3829 return 0; 3830 } 3831 3832 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3833 struct kvm_vcpu_events *events) 3834 { 3835 process_nmi(vcpu); 3836 3837 /* 3838 * In guest mode, payload delivery should be deferred, 3839 * so that the L1 hypervisor can intercept #PF before 3840 * CR2 is modified (or intercept #DB before DR6 is 3841 * modified under nVMX). Unless the per-VM capability, 3842 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 3843 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 3844 * opportunistically defer the exception payload, deliver it if the 3845 * capability hasn't been requested before processing a 3846 * KVM_GET_VCPU_EVENTS. 3847 */ 3848 if (!vcpu->kvm->arch.exception_payload_enabled && 3849 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 3850 kvm_deliver_exception_payload(vcpu); 3851 3852 /* 3853 * The API doesn't provide the instruction length for software 3854 * exceptions, so don't report them. As long as the guest RIP 3855 * isn't advanced, we should expect to encounter the exception 3856 * again. 3857 */ 3858 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 3859 events->exception.injected = 0; 3860 events->exception.pending = 0; 3861 } else { 3862 events->exception.injected = vcpu->arch.exception.injected; 3863 events->exception.pending = vcpu->arch.exception.pending; 3864 /* 3865 * For ABI compatibility, deliberately conflate 3866 * pending and injected exceptions when 3867 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 3868 */ 3869 if (!vcpu->kvm->arch.exception_payload_enabled) 3870 events->exception.injected |= 3871 vcpu->arch.exception.pending; 3872 } 3873 events->exception.nr = vcpu->arch.exception.nr; 3874 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3875 events->exception.error_code = vcpu->arch.exception.error_code; 3876 events->exception_has_payload = vcpu->arch.exception.has_payload; 3877 events->exception_payload = vcpu->arch.exception.payload; 3878 3879 events->interrupt.injected = 3880 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 3881 events->interrupt.nr = vcpu->arch.interrupt.nr; 3882 events->interrupt.soft = 0; 3883 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 3884 3885 events->nmi.injected = vcpu->arch.nmi_injected; 3886 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3887 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 3888 events->nmi.pad = 0; 3889 3890 events->sipi_vector = 0; /* never valid when reporting to user space */ 3891 3892 events->smi.smm = is_smm(vcpu); 3893 events->smi.pending = vcpu->arch.smi_pending; 3894 events->smi.smm_inside_nmi = 3895 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3896 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3897 3898 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3899 | KVM_VCPUEVENT_VALID_SHADOW 3900 | KVM_VCPUEVENT_VALID_SMM); 3901 if (vcpu->kvm->arch.exception_payload_enabled) 3902 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3903 3904 memset(&events->reserved, 0, sizeof(events->reserved)); 3905 } 3906 3907 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 3908 3909 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3910 struct kvm_vcpu_events *events) 3911 { 3912 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3913 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3914 | KVM_VCPUEVENT_VALID_SHADOW 3915 | KVM_VCPUEVENT_VALID_SMM 3916 | KVM_VCPUEVENT_VALID_PAYLOAD)) 3917 return -EINVAL; 3918 3919 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3920 if (!vcpu->kvm->arch.exception_payload_enabled) 3921 return -EINVAL; 3922 if (events->exception.pending) 3923 events->exception.injected = 0; 3924 else 3925 events->exception_has_payload = 0; 3926 } else { 3927 events->exception.pending = 0; 3928 events->exception_has_payload = 0; 3929 } 3930 3931 if ((events->exception.injected || events->exception.pending) && 3932 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3933 return -EINVAL; 3934 3935 /* INITs are latched while in SMM */ 3936 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3937 (events->smi.smm || events->smi.pending) && 3938 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3939 return -EINVAL; 3940 3941 process_nmi(vcpu); 3942 vcpu->arch.exception.injected = events->exception.injected; 3943 vcpu->arch.exception.pending = events->exception.pending; 3944 vcpu->arch.exception.nr = events->exception.nr; 3945 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3946 vcpu->arch.exception.error_code = events->exception.error_code; 3947 vcpu->arch.exception.has_payload = events->exception_has_payload; 3948 vcpu->arch.exception.payload = events->exception_payload; 3949 3950 vcpu->arch.interrupt.injected = events->interrupt.injected; 3951 vcpu->arch.interrupt.nr = events->interrupt.nr; 3952 vcpu->arch.interrupt.soft = events->interrupt.soft; 3953 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3954 kvm_x86_ops.set_interrupt_shadow(vcpu, 3955 events->interrupt.shadow); 3956 3957 vcpu->arch.nmi_injected = events->nmi.injected; 3958 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3959 vcpu->arch.nmi_pending = events->nmi.pending; 3960 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 3961 3962 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3963 lapic_in_kernel(vcpu)) 3964 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3965 3966 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3967 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 3968 if (events->smi.smm) 3969 vcpu->arch.hflags |= HF_SMM_MASK; 3970 else 3971 vcpu->arch.hflags &= ~HF_SMM_MASK; 3972 kvm_smm_changed(vcpu); 3973 } 3974 3975 vcpu->arch.smi_pending = events->smi.pending; 3976 3977 if (events->smi.smm) { 3978 if (events->smi.smm_inside_nmi) 3979 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3980 else 3981 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3982 } 3983 3984 if (lapic_in_kernel(vcpu)) { 3985 if (events->smi.latched_init) 3986 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3987 else 3988 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3989 } 3990 } 3991 3992 kvm_make_request(KVM_REQ_EVENT, vcpu); 3993 3994 return 0; 3995 } 3996 3997 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3998 struct kvm_debugregs *dbgregs) 3999 { 4000 unsigned long val; 4001 4002 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4003 kvm_get_dr(vcpu, 6, &val); 4004 dbgregs->dr6 = val; 4005 dbgregs->dr7 = vcpu->arch.dr7; 4006 dbgregs->flags = 0; 4007 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4008 } 4009 4010 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4011 struct kvm_debugregs *dbgregs) 4012 { 4013 if (dbgregs->flags) 4014 return -EINVAL; 4015 4016 if (dbgregs->dr6 & ~0xffffffffull) 4017 return -EINVAL; 4018 if (dbgregs->dr7 & ~0xffffffffull) 4019 return -EINVAL; 4020 4021 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4022 kvm_update_dr0123(vcpu); 4023 vcpu->arch.dr6 = dbgregs->dr6; 4024 kvm_update_dr6(vcpu); 4025 vcpu->arch.dr7 = dbgregs->dr7; 4026 kvm_update_dr7(vcpu); 4027 4028 return 0; 4029 } 4030 4031 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4032 4033 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4034 { 4035 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4036 u64 xstate_bv = xsave->header.xfeatures; 4037 u64 valid; 4038 4039 /* 4040 * Copy legacy XSAVE area, to avoid complications with CPUID 4041 * leaves 0 and 1 in the loop below. 4042 */ 4043 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4044 4045 /* Set XSTATE_BV */ 4046 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4047 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4048 4049 /* 4050 * Copy each region from the possibly compacted offset to the 4051 * non-compacted offset. 4052 */ 4053 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4054 while (valid) { 4055 u64 xfeature_mask = valid & -valid; 4056 int xfeature_nr = fls64(xfeature_mask) - 1; 4057 void *src = get_xsave_addr(xsave, xfeature_nr); 4058 4059 if (src) { 4060 u32 size, offset, ecx, edx; 4061 cpuid_count(XSTATE_CPUID, xfeature_nr, 4062 &size, &offset, &ecx, &edx); 4063 if (xfeature_nr == XFEATURE_PKRU) 4064 memcpy(dest + offset, &vcpu->arch.pkru, 4065 sizeof(vcpu->arch.pkru)); 4066 else 4067 memcpy(dest + offset, src, size); 4068 4069 } 4070 4071 valid -= xfeature_mask; 4072 } 4073 } 4074 4075 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4076 { 4077 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4078 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4079 u64 valid; 4080 4081 /* 4082 * Copy legacy XSAVE area, to avoid complications with CPUID 4083 * leaves 0 and 1 in the loop below. 4084 */ 4085 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4086 4087 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4088 xsave->header.xfeatures = xstate_bv; 4089 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4090 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4091 4092 /* 4093 * Copy each region from the non-compacted offset to the 4094 * possibly compacted offset. 4095 */ 4096 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4097 while (valid) { 4098 u64 xfeature_mask = valid & -valid; 4099 int xfeature_nr = fls64(xfeature_mask) - 1; 4100 void *dest = get_xsave_addr(xsave, xfeature_nr); 4101 4102 if (dest) { 4103 u32 size, offset, ecx, edx; 4104 cpuid_count(XSTATE_CPUID, xfeature_nr, 4105 &size, &offset, &ecx, &edx); 4106 if (xfeature_nr == XFEATURE_PKRU) 4107 memcpy(&vcpu->arch.pkru, src + offset, 4108 sizeof(vcpu->arch.pkru)); 4109 else 4110 memcpy(dest, src + offset, size); 4111 } 4112 4113 valid -= xfeature_mask; 4114 } 4115 } 4116 4117 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4118 struct kvm_xsave *guest_xsave) 4119 { 4120 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4121 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4122 fill_xsave((u8 *) guest_xsave->region, vcpu); 4123 } else { 4124 memcpy(guest_xsave->region, 4125 &vcpu->arch.guest_fpu->state.fxsave, 4126 sizeof(struct fxregs_state)); 4127 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4128 XFEATURE_MASK_FPSSE; 4129 } 4130 } 4131 4132 #define XSAVE_MXCSR_OFFSET 24 4133 4134 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4135 struct kvm_xsave *guest_xsave) 4136 { 4137 u64 xstate_bv = 4138 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4139 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4140 4141 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4142 /* 4143 * Here we allow setting states that are not present in 4144 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4145 * with old userspace. 4146 */ 4147 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4148 return -EINVAL; 4149 load_xsave(vcpu, (u8 *)guest_xsave->region); 4150 } else { 4151 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4152 mxcsr & ~mxcsr_feature_mask) 4153 return -EINVAL; 4154 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4155 guest_xsave->region, sizeof(struct fxregs_state)); 4156 } 4157 return 0; 4158 } 4159 4160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4161 struct kvm_xcrs *guest_xcrs) 4162 { 4163 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4164 guest_xcrs->nr_xcrs = 0; 4165 return; 4166 } 4167 4168 guest_xcrs->nr_xcrs = 1; 4169 guest_xcrs->flags = 0; 4170 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4171 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4172 } 4173 4174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4175 struct kvm_xcrs *guest_xcrs) 4176 { 4177 int i, r = 0; 4178 4179 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4180 return -EINVAL; 4181 4182 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4183 return -EINVAL; 4184 4185 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4186 /* Only support XCR0 currently */ 4187 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4188 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4189 guest_xcrs->xcrs[i].value); 4190 break; 4191 } 4192 if (r) 4193 r = -EINVAL; 4194 return r; 4195 } 4196 4197 /* 4198 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4199 * stopped by the hypervisor. This function will be called from the host only. 4200 * EINVAL is returned when the host attempts to set the flag for a guest that 4201 * does not support pv clocks. 4202 */ 4203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4204 { 4205 if (!vcpu->arch.pv_time_enabled) 4206 return -EINVAL; 4207 vcpu->arch.pvclock_set_guest_stopped_request = true; 4208 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4209 return 0; 4210 } 4211 4212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4213 struct kvm_enable_cap *cap) 4214 { 4215 int r; 4216 uint16_t vmcs_version; 4217 void __user *user_ptr; 4218 4219 if (cap->flags) 4220 return -EINVAL; 4221 4222 switch (cap->cap) { 4223 case KVM_CAP_HYPERV_SYNIC2: 4224 if (cap->args[0]) 4225 return -EINVAL; 4226 /* fall through */ 4227 4228 case KVM_CAP_HYPERV_SYNIC: 4229 if (!irqchip_in_kernel(vcpu->kvm)) 4230 return -EINVAL; 4231 return kvm_hv_activate_synic(vcpu, cap->cap == 4232 KVM_CAP_HYPERV_SYNIC2); 4233 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4234 if (!kvm_x86_ops.nested_enable_evmcs) 4235 return -ENOTTY; 4236 r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version); 4237 if (!r) { 4238 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4239 if (copy_to_user(user_ptr, &vmcs_version, 4240 sizeof(vmcs_version))) 4241 r = -EFAULT; 4242 } 4243 return r; 4244 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4245 if (!kvm_x86_ops.enable_direct_tlbflush) 4246 return -ENOTTY; 4247 4248 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4249 4250 default: 4251 return -EINVAL; 4252 } 4253 } 4254 4255 long kvm_arch_vcpu_ioctl(struct file *filp, 4256 unsigned int ioctl, unsigned long arg) 4257 { 4258 struct kvm_vcpu *vcpu = filp->private_data; 4259 void __user *argp = (void __user *)arg; 4260 int r; 4261 union { 4262 struct kvm_lapic_state *lapic; 4263 struct kvm_xsave *xsave; 4264 struct kvm_xcrs *xcrs; 4265 void *buffer; 4266 } u; 4267 4268 vcpu_load(vcpu); 4269 4270 u.buffer = NULL; 4271 switch (ioctl) { 4272 case KVM_GET_LAPIC: { 4273 r = -EINVAL; 4274 if (!lapic_in_kernel(vcpu)) 4275 goto out; 4276 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4277 GFP_KERNEL_ACCOUNT); 4278 4279 r = -ENOMEM; 4280 if (!u.lapic) 4281 goto out; 4282 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4283 if (r) 4284 goto out; 4285 r = -EFAULT; 4286 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4287 goto out; 4288 r = 0; 4289 break; 4290 } 4291 case KVM_SET_LAPIC: { 4292 r = -EINVAL; 4293 if (!lapic_in_kernel(vcpu)) 4294 goto out; 4295 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4296 if (IS_ERR(u.lapic)) { 4297 r = PTR_ERR(u.lapic); 4298 goto out_nofree; 4299 } 4300 4301 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4302 break; 4303 } 4304 case KVM_INTERRUPT: { 4305 struct kvm_interrupt irq; 4306 4307 r = -EFAULT; 4308 if (copy_from_user(&irq, argp, sizeof(irq))) 4309 goto out; 4310 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4311 break; 4312 } 4313 case KVM_NMI: { 4314 r = kvm_vcpu_ioctl_nmi(vcpu); 4315 break; 4316 } 4317 case KVM_SMI: { 4318 r = kvm_vcpu_ioctl_smi(vcpu); 4319 break; 4320 } 4321 case KVM_SET_CPUID: { 4322 struct kvm_cpuid __user *cpuid_arg = argp; 4323 struct kvm_cpuid cpuid; 4324 4325 r = -EFAULT; 4326 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4327 goto out; 4328 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4329 break; 4330 } 4331 case KVM_SET_CPUID2: { 4332 struct kvm_cpuid2 __user *cpuid_arg = argp; 4333 struct kvm_cpuid2 cpuid; 4334 4335 r = -EFAULT; 4336 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4337 goto out; 4338 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4339 cpuid_arg->entries); 4340 break; 4341 } 4342 case KVM_GET_CPUID2: { 4343 struct kvm_cpuid2 __user *cpuid_arg = argp; 4344 struct kvm_cpuid2 cpuid; 4345 4346 r = -EFAULT; 4347 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4348 goto out; 4349 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4350 cpuid_arg->entries); 4351 if (r) 4352 goto out; 4353 r = -EFAULT; 4354 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4355 goto out; 4356 r = 0; 4357 break; 4358 } 4359 case KVM_GET_MSRS: { 4360 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4361 r = msr_io(vcpu, argp, do_get_msr, 1); 4362 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4363 break; 4364 } 4365 case KVM_SET_MSRS: { 4366 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4367 r = msr_io(vcpu, argp, do_set_msr, 0); 4368 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4369 break; 4370 } 4371 case KVM_TPR_ACCESS_REPORTING: { 4372 struct kvm_tpr_access_ctl tac; 4373 4374 r = -EFAULT; 4375 if (copy_from_user(&tac, argp, sizeof(tac))) 4376 goto out; 4377 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4378 if (r) 4379 goto out; 4380 r = -EFAULT; 4381 if (copy_to_user(argp, &tac, sizeof(tac))) 4382 goto out; 4383 r = 0; 4384 break; 4385 }; 4386 case KVM_SET_VAPIC_ADDR: { 4387 struct kvm_vapic_addr va; 4388 int idx; 4389 4390 r = -EINVAL; 4391 if (!lapic_in_kernel(vcpu)) 4392 goto out; 4393 r = -EFAULT; 4394 if (copy_from_user(&va, argp, sizeof(va))) 4395 goto out; 4396 idx = srcu_read_lock(&vcpu->kvm->srcu); 4397 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4398 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4399 break; 4400 } 4401 case KVM_X86_SETUP_MCE: { 4402 u64 mcg_cap; 4403 4404 r = -EFAULT; 4405 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4406 goto out; 4407 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4408 break; 4409 } 4410 case KVM_X86_SET_MCE: { 4411 struct kvm_x86_mce mce; 4412 4413 r = -EFAULT; 4414 if (copy_from_user(&mce, argp, sizeof(mce))) 4415 goto out; 4416 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4417 break; 4418 } 4419 case KVM_GET_VCPU_EVENTS: { 4420 struct kvm_vcpu_events events; 4421 4422 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4423 4424 r = -EFAULT; 4425 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4426 break; 4427 r = 0; 4428 break; 4429 } 4430 case KVM_SET_VCPU_EVENTS: { 4431 struct kvm_vcpu_events events; 4432 4433 r = -EFAULT; 4434 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4435 break; 4436 4437 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4438 break; 4439 } 4440 case KVM_GET_DEBUGREGS: { 4441 struct kvm_debugregs dbgregs; 4442 4443 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4444 4445 r = -EFAULT; 4446 if (copy_to_user(argp, &dbgregs, 4447 sizeof(struct kvm_debugregs))) 4448 break; 4449 r = 0; 4450 break; 4451 } 4452 case KVM_SET_DEBUGREGS: { 4453 struct kvm_debugregs dbgregs; 4454 4455 r = -EFAULT; 4456 if (copy_from_user(&dbgregs, argp, 4457 sizeof(struct kvm_debugregs))) 4458 break; 4459 4460 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4461 break; 4462 } 4463 case KVM_GET_XSAVE: { 4464 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4465 r = -ENOMEM; 4466 if (!u.xsave) 4467 break; 4468 4469 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4470 4471 r = -EFAULT; 4472 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4473 break; 4474 r = 0; 4475 break; 4476 } 4477 case KVM_SET_XSAVE: { 4478 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4479 if (IS_ERR(u.xsave)) { 4480 r = PTR_ERR(u.xsave); 4481 goto out_nofree; 4482 } 4483 4484 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4485 break; 4486 } 4487 case KVM_GET_XCRS: { 4488 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4489 r = -ENOMEM; 4490 if (!u.xcrs) 4491 break; 4492 4493 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4494 4495 r = -EFAULT; 4496 if (copy_to_user(argp, u.xcrs, 4497 sizeof(struct kvm_xcrs))) 4498 break; 4499 r = 0; 4500 break; 4501 } 4502 case KVM_SET_XCRS: { 4503 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4504 if (IS_ERR(u.xcrs)) { 4505 r = PTR_ERR(u.xcrs); 4506 goto out_nofree; 4507 } 4508 4509 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4510 break; 4511 } 4512 case KVM_SET_TSC_KHZ: { 4513 u32 user_tsc_khz; 4514 4515 r = -EINVAL; 4516 user_tsc_khz = (u32)arg; 4517 4518 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 4519 goto out; 4520 4521 if (user_tsc_khz == 0) 4522 user_tsc_khz = tsc_khz; 4523 4524 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4525 r = 0; 4526 4527 goto out; 4528 } 4529 case KVM_GET_TSC_KHZ: { 4530 r = vcpu->arch.virtual_tsc_khz; 4531 goto out; 4532 } 4533 case KVM_KVMCLOCK_CTRL: { 4534 r = kvm_set_guest_paused(vcpu); 4535 goto out; 4536 } 4537 case KVM_ENABLE_CAP: { 4538 struct kvm_enable_cap cap; 4539 4540 r = -EFAULT; 4541 if (copy_from_user(&cap, argp, sizeof(cap))) 4542 goto out; 4543 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4544 break; 4545 } 4546 case KVM_GET_NESTED_STATE: { 4547 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4548 u32 user_data_size; 4549 4550 r = -EINVAL; 4551 if (!kvm_x86_ops.get_nested_state) 4552 break; 4553 4554 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4555 r = -EFAULT; 4556 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4557 break; 4558 4559 r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state, 4560 user_data_size); 4561 if (r < 0) 4562 break; 4563 4564 if (r > user_data_size) { 4565 if (put_user(r, &user_kvm_nested_state->size)) 4566 r = -EFAULT; 4567 else 4568 r = -E2BIG; 4569 break; 4570 } 4571 4572 r = 0; 4573 break; 4574 } 4575 case KVM_SET_NESTED_STATE: { 4576 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4577 struct kvm_nested_state kvm_state; 4578 int idx; 4579 4580 r = -EINVAL; 4581 if (!kvm_x86_ops.set_nested_state) 4582 break; 4583 4584 r = -EFAULT; 4585 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4586 break; 4587 4588 r = -EINVAL; 4589 if (kvm_state.size < sizeof(kvm_state)) 4590 break; 4591 4592 if (kvm_state.flags & 4593 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 4594 | KVM_STATE_NESTED_EVMCS)) 4595 break; 4596 4597 /* nested_run_pending implies guest_mode. */ 4598 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 4599 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 4600 break; 4601 4602 idx = srcu_read_lock(&vcpu->kvm->srcu); 4603 r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); 4604 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4605 break; 4606 } 4607 case KVM_GET_SUPPORTED_HV_CPUID: { 4608 struct kvm_cpuid2 __user *cpuid_arg = argp; 4609 struct kvm_cpuid2 cpuid; 4610 4611 r = -EFAULT; 4612 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4613 goto out; 4614 4615 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, 4616 cpuid_arg->entries); 4617 if (r) 4618 goto out; 4619 4620 r = -EFAULT; 4621 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4622 goto out; 4623 r = 0; 4624 break; 4625 } 4626 default: 4627 r = -EINVAL; 4628 } 4629 out: 4630 kfree(u.buffer); 4631 out_nofree: 4632 vcpu_put(vcpu); 4633 return r; 4634 } 4635 4636 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4637 { 4638 return VM_FAULT_SIGBUS; 4639 } 4640 4641 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 4642 { 4643 int ret; 4644 4645 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 4646 return -EINVAL; 4647 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 4648 return ret; 4649 } 4650 4651 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 4652 u64 ident_addr) 4653 { 4654 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 4655 } 4656 4657 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 4658 unsigned long kvm_nr_mmu_pages) 4659 { 4660 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 4661 return -EINVAL; 4662 4663 mutex_lock(&kvm->slots_lock); 4664 4665 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 4666 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 4667 4668 mutex_unlock(&kvm->slots_lock); 4669 return 0; 4670 } 4671 4672 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 4673 { 4674 return kvm->arch.n_max_mmu_pages; 4675 } 4676 4677 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4678 { 4679 struct kvm_pic *pic = kvm->arch.vpic; 4680 int r; 4681 4682 r = 0; 4683 switch (chip->chip_id) { 4684 case KVM_IRQCHIP_PIC_MASTER: 4685 memcpy(&chip->chip.pic, &pic->pics[0], 4686 sizeof(struct kvm_pic_state)); 4687 break; 4688 case KVM_IRQCHIP_PIC_SLAVE: 4689 memcpy(&chip->chip.pic, &pic->pics[1], 4690 sizeof(struct kvm_pic_state)); 4691 break; 4692 case KVM_IRQCHIP_IOAPIC: 4693 kvm_get_ioapic(kvm, &chip->chip.ioapic); 4694 break; 4695 default: 4696 r = -EINVAL; 4697 break; 4698 } 4699 return r; 4700 } 4701 4702 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 4703 { 4704 struct kvm_pic *pic = kvm->arch.vpic; 4705 int r; 4706 4707 r = 0; 4708 switch (chip->chip_id) { 4709 case KVM_IRQCHIP_PIC_MASTER: 4710 spin_lock(&pic->lock); 4711 memcpy(&pic->pics[0], &chip->chip.pic, 4712 sizeof(struct kvm_pic_state)); 4713 spin_unlock(&pic->lock); 4714 break; 4715 case KVM_IRQCHIP_PIC_SLAVE: 4716 spin_lock(&pic->lock); 4717 memcpy(&pic->pics[1], &chip->chip.pic, 4718 sizeof(struct kvm_pic_state)); 4719 spin_unlock(&pic->lock); 4720 break; 4721 case KVM_IRQCHIP_IOAPIC: 4722 kvm_set_ioapic(kvm, &chip->chip.ioapic); 4723 break; 4724 default: 4725 r = -EINVAL; 4726 break; 4727 } 4728 kvm_pic_update_irq(pic); 4729 return r; 4730 } 4731 4732 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4733 { 4734 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 4735 4736 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 4737 4738 mutex_lock(&kps->lock); 4739 memcpy(ps, &kps->channels, sizeof(*ps)); 4740 mutex_unlock(&kps->lock); 4741 return 0; 4742 } 4743 4744 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 4745 { 4746 int i; 4747 struct kvm_pit *pit = kvm->arch.vpit; 4748 4749 mutex_lock(&pit->pit_state.lock); 4750 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 4751 for (i = 0; i < 3; i++) 4752 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 4753 mutex_unlock(&pit->pit_state.lock); 4754 return 0; 4755 } 4756 4757 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4758 { 4759 mutex_lock(&kvm->arch.vpit->pit_state.lock); 4760 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 4761 sizeof(ps->channels)); 4762 ps->flags = kvm->arch.vpit->pit_state.flags; 4763 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 4764 memset(&ps->reserved, 0, sizeof(ps->reserved)); 4765 return 0; 4766 } 4767 4768 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 4769 { 4770 int start = 0; 4771 int i; 4772 u32 prev_legacy, cur_legacy; 4773 struct kvm_pit *pit = kvm->arch.vpit; 4774 4775 mutex_lock(&pit->pit_state.lock); 4776 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 4777 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 4778 if (!prev_legacy && cur_legacy) 4779 start = 1; 4780 memcpy(&pit->pit_state.channels, &ps->channels, 4781 sizeof(pit->pit_state.channels)); 4782 pit->pit_state.flags = ps->flags; 4783 for (i = 0; i < 3; i++) 4784 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 4785 start && i == 0); 4786 mutex_unlock(&pit->pit_state.lock); 4787 return 0; 4788 } 4789 4790 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 4791 struct kvm_reinject_control *control) 4792 { 4793 struct kvm_pit *pit = kvm->arch.vpit; 4794 4795 /* pit->pit_state.lock was overloaded to prevent userspace from getting 4796 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 4797 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 4798 */ 4799 mutex_lock(&pit->pit_state.lock); 4800 kvm_pit_set_reinject(pit, control->pit_reinject); 4801 mutex_unlock(&pit->pit_state.lock); 4802 4803 return 0; 4804 } 4805 4806 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 4807 { 4808 /* 4809 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 4810 */ 4811 if (kvm_x86_ops.flush_log_dirty) 4812 kvm_x86_ops.flush_log_dirty(kvm); 4813 } 4814 4815 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 4816 bool line_status) 4817 { 4818 if (!irqchip_in_kernel(kvm)) 4819 return -ENXIO; 4820 4821 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 4822 irq_event->irq, irq_event->level, 4823 line_status); 4824 return 0; 4825 } 4826 4827 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4828 struct kvm_enable_cap *cap) 4829 { 4830 int r; 4831 4832 if (cap->flags) 4833 return -EINVAL; 4834 4835 switch (cap->cap) { 4836 case KVM_CAP_DISABLE_QUIRKS: 4837 kvm->arch.disabled_quirks = cap->args[0]; 4838 r = 0; 4839 break; 4840 case KVM_CAP_SPLIT_IRQCHIP: { 4841 mutex_lock(&kvm->lock); 4842 r = -EINVAL; 4843 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4844 goto split_irqchip_unlock; 4845 r = -EEXIST; 4846 if (irqchip_in_kernel(kvm)) 4847 goto split_irqchip_unlock; 4848 if (kvm->created_vcpus) 4849 goto split_irqchip_unlock; 4850 r = kvm_setup_empty_irq_routing(kvm); 4851 if (r) 4852 goto split_irqchip_unlock; 4853 /* Pairs with irqchip_in_kernel. */ 4854 smp_wmb(); 4855 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4856 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4857 r = 0; 4858 split_irqchip_unlock: 4859 mutex_unlock(&kvm->lock); 4860 break; 4861 } 4862 case KVM_CAP_X2APIC_API: 4863 r = -EINVAL; 4864 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4865 break; 4866 4867 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4868 kvm->arch.x2apic_format = true; 4869 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4870 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4871 4872 r = 0; 4873 break; 4874 case KVM_CAP_X86_DISABLE_EXITS: 4875 r = -EINVAL; 4876 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 4877 break; 4878 4879 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 4880 kvm_can_mwait_in_guest()) 4881 kvm->arch.mwait_in_guest = true; 4882 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 4883 kvm->arch.hlt_in_guest = true; 4884 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 4885 kvm->arch.pause_in_guest = true; 4886 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 4887 kvm->arch.cstate_in_guest = true; 4888 r = 0; 4889 break; 4890 case KVM_CAP_MSR_PLATFORM_INFO: 4891 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 4892 r = 0; 4893 break; 4894 case KVM_CAP_EXCEPTION_PAYLOAD: 4895 kvm->arch.exception_payload_enabled = cap->args[0]; 4896 r = 0; 4897 break; 4898 default: 4899 r = -EINVAL; 4900 break; 4901 } 4902 return r; 4903 } 4904 4905 long kvm_arch_vm_ioctl(struct file *filp, 4906 unsigned int ioctl, unsigned long arg) 4907 { 4908 struct kvm *kvm = filp->private_data; 4909 void __user *argp = (void __user *)arg; 4910 int r = -ENOTTY; 4911 /* 4912 * This union makes it completely explicit to gcc-3.x 4913 * that these two variables' stack usage should be 4914 * combined, not added together. 4915 */ 4916 union { 4917 struct kvm_pit_state ps; 4918 struct kvm_pit_state2 ps2; 4919 struct kvm_pit_config pit_config; 4920 } u; 4921 4922 switch (ioctl) { 4923 case KVM_SET_TSS_ADDR: 4924 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4925 break; 4926 case KVM_SET_IDENTITY_MAP_ADDR: { 4927 u64 ident_addr; 4928 4929 mutex_lock(&kvm->lock); 4930 r = -EINVAL; 4931 if (kvm->created_vcpus) 4932 goto set_identity_unlock; 4933 r = -EFAULT; 4934 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 4935 goto set_identity_unlock; 4936 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4937 set_identity_unlock: 4938 mutex_unlock(&kvm->lock); 4939 break; 4940 } 4941 case KVM_SET_NR_MMU_PAGES: 4942 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4943 break; 4944 case KVM_GET_NR_MMU_PAGES: 4945 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4946 break; 4947 case KVM_CREATE_IRQCHIP: { 4948 mutex_lock(&kvm->lock); 4949 4950 r = -EEXIST; 4951 if (irqchip_in_kernel(kvm)) 4952 goto create_irqchip_unlock; 4953 4954 r = -EINVAL; 4955 if (kvm->created_vcpus) 4956 goto create_irqchip_unlock; 4957 4958 r = kvm_pic_init(kvm); 4959 if (r) 4960 goto create_irqchip_unlock; 4961 4962 r = kvm_ioapic_init(kvm); 4963 if (r) { 4964 kvm_pic_destroy(kvm); 4965 goto create_irqchip_unlock; 4966 } 4967 4968 r = kvm_setup_default_irq_routing(kvm); 4969 if (r) { 4970 kvm_ioapic_destroy(kvm); 4971 kvm_pic_destroy(kvm); 4972 goto create_irqchip_unlock; 4973 } 4974 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4975 smp_wmb(); 4976 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4977 create_irqchip_unlock: 4978 mutex_unlock(&kvm->lock); 4979 break; 4980 } 4981 case KVM_CREATE_PIT: 4982 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4983 goto create_pit; 4984 case KVM_CREATE_PIT2: 4985 r = -EFAULT; 4986 if (copy_from_user(&u.pit_config, argp, 4987 sizeof(struct kvm_pit_config))) 4988 goto out; 4989 create_pit: 4990 mutex_lock(&kvm->lock); 4991 r = -EEXIST; 4992 if (kvm->arch.vpit) 4993 goto create_pit_unlock; 4994 r = -ENOMEM; 4995 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4996 if (kvm->arch.vpit) 4997 r = 0; 4998 create_pit_unlock: 4999 mutex_unlock(&kvm->lock); 5000 break; 5001 case KVM_GET_IRQCHIP: { 5002 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5003 struct kvm_irqchip *chip; 5004 5005 chip = memdup_user(argp, sizeof(*chip)); 5006 if (IS_ERR(chip)) { 5007 r = PTR_ERR(chip); 5008 goto out; 5009 } 5010 5011 r = -ENXIO; 5012 if (!irqchip_kernel(kvm)) 5013 goto get_irqchip_out; 5014 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5015 if (r) 5016 goto get_irqchip_out; 5017 r = -EFAULT; 5018 if (copy_to_user(argp, chip, sizeof(*chip))) 5019 goto get_irqchip_out; 5020 r = 0; 5021 get_irqchip_out: 5022 kfree(chip); 5023 break; 5024 } 5025 case KVM_SET_IRQCHIP: { 5026 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5027 struct kvm_irqchip *chip; 5028 5029 chip = memdup_user(argp, sizeof(*chip)); 5030 if (IS_ERR(chip)) { 5031 r = PTR_ERR(chip); 5032 goto out; 5033 } 5034 5035 r = -ENXIO; 5036 if (!irqchip_kernel(kvm)) 5037 goto set_irqchip_out; 5038 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5039 set_irqchip_out: 5040 kfree(chip); 5041 break; 5042 } 5043 case KVM_GET_PIT: { 5044 r = -EFAULT; 5045 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5046 goto out; 5047 r = -ENXIO; 5048 if (!kvm->arch.vpit) 5049 goto out; 5050 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5051 if (r) 5052 goto out; 5053 r = -EFAULT; 5054 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5055 goto out; 5056 r = 0; 5057 break; 5058 } 5059 case KVM_SET_PIT: { 5060 r = -EFAULT; 5061 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5062 goto out; 5063 mutex_lock(&kvm->lock); 5064 r = -ENXIO; 5065 if (!kvm->arch.vpit) 5066 goto set_pit_out; 5067 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5068 set_pit_out: 5069 mutex_unlock(&kvm->lock); 5070 break; 5071 } 5072 case KVM_GET_PIT2: { 5073 r = -ENXIO; 5074 if (!kvm->arch.vpit) 5075 goto out; 5076 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5077 if (r) 5078 goto out; 5079 r = -EFAULT; 5080 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5081 goto out; 5082 r = 0; 5083 break; 5084 } 5085 case KVM_SET_PIT2: { 5086 r = -EFAULT; 5087 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5088 goto out; 5089 mutex_lock(&kvm->lock); 5090 r = -ENXIO; 5091 if (!kvm->arch.vpit) 5092 goto set_pit2_out; 5093 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5094 set_pit2_out: 5095 mutex_unlock(&kvm->lock); 5096 break; 5097 } 5098 case KVM_REINJECT_CONTROL: { 5099 struct kvm_reinject_control control; 5100 r = -EFAULT; 5101 if (copy_from_user(&control, argp, sizeof(control))) 5102 goto out; 5103 r = -ENXIO; 5104 if (!kvm->arch.vpit) 5105 goto out; 5106 r = kvm_vm_ioctl_reinject(kvm, &control); 5107 break; 5108 } 5109 case KVM_SET_BOOT_CPU_ID: 5110 r = 0; 5111 mutex_lock(&kvm->lock); 5112 if (kvm->created_vcpus) 5113 r = -EBUSY; 5114 else 5115 kvm->arch.bsp_vcpu_id = arg; 5116 mutex_unlock(&kvm->lock); 5117 break; 5118 case KVM_XEN_HVM_CONFIG: { 5119 struct kvm_xen_hvm_config xhc; 5120 r = -EFAULT; 5121 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5122 goto out; 5123 r = -EINVAL; 5124 if (xhc.flags) 5125 goto out; 5126 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5127 r = 0; 5128 break; 5129 } 5130 case KVM_SET_CLOCK: { 5131 struct kvm_clock_data user_ns; 5132 u64 now_ns; 5133 5134 r = -EFAULT; 5135 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5136 goto out; 5137 5138 r = -EINVAL; 5139 if (user_ns.flags) 5140 goto out; 5141 5142 r = 0; 5143 /* 5144 * TODO: userspace has to take care of races with VCPU_RUN, so 5145 * kvm_gen_update_masterclock() can be cut down to locked 5146 * pvclock_update_vm_gtod_copy(). 5147 */ 5148 kvm_gen_update_masterclock(kvm); 5149 now_ns = get_kvmclock_ns(kvm); 5150 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5151 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5152 break; 5153 } 5154 case KVM_GET_CLOCK: { 5155 struct kvm_clock_data user_ns; 5156 u64 now_ns; 5157 5158 now_ns = get_kvmclock_ns(kvm); 5159 user_ns.clock = now_ns; 5160 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5161 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5162 5163 r = -EFAULT; 5164 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5165 goto out; 5166 r = 0; 5167 break; 5168 } 5169 case KVM_MEMORY_ENCRYPT_OP: { 5170 r = -ENOTTY; 5171 if (kvm_x86_ops.mem_enc_op) 5172 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5173 break; 5174 } 5175 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5176 struct kvm_enc_region region; 5177 5178 r = -EFAULT; 5179 if (copy_from_user(®ion, argp, sizeof(region))) 5180 goto out; 5181 5182 r = -ENOTTY; 5183 if (kvm_x86_ops.mem_enc_reg_region) 5184 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5185 break; 5186 } 5187 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5188 struct kvm_enc_region region; 5189 5190 r = -EFAULT; 5191 if (copy_from_user(®ion, argp, sizeof(region))) 5192 goto out; 5193 5194 r = -ENOTTY; 5195 if (kvm_x86_ops.mem_enc_unreg_region) 5196 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5197 break; 5198 } 5199 case KVM_HYPERV_EVENTFD: { 5200 struct kvm_hyperv_eventfd hvevfd; 5201 5202 r = -EFAULT; 5203 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5204 goto out; 5205 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5206 break; 5207 } 5208 case KVM_SET_PMU_EVENT_FILTER: 5209 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5210 break; 5211 default: 5212 r = -ENOTTY; 5213 } 5214 out: 5215 return r; 5216 } 5217 5218 static void kvm_init_msr_list(void) 5219 { 5220 struct x86_pmu_capability x86_pmu; 5221 u32 dummy[2]; 5222 unsigned i; 5223 5224 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5225 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5226 5227 perf_get_x86_pmu_capability(&x86_pmu); 5228 5229 num_msrs_to_save = 0; 5230 num_emulated_msrs = 0; 5231 num_msr_based_features = 0; 5232 5233 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5234 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5235 continue; 5236 5237 /* 5238 * Even MSRs that are valid in the host may not be exposed 5239 * to the guests in some cases. 5240 */ 5241 switch (msrs_to_save_all[i]) { 5242 case MSR_IA32_BNDCFGS: 5243 if (!kvm_mpx_supported()) 5244 continue; 5245 break; 5246 case MSR_TSC_AUX: 5247 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5248 continue; 5249 break; 5250 case MSR_IA32_RTIT_CTL: 5251 case MSR_IA32_RTIT_STATUS: 5252 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5253 continue; 5254 break; 5255 case MSR_IA32_RTIT_CR3_MATCH: 5256 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5257 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5258 continue; 5259 break; 5260 case MSR_IA32_RTIT_OUTPUT_BASE: 5261 case MSR_IA32_RTIT_OUTPUT_MASK: 5262 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5263 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5264 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5265 continue; 5266 break; 5267 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { 5268 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5269 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5270 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5271 continue; 5272 break; 5273 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5274 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5275 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5276 continue; 5277 break; 5278 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5279 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5280 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5281 continue; 5282 } 5283 default: 5284 break; 5285 } 5286 5287 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5288 } 5289 5290 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5291 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i])) 5292 continue; 5293 5294 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5295 } 5296 5297 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5298 struct kvm_msr_entry msr; 5299 5300 msr.index = msr_based_features_all[i]; 5301 if (kvm_get_msr_feature(&msr)) 5302 continue; 5303 5304 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5305 } 5306 } 5307 5308 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5309 const void *v) 5310 { 5311 int handled = 0; 5312 int n; 5313 5314 do { 5315 n = min(len, 8); 5316 if (!(lapic_in_kernel(vcpu) && 5317 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5318 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5319 break; 5320 handled += n; 5321 addr += n; 5322 len -= n; 5323 v += n; 5324 } while (len); 5325 5326 return handled; 5327 } 5328 5329 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5330 { 5331 int handled = 0; 5332 int n; 5333 5334 do { 5335 n = min(len, 8); 5336 if (!(lapic_in_kernel(vcpu) && 5337 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5338 addr, n, v)) 5339 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5340 break; 5341 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5342 handled += n; 5343 addr += n; 5344 len -= n; 5345 v += n; 5346 } while (len); 5347 5348 return handled; 5349 } 5350 5351 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5352 struct kvm_segment *var, int seg) 5353 { 5354 kvm_x86_ops.set_segment(vcpu, var, seg); 5355 } 5356 5357 void kvm_get_segment(struct kvm_vcpu *vcpu, 5358 struct kvm_segment *var, int seg) 5359 { 5360 kvm_x86_ops.get_segment(vcpu, var, seg); 5361 } 5362 5363 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5364 struct x86_exception *exception) 5365 { 5366 gpa_t t_gpa; 5367 5368 BUG_ON(!mmu_is_nested(vcpu)); 5369 5370 /* NPT walks are always user-walks */ 5371 access |= PFERR_USER_MASK; 5372 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5373 5374 return t_gpa; 5375 } 5376 5377 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5378 struct x86_exception *exception) 5379 { 5380 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5381 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5382 } 5383 5384 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5385 struct x86_exception *exception) 5386 { 5387 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5388 access |= PFERR_FETCH_MASK; 5389 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5390 } 5391 5392 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5393 struct x86_exception *exception) 5394 { 5395 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5396 access |= PFERR_WRITE_MASK; 5397 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5398 } 5399 5400 /* uses this to access any guest's mapped memory without checking CPL */ 5401 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5402 struct x86_exception *exception) 5403 { 5404 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5405 } 5406 5407 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5408 struct kvm_vcpu *vcpu, u32 access, 5409 struct x86_exception *exception) 5410 { 5411 void *data = val; 5412 int r = X86EMUL_CONTINUE; 5413 5414 while (bytes) { 5415 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5416 exception); 5417 unsigned offset = addr & (PAGE_SIZE-1); 5418 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5419 int ret; 5420 5421 if (gpa == UNMAPPED_GVA) 5422 return X86EMUL_PROPAGATE_FAULT; 5423 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5424 offset, toread); 5425 if (ret < 0) { 5426 r = X86EMUL_IO_NEEDED; 5427 goto out; 5428 } 5429 5430 bytes -= toread; 5431 data += toread; 5432 addr += toread; 5433 } 5434 out: 5435 return r; 5436 } 5437 5438 /* used for instruction fetching */ 5439 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5440 gva_t addr, void *val, unsigned int bytes, 5441 struct x86_exception *exception) 5442 { 5443 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5444 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5445 unsigned offset; 5446 int ret; 5447 5448 /* Inline kvm_read_guest_virt_helper for speed. */ 5449 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5450 exception); 5451 if (unlikely(gpa == UNMAPPED_GVA)) 5452 return X86EMUL_PROPAGATE_FAULT; 5453 5454 offset = addr & (PAGE_SIZE-1); 5455 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5456 bytes = (unsigned)PAGE_SIZE - offset; 5457 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5458 offset, bytes); 5459 if (unlikely(ret < 0)) 5460 return X86EMUL_IO_NEEDED; 5461 5462 return X86EMUL_CONTINUE; 5463 } 5464 5465 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5466 gva_t addr, void *val, unsigned int bytes, 5467 struct x86_exception *exception) 5468 { 5469 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5470 5471 /* 5472 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5473 * is returned, but our callers are not ready for that and they blindly 5474 * call kvm_inject_page_fault. Ensure that they at least do not leak 5475 * uninitialized kernel stack memory into cr2 and error code. 5476 */ 5477 memset(exception, 0, sizeof(*exception)); 5478 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5479 exception); 5480 } 5481 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5482 5483 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5484 gva_t addr, void *val, unsigned int bytes, 5485 struct x86_exception *exception, bool system) 5486 { 5487 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5488 u32 access = 0; 5489 5490 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5491 access |= PFERR_USER_MASK; 5492 5493 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 5494 } 5495 5496 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 5497 unsigned long addr, void *val, unsigned int bytes) 5498 { 5499 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5500 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 5501 5502 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 5503 } 5504 5505 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5506 struct kvm_vcpu *vcpu, u32 access, 5507 struct x86_exception *exception) 5508 { 5509 void *data = val; 5510 int r = X86EMUL_CONTINUE; 5511 5512 while (bytes) { 5513 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 5514 access, 5515 exception); 5516 unsigned offset = addr & (PAGE_SIZE-1); 5517 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 5518 int ret; 5519 5520 if (gpa == UNMAPPED_GVA) 5521 return X86EMUL_PROPAGATE_FAULT; 5522 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 5523 if (ret < 0) { 5524 r = X86EMUL_IO_NEEDED; 5525 goto out; 5526 } 5527 5528 bytes -= towrite; 5529 data += towrite; 5530 addr += towrite; 5531 } 5532 out: 5533 return r; 5534 } 5535 5536 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 5537 unsigned int bytes, struct x86_exception *exception, 5538 bool system) 5539 { 5540 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5541 u32 access = PFERR_WRITE_MASK; 5542 5543 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 5544 access |= PFERR_USER_MASK; 5545 5546 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5547 access, exception); 5548 } 5549 5550 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 5551 unsigned int bytes, struct x86_exception *exception) 5552 { 5553 /* kvm_write_guest_virt_system can pull in tons of pages. */ 5554 vcpu->arch.l1tf_flush_l1d = true; 5555 5556 /* 5557 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5558 * is returned, but our callers are not ready for that and they blindly 5559 * call kvm_inject_page_fault. Ensure that they at least do not leak 5560 * uninitialized kernel stack memory into cr2 and error code. 5561 */ 5562 memset(exception, 0, sizeof(*exception)); 5563 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 5564 PFERR_WRITE_MASK, exception); 5565 } 5566 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 5567 5568 int handle_ud(struct kvm_vcpu *vcpu) 5569 { 5570 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 5571 int emul_type = EMULTYPE_TRAP_UD; 5572 char sig[5]; /* ud2; .ascii "kvm" */ 5573 struct x86_exception e; 5574 5575 if (force_emulation_prefix && 5576 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 5577 sig, sizeof(sig), &e) == 0 && 5578 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 5579 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 5580 emul_type = EMULTYPE_TRAP_UD_FORCED; 5581 } 5582 5583 return kvm_emulate_instruction(vcpu, emul_type); 5584 } 5585 EXPORT_SYMBOL_GPL(handle_ud); 5586 5587 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5588 gpa_t gpa, bool write) 5589 { 5590 /* For APIC access vmexit */ 5591 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5592 return 1; 5593 5594 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 5595 trace_vcpu_match_mmio(gva, gpa, write, true); 5596 return 1; 5597 } 5598 5599 return 0; 5600 } 5601 5602 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 5603 gpa_t *gpa, struct x86_exception *exception, 5604 bool write) 5605 { 5606 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 5607 | (write ? PFERR_WRITE_MASK : 0); 5608 5609 /* 5610 * currently PKRU is only applied to ept enabled guest so 5611 * there is no pkey in EPT page table for L1 guest or EPT 5612 * shadow page table for L2 guest. 5613 */ 5614 if (vcpu_match_mmio_gva(vcpu, gva) 5615 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 5616 vcpu->arch.mmio_access, 0, access)) { 5617 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 5618 (gva & (PAGE_SIZE - 1)); 5619 trace_vcpu_match_mmio(gva, *gpa, write, false); 5620 return 1; 5621 } 5622 5623 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5624 5625 if (*gpa == UNMAPPED_GVA) 5626 return -1; 5627 5628 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 5629 } 5630 5631 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 5632 const void *val, int bytes) 5633 { 5634 int ret; 5635 5636 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 5637 if (ret < 0) 5638 return 0; 5639 kvm_page_track_write(vcpu, gpa, val, bytes); 5640 return 1; 5641 } 5642 5643 struct read_write_emulator_ops { 5644 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 5645 int bytes); 5646 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 5647 void *val, int bytes); 5648 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5649 int bytes, void *val); 5650 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 5651 void *val, int bytes); 5652 bool write; 5653 }; 5654 5655 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 5656 { 5657 if (vcpu->mmio_read_completed) { 5658 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 5659 vcpu->mmio_fragments[0].gpa, val); 5660 vcpu->mmio_read_completed = 0; 5661 return 1; 5662 } 5663 5664 return 0; 5665 } 5666 5667 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5668 void *val, int bytes) 5669 { 5670 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 5671 } 5672 5673 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 5674 void *val, int bytes) 5675 { 5676 return emulator_write_phys(vcpu, gpa, val, bytes); 5677 } 5678 5679 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 5680 { 5681 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 5682 return vcpu_mmio_write(vcpu, gpa, bytes, val); 5683 } 5684 5685 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5686 void *val, int bytes) 5687 { 5688 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 5689 return X86EMUL_IO_NEEDED; 5690 } 5691 5692 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 5693 void *val, int bytes) 5694 { 5695 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 5696 5697 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 5698 return X86EMUL_CONTINUE; 5699 } 5700 5701 static const struct read_write_emulator_ops read_emultor = { 5702 .read_write_prepare = read_prepare, 5703 .read_write_emulate = read_emulate, 5704 .read_write_mmio = vcpu_mmio_read, 5705 .read_write_exit_mmio = read_exit_mmio, 5706 }; 5707 5708 static const struct read_write_emulator_ops write_emultor = { 5709 .read_write_emulate = write_emulate, 5710 .read_write_mmio = write_mmio, 5711 .read_write_exit_mmio = write_exit_mmio, 5712 .write = true, 5713 }; 5714 5715 static int emulator_read_write_onepage(unsigned long addr, void *val, 5716 unsigned int bytes, 5717 struct x86_exception *exception, 5718 struct kvm_vcpu *vcpu, 5719 const struct read_write_emulator_ops *ops) 5720 { 5721 gpa_t gpa; 5722 int handled, ret; 5723 bool write = ops->write; 5724 struct kvm_mmio_fragment *frag; 5725 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 5726 5727 /* 5728 * If the exit was due to a NPF we may already have a GPA. 5729 * If the GPA is present, use it to avoid the GVA to GPA table walk. 5730 * Note, this cannot be used on string operations since string 5731 * operation using rep will only have the initial GPA from the NPF 5732 * occurred. 5733 */ 5734 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 5735 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 5736 gpa = ctxt->gpa_val; 5737 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 5738 } else { 5739 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 5740 if (ret < 0) 5741 return X86EMUL_PROPAGATE_FAULT; 5742 } 5743 5744 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 5745 return X86EMUL_CONTINUE; 5746 5747 /* 5748 * Is this MMIO handled locally? 5749 */ 5750 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 5751 if (handled == bytes) 5752 return X86EMUL_CONTINUE; 5753 5754 gpa += handled; 5755 bytes -= handled; 5756 val += handled; 5757 5758 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 5759 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 5760 frag->gpa = gpa; 5761 frag->data = val; 5762 frag->len = bytes; 5763 return X86EMUL_CONTINUE; 5764 } 5765 5766 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 5767 unsigned long addr, 5768 void *val, unsigned int bytes, 5769 struct x86_exception *exception, 5770 const struct read_write_emulator_ops *ops) 5771 { 5772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5773 gpa_t gpa; 5774 int rc; 5775 5776 if (ops->read_write_prepare && 5777 ops->read_write_prepare(vcpu, val, bytes)) 5778 return X86EMUL_CONTINUE; 5779 5780 vcpu->mmio_nr_fragments = 0; 5781 5782 /* Crossing a page boundary? */ 5783 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 5784 int now; 5785 5786 now = -addr & ~PAGE_MASK; 5787 rc = emulator_read_write_onepage(addr, val, now, exception, 5788 vcpu, ops); 5789 5790 if (rc != X86EMUL_CONTINUE) 5791 return rc; 5792 addr += now; 5793 if (ctxt->mode != X86EMUL_MODE_PROT64) 5794 addr = (u32)addr; 5795 val += now; 5796 bytes -= now; 5797 } 5798 5799 rc = emulator_read_write_onepage(addr, val, bytes, exception, 5800 vcpu, ops); 5801 if (rc != X86EMUL_CONTINUE) 5802 return rc; 5803 5804 if (!vcpu->mmio_nr_fragments) 5805 return rc; 5806 5807 gpa = vcpu->mmio_fragments[0].gpa; 5808 5809 vcpu->mmio_needed = 1; 5810 vcpu->mmio_cur_fragment = 0; 5811 5812 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 5813 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 5814 vcpu->run->exit_reason = KVM_EXIT_MMIO; 5815 vcpu->run->mmio.phys_addr = gpa; 5816 5817 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 5818 } 5819 5820 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 5821 unsigned long addr, 5822 void *val, 5823 unsigned int bytes, 5824 struct x86_exception *exception) 5825 { 5826 return emulator_read_write(ctxt, addr, val, bytes, 5827 exception, &read_emultor); 5828 } 5829 5830 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 5831 unsigned long addr, 5832 const void *val, 5833 unsigned int bytes, 5834 struct x86_exception *exception) 5835 { 5836 return emulator_read_write(ctxt, addr, (void *)val, bytes, 5837 exception, &write_emultor); 5838 } 5839 5840 #define CMPXCHG_TYPE(t, ptr, old, new) \ 5841 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 5842 5843 #ifdef CONFIG_X86_64 5844 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 5845 #else 5846 # define CMPXCHG64(ptr, old, new) \ 5847 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 5848 #endif 5849 5850 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 5851 unsigned long addr, 5852 const void *old, 5853 const void *new, 5854 unsigned int bytes, 5855 struct x86_exception *exception) 5856 { 5857 struct kvm_host_map map; 5858 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5859 u64 page_line_mask; 5860 gpa_t gpa; 5861 char *kaddr; 5862 bool exchanged; 5863 5864 /* guests cmpxchg8b have to be emulated atomically */ 5865 if (bytes > 8 || (bytes & (bytes - 1))) 5866 goto emul_write; 5867 5868 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 5869 5870 if (gpa == UNMAPPED_GVA || 5871 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 5872 goto emul_write; 5873 5874 /* 5875 * Emulate the atomic as a straight write to avoid #AC if SLD is 5876 * enabled in the host and the access splits a cache line. 5877 */ 5878 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5879 page_line_mask = ~(cache_line_size() - 1); 5880 else 5881 page_line_mask = PAGE_MASK; 5882 5883 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 5884 goto emul_write; 5885 5886 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 5887 goto emul_write; 5888 5889 kaddr = map.hva + offset_in_page(gpa); 5890 5891 switch (bytes) { 5892 case 1: 5893 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 5894 break; 5895 case 2: 5896 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 5897 break; 5898 case 4: 5899 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 5900 break; 5901 case 8: 5902 exchanged = CMPXCHG64(kaddr, old, new); 5903 break; 5904 default: 5905 BUG(); 5906 } 5907 5908 kvm_vcpu_unmap(vcpu, &map, true); 5909 5910 if (!exchanged) 5911 return X86EMUL_CMPXCHG_FAILED; 5912 5913 kvm_page_track_write(vcpu, gpa, new, bytes); 5914 5915 return X86EMUL_CONTINUE; 5916 5917 emul_write: 5918 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 5919 5920 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 5921 } 5922 5923 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 5924 { 5925 int r = 0, i; 5926 5927 for (i = 0; i < vcpu->arch.pio.count; i++) { 5928 if (vcpu->arch.pio.in) 5929 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 5930 vcpu->arch.pio.size, pd); 5931 else 5932 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 5933 vcpu->arch.pio.port, vcpu->arch.pio.size, 5934 pd); 5935 if (r) 5936 break; 5937 pd += vcpu->arch.pio.size; 5938 } 5939 return r; 5940 } 5941 5942 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 5943 unsigned short port, void *val, 5944 unsigned int count, bool in) 5945 { 5946 vcpu->arch.pio.port = port; 5947 vcpu->arch.pio.in = in; 5948 vcpu->arch.pio.count = count; 5949 vcpu->arch.pio.size = size; 5950 5951 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 5952 vcpu->arch.pio.count = 0; 5953 return 1; 5954 } 5955 5956 vcpu->run->exit_reason = KVM_EXIT_IO; 5957 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 5958 vcpu->run->io.size = size; 5959 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 5960 vcpu->run->io.count = count; 5961 vcpu->run->io.port = port; 5962 5963 return 0; 5964 } 5965 5966 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 5967 unsigned short port, void *val, unsigned int count) 5968 { 5969 int ret; 5970 5971 if (vcpu->arch.pio.count) 5972 goto data_avail; 5973 5974 memset(vcpu->arch.pio_data, 0, size * count); 5975 5976 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 5977 if (ret) { 5978 data_avail: 5979 memcpy(val, vcpu->arch.pio_data, size * count); 5980 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 5981 vcpu->arch.pio.count = 0; 5982 return 1; 5983 } 5984 5985 return 0; 5986 } 5987 5988 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 5989 int size, unsigned short port, void *val, 5990 unsigned int count) 5991 { 5992 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 5993 5994 } 5995 5996 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 5997 unsigned short port, const void *val, 5998 unsigned int count) 5999 { 6000 memcpy(vcpu->arch.pio_data, val, size * count); 6001 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6002 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6003 } 6004 6005 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6006 int size, unsigned short port, 6007 const void *val, unsigned int count) 6008 { 6009 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6010 } 6011 6012 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6013 { 6014 return kvm_x86_ops.get_segment_base(vcpu, seg); 6015 } 6016 6017 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6018 { 6019 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6020 } 6021 6022 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6023 { 6024 if (!need_emulate_wbinvd(vcpu)) 6025 return X86EMUL_CONTINUE; 6026 6027 if (kvm_x86_ops.has_wbinvd_exit()) { 6028 int cpu = get_cpu(); 6029 6030 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6031 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6032 wbinvd_ipi, NULL, 1); 6033 put_cpu(); 6034 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6035 } else 6036 wbinvd(); 6037 return X86EMUL_CONTINUE; 6038 } 6039 6040 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6041 { 6042 kvm_emulate_wbinvd_noskip(vcpu); 6043 return kvm_skip_emulated_instruction(vcpu); 6044 } 6045 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6046 6047 6048 6049 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6050 { 6051 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6052 } 6053 6054 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6055 unsigned long *dest) 6056 { 6057 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6058 } 6059 6060 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6061 unsigned long value) 6062 { 6063 6064 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6065 } 6066 6067 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6068 { 6069 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6070 } 6071 6072 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6073 { 6074 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6075 unsigned long value; 6076 6077 switch (cr) { 6078 case 0: 6079 value = kvm_read_cr0(vcpu); 6080 break; 6081 case 2: 6082 value = vcpu->arch.cr2; 6083 break; 6084 case 3: 6085 value = kvm_read_cr3(vcpu); 6086 break; 6087 case 4: 6088 value = kvm_read_cr4(vcpu); 6089 break; 6090 case 8: 6091 value = kvm_get_cr8(vcpu); 6092 break; 6093 default: 6094 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6095 return 0; 6096 } 6097 6098 return value; 6099 } 6100 6101 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6102 { 6103 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6104 int res = 0; 6105 6106 switch (cr) { 6107 case 0: 6108 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6109 break; 6110 case 2: 6111 vcpu->arch.cr2 = val; 6112 break; 6113 case 3: 6114 res = kvm_set_cr3(vcpu, val); 6115 break; 6116 case 4: 6117 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6118 break; 6119 case 8: 6120 res = kvm_set_cr8(vcpu, val); 6121 break; 6122 default: 6123 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6124 res = -1; 6125 } 6126 6127 return res; 6128 } 6129 6130 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6131 { 6132 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6133 } 6134 6135 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6136 { 6137 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6138 } 6139 6140 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6141 { 6142 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6143 } 6144 6145 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6146 { 6147 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6148 } 6149 6150 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6151 { 6152 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6153 } 6154 6155 static unsigned long emulator_get_cached_segment_base( 6156 struct x86_emulate_ctxt *ctxt, int seg) 6157 { 6158 return get_segment_base(emul_to_vcpu(ctxt), seg); 6159 } 6160 6161 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6162 struct desc_struct *desc, u32 *base3, 6163 int seg) 6164 { 6165 struct kvm_segment var; 6166 6167 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6168 *selector = var.selector; 6169 6170 if (var.unusable) { 6171 memset(desc, 0, sizeof(*desc)); 6172 if (base3) 6173 *base3 = 0; 6174 return false; 6175 } 6176 6177 if (var.g) 6178 var.limit >>= 12; 6179 set_desc_limit(desc, var.limit); 6180 set_desc_base(desc, (unsigned long)var.base); 6181 #ifdef CONFIG_X86_64 6182 if (base3) 6183 *base3 = var.base >> 32; 6184 #endif 6185 desc->type = var.type; 6186 desc->s = var.s; 6187 desc->dpl = var.dpl; 6188 desc->p = var.present; 6189 desc->avl = var.avl; 6190 desc->l = var.l; 6191 desc->d = var.db; 6192 desc->g = var.g; 6193 6194 return true; 6195 } 6196 6197 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6198 struct desc_struct *desc, u32 base3, 6199 int seg) 6200 { 6201 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6202 struct kvm_segment var; 6203 6204 var.selector = selector; 6205 var.base = get_desc_base(desc); 6206 #ifdef CONFIG_X86_64 6207 var.base |= ((u64)base3) << 32; 6208 #endif 6209 var.limit = get_desc_limit(desc); 6210 if (desc->g) 6211 var.limit = (var.limit << 12) | 0xfff; 6212 var.type = desc->type; 6213 var.dpl = desc->dpl; 6214 var.db = desc->d; 6215 var.s = desc->s; 6216 var.l = desc->l; 6217 var.g = desc->g; 6218 var.avl = desc->avl; 6219 var.present = desc->p; 6220 var.unusable = !var.present; 6221 var.padding = 0; 6222 6223 kvm_set_segment(vcpu, &var, seg); 6224 return; 6225 } 6226 6227 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6228 u32 msr_index, u64 *pdata) 6229 { 6230 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 6231 } 6232 6233 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6234 u32 msr_index, u64 data) 6235 { 6236 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 6237 } 6238 6239 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6240 { 6241 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6242 6243 return vcpu->arch.smbase; 6244 } 6245 6246 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6247 { 6248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6249 6250 vcpu->arch.smbase = smbase; 6251 } 6252 6253 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6254 u32 pmc) 6255 { 6256 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6257 } 6258 6259 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6260 u32 pmc, u64 *pdata) 6261 { 6262 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6263 } 6264 6265 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6266 { 6267 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6268 } 6269 6270 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6271 struct x86_instruction_info *info, 6272 enum x86_intercept_stage stage) 6273 { 6274 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6275 &ctxt->exception); 6276 } 6277 6278 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6279 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6280 bool exact_only) 6281 { 6282 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6283 } 6284 6285 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6286 { 6287 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6288 } 6289 6290 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6291 { 6292 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6293 } 6294 6295 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6296 { 6297 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6298 } 6299 6300 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6301 { 6302 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6303 } 6304 6305 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6306 { 6307 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6308 } 6309 6310 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6311 { 6312 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6313 } 6314 6315 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6316 { 6317 return emul_to_vcpu(ctxt)->arch.hflags; 6318 } 6319 6320 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6321 { 6322 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6323 } 6324 6325 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6326 const char *smstate) 6327 { 6328 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6329 } 6330 6331 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6332 { 6333 kvm_smm_changed(emul_to_vcpu(ctxt)); 6334 } 6335 6336 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6337 { 6338 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6339 } 6340 6341 static const struct x86_emulate_ops emulate_ops = { 6342 .read_gpr = emulator_read_gpr, 6343 .write_gpr = emulator_write_gpr, 6344 .read_std = emulator_read_std, 6345 .write_std = emulator_write_std, 6346 .read_phys = kvm_read_guest_phys_system, 6347 .fetch = kvm_fetch_guest_virt, 6348 .read_emulated = emulator_read_emulated, 6349 .write_emulated = emulator_write_emulated, 6350 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6351 .invlpg = emulator_invlpg, 6352 .pio_in_emulated = emulator_pio_in_emulated, 6353 .pio_out_emulated = emulator_pio_out_emulated, 6354 .get_segment = emulator_get_segment, 6355 .set_segment = emulator_set_segment, 6356 .get_cached_segment_base = emulator_get_cached_segment_base, 6357 .get_gdt = emulator_get_gdt, 6358 .get_idt = emulator_get_idt, 6359 .set_gdt = emulator_set_gdt, 6360 .set_idt = emulator_set_idt, 6361 .get_cr = emulator_get_cr, 6362 .set_cr = emulator_set_cr, 6363 .cpl = emulator_get_cpl, 6364 .get_dr = emulator_get_dr, 6365 .set_dr = emulator_set_dr, 6366 .get_smbase = emulator_get_smbase, 6367 .set_smbase = emulator_set_smbase, 6368 .set_msr = emulator_set_msr, 6369 .get_msr = emulator_get_msr, 6370 .check_pmc = emulator_check_pmc, 6371 .read_pmc = emulator_read_pmc, 6372 .halt = emulator_halt, 6373 .wbinvd = emulator_wbinvd, 6374 .fix_hypercall = emulator_fix_hypercall, 6375 .intercept = emulator_intercept, 6376 .get_cpuid = emulator_get_cpuid, 6377 .guest_has_long_mode = emulator_guest_has_long_mode, 6378 .guest_has_movbe = emulator_guest_has_movbe, 6379 .guest_has_fxsr = emulator_guest_has_fxsr, 6380 .set_nmi_mask = emulator_set_nmi_mask, 6381 .get_hflags = emulator_get_hflags, 6382 .set_hflags = emulator_set_hflags, 6383 .pre_leave_smm = emulator_pre_leave_smm, 6384 .post_leave_smm = emulator_post_leave_smm, 6385 .set_xcr = emulator_set_xcr, 6386 }; 6387 6388 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6389 { 6390 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6391 /* 6392 * an sti; sti; sequence only disable interrupts for the first 6393 * instruction. So, if the last instruction, be it emulated or 6394 * not, left the system with the INT_STI flag enabled, it 6395 * means that the last instruction is an sti. We should not 6396 * leave the flag on in this case. The same goes for mov ss 6397 */ 6398 if (int_shadow & mask) 6399 mask = 0; 6400 if (unlikely(int_shadow || mask)) { 6401 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6402 if (!mask) 6403 kvm_make_request(KVM_REQ_EVENT, vcpu); 6404 } 6405 } 6406 6407 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6408 { 6409 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6410 if (ctxt->exception.vector == PF_VECTOR) 6411 return kvm_propagate_fault(vcpu, &ctxt->exception); 6412 6413 if (ctxt->exception.error_code_valid) 6414 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6415 ctxt->exception.error_code); 6416 else 6417 kvm_queue_exception(vcpu, ctxt->exception.vector); 6418 return false; 6419 } 6420 6421 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6422 { 6423 struct x86_emulate_ctxt *ctxt; 6424 6425 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6426 if (!ctxt) { 6427 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6428 return NULL; 6429 } 6430 6431 ctxt->vcpu = vcpu; 6432 ctxt->ops = &emulate_ops; 6433 vcpu->arch.emulate_ctxt = ctxt; 6434 6435 return ctxt; 6436 } 6437 6438 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6439 { 6440 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6441 int cs_db, cs_l; 6442 6443 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6444 6445 ctxt->gpa_available = false; 6446 ctxt->eflags = kvm_get_rflags(vcpu); 6447 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6448 6449 ctxt->eip = kvm_rip_read(vcpu); 6450 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6451 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6452 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6453 cs_db ? X86EMUL_MODE_PROT32 : 6454 X86EMUL_MODE_PROT16; 6455 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6456 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6457 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6458 6459 init_decode_cache(ctxt); 6460 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6461 } 6462 6463 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6464 { 6465 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6466 int ret; 6467 6468 init_emulate_ctxt(vcpu); 6469 6470 ctxt->op_bytes = 2; 6471 ctxt->ad_bytes = 2; 6472 ctxt->_eip = ctxt->eip + inc_eip; 6473 ret = emulate_int_real(ctxt, irq); 6474 6475 if (ret != X86EMUL_CONTINUE) { 6476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 6477 } else { 6478 ctxt->eip = ctxt->_eip; 6479 kvm_rip_write(vcpu, ctxt->eip); 6480 kvm_set_rflags(vcpu, ctxt->eflags); 6481 } 6482 } 6483 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 6484 6485 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 6486 { 6487 ++vcpu->stat.insn_emulation_fail; 6488 trace_kvm_emulate_insn_failed(vcpu); 6489 6490 if (emulation_type & EMULTYPE_VMWARE_GP) { 6491 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6492 return 1; 6493 } 6494 6495 if (emulation_type & EMULTYPE_SKIP) { 6496 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6497 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6498 vcpu->run->internal.ndata = 0; 6499 return 0; 6500 } 6501 6502 kvm_queue_exception(vcpu, UD_VECTOR); 6503 6504 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 6505 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6506 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 6507 vcpu->run->internal.ndata = 0; 6508 return 0; 6509 } 6510 6511 return 1; 6512 } 6513 6514 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6515 bool write_fault_to_shadow_pgtable, 6516 int emulation_type) 6517 { 6518 gpa_t gpa = cr2_or_gpa; 6519 kvm_pfn_t pfn; 6520 6521 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6522 return false; 6523 6524 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6525 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6526 return false; 6527 6528 if (!vcpu->arch.mmu->direct_map) { 6529 /* 6530 * Write permission should be allowed since only 6531 * write access need to be emulated. 6532 */ 6533 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6534 6535 /* 6536 * If the mapping is invalid in guest, let cpu retry 6537 * it to generate fault. 6538 */ 6539 if (gpa == UNMAPPED_GVA) 6540 return true; 6541 } 6542 6543 /* 6544 * Do not retry the unhandleable instruction if it faults on the 6545 * readonly host memory, otherwise it will goto a infinite loop: 6546 * retry instruction -> write #PF -> emulation fail -> retry 6547 * instruction -> ... 6548 */ 6549 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 6550 6551 /* 6552 * If the instruction failed on the error pfn, it can not be fixed, 6553 * report the error to userspace. 6554 */ 6555 if (is_error_noslot_pfn(pfn)) 6556 return false; 6557 6558 kvm_release_pfn_clean(pfn); 6559 6560 /* The instructions are well-emulated on direct mmu. */ 6561 if (vcpu->arch.mmu->direct_map) { 6562 unsigned int indirect_shadow_pages; 6563 6564 spin_lock(&vcpu->kvm->mmu_lock); 6565 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 6566 spin_unlock(&vcpu->kvm->mmu_lock); 6567 6568 if (indirect_shadow_pages) 6569 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6570 6571 return true; 6572 } 6573 6574 /* 6575 * if emulation was due to access to shadowed page table 6576 * and it failed try to unshadow page and re-enter the 6577 * guest to let CPU execute the instruction. 6578 */ 6579 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6580 6581 /* 6582 * If the access faults on its page table, it can not 6583 * be fixed by unprotecting shadow page and it should 6584 * be reported to userspace. 6585 */ 6586 return !write_fault_to_shadow_pgtable; 6587 } 6588 6589 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 6590 gpa_t cr2_or_gpa, int emulation_type) 6591 { 6592 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6593 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 6594 6595 last_retry_eip = vcpu->arch.last_retry_eip; 6596 last_retry_addr = vcpu->arch.last_retry_addr; 6597 6598 /* 6599 * If the emulation is caused by #PF and it is non-page_table 6600 * writing instruction, it means the VM-EXIT is caused by shadow 6601 * page protected, we can zap the shadow page and retry this 6602 * instruction directly. 6603 * 6604 * Note: if the guest uses a non-page-table modifying instruction 6605 * on the PDE that points to the instruction, then we will unmap 6606 * the instruction and go to an infinite loop. So, we cache the 6607 * last retried eip and the last fault address, if we meet the eip 6608 * and the address again, we can break out of the potential infinite 6609 * loop. 6610 */ 6611 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 6612 6613 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 6614 return false; 6615 6616 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 6617 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 6618 return false; 6619 6620 if (x86_page_table_writing_insn(ctxt)) 6621 return false; 6622 6623 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 6624 return false; 6625 6626 vcpu->arch.last_retry_eip = ctxt->eip; 6627 vcpu->arch.last_retry_addr = cr2_or_gpa; 6628 6629 if (!vcpu->arch.mmu->direct_map) 6630 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 6631 6632 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 6633 6634 return true; 6635 } 6636 6637 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 6638 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 6639 6640 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 6641 { 6642 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 6643 /* This is a good place to trace that we are exiting SMM. */ 6644 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 6645 6646 /* Process a latched INIT or SMI, if any. */ 6647 kvm_make_request(KVM_REQ_EVENT, vcpu); 6648 } 6649 6650 kvm_mmu_reset_context(vcpu); 6651 } 6652 6653 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 6654 unsigned long *db) 6655 { 6656 u32 dr6 = 0; 6657 int i; 6658 u32 enable, rwlen; 6659 6660 enable = dr7; 6661 rwlen = dr7 >> 16; 6662 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 6663 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 6664 dr6 |= (1 << i); 6665 return dr6; 6666 } 6667 6668 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 6669 { 6670 struct kvm_run *kvm_run = vcpu->run; 6671 6672 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 6673 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 6674 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 6675 kvm_run->debug.arch.exception = DB_VECTOR; 6676 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6677 return 0; 6678 } 6679 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 6680 return 1; 6681 } 6682 6683 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 6684 { 6685 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6686 int r; 6687 6688 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 6689 if (unlikely(!r)) 6690 return 0; 6691 6692 /* 6693 * rflags is the old, "raw" value of the flags. The new value has 6694 * not been saved yet. 6695 * 6696 * This is correct even for TF set by the guest, because "the 6697 * processor will not generate this exception after the instruction 6698 * that sets the TF flag". 6699 */ 6700 if (unlikely(rflags & X86_EFLAGS_TF)) 6701 r = kvm_vcpu_do_singlestep(vcpu); 6702 return r; 6703 } 6704 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 6705 6706 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 6707 { 6708 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 6709 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 6710 struct kvm_run *kvm_run = vcpu->run; 6711 unsigned long eip = kvm_get_linear_rip(vcpu); 6712 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6713 vcpu->arch.guest_debug_dr7, 6714 vcpu->arch.eff_db); 6715 6716 if (dr6 != 0) { 6717 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 6718 kvm_run->debug.arch.pc = eip; 6719 kvm_run->debug.arch.exception = DB_VECTOR; 6720 kvm_run->exit_reason = KVM_EXIT_DEBUG; 6721 *r = 0; 6722 return true; 6723 } 6724 } 6725 6726 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 6727 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 6728 unsigned long eip = kvm_get_linear_rip(vcpu); 6729 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 6730 vcpu->arch.dr7, 6731 vcpu->arch.db); 6732 6733 if (dr6 != 0) { 6734 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 6735 vcpu->arch.dr6 |= dr6 | DR6_RTM; 6736 kvm_queue_exception(vcpu, DB_VECTOR); 6737 *r = 1; 6738 return true; 6739 } 6740 } 6741 6742 return false; 6743 } 6744 6745 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 6746 { 6747 switch (ctxt->opcode_len) { 6748 case 1: 6749 switch (ctxt->b) { 6750 case 0xe4: /* IN */ 6751 case 0xe5: 6752 case 0xec: 6753 case 0xed: 6754 case 0xe6: /* OUT */ 6755 case 0xe7: 6756 case 0xee: 6757 case 0xef: 6758 case 0x6c: /* INS */ 6759 case 0x6d: 6760 case 0x6e: /* OUTS */ 6761 case 0x6f: 6762 return true; 6763 } 6764 break; 6765 case 2: 6766 switch (ctxt->b) { 6767 case 0x33: /* RDPMC */ 6768 return true; 6769 } 6770 break; 6771 } 6772 6773 return false; 6774 } 6775 6776 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 6777 int emulation_type, void *insn, int insn_len) 6778 { 6779 int r; 6780 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6781 bool writeback = true; 6782 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 6783 6784 vcpu->arch.l1tf_flush_l1d = true; 6785 6786 /* 6787 * Clear write_fault_to_shadow_pgtable here to ensure it is 6788 * never reused. 6789 */ 6790 vcpu->arch.write_fault_to_shadow_pgtable = false; 6791 kvm_clear_exception_queue(vcpu); 6792 6793 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 6794 init_emulate_ctxt(vcpu); 6795 6796 /* 6797 * We will reenter on the same instruction since 6798 * we do not set complete_userspace_io. This does not 6799 * handle watchpoints yet, those would be handled in 6800 * the emulate_ops. 6801 */ 6802 if (!(emulation_type & EMULTYPE_SKIP) && 6803 kvm_vcpu_check_breakpoint(vcpu, &r)) 6804 return r; 6805 6806 ctxt->interruptibility = 0; 6807 ctxt->have_exception = false; 6808 ctxt->exception.vector = -1; 6809 ctxt->perm_ok = false; 6810 6811 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 6812 6813 r = x86_decode_insn(ctxt, insn, insn_len); 6814 6815 trace_kvm_emulate_insn_start(vcpu); 6816 ++vcpu->stat.insn_emulation; 6817 if (r != EMULATION_OK) { 6818 if ((emulation_type & EMULTYPE_TRAP_UD) || 6819 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 6820 kvm_queue_exception(vcpu, UD_VECTOR); 6821 return 1; 6822 } 6823 if (reexecute_instruction(vcpu, cr2_or_gpa, 6824 write_fault_to_spt, 6825 emulation_type)) 6826 return 1; 6827 if (ctxt->have_exception) { 6828 /* 6829 * #UD should result in just EMULATION_FAILED, and trap-like 6830 * exception should not be encountered during decode. 6831 */ 6832 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 6833 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 6834 inject_emulated_exception(vcpu); 6835 return 1; 6836 } 6837 return handle_emulation_failure(vcpu, emulation_type); 6838 } 6839 } 6840 6841 if ((emulation_type & EMULTYPE_VMWARE_GP) && 6842 !is_vmware_backdoor_opcode(ctxt)) { 6843 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 6844 return 1; 6845 } 6846 6847 /* 6848 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 6849 * for kvm_skip_emulated_instruction(). The caller is responsible for 6850 * updating interruptibility state and injecting single-step #DBs. 6851 */ 6852 if (emulation_type & EMULTYPE_SKIP) { 6853 kvm_rip_write(vcpu, ctxt->_eip); 6854 if (ctxt->eflags & X86_EFLAGS_RF) 6855 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 6856 return 1; 6857 } 6858 6859 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 6860 return 1; 6861 6862 /* this is needed for vmware backdoor interface to work since it 6863 changes registers values during IO operation */ 6864 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 6865 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6866 emulator_invalidate_register_cache(ctxt); 6867 } 6868 6869 restart: 6870 if (emulation_type & EMULTYPE_PF) { 6871 /* Save the faulting GPA (cr2) in the address field */ 6872 ctxt->exception.address = cr2_or_gpa; 6873 6874 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 6875 if (vcpu->arch.mmu->direct_map) { 6876 ctxt->gpa_available = true; 6877 ctxt->gpa_val = cr2_or_gpa; 6878 } 6879 } else { 6880 /* Sanitize the address out of an abundance of paranoia. */ 6881 ctxt->exception.address = 0; 6882 } 6883 6884 r = x86_emulate_insn(ctxt); 6885 6886 if (r == EMULATION_INTERCEPTED) 6887 return 1; 6888 6889 if (r == EMULATION_FAILED) { 6890 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 6891 emulation_type)) 6892 return 1; 6893 6894 return handle_emulation_failure(vcpu, emulation_type); 6895 } 6896 6897 if (ctxt->have_exception) { 6898 r = 1; 6899 if (inject_emulated_exception(vcpu)) 6900 return r; 6901 } else if (vcpu->arch.pio.count) { 6902 if (!vcpu->arch.pio.in) { 6903 /* FIXME: return into emulator if single-stepping. */ 6904 vcpu->arch.pio.count = 0; 6905 } else { 6906 writeback = false; 6907 vcpu->arch.complete_userspace_io = complete_emulated_pio; 6908 } 6909 r = 0; 6910 } else if (vcpu->mmio_needed) { 6911 ++vcpu->stat.mmio_exits; 6912 6913 if (!vcpu->mmio_is_write) 6914 writeback = false; 6915 r = 0; 6916 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6917 } else if (r == EMULATION_RESTART) 6918 goto restart; 6919 else 6920 r = 1; 6921 6922 if (writeback) { 6923 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 6924 toggle_interruptibility(vcpu, ctxt->interruptibility); 6925 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6926 if (!ctxt->have_exception || 6927 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 6928 kvm_rip_write(vcpu, ctxt->eip); 6929 if (r && ctxt->tf) 6930 r = kvm_vcpu_do_singlestep(vcpu); 6931 if (kvm_x86_ops.update_emulated_instruction) 6932 kvm_x86_ops.update_emulated_instruction(vcpu); 6933 __kvm_set_rflags(vcpu, ctxt->eflags); 6934 } 6935 6936 /* 6937 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 6938 * do nothing, and it will be requested again as soon as 6939 * the shadow expires. But we still need to check here, 6940 * because POPF has no interrupt shadow. 6941 */ 6942 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 6943 kvm_make_request(KVM_REQ_EVENT, vcpu); 6944 } else 6945 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 6946 6947 return r; 6948 } 6949 6950 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 6951 { 6952 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 6953 } 6954 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 6955 6956 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 6957 void *insn, int insn_len) 6958 { 6959 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 6960 } 6961 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 6962 6963 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 6964 { 6965 vcpu->arch.pio.count = 0; 6966 return 1; 6967 } 6968 6969 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 6970 { 6971 vcpu->arch.pio.count = 0; 6972 6973 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 6974 return 1; 6975 6976 return kvm_skip_emulated_instruction(vcpu); 6977 } 6978 6979 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 6980 unsigned short port) 6981 { 6982 unsigned long val = kvm_rax_read(vcpu); 6983 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 6984 6985 if (ret) 6986 return ret; 6987 6988 /* 6989 * Workaround userspace that relies on old KVM behavior of %rip being 6990 * incremented prior to exiting to userspace to handle "OUT 0x7e". 6991 */ 6992 if (port == 0x7e && 6993 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 6994 vcpu->arch.complete_userspace_io = 6995 complete_fast_pio_out_port_0x7e; 6996 kvm_skip_emulated_instruction(vcpu); 6997 } else { 6998 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 6999 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7000 } 7001 return 0; 7002 } 7003 7004 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7005 { 7006 unsigned long val; 7007 7008 /* We should only ever be called with arch.pio.count equal to 1 */ 7009 BUG_ON(vcpu->arch.pio.count != 1); 7010 7011 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7012 vcpu->arch.pio.count = 0; 7013 return 1; 7014 } 7015 7016 /* For size less than 4 we merge, else we zero extend */ 7017 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7018 7019 /* 7020 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7021 * the copy and tracing 7022 */ 7023 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7024 kvm_rax_write(vcpu, val); 7025 7026 return kvm_skip_emulated_instruction(vcpu); 7027 } 7028 7029 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7030 unsigned short port) 7031 { 7032 unsigned long val; 7033 int ret; 7034 7035 /* For size less than 4 we merge, else we zero extend */ 7036 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7037 7038 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7039 if (ret) { 7040 kvm_rax_write(vcpu, val); 7041 return ret; 7042 } 7043 7044 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7045 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7046 7047 return 0; 7048 } 7049 7050 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7051 { 7052 int ret; 7053 7054 if (in) 7055 ret = kvm_fast_pio_in(vcpu, size, port); 7056 else 7057 ret = kvm_fast_pio_out(vcpu, size, port); 7058 return ret && kvm_skip_emulated_instruction(vcpu); 7059 } 7060 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7061 7062 static int kvmclock_cpu_down_prep(unsigned int cpu) 7063 { 7064 __this_cpu_write(cpu_tsc_khz, 0); 7065 return 0; 7066 } 7067 7068 static void tsc_khz_changed(void *data) 7069 { 7070 struct cpufreq_freqs *freq = data; 7071 unsigned long khz = 0; 7072 7073 if (data) 7074 khz = freq->new; 7075 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7076 khz = cpufreq_quick_get(raw_smp_processor_id()); 7077 if (!khz) 7078 khz = tsc_khz; 7079 __this_cpu_write(cpu_tsc_khz, khz); 7080 } 7081 7082 #ifdef CONFIG_X86_64 7083 static void kvm_hyperv_tsc_notifier(void) 7084 { 7085 struct kvm *kvm; 7086 struct kvm_vcpu *vcpu; 7087 int cpu; 7088 7089 mutex_lock(&kvm_lock); 7090 list_for_each_entry(kvm, &vm_list, vm_list) 7091 kvm_make_mclock_inprogress_request(kvm); 7092 7093 hyperv_stop_tsc_emulation(); 7094 7095 /* TSC frequency always matches when on Hyper-V */ 7096 for_each_present_cpu(cpu) 7097 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7098 kvm_max_guest_tsc_khz = tsc_khz; 7099 7100 list_for_each_entry(kvm, &vm_list, vm_list) { 7101 struct kvm_arch *ka = &kvm->arch; 7102 7103 spin_lock(&ka->pvclock_gtod_sync_lock); 7104 7105 pvclock_update_vm_gtod_copy(kvm); 7106 7107 kvm_for_each_vcpu(cpu, vcpu, kvm) 7108 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7109 7110 kvm_for_each_vcpu(cpu, vcpu, kvm) 7111 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7112 7113 spin_unlock(&ka->pvclock_gtod_sync_lock); 7114 } 7115 mutex_unlock(&kvm_lock); 7116 } 7117 #endif 7118 7119 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7120 { 7121 struct kvm *kvm; 7122 struct kvm_vcpu *vcpu; 7123 int i, send_ipi = 0; 7124 7125 /* 7126 * We allow guests to temporarily run on slowing clocks, 7127 * provided we notify them after, or to run on accelerating 7128 * clocks, provided we notify them before. Thus time never 7129 * goes backwards. 7130 * 7131 * However, we have a problem. We can't atomically update 7132 * the frequency of a given CPU from this function; it is 7133 * merely a notifier, which can be called from any CPU. 7134 * Changing the TSC frequency at arbitrary points in time 7135 * requires a recomputation of local variables related to 7136 * the TSC for each VCPU. We must flag these local variables 7137 * to be updated and be sure the update takes place with the 7138 * new frequency before any guests proceed. 7139 * 7140 * Unfortunately, the combination of hotplug CPU and frequency 7141 * change creates an intractable locking scenario; the order 7142 * of when these callouts happen is undefined with respect to 7143 * CPU hotplug, and they can race with each other. As such, 7144 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7145 * undefined; you can actually have a CPU frequency change take 7146 * place in between the computation of X and the setting of the 7147 * variable. To protect against this problem, all updates of 7148 * the per_cpu tsc_khz variable are done in an interrupt 7149 * protected IPI, and all callers wishing to update the value 7150 * must wait for a synchronous IPI to complete (which is trivial 7151 * if the caller is on the CPU already). This establishes the 7152 * necessary total order on variable updates. 7153 * 7154 * Note that because a guest time update may take place 7155 * anytime after the setting of the VCPU's request bit, the 7156 * correct TSC value must be set before the request. However, 7157 * to ensure the update actually makes it to any guest which 7158 * starts running in hardware virtualization between the set 7159 * and the acquisition of the spinlock, we must also ping the 7160 * CPU after setting the request bit. 7161 * 7162 */ 7163 7164 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7165 7166 mutex_lock(&kvm_lock); 7167 list_for_each_entry(kvm, &vm_list, vm_list) { 7168 kvm_for_each_vcpu(i, vcpu, kvm) { 7169 if (vcpu->cpu != cpu) 7170 continue; 7171 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7172 if (vcpu->cpu != raw_smp_processor_id()) 7173 send_ipi = 1; 7174 } 7175 } 7176 mutex_unlock(&kvm_lock); 7177 7178 if (freq->old < freq->new && send_ipi) { 7179 /* 7180 * We upscale the frequency. Must make the guest 7181 * doesn't see old kvmclock values while running with 7182 * the new frequency, otherwise we risk the guest sees 7183 * time go backwards. 7184 * 7185 * In case we update the frequency for another cpu 7186 * (which might be in guest context) send an interrupt 7187 * to kick the cpu out of guest context. Next time 7188 * guest context is entered kvmclock will be updated, 7189 * so the guest will not see stale values. 7190 */ 7191 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7192 } 7193 } 7194 7195 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7196 void *data) 7197 { 7198 struct cpufreq_freqs *freq = data; 7199 int cpu; 7200 7201 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7202 return 0; 7203 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7204 return 0; 7205 7206 for_each_cpu(cpu, freq->policy->cpus) 7207 __kvmclock_cpufreq_notifier(freq, cpu); 7208 7209 return 0; 7210 } 7211 7212 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7213 .notifier_call = kvmclock_cpufreq_notifier 7214 }; 7215 7216 static int kvmclock_cpu_online(unsigned int cpu) 7217 { 7218 tsc_khz_changed(NULL); 7219 return 0; 7220 } 7221 7222 static void kvm_timer_init(void) 7223 { 7224 max_tsc_khz = tsc_khz; 7225 7226 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7227 #ifdef CONFIG_CPU_FREQ 7228 struct cpufreq_policy *policy; 7229 int cpu; 7230 7231 cpu = get_cpu(); 7232 policy = cpufreq_cpu_get(cpu); 7233 if (policy) { 7234 if (policy->cpuinfo.max_freq) 7235 max_tsc_khz = policy->cpuinfo.max_freq; 7236 cpufreq_cpu_put(policy); 7237 } 7238 put_cpu(); 7239 #endif 7240 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7241 CPUFREQ_TRANSITION_NOTIFIER); 7242 } 7243 7244 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7245 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7246 } 7247 7248 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7249 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7250 7251 int kvm_is_in_guest(void) 7252 { 7253 return __this_cpu_read(current_vcpu) != NULL; 7254 } 7255 7256 static int kvm_is_user_mode(void) 7257 { 7258 int user_mode = 3; 7259 7260 if (__this_cpu_read(current_vcpu)) 7261 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7262 7263 return user_mode != 0; 7264 } 7265 7266 static unsigned long kvm_get_guest_ip(void) 7267 { 7268 unsigned long ip = 0; 7269 7270 if (__this_cpu_read(current_vcpu)) 7271 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7272 7273 return ip; 7274 } 7275 7276 static void kvm_handle_intel_pt_intr(void) 7277 { 7278 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7279 7280 kvm_make_request(KVM_REQ_PMI, vcpu); 7281 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7282 (unsigned long *)&vcpu->arch.pmu.global_status); 7283 } 7284 7285 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7286 .is_in_guest = kvm_is_in_guest, 7287 .is_user_mode = kvm_is_user_mode, 7288 .get_guest_ip = kvm_get_guest_ip, 7289 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7290 }; 7291 7292 #ifdef CONFIG_X86_64 7293 static void pvclock_gtod_update_fn(struct work_struct *work) 7294 { 7295 struct kvm *kvm; 7296 7297 struct kvm_vcpu *vcpu; 7298 int i; 7299 7300 mutex_lock(&kvm_lock); 7301 list_for_each_entry(kvm, &vm_list, vm_list) 7302 kvm_for_each_vcpu(i, vcpu, kvm) 7303 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7304 atomic_set(&kvm_guest_has_master_clock, 0); 7305 mutex_unlock(&kvm_lock); 7306 } 7307 7308 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7309 7310 /* 7311 * Notification about pvclock gtod data update. 7312 */ 7313 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7314 void *priv) 7315 { 7316 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7317 struct timekeeper *tk = priv; 7318 7319 update_pvclock_gtod(tk); 7320 7321 /* disable master clock if host does not trust, or does not 7322 * use, TSC based clocksource. 7323 */ 7324 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7325 atomic_read(&kvm_guest_has_master_clock) != 0) 7326 queue_work(system_long_wq, &pvclock_gtod_work); 7327 7328 return 0; 7329 } 7330 7331 static struct notifier_block pvclock_gtod_notifier = { 7332 .notifier_call = pvclock_gtod_notify, 7333 }; 7334 #endif 7335 7336 int kvm_arch_init(void *opaque) 7337 { 7338 struct kvm_x86_init_ops *ops = opaque; 7339 int r; 7340 7341 if (kvm_x86_ops.hardware_enable) { 7342 printk(KERN_ERR "kvm: already loaded the other module\n"); 7343 r = -EEXIST; 7344 goto out; 7345 } 7346 7347 if (!ops->cpu_has_kvm_support()) { 7348 pr_err_ratelimited("kvm: no hardware support\n"); 7349 r = -EOPNOTSUPP; 7350 goto out; 7351 } 7352 if (ops->disabled_by_bios()) { 7353 pr_err_ratelimited("kvm: disabled by bios\n"); 7354 r = -EOPNOTSUPP; 7355 goto out; 7356 } 7357 7358 /* 7359 * KVM explicitly assumes that the guest has an FPU and 7360 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7361 * vCPU's FPU state as a fxregs_state struct. 7362 */ 7363 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7364 printk(KERN_ERR "kvm: inadequate fpu\n"); 7365 r = -EOPNOTSUPP; 7366 goto out; 7367 } 7368 7369 r = -ENOMEM; 7370 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7371 __alignof__(struct fpu), SLAB_ACCOUNT, 7372 NULL); 7373 if (!x86_fpu_cache) { 7374 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7375 goto out; 7376 } 7377 7378 x86_emulator_cache = kvm_alloc_emulator_cache(); 7379 if (!x86_emulator_cache) { 7380 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7381 goto out_free_x86_fpu_cache; 7382 } 7383 7384 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 7385 if (!shared_msrs) { 7386 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 7387 goto out_free_x86_emulator_cache; 7388 } 7389 7390 r = kvm_mmu_module_init(); 7391 if (r) 7392 goto out_free_percpu; 7393 7394 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7395 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7396 PT_PRESENT_MASK, 0, sme_me_mask); 7397 kvm_timer_init(); 7398 7399 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7400 7401 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7402 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7403 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7404 } 7405 7406 kvm_lapic_init(); 7407 if (pi_inject_timer == -1) 7408 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7409 #ifdef CONFIG_X86_64 7410 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7411 7412 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7413 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7414 #endif 7415 7416 return 0; 7417 7418 out_free_percpu: 7419 free_percpu(shared_msrs); 7420 out_free_x86_emulator_cache: 7421 kmem_cache_destroy(x86_emulator_cache); 7422 out_free_x86_fpu_cache: 7423 kmem_cache_destroy(x86_fpu_cache); 7424 out: 7425 return r; 7426 } 7427 7428 void kvm_arch_exit(void) 7429 { 7430 #ifdef CONFIG_X86_64 7431 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7432 clear_hv_tscchange_cb(); 7433 #endif 7434 kvm_lapic_exit(); 7435 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7436 7437 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7438 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7439 CPUFREQ_TRANSITION_NOTIFIER); 7440 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7441 #ifdef CONFIG_X86_64 7442 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7443 #endif 7444 kvm_x86_ops.hardware_enable = NULL; 7445 kvm_mmu_module_exit(); 7446 free_percpu(shared_msrs); 7447 kmem_cache_destroy(x86_fpu_cache); 7448 } 7449 7450 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7451 { 7452 ++vcpu->stat.halt_exits; 7453 if (lapic_in_kernel(vcpu)) { 7454 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7455 return 1; 7456 } else { 7457 vcpu->run->exit_reason = KVM_EXIT_HLT; 7458 return 0; 7459 } 7460 } 7461 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7462 7463 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7464 { 7465 int ret = kvm_skip_emulated_instruction(vcpu); 7466 /* 7467 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7468 * KVM_EXIT_DEBUG here. 7469 */ 7470 return kvm_vcpu_halt(vcpu) && ret; 7471 } 7472 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 7473 7474 #ifdef CONFIG_X86_64 7475 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 7476 unsigned long clock_type) 7477 { 7478 struct kvm_clock_pairing clock_pairing; 7479 struct timespec64 ts; 7480 u64 cycle; 7481 int ret; 7482 7483 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 7484 return -KVM_EOPNOTSUPP; 7485 7486 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 7487 return -KVM_EOPNOTSUPP; 7488 7489 clock_pairing.sec = ts.tv_sec; 7490 clock_pairing.nsec = ts.tv_nsec; 7491 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 7492 clock_pairing.flags = 0; 7493 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 7494 7495 ret = 0; 7496 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 7497 sizeof(struct kvm_clock_pairing))) 7498 ret = -KVM_EFAULT; 7499 7500 return ret; 7501 } 7502 #endif 7503 7504 /* 7505 * kvm_pv_kick_cpu_op: Kick a vcpu. 7506 * 7507 * @apicid - apicid of vcpu to be kicked. 7508 */ 7509 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 7510 { 7511 struct kvm_lapic_irq lapic_irq; 7512 7513 lapic_irq.shorthand = APIC_DEST_NOSHORT; 7514 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 7515 lapic_irq.level = 0; 7516 lapic_irq.dest_id = apicid; 7517 lapic_irq.msi_redir_hint = false; 7518 7519 lapic_irq.delivery_mode = APIC_DM_REMRD; 7520 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 7521 } 7522 7523 bool kvm_apicv_activated(struct kvm *kvm) 7524 { 7525 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 7526 } 7527 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 7528 7529 void kvm_apicv_init(struct kvm *kvm, bool enable) 7530 { 7531 if (enable) 7532 clear_bit(APICV_INHIBIT_REASON_DISABLE, 7533 &kvm->arch.apicv_inhibit_reasons); 7534 else 7535 set_bit(APICV_INHIBIT_REASON_DISABLE, 7536 &kvm->arch.apicv_inhibit_reasons); 7537 } 7538 EXPORT_SYMBOL_GPL(kvm_apicv_init); 7539 7540 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 7541 { 7542 struct kvm_vcpu *target = NULL; 7543 struct kvm_apic_map *map; 7544 7545 rcu_read_lock(); 7546 map = rcu_dereference(kvm->arch.apic_map); 7547 7548 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 7549 target = map->phys_map[dest_id]->vcpu; 7550 7551 rcu_read_unlock(); 7552 7553 if (target && READ_ONCE(target->ready)) 7554 kvm_vcpu_yield_to(target); 7555 } 7556 7557 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 7558 { 7559 unsigned long nr, a0, a1, a2, a3, ret; 7560 int op_64_bit; 7561 7562 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 7563 return kvm_hv_hypercall(vcpu); 7564 7565 nr = kvm_rax_read(vcpu); 7566 a0 = kvm_rbx_read(vcpu); 7567 a1 = kvm_rcx_read(vcpu); 7568 a2 = kvm_rdx_read(vcpu); 7569 a3 = kvm_rsi_read(vcpu); 7570 7571 trace_kvm_hypercall(nr, a0, a1, a2, a3); 7572 7573 op_64_bit = is_64_bit_mode(vcpu); 7574 if (!op_64_bit) { 7575 nr &= 0xFFFFFFFF; 7576 a0 &= 0xFFFFFFFF; 7577 a1 &= 0xFFFFFFFF; 7578 a2 &= 0xFFFFFFFF; 7579 a3 &= 0xFFFFFFFF; 7580 } 7581 7582 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 7583 ret = -KVM_EPERM; 7584 goto out; 7585 } 7586 7587 switch (nr) { 7588 case KVM_HC_VAPIC_POLL_IRQ: 7589 ret = 0; 7590 break; 7591 case KVM_HC_KICK_CPU: 7592 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 7593 kvm_sched_yield(vcpu->kvm, a1); 7594 ret = 0; 7595 break; 7596 #ifdef CONFIG_X86_64 7597 case KVM_HC_CLOCK_PAIRING: 7598 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 7599 break; 7600 #endif 7601 case KVM_HC_SEND_IPI: 7602 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 7603 break; 7604 case KVM_HC_SCHED_YIELD: 7605 kvm_sched_yield(vcpu->kvm, a0); 7606 ret = 0; 7607 break; 7608 default: 7609 ret = -KVM_ENOSYS; 7610 break; 7611 } 7612 out: 7613 if (!op_64_bit) 7614 ret = (u32)ret; 7615 kvm_rax_write(vcpu, ret); 7616 7617 ++vcpu->stat.hypercalls; 7618 return kvm_skip_emulated_instruction(vcpu); 7619 } 7620 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 7621 7622 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 7623 { 7624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7625 char instruction[3]; 7626 unsigned long rip = kvm_rip_read(vcpu); 7627 7628 kvm_x86_ops.patch_hypercall(vcpu, instruction); 7629 7630 return emulator_write_emulated(ctxt, rip, instruction, 3, 7631 &ctxt->exception); 7632 } 7633 7634 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 7635 { 7636 return vcpu->run->request_interrupt_window && 7637 likely(!pic_in_kernel(vcpu->kvm)); 7638 } 7639 7640 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 7641 { 7642 struct kvm_run *kvm_run = vcpu->run; 7643 7644 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 7645 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 7646 kvm_run->cr8 = kvm_get_cr8(vcpu); 7647 kvm_run->apic_base = kvm_get_apic_base(vcpu); 7648 kvm_run->ready_for_interrupt_injection = 7649 pic_in_kernel(vcpu->kvm) || 7650 kvm_vcpu_ready_for_interrupt_injection(vcpu); 7651 } 7652 7653 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 7654 { 7655 int max_irr, tpr; 7656 7657 if (!kvm_x86_ops.update_cr8_intercept) 7658 return; 7659 7660 if (!lapic_in_kernel(vcpu)) 7661 return; 7662 7663 if (vcpu->arch.apicv_active) 7664 return; 7665 7666 if (!vcpu->arch.apic->vapic_addr) 7667 max_irr = kvm_lapic_find_highest_irr(vcpu); 7668 else 7669 max_irr = -1; 7670 7671 if (max_irr != -1) 7672 max_irr >>= 4; 7673 7674 tpr = kvm_lapic_get_cr8(vcpu); 7675 7676 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 7677 } 7678 7679 static int inject_pending_event(struct kvm_vcpu *vcpu) 7680 { 7681 int r; 7682 7683 /* try to reinject previous events if any */ 7684 7685 if (vcpu->arch.exception.injected) 7686 kvm_x86_ops.queue_exception(vcpu); 7687 /* 7688 * Do not inject an NMI or interrupt if there is a pending 7689 * exception. Exceptions and interrupts are recognized at 7690 * instruction boundaries, i.e. the start of an instruction. 7691 * Trap-like exceptions, e.g. #DB, have higher priority than 7692 * NMIs and interrupts, i.e. traps are recognized before an 7693 * NMI/interrupt that's pending on the same instruction. 7694 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 7695 * priority, but are only generated (pended) during instruction 7696 * execution, i.e. a pending fault-like exception means the 7697 * fault occurred on the *previous* instruction and must be 7698 * serviced prior to recognizing any new events in order to 7699 * fully complete the previous instruction. 7700 */ 7701 else if (!vcpu->arch.exception.pending) { 7702 if (vcpu->arch.nmi_injected) 7703 kvm_x86_ops.set_nmi(vcpu); 7704 else if (vcpu->arch.interrupt.injected) 7705 kvm_x86_ops.set_irq(vcpu); 7706 } 7707 7708 /* 7709 * Call check_nested_events() even if we reinjected a previous event 7710 * in order for caller to determine if it should require immediate-exit 7711 * from L2 to L1 due to pending L1 events which require exit 7712 * from L2 to L1. 7713 */ 7714 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) { 7715 r = kvm_x86_ops.check_nested_events(vcpu); 7716 if (r != 0) 7717 return r; 7718 } 7719 7720 /* try to inject new event if pending */ 7721 if (vcpu->arch.exception.pending) { 7722 trace_kvm_inj_exception(vcpu->arch.exception.nr, 7723 vcpu->arch.exception.has_error_code, 7724 vcpu->arch.exception.error_code); 7725 7726 WARN_ON_ONCE(vcpu->arch.exception.injected); 7727 vcpu->arch.exception.pending = false; 7728 vcpu->arch.exception.injected = true; 7729 7730 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 7731 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 7732 X86_EFLAGS_RF); 7733 7734 if (vcpu->arch.exception.nr == DB_VECTOR) { 7735 /* 7736 * This code assumes that nSVM doesn't use 7737 * check_nested_events(). If it does, the 7738 * DR6/DR7 changes should happen before L1 7739 * gets a #VMEXIT for an intercepted #DB in 7740 * L2. (Under VMX, on the other hand, the 7741 * DR6/DR7 changes should not happen in the 7742 * event of a VM-exit to L1 for an intercepted 7743 * #DB in L2.) 7744 */ 7745 kvm_deliver_exception_payload(vcpu); 7746 if (vcpu->arch.dr7 & DR7_GD) { 7747 vcpu->arch.dr7 &= ~DR7_GD; 7748 kvm_update_dr7(vcpu); 7749 } 7750 } 7751 7752 kvm_x86_ops.queue_exception(vcpu); 7753 } 7754 7755 /* Don't consider new event if we re-injected an event */ 7756 if (kvm_event_needs_reinjection(vcpu)) 7757 return 0; 7758 7759 if (vcpu->arch.smi_pending && !is_smm(vcpu) && 7760 kvm_x86_ops.smi_allowed(vcpu)) { 7761 vcpu->arch.smi_pending = false; 7762 ++vcpu->arch.smi_count; 7763 enter_smm(vcpu); 7764 } else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) { 7765 --vcpu->arch.nmi_pending; 7766 vcpu->arch.nmi_injected = true; 7767 kvm_x86_ops.set_nmi(vcpu); 7768 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 7769 /* 7770 * Because interrupts can be injected asynchronously, we are 7771 * calling check_nested_events again here to avoid a race condition. 7772 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 7773 * proposal and current concerns. Perhaps we should be setting 7774 * KVM_REQ_EVENT only on certain events and not unconditionally? 7775 */ 7776 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) { 7777 r = kvm_x86_ops.check_nested_events(vcpu); 7778 if (r != 0) 7779 return r; 7780 } 7781 if (kvm_x86_ops.interrupt_allowed(vcpu)) { 7782 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 7783 false); 7784 kvm_x86_ops.set_irq(vcpu); 7785 } 7786 } 7787 7788 return 0; 7789 } 7790 7791 static void process_nmi(struct kvm_vcpu *vcpu) 7792 { 7793 unsigned limit = 2; 7794 7795 /* 7796 * x86 is limited to one NMI running, and one NMI pending after it. 7797 * If an NMI is already in progress, limit further NMIs to just one. 7798 * Otherwise, allow two (and we'll inject the first one immediately). 7799 */ 7800 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 7801 limit = 1; 7802 7803 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 7804 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 7805 kvm_make_request(KVM_REQ_EVENT, vcpu); 7806 } 7807 7808 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 7809 { 7810 u32 flags = 0; 7811 flags |= seg->g << 23; 7812 flags |= seg->db << 22; 7813 flags |= seg->l << 21; 7814 flags |= seg->avl << 20; 7815 flags |= seg->present << 15; 7816 flags |= seg->dpl << 13; 7817 flags |= seg->s << 12; 7818 flags |= seg->type << 8; 7819 return flags; 7820 } 7821 7822 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 7823 { 7824 struct kvm_segment seg; 7825 int offset; 7826 7827 kvm_get_segment(vcpu, &seg, n); 7828 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 7829 7830 if (n < 3) 7831 offset = 0x7f84 + n * 12; 7832 else 7833 offset = 0x7f2c + (n - 3) * 12; 7834 7835 put_smstate(u32, buf, offset + 8, seg.base); 7836 put_smstate(u32, buf, offset + 4, seg.limit); 7837 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 7838 } 7839 7840 #ifdef CONFIG_X86_64 7841 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 7842 { 7843 struct kvm_segment seg; 7844 int offset; 7845 u16 flags; 7846 7847 kvm_get_segment(vcpu, &seg, n); 7848 offset = 0x7e00 + n * 16; 7849 7850 flags = enter_smm_get_segment_flags(&seg) >> 8; 7851 put_smstate(u16, buf, offset, seg.selector); 7852 put_smstate(u16, buf, offset + 2, flags); 7853 put_smstate(u32, buf, offset + 4, seg.limit); 7854 put_smstate(u64, buf, offset + 8, seg.base); 7855 } 7856 #endif 7857 7858 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 7859 { 7860 struct desc_ptr dt; 7861 struct kvm_segment seg; 7862 unsigned long val; 7863 int i; 7864 7865 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 7866 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 7867 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 7868 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 7869 7870 for (i = 0; i < 8; i++) 7871 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 7872 7873 kvm_get_dr(vcpu, 6, &val); 7874 put_smstate(u32, buf, 0x7fcc, (u32)val); 7875 kvm_get_dr(vcpu, 7, &val); 7876 put_smstate(u32, buf, 0x7fc8, (u32)val); 7877 7878 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7879 put_smstate(u32, buf, 0x7fc4, seg.selector); 7880 put_smstate(u32, buf, 0x7f64, seg.base); 7881 put_smstate(u32, buf, 0x7f60, seg.limit); 7882 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 7883 7884 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7885 put_smstate(u32, buf, 0x7fc0, seg.selector); 7886 put_smstate(u32, buf, 0x7f80, seg.base); 7887 put_smstate(u32, buf, 0x7f7c, seg.limit); 7888 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 7889 7890 kvm_x86_ops.get_gdt(vcpu, &dt); 7891 put_smstate(u32, buf, 0x7f74, dt.address); 7892 put_smstate(u32, buf, 0x7f70, dt.size); 7893 7894 kvm_x86_ops.get_idt(vcpu, &dt); 7895 put_smstate(u32, buf, 0x7f58, dt.address); 7896 put_smstate(u32, buf, 0x7f54, dt.size); 7897 7898 for (i = 0; i < 6; i++) 7899 enter_smm_save_seg_32(vcpu, buf, i); 7900 7901 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 7902 7903 /* revision id */ 7904 put_smstate(u32, buf, 0x7efc, 0x00020000); 7905 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 7906 } 7907 7908 #ifdef CONFIG_X86_64 7909 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 7910 { 7911 struct desc_ptr dt; 7912 struct kvm_segment seg; 7913 unsigned long val; 7914 int i; 7915 7916 for (i = 0; i < 16; i++) 7917 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 7918 7919 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 7920 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 7921 7922 kvm_get_dr(vcpu, 6, &val); 7923 put_smstate(u64, buf, 0x7f68, val); 7924 kvm_get_dr(vcpu, 7, &val); 7925 put_smstate(u64, buf, 0x7f60, val); 7926 7927 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 7928 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 7929 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 7930 7931 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 7932 7933 /* revision id */ 7934 put_smstate(u32, buf, 0x7efc, 0x00020064); 7935 7936 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 7937 7938 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 7939 put_smstate(u16, buf, 0x7e90, seg.selector); 7940 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 7941 put_smstate(u32, buf, 0x7e94, seg.limit); 7942 put_smstate(u64, buf, 0x7e98, seg.base); 7943 7944 kvm_x86_ops.get_idt(vcpu, &dt); 7945 put_smstate(u32, buf, 0x7e84, dt.size); 7946 put_smstate(u64, buf, 0x7e88, dt.address); 7947 7948 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 7949 put_smstate(u16, buf, 0x7e70, seg.selector); 7950 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 7951 put_smstate(u32, buf, 0x7e74, seg.limit); 7952 put_smstate(u64, buf, 0x7e78, seg.base); 7953 7954 kvm_x86_ops.get_gdt(vcpu, &dt); 7955 put_smstate(u32, buf, 0x7e64, dt.size); 7956 put_smstate(u64, buf, 0x7e68, dt.address); 7957 7958 for (i = 0; i < 6; i++) 7959 enter_smm_save_seg_64(vcpu, buf, i); 7960 } 7961 #endif 7962 7963 static void enter_smm(struct kvm_vcpu *vcpu) 7964 { 7965 struct kvm_segment cs, ds; 7966 struct desc_ptr dt; 7967 char buf[512]; 7968 u32 cr0; 7969 7970 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 7971 memset(buf, 0, 512); 7972 #ifdef CONFIG_X86_64 7973 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 7974 enter_smm_save_state_64(vcpu, buf); 7975 else 7976 #endif 7977 enter_smm_save_state_32(vcpu, buf); 7978 7979 /* 7980 * Give pre_enter_smm() a chance to make ISA-specific changes to the 7981 * vCPU state (e.g. leave guest mode) after we've saved the state into 7982 * the SMM state-save area. 7983 */ 7984 kvm_x86_ops.pre_enter_smm(vcpu, buf); 7985 7986 vcpu->arch.hflags |= HF_SMM_MASK; 7987 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 7988 7989 if (kvm_x86_ops.get_nmi_mask(vcpu)) 7990 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 7991 else 7992 kvm_x86_ops.set_nmi_mask(vcpu, true); 7993 7994 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 7995 kvm_rip_write(vcpu, 0x8000); 7996 7997 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 7998 kvm_x86_ops.set_cr0(vcpu, cr0); 7999 vcpu->arch.cr0 = cr0; 8000 8001 kvm_x86_ops.set_cr4(vcpu, 0); 8002 8003 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8004 dt.address = dt.size = 0; 8005 kvm_x86_ops.set_idt(vcpu, &dt); 8006 8007 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8008 8009 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8010 cs.base = vcpu->arch.smbase; 8011 8012 ds.selector = 0; 8013 ds.base = 0; 8014 8015 cs.limit = ds.limit = 0xffffffff; 8016 cs.type = ds.type = 0x3; 8017 cs.dpl = ds.dpl = 0; 8018 cs.db = ds.db = 0; 8019 cs.s = ds.s = 1; 8020 cs.l = ds.l = 0; 8021 cs.g = ds.g = 1; 8022 cs.avl = ds.avl = 0; 8023 cs.present = ds.present = 1; 8024 cs.unusable = ds.unusable = 0; 8025 cs.padding = ds.padding = 0; 8026 8027 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8028 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8029 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8030 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8031 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8032 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8033 8034 #ifdef CONFIG_X86_64 8035 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8036 kvm_x86_ops.set_efer(vcpu, 0); 8037 #endif 8038 8039 kvm_update_cpuid(vcpu); 8040 kvm_mmu_reset_context(vcpu); 8041 } 8042 8043 static void process_smi(struct kvm_vcpu *vcpu) 8044 { 8045 vcpu->arch.smi_pending = true; 8046 kvm_make_request(KVM_REQ_EVENT, vcpu); 8047 } 8048 8049 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8050 unsigned long *vcpu_bitmap) 8051 { 8052 cpumask_var_t cpus; 8053 8054 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8055 8056 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8057 vcpu_bitmap, cpus); 8058 8059 free_cpumask_var(cpus); 8060 } 8061 8062 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8063 { 8064 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8065 } 8066 8067 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8068 { 8069 if (!lapic_in_kernel(vcpu)) 8070 return; 8071 8072 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8073 kvm_apic_update_apicv(vcpu); 8074 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8075 } 8076 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8077 8078 /* 8079 * NOTE: Do not hold any lock prior to calling this. 8080 * 8081 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8082 * locked, because it calls __x86_set_memory_region() which does 8083 * synchronize_srcu(&kvm->srcu). 8084 */ 8085 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8086 { 8087 unsigned long old, new, expected; 8088 8089 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8090 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8091 return; 8092 8093 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8094 do { 8095 expected = new = old; 8096 if (activate) 8097 __clear_bit(bit, &new); 8098 else 8099 __set_bit(bit, &new); 8100 if (new == old) 8101 break; 8102 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8103 } while (old != expected); 8104 8105 if (!!old == !!new) 8106 return; 8107 8108 trace_kvm_apicv_update_request(activate, bit); 8109 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8110 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8111 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 8112 } 8113 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8114 8115 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8116 { 8117 if (!kvm_apic_present(vcpu)) 8118 return; 8119 8120 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8121 8122 if (irqchip_split(vcpu->kvm)) 8123 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8124 else { 8125 if (vcpu->arch.apicv_active) 8126 kvm_x86_ops.sync_pir_to_irr(vcpu); 8127 if (ioapic_in_kernel(vcpu->kvm)) 8128 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8129 } 8130 8131 if (is_guest_mode(vcpu)) 8132 vcpu->arch.load_eoi_exitmap_pending = true; 8133 else 8134 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8135 } 8136 8137 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8138 { 8139 u64 eoi_exit_bitmap[4]; 8140 8141 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8142 return; 8143 8144 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8145 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8146 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8147 } 8148 8149 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8150 unsigned long start, unsigned long end, 8151 bool blockable) 8152 { 8153 unsigned long apic_address; 8154 8155 /* 8156 * The physical address of apic access page is stored in the VMCS. 8157 * Update it when it becomes invalid. 8158 */ 8159 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8160 if (start <= apic_address && apic_address < end) 8161 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8162 8163 return 0; 8164 } 8165 8166 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8167 { 8168 struct page *page = NULL; 8169 8170 if (!lapic_in_kernel(vcpu)) 8171 return; 8172 8173 if (!kvm_x86_ops.set_apic_access_page_addr) 8174 return; 8175 8176 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8177 if (is_error_page(page)) 8178 return; 8179 kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page)); 8180 8181 /* 8182 * Do not pin apic access page in memory, the MMU notifier 8183 * will call us again if it is migrated or swapped out. 8184 */ 8185 put_page(page); 8186 } 8187 8188 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8189 { 8190 smp_send_reschedule(vcpu->cpu); 8191 } 8192 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8193 8194 /* 8195 * Returns 1 to let vcpu_run() continue the guest execution loop without 8196 * exiting to the userspace. Otherwise, the value will be returned to the 8197 * userspace. 8198 */ 8199 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8200 { 8201 int r; 8202 bool req_int_win = 8203 dm_request_for_irq_injection(vcpu) && 8204 kvm_cpu_accept_dm_intr(vcpu); 8205 enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE; 8206 8207 bool req_immediate_exit = false; 8208 8209 if (kvm_request_pending(vcpu)) { 8210 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) { 8211 if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) { 8212 r = 0; 8213 goto out; 8214 } 8215 } 8216 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8217 kvm_mmu_unload(vcpu); 8218 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8219 __kvm_migrate_timers(vcpu); 8220 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8221 kvm_gen_update_masterclock(vcpu->kvm); 8222 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8223 kvm_gen_kvmclock_update(vcpu); 8224 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8225 r = kvm_guest_time_update(vcpu); 8226 if (unlikely(r)) 8227 goto out; 8228 } 8229 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8230 kvm_mmu_sync_roots(vcpu); 8231 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8232 kvm_mmu_load_pgd(vcpu); 8233 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 8234 kvm_vcpu_flush_tlb(vcpu, true); 8235 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8236 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8237 r = 0; 8238 goto out; 8239 } 8240 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8241 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8242 vcpu->mmio_needed = 0; 8243 r = 0; 8244 goto out; 8245 } 8246 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8247 /* Page is swapped out. Do synthetic halt */ 8248 vcpu->arch.apf.halted = true; 8249 r = 1; 8250 goto out; 8251 } 8252 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8253 record_steal_time(vcpu); 8254 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8255 process_smi(vcpu); 8256 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8257 process_nmi(vcpu); 8258 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8259 kvm_pmu_handle_event(vcpu); 8260 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8261 kvm_pmu_deliver_pmi(vcpu); 8262 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8263 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8264 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8265 vcpu->arch.ioapic_handled_vectors)) { 8266 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8267 vcpu->run->eoi.vector = 8268 vcpu->arch.pending_ioapic_eoi; 8269 r = 0; 8270 goto out; 8271 } 8272 } 8273 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8274 vcpu_scan_ioapic(vcpu); 8275 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8276 vcpu_load_eoi_exitmap(vcpu); 8277 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8278 kvm_vcpu_reload_apic_access_page(vcpu); 8279 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8280 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8281 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8282 r = 0; 8283 goto out; 8284 } 8285 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8286 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8287 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8288 r = 0; 8289 goto out; 8290 } 8291 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8292 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8293 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8294 r = 0; 8295 goto out; 8296 } 8297 8298 /* 8299 * KVM_REQ_HV_STIMER has to be processed after 8300 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8301 * depend on the guest clock being up-to-date 8302 */ 8303 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8304 kvm_hv_process_stimers(vcpu); 8305 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8306 kvm_vcpu_update_apicv(vcpu); 8307 } 8308 8309 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8310 ++vcpu->stat.req_event; 8311 kvm_apic_accept_events(vcpu); 8312 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8313 r = 1; 8314 goto out; 8315 } 8316 8317 if (inject_pending_event(vcpu) != 0) 8318 req_immediate_exit = true; 8319 else { 8320 /* Enable SMI/NMI/IRQ window open exits if needed. 8321 * 8322 * SMIs have three cases: 8323 * 1) They can be nested, and then there is nothing to 8324 * do here because RSM will cause a vmexit anyway. 8325 * 2) There is an ISA-specific reason why SMI cannot be 8326 * injected, and the moment when this changes can be 8327 * intercepted. 8328 * 3) Or the SMI can be pending because 8329 * inject_pending_event has completed the injection 8330 * of an IRQ or NMI from the previous vmexit, and 8331 * then we request an immediate exit to inject the 8332 * SMI. 8333 */ 8334 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 8335 if (!kvm_x86_ops.enable_smi_window(vcpu)) 8336 req_immediate_exit = true; 8337 if (vcpu->arch.nmi_pending) 8338 kvm_x86_ops.enable_nmi_window(vcpu); 8339 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 8340 kvm_x86_ops.enable_irq_window(vcpu); 8341 WARN_ON(vcpu->arch.exception.pending); 8342 } 8343 8344 if (kvm_lapic_enabled(vcpu)) { 8345 update_cr8_intercept(vcpu); 8346 kvm_lapic_sync_to_vapic(vcpu); 8347 } 8348 } 8349 8350 r = kvm_mmu_reload(vcpu); 8351 if (unlikely(r)) { 8352 goto cancel_injection; 8353 } 8354 8355 preempt_disable(); 8356 8357 kvm_x86_ops.prepare_guest_switch(vcpu); 8358 8359 /* 8360 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8361 * IPI are then delayed after guest entry, which ensures that they 8362 * result in virtual interrupt delivery. 8363 */ 8364 local_irq_disable(); 8365 vcpu->mode = IN_GUEST_MODE; 8366 8367 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8368 8369 /* 8370 * 1) We should set ->mode before checking ->requests. Please see 8371 * the comment in kvm_vcpu_exiting_guest_mode(). 8372 * 8373 * 2) For APICv, we should set ->mode before checking PID.ON. This 8374 * pairs with the memory barrier implicit in pi_test_and_set_on 8375 * (see vmx_deliver_posted_interrupt). 8376 * 8377 * 3) This also orders the write to mode from any reads to the page 8378 * tables done while the VCPU is running. Please see the comment 8379 * in kvm_flush_remote_tlbs. 8380 */ 8381 smp_mb__after_srcu_read_unlock(); 8382 8383 /* 8384 * This handles the case where a posted interrupt was 8385 * notified with kvm_vcpu_kick. 8386 */ 8387 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8388 kvm_x86_ops.sync_pir_to_irr(vcpu); 8389 8390 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 8391 || need_resched() || signal_pending(current)) { 8392 vcpu->mode = OUTSIDE_GUEST_MODE; 8393 smp_wmb(); 8394 local_irq_enable(); 8395 preempt_enable(); 8396 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8397 r = 1; 8398 goto cancel_injection; 8399 } 8400 8401 if (req_immediate_exit) { 8402 kvm_make_request(KVM_REQ_EVENT, vcpu); 8403 kvm_x86_ops.request_immediate_exit(vcpu); 8404 } 8405 8406 trace_kvm_entry(vcpu->vcpu_id); 8407 guest_enter_irqoff(); 8408 8409 fpregs_assert_state_consistent(); 8410 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8411 switch_fpu_return(); 8412 8413 if (unlikely(vcpu->arch.switch_db_regs)) { 8414 set_debugreg(0, 7); 8415 set_debugreg(vcpu->arch.eff_db[0], 0); 8416 set_debugreg(vcpu->arch.eff_db[1], 1); 8417 set_debugreg(vcpu->arch.eff_db[2], 2); 8418 set_debugreg(vcpu->arch.eff_db[3], 3); 8419 set_debugreg(vcpu->arch.dr6, 6); 8420 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8421 } 8422 8423 kvm_x86_ops.run(vcpu); 8424 8425 /* 8426 * Do this here before restoring debug registers on the host. And 8427 * since we do this before handling the vmexit, a DR access vmexit 8428 * can (a) read the correct value of the debug registers, (b) set 8429 * KVM_DEBUGREG_WONT_EXIT again. 8430 */ 8431 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 8432 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 8433 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 8434 kvm_update_dr0123(vcpu); 8435 kvm_update_dr6(vcpu); 8436 kvm_update_dr7(vcpu); 8437 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8438 } 8439 8440 /* 8441 * If the guest has used debug registers, at least dr7 8442 * will be disabled while returning to the host. 8443 * If we don't have active breakpoints in the host, we don't 8444 * care about the messed up debug address registers. But if 8445 * we have some of them active, restore the old state. 8446 */ 8447 if (hw_breakpoint_active()) 8448 hw_breakpoint_restore(); 8449 8450 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 8451 8452 vcpu->mode = OUTSIDE_GUEST_MODE; 8453 smp_wmb(); 8454 8455 kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath); 8456 8457 /* 8458 * Consume any pending interrupts, including the possible source of 8459 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 8460 * An instruction is required after local_irq_enable() to fully unblock 8461 * interrupts on processors that implement an interrupt shadow, the 8462 * stat.exits increment will do nicely. 8463 */ 8464 kvm_before_interrupt(vcpu); 8465 local_irq_enable(); 8466 ++vcpu->stat.exits; 8467 local_irq_disable(); 8468 kvm_after_interrupt(vcpu); 8469 8470 guest_exit_irqoff(); 8471 if (lapic_in_kernel(vcpu)) { 8472 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 8473 if (delta != S64_MIN) { 8474 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 8475 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 8476 } 8477 } 8478 8479 local_irq_enable(); 8480 preempt_enable(); 8481 8482 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8483 8484 /* 8485 * Profile KVM exit RIPs: 8486 */ 8487 if (unlikely(prof_on == KVM_PROFILING)) { 8488 unsigned long rip = kvm_rip_read(vcpu); 8489 profile_hit(KVM_PROFILING, (void *)rip); 8490 } 8491 8492 if (unlikely(vcpu->arch.tsc_always_catchup)) 8493 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8494 8495 if (vcpu->arch.apic_attention) 8496 kvm_lapic_sync_from_vapic(vcpu); 8497 8498 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 8499 return r; 8500 8501 cancel_injection: 8502 kvm_x86_ops.cancel_injection(vcpu); 8503 if (unlikely(vcpu->arch.apic_attention)) 8504 kvm_lapic_sync_from_vapic(vcpu); 8505 out: 8506 return r; 8507 } 8508 8509 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 8510 { 8511 if (!kvm_arch_vcpu_runnable(vcpu) && 8512 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 8513 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8514 kvm_vcpu_block(vcpu); 8515 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8516 8517 if (kvm_x86_ops.post_block) 8518 kvm_x86_ops.post_block(vcpu); 8519 8520 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 8521 return 1; 8522 } 8523 8524 kvm_apic_accept_events(vcpu); 8525 switch(vcpu->arch.mp_state) { 8526 case KVM_MP_STATE_HALTED: 8527 vcpu->arch.pv.pv_unhalted = false; 8528 vcpu->arch.mp_state = 8529 KVM_MP_STATE_RUNNABLE; 8530 /* fall through */ 8531 case KVM_MP_STATE_RUNNABLE: 8532 vcpu->arch.apf.halted = false; 8533 break; 8534 case KVM_MP_STATE_INIT_RECEIVED: 8535 break; 8536 default: 8537 return -EINTR; 8538 } 8539 return 1; 8540 } 8541 8542 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 8543 { 8544 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) 8545 kvm_x86_ops.check_nested_events(vcpu); 8546 8547 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 8548 !vcpu->arch.apf.halted); 8549 } 8550 8551 static int vcpu_run(struct kvm_vcpu *vcpu) 8552 { 8553 int r; 8554 struct kvm *kvm = vcpu->kvm; 8555 8556 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8557 vcpu->arch.l1tf_flush_l1d = true; 8558 8559 for (;;) { 8560 if (kvm_vcpu_running(vcpu)) { 8561 r = vcpu_enter_guest(vcpu); 8562 } else { 8563 r = vcpu_block(kvm, vcpu); 8564 } 8565 8566 if (r <= 0) 8567 break; 8568 8569 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 8570 if (kvm_cpu_has_pending_timer(vcpu)) 8571 kvm_inject_pending_timer_irqs(vcpu); 8572 8573 if (dm_request_for_irq_injection(vcpu) && 8574 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 8575 r = 0; 8576 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 8577 ++vcpu->stat.request_irq_exits; 8578 break; 8579 } 8580 8581 kvm_check_async_pf_completion(vcpu); 8582 8583 if (signal_pending(current)) { 8584 r = -EINTR; 8585 vcpu->run->exit_reason = KVM_EXIT_INTR; 8586 ++vcpu->stat.signal_exits; 8587 break; 8588 } 8589 if (need_resched()) { 8590 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8591 cond_resched(); 8592 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 8593 } 8594 } 8595 8596 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 8597 8598 return r; 8599 } 8600 8601 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 8602 { 8603 int r; 8604 8605 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8606 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 8607 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8608 return r; 8609 } 8610 8611 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 8612 { 8613 BUG_ON(!vcpu->arch.pio.count); 8614 8615 return complete_emulated_io(vcpu); 8616 } 8617 8618 /* 8619 * Implements the following, as a state machine: 8620 * 8621 * read: 8622 * for each fragment 8623 * for each mmio piece in the fragment 8624 * write gpa, len 8625 * exit 8626 * copy data 8627 * execute insn 8628 * 8629 * write: 8630 * for each fragment 8631 * for each mmio piece in the fragment 8632 * write gpa, len 8633 * copy data 8634 * exit 8635 */ 8636 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 8637 { 8638 struct kvm_run *run = vcpu->run; 8639 struct kvm_mmio_fragment *frag; 8640 unsigned len; 8641 8642 BUG_ON(!vcpu->mmio_needed); 8643 8644 /* Complete previous fragment */ 8645 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 8646 len = min(8u, frag->len); 8647 if (!vcpu->mmio_is_write) 8648 memcpy(frag->data, run->mmio.data, len); 8649 8650 if (frag->len <= 8) { 8651 /* Switch to the next fragment. */ 8652 frag++; 8653 vcpu->mmio_cur_fragment++; 8654 } else { 8655 /* Go forward to the next mmio piece. */ 8656 frag->data += len; 8657 frag->gpa += len; 8658 frag->len -= len; 8659 } 8660 8661 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 8662 vcpu->mmio_needed = 0; 8663 8664 /* FIXME: return into emulator if single-stepping. */ 8665 if (vcpu->mmio_is_write) 8666 return 1; 8667 vcpu->mmio_read_completed = 1; 8668 return complete_emulated_io(vcpu); 8669 } 8670 8671 run->exit_reason = KVM_EXIT_MMIO; 8672 run->mmio.phys_addr = frag->gpa; 8673 if (vcpu->mmio_is_write) 8674 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 8675 run->mmio.len = min(8u, frag->len); 8676 run->mmio.is_write = vcpu->mmio_is_write; 8677 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8678 return 0; 8679 } 8680 8681 static void kvm_save_current_fpu(struct fpu *fpu) 8682 { 8683 /* 8684 * If the target FPU state is not resident in the CPU registers, just 8685 * memcpy() from current, else save CPU state directly to the target. 8686 */ 8687 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8688 memcpy(&fpu->state, ¤t->thread.fpu.state, 8689 fpu_kernel_xstate_size); 8690 else 8691 copy_fpregs_to_fpstate(fpu); 8692 } 8693 8694 /* Swap (qemu) user FPU context for the guest FPU context. */ 8695 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 8696 { 8697 fpregs_lock(); 8698 8699 kvm_save_current_fpu(vcpu->arch.user_fpu); 8700 8701 /* PKRU is separately restored in kvm_x86_ops.run. */ 8702 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 8703 ~XFEATURE_MASK_PKRU); 8704 8705 fpregs_mark_activate(); 8706 fpregs_unlock(); 8707 8708 trace_kvm_fpu(1); 8709 } 8710 8711 /* When vcpu_run ends, restore user space FPU context. */ 8712 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 8713 { 8714 fpregs_lock(); 8715 8716 kvm_save_current_fpu(vcpu->arch.guest_fpu); 8717 8718 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 8719 8720 fpregs_mark_activate(); 8721 fpregs_unlock(); 8722 8723 ++vcpu->stat.fpu_reload; 8724 trace_kvm_fpu(0); 8725 } 8726 8727 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 8728 { 8729 int r; 8730 8731 vcpu_load(vcpu); 8732 kvm_sigset_activate(vcpu); 8733 kvm_load_guest_fpu(vcpu); 8734 8735 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 8736 if (kvm_run->immediate_exit) { 8737 r = -EINTR; 8738 goto out; 8739 } 8740 kvm_vcpu_block(vcpu); 8741 kvm_apic_accept_events(vcpu); 8742 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 8743 r = -EAGAIN; 8744 if (signal_pending(current)) { 8745 r = -EINTR; 8746 vcpu->run->exit_reason = KVM_EXIT_INTR; 8747 ++vcpu->stat.signal_exits; 8748 } 8749 goto out; 8750 } 8751 8752 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 8753 r = -EINVAL; 8754 goto out; 8755 } 8756 8757 if (vcpu->run->kvm_dirty_regs) { 8758 r = sync_regs(vcpu); 8759 if (r != 0) 8760 goto out; 8761 } 8762 8763 /* re-sync apic's tpr */ 8764 if (!lapic_in_kernel(vcpu)) { 8765 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 8766 r = -EINVAL; 8767 goto out; 8768 } 8769 } 8770 8771 if (unlikely(vcpu->arch.complete_userspace_io)) { 8772 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 8773 vcpu->arch.complete_userspace_io = NULL; 8774 r = cui(vcpu); 8775 if (r <= 0) 8776 goto out; 8777 } else 8778 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 8779 8780 if (kvm_run->immediate_exit) 8781 r = -EINTR; 8782 else 8783 r = vcpu_run(vcpu); 8784 8785 out: 8786 kvm_put_guest_fpu(vcpu); 8787 if (vcpu->run->kvm_valid_regs) 8788 store_regs(vcpu); 8789 post_kvm_run_save(vcpu); 8790 kvm_sigset_deactivate(vcpu); 8791 8792 vcpu_put(vcpu); 8793 return r; 8794 } 8795 8796 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8797 { 8798 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 8799 /* 8800 * We are here if userspace calls get_regs() in the middle of 8801 * instruction emulation. Registers state needs to be copied 8802 * back from emulation context to vcpu. Userspace shouldn't do 8803 * that usually, but some bad designed PV devices (vmware 8804 * backdoor interface) need this to work 8805 */ 8806 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 8807 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8808 } 8809 regs->rax = kvm_rax_read(vcpu); 8810 regs->rbx = kvm_rbx_read(vcpu); 8811 regs->rcx = kvm_rcx_read(vcpu); 8812 regs->rdx = kvm_rdx_read(vcpu); 8813 regs->rsi = kvm_rsi_read(vcpu); 8814 regs->rdi = kvm_rdi_read(vcpu); 8815 regs->rsp = kvm_rsp_read(vcpu); 8816 regs->rbp = kvm_rbp_read(vcpu); 8817 #ifdef CONFIG_X86_64 8818 regs->r8 = kvm_r8_read(vcpu); 8819 regs->r9 = kvm_r9_read(vcpu); 8820 regs->r10 = kvm_r10_read(vcpu); 8821 regs->r11 = kvm_r11_read(vcpu); 8822 regs->r12 = kvm_r12_read(vcpu); 8823 regs->r13 = kvm_r13_read(vcpu); 8824 regs->r14 = kvm_r14_read(vcpu); 8825 regs->r15 = kvm_r15_read(vcpu); 8826 #endif 8827 8828 regs->rip = kvm_rip_read(vcpu); 8829 regs->rflags = kvm_get_rflags(vcpu); 8830 } 8831 8832 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8833 { 8834 vcpu_load(vcpu); 8835 __get_regs(vcpu, regs); 8836 vcpu_put(vcpu); 8837 return 0; 8838 } 8839 8840 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8841 { 8842 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 8843 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8844 8845 kvm_rax_write(vcpu, regs->rax); 8846 kvm_rbx_write(vcpu, regs->rbx); 8847 kvm_rcx_write(vcpu, regs->rcx); 8848 kvm_rdx_write(vcpu, regs->rdx); 8849 kvm_rsi_write(vcpu, regs->rsi); 8850 kvm_rdi_write(vcpu, regs->rdi); 8851 kvm_rsp_write(vcpu, regs->rsp); 8852 kvm_rbp_write(vcpu, regs->rbp); 8853 #ifdef CONFIG_X86_64 8854 kvm_r8_write(vcpu, regs->r8); 8855 kvm_r9_write(vcpu, regs->r9); 8856 kvm_r10_write(vcpu, regs->r10); 8857 kvm_r11_write(vcpu, regs->r11); 8858 kvm_r12_write(vcpu, regs->r12); 8859 kvm_r13_write(vcpu, regs->r13); 8860 kvm_r14_write(vcpu, regs->r14); 8861 kvm_r15_write(vcpu, regs->r15); 8862 #endif 8863 8864 kvm_rip_write(vcpu, regs->rip); 8865 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 8866 8867 vcpu->arch.exception.pending = false; 8868 8869 kvm_make_request(KVM_REQ_EVENT, vcpu); 8870 } 8871 8872 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 8873 { 8874 vcpu_load(vcpu); 8875 __set_regs(vcpu, regs); 8876 vcpu_put(vcpu); 8877 return 0; 8878 } 8879 8880 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 8881 { 8882 struct kvm_segment cs; 8883 8884 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 8885 *db = cs.db; 8886 *l = cs.l; 8887 } 8888 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 8889 8890 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 8891 { 8892 struct desc_ptr dt; 8893 8894 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 8895 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 8896 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 8897 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 8898 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 8899 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 8900 8901 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 8902 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 8903 8904 kvm_x86_ops.get_idt(vcpu, &dt); 8905 sregs->idt.limit = dt.size; 8906 sregs->idt.base = dt.address; 8907 kvm_x86_ops.get_gdt(vcpu, &dt); 8908 sregs->gdt.limit = dt.size; 8909 sregs->gdt.base = dt.address; 8910 8911 sregs->cr0 = kvm_read_cr0(vcpu); 8912 sregs->cr2 = vcpu->arch.cr2; 8913 sregs->cr3 = kvm_read_cr3(vcpu); 8914 sregs->cr4 = kvm_read_cr4(vcpu); 8915 sregs->cr8 = kvm_get_cr8(vcpu); 8916 sregs->efer = vcpu->arch.efer; 8917 sregs->apic_base = kvm_get_apic_base(vcpu); 8918 8919 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 8920 8921 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 8922 set_bit(vcpu->arch.interrupt.nr, 8923 (unsigned long *)sregs->interrupt_bitmap); 8924 } 8925 8926 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 8927 struct kvm_sregs *sregs) 8928 { 8929 vcpu_load(vcpu); 8930 __get_sregs(vcpu, sregs); 8931 vcpu_put(vcpu); 8932 return 0; 8933 } 8934 8935 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 8936 struct kvm_mp_state *mp_state) 8937 { 8938 vcpu_load(vcpu); 8939 if (kvm_mpx_supported()) 8940 kvm_load_guest_fpu(vcpu); 8941 8942 kvm_apic_accept_events(vcpu); 8943 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 8944 vcpu->arch.pv.pv_unhalted) 8945 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 8946 else 8947 mp_state->mp_state = vcpu->arch.mp_state; 8948 8949 if (kvm_mpx_supported()) 8950 kvm_put_guest_fpu(vcpu); 8951 vcpu_put(vcpu); 8952 return 0; 8953 } 8954 8955 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 8956 struct kvm_mp_state *mp_state) 8957 { 8958 int ret = -EINVAL; 8959 8960 vcpu_load(vcpu); 8961 8962 if (!lapic_in_kernel(vcpu) && 8963 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 8964 goto out; 8965 8966 /* 8967 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 8968 * INIT state; latched init should be reported using 8969 * KVM_SET_VCPU_EVENTS, so reject it here. 8970 */ 8971 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 8972 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 8973 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 8974 goto out; 8975 8976 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 8977 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 8978 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 8979 } else 8980 vcpu->arch.mp_state = mp_state->mp_state; 8981 kvm_make_request(KVM_REQ_EVENT, vcpu); 8982 8983 ret = 0; 8984 out: 8985 vcpu_put(vcpu); 8986 return ret; 8987 } 8988 8989 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 8990 int reason, bool has_error_code, u32 error_code) 8991 { 8992 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8993 int ret; 8994 8995 init_emulate_ctxt(vcpu); 8996 8997 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 8998 has_error_code, error_code); 8999 if (ret) { 9000 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9001 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9002 vcpu->run->internal.ndata = 0; 9003 return 0; 9004 } 9005 9006 kvm_rip_write(vcpu, ctxt->eip); 9007 kvm_set_rflags(vcpu, ctxt->eflags); 9008 return 1; 9009 } 9010 EXPORT_SYMBOL_GPL(kvm_task_switch); 9011 9012 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9013 { 9014 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9015 /* 9016 * When EFER.LME and CR0.PG are set, the processor is in 9017 * 64-bit mode (though maybe in a 32-bit code segment). 9018 * CR4.PAE and EFER.LMA must be set. 9019 */ 9020 if (!(sregs->cr4 & X86_CR4_PAE) 9021 || !(sregs->efer & EFER_LMA)) 9022 return -EINVAL; 9023 } else { 9024 /* 9025 * Not in 64-bit mode: EFER.LMA is clear and the code 9026 * segment cannot be 64-bit. 9027 */ 9028 if (sregs->efer & EFER_LMA || sregs->cs.l) 9029 return -EINVAL; 9030 } 9031 9032 return kvm_valid_cr4(vcpu, sregs->cr4); 9033 } 9034 9035 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9036 { 9037 struct msr_data apic_base_msr; 9038 int mmu_reset_needed = 0; 9039 int cpuid_update_needed = 0; 9040 int pending_vec, max_bits, idx; 9041 struct desc_ptr dt; 9042 int ret = -EINVAL; 9043 9044 if (kvm_valid_sregs(vcpu, sregs)) 9045 goto out; 9046 9047 apic_base_msr.data = sregs->apic_base; 9048 apic_base_msr.host_initiated = true; 9049 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9050 goto out; 9051 9052 dt.size = sregs->idt.limit; 9053 dt.address = sregs->idt.base; 9054 kvm_x86_ops.set_idt(vcpu, &dt); 9055 dt.size = sregs->gdt.limit; 9056 dt.address = sregs->gdt.base; 9057 kvm_x86_ops.set_gdt(vcpu, &dt); 9058 9059 vcpu->arch.cr2 = sregs->cr2; 9060 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9061 vcpu->arch.cr3 = sregs->cr3; 9062 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9063 9064 kvm_set_cr8(vcpu, sregs->cr8); 9065 9066 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9067 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9068 9069 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9070 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9071 vcpu->arch.cr0 = sregs->cr0; 9072 9073 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9074 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & 9075 (X86_CR4_OSXSAVE | X86_CR4_PKE)); 9076 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9077 if (cpuid_update_needed) 9078 kvm_update_cpuid(vcpu); 9079 9080 idx = srcu_read_lock(&vcpu->kvm->srcu); 9081 if (is_pae_paging(vcpu)) { 9082 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9083 mmu_reset_needed = 1; 9084 } 9085 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9086 9087 if (mmu_reset_needed) 9088 kvm_mmu_reset_context(vcpu); 9089 9090 max_bits = KVM_NR_INTERRUPTS; 9091 pending_vec = find_first_bit( 9092 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9093 if (pending_vec < max_bits) { 9094 kvm_queue_interrupt(vcpu, pending_vec, false); 9095 pr_debug("Set back pending irq %d\n", pending_vec); 9096 } 9097 9098 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9099 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9100 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9101 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9102 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9103 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9104 9105 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9106 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9107 9108 update_cr8_intercept(vcpu); 9109 9110 /* Older userspace won't unhalt the vcpu on reset. */ 9111 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9112 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9113 !is_protmode(vcpu)) 9114 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9115 9116 kvm_make_request(KVM_REQ_EVENT, vcpu); 9117 9118 ret = 0; 9119 out: 9120 return ret; 9121 } 9122 9123 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9124 struct kvm_sregs *sregs) 9125 { 9126 int ret; 9127 9128 vcpu_load(vcpu); 9129 ret = __set_sregs(vcpu, sregs); 9130 vcpu_put(vcpu); 9131 return ret; 9132 } 9133 9134 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9135 struct kvm_guest_debug *dbg) 9136 { 9137 unsigned long rflags; 9138 int i, r; 9139 9140 vcpu_load(vcpu); 9141 9142 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9143 r = -EBUSY; 9144 if (vcpu->arch.exception.pending) 9145 goto out; 9146 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9147 kvm_queue_exception(vcpu, DB_VECTOR); 9148 else 9149 kvm_queue_exception(vcpu, BP_VECTOR); 9150 } 9151 9152 /* 9153 * Read rflags as long as potentially injected trace flags are still 9154 * filtered out. 9155 */ 9156 rflags = kvm_get_rflags(vcpu); 9157 9158 vcpu->guest_debug = dbg->control; 9159 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9160 vcpu->guest_debug = 0; 9161 9162 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9163 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9164 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9165 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9166 } else { 9167 for (i = 0; i < KVM_NR_DB_REGS; i++) 9168 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9169 } 9170 kvm_update_dr7(vcpu); 9171 9172 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9173 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9174 get_segment_base(vcpu, VCPU_SREG_CS); 9175 9176 /* 9177 * Trigger an rflags update that will inject or remove the trace 9178 * flags. 9179 */ 9180 kvm_set_rflags(vcpu, rflags); 9181 9182 kvm_x86_ops.update_bp_intercept(vcpu); 9183 9184 r = 0; 9185 9186 out: 9187 vcpu_put(vcpu); 9188 return r; 9189 } 9190 9191 /* 9192 * Translate a guest virtual address to a guest physical address. 9193 */ 9194 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9195 struct kvm_translation *tr) 9196 { 9197 unsigned long vaddr = tr->linear_address; 9198 gpa_t gpa; 9199 int idx; 9200 9201 vcpu_load(vcpu); 9202 9203 idx = srcu_read_lock(&vcpu->kvm->srcu); 9204 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9205 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9206 tr->physical_address = gpa; 9207 tr->valid = gpa != UNMAPPED_GVA; 9208 tr->writeable = 1; 9209 tr->usermode = 0; 9210 9211 vcpu_put(vcpu); 9212 return 0; 9213 } 9214 9215 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9216 { 9217 struct fxregs_state *fxsave; 9218 9219 vcpu_load(vcpu); 9220 9221 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9222 memcpy(fpu->fpr, fxsave->st_space, 128); 9223 fpu->fcw = fxsave->cwd; 9224 fpu->fsw = fxsave->swd; 9225 fpu->ftwx = fxsave->twd; 9226 fpu->last_opcode = fxsave->fop; 9227 fpu->last_ip = fxsave->rip; 9228 fpu->last_dp = fxsave->rdp; 9229 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9230 9231 vcpu_put(vcpu); 9232 return 0; 9233 } 9234 9235 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9236 { 9237 struct fxregs_state *fxsave; 9238 9239 vcpu_load(vcpu); 9240 9241 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9242 9243 memcpy(fxsave->st_space, fpu->fpr, 128); 9244 fxsave->cwd = fpu->fcw; 9245 fxsave->swd = fpu->fsw; 9246 fxsave->twd = fpu->ftwx; 9247 fxsave->fop = fpu->last_opcode; 9248 fxsave->rip = fpu->last_ip; 9249 fxsave->rdp = fpu->last_dp; 9250 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9251 9252 vcpu_put(vcpu); 9253 return 0; 9254 } 9255 9256 static void store_regs(struct kvm_vcpu *vcpu) 9257 { 9258 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9259 9260 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9261 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9262 9263 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9264 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9265 9266 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9267 kvm_vcpu_ioctl_x86_get_vcpu_events( 9268 vcpu, &vcpu->run->s.regs.events); 9269 } 9270 9271 static int sync_regs(struct kvm_vcpu *vcpu) 9272 { 9273 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9274 return -EINVAL; 9275 9276 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9277 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9278 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9279 } 9280 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9281 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9282 return -EINVAL; 9283 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9284 } 9285 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9286 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9287 vcpu, &vcpu->run->s.regs.events)) 9288 return -EINVAL; 9289 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9290 } 9291 9292 return 0; 9293 } 9294 9295 static void fx_init(struct kvm_vcpu *vcpu) 9296 { 9297 fpstate_init(&vcpu->arch.guest_fpu->state); 9298 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9299 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9300 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9301 9302 /* 9303 * Ensure guest xcr0 is valid for loading 9304 */ 9305 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9306 9307 vcpu->arch.cr0 |= X86_CR0_ET; 9308 } 9309 9310 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9311 { 9312 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9313 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9314 "guest TSC will not be reliable\n"); 9315 9316 return 0; 9317 } 9318 9319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9320 { 9321 struct page *page; 9322 int r; 9323 9324 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9325 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9326 else 9327 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9328 9329 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9330 9331 r = kvm_mmu_create(vcpu); 9332 if (r < 0) 9333 return r; 9334 9335 if (irqchip_in_kernel(vcpu->kvm)) { 9336 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9337 if (r < 0) 9338 goto fail_mmu_destroy; 9339 if (kvm_apicv_activated(vcpu->kvm)) 9340 vcpu->arch.apicv_active = true; 9341 } else 9342 static_key_slow_inc(&kvm_no_apic_vcpu); 9343 9344 r = -ENOMEM; 9345 9346 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 9347 if (!page) 9348 goto fail_free_lapic; 9349 vcpu->arch.pio_data = page_address(page); 9350 9351 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9352 GFP_KERNEL_ACCOUNT); 9353 if (!vcpu->arch.mce_banks) 9354 goto fail_free_pio_data; 9355 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9356 9357 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9358 GFP_KERNEL_ACCOUNT)) 9359 goto fail_free_mce_banks; 9360 9361 if (!alloc_emulate_ctxt(vcpu)) 9362 goto free_wbinvd_dirty_mask; 9363 9364 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9365 GFP_KERNEL_ACCOUNT); 9366 if (!vcpu->arch.user_fpu) { 9367 pr_err("kvm: failed to allocate userspace's fpu\n"); 9368 goto free_emulate_ctxt; 9369 } 9370 9371 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9372 GFP_KERNEL_ACCOUNT); 9373 if (!vcpu->arch.guest_fpu) { 9374 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9375 goto free_user_fpu; 9376 } 9377 fx_init(vcpu); 9378 9379 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 9380 9381 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9382 9383 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9384 9385 kvm_async_pf_hash_reset(vcpu); 9386 kvm_pmu_init(vcpu); 9387 9388 vcpu->arch.pending_external_vector = -1; 9389 vcpu->arch.preempted_in_kernel = false; 9390 9391 kvm_hv_vcpu_init(vcpu); 9392 9393 r = kvm_x86_ops.vcpu_create(vcpu); 9394 if (r) 9395 goto free_guest_fpu; 9396 9397 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9398 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9399 kvm_vcpu_mtrr_init(vcpu); 9400 vcpu_load(vcpu); 9401 kvm_vcpu_reset(vcpu, false); 9402 kvm_init_mmu(vcpu, false); 9403 vcpu_put(vcpu); 9404 return 0; 9405 9406 free_guest_fpu: 9407 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9408 free_user_fpu: 9409 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9410 free_emulate_ctxt: 9411 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9412 free_wbinvd_dirty_mask: 9413 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9414 fail_free_mce_banks: 9415 kfree(vcpu->arch.mce_banks); 9416 fail_free_pio_data: 9417 free_page((unsigned long)vcpu->arch.pio_data); 9418 fail_free_lapic: 9419 kvm_free_lapic(vcpu); 9420 fail_mmu_destroy: 9421 kvm_mmu_destroy(vcpu); 9422 return r; 9423 } 9424 9425 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 9426 { 9427 struct msr_data msr; 9428 struct kvm *kvm = vcpu->kvm; 9429 9430 kvm_hv_vcpu_postcreate(vcpu); 9431 9432 if (mutex_lock_killable(&vcpu->mutex)) 9433 return; 9434 vcpu_load(vcpu); 9435 msr.data = 0x0; 9436 msr.index = MSR_IA32_TSC; 9437 msr.host_initiated = true; 9438 kvm_write_tsc(vcpu, &msr); 9439 vcpu_put(vcpu); 9440 9441 /* poll control enabled by default */ 9442 vcpu->arch.msr_kvm_poll_control = 1; 9443 9444 mutex_unlock(&vcpu->mutex); 9445 9446 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 9447 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 9448 KVMCLOCK_SYNC_PERIOD); 9449 } 9450 9451 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 9452 { 9453 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 9454 int idx; 9455 9456 kvm_release_pfn(cache->pfn, cache->dirty, cache); 9457 9458 kvmclock_reset(vcpu); 9459 9460 kvm_x86_ops.vcpu_free(vcpu); 9461 9462 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 9463 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 9464 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 9465 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9466 9467 kvm_hv_vcpu_uninit(vcpu); 9468 kvm_pmu_destroy(vcpu); 9469 kfree(vcpu->arch.mce_banks); 9470 kvm_free_lapic(vcpu); 9471 idx = srcu_read_lock(&vcpu->kvm->srcu); 9472 kvm_mmu_destroy(vcpu); 9473 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9474 free_page((unsigned long)vcpu->arch.pio_data); 9475 if (!lapic_in_kernel(vcpu)) 9476 static_key_slow_dec(&kvm_no_apic_vcpu); 9477 } 9478 9479 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 9480 { 9481 kvm_lapic_reset(vcpu, init_event); 9482 9483 vcpu->arch.hflags = 0; 9484 9485 vcpu->arch.smi_pending = 0; 9486 vcpu->arch.smi_count = 0; 9487 atomic_set(&vcpu->arch.nmi_queued, 0); 9488 vcpu->arch.nmi_pending = 0; 9489 vcpu->arch.nmi_injected = false; 9490 kvm_clear_interrupt_queue(vcpu); 9491 kvm_clear_exception_queue(vcpu); 9492 9493 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 9494 kvm_update_dr0123(vcpu); 9495 vcpu->arch.dr6 = DR6_INIT; 9496 kvm_update_dr6(vcpu); 9497 vcpu->arch.dr7 = DR7_FIXED_1; 9498 kvm_update_dr7(vcpu); 9499 9500 vcpu->arch.cr2 = 0; 9501 9502 kvm_make_request(KVM_REQ_EVENT, vcpu); 9503 vcpu->arch.apf.msr_val = 0; 9504 vcpu->arch.st.msr_val = 0; 9505 9506 kvmclock_reset(vcpu); 9507 9508 kvm_clear_async_pf_completion_queue(vcpu); 9509 kvm_async_pf_hash_reset(vcpu); 9510 vcpu->arch.apf.halted = false; 9511 9512 if (kvm_mpx_supported()) { 9513 void *mpx_state_buffer; 9514 9515 /* 9516 * To avoid have the INIT path from kvm_apic_has_events() that be 9517 * called with loaded FPU and does not let userspace fix the state. 9518 */ 9519 if (init_event) 9520 kvm_put_guest_fpu(vcpu); 9521 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9522 XFEATURE_BNDREGS); 9523 if (mpx_state_buffer) 9524 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 9525 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 9526 XFEATURE_BNDCSR); 9527 if (mpx_state_buffer) 9528 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 9529 if (init_event) 9530 kvm_load_guest_fpu(vcpu); 9531 } 9532 9533 if (!init_event) { 9534 kvm_pmu_reset(vcpu); 9535 vcpu->arch.smbase = 0x30000; 9536 9537 vcpu->arch.msr_misc_features_enables = 0; 9538 9539 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9540 } 9541 9542 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 9543 vcpu->arch.regs_avail = ~0; 9544 vcpu->arch.regs_dirty = ~0; 9545 9546 vcpu->arch.ia32_xss = 0; 9547 9548 kvm_x86_ops.vcpu_reset(vcpu, init_event); 9549 } 9550 9551 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 9552 { 9553 struct kvm_segment cs; 9554 9555 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9556 cs.selector = vector << 8; 9557 cs.base = vector << 12; 9558 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9559 kvm_rip_write(vcpu, 0); 9560 } 9561 9562 int kvm_arch_hardware_enable(void) 9563 { 9564 struct kvm *kvm; 9565 struct kvm_vcpu *vcpu; 9566 int i; 9567 int ret; 9568 u64 local_tsc; 9569 u64 max_tsc = 0; 9570 bool stable, backwards_tsc = false; 9571 9572 kvm_shared_msr_cpu_online(); 9573 ret = kvm_x86_ops.hardware_enable(); 9574 if (ret != 0) 9575 return ret; 9576 9577 local_tsc = rdtsc(); 9578 stable = !kvm_check_tsc_unstable(); 9579 list_for_each_entry(kvm, &vm_list, vm_list) { 9580 kvm_for_each_vcpu(i, vcpu, kvm) { 9581 if (!stable && vcpu->cpu == smp_processor_id()) 9582 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9583 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 9584 backwards_tsc = true; 9585 if (vcpu->arch.last_host_tsc > max_tsc) 9586 max_tsc = vcpu->arch.last_host_tsc; 9587 } 9588 } 9589 } 9590 9591 /* 9592 * Sometimes, even reliable TSCs go backwards. This happens on 9593 * platforms that reset TSC during suspend or hibernate actions, but 9594 * maintain synchronization. We must compensate. Fortunately, we can 9595 * detect that condition here, which happens early in CPU bringup, 9596 * before any KVM threads can be running. Unfortunately, we can't 9597 * bring the TSCs fully up to date with real time, as we aren't yet far 9598 * enough into CPU bringup that we know how much real time has actually 9599 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 9600 * variables that haven't been updated yet. 9601 * 9602 * So we simply find the maximum observed TSC above, then record the 9603 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 9604 * the adjustment will be applied. Note that we accumulate 9605 * adjustments, in case multiple suspend cycles happen before some VCPU 9606 * gets a chance to run again. In the event that no KVM threads get a 9607 * chance to run, we will miss the entire elapsed period, as we'll have 9608 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 9609 * loose cycle time. This isn't too big a deal, since the loss will be 9610 * uniform across all VCPUs (not to mention the scenario is extremely 9611 * unlikely). It is possible that a second hibernate recovery happens 9612 * much faster than a first, causing the observed TSC here to be 9613 * smaller; this would require additional padding adjustment, which is 9614 * why we set last_host_tsc to the local tsc observed here. 9615 * 9616 * N.B. - this code below runs only on platforms with reliable TSC, 9617 * as that is the only way backwards_tsc is set above. Also note 9618 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 9619 * have the same delta_cyc adjustment applied if backwards_tsc 9620 * is detected. Note further, this adjustment is only done once, 9621 * as we reset last_host_tsc on all VCPUs to stop this from being 9622 * called multiple times (one for each physical CPU bringup). 9623 * 9624 * Platforms with unreliable TSCs don't have to deal with this, they 9625 * will be compensated by the logic in vcpu_load, which sets the TSC to 9626 * catchup mode. This will catchup all VCPUs to real time, but cannot 9627 * guarantee that they stay in perfect synchronization. 9628 */ 9629 if (backwards_tsc) { 9630 u64 delta_cyc = max_tsc - local_tsc; 9631 list_for_each_entry(kvm, &vm_list, vm_list) { 9632 kvm->arch.backwards_tsc_observed = true; 9633 kvm_for_each_vcpu(i, vcpu, kvm) { 9634 vcpu->arch.tsc_offset_adjustment += delta_cyc; 9635 vcpu->arch.last_host_tsc = local_tsc; 9636 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9637 } 9638 9639 /* 9640 * We have to disable TSC offset matching.. if you were 9641 * booting a VM while issuing an S4 host suspend.... 9642 * you may have some problem. Solving this issue is 9643 * left as an exercise to the reader. 9644 */ 9645 kvm->arch.last_tsc_nsec = 0; 9646 kvm->arch.last_tsc_write = 0; 9647 } 9648 9649 } 9650 return 0; 9651 } 9652 9653 void kvm_arch_hardware_disable(void) 9654 { 9655 kvm_x86_ops.hardware_disable(); 9656 drop_user_return_notifiers(); 9657 } 9658 9659 int kvm_arch_hardware_setup(void *opaque) 9660 { 9661 struct kvm_x86_init_ops *ops = opaque; 9662 int r; 9663 9664 rdmsrl_safe(MSR_EFER, &host_efer); 9665 9666 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9667 rdmsrl(MSR_IA32_XSS, host_xss); 9668 9669 r = ops->hardware_setup(); 9670 if (r != 0) 9671 return r; 9672 9673 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9674 9675 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9676 supported_xss = 0; 9677 9678 cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data); 9679 9680 if (kvm_has_tsc_control) { 9681 /* 9682 * Make sure the user can only configure tsc_khz values that 9683 * fit into a signed integer. 9684 * A min value is not calculated because it will always 9685 * be 1 on all machines. 9686 */ 9687 u64 max = min(0x7fffffffULL, 9688 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 9689 kvm_max_guest_tsc_khz = max; 9690 9691 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 9692 } 9693 9694 kvm_init_msr_list(); 9695 return 0; 9696 } 9697 9698 void kvm_arch_hardware_unsetup(void) 9699 { 9700 kvm_x86_ops.hardware_unsetup(); 9701 } 9702 9703 int kvm_arch_check_processor_compat(void *opaque) 9704 { 9705 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 9706 struct kvm_x86_init_ops *ops = opaque; 9707 9708 WARN_ON(!irqs_disabled()); 9709 9710 if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits) 9711 return -EIO; 9712 9713 return ops->check_processor_compatibility(); 9714 } 9715 9716 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 9717 { 9718 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 9719 } 9720 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 9721 9722 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 9723 { 9724 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 9725 } 9726 9727 struct static_key kvm_no_apic_vcpu __read_mostly; 9728 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 9729 9730 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 9731 { 9732 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 9733 9734 vcpu->arch.l1tf_flush_l1d = true; 9735 if (pmu->version && unlikely(pmu->event_count)) { 9736 pmu->need_cleanup = true; 9737 kvm_make_request(KVM_REQ_PMU, vcpu); 9738 } 9739 kvm_x86_ops.sched_in(vcpu, cpu); 9740 } 9741 9742 void kvm_arch_free_vm(struct kvm *kvm) 9743 { 9744 kfree(kvm->arch.hyperv.hv_pa_pg); 9745 vfree(kvm); 9746 } 9747 9748 9749 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 9750 { 9751 if (type) 9752 return -EINVAL; 9753 9754 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 9755 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 9756 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 9757 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 9758 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 9759 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 9760 9761 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 9762 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 9763 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 9764 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 9765 &kvm->arch.irq_sources_bitmap); 9766 9767 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 9768 mutex_init(&kvm->arch.apic_map_lock); 9769 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 9770 9771 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 9772 pvclock_update_vm_gtod_copy(kvm); 9773 9774 kvm->arch.guest_can_read_msr_platform_info = true; 9775 9776 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 9777 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 9778 9779 kvm_hv_init_vm(kvm); 9780 kvm_page_track_init(kvm); 9781 kvm_mmu_init_vm(kvm); 9782 9783 return kvm_x86_ops.vm_init(kvm); 9784 } 9785 9786 int kvm_arch_post_init_vm(struct kvm *kvm) 9787 { 9788 return kvm_mmu_post_init_vm(kvm); 9789 } 9790 9791 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 9792 { 9793 vcpu_load(vcpu); 9794 kvm_mmu_unload(vcpu); 9795 vcpu_put(vcpu); 9796 } 9797 9798 static void kvm_free_vcpus(struct kvm *kvm) 9799 { 9800 unsigned int i; 9801 struct kvm_vcpu *vcpu; 9802 9803 /* 9804 * Unpin any mmu pages first. 9805 */ 9806 kvm_for_each_vcpu(i, vcpu, kvm) { 9807 kvm_clear_async_pf_completion_queue(vcpu); 9808 kvm_unload_vcpu_mmu(vcpu); 9809 } 9810 kvm_for_each_vcpu(i, vcpu, kvm) 9811 kvm_vcpu_destroy(vcpu); 9812 9813 mutex_lock(&kvm->lock); 9814 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 9815 kvm->vcpus[i] = NULL; 9816 9817 atomic_set(&kvm->online_vcpus, 0); 9818 mutex_unlock(&kvm->lock); 9819 } 9820 9821 void kvm_arch_sync_events(struct kvm *kvm) 9822 { 9823 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 9824 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 9825 kvm_free_pit(kvm); 9826 } 9827 9828 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 9829 { 9830 int i, r; 9831 unsigned long hva, uninitialized_var(old_npages); 9832 struct kvm_memslots *slots = kvm_memslots(kvm); 9833 struct kvm_memory_slot *slot; 9834 9835 /* Called with kvm->slots_lock held. */ 9836 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 9837 return -EINVAL; 9838 9839 slot = id_to_memslot(slots, id); 9840 if (size) { 9841 if (slot && slot->npages) 9842 return -EEXIST; 9843 9844 /* 9845 * MAP_SHARED to prevent internal slot pages from being moved 9846 * by fork()/COW. 9847 */ 9848 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 9849 MAP_SHARED | MAP_ANONYMOUS, 0); 9850 if (IS_ERR((void *)hva)) 9851 return PTR_ERR((void *)hva); 9852 } else { 9853 if (!slot || !slot->npages) 9854 return 0; 9855 9856 /* 9857 * Stuff a non-canonical value to catch use-after-delete. This 9858 * ends up being 0 on 32-bit KVM, but there's no better 9859 * alternative. 9860 */ 9861 hva = (unsigned long)(0xdeadull << 48); 9862 old_npages = slot->npages; 9863 } 9864 9865 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 9866 struct kvm_userspace_memory_region m; 9867 9868 m.slot = id | (i << 16); 9869 m.flags = 0; 9870 m.guest_phys_addr = gpa; 9871 m.userspace_addr = hva; 9872 m.memory_size = size; 9873 r = __kvm_set_memory_region(kvm, &m); 9874 if (r < 0) 9875 return r; 9876 } 9877 9878 if (!size) 9879 vm_munmap(hva, old_npages * PAGE_SIZE); 9880 9881 return 0; 9882 } 9883 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 9884 9885 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 9886 { 9887 kvm_mmu_pre_destroy_vm(kvm); 9888 } 9889 9890 void kvm_arch_destroy_vm(struct kvm *kvm) 9891 { 9892 if (current->mm == kvm->mm) { 9893 /* 9894 * Free memory regions allocated on behalf of userspace, 9895 * unless the the memory map has changed due to process exit 9896 * or fd copying. 9897 */ 9898 mutex_lock(&kvm->slots_lock); 9899 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 9900 0, 0); 9901 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 9902 0, 0); 9903 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 9904 mutex_unlock(&kvm->slots_lock); 9905 } 9906 if (kvm_x86_ops.vm_destroy) 9907 kvm_x86_ops.vm_destroy(kvm); 9908 kvm_pic_destroy(kvm); 9909 kvm_ioapic_destroy(kvm); 9910 kvm_free_vcpus(kvm); 9911 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 9912 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 9913 kvm_mmu_uninit_vm(kvm); 9914 kvm_page_track_cleanup(kvm); 9915 kvm_hv_destroy_vm(kvm); 9916 } 9917 9918 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 9919 { 9920 int i; 9921 9922 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9923 kvfree(slot->arch.rmap[i]); 9924 slot->arch.rmap[i] = NULL; 9925 9926 if (i == 0) 9927 continue; 9928 9929 kvfree(slot->arch.lpage_info[i - 1]); 9930 slot->arch.lpage_info[i - 1] = NULL; 9931 } 9932 9933 kvm_page_track_free_memslot(slot); 9934 } 9935 9936 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 9937 unsigned long npages) 9938 { 9939 int i; 9940 9941 /* 9942 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 9943 * old arrays will be freed by __kvm_set_memory_region() if installing 9944 * the new memslot is successful. 9945 */ 9946 memset(&slot->arch, 0, sizeof(slot->arch)); 9947 9948 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9949 struct kvm_lpage_info *linfo; 9950 unsigned long ugfn; 9951 int lpages; 9952 int level = i + 1; 9953 9954 lpages = gfn_to_index(slot->base_gfn + npages - 1, 9955 slot->base_gfn, level) + 1; 9956 9957 slot->arch.rmap[i] = 9958 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 9959 GFP_KERNEL_ACCOUNT); 9960 if (!slot->arch.rmap[i]) 9961 goto out_free; 9962 if (i == 0) 9963 continue; 9964 9965 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 9966 if (!linfo) 9967 goto out_free; 9968 9969 slot->arch.lpage_info[i - 1] = linfo; 9970 9971 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 9972 linfo[0].disallow_lpage = 1; 9973 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 9974 linfo[lpages - 1].disallow_lpage = 1; 9975 ugfn = slot->userspace_addr >> PAGE_SHIFT; 9976 /* 9977 * If the gfn and userspace address are not aligned wrt each 9978 * other, disable large page support for this slot. 9979 */ 9980 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 9981 unsigned long j; 9982 9983 for (j = 0; j < lpages; ++j) 9984 linfo[j].disallow_lpage = 1; 9985 } 9986 } 9987 9988 if (kvm_page_track_create_memslot(slot, npages)) 9989 goto out_free; 9990 9991 return 0; 9992 9993 out_free: 9994 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 9995 kvfree(slot->arch.rmap[i]); 9996 slot->arch.rmap[i] = NULL; 9997 if (i == 0) 9998 continue; 9999 10000 kvfree(slot->arch.lpage_info[i - 1]); 10001 slot->arch.lpage_info[i - 1] = NULL; 10002 } 10003 return -ENOMEM; 10004 } 10005 10006 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10007 { 10008 struct kvm_vcpu *vcpu; 10009 int i; 10010 10011 /* 10012 * memslots->generation has been incremented. 10013 * mmio generation may have reached its maximum value. 10014 */ 10015 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10016 10017 /* Force re-initialization of steal_time cache */ 10018 kvm_for_each_vcpu(i, vcpu, kvm) 10019 kvm_vcpu_kick(vcpu); 10020 } 10021 10022 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10023 struct kvm_memory_slot *memslot, 10024 const struct kvm_userspace_memory_region *mem, 10025 enum kvm_mr_change change) 10026 { 10027 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10028 return kvm_alloc_memslot_metadata(memslot, 10029 mem->memory_size >> PAGE_SHIFT); 10030 return 0; 10031 } 10032 10033 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10034 struct kvm_memory_slot *new) 10035 { 10036 /* Still write protect RO slot */ 10037 if (new->flags & KVM_MEM_READONLY) { 10038 kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL); 10039 return; 10040 } 10041 10042 /* 10043 * Call kvm_x86_ops dirty logging hooks when they are valid. 10044 * 10045 * kvm_x86_ops.slot_disable_log_dirty is called when: 10046 * 10047 * - KVM_MR_CREATE with dirty logging is disabled 10048 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 10049 * 10050 * The reason is, in case of PML, we need to set D-bit for any slots 10051 * with dirty logging disabled in order to eliminate unnecessary GPA 10052 * logging in PML buffer (and potential PML buffer full VMEXIT). This 10053 * guarantees leaving PML enabled during guest's lifetime won't have 10054 * any additional overhead from PML when guest is running with dirty 10055 * logging disabled for memory slots. 10056 * 10057 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot 10058 * to dirty logging mode. 10059 * 10060 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 10061 * 10062 * In case of write protect: 10063 * 10064 * Write protect all pages for dirty logging. 10065 * 10066 * All the sptes including the large sptes which point to this 10067 * slot are set to readonly. We can not create any new large 10068 * spte on this slot until the end of the logging. 10069 * 10070 * See the comments in fast_page_fault(). 10071 */ 10072 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10073 if (kvm_x86_ops.slot_enable_log_dirty) { 10074 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10075 } else { 10076 int level = 10077 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10078 PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL; 10079 10080 /* 10081 * If we're with initial-all-set, we don't need 10082 * to write protect any small page because 10083 * they're reported as dirty already. However 10084 * we still need to write-protect huge pages 10085 * so that the page split can happen lazily on 10086 * the first write to the huge page. 10087 */ 10088 kvm_mmu_slot_remove_write_access(kvm, new, level); 10089 } 10090 } else { 10091 if (kvm_x86_ops.slot_disable_log_dirty) 10092 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10093 } 10094 } 10095 10096 void kvm_arch_commit_memory_region(struct kvm *kvm, 10097 const struct kvm_userspace_memory_region *mem, 10098 struct kvm_memory_slot *old, 10099 const struct kvm_memory_slot *new, 10100 enum kvm_mr_change change) 10101 { 10102 if (!kvm->arch.n_requested_mmu_pages) 10103 kvm_mmu_change_mmu_pages(kvm, 10104 kvm_mmu_calculate_default_mmu_pages(kvm)); 10105 10106 /* 10107 * Dirty logging tracks sptes in 4k granularity, meaning that large 10108 * sptes have to be split. If live migration is successful, the guest 10109 * in the source machine will be destroyed and large sptes will be 10110 * created in the destination. However, if the guest continues to run 10111 * in the source machine (for example if live migration fails), small 10112 * sptes will remain around and cause bad performance. 10113 * 10114 * Scan sptes if dirty logging has been stopped, dropping those 10115 * which can be collapsed into a single large-page spte. Later 10116 * page faults will create the large-page sptes. 10117 * 10118 * There is no need to do this in any of the following cases: 10119 * CREATE: No dirty mappings will already exist. 10120 * MOVE/DELETE: The old mappings will already have been cleaned up by 10121 * kvm_arch_flush_shadow_memslot() 10122 */ 10123 if (change == KVM_MR_FLAGS_ONLY && 10124 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10125 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10126 kvm_mmu_zap_collapsible_sptes(kvm, new); 10127 10128 /* 10129 * Set up write protection and/or dirty logging for the new slot. 10130 * 10131 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 10132 * been zapped so no dirty logging staff is needed for old slot. For 10133 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 10134 * new and it's also covered when dealing with the new slot. 10135 * 10136 * FIXME: const-ify all uses of struct kvm_memory_slot. 10137 */ 10138 if (change != KVM_MR_DELETE) 10139 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 10140 10141 /* Free the arrays associated with the old memslot. */ 10142 if (change == KVM_MR_MOVE) 10143 kvm_arch_free_memslot(kvm, old); 10144 } 10145 10146 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10147 { 10148 kvm_mmu_zap_all(kvm); 10149 } 10150 10151 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10152 struct kvm_memory_slot *slot) 10153 { 10154 kvm_page_track_flush_slot(kvm, slot); 10155 } 10156 10157 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10158 { 10159 return (is_guest_mode(vcpu) && 10160 kvm_x86_ops.guest_apic_has_interrupt && 10161 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10162 } 10163 10164 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10165 { 10166 if (!list_empty_careful(&vcpu->async_pf.done)) 10167 return true; 10168 10169 if (kvm_apic_has_events(vcpu)) 10170 return true; 10171 10172 if (vcpu->arch.pv.pv_unhalted) 10173 return true; 10174 10175 if (vcpu->arch.exception.pending) 10176 return true; 10177 10178 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10179 (vcpu->arch.nmi_pending && 10180 kvm_x86_ops.nmi_allowed(vcpu))) 10181 return true; 10182 10183 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10184 (vcpu->arch.smi_pending && !is_smm(vcpu))) 10185 return true; 10186 10187 if (kvm_arch_interrupt_allowed(vcpu) && 10188 (kvm_cpu_has_interrupt(vcpu) || 10189 kvm_guest_apic_has_interrupt(vcpu))) 10190 return true; 10191 10192 if (kvm_hv_has_stimer_pending(vcpu)) 10193 return true; 10194 10195 return false; 10196 } 10197 10198 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10199 { 10200 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10201 } 10202 10203 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10204 { 10205 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10206 return true; 10207 10208 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10209 kvm_test_request(KVM_REQ_SMI, vcpu) || 10210 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10211 return true; 10212 10213 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10214 return true; 10215 10216 return false; 10217 } 10218 10219 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10220 { 10221 return vcpu->arch.preempted_in_kernel; 10222 } 10223 10224 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10225 { 10226 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10227 } 10228 10229 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10230 { 10231 return kvm_x86_ops.interrupt_allowed(vcpu); 10232 } 10233 10234 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10235 { 10236 if (is_64_bit_mode(vcpu)) 10237 return kvm_rip_read(vcpu); 10238 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10239 kvm_rip_read(vcpu)); 10240 } 10241 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10242 10243 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10244 { 10245 return kvm_get_linear_rip(vcpu) == linear_rip; 10246 } 10247 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10248 10249 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10250 { 10251 unsigned long rflags; 10252 10253 rflags = kvm_x86_ops.get_rflags(vcpu); 10254 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10255 rflags &= ~X86_EFLAGS_TF; 10256 return rflags; 10257 } 10258 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10259 10260 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10261 { 10262 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10263 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10264 rflags |= X86_EFLAGS_TF; 10265 kvm_x86_ops.set_rflags(vcpu, rflags); 10266 } 10267 10268 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10269 { 10270 __kvm_set_rflags(vcpu, rflags); 10271 kvm_make_request(KVM_REQ_EVENT, vcpu); 10272 } 10273 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10274 10275 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10276 { 10277 int r; 10278 10279 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10280 work->wakeup_all) 10281 return; 10282 10283 r = kvm_mmu_reload(vcpu); 10284 if (unlikely(r)) 10285 return; 10286 10287 if (!vcpu->arch.mmu->direct_map && 10288 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10289 return; 10290 10291 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10292 } 10293 10294 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10295 { 10296 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10297 } 10298 10299 static inline u32 kvm_async_pf_next_probe(u32 key) 10300 { 10301 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 10302 } 10303 10304 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10305 { 10306 u32 key = kvm_async_pf_hash_fn(gfn); 10307 10308 while (vcpu->arch.apf.gfns[key] != ~0) 10309 key = kvm_async_pf_next_probe(key); 10310 10311 vcpu->arch.apf.gfns[key] = gfn; 10312 } 10313 10314 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10315 { 10316 int i; 10317 u32 key = kvm_async_pf_hash_fn(gfn); 10318 10319 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 10320 (vcpu->arch.apf.gfns[key] != gfn && 10321 vcpu->arch.apf.gfns[key] != ~0); i++) 10322 key = kvm_async_pf_next_probe(key); 10323 10324 return key; 10325 } 10326 10327 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10328 { 10329 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10330 } 10331 10332 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10333 { 10334 u32 i, j, k; 10335 10336 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10337 while (true) { 10338 vcpu->arch.apf.gfns[i] = ~0; 10339 do { 10340 j = kvm_async_pf_next_probe(j); 10341 if (vcpu->arch.apf.gfns[j] == ~0) 10342 return; 10343 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10344 /* 10345 * k lies cyclically in ]i,j] 10346 * | i.k.j | 10347 * |....j i.k.| or |.k..j i...| 10348 */ 10349 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10350 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10351 i = j; 10352 } 10353 } 10354 10355 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 10356 { 10357 10358 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 10359 sizeof(val)); 10360 } 10361 10362 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) 10363 { 10364 10365 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, 10366 sizeof(u32)); 10367 } 10368 10369 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 10370 { 10371 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 10372 return false; 10373 10374 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 10375 (vcpu->arch.apf.send_user_only && 10376 kvm_x86_ops.get_cpl(vcpu) == 0)) 10377 return false; 10378 10379 return true; 10380 } 10381 10382 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 10383 { 10384 if (unlikely(!lapic_in_kernel(vcpu) || 10385 kvm_event_needs_reinjection(vcpu) || 10386 vcpu->arch.exception.pending)) 10387 return false; 10388 10389 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 10390 return false; 10391 10392 /* 10393 * If interrupts are off we cannot even use an artificial 10394 * halt state. 10395 */ 10396 return kvm_x86_ops.interrupt_allowed(vcpu); 10397 } 10398 10399 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 10400 struct kvm_async_pf *work) 10401 { 10402 struct x86_exception fault; 10403 10404 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 10405 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 10406 10407 if (kvm_can_deliver_async_pf(vcpu) && 10408 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 10409 fault.vector = PF_VECTOR; 10410 fault.error_code_valid = true; 10411 fault.error_code = 0; 10412 fault.nested_page_fault = false; 10413 fault.address = work->arch.token; 10414 fault.async_page_fault = true; 10415 kvm_inject_page_fault(vcpu, &fault); 10416 } else { 10417 /* 10418 * It is not possible to deliver a paravirtualized asynchronous 10419 * page fault, but putting the guest in an artificial halt state 10420 * can be beneficial nevertheless: if an interrupt arrives, we 10421 * can deliver it timely and perhaps the guest will schedule 10422 * another process. When the instruction that triggered a page 10423 * fault is retried, hopefully the page will be ready in the host. 10424 */ 10425 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 10426 } 10427 } 10428 10429 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 10430 struct kvm_async_pf *work) 10431 { 10432 struct x86_exception fault; 10433 u32 val; 10434 10435 if (work->wakeup_all) 10436 work->arch.token = ~0; /* broadcast wakeup */ 10437 else 10438 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 10439 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 10440 10441 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && 10442 !apf_get_user(vcpu, &val)) { 10443 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && 10444 vcpu->arch.exception.pending && 10445 vcpu->arch.exception.nr == PF_VECTOR && 10446 !apf_put_user(vcpu, 0)) { 10447 vcpu->arch.exception.injected = false; 10448 vcpu->arch.exception.pending = false; 10449 vcpu->arch.exception.nr = 0; 10450 vcpu->arch.exception.has_error_code = false; 10451 vcpu->arch.exception.error_code = 0; 10452 vcpu->arch.exception.has_payload = false; 10453 vcpu->arch.exception.payload = 0; 10454 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 10455 fault.vector = PF_VECTOR; 10456 fault.error_code_valid = true; 10457 fault.error_code = 0; 10458 fault.nested_page_fault = false; 10459 fault.address = work->arch.token; 10460 fault.async_page_fault = true; 10461 kvm_inject_page_fault(vcpu, &fault); 10462 } 10463 } 10464 vcpu->arch.apf.halted = false; 10465 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10466 } 10467 10468 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 10469 { 10470 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 10471 return true; 10472 else 10473 return kvm_can_do_async_pf(vcpu); 10474 } 10475 10476 void kvm_arch_start_assignment(struct kvm *kvm) 10477 { 10478 atomic_inc(&kvm->arch.assigned_device_count); 10479 } 10480 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 10481 10482 void kvm_arch_end_assignment(struct kvm *kvm) 10483 { 10484 atomic_dec(&kvm->arch.assigned_device_count); 10485 } 10486 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 10487 10488 bool kvm_arch_has_assigned_device(struct kvm *kvm) 10489 { 10490 return atomic_read(&kvm->arch.assigned_device_count); 10491 } 10492 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 10493 10494 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 10495 { 10496 atomic_inc(&kvm->arch.noncoherent_dma_count); 10497 } 10498 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 10499 10500 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 10501 { 10502 atomic_dec(&kvm->arch.noncoherent_dma_count); 10503 } 10504 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 10505 10506 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 10507 { 10508 return atomic_read(&kvm->arch.noncoherent_dma_count); 10509 } 10510 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 10511 10512 bool kvm_arch_has_irq_bypass(void) 10513 { 10514 return true; 10515 } 10516 10517 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 10518 struct irq_bypass_producer *prod) 10519 { 10520 struct kvm_kernel_irqfd *irqfd = 10521 container_of(cons, struct kvm_kernel_irqfd, consumer); 10522 10523 irqfd->producer = prod; 10524 10525 return kvm_x86_ops.update_pi_irte(irqfd->kvm, 10526 prod->irq, irqfd->gsi, 1); 10527 } 10528 10529 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 10530 struct irq_bypass_producer *prod) 10531 { 10532 int ret; 10533 struct kvm_kernel_irqfd *irqfd = 10534 container_of(cons, struct kvm_kernel_irqfd, consumer); 10535 10536 WARN_ON(irqfd->producer != prod); 10537 irqfd->producer = NULL; 10538 10539 /* 10540 * When producer of consumer is unregistered, we change back to 10541 * remapped mode, so we can re-use the current implementation 10542 * when the irq is masked/disabled or the consumer side (KVM 10543 * int this case doesn't want to receive the interrupts. 10544 */ 10545 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 10546 if (ret) 10547 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 10548 " fails: %d\n", irqfd->consumer.token, ret); 10549 } 10550 10551 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 10552 uint32_t guest_irq, bool set) 10553 { 10554 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 10555 } 10556 10557 bool kvm_vector_hashing_enabled(void) 10558 { 10559 return vector_hashing; 10560 } 10561 10562 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 10563 { 10564 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 10565 } 10566 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 10567 10568 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu) 10569 { 10570 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD; 10571 10572 /* The STIBP bit doesn't fault even if it's not advertised */ 10573 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 10574 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS)) 10575 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10576 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) && 10577 !boot_cpu_has(X86_FEATURE_AMD_IBRS)) 10578 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP); 10579 10580 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) && 10581 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 10582 bits &= ~SPEC_CTRL_SSBD; 10583 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && 10584 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 10585 bits &= ~SPEC_CTRL_SSBD; 10586 10587 return bits; 10588 } 10589 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits); 10590 10591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 10592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 10593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 10594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 10595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 10596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 10597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 10598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 10599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 10600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 10601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 10602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 10603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 10604 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 10605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 10606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 10607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 10608 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 10609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 10610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 10611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 10612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 10613