xref: /openbmc/linux/arch/x86/kvm/x86.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85 
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90 
91 #define emul_to_vcpu(ctxt) \
92 	((struct kvm_vcpu *)(ctxt)->vcpu)
93 
94 /* EFER defaults:
95  * - enable syscall per default because its emulated by KVM
96  * - enable LME and LMA per default on 64 bit KVM
97  */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104 
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106 
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108 
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111 
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119 
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122 
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125 
126 #define KVM_X86_OP(func)					     \
127 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
128 				*(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134 
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137 
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141 
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144 
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147 
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32  __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64  __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160 
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164 
165 /*
166  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
167  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
168  * advancement entirely.  Any other value is used as-is and disables adaptive
169  * tuning, i.e. allows privileged userspace to set an exact advancement time.
170  */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173 
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176 
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180 
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183 
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186 
187 /*
188  * Restoring the host value for MSRs that are only consumed when running in
189  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190  * returns to userspace, i.e. the kernel can run with the guest's value.
191  */
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
193 
194 struct kvm_user_return_msrs {
195 	struct user_return_notifier urn;
196 	bool registered;
197 	struct kvm_user_return_msr_values {
198 		u64 host;
199 		u64 curr;
200 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
201 };
202 
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
207 
208 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 				| XFEATURE_MASK_PKRU)
212 
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
215 
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
218 
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
221 
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
226 
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 	KVM_GENERIC_VM_STATS(),
229 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 	STATS_DESC_COUNTER(VM, mmu_pte_write),
231 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 	STATS_DESC_COUNTER(VM, mmu_flooded),
233 	STATS_DESC_COUNTER(VM, mmu_recycled),
234 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 	STATS_DESC_ICOUNTER(VM, lpages),
237 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
238 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
239 };
240 static_assert(ARRAY_SIZE(kvm_vm_stats_desc) ==
241 		sizeof(struct kvm_vm_stat) / sizeof(u64));
242 
243 const struct kvm_stats_header kvm_vm_stats_header = {
244 	.name_size = KVM_STATS_NAME_SIZE,
245 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
246 	.id_offset = sizeof(struct kvm_stats_header),
247 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
248 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
249 		       sizeof(kvm_vm_stats_desc),
250 };
251 
252 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
253 	KVM_GENERIC_VCPU_STATS(),
254 	STATS_DESC_COUNTER(VCPU, pf_fixed),
255 	STATS_DESC_COUNTER(VCPU, pf_guest),
256 	STATS_DESC_COUNTER(VCPU, tlb_flush),
257 	STATS_DESC_COUNTER(VCPU, invlpg),
258 	STATS_DESC_COUNTER(VCPU, exits),
259 	STATS_DESC_COUNTER(VCPU, io_exits),
260 	STATS_DESC_COUNTER(VCPU, mmio_exits),
261 	STATS_DESC_COUNTER(VCPU, signal_exits),
262 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
263 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
264 	STATS_DESC_COUNTER(VCPU, l1d_flush),
265 	STATS_DESC_COUNTER(VCPU, halt_exits),
266 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
267 	STATS_DESC_COUNTER(VCPU, irq_exits),
268 	STATS_DESC_COUNTER(VCPU, host_state_reload),
269 	STATS_DESC_COUNTER(VCPU, fpu_reload),
270 	STATS_DESC_COUNTER(VCPU, insn_emulation),
271 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
272 	STATS_DESC_COUNTER(VCPU, hypercalls),
273 	STATS_DESC_COUNTER(VCPU, irq_injections),
274 	STATS_DESC_COUNTER(VCPU, nmi_injections),
275 	STATS_DESC_COUNTER(VCPU, req_event),
276 	STATS_DESC_COUNTER(VCPU, nested_run),
277 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
278 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
279 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
280 };
281 static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) ==
282 		sizeof(struct kvm_vcpu_stat) / sizeof(u64));
283 
284 const struct kvm_stats_header kvm_vcpu_stats_header = {
285 	.name_size = KVM_STATS_NAME_SIZE,
286 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
287 	.id_offset = sizeof(struct kvm_stats_header),
288 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
289 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
290 		       sizeof(kvm_vcpu_stats_desc),
291 };
292 
293 u64 __read_mostly host_xcr0;
294 u64 __read_mostly supported_xcr0;
295 EXPORT_SYMBOL_GPL(supported_xcr0);
296 
297 static struct kmem_cache *x86_fpu_cache;
298 
299 static struct kmem_cache *x86_emulator_cache;
300 
301 /*
302  * When called, it means the previous get/set msr reached an invalid msr.
303  * Return true if we want to ignore/silent this failed msr access.
304  */
305 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
306 {
307 	const char *op = write ? "wrmsr" : "rdmsr";
308 
309 	if (ignore_msrs) {
310 		if (report_ignored_msrs)
311 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
312 				      op, msr, data);
313 		/* Mask the error */
314 		return true;
315 	} else {
316 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
317 				      op, msr, data);
318 		return false;
319 	}
320 }
321 
322 static struct kmem_cache *kvm_alloc_emulator_cache(void)
323 {
324 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
325 	unsigned int size = sizeof(struct x86_emulate_ctxt);
326 
327 	return kmem_cache_create_usercopy("x86_emulator", size,
328 					  __alignof__(struct x86_emulate_ctxt),
329 					  SLAB_ACCOUNT, useroffset,
330 					  size - useroffset, NULL);
331 }
332 
333 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
334 
335 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
336 {
337 	int i;
338 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
339 		vcpu->arch.apf.gfns[i] = ~0;
340 }
341 
342 static void kvm_on_user_return(struct user_return_notifier *urn)
343 {
344 	unsigned slot;
345 	struct kvm_user_return_msrs *msrs
346 		= container_of(urn, struct kvm_user_return_msrs, urn);
347 	struct kvm_user_return_msr_values *values;
348 	unsigned long flags;
349 
350 	/*
351 	 * Disabling irqs at this point since the following code could be
352 	 * interrupted and executed through kvm_arch_hardware_disable()
353 	 */
354 	local_irq_save(flags);
355 	if (msrs->registered) {
356 		msrs->registered = false;
357 		user_return_notifier_unregister(urn);
358 	}
359 	local_irq_restore(flags);
360 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
361 		values = &msrs->values[slot];
362 		if (values->host != values->curr) {
363 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
364 			values->curr = values->host;
365 		}
366 	}
367 }
368 
369 static int kvm_probe_user_return_msr(u32 msr)
370 {
371 	u64 val;
372 	int ret;
373 
374 	preempt_disable();
375 	ret = rdmsrl_safe(msr, &val);
376 	if (ret)
377 		goto out;
378 	ret = wrmsrl_safe(msr, val);
379 out:
380 	preempt_enable();
381 	return ret;
382 }
383 
384 int kvm_add_user_return_msr(u32 msr)
385 {
386 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
387 
388 	if (kvm_probe_user_return_msr(msr))
389 		return -1;
390 
391 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
392 	return kvm_nr_uret_msrs++;
393 }
394 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
395 
396 int kvm_find_user_return_msr(u32 msr)
397 {
398 	int i;
399 
400 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
401 		if (kvm_uret_msrs_list[i] == msr)
402 			return i;
403 	}
404 	return -1;
405 }
406 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
407 
408 static void kvm_user_return_msr_cpu_online(void)
409 {
410 	unsigned int cpu = smp_processor_id();
411 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
412 	u64 value;
413 	int i;
414 
415 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
416 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
417 		msrs->values[i].host = value;
418 		msrs->values[i].curr = value;
419 	}
420 }
421 
422 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
423 {
424 	unsigned int cpu = smp_processor_id();
425 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
426 	int err;
427 
428 	value = (value & mask) | (msrs->values[slot].host & ~mask);
429 	if (value == msrs->values[slot].curr)
430 		return 0;
431 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
432 	if (err)
433 		return 1;
434 
435 	msrs->values[slot].curr = value;
436 	if (!msrs->registered) {
437 		msrs->urn.on_user_return = kvm_on_user_return;
438 		user_return_notifier_register(&msrs->urn);
439 		msrs->registered = true;
440 	}
441 	return 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
444 
445 static void drop_user_return_notifiers(void)
446 {
447 	unsigned int cpu = smp_processor_id();
448 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
449 
450 	if (msrs->registered)
451 		kvm_on_user_return(&msrs->urn);
452 }
453 
454 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
455 {
456 	return vcpu->arch.apic_base;
457 }
458 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
459 
460 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
461 {
462 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
463 }
464 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
465 
466 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
467 {
468 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
469 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
470 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
471 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
472 
473 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
474 		return 1;
475 	if (!msr_info->host_initiated) {
476 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
477 			return 1;
478 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
479 			return 1;
480 	}
481 
482 	kvm_lapic_set_base(vcpu, msr_info->data);
483 	kvm_recalculate_apic_map(vcpu->kvm);
484 	return 0;
485 }
486 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
487 
488 asmlinkage __visible noinstr void kvm_spurious_fault(void)
489 {
490 	/* Fault while not rebooting.  We want the trace. */
491 	BUG_ON(!kvm_rebooting);
492 }
493 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
494 
495 #define EXCPT_BENIGN		0
496 #define EXCPT_CONTRIBUTORY	1
497 #define EXCPT_PF		2
498 
499 static int exception_class(int vector)
500 {
501 	switch (vector) {
502 	case PF_VECTOR:
503 		return EXCPT_PF;
504 	case DE_VECTOR:
505 	case TS_VECTOR:
506 	case NP_VECTOR:
507 	case SS_VECTOR:
508 	case GP_VECTOR:
509 		return EXCPT_CONTRIBUTORY;
510 	default:
511 		break;
512 	}
513 	return EXCPT_BENIGN;
514 }
515 
516 #define EXCPT_FAULT		0
517 #define EXCPT_TRAP		1
518 #define EXCPT_ABORT		2
519 #define EXCPT_INTERRUPT		3
520 
521 static int exception_type(int vector)
522 {
523 	unsigned int mask;
524 
525 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
526 		return EXCPT_INTERRUPT;
527 
528 	mask = 1 << vector;
529 
530 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
531 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
532 		return EXCPT_TRAP;
533 
534 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
535 		return EXCPT_ABORT;
536 
537 	/* Reserved exceptions will result in fault */
538 	return EXCPT_FAULT;
539 }
540 
541 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
542 {
543 	unsigned nr = vcpu->arch.exception.nr;
544 	bool has_payload = vcpu->arch.exception.has_payload;
545 	unsigned long payload = vcpu->arch.exception.payload;
546 
547 	if (!has_payload)
548 		return;
549 
550 	switch (nr) {
551 	case DB_VECTOR:
552 		/*
553 		 * "Certain debug exceptions may clear bit 0-3.  The
554 		 * remaining contents of the DR6 register are never
555 		 * cleared by the processor".
556 		 */
557 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
558 		/*
559 		 * In order to reflect the #DB exception payload in guest
560 		 * dr6, three components need to be considered: active low
561 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
562 		 * DR6_BS and DR6_BT)
563 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
564 		 * In the target guest dr6:
565 		 * FIXED_1 bits should always be set.
566 		 * Active low bits should be cleared if 1-setting in payload.
567 		 * Active high bits should be set if 1-setting in payload.
568 		 *
569 		 * Note, the payload is compatible with the pending debug
570 		 * exceptions/exit qualification under VMX, that active_low bits
571 		 * are active high in payload.
572 		 * So they need to be flipped for DR6.
573 		 */
574 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
575 		vcpu->arch.dr6 |= payload;
576 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
577 
578 		/*
579 		 * The #DB payload is defined as compatible with the 'pending
580 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
581 		 * defined in the 'pending debug exceptions' field (enabled
582 		 * breakpoint), it is reserved and must be zero in DR6.
583 		 */
584 		vcpu->arch.dr6 &= ~BIT(12);
585 		break;
586 	case PF_VECTOR:
587 		vcpu->arch.cr2 = payload;
588 		break;
589 	}
590 
591 	vcpu->arch.exception.has_payload = false;
592 	vcpu->arch.exception.payload = 0;
593 }
594 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
595 
596 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
597 		unsigned nr, bool has_error, u32 error_code,
598 	        bool has_payload, unsigned long payload, bool reinject)
599 {
600 	u32 prev_nr;
601 	int class1, class2;
602 
603 	kvm_make_request(KVM_REQ_EVENT, vcpu);
604 
605 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
606 	queue:
607 		if (reinject) {
608 			/*
609 			 * On vmentry, vcpu->arch.exception.pending is only
610 			 * true if an event injection was blocked by
611 			 * nested_run_pending.  In that case, however,
612 			 * vcpu_enter_guest requests an immediate exit,
613 			 * and the guest shouldn't proceed far enough to
614 			 * need reinjection.
615 			 */
616 			WARN_ON_ONCE(vcpu->arch.exception.pending);
617 			vcpu->arch.exception.injected = true;
618 			if (WARN_ON_ONCE(has_payload)) {
619 				/*
620 				 * A reinjected event has already
621 				 * delivered its payload.
622 				 */
623 				has_payload = false;
624 				payload = 0;
625 			}
626 		} else {
627 			vcpu->arch.exception.pending = true;
628 			vcpu->arch.exception.injected = false;
629 		}
630 		vcpu->arch.exception.has_error_code = has_error;
631 		vcpu->arch.exception.nr = nr;
632 		vcpu->arch.exception.error_code = error_code;
633 		vcpu->arch.exception.has_payload = has_payload;
634 		vcpu->arch.exception.payload = payload;
635 		if (!is_guest_mode(vcpu))
636 			kvm_deliver_exception_payload(vcpu);
637 		return;
638 	}
639 
640 	/* to check exception */
641 	prev_nr = vcpu->arch.exception.nr;
642 	if (prev_nr == DF_VECTOR) {
643 		/* triple fault -> shutdown */
644 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
645 		return;
646 	}
647 	class1 = exception_class(prev_nr);
648 	class2 = exception_class(nr);
649 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
650 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
651 		/*
652 		 * Generate double fault per SDM Table 5-5.  Set
653 		 * exception.pending = true so that the double fault
654 		 * can trigger a nested vmexit.
655 		 */
656 		vcpu->arch.exception.pending = true;
657 		vcpu->arch.exception.injected = false;
658 		vcpu->arch.exception.has_error_code = true;
659 		vcpu->arch.exception.nr = DF_VECTOR;
660 		vcpu->arch.exception.error_code = 0;
661 		vcpu->arch.exception.has_payload = false;
662 		vcpu->arch.exception.payload = 0;
663 	} else
664 		/* replace previous exception with a new one in a hope
665 		   that instruction re-execution will regenerate lost
666 		   exception */
667 		goto queue;
668 }
669 
670 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
671 {
672 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
673 }
674 EXPORT_SYMBOL_GPL(kvm_queue_exception);
675 
676 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
679 }
680 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
681 
682 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
683 			   unsigned long payload)
684 {
685 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
686 }
687 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
688 
689 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
690 				    u32 error_code, unsigned long payload)
691 {
692 	kvm_multiple_exception(vcpu, nr, true, error_code,
693 			       true, payload, false);
694 }
695 
696 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
697 {
698 	if (err)
699 		kvm_inject_gp(vcpu, 0);
700 	else
701 		return kvm_skip_emulated_instruction(vcpu);
702 
703 	return 1;
704 }
705 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
706 
707 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
708 {
709 	++vcpu->stat.pf_guest;
710 	vcpu->arch.exception.nested_apf =
711 		is_guest_mode(vcpu) && fault->async_page_fault;
712 	if (vcpu->arch.exception.nested_apf) {
713 		vcpu->arch.apf.nested_apf_token = fault->address;
714 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
715 	} else {
716 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
717 					fault->address);
718 	}
719 }
720 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
721 
722 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
723 				    struct x86_exception *fault)
724 {
725 	struct kvm_mmu *fault_mmu;
726 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
727 
728 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
729 					       vcpu->arch.walk_mmu;
730 
731 	/*
732 	 * Invalidate the TLB entry for the faulting address, if it exists,
733 	 * else the access will fault indefinitely (and to emulate hardware).
734 	 */
735 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
736 	    !(fault->error_code & PFERR_RSVD_MASK))
737 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
738 				       fault_mmu->root_hpa);
739 
740 	fault_mmu->inject_page_fault(vcpu, fault);
741 	return fault->nested_page_fault;
742 }
743 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
744 
745 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
746 {
747 	atomic_inc(&vcpu->arch.nmi_queued);
748 	kvm_make_request(KVM_REQ_NMI, vcpu);
749 }
750 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
751 
752 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
753 {
754 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
755 }
756 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
757 
758 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
761 }
762 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
763 
764 /*
765  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
766  * a #GP and return false.
767  */
768 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
769 {
770 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
771 		return true;
772 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
773 	return false;
774 }
775 EXPORT_SYMBOL_GPL(kvm_require_cpl);
776 
777 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
778 {
779 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
780 		return true;
781 
782 	kvm_queue_exception(vcpu, UD_VECTOR);
783 	return false;
784 }
785 EXPORT_SYMBOL_GPL(kvm_require_dr);
786 
787 /*
788  * This function will be used to read from the physical memory of the currently
789  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
790  * can read from guest physical or from the guest's guest physical memory.
791  */
792 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
793 			    gfn_t ngfn, void *data, int offset, int len,
794 			    u32 access)
795 {
796 	struct x86_exception exception;
797 	gfn_t real_gfn;
798 	gpa_t ngpa;
799 
800 	ngpa     = gfn_to_gpa(ngfn);
801 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
802 	if (real_gfn == UNMAPPED_GVA)
803 		return -EFAULT;
804 
805 	real_gfn = gpa_to_gfn(real_gfn);
806 
807 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
808 }
809 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
810 
811 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
812 {
813 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
814 }
815 
816 /*
817  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
818  */
819 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
820 {
821 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
822 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
823 	int i;
824 	int ret;
825 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
826 
827 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
828 				      offset * sizeof(u64), sizeof(pdpte),
829 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
830 	if (ret < 0) {
831 		ret = 0;
832 		goto out;
833 	}
834 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
835 		if ((pdpte[i] & PT_PRESENT_MASK) &&
836 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
837 			ret = 0;
838 			goto out;
839 		}
840 	}
841 	ret = 1;
842 
843 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
844 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
845 	vcpu->arch.pdptrs_from_userspace = false;
846 
847 out:
848 
849 	return ret;
850 }
851 EXPORT_SYMBOL_GPL(load_pdptrs);
852 
853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
854 {
855 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
856 		kvm_clear_async_pf_completion_queue(vcpu);
857 		kvm_async_pf_hash_reset(vcpu);
858 	}
859 
860 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
861 		kvm_mmu_reset_context(vcpu);
862 
863 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
864 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
865 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
866 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
867 }
868 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
869 
870 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
871 {
872 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
873 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
874 
875 	cr0 |= X86_CR0_ET;
876 
877 #ifdef CONFIG_X86_64
878 	if (cr0 & 0xffffffff00000000UL)
879 		return 1;
880 #endif
881 
882 	cr0 &= ~CR0_RESERVED_BITS;
883 
884 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
885 		return 1;
886 
887 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
888 		return 1;
889 
890 #ifdef CONFIG_X86_64
891 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
892 	    (cr0 & X86_CR0_PG)) {
893 		int cs_db, cs_l;
894 
895 		if (!is_pae(vcpu))
896 			return 1;
897 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
898 		if (cs_l)
899 			return 1;
900 	}
901 #endif
902 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
903 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
904 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
905 		return 1;
906 
907 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
908 		return 1;
909 
910 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
911 
912 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
913 
914 	return 0;
915 }
916 EXPORT_SYMBOL_GPL(kvm_set_cr0);
917 
918 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
919 {
920 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
921 }
922 EXPORT_SYMBOL_GPL(kvm_lmsw);
923 
924 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
925 {
926 	if (vcpu->arch.guest_state_protected)
927 		return;
928 
929 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
930 
931 		if (vcpu->arch.xcr0 != host_xcr0)
932 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
933 
934 		if (vcpu->arch.xsaves_enabled &&
935 		    vcpu->arch.ia32_xss != host_xss)
936 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
937 	}
938 
939 	if (static_cpu_has(X86_FEATURE_PKU) &&
940 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
941 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
942 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
943 		write_pkru(vcpu->arch.pkru);
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
946 
947 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
948 {
949 	if (vcpu->arch.guest_state_protected)
950 		return;
951 
952 	if (static_cpu_has(X86_FEATURE_PKU) &&
953 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
954 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
955 		vcpu->arch.pkru = rdpkru();
956 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
957 			write_pkru(vcpu->arch.host_pkru);
958 	}
959 
960 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
961 
962 		if (vcpu->arch.xcr0 != host_xcr0)
963 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
964 
965 		if (vcpu->arch.xsaves_enabled &&
966 		    vcpu->arch.ia32_xss != host_xss)
967 			wrmsrl(MSR_IA32_XSS, host_xss);
968 	}
969 
970 }
971 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
972 
973 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
974 {
975 	u64 xcr0 = xcr;
976 	u64 old_xcr0 = vcpu->arch.xcr0;
977 	u64 valid_bits;
978 
979 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
980 	if (index != XCR_XFEATURE_ENABLED_MASK)
981 		return 1;
982 	if (!(xcr0 & XFEATURE_MASK_FP))
983 		return 1;
984 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
985 		return 1;
986 
987 	/*
988 	 * Do not allow the guest to set bits that we do not support
989 	 * saving.  However, xcr0 bit 0 is always set, even if the
990 	 * emulated CPU does not support XSAVE (see fx_init).
991 	 */
992 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
993 	if (xcr0 & ~valid_bits)
994 		return 1;
995 
996 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
997 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
998 		return 1;
999 
1000 	if (xcr0 & XFEATURE_MASK_AVX512) {
1001 		if (!(xcr0 & XFEATURE_MASK_YMM))
1002 			return 1;
1003 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1004 			return 1;
1005 	}
1006 	vcpu->arch.xcr0 = xcr0;
1007 
1008 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1009 		kvm_update_cpuid_runtime(vcpu);
1010 	return 0;
1011 }
1012 
1013 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1014 {
1015 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1016 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1017 		kvm_inject_gp(vcpu, 0);
1018 		return 1;
1019 	}
1020 
1021 	return kvm_skip_emulated_instruction(vcpu);
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1024 
1025 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1026 {
1027 	if (cr4 & cr4_reserved_bits)
1028 		return false;
1029 
1030 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1031 		return false;
1032 
1033 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1036 
1037 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1038 {
1039 	if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1040 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1041 		kvm_mmu_reset_context(vcpu);
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1044 
1045 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1046 {
1047 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1048 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1049 				   X86_CR4_SMEP;
1050 
1051 	if (!kvm_is_valid_cr4(vcpu, cr4))
1052 		return 1;
1053 
1054 	if (is_long_mode(vcpu)) {
1055 		if (!(cr4 & X86_CR4_PAE))
1056 			return 1;
1057 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1058 			return 1;
1059 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1060 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1061 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1062 				   kvm_read_cr3(vcpu)))
1063 		return 1;
1064 
1065 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1066 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1067 			return 1;
1068 
1069 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1070 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1071 			return 1;
1072 	}
1073 
1074 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1075 
1076 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1077 
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1081 
1082 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1083 {
1084 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1085 	unsigned long roots_to_free = 0;
1086 	int i;
1087 
1088 	/*
1089 	 * If neither the current CR3 nor any of the prev_roots use the given
1090 	 * PCID, then nothing needs to be done here because a resync will
1091 	 * happen anyway before switching to any other CR3.
1092 	 */
1093 	if (kvm_get_active_pcid(vcpu) == pcid) {
1094 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1095 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1096 	}
1097 
1098 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1099 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1100 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1101 
1102 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1103 }
1104 
1105 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1106 {
1107 	bool skip_tlb_flush = false;
1108 	unsigned long pcid = 0;
1109 #ifdef CONFIG_X86_64
1110 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1111 
1112 	if (pcid_enabled) {
1113 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1114 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1115 		pcid = cr3 & X86_CR3_PCID_MASK;
1116 	}
1117 #endif
1118 
1119 	/* PDPTRs are always reloaded for PAE paging. */
1120 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1121 		goto handle_tlb_flush;
1122 
1123 	/*
1124 	 * Do not condition the GPA check on long mode, this helper is used to
1125 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1126 	 * the current vCPU mode is accurate.
1127 	 */
1128 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1129 		return 1;
1130 
1131 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1132 		return 1;
1133 
1134 	if (cr3 != kvm_read_cr3(vcpu))
1135 		kvm_mmu_new_pgd(vcpu, cr3);
1136 
1137 	vcpu->arch.cr3 = cr3;
1138 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1139 
1140 handle_tlb_flush:
1141 	/*
1142 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1143 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1144 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1145 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1146 	 * i.e. only PCID=0 can be relevant.
1147 	 */
1148 	if (!skip_tlb_flush)
1149 		kvm_invalidate_pcid(vcpu, pcid);
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1154 
1155 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1156 {
1157 	if (cr8 & CR8_RESERVED_BITS)
1158 		return 1;
1159 	if (lapic_in_kernel(vcpu))
1160 		kvm_lapic_set_tpr(vcpu, cr8);
1161 	else
1162 		vcpu->arch.cr8 = cr8;
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1166 
1167 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1168 {
1169 	if (lapic_in_kernel(vcpu))
1170 		return kvm_lapic_get_cr8(vcpu);
1171 	else
1172 		return vcpu->arch.cr8;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1175 
1176 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1177 {
1178 	int i;
1179 
1180 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1181 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1182 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1183 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1184 	}
1185 }
1186 
1187 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1188 {
1189 	unsigned long dr7;
1190 
1191 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1192 		dr7 = vcpu->arch.guest_debug_dr7;
1193 	else
1194 		dr7 = vcpu->arch.dr7;
1195 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1196 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1197 	if (dr7 & DR7_BP_EN_MASK)
1198 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1199 }
1200 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1201 
1202 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1203 {
1204 	u64 fixed = DR6_FIXED_1;
1205 
1206 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1207 		fixed |= DR6_RTM;
1208 
1209 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1210 		fixed |= DR6_BUS_LOCK;
1211 	return fixed;
1212 }
1213 
1214 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1215 {
1216 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1217 
1218 	switch (dr) {
1219 	case 0 ... 3:
1220 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1221 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1222 			vcpu->arch.eff_db[dr] = val;
1223 		break;
1224 	case 4:
1225 	case 6:
1226 		if (!kvm_dr6_valid(val))
1227 			return 1; /* #GP */
1228 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1229 		break;
1230 	case 5:
1231 	default: /* 7 */
1232 		if (!kvm_dr7_valid(val))
1233 			return 1; /* #GP */
1234 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1235 		kvm_update_dr7(vcpu);
1236 		break;
1237 	}
1238 
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_set_dr);
1242 
1243 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1244 {
1245 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1246 
1247 	switch (dr) {
1248 	case 0 ... 3:
1249 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1250 		break;
1251 	case 4:
1252 	case 6:
1253 		*val = vcpu->arch.dr6;
1254 		break;
1255 	case 5:
1256 	default: /* 7 */
1257 		*val = vcpu->arch.dr7;
1258 		break;
1259 	}
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_get_dr);
1262 
1263 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1264 {
1265 	u32 ecx = kvm_rcx_read(vcpu);
1266 	u64 data;
1267 
1268 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1269 		kvm_inject_gp(vcpu, 0);
1270 		return 1;
1271 	}
1272 
1273 	kvm_rax_write(vcpu, (u32)data);
1274 	kvm_rdx_write(vcpu, data >> 32);
1275 	return kvm_skip_emulated_instruction(vcpu);
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1278 
1279 /*
1280  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1281  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1282  *
1283  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1284  * extract the supported MSRs from the related const lists.
1285  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1286  * capabilities of the host cpu. This capabilities test skips MSRs that are
1287  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1288  * may depend on host virtualization features rather than host cpu features.
1289  */
1290 
1291 static const u32 msrs_to_save_all[] = {
1292 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1293 	MSR_STAR,
1294 #ifdef CONFIG_X86_64
1295 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1296 #endif
1297 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1298 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1299 	MSR_IA32_SPEC_CTRL,
1300 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1301 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1302 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1303 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1304 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1305 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1306 	MSR_IA32_UMWAIT_CONTROL,
1307 
1308 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1309 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1310 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1311 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1312 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1313 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1314 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1315 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1316 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1317 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1318 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1319 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1320 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1321 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1322 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1323 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1324 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1325 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1326 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1327 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1328 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1329 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1330 };
1331 
1332 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1333 static unsigned num_msrs_to_save;
1334 
1335 static const u32 emulated_msrs_all[] = {
1336 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1337 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1338 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1339 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1340 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1341 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1342 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1343 	HV_X64_MSR_RESET,
1344 	HV_X64_MSR_VP_INDEX,
1345 	HV_X64_MSR_VP_RUNTIME,
1346 	HV_X64_MSR_SCONTROL,
1347 	HV_X64_MSR_STIMER0_CONFIG,
1348 	HV_X64_MSR_VP_ASSIST_PAGE,
1349 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1350 	HV_X64_MSR_TSC_EMULATION_STATUS,
1351 	HV_X64_MSR_SYNDBG_OPTIONS,
1352 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1353 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1354 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1355 
1356 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1357 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1358 
1359 	MSR_IA32_TSC_ADJUST,
1360 	MSR_IA32_TSC_DEADLINE,
1361 	MSR_IA32_ARCH_CAPABILITIES,
1362 	MSR_IA32_PERF_CAPABILITIES,
1363 	MSR_IA32_MISC_ENABLE,
1364 	MSR_IA32_MCG_STATUS,
1365 	MSR_IA32_MCG_CTL,
1366 	MSR_IA32_MCG_EXT_CTL,
1367 	MSR_IA32_SMBASE,
1368 	MSR_SMI_COUNT,
1369 	MSR_PLATFORM_INFO,
1370 	MSR_MISC_FEATURES_ENABLES,
1371 	MSR_AMD64_VIRT_SPEC_CTRL,
1372 	MSR_IA32_POWER_CTL,
1373 	MSR_IA32_UCODE_REV,
1374 
1375 	/*
1376 	 * The following list leaves out MSRs whose values are determined
1377 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1378 	 * We always support the "true" VMX control MSRs, even if the host
1379 	 * processor does not, so I am putting these registers here rather
1380 	 * than in msrs_to_save_all.
1381 	 */
1382 	MSR_IA32_VMX_BASIC,
1383 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1384 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1385 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1386 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1387 	MSR_IA32_VMX_MISC,
1388 	MSR_IA32_VMX_CR0_FIXED0,
1389 	MSR_IA32_VMX_CR4_FIXED0,
1390 	MSR_IA32_VMX_VMCS_ENUM,
1391 	MSR_IA32_VMX_PROCBASED_CTLS2,
1392 	MSR_IA32_VMX_EPT_VPID_CAP,
1393 	MSR_IA32_VMX_VMFUNC,
1394 
1395 	MSR_K7_HWCR,
1396 	MSR_KVM_POLL_CONTROL,
1397 };
1398 
1399 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1400 static unsigned num_emulated_msrs;
1401 
1402 /*
1403  * List of msr numbers which are used to expose MSR-based features that
1404  * can be used by a hypervisor to validate requested CPU features.
1405  */
1406 static const u32 msr_based_features_all[] = {
1407 	MSR_IA32_VMX_BASIC,
1408 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1409 	MSR_IA32_VMX_PINBASED_CTLS,
1410 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1411 	MSR_IA32_VMX_PROCBASED_CTLS,
1412 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1413 	MSR_IA32_VMX_EXIT_CTLS,
1414 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1415 	MSR_IA32_VMX_ENTRY_CTLS,
1416 	MSR_IA32_VMX_MISC,
1417 	MSR_IA32_VMX_CR0_FIXED0,
1418 	MSR_IA32_VMX_CR0_FIXED1,
1419 	MSR_IA32_VMX_CR4_FIXED0,
1420 	MSR_IA32_VMX_CR4_FIXED1,
1421 	MSR_IA32_VMX_VMCS_ENUM,
1422 	MSR_IA32_VMX_PROCBASED_CTLS2,
1423 	MSR_IA32_VMX_EPT_VPID_CAP,
1424 	MSR_IA32_VMX_VMFUNC,
1425 
1426 	MSR_F10H_DECFG,
1427 	MSR_IA32_UCODE_REV,
1428 	MSR_IA32_ARCH_CAPABILITIES,
1429 	MSR_IA32_PERF_CAPABILITIES,
1430 };
1431 
1432 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1433 static unsigned int num_msr_based_features;
1434 
1435 static u64 kvm_get_arch_capabilities(void)
1436 {
1437 	u64 data = 0;
1438 
1439 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1440 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1441 
1442 	/*
1443 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1444 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1445 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1446 	 * L1 guests, so it need not worry about its own (L2) guests.
1447 	 */
1448 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1449 
1450 	/*
1451 	 * If we're doing cache flushes (either "always" or "cond")
1452 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1453 	 * If an outer hypervisor is doing the cache flush for us
1454 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1455 	 * capability to the guest too, and if EPT is disabled we're not
1456 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1457 	 * require a nested hypervisor to do a flush of its own.
1458 	 */
1459 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1460 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1461 
1462 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1463 		data |= ARCH_CAP_RDCL_NO;
1464 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1465 		data |= ARCH_CAP_SSB_NO;
1466 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1467 		data |= ARCH_CAP_MDS_NO;
1468 
1469 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1470 		/*
1471 		 * If RTM=0 because the kernel has disabled TSX, the host might
1472 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1473 		 * and therefore knows that there cannot be TAA) but keep
1474 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1475 		 * and we want to allow migrating those guests to tsx=off hosts.
1476 		 */
1477 		data &= ~ARCH_CAP_TAA_NO;
1478 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1479 		data |= ARCH_CAP_TAA_NO;
1480 	} else {
1481 		/*
1482 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1483 		 * host so the guest can choose between disabling TSX or
1484 		 * using VERW to clear CPU buffers.
1485 		 */
1486 	}
1487 
1488 	return data;
1489 }
1490 
1491 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1492 {
1493 	switch (msr->index) {
1494 	case MSR_IA32_ARCH_CAPABILITIES:
1495 		msr->data = kvm_get_arch_capabilities();
1496 		break;
1497 	case MSR_IA32_UCODE_REV:
1498 		rdmsrl_safe(msr->index, &msr->data);
1499 		break;
1500 	default:
1501 		return static_call(kvm_x86_get_msr_feature)(msr);
1502 	}
1503 	return 0;
1504 }
1505 
1506 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1507 {
1508 	struct kvm_msr_entry msr;
1509 	int r;
1510 
1511 	msr.index = index;
1512 	r = kvm_get_msr_feature(&msr);
1513 
1514 	if (r == KVM_MSR_RET_INVALID) {
1515 		/* Unconditionally clear the output for simplicity */
1516 		*data = 0;
1517 		if (kvm_msr_ignored_check(index, 0, false))
1518 			r = 0;
1519 	}
1520 
1521 	if (r)
1522 		return r;
1523 
1524 	*data = msr.data;
1525 
1526 	return 0;
1527 }
1528 
1529 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1530 {
1531 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1532 		return false;
1533 
1534 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1535 		return false;
1536 
1537 	if (efer & (EFER_LME | EFER_LMA) &&
1538 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1539 		return false;
1540 
1541 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1542 		return false;
1543 
1544 	return true;
1545 
1546 }
1547 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1548 {
1549 	if (efer & efer_reserved_bits)
1550 		return false;
1551 
1552 	return __kvm_valid_efer(vcpu, efer);
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1555 
1556 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1557 {
1558 	u64 old_efer = vcpu->arch.efer;
1559 	u64 efer = msr_info->data;
1560 	int r;
1561 
1562 	if (efer & efer_reserved_bits)
1563 		return 1;
1564 
1565 	if (!msr_info->host_initiated) {
1566 		if (!__kvm_valid_efer(vcpu, efer))
1567 			return 1;
1568 
1569 		if (is_paging(vcpu) &&
1570 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1571 			return 1;
1572 	}
1573 
1574 	efer &= ~EFER_LMA;
1575 	efer |= vcpu->arch.efer & EFER_LMA;
1576 
1577 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1578 	if (r) {
1579 		WARN_ON(r > 0);
1580 		return r;
1581 	}
1582 
1583 	/* Update reserved bits */
1584 	if ((efer ^ old_efer) & EFER_NX)
1585 		kvm_mmu_reset_context(vcpu);
1586 
1587 	return 0;
1588 }
1589 
1590 void kvm_enable_efer_bits(u64 mask)
1591 {
1592        efer_reserved_bits &= ~mask;
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1595 
1596 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1597 {
1598 	struct kvm_x86_msr_filter *msr_filter;
1599 	struct msr_bitmap_range *ranges;
1600 	struct kvm *kvm = vcpu->kvm;
1601 	bool allowed;
1602 	int idx;
1603 	u32 i;
1604 
1605 	/* x2APIC MSRs do not support filtering. */
1606 	if (index >= 0x800 && index <= 0x8ff)
1607 		return true;
1608 
1609 	idx = srcu_read_lock(&kvm->srcu);
1610 
1611 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1612 	if (!msr_filter) {
1613 		allowed = true;
1614 		goto out;
1615 	}
1616 
1617 	allowed = msr_filter->default_allow;
1618 	ranges = msr_filter->ranges;
1619 
1620 	for (i = 0; i < msr_filter->count; i++) {
1621 		u32 start = ranges[i].base;
1622 		u32 end = start + ranges[i].nmsrs;
1623 		u32 flags = ranges[i].flags;
1624 		unsigned long *bitmap = ranges[i].bitmap;
1625 
1626 		if ((index >= start) && (index < end) && (flags & type)) {
1627 			allowed = !!test_bit(index - start, bitmap);
1628 			break;
1629 		}
1630 	}
1631 
1632 out:
1633 	srcu_read_unlock(&kvm->srcu, idx);
1634 
1635 	return allowed;
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1638 
1639 /*
1640  * Write @data into the MSR specified by @index.  Select MSR specific fault
1641  * checks are bypassed if @host_initiated is %true.
1642  * Returns 0 on success, non-0 otherwise.
1643  * Assumes vcpu_load() was already called.
1644  */
1645 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1646 			 bool host_initiated)
1647 {
1648 	struct msr_data msr;
1649 
1650 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1651 		return KVM_MSR_RET_FILTERED;
1652 
1653 	switch (index) {
1654 	case MSR_FS_BASE:
1655 	case MSR_GS_BASE:
1656 	case MSR_KERNEL_GS_BASE:
1657 	case MSR_CSTAR:
1658 	case MSR_LSTAR:
1659 		if (is_noncanonical_address(data, vcpu))
1660 			return 1;
1661 		break;
1662 	case MSR_IA32_SYSENTER_EIP:
1663 	case MSR_IA32_SYSENTER_ESP:
1664 		/*
1665 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1666 		 * non-canonical address is written on Intel but not on
1667 		 * AMD (which ignores the top 32-bits, because it does
1668 		 * not implement 64-bit SYSENTER).
1669 		 *
1670 		 * 64-bit code should hence be able to write a non-canonical
1671 		 * value on AMD.  Making the address canonical ensures that
1672 		 * vmentry does not fail on Intel after writing a non-canonical
1673 		 * value, and that something deterministic happens if the guest
1674 		 * invokes 64-bit SYSENTER.
1675 		 */
1676 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1677 		break;
1678 	case MSR_TSC_AUX:
1679 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1680 			return 1;
1681 
1682 		if (!host_initiated &&
1683 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1684 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1685 			return 1;
1686 
1687 		/*
1688 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1689 		 * incomplete and conflicting architectural behavior.  Current
1690 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1691 		 * reserved and always read as zeros.  Enforce Intel's reserved
1692 		 * bits check if and only if the guest CPU is Intel, and clear
1693 		 * the bits in all other cases.  This ensures cross-vendor
1694 		 * migration will provide consistent behavior for the guest.
1695 		 */
1696 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1697 			return 1;
1698 
1699 		data = (u32)data;
1700 		break;
1701 	}
1702 
1703 	msr.data = data;
1704 	msr.index = index;
1705 	msr.host_initiated = host_initiated;
1706 
1707 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1708 }
1709 
1710 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1711 				     u32 index, u64 data, bool host_initiated)
1712 {
1713 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1714 
1715 	if (ret == KVM_MSR_RET_INVALID)
1716 		if (kvm_msr_ignored_check(index, data, true))
1717 			ret = 0;
1718 
1719 	return ret;
1720 }
1721 
1722 /*
1723  * Read the MSR specified by @index into @data.  Select MSR specific fault
1724  * checks are bypassed if @host_initiated is %true.
1725  * Returns 0 on success, non-0 otherwise.
1726  * Assumes vcpu_load() was already called.
1727  */
1728 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1729 		  bool host_initiated)
1730 {
1731 	struct msr_data msr;
1732 	int ret;
1733 
1734 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1735 		return KVM_MSR_RET_FILTERED;
1736 
1737 	switch (index) {
1738 	case MSR_TSC_AUX:
1739 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1740 			return 1;
1741 
1742 		if (!host_initiated &&
1743 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1744 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1745 			return 1;
1746 		break;
1747 	}
1748 
1749 	msr.index = index;
1750 	msr.host_initiated = host_initiated;
1751 
1752 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1753 	if (!ret)
1754 		*data = msr.data;
1755 	return ret;
1756 }
1757 
1758 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1759 				     u32 index, u64 *data, bool host_initiated)
1760 {
1761 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1762 
1763 	if (ret == KVM_MSR_RET_INVALID) {
1764 		/* Unconditionally clear *data for simplicity */
1765 		*data = 0;
1766 		if (kvm_msr_ignored_check(index, 0, false))
1767 			ret = 0;
1768 	}
1769 
1770 	return ret;
1771 }
1772 
1773 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1774 {
1775 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_get_msr);
1778 
1779 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1780 {
1781 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_set_msr);
1784 
1785 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1786 {
1787 	int err = vcpu->run->msr.error;
1788 	if (!err) {
1789 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1790 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1791 	}
1792 
1793 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1794 }
1795 
1796 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1797 {
1798 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1799 }
1800 
1801 static u64 kvm_msr_reason(int r)
1802 {
1803 	switch (r) {
1804 	case KVM_MSR_RET_INVALID:
1805 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1806 	case KVM_MSR_RET_FILTERED:
1807 		return KVM_MSR_EXIT_REASON_FILTER;
1808 	default:
1809 		return KVM_MSR_EXIT_REASON_INVAL;
1810 	}
1811 }
1812 
1813 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1814 			      u32 exit_reason, u64 data,
1815 			      int (*completion)(struct kvm_vcpu *vcpu),
1816 			      int r)
1817 {
1818 	u64 msr_reason = kvm_msr_reason(r);
1819 
1820 	/* Check if the user wanted to know about this MSR fault */
1821 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1822 		return 0;
1823 
1824 	vcpu->run->exit_reason = exit_reason;
1825 	vcpu->run->msr.error = 0;
1826 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1827 	vcpu->run->msr.reason = msr_reason;
1828 	vcpu->run->msr.index = index;
1829 	vcpu->run->msr.data = data;
1830 	vcpu->arch.complete_userspace_io = completion;
1831 
1832 	return 1;
1833 }
1834 
1835 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1836 {
1837 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1838 				   complete_emulated_rdmsr, r);
1839 }
1840 
1841 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1842 {
1843 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1844 				   complete_emulated_wrmsr, r);
1845 }
1846 
1847 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1848 {
1849 	u32 ecx = kvm_rcx_read(vcpu);
1850 	u64 data;
1851 	int r;
1852 
1853 	r = kvm_get_msr(vcpu, ecx, &data);
1854 
1855 	/* MSR read failed? See if we should ask user space */
1856 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1857 		/* Bounce to user space */
1858 		return 0;
1859 	}
1860 
1861 	if (!r) {
1862 		trace_kvm_msr_read(ecx, data);
1863 
1864 		kvm_rax_write(vcpu, data & -1u);
1865 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1866 	} else {
1867 		trace_kvm_msr_read_ex(ecx);
1868 	}
1869 
1870 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1873 
1874 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1875 {
1876 	u32 ecx = kvm_rcx_read(vcpu);
1877 	u64 data = kvm_read_edx_eax(vcpu);
1878 	int r;
1879 
1880 	r = kvm_set_msr(vcpu, ecx, data);
1881 
1882 	/* MSR write failed? See if we should ask user space */
1883 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1884 		/* Bounce to user space */
1885 		return 0;
1886 
1887 	/* Signal all other negative errors to userspace */
1888 	if (r < 0)
1889 		return r;
1890 
1891 	if (!r)
1892 		trace_kvm_msr_write(ecx, data);
1893 	else
1894 		trace_kvm_msr_write_ex(ecx, data);
1895 
1896 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1899 
1900 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1901 {
1902 	return kvm_skip_emulated_instruction(vcpu);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1905 
1906 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1907 {
1908 	/* Treat an INVD instruction as a NOP and just skip it. */
1909 	return kvm_emulate_as_nop(vcpu);
1910 }
1911 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1912 
1913 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1914 {
1915 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1916 	return kvm_emulate_as_nop(vcpu);
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1919 
1920 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1921 {
1922 	kvm_queue_exception(vcpu, UD_VECTOR);
1923 	return 1;
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1926 
1927 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1928 {
1929 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1930 	return kvm_emulate_as_nop(vcpu);
1931 }
1932 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1933 
1934 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1935 {
1936 	xfer_to_guest_mode_prepare();
1937 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1938 		xfer_to_guest_mode_work_pending();
1939 }
1940 
1941 /*
1942  * The fast path for frequent and performance sensitive wrmsr emulation,
1943  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1944  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1945  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1946  * other cases which must be called after interrupts are enabled on the host.
1947  */
1948 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1949 {
1950 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1951 		return 1;
1952 
1953 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1954 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1955 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1956 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1957 
1958 		data &= ~(1 << 12);
1959 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1960 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1961 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1962 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1963 		return 0;
1964 	}
1965 
1966 	return 1;
1967 }
1968 
1969 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1970 {
1971 	if (!kvm_can_use_hv_timer(vcpu))
1972 		return 1;
1973 
1974 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1975 	return 0;
1976 }
1977 
1978 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1979 {
1980 	u32 msr = kvm_rcx_read(vcpu);
1981 	u64 data;
1982 	fastpath_t ret = EXIT_FASTPATH_NONE;
1983 
1984 	switch (msr) {
1985 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1986 		data = kvm_read_edx_eax(vcpu);
1987 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1988 			kvm_skip_emulated_instruction(vcpu);
1989 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1990 		}
1991 		break;
1992 	case MSR_IA32_TSC_DEADLINE:
1993 		data = kvm_read_edx_eax(vcpu);
1994 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1995 			kvm_skip_emulated_instruction(vcpu);
1996 			ret = EXIT_FASTPATH_REENTER_GUEST;
1997 		}
1998 		break;
1999 	default:
2000 		break;
2001 	}
2002 
2003 	if (ret != EXIT_FASTPATH_NONE)
2004 		trace_kvm_msr_write(msr, data);
2005 
2006 	return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2009 
2010 /*
2011  * Adapt set_msr() to msr_io()'s calling convention
2012  */
2013 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2014 {
2015 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2016 }
2017 
2018 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2019 {
2020 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2021 }
2022 
2023 #ifdef CONFIG_X86_64
2024 struct pvclock_clock {
2025 	int vclock_mode;
2026 	u64 cycle_last;
2027 	u64 mask;
2028 	u32 mult;
2029 	u32 shift;
2030 	u64 base_cycles;
2031 	u64 offset;
2032 };
2033 
2034 struct pvclock_gtod_data {
2035 	seqcount_t	seq;
2036 
2037 	struct pvclock_clock clock; /* extract of a clocksource struct */
2038 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2039 
2040 	ktime_t		offs_boot;
2041 	u64		wall_time_sec;
2042 };
2043 
2044 static struct pvclock_gtod_data pvclock_gtod_data;
2045 
2046 static void update_pvclock_gtod(struct timekeeper *tk)
2047 {
2048 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2049 
2050 	write_seqcount_begin(&vdata->seq);
2051 
2052 	/* copy pvclock gtod data */
2053 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2054 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2055 	vdata->clock.mask		= tk->tkr_mono.mask;
2056 	vdata->clock.mult		= tk->tkr_mono.mult;
2057 	vdata->clock.shift		= tk->tkr_mono.shift;
2058 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2059 	vdata->clock.offset		= tk->tkr_mono.base;
2060 
2061 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2062 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2063 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2064 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2065 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2066 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2067 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2068 
2069 	vdata->wall_time_sec            = tk->xtime_sec;
2070 
2071 	vdata->offs_boot		= tk->offs_boot;
2072 
2073 	write_seqcount_end(&vdata->seq);
2074 }
2075 
2076 static s64 get_kvmclock_base_ns(void)
2077 {
2078 	/* Count up from boot time, but with the frequency of the raw clock.  */
2079 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2080 }
2081 #else
2082 static s64 get_kvmclock_base_ns(void)
2083 {
2084 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2085 	return ktime_get_boottime_ns();
2086 }
2087 #endif
2088 
2089 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2090 {
2091 	int version;
2092 	int r;
2093 	struct pvclock_wall_clock wc;
2094 	u32 wc_sec_hi;
2095 	u64 wall_nsec;
2096 
2097 	if (!wall_clock)
2098 		return;
2099 
2100 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2101 	if (r)
2102 		return;
2103 
2104 	if (version & 1)
2105 		++version;  /* first time write, random junk */
2106 
2107 	++version;
2108 
2109 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2110 		return;
2111 
2112 	/*
2113 	 * The guest calculates current wall clock time by adding
2114 	 * system time (updated by kvm_guest_time_update below) to the
2115 	 * wall clock specified here.  We do the reverse here.
2116 	 */
2117 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2118 
2119 	wc.nsec = do_div(wall_nsec, 1000000000);
2120 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2121 	wc.version = version;
2122 
2123 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2124 
2125 	if (sec_hi_ofs) {
2126 		wc_sec_hi = wall_nsec >> 32;
2127 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2128 				&wc_sec_hi, sizeof(wc_sec_hi));
2129 	}
2130 
2131 	version++;
2132 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2133 }
2134 
2135 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2136 				  bool old_msr, bool host_initiated)
2137 {
2138 	struct kvm_arch *ka = &vcpu->kvm->arch;
2139 
2140 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2141 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2142 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2143 
2144 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2145 	}
2146 
2147 	vcpu->arch.time = system_time;
2148 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2149 
2150 	/* we verify if the enable bit is set... */
2151 	vcpu->arch.pv_time_enabled = false;
2152 	if (!(system_time & 1))
2153 		return;
2154 
2155 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2156 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2157 				       sizeof(struct pvclock_vcpu_time_info)))
2158 		vcpu->arch.pv_time_enabled = true;
2159 
2160 	return;
2161 }
2162 
2163 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2164 {
2165 	do_shl32_div32(dividend, divisor);
2166 	return dividend;
2167 }
2168 
2169 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2170 			       s8 *pshift, u32 *pmultiplier)
2171 {
2172 	uint64_t scaled64;
2173 	int32_t  shift = 0;
2174 	uint64_t tps64;
2175 	uint32_t tps32;
2176 
2177 	tps64 = base_hz;
2178 	scaled64 = scaled_hz;
2179 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2180 		tps64 >>= 1;
2181 		shift--;
2182 	}
2183 
2184 	tps32 = (uint32_t)tps64;
2185 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2186 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2187 			scaled64 >>= 1;
2188 		else
2189 			tps32 <<= 1;
2190 		shift++;
2191 	}
2192 
2193 	*pshift = shift;
2194 	*pmultiplier = div_frac(scaled64, tps32);
2195 }
2196 
2197 #ifdef CONFIG_X86_64
2198 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2199 #endif
2200 
2201 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2202 static unsigned long max_tsc_khz;
2203 
2204 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2205 {
2206 	u64 v = (u64)khz * (1000000 + ppm);
2207 	do_div(v, 1000000);
2208 	return v;
2209 }
2210 
2211 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2212 
2213 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2214 {
2215 	u64 ratio;
2216 
2217 	/* Guest TSC same frequency as host TSC? */
2218 	if (!scale) {
2219 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2220 		return 0;
2221 	}
2222 
2223 	/* TSC scaling supported? */
2224 	if (!kvm_has_tsc_control) {
2225 		if (user_tsc_khz > tsc_khz) {
2226 			vcpu->arch.tsc_catchup = 1;
2227 			vcpu->arch.tsc_always_catchup = 1;
2228 			return 0;
2229 		} else {
2230 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2231 			return -1;
2232 		}
2233 	}
2234 
2235 	/* TSC scaling required  - calculate ratio */
2236 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2237 				user_tsc_khz, tsc_khz);
2238 
2239 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2240 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2241 			            user_tsc_khz);
2242 		return -1;
2243 	}
2244 
2245 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2246 	return 0;
2247 }
2248 
2249 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2250 {
2251 	u32 thresh_lo, thresh_hi;
2252 	int use_scaling = 0;
2253 
2254 	/* tsc_khz can be zero if TSC calibration fails */
2255 	if (user_tsc_khz == 0) {
2256 		/* set tsc_scaling_ratio to a safe value */
2257 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2258 		return -1;
2259 	}
2260 
2261 	/* Compute a scale to convert nanoseconds in TSC cycles */
2262 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2263 			   &vcpu->arch.virtual_tsc_shift,
2264 			   &vcpu->arch.virtual_tsc_mult);
2265 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2266 
2267 	/*
2268 	 * Compute the variation in TSC rate which is acceptable
2269 	 * within the range of tolerance and decide if the
2270 	 * rate being applied is within that bounds of the hardware
2271 	 * rate.  If so, no scaling or compensation need be done.
2272 	 */
2273 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2274 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2275 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2276 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2277 		use_scaling = 1;
2278 	}
2279 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2280 }
2281 
2282 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2283 {
2284 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2285 				      vcpu->arch.virtual_tsc_mult,
2286 				      vcpu->arch.virtual_tsc_shift);
2287 	tsc += vcpu->arch.this_tsc_write;
2288 	return tsc;
2289 }
2290 
2291 static inline int gtod_is_based_on_tsc(int mode)
2292 {
2293 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2294 }
2295 
2296 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2297 {
2298 #ifdef CONFIG_X86_64
2299 	bool vcpus_matched;
2300 	struct kvm_arch *ka = &vcpu->kvm->arch;
2301 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2302 
2303 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2304 			 atomic_read(&vcpu->kvm->online_vcpus));
2305 
2306 	/*
2307 	 * Once the masterclock is enabled, always perform request in
2308 	 * order to update it.
2309 	 *
2310 	 * In order to enable masterclock, the host clocksource must be TSC
2311 	 * and the vcpus need to have matched TSCs.  When that happens,
2312 	 * perform request to enable masterclock.
2313 	 */
2314 	if (ka->use_master_clock ||
2315 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2316 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2317 
2318 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2319 			    atomic_read(&vcpu->kvm->online_vcpus),
2320 		            ka->use_master_clock, gtod->clock.vclock_mode);
2321 #endif
2322 }
2323 
2324 /*
2325  * Multiply tsc by a fixed point number represented by ratio.
2326  *
2327  * The most significant 64-N bits (mult) of ratio represent the
2328  * integral part of the fixed point number; the remaining N bits
2329  * (frac) represent the fractional part, ie. ratio represents a fixed
2330  * point number (mult + frac * 2^(-N)).
2331  *
2332  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2333  */
2334 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2335 {
2336 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2337 }
2338 
2339 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2340 {
2341 	u64 _tsc = tsc;
2342 
2343 	if (ratio != kvm_default_tsc_scaling_ratio)
2344 		_tsc = __scale_tsc(ratio, tsc);
2345 
2346 	return _tsc;
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2349 
2350 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2351 {
2352 	u64 tsc;
2353 
2354 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2355 
2356 	return target_tsc - tsc;
2357 }
2358 
2359 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2360 {
2361 	return vcpu->arch.l1_tsc_offset +
2362 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2365 
2366 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2367 {
2368 	u64 nested_offset;
2369 
2370 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2371 		nested_offset = l1_offset;
2372 	else
2373 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2374 						kvm_tsc_scaling_ratio_frac_bits);
2375 
2376 	nested_offset += l2_offset;
2377 	return nested_offset;
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2380 
2381 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2382 {
2383 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2384 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2385 				       kvm_tsc_scaling_ratio_frac_bits);
2386 
2387 	return l1_multiplier;
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2390 
2391 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2392 {
2393 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2394 				   vcpu->arch.l1_tsc_offset,
2395 				   l1_offset);
2396 
2397 	vcpu->arch.l1_tsc_offset = l1_offset;
2398 
2399 	/*
2400 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2401 	 * according to the spec this should set L1's TSC (as opposed to
2402 	 * setting L1's offset for L2).
2403 	 */
2404 	if (is_guest_mode(vcpu))
2405 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2406 			l1_offset,
2407 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2408 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2409 	else
2410 		vcpu->arch.tsc_offset = l1_offset;
2411 
2412 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2413 }
2414 
2415 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2416 {
2417 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2418 
2419 	/* Userspace is changing the multiplier while L2 is active */
2420 	if (is_guest_mode(vcpu))
2421 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2422 			l1_multiplier,
2423 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2424 	else
2425 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2426 
2427 	if (kvm_has_tsc_control)
2428 		static_call(kvm_x86_write_tsc_multiplier)(
2429 			vcpu, vcpu->arch.tsc_scaling_ratio);
2430 }
2431 
2432 static inline bool kvm_check_tsc_unstable(void)
2433 {
2434 #ifdef CONFIG_X86_64
2435 	/*
2436 	 * TSC is marked unstable when we're running on Hyper-V,
2437 	 * 'TSC page' clocksource is good.
2438 	 */
2439 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2440 		return false;
2441 #endif
2442 	return check_tsc_unstable();
2443 }
2444 
2445 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2446 {
2447 	struct kvm *kvm = vcpu->kvm;
2448 	u64 offset, ns, elapsed;
2449 	unsigned long flags;
2450 	bool matched;
2451 	bool already_matched;
2452 	bool synchronizing = false;
2453 
2454 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2455 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2456 	ns = get_kvmclock_base_ns();
2457 	elapsed = ns - kvm->arch.last_tsc_nsec;
2458 
2459 	if (vcpu->arch.virtual_tsc_khz) {
2460 		if (data == 0) {
2461 			/*
2462 			 * detection of vcpu initialization -- need to sync
2463 			 * with other vCPUs. This particularly helps to keep
2464 			 * kvm_clock stable after CPU hotplug
2465 			 */
2466 			synchronizing = true;
2467 		} else {
2468 			u64 tsc_exp = kvm->arch.last_tsc_write +
2469 						nsec_to_cycles(vcpu, elapsed);
2470 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2471 			/*
2472 			 * Special case: TSC write with a small delta (1 second)
2473 			 * of virtual cycle time against real time is
2474 			 * interpreted as an attempt to synchronize the CPU.
2475 			 */
2476 			synchronizing = data < tsc_exp + tsc_hz &&
2477 					data + tsc_hz > tsc_exp;
2478 		}
2479 	}
2480 
2481 	/*
2482 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2483 	 * TSC, we add elapsed time in this computation.  We could let the
2484 	 * compensation code attempt to catch up if we fall behind, but
2485 	 * it's better to try to match offsets from the beginning.
2486          */
2487 	if (synchronizing &&
2488 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2489 		if (!kvm_check_tsc_unstable()) {
2490 			offset = kvm->arch.cur_tsc_offset;
2491 		} else {
2492 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2493 			data += delta;
2494 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2495 		}
2496 		matched = true;
2497 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2498 	} else {
2499 		/*
2500 		 * We split periods of matched TSC writes into generations.
2501 		 * For each generation, we track the original measured
2502 		 * nanosecond time, offset, and write, so if TSCs are in
2503 		 * sync, we can match exact offset, and if not, we can match
2504 		 * exact software computation in compute_guest_tsc()
2505 		 *
2506 		 * These values are tracked in kvm->arch.cur_xxx variables.
2507 		 */
2508 		kvm->arch.cur_tsc_generation++;
2509 		kvm->arch.cur_tsc_nsec = ns;
2510 		kvm->arch.cur_tsc_write = data;
2511 		kvm->arch.cur_tsc_offset = offset;
2512 		matched = false;
2513 	}
2514 
2515 	/*
2516 	 * We also track th most recent recorded KHZ, write and time to
2517 	 * allow the matching interval to be extended at each write.
2518 	 */
2519 	kvm->arch.last_tsc_nsec = ns;
2520 	kvm->arch.last_tsc_write = data;
2521 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2522 
2523 	vcpu->arch.last_guest_tsc = data;
2524 
2525 	/* Keep track of which generation this VCPU has synchronized to */
2526 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2527 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2528 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2529 
2530 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2531 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2532 
2533 	spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2534 	if (!matched) {
2535 		kvm->arch.nr_vcpus_matched_tsc = 0;
2536 	} else if (!already_matched) {
2537 		kvm->arch.nr_vcpus_matched_tsc++;
2538 	}
2539 
2540 	kvm_track_tsc_matching(vcpu);
2541 	spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2542 }
2543 
2544 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2545 					   s64 adjustment)
2546 {
2547 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2548 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2549 }
2550 
2551 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2552 {
2553 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2554 		WARN_ON(adjustment < 0);
2555 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2556 				   vcpu->arch.l1_tsc_scaling_ratio);
2557 	adjust_tsc_offset_guest(vcpu, adjustment);
2558 }
2559 
2560 #ifdef CONFIG_X86_64
2561 
2562 static u64 read_tsc(void)
2563 {
2564 	u64 ret = (u64)rdtsc_ordered();
2565 	u64 last = pvclock_gtod_data.clock.cycle_last;
2566 
2567 	if (likely(ret >= last))
2568 		return ret;
2569 
2570 	/*
2571 	 * GCC likes to generate cmov here, but this branch is extremely
2572 	 * predictable (it's just a function of time and the likely is
2573 	 * very likely) and there's a data dependence, so force GCC
2574 	 * to generate a branch instead.  I don't barrier() because
2575 	 * we don't actually need a barrier, and if this function
2576 	 * ever gets inlined it will generate worse code.
2577 	 */
2578 	asm volatile ("");
2579 	return last;
2580 }
2581 
2582 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2583 			  int *mode)
2584 {
2585 	long v;
2586 	u64 tsc_pg_val;
2587 
2588 	switch (clock->vclock_mode) {
2589 	case VDSO_CLOCKMODE_HVCLOCK:
2590 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2591 						  tsc_timestamp);
2592 		if (tsc_pg_val != U64_MAX) {
2593 			/* TSC page valid */
2594 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2595 			v = (tsc_pg_val - clock->cycle_last) &
2596 				clock->mask;
2597 		} else {
2598 			/* TSC page invalid */
2599 			*mode = VDSO_CLOCKMODE_NONE;
2600 		}
2601 		break;
2602 	case VDSO_CLOCKMODE_TSC:
2603 		*mode = VDSO_CLOCKMODE_TSC;
2604 		*tsc_timestamp = read_tsc();
2605 		v = (*tsc_timestamp - clock->cycle_last) &
2606 			clock->mask;
2607 		break;
2608 	default:
2609 		*mode = VDSO_CLOCKMODE_NONE;
2610 	}
2611 
2612 	if (*mode == VDSO_CLOCKMODE_NONE)
2613 		*tsc_timestamp = v = 0;
2614 
2615 	return v * clock->mult;
2616 }
2617 
2618 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2619 {
2620 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2621 	unsigned long seq;
2622 	int mode;
2623 	u64 ns;
2624 
2625 	do {
2626 		seq = read_seqcount_begin(&gtod->seq);
2627 		ns = gtod->raw_clock.base_cycles;
2628 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2629 		ns >>= gtod->raw_clock.shift;
2630 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2631 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2632 	*t = ns;
2633 
2634 	return mode;
2635 }
2636 
2637 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2638 {
2639 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2640 	unsigned long seq;
2641 	int mode;
2642 	u64 ns;
2643 
2644 	do {
2645 		seq = read_seqcount_begin(&gtod->seq);
2646 		ts->tv_sec = gtod->wall_time_sec;
2647 		ns = gtod->clock.base_cycles;
2648 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2649 		ns >>= gtod->clock.shift;
2650 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2651 
2652 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2653 	ts->tv_nsec = ns;
2654 
2655 	return mode;
2656 }
2657 
2658 /* returns true if host is using TSC based clocksource */
2659 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2660 {
2661 	/* checked again under seqlock below */
2662 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2663 		return false;
2664 
2665 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2666 						      tsc_timestamp));
2667 }
2668 
2669 /* returns true if host is using TSC based clocksource */
2670 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2671 					   u64 *tsc_timestamp)
2672 {
2673 	/* checked again under seqlock below */
2674 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675 		return false;
2676 
2677 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2678 }
2679 #endif
2680 
2681 /*
2682  *
2683  * Assuming a stable TSC across physical CPUS, and a stable TSC
2684  * across virtual CPUs, the following condition is possible.
2685  * Each numbered line represents an event visible to both
2686  * CPUs at the next numbered event.
2687  *
2688  * "timespecX" represents host monotonic time. "tscX" represents
2689  * RDTSC value.
2690  *
2691  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2692  *
2693  * 1.  read timespec0,tsc0
2694  * 2.					| timespec1 = timespec0 + N
2695  * 					| tsc1 = tsc0 + M
2696  * 3. transition to guest		| transition to guest
2697  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2698  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2699  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2700  *
2701  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2702  *
2703  * 	- ret0 < ret1
2704  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2705  *		...
2706  *	- 0 < N - M => M < N
2707  *
2708  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2709  * always the case (the difference between two distinct xtime instances
2710  * might be smaller then the difference between corresponding TSC reads,
2711  * when updating guest vcpus pvclock areas).
2712  *
2713  * To avoid that problem, do not allow visibility of distinct
2714  * system_timestamp/tsc_timestamp values simultaneously: use a master
2715  * copy of host monotonic time values. Update that master copy
2716  * in lockstep.
2717  *
2718  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2719  *
2720  */
2721 
2722 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2723 {
2724 #ifdef CONFIG_X86_64
2725 	struct kvm_arch *ka = &kvm->arch;
2726 	int vclock_mode;
2727 	bool host_tsc_clocksource, vcpus_matched;
2728 
2729 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2730 			atomic_read(&kvm->online_vcpus));
2731 
2732 	/*
2733 	 * If the host uses TSC clock, then passthrough TSC as stable
2734 	 * to the guest.
2735 	 */
2736 	host_tsc_clocksource = kvm_get_time_and_clockread(
2737 					&ka->master_kernel_ns,
2738 					&ka->master_cycle_now);
2739 
2740 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2741 				&& !ka->backwards_tsc_observed
2742 				&& !ka->boot_vcpu_runs_old_kvmclock;
2743 
2744 	if (ka->use_master_clock)
2745 		atomic_set(&kvm_guest_has_master_clock, 1);
2746 
2747 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2748 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2749 					vcpus_matched);
2750 #endif
2751 }
2752 
2753 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2754 {
2755 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2756 }
2757 
2758 static void kvm_gen_update_masterclock(struct kvm *kvm)
2759 {
2760 #ifdef CONFIG_X86_64
2761 	int i;
2762 	struct kvm_vcpu *vcpu;
2763 	struct kvm_arch *ka = &kvm->arch;
2764 	unsigned long flags;
2765 
2766 	kvm_hv_invalidate_tsc_page(kvm);
2767 
2768 	kvm_make_mclock_inprogress_request(kvm);
2769 
2770 	/* no guest entries from this point */
2771 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2772 	pvclock_update_vm_gtod_copy(kvm);
2773 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2774 
2775 	kvm_for_each_vcpu(i, vcpu, kvm)
2776 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2777 
2778 	/* guest entries allowed */
2779 	kvm_for_each_vcpu(i, vcpu, kvm)
2780 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2781 #endif
2782 }
2783 
2784 u64 get_kvmclock_ns(struct kvm *kvm)
2785 {
2786 	struct kvm_arch *ka = &kvm->arch;
2787 	struct pvclock_vcpu_time_info hv_clock;
2788 	unsigned long flags;
2789 	u64 ret;
2790 
2791 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2792 	if (!ka->use_master_clock) {
2793 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2794 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2795 	}
2796 
2797 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2798 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2799 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2800 
2801 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2802 	get_cpu();
2803 
2804 	if (__this_cpu_read(cpu_tsc_khz)) {
2805 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2806 				   &hv_clock.tsc_shift,
2807 				   &hv_clock.tsc_to_system_mul);
2808 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2809 	} else
2810 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2811 
2812 	put_cpu();
2813 
2814 	return ret;
2815 }
2816 
2817 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2818 				   struct gfn_to_hva_cache *cache,
2819 				   unsigned int offset)
2820 {
2821 	struct kvm_vcpu_arch *vcpu = &v->arch;
2822 	struct pvclock_vcpu_time_info guest_hv_clock;
2823 
2824 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2825 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2826 		return;
2827 
2828 	/* This VCPU is paused, but it's legal for a guest to read another
2829 	 * VCPU's kvmclock, so we really have to follow the specification where
2830 	 * it says that version is odd if data is being modified, and even after
2831 	 * it is consistent.
2832 	 *
2833 	 * Version field updates must be kept separate.  This is because
2834 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2835 	 * writes within a string instruction are weakly ordered.  So there
2836 	 * are three writes overall.
2837 	 *
2838 	 * As a small optimization, only write the version field in the first
2839 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2840 	 * version field is the first in the struct.
2841 	 */
2842 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2843 
2844 	if (guest_hv_clock.version & 1)
2845 		++guest_hv_clock.version;  /* first time write, random junk */
2846 
2847 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2848 	kvm_write_guest_offset_cached(v->kvm, cache,
2849 				      &vcpu->hv_clock, offset,
2850 				      sizeof(vcpu->hv_clock.version));
2851 
2852 	smp_wmb();
2853 
2854 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2855 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2856 
2857 	if (vcpu->pvclock_set_guest_stopped_request) {
2858 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2859 		vcpu->pvclock_set_guest_stopped_request = false;
2860 	}
2861 
2862 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2863 
2864 	kvm_write_guest_offset_cached(v->kvm, cache,
2865 				      &vcpu->hv_clock, offset,
2866 				      sizeof(vcpu->hv_clock));
2867 
2868 	smp_wmb();
2869 
2870 	vcpu->hv_clock.version++;
2871 	kvm_write_guest_offset_cached(v->kvm, cache,
2872 				     &vcpu->hv_clock, offset,
2873 				     sizeof(vcpu->hv_clock.version));
2874 }
2875 
2876 static int kvm_guest_time_update(struct kvm_vcpu *v)
2877 {
2878 	unsigned long flags, tgt_tsc_khz;
2879 	struct kvm_vcpu_arch *vcpu = &v->arch;
2880 	struct kvm_arch *ka = &v->kvm->arch;
2881 	s64 kernel_ns;
2882 	u64 tsc_timestamp, host_tsc;
2883 	u8 pvclock_flags;
2884 	bool use_master_clock;
2885 
2886 	kernel_ns = 0;
2887 	host_tsc = 0;
2888 
2889 	/*
2890 	 * If the host uses TSC clock, then passthrough TSC as stable
2891 	 * to the guest.
2892 	 */
2893 	spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2894 	use_master_clock = ka->use_master_clock;
2895 	if (use_master_clock) {
2896 		host_tsc = ka->master_cycle_now;
2897 		kernel_ns = ka->master_kernel_ns;
2898 	}
2899 	spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2900 
2901 	/* Keep irq disabled to prevent changes to the clock */
2902 	local_irq_save(flags);
2903 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2904 	if (unlikely(tgt_tsc_khz == 0)) {
2905 		local_irq_restore(flags);
2906 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2907 		return 1;
2908 	}
2909 	if (!use_master_clock) {
2910 		host_tsc = rdtsc();
2911 		kernel_ns = get_kvmclock_base_ns();
2912 	}
2913 
2914 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2915 
2916 	/*
2917 	 * We may have to catch up the TSC to match elapsed wall clock
2918 	 * time for two reasons, even if kvmclock is used.
2919 	 *   1) CPU could have been running below the maximum TSC rate
2920 	 *   2) Broken TSC compensation resets the base at each VCPU
2921 	 *      entry to avoid unknown leaps of TSC even when running
2922 	 *      again on the same CPU.  This may cause apparent elapsed
2923 	 *      time to disappear, and the guest to stand still or run
2924 	 *	very slowly.
2925 	 */
2926 	if (vcpu->tsc_catchup) {
2927 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2928 		if (tsc > tsc_timestamp) {
2929 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2930 			tsc_timestamp = tsc;
2931 		}
2932 	}
2933 
2934 	local_irq_restore(flags);
2935 
2936 	/* With all the info we got, fill in the values */
2937 
2938 	if (kvm_has_tsc_control)
2939 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2940 					    v->arch.l1_tsc_scaling_ratio);
2941 
2942 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2943 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2944 				   &vcpu->hv_clock.tsc_shift,
2945 				   &vcpu->hv_clock.tsc_to_system_mul);
2946 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2947 	}
2948 
2949 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2950 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2951 	vcpu->last_guest_tsc = tsc_timestamp;
2952 
2953 	/* If the host uses TSC clocksource, then it is stable */
2954 	pvclock_flags = 0;
2955 	if (use_master_clock)
2956 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2957 
2958 	vcpu->hv_clock.flags = pvclock_flags;
2959 
2960 	if (vcpu->pv_time_enabled)
2961 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2962 	if (vcpu->xen.vcpu_info_set)
2963 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2964 				       offsetof(struct compat_vcpu_info, time));
2965 	if (vcpu->xen.vcpu_time_info_set)
2966 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2967 	if (v == kvm_get_vcpu(v->kvm, 0))
2968 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2969 	return 0;
2970 }
2971 
2972 /*
2973  * kvmclock updates which are isolated to a given vcpu, such as
2974  * vcpu->cpu migration, should not allow system_timestamp from
2975  * the rest of the vcpus to remain static. Otherwise ntp frequency
2976  * correction applies to one vcpu's system_timestamp but not
2977  * the others.
2978  *
2979  * So in those cases, request a kvmclock update for all vcpus.
2980  * We need to rate-limit these requests though, as they can
2981  * considerably slow guests that have a large number of vcpus.
2982  * The time for a remote vcpu to update its kvmclock is bound
2983  * by the delay we use to rate-limit the updates.
2984  */
2985 
2986 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2987 
2988 static void kvmclock_update_fn(struct work_struct *work)
2989 {
2990 	int i;
2991 	struct delayed_work *dwork = to_delayed_work(work);
2992 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2993 					   kvmclock_update_work);
2994 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2995 	struct kvm_vcpu *vcpu;
2996 
2997 	kvm_for_each_vcpu(i, vcpu, kvm) {
2998 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2999 		kvm_vcpu_kick(vcpu);
3000 	}
3001 }
3002 
3003 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3004 {
3005 	struct kvm *kvm = v->kvm;
3006 
3007 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3008 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3009 					KVMCLOCK_UPDATE_DELAY);
3010 }
3011 
3012 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3013 
3014 static void kvmclock_sync_fn(struct work_struct *work)
3015 {
3016 	struct delayed_work *dwork = to_delayed_work(work);
3017 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3018 					   kvmclock_sync_work);
3019 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3020 
3021 	if (!kvmclock_periodic_sync)
3022 		return;
3023 
3024 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3025 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3026 					KVMCLOCK_SYNC_PERIOD);
3027 }
3028 
3029 /*
3030  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3031  */
3032 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3033 {
3034 	/* McStatusWrEn enabled? */
3035 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3036 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3037 
3038 	return false;
3039 }
3040 
3041 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3042 {
3043 	u64 mcg_cap = vcpu->arch.mcg_cap;
3044 	unsigned bank_num = mcg_cap & 0xff;
3045 	u32 msr = msr_info->index;
3046 	u64 data = msr_info->data;
3047 
3048 	switch (msr) {
3049 	case MSR_IA32_MCG_STATUS:
3050 		vcpu->arch.mcg_status = data;
3051 		break;
3052 	case MSR_IA32_MCG_CTL:
3053 		if (!(mcg_cap & MCG_CTL_P) &&
3054 		    (data || !msr_info->host_initiated))
3055 			return 1;
3056 		if (data != 0 && data != ~(u64)0)
3057 			return 1;
3058 		vcpu->arch.mcg_ctl = data;
3059 		break;
3060 	default:
3061 		if (msr >= MSR_IA32_MC0_CTL &&
3062 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3063 			u32 offset = array_index_nospec(
3064 				msr - MSR_IA32_MC0_CTL,
3065 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3066 
3067 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3068 			 * some Linux kernels though clear bit 10 in bank 4 to
3069 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3070 			 * this to avoid an uncatched #GP in the guest
3071 			 */
3072 			if ((offset & 0x3) == 0 &&
3073 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3074 				return -1;
3075 
3076 			/* MCi_STATUS */
3077 			if (!msr_info->host_initiated &&
3078 			    (offset & 0x3) == 1 && data != 0) {
3079 				if (!can_set_mci_status(vcpu))
3080 					return -1;
3081 			}
3082 
3083 			vcpu->arch.mce_banks[offset] = data;
3084 			break;
3085 		}
3086 		return 1;
3087 	}
3088 	return 0;
3089 }
3090 
3091 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3092 {
3093 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3094 
3095 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3096 }
3097 
3098 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3099 {
3100 	gpa_t gpa = data & ~0x3f;
3101 
3102 	/* Bits 4:5 are reserved, Should be zero */
3103 	if (data & 0x30)
3104 		return 1;
3105 
3106 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3107 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3108 		return 1;
3109 
3110 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3111 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3112 		return 1;
3113 
3114 	if (!lapic_in_kernel(vcpu))
3115 		return data ? 1 : 0;
3116 
3117 	vcpu->arch.apf.msr_en_val = data;
3118 
3119 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3120 		kvm_clear_async_pf_completion_queue(vcpu);
3121 		kvm_async_pf_hash_reset(vcpu);
3122 		return 0;
3123 	}
3124 
3125 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3126 					sizeof(u64)))
3127 		return 1;
3128 
3129 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3130 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3131 
3132 	kvm_async_pf_wakeup_all(vcpu);
3133 
3134 	return 0;
3135 }
3136 
3137 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3138 {
3139 	/* Bits 8-63 are reserved */
3140 	if (data >> 8)
3141 		return 1;
3142 
3143 	if (!lapic_in_kernel(vcpu))
3144 		return 1;
3145 
3146 	vcpu->arch.apf.msr_int_val = data;
3147 
3148 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3149 
3150 	return 0;
3151 }
3152 
3153 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3154 {
3155 	vcpu->arch.pv_time_enabled = false;
3156 	vcpu->arch.time = 0;
3157 }
3158 
3159 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3160 {
3161 	++vcpu->stat.tlb_flush;
3162 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3163 }
3164 
3165 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3166 {
3167 	++vcpu->stat.tlb_flush;
3168 
3169 	if (!tdp_enabled) {
3170                /*
3171 		 * A TLB flush on behalf of the guest is equivalent to
3172 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3173 		 * a forced sync of the shadow page tables.  Unload the
3174 		 * entire MMU here and the subsequent load will sync the
3175 		 * shadow page tables, and also flush the TLB.
3176 		 */
3177 		kvm_mmu_unload(vcpu);
3178 		return;
3179 	}
3180 
3181 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3182 }
3183 
3184 static void record_steal_time(struct kvm_vcpu *vcpu)
3185 {
3186 	struct kvm_host_map map;
3187 	struct kvm_steal_time *st;
3188 
3189 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3190 		kvm_xen_runstate_set_running(vcpu);
3191 		return;
3192 	}
3193 
3194 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3195 		return;
3196 
3197 	/* -EAGAIN is returned in atomic context so we can just return. */
3198 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3199 			&map, &vcpu->arch.st.cache, false))
3200 		return;
3201 
3202 	st = map.hva +
3203 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3204 
3205 	/*
3206 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3207 	 * expensive IPIs.
3208 	 */
3209 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3210 		u8 st_preempted = xchg(&st->preempted, 0);
3211 
3212 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3213 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3214 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3215 			kvm_vcpu_flush_tlb_guest(vcpu);
3216 	} else {
3217 		st->preempted = 0;
3218 	}
3219 
3220 	vcpu->arch.st.preempted = 0;
3221 
3222 	if (st->version & 1)
3223 		st->version += 1;  /* first time write, random junk */
3224 
3225 	st->version += 1;
3226 
3227 	smp_wmb();
3228 
3229 	st->steal += current->sched_info.run_delay -
3230 		vcpu->arch.st.last_steal;
3231 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3232 
3233 	smp_wmb();
3234 
3235 	st->version += 1;
3236 
3237 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3238 }
3239 
3240 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3241 {
3242 	bool pr = false;
3243 	u32 msr = msr_info->index;
3244 	u64 data = msr_info->data;
3245 
3246 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3247 		return kvm_xen_write_hypercall_page(vcpu, data);
3248 
3249 	switch (msr) {
3250 	case MSR_AMD64_NB_CFG:
3251 	case MSR_IA32_UCODE_WRITE:
3252 	case MSR_VM_HSAVE_PA:
3253 	case MSR_AMD64_PATCH_LOADER:
3254 	case MSR_AMD64_BU_CFG2:
3255 	case MSR_AMD64_DC_CFG:
3256 	case MSR_F15H_EX_CFG:
3257 		break;
3258 
3259 	case MSR_IA32_UCODE_REV:
3260 		if (msr_info->host_initiated)
3261 			vcpu->arch.microcode_version = data;
3262 		break;
3263 	case MSR_IA32_ARCH_CAPABILITIES:
3264 		if (!msr_info->host_initiated)
3265 			return 1;
3266 		vcpu->arch.arch_capabilities = data;
3267 		break;
3268 	case MSR_IA32_PERF_CAPABILITIES: {
3269 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3270 
3271 		if (!msr_info->host_initiated)
3272 			return 1;
3273 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3274 			return 1;
3275 		if (data & ~msr_ent.data)
3276 			return 1;
3277 
3278 		vcpu->arch.perf_capabilities = data;
3279 
3280 		return 0;
3281 		}
3282 	case MSR_EFER:
3283 		return set_efer(vcpu, msr_info);
3284 	case MSR_K7_HWCR:
3285 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3286 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3287 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3288 
3289 		/* Handle McStatusWrEn */
3290 		if (data == BIT_ULL(18)) {
3291 			vcpu->arch.msr_hwcr = data;
3292 		} else if (data != 0) {
3293 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3294 				    data);
3295 			return 1;
3296 		}
3297 		break;
3298 	case MSR_FAM10H_MMIO_CONF_BASE:
3299 		if (data != 0) {
3300 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3301 				    "0x%llx\n", data);
3302 			return 1;
3303 		}
3304 		break;
3305 	case 0x200 ... 0x2ff:
3306 		return kvm_mtrr_set_msr(vcpu, msr, data);
3307 	case MSR_IA32_APICBASE:
3308 		return kvm_set_apic_base(vcpu, msr_info);
3309 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3310 		return kvm_x2apic_msr_write(vcpu, msr, data);
3311 	case MSR_IA32_TSC_DEADLINE:
3312 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3313 		break;
3314 	case MSR_IA32_TSC_ADJUST:
3315 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3316 			if (!msr_info->host_initiated) {
3317 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3318 				adjust_tsc_offset_guest(vcpu, adj);
3319 			}
3320 			vcpu->arch.ia32_tsc_adjust_msr = data;
3321 		}
3322 		break;
3323 	case MSR_IA32_MISC_ENABLE:
3324 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3325 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3326 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3327 				return 1;
3328 			vcpu->arch.ia32_misc_enable_msr = data;
3329 			kvm_update_cpuid_runtime(vcpu);
3330 		} else {
3331 			vcpu->arch.ia32_misc_enable_msr = data;
3332 		}
3333 		break;
3334 	case MSR_IA32_SMBASE:
3335 		if (!msr_info->host_initiated)
3336 			return 1;
3337 		vcpu->arch.smbase = data;
3338 		break;
3339 	case MSR_IA32_POWER_CTL:
3340 		vcpu->arch.msr_ia32_power_ctl = data;
3341 		break;
3342 	case MSR_IA32_TSC:
3343 		if (msr_info->host_initiated) {
3344 			kvm_synchronize_tsc(vcpu, data);
3345 		} else {
3346 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3347 			adjust_tsc_offset_guest(vcpu, adj);
3348 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3349 		}
3350 		break;
3351 	case MSR_IA32_XSS:
3352 		if (!msr_info->host_initiated &&
3353 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3354 			return 1;
3355 		/*
3356 		 * KVM supports exposing PT to the guest, but does not support
3357 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3358 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3359 		 */
3360 		if (data & ~supported_xss)
3361 			return 1;
3362 		vcpu->arch.ia32_xss = data;
3363 		break;
3364 	case MSR_SMI_COUNT:
3365 		if (!msr_info->host_initiated)
3366 			return 1;
3367 		vcpu->arch.smi_count = data;
3368 		break;
3369 	case MSR_KVM_WALL_CLOCK_NEW:
3370 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3371 			return 1;
3372 
3373 		vcpu->kvm->arch.wall_clock = data;
3374 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3375 		break;
3376 	case MSR_KVM_WALL_CLOCK:
3377 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3378 			return 1;
3379 
3380 		vcpu->kvm->arch.wall_clock = data;
3381 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3382 		break;
3383 	case MSR_KVM_SYSTEM_TIME_NEW:
3384 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3385 			return 1;
3386 
3387 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3388 		break;
3389 	case MSR_KVM_SYSTEM_TIME:
3390 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3391 			return 1;
3392 
3393 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3394 		break;
3395 	case MSR_KVM_ASYNC_PF_EN:
3396 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3397 			return 1;
3398 
3399 		if (kvm_pv_enable_async_pf(vcpu, data))
3400 			return 1;
3401 		break;
3402 	case MSR_KVM_ASYNC_PF_INT:
3403 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3404 			return 1;
3405 
3406 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3407 			return 1;
3408 		break;
3409 	case MSR_KVM_ASYNC_PF_ACK:
3410 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3411 			return 1;
3412 		if (data & 0x1) {
3413 			vcpu->arch.apf.pageready_pending = false;
3414 			kvm_check_async_pf_completion(vcpu);
3415 		}
3416 		break;
3417 	case MSR_KVM_STEAL_TIME:
3418 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3419 			return 1;
3420 
3421 		if (unlikely(!sched_info_on()))
3422 			return 1;
3423 
3424 		if (data & KVM_STEAL_RESERVED_MASK)
3425 			return 1;
3426 
3427 		vcpu->arch.st.msr_val = data;
3428 
3429 		if (!(data & KVM_MSR_ENABLED))
3430 			break;
3431 
3432 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3433 
3434 		break;
3435 	case MSR_KVM_PV_EOI_EN:
3436 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3437 			return 1;
3438 
3439 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3440 			return 1;
3441 		break;
3442 
3443 	case MSR_KVM_POLL_CONTROL:
3444 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3445 			return 1;
3446 
3447 		/* only enable bit supported */
3448 		if (data & (-1ULL << 1))
3449 			return 1;
3450 
3451 		vcpu->arch.msr_kvm_poll_control = data;
3452 		break;
3453 
3454 	case MSR_IA32_MCG_CTL:
3455 	case MSR_IA32_MCG_STATUS:
3456 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3457 		return set_msr_mce(vcpu, msr_info);
3458 
3459 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3460 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3461 		pr = true;
3462 		fallthrough;
3463 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3464 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3465 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3466 			return kvm_pmu_set_msr(vcpu, msr_info);
3467 
3468 		if (pr || data != 0)
3469 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3470 				    "0x%x data 0x%llx\n", msr, data);
3471 		break;
3472 	case MSR_K7_CLK_CTL:
3473 		/*
3474 		 * Ignore all writes to this no longer documented MSR.
3475 		 * Writes are only relevant for old K7 processors,
3476 		 * all pre-dating SVM, but a recommended workaround from
3477 		 * AMD for these chips. It is possible to specify the
3478 		 * affected processor models on the command line, hence
3479 		 * the need to ignore the workaround.
3480 		 */
3481 		break;
3482 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3483 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3484 	case HV_X64_MSR_SYNDBG_OPTIONS:
3485 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3486 	case HV_X64_MSR_CRASH_CTL:
3487 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3488 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3489 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3490 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3491 		return kvm_hv_set_msr_common(vcpu, msr, data,
3492 					     msr_info->host_initiated);
3493 	case MSR_IA32_BBL_CR_CTL3:
3494 		/* Drop writes to this legacy MSR -- see rdmsr
3495 		 * counterpart for further detail.
3496 		 */
3497 		if (report_ignored_msrs)
3498 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3499 				msr, data);
3500 		break;
3501 	case MSR_AMD64_OSVW_ID_LENGTH:
3502 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3503 			return 1;
3504 		vcpu->arch.osvw.length = data;
3505 		break;
3506 	case MSR_AMD64_OSVW_STATUS:
3507 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3508 			return 1;
3509 		vcpu->arch.osvw.status = data;
3510 		break;
3511 	case MSR_PLATFORM_INFO:
3512 		if (!msr_info->host_initiated ||
3513 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3514 		     cpuid_fault_enabled(vcpu)))
3515 			return 1;
3516 		vcpu->arch.msr_platform_info = data;
3517 		break;
3518 	case MSR_MISC_FEATURES_ENABLES:
3519 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3520 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3521 		     !supports_cpuid_fault(vcpu)))
3522 			return 1;
3523 		vcpu->arch.msr_misc_features_enables = data;
3524 		break;
3525 	default:
3526 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3527 			return kvm_pmu_set_msr(vcpu, msr_info);
3528 		return KVM_MSR_RET_INVALID;
3529 	}
3530 	return 0;
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3533 
3534 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3535 {
3536 	u64 data;
3537 	u64 mcg_cap = vcpu->arch.mcg_cap;
3538 	unsigned bank_num = mcg_cap & 0xff;
3539 
3540 	switch (msr) {
3541 	case MSR_IA32_P5_MC_ADDR:
3542 	case MSR_IA32_P5_MC_TYPE:
3543 		data = 0;
3544 		break;
3545 	case MSR_IA32_MCG_CAP:
3546 		data = vcpu->arch.mcg_cap;
3547 		break;
3548 	case MSR_IA32_MCG_CTL:
3549 		if (!(mcg_cap & MCG_CTL_P) && !host)
3550 			return 1;
3551 		data = vcpu->arch.mcg_ctl;
3552 		break;
3553 	case MSR_IA32_MCG_STATUS:
3554 		data = vcpu->arch.mcg_status;
3555 		break;
3556 	default:
3557 		if (msr >= MSR_IA32_MC0_CTL &&
3558 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3559 			u32 offset = array_index_nospec(
3560 				msr - MSR_IA32_MC0_CTL,
3561 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3562 
3563 			data = vcpu->arch.mce_banks[offset];
3564 			break;
3565 		}
3566 		return 1;
3567 	}
3568 	*pdata = data;
3569 	return 0;
3570 }
3571 
3572 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3573 {
3574 	switch (msr_info->index) {
3575 	case MSR_IA32_PLATFORM_ID:
3576 	case MSR_IA32_EBL_CR_POWERON:
3577 	case MSR_IA32_LASTBRANCHFROMIP:
3578 	case MSR_IA32_LASTBRANCHTOIP:
3579 	case MSR_IA32_LASTINTFROMIP:
3580 	case MSR_IA32_LASTINTTOIP:
3581 	case MSR_AMD64_SYSCFG:
3582 	case MSR_K8_TSEG_ADDR:
3583 	case MSR_K8_TSEG_MASK:
3584 	case MSR_VM_HSAVE_PA:
3585 	case MSR_K8_INT_PENDING_MSG:
3586 	case MSR_AMD64_NB_CFG:
3587 	case MSR_FAM10H_MMIO_CONF_BASE:
3588 	case MSR_AMD64_BU_CFG2:
3589 	case MSR_IA32_PERF_CTL:
3590 	case MSR_AMD64_DC_CFG:
3591 	case MSR_F15H_EX_CFG:
3592 	/*
3593 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3594 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3595 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3596 	 * so for existing CPU-specific MSRs.
3597 	 */
3598 	case MSR_RAPL_POWER_UNIT:
3599 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3600 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3601 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3602 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3603 		msr_info->data = 0;
3604 		break;
3605 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3606 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3607 			return kvm_pmu_get_msr(vcpu, msr_info);
3608 		if (!msr_info->host_initiated)
3609 			return 1;
3610 		msr_info->data = 0;
3611 		break;
3612 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3613 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3614 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3615 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3616 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3617 			return kvm_pmu_get_msr(vcpu, msr_info);
3618 		msr_info->data = 0;
3619 		break;
3620 	case MSR_IA32_UCODE_REV:
3621 		msr_info->data = vcpu->arch.microcode_version;
3622 		break;
3623 	case MSR_IA32_ARCH_CAPABILITIES:
3624 		if (!msr_info->host_initiated &&
3625 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3626 			return 1;
3627 		msr_info->data = vcpu->arch.arch_capabilities;
3628 		break;
3629 	case MSR_IA32_PERF_CAPABILITIES:
3630 		if (!msr_info->host_initiated &&
3631 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3632 			return 1;
3633 		msr_info->data = vcpu->arch.perf_capabilities;
3634 		break;
3635 	case MSR_IA32_POWER_CTL:
3636 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3637 		break;
3638 	case MSR_IA32_TSC: {
3639 		/*
3640 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3641 		 * even when not intercepted. AMD manual doesn't explicitly
3642 		 * state this but appears to behave the same.
3643 		 *
3644 		 * On userspace reads and writes, however, we unconditionally
3645 		 * return L1's TSC value to ensure backwards-compatible
3646 		 * behavior for migration.
3647 		 */
3648 		u64 offset, ratio;
3649 
3650 		if (msr_info->host_initiated) {
3651 			offset = vcpu->arch.l1_tsc_offset;
3652 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3653 		} else {
3654 			offset = vcpu->arch.tsc_offset;
3655 			ratio = vcpu->arch.tsc_scaling_ratio;
3656 		}
3657 
3658 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3659 		break;
3660 	}
3661 	case MSR_MTRRcap:
3662 	case 0x200 ... 0x2ff:
3663 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3664 	case 0xcd: /* fsb frequency */
3665 		msr_info->data = 3;
3666 		break;
3667 		/*
3668 		 * MSR_EBC_FREQUENCY_ID
3669 		 * Conservative value valid for even the basic CPU models.
3670 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3671 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3672 		 * and 266MHz for model 3, or 4. Set Core Clock
3673 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3674 		 * 31:24) even though these are only valid for CPU
3675 		 * models > 2, however guests may end up dividing or
3676 		 * multiplying by zero otherwise.
3677 		 */
3678 	case MSR_EBC_FREQUENCY_ID:
3679 		msr_info->data = 1 << 24;
3680 		break;
3681 	case MSR_IA32_APICBASE:
3682 		msr_info->data = kvm_get_apic_base(vcpu);
3683 		break;
3684 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3685 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3686 	case MSR_IA32_TSC_DEADLINE:
3687 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3688 		break;
3689 	case MSR_IA32_TSC_ADJUST:
3690 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3691 		break;
3692 	case MSR_IA32_MISC_ENABLE:
3693 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3694 		break;
3695 	case MSR_IA32_SMBASE:
3696 		if (!msr_info->host_initiated)
3697 			return 1;
3698 		msr_info->data = vcpu->arch.smbase;
3699 		break;
3700 	case MSR_SMI_COUNT:
3701 		msr_info->data = vcpu->arch.smi_count;
3702 		break;
3703 	case MSR_IA32_PERF_STATUS:
3704 		/* TSC increment by tick */
3705 		msr_info->data = 1000ULL;
3706 		/* CPU multiplier */
3707 		msr_info->data |= (((uint64_t)4ULL) << 40);
3708 		break;
3709 	case MSR_EFER:
3710 		msr_info->data = vcpu->arch.efer;
3711 		break;
3712 	case MSR_KVM_WALL_CLOCK:
3713 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3714 			return 1;
3715 
3716 		msr_info->data = vcpu->kvm->arch.wall_clock;
3717 		break;
3718 	case MSR_KVM_WALL_CLOCK_NEW:
3719 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3720 			return 1;
3721 
3722 		msr_info->data = vcpu->kvm->arch.wall_clock;
3723 		break;
3724 	case MSR_KVM_SYSTEM_TIME:
3725 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3726 			return 1;
3727 
3728 		msr_info->data = vcpu->arch.time;
3729 		break;
3730 	case MSR_KVM_SYSTEM_TIME_NEW:
3731 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3732 			return 1;
3733 
3734 		msr_info->data = vcpu->arch.time;
3735 		break;
3736 	case MSR_KVM_ASYNC_PF_EN:
3737 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3738 			return 1;
3739 
3740 		msr_info->data = vcpu->arch.apf.msr_en_val;
3741 		break;
3742 	case MSR_KVM_ASYNC_PF_INT:
3743 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3744 			return 1;
3745 
3746 		msr_info->data = vcpu->arch.apf.msr_int_val;
3747 		break;
3748 	case MSR_KVM_ASYNC_PF_ACK:
3749 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3750 			return 1;
3751 
3752 		msr_info->data = 0;
3753 		break;
3754 	case MSR_KVM_STEAL_TIME:
3755 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3756 			return 1;
3757 
3758 		msr_info->data = vcpu->arch.st.msr_val;
3759 		break;
3760 	case MSR_KVM_PV_EOI_EN:
3761 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3762 			return 1;
3763 
3764 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3765 		break;
3766 	case MSR_KVM_POLL_CONTROL:
3767 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3768 			return 1;
3769 
3770 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3771 		break;
3772 	case MSR_IA32_P5_MC_ADDR:
3773 	case MSR_IA32_P5_MC_TYPE:
3774 	case MSR_IA32_MCG_CAP:
3775 	case MSR_IA32_MCG_CTL:
3776 	case MSR_IA32_MCG_STATUS:
3777 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3778 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3779 				   msr_info->host_initiated);
3780 	case MSR_IA32_XSS:
3781 		if (!msr_info->host_initiated &&
3782 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3783 			return 1;
3784 		msr_info->data = vcpu->arch.ia32_xss;
3785 		break;
3786 	case MSR_K7_CLK_CTL:
3787 		/*
3788 		 * Provide expected ramp-up count for K7. All other
3789 		 * are set to zero, indicating minimum divisors for
3790 		 * every field.
3791 		 *
3792 		 * This prevents guest kernels on AMD host with CPU
3793 		 * type 6, model 8 and higher from exploding due to
3794 		 * the rdmsr failing.
3795 		 */
3796 		msr_info->data = 0x20000000;
3797 		break;
3798 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3799 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3800 	case HV_X64_MSR_SYNDBG_OPTIONS:
3801 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3802 	case HV_X64_MSR_CRASH_CTL:
3803 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3804 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3805 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3806 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3807 		return kvm_hv_get_msr_common(vcpu,
3808 					     msr_info->index, &msr_info->data,
3809 					     msr_info->host_initiated);
3810 	case MSR_IA32_BBL_CR_CTL3:
3811 		/* This legacy MSR exists but isn't fully documented in current
3812 		 * silicon.  It is however accessed by winxp in very narrow
3813 		 * scenarios where it sets bit #19, itself documented as
3814 		 * a "reserved" bit.  Best effort attempt to source coherent
3815 		 * read data here should the balance of the register be
3816 		 * interpreted by the guest:
3817 		 *
3818 		 * L2 cache control register 3: 64GB range, 256KB size,
3819 		 * enabled, latency 0x1, configured
3820 		 */
3821 		msr_info->data = 0xbe702111;
3822 		break;
3823 	case MSR_AMD64_OSVW_ID_LENGTH:
3824 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3825 			return 1;
3826 		msr_info->data = vcpu->arch.osvw.length;
3827 		break;
3828 	case MSR_AMD64_OSVW_STATUS:
3829 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3830 			return 1;
3831 		msr_info->data = vcpu->arch.osvw.status;
3832 		break;
3833 	case MSR_PLATFORM_INFO:
3834 		if (!msr_info->host_initiated &&
3835 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3836 			return 1;
3837 		msr_info->data = vcpu->arch.msr_platform_info;
3838 		break;
3839 	case MSR_MISC_FEATURES_ENABLES:
3840 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3841 		break;
3842 	case MSR_K7_HWCR:
3843 		msr_info->data = vcpu->arch.msr_hwcr;
3844 		break;
3845 	default:
3846 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3847 			return kvm_pmu_get_msr(vcpu, msr_info);
3848 		return KVM_MSR_RET_INVALID;
3849 	}
3850 	return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3853 
3854 /*
3855  * Read or write a bunch of msrs. All parameters are kernel addresses.
3856  *
3857  * @return number of msrs set successfully.
3858  */
3859 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3860 		    struct kvm_msr_entry *entries,
3861 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3862 				  unsigned index, u64 *data))
3863 {
3864 	int i;
3865 
3866 	for (i = 0; i < msrs->nmsrs; ++i)
3867 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3868 			break;
3869 
3870 	return i;
3871 }
3872 
3873 /*
3874  * Read or write a bunch of msrs. Parameters are user addresses.
3875  *
3876  * @return number of msrs set successfully.
3877  */
3878 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3879 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3880 				unsigned index, u64 *data),
3881 		  int writeback)
3882 {
3883 	struct kvm_msrs msrs;
3884 	struct kvm_msr_entry *entries;
3885 	int r, n;
3886 	unsigned size;
3887 
3888 	r = -EFAULT;
3889 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3890 		goto out;
3891 
3892 	r = -E2BIG;
3893 	if (msrs.nmsrs >= MAX_IO_MSRS)
3894 		goto out;
3895 
3896 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3897 	entries = memdup_user(user_msrs->entries, size);
3898 	if (IS_ERR(entries)) {
3899 		r = PTR_ERR(entries);
3900 		goto out;
3901 	}
3902 
3903 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3904 	if (r < 0)
3905 		goto out_free;
3906 
3907 	r = -EFAULT;
3908 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3909 		goto out_free;
3910 
3911 	r = n;
3912 
3913 out_free:
3914 	kfree(entries);
3915 out:
3916 	return r;
3917 }
3918 
3919 static inline bool kvm_can_mwait_in_guest(void)
3920 {
3921 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3922 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3923 		boot_cpu_has(X86_FEATURE_ARAT);
3924 }
3925 
3926 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3927 					    struct kvm_cpuid2 __user *cpuid_arg)
3928 {
3929 	struct kvm_cpuid2 cpuid;
3930 	int r;
3931 
3932 	r = -EFAULT;
3933 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3934 		return r;
3935 
3936 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3937 	if (r)
3938 		return r;
3939 
3940 	r = -EFAULT;
3941 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3942 		return r;
3943 
3944 	return 0;
3945 }
3946 
3947 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3948 {
3949 	int r = 0;
3950 
3951 	switch (ext) {
3952 	case KVM_CAP_IRQCHIP:
3953 	case KVM_CAP_HLT:
3954 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3955 	case KVM_CAP_SET_TSS_ADDR:
3956 	case KVM_CAP_EXT_CPUID:
3957 	case KVM_CAP_EXT_EMUL_CPUID:
3958 	case KVM_CAP_CLOCKSOURCE:
3959 	case KVM_CAP_PIT:
3960 	case KVM_CAP_NOP_IO_DELAY:
3961 	case KVM_CAP_MP_STATE:
3962 	case KVM_CAP_SYNC_MMU:
3963 	case KVM_CAP_USER_NMI:
3964 	case KVM_CAP_REINJECT_CONTROL:
3965 	case KVM_CAP_IRQ_INJECT_STATUS:
3966 	case KVM_CAP_IOEVENTFD:
3967 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3968 	case KVM_CAP_PIT2:
3969 	case KVM_CAP_PIT_STATE2:
3970 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3971 	case KVM_CAP_VCPU_EVENTS:
3972 	case KVM_CAP_HYPERV:
3973 	case KVM_CAP_HYPERV_VAPIC:
3974 	case KVM_CAP_HYPERV_SPIN:
3975 	case KVM_CAP_HYPERV_SYNIC:
3976 	case KVM_CAP_HYPERV_SYNIC2:
3977 	case KVM_CAP_HYPERV_VP_INDEX:
3978 	case KVM_CAP_HYPERV_EVENTFD:
3979 	case KVM_CAP_HYPERV_TLBFLUSH:
3980 	case KVM_CAP_HYPERV_SEND_IPI:
3981 	case KVM_CAP_HYPERV_CPUID:
3982 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
3983 	case KVM_CAP_SYS_HYPERV_CPUID:
3984 	case KVM_CAP_PCI_SEGMENT:
3985 	case KVM_CAP_DEBUGREGS:
3986 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3987 	case KVM_CAP_XSAVE:
3988 	case KVM_CAP_ASYNC_PF:
3989 	case KVM_CAP_ASYNC_PF_INT:
3990 	case KVM_CAP_GET_TSC_KHZ:
3991 	case KVM_CAP_KVMCLOCK_CTRL:
3992 	case KVM_CAP_READONLY_MEM:
3993 	case KVM_CAP_HYPERV_TIME:
3994 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3995 	case KVM_CAP_TSC_DEADLINE_TIMER:
3996 	case KVM_CAP_DISABLE_QUIRKS:
3997 	case KVM_CAP_SET_BOOT_CPU_ID:
3998  	case KVM_CAP_SPLIT_IRQCHIP:
3999 	case KVM_CAP_IMMEDIATE_EXIT:
4000 	case KVM_CAP_PMU_EVENT_FILTER:
4001 	case KVM_CAP_GET_MSR_FEATURES:
4002 	case KVM_CAP_MSR_PLATFORM_INFO:
4003 	case KVM_CAP_EXCEPTION_PAYLOAD:
4004 	case KVM_CAP_SET_GUEST_DEBUG:
4005 	case KVM_CAP_LAST_CPU:
4006 	case KVM_CAP_X86_USER_SPACE_MSR:
4007 	case KVM_CAP_X86_MSR_FILTER:
4008 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4009 #ifdef CONFIG_X86_SGX_KVM
4010 	case KVM_CAP_SGX_ATTRIBUTE:
4011 #endif
4012 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4013 	case KVM_CAP_SREGS2:
4014 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4015 		r = 1;
4016 		break;
4017 	case KVM_CAP_EXIT_HYPERCALL:
4018 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4019 		break;
4020 	case KVM_CAP_SET_GUEST_DEBUG2:
4021 		return KVM_GUESTDBG_VALID_MASK;
4022 #ifdef CONFIG_KVM_XEN
4023 	case KVM_CAP_XEN_HVM:
4024 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4025 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4026 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4027 		if (sched_info_on())
4028 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4029 		break;
4030 #endif
4031 	case KVM_CAP_SYNC_REGS:
4032 		r = KVM_SYNC_X86_VALID_FIELDS;
4033 		break;
4034 	case KVM_CAP_ADJUST_CLOCK:
4035 		r = KVM_CLOCK_TSC_STABLE;
4036 		break;
4037 	case KVM_CAP_X86_DISABLE_EXITS:
4038 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4039 		      KVM_X86_DISABLE_EXITS_CSTATE;
4040 		if(kvm_can_mwait_in_guest())
4041 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4042 		break;
4043 	case KVM_CAP_X86_SMM:
4044 		/* SMBASE is usually relocated above 1M on modern chipsets,
4045 		 * and SMM handlers might indeed rely on 4G segment limits,
4046 		 * so do not report SMM to be available if real mode is
4047 		 * emulated via vm86 mode.  Still, do not go to great lengths
4048 		 * to avoid userspace's usage of the feature, because it is a
4049 		 * fringe case that is not enabled except via specific settings
4050 		 * of the module parameters.
4051 		 */
4052 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4053 		break;
4054 	case KVM_CAP_VAPIC:
4055 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4056 		break;
4057 	case KVM_CAP_NR_VCPUS:
4058 		r = KVM_SOFT_MAX_VCPUS;
4059 		break;
4060 	case KVM_CAP_MAX_VCPUS:
4061 		r = KVM_MAX_VCPUS;
4062 		break;
4063 	case KVM_CAP_MAX_VCPU_ID:
4064 		r = KVM_MAX_VCPU_ID;
4065 		break;
4066 	case KVM_CAP_PV_MMU:	/* obsolete */
4067 		r = 0;
4068 		break;
4069 	case KVM_CAP_MCE:
4070 		r = KVM_MAX_MCE_BANKS;
4071 		break;
4072 	case KVM_CAP_XCRS:
4073 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4074 		break;
4075 	case KVM_CAP_TSC_CONTROL:
4076 		r = kvm_has_tsc_control;
4077 		break;
4078 	case KVM_CAP_X2APIC_API:
4079 		r = KVM_X2APIC_API_VALID_FLAGS;
4080 		break;
4081 	case KVM_CAP_NESTED_STATE:
4082 		r = kvm_x86_ops.nested_ops->get_state ?
4083 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4084 		break;
4085 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4086 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4087 		break;
4088 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4089 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4090 		break;
4091 	case KVM_CAP_SMALLER_MAXPHYADDR:
4092 		r = (int) allow_smaller_maxphyaddr;
4093 		break;
4094 	case KVM_CAP_STEAL_TIME:
4095 		r = sched_info_on();
4096 		break;
4097 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4098 		if (kvm_has_bus_lock_exit)
4099 			r = KVM_BUS_LOCK_DETECTION_OFF |
4100 			    KVM_BUS_LOCK_DETECTION_EXIT;
4101 		else
4102 			r = 0;
4103 		break;
4104 	default:
4105 		break;
4106 	}
4107 	return r;
4108 
4109 }
4110 
4111 long kvm_arch_dev_ioctl(struct file *filp,
4112 			unsigned int ioctl, unsigned long arg)
4113 {
4114 	void __user *argp = (void __user *)arg;
4115 	long r;
4116 
4117 	switch (ioctl) {
4118 	case KVM_GET_MSR_INDEX_LIST: {
4119 		struct kvm_msr_list __user *user_msr_list = argp;
4120 		struct kvm_msr_list msr_list;
4121 		unsigned n;
4122 
4123 		r = -EFAULT;
4124 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4125 			goto out;
4126 		n = msr_list.nmsrs;
4127 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4128 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4129 			goto out;
4130 		r = -E2BIG;
4131 		if (n < msr_list.nmsrs)
4132 			goto out;
4133 		r = -EFAULT;
4134 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4135 				 num_msrs_to_save * sizeof(u32)))
4136 			goto out;
4137 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4138 				 &emulated_msrs,
4139 				 num_emulated_msrs * sizeof(u32)))
4140 			goto out;
4141 		r = 0;
4142 		break;
4143 	}
4144 	case KVM_GET_SUPPORTED_CPUID:
4145 	case KVM_GET_EMULATED_CPUID: {
4146 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4147 		struct kvm_cpuid2 cpuid;
4148 
4149 		r = -EFAULT;
4150 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4151 			goto out;
4152 
4153 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4154 					    ioctl);
4155 		if (r)
4156 			goto out;
4157 
4158 		r = -EFAULT;
4159 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4160 			goto out;
4161 		r = 0;
4162 		break;
4163 	}
4164 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4165 		r = -EFAULT;
4166 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4167 				 sizeof(kvm_mce_cap_supported)))
4168 			goto out;
4169 		r = 0;
4170 		break;
4171 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4172 		struct kvm_msr_list __user *user_msr_list = argp;
4173 		struct kvm_msr_list msr_list;
4174 		unsigned int n;
4175 
4176 		r = -EFAULT;
4177 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4178 			goto out;
4179 		n = msr_list.nmsrs;
4180 		msr_list.nmsrs = num_msr_based_features;
4181 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4182 			goto out;
4183 		r = -E2BIG;
4184 		if (n < msr_list.nmsrs)
4185 			goto out;
4186 		r = -EFAULT;
4187 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4188 				 num_msr_based_features * sizeof(u32)))
4189 			goto out;
4190 		r = 0;
4191 		break;
4192 	}
4193 	case KVM_GET_MSRS:
4194 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4195 		break;
4196 	case KVM_GET_SUPPORTED_HV_CPUID:
4197 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4198 		break;
4199 	default:
4200 		r = -EINVAL;
4201 		break;
4202 	}
4203 out:
4204 	return r;
4205 }
4206 
4207 static void wbinvd_ipi(void *garbage)
4208 {
4209 	wbinvd();
4210 }
4211 
4212 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4213 {
4214 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4215 }
4216 
4217 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4218 {
4219 	/* Address WBINVD may be executed by guest */
4220 	if (need_emulate_wbinvd(vcpu)) {
4221 		if (static_call(kvm_x86_has_wbinvd_exit)())
4222 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4223 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4224 			smp_call_function_single(vcpu->cpu,
4225 					wbinvd_ipi, NULL, 1);
4226 	}
4227 
4228 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4229 
4230 	/* Save host pkru register if supported */
4231 	vcpu->arch.host_pkru = read_pkru();
4232 
4233 	/* Apply any externally detected TSC adjustments (due to suspend) */
4234 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4235 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4236 		vcpu->arch.tsc_offset_adjustment = 0;
4237 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4238 	}
4239 
4240 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4241 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4242 				rdtsc() - vcpu->arch.last_host_tsc;
4243 		if (tsc_delta < 0)
4244 			mark_tsc_unstable("KVM discovered backwards TSC");
4245 
4246 		if (kvm_check_tsc_unstable()) {
4247 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4248 						vcpu->arch.last_guest_tsc);
4249 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4250 			vcpu->arch.tsc_catchup = 1;
4251 		}
4252 
4253 		if (kvm_lapic_hv_timer_in_use(vcpu))
4254 			kvm_lapic_restart_hv_timer(vcpu);
4255 
4256 		/*
4257 		 * On a host with synchronized TSC, there is no need to update
4258 		 * kvmclock on vcpu->cpu migration
4259 		 */
4260 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4261 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4262 		if (vcpu->cpu != cpu)
4263 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4264 		vcpu->cpu = cpu;
4265 	}
4266 
4267 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4268 }
4269 
4270 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4271 {
4272 	struct kvm_host_map map;
4273 	struct kvm_steal_time *st;
4274 
4275 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4276 		return;
4277 
4278 	if (vcpu->arch.st.preempted)
4279 		return;
4280 
4281 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4282 			&vcpu->arch.st.cache, true))
4283 		return;
4284 
4285 	st = map.hva +
4286 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4287 
4288 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4289 
4290 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4291 }
4292 
4293 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4294 {
4295 	int idx;
4296 
4297 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4298 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4299 
4300 	/*
4301 	 * Take the srcu lock as memslots will be accessed to check the gfn
4302 	 * cache generation against the memslots generation.
4303 	 */
4304 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4305 	if (kvm_xen_msr_enabled(vcpu->kvm))
4306 		kvm_xen_runstate_set_preempted(vcpu);
4307 	else
4308 		kvm_steal_time_set_preempted(vcpu);
4309 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4310 
4311 	static_call(kvm_x86_vcpu_put)(vcpu);
4312 	vcpu->arch.last_host_tsc = rdtsc();
4313 	/*
4314 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4315 	 * on every vmexit, but if not, we might have a stale dr6 from the
4316 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4317 	 */
4318 	set_debugreg(0, 6);
4319 }
4320 
4321 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4322 				    struct kvm_lapic_state *s)
4323 {
4324 	if (vcpu->arch.apicv_active)
4325 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4326 
4327 	return kvm_apic_get_state(vcpu, s);
4328 }
4329 
4330 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4331 				    struct kvm_lapic_state *s)
4332 {
4333 	int r;
4334 
4335 	r = kvm_apic_set_state(vcpu, s);
4336 	if (r)
4337 		return r;
4338 	update_cr8_intercept(vcpu);
4339 
4340 	return 0;
4341 }
4342 
4343 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4344 {
4345 	/*
4346 	 * We can accept userspace's request for interrupt injection
4347 	 * as long as we have a place to store the interrupt number.
4348 	 * The actual injection will happen when the CPU is able to
4349 	 * deliver the interrupt.
4350 	 */
4351 	if (kvm_cpu_has_extint(vcpu))
4352 		return false;
4353 
4354 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4355 	return (!lapic_in_kernel(vcpu) ||
4356 		kvm_apic_accept_pic_intr(vcpu));
4357 }
4358 
4359 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4360 {
4361 	/*
4362 	 * Do not cause an interrupt window exit if an exception
4363 	 * is pending or an event needs reinjection; userspace
4364 	 * might want to inject the interrupt manually using KVM_SET_REGS
4365 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4366 	 * instruction boundary and with no events half-injected.
4367 	 */
4368 	return (kvm_arch_interrupt_allowed(vcpu) &&
4369 		kvm_cpu_accept_dm_intr(vcpu) &&
4370 		!kvm_event_needs_reinjection(vcpu) &&
4371 		!vcpu->arch.exception.pending);
4372 }
4373 
4374 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4375 				    struct kvm_interrupt *irq)
4376 {
4377 	if (irq->irq >= KVM_NR_INTERRUPTS)
4378 		return -EINVAL;
4379 
4380 	if (!irqchip_in_kernel(vcpu->kvm)) {
4381 		kvm_queue_interrupt(vcpu, irq->irq, false);
4382 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4383 		return 0;
4384 	}
4385 
4386 	/*
4387 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4388 	 * fail for in-kernel 8259.
4389 	 */
4390 	if (pic_in_kernel(vcpu->kvm))
4391 		return -ENXIO;
4392 
4393 	if (vcpu->arch.pending_external_vector != -1)
4394 		return -EEXIST;
4395 
4396 	vcpu->arch.pending_external_vector = irq->irq;
4397 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4398 	return 0;
4399 }
4400 
4401 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4402 {
4403 	kvm_inject_nmi(vcpu);
4404 
4405 	return 0;
4406 }
4407 
4408 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4409 {
4410 	kvm_make_request(KVM_REQ_SMI, vcpu);
4411 
4412 	return 0;
4413 }
4414 
4415 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4416 					   struct kvm_tpr_access_ctl *tac)
4417 {
4418 	if (tac->flags)
4419 		return -EINVAL;
4420 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4421 	return 0;
4422 }
4423 
4424 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4425 					u64 mcg_cap)
4426 {
4427 	int r;
4428 	unsigned bank_num = mcg_cap & 0xff, bank;
4429 
4430 	r = -EINVAL;
4431 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4432 		goto out;
4433 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4434 		goto out;
4435 	r = 0;
4436 	vcpu->arch.mcg_cap = mcg_cap;
4437 	/* Init IA32_MCG_CTL to all 1s */
4438 	if (mcg_cap & MCG_CTL_P)
4439 		vcpu->arch.mcg_ctl = ~(u64)0;
4440 	/* Init IA32_MCi_CTL to all 1s */
4441 	for (bank = 0; bank < bank_num; bank++)
4442 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4443 
4444 	static_call(kvm_x86_setup_mce)(vcpu);
4445 out:
4446 	return r;
4447 }
4448 
4449 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4450 				      struct kvm_x86_mce *mce)
4451 {
4452 	u64 mcg_cap = vcpu->arch.mcg_cap;
4453 	unsigned bank_num = mcg_cap & 0xff;
4454 	u64 *banks = vcpu->arch.mce_banks;
4455 
4456 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4457 		return -EINVAL;
4458 	/*
4459 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4460 	 * reporting is disabled
4461 	 */
4462 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4463 	    vcpu->arch.mcg_ctl != ~(u64)0)
4464 		return 0;
4465 	banks += 4 * mce->bank;
4466 	/*
4467 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4468 	 * reporting is disabled for the bank
4469 	 */
4470 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4471 		return 0;
4472 	if (mce->status & MCI_STATUS_UC) {
4473 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4474 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4475 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4476 			return 0;
4477 		}
4478 		if (banks[1] & MCI_STATUS_VAL)
4479 			mce->status |= MCI_STATUS_OVER;
4480 		banks[2] = mce->addr;
4481 		banks[3] = mce->misc;
4482 		vcpu->arch.mcg_status = mce->mcg_status;
4483 		banks[1] = mce->status;
4484 		kvm_queue_exception(vcpu, MC_VECTOR);
4485 	} else if (!(banks[1] & MCI_STATUS_VAL)
4486 		   || !(banks[1] & MCI_STATUS_UC)) {
4487 		if (banks[1] & MCI_STATUS_VAL)
4488 			mce->status |= MCI_STATUS_OVER;
4489 		banks[2] = mce->addr;
4490 		banks[3] = mce->misc;
4491 		banks[1] = mce->status;
4492 	} else
4493 		banks[1] |= MCI_STATUS_OVER;
4494 	return 0;
4495 }
4496 
4497 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4498 					       struct kvm_vcpu_events *events)
4499 {
4500 	process_nmi(vcpu);
4501 
4502 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4503 		process_smi(vcpu);
4504 
4505 	/*
4506 	 * In guest mode, payload delivery should be deferred,
4507 	 * so that the L1 hypervisor can intercept #PF before
4508 	 * CR2 is modified (or intercept #DB before DR6 is
4509 	 * modified under nVMX). Unless the per-VM capability,
4510 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4511 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4512 	 * opportunistically defer the exception payload, deliver it if the
4513 	 * capability hasn't been requested before processing a
4514 	 * KVM_GET_VCPU_EVENTS.
4515 	 */
4516 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4517 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4518 		kvm_deliver_exception_payload(vcpu);
4519 
4520 	/*
4521 	 * The API doesn't provide the instruction length for software
4522 	 * exceptions, so don't report them. As long as the guest RIP
4523 	 * isn't advanced, we should expect to encounter the exception
4524 	 * again.
4525 	 */
4526 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4527 		events->exception.injected = 0;
4528 		events->exception.pending = 0;
4529 	} else {
4530 		events->exception.injected = vcpu->arch.exception.injected;
4531 		events->exception.pending = vcpu->arch.exception.pending;
4532 		/*
4533 		 * For ABI compatibility, deliberately conflate
4534 		 * pending and injected exceptions when
4535 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4536 		 */
4537 		if (!vcpu->kvm->arch.exception_payload_enabled)
4538 			events->exception.injected |=
4539 				vcpu->arch.exception.pending;
4540 	}
4541 	events->exception.nr = vcpu->arch.exception.nr;
4542 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4543 	events->exception.error_code = vcpu->arch.exception.error_code;
4544 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4545 	events->exception_payload = vcpu->arch.exception.payload;
4546 
4547 	events->interrupt.injected =
4548 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4549 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4550 	events->interrupt.soft = 0;
4551 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4552 
4553 	events->nmi.injected = vcpu->arch.nmi_injected;
4554 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4555 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4556 	events->nmi.pad = 0;
4557 
4558 	events->sipi_vector = 0; /* never valid when reporting to user space */
4559 
4560 	events->smi.smm = is_smm(vcpu);
4561 	events->smi.pending = vcpu->arch.smi_pending;
4562 	events->smi.smm_inside_nmi =
4563 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4564 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4565 
4566 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4567 			 | KVM_VCPUEVENT_VALID_SHADOW
4568 			 | KVM_VCPUEVENT_VALID_SMM);
4569 	if (vcpu->kvm->arch.exception_payload_enabled)
4570 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4571 
4572 	memset(&events->reserved, 0, sizeof(events->reserved));
4573 }
4574 
4575 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4576 
4577 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4578 					      struct kvm_vcpu_events *events)
4579 {
4580 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4581 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4582 			      | KVM_VCPUEVENT_VALID_SHADOW
4583 			      | KVM_VCPUEVENT_VALID_SMM
4584 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4585 		return -EINVAL;
4586 
4587 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4588 		if (!vcpu->kvm->arch.exception_payload_enabled)
4589 			return -EINVAL;
4590 		if (events->exception.pending)
4591 			events->exception.injected = 0;
4592 		else
4593 			events->exception_has_payload = 0;
4594 	} else {
4595 		events->exception.pending = 0;
4596 		events->exception_has_payload = 0;
4597 	}
4598 
4599 	if ((events->exception.injected || events->exception.pending) &&
4600 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4601 		return -EINVAL;
4602 
4603 	/* INITs are latched while in SMM */
4604 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4605 	    (events->smi.smm || events->smi.pending) &&
4606 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4607 		return -EINVAL;
4608 
4609 	process_nmi(vcpu);
4610 	vcpu->arch.exception.injected = events->exception.injected;
4611 	vcpu->arch.exception.pending = events->exception.pending;
4612 	vcpu->arch.exception.nr = events->exception.nr;
4613 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4614 	vcpu->arch.exception.error_code = events->exception.error_code;
4615 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4616 	vcpu->arch.exception.payload = events->exception_payload;
4617 
4618 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4619 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4620 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4621 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4622 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4623 						events->interrupt.shadow);
4624 
4625 	vcpu->arch.nmi_injected = events->nmi.injected;
4626 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4627 		vcpu->arch.nmi_pending = events->nmi.pending;
4628 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4629 
4630 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4631 	    lapic_in_kernel(vcpu))
4632 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4633 
4634 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4635 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4636 			kvm_smm_changed(vcpu, events->smi.smm);
4637 
4638 		vcpu->arch.smi_pending = events->smi.pending;
4639 
4640 		if (events->smi.smm) {
4641 			if (events->smi.smm_inside_nmi)
4642 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4643 			else
4644 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4645 		}
4646 
4647 		if (lapic_in_kernel(vcpu)) {
4648 			if (events->smi.latched_init)
4649 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4650 			else
4651 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4652 		}
4653 	}
4654 
4655 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4656 
4657 	return 0;
4658 }
4659 
4660 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4661 					     struct kvm_debugregs *dbgregs)
4662 {
4663 	unsigned long val;
4664 
4665 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4666 	kvm_get_dr(vcpu, 6, &val);
4667 	dbgregs->dr6 = val;
4668 	dbgregs->dr7 = vcpu->arch.dr7;
4669 	dbgregs->flags = 0;
4670 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4671 }
4672 
4673 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4674 					    struct kvm_debugregs *dbgregs)
4675 {
4676 	if (dbgregs->flags)
4677 		return -EINVAL;
4678 
4679 	if (!kvm_dr6_valid(dbgregs->dr6))
4680 		return -EINVAL;
4681 	if (!kvm_dr7_valid(dbgregs->dr7))
4682 		return -EINVAL;
4683 
4684 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4685 	kvm_update_dr0123(vcpu);
4686 	vcpu->arch.dr6 = dbgregs->dr6;
4687 	vcpu->arch.dr7 = dbgregs->dr7;
4688 	kvm_update_dr7(vcpu);
4689 
4690 	return 0;
4691 }
4692 
4693 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4694 
4695 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4696 {
4697 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4698 	u64 xstate_bv = xsave->header.xfeatures;
4699 	u64 valid;
4700 
4701 	/*
4702 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4703 	 * leaves 0 and 1 in the loop below.
4704 	 */
4705 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4706 
4707 	/* Set XSTATE_BV */
4708 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4709 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4710 
4711 	/*
4712 	 * Copy each region from the possibly compacted offset to the
4713 	 * non-compacted offset.
4714 	 */
4715 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4716 	while (valid) {
4717 		u32 size, offset, ecx, edx;
4718 		u64 xfeature_mask = valid & -valid;
4719 		int xfeature_nr = fls64(xfeature_mask) - 1;
4720 		void *src;
4721 
4722 		cpuid_count(XSTATE_CPUID, xfeature_nr,
4723 			    &size, &offset, &ecx, &edx);
4724 
4725 		if (xfeature_nr == XFEATURE_PKRU) {
4726 			memcpy(dest + offset, &vcpu->arch.pkru,
4727 			       sizeof(vcpu->arch.pkru));
4728 		} else {
4729 			src = get_xsave_addr(xsave, xfeature_nr);
4730 			if (src)
4731 				memcpy(dest + offset, src, size);
4732 		}
4733 
4734 		valid -= xfeature_mask;
4735 	}
4736 }
4737 
4738 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4739 {
4740 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4741 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4742 	u64 valid;
4743 
4744 	/*
4745 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4746 	 * leaves 0 and 1 in the loop below.
4747 	 */
4748 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4749 
4750 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4751 	xsave->header.xfeatures = xstate_bv;
4752 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4753 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4754 
4755 	/*
4756 	 * Copy each region from the non-compacted offset to the
4757 	 * possibly compacted offset.
4758 	 */
4759 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4760 	while (valid) {
4761 		u32 size, offset, ecx, edx;
4762 		u64 xfeature_mask = valid & -valid;
4763 		int xfeature_nr = fls64(xfeature_mask) - 1;
4764 
4765 		cpuid_count(XSTATE_CPUID, xfeature_nr,
4766 			    &size, &offset, &ecx, &edx);
4767 
4768 		if (xfeature_nr == XFEATURE_PKRU) {
4769 			memcpy(&vcpu->arch.pkru, src + offset,
4770 			       sizeof(vcpu->arch.pkru));
4771 		} else {
4772 			void *dest = get_xsave_addr(xsave, xfeature_nr);
4773 
4774 			if (dest)
4775 				memcpy(dest, src + offset, size);
4776 		}
4777 
4778 		valid -= xfeature_mask;
4779 	}
4780 }
4781 
4782 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4783 					 struct kvm_xsave *guest_xsave)
4784 {
4785 	if (!vcpu->arch.guest_fpu)
4786 		return;
4787 
4788 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4789 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4790 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4791 	} else {
4792 		memcpy(guest_xsave->region,
4793 			&vcpu->arch.guest_fpu->state.fxsave,
4794 			sizeof(struct fxregs_state));
4795 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4796 			XFEATURE_MASK_FPSSE;
4797 	}
4798 }
4799 
4800 #define XSAVE_MXCSR_OFFSET 24
4801 
4802 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4803 					struct kvm_xsave *guest_xsave)
4804 {
4805 	u64 xstate_bv;
4806 	u32 mxcsr;
4807 
4808 	if (!vcpu->arch.guest_fpu)
4809 		return 0;
4810 
4811 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4812 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4813 
4814 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4815 		/*
4816 		 * Here we allow setting states that are not present in
4817 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4818 		 * with old userspace.
4819 		 */
4820 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4821 			return -EINVAL;
4822 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4823 	} else {
4824 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4825 			mxcsr & ~mxcsr_feature_mask)
4826 			return -EINVAL;
4827 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4828 			guest_xsave->region, sizeof(struct fxregs_state));
4829 	}
4830 	return 0;
4831 }
4832 
4833 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4834 					struct kvm_xcrs *guest_xcrs)
4835 {
4836 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4837 		guest_xcrs->nr_xcrs = 0;
4838 		return;
4839 	}
4840 
4841 	guest_xcrs->nr_xcrs = 1;
4842 	guest_xcrs->flags = 0;
4843 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4844 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4845 }
4846 
4847 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4848 				       struct kvm_xcrs *guest_xcrs)
4849 {
4850 	int i, r = 0;
4851 
4852 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4853 		return -EINVAL;
4854 
4855 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4856 		return -EINVAL;
4857 
4858 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4859 		/* Only support XCR0 currently */
4860 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4861 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4862 				guest_xcrs->xcrs[i].value);
4863 			break;
4864 		}
4865 	if (r)
4866 		r = -EINVAL;
4867 	return r;
4868 }
4869 
4870 /*
4871  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4872  * stopped by the hypervisor.  This function will be called from the host only.
4873  * EINVAL is returned when the host attempts to set the flag for a guest that
4874  * does not support pv clocks.
4875  */
4876 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4877 {
4878 	if (!vcpu->arch.pv_time_enabled)
4879 		return -EINVAL;
4880 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4881 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4882 	return 0;
4883 }
4884 
4885 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4886 				     struct kvm_enable_cap *cap)
4887 {
4888 	int r;
4889 	uint16_t vmcs_version;
4890 	void __user *user_ptr;
4891 
4892 	if (cap->flags)
4893 		return -EINVAL;
4894 
4895 	switch (cap->cap) {
4896 	case KVM_CAP_HYPERV_SYNIC2:
4897 		if (cap->args[0])
4898 			return -EINVAL;
4899 		fallthrough;
4900 
4901 	case KVM_CAP_HYPERV_SYNIC:
4902 		if (!irqchip_in_kernel(vcpu->kvm))
4903 			return -EINVAL;
4904 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4905 					     KVM_CAP_HYPERV_SYNIC2);
4906 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4907 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4908 			return -ENOTTY;
4909 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4910 		if (!r) {
4911 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4912 			if (copy_to_user(user_ptr, &vmcs_version,
4913 					 sizeof(vmcs_version)))
4914 				r = -EFAULT;
4915 		}
4916 		return r;
4917 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4918 		if (!kvm_x86_ops.enable_direct_tlbflush)
4919 			return -ENOTTY;
4920 
4921 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4922 
4923 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4924 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4925 
4926 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4927 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4928 		if (vcpu->arch.pv_cpuid.enforce)
4929 			kvm_update_pv_runtime(vcpu);
4930 
4931 		return 0;
4932 	default:
4933 		return -EINVAL;
4934 	}
4935 }
4936 
4937 long kvm_arch_vcpu_ioctl(struct file *filp,
4938 			 unsigned int ioctl, unsigned long arg)
4939 {
4940 	struct kvm_vcpu *vcpu = filp->private_data;
4941 	void __user *argp = (void __user *)arg;
4942 	int r;
4943 	union {
4944 		struct kvm_sregs2 *sregs2;
4945 		struct kvm_lapic_state *lapic;
4946 		struct kvm_xsave *xsave;
4947 		struct kvm_xcrs *xcrs;
4948 		void *buffer;
4949 	} u;
4950 
4951 	vcpu_load(vcpu);
4952 
4953 	u.buffer = NULL;
4954 	switch (ioctl) {
4955 	case KVM_GET_LAPIC: {
4956 		r = -EINVAL;
4957 		if (!lapic_in_kernel(vcpu))
4958 			goto out;
4959 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4960 				GFP_KERNEL_ACCOUNT);
4961 
4962 		r = -ENOMEM;
4963 		if (!u.lapic)
4964 			goto out;
4965 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4966 		if (r)
4967 			goto out;
4968 		r = -EFAULT;
4969 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4970 			goto out;
4971 		r = 0;
4972 		break;
4973 	}
4974 	case KVM_SET_LAPIC: {
4975 		r = -EINVAL;
4976 		if (!lapic_in_kernel(vcpu))
4977 			goto out;
4978 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4979 		if (IS_ERR(u.lapic)) {
4980 			r = PTR_ERR(u.lapic);
4981 			goto out_nofree;
4982 		}
4983 
4984 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4985 		break;
4986 	}
4987 	case KVM_INTERRUPT: {
4988 		struct kvm_interrupt irq;
4989 
4990 		r = -EFAULT;
4991 		if (copy_from_user(&irq, argp, sizeof(irq)))
4992 			goto out;
4993 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4994 		break;
4995 	}
4996 	case KVM_NMI: {
4997 		r = kvm_vcpu_ioctl_nmi(vcpu);
4998 		break;
4999 	}
5000 	case KVM_SMI: {
5001 		r = kvm_vcpu_ioctl_smi(vcpu);
5002 		break;
5003 	}
5004 	case KVM_SET_CPUID: {
5005 		struct kvm_cpuid __user *cpuid_arg = argp;
5006 		struct kvm_cpuid cpuid;
5007 
5008 		r = -EFAULT;
5009 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5010 			goto out;
5011 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5012 		break;
5013 	}
5014 	case KVM_SET_CPUID2: {
5015 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5016 		struct kvm_cpuid2 cpuid;
5017 
5018 		r = -EFAULT;
5019 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5020 			goto out;
5021 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5022 					      cpuid_arg->entries);
5023 		break;
5024 	}
5025 	case KVM_GET_CPUID2: {
5026 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5027 		struct kvm_cpuid2 cpuid;
5028 
5029 		r = -EFAULT;
5030 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5031 			goto out;
5032 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5033 					      cpuid_arg->entries);
5034 		if (r)
5035 			goto out;
5036 		r = -EFAULT;
5037 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5038 			goto out;
5039 		r = 0;
5040 		break;
5041 	}
5042 	case KVM_GET_MSRS: {
5043 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5044 		r = msr_io(vcpu, argp, do_get_msr, 1);
5045 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5046 		break;
5047 	}
5048 	case KVM_SET_MSRS: {
5049 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5050 		r = msr_io(vcpu, argp, do_set_msr, 0);
5051 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5052 		break;
5053 	}
5054 	case KVM_TPR_ACCESS_REPORTING: {
5055 		struct kvm_tpr_access_ctl tac;
5056 
5057 		r = -EFAULT;
5058 		if (copy_from_user(&tac, argp, sizeof(tac)))
5059 			goto out;
5060 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5061 		if (r)
5062 			goto out;
5063 		r = -EFAULT;
5064 		if (copy_to_user(argp, &tac, sizeof(tac)))
5065 			goto out;
5066 		r = 0;
5067 		break;
5068 	};
5069 	case KVM_SET_VAPIC_ADDR: {
5070 		struct kvm_vapic_addr va;
5071 		int idx;
5072 
5073 		r = -EINVAL;
5074 		if (!lapic_in_kernel(vcpu))
5075 			goto out;
5076 		r = -EFAULT;
5077 		if (copy_from_user(&va, argp, sizeof(va)))
5078 			goto out;
5079 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5080 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5081 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5082 		break;
5083 	}
5084 	case KVM_X86_SETUP_MCE: {
5085 		u64 mcg_cap;
5086 
5087 		r = -EFAULT;
5088 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5089 			goto out;
5090 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5091 		break;
5092 	}
5093 	case KVM_X86_SET_MCE: {
5094 		struct kvm_x86_mce mce;
5095 
5096 		r = -EFAULT;
5097 		if (copy_from_user(&mce, argp, sizeof(mce)))
5098 			goto out;
5099 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5100 		break;
5101 	}
5102 	case KVM_GET_VCPU_EVENTS: {
5103 		struct kvm_vcpu_events events;
5104 
5105 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5106 
5107 		r = -EFAULT;
5108 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5109 			break;
5110 		r = 0;
5111 		break;
5112 	}
5113 	case KVM_SET_VCPU_EVENTS: {
5114 		struct kvm_vcpu_events events;
5115 
5116 		r = -EFAULT;
5117 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5118 			break;
5119 
5120 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5121 		break;
5122 	}
5123 	case KVM_GET_DEBUGREGS: {
5124 		struct kvm_debugregs dbgregs;
5125 
5126 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5127 
5128 		r = -EFAULT;
5129 		if (copy_to_user(argp, &dbgregs,
5130 				 sizeof(struct kvm_debugregs)))
5131 			break;
5132 		r = 0;
5133 		break;
5134 	}
5135 	case KVM_SET_DEBUGREGS: {
5136 		struct kvm_debugregs dbgregs;
5137 
5138 		r = -EFAULT;
5139 		if (copy_from_user(&dbgregs, argp,
5140 				   sizeof(struct kvm_debugregs)))
5141 			break;
5142 
5143 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5144 		break;
5145 	}
5146 	case KVM_GET_XSAVE: {
5147 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5148 		r = -ENOMEM;
5149 		if (!u.xsave)
5150 			break;
5151 
5152 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5153 
5154 		r = -EFAULT;
5155 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5156 			break;
5157 		r = 0;
5158 		break;
5159 	}
5160 	case KVM_SET_XSAVE: {
5161 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5162 		if (IS_ERR(u.xsave)) {
5163 			r = PTR_ERR(u.xsave);
5164 			goto out_nofree;
5165 		}
5166 
5167 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5168 		break;
5169 	}
5170 	case KVM_GET_XCRS: {
5171 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5172 		r = -ENOMEM;
5173 		if (!u.xcrs)
5174 			break;
5175 
5176 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5177 
5178 		r = -EFAULT;
5179 		if (copy_to_user(argp, u.xcrs,
5180 				 sizeof(struct kvm_xcrs)))
5181 			break;
5182 		r = 0;
5183 		break;
5184 	}
5185 	case KVM_SET_XCRS: {
5186 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5187 		if (IS_ERR(u.xcrs)) {
5188 			r = PTR_ERR(u.xcrs);
5189 			goto out_nofree;
5190 		}
5191 
5192 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5193 		break;
5194 	}
5195 	case KVM_SET_TSC_KHZ: {
5196 		u32 user_tsc_khz;
5197 
5198 		r = -EINVAL;
5199 		user_tsc_khz = (u32)arg;
5200 
5201 		if (kvm_has_tsc_control &&
5202 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5203 			goto out;
5204 
5205 		if (user_tsc_khz == 0)
5206 			user_tsc_khz = tsc_khz;
5207 
5208 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5209 			r = 0;
5210 
5211 		goto out;
5212 	}
5213 	case KVM_GET_TSC_KHZ: {
5214 		r = vcpu->arch.virtual_tsc_khz;
5215 		goto out;
5216 	}
5217 	case KVM_KVMCLOCK_CTRL: {
5218 		r = kvm_set_guest_paused(vcpu);
5219 		goto out;
5220 	}
5221 	case KVM_ENABLE_CAP: {
5222 		struct kvm_enable_cap cap;
5223 
5224 		r = -EFAULT;
5225 		if (copy_from_user(&cap, argp, sizeof(cap)))
5226 			goto out;
5227 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5228 		break;
5229 	}
5230 	case KVM_GET_NESTED_STATE: {
5231 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5232 		u32 user_data_size;
5233 
5234 		r = -EINVAL;
5235 		if (!kvm_x86_ops.nested_ops->get_state)
5236 			break;
5237 
5238 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5239 		r = -EFAULT;
5240 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5241 			break;
5242 
5243 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5244 						     user_data_size);
5245 		if (r < 0)
5246 			break;
5247 
5248 		if (r > user_data_size) {
5249 			if (put_user(r, &user_kvm_nested_state->size))
5250 				r = -EFAULT;
5251 			else
5252 				r = -E2BIG;
5253 			break;
5254 		}
5255 
5256 		r = 0;
5257 		break;
5258 	}
5259 	case KVM_SET_NESTED_STATE: {
5260 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5261 		struct kvm_nested_state kvm_state;
5262 		int idx;
5263 
5264 		r = -EINVAL;
5265 		if (!kvm_x86_ops.nested_ops->set_state)
5266 			break;
5267 
5268 		r = -EFAULT;
5269 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5270 			break;
5271 
5272 		r = -EINVAL;
5273 		if (kvm_state.size < sizeof(kvm_state))
5274 			break;
5275 
5276 		if (kvm_state.flags &
5277 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5278 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5279 		      | KVM_STATE_NESTED_GIF_SET))
5280 			break;
5281 
5282 		/* nested_run_pending implies guest_mode.  */
5283 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5284 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5285 			break;
5286 
5287 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5288 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5289 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5290 		break;
5291 	}
5292 	case KVM_GET_SUPPORTED_HV_CPUID:
5293 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5294 		break;
5295 #ifdef CONFIG_KVM_XEN
5296 	case KVM_XEN_VCPU_GET_ATTR: {
5297 		struct kvm_xen_vcpu_attr xva;
5298 
5299 		r = -EFAULT;
5300 		if (copy_from_user(&xva, argp, sizeof(xva)))
5301 			goto out;
5302 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5303 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5304 			r = -EFAULT;
5305 		break;
5306 	}
5307 	case KVM_XEN_VCPU_SET_ATTR: {
5308 		struct kvm_xen_vcpu_attr xva;
5309 
5310 		r = -EFAULT;
5311 		if (copy_from_user(&xva, argp, sizeof(xva)))
5312 			goto out;
5313 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5314 		break;
5315 	}
5316 #endif
5317 	case KVM_GET_SREGS2: {
5318 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5319 		r = -ENOMEM;
5320 		if (!u.sregs2)
5321 			goto out;
5322 		__get_sregs2(vcpu, u.sregs2);
5323 		r = -EFAULT;
5324 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5325 			goto out;
5326 		r = 0;
5327 		break;
5328 	}
5329 	case KVM_SET_SREGS2: {
5330 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5331 		if (IS_ERR(u.sregs2)) {
5332 			r = PTR_ERR(u.sregs2);
5333 			u.sregs2 = NULL;
5334 			goto out;
5335 		}
5336 		r = __set_sregs2(vcpu, u.sregs2);
5337 		break;
5338 	}
5339 	default:
5340 		r = -EINVAL;
5341 	}
5342 out:
5343 	kfree(u.buffer);
5344 out_nofree:
5345 	vcpu_put(vcpu);
5346 	return r;
5347 }
5348 
5349 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5350 {
5351 	return VM_FAULT_SIGBUS;
5352 }
5353 
5354 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5355 {
5356 	int ret;
5357 
5358 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5359 		return -EINVAL;
5360 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5361 	return ret;
5362 }
5363 
5364 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5365 					      u64 ident_addr)
5366 {
5367 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5368 }
5369 
5370 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5371 					 unsigned long kvm_nr_mmu_pages)
5372 {
5373 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5374 		return -EINVAL;
5375 
5376 	mutex_lock(&kvm->slots_lock);
5377 
5378 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5379 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5380 
5381 	mutex_unlock(&kvm->slots_lock);
5382 	return 0;
5383 }
5384 
5385 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5386 {
5387 	return kvm->arch.n_max_mmu_pages;
5388 }
5389 
5390 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5391 {
5392 	struct kvm_pic *pic = kvm->arch.vpic;
5393 	int r;
5394 
5395 	r = 0;
5396 	switch (chip->chip_id) {
5397 	case KVM_IRQCHIP_PIC_MASTER:
5398 		memcpy(&chip->chip.pic, &pic->pics[0],
5399 			sizeof(struct kvm_pic_state));
5400 		break;
5401 	case KVM_IRQCHIP_PIC_SLAVE:
5402 		memcpy(&chip->chip.pic, &pic->pics[1],
5403 			sizeof(struct kvm_pic_state));
5404 		break;
5405 	case KVM_IRQCHIP_IOAPIC:
5406 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5407 		break;
5408 	default:
5409 		r = -EINVAL;
5410 		break;
5411 	}
5412 	return r;
5413 }
5414 
5415 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5416 {
5417 	struct kvm_pic *pic = kvm->arch.vpic;
5418 	int r;
5419 
5420 	r = 0;
5421 	switch (chip->chip_id) {
5422 	case KVM_IRQCHIP_PIC_MASTER:
5423 		spin_lock(&pic->lock);
5424 		memcpy(&pic->pics[0], &chip->chip.pic,
5425 			sizeof(struct kvm_pic_state));
5426 		spin_unlock(&pic->lock);
5427 		break;
5428 	case KVM_IRQCHIP_PIC_SLAVE:
5429 		spin_lock(&pic->lock);
5430 		memcpy(&pic->pics[1], &chip->chip.pic,
5431 			sizeof(struct kvm_pic_state));
5432 		spin_unlock(&pic->lock);
5433 		break;
5434 	case KVM_IRQCHIP_IOAPIC:
5435 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5436 		break;
5437 	default:
5438 		r = -EINVAL;
5439 		break;
5440 	}
5441 	kvm_pic_update_irq(pic);
5442 	return r;
5443 }
5444 
5445 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5446 {
5447 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5448 
5449 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5450 
5451 	mutex_lock(&kps->lock);
5452 	memcpy(ps, &kps->channels, sizeof(*ps));
5453 	mutex_unlock(&kps->lock);
5454 	return 0;
5455 }
5456 
5457 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5458 {
5459 	int i;
5460 	struct kvm_pit *pit = kvm->arch.vpit;
5461 
5462 	mutex_lock(&pit->pit_state.lock);
5463 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5464 	for (i = 0; i < 3; i++)
5465 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5466 	mutex_unlock(&pit->pit_state.lock);
5467 	return 0;
5468 }
5469 
5470 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5471 {
5472 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5473 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5474 		sizeof(ps->channels));
5475 	ps->flags = kvm->arch.vpit->pit_state.flags;
5476 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5477 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5478 	return 0;
5479 }
5480 
5481 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5482 {
5483 	int start = 0;
5484 	int i;
5485 	u32 prev_legacy, cur_legacy;
5486 	struct kvm_pit *pit = kvm->arch.vpit;
5487 
5488 	mutex_lock(&pit->pit_state.lock);
5489 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5490 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5491 	if (!prev_legacy && cur_legacy)
5492 		start = 1;
5493 	memcpy(&pit->pit_state.channels, &ps->channels,
5494 	       sizeof(pit->pit_state.channels));
5495 	pit->pit_state.flags = ps->flags;
5496 	for (i = 0; i < 3; i++)
5497 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5498 				   start && i == 0);
5499 	mutex_unlock(&pit->pit_state.lock);
5500 	return 0;
5501 }
5502 
5503 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5504 				 struct kvm_reinject_control *control)
5505 {
5506 	struct kvm_pit *pit = kvm->arch.vpit;
5507 
5508 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5509 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5510 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5511 	 */
5512 	mutex_lock(&pit->pit_state.lock);
5513 	kvm_pit_set_reinject(pit, control->pit_reinject);
5514 	mutex_unlock(&pit->pit_state.lock);
5515 
5516 	return 0;
5517 }
5518 
5519 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5520 {
5521 
5522 	/*
5523 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5524 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5525 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5526 	 * VM-Exit.
5527 	 */
5528 	struct kvm_vcpu *vcpu;
5529 	int i;
5530 
5531 	kvm_for_each_vcpu(i, vcpu, kvm)
5532 		kvm_vcpu_kick(vcpu);
5533 }
5534 
5535 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5536 			bool line_status)
5537 {
5538 	if (!irqchip_in_kernel(kvm))
5539 		return -ENXIO;
5540 
5541 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5542 					irq_event->irq, irq_event->level,
5543 					line_status);
5544 	return 0;
5545 }
5546 
5547 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5548 			    struct kvm_enable_cap *cap)
5549 {
5550 	int r;
5551 
5552 	if (cap->flags)
5553 		return -EINVAL;
5554 
5555 	switch (cap->cap) {
5556 	case KVM_CAP_DISABLE_QUIRKS:
5557 		kvm->arch.disabled_quirks = cap->args[0];
5558 		r = 0;
5559 		break;
5560 	case KVM_CAP_SPLIT_IRQCHIP: {
5561 		mutex_lock(&kvm->lock);
5562 		r = -EINVAL;
5563 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5564 			goto split_irqchip_unlock;
5565 		r = -EEXIST;
5566 		if (irqchip_in_kernel(kvm))
5567 			goto split_irqchip_unlock;
5568 		if (kvm->created_vcpus)
5569 			goto split_irqchip_unlock;
5570 		r = kvm_setup_empty_irq_routing(kvm);
5571 		if (r)
5572 			goto split_irqchip_unlock;
5573 		/* Pairs with irqchip_in_kernel. */
5574 		smp_wmb();
5575 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5576 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5577 		r = 0;
5578 split_irqchip_unlock:
5579 		mutex_unlock(&kvm->lock);
5580 		break;
5581 	}
5582 	case KVM_CAP_X2APIC_API:
5583 		r = -EINVAL;
5584 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5585 			break;
5586 
5587 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5588 			kvm->arch.x2apic_format = true;
5589 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5590 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5591 
5592 		r = 0;
5593 		break;
5594 	case KVM_CAP_X86_DISABLE_EXITS:
5595 		r = -EINVAL;
5596 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5597 			break;
5598 
5599 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5600 			kvm_can_mwait_in_guest())
5601 			kvm->arch.mwait_in_guest = true;
5602 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5603 			kvm->arch.hlt_in_guest = true;
5604 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5605 			kvm->arch.pause_in_guest = true;
5606 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5607 			kvm->arch.cstate_in_guest = true;
5608 		r = 0;
5609 		break;
5610 	case KVM_CAP_MSR_PLATFORM_INFO:
5611 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5612 		r = 0;
5613 		break;
5614 	case KVM_CAP_EXCEPTION_PAYLOAD:
5615 		kvm->arch.exception_payload_enabled = cap->args[0];
5616 		r = 0;
5617 		break;
5618 	case KVM_CAP_X86_USER_SPACE_MSR:
5619 		kvm->arch.user_space_msr_mask = cap->args[0];
5620 		r = 0;
5621 		break;
5622 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5623 		r = -EINVAL;
5624 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5625 			break;
5626 
5627 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5628 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5629 			break;
5630 
5631 		if (kvm_has_bus_lock_exit &&
5632 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5633 			kvm->arch.bus_lock_detection_enabled = true;
5634 		r = 0;
5635 		break;
5636 #ifdef CONFIG_X86_SGX_KVM
5637 	case KVM_CAP_SGX_ATTRIBUTE: {
5638 		unsigned long allowed_attributes = 0;
5639 
5640 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5641 		if (r)
5642 			break;
5643 
5644 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5645 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5646 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5647 			kvm->arch.sgx_provisioning_allowed = true;
5648 		else
5649 			r = -EINVAL;
5650 		break;
5651 	}
5652 #endif
5653 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5654 		r = -EINVAL;
5655 		if (kvm_x86_ops.vm_copy_enc_context_from)
5656 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5657 		return r;
5658 	case KVM_CAP_EXIT_HYPERCALL:
5659 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5660 			r = -EINVAL;
5661 			break;
5662 		}
5663 		kvm->arch.hypercall_exit_enabled = cap->args[0];
5664 		r = 0;
5665 		break;
5666 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5667 		r = -EINVAL;
5668 		if (cap->args[0] & ~1)
5669 			break;
5670 		kvm->arch.exit_on_emulation_error = cap->args[0];
5671 		r = 0;
5672 		break;
5673 	default:
5674 		r = -EINVAL;
5675 		break;
5676 	}
5677 	return r;
5678 }
5679 
5680 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5681 {
5682 	struct kvm_x86_msr_filter *msr_filter;
5683 
5684 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5685 	if (!msr_filter)
5686 		return NULL;
5687 
5688 	msr_filter->default_allow = default_allow;
5689 	return msr_filter;
5690 }
5691 
5692 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5693 {
5694 	u32 i;
5695 
5696 	if (!msr_filter)
5697 		return;
5698 
5699 	for (i = 0; i < msr_filter->count; i++)
5700 		kfree(msr_filter->ranges[i].bitmap);
5701 
5702 	kfree(msr_filter);
5703 }
5704 
5705 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5706 			      struct kvm_msr_filter_range *user_range)
5707 {
5708 	unsigned long *bitmap = NULL;
5709 	size_t bitmap_size;
5710 
5711 	if (!user_range->nmsrs)
5712 		return 0;
5713 
5714 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5715 		return -EINVAL;
5716 
5717 	if (!user_range->flags)
5718 		return -EINVAL;
5719 
5720 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5721 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5722 		return -EINVAL;
5723 
5724 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5725 	if (IS_ERR(bitmap))
5726 		return PTR_ERR(bitmap);
5727 
5728 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5729 		.flags = user_range->flags,
5730 		.base = user_range->base,
5731 		.nmsrs = user_range->nmsrs,
5732 		.bitmap = bitmap,
5733 	};
5734 
5735 	msr_filter->count++;
5736 	return 0;
5737 }
5738 
5739 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5740 {
5741 	struct kvm_msr_filter __user *user_msr_filter = argp;
5742 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5743 	struct kvm_msr_filter filter;
5744 	bool default_allow;
5745 	bool empty = true;
5746 	int r = 0;
5747 	u32 i;
5748 
5749 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5750 		return -EFAULT;
5751 
5752 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5753 		empty &= !filter.ranges[i].nmsrs;
5754 
5755 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5756 	if (empty && !default_allow)
5757 		return -EINVAL;
5758 
5759 	new_filter = kvm_alloc_msr_filter(default_allow);
5760 	if (!new_filter)
5761 		return -ENOMEM;
5762 
5763 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5764 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5765 		if (r) {
5766 			kvm_free_msr_filter(new_filter);
5767 			return r;
5768 		}
5769 	}
5770 
5771 	mutex_lock(&kvm->lock);
5772 
5773 	/* The per-VM filter is protected by kvm->lock... */
5774 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5775 
5776 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5777 	synchronize_srcu(&kvm->srcu);
5778 
5779 	kvm_free_msr_filter(old_filter);
5780 
5781 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5782 	mutex_unlock(&kvm->lock);
5783 
5784 	return 0;
5785 }
5786 
5787 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5788 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5789 {
5790 	struct kvm_vcpu *vcpu;
5791 	int i, ret = 0;
5792 
5793 	mutex_lock(&kvm->lock);
5794 	kvm_for_each_vcpu(i, vcpu, kvm) {
5795 		if (!vcpu->arch.pv_time_enabled)
5796 			continue;
5797 
5798 		ret = kvm_set_guest_paused(vcpu);
5799 		if (ret) {
5800 			kvm_err("Failed to pause guest VCPU%d: %d\n",
5801 				vcpu->vcpu_id, ret);
5802 			break;
5803 		}
5804 	}
5805 	mutex_unlock(&kvm->lock);
5806 
5807 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
5808 }
5809 
5810 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5811 {
5812 	switch (state) {
5813 	case PM_HIBERNATION_PREPARE:
5814 	case PM_SUSPEND_PREPARE:
5815 		return kvm_arch_suspend_notifier(kvm);
5816 	}
5817 
5818 	return NOTIFY_DONE;
5819 }
5820 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5821 
5822 long kvm_arch_vm_ioctl(struct file *filp,
5823 		       unsigned int ioctl, unsigned long arg)
5824 {
5825 	struct kvm *kvm = filp->private_data;
5826 	void __user *argp = (void __user *)arg;
5827 	int r = -ENOTTY;
5828 	/*
5829 	 * This union makes it completely explicit to gcc-3.x
5830 	 * that these two variables' stack usage should be
5831 	 * combined, not added together.
5832 	 */
5833 	union {
5834 		struct kvm_pit_state ps;
5835 		struct kvm_pit_state2 ps2;
5836 		struct kvm_pit_config pit_config;
5837 	} u;
5838 
5839 	switch (ioctl) {
5840 	case KVM_SET_TSS_ADDR:
5841 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5842 		break;
5843 	case KVM_SET_IDENTITY_MAP_ADDR: {
5844 		u64 ident_addr;
5845 
5846 		mutex_lock(&kvm->lock);
5847 		r = -EINVAL;
5848 		if (kvm->created_vcpus)
5849 			goto set_identity_unlock;
5850 		r = -EFAULT;
5851 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5852 			goto set_identity_unlock;
5853 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5854 set_identity_unlock:
5855 		mutex_unlock(&kvm->lock);
5856 		break;
5857 	}
5858 	case KVM_SET_NR_MMU_PAGES:
5859 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5860 		break;
5861 	case KVM_GET_NR_MMU_PAGES:
5862 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5863 		break;
5864 	case KVM_CREATE_IRQCHIP: {
5865 		mutex_lock(&kvm->lock);
5866 
5867 		r = -EEXIST;
5868 		if (irqchip_in_kernel(kvm))
5869 			goto create_irqchip_unlock;
5870 
5871 		r = -EINVAL;
5872 		if (kvm->created_vcpus)
5873 			goto create_irqchip_unlock;
5874 
5875 		r = kvm_pic_init(kvm);
5876 		if (r)
5877 			goto create_irqchip_unlock;
5878 
5879 		r = kvm_ioapic_init(kvm);
5880 		if (r) {
5881 			kvm_pic_destroy(kvm);
5882 			goto create_irqchip_unlock;
5883 		}
5884 
5885 		r = kvm_setup_default_irq_routing(kvm);
5886 		if (r) {
5887 			kvm_ioapic_destroy(kvm);
5888 			kvm_pic_destroy(kvm);
5889 			goto create_irqchip_unlock;
5890 		}
5891 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5892 		smp_wmb();
5893 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5894 	create_irqchip_unlock:
5895 		mutex_unlock(&kvm->lock);
5896 		break;
5897 	}
5898 	case KVM_CREATE_PIT:
5899 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5900 		goto create_pit;
5901 	case KVM_CREATE_PIT2:
5902 		r = -EFAULT;
5903 		if (copy_from_user(&u.pit_config, argp,
5904 				   sizeof(struct kvm_pit_config)))
5905 			goto out;
5906 	create_pit:
5907 		mutex_lock(&kvm->lock);
5908 		r = -EEXIST;
5909 		if (kvm->arch.vpit)
5910 			goto create_pit_unlock;
5911 		r = -ENOMEM;
5912 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5913 		if (kvm->arch.vpit)
5914 			r = 0;
5915 	create_pit_unlock:
5916 		mutex_unlock(&kvm->lock);
5917 		break;
5918 	case KVM_GET_IRQCHIP: {
5919 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5920 		struct kvm_irqchip *chip;
5921 
5922 		chip = memdup_user(argp, sizeof(*chip));
5923 		if (IS_ERR(chip)) {
5924 			r = PTR_ERR(chip);
5925 			goto out;
5926 		}
5927 
5928 		r = -ENXIO;
5929 		if (!irqchip_kernel(kvm))
5930 			goto get_irqchip_out;
5931 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5932 		if (r)
5933 			goto get_irqchip_out;
5934 		r = -EFAULT;
5935 		if (copy_to_user(argp, chip, sizeof(*chip)))
5936 			goto get_irqchip_out;
5937 		r = 0;
5938 	get_irqchip_out:
5939 		kfree(chip);
5940 		break;
5941 	}
5942 	case KVM_SET_IRQCHIP: {
5943 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5944 		struct kvm_irqchip *chip;
5945 
5946 		chip = memdup_user(argp, sizeof(*chip));
5947 		if (IS_ERR(chip)) {
5948 			r = PTR_ERR(chip);
5949 			goto out;
5950 		}
5951 
5952 		r = -ENXIO;
5953 		if (!irqchip_kernel(kvm))
5954 			goto set_irqchip_out;
5955 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5956 	set_irqchip_out:
5957 		kfree(chip);
5958 		break;
5959 	}
5960 	case KVM_GET_PIT: {
5961 		r = -EFAULT;
5962 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5963 			goto out;
5964 		r = -ENXIO;
5965 		if (!kvm->arch.vpit)
5966 			goto out;
5967 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5968 		if (r)
5969 			goto out;
5970 		r = -EFAULT;
5971 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5972 			goto out;
5973 		r = 0;
5974 		break;
5975 	}
5976 	case KVM_SET_PIT: {
5977 		r = -EFAULT;
5978 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5979 			goto out;
5980 		mutex_lock(&kvm->lock);
5981 		r = -ENXIO;
5982 		if (!kvm->arch.vpit)
5983 			goto set_pit_out;
5984 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5985 set_pit_out:
5986 		mutex_unlock(&kvm->lock);
5987 		break;
5988 	}
5989 	case KVM_GET_PIT2: {
5990 		r = -ENXIO;
5991 		if (!kvm->arch.vpit)
5992 			goto out;
5993 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5994 		if (r)
5995 			goto out;
5996 		r = -EFAULT;
5997 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5998 			goto out;
5999 		r = 0;
6000 		break;
6001 	}
6002 	case KVM_SET_PIT2: {
6003 		r = -EFAULT;
6004 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6005 			goto out;
6006 		mutex_lock(&kvm->lock);
6007 		r = -ENXIO;
6008 		if (!kvm->arch.vpit)
6009 			goto set_pit2_out;
6010 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6011 set_pit2_out:
6012 		mutex_unlock(&kvm->lock);
6013 		break;
6014 	}
6015 	case KVM_REINJECT_CONTROL: {
6016 		struct kvm_reinject_control control;
6017 		r =  -EFAULT;
6018 		if (copy_from_user(&control, argp, sizeof(control)))
6019 			goto out;
6020 		r = -ENXIO;
6021 		if (!kvm->arch.vpit)
6022 			goto out;
6023 		r = kvm_vm_ioctl_reinject(kvm, &control);
6024 		break;
6025 	}
6026 	case KVM_SET_BOOT_CPU_ID:
6027 		r = 0;
6028 		mutex_lock(&kvm->lock);
6029 		if (kvm->created_vcpus)
6030 			r = -EBUSY;
6031 		else
6032 			kvm->arch.bsp_vcpu_id = arg;
6033 		mutex_unlock(&kvm->lock);
6034 		break;
6035 #ifdef CONFIG_KVM_XEN
6036 	case KVM_XEN_HVM_CONFIG: {
6037 		struct kvm_xen_hvm_config xhc;
6038 		r = -EFAULT;
6039 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6040 			goto out;
6041 		r = kvm_xen_hvm_config(kvm, &xhc);
6042 		break;
6043 	}
6044 	case KVM_XEN_HVM_GET_ATTR: {
6045 		struct kvm_xen_hvm_attr xha;
6046 
6047 		r = -EFAULT;
6048 		if (copy_from_user(&xha, argp, sizeof(xha)))
6049 			goto out;
6050 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6051 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6052 			r = -EFAULT;
6053 		break;
6054 	}
6055 	case KVM_XEN_HVM_SET_ATTR: {
6056 		struct kvm_xen_hvm_attr xha;
6057 
6058 		r = -EFAULT;
6059 		if (copy_from_user(&xha, argp, sizeof(xha)))
6060 			goto out;
6061 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6062 		break;
6063 	}
6064 #endif
6065 	case KVM_SET_CLOCK: {
6066 		struct kvm_arch *ka = &kvm->arch;
6067 		struct kvm_clock_data user_ns;
6068 		u64 now_ns;
6069 
6070 		r = -EFAULT;
6071 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6072 			goto out;
6073 
6074 		r = -EINVAL;
6075 		if (user_ns.flags)
6076 			goto out;
6077 
6078 		r = 0;
6079 		/*
6080 		 * TODO: userspace has to take care of races with VCPU_RUN, so
6081 		 * kvm_gen_update_masterclock() can be cut down to locked
6082 		 * pvclock_update_vm_gtod_copy().
6083 		 */
6084 		kvm_gen_update_masterclock(kvm);
6085 
6086 		/*
6087 		 * This pairs with kvm_guest_time_update(): when masterclock is
6088 		 * in use, we use master_kernel_ns + kvmclock_offset to set
6089 		 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6090 		 * is slightly ahead) here we risk going negative on unsigned
6091 		 * 'system_time' when 'user_ns.clock' is very small.
6092 		 */
6093 		spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6094 		if (kvm->arch.use_master_clock)
6095 			now_ns = ka->master_kernel_ns;
6096 		else
6097 			now_ns = get_kvmclock_base_ns();
6098 		ka->kvmclock_offset = user_ns.clock - now_ns;
6099 		spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6100 
6101 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6102 		break;
6103 	}
6104 	case KVM_GET_CLOCK: {
6105 		struct kvm_clock_data user_ns;
6106 		u64 now_ns;
6107 
6108 		now_ns = get_kvmclock_ns(kvm);
6109 		user_ns.clock = now_ns;
6110 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6111 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6112 
6113 		r = -EFAULT;
6114 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6115 			goto out;
6116 		r = 0;
6117 		break;
6118 	}
6119 	case KVM_MEMORY_ENCRYPT_OP: {
6120 		r = -ENOTTY;
6121 		if (kvm_x86_ops.mem_enc_op)
6122 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6123 		break;
6124 	}
6125 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6126 		struct kvm_enc_region region;
6127 
6128 		r = -EFAULT;
6129 		if (copy_from_user(&region, argp, sizeof(region)))
6130 			goto out;
6131 
6132 		r = -ENOTTY;
6133 		if (kvm_x86_ops.mem_enc_reg_region)
6134 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6135 		break;
6136 	}
6137 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6138 		struct kvm_enc_region region;
6139 
6140 		r = -EFAULT;
6141 		if (copy_from_user(&region, argp, sizeof(region)))
6142 			goto out;
6143 
6144 		r = -ENOTTY;
6145 		if (kvm_x86_ops.mem_enc_unreg_region)
6146 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6147 		break;
6148 	}
6149 	case KVM_HYPERV_EVENTFD: {
6150 		struct kvm_hyperv_eventfd hvevfd;
6151 
6152 		r = -EFAULT;
6153 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6154 			goto out;
6155 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6156 		break;
6157 	}
6158 	case KVM_SET_PMU_EVENT_FILTER:
6159 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6160 		break;
6161 	case KVM_X86_SET_MSR_FILTER:
6162 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6163 		break;
6164 	default:
6165 		r = -ENOTTY;
6166 	}
6167 out:
6168 	return r;
6169 }
6170 
6171 static void kvm_init_msr_list(void)
6172 {
6173 	struct x86_pmu_capability x86_pmu;
6174 	u32 dummy[2];
6175 	unsigned i;
6176 
6177 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6178 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6179 
6180 	perf_get_x86_pmu_capability(&x86_pmu);
6181 
6182 	num_msrs_to_save = 0;
6183 	num_emulated_msrs = 0;
6184 	num_msr_based_features = 0;
6185 
6186 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6187 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6188 			continue;
6189 
6190 		/*
6191 		 * Even MSRs that are valid in the host may not be exposed
6192 		 * to the guests in some cases.
6193 		 */
6194 		switch (msrs_to_save_all[i]) {
6195 		case MSR_IA32_BNDCFGS:
6196 			if (!kvm_mpx_supported())
6197 				continue;
6198 			break;
6199 		case MSR_TSC_AUX:
6200 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6201 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6202 				continue;
6203 			break;
6204 		case MSR_IA32_UMWAIT_CONTROL:
6205 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6206 				continue;
6207 			break;
6208 		case MSR_IA32_RTIT_CTL:
6209 		case MSR_IA32_RTIT_STATUS:
6210 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6211 				continue;
6212 			break;
6213 		case MSR_IA32_RTIT_CR3_MATCH:
6214 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6215 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6216 				continue;
6217 			break;
6218 		case MSR_IA32_RTIT_OUTPUT_BASE:
6219 		case MSR_IA32_RTIT_OUTPUT_MASK:
6220 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6221 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6222 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6223 				continue;
6224 			break;
6225 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6226 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6227 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6228 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6229 				continue;
6230 			break;
6231 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6232 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6233 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6234 				continue;
6235 			break;
6236 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6237 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6238 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6239 				continue;
6240 			break;
6241 		default:
6242 			break;
6243 		}
6244 
6245 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6246 	}
6247 
6248 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6249 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6250 			continue;
6251 
6252 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6253 	}
6254 
6255 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6256 		struct kvm_msr_entry msr;
6257 
6258 		msr.index = msr_based_features_all[i];
6259 		if (kvm_get_msr_feature(&msr))
6260 			continue;
6261 
6262 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6263 	}
6264 }
6265 
6266 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6267 			   const void *v)
6268 {
6269 	int handled = 0;
6270 	int n;
6271 
6272 	do {
6273 		n = min(len, 8);
6274 		if (!(lapic_in_kernel(vcpu) &&
6275 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6276 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6277 			break;
6278 		handled += n;
6279 		addr += n;
6280 		len -= n;
6281 		v += n;
6282 	} while (len);
6283 
6284 	return handled;
6285 }
6286 
6287 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6288 {
6289 	int handled = 0;
6290 	int n;
6291 
6292 	do {
6293 		n = min(len, 8);
6294 		if (!(lapic_in_kernel(vcpu) &&
6295 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6296 					 addr, n, v))
6297 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6298 			break;
6299 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6300 		handled += n;
6301 		addr += n;
6302 		len -= n;
6303 		v += n;
6304 	} while (len);
6305 
6306 	return handled;
6307 }
6308 
6309 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6310 			struct kvm_segment *var, int seg)
6311 {
6312 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6313 }
6314 
6315 void kvm_get_segment(struct kvm_vcpu *vcpu,
6316 		     struct kvm_segment *var, int seg)
6317 {
6318 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6319 }
6320 
6321 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6322 			   struct x86_exception *exception)
6323 {
6324 	gpa_t t_gpa;
6325 
6326 	BUG_ON(!mmu_is_nested(vcpu));
6327 
6328 	/* NPT walks are always user-walks */
6329 	access |= PFERR_USER_MASK;
6330 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6331 
6332 	return t_gpa;
6333 }
6334 
6335 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6336 			      struct x86_exception *exception)
6337 {
6338 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6339 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6340 }
6341 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6342 
6343  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6344 				struct x86_exception *exception)
6345 {
6346 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6347 	access |= PFERR_FETCH_MASK;
6348 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6349 }
6350 
6351 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6352 			       struct x86_exception *exception)
6353 {
6354 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6355 	access |= PFERR_WRITE_MASK;
6356 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6357 }
6358 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6359 
6360 /* uses this to access any guest's mapped memory without checking CPL */
6361 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6362 				struct x86_exception *exception)
6363 {
6364 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6365 }
6366 
6367 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6368 				      struct kvm_vcpu *vcpu, u32 access,
6369 				      struct x86_exception *exception)
6370 {
6371 	void *data = val;
6372 	int r = X86EMUL_CONTINUE;
6373 
6374 	while (bytes) {
6375 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6376 							    exception);
6377 		unsigned offset = addr & (PAGE_SIZE-1);
6378 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6379 		int ret;
6380 
6381 		if (gpa == UNMAPPED_GVA)
6382 			return X86EMUL_PROPAGATE_FAULT;
6383 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6384 					       offset, toread);
6385 		if (ret < 0) {
6386 			r = X86EMUL_IO_NEEDED;
6387 			goto out;
6388 		}
6389 
6390 		bytes -= toread;
6391 		data += toread;
6392 		addr += toread;
6393 	}
6394 out:
6395 	return r;
6396 }
6397 
6398 /* used for instruction fetching */
6399 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6400 				gva_t addr, void *val, unsigned int bytes,
6401 				struct x86_exception *exception)
6402 {
6403 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6404 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6405 	unsigned offset;
6406 	int ret;
6407 
6408 	/* Inline kvm_read_guest_virt_helper for speed.  */
6409 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6410 						    exception);
6411 	if (unlikely(gpa == UNMAPPED_GVA))
6412 		return X86EMUL_PROPAGATE_FAULT;
6413 
6414 	offset = addr & (PAGE_SIZE-1);
6415 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6416 		bytes = (unsigned)PAGE_SIZE - offset;
6417 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6418 				       offset, bytes);
6419 	if (unlikely(ret < 0))
6420 		return X86EMUL_IO_NEEDED;
6421 
6422 	return X86EMUL_CONTINUE;
6423 }
6424 
6425 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6426 			       gva_t addr, void *val, unsigned int bytes,
6427 			       struct x86_exception *exception)
6428 {
6429 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6430 
6431 	/*
6432 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6433 	 * is returned, but our callers are not ready for that and they blindly
6434 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6435 	 * uninitialized kernel stack memory into cr2 and error code.
6436 	 */
6437 	memset(exception, 0, sizeof(*exception));
6438 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6439 					  exception);
6440 }
6441 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6442 
6443 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6444 			     gva_t addr, void *val, unsigned int bytes,
6445 			     struct x86_exception *exception, bool system)
6446 {
6447 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6448 	u32 access = 0;
6449 
6450 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6451 		access |= PFERR_USER_MASK;
6452 
6453 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6454 }
6455 
6456 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6457 		unsigned long addr, void *val, unsigned int bytes)
6458 {
6459 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6460 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6461 
6462 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6463 }
6464 
6465 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6466 				      struct kvm_vcpu *vcpu, u32 access,
6467 				      struct x86_exception *exception)
6468 {
6469 	void *data = val;
6470 	int r = X86EMUL_CONTINUE;
6471 
6472 	while (bytes) {
6473 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6474 							     access,
6475 							     exception);
6476 		unsigned offset = addr & (PAGE_SIZE-1);
6477 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6478 		int ret;
6479 
6480 		if (gpa == UNMAPPED_GVA)
6481 			return X86EMUL_PROPAGATE_FAULT;
6482 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6483 		if (ret < 0) {
6484 			r = X86EMUL_IO_NEEDED;
6485 			goto out;
6486 		}
6487 
6488 		bytes -= towrite;
6489 		data += towrite;
6490 		addr += towrite;
6491 	}
6492 out:
6493 	return r;
6494 }
6495 
6496 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6497 			      unsigned int bytes, struct x86_exception *exception,
6498 			      bool system)
6499 {
6500 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6501 	u32 access = PFERR_WRITE_MASK;
6502 
6503 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6504 		access |= PFERR_USER_MASK;
6505 
6506 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6507 					   access, exception);
6508 }
6509 
6510 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6511 				unsigned int bytes, struct x86_exception *exception)
6512 {
6513 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6514 	vcpu->arch.l1tf_flush_l1d = true;
6515 
6516 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6517 					   PFERR_WRITE_MASK, exception);
6518 }
6519 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6520 
6521 int handle_ud(struct kvm_vcpu *vcpu)
6522 {
6523 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6524 	int emul_type = EMULTYPE_TRAP_UD;
6525 	char sig[5]; /* ud2; .ascii "kvm" */
6526 	struct x86_exception e;
6527 
6528 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6529 		return 1;
6530 
6531 	if (force_emulation_prefix &&
6532 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6533 				sig, sizeof(sig), &e) == 0 &&
6534 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6535 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6536 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6537 	}
6538 
6539 	return kvm_emulate_instruction(vcpu, emul_type);
6540 }
6541 EXPORT_SYMBOL_GPL(handle_ud);
6542 
6543 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6544 			    gpa_t gpa, bool write)
6545 {
6546 	/* For APIC access vmexit */
6547 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6548 		return 1;
6549 
6550 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6551 		trace_vcpu_match_mmio(gva, gpa, write, true);
6552 		return 1;
6553 	}
6554 
6555 	return 0;
6556 }
6557 
6558 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6559 				gpa_t *gpa, struct x86_exception *exception,
6560 				bool write)
6561 {
6562 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6563 		| (write ? PFERR_WRITE_MASK : 0);
6564 
6565 	/*
6566 	 * currently PKRU is only applied to ept enabled guest so
6567 	 * there is no pkey in EPT page table for L1 guest or EPT
6568 	 * shadow page table for L2 guest.
6569 	 */
6570 	if (vcpu_match_mmio_gva(vcpu, gva)
6571 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6572 				 vcpu->arch.mmio_access, 0, access)) {
6573 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6574 					(gva & (PAGE_SIZE - 1));
6575 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6576 		return 1;
6577 	}
6578 
6579 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6580 
6581 	if (*gpa == UNMAPPED_GVA)
6582 		return -1;
6583 
6584 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6585 }
6586 
6587 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6588 			const void *val, int bytes)
6589 {
6590 	int ret;
6591 
6592 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6593 	if (ret < 0)
6594 		return 0;
6595 	kvm_page_track_write(vcpu, gpa, val, bytes);
6596 	return 1;
6597 }
6598 
6599 struct read_write_emulator_ops {
6600 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6601 				  int bytes);
6602 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6603 				  void *val, int bytes);
6604 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6605 			       int bytes, void *val);
6606 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6607 				    void *val, int bytes);
6608 	bool write;
6609 };
6610 
6611 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6612 {
6613 	if (vcpu->mmio_read_completed) {
6614 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6615 			       vcpu->mmio_fragments[0].gpa, val);
6616 		vcpu->mmio_read_completed = 0;
6617 		return 1;
6618 	}
6619 
6620 	return 0;
6621 }
6622 
6623 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6624 			void *val, int bytes)
6625 {
6626 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6627 }
6628 
6629 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6630 			 void *val, int bytes)
6631 {
6632 	return emulator_write_phys(vcpu, gpa, val, bytes);
6633 }
6634 
6635 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6636 {
6637 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6638 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6639 }
6640 
6641 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6642 			  void *val, int bytes)
6643 {
6644 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6645 	return X86EMUL_IO_NEEDED;
6646 }
6647 
6648 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6649 			   void *val, int bytes)
6650 {
6651 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6652 
6653 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6654 	return X86EMUL_CONTINUE;
6655 }
6656 
6657 static const struct read_write_emulator_ops read_emultor = {
6658 	.read_write_prepare = read_prepare,
6659 	.read_write_emulate = read_emulate,
6660 	.read_write_mmio = vcpu_mmio_read,
6661 	.read_write_exit_mmio = read_exit_mmio,
6662 };
6663 
6664 static const struct read_write_emulator_ops write_emultor = {
6665 	.read_write_emulate = write_emulate,
6666 	.read_write_mmio = write_mmio,
6667 	.read_write_exit_mmio = write_exit_mmio,
6668 	.write = true,
6669 };
6670 
6671 static int emulator_read_write_onepage(unsigned long addr, void *val,
6672 				       unsigned int bytes,
6673 				       struct x86_exception *exception,
6674 				       struct kvm_vcpu *vcpu,
6675 				       const struct read_write_emulator_ops *ops)
6676 {
6677 	gpa_t gpa;
6678 	int handled, ret;
6679 	bool write = ops->write;
6680 	struct kvm_mmio_fragment *frag;
6681 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6682 
6683 	/*
6684 	 * If the exit was due to a NPF we may already have a GPA.
6685 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6686 	 * Note, this cannot be used on string operations since string
6687 	 * operation using rep will only have the initial GPA from the NPF
6688 	 * occurred.
6689 	 */
6690 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6691 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6692 		gpa = ctxt->gpa_val;
6693 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6694 	} else {
6695 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6696 		if (ret < 0)
6697 			return X86EMUL_PROPAGATE_FAULT;
6698 	}
6699 
6700 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6701 		return X86EMUL_CONTINUE;
6702 
6703 	/*
6704 	 * Is this MMIO handled locally?
6705 	 */
6706 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6707 	if (handled == bytes)
6708 		return X86EMUL_CONTINUE;
6709 
6710 	gpa += handled;
6711 	bytes -= handled;
6712 	val += handled;
6713 
6714 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6715 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6716 	frag->gpa = gpa;
6717 	frag->data = val;
6718 	frag->len = bytes;
6719 	return X86EMUL_CONTINUE;
6720 }
6721 
6722 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6723 			unsigned long addr,
6724 			void *val, unsigned int bytes,
6725 			struct x86_exception *exception,
6726 			const struct read_write_emulator_ops *ops)
6727 {
6728 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6729 	gpa_t gpa;
6730 	int rc;
6731 
6732 	if (ops->read_write_prepare &&
6733 		  ops->read_write_prepare(vcpu, val, bytes))
6734 		return X86EMUL_CONTINUE;
6735 
6736 	vcpu->mmio_nr_fragments = 0;
6737 
6738 	/* Crossing a page boundary? */
6739 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6740 		int now;
6741 
6742 		now = -addr & ~PAGE_MASK;
6743 		rc = emulator_read_write_onepage(addr, val, now, exception,
6744 						 vcpu, ops);
6745 
6746 		if (rc != X86EMUL_CONTINUE)
6747 			return rc;
6748 		addr += now;
6749 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6750 			addr = (u32)addr;
6751 		val += now;
6752 		bytes -= now;
6753 	}
6754 
6755 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6756 					 vcpu, ops);
6757 	if (rc != X86EMUL_CONTINUE)
6758 		return rc;
6759 
6760 	if (!vcpu->mmio_nr_fragments)
6761 		return rc;
6762 
6763 	gpa = vcpu->mmio_fragments[0].gpa;
6764 
6765 	vcpu->mmio_needed = 1;
6766 	vcpu->mmio_cur_fragment = 0;
6767 
6768 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6769 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6770 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6771 	vcpu->run->mmio.phys_addr = gpa;
6772 
6773 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6774 }
6775 
6776 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6777 				  unsigned long addr,
6778 				  void *val,
6779 				  unsigned int bytes,
6780 				  struct x86_exception *exception)
6781 {
6782 	return emulator_read_write(ctxt, addr, val, bytes,
6783 				   exception, &read_emultor);
6784 }
6785 
6786 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6787 			    unsigned long addr,
6788 			    const void *val,
6789 			    unsigned int bytes,
6790 			    struct x86_exception *exception)
6791 {
6792 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6793 				   exception, &write_emultor);
6794 }
6795 
6796 #define CMPXCHG_TYPE(t, ptr, old, new) \
6797 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6798 
6799 #ifdef CONFIG_X86_64
6800 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6801 #else
6802 #  define CMPXCHG64(ptr, old, new) \
6803 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6804 #endif
6805 
6806 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6807 				     unsigned long addr,
6808 				     const void *old,
6809 				     const void *new,
6810 				     unsigned int bytes,
6811 				     struct x86_exception *exception)
6812 {
6813 	struct kvm_host_map map;
6814 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6815 	u64 page_line_mask;
6816 	gpa_t gpa;
6817 	char *kaddr;
6818 	bool exchanged;
6819 
6820 	/* guests cmpxchg8b have to be emulated atomically */
6821 	if (bytes > 8 || (bytes & (bytes - 1)))
6822 		goto emul_write;
6823 
6824 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6825 
6826 	if (gpa == UNMAPPED_GVA ||
6827 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6828 		goto emul_write;
6829 
6830 	/*
6831 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6832 	 * enabled in the host and the access splits a cache line.
6833 	 */
6834 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6835 		page_line_mask = ~(cache_line_size() - 1);
6836 	else
6837 		page_line_mask = PAGE_MASK;
6838 
6839 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6840 		goto emul_write;
6841 
6842 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6843 		goto emul_write;
6844 
6845 	kaddr = map.hva + offset_in_page(gpa);
6846 
6847 	switch (bytes) {
6848 	case 1:
6849 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6850 		break;
6851 	case 2:
6852 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6853 		break;
6854 	case 4:
6855 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6856 		break;
6857 	case 8:
6858 		exchanged = CMPXCHG64(kaddr, old, new);
6859 		break;
6860 	default:
6861 		BUG();
6862 	}
6863 
6864 	kvm_vcpu_unmap(vcpu, &map, true);
6865 
6866 	if (!exchanged)
6867 		return X86EMUL_CMPXCHG_FAILED;
6868 
6869 	kvm_page_track_write(vcpu, gpa, new, bytes);
6870 
6871 	return X86EMUL_CONTINUE;
6872 
6873 emul_write:
6874 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6875 
6876 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6877 }
6878 
6879 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6880 {
6881 	int r = 0, i;
6882 
6883 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6884 		if (vcpu->arch.pio.in)
6885 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6886 					    vcpu->arch.pio.size, pd);
6887 		else
6888 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6889 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6890 					     pd);
6891 		if (r)
6892 			break;
6893 		pd += vcpu->arch.pio.size;
6894 	}
6895 	return r;
6896 }
6897 
6898 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6899 			       unsigned short port, void *val,
6900 			       unsigned int count, bool in)
6901 {
6902 	vcpu->arch.pio.port = port;
6903 	vcpu->arch.pio.in = in;
6904 	vcpu->arch.pio.count  = count;
6905 	vcpu->arch.pio.size = size;
6906 
6907 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6908 		vcpu->arch.pio.count = 0;
6909 		return 1;
6910 	}
6911 
6912 	vcpu->run->exit_reason = KVM_EXIT_IO;
6913 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6914 	vcpu->run->io.size = size;
6915 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6916 	vcpu->run->io.count = count;
6917 	vcpu->run->io.port = port;
6918 
6919 	return 0;
6920 }
6921 
6922 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6923 			   unsigned short port, void *val, unsigned int count)
6924 {
6925 	int ret;
6926 
6927 	if (vcpu->arch.pio.count)
6928 		goto data_avail;
6929 
6930 	memset(vcpu->arch.pio_data, 0, size * count);
6931 
6932 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6933 	if (ret) {
6934 data_avail:
6935 		memcpy(val, vcpu->arch.pio_data, size * count);
6936 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6937 		vcpu->arch.pio.count = 0;
6938 		return 1;
6939 	}
6940 
6941 	return 0;
6942 }
6943 
6944 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6945 				    int size, unsigned short port, void *val,
6946 				    unsigned int count)
6947 {
6948 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6949 
6950 }
6951 
6952 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6953 			    unsigned short port, const void *val,
6954 			    unsigned int count)
6955 {
6956 	memcpy(vcpu->arch.pio_data, val, size * count);
6957 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6958 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6959 }
6960 
6961 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6962 				     int size, unsigned short port,
6963 				     const void *val, unsigned int count)
6964 {
6965 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6966 }
6967 
6968 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6969 {
6970 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6971 }
6972 
6973 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6974 {
6975 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6976 }
6977 
6978 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6979 {
6980 	if (!need_emulate_wbinvd(vcpu))
6981 		return X86EMUL_CONTINUE;
6982 
6983 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
6984 		int cpu = get_cpu();
6985 
6986 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6987 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6988 				wbinvd_ipi, NULL, 1);
6989 		put_cpu();
6990 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6991 	} else
6992 		wbinvd();
6993 	return X86EMUL_CONTINUE;
6994 }
6995 
6996 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6997 {
6998 	kvm_emulate_wbinvd_noskip(vcpu);
6999 	return kvm_skip_emulated_instruction(vcpu);
7000 }
7001 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7002 
7003 
7004 
7005 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7006 {
7007 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7008 }
7009 
7010 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7011 			    unsigned long *dest)
7012 {
7013 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7014 }
7015 
7016 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7017 			   unsigned long value)
7018 {
7019 
7020 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7021 }
7022 
7023 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7024 {
7025 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7026 }
7027 
7028 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7029 {
7030 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7031 	unsigned long value;
7032 
7033 	switch (cr) {
7034 	case 0:
7035 		value = kvm_read_cr0(vcpu);
7036 		break;
7037 	case 2:
7038 		value = vcpu->arch.cr2;
7039 		break;
7040 	case 3:
7041 		value = kvm_read_cr3(vcpu);
7042 		break;
7043 	case 4:
7044 		value = kvm_read_cr4(vcpu);
7045 		break;
7046 	case 8:
7047 		value = kvm_get_cr8(vcpu);
7048 		break;
7049 	default:
7050 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7051 		return 0;
7052 	}
7053 
7054 	return value;
7055 }
7056 
7057 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7058 {
7059 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7060 	int res = 0;
7061 
7062 	switch (cr) {
7063 	case 0:
7064 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7065 		break;
7066 	case 2:
7067 		vcpu->arch.cr2 = val;
7068 		break;
7069 	case 3:
7070 		res = kvm_set_cr3(vcpu, val);
7071 		break;
7072 	case 4:
7073 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7074 		break;
7075 	case 8:
7076 		res = kvm_set_cr8(vcpu, val);
7077 		break;
7078 	default:
7079 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7080 		res = -1;
7081 	}
7082 
7083 	return res;
7084 }
7085 
7086 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7087 {
7088 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7089 }
7090 
7091 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7092 {
7093 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7094 }
7095 
7096 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7097 {
7098 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7099 }
7100 
7101 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7102 {
7103 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7104 }
7105 
7106 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7107 {
7108 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7109 }
7110 
7111 static unsigned long emulator_get_cached_segment_base(
7112 	struct x86_emulate_ctxt *ctxt, int seg)
7113 {
7114 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7115 }
7116 
7117 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7118 				 struct desc_struct *desc, u32 *base3,
7119 				 int seg)
7120 {
7121 	struct kvm_segment var;
7122 
7123 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7124 	*selector = var.selector;
7125 
7126 	if (var.unusable) {
7127 		memset(desc, 0, sizeof(*desc));
7128 		if (base3)
7129 			*base3 = 0;
7130 		return false;
7131 	}
7132 
7133 	if (var.g)
7134 		var.limit >>= 12;
7135 	set_desc_limit(desc, var.limit);
7136 	set_desc_base(desc, (unsigned long)var.base);
7137 #ifdef CONFIG_X86_64
7138 	if (base3)
7139 		*base3 = var.base >> 32;
7140 #endif
7141 	desc->type = var.type;
7142 	desc->s = var.s;
7143 	desc->dpl = var.dpl;
7144 	desc->p = var.present;
7145 	desc->avl = var.avl;
7146 	desc->l = var.l;
7147 	desc->d = var.db;
7148 	desc->g = var.g;
7149 
7150 	return true;
7151 }
7152 
7153 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7154 				 struct desc_struct *desc, u32 base3,
7155 				 int seg)
7156 {
7157 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7158 	struct kvm_segment var;
7159 
7160 	var.selector = selector;
7161 	var.base = get_desc_base(desc);
7162 #ifdef CONFIG_X86_64
7163 	var.base |= ((u64)base3) << 32;
7164 #endif
7165 	var.limit = get_desc_limit(desc);
7166 	if (desc->g)
7167 		var.limit = (var.limit << 12) | 0xfff;
7168 	var.type = desc->type;
7169 	var.dpl = desc->dpl;
7170 	var.db = desc->d;
7171 	var.s = desc->s;
7172 	var.l = desc->l;
7173 	var.g = desc->g;
7174 	var.avl = desc->avl;
7175 	var.present = desc->p;
7176 	var.unusable = !var.present;
7177 	var.padding = 0;
7178 
7179 	kvm_set_segment(vcpu, &var, seg);
7180 	return;
7181 }
7182 
7183 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7184 			    u32 msr_index, u64 *pdata)
7185 {
7186 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7187 	int r;
7188 
7189 	r = kvm_get_msr(vcpu, msr_index, pdata);
7190 
7191 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7192 		/* Bounce to user space */
7193 		return X86EMUL_IO_NEEDED;
7194 	}
7195 
7196 	return r;
7197 }
7198 
7199 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7200 			    u32 msr_index, u64 data)
7201 {
7202 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7203 	int r;
7204 
7205 	r = kvm_set_msr(vcpu, msr_index, data);
7206 
7207 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7208 		/* Bounce to user space */
7209 		return X86EMUL_IO_NEEDED;
7210 	}
7211 
7212 	return r;
7213 }
7214 
7215 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7216 {
7217 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7218 
7219 	return vcpu->arch.smbase;
7220 }
7221 
7222 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7223 {
7224 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7225 
7226 	vcpu->arch.smbase = smbase;
7227 }
7228 
7229 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7230 			      u32 pmc)
7231 {
7232 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7233 }
7234 
7235 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7236 			     u32 pmc, u64 *pdata)
7237 {
7238 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7239 }
7240 
7241 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7242 {
7243 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7244 }
7245 
7246 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7247 			      struct x86_instruction_info *info,
7248 			      enum x86_intercept_stage stage)
7249 {
7250 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7251 					    &ctxt->exception);
7252 }
7253 
7254 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7255 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7256 			      bool exact_only)
7257 {
7258 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7259 }
7260 
7261 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7262 {
7263 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7264 }
7265 
7266 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7267 {
7268 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7269 }
7270 
7271 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7272 {
7273 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7274 }
7275 
7276 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7277 {
7278 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7279 }
7280 
7281 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7282 {
7283 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7284 }
7285 
7286 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7287 {
7288 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7289 }
7290 
7291 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7292 {
7293 	return emul_to_vcpu(ctxt)->arch.hflags;
7294 }
7295 
7296 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7297 {
7298 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7299 
7300 	kvm_smm_changed(vcpu, false);
7301 }
7302 
7303 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7304 				  const char *smstate)
7305 {
7306 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7307 }
7308 
7309 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7310 {
7311 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7312 }
7313 
7314 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7315 {
7316 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7317 }
7318 
7319 static const struct x86_emulate_ops emulate_ops = {
7320 	.read_gpr            = emulator_read_gpr,
7321 	.write_gpr           = emulator_write_gpr,
7322 	.read_std            = emulator_read_std,
7323 	.write_std           = emulator_write_std,
7324 	.read_phys           = kvm_read_guest_phys_system,
7325 	.fetch               = kvm_fetch_guest_virt,
7326 	.read_emulated       = emulator_read_emulated,
7327 	.write_emulated      = emulator_write_emulated,
7328 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7329 	.invlpg              = emulator_invlpg,
7330 	.pio_in_emulated     = emulator_pio_in_emulated,
7331 	.pio_out_emulated    = emulator_pio_out_emulated,
7332 	.get_segment         = emulator_get_segment,
7333 	.set_segment         = emulator_set_segment,
7334 	.get_cached_segment_base = emulator_get_cached_segment_base,
7335 	.get_gdt             = emulator_get_gdt,
7336 	.get_idt	     = emulator_get_idt,
7337 	.set_gdt             = emulator_set_gdt,
7338 	.set_idt	     = emulator_set_idt,
7339 	.get_cr              = emulator_get_cr,
7340 	.set_cr              = emulator_set_cr,
7341 	.cpl                 = emulator_get_cpl,
7342 	.get_dr              = emulator_get_dr,
7343 	.set_dr              = emulator_set_dr,
7344 	.get_smbase          = emulator_get_smbase,
7345 	.set_smbase          = emulator_set_smbase,
7346 	.set_msr             = emulator_set_msr,
7347 	.get_msr             = emulator_get_msr,
7348 	.check_pmc	     = emulator_check_pmc,
7349 	.read_pmc            = emulator_read_pmc,
7350 	.halt                = emulator_halt,
7351 	.wbinvd              = emulator_wbinvd,
7352 	.fix_hypercall       = emulator_fix_hypercall,
7353 	.intercept           = emulator_intercept,
7354 	.get_cpuid           = emulator_get_cpuid,
7355 	.guest_has_long_mode = emulator_guest_has_long_mode,
7356 	.guest_has_movbe     = emulator_guest_has_movbe,
7357 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7358 	.set_nmi_mask        = emulator_set_nmi_mask,
7359 	.get_hflags          = emulator_get_hflags,
7360 	.exiting_smm         = emulator_exiting_smm,
7361 	.leave_smm           = emulator_leave_smm,
7362 	.triple_fault        = emulator_triple_fault,
7363 	.set_xcr             = emulator_set_xcr,
7364 };
7365 
7366 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7367 {
7368 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7369 	/*
7370 	 * an sti; sti; sequence only disable interrupts for the first
7371 	 * instruction. So, if the last instruction, be it emulated or
7372 	 * not, left the system with the INT_STI flag enabled, it
7373 	 * means that the last instruction is an sti. We should not
7374 	 * leave the flag on in this case. The same goes for mov ss
7375 	 */
7376 	if (int_shadow & mask)
7377 		mask = 0;
7378 	if (unlikely(int_shadow || mask)) {
7379 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7380 		if (!mask)
7381 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7382 	}
7383 }
7384 
7385 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7386 {
7387 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7388 	if (ctxt->exception.vector == PF_VECTOR)
7389 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7390 
7391 	if (ctxt->exception.error_code_valid)
7392 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7393 				      ctxt->exception.error_code);
7394 	else
7395 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7396 	return false;
7397 }
7398 
7399 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7400 {
7401 	struct x86_emulate_ctxt *ctxt;
7402 
7403 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7404 	if (!ctxt) {
7405 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7406 		return NULL;
7407 	}
7408 
7409 	ctxt->vcpu = vcpu;
7410 	ctxt->ops = &emulate_ops;
7411 	vcpu->arch.emulate_ctxt = ctxt;
7412 
7413 	return ctxt;
7414 }
7415 
7416 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7417 {
7418 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7419 	int cs_db, cs_l;
7420 
7421 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7422 
7423 	ctxt->gpa_available = false;
7424 	ctxt->eflags = kvm_get_rflags(vcpu);
7425 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7426 
7427 	ctxt->eip = kvm_rip_read(vcpu);
7428 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7429 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7430 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7431 		     cs_db				? X86EMUL_MODE_PROT32 :
7432 							  X86EMUL_MODE_PROT16;
7433 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7434 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7435 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7436 
7437 	ctxt->interruptibility = 0;
7438 	ctxt->have_exception = false;
7439 	ctxt->exception.vector = -1;
7440 	ctxt->perm_ok = false;
7441 
7442 	init_decode_cache(ctxt);
7443 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7444 }
7445 
7446 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7447 {
7448 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7449 	int ret;
7450 
7451 	init_emulate_ctxt(vcpu);
7452 
7453 	ctxt->op_bytes = 2;
7454 	ctxt->ad_bytes = 2;
7455 	ctxt->_eip = ctxt->eip + inc_eip;
7456 	ret = emulate_int_real(ctxt, irq);
7457 
7458 	if (ret != X86EMUL_CONTINUE) {
7459 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7460 	} else {
7461 		ctxt->eip = ctxt->_eip;
7462 		kvm_rip_write(vcpu, ctxt->eip);
7463 		kvm_set_rflags(vcpu, ctxt->eflags);
7464 	}
7465 }
7466 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7467 
7468 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7469 {
7470 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7471 	u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7472 	struct kvm_run *run = vcpu->run;
7473 
7474 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7475 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7476 	run->emulation_failure.ndata = 0;
7477 	run->emulation_failure.flags = 0;
7478 
7479 	if (insn_size) {
7480 		run->emulation_failure.ndata = 3;
7481 		run->emulation_failure.flags |=
7482 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7483 		run->emulation_failure.insn_size = insn_size;
7484 		memset(run->emulation_failure.insn_bytes, 0x90,
7485 		       sizeof(run->emulation_failure.insn_bytes));
7486 		memcpy(run->emulation_failure.insn_bytes,
7487 		       ctxt->fetch.data, insn_size);
7488 	}
7489 }
7490 
7491 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7492 {
7493 	struct kvm *kvm = vcpu->kvm;
7494 
7495 	++vcpu->stat.insn_emulation_fail;
7496 	trace_kvm_emulate_insn_failed(vcpu);
7497 
7498 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7499 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7500 		return 1;
7501 	}
7502 
7503 	if (kvm->arch.exit_on_emulation_error ||
7504 	    (emulation_type & EMULTYPE_SKIP)) {
7505 		prepare_emulation_failure_exit(vcpu);
7506 		return 0;
7507 	}
7508 
7509 	kvm_queue_exception(vcpu, UD_VECTOR);
7510 
7511 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7512 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7513 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7514 		vcpu->run->internal.ndata = 0;
7515 		return 0;
7516 	}
7517 
7518 	return 1;
7519 }
7520 
7521 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7522 				  bool write_fault_to_shadow_pgtable,
7523 				  int emulation_type)
7524 {
7525 	gpa_t gpa = cr2_or_gpa;
7526 	kvm_pfn_t pfn;
7527 
7528 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7529 		return false;
7530 
7531 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7532 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7533 		return false;
7534 
7535 	if (!vcpu->arch.mmu->direct_map) {
7536 		/*
7537 		 * Write permission should be allowed since only
7538 		 * write access need to be emulated.
7539 		 */
7540 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7541 
7542 		/*
7543 		 * If the mapping is invalid in guest, let cpu retry
7544 		 * it to generate fault.
7545 		 */
7546 		if (gpa == UNMAPPED_GVA)
7547 			return true;
7548 	}
7549 
7550 	/*
7551 	 * Do not retry the unhandleable instruction if it faults on the
7552 	 * readonly host memory, otherwise it will goto a infinite loop:
7553 	 * retry instruction -> write #PF -> emulation fail -> retry
7554 	 * instruction -> ...
7555 	 */
7556 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7557 
7558 	/*
7559 	 * If the instruction failed on the error pfn, it can not be fixed,
7560 	 * report the error to userspace.
7561 	 */
7562 	if (is_error_noslot_pfn(pfn))
7563 		return false;
7564 
7565 	kvm_release_pfn_clean(pfn);
7566 
7567 	/* The instructions are well-emulated on direct mmu. */
7568 	if (vcpu->arch.mmu->direct_map) {
7569 		unsigned int indirect_shadow_pages;
7570 
7571 		write_lock(&vcpu->kvm->mmu_lock);
7572 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7573 		write_unlock(&vcpu->kvm->mmu_lock);
7574 
7575 		if (indirect_shadow_pages)
7576 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7577 
7578 		return true;
7579 	}
7580 
7581 	/*
7582 	 * if emulation was due to access to shadowed page table
7583 	 * and it failed try to unshadow page and re-enter the
7584 	 * guest to let CPU execute the instruction.
7585 	 */
7586 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7587 
7588 	/*
7589 	 * If the access faults on its page table, it can not
7590 	 * be fixed by unprotecting shadow page and it should
7591 	 * be reported to userspace.
7592 	 */
7593 	return !write_fault_to_shadow_pgtable;
7594 }
7595 
7596 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7597 			      gpa_t cr2_or_gpa,  int emulation_type)
7598 {
7599 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7600 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7601 
7602 	last_retry_eip = vcpu->arch.last_retry_eip;
7603 	last_retry_addr = vcpu->arch.last_retry_addr;
7604 
7605 	/*
7606 	 * If the emulation is caused by #PF and it is non-page_table
7607 	 * writing instruction, it means the VM-EXIT is caused by shadow
7608 	 * page protected, we can zap the shadow page and retry this
7609 	 * instruction directly.
7610 	 *
7611 	 * Note: if the guest uses a non-page-table modifying instruction
7612 	 * on the PDE that points to the instruction, then we will unmap
7613 	 * the instruction and go to an infinite loop. So, we cache the
7614 	 * last retried eip and the last fault address, if we meet the eip
7615 	 * and the address again, we can break out of the potential infinite
7616 	 * loop.
7617 	 */
7618 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7619 
7620 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7621 		return false;
7622 
7623 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7624 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7625 		return false;
7626 
7627 	if (x86_page_table_writing_insn(ctxt))
7628 		return false;
7629 
7630 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7631 		return false;
7632 
7633 	vcpu->arch.last_retry_eip = ctxt->eip;
7634 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7635 
7636 	if (!vcpu->arch.mmu->direct_map)
7637 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7638 
7639 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7640 
7641 	return true;
7642 }
7643 
7644 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7645 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7646 
7647 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7648 {
7649 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7650 
7651 	if (entering_smm) {
7652 		vcpu->arch.hflags |= HF_SMM_MASK;
7653 	} else {
7654 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7655 
7656 		/* Process a latched INIT or SMI, if any.  */
7657 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7658 	}
7659 
7660 	kvm_mmu_reset_context(vcpu);
7661 }
7662 
7663 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7664 				unsigned long *db)
7665 {
7666 	u32 dr6 = 0;
7667 	int i;
7668 	u32 enable, rwlen;
7669 
7670 	enable = dr7;
7671 	rwlen = dr7 >> 16;
7672 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7673 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7674 			dr6 |= (1 << i);
7675 	return dr6;
7676 }
7677 
7678 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7679 {
7680 	struct kvm_run *kvm_run = vcpu->run;
7681 
7682 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7683 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7684 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7685 		kvm_run->debug.arch.exception = DB_VECTOR;
7686 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7687 		return 0;
7688 	}
7689 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7690 	return 1;
7691 }
7692 
7693 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7694 {
7695 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7696 	int r;
7697 
7698 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7699 	if (unlikely(!r))
7700 		return 0;
7701 
7702 	/*
7703 	 * rflags is the old, "raw" value of the flags.  The new value has
7704 	 * not been saved yet.
7705 	 *
7706 	 * This is correct even for TF set by the guest, because "the
7707 	 * processor will not generate this exception after the instruction
7708 	 * that sets the TF flag".
7709 	 */
7710 	if (unlikely(rflags & X86_EFLAGS_TF))
7711 		r = kvm_vcpu_do_singlestep(vcpu);
7712 	return r;
7713 }
7714 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7715 
7716 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7717 {
7718 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7719 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7720 		struct kvm_run *kvm_run = vcpu->run;
7721 		unsigned long eip = kvm_get_linear_rip(vcpu);
7722 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7723 					   vcpu->arch.guest_debug_dr7,
7724 					   vcpu->arch.eff_db);
7725 
7726 		if (dr6 != 0) {
7727 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7728 			kvm_run->debug.arch.pc = eip;
7729 			kvm_run->debug.arch.exception = DB_VECTOR;
7730 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7731 			*r = 0;
7732 			return true;
7733 		}
7734 	}
7735 
7736 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7737 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7738 		unsigned long eip = kvm_get_linear_rip(vcpu);
7739 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7740 					   vcpu->arch.dr7,
7741 					   vcpu->arch.db);
7742 
7743 		if (dr6 != 0) {
7744 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7745 			*r = 1;
7746 			return true;
7747 		}
7748 	}
7749 
7750 	return false;
7751 }
7752 
7753 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7754 {
7755 	switch (ctxt->opcode_len) {
7756 	case 1:
7757 		switch (ctxt->b) {
7758 		case 0xe4:	/* IN */
7759 		case 0xe5:
7760 		case 0xec:
7761 		case 0xed:
7762 		case 0xe6:	/* OUT */
7763 		case 0xe7:
7764 		case 0xee:
7765 		case 0xef:
7766 		case 0x6c:	/* INS */
7767 		case 0x6d:
7768 		case 0x6e:	/* OUTS */
7769 		case 0x6f:
7770 			return true;
7771 		}
7772 		break;
7773 	case 2:
7774 		switch (ctxt->b) {
7775 		case 0x33:	/* RDPMC */
7776 			return true;
7777 		}
7778 		break;
7779 	}
7780 
7781 	return false;
7782 }
7783 
7784 /*
7785  * Decode to be emulated instruction. Return EMULATION_OK if success.
7786  */
7787 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7788 				    void *insn, int insn_len)
7789 {
7790 	int r = EMULATION_OK;
7791 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7792 
7793 	init_emulate_ctxt(vcpu);
7794 
7795 	/*
7796 	 * We will reenter on the same instruction since we do not set
7797 	 * complete_userspace_io. This does not handle watchpoints yet,
7798 	 * those would be handled in the emulate_ops.
7799 	 */
7800 	if (!(emulation_type & EMULTYPE_SKIP) &&
7801 	    kvm_vcpu_check_breakpoint(vcpu, &r))
7802 		return r;
7803 
7804 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7805 
7806 	trace_kvm_emulate_insn_start(vcpu);
7807 	++vcpu->stat.insn_emulation;
7808 
7809 	return r;
7810 }
7811 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7812 
7813 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7814 			    int emulation_type, void *insn, int insn_len)
7815 {
7816 	int r;
7817 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7818 	bool writeback = true;
7819 	bool write_fault_to_spt;
7820 
7821 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7822 		return 1;
7823 
7824 	vcpu->arch.l1tf_flush_l1d = true;
7825 
7826 	/*
7827 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7828 	 * never reused.
7829 	 */
7830 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7831 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7832 
7833 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7834 		kvm_clear_exception_queue(vcpu);
7835 
7836 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7837 						    insn, insn_len);
7838 		if (r != EMULATION_OK)  {
7839 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7840 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7841 				kvm_queue_exception(vcpu, UD_VECTOR);
7842 				return 1;
7843 			}
7844 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7845 						  write_fault_to_spt,
7846 						  emulation_type))
7847 				return 1;
7848 			if (ctxt->have_exception) {
7849 				/*
7850 				 * #UD should result in just EMULATION_FAILED, and trap-like
7851 				 * exception should not be encountered during decode.
7852 				 */
7853 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7854 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7855 				inject_emulated_exception(vcpu);
7856 				return 1;
7857 			}
7858 			return handle_emulation_failure(vcpu, emulation_type);
7859 		}
7860 	}
7861 
7862 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7863 	    !is_vmware_backdoor_opcode(ctxt)) {
7864 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7865 		return 1;
7866 	}
7867 
7868 	/*
7869 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7870 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7871 	 * updating interruptibility state and injecting single-step #DBs.
7872 	 */
7873 	if (emulation_type & EMULTYPE_SKIP) {
7874 		kvm_rip_write(vcpu, ctxt->_eip);
7875 		if (ctxt->eflags & X86_EFLAGS_RF)
7876 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7877 		return 1;
7878 	}
7879 
7880 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7881 		return 1;
7882 
7883 	/* this is needed for vmware backdoor interface to work since it
7884 	   changes registers values  during IO operation */
7885 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7886 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7887 		emulator_invalidate_register_cache(ctxt);
7888 	}
7889 
7890 restart:
7891 	if (emulation_type & EMULTYPE_PF) {
7892 		/* Save the faulting GPA (cr2) in the address field */
7893 		ctxt->exception.address = cr2_or_gpa;
7894 
7895 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7896 		if (vcpu->arch.mmu->direct_map) {
7897 			ctxt->gpa_available = true;
7898 			ctxt->gpa_val = cr2_or_gpa;
7899 		}
7900 	} else {
7901 		/* Sanitize the address out of an abundance of paranoia. */
7902 		ctxt->exception.address = 0;
7903 	}
7904 
7905 	r = x86_emulate_insn(ctxt);
7906 
7907 	if (r == EMULATION_INTERCEPTED)
7908 		return 1;
7909 
7910 	if (r == EMULATION_FAILED) {
7911 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7912 					emulation_type))
7913 			return 1;
7914 
7915 		return handle_emulation_failure(vcpu, emulation_type);
7916 	}
7917 
7918 	if (ctxt->have_exception) {
7919 		r = 1;
7920 		if (inject_emulated_exception(vcpu))
7921 			return r;
7922 	} else if (vcpu->arch.pio.count) {
7923 		if (!vcpu->arch.pio.in) {
7924 			/* FIXME: return into emulator if single-stepping.  */
7925 			vcpu->arch.pio.count = 0;
7926 		} else {
7927 			writeback = false;
7928 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7929 		}
7930 		r = 0;
7931 	} else if (vcpu->mmio_needed) {
7932 		++vcpu->stat.mmio_exits;
7933 
7934 		if (!vcpu->mmio_is_write)
7935 			writeback = false;
7936 		r = 0;
7937 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7938 	} else if (r == EMULATION_RESTART)
7939 		goto restart;
7940 	else
7941 		r = 1;
7942 
7943 	if (writeback) {
7944 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7945 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7946 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7947 		if (!ctxt->have_exception ||
7948 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7949 			kvm_rip_write(vcpu, ctxt->eip);
7950 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7951 				r = kvm_vcpu_do_singlestep(vcpu);
7952 			if (kvm_x86_ops.update_emulated_instruction)
7953 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
7954 			__kvm_set_rflags(vcpu, ctxt->eflags);
7955 		}
7956 
7957 		/*
7958 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7959 		 * do nothing, and it will be requested again as soon as
7960 		 * the shadow expires.  But we still need to check here,
7961 		 * because POPF has no interrupt shadow.
7962 		 */
7963 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7964 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7965 	} else
7966 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7967 
7968 	return r;
7969 }
7970 
7971 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7972 {
7973 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7974 }
7975 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7976 
7977 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7978 					void *insn, int insn_len)
7979 {
7980 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7981 }
7982 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7983 
7984 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7985 {
7986 	vcpu->arch.pio.count = 0;
7987 	return 1;
7988 }
7989 
7990 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7991 {
7992 	vcpu->arch.pio.count = 0;
7993 
7994 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7995 		return 1;
7996 
7997 	return kvm_skip_emulated_instruction(vcpu);
7998 }
7999 
8000 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8001 			    unsigned short port)
8002 {
8003 	unsigned long val = kvm_rax_read(vcpu);
8004 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8005 
8006 	if (ret)
8007 		return ret;
8008 
8009 	/*
8010 	 * Workaround userspace that relies on old KVM behavior of %rip being
8011 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8012 	 */
8013 	if (port == 0x7e &&
8014 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8015 		vcpu->arch.complete_userspace_io =
8016 			complete_fast_pio_out_port_0x7e;
8017 		kvm_skip_emulated_instruction(vcpu);
8018 	} else {
8019 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8020 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8021 	}
8022 	return 0;
8023 }
8024 
8025 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8026 {
8027 	unsigned long val;
8028 
8029 	/* We should only ever be called with arch.pio.count equal to 1 */
8030 	BUG_ON(vcpu->arch.pio.count != 1);
8031 
8032 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8033 		vcpu->arch.pio.count = 0;
8034 		return 1;
8035 	}
8036 
8037 	/* For size less than 4 we merge, else we zero extend */
8038 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8039 
8040 	/*
8041 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8042 	 * the copy and tracing
8043 	 */
8044 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8045 	kvm_rax_write(vcpu, val);
8046 
8047 	return kvm_skip_emulated_instruction(vcpu);
8048 }
8049 
8050 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8051 			   unsigned short port)
8052 {
8053 	unsigned long val;
8054 	int ret;
8055 
8056 	/* For size less than 4 we merge, else we zero extend */
8057 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8058 
8059 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8060 	if (ret) {
8061 		kvm_rax_write(vcpu, val);
8062 		return ret;
8063 	}
8064 
8065 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8066 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8067 
8068 	return 0;
8069 }
8070 
8071 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8072 {
8073 	int ret;
8074 
8075 	if (in)
8076 		ret = kvm_fast_pio_in(vcpu, size, port);
8077 	else
8078 		ret = kvm_fast_pio_out(vcpu, size, port);
8079 	return ret && kvm_skip_emulated_instruction(vcpu);
8080 }
8081 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8082 
8083 static int kvmclock_cpu_down_prep(unsigned int cpu)
8084 {
8085 	__this_cpu_write(cpu_tsc_khz, 0);
8086 	return 0;
8087 }
8088 
8089 static void tsc_khz_changed(void *data)
8090 {
8091 	struct cpufreq_freqs *freq = data;
8092 	unsigned long khz = 0;
8093 
8094 	if (data)
8095 		khz = freq->new;
8096 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8097 		khz = cpufreq_quick_get(raw_smp_processor_id());
8098 	if (!khz)
8099 		khz = tsc_khz;
8100 	__this_cpu_write(cpu_tsc_khz, khz);
8101 }
8102 
8103 #ifdef CONFIG_X86_64
8104 static void kvm_hyperv_tsc_notifier(void)
8105 {
8106 	struct kvm *kvm;
8107 	struct kvm_vcpu *vcpu;
8108 	int cpu;
8109 	unsigned long flags;
8110 
8111 	mutex_lock(&kvm_lock);
8112 	list_for_each_entry(kvm, &vm_list, vm_list)
8113 		kvm_make_mclock_inprogress_request(kvm);
8114 
8115 	hyperv_stop_tsc_emulation();
8116 
8117 	/* TSC frequency always matches when on Hyper-V */
8118 	for_each_present_cpu(cpu)
8119 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8120 	kvm_max_guest_tsc_khz = tsc_khz;
8121 
8122 	list_for_each_entry(kvm, &vm_list, vm_list) {
8123 		struct kvm_arch *ka = &kvm->arch;
8124 
8125 		spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8126 		pvclock_update_vm_gtod_copy(kvm);
8127 		spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8128 
8129 		kvm_for_each_vcpu(cpu, vcpu, kvm)
8130 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8131 
8132 		kvm_for_each_vcpu(cpu, vcpu, kvm)
8133 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8134 	}
8135 	mutex_unlock(&kvm_lock);
8136 }
8137 #endif
8138 
8139 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8140 {
8141 	struct kvm *kvm;
8142 	struct kvm_vcpu *vcpu;
8143 	int i, send_ipi = 0;
8144 
8145 	/*
8146 	 * We allow guests to temporarily run on slowing clocks,
8147 	 * provided we notify them after, or to run on accelerating
8148 	 * clocks, provided we notify them before.  Thus time never
8149 	 * goes backwards.
8150 	 *
8151 	 * However, we have a problem.  We can't atomically update
8152 	 * the frequency of a given CPU from this function; it is
8153 	 * merely a notifier, which can be called from any CPU.
8154 	 * Changing the TSC frequency at arbitrary points in time
8155 	 * requires a recomputation of local variables related to
8156 	 * the TSC for each VCPU.  We must flag these local variables
8157 	 * to be updated and be sure the update takes place with the
8158 	 * new frequency before any guests proceed.
8159 	 *
8160 	 * Unfortunately, the combination of hotplug CPU and frequency
8161 	 * change creates an intractable locking scenario; the order
8162 	 * of when these callouts happen is undefined with respect to
8163 	 * CPU hotplug, and they can race with each other.  As such,
8164 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8165 	 * undefined; you can actually have a CPU frequency change take
8166 	 * place in between the computation of X and the setting of the
8167 	 * variable.  To protect against this problem, all updates of
8168 	 * the per_cpu tsc_khz variable are done in an interrupt
8169 	 * protected IPI, and all callers wishing to update the value
8170 	 * must wait for a synchronous IPI to complete (which is trivial
8171 	 * if the caller is on the CPU already).  This establishes the
8172 	 * necessary total order on variable updates.
8173 	 *
8174 	 * Note that because a guest time update may take place
8175 	 * anytime after the setting of the VCPU's request bit, the
8176 	 * correct TSC value must be set before the request.  However,
8177 	 * to ensure the update actually makes it to any guest which
8178 	 * starts running in hardware virtualization between the set
8179 	 * and the acquisition of the spinlock, we must also ping the
8180 	 * CPU after setting the request bit.
8181 	 *
8182 	 */
8183 
8184 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8185 
8186 	mutex_lock(&kvm_lock);
8187 	list_for_each_entry(kvm, &vm_list, vm_list) {
8188 		kvm_for_each_vcpu(i, vcpu, kvm) {
8189 			if (vcpu->cpu != cpu)
8190 				continue;
8191 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8192 			if (vcpu->cpu != raw_smp_processor_id())
8193 				send_ipi = 1;
8194 		}
8195 	}
8196 	mutex_unlock(&kvm_lock);
8197 
8198 	if (freq->old < freq->new && send_ipi) {
8199 		/*
8200 		 * We upscale the frequency.  Must make the guest
8201 		 * doesn't see old kvmclock values while running with
8202 		 * the new frequency, otherwise we risk the guest sees
8203 		 * time go backwards.
8204 		 *
8205 		 * In case we update the frequency for another cpu
8206 		 * (which might be in guest context) send an interrupt
8207 		 * to kick the cpu out of guest context.  Next time
8208 		 * guest context is entered kvmclock will be updated,
8209 		 * so the guest will not see stale values.
8210 		 */
8211 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8212 	}
8213 }
8214 
8215 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8216 				     void *data)
8217 {
8218 	struct cpufreq_freqs *freq = data;
8219 	int cpu;
8220 
8221 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8222 		return 0;
8223 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8224 		return 0;
8225 
8226 	for_each_cpu(cpu, freq->policy->cpus)
8227 		__kvmclock_cpufreq_notifier(freq, cpu);
8228 
8229 	return 0;
8230 }
8231 
8232 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8233 	.notifier_call  = kvmclock_cpufreq_notifier
8234 };
8235 
8236 static int kvmclock_cpu_online(unsigned int cpu)
8237 {
8238 	tsc_khz_changed(NULL);
8239 	return 0;
8240 }
8241 
8242 static void kvm_timer_init(void)
8243 {
8244 	max_tsc_khz = tsc_khz;
8245 
8246 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8247 #ifdef CONFIG_CPU_FREQ
8248 		struct cpufreq_policy *policy;
8249 		int cpu;
8250 
8251 		cpu = get_cpu();
8252 		policy = cpufreq_cpu_get(cpu);
8253 		if (policy) {
8254 			if (policy->cpuinfo.max_freq)
8255 				max_tsc_khz = policy->cpuinfo.max_freq;
8256 			cpufreq_cpu_put(policy);
8257 		}
8258 		put_cpu();
8259 #endif
8260 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8261 					  CPUFREQ_TRANSITION_NOTIFIER);
8262 	}
8263 
8264 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8265 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8266 }
8267 
8268 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8269 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8270 
8271 int kvm_is_in_guest(void)
8272 {
8273 	return __this_cpu_read(current_vcpu) != NULL;
8274 }
8275 
8276 static int kvm_is_user_mode(void)
8277 {
8278 	int user_mode = 3;
8279 
8280 	if (__this_cpu_read(current_vcpu))
8281 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8282 
8283 	return user_mode != 0;
8284 }
8285 
8286 static unsigned long kvm_get_guest_ip(void)
8287 {
8288 	unsigned long ip = 0;
8289 
8290 	if (__this_cpu_read(current_vcpu))
8291 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8292 
8293 	return ip;
8294 }
8295 
8296 static void kvm_handle_intel_pt_intr(void)
8297 {
8298 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8299 
8300 	kvm_make_request(KVM_REQ_PMI, vcpu);
8301 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8302 			(unsigned long *)&vcpu->arch.pmu.global_status);
8303 }
8304 
8305 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8306 	.is_in_guest		= kvm_is_in_guest,
8307 	.is_user_mode		= kvm_is_user_mode,
8308 	.get_guest_ip		= kvm_get_guest_ip,
8309 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
8310 };
8311 
8312 #ifdef CONFIG_X86_64
8313 static void pvclock_gtod_update_fn(struct work_struct *work)
8314 {
8315 	struct kvm *kvm;
8316 
8317 	struct kvm_vcpu *vcpu;
8318 	int i;
8319 
8320 	mutex_lock(&kvm_lock);
8321 	list_for_each_entry(kvm, &vm_list, vm_list)
8322 		kvm_for_each_vcpu(i, vcpu, kvm)
8323 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8324 	atomic_set(&kvm_guest_has_master_clock, 0);
8325 	mutex_unlock(&kvm_lock);
8326 }
8327 
8328 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8329 
8330 /*
8331  * Indirection to move queue_work() out of the tk_core.seq write held
8332  * region to prevent possible deadlocks against time accessors which
8333  * are invoked with work related locks held.
8334  */
8335 static void pvclock_irq_work_fn(struct irq_work *w)
8336 {
8337 	queue_work(system_long_wq, &pvclock_gtod_work);
8338 }
8339 
8340 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8341 
8342 /*
8343  * Notification about pvclock gtod data update.
8344  */
8345 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8346 			       void *priv)
8347 {
8348 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8349 	struct timekeeper *tk = priv;
8350 
8351 	update_pvclock_gtod(tk);
8352 
8353 	/*
8354 	 * Disable master clock if host does not trust, or does not use,
8355 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8356 	 * this is invoked with tk_core.seq write held.
8357 	 */
8358 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8359 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8360 		irq_work_queue(&pvclock_irq_work);
8361 	return 0;
8362 }
8363 
8364 static struct notifier_block pvclock_gtod_notifier = {
8365 	.notifier_call = pvclock_gtod_notify,
8366 };
8367 #endif
8368 
8369 int kvm_arch_init(void *opaque)
8370 {
8371 	struct kvm_x86_init_ops *ops = opaque;
8372 	int r;
8373 
8374 	if (kvm_x86_ops.hardware_enable) {
8375 		printk(KERN_ERR "kvm: already loaded the other module\n");
8376 		r = -EEXIST;
8377 		goto out;
8378 	}
8379 
8380 	if (!ops->cpu_has_kvm_support()) {
8381 		pr_err_ratelimited("kvm: no hardware support\n");
8382 		r = -EOPNOTSUPP;
8383 		goto out;
8384 	}
8385 	if (ops->disabled_by_bios()) {
8386 		pr_err_ratelimited("kvm: disabled by bios\n");
8387 		r = -EOPNOTSUPP;
8388 		goto out;
8389 	}
8390 
8391 	/*
8392 	 * KVM explicitly assumes that the guest has an FPU and
8393 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8394 	 * vCPU's FPU state as a fxregs_state struct.
8395 	 */
8396 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8397 		printk(KERN_ERR "kvm: inadequate fpu\n");
8398 		r = -EOPNOTSUPP;
8399 		goto out;
8400 	}
8401 
8402 	r = -ENOMEM;
8403 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8404 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8405 					  NULL);
8406 	if (!x86_fpu_cache) {
8407 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8408 		goto out;
8409 	}
8410 
8411 	x86_emulator_cache = kvm_alloc_emulator_cache();
8412 	if (!x86_emulator_cache) {
8413 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8414 		goto out_free_x86_fpu_cache;
8415 	}
8416 
8417 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8418 	if (!user_return_msrs) {
8419 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8420 		goto out_free_x86_emulator_cache;
8421 	}
8422 	kvm_nr_uret_msrs = 0;
8423 
8424 	r = kvm_mmu_module_init();
8425 	if (r)
8426 		goto out_free_percpu;
8427 
8428 	kvm_timer_init();
8429 
8430 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8431 
8432 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8433 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8434 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8435 	}
8436 
8437 	if (pi_inject_timer == -1)
8438 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8439 #ifdef CONFIG_X86_64
8440 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8441 
8442 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8443 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8444 #endif
8445 
8446 	return 0;
8447 
8448 out_free_percpu:
8449 	free_percpu(user_return_msrs);
8450 out_free_x86_emulator_cache:
8451 	kmem_cache_destroy(x86_emulator_cache);
8452 out_free_x86_fpu_cache:
8453 	kmem_cache_destroy(x86_fpu_cache);
8454 out:
8455 	return r;
8456 }
8457 
8458 void kvm_arch_exit(void)
8459 {
8460 #ifdef CONFIG_X86_64
8461 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8462 		clear_hv_tscchange_cb();
8463 #endif
8464 	kvm_lapic_exit();
8465 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8466 
8467 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8468 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8469 					    CPUFREQ_TRANSITION_NOTIFIER);
8470 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8471 #ifdef CONFIG_X86_64
8472 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8473 	irq_work_sync(&pvclock_irq_work);
8474 	cancel_work_sync(&pvclock_gtod_work);
8475 #endif
8476 	kvm_x86_ops.hardware_enable = NULL;
8477 	kvm_mmu_module_exit();
8478 	free_percpu(user_return_msrs);
8479 	kmem_cache_destroy(x86_emulator_cache);
8480 	kmem_cache_destroy(x86_fpu_cache);
8481 #ifdef CONFIG_KVM_XEN
8482 	static_key_deferred_flush(&kvm_xen_enabled);
8483 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8484 #endif
8485 }
8486 
8487 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8488 {
8489 	++vcpu->stat.halt_exits;
8490 	if (lapic_in_kernel(vcpu)) {
8491 		vcpu->arch.mp_state = state;
8492 		return 1;
8493 	} else {
8494 		vcpu->run->exit_reason = reason;
8495 		return 0;
8496 	}
8497 }
8498 
8499 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8500 {
8501 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8502 }
8503 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8504 
8505 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8506 {
8507 	int ret = kvm_skip_emulated_instruction(vcpu);
8508 	/*
8509 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8510 	 * KVM_EXIT_DEBUG here.
8511 	 */
8512 	return kvm_vcpu_halt(vcpu) && ret;
8513 }
8514 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8515 
8516 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8517 {
8518 	int ret = kvm_skip_emulated_instruction(vcpu);
8519 
8520 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8521 }
8522 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8523 
8524 #ifdef CONFIG_X86_64
8525 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8526 			        unsigned long clock_type)
8527 {
8528 	struct kvm_clock_pairing clock_pairing;
8529 	struct timespec64 ts;
8530 	u64 cycle;
8531 	int ret;
8532 
8533 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8534 		return -KVM_EOPNOTSUPP;
8535 
8536 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8537 		return -KVM_EOPNOTSUPP;
8538 
8539 	clock_pairing.sec = ts.tv_sec;
8540 	clock_pairing.nsec = ts.tv_nsec;
8541 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8542 	clock_pairing.flags = 0;
8543 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8544 
8545 	ret = 0;
8546 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8547 			    sizeof(struct kvm_clock_pairing)))
8548 		ret = -KVM_EFAULT;
8549 
8550 	return ret;
8551 }
8552 #endif
8553 
8554 /*
8555  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8556  *
8557  * @apicid - apicid of vcpu to be kicked.
8558  */
8559 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8560 {
8561 	struct kvm_lapic_irq lapic_irq;
8562 
8563 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8564 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8565 	lapic_irq.level = 0;
8566 	lapic_irq.dest_id = apicid;
8567 	lapic_irq.msi_redir_hint = false;
8568 
8569 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8570 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8571 }
8572 
8573 bool kvm_apicv_activated(struct kvm *kvm)
8574 {
8575 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8576 }
8577 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8578 
8579 static void kvm_apicv_init(struct kvm *kvm)
8580 {
8581 	if (enable_apicv)
8582 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8583 			  &kvm->arch.apicv_inhibit_reasons);
8584 	else
8585 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8586 			&kvm->arch.apicv_inhibit_reasons);
8587 }
8588 
8589 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8590 {
8591 	struct kvm_vcpu *target = NULL;
8592 	struct kvm_apic_map *map;
8593 
8594 	vcpu->stat.directed_yield_attempted++;
8595 
8596 	if (single_task_running())
8597 		goto no_yield;
8598 
8599 	rcu_read_lock();
8600 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
8601 
8602 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8603 		target = map->phys_map[dest_id]->vcpu;
8604 
8605 	rcu_read_unlock();
8606 
8607 	if (!target || !READ_ONCE(target->ready))
8608 		goto no_yield;
8609 
8610 	/* Ignore requests to yield to self */
8611 	if (vcpu == target)
8612 		goto no_yield;
8613 
8614 	if (kvm_vcpu_yield_to(target) <= 0)
8615 		goto no_yield;
8616 
8617 	vcpu->stat.directed_yield_successful++;
8618 
8619 no_yield:
8620 	return;
8621 }
8622 
8623 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8624 {
8625 	u64 ret = vcpu->run->hypercall.ret;
8626 
8627 	if (!is_64_bit_mode(vcpu))
8628 		ret = (u32)ret;
8629 	kvm_rax_write(vcpu, ret);
8630 	++vcpu->stat.hypercalls;
8631 	return kvm_skip_emulated_instruction(vcpu);
8632 }
8633 
8634 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8635 {
8636 	unsigned long nr, a0, a1, a2, a3, ret;
8637 	int op_64_bit;
8638 
8639 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8640 		return kvm_xen_hypercall(vcpu);
8641 
8642 	if (kvm_hv_hypercall_enabled(vcpu))
8643 		return kvm_hv_hypercall(vcpu);
8644 
8645 	nr = kvm_rax_read(vcpu);
8646 	a0 = kvm_rbx_read(vcpu);
8647 	a1 = kvm_rcx_read(vcpu);
8648 	a2 = kvm_rdx_read(vcpu);
8649 	a3 = kvm_rsi_read(vcpu);
8650 
8651 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8652 
8653 	op_64_bit = is_64_bit_mode(vcpu);
8654 	if (!op_64_bit) {
8655 		nr &= 0xFFFFFFFF;
8656 		a0 &= 0xFFFFFFFF;
8657 		a1 &= 0xFFFFFFFF;
8658 		a2 &= 0xFFFFFFFF;
8659 		a3 &= 0xFFFFFFFF;
8660 	}
8661 
8662 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8663 		ret = -KVM_EPERM;
8664 		goto out;
8665 	}
8666 
8667 	ret = -KVM_ENOSYS;
8668 
8669 	switch (nr) {
8670 	case KVM_HC_VAPIC_POLL_IRQ:
8671 		ret = 0;
8672 		break;
8673 	case KVM_HC_KICK_CPU:
8674 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8675 			break;
8676 
8677 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8678 		kvm_sched_yield(vcpu, a1);
8679 		ret = 0;
8680 		break;
8681 #ifdef CONFIG_X86_64
8682 	case KVM_HC_CLOCK_PAIRING:
8683 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8684 		break;
8685 #endif
8686 	case KVM_HC_SEND_IPI:
8687 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8688 			break;
8689 
8690 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8691 		break;
8692 	case KVM_HC_SCHED_YIELD:
8693 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8694 			break;
8695 
8696 		kvm_sched_yield(vcpu, a0);
8697 		ret = 0;
8698 		break;
8699 	case KVM_HC_MAP_GPA_RANGE: {
8700 		u64 gpa = a0, npages = a1, attrs = a2;
8701 
8702 		ret = -KVM_ENOSYS;
8703 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8704 			break;
8705 
8706 		if (!PAGE_ALIGNED(gpa) || !npages ||
8707 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8708 			ret = -KVM_EINVAL;
8709 			break;
8710 		}
8711 
8712 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8713 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8714 		vcpu->run->hypercall.args[0]  = gpa;
8715 		vcpu->run->hypercall.args[1]  = npages;
8716 		vcpu->run->hypercall.args[2]  = attrs;
8717 		vcpu->run->hypercall.longmode = op_64_bit;
8718 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8719 		return 0;
8720 	}
8721 	default:
8722 		ret = -KVM_ENOSYS;
8723 		break;
8724 	}
8725 out:
8726 	if (!op_64_bit)
8727 		ret = (u32)ret;
8728 	kvm_rax_write(vcpu, ret);
8729 
8730 	++vcpu->stat.hypercalls;
8731 	return kvm_skip_emulated_instruction(vcpu);
8732 }
8733 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8734 
8735 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8736 {
8737 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8738 	char instruction[3];
8739 	unsigned long rip = kvm_rip_read(vcpu);
8740 
8741 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8742 
8743 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8744 		&ctxt->exception);
8745 }
8746 
8747 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8748 {
8749 	return vcpu->run->request_interrupt_window &&
8750 		likely(!pic_in_kernel(vcpu->kvm));
8751 }
8752 
8753 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8754 {
8755 	struct kvm_run *kvm_run = vcpu->run;
8756 
8757 	/*
8758 	 * if_flag is obsolete and useless, so do not bother
8759 	 * setting it for SEV-ES guests.  Userspace can just
8760 	 * use kvm_run->ready_for_interrupt_injection.
8761 	 */
8762 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8763 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8764 
8765 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8766 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8767 	kvm_run->ready_for_interrupt_injection =
8768 		pic_in_kernel(vcpu->kvm) ||
8769 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8770 
8771 	if (is_smm(vcpu))
8772 		kvm_run->flags |= KVM_RUN_X86_SMM;
8773 }
8774 
8775 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8776 {
8777 	int max_irr, tpr;
8778 
8779 	if (!kvm_x86_ops.update_cr8_intercept)
8780 		return;
8781 
8782 	if (!lapic_in_kernel(vcpu))
8783 		return;
8784 
8785 	if (vcpu->arch.apicv_active)
8786 		return;
8787 
8788 	if (!vcpu->arch.apic->vapic_addr)
8789 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8790 	else
8791 		max_irr = -1;
8792 
8793 	if (max_irr != -1)
8794 		max_irr >>= 4;
8795 
8796 	tpr = kvm_lapic_get_cr8(vcpu);
8797 
8798 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8799 }
8800 
8801 
8802 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8803 {
8804 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8805 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
8806 		return 1;
8807 	}
8808 
8809 	return kvm_x86_ops.nested_ops->check_events(vcpu);
8810 }
8811 
8812 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8813 {
8814 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8815 		vcpu->arch.exception.error_code = false;
8816 	static_call(kvm_x86_queue_exception)(vcpu);
8817 }
8818 
8819 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8820 {
8821 	int r;
8822 	bool can_inject = true;
8823 
8824 	/* try to reinject previous events if any */
8825 
8826 	if (vcpu->arch.exception.injected) {
8827 		kvm_inject_exception(vcpu);
8828 		can_inject = false;
8829 	}
8830 	/*
8831 	 * Do not inject an NMI or interrupt if there is a pending
8832 	 * exception.  Exceptions and interrupts are recognized at
8833 	 * instruction boundaries, i.e. the start of an instruction.
8834 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8835 	 * NMIs and interrupts, i.e. traps are recognized before an
8836 	 * NMI/interrupt that's pending on the same instruction.
8837 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8838 	 * priority, but are only generated (pended) during instruction
8839 	 * execution, i.e. a pending fault-like exception means the
8840 	 * fault occurred on the *previous* instruction and must be
8841 	 * serviced prior to recognizing any new events in order to
8842 	 * fully complete the previous instruction.
8843 	 */
8844 	else if (!vcpu->arch.exception.pending) {
8845 		if (vcpu->arch.nmi_injected) {
8846 			static_call(kvm_x86_set_nmi)(vcpu);
8847 			can_inject = false;
8848 		} else if (vcpu->arch.interrupt.injected) {
8849 			static_call(kvm_x86_set_irq)(vcpu);
8850 			can_inject = false;
8851 		}
8852 	}
8853 
8854 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8855 		     vcpu->arch.exception.pending);
8856 
8857 	/*
8858 	 * Call check_nested_events() even if we reinjected a previous event
8859 	 * in order for caller to determine if it should require immediate-exit
8860 	 * from L2 to L1 due to pending L1 events which require exit
8861 	 * from L2 to L1.
8862 	 */
8863 	if (is_guest_mode(vcpu)) {
8864 		r = kvm_check_nested_events(vcpu);
8865 		if (r < 0)
8866 			goto out;
8867 	}
8868 
8869 	/* try to inject new event if pending */
8870 	if (vcpu->arch.exception.pending) {
8871 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8872 					vcpu->arch.exception.has_error_code,
8873 					vcpu->arch.exception.error_code);
8874 
8875 		vcpu->arch.exception.pending = false;
8876 		vcpu->arch.exception.injected = true;
8877 
8878 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8879 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8880 					     X86_EFLAGS_RF);
8881 
8882 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8883 			kvm_deliver_exception_payload(vcpu);
8884 			if (vcpu->arch.dr7 & DR7_GD) {
8885 				vcpu->arch.dr7 &= ~DR7_GD;
8886 				kvm_update_dr7(vcpu);
8887 			}
8888 		}
8889 
8890 		kvm_inject_exception(vcpu);
8891 		can_inject = false;
8892 	}
8893 
8894 	/*
8895 	 * Finally, inject interrupt events.  If an event cannot be injected
8896 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8897 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8898 	 * and can architecturally be injected, but we cannot do it right now:
8899 	 * an interrupt could have arrived just now and we have to inject it
8900 	 * as a vmexit, or there could already an event in the queue, which is
8901 	 * indicated by can_inject.  In that case we request an immediate exit
8902 	 * in order to make progress and get back here for another iteration.
8903 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8904 	 */
8905 	if (vcpu->arch.smi_pending) {
8906 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8907 		if (r < 0)
8908 			goto out;
8909 		if (r) {
8910 			vcpu->arch.smi_pending = false;
8911 			++vcpu->arch.smi_count;
8912 			enter_smm(vcpu);
8913 			can_inject = false;
8914 		} else
8915 			static_call(kvm_x86_enable_smi_window)(vcpu);
8916 	}
8917 
8918 	if (vcpu->arch.nmi_pending) {
8919 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8920 		if (r < 0)
8921 			goto out;
8922 		if (r) {
8923 			--vcpu->arch.nmi_pending;
8924 			vcpu->arch.nmi_injected = true;
8925 			static_call(kvm_x86_set_nmi)(vcpu);
8926 			can_inject = false;
8927 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8928 		}
8929 		if (vcpu->arch.nmi_pending)
8930 			static_call(kvm_x86_enable_nmi_window)(vcpu);
8931 	}
8932 
8933 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8934 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8935 		if (r < 0)
8936 			goto out;
8937 		if (r) {
8938 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8939 			static_call(kvm_x86_set_irq)(vcpu);
8940 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8941 		}
8942 		if (kvm_cpu_has_injectable_intr(vcpu))
8943 			static_call(kvm_x86_enable_irq_window)(vcpu);
8944 	}
8945 
8946 	if (is_guest_mode(vcpu) &&
8947 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8948 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8949 		*req_immediate_exit = true;
8950 
8951 	WARN_ON(vcpu->arch.exception.pending);
8952 	return 0;
8953 
8954 out:
8955 	if (r == -EBUSY) {
8956 		*req_immediate_exit = true;
8957 		r = 0;
8958 	}
8959 	return r;
8960 }
8961 
8962 static void process_nmi(struct kvm_vcpu *vcpu)
8963 {
8964 	unsigned limit = 2;
8965 
8966 	/*
8967 	 * x86 is limited to one NMI running, and one NMI pending after it.
8968 	 * If an NMI is already in progress, limit further NMIs to just one.
8969 	 * Otherwise, allow two (and we'll inject the first one immediately).
8970 	 */
8971 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8972 		limit = 1;
8973 
8974 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8975 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8976 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8977 }
8978 
8979 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8980 {
8981 	u32 flags = 0;
8982 	flags |= seg->g       << 23;
8983 	flags |= seg->db      << 22;
8984 	flags |= seg->l       << 21;
8985 	flags |= seg->avl     << 20;
8986 	flags |= seg->present << 15;
8987 	flags |= seg->dpl     << 13;
8988 	flags |= seg->s       << 12;
8989 	flags |= seg->type    << 8;
8990 	return flags;
8991 }
8992 
8993 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8994 {
8995 	struct kvm_segment seg;
8996 	int offset;
8997 
8998 	kvm_get_segment(vcpu, &seg, n);
8999 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9000 
9001 	if (n < 3)
9002 		offset = 0x7f84 + n * 12;
9003 	else
9004 		offset = 0x7f2c + (n - 3) * 12;
9005 
9006 	put_smstate(u32, buf, offset + 8, seg.base);
9007 	put_smstate(u32, buf, offset + 4, seg.limit);
9008 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9009 }
9010 
9011 #ifdef CONFIG_X86_64
9012 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9013 {
9014 	struct kvm_segment seg;
9015 	int offset;
9016 	u16 flags;
9017 
9018 	kvm_get_segment(vcpu, &seg, n);
9019 	offset = 0x7e00 + n * 16;
9020 
9021 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9022 	put_smstate(u16, buf, offset, seg.selector);
9023 	put_smstate(u16, buf, offset + 2, flags);
9024 	put_smstate(u32, buf, offset + 4, seg.limit);
9025 	put_smstate(u64, buf, offset + 8, seg.base);
9026 }
9027 #endif
9028 
9029 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9030 {
9031 	struct desc_ptr dt;
9032 	struct kvm_segment seg;
9033 	unsigned long val;
9034 	int i;
9035 
9036 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9037 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9038 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9039 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9040 
9041 	for (i = 0; i < 8; i++)
9042 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9043 
9044 	kvm_get_dr(vcpu, 6, &val);
9045 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9046 	kvm_get_dr(vcpu, 7, &val);
9047 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9048 
9049 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9050 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9051 	put_smstate(u32, buf, 0x7f64, seg.base);
9052 	put_smstate(u32, buf, 0x7f60, seg.limit);
9053 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9054 
9055 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9056 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9057 	put_smstate(u32, buf, 0x7f80, seg.base);
9058 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9059 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9060 
9061 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9062 	put_smstate(u32, buf, 0x7f74, dt.address);
9063 	put_smstate(u32, buf, 0x7f70, dt.size);
9064 
9065 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9066 	put_smstate(u32, buf, 0x7f58, dt.address);
9067 	put_smstate(u32, buf, 0x7f54, dt.size);
9068 
9069 	for (i = 0; i < 6; i++)
9070 		enter_smm_save_seg_32(vcpu, buf, i);
9071 
9072 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9073 
9074 	/* revision id */
9075 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9076 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9077 }
9078 
9079 #ifdef CONFIG_X86_64
9080 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9081 {
9082 	struct desc_ptr dt;
9083 	struct kvm_segment seg;
9084 	unsigned long val;
9085 	int i;
9086 
9087 	for (i = 0; i < 16; i++)
9088 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9089 
9090 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9091 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9092 
9093 	kvm_get_dr(vcpu, 6, &val);
9094 	put_smstate(u64, buf, 0x7f68, val);
9095 	kvm_get_dr(vcpu, 7, &val);
9096 	put_smstate(u64, buf, 0x7f60, val);
9097 
9098 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9099 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9100 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9101 
9102 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9103 
9104 	/* revision id */
9105 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9106 
9107 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9108 
9109 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9110 	put_smstate(u16, buf, 0x7e90, seg.selector);
9111 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9112 	put_smstate(u32, buf, 0x7e94, seg.limit);
9113 	put_smstate(u64, buf, 0x7e98, seg.base);
9114 
9115 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9116 	put_smstate(u32, buf, 0x7e84, dt.size);
9117 	put_smstate(u64, buf, 0x7e88, dt.address);
9118 
9119 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9120 	put_smstate(u16, buf, 0x7e70, seg.selector);
9121 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9122 	put_smstate(u32, buf, 0x7e74, seg.limit);
9123 	put_smstate(u64, buf, 0x7e78, seg.base);
9124 
9125 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9126 	put_smstate(u32, buf, 0x7e64, dt.size);
9127 	put_smstate(u64, buf, 0x7e68, dt.address);
9128 
9129 	for (i = 0; i < 6; i++)
9130 		enter_smm_save_seg_64(vcpu, buf, i);
9131 }
9132 #endif
9133 
9134 static void enter_smm(struct kvm_vcpu *vcpu)
9135 {
9136 	struct kvm_segment cs, ds;
9137 	struct desc_ptr dt;
9138 	unsigned long cr0;
9139 	char buf[512];
9140 
9141 	memset(buf, 0, 512);
9142 #ifdef CONFIG_X86_64
9143 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9144 		enter_smm_save_state_64(vcpu, buf);
9145 	else
9146 #endif
9147 		enter_smm_save_state_32(vcpu, buf);
9148 
9149 	/*
9150 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9151 	 * state (e.g. leave guest mode) after we've saved the state into the
9152 	 * SMM state-save area.
9153 	 */
9154 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9155 
9156 	kvm_smm_changed(vcpu, true);
9157 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9158 
9159 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9160 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9161 	else
9162 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9163 
9164 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9165 	kvm_rip_write(vcpu, 0x8000);
9166 
9167 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9168 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9169 	vcpu->arch.cr0 = cr0;
9170 
9171 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9172 
9173 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9174 	dt.address = dt.size = 0;
9175 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9176 
9177 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9178 
9179 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9180 	cs.base = vcpu->arch.smbase;
9181 
9182 	ds.selector = 0;
9183 	ds.base = 0;
9184 
9185 	cs.limit    = ds.limit = 0xffffffff;
9186 	cs.type     = ds.type = 0x3;
9187 	cs.dpl      = ds.dpl = 0;
9188 	cs.db       = ds.db = 0;
9189 	cs.s        = ds.s = 1;
9190 	cs.l        = ds.l = 0;
9191 	cs.g        = ds.g = 1;
9192 	cs.avl      = ds.avl = 0;
9193 	cs.present  = ds.present = 1;
9194 	cs.unusable = ds.unusable = 0;
9195 	cs.padding  = ds.padding = 0;
9196 
9197 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9198 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9199 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9200 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9201 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9202 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9203 
9204 #ifdef CONFIG_X86_64
9205 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9206 		static_call(kvm_x86_set_efer)(vcpu, 0);
9207 #endif
9208 
9209 	kvm_update_cpuid_runtime(vcpu);
9210 	kvm_mmu_reset_context(vcpu);
9211 }
9212 
9213 static void process_smi(struct kvm_vcpu *vcpu)
9214 {
9215 	vcpu->arch.smi_pending = true;
9216 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9217 }
9218 
9219 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9220 				       unsigned long *vcpu_bitmap)
9221 {
9222 	cpumask_var_t cpus;
9223 
9224 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9225 
9226 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9227 				    NULL, vcpu_bitmap, cpus);
9228 
9229 	free_cpumask_var(cpus);
9230 }
9231 
9232 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9233 {
9234 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9235 }
9236 
9237 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9238 {
9239 	if (!lapic_in_kernel(vcpu))
9240 		return;
9241 
9242 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
9243 	kvm_apic_update_apicv(vcpu);
9244 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9245 
9246 	/*
9247 	 * When APICv gets disabled, we may still have injected interrupts
9248 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9249 	 * still active when the interrupt got accepted. Make sure
9250 	 * inject_pending_event() is called to check for that.
9251 	 */
9252 	if (!vcpu->arch.apicv_active)
9253 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9254 }
9255 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9256 
9257 /*
9258  * NOTE: Do not hold any lock prior to calling this.
9259  *
9260  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9261  * locked, because it calls __x86_set_memory_region() which does
9262  * synchronize_srcu(&kvm->srcu).
9263  */
9264 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9265 {
9266 	struct kvm_vcpu *except;
9267 	unsigned long old, new, expected;
9268 
9269 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9270 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9271 		return;
9272 
9273 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9274 	do {
9275 		expected = new = old;
9276 		if (activate)
9277 			__clear_bit(bit, &new);
9278 		else
9279 			__set_bit(bit, &new);
9280 		if (new == old)
9281 			break;
9282 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9283 	} while (old != expected);
9284 
9285 	if (!!old == !!new)
9286 		return;
9287 
9288 	trace_kvm_apicv_update_request(activate, bit);
9289 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9290 		static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9291 
9292 	/*
9293 	 * Sending request to update APICV for all other vcpus,
9294 	 * while update the calling vcpu immediately instead of
9295 	 * waiting for another #VMEXIT to handle the request.
9296 	 */
9297 	except = kvm_get_running_vcpu();
9298 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
9299 					 except);
9300 	if (except)
9301 		kvm_vcpu_update_apicv(except);
9302 }
9303 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9304 
9305 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9306 {
9307 	if (!kvm_apic_present(vcpu))
9308 		return;
9309 
9310 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9311 
9312 	if (irqchip_split(vcpu->kvm))
9313 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9314 	else {
9315 		if (vcpu->arch.apicv_active)
9316 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9317 		if (ioapic_in_kernel(vcpu->kvm))
9318 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9319 	}
9320 
9321 	if (is_guest_mode(vcpu))
9322 		vcpu->arch.load_eoi_exitmap_pending = true;
9323 	else
9324 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9325 }
9326 
9327 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9328 {
9329 	u64 eoi_exit_bitmap[4];
9330 
9331 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9332 		return;
9333 
9334 	if (to_hv_vcpu(vcpu))
9335 		bitmap_or((ulong *)eoi_exit_bitmap,
9336 			  vcpu->arch.ioapic_handled_vectors,
9337 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9338 
9339 	static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9340 }
9341 
9342 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9343 					    unsigned long start, unsigned long end)
9344 {
9345 	unsigned long apic_address;
9346 
9347 	/*
9348 	 * The physical address of apic access page is stored in the VMCS.
9349 	 * Update it when it becomes invalid.
9350 	 */
9351 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9352 	if (start <= apic_address && apic_address < end)
9353 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9354 }
9355 
9356 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9357 {
9358 	if (!lapic_in_kernel(vcpu))
9359 		return;
9360 
9361 	if (!kvm_x86_ops.set_apic_access_page_addr)
9362 		return;
9363 
9364 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9365 }
9366 
9367 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9368 {
9369 	smp_send_reschedule(vcpu->cpu);
9370 }
9371 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9372 
9373 /*
9374  * Returns 1 to let vcpu_run() continue the guest execution loop without
9375  * exiting to the userspace.  Otherwise, the value will be returned to the
9376  * userspace.
9377  */
9378 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9379 {
9380 	int r;
9381 	bool req_int_win =
9382 		dm_request_for_irq_injection(vcpu) &&
9383 		kvm_cpu_accept_dm_intr(vcpu);
9384 	fastpath_t exit_fastpath;
9385 
9386 	bool req_immediate_exit = false;
9387 
9388 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9389 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9390 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9391 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9392 		trace_kvm_dirty_ring_exit(vcpu);
9393 		r = 0;
9394 		goto out;
9395 	}
9396 
9397 	if (kvm_request_pending(vcpu)) {
9398 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9399 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9400 				r = 0;
9401 				goto out;
9402 			}
9403 		}
9404 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9405 			kvm_mmu_unload(vcpu);
9406 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9407 			__kvm_migrate_timers(vcpu);
9408 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9409 			kvm_gen_update_masterclock(vcpu->kvm);
9410 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9411 			kvm_gen_kvmclock_update(vcpu);
9412 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9413 			r = kvm_guest_time_update(vcpu);
9414 			if (unlikely(r))
9415 				goto out;
9416 		}
9417 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9418 			kvm_mmu_sync_roots(vcpu);
9419 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9420 			kvm_mmu_load_pgd(vcpu);
9421 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9422 			kvm_vcpu_flush_tlb_all(vcpu);
9423 
9424 			/* Flushing all ASIDs flushes the current ASID... */
9425 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9426 		}
9427 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9428 			kvm_vcpu_flush_tlb_current(vcpu);
9429 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9430 			kvm_vcpu_flush_tlb_guest(vcpu);
9431 
9432 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9433 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9434 			r = 0;
9435 			goto out;
9436 		}
9437 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9438 			if (is_guest_mode(vcpu)) {
9439 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9440 			} else {
9441 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9442 				vcpu->mmio_needed = 0;
9443 				r = 0;
9444 				goto out;
9445 			}
9446 		}
9447 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9448 			/* Page is swapped out. Do synthetic halt */
9449 			vcpu->arch.apf.halted = true;
9450 			r = 1;
9451 			goto out;
9452 		}
9453 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9454 			record_steal_time(vcpu);
9455 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9456 			process_smi(vcpu);
9457 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9458 			process_nmi(vcpu);
9459 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9460 			kvm_pmu_handle_event(vcpu);
9461 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9462 			kvm_pmu_deliver_pmi(vcpu);
9463 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9464 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9465 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9466 				     vcpu->arch.ioapic_handled_vectors)) {
9467 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9468 				vcpu->run->eoi.vector =
9469 						vcpu->arch.pending_ioapic_eoi;
9470 				r = 0;
9471 				goto out;
9472 			}
9473 		}
9474 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9475 			vcpu_scan_ioapic(vcpu);
9476 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9477 			vcpu_load_eoi_exitmap(vcpu);
9478 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9479 			kvm_vcpu_reload_apic_access_page(vcpu);
9480 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9481 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9482 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9483 			r = 0;
9484 			goto out;
9485 		}
9486 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9487 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9488 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9489 			r = 0;
9490 			goto out;
9491 		}
9492 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9493 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9494 
9495 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9496 			vcpu->run->hyperv = hv_vcpu->exit;
9497 			r = 0;
9498 			goto out;
9499 		}
9500 
9501 		/*
9502 		 * KVM_REQ_HV_STIMER has to be processed after
9503 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9504 		 * depend on the guest clock being up-to-date
9505 		 */
9506 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9507 			kvm_hv_process_stimers(vcpu);
9508 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9509 			kvm_vcpu_update_apicv(vcpu);
9510 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9511 			kvm_check_async_pf_completion(vcpu);
9512 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9513 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9514 
9515 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9516 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9517 	}
9518 
9519 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9520 	    kvm_xen_has_interrupt(vcpu)) {
9521 		++vcpu->stat.req_event;
9522 		r = kvm_apic_accept_events(vcpu);
9523 		if (r < 0) {
9524 			r = 0;
9525 			goto out;
9526 		}
9527 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9528 			r = 1;
9529 			goto out;
9530 		}
9531 
9532 		r = inject_pending_event(vcpu, &req_immediate_exit);
9533 		if (r < 0) {
9534 			r = 0;
9535 			goto out;
9536 		}
9537 		if (req_int_win)
9538 			static_call(kvm_x86_enable_irq_window)(vcpu);
9539 
9540 		if (kvm_lapic_enabled(vcpu)) {
9541 			update_cr8_intercept(vcpu);
9542 			kvm_lapic_sync_to_vapic(vcpu);
9543 		}
9544 	}
9545 
9546 	r = kvm_mmu_reload(vcpu);
9547 	if (unlikely(r)) {
9548 		goto cancel_injection;
9549 	}
9550 
9551 	preempt_disable();
9552 
9553 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9554 
9555 	/*
9556 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9557 	 * IPI are then delayed after guest entry, which ensures that they
9558 	 * result in virtual interrupt delivery.
9559 	 */
9560 	local_irq_disable();
9561 	vcpu->mode = IN_GUEST_MODE;
9562 
9563 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9564 
9565 	/*
9566 	 * 1) We should set ->mode before checking ->requests.  Please see
9567 	 * the comment in kvm_vcpu_exiting_guest_mode().
9568 	 *
9569 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9570 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9571 	 * (see vmx_deliver_posted_interrupt).
9572 	 *
9573 	 * 3) This also orders the write to mode from any reads to the page
9574 	 * tables done while the VCPU is running.  Please see the comment
9575 	 * in kvm_flush_remote_tlbs.
9576 	 */
9577 	smp_mb__after_srcu_read_unlock();
9578 
9579 	/*
9580 	 * This handles the case where a posted interrupt was
9581 	 * notified with kvm_vcpu_kick.
9582 	 */
9583 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9584 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9585 
9586 	if (kvm_vcpu_exit_request(vcpu)) {
9587 		vcpu->mode = OUTSIDE_GUEST_MODE;
9588 		smp_wmb();
9589 		local_irq_enable();
9590 		preempt_enable();
9591 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9592 		r = 1;
9593 		goto cancel_injection;
9594 	}
9595 
9596 	if (req_immediate_exit) {
9597 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9598 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9599 	}
9600 
9601 	fpregs_assert_state_consistent();
9602 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9603 		switch_fpu_return();
9604 
9605 	if (unlikely(vcpu->arch.switch_db_regs)) {
9606 		set_debugreg(0, 7);
9607 		set_debugreg(vcpu->arch.eff_db[0], 0);
9608 		set_debugreg(vcpu->arch.eff_db[1], 1);
9609 		set_debugreg(vcpu->arch.eff_db[2], 2);
9610 		set_debugreg(vcpu->arch.eff_db[3], 3);
9611 		set_debugreg(vcpu->arch.dr6, 6);
9612 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9613 	} else if (unlikely(hw_breakpoint_active())) {
9614 		set_debugreg(0, 7);
9615 	}
9616 
9617 	for (;;) {
9618 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9619 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9620 			break;
9621 
9622                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9623 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9624 			break;
9625 		}
9626 
9627 		if (vcpu->arch.apicv_active)
9628 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9629         }
9630 
9631 	/*
9632 	 * Do this here before restoring debug registers on the host.  And
9633 	 * since we do this before handling the vmexit, a DR access vmexit
9634 	 * can (a) read the correct value of the debug registers, (b) set
9635 	 * KVM_DEBUGREG_WONT_EXIT again.
9636 	 */
9637 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9638 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9639 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9640 		kvm_update_dr0123(vcpu);
9641 		kvm_update_dr7(vcpu);
9642 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9643 	}
9644 
9645 	/*
9646 	 * If the guest has used debug registers, at least dr7
9647 	 * will be disabled while returning to the host.
9648 	 * If we don't have active breakpoints in the host, we don't
9649 	 * care about the messed up debug address registers. But if
9650 	 * we have some of them active, restore the old state.
9651 	 */
9652 	if (hw_breakpoint_active())
9653 		hw_breakpoint_restore();
9654 
9655 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9656 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9657 
9658 	vcpu->mode = OUTSIDE_GUEST_MODE;
9659 	smp_wmb();
9660 
9661 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9662 
9663 	/*
9664 	 * Consume any pending interrupts, including the possible source of
9665 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9666 	 * An instruction is required after local_irq_enable() to fully unblock
9667 	 * interrupts on processors that implement an interrupt shadow, the
9668 	 * stat.exits increment will do nicely.
9669 	 */
9670 	kvm_before_interrupt(vcpu);
9671 	local_irq_enable();
9672 	++vcpu->stat.exits;
9673 	local_irq_disable();
9674 	kvm_after_interrupt(vcpu);
9675 
9676 	/*
9677 	 * Wait until after servicing IRQs to account guest time so that any
9678 	 * ticks that occurred while running the guest are properly accounted
9679 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9680 	 * of accounting via context tracking, but the loss of accuracy is
9681 	 * acceptable for all known use cases.
9682 	 */
9683 	vtime_account_guest_exit();
9684 
9685 	if (lapic_in_kernel(vcpu)) {
9686 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9687 		if (delta != S64_MIN) {
9688 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9689 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9690 		}
9691 	}
9692 
9693 	local_irq_enable();
9694 	preempt_enable();
9695 
9696 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9697 
9698 	/*
9699 	 * Profile KVM exit RIPs:
9700 	 */
9701 	if (unlikely(prof_on == KVM_PROFILING)) {
9702 		unsigned long rip = kvm_rip_read(vcpu);
9703 		profile_hit(KVM_PROFILING, (void *)rip);
9704 	}
9705 
9706 	if (unlikely(vcpu->arch.tsc_always_catchup))
9707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9708 
9709 	if (vcpu->arch.apic_attention)
9710 		kvm_lapic_sync_from_vapic(vcpu);
9711 
9712 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9713 	return r;
9714 
9715 cancel_injection:
9716 	if (req_immediate_exit)
9717 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9718 	static_call(kvm_x86_cancel_injection)(vcpu);
9719 	if (unlikely(vcpu->arch.apic_attention))
9720 		kvm_lapic_sync_from_vapic(vcpu);
9721 out:
9722 	return r;
9723 }
9724 
9725 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9726 {
9727 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9728 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9729 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9730 		kvm_vcpu_block(vcpu);
9731 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9732 
9733 		if (kvm_x86_ops.post_block)
9734 			static_call(kvm_x86_post_block)(vcpu);
9735 
9736 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9737 			return 1;
9738 	}
9739 
9740 	if (kvm_apic_accept_events(vcpu) < 0)
9741 		return 0;
9742 	switch(vcpu->arch.mp_state) {
9743 	case KVM_MP_STATE_HALTED:
9744 	case KVM_MP_STATE_AP_RESET_HOLD:
9745 		vcpu->arch.pv.pv_unhalted = false;
9746 		vcpu->arch.mp_state =
9747 			KVM_MP_STATE_RUNNABLE;
9748 		fallthrough;
9749 	case KVM_MP_STATE_RUNNABLE:
9750 		vcpu->arch.apf.halted = false;
9751 		break;
9752 	case KVM_MP_STATE_INIT_RECEIVED:
9753 		break;
9754 	default:
9755 		return -EINTR;
9756 	}
9757 	return 1;
9758 }
9759 
9760 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9761 {
9762 	if (is_guest_mode(vcpu))
9763 		kvm_check_nested_events(vcpu);
9764 
9765 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9766 		!vcpu->arch.apf.halted);
9767 }
9768 
9769 static int vcpu_run(struct kvm_vcpu *vcpu)
9770 {
9771 	int r;
9772 	struct kvm *kvm = vcpu->kvm;
9773 
9774 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9775 	vcpu->arch.l1tf_flush_l1d = true;
9776 
9777 	for (;;) {
9778 		if (kvm_vcpu_running(vcpu)) {
9779 			r = vcpu_enter_guest(vcpu);
9780 		} else {
9781 			r = vcpu_block(kvm, vcpu);
9782 		}
9783 
9784 		if (r <= 0)
9785 			break;
9786 
9787 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9788 		if (kvm_cpu_has_pending_timer(vcpu))
9789 			kvm_inject_pending_timer_irqs(vcpu);
9790 
9791 		if (dm_request_for_irq_injection(vcpu) &&
9792 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9793 			r = 0;
9794 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9795 			++vcpu->stat.request_irq_exits;
9796 			break;
9797 		}
9798 
9799 		if (__xfer_to_guest_mode_work_pending()) {
9800 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9801 			r = xfer_to_guest_mode_handle_work(vcpu);
9802 			if (r)
9803 				return r;
9804 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9805 		}
9806 	}
9807 
9808 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9809 
9810 	return r;
9811 }
9812 
9813 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9814 {
9815 	int r;
9816 
9817 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9818 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9819 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9820 	return r;
9821 }
9822 
9823 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9824 {
9825 	BUG_ON(!vcpu->arch.pio.count);
9826 
9827 	return complete_emulated_io(vcpu);
9828 }
9829 
9830 /*
9831  * Implements the following, as a state machine:
9832  *
9833  * read:
9834  *   for each fragment
9835  *     for each mmio piece in the fragment
9836  *       write gpa, len
9837  *       exit
9838  *       copy data
9839  *   execute insn
9840  *
9841  * write:
9842  *   for each fragment
9843  *     for each mmio piece in the fragment
9844  *       write gpa, len
9845  *       copy data
9846  *       exit
9847  */
9848 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9849 {
9850 	struct kvm_run *run = vcpu->run;
9851 	struct kvm_mmio_fragment *frag;
9852 	unsigned len;
9853 
9854 	BUG_ON(!vcpu->mmio_needed);
9855 
9856 	/* Complete previous fragment */
9857 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9858 	len = min(8u, frag->len);
9859 	if (!vcpu->mmio_is_write)
9860 		memcpy(frag->data, run->mmio.data, len);
9861 
9862 	if (frag->len <= 8) {
9863 		/* Switch to the next fragment. */
9864 		frag++;
9865 		vcpu->mmio_cur_fragment++;
9866 	} else {
9867 		/* Go forward to the next mmio piece. */
9868 		frag->data += len;
9869 		frag->gpa += len;
9870 		frag->len -= len;
9871 	}
9872 
9873 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9874 		vcpu->mmio_needed = 0;
9875 
9876 		/* FIXME: return into emulator if single-stepping.  */
9877 		if (vcpu->mmio_is_write)
9878 			return 1;
9879 		vcpu->mmio_read_completed = 1;
9880 		return complete_emulated_io(vcpu);
9881 	}
9882 
9883 	run->exit_reason = KVM_EXIT_MMIO;
9884 	run->mmio.phys_addr = frag->gpa;
9885 	if (vcpu->mmio_is_write)
9886 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9887 	run->mmio.len = min(8u, frag->len);
9888 	run->mmio.is_write = vcpu->mmio_is_write;
9889 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9890 	return 0;
9891 }
9892 
9893 static void kvm_save_current_fpu(struct fpu *fpu)
9894 {
9895 	/*
9896 	 * If the target FPU state is not resident in the CPU registers, just
9897 	 * memcpy() from current, else save CPU state directly to the target.
9898 	 */
9899 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9900 		memcpy(&fpu->state, &current->thread.fpu.state,
9901 		       fpu_kernel_xstate_size);
9902 	else
9903 		save_fpregs_to_fpstate(fpu);
9904 }
9905 
9906 /* Swap (qemu) user FPU context for the guest FPU context. */
9907 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9908 {
9909 	fpregs_lock();
9910 
9911 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9912 
9913 	/*
9914 	 * Guests with protected state can't have it set by the hypervisor,
9915 	 * so skip trying to set it.
9916 	 */
9917 	if (vcpu->arch.guest_fpu)
9918 		/* PKRU is separately restored in kvm_x86_ops.run. */
9919 		__restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9920 					~XFEATURE_MASK_PKRU);
9921 
9922 	fpregs_mark_activate();
9923 	fpregs_unlock();
9924 
9925 	trace_kvm_fpu(1);
9926 }
9927 
9928 /* When vcpu_run ends, restore user space FPU context. */
9929 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9930 {
9931 	fpregs_lock();
9932 
9933 	/*
9934 	 * Guests with protected state can't have it read by the hypervisor,
9935 	 * so skip trying to save it.
9936 	 */
9937 	if (vcpu->arch.guest_fpu)
9938 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9939 
9940 	restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9941 
9942 	fpregs_mark_activate();
9943 	fpregs_unlock();
9944 
9945 	++vcpu->stat.fpu_reload;
9946 	trace_kvm_fpu(0);
9947 }
9948 
9949 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9950 {
9951 	struct kvm_run *kvm_run = vcpu->run;
9952 	int r;
9953 
9954 	vcpu_load(vcpu);
9955 	kvm_sigset_activate(vcpu);
9956 	kvm_run->flags = 0;
9957 	kvm_load_guest_fpu(vcpu);
9958 
9959 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9960 		if (kvm_run->immediate_exit) {
9961 			r = -EINTR;
9962 			goto out;
9963 		}
9964 		kvm_vcpu_block(vcpu);
9965 		if (kvm_apic_accept_events(vcpu) < 0) {
9966 			r = 0;
9967 			goto out;
9968 		}
9969 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9970 		r = -EAGAIN;
9971 		if (signal_pending(current)) {
9972 			r = -EINTR;
9973 			kvm_run->exit_reason = KVM_EXIT_INTR;
9974 			++vcpu->stat.signal_exits;
9975 		}
9976 		goto out;
9977 	}
9978 
9979 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9980 		r = -EINVAL;
9981 		goto out;
9982 	}
9983 
9984 	if (kvm_run->kvm_dirty_regs) {
9985 		r = sync_regs(vcpu);
9986 		if (r != 0)
9987 			goto out;
9988 	}
9989 
9990 	/* re-sync apic's tpr */
9991 	if (!lapic_in_kernel(vcpu)) {
9992 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9993 			r = -EINVAL;
9994 			goto out;
9995 		}
9996 	}
9997 
9998 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9999 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10000 		vcpu->arch.complete_userspace_io = NULL;
10001 		r = cui(vcpu);
10002 		if (r <= 0)
10003 			goto out;
10004 	} else
10005 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10006 
10007 	if (kvm_run->immediate_exit)
10008 		r = -EINTR;
10009 	else
10010 		r = vcpu_run(vcpu);
10011 
10012 out:
10013 	kvm_put_guest_fpu(vcpu);
10014 	if (kvm_run->kvm_valid_regs)
10015 		store_regs(vcpu);
10016 	post_kvm_run_save(vcpu);
10017 	kvm_sigset_deactivate(vcpu);
10018 
10019 	vcpu_put(vcpu);
10020 	return r;
10021 }
10022 
10023 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10024 {
10025 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10026 		/*
10027 		 * We are here if userspace calls get_regs() in the middle of
10028 		 * instruction emulation. Registers state needs to be copied
10029 		 * back from emulation context to vcpu. Userspace shouldn't do
10030 		 * that usually, but some bad designed PV devices (vmware
10031 		 * backdoor interface) need this to work
10032 		 */
10033 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10034 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10035 	}
10036 	regs->rax = kvm_rax_read(vcpu);
10037 	regs->rbx = kvm_rbx_read(vcpu);
10038 	regs->rcx = kvm_rcx_read(vcpu);
10039 	regs->rdx = kvm_rdx_read(vcpu);
10040 	regs->rsi = kvm_rsi_read(vcpu);
10041 	regs->rdi = kvm_rdi_read(vcpu);
10042 	regs->rsp = kvm_rsp_read(vcpu);
10043 	regs->rbp = kvm_rbp_read(vcpu);
10044 #ifdef CONFIG_X86_64
10045 	regs->r8 = kvm_r8_read(vcpu);
10046 	regs->r9 = kvm_r9_read(vcpu);
10047 	regs->r10 = kvm_r10_read(vcpu);
10048 	regs->r11 = kvm_r11_read(vcpu);
10049 	regs->r12 = kvm_r12_read(vcpu);
10050 	regs->r13 = kvm_r13_read(vcpu);
10051 	regs->r14 = kvm_r14_read(vcpu);
10052 	regs->r15 = kvm_r15_read(vcpu);
10053 #endif
10054 
10055 	regs->rip = kvm_rip_read(vcpu);
10056 	regs->rflags = kvm_get_rflags(vcpu);
10057 }
10058 
10059 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10060 {
10061 	vcpu_load(vcpu);
10062 	__get_regs(vcpu, regs);
10063 	vcpu_put(vcpu);
10064 	return 0;
10065 }
10066 
10067 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10068 {
10069 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10070 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10071 
10072 	kvm_rax_write(vcpu, regs->rax);
10073 	kvm_rbx_write(vcpu, regs->rbx);
10074 	kvm_rcx_write(vcpu, regs->rcx);
10075 	kvm_rdx_write(vcpu, regs->rdx);
10076 	kvm_rsi_write(vcpu, regs->rsi);
10077 	kvm_rdi_write(vcpu, regs->rdi);
10078 	kvm_rsp_write(vcpu, regs->rsp);
10079 	kvm_rbp_write(vcpu, regs->rbp);
10080 #ifdef CONFIG_X86_64
10081 	kvm_r8_write(vcpu, regs->r8);
10082 	kvm_r9_write(vcpu, regs->r9);
10083 	kvm_r10_write(vcpu, regs->r10);
10084 	kvm_r11_write(vcpu, regs->r11);
10085 	kvm_r12_write(vcpu, regs->r12);
10086 	kvm_r13_write(vcpu, regs->r13);
10087 	kvm_r14_write(vcpu, regs->r14);
10088 	kvm_r15_write(vcpu, regs->r15);
10089 #endif
10090 
10091 	kvm_rip_write(vcpu, regs->rip);
10092 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10093 
10094 	vcpu->arch.exception.pending = false;
10095 
10096 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10097 }
10098 
10099 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10100 {
10101 	vcpu_load(vcpu);
10102 	__set_regs(vcpu, regs);
10103 	vcpu_put(vcpu);
10104 	return 0;
10105 }
10106 
10107 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10108 {
10109 	struct kvm_segment cs;
10110 
10111 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10112 	*db = cs.db;
10113 	*l = cs.l;
10114 }
10115 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10116 
10117 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10118 {
10119 	struct desc_ptr dt;
10120 
10121 	if (vcpu->arch.guest_state_protected)
10122 		goto skip_protected_regs;
10123 
10124 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10125 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10126 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10127 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10128 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10129 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10130 
10131 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10132 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10133 
10134 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10135 	sregs->idt.limit = dt.size;
10136 	sregs->idt.base = dt.address;
10137 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10138 	sregs->gdt.limit = dt.size;
10139 	sregs->gdt.base = dt.address;
10140 
10141 	sregs->cr2 = vcpu->arch.cr2;
10142 	sregs->cr3 = kvm_read_cr3(vcpu);
10143 
10144 skip_protected_regs:
10145 	sregs->cr0 = kvm_read_cr0(vcpu);
10146 	sregs->cr4 = kvm_read_cr4(vcpu);
10147 	sregs->cr8 = kvm_get_cr8(vcpu);
10148 	sregs->efer = vcpu->arch.efer;
10149 	sregs->apic_base = kvm_get_apic_base(vcpu);
10150 }
10151 
10152 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10153 {
10154 	__get_sregs_common(vcpu, sregs);
10155 
10156 	if (vcpu->arch.guest_state_protected)
10157 		return;
10158 
10159 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10160 		set_bit(vcpu->arch.interrupt.nr,
10161 			(unsigned long *)sregs->interrupt_bitmap);
10162 }
10163 
10164 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10165 {
10166 	int i;
10167 
10168 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10169 
10170 	if (vcpu->arch.guest_state_protected)
10171 		return;
10172 
10173 	if (is_pae_paging(vcpu)) {
10174 		for (i = 0 ; i < 4 ; i++)
10175 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10176 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10177 	}
10178 }
10179 
10180 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10181 				  struct kvm_sregs *sregs)
10182 {
10183 	vcpu_load(vcpu);
10184 	__get_sregs(vcpu, sregs);
10185 	vcpu_put(vcpu);
10186 	return 0;
10187 }
10188 
10189 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10190 				    struct kvm_mp_state *mp_state)
10191 {
10192 	int r;
10193 
10194 	vcpu_load(vcpu);
10195 	if (kvm_mpx_supported())
10196 		kvm_load_guest_fpu(vcpu);
10197 
10198 	r = kvm_apic_accept_events(vcpu);
10199 	if (r < 0)
10200 		goto out;
10201 	r = 0;
10202 
10203 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10204 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10205 	    vcpu->arch.pv.pv_unhalted)
10206 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10207 	else
10208 		mp_state->mp_state = vcpu->arch.mp_state;
10209 
10210 out:
10211 	if (kvm_mpx_supported())
10212 		kvm_put_guest_fpu(vcpu);
10213 	vcpu_put(vcpu);
10214 	return r;
10215 }
10216 
10217 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10218 				    struct kvm_mp_state *mp_state)
10219 {
10220 	int ret = -EINVAL;
10221 
10222 	vcpu_load(vcpu);
10223 
10224 	if (!lapic_in_kernel(vcpu) &&
10225 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10226 		goto out;
10227 
10228 	/*
10229 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10230 	 * INIT state; latched init should be reported using
10231 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10232 	 */
10233 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10234 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10235 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10236 		goto out;
10237 
10238 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10239 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10240 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10241 	} else
10242 		vcpu->arch.mp_state = mp_state->mp_state;
10243 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10244 
10245 	ret = 0;
10246 out:
10247 	vcpu_put(vcpu);
10248 	return ret;
10249 }
10250 
10251 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10252 		    int reason, bool has_error_code, u32 error_code)
10253 {
10254 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10255 	int ret;
10256 
10257 	init_emulate_ctxt(vcpu);
10258 
10259 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10260 				   has_error_code, error_code);
10261 	if (ret) {
10262 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10263 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10264 		vcpu->run->internal.ndata = 0;
10265 		return 0;
10266 	}
10267 
10268 	kvm_rip_write(vcpu, ctxt->eip);
10269 	kvm_set_rflags(vcpu, ctxt->eflags);
10270 	return 1;
10271 }
10272 EXPORT_SYMBOL_GPL(kvm_task_switch);
10273 
10274 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10275 {
10276 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10277 		/*
10278 		 * When EFER.LME and CR0.PG are set, the processor is in
10279 		 * 64-bit mode (though maybe in a 32-bit code segment).
10280 		 * CR4.PAE and EFER.LMA must be set.
10281 		 */
10282 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10283 			return false;
10284 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10285 			return false;
10286 	} else {
10287 		/*
10288 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10289 		 * segment cannot be 64-bit.
10290 		 */
10291 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10292 			return false;
10293 	}
10294 
10295 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10296 }
10297 
10298 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10299 		int *mmu_reset_needed, bool update_pdptrs)
10300 {
10301 	struct msr_data apic_base_msr;
10302 	int idx;
10303 	struct desc_ptr dt;
10304 
10305 	if (!kvm_is_valid_sregs(vcpu, sregs))
10306 		return -EINVAL;
10307 
10308 	apic_base_msr.data = sregs->apic_base;
10309 	apic_base_msr.host_initiated = true;
10310 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10311 		return -EINVAL;
10312 
10313 	if (vcpu->arch.guest_state_protected)
10314 		return 0;
10315 
10316 	dt.size = sregs->idt.limit;
10317 	dt.address = sregs->idt.base;
10318 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10319 	dt.size = sregs->gdt.limit;
10320 	dt.address = sregs->gdt.base;
10321 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10322 
10323 	vcpu->arch.cr2 = sregs->cr2;
10324 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10325 	vcpu->arch.cr3 = sregs->cr3;
10326 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10327 
10328 	kvm_set_cr8(vcpu, sregs->cr8);
10329 
10330 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10331 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10332 
10333 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10334 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10335 	vcpu->arch.cr0 = sregs->cr0;
10336 
10337 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10338 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10339 
10340 	if (update_pdptrs) {
10341 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10342 		if (is_pae_paging(vcpu)) {
10343 			load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10344 			*mmu_reset_needed = 1;
10345 		}
10346 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10347 	}
10348 
10349 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10350 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10351 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10352 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10353 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10354 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10355 
10356 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10357 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10358 
10359 	update_cr8_intercept(vcpu);
10360 
10361 	/* Older userspace won't unhalt the vcpu on reset. */
10362 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10363 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10364 	    !is_protmode(vcpu))
10365 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10366 
10367 	return 0;
10368 }
10369 
10370 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10371 {
10372 	int pending_vec, max_bits;
10373 	int mmu_reset_needed = 0;
10374 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10375 
10376 	if (ret)
10377 		return ret;
10378 
10379 	if (mmu_reset_needed)
10380 		kvm_mmu_reset_context(vcpu);
10381 
10382 	max_bits = KVM_NR_INTERRUPTS;
10383 	pending_vec = find_first_bit(
10384 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10385 
10386 	if (pending_vec < max_bits) {
10387 		kvm_queue_interrupt(vcpu, pending_vec, false);
10388 		pr_debug("Set back pending irq %d\n", pending_vec);
10389 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10390 	}
10391 	return 0;
10392 }
10393 
10394 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10395 {
10396 	int mmu_reset_needed = 0;
10397 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10398 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10399 		!(sregs2->efer & EFER_LMA);
10400 	int i, ret;
10401 
10402 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10403 		return -EINVAL;
10404 
10405 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10406 		return -EINVAL;
10407 
10408 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10409 				 &mmu_reset_needed, !valid_pdptrs);
10410 	if (ret)
10411 		return ret;
10412 
10413 	if (valid_pdptrs) {
10414 		for (i = 0; i < 4 ; i++)
10415 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10416 
10417 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10418 		mmu_reset_needed = 1;
10419 		vcpu->arch.pdptrs_from_userspace = true;
10420 	}
10421 	if (mmu_reset_needed)
10422 		kvm_mmu_reset_context(vcpu);
10423 	return 0;
10424 }
10425 
10426 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10427 				  struct kvm_sregs *sregs)
10428 {
10429 	int ret;
10430 
10431 	vcpu_load(vcpu);
10432 	ret = __set_sregs(vcpu, sregs);
10433 	vcpu_put(vcpu);
10434 	return ret;
10435 }
10436 
10437 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10438 					struct kvm_guest_debug *dbg)
10439 {
10440 	unsigned long rflags;
10441 	int i, r;
10442 
10443 	if (vcpu->arch.guest_state_protected)
10444 		return -EINVAL;
10445 
10446 	vcpu_load(vcpu);
10447 
10448 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10449 		r = -EBUSY;
10450 		if (vcpu->arch.exception.pending)
10451 			goto out;
10452 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10453 			kvm_queue_exception(vcpu, DB_VECTOR);
10454 		else
10455 			kvm_queue_exception(vcpu, BP_VECTOR);
10456 	}
10457 
10458 	/*
10459 	 * Read rflags as long as potentially injected trace flags are still
10460 	 * filtered out.
10461 	 */
10462 	rflags = kvm_get_rflags(vcpu);
10463 
10464 	vcpu->guest_debug = dbg->control;
10465 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10466 		vcpu->guest_debug = 0;
10467 
10468 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10469 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10470 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10471 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10472 	} else {
10473 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10474 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10475 	}
10476 	kvm_update_dr7(vcpu);
10477 
10478 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10479 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10480 
10481 	/*
10482 	 * Trigger an rflags update that will inject or remove the trace
10483 	 * flags.
10484 	 */
10485 	kvm_set_rflags(vcpu, rflags);
10486 
10487 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10488 
10489 	r = 0;
10490 
10491 out:
10492 	vcpu_put(vcpu);
10493 	return r;
10494 }
10495 
10496 /*
10497  * Translate a guest virtual address to a guest physical address.
10498  */
10499 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10500 				    struct kvm_translation *tr)
10501 {
10502 	unsigned long vaddr = tr->linear_address;
10503 	gpa_t gpa;
10504 	int idx;
10505 
10506 	vcpu_load(vcpu);
10507 
10508 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10509 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10510 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10511 	tr->physical_address = gpa;
10512 	tr->valid = gpa != UNMAPPED_GVA;
10513 	tr->writeable = 1;
10514 	tr->usermode = 0;
10515 
10516 	vcpu_put(vcpu);
10517 	return 0;
10518 }
10519 
10520 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10521 {
10522 	struct fxregs_state *fxsave;
10523 
10524 	if (!vcpu->arch.guest_fpu)
10525 		return 0;
10526 
10527 	vcpu_load(vcpu);
10528 
10529 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10530 	memcpy(fpu->fpr, fxsave->st_space, 128);
10531 	fpu->fcw = fxsave->cwd;
10532 	fpu->fsw = fxsave->swd;
10533 	fpu->ftwx = fxsave->twd;
10534 	fpu->last_opcode = fxsave->fop;
10535 	fpu->last_ip = fxsave->rip;
10536 	fpu->last_dp = fxsave->rdp;
10537 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10538 
10539 	vcpu_put(vcpu);
10540 	return 0;
10541 }
10542 
10543 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10544 {
10545 	struct fxregs_state *fxsave;
10546 
10547 	if (!vcpu->arch.guest_fpu)
10548 		return 0;
10549 
10550 	vcpu_load(vcpu);
10551 
10552 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10553 
10554 	memcpy(fxsave->st_space, fpu->fpr, 128);
10555 	fxsave->cwd = fpu->fcw;
10556 	fxsave->swd = fpu->fsw;
10557 	fxsave->twd = fpu->ftwx;
10558 	fxsave->fop = fpu->last_opcode;
10559 	fxsave->rip = fpu->last_ip;
10560 	fxsave->rdp = fpu->last_dp;
10561 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10562 
10563 	vcpu_put(vcpu);
10564 	return 0;
10565 }
10566 
10567 static void store_regs(struct kvm_vcpu *vcpu)
10568 {
10569 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10570 
10571 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10572 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10573 
10574 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10575 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10576 
10577 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10578 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10579 				vcpu, &vcpu->run->s.regs.events);
10580 }
10581 
10582 static int sync_regs(struct kvm_vcpu *vcpu)
10583 {
10584 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10585 		return -EINVAL;
10586 
10587 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10588 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10589 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10590 	}
10591 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10592 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10593 			return -EINVAL;
10594 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10595 	}
10596 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10597 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10598 				vcpu, &vcpu->run->s.regs.events))
10599 			return -EINVAL;
10600 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10601 	}
10602 
10603 	return 0;
10604 }
10605 
10606 static void fx_init(struct kvm_vcpu *vcpu)
10607 {
10608 	if (!vcpu->arch.guest_fpu)
10609 		return;
10610 
10611 	fpstate_init(&vcpu->arch.guest_fpu->state);
10612 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10613 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10614 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10615 
10616 	/*
10617 	 * Ensure guest xcr0 is valid for loading
10618 	 */
10619 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10620 
10621 	vcpu->arch.cr0 |= X86_CR0_ET;
10622 }
10623 
10624 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10625 {
10626 	if (vcpu->arch.guest_fpu) {
10627 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10628 		vcpu->arch.guest_fpu = NULL;
10629 	}
10630 }
10631 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10632 
10633 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10634 {
10635 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10636 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10637 			     "guest TSC will not be reliable\n");
10638 
10639 	return 0;
10640 }
10641 
10642 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10643 {
10644 	struct page *page;
10645 	int r;
10646 
10647 	vcpu->arch.last_vmentry_cpu = -1;
10648 
10649 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10650 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10651 	else
10652 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10653 
10654 	r = kvm_mmu_create(vcpu);
10655 	if (r < 0)
10656 		return r;
10657 
10658 	if (irqchip_in_kernel(vcpu->kvm)) {
10659 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10660 		if (r < 0)
10661 			goto fail_mmu_destroy;
10662 		if (kvm_apicv_activated(vcpu->kvm))
10663 			vcpu->arch.apicv_active = true;
10664 	} else
10665 		static_branch_inc(&kvm_has_noapic_vcpu);
10666 
10667 	r = -ENOMEM;
10668 
10669 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10670 	if (!page)
10671 		goto fail_free_lapic;
10672 	vcpu->arch.pio_data = page_address(page);
10673 
10674 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10675 				       GFP_KERNEL_ACCOUNT);
10676 	if (!vcpu->arch.mce_banks)
10677 		goto fail_free_pio_data;
10678 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10679 
10680 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10681 				GFP_KERNEL_ACCOUNT))
10682 		goto fail_free_mce_banks;
10683 
10684 	if (!alloc_emulate_ctxt(vcpu))
10685 		goto free_wbinvd_dirty_mask;
10686 
10687 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10688 						GFP_KERNEL_ACCOUNT);
10689 	if (!vcpu->arch.user_fpu) {
10690 		pr_err("kvm: failed to allocate userspace's fpu\n");
10691 		goto free_emulate_ctxt;
10692 	}
10693 
10694 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10695 						 GFP_KERNEL_ACCOUNT);
10696 	if (!vcpu->arch.guest_fpu) {
10697 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10698 		goto free_user_fpu;
10699 	}
10700 	fx_init(vcpu);
10701 
10702 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10703 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10704 
10705 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10706 
10707 	kvm_async_pf_hash_reset(vcpu);
10708 	kvm_pmu_init(vcpu);
10709 
10710 	vcpu->arch.pending_external_vector = -1;
10711 	vcpu->arch.preempted_in_kernel = false;
10712 
10713 #if IS_ENABLED(CONFIG_HYPERV)
10714 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
10715 #endif
10716 
10717 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10718 	if (r)
10719 		goto free_guest_fpu;
10720 
10721 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10722 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10723 	kvm_vcpu_mtrr_init(vcpu);
10724 	vcpu_load(vcpu);
10725 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10726 	kvm_vcpu_reset(vcpu, false);
10727 	kvm_init_mmu(vcpu);
10728 	vcpu_put(vcpu);
10729 	return 0;
10730 
10731 free_guest_fpu:
10732 	kvm_free_guest_fpu(vcpu);
10733 free_user_fpu:
10734 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10735 free_emulate_ctxt:
10736 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10737 free_wbinvd_dirty_mask:
10738 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10739 fail_free_mce_banks:
10740 	kfree(vcpu->arch.mce_banks);
10741 fail_free_pio_data:
10742 	free_page((unsigned long)vcpu->arch.pio_data);
10743 fail_free_lapic:
10744 	kvm_free_lapic(vcpu);
10745 fail_mmu_destroy:
10746 	kvm_mmu_destroy(vcpu);
10747 	return r;
10748 }
10749 
10750 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10751 {
10752 	struct kvm *kvm = vcpu->kvm;
10753 
10754 	if (mutex_lock_killable(&vcpu->mutex))
10755 		return;
10756 	vcpu_load(vcpu);
10757 	kvm_synchronize_tsc(vcpu, 0);
10758 	vcpu_put(vcpu);
10759 
10760 	/* poll control enabled by default */
10761 	vcpu->arch.msr_kvm_poll_control = 1;
10762 
10763 	mutex_unlock(&vcpu->mutex);
10764 
10765 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10766 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10767 						KVMCLOCK_SYNC_PERIOD);
10768 }
10769 
10770 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10771 {
10772 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10773 	int idx;
10774 
10775 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10776 
10777 	kvmclock_reset(vcpu);
10778 
10779 	static_call(kvm_x86_vcpu_free)(vcpu);
10780 
10781 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10782 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10783 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10784 	kvm_free_guest_fpu(vcpu);
10785 
10786 	kvm_hv_vcpu_uninit(vcpu);
10787 	kvm_pmu_destroy(vcpu);
10788 	kfree(vcpu->arch.mce_banks);
10789 	kvm_free_lapic(vcpu);
10790 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10791 	kvm_mmu_destroy(vcpu);
10792 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10793 	free_page((unsigned long)vcpu->arch.pio_data);
10794 	kvfree(vcpu->arch.cpuid_entries);
10795 	if (!lapic_in_kernel(vcpu))
10796 		static_branch_dec(&kvm_has_noapic_vcpu);
10797 }
10798 
10799 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10800 {
10801 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
10802 
10803 	kvm_lapic_reset(vcpu, init_event);
10804 
10805 	vcpu->arch.hflags = 0;
10806 
10807 	vcpu->arch.smi_pending = 0;
10808 	vcpu->arch.smi_count = 0;
10809 	atomic_set(&vcpu->arch.nmi_queued, 0);
10810 	vcpu->arch.nmi_pending = 0;
10811 	vcpu->arch.nmi_injected = false;
10812 	kvm_clear_interrupt_queue(vcpu);
10813 	kvm_clear_exception_queue(vcpu);
10814 
10815 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10816 	kvm_update_dr0123(vcpu);
10817 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10818 	vcpu->arch.dr7 = DR7_FIXED_1;
10819 	kvm_update_dr7(vcpu);
10820 
10821 	vcpu->arch.cr2 = 0;
10822 
10823 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10824 	vcpu->arch.apf.msr_en_val = 0;
10825 	vcpu->arch.apf.msr_int_val = 0;
10826 	vcpu->arch.st.msr_val = 0;
10827 
10828 	kvmclock_reset(vcpu);
10829 
10830 	kvm_clear_async_pf_completion_queue(vcpu);
10831 	kvm_async_pf_hash_reset(vcpu);
10832 	vcpu->arch.apf.halted = false;
10833 
10834 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10835 		void *mpx_state_buffer;
10836 
10837 		/*
10838 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10839 		 * called with loaded FPU and does not let userspace fix the state.
10840 		 */
10841 		if (init_event)
10842 			kvm_put_guest_fpu(vcpu);
10843 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10844 					XFEATURE_BNDREGS);
10845 		if (mpx_state_buffer)
10846 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10847 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10848 					XFEATURE_BNDCSR);
10849 		if (mpx_state_buffer)
10850 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10851 		if (init_event)
10852 			kvm_load_guest_fpu(vcpu);
10853 	}
10854 
10855 	if (!init_event) {
10856 		kvm_pmu_reset(vcpu);
10857 		vcpu->arch.smbase = 0x30000;
10858 
10859 		vcpu->arch.msr_misc_features_enables = 0;
10860 
10861 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10862 	}
10863 
10864 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10865 	vcpu->arch.regs_avail = ~0;
10866 	vcpu->arch.regs_dirty = ~0;
10867 
10868 	vcpu->arch.ia32_xss = 0;
10869 
10870 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10871 
10872 	/*
10873 	 * Reset the MMU context if paging was enabled prior to INIT (which is
10874 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
10875 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10876 	 * checked because it is unconditionally cleared on INIT and all other
10877 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10878 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10879 	 */
10880 	if (old_cr0 & X86_CR0_PG)
10881 		kvm_mmu_reset_context(vcpu);
10882 }
10883 
10884 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10885 {
10886 	struct kvm_segment cs;
10887 
10888 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10889 	cs.selector = vector << 8;
10890 	cs.base = vector << 12;
10891 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10892 	kvm_rip_write(vcpu, 0);
10893 }
10894 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10895 
10896 int kvm_arch_hardware_enable(void)
10897 {
10898 	struct kvm *kvm;
10899 	struct kvm_vcpu *vcpu;
10900 	int i;
10901 	int ret;
10902 	u64 local_tsc;
10903 	u64 max_tsc = 0;
10904 	bool stable, backwards_tsc = false;
10905 
10906 	kvm_user_return_msr_cpu_online();
10907 	ret = static_call(kvm_x86_hardware_enable)();
10908 	if (ret != 0)
10909 		return ret;
10910 
10911 	local_tsc = rdtsc();
10912 	stable = !kvm_check_tsc_unstable();
10913 	list_for_each_entry(kvm, &vm_list, vm_list) {
10914 		kvm_for_each_vcpu(i, vcpu, kvm) {
10915 			if (!stable && vcpu->cpu == smp_processor_id())
10916 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10917 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10918 				backwards_tsc = true;
10919 				if (vcpu->arch.last_host_tsc > max_tsc)
10920 					max_tsc = vcpu->arch.last_host_tsc;
10921 			}
10922 		}
10923 	}
10924 
10925 	/*
10926 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10927 	 * platforms that reset TSC during suspend or hibernate actions, but
10928 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10929 	 * detect that condition here, which happens early in CPU bringup,
10930 	 * before any KVM threads can be running.  Unfortunately, we can't
10931 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10932 	 * enough into CPU bringup that we know how much real time has actually
10933 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10934 	 * variables that haven't been updated yet.
10935 	 *
10936 	 * So we simply find the maximum observed TSC above, then record the
10937 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10938 	 * the adjustment will be applied.  Note that we accumulate
10939 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10940 	 * gets a chance to run again.  In the event that no KVM threads get a
10941 	 * chance to run, we will miss the entire elapsed period, as we'll have
10942 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10943 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10944 	 * uniform across all VCPUs (not to mention the scenario is extremely
10945 	 * unlikely). It is possible that a second hibernate recovery happens
10946 	 * much faster than a first, causing the observed TSC here to be
10947 	 * smaller; this would require additional padding adjustment, which is
10948 	 * why we set last_host_tsc to the local tsc observed here.
10949 	 *
10950 	 * N.B. - this code below runs only on platforms with reliable TSC,
10951 	 * as that is the only way backwards_tsc is set above.  Also note
10952 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10953 	 * have the same delta_cyc adjustment applied if backwards_tsc
10954 	 * is detected.  Note further, this adjustment is only done once,
10955 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10956 	 * called multiple times (one for each physical CPU bringup).
10957 	 *
10958 	 * Platforms with unreliable TSCs don't have to deal with this, they
10959 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10960 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10961 	 * guarantee that they stay in perfect synchronization.
10962 	 */
10963 	if (backwards_tsc) {
10964 		u64 delta_cyc = max_tsc - local_tsc;
10965 		list_for_each_entry(kvm, &vm_list, vm_list) {
10966 			kvm->arch.backwards_tsc_observed = true;
10967 			kvm_for_each_vcpu(i, vcpu, kvm) {
10968 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10969 				vcpu->arch.last_host_tsc = local_tsc;
10970 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10971 			}
10972 
10973 			/*
10974 			 * We have to disable TSC offset matching.. if you were
10975 			 * booting a VM while issuing an S4 host suspend....
10976 			 * you may have some problem.  Solving this issue is
10977 			 * left as an exercise to the reader.
10978 			 */
10979 			kvm->arch.last_tsc_nsec = 0;
10980 			kvm->arch.last_tsc_write = 0;
10981 		}
10982 
10983 	}
10984 	return 0;
10985 }
10986 
10987 void kvm_arch_hardware_disable(void)
10988 {
10989 	static_call(kvm_x86_hardware_disable)();
10990 	drop_user_return_notifiers();
10991 }
10992 
10993 int kvm_arch_hardware_setup(void *opaque)
10994 {
10995 	struct kvm_x86_init_ops *ops = opaque;
10996 	int r;
10997 
10998 	rdmsrl_safe(MSR_EFER, &host_efer);
10999 
11000 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11001 		rdmsrl(MSR_IA32_XSS, host_xss);
11002 
11003 	r = ops->hardware_setup();
11004 	if (r != 0)
11005 		return r;
11006 
11007 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11008 	kvm_ops_static_call_update();
11009 
11010 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11011 		supported_xss = 0;
11012 
11013 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11014 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11015 #undef __kvm_cpu_cap_has
11016 
11017 	if (kvm_has_tsc_control) {
11018 		/*
11019 		 * Make sure the user can only configure tsc_khz values that
11020 		 * fit into a signed integer.
11021 		 * A min value is not calculated because it will always
11022 		 * be 1 on all machines.
11023 		 */
11024 		u64 max = min(0x7fffffffULL,
11025 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11026 		kvm_max_guest_tsc_khz = max;
11027 
11028 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11029 	}
11030 
11031 	kvm_init_msr_list();
11032 	return 0;
11033 }
11034 
11035 void kvm_arch_hardware_unsetup(void)
11036 {
11037 	static_call(kvm_x86_hardware_unsetup)();
11038 }
11039 
11040 int kvm_arch_check_processor_compat(void *opaque)
11041 {
11042 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11043 	struct kvm_x86_init_ops *ops = opaque;
11044 
11045 	WARN_ON(!irqs_disabled());
11046 
11047 	if (__cr4_reserved_bits(cpu_has, c) !=
11048 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11049 		return -EIO;
11050 
11051 	return ops->check_processor_compatibility();
11052 }
11053 
11054 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11055 {
11056 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11057 }
11058 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11059 
11060 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11061 {
11062 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11063 }
11064 
11065 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11066 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11067 
11068 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11069 {
11070 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11071 
11072 	vcpu->arch.l1tf_flush_l1d = true;
11073 	if (pmu->version && unlikely(pmu->event_count)) {
11074 		pmu->need_cleanup = true;
11075 		kvm_make_request(KVM_REQ_PMU, vcpu);
11076 	}
11077 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11078 }
11079 
11080 void kvm_arch_free_vm(struct kvm *kvm)
11081 {
11082 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11083 	vfree(kvm);
11084 }
11085 
11086 
11087 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11088 {
11089 	if (type)
11090 		return -EINVAL;
11091 
11092 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11093 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11094 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11095 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11096 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11097 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11098 
11099 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11100 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11101 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11102 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11103 		&kvm->arch.irq_sources_bitmap);
11104 
11105 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11106 	mutex_init(&kvm->arch.apic_map_lock);
11107 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11108 
11109 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11110 	pvclock_update_vm_gtod_copy(kvm);
11111 
11112 	kvm->arch.guest_can_read_msr_platform_info = true;
11113 
11114 #if IS_ENABLED(CONFIG_HYPERV)
11115 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11116 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11117 #endif
11118 
11119 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11120 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11121 
11122 	kvm_apicv_init(kvm);
11123 	kvm_hv_init_vm(kvm);
11124 	kvm_page_track_init(kvm);
11125 	kvm_mmu_init_vm(kvm);
11126 
11127 	return static_call(kvm_x86_vm_init)(kvm);
11128 }
11129 
11130 int kvm_arch_post_init_vm(struct kvm *kvm)
11131 {
11132 	return kvm_mmu_post_init_vm(kvm);
11133 }
11134 
11135 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11136 {
11137 	vcpu_load(vcpu);
11138 	kvm_mmu_unload(vcpu);
11139 	vcpu_put(vcpu);
11140 }
11141 
11142 static void kvm_free_vcpus(struct kvm *kvm)
11143 {
11144 	unsigned int i;
11145 	struct kvm_vcpu *vcpu;
11146 
11147 	/*
11148 	 * Unpin any mmu pages first.
11149 	 */
11150 	kvm_for_each_vcpu(i, vcpu, kvm) {
11151 		kvm_clear_async_pf_completion_queue(vcpu);
11152 		kvm_unload_vcpu_mmu(vcpu);
11153 	}
11154 	kvm_for_each_vcpu(i, vcpu, kvm)
11155 		kvm_vcpu_destroy(vcpu);
11156 
11157 	mutex_lock(&kvm->lock);
11158 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11159 		kvm->vcpus[i] = NULL;
11160 
11161 	atomic_set(&kvm->online_vcpus, 0);
11162 	mutex_unlock(&kvm->lock);
11163 }
11164 
11165 void kvm_arch_sync_events(struct kvm *kvm)
11166 {
11167 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11168 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11169 	kvm_free_pit(kvm);
11170 }
11171 
11172 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11173 
11174 /**
11175  * __x86_set_memory_region: Setup KVM internal memory slot
11176  *
11177  * @kvm: the kvm pointer to the VM.
11178  * @id: the slot ID to setup.
11179  * @gpa: the GPA to install the slot (unused when @size == 0).
11180  * @size: the size of the slot. Set to zero to uninstall a slot.
11181  *
11182  * This function helps to setup a KVM internal memory slot.  Specify
11183  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11184  * slot.  The return code can be one of the following:
11185  *
11186  *   HVA:           on success (uninstall will return a bogus HVA)
11187  *   -errno:        on error
11188  *
11189  * The caller should always use IS_ERR() to check the return value
11190  * before use.  Note, the KVM internal memory slots are guaranteed to
11191  * remain valid and unchanged until the VM is destroyed, i.e., the
11192  * GPA->HVA translation will not change.  However, the HVA is a user
11193  * address, i.e. its accessibility is not guaranteed, and must be
11194  * accessed via __copy_{to,from}_user().
11195  */
11196 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11197 				      u32 size)
11198 {
11199 	int i, r;
11200 	unsigned long hva, old_npages;
11201 	struct kvm_memslots *slots = kvm_memslots(kvm);
11202 	struct kvm_memory_slot *slot;
11203 
11204 	/* Called with kvm->slots_lock held.  */
11205 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11206 		return ERR_PTR_USR(-EINVAL);
11207 
11208 	slot = id_to_memslot(slots, id);
11209 	if (size) {
11210 		if (slot && slot->npages)
11211 			return ERR_PTR_USR(-EEXIST);
11212 
11213 		/*
11214 		 * MAP_SHARED to prevent internal slot pages from being moved
11215 		 * by fork()/COW.
11216 		 */
11217 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11218 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11219 		if (IS_ERR((void *)hva))
11220 			return (void __user *)hva;
11221 	} else {
11222 		if (!slot || !slot->npages)
11223 			return NULL;
11224 
11225 		old_npages = slot->npages;
11226 		hva = slot->userspace_addr;
11227 	}
11228 
11229 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11230 		struct kvm_userspace_memory_region m;
11231 
11232 		m.slot = id | (i << 16);
11233 		m.flags = 0;
11234 		m.guest_phys_addr = gpa;
11235 		m.userspace_addr = hva;
11236 		m.memory_size = size;
11237 		r = __kvm_set_memory_region(kvm, &m);
11238 		if (r < 0)
11239 			return ERR_PTR_USR(r);
11240 	}
11241 
11242 	if (!size)
11243 		vm_munmap(hva, old_npages * PAGE_SIZE);
11244 
11245 	return (void __user *)hva;
11246 }
11247 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11248 
11249 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11250 {
11251 	kvm_mmu_pre_destroy_vm(kvm);
11252 }
11253 
11254 void kvm_arch_destroy_vm(struct kvm *kvm)
11255 {
11256 	if (current->mm == kvm->mm) {
11257 		/*
11258 		 * Free memory regions allocated on behalf of userspace,
11259 		 * unless the the memory map has changed due to process exit
11260 		 * or fd copying.
11261 		 */
11262 		mutex_lock(&kvm->slots_lock);
11263 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11264 					0, 0);
11265 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11266 					0, 0);
11267 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11268 		mutex_unlock(&kvm->slots_lock);
11269 	}
11270 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11271 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11272 	kvm_pic_destroy(kvm);
11273 	kvm_ioapic_destroy(kvm);
11274 	kvm_free_vcpus(kvm);
11275 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11276 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11277 	kvm_mmu_uninit_vm(kvm);
11278 	kvm_page_track_cleanup(kvm);
11279 	kvm_xen_destroy_vm(kvm);
11280 	kvm_hv_destroy_vm(kvm);
11281 }
11282 
11283 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11284 {
11285 	int i;
11286 
11287 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11288 		kvfree(slot->arch.rmap[i]);
11289 		slot->arch.rmap[i] = NULL;
11290 	}
11291 }
11292 
11293 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11294 {
11295 	int i;
11296 
11297 	memslot_rmap_free(slot);
11298 
11299 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11300 		kvfree(slot->arch.lpage_info[i - 1]);
11301 		slot->arch.lpage_info[i - 1] = NULL;
11302 	}
11303 
11304 	kvm_page_track_free_memslot(slot);
11305 }
11306 
11307 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11308 			      unsigned long npages)
11309 {
11310 	const int sz = sizeof(*slot->arch.rmap[0]);
11311 	int i;
11312 
11313 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11314 		int level = i + 1;
11315 		int lpages = gfn_to_index(slot->base_gfn + npages - 1,
11316 					  slot->base_gfn, level) + 1;
11317 
11318 		WARN_ON(slot->arch.rmap[i]);
11319 
11320 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11321 		if (!slot->arch.rmap[i]) {
11322 			memslot_rmap_free(slot);
11323 			return -ENOMEM;
11324 		}
11325 	}
11326 
11327 	return 0;
11328 }
11329 
11330 int alloc_all_memslots_rmaps(struct kvm *kvm)
11331 {
11332 	struct kvm_memslots *slots;
11333 	struct kvm_memory_slot *slot;
11334 	int r, i;
11335 
11336 	/*
11337 	 * Check if memslots alreday have rmaps early before acquiring
11338 	 * the slots_arch_lock below.
11339 	 */
11340 	if (kvm_memslots_have_rmaps(kvm))
11341 		return 0;
11342 
11343 	mutex_lock(&kvm->slots_arch_lock);
11344 
11345 	/*
11346 	 * Read memslots_have_rmaps again, under the slots arch lock,
11347 	 * before allocating the rmaps
11348 	 */
11349 	if (kvm_memslots_have_rmaps(kvm)) {
11350 		mutex_unlock(&kvm->slots_arch_lock);
11351 		return 0;
11352 	}
11353 
11354 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11355 		slots = __kvm_memslots(kvm, i);
11356 		kvm_for_each_memslot(slot, slots) {
11357 			r = memslot_rmap_alloc(slot, slot->npages);
11358 			if (r) {
11359 				mutex_unlock(&kvm->slots_arch_lock);
11360 				return r;
11361 			}
11362 		}
11363 	}
11364 
11365 	/*
11366 	 * Ensure that memslots_have_rmaps becomes true strictly after
11367 	 * all the rmap pointers are set.
11368 	 */
11369 	smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11370 	mutex_unlock(&kvm->slots_arch_lock);
11371 	return 0;
11372 }
11373 
11374 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11375 				      struct kvm_memory_slot *slot,
11376 				      unsigned long npages)
11377 {
11378 	int i, r;
11379 
11380 	/*
11381 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11382 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11383 	 * the new memslot is successful.
11384 	 */
11385 	memset(&slot->arch, 0, sizeof(slot->arch));
11386 
11387 	if (kvm_memslots_have_rmaps(kvm)) {
11388 		r = memslot_rmap_alloc(slot, npages);
11389 		if (r)
11390 			return r;
11391 	}
11392 
11393 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11394 		struct kvm_lpage_info *linfo;
11395 		unsigned long ugfn;
11396 		int lpages;
11397 		int level = i + 1;
11398 
11399 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
11400 				      slot->base_gfn, level) + 1;
11401 
11402 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11403 		if (!linfo)
11404 			goto out_free;
11405 
11406 		slot->arch.lpage_info[i - 1] = linfo;
11407 
11408 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11409 			linfo[0].disallow_lpage = 1;
11410 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11411 			linfo[lpages - 1].disallow_lpage = 1;
11412 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11413 		/*
11414 		 * If the gfn and userspace address are not aligned wrt each
11415 		 * other, disable large page support for this slot.
11416 		 */
11417 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11418 			unsigned long j;
11419 
11420 			for (j = 0; j < lpages; ++j)
11421 				linfo[j].disallow_lpage = 1;
11422 		}
11423 	}
11424 
11425 	if (kvm_page_track_create_memslot(slot, npages))
11426 		goto out_free;
11427 
11428 	return 0;
11429 
11430 out_free:
11431 	memslot_rmap_free(slot);
11432 
11433 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11434 		kvfree(slot->arch.lpage_info[i - 1]);
11435 		slot->arch.lpage_info[i - 1] = NULL;
11436 	}
11437 	return -ENOMEM;
11438 }
11439 
11440 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11441 {
11442 	struct kvm_vcpu *vcpu;
11443 	int i;
11444 
11445 	/*
11446 	 * memslots->generation has been incremented.
11447 	 * mmio generation may have reached its maximum value.
11448 	 */
11449 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11450 
11451 	/* Force re-initialization of steal_time cache */
11452 	kvm_for_each_vcpu(i, vcpu, kvm)
11453 		kvm_vcpu_kick(vcpu);
11454 }
11455 
11456 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11457 				struct kvm_memory_slot *memslot,
11458 				const struct kvm_userspace_memory_region *mem,
11459 				enum kvm_mr_change change)
11460 {
11461 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11462 		return kvm_alloc_memslot_metadata(kvm, memslot,
11463 						  mem->memory_size >> PAGE_SHIFT);
11464 	return 0;
11465 }
11466 
11467 
11468 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11469 {
11470 	struct kvm_arch *ka = &kvm->arch;
11471 
11472 	if (!kvm_x86_ops.cpu_dirty_log_size)
11473 		return;
11474 
11475 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11476 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11477 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11478 
11479 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11480 }
11481 
11482 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11483 				     struct kvm_memory_slot *old,
11484 				     struct kvm_memory_slot *new,
11485 				     enum kvm_mr_change change)
11486 {
11487 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11488 
11489 	/*
11490 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11491 	 * applies to all operations.
11492 	 */
11493 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11494 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11495 
11496 	/*
11497 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11498 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11499 	 *
11500 	 * For a memslot with dirty logging disabled:
11501 	 * CREATE:      No dirty mappings will already exist.
11502 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11503 	 *		kvm_arch_flush_shadow_memslot()
11504 	 *
11505 	 * For a memslot with dirty logging enabled:
11506 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11507 	 *		and no dirty bits to clear.
11508 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11509 	 *		kvm_arch_flush_shadow_memslot().
11510 	 */
11511 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11512 		return;
11513 
11514 	/*
11515 	 * READONLY and non-flags changes were filtered out above, and the only
11516 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11517 	 * logging isn't being toggled on or off.
11518 	 */
11519 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11520 		return;
11521 
11522 	if (!log_dirty_pages) {
11523 		/*
11524 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11525 		 * large sptes have to be split.  If live migration succeeds,
11526 		 * the guest in the source machine will be destroyed and large
11527 		 * sptes will be created in the destination.  However, if the
11528 		 * guest continues to run in the source machine (for example if
11529 		 * live migration fails), small sptes will remain around and
11530 		 * cause bad performance.
11531 		 *
11532 		 * Scan sptes if dirty logging has been stopped, dropping those
11533 		 * which can be collapsed into a single large-page spte.  Later
11534 		 * page faults will create the large-page sptes.
11535 		 */
11536 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11537 	} else {
11538 		/*
11539 		 * Initially-all-set does not require write protecting any page,
11540 		 * because they're all assumed to be dirty.
11541 		 */
11542 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11543 			return;
11544 
11545 		if (kvm_x86_ops.cpu_dirty_log_size) {
11546 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11547 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11548 		} else {
11549 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11550 		}
11551 	}
11552 }
11553 
11554 void kvm_arch_commit_memory_region(struct kvm *kvm,
11555 				const struct kvm_userspace_memory_region *mem,
11556 				struct kvm_memory_slot *old,
11557 				const struct kvm_memory_slot *new,
11558 				enum kvm_mr_change change)
11559 {
11560 	if (!kvm->arch.n_requested_mmu_pages)
11561 		kvm_mmu_change_mmu_pages(kvm,
11562 				kvm_mmu_calculate_default_mmu_pages(kvm));
11563 
11564 	/*
11565 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
11566 	 */
11567 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11568 
11569 	/* Free the arrays associated with the old memslot. */
11570 	if (change == KVM_MR_MOVE)
11571 		kvm_arch_free_memslot(kvm, old);
11572 }
11573 
11574 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11575 {
11576 	kvm_mmu_zap_all(kvm);
11577 }
11578 
11579 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11580 				   struct kvm_memory_slot *slot)
11581 {
11582 	kvm_page_track_flush_slot(kvm, slot);
11583 }
11584 
11585 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11586 {
11587 	return (is_guest_mode(vcpu) &&
11588 			kvm_x86_ops.guest_apic_has_interrupt &&
11589 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11590 }
11591 
11592 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11593 {
11594 	if (!list_empty_careful(&vcpu->async_pf.done))
11595 		return true;
11596 
11597 	if (kvm_apic_has_events(vcpu))
11598 		return true;
11599 
11600 	if (vcpu->arch.pv.pv_unhalted)
11601 		return true;
11602 
11603 	if (vcpu->arch.exception.pending)
11604 		return true;
11605 
11606 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11607 	    (vcpu->arch.nmi_pending &&
11608 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11609 		return true;
11610 
11611 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11612 	    (vcpu->arch.smi_pending &&
11613 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
11614 		return true;
11615 
11616 	if (kvm_arch_interrupt_allowed(vcpu) &&
11617 	    (kvm_cpu_has_interrupt(vcpu) ||
11618 	    kvm_guest_apic_has_interrupt(vcpu)))
11619 		return true;
11620 
11621 	if (kvm_hv_has_stimer_pending(vcpu))
11622 		return true;
11623 
11624 	if (is_guest_mode(vcpu) &&
11625 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11626 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11627 		return true;
11628 
11629 	return false;
11630 }
11631 
11632 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11633 {
11634 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11635 }
11636 
11637 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11638 {
11639 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11640 		return true;
11641 
11642 	return false;
11643 }
11644 
11645 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11646 {
11647 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11648 		return true;
11649 
11650 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11651 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11652 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11653 		return true;
11654 
11655 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11656 }
11657 
11658 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11659 {
11660 	if (vcpu->arch.guest_state_protected)
11661 		return true;
11662 
11663 	return vcpu->arch.preempted_in_kernel;
11664 }
11665 
11666 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11667 {
11668 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11669 }
11670 
11671 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11672 {
11673 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11674 }
11675 
11676 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11677 {
11678 	/* Can't read the RIP when guest state is protected, just return 0 */
11679 	if (vcpu->arch.guest_state_protected)
11680 		return 0;
11681 
11682 	if (is_64_bit_mode(vcpu))
11683 		return kvm_rip_read(vcpu);
11684 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11685 		     kvm_rip_read(vcpu));
11686 }
11687 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11688 
11689 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11690 {
11691 	return kvm_get_linear_rip(vcpu) == linear_rip;
11692 }
11693 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11694 
11695 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11696 {
11697 	unsigned long rflags;
11698 
11699 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11700 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11701 		rflags &= ~X86_EFLAGS_TF;
11702 	return rflags;
11703 }
11704 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11705 
11706 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11707 {
11708 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11709 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11710 		rflags |= X86_EFLAGS_TF;
11711 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11712 }
11713 
11714 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11715 {
11716 	__kvm_set_rflags(vcpu, rflags);
11717 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11718 }
11719 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11720 
11721 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11722 {
11723 	int r;
11724 
11725 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11726 	      work->wakeup_all)
11727 		return;
11728 
11729 	r = kvm_mmu_reload(vcpu);
11730 	if (unlikely(r))
11731 		return;
11732 
11733 	if (!vcpu->arch.mmu->direct_map &&
11734 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11735 		return;
11736 
11737 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11738 }
11739 
11740 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11741 {
11742 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11743 
11744 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11745 }
11746 
11747 static inline u32 kvm_async_pf_next_probe(u32 key)
11748 {
11749 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11750 }
11751 
11752 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11753 {
11754 	u32 key = kvm_async_pf_hash_fn(gfn);
11755 
11756 	while (vcpu->arch.apf.gfns[key] != ~0)
11757 		key = kvm_async_pf_next_probe(key);
11758 
11759 	vcpu->arch.apf.gfns[key] = gfn;
11760 }
11761 
11762 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11763 {
11764 	int i;
11765 	u32 key = kvm_async_pf_hash_fn(gfn);
11766 
11767 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11768 		     (vcpu->arch.apf.gfns[key] != gfn &&
11769 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11770 		key = kvm_async_pf_next_probe(key);
11771 
11772 	return key;
11773 }
11774 
11775 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11776 {
11777 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11778 }
11779 
11780 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11781 {
11782 	u32 i, j, k;
11783 
11784 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11785 
11786 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11787 		return;
11788 
11789 	while (true) {
11790 		vcpu->arch.apf.gfns[i] = ~0;
11791 		do {
11792 			j = kvm_async_pf_next_probe(j);
11793 			if (vcpu->arch.apf.gfns[j] == ~0)
11794 				return;
11795 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11796 			/*
11797 			 * k lies cyclically in ]i,j]
11798 			 * |    i.k.j |
11799 			 * |....j i.k.| or  |.k..j i...|
11800 			 */
11801 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11802 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11803 		i = j;
11804 	}
11805 }
11806 
11807 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11808 {
11809 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11810 
11811 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11812 				      sizeof(reason));
11813 }
11814 
11815 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11816 {
11817 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11818 
11819 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11820 					     &token, offset, sizeof(token));
11821 }
11822 
11823 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11824 {
11825 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11826 	u32 val;
11827 
11828 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11829 					 &val, offset, sizeof(val)))
11830 		return false;
11831 
11832 	return !val;
11833 }
11834 
11835 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11836 {
11837 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11838 		return false;
11839 
11840 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11841 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11842 		return false;
11843 
11844 	return true;
11845 }
11846 
11847 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11848 {
11849 	if (unlikely(!lapic_in_kernel(vcpu) ||
11850 		     kvm_event_needs_reinjection(vcpu) ||
11851 		     vcpu->arch.exception.pending))
11852 		return false;
11853 
11854 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11855 		return false;
11856 
11857 	/*
11858 	 * If interrupts are off we cannot even use an artificial
11859 	 * halt state.
11860 	 */
11861 	return kvm_arch_interrupt_allowed(vcpu);
11862 }
11863 
11864 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11865 				     struct kvm_async_pf *work)
11866 {
11867 	struct x86_exception fault;
11868 
11869 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11870 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11871 
11872 	if (kvm_can_deliver_async_pf(vcpu) &&
11873 	    !apf_put_user_notpresent(vcpu)) {
11874 		fault.vector = PF_VECTOR;
11875 		fault.error_code_valid = true;
11876 		fault.error_code = 0;
11877 		fault.nested_page_fault = false;
11878 		fault.address = work->arch.token;
11879 		fault.async_page_fault = true;
11880 		kvm_inject_page_fault(vcpu, &fault);
11881 		return true;
11882 	} else {
11883 		/*
11884 		 * It is not possible to deliver a paravirtualized asynchronous
11885 		 * page fault, but putting the guest in an artificial halt state
11886 		 * can be beneficial nevertheless: if an interrupt arrives, we
11887 		 * can deliver it timely and perhaps the guest will schedule
11888 		 * another process.  When the instruction that triggered a page
11889 		 * fault is retried, hopefully the page will be ready in the host.
11890 		 */
11891 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11892 		return false;
11893 	}
11894 }
11895 
11896 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11897 				 struct kvm_async_pf *work)
11898 {
11899 	struct kvm_lapic_irq irq = {
11900 		.delivery_mode = APIC_DM_FIXED,
11901 		.vector = vcpu->arch.apf.vec
11902 	};
11903 
11904 	if (work->wakeup_all)
11905 		work->arch.token = ~0; /* broadcast wakeup */
11906 	else
11907 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11908 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11909 
11910 	if ((work->wakeup_all || work->notpresent_injected) &&
11911 	    kvm_pv_async_pf_enabled(vcpu) &&
11912 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11913 		vcpu->arch.apf.pageready_pending = true;
11914 		kvm_apic_set_irq(vcpu, &irq, NULL);
11915 	}
11916 
11917 	vcpu->arch.apf.halted = false;
11918 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11919 }
11920 
11921 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11922 {
11923 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11924 	if (!vcpu->arch.apf.pageready_pending)
11925 		kvm_vcpu_kick(vcpu);
11926 }
11927 
11928 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11929 {
11930 	if (!kvm_pv_async_pf_enabled(vcpu))
11931 		return true;
11932 	else
11933 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11934 }
11935 
11936 void kvm_arch_start_assignment(struct kvm *kvm)
11937 {
11938 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11939 		static_call_cond(kvm_x86_start_assignment)(kvm);
11940 }
11941 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11942 
11943 void kvm_arch_end_assignment(struct kvm *kvm)
11944 {
11945 	atomic_dec(&kvm->arch.assigned_device_count);
11946 }
11947 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11948 
11949 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11950 {
11951 	return atomic_read(&kvm->arch.assigned_device_count);
11952 }
11953 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11954 
11955 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11956 {
11957 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11958 }
11959 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11960 
11961 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11962 {
11963 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11964 }
11965 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11966 
11967 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11968 {
11969 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11970 }
11971 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11972 
11973 bool kvm_arch_has_irq_bypass(void)
11974 {
11975 	return true;
11976 }
11977 
11978 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11979 				      struct irq_bypass_producer *prod)
11980 {
11981 	struct kvm_kernel_irqfd *irqfd =
11982 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11983 	int ret;
11984 
11985 	irqfd->producer = prod;
11986 	kvm_arch_start_assignment(irqfd->kvm);
11987 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11988 					 prod->irq, irqfd->gsi, 1);
11989 
11990 	if (ret)
11991 		kvm_arch_end_assignment(irqfd->kvm);
11992 
11993 	return ret;
11994 }
11995 
11996 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11997 				      struct irq_bypass_producer *prod)
11998 {
11999 	int ret;
12000 	struct kvm_kernel_irqfd *irqfd =
12001 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12002 
12003 	WARN_ON(irqfd->producer != prod);
12004 	irqfd->producer = NULL;
12005 
12006 	/*
12007 	 * When producer of consumer is unregistered, we change back to
12008 	 * remapped mode, so we can re-use the current implementation
12009 	 * when the irq is masked/disabled or the consumer side (KVM
12010 	 * int this case doesn't want to receive the interrupts.
12011 	*/
12012 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12013 	if (ret)
12014 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12015 		       " fails: %d\n", irqfd->consumer.token, ret);
12016 
12017 	kvm_arch_end_assignment(irqfd->kvm);
12018 }
12019 
12020 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12021 				   uint32_t guest_irq, bool set)
12022 {
12023 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12024 }
12025 
12026 bool kvm_vector_hashing_enabled(void)
12027 {
12028 	return vector_hashing;
12029 }
12030 
12031 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12032 {
12033 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12034 }
12035 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12036 
12037 
12038 int kvm_spec_ctrl_test_value(u64 value)
12039 {
12040 	/*
12041 	 * test that setting IA32_SPEC_CTRL to given value
12042 	 * is allowed by the host processor
12043 	 */
12044 
12045 	u64 saved_value;
12046 	unsigned long flags;
12047 	int ret = 0;
12048 
12049 	local_irq_save(flags);
12050 
12051 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12052 		ret = 1;
12053 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12054 		ret = 1;
12055 	else
12056 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12057 
12058 	local_irq_restore(flags);
12059 
12060 	return ret;
12061 }
12062 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12063 
12064 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12065 {
12066 	struct x86_exception fault;
12067 	u32 access = error_code &
12068 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12069 
12070 	if (!(error_code & PFERR_PRESENT_MASK) ||
12071 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12072 		/*
12073 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12074 		 * tables probably do not match the TLB.  Just proceed
12075 		 * with the error code that the processor gave.
12076 		 */
12077 		fault.vector = PF_VECTOR;
12078 		fault.error_code_valid = true;
12079 		fault.error_code = error_code;
12080 		fault.nested_page_fault = false;
12081 		fault.address = gva;
12082 	}
12083 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12084 }
12085 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12086 
12087 /*
12088  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12089  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12090  * indicates whether exit to userspace is needed.
12091  */
12092 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12093 			      struct x86_exception *e)
12094 {
12095 	if (r == X86EMUL_PROPAGATE_FAULT) {
12096 		kvm_inject_emulated_page_fault(vcpu, e);
12097 		return 1;
12098 	}
12099 
12100 	/*
12101 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12102 	 * while handling a VMX instruction KVM could've handled the request
12103 	 * correctly by exiting to userspace and performing I/O but there
12104 	 * doesn't seem to be a real use-case behind such requests, just return
12105 	 * KVM_EXIT_INTERNAL_ERROR for now.
12106 	 */
12107 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12108 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12109 	vcpu->run->internal.ndata = 0;
12110 
12111 	return 0;
12112 }
12113 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12114 
12115 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12116 {
12117 	bool pcid_enabled;
12118 	struct x86_exception e;
12119 	struct {
12120 		u64 pcid;
12121 		u64 gla;
12122 	} operand;
12123 	int r;
12124 
12125 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12126 	if (r != X86EMUL_CONTINUE)
12127 		return kvm_handle_memory_failure(vcpu, r, &e);
12128 
12129 	if (operand.pcid >> 12 != 0) {
12130 		kvm_inject_gp(vcpu, 0);
12131 		return 1;
12132 	}
12133 
12134 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12135 
12136 	switch (type) {
12137 	case INVPCID_TYPE_INDIV_ADDR:
12138 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12139 		    is_noncanonical_address(operand.gla, vcpu)) {
12140 			kvm_inject_gp(vcpu, 0);
12141 			return 1;
12142 		}
12143 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12144 		return kvm_skip_emulated_instruction(vcpu);
12145 
12146 	case INVPCID_TYPE_SINGLE_CTXT:
12147 		if (!pcid_enabled && (operand.pcid != 0)) {
12148 			kvm_inject_gp(vcpu, 0);
12149 			return 1;
12150 		}
12151 
12152 		kvm_invalidate_pcid(vcpu, operand.pcid);
12153 		return kvm_skip_emulated_instruction(vcpu);
12154 
12155 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12156 		/*
12157 		 * Currently, KVM doesn't mark global entries in the shadow
12158 		 * page tables, so a non-global flush just degenerates to a
12159 		 * global flush. If needed, we could optimize this later by
12160 		 * keeping track of global entries in shadow page tables.
12161 		 */
12162 
12163 		fallthrough;
12164 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12165 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12166 		return kvm_skip_emulated_instruction(vcpu);
12167 
12168 	default:
12169 		BUG(); /* We have already checked above that type <= 3 */
12170 	}
12171 }
12172 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12173 
12174 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12175 {
12176 	struct kvm_run *run = vcpu->run;
12177 	struct kvm_mmio_fragment *frag;
12178 	unsigned int len;
12179 
12180 	BUG_ON(!vcpu->mmio_needed);
12181 
12182 	/* Complete previous fragment */
12183 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12184 	len = min(8u, frag->len);
12185 	if (!vcpu->mmio_is_write)
12186 		memcpy(frag->data, run->mmio.data, len);
12187 
12188 	if (frag->len <= 8) {
12189 		/* Switch to the next fragment. */
12190 		frag++;
12191 		vcpu->mmio_cur_fragment++;
12192 	} else {
12193 		/* Go forward to the next mmio piece. */
12194 		frag->data += len;
12195 		frag->gpa += len;
12196 		frag->len -= len;
12197 	}
12198 
12199 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12200 		vcpu->mmio_needed = 0;
12201 
12202 		// VMG change, at this point, we're always done
12203 		// RIP has already been advanced
12204 		return 1;
12205 	}
12206 
12207 	// More MMIO is needed
12208 	run->mmio.phys_addr = frag->gpa;
12209 	run->mmio.len = min(8u, frag->len);
12210 	run->mmio.is_write = vcpu->mmio_is_write;
12211 	if (run->mmio.is_write)
12212 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12213 	run->exit_reason = KVM_EXIT_MMIO;
12214 
12215 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12216 
12217 	return 0;
12218 }
12219 
12220 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12221 			  void *data)
12222 {
12223 	int handled;
12224 	struct kvm_mmio_fragment *frag;
12225 
12226 	if (!data)
12227 		return -EINVAL;
12228 
12229 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12230 	if (handled == bytes)
12231 		return 1;
12232 
12233 	bytes -= handled;
12234 	gpa += handled;
12235 	data += handled;
12236 
12237 	/*TODO: Check if need to increment number of frags */
12238 	frag = vcpu->mmio_fragments;
12239 	vcpu->mmio_nr_fragments = 1;
12240 	frag->len = bytes;
12241 	frag->gpa = gpa;
12242 	frag->data = data;
12243 
12244 	vcpu->mmio_needed = 1;
12245 	vcpu->mmio_cur_fragment = 0;
12246 
12247 	vcpu->run->mmio.phys_addr = gpa;
12248 	vcpu->run->mmio.len = min(8u, frag->len);
12249 	vcpu->run->mmio.is_write = 1;
12250 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12251 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12252 
12253 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12254 
12255 	return 0;
12256 }
12257 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12258 
12259 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12260 			 void *data)
12261 {
12262 	int handled;
12263 	struct kvm_mmio_fragment *frag;
12264 
12265 	if (!data)
12266 		return -EINVAL;
12267 
12268 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12269 	if (handled == bytes)
12270 		return 1;
12271 
12272 	bytes -= handled;
12273 	gpa += handled;
12274 	data += handled;
12275 
12276 	/*TODO: Check if need to increment number of frags */
12277 	frag = vcpu->mmio_fragments;
12278 	vcpu->mmio_nr_fragments = 1;
12279 	frag->len = bytes;
12280 	frag->gpa = gpa;
12281 	frag->data = data;
12282 
12283 	vcpu->mmio_needed = 1;
12284 	vcpu->mmio_cur_fragment = 0;
12285 
12286 	vcpu->run->mmio.phys_addr = gpa;
12287 	vcpu->run->mmio.len = min(8u, frag->len);
12288 	vcpu->run->mmio.is_write = 0;
12289 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12290 
12291 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12292 
12293 	return 0;
12294 }
12295 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12296 
12297 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12298 {
12299 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12300 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
12301 	vcpu->arch.pio.count = 0;
12302 
12303 	return 1;
12304 }
12305 
12306 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12307 			   unsigned int port, void *data,  unsigned int count)
12308 {
12309 	int ret;
12310 
12311 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12312 					data, count);
12313 	if (ret)
12314 		return ret;
12315 
12316 	vcpu->arch.pio.count = 0;
12317 
12318 	return 0;
12319 }
12320 
12321 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12322 			  unsigned int port, void *data, unsigned int count)
12323 {
12324 	int ret;
12325 
12326 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12327 				       data, count);
12328 	if (ret) {
12329 		vcpu->arch.pio.count = 0;
12330 	} else {
12331 		vcpu->arch.guest_ins_data = data;
12332 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12333 	}
12334 
12335 	return 0;
12336 }
12337 
12338 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12339 			 unsigned int port, void *data,  unsigned int count,
12340 			 int in)
12341 {
12342 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12343 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
12344 }
12345 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12346 
12347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12362 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12363 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12365 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12366 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12367 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12368 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12374