1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 #include <linux/smp.h> 64 65 #include <trace/events/ipi.h> 66 #include <trace/events/kvm.h> 67 68 #include <asm/debugreg.h> 69 #include <asm/msr.h> 70 #include <asm/desc.h> 71 #include <asm/mce.h> 72 #include <asm/pkru.h> 73 #include <linux/kernel_stat.h> 74 #include <asm/fpu/api.h> 75 #include <asm/fpu/xcr.h> 76 #include <asm/fpu/xstate.h> 77 #include <asm/pvclock.h> 78 #include <asm/div64.h> 79 #include <asm/irq_remapping.h> 80 #include <asm/mshyperv.h> 81 #include <asm/hypervisor.h> 82 #include <asm/tlbflush.h> 83 #include <asm/intel_pt.h> 84 #include <asm/emulate_prefix.h> 85 #include <asm/sgx.h> 86 #include <clocksource/hyperv_timer.h> 87 88 #define CREATE_TRACE_POINTS 89 #include "trace.h" 90 91 #define MAX_IO_MSRS 256 92 #define KVM_MAX_MCE_BANKS 32 93 94 struct kvm_caps kvm_caps __read_mostly = { 95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 96 }; 97 EXPORT_SYMBOL_GPL(kvm_caps); 98 99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 100 101 #define emul_to_vcpu(ctxt) \ 102 ((struct kvm_vcpu *)(ctxt)->vcpu) 103 104 /* EFER defaults: 105 * - enable syscall per default because its emulated by KVM 106 * - enable LME and LMA per default on 64 bit KVM 107 */ 108 #ifdef CONFIG_X86_64 109 static 110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 111 #else 112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 113 #endif 114 115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 116 117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 118 119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 120 121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 123 124 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 125 static void process_nmi(struct kvm_vcpu *vcpu); 126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 127 static void store_regs(struct kvm_vcpu *vcpu); 128 static int sync_regs(struct kvm_vcpu *vcpu); 129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 130 131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 134 static DEFINE_MUTEX(vendor_module_lock); 135 struct kvm_x86_ops kvm_x86_ops __read_mostly; 136 137 #define KVM_X86_OP(func) \ 138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 139 *(((struct kvm_x86_ops *)0)->func)); 140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 142 #include <asm/kvm-x86-ops.h> 143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 145 146 static bool __read_mostly ignore_msrs = 0; 147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 148 149 bool __read_mostly report_ignored_msrs = true; 150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 151 EXPORT_SYMBOL_GPL(report_ignored_msrs); 152 153 unsigned int min_timer_period_us = 200; 154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 155 156 static bool __read_mostly kvmclock_periodic_sync = true; 157 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 158 159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 160 static u32 __read_mostly tsc_tolerance_ppm = 250; 161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 162 163 /* 164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 165 * adaptive tuning starting from default advancement of 1000ns. '0' disables 166 * advancement entirely. Any other value is used as-is and disables adaptive 167 * tuning, i.e. allows privileged userspace to set an exact advancement time. 168 */ 169 static int __read_mostly lapic_timer_advance_ns = -1; 170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 171 172 static bool __read_mostly vector_hashing = true; 173 module_param(vector_hashing, bool, S_IRUGO); 174 175 bool __read_mostly enable_vmware_backdoor = false; 176 module_param(enable_vmware_backdoor, bool, S_IRUGO); 177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 178 179 /* 180 * Flags to manipulate forced emulation behavior (any non-zero value will 181 * enable forced emulation). 182 */ 183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 184 static int __read_mostly force_emulation_prefix; 185 module_param(force_emulation_prefix, int, 0644); 186 187 int __read_mostly pi_inject_timer = -1; 188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 189 190 /* Enable/disable PMU virtualization */ 191 bool __read_mostly enable_pmu = true; 192 EXPORT_SYMBOL_GPL(enable_pmu); 193 module_param(enable_pmu, bool, 0444); 194 195 bool __read_mostly eager_page_split = true; 196 module_param(eager_page_split, bool, 0644); 197 198 /* Enable/disable SMT_RSB bug mitigation */ 199 static bool __read_mostly mitigate_smt_rsb; 200 module_param(mitigate_smt_rsb, bool, 0444); 201 202 /* 203 * Restoring the host value for MSRs that are only consumed when running in 204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 205 * returns to userspace, i.e. the kernel can run with the guest's value. 206 */ 207 #define KVM_MAX_NR_USER_RETURN_MSRS 16 208 209 struct kvm_user_return_msrs { 210 struct user_return_notifier urn; 211 bool registered; 212 struct kvm_user_return_msr_values { 213 u64 host; 214 u64 curr; 215 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 216 }; 217 218 u32 __read_mostly kvm_nr_uret_msrs; 219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 221 static struct kvm_user_return_msrs __percpu *user_return_msrs; 222 223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 227 228 u64 __read_mostly host_efer; 229 EXPORT_SYMBOL_GPL(host_efer); 230 231 bool __read_mostly allow_smaller_maxphyaddr = 0; 232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 233 234 bool __read_mostly enable_apicv = true; 235 EXPORT_SYMBOL_GPL(enable_apicv); 236 237 u64 __read_mostly host_xss; 238 EXPORT_SYMBOL_GPL(host_xss); 239 240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 241 KVM_GENERIC_VM_STATS(), 242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 243 STATS_DESC_COUNTER(VM, mmu_pte_write), 244 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 245 STATS_DESC_COUNTER(VM, mmu_flooded), 246 STATS_DESC_COUNTER(VM, mmu_recycled), 247 STATS_DESC_COUNTER(VM, mmu_cache_miss), 248 STATS_DESC_ICOUNTER(VM, mmu_unsync), 249 STATS_DESC_ICOUNTER(VM, pages_4k), 250 STATS_DESC_ICOUNTER(VM, pages_2m), 251 STATS_DESC_ICOUNTER(VM, pages_1g), 252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 255 }; 256 257 const struct kvm_stats_header kvm_vm_stats_header = { 258 .name_size = KVM_STATS_NAME_SIZE, 259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 260 .id_offset = sizeof(struct kvm_stats_header), 261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 263 sizeof(kvm_vm_stats_desc), 264 }; 265 266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 267 KVM_GENERIC_VCPU_STATS(), 268 STATS_DESC_COUNTER(VCPU, pf_taken), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_emulate), 271 STATS_DESC_COUNTER(VCPU, pf_spurious), 272 STATS_DESC_COUNTER(VCPU, pf_fast), 273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 274 STATS_DESC_COUNTER(VCPU, pf_guest), 275 STATS_DESC_COUNTER(VCPU, tlb_flush), 276 STATS_DESC_COUNTER(VCPU, invlpg), 277 STATS_DESC_COUNTER(VCPU, exits), 278 STATS_DESC_COUNTER(VCPU, io_exits), 279 STATS_DESC_COUNTER(VCPU, mmio_exits), 280 STATS_DESC_COUNTER(VCPU, signal_exits), 281 STATS_DESC_COUNTER(VCPU, irq_window_exits), 282 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 283 STATS_DESC_COUNTER(VCPU, l1d_flush), 284 STATS_DESC_COUNTER(VCPU, halt_exits), 285 STATS_DESC_COUNTER(VCPU, request_irq_exits), 286 STATS_DESC_COUNTER(VCPU, irq_exits), 287 STATS_DESC_COUNTER(VCPU, host_state_reload), 288 STATS_DESC_COUNTER(VCPU, fpu_reload), 289 STATS_DESC_COUNTER(VCPU, insn_emulation), 290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 291 STATS_DESC_COUNTER(VCPU, hypercalls), 292 STATS_DESC_COUNTER(VCPU, irq_injections), 293 STATS_DESC_COUNTER(VCPU, nmi_injections), 294 STATS_DESC_COUNTER(VCPU, req_event), 295 STATS_DESC_COUNTER(VCPU, nested_run), 296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 297 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 298 STATS_DESC_COUNTER(VCPU, preemption_reported), 299 STATS_DESC_COUNTER(VCPU, preemption_other), 300 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 301 STATS_DESC_COUNTER(VCPU, notify_window_exits), 302 }; 303 304 const struct kvm_stats_header kvm_vcpu_stats_header = { 305 .name_size = KVM_STATS_NAME_SIZE, 306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 307 .id_offset = sizeof(struct kvm_stats_header), 308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 310 sizeof(kvm_vcpu_stats_desc), 311 }; 312 313 u64 __read_mostly host_xcr0; 314 315 static struct kmem_cache *x86_emulator_cache; 316 317 /* 318 * When called, it means the previous get/set msr reached an invalid msr. 319 * Return true if we want to ignore/silent this failed msr access. 320 */ 321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 322 { 323 const char *op = write ? "wrmsr" : "rdmsr"; 324 325 if (ignore_msrs) { 326 if (report_ignored_msrs) 327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 /* Mask the error */ 330 return true; 331 } else { 332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 333 op, msr, data); 334 return false; 335 } 336 } 337 338 static struct kmem_cache *kvm_alloc_emulator_cache(void) 339 { 340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 341 unsigned int size = sizeof(struct x86_emulate_ctxt); 342 343 return kmem_cache_create_usercopy("x86_emulator", size, 344 __alignof__(struct x86_emulate_ctxt), 345 SLAB_ACCOUNT, useroffset, 346 size - useroffset, NULL); 347 } 348 349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 350 351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 352 { 353 int i; 354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 355 vcpu->arch.apf.gfns[i] = ~0; 356 } 357 358 static void kvm_on_user_return(struct user_return_notifier *urn) 359 { 360 unsigned slot; 361 struct kvm_user_return_msrs *msrs 362 = container_of(urn, struct kvm_user_return_msrs, urn); 363 struct kvm_user_return_msr_values *values; 364 unsigned long flags; 365 366 /* 367 * Disabling irqs at this point since the following code could be 368 * interrupted and executed through kvm_arch_hardware_disable() 369 */ 370 local_irq_save(flags); 371 if (msrs->registered) { 372 msrs->registered = false; 373 user_return_notifier_unregister(urn); 374 } 375 local_irq_restore(flags); 376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 377 values = &msrs->values[slot]; 378 if (values->host != values->curr) { 379 wrmsrl(kvm_uret_msrs_list[slot], values->host); 380 values->curr = values->host; 381 } 382 } 383 } 384 385 static int kvm_probe_user_return_msr(u32 msr) 386 { 387 u64 val; 388 int ret; 389 390 preempt_disable(); 391 ret = rdmsrl_safe(msr, &val); 392 if (ret) 393 goto out; 394 ret = wrmsrl_safe(msr, val); 395 out: 396 preempt_enable(); 397 return ret; 398 } 399 400 int kvm_add_user_return_msr(u32 msr) 401 { 402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 403 404 if (kvm_probe_user_return_msr(msr)) 405 return -1; 406 407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 408 return kvm_nr_uret_msrs++; 409 } 410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 411 412 int kvm_find_user_return_msr(u32 msr) 413 { 414 int i; 415 416 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 417 if (kvm_uret_msrs_list[i] == msr) 418 return i; 419 } 420 return -1; 421 } 422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 423 424 static void kvm_user_return_msr_cpu_online(void) 425 { 426 unsigned int cpu = smp_processor_id(); 427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 428 u64 value; 429 int i; 430 431 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 432 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 433 msrs->values[i].host = value; 434 msrs->values[i].curr = value; 435 } 436 } 437 438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 439 { 440 unsigned int cpu = smp_processor_id(); 441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 442 int err; 443 444 value = (value & mask) | (msrs->values[slot].host & ~mask); 445 if (value == msrs->values[slot].curr) 446 return 0; 447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 448 if (err) 449 return 1; 450 451 msrs->values[slot].curr = value; 452 if (!msrs->registered) { 453 msrs->urn.on_user_return = kvm_on_user_return; 454 user_return_notifier_register(&msrs->urn); 455 msrs->registered = true; 456 } 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 460 461 static void drop_user_return_notifiers(void) 462 { 463 unsigned int cpu = smp_processor_id(); 464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 465 466 if (msrs->registered) 467 kvm_on_user_return(&msrs->urn); 468 } 469 470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 471 { 472 return vcpu->arch.apic_base; 473 } 474 475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 476 { 477 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 478 } 479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 480 481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 482 { 483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 487 488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 489 return 1; 490 if (!msr_info->host_initiated) { 491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 492 return 1; 493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 494 return 1; 495 } 496 497 kvm_lapic_set_base(vcpu, msr_info->data); 498 kvm_recalculate_apic_map(vcpu->kvm); 499 return 0; 500 } 501 502 /* 503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 504 * 505 * Hardware virtualization extension instructions may fault if a reboot turns 506 * off virtualization while processes are running. Usually after catching the 507 * fault we just panic; during reboot instead the instruction is ignored. 508 */ 509 noinstr void kvm_spurious_fault(void) 510 { 511 /* Fault while not rebooting. We want the trace. */ 512 BUG_ON(!kvm_rebooting); 513 } 514 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 515 516 #define EXCPT_BENIGN 0 517 #define EXCPT_CONTRIBUTORY 1 518 #define EXCPT_PF 2 519 520 static int exception_class(int vector) 521 { 522 switch (vector) { 523 case PF_VECTOR: 524 return EXCPT_PF; 525 case DE_VECTOR: 526 case TS_VECTOR: 527 case NP_VECTOR: 528 case SS_VECTOR: 529 case GP_VECTOR: 530 return EXCPT_CONTRIBUTORY; 531 default: 532 break; 533 } 534 return EXCPT_BENIGN; 535 } 536 537 #define EXCPT_FAULT 0 538 #define EXCPT_TRAP 1 539 #define EXCPT_ABORT 2 540 #define EXCPT_INTERRUPT 3 541 #define EXCPT_DB 4 542 543 static int exception_type(int vector) 544 { 545 unsigned int mask; 546 547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 548 return EXCPT_INTERRUPT; 549 550 mask = 1 << vector; 551 552 /* 553 * #DBs can be trap-like or fault-like, the caller must check other CPU 554 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 555 */ 556 if (mask & (1 << DB_VECTOR)) 557 return EXCPT_DB; 558 559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 560 return EXCPT_TRAP; 561 562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 563 return EXCPT_ABORT; 564 565 /* Reserved exceptions will result in fault */ 566 return EXCPT_FAULT; 567 } 568 569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 570 struct kvm_queued_exception *ex) 571 { 572 if (!ex->has_payload) 573 return; 574 575 switch (ex->vector) { 576 case DB_VECTOR: 577 /* 578 * "Certain debug exceptions may clear bit 0-3. The 579 * remaining contents of the DR6 register are never 580 * cleared by the processor". 581 */ 582 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 583 /* 584 * In order to reflect the #DB exception payload in guest 585 * dr6, three components need to be considered: active low 586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 587 * DR6_BS and DR6_BT) 588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 589 * In the target guest dr6: 590 * FIXED_1 bits should always be set. 591 * Active low bits should be cleared if 1-setting in payload. 592 * Active high bits should be set if 1-setting in payload. 593 * 594 * Note, the payload is compatible with the pending debug 595 * exceptions/exit qualification under VMX, that active_low bits 596 * are active high in payload. 597 * So they need to be flipped for DR6. 598 */ 599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 600 vcpu->arch.dr6 |= ex->payload; 601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 602 603 /* 604 * The #DB payload is defined as compatible with the 'pending 605 * debug exceptions' field under VMX, not DR6. While bit 12 is 606 * defined in the 'pending debug exceptions' field (enabled 607 * breakpoint), it is reserved and must be zero in DR6. 608 */ 609 vcpu->arch.dr6 &= ~BIT(12); 610 break; 611 case PF_VECTOR: 612 vcpu->arch.cr2 = ex->payload; 613 break; 614 } 615 616 ex->has_payload = false; 617 ex->payload = 0; 618 } 619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 620 621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 622 bool has_error_code, u32 error_code, 623 bool has_payload, unsigned long payload) 624 { 625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 626 627 ex->vector = vector; 628 ex->injected = false; 629 ex->pending = true; 630 ex->has_error_code = has_error_code; 631 ex->error_code = error_code; 632 ex->has_payload = has_payload; 633 ex->payload = payload; 634 } 635 636 /* Forcibly leave the nested mode in cases like a vCPU reset */ 637 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 638 { 639 kvm_x86_ops.nested_ops->leave_nested(vcpu); 640 } 641 642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 643 unsigned nr, bool has_error, u32 error_code, 644 bool has_payload, unsigned long payload, bool reinject) 645 { 646 u32 prev_nr; 647 int class1, class2; 648 649 kvm_make_request(KVM_REQ_EVENT, vcpu); 650 651 /* 652 * If the exception is destined for L2 and isn't being reinjected, 653 * morph it to a VM-Exit if L1 wants to intercept the exception. A 654 * previously injected exception is not checked because it was checked 655 * when it was original queued, and re-checking is incorrect if _L1_ 656 * injected the exception, in which case it's exempt from interception. 657 */ 658 if (!reinject && is_guest_mode(vcpu) && 659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 661 has_payload, payload); 662 return; 663 } 664 665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 666 queue: 667 if (reinject) { 668 /* 669 * On VM-Entry, an exception can be pending if and only 670 * if event injection was blocked by nested_run_pending. 671 * In that case, however, vcpu_enter_guest() requests an 672 * immediate exit, and the guest shouldn't proceed far 673 * enough to need reinjection. 674 */ 675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 676 vcpu->arch.exception.injected = true; 677 if (WARN_ON_ONCE(has_payload)) { 678 /* 679 * A reinjected event has already 680 * delivered its payload. 681 */ 682 has_payload = false; 683 payload = 0; 684 } 685 } else { 686 vcpu->arch.exception.pending = true; 687 vcpu->arch.exception.injected = false; 688 } 689 vcpu->arch.exception.has_error_code = has_error; 690 vcpu->arch.exception.vector = nr; 691 vcpu->arch.exception.error_code = error_code; 692 vcpu->arch.exception.has_payload = has_payload; 693 vcpu->arch.exception.payload = payload; 694 if (!is_guest_mode(vcpu)) 695 kvm_deliver_exception_payload(vcpu, 696 &vcpu->arch.exception); 697 return; 698 } 699 700 /* to check exception */ 701 prev_nr = vcpu->arch.exception.vector; 702 if (prev_nr == DF_VECTOR) { 703 /* triple fault -> shutdown */ 704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 705 return; 706 } 707 class1 = exception_class(prev_nr); 708 class2 = exception_class(nr); 709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 711 /* 712 * Synthesize #DF. Clear the previously injected or pending 713 * exception so as not to incorrectly trigger shutdown. 714 */ 715 vcpu->arch.exception.injected = false; 716 vcpu->arch.exception.pending = false; 717 718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 719 } else { 720 /* replace previous exception with a new one in a hope 721 that instruction re-execution will regenerate lost 722 exception */ 723 goto queue; 724 } 725 } 726 727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 730 } 731 EXPORT_SYMBOL_GPL(kvm_queue_exception); 732 733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 734 { 735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 736 } 737 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 738 739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 740 unsigned long payload) 741 { 742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 743 } 744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 745 746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 747 u32 error_code, unsigned long payload) 748 { 749 kvm_multiple_exception(vcpu, nr, true, error_code, 750 true, payload, false); 751 } 752 753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) 756 kvm_inject_gp(vcpu, 0); 757 else 758 return kvm_skip_emulated_instruction(vcpu); 759 760 return 1; 761 } 762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 763 764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 765 { 766 if (err) { 767 kvm_inject_gp(vcpu, 0); 768 return 1; 769 } 770 771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 772 EMULTYPE_COMPLETE_USER_EXIT); 773 } 774 775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 776 { 777 ++vcpu->stat.pf_guest; 778 779 /* 780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 781 * whether or not L1 wants to intercept "regular" #PF. 782 */ 783 if (is_guest_mode(vcpu) && fault->async_page_fault) 784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 785 true, fault->error_code, 786 true, fault->address); 787 else 788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 789 fault->address); 790 } 791 792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 793 struct x86_exception *fault) 794 { 795 struct kvm_mmu *fault_mmu; 796 WARN_ON_ONCE(fault->vector != PF_VECTOR); 797 798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 799 vcpu->arch.walk_mmu; 800 801 /* 802 * Invalidate the TLB entry for the faulting address, if it exists, 803 * else the access will fault indefinitely (and to emulate hardware). 804 */ 805 if ((fault->error_code & PFERR_PRESENT_MASK) && 806 !(fault->error_code & PFERR_RSVD_MASK)) 807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 808 KVM_MMU_ROOT_CURRENT); 809 810 fault_mmu->inject_page_fault(vcpu, fault); 811 } 812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 813 814 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 815 { 816 atomic_inc(&vcpu->arch.nmi_queued); 817 kvm_make_request(KVM_REQ_NMI, vcpu); 818 } 819 820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 823 } 824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 825 826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 827 { 828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 829 } 830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 831 832 /* 833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 834 * a #GP and return false. 835 */ 836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 837 { 838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 839 return true; 840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 841 return false; 842 } 843 844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 845 { 846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 847 return true; 848 849 kvm_queue_exception(vcpu, UD_VECTOR); 850 return false; 851 } 852 EXPORT_SYMBOL_GPL(kvm_require_dr); 853 854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 855 { 856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 857 } 858 859 /* 860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 861 */ 862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 863 { 864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 866 gpa_t real_gpa; 867 int i; 868 int ret; 869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 870 871 /* 872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 873 * to an L1 GPA. 874 */ 875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 877 if (real_gpa == INVALID_GPA) 878 return 0; 879 880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 882 cr3 & GENMASK(11, 5), sizeof(pdpte)); 883 if (ret < 0) 884 return 0; 885 886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 887 if ((pdpte[i] & PT_PRESENT_MASK) && 888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 889 return 0; 890 } 891 } 892 893 /* 894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 895 * Shadow page roots need to be reconstructed instead. 896 */ 897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 899 900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 903 vcpu->arch.pdptrs_from_userspace = false; 904 905 return 1; 906 } 907 EXPORT_SYMBOL_GPL(load_pdptrs); 908 909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 910 { 911 /* 912 * CR0.WP is incorporated into the MMU role, but only for non-nested, 913 * indirect shadow MMUs. If paging is disabled, no updates are needed 914 * as there are no permission bits to emulate. If TDP is enabled, the 915 * MMU's metadata needs to be updated, e.g. so that emulating guest 916 * translations does the right thing, but there's no need to unload the 917 * root as CR0.WP doesn't affect SPTEs. 918 */ 919 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 920 if (!(cr0 & X86_CR0_PG)) 921 return; 922 923 if (tdp_enabled) { 924 kvm_init_mmu(vcpu); 925 return; 926 } 927 } 928 929 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 930 kvm_clear_async_pf_completion_queue(vcpu); 931 kvm_async_pf_hash_reset(vcpu); 932 933 /* 934 * Clearing CR0.PG is defined to flush the TLB from the guest's 935 * perspective. 936 */ 937 if (!(cr0 & X86_CR0_PG)) 938 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 939 } 940 941 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 942 kvm_mmu_reset_context(vcpu); 943 944 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 945 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 946 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 947 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 948 } 949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 950 951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 952 { 953 unsigned long old_cr0 = kvm_read_cr0(vcpu); 954 955 cr0 |= X86_CR0_ET; 956 957 #ifdef CONFIG_X86_64 958 if (cr0 & 0xffffffff00000000UL) 959 return 1; 960 #endif 961 962 cr0 &= ~CR0_RESERVED_BITS; 963 964 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 965 return 1; 966 967 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 968 return 1; 969 970 #ifdef CONFIG_X86_64 971 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 972 (cr0 & X86_CR0_PG)) { 973 int cs_db, cs_l; 974 975 if (!is_pae(vcpu)) 976 return 1; 977 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 978 if (cs_l) 979 return 1; 980 } 981 #endif 982 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 983 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 984 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 985 return 1; 986 987 if (!(cr0 & X86_CR0_PG) && 988 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 989 return 1; 990 991 static_call(kvm_x86_set_cr0)(vcpu, cr0); 992 993 kvm_post_set_cr0(vcpu, old_cr0, cr0); 994 995 return 0; 996 } 997 EXPORT_SYMBOL_GPL(kvm_set_cr0); 998 999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1000 { 1001 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1002 } 1003 EXPORT_SYMBOL_GPL(kvm_lmsw); 1004 1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1006 { 1007 if (vcpu->arch.guest_state_protected) 1008 return; 1009 1010 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1011 1012 if (vcpu->arch.xcr0 != host_xcr0) 1013 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1014 1015 if (vcpu->arch.xsaves_enabled && 1016 vcpu->arch.ia32_xss != host_xss) 1017 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1018 } 1019 1020 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1021 vcpu->arch.pkru != vcpu->arch.host_pkru && 1022 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1023 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1024 write_pkru(vcpu->arch.pkru); 1025 } 1026 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1027 1028 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1029 { 1030 if (vcpu->arch.guest_state_protected) 1031 return; 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1035 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1036 vcpu->arch.pkru = rdpkru(); 1037 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1038 write_pkru(vcpu->arch.host_pkru); 1039 } 1040 1041 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1042 1043 if (vcpu->arch.xcr0 != host_xcr0) 1044 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1045 1046 if (vcpu->arch.xsaves_enabled && 1047 vcpu->arch.ia32_xss != host_xss) 1048 wrmsrl(MSR_IA32_XSS, host_xss); 1049 } 1050 1051 } 1052 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1053 1054 #ifdef CONFIG_X86_64 1055 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1056 { 1057 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1058 } 1059 #endif 1060 1061 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1062 { 1063 u64 xcr0 = xcr; 1064 u64 old_xcr0 = vcpu->arch.xcr0; 1065 u64 valid_bits; 1066 1067 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1068 if (index != XCR_XFEATURE_ENABLED_MASK) 1069 return 1; 1070 if (!(xcr0 & XFEATURE_MASK_FP)) 1071 return 1; 1072 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1073 return 1; 1074 1075 /* 1076 * Do not allow the guest to set bits that we do not support 1077 * saving. However, xcr0 bit 0 is always set, even if the 1078 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1079 */ 1080 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1081 if (xcr0 & ~valid_bits) 1082 return 1; 1083 1084 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1085 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1086 return 1; 1087 1088 if (xcr0 & XFEATURE_MASK_AVX512) { 1089 if (!(xcr0 & XFEATURE_MASK_YMM)) 1090 return 1; 1091 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1092 return 1; 1093 } 1094 1095 if ((xcr0 & XFEATURE_MASK_XTILE) && 1096 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1097 return 1; 1098 1099 vcpu->arch.xcr0 = xcr0; 1100 1101 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1102 kvm_update_cpuid_runtime(vcpu); 1103 return 0; 1104 } 1105 1106 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1107 { 1108 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1109 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1110 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1111 kvm_inject_gp(vcpu, 0); 1112 return 1; 1113 } 1114 1115 return kvm_skip_emulated_instruction(vcpu); 1116 } 1117 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1118 1119 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1120 { 1121 if (cr4 & cr4_reserved_bits) 1122 return false; 1123 1124 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1125 return false; 1126 1127 return true; 1128 } 1129 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1130 1131 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1132 { 1133 return __kvm_is_valid_cr4(vcpu, cr4) && 1134 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1135 } 1136 1137 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1138 { 1139 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1140 kvm_mmu_reset_context(vcpu); 1141 1142 /* 1143 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1144 * according to the SDM; however, stale prev_roots could be reused 1145 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1146 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1147 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1148 * so fall through. 1149 */ 1150 if (!tdp_enabled && 1151 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1152 kvm_mmu_unload(vcpu); 1153 1154 /* 1155 * The TLB has to be flushed for all PCIDs if any of the following 1156 * (architecturally required) changes happen: 1157 * - CR4.PCIDE is changed from 1 to 0 1158 * - CR4.PGE is toggled 1159 * 1160 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1161 */ 1162 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1163 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1164 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1165 1166 /* 1167 * The TLB has to be flushed for the current PCID if any of the 1168 * following (architecturally required) changes happen: 1169 * - CR4.SMEP is changed from 0 to 1 1170 * - CR4.PAE is toggled 1171 */ 1172 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1173 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1174 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1175 1176 } 1177 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1178 1179 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1180 { 1181 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1182 1183 if (!kvm_is_valid_cr4(vcpu, cr4)) 1184 return 1; 1185 1186 if (is_long_mode(vcpu)) { 1187 if (!(cr4 & X86_CR4_PAE)) 1188 return 1; 1189 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1190 return 1; 1191 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1192 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1193 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1194 return 1; 1195 1196 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1197 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1198 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1199 return 1; 1200 } 1201 1202 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1203 1204 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1205 1206 return 0; 1207 } 1208 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1209 1210 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1211 { 1212 struct kvm_mmu *mmu = vcpu->arch.mmu; 1213 unsigned long roots_to_free = 0; 1214 int i; 1215 1216 /* 1217 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1218 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1219 * also via the emulator. KVM's TDP page tables are not in the scope of 1220 * the invalidation, but the guest's TLB entries need to be flushed as 1221 * the CPU may have cached entries in its TLB for the target PCID. 1222 */ 1223 if (unlikely(tdp_enabled)) { 1224 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1225 return; 1226 } 1227 1228 /* 1229 * If neither the current CR3 nor any of the prev_roots use the given 1230 * PCID, then nothing needs to be done here because a resync will 1231 * happen anyway before switching to any other CR3. 1232 */ 1233 if (kvm_get_active_pcid(vcpu) == pcid) { 1234 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1235 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1236 } 1237 1238 /* 1239 * If PCID is disabled, there is no need to free prev_roots even if the 1240 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1241 * with PCIDE=0. 1242 */ 1243 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1244 return; 1245 1246 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1247 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1248 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1249 1250 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1251 } 1252 1253 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1254 { 1255 bool skip_tlb_flush = false; 1256 unsigned long pcid = 0; 1257 #ifdef CONFIG_X86_64 1258 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1259 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1260 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1261 pcid = cr3 & X86_CR3_PCID_MASK; 1262 } 1263 #endif 1264 1265 /* PDPTRs are always reloaded for PAE paging. */ 1266 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1267 goto handle_tlb_flush; 1268 1269 /* 1270 * Do not condition the GPA check on long mode, this helper is used to 1271 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1272 * the current vCPU mode is accurate. 1273 */ 1274 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1275 return 1; 1276 1277 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1278 return 1; 1279 1280 if (cr3 != kvm_read_cr3(vcpu)) 1281 kvm_mmu_new_pgd(vcpu, cr3); 1282 1283 vcpu->arch.cr3 = cr3; 1284 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1285 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1286 1287 handle_tlb_flush: 1288 /* 1289 * A load of CR3 that flushes the TLB flushes only the current PCID, 1290 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1291 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1292 * and it's impossible to use a non-zero PCID when PCID is disabled, 1293 * i.e. only PCID=0 can be relevant. 1294 */ 1295 if (!skip_tlb_flush) 1296 kvm_invalidate_pcid(vcpu, pcid); 1297 1298 return 0; 1299 } 1300 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1301 1302 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1303 { 1304 if (cr8 & CR8_RESERVED_BITS) 1305 return 1; 1306 if (lapic_in_kernel(vcpu)) 1307 kvm_lapic_set_tpr(vcpu, cr8); 1308 else 1309 vcpu->arch.cr8 = cr8; 1310 return 0; 1311 } 1312 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1313 1314 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1315 { 1316 if (lapic_in_kernel(vcpu)) 1317 return kvm_lapic_get_cr8(vcpu); 1318 else 1319 return vcpu->arch.cr8; 1320 } 1321 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1322 1323 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1324 { 1325 int i; 1326 1327 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1328 for (i = 0; i < KVM_NR_DB_REGS; i++) 1329 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1330 } 1331 } 1332 1333 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1334 { 1335 unsigned long dr7; 1336 1337 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1338 dr7 = vcpu->arch.guest_debug_dr7; 1339 else 1340 dr7 = vcpu->arch.dr7; 1341 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1342 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1343 if (dr7 & DR7_BP_EN_MASK) 1344 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1345 } 1346 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1347 1348 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1349 { 1350 u64 fixed = DR6_FIXED_1; 1351 1352 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1353 fixed |= DR6_RTM; 1354 1355 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1356 fixed |= DR6_BUS_LOCK; 1357 return fixed; 1358 } 1359 1360 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1361 { 1362 size_t size = ARRAY_SIZE(vcpu->arch.db); 1363 1364 switch (dr) { 1365 case 0 ... 3: 1366 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1367 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1368 vcpu->arch.eff_db[dr] = val; 1369 break; 1370 case 4: 1371 case 6: 1372 if (!kvm_dr6_valid(val)) 1373 return 1; /* #GP */ 1374 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1375 break; 1376 case 5: 1377 default: /* 7 */ 1378 if (!kvm_dr7_valid(val)) 1379 return 1; /* #GP */ 1380 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1381 kvm_update_dr7(vcpu); 1382 break; 1383 } 1384 1385 return 0; 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_set_dr); 1388 1389 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1390 { 1391 size_t size = ARRAY_SIZE(vcpu->arch.db); 1392 1393 switch (dr) { 1394 case 0 ... 3: 1395 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1396 break; 1397 case 4: 1398 case 6: 1399 *val = vcpu->arch.dr6; 1400 break; 1401 case 5: 1402 default: /* 7 */ 1403 *val = vcpu->arch.dr7; 1404 break; 1405 } 1406 } 1407 EXPORT_SYMBOL_GPL(kvm_get_dr); 1408 1409 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1410 { 1411 u32 ecx = kvm_rcx_read(vcpu); 1412 u64 data; 1413 1414 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1415 kvm_inject_gp(vcpu, 0); 1416 return 1; 1417 } 1418 1419 kvm_rax_write(vcpu, (u32)data); 1420 kvm_rdx_write(vcpu, data >> 32); 1421 return kvm_skip_emulated_instruction(vcpu); 1422 } 1423 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1424 1425 /* 1426 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1427 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1428 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1429 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1430 * MSRs that KVM emulates without strictly requiring host support. 1431 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1432 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1433 * msrs_to_save and emulated_msrs. 1434 */ 1435 1436 static const u32 msrs_to_save_base[] = { 1437 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1438 MSR_STAR, 1439 #ifdef CONFIG_X86_64 1440 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1441 #endif 1442 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1443 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1444 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1445 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1446 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1447 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1448 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1449 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1450 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1451 MSR_IA32_UMWAIT_CONTROL, 1452 1453 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1454 }; 1455 1456 static const u32 msrs_to_save_pmu[] = { 1457 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1458 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1459 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1460 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1461 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1462 1463 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1464 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1465 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1466 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1467 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1468 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1469 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1470 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1471 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1472 1473 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1474 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1475 1476 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1477 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1478 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1479 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1480 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1481 1482 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1483 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1484 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1485 }; 1486 1487 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1488 ARRAY_SIZE(msrs_to_save_pmu)]; 1489 static unsigned num_msrs_to_save; 1490 1491 static const u32 emulated_msrs_all[] = { 1492 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1493 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1494 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1495 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1496 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1497 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1498 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1499 HV_X64_MSR_RESET, 1500 HV_X64_MSR_VP_INDEX, 1501 HV_X64_MSR_VP_RUNTIME, 1502 HV_X64_MSR_SCONTROL, 1503 HV_X64_MSR_STIMER0_CONFIG, 1504 HV_X64_MSR_VP_ASSIST_PAGE, 1505 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1506 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1507 HV_X64_MSR_SYNDBG_OPTIONS, 1508 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1509 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1510 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1511 1512 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1513 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1514 1515 MSR_IA32_TSC_ADJUST, 1516 MSR_IA32_TSC_DEADLINE, 1517 MSR_IA32_ARCH_CAPABILITIES, 1518 MSR_IA32_PERF_CAPABILITIES, 1519 MSR_IA32_MISC_ENABLE, 1520 MSR_IA32_MCG_STATUS, 1521 MSR_IA32_MCG_CTL, 1522 MSR_IA32_MCG_EXT_CTL, 1523 MSR_IA32_SMBASE, 1524 MSR_SMI_COUNT, 1525 MSR_PLATFORM_INFO, 1526 MSR_MISC_FEATURES_ENABLES, 1527 MSR_AMD64_VIRT_SPEC_CTRL, 1528 MSR_AMD64_TSC_RATIO, 1529 MSR_IA32_POWER_CTL, 1530 MSR_IA32_UCODE_REV, 1531 1532 /* 1533 * KVM always supports the "true" VMX control MSRs, even if the host 1534 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1535 * doesn't strictly require them to exist in the host (ignoring that 1536 * KVM would refuse to load in the first place if the core set of MSRs 1537 * aren't supported). 1538 */ 1539 MSR_IA32_VMX_BASIC, 1540 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1541 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1542 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1543 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1544 MSR_IA32_VMX_MISC, 1545 MSR_IA32_VMX_CR0_FIXED0, 1546 MSR_IA32_VMX_CR4_FIXED0, 1547 MSR_IA32_VMX_VMCS_ENUM, 1548 MSR_IA32_VMX_PROCBASED_CTLS2, 1549 MSR_IA32_VMX_EPT_VPID_CAP, 1550 MSR_IA32_VMX_VMFUNC, 1551 1552 MSR_K7_HWCR, 1553 MSR_KVM_POLL_CONTROL, 1554 }; 1555 1556 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1557 static unsigned num_emulated_msrs; 1558 1559 /* 1560 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1561 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1562 * feature MSRs, but are handled separately to allow expedited lookups. 1563 */ 1564 static const u32 msr_based_features_all_except_vmx[] = { 1565 MSR_AMD64_DE_CFG, 1566 MSR_IA32_UCODE_REV, 1567 MSR_IA32_ARCH_CAPABILITIES, 1568 MSR_IA32_PERF_CAPABILITIES, 1569 }; 1570 1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1572 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1573 static unsigned int num_msr_based_features; 1574 1575 /* 1576 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1577 * patch, are immutable once the vCPU model is defined. 1578 */ 1579 static bool kvm_is_immutable_feature_msr(u32 msr) 1580 { 1581 int i; 1582 1583 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1584 return true; 1585 1586 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1587 if (msr == msr_based_features_all_except_vmx[i]) 1588 return msr != MSR_IA32_UCODE_REV; 1589 } 1590 1591 return false; 1592 } 1593 1594 /* 1595 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1596 * does not yet virtualize. These include: 1597 * 10 - MISC_PACKAGE_CTRLS 1598 * 11 - ENERGY_FILTERING_CTL 1599 * 12 - DOITM 1600 * 18 - FB_CLEAR_CTRL 1601 * 21 - XAPIC_DISABLE_STATUS 1602 * 23 - OVERCLOCKING_STATUS 1603 */ 1604 1605 #define KVM_SUPPORTED_ARCH_CAP \ 1606 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1607 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1608 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1609 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1610 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1611 1612 static u64 kvm_get_arch_capabilities(void) 1613 { 1614 u64 data = 0; 1615 1616 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1617 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1618 data &= KVM_SUPPORTED_ARCH_CAP; 1619 } 1620 1621 /* 1622 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1623 * the nested hypervisor runs with NX huge pages. If it is not, 1624 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1625 * L1 guests, so it need not worry about its own (L2) guests. 1626 */ 1627 data |= ARCH_CAP_PSCHANGE_MC_NO; 1628 1629 /* 1630 * If we're doing cache flushes (either "always" or "cond") 1631 * we will do one whenever the guest does a vmlaunch/vmresume. 1632 * If an outer hypervisor is doing the cache flush for us 1633 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1634 * capability to the guest too, and if EPT is disabled we're not 1635 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1636 * require a nested hypervisor to do a flush of its own. 1637 */ 1638 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1639 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1640 1641 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1642 data |= ARCH_CAP_RDCL_NO; 1643 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1644 data |= ARCH_CAP_SSB_NO; 1645 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1646 data |= ARCH_CAP_MDS_NO; 1647 1648 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1649 /* 1650 * If RTM=0 because the kernel has disabled TSX, the host might 1651 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1652 * and therefore knows that there cannot be TAA) but keep 1653 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1654 * and we want to allow migrating those guests to tsx=off hosts. 1655 */ 1656 data &= ~ARCH_CAP_TAA_NO; 1657 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1658 data |= ARCH_CAP_TAA_NO; 1659 } else { 1660 /* 1661 * Nothing to do here; we emulate TSX_CTRL if present on the 1662 * host so the guest can choose between disabling TSX or 1663 * using VERW to clear CPU buffers. 1664 */ 1665 } 1666 1667 return data; 1668 } 1669 1670 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1671 { 1672 switch (msr->index) { 1673 case MSR_IA32_ARCH_CAPABILITIES: 1674 msr->data = kvm_get_arch_capabilities(); 1675 break; 1676 case MSR_IA32_PERF_CAPABILITIES: 1677 msr->data = kvm_caps.supported_perf_cap; 1678 break; 1679 case MSR_IA32_UCODE_REV: 1680 rdmsrl_safe(msr->index, &msr->data); 1681 break; 1682 default: 1683 return static_call(kvm_x86_get_msr_feature)(msr); 1684 } 1685 return 0; 1686 } 1687 1688 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1689 { 1690 struct kvm_msr_entry msr; 1691 int r; 1692 1693 msr.index = index; 1694 r = kvm_get_msr_feature(&msr); 1695 1696 if (r == KVM_MSR_RET_INVALID) { 1697 /* Unconditionally clear the output for simplicity */ 1698 *data = 0; 1699 if (kvm_msr_ignored_check(index, 0, false)) 1700 r = 0; 1701 } 1702 1703 if (r) 1704 return r; 1705 1706 *data = msr.data; 1707 1708 return 0; 1709 } 1710 1711 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1712 { 1713 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1714 return false; 1715 1716 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1717 return false; 1718 1719 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1720 return false; 1721 1722 if (efer & (EFER_LME | EFER_LMA) && 1723 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1724 return false; 1725 1726 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1727 return false; 1728 1729 return true; 1730 1731 } 1732 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1733 { 1734 if (efer & efer_reserved_bits) 1735 return false; 1736 1737 return __kvm_valid_efer(vcpu, efer); 1738 } 1739 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1740 1741 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1742 { 1743 u64 old_efer = vcpu->arch.efer; 1744 u64 efer = msr_info->data; 1745 int r; 1746 1747 if (efer & efer_reserved_bits) 1748 return 1; 1749 1750 if (!msr_info->host_initiated) { 1751 if (!__kvm_valid_efer(vcpu, efer)) 1752 return 1; 1753 1754 if (is_paging(vcpu) && 1755 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1756 return 1; 1757 } 1758 1759 efer &= ~EFER_LMA; 1760 efer |= vcpu->arch.efer & EFER_LMA; 1761 1762 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1763 if (r) { 1764 WARN_ON(r > 0); 1765 return r; 1766 } 1767 1768 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1769 kvm_mmu_reset_context(vcpu); 1770 1771 return 0; 1772 } 1773 1774 void kvm_enable_efer_bits(u64 mask) 1775 { 1776 efer_reserved_bits &= ~mask; 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1779 1780 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1781 { 1782 struct kvm_x86_msr_filter *msr_filter; 1783 struct msr_bitmap_range *ranges; 1784 struct kvm *kvm = vcpu->kvm; 1785 bool allowed; 1786 int idx; 1787 u32 i; 1788 1789 /* x2APIC MSRs do not support filtering. */ 1790 if (index >= 0x800 && index <= 0x8ff) 1791 return true; 1792 1793 idx = srcu_read_lock(&kvm->srcu); 1794 1795 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1796 if (!msr_filter) { 1797 allowed = true; 1798 goto out; 1799 } 1800 1801 allowed = msr_filter->default_allow; 1802 ranges = msr_filter->ranges; 1803 1804 for (i = 0; i < msr_filter->count; i++) { 1805 u32 start = ranges[i].base; 1806 u32 end = start + ranges[i].nmsrs; 1807 u32 flags = ranges[i].flags; 1808 unsigned long *bitmap = ranges[i].bitmap; 1809 1810 if ((index >= start) && (index < end) && (flags & type)) { 1811 allowed = test_bit(index - start, bitmap); 1812 break; 1813 } 1814 } 1815 1816 out: 1817 srcu_read_unlock(&kvm->srcu, idx); 1818 1819 return allowed; 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1822 1823 /* 1824 * Write @data into the MSR specified by @index. Select MSR specific fault 1825 * checks are bypassed if @host_initiated is %true. 1826 * Returns 0 on success, non-0 otherwise. 1827 * Assumes vcpu_load() was already called. 1828 */ 1829 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1830 bool host_initiated) 1831 { 1832 struct msr_data msr; 1833 1834 switch (index) { 1835 case MSR_FS_BASE: 1836 case MSR_GS_BASE: 1837 case MSR_KERNEL_GS_BASE: 1838 case MSR_CSTAR: 1839 case MSR_LSTAR: 1840 if (is_noncanonical_address(data, vcpu)) 1841 return 1; 1842 break; 1843 case MSR_IA32_SYSENTER_EIP: 1844 case MSR_IA32_SYSENTER_ESP: 1845 /* 1846 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1847 * non-canonical address is written on Intel but not on 1848 * AMD (which ignores the top 32-bits, because it does 1849 * not implement 64-bit SYSENTER). 1850 * 1851 * 64-bit code should hence be able to write a non-canonical 1852 * value on AMD. Making the address canonical ensures that 1853 * vmentry does not fail on Intel after writing a non-canonical 1854 * value, and that something deterministic happens if the guest 1855 * invokes 64-bit SYSENTER. 1856 */ 1857 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1858 break; 1859 case MSR_TSC_AUX: 1860 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1861 return 1; 1862 1863 if (!host_initiated && 1864 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1865 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1866 return 1; 1867 1868 /* 1869 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1870 * incomplete and conflicting architectural behavior. Current 1871 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1872 * reserved and always read as zeros. Enforce Intel's reserved 1873 * bits check if and only if the guest CPU is Intel, and clear 1874 * the bits in all other cases. This ensures cross-vendor 1875 * migration will provide consistent behavior for the guest. 1876 */ 1877 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1878 return 1; 1879 1880 data = (u32)data; 1881 break; 1882 } 1883 1884 msr.data = data; 1885 msr.index = index; 1886 msr.host_initiated = host_initiated; 1887 1888 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1889 } 1890 1891 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1892 u32 index, u64 data, bool host_initiated) 1893 { 1894 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1895 1896 if (ret == KVM_MSR_RET_INVALID) 1897 if (kvm_msr_ignored_check(index, data, true)) 1898 ret = 0; 1899 1900 return ret; 1901 } 1902 1903 /* 1904 * Read the MSR specified by @index into @data. Select MSR specific fault 1905 * checks are bypassed if @host_initiated is %true. 1906 * Returns 0 on success, non-0 otherwise. 1907 * Assumes vcpu_load() was already called. 1908 */ 1909 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1910 bool host_initiated) 1911 { 1912 struct msr_data msr; 1913 int ret; 1914 1915 switch (index) { 1916 case MSR_TSC_AUX: 1917 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1918 return 1; 1919 1920 if (!host_initiated && 1921 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1922 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1923 return 1; 1924 break; 1925 } 1926 1927 msr.index = index; 1928 msr.host_initiated = host_initiated; 1929 1930 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1931 if (!ret) 1932 *data = msr.data; 1933 return ret; 1934 } 1935 1936 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1937 u32 index, u64 *data, bool host_initiated) 1938 { 1939 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1940 1941 if (ret == KVM_MSR_RET_INVALID) { 1942 /* Unconditionally clear *data for simplicity */ 1943 *data = 0; 1944 if (kvm_msr_ignored_check(index, 0, false)) 1945 ret = 0; 1946 } 1947 1948 return ret; 1949 } 1950 1951 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1952 { 1953 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1954 return KVM_MSR_RET_FILTERED; 1955 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1956 } 1957 1958 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1959 { 1960 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1961 return KVM_MSR_RET_FILTERED; 1962 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1963 } 1964 1965 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1966 { 1967 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1968 } 1969 EXPORT_SYMBOL_GPL(kvm_get_msr); 1970 1971 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1972 { 1973 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_set_msr); 1976 1977 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1978 { 1979 if (!vcpu->run->msr.error) { 1980 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1981 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1982 } 1983 } 1984 1985 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1986 { 1987 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1988 } 1989 1990 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1991 { 1992 complete_userspace_rdmsr(vcpu); 1993 return complete_emulated_msr_access(vcpu); 1994 } 1995 1996 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1997 { 1998 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1999 } 2000 2001 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2002 { 2003 complete_userspace_rdmsr(vcpu); 2004 return complete_fast_msr_access(vcpu); 2005 } 2006 2007 static u64 kvm_msr_reason(int r) 2008 { 2009 switch (r) { 2010 case KVM_MSR_RET_INVALID: 2011 return KVM_MSR_EXIT_REASON_UNKNOWN; 2012 case KVM_MSR_RET_FILTERED: 2013 return KVM_MSR_EXIT_REASON_FILTER; 2014 default: 2015 return KVM_MSR_EXIT_REASON_INVAL; 2016 } 2017 } 2018 2019 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2020 u32 exit_reason, u64 data, 2021 int (*completion)(struct kvm_vcpu *vcpu), 2022 int r) 2023 { 2024 u64 msr_reason = kvm_msr_reason(r); 2025 2026 /* Check if the user wanted to know about this MSR fault */ 2027 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2028 return 0; 2029 2030 vcpu->run->exit_reason = exit_reason; 2031 vcpu->run->msr.error = 0; 2032 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2033 vcpu->run->msr.reason = msr_reason; 2034 vcpu->run->msr.index = index; 2035 vcpu->run->msr.data = data; 2036 vcpu->arch.complete_userspace_io = completion; 2037 2038 return 1; 2039 } 2040 2041 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2042 { 2043 u32 ecx = kvm_rcx_read(vcpu); 2044 u64 data; 2045 int r; 2046 2047 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2048 2049 if (!r) { 2050 trace_kvm_msr_read(ecx, data); 2051 2052 kvm_rax_write(vcpu, data & -1u); 2053 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2054 } else { 2055 /* MSR read failed? See if we should ask user space */ 2056 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2057 complete_fast_rdmsr, r)) 2058 return 0; 2059 trace_kvm_msr_read_ex(ecx); 2060 } 2061 2062 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2063 } 2064 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2065 2066 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2067 { 2068 u32 ecx = kvm_rcx_read(vcpu); 2069 u64 data = kvm_read_edx_eax(vcpu); 2070 int r; 2071 2072 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2073 2074 if (!r) { 2075 trace_kvm_msr_write(ecx, data); 2076 } else { 2077 /* MSR write failed? See if we should ask user space */ 2078 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2079 complete_fast_msr_access, r)) 2080 return 0; 2081 /* Signal all other negative errors to userspace */ 2082 if (r < 0) 2083 return r; 2084 trace_kvm_msr_write_ex(ecx, data); 2085 } 2086 2087 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2088 } 2089 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2090 2091 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2092 { 2093 return kvm_skip_emulated_instruction(vcpu); 2094 } 2095 2096 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2097 { 2098 /* Treat an INVD instruction as a NOP and just skip it. */ 2099 return kvm_emulate_as_nop(vcpu); 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2102 2103 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2104 { 2105 kvm_queue_exception(vcpu, UD_VECTOR); 2106 return 1; 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2109 2110 2111 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2112 { 2113 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2114 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2115 return kvm_handle_invalid_op(vcpu); 2116 2117 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2118 return kvm_emulate_as_nop(vcpu); 2119 } 2120 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2121 { 2122 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2123 } 2124 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2125 2126 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2127 { 2128 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2129 } 2130 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2131 2132 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2133 { 2134 xfer_to_guest_mode_prepare(); 2135 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2136 xfer_to_guest_mode_work_pending(); 2137 } 2138 2139 /* 2140 * The fast path for frequent and performance sensitive wrmsr emulation, 2141 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2142 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2143 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2144 * other cases which must be called after interrupts are enabled on the host. 2145 */ 2146 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2147 { 2148 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2149 return 1; 2150 2151 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2152 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2153 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2154 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2155 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2156 2157 return 1; 2158 } 2159 2160 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2161 { 2162 if (!kvm_can_use_hv_timer(vcpu)) 2163 return 1; 2164 2165 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2166 return 0; 2167 } 2168 2169 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2170 { 2171 u32 msr = kvm_rcx_read(vcpu); 2172 u64 data; 2173 fastpath_t ret = EXIT_FASTPATH_NONE; 2174 2175 switch (msr) { 2176 case APIC_BASE_MSR + (APIC_ICR >> 4): 2177 data = kvm_read_edx_eax(vcpu); 2178 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2179 kvm_skip_emulated_instruction(vcpu); 2180 ret = EXIT_FASTPATH_EXIT_HANDLED; 2181 } 2182 break; 2183 case MSR_IA32_TSC_DEADLINE: 2184 data = kvm_read_edx_eax(vcpu); 2185 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2186 kvm_skip_emulated_instruction(vcpu); 2187 ret = EXIT_FASTPATH_REENTER_GUEST; 2188 } 2189 break; 2190 default: 2191 break; 2192 } 2193 2194 if (ret != EXIT_FASTPATH_NONE) 2195 trace_kvm_msr_write(msr, data); 2196 2197 return ret; 2198 } 2199 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2200 2201 /* 2202 * Adapt set_msr() to msr_io()'s calling convention 2203 */ 2204 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2205 { 2206 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2207 } 2208 2209 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2210 { 2211 u64 val; 2212 2213 /* 2214 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2215 * not support modifying the guest vCPU model on the fly, e.g. changing 2216 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2217 * writes of the same value, e.g. to allow userspace to blindly stuff 2218 * all MSRs when emulating RESET. 2219 */ 2220 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2221 if (do_get_msr(vcpu, index, &val) || *data != val) 2222 return -EINVAL; 2223 2224 return 0; 2225 } 2226 2227 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2228 } 2229 2230 #ifdef CONFIG_X86_64 2231 struct pvclock_clock { 2232 int vclock_mode; 2233 u64 cycle_last; 2234 u64 mask; 2235 u32 mult; 2236 u32 shift; 2237 u64 base_cycles; 2238 u64 offset; 2239 }; 2240 2241 struct pvclock_gtod_data { 2242 seqcount_t seq; 2243 2244 struct pvclock_clock clock; /* extract of a clocksource struct */ 2245 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2246 2247 ktime_t offs_boot; 2248 u64 wall_time_sec; 2249 }; 2250 2251 static struct pvclock_gtod_data pvclock_gtod_data; 2252 2253 static void update_pvclock_gtod(struct timekeeper *tk) 2254 { 2255 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2256 2257 write_seqcount_begin(&vdata->seq); 2258 2259 /* copy pvclock gtod data */ 2260 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2261 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2262 vdata->clock.mask = tk->tkr_mono.mask; 2263 vdata->clock.mult = tk->tkr_mono.mult; 2264 vdata->clock.shift = tk->tkr_mono.shift; 2265 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2266 vdata->clock.offset = tk->tkr_mono.base; 2267 2268 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2269 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2270 vdata->raw_clock.mask = tk->tkr_raw.mask; 2271 vdata->raw_clock.mult = tk->tkr_raw.mult; 2272 vdata->raw_clock.shift = tk->tkr_raw.shift; 2273 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2274 vdata->raw_clock.offset = tk->tkr_raw.base; 2275 2276 vdata->wall_time_sec = tk->xtime_sec; 2277 2278 vdata->offs_boot = tk->offs_boot; 2279 2280 write_seqcount_end(&vdata->seq); 2281 } 2282 2283 static s64 get_kvmclock_base_ns(void) 2284 { 2285 /* Count up from boot time, but with the frequency of the raw clock. */ 2286 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2287 } 2288 #else 2289 static s64 get_kvmclock_base_ns(void) 2290 { 2291 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2292 return ktime_get_boottime_ns(); 2293 } 2294 #endif 2295 2296 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2297 { 2298 int version; 2299 int r; 2300 struct pvclock_wall_clock wc; 2301 u32 wc_sec_hi; 2302 u64 wall_nsec; 2303 2304 if (!wall_clock) 2305 return; 2306 2307 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2308 if (r) 2309 return; 2310 2311 if (version & 1) 2312 ++version; /* first time write, random junk */ 2313 2314 ++version; 2315 2316 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2317 return; 2318 2319 /* 2320 * The guest calculates current wall clock time by adding 2321 * system time (updated by kvm_guest_time_update below) to the 2322 * wall clock specified here. We do the reverse here. 2323 */ 2324 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2325 2326 wc.nsec = do_div(wall_nsec, 1000000000); 2327 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2328 wc.version = version; 2329 2330 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2331 2332 if (sec_hi_ofs) { 2333 wc_sec_hi = wall_nsec >> 32; 2334 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2335 &wc_sec_hi, sizeof(wc_sec_hi)); 2336 } 2337 2338 version++; 2339 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2340 } 2341 2342 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2343 bool old_msr, bool host_initiated) 2344 { 2345 struct kvm_arch *ka = &vcpu->kvm->arch; 2346 2347 if (vcpu->vcpu_id == 0 && !host_initiated) { 2348 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2349 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2350 2351 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2352 } 2353 2354 vcpu->arch.time = system_time; 2355 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2356 2357 /* we verify if the enable bit is set... */ 2358 if (system_time & 1) 2359 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2360 sizeof(struct pvclock_vcpu_time_info)); 2361 else 2362 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2363 2364 return; 2365 } 2366 2367 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2368 { 2369 do_shl32_div32(dividend, divisor); 2370 return dividend; 2371 } 2372 2373 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2374 s8 *pshift, u32 *pmultiplier) 2375 { 2376 uint64_t scaled64; 2377 int32_t shift = 0; 2378 uint64_t tps64; 2379 uint32_t tps32; 2380 2381 tps64 = base_hz; 2382 scaled64 = scaled_hz; 2383 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2384 tps64 >>= 1; 2385 shift--; 2386 } 2387 2388 tps32 = (uint32_t)tps64; 2389 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2390 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2391 scaled64 >>= 1; 2392 else 2393 tps32 <<= 1; 2394 shift++; 2395 } 2396 2397 *pshift = shift; 2398 *pmultiplier = div_frac(scaled64, tps32); 2399 } 2400 2401 #ifdef CONFIG_X86_64 2402 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2403 #endif 2404 2405 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2406 static unsigned long max_tsc_khz; 2407 2408 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2409 { 2410 u64 v = (u64)khz * (1000000 + ppm); 2411 do_div(v, 1000000); 2412 return v; 2413 } 2414 2415 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2416 2417 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2418 { 2419 u64 ratio; 2420 2421 /* Guest TSC same frequency as host TSC? */ 2422 if (!scale) { 2423 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2424 return 0; 2425 } 2426 2427 /* TSC scaling supported? */ 2428 if (!kvm_caps.has_tsc_control) { 2429 if (user_tsc_khz > tsc_khz) { 2430 vcpu->arch.tsc_catchup = 1; 2431 vcpu->arch.tsc_always_catchup = 1; 2432 return 0; 2433 } else { 2434 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2435 return -1; 2436 } 2437 } 2438 2439 /* TSC scaling required - calculate ratio */ 2440 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2441 user_tsc_khz, tsc_khz); 2442 2443 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2444 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2445 user_tsc_khz); 2446 return -1; 2447 } 2448 2449 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2450 return 0; 2451 } 2452 2453 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2454 { 2455 u32 thresh_lo, thresh_hi; 2456 int use_scaling = 0; 2457 2458 /* tsc_khz can be zero if TSC calibration fails */ 2459 if (user_tsc_khz == 0) { 2460 /* set tsc_scaling_ratio to a safe value */ 2461 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2462 return -1; 2463 } 2464 2465 /* Compute a scale to convert nanoseconds in TSC cycles */ 2466 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2467 &vcpu->arch.virtual_tsc_shift, 2468 &vcpu->arch.virtual_tsc_mult); 2469 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2470 2471 /* 2472 * Compute the variation in TSC rate which is acceptable 2473 * within the range of tolerance and decide if the 2474 * rate being applied is within that bounds of the hardware 2475 * rate. If so, no scaling or compensation need be done. 2476 */ 2477 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2478 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2479 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2480 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2481 user_tsc_khz, thresh_lo, thresh_hi); 2482 use_scaling = 1; 2483 } 2484 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2485 } 2486 2487 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2488 { 2489 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2490 vcpu->arch.virtual_tsc_mult, 2491 vcpu->arch.virtual_tsc_shift); 2492 tsc += vcpu->arch.this_tsc_write; 2493 return tsc; 2494 } 2495 2496 #ifdef CONFIG_X86_64 2497 static inline int gtod_is_based_on_tsc(int mode) 2498 { 2499 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2500 } 2501 #endif 2502 2503 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2504 { 2505 #ifdef CONFIG_X86_64 2506 bool vcpus_matched; 2507 struct kvm_arch *ka = &vcpu->kvm->arch; 2508 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2509 2510 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2511 atomic_read(&vcpu->kvm->online_vcpus)); 2512 2513 /* 2514 * Once the masterclock is enabled, always perform request in 2515 * order to update it. 2516 * 2517 * In order to enable masterclock, the host clocksource must be TSC 2518 * and the vcpus need to have matched TSCs. When that happens, 2519 * perform request to enable masterclock. 2520 */ 2521 if (ka->use_master_clock || 2522 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2523 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2524 2525 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2526 atomic_read(&vcpu->kvm->online_vcpus), 2527 ka->use_master_clock, gtod->clock.vclock_mode); 2528 #endif 2529 } 2530 2531 /* 2532 * Multiply tsc by a fixed point number represented by ratio. 2533 * 2534 * The most significant 64-N bits (mult) of ratio represent the 2535 * integral part of the fixed point number; the remaining N bits 2536 * (frac) represent the fractional part, ie. ratio represents a fixed 2537 * point number (mult + frac * 2^(-N)). 2538 * 2539 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2540 */ 2541 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2542 { 2543 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2544 } 2545 2546 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2547 { 2548 u64 _tsc = tsc; 2549 2550 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2551 _tsc = __scale_tsc(ratio, tsc); 2552 2553 return _tsc; 2554 } 2555 2556 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2557 { 2558 u64 tsc; 2559 2560 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2561 2562 return target_tsc - tsc; 2563 } 2564 2565 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2566 { 2567 return vcpu->arch.l1_tsc_offset + 2568 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2569 } 2570 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2571 2572 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2573 { 2574 u64 nested_offset; 2575 2576 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2577 nested_offset = l1_offset; 2578 else 2579 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2580 kvm_caps.tsc_scaling_ratio_frac_bits); 2581 2582 nested_offset += l2_offset; 2583 return nested_offset; 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2586 2587 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2588 { 2589 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2590 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2591 kvm_caps.tsc_scaling_ratio_frac_bits); 2592 2593 return l1_multiplier; 2594 } 2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2596 2597 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2598 { 2599 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2600 vcpu->arch.l1_tsc_offset, 2601 l1_offset); 2602 2603 vcpu->arch.l1_tsc_offset = l1_offset; 2604 2605 /* 2606 * If we are here because L1 chose not to trap WRMSR to TSC then 2607 * according to the spec this should set L1's TSC (as opposed to 2608 * setting L1's offset for L2). 2609 */ 2610 if (is_guest_mode(vcpu)) 2611 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2612 l1_offset, 2613 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2614 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2615 else 2616 vcpu->arch.tsc_offset = l1_offset; 2617 2618 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2619 } 2620 2621 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2622 { 2623 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2624 2625 /* Userspace is changing the multiplier while L2 is active */ 2626 if (is_guest_mode(vcpu)) 2627 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2628 l1_multiplier, 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2632 2633 if (kvm_caps.has_tsc_control) 2634 static_call(kvm_x86_write_tsc_multiplier)( 2635 vcpu, vcpu->arch.tsc_scaling_ratio); 2636 } 2637 2638 static inline bool kvm_check_tsc_unstable(void) 2639 { 2640 #ifdef CONFIG_X86_64 2641 /* 2642 * TSC is marked unstable when we're running on Hyper-V, 2643 * 'TSC page' clocksource is good. 2644 */ 2645 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2646 return false; 2647 #endif 2648 return check_tsc_unstable(); 2649 } 2650 2651 /* 2652 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2653 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2654 * participates in. 2655 */ 2656 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2657 u64 ns, bool matched) 2658 { 2659 struct kvm *kvm = vcpu->kvm; 2660 2661 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2662 2663 /* 2664 * We also track th most recent recorded KHZ, write and time to 2665 * allow the matching interval to be extended at each write. 2666 */ 2667 kvm->arch.last_tsc_nsec = ns; 2668 kvm->arch.last_tsc_write = tsc; 2669 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2670 kvm->arch.last_tsc_offset = offset; 2671 2672 vcpu->arch.last_guest_tsc = tsc; 2673 2674 kvm_vcpu_write_tsc_offset(vcpu, offset); 2675 2676 if (!matched) { 2677 /* 2678 * We split periods of matched TSC writes into generations. 2679 * For each generation, we track the original measured 2680 * nanosecond time, offset, and write, so if TSCs are in 2681 * sync, we can match exact offset, and if not, we can match 2682 * exact software computation in compute_guest_tsc() 2683 * 2684 * These values are tracked in kvm->arch.cur_xxx variables. 2685 */ 2686 kvm->arch.cur_tsc_generation++; 2687 kvm->arch.cur_tsc_nsec = ns; 2688 kvm->arch.cur_tsc_write = tsc; 2689 kvm->arch.cur_tsc_offset = offset; 2690 kvm->arch.nr_vcpus_matched_tsc = 0; 2691 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2692 kvm->arch.nr_vcpus_matched_tsc++; 2693 } 2694 2695 /* Keep track of which generation this VCPU has synchronized to */ 2696 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2697 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2698 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2699 2700 kvm_track_tsc_matching(vcpu); 2701 } 2702 2703 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2704 { 2705 struct kvm *kvm = vcpu->kvm; 2706 u64 offset, ns, elapsed; 2707 unsigned long flags; 2708 bool matched = false; 2709 bool synchronizing = false; 2710 2711 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2712 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2713 ns = get_kvmclock_base_ns(); 2714 elapsed = ns - kvm->arch.last_tsc_nsec; 2715 2716 if (vcpu->arch.virtual_tsc_khz) { 2717 if (data == 0) { 2718 /* 2719 * detection of vcpu initialization -- need to sync 2720 * with other vCPUs. This particularly helps to keep 2721 * kvm_clock stable after CPU hotplug 2722 */ 2723 synchronizing = true; 2724 } else { 2725 u64 tsc_exp = kvm->arch.last_tsc_write + 2726 nsec_to_cycles(vcpu, elapsed); 2727 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2728 /* 2729 * Special case: TSC write with a small delta (1 second) 2730 * of virtual cycle time against real time is 2731 * interpreted as an attempt to synchronize the CPU. 2732 */ 2733 synchronizing = data < tsc_exp + tsc_hz && 2734 data + tsc_hz > tsc_exp; 2735 } 2736 } 2737 2738 /* 2739 * For a reliable TSC, we can match TSC offsets, and for an unstable 2740 * TSC, we add elapsed time in this computation. We could let the 2741 * compensation code attempt to catch up if we fall behind, but 2742 * it's better to try to match offsets from the beginning. 2743 */ 2744 if (synchronizing && 2745 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2746 if (!kvm_check_tsc_unstable()) { 2747 offset = kvm->arch.cur_tsc_offset; 2748 } else { 2749 u64 delta = nsec_to_cycles(vcpu, elapsed); 2750 data += delta; 2751 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2752 } 2753 matched = true; 2754 } 2755 2756 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2757 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2758 } 2759 2760 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2761 s64 adjustment) 2762 { 2763 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2764 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2765 } 2766 2767 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2768 { 2769 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2770 WARN_ON(adjustment < 0); 2771 adjustment = kvm_scale_tsc((u64) adjustment, 2772 vcpu->arch.l1_tsc_scaling_ratio); 2773 adjust_tsc_offset_guest(vcpu, adjustment); 2774 } 2775 2776 #ifdef CONFIG_X86_64 2777 2778 static u64 read_tsc(void) 2779 { 2780 u64 ret = (u64)rdtsc_ordered(); 2781 u64 last = pvclock_gtod_data.clock.cycle_last; 2782 2783 if (likely(ret >= last)) 2784 return ret; 2785 2786 /* 2787 * GCC likes to generate cmov here, but this branch is extremely 2788 * predictable (it's just a function of time and the likely is 2789 * very likely) and there's a data dependence, so force GCC 2790 * to generate a branch instead. I don't barrier() because 2791 * we don't actually need a barrier, and if this function 2792 * ever gets inlined it will generate worse code. 2793 */ 2794 asm volatile (""); 2795 return last; 2796 } 2797 2798 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2799 int *mode) 2800 { 2801 u64 tsc_pg_val; 2802 long v; 2803 2804 switch (clock->vclock_mode) { 2805 case VDSO_CLOCKMODE_HVCLOCK: 2806 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2807 tsc_timestamp, &tsc_pg_val)) { 2808 /* TSC page valid */ 2809 *mode = VDSO_CLOCKMODE_HVCLOCK; 2810 v = (tsc_pg_val - clock->cycle_last) & 2811 clock->mask; 2812 } else { 2813 /* TSC page invalid */ 2814 *mode = VDSO_CLOCKMODE_NONE; 2815 } 2816 break; 2817 case VDSO_CLOCKMODE_TSC: 2818 *mode = VDSO_CLOCKMODE_TSC; 2819 *tsc_timestamp = read_tsc(); 2820 v = (*tsc_timestamp - clock->cycle_last) & 2821 clock->mask; 2822 break; 2823 default: 2824 *mode = VDSO_CLOCKMODE_NONE; 2825 } 2826 2827 if (*mode == VDSO_CLOCKMODE_NONE) 2828 *tsc_timestamp = v = 0; 2829 2830 return v * clock->mult; 2831 } 2832 2833 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2834 { 2835 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2836 unsigned long seq; 2837 int mode; 2838 u64 ns; 2839 2840 do { 2841 seq = read_seqcount_begin(>od->seq); 2842 ns = gtod->raw_clock.base_cycles; 2843 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2844 ns >>= gtod->raw_clock.shift; 2845 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2846 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2847 *t = ns; 2848 2849 return mode; 2850 } 2851 2852 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2853 { 2854 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2855 unsigned long seq; 2856 int mode; 2857 u64 ns; 2858 2859 do { 2860 seq = read_seqcount_begin(>od->seq); 2861 ts->tv_sec = gtod->wall_time_sec; 2862 ns = gtod->clock.base_cycles; 2863 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2864 ns >>= gtod->clock.shift; 2865 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2866 2867 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2868 ts->tv_nsec = ns; 2869 2870 return mode; 2871 } 2872 2873 /* returns true if host is using TSC based clocksource */ 2874 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2875 { 2876 /* checked again under seqlock below */ 2877 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2878 return false; 2879 2880 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2881 tsc_timestamp)); 2882 } 2883 2884 /* returns true if host is using TSC based clocksource */ 2885 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2886 u64 *tsc_timestamp) 2887 { 2888 /* checked again under seqlock below */ 2889 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2890 return false; 2891 2892 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2893 } 2894 #endif 2895 2896 /* 2897 * 2898 * Assuming a stable TSC across physical CPUS, and a stable TSC 2899 * across virtual CPUs, the following condition is possible. 2900 * Each numbered line represents an event visible to both 2901 * CPUs at the next numbered event. 2902 * 2903 * "timespecX" represents host monotonic time. "tscX" represents 2904 * RDTSC value. 2905 * 2906 * VCPU0 on CPU0 | VCPU1 on CPU1 2907 * 2908 * 1. read timespec0,tsc0 2909 * 2. | timespec1 = timespec0 + N 2910 * | tsc1 = tsc0 + M 2911 * 3. transition to guest | transition to guest 2912 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2913 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2914 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2915 * 2916 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2917 * 2918 * - ret0 < ret1 2919 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2920 * ... 2921 * - 0 < N - M => M < N 2922 * 2923 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2924 * always the case (the difference between two distinct xtime instances 2925 * might be smaller then the difference between corresponding TSC reads, 2926 * when updating guest vcpus pvclock areas). 2927 * 2928 * To avoid that problem, do not allow visibility of distinct 2929 * system_timestamp/tsc_timestamp values simultaneously: use a master 2930 * copy of host monotonic time values. Update that master copy 2931 * in lockstep. 2932 * 2933 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2934 * 2935 */ 2936 2937 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2938 { 2939 #ifdef CONFIG_X86_64 2940 struct kvm_arch *ka = &kvm->arch; 2941 int vclock_mode; 2942 bool host_tsc_clocksource, vcpus_matched; 2943 2944 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2945 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2946 atomic_read(&kvm->online_vcpus)); 2947 2948 /* 2949 * If the host uses TSC clock, then passthrough TSC as stable 2950 * to the guest. 2951 */ 2952 host_tsc_clocksource = kvm_get_time_and_clockread( 2953 &ka->master_kernel_ns, 2954 &ka->master_cycle_now); 2955 2956 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2957 && !ka->backwards_tsc_observed 2958 && !ka->boot_vcpu_runs_old_kvmclock; 2959 2960 if (ka->use_master_clock) 2961 atomic_set(&kvm_guest_has_master_clock, 1); 2962 2963 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2964 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2965 vcpus_matched); 2966 #endif 2967 } 2968 2969 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2970 { 2971 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2972 } 2973 2974 static void __kvm_start_pvclock_update(struct kvm *kvm) 2975 { 2976 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2977 write_seqcount_begin(&kvm->arch.pvclock_sc); 2978 } 2979 2980 static void kvm_start_pvclock_update(struct kvm *kvm) 2981 { 2982 kvm_make_mclock_inprogress_request(kvm); 2983 2984 /* no guest entries from this point */ 2985 __kvm_start_pvclock_update(kvm); 2986 } 2987 2988 static void kvm_end_pvclock_update(struct kvm *kvm) 2989 { 2990 struct kvm_arch *ka = &kvm->arch; 2991 struct kvm_vcpu *vcpu; 2992 unsigned long i; 2993 2994 write_seqcount_end(&ka->pvclock_sc); 2995 raw_spin_unlock_irq(&ka->tsc_write_lock); 2996 kvm_for_each_vcpu(i, vcpu, kvm) 2997 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2998 2999 /* guest entries allowed */ 3000 kvm_for_each_vcpu(i, vcpu, kvm) 3001 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3002 } 3003 3004 static void kvm_update_masterclock(struct kvm *kvm) 3005 { 3006 kvm_hv_request_tsc_page_update(kvm); 3007 kvm_start_pvclock_update(kvm); 3008 pvclock_update_vm_gtod_copy(kvm); 3009 kvm_end_pvclock_update(kvm); 3010 } 3011 3012 /* 3013 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3014 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3015 * can change during boot even if the TSC is constant, as it's possible for KVM 3016 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3017 * notification when calibration completes, but practically speaking calibration 3018 * will complete before userspace is alive enough to create VMs. 3019 */ 3020 static unsigned long get_cpu_tsc_khz(void) 3021 { 3022 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3023 return tsc_khz; 3024 else 3025 return __this_cpu_read(cpu_tsc_khz); 3026 } 3027 3028 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3029 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3030 { 3031 struct kvm_arch *ka = &kvm->arch; 3032 struct pvclock_vcpu_time_info hv_clock; 3033 3034 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3035 get_cpu(); 3036 3037 data->flags = 0; 3038 if (ka->use_master_clock && 3039 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3040 #ifdef CONFIG_X86_64 3041 struct timespec64 ts; 3042 3043 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3044 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3045 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3046 } else 3047 #endif 3048 data->host_tsc = rdtsc(); 3049 3050 data->flags |= KVM_CLOCK_TSC_STABLE; 3051 hv_clock.tsc_timestamp = ka->master_cycle_now; 3052 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3053 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3054 &hv_clock.tsc_shift, 3055 &hv_clock.tsc_to_system_mul); 3056 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3057 } else { 3058 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3059 } 3060 3061 put_cpu(); 3062 } 3063 3064 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3065 { 3066 struct kvm_arch *ka = &kvm->arch; 3067 unsigned seq; 3068 3069 do { 3070 seq = read_seqcount_begin(&ka->pvclock_sc); 3071 __get_kvmclock(kvm, data); 3072 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3073 } 3074 3075 u64 get_kvmclock_ns(struct kvm *kvm) 3076 { 3077 struct kvm_clock_data data; 3078 3079 get_kvmclock(kvm, &data); 3080 return data.clock; 3081 } 3082 3083 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3084 struct gfn_to_pfn_cache *gpc, 3085 unsigned int offset) 3086 { 3087 struct kvm_vcpu_arch *vcpu = &v->arch; 3088 struct pvclock_vcpu_time_info *guest_hv_clock; 3089 unsigned long flags; 3090 3091 read_lock_irqsave(&gpc->lock, flags); 3092 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3093 read_unlock_irqrestore(&gpc->lock, flags); 3094 3095 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3096 return; 3097 3098 read_lock_irqsave(&gpc->lock, flags); 3099 } 3100 3101 guest_hv_clock = (void *)(gpc->khva + offset); 3102 3103 /* 3104 * This VCPU is paused, but it's legal for a guest to read another 3105 * VCPU's kvmclock, so we really have to follow the specification where 3106 * it says that version is odd if data is being modified, and even after 3107 * it is consistent. 3108 */ 3109 3110 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3111 smp_wmb(); 3112 3113 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3114 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3115 3116 if (vcpu->pvclock_set_guest_stopped_request) { 3117 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3118 vcpu->pvclock_set_guest_stopped_request = false; 3119 } 3120 3121 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3122 smp_wmb(); 3123 3124 guest_hv_clock->version = ++vcpu->hv_clock.version; 3125 3126 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3127 read_unlock_irqrestore(&gpc->lock, flags); 3128 3129 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3130 } 3131 3132 static int kvm_guest_time_update(struct kvm_vcpu *v) 3133 { 3134 unsigned long flags, tgt_tsc_khz; 3135 unsigned seq; 3136 struct kvm_vcpu_arch *vcpu = &v->arch; 3137 struct kvm_arch *ka = &v->kvm->arch; 3138 s64 kernel_ns; 3139 u64 tsc_timestamp, host_tsc; 3140 u8 pvclock_flags; 3141 bool use_master_clock; 3142 3143 kernel_ns = 0; 3144 host_tsc = 0; 3145 3146 /* 3147 * If the host uses TSC clock, then passthrough TSC as stable 3148 * to the guest. 3149 */ 3150 do { 3151 seq = read_seqcount_begin(&ka->pvclock_sc); 3152 use_master_clock = ka->use_master_clock; 3153 if (use_master_clock) { 3154 host_tsc = ka->master_cycle_now; 3155 kernel_ns = ka->master_kernel_ns; 3156 } 3157 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3158 3159 /* Keep irq disabled to prevent changes to the clock */ 3160 local_irq_save(flags); 3161 tgt_tsc_khz = get_cpu_tsc_khz(); 3162 if (unlikely(tgt_tsc_khz == 0)) { 3163 local_irq_restore(flags); 3164 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3165 return 1; 3166 } 3167 if (!use_master_clock) { 3168 host_tsc = rdtsc(); 3169 kernel_ns = get_kvmclock_base_ns(); 3170 } 3171 3172 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3173 3174 /* 3175 * We may have to catch up the TSC to match elapsed wall clock 3176 * time for two reasons, even if kvmclock is used. 3177 * 1) CPU could have been running below the maximum TSC rate 3178 * 2) Broken TSC compensation resets the base at each VCPU 3179 * entry to avoid unknown leaps of TSC even when running 3180 * again on the same CPU. This may cause apparent elapsed 3181 * time to disappear, and the guest to stand still or run 3182 * very slowly. 3183 */ 3184 if (vcpu->tsc_catchup) { 3185 u64 tsc = compute_guest_tsc(v, kernel_ns); 3186 if (tsc > tsc_timestamp) { 3187 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3188 tsc_timestamp = tsc; 3189 } 3190 } 3191 3192 local_irq_restore(flags); 3193 3194 /* With all the info we got, fill in the values */ 3195 3196 if (kvm_caps.has_tsc_control) 3197 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3198 v->arch.l1_tsc_scaling_ratio); 3199 3200 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3201 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3202 &vcpu->hv_clock.tsc_shift, 3203 &vcpu->hv_clock.tsc_to_system_mul); 3204 vcpu->hw_tsc_khz = tgt_tsc_khz; 3205 kvm_xen_update_tsc_info(v); 3206 } 3207 3208 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3209 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3210 vcpu->last_guest_tsc = tsc_timestamp; 3211 3212 /* If the host uses TSC clocksource, then it is stable */ 3213 pvclock_flags = 0; 3214 if (use_master_clock) 3215 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3216 3217 vcpu->hv_clock.flags = pvclock_flags; 3218 3219 if (vcpu->pv_time.active) 3220 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3221 if (vcpu->xen.vcpu_info_cache.active) 3222 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3223 offsetof(struct compat_vcpu_info, time)); 3224 if (vcpu->xen.vcpu_time_info_cache.active) 3225 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3226 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3227 return 0; 3228 } 3229 3230 /* 3231 * kvmclock updates which are isolated to a given vcpu, such as 3232 * vcpu->cpu migration, should not allow system_timestamp from 3233 * the rest of the vcpus to remain static. Otherwise ntp frequency 3234 * correction applies to one vcpu's system_timestamp but not 3235 * the others. 3236 * 3237 * So in those cases, request a kvmclock update for all vcpus. 3238 * We need to rate-limit these requests though, as they can 3239 * considerably slow guests that have a large number of vcpus. 3240 * The time for a remote vcpu to update its kvmclock is bound 3241 * by the delay we use to rate-limit the updates. 3242 */ 3243 3244 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3245 3246 static void kvmclock_update_fn(struct work_struct *work) 3247 { 3248 unsigned long i; 3249 struct delayed_work *dwork = to_delayed_work(work); 3250 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3251 kvmclock_update_work); 3252 struct kvm *kvm = container_of(ka, struct kvm, arch); 3253 struct kvm_vcpu *vcpu; 3254 3255 kvm_for_each_vcpu(i, vcpu, kvm) { 3256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3257 kvm_vcpu_kick(vcpu); 3258 } 3259 } 3260 3261 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3262 { 3263 struct kvm *kvm = v->kvm; 3264 3265 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3266 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3267 KVMCLOCK_UPDATE_DELAY); 3268 } 3269 3270 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3271 3272 static void kvmclock_sync_fn(struct work_struct *work) 3273 { 3274 struct delayed_work *dwork = to_delayed_work(work); 3275 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3276 kvmclock_sync_work); 3277 struct kvm *kvm = container_of(ka, struct kvm, arch); 3278 3279 if (!kvmclock_periodic_sync) 3280 return; 3281 3282 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3283 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3284 KVMCLOCK_SYNC_PERIOD); 3285 } 3286 3287 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3288 static bool is_mci_control_msr(u32 msr) 3289 { 3290 return (msr & 3) == 0; 3291 } 3292 static bool is_mci_status_msr(u32 msr) 3293 { 3294 return (msr & 3) == 1; 3295 } 3296 3297 /* 3298 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3299 */ 3300 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3301 { 3302 /* McStatusWrEn enabled? */ 3303 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3304 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3305 3306 return false; 3307 } 3308 3309 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3310 { 3311 u64 mcg_cap = vcpu->arch.mcg_cap; 3312 unsigned bank_num = mcg_cap & 0xff; 3313 u32 msr = msr_info->index; 3314 u64 data = msr_info->data; 3315 u32 offset, last_msr; 3316 3317 switch (msr) { 3318 case MSR_IA32_MCG_STATUS: 3319 vcpu->arch.mcg_status = data; 3320 break; 3321 case MSR_IA32_MCG_CTL: 3322 if (!(mcg_cap & MCG_CTL_P) && 3323 (data || !msr_info->host_initiated)) 3324 return 1; 3325 if (data != 0 && data != ~(u64)0) 3326 return 1; 3327 vcpu->arch.mcg_ctl = data; 3328 break; 3329 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3330 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3331 if (msr > last_msr) 3332 return 1; 3333 3334 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3335 return 1; 3336 /* An attempt to write a 1 to a reserved bit raises #GP */ 3337 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3338 return 1; 3339 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3340 last_msr + 1 - MSR_IA32_MC0_CTL2); 3341 vcpu->arch.mci_ctl2_banks[offset] = data; 3342 break; 3343 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3344 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3345 if (msr > last_msr) 3346 return 1; 3347 3348 /* 3349 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3350 * values are architecturally undefined. But, some Linux 3351 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3352 * issue on AMD K8s, allow bit 10 to be clear when setting all 3353 * other bits in order to avoid an uncaught #GP in the guest. 3354 * 3355 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3356 * single-bit ECC data errors. 3357 */ 3358 if (is_mci_control_msr(msr) && 3359 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3360 return 1; 3361 3362 /* 3363 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3364 * AMD-based CPUs allow non-zero values, but if and only if 3365 * HWCR[McStatusWrEn] is set. 3366 */ 3367 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3368 data != 0 && !can_set_mci_status(vcpu)) 3369 return 1; 3370 3371 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3372 last_msr + 1 - MSR_IA32_MC0_CTL); 3373 vcpu->arch.mce_banks[offset] = data; 3374 break; 3375 default: 3376 return 1; 3377 } 3378 return 0; 3379 } 3380 3381 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3382 { 3383 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3384 3385 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3386 } 3387 3388 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3389 { 3390 gpa_t gpa = data & ~0x3f; 3391 3392 /* Bits 4:5 are reserved, Should be zero */ 3393 if (data & 0x30) 3394 return 1; 3395 3396 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3397 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3398 return 1; 3399 3400 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3401 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3402 return 1; 3403 3404 if (!lapic_in_kernel(vcpu)) 3405 return data ? 1 : 0; 3406 3407 vcpu->arch.apf.msr_en_val = data; 3408 3409 if (!kvm_pv_async_pf_enabled(vcpu)) { 3410 kvm_clear_async_pf_completion_queue(vcpu); 3411 kvm_async_pf_hash_reset(vcpu); 3412 return 0; 3413 } 3414 3415 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3416 sizeof(u64))) 3417 return 1; 3418 3419 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3420 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3421 3422 kvm_async_pf_wakeup_all(vcpu); 3423 3424 return 0; 3425 } 3426 3427 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3428 { 3429 /* Bits 8-63 are reserved */ 3430 if (data >> 8) 3431 return 1; 3432 3433 if (!lapic_in_kernel(vcpu)) 3434 return 1; 3435 3436 vcpu->arch.apf.msr_int_val = data; 3437 3438 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3439 3440 return 0; 3441 } 3442 3443 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3444 { 3445 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3446 vcpu->arch.time = 0; 3447 } 3448 3449 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3450 { 3451 ++vcpu->stat.tlb_flush; 3452 static_call(kvm_x86_flush_tlb_all)(vcpu); 3453 3454 /* Flushing all ASIDs flushes the current ASID... */ 3455 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3456 } 3457 3458 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3459 { 3460 ++vcpu->stat.tlb_flush; 3461 3462 if (!tdp_enabled) { 3463 /* 3464 * A TLB flush on behalf of the guest is equivalent to 3465 * INVPCID(all), toggling CR4.PGE, etc., which requires 3466 * a forced sync of the shadow page tables. Ensure all the 3467 * roots are synced and the guest TLB in hardware is clean. 3468 */ 3469 kvm_mmu_sync_roots(vcpu); 3470 kvm_mmu_sync_prev_roots(vcpu); 3471 } 3472 3473 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3474 3475 /* 3476 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3477 * grained flushing. 3478 */ 3479 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3480 } 3481 3482 3483 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3484 { 3485 ++vcpu->stat.tlb_flush; 3486 static_call(kvm_x86_flush_tlb_current)(vcpu); 3487 } 3488 3489 /* 3490 * Service "local" TLB flush requests, which are specific to the current MMU 3491 * context. In addition to the generic event handling in vcpu_enter_guest(), 3492 * TLB flushes that are targeted at an MMU context also need to be serviced 3493 * prior before nested VM-Enter/VM-Exit. 3494 */ 3495 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3496 { 3497 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3498 kvm_vcpu_flush_tlb_current(vcpu); 3499 3500 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3501 kvm_vcpu_flush_tlb_guest(vcpu); 3502 } 3503 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3504 3505 static void record_steal_time(struct kvm_vcpu *vcpu) 3506 { 3507 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3508 struct kvm_steal_time __user *st; 3509 struct kvm_memslots *slots; 3510 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3511 u64 steal; 3512 u32 version; 3513 3514 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3515 kvm_xen_runstate_set_running(vcpu); 3516 return; 3517 } 3518 3519 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3520 return; 3521 3522 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3523 return; 3524 3525 slots = kvm_memslots(vcpu->kvm); 3526 3527 if (unlikely(slots->generation != ghc->generation || 3528 gpa != ghc->gpa || 3529 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3530 /* We rely on the fact that it fits in a single page. */ 3531 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3532 3533 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3534 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3535 return; 3536 } 3537 3538 st = (struct kvm_steal_time __user *)ghc->hva; 3539 /* 3540 * Doing a TLB flush here, on the guest's behalf, can avoid 3541 * expensive IPIs. 3542 */ 3543 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3544 u8 st_preempted = 0; 3545 int err = -EFAULT; 3546 3547 if (!user_access_begin(st, sizeof(*st))) 3548 return; 3549 3550 asm volatile("1: xchgb %0, %2\n" 3551 "xor %1, %1\n" 3552 "2:\n" 3553 _ASM_EXTABLE_UA(1b, 2b) 3554 : "+q" (st_preempted), 3555 "+&r" (err), 3556 "+m" (st->preempted)); 3557 if (err) 3558 goto out; 3559 3560 user_access_end(); 3561 3562 vcpu->arch.st.preempted = 0; 3563 3564 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3565 st_preempted & KVM_VCPU_FLUSH_TLB); 3566 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3567 kvm_vcpu_flush_tlb_guest(vcpu); 3568 3569 if (!user_access_begin(st, sizeof(*st))) 3570 goto dirty; 3571 } else { 3572 if (!user_access_begin(st, sizeof(*st))) 3573 return; 3574 3575 unsafe_put_user(0, &st->preempted, out); 3576 vcpu->arch.st.preempted = 0; 3577 } 3578 3579 unsafe_get_user(version, &st->version, out); 3580 if (version & 1) 3581 version += 1; /* first time write, random junk */ 3582 3583 version += 1; 3584 unsafe_put_user(version, &st->version, out); 3585 3586 smp_wmb(); 3587 3588 unsafe_get_user(steal, &st->steal, out); 3589 steal += current->sched_info.run_delay - 3590 vcpu->arch.st.last_steal; 3591 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3592 unsafe_put_user(steal, &st->steal, out); 3593 3594 version += 1; 3595 unsafe_put_user(version, &st->version, out); 3596 3597 out: 3598 user_access_end(); 3599 dirty: 3600 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3601 } 3602 3603 static bool kvm_is_msr_to_save(u32 msr_index) 3604 { 3605 unsigned int i; 3606 3607 for (i = 0; i < num_msrs_to_save; i++) { 3608 if (msrs_to_save[i] == msr_index) 3609 return true; 3610 } 3611 3612 return false; 3613 } 3614 3615 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3616 { 3617 u32 msr = msr_info->index; 3618 u64 data = msr_info->data; 3619 3620 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3621 return kvm_xen_write_hypercall_page(vcpu, data); 3622 3623 switch (msr) { 3624 case MSR_AMD64_NB_CFG: 3625 case MSR_IA32_UCODE_WRITE: 3626 case MSR_VM_HSAVE_PA: 3627 case MSR_AMD64_PATCH_LOADER: 3628 case MSR_AMD64_BU_CFG2: 3629 case MSR_AMD64_DC_CFG: 3630 case MSR_F15H_EX_CFG: 3631 break; 3632 3633 case MSR_IA32_UCODE_REV: 3634 if (msr_info->host_initiated) 3635 vcpu->arch.microcode_version = data; 3636 break; 3637 case MSR_IA32_ARCH_CAPABILITIES: 3638 if (!msr_info->host_initiated) 3639 return 1; 3640 vcpu->arch.arch_capabilities = data; 3641 break; 3642 case MSR_IA32_PERF_CAPABILITIES: 3643 if (!msr_info->host_initiated) 3644 return 1; 3645 if (data & ~kvm_caps.supported_perf_cap) 3646 return 1; 3647 3648 /* 3649 * Note, this is not just a performance optimization! KVM 3650 * disallows changing feature MSRs after the vCPU has run; PMU 3651 * refresh will bug the VM if called after the vCPU has run. 3652 */ 3653 if (vcpu->arch.perf_capabilities == data) 3654 break; 3655 3656 vcpu->arch.perf_capabilities = data; 3657 kvm_pmu_refresh(vcpu); 3658 break; 3659 case MSR_IA32_PRED_CMD: 3660 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3661 return 1; 3662 3663 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3664 return 1; 3665 if (!data) 3666 break; 3667 3668 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3669 break; 3670 case MSR_IA32_FLUSH_CMD: 3671 if (!msr_info->host_initiated && 3672 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3673 return 1; 3674 3675 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3676 return 1; 3677 if (!data) 3678 break; 3679 3680 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3681 break; 3682 case MSR_EFER: 3683 return set_efer(vcpu, msr_info); 3684 case MSR_K7_HWCR: 3685 data &= ~(u64)0x40; /* ignore flush filter disable */ 3686 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3687 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3688 3689 /* Handle McStatusWrEn */ 3690 if (data == BIT_ULL(18)) { 3691 vcpu->arch.msr_hwcr = data; 3692 } else if (data != 0) { 3693 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3694 return 1; 3695 } 3696 break; 3697 case MSR_FAM10H_MMIO_CONF_BASE: 3698 if (data != 0) { 3699 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3700 return 1; 3701 } 3702 break; 3703 case MSR_IA32_CR_PAT: 3704 if (!kvm_pat_valid(data)) 3705 return 1; 3706 3707 vcpu->arch.pat = data; 3708 break; 3709 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3710 case MSR_MTRRdefType: 3711 return kvm_mtrr_set_msr(vcpu, msr, data); 3712 case MSR_IA32_APICBASE: 3713 return kvm_set_apic_base(vcpu, msr_info); 3714 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3715 return kvm_x2apic_msr_write(vcpu, msr, data); 3716 case MSR_IA32_TSC_DEADLINE: 3717 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3718 break; 3719 case MSR_IA32_TSC_ADJUST: 3720 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3721 if (!msr_info->host_initiated) { 3722 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3723 adjust_tsc_offset_guest(vcpu, adj); 3724 /* Before back to guest, tsc_timestamp must be adjusted 3725 * as well, otherwise guest's percpu pvclock time could jump. 3726 */ 3727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3728 } 3729 vcpu->arch.ia32_tsc_adjust_msr = data; 3730 } 3731 break; 3732 case MSR_IA32_MISC_ENABLE: { 3733 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3734 3735 if (!msr_info->host_initiated) { 3736 /* RO bits */ 3737 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3738 return 1; 3739 3740 /* R bits, i.e. writes are ignored, but don't fault. */ 3741 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3742 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3743 } 3744 3745 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3746 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3747 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3748 return 1; 3749 vcpu->arch.ia32_misc_enable_msr = data; 3750 kvm_update_cpuid_runtime(vcpu); 3751 } else { 3752 vcpu->arch.ia32_misc_enable_msr = data; 3753 } 3754 break; 3755 } 3756 case MSR_IA32_SMBASE: 3757 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3758 return 1; 3759 vcpu->arch.smbase = data; 3760 break; 3761 case MSR_IA32_POWER_CTL: 3762 vcpu->arch.msr_ia32_power_ctl = data; 3763 break; 3764 case MSR_IA32_TSC: 3765 if (msr_info->host_initiated) { 3766 kvm_synchronize_tsc(vcpu, data); 3767 } else { 3768 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3769 adjust_tsc_offset_guest(vcpu, adj); 3770 vcpu->arch.ia32_tsc_adjust_msr += adj; 3771 } 3772 break; 3773 case MSR_IA32_XSS: 3774 if (!msr_info->host_initiated && 3775 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3776 return 1; 3777 /* 3778 * KVM supports exposing PT to the guest, but does not support 3779 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3780 * XSAVES/XRSTORS to save/restore PT MSRs. 3781 */ 3782 if (data & ~kvm_caps.supported_xss) 3783 return 1; 3784 vcpu->arch.ia32_xss = data; 3785 kvm_update_cpuid_runtime(vcpu); 3786 break; 3787 case MSR_SMI_COUNT: 3788 if (!msr_info->host_initiated) 3789 return 1; 3790 vcpu->arch.smi_count = data; 3791 break; 3792 case MSR_KVM_WALL_CLOCK_NEW: 3793 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3794 return 1; 3795 3796 vcpu->kvm->arch.wall_clock = data; 3797 kvm_write_wall_clock(vcpu->kvm, data, 0); 3798 break; 3799 case MSR_KVM_WALL_CLOCK: 3800 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3801 return 1; 3802 3803 vcpu->kvm->arch.wall_clock = data; 3804 kvm_write_wall_clock(vcpu->kvm, data, 0); 3805 break; 3806 case MSR_KVM_SYSTEM_TIME_NEW: 3807 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3808 return 1; 3809 3810 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3811 break; 3812 case MSR_KVM_SYSTEM_TIME: 3813 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3814 return 1; 3815 3816 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3817 break; 3818 case MSR_KVM_ASYNC_PF_EN: 3819 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3820 return 1; 3821 3822 if (kvm_pv_enable_async_pf(vcpu, data)) 3823 return 1; 3824 break; 3825 case MSR_KVM_ASYNC_PF_INT: 3826 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3827 return 1; 3828 3829 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3830 return 1; 3831 break; 3832 case MSR_KVM_ASYNC_PF_ACK: 3833 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3834 return 1; 3835 if (data & 0x1) { 3836 vcpu->arch.apf.pageready_pending = false; 3837 kvm_check_async_pf_completion(vcpu); 3838 } 3839 break; 3840 case MSR_KVM_STEAL_TIME: 3841 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3842 return 1; 3843 3844 if (unlikely(!sched_info_on())) 3845 return 1; 3846 3847 if (data & KVM_STEAL_RESERVED_MASK) 3848 return 1; 3849 3850 vcpu->arch.st.msr_val = data; 3851 3852 if (!(data & KVM_MSR_ENABLED)) 3853 break; 3854 3855 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3856 3857 break; 3858 case MSR_KVM_PV_EOI_EN: 3859 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3860 return 1; 3861 3862 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3863 return 1; 3864 break; 3865 3866 case MSR_KVM_POLL_CONTROL: 3867 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3868 return 1; 3869 3870 /* only enable bit supported */ 3871 if (data & (-1ULL << 1)) 3872 return 1; 3873 3874 vcpu->arch.msr_kvm_poll_control = data; 3875 break; 3876 3877 case MSR_IA32_MCG_CTL: 3878 case MSR_IA32_MCG_STATUS: 3879 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3880 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3881 return set_msr_mce(vcpu, msr_info); 3882 3883 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3884 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3885 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3886 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3887 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3888 return kvm_pmu_set_msr(vcpu, msr_info); 3889 3890 if (data) 3891 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3892 break; 3893 case MSR_K7_CLK_CTL: 3894 /* 3895 * Ignore all writes to this no longer documented MSR. 3896 * Writes are only relevant for old K7 processors, 3897 * all pre-dating SVM, but a recommended workaround from 3898 * AMD for these chips. It is possible to specify the 3899 * affected processor models on the command line, hence 3900 * the need to ignore the workaround. 3901 */ 3902 break; 3903 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3904 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3905 case HV_X64_MSR_SYNDBG_OPTIONS: 3906 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3907 case HV_X64_MSR_CRASH_CTL: 3908 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3909 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3910 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3911 case HV_X64_MSR_TSC_EMULATION_STATUS: 3912 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3913 return kvm_hv_set_msr_common(vcpu, msr, data, 3914 msr_info->host_initiated); 3915 case MSR_IA32_BBL_CR_CTL3: 3916 /* Drop writes to this legacy MSR -- see rdmsr 3917 * counterpart for further detail. 3918 */ 3919 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3920 break; 3921 case MSR_AMD64_OSVW_ID_LENGTH: 3922 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3923 return 1; 3924 vcpu->arch.osvw.length = data; 3925 break; 3926 case MSR_AMD64_OSVW_STATUS: 3927 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3928 return 1; 3929 vcpu->arch.osvw.status = data; 3930 break; 3931 case MSR_PLATFORM_INFO: 3932 if (!msr_info->host_initiated || 3933 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3934 cpuid_fault_enabled(vcpu))) 3935 return 1; 3936 vcpu->arch.msr_platform_info = data; 3937 break; 3938 case MSR_MISC_FEATURES_ENABLES: 3939 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3940 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3941 !supports_cpuid_fault(vcpu))) 3942 return 1; 3943 vcpu->arch.msr_misc_features_enables = data; 3944 break; 3945 #ifdef CONFIG_X86_64 3946 case MSR_IA32_XFD: 3947 if (!msr_info->host_initiated && 3948 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3949 return 1; 3950 3951 if (data & ~kvm_guest_supported_xfd(vcpu)) 3952 return 1; 3953 3954 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3955 break; 3956 case MSR_IA32_XFD_ERR: 3957 if (!msr_info->host_initiated && 3958 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3959 return 1; 3960 3961 if (data & ~kvm_guest_supported_xfd(vcpu)) 3962 return 1; 3963 3964 vcpu->arch.guest_fpu.xfd_err = data; 3965 break; 3966 #endif 3967 default: 3968 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3969 return kvm_pmu_set_msr(vcpu, msr_info); 3970 3971 /* 3972 * Userspace is allowed to write '0' to MSRs that KVM reports 3973 * as to-be-saved, even if an MSRs isn't fully supported. 3974 */ 3975 if (msr_info->host_initiated && !data && 3976 kvm_is_msr_to_save(msr)) 3977 break; 3978 3979 return KVM_MSR_RET_INVALID; 3980 } 3981 return 0; 3982 } 3983 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3984 3985 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3986 { 3987 u64 data; 3988 u64 mcg_cap = vcpu->arch.mcg_cap; 3989 unsigned bank_num = mcg_cap & 0xff; 3990 u32 offset, last_msr; 3991 3992 switch (msr) { 3993 case MSR_IA32_P5_MC_ADDR: 3994 case MSR_IA32_P5_MC_TYPE: 3995 data = 0; 3996 break; 3997 case MSR_IA32_MCG_CAP: 3998 data = vcpu->arch.mcg_cap; 3999 break; 4000 case MSR_IA32_MCG_CTL: 4001 if (!(mcg_cap & MCG_CTL_P) && !host) 4002 return 1; 4003 data = vcpu->arch.mcg_ctl; 4004 break; 4005 case MSR_IA32_MCG_STATUS: 4006 data = vcpu->arch.mcg_status; 4007 break; 4008 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4009 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4010 if (msr > last_msr) 4011 return 1; 4012 4013 if (!(mcg_cap & MCG_CMCI_P) && !host) 4014 return 1; 4015 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4016 last_msr + 1 - MSR_IA32_MC0_CTL2); 4017 data = vcpu->arch.mci_ctl2_banks[offset]; 4018 break; 4019 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4020 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4021 if (msr > last_msr) 4022 return 1; 4023 4024 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4025 last_msr + 1 - MSR_IA32_MC0_CTL); 4026 data = vcpu->arch.mce_banks[offset]; 4027 break; 4028 default: 4029 return 1; 4030 } 4031 *pdata = data; 4032 return 0; 4033 } 4034 4035 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4036 { 4037 switch (msr_info->index) { 4038 case MSR_IA32_PLATFORM_ID: 4039 case MSR_IA32_EBL_CR_POWERON: 4040 case MSR_IA32_LASTBRANCHFROMIP: 4041 case MSR_IA32_LASTBRANCHTOIP: 4042 case MSR_IA32_LASTINTFROMIP: 4043 case MSR_IA32_LASTINTTOIP: 4044 case MSR_AMD64_SYSCFG: 4045 case MSR_K8_TSEG_ADDR: 4046 case MSR_K8_TSEG_MASK: 4047 case MSR_VM_HSAVE_PA: 4048 case MSR_K8_INT_PENDING_MSG: 4049 case MSR_AMD64_NB_CFG: 4050 case MSR_FAM10H_MMIO_CONF_BASE: 4051 case MSR_AMD64_BU_CFG2: 4052 case MSR_IA32_PERF_CTL: 4053 case MSR_AMD64_DC_CFG: 4054 case MSR_F15H_EX_CFG: 4055 /* 4056 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4057 * limit) MSRs. Just return 0, as we do not want to expose the host 4058 * data here. Do not conditionalize this on CPUID, as KVM does not do 4059 * so for existing CPU-specific MSRs. 4060 */ 4061 case MSR_RAPL_POWER_UNIT: 4062 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4063 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4064 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4065 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4066 msr_info->data = 0; 4067 break; 4068 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4069 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4070 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4071 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4072 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4073 return kvm_pmu_get_msr(vcpu, msr_info); 4074 msr_info->data = 0; 4075 break; 4076 case MSR_IA32_UCODE_REV: 4077 msr_info->data = vcpu->arch.microcode_version; 4078 break; 4079 case MSR_IA32_ARCH_CAPABILITIES: 4080 if (!msr_info->host_initiated && 4081 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4082 return 1; 4083 msr_info->data = vcpu->arch.arch_capabilities; 4084 break; 4085 case MSR_IA32_PERF_CAPABILITIES: 4086 if (!msr_info->host_initiated && 4087 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4088 return 1; 4089 msr_info->data = vcpu->arch.perf_capabilities; 4090 break; 4091 case MSR_IA32_POWER_CTL: 4092 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4093 break; 4094 case MSR_IA32_TSC: { 4095 /* 4096 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4097 * even when not intercepted. AMD manual doesn't explicitly 4098 * state this but appears to behave the same. 4099 * 4100 * On userspace reads and writes, however, we unconditionally 4101 * return L1's TSC value to ensure backwards-compatible 4102 * behavior for migration. 4103 */ 4104 u64 offset, ratio; 4105 4106 if (msr_info->host_initiated) { 4107 offset = vcpu->arch.l1_tsc_offset; 4108 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4109 } else { 4110 offset = vcpu->arch.tsc_offset; 4111 ratio = vcpu->arch.tsc_scaling_ratio; 4112 } 4113 4114 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4115 break; 4116 } 4117 case MSR_IA32_CR_PAT: 4118 msr_info->data = vcpu->arch.pat; 4119 break; 4120 case MSR_MTRRcap: 4121 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4122 case MSR_MTRRdefType: 4123 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4124 case 0xcd: /* fsb frequency */ 4125 msr_info->data = 3; 4126 break; 4127 /* 4128 * MSR_EBC_FREQUENCY_ID 4129 * Conservative value valid for even the basic CPU models. 4130 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4131 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4132 * and 266MHz for model 3, or 4. Set Core Clock 4133 * Frequency to System Bus Frequency Ratio to 1 (bits 4134 * 31:24) even though these are only valid for CPU 4135 * models > 2, however guests may end up dividing or 4136 * multiplying by zero otherwise. 4137 */ 4138 case MSR_EBC_FREQUENCY_ID: 4139 msr_info->data = 1 << 24; 4140 break; 4141 case MSR_IA32_APICBASE: 4142 msr_info->data = kvm_get_apic_base(vcpu); 4143 break; 4144 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4145 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4146 case MSR_IA32_TSC_DEADLINE: 4147 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4148 break; 4149 case MSR_IA32_TSC_ADJUST: 4150 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4151 break; 4152 case MSR_IA32_MISC_ENABLE: 4153 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4154 break; 4155 case MSR_IA32_SMBASE: 4156 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4157 return 1; 4158 msr_info->data = vcpu->arch.smbase; 4159 break; 4160 case MSR_SMI_COUNT: 4161 msr_info->data = vcpu->arch.smi_count; 4162 break; 4163 case MSR_IA32_PERF_STATUS: 4164 /* TSC increment by tick */ 4165 msr_info->data = 1000ULL; 4166 /* CPU multiplier */ 4167 msr_info->data |= (((uint64_t)4ULL) << 40); 4168 break; 4169 case MSR_EFER: 4170 msr_info->data = vcpu->arch.efer; 4171 break; 4172 case MSR_KVM_WALL_CLOCK: 4173 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4174 return 1; 4175 4176 msr_info->data = vcpu->kvm->arch.wall_clock; 4177 break; 4178 case MSR_KVM_WALL_CLOCK_NEW: 4179 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4180 return 1; 4181 4182 msr_info->data = vcpu->kvm->arch.wall_clock; 4183 break; 4184 case MSR_KVM_SYSTEM_TIME: 4185 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4186 return 1; 4187 4188 msr_info->data = vcpu->arch.time; 4189 break; 4190 case MSR_KVM_SYSTEM_TIME_NEW: 4191 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4192 return 1; 4193 4194 msr_info->data = vcpu->arch.time; 4195 break; 4196 case MSR_KVM_ASYNC_PF_EN: 4197 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4198 return 1; 4199 4200 msr_info->data = vcpu->arch.apf.msr_en_val; 4201 break; 4202 case MSR_KVM_ASYNC_PF_INT: 4203 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4204 return 1; 4205 4206 msr_info->data = vcpu->arch.apf.msr_int_val; 4207 break; 4208 case MSR_KVM_ASYNC_PF_ACK: 4209 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4210 return 1; 4211 4212 msr_info->data = 0; 4213 break; 4214 case MSR_KVM_STEAL_TIME: 4215 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4216 return 1; 4217 4218 msr_info->data = vcpu->arch.st.msr_val; 4219 break; 4220 case MSR_KVM_PV_EOI_EN: 4221 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4222 return 1; 4223 4224 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4225 break; 4226 case MSR_KVM_POLL_CONTROL: 4227 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4228 return 1; 4229 4230 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4231 break; 4232 case MSR_IA32_P5_MC_ADDR: 4233 case MSR_IA32_P5_MC_TYPE: 4234 case MSR_IA32_MCG_CAP: 4235 case MSR_IA32_MCG_CTL: 4236 case MSR_IA32_MCG_STATUS: 4237 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4238 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4239 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4240 msr_info->host_initiated); 4241 case MSR_IA32_XSS: 4242 if (!msr_info->host_initiated && 4243 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4244 return 1; 4245 msr_info->data = vcpu->arch.ia32_xss; 4246 break; 4247 case MSR_K7_CLK_CTL: 4248 /* 4249 * Provide expected ramp-up count for K7. All other 4250 * are set to zero, indicating minimum divisors for 4251 * every field. 4252 * 4253 * This prevents guest kernels on AMD host with CPU 4254 * type 6, model 8 and higher from exploding due to 4255 * the rdmsr failing. 4256 */ 4257 msr_info->data = 0x20000000; 4258 break; 4259 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4260 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4261 case HV_X64_MSR_SYNDBG_OPTIONS: 4262 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4263 case HV_X64_MSR_CRASH_CTL: 4264 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4265 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4266 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4267 case HV_X64_MSR_TSC_EMULATION_STATUS: 4268 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4269 return kvm_hv_get_msr_common(vcpu, 4270 msr_info->index, &msr_info->data, 4271 msr_info->host_initiated); 4272 case MSR_IA32_BBL_CR_CTL3: 4273 /* This legacy MSR exists but isn't fully documented in current 4274 * silicon. It is however accessed by winxp in very narrow 4275 * scenarios where it sets bit #19, itself documented as 4276 * a "reserved" bit. Best effort attempt to source coherent 4277 * read data here should the balance of the register be 4278 * interpreted by the guest: 4279 * 4280 * L2 cache control register 3: 64GB range, 256KB size, 4281 * enabled, latency 0x1, configured 4282 */ 4283 msr_info->data = 0xbe702111; 4284 break; 4285 case MSR_AMD64_OSVW_ID_LENGTH: 4286 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4287 return 1; 4288 msr_info->data = vcpu->arch.osvw.length; 4289 break; 4290 case MSR_AMD64_OSVW_STATUS: 4291 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4292 return 1; 4293 msr_info->data = vcpu->arch.osvw.status; 4294 break; 4295 case MSR_PLATFORM_INFO: 4296 if (!msr_info->host_initiated && 4297 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4298 return 1; 4299 msr_info->data = vcpu->arch.msr_platform_info; 4300 break; 4301 case MSR_MISC_FEATURES_ENABLES: 4302 msr_info->data = vcpu->arch.msr_misc_features_enables; 4303 break; 4304 case MSR_K7_HWCR: 4305 msr_info->data = vcpu->arch.msr_hwcr; 4306 break; 4307 #ifdef CONFIG_X86_64 4308 case MSR_IA32_XFD: 4309 if (!msr_info->host_initiated && 4310 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4311 return 1; 4312 4313 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4314 break; 4315 case MSR_IA32_XFD_ERR: 4316 if (!msr_info->host_initiated && 4317 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4318 return 1; 4319 4320 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4321 break; 4322 #endif 4323 default: 4324 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4325 return kvm_pmu_get_msr(vcpu, msr_info); 4326 4327 /* 4328 * Userspace is allowed to read MSRs that KVM reports as 4329 * to-be-saved, even if an MSR isn't fully supported. 4330 */ 4331 if (msr_info->host_initiated && 4332 kvm_is_msr_to_save(msr_info->index)) { 4333 msr_info->data = 0; 4334 break; 4335 } 4336 4337 return KVM_MSR_RET_INVALID; 4338 } 4339 return 0; 4340 } 4341 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4342 4343 /* 4344 * Read or write a bunch of msrs. All parameters are kernel addresses. 4345 * 4346 * @return number of msrs set successfully. 4347 */ 4348 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4349 struct kvm_msr_entry *entries, 4350 int (*do_msr)(struct kvm_vcpu *vcpu, 4351 unsigned index, u64 *data)) 4352 { 4353 int i; 4354 4355 for (i = 0; i < msrs->nmsrs; ++i) 4356 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4357 break; 4358 4359 return i; 4360 } 4361 4362 /* 4363 * Read or write a bunch of msrs. Parameters are user addresses. 4364 * 4365 * @return number of msrs set successfully. 4366 */ 4367 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4368 int (*do_msr)(struct kvm_vcpu *vcpu, 4369 unsigned index, u64 *data), 4370 int writeback) 4371 { 4372 struct kvm_msrs msrs; 4373 struct kvm_msr_entry *entries; 4374 unsigned size; 4375 int r; 4376 4377 r = -EFAULT; 4378 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4379 goto out; 4380 4381 r = -E2BIG; 4382 if (msrs.nmsrs >= MAX_IO_MSRS) 4383 goto out; 4384 4385 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4386 entries = memdup_user(user_msrs->entries, size); 4387 if (IS_ERR(entries)) { 4388 r = PTR_ERR(entries); 4389 goto out; 4390 } 4391 4392 r = __msr_io(vcpu, &msrs, entries, do_msr); 4393 4394 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4395 r = -EFAULT; 4396 4397 kfree(entries); 4398 out: 4399 return r; 4400 } 4401 4402 static inline bool kvm_can_mwait_in_guest(void) 4403 { 4404 return boot_cpu_has(X86_FEATURE_MWAIT) && 4405 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4406 boot_cpu_has(X86_FEATURE_ARAT); 4407 } 4408 4409 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4410 struct kvm_cpuid2 __user *cpuid_arg) 4411 { 4412 struct kvm_cpuid2 cpuid; 4413 int r; 4414 4415 r = -EFAULT; 4416 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4417 return r; 4418 4419 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4420 if (r) 4421 return r; 4422 4423 r = -EFAULT; 4424 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4425 return r; 4426 4427 return 0; 4428 } 4429 4430 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4431 { 4432 int r = 0; 4433 4434 switch (ext) { 4435 case KVM_CAP_IRQCHIP: 4436 case KVM_CAP_HLT: 4437 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4438 case KVM_CAP_SET_TSS_ADDR: 4439 case KVM_CAP_EXT_CPUID: 4440 case KVM_CAP_EXT_EMUL_CPUID: 4441 case KVM_CAP_CLOCKSOURCE: 4442 case KVM_CAP_PIT: 4443 case KVM_CAP_NOP_IO_DELAY: 4444 case KVM_CAP_MP_STATE: 4445 case KVM_CAP_SYNC_MMU: 4446 case KVM_CAP_USER_NMI: 4447 case KVM_CAP_REINJECT_CONTROL: 4448 case KVM_CAP_IRQ_INJECT_STATUS: 4449 case KVM_CAP_IOEVENTFD: 4450 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4451 case KVM_CAP_PIT2: 4452 case KVM_CAP_PIT_STATE2: 4453 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4454 case KVM_CAP_VCPU_EVENTS: 4455 case KVM_CAP_HYPERV: 4456 case KVM_CAP_HYPERV_VAPIC: 4457 case KVM_CAP_HYPERV_SPIN: 4458 case KVM_CAP_HYPERV_SYNIC: 4459 case KVM_CAP_HYPERV_SYNIC2: 4460 case KVM_CAP_HYPERV_VP_INDEX: 4461 case KVM_CAP_HYPERV_EVENTFD: 4462 case KVM_CAP_HYPERV_TLBFLUSH: 4463 case KVM_CAP_HYPERV_SEND_IPI: 4464 case KVM_CAP_HYPERV_CPUID: 4465 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4466 case KVM_CAP_SYS_HYPERV_CPUID: 4467 case KVM_CAP_PCI_SEGMENT: 4468 case KVM_CAP_DEBUGREGS: 4469 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4470 case KVM_CAP_XSAVE: 4471 case KVM_CAP_ASYNC_PF: 4472 case KVM_CAP_ASYNC_PF_INT: 4473 case KVM_CAP_GET_TSC_KHZ: 4474 case KVM_CAP_KVMCLOCK_CTRL: 4475 case KVM_CAP_READONLY_MEM: 4476 case KVM_CAP_HYPERV_TIME: 4477 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4478 case KVM_CAP_TSC_DEADLINE_TIMER: 4479 case KVM_CAP_DISABLE_QUIRKS: 4480 case KVM_CAP_SET_BOOT_CPU_ID: 4481 case KVM_CAP_SPLIT_IRQCHIP: 4482 case KVM_CAP_IMMEDIATE_EXIT: 4483 case KVM_CAP_PMU_EVENT_FILTER: 4484 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4485 case KVM_CAP_GET_MSR_FEATURES: 4486 case KVM_CAP_MSR_PLATFORM_INFO: 4487 case KVM_CAP_EXCEPTION_PAYLOAD: 4488 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4489 case KVM_CAP_SET_GUEST_DEBUG: 4490 case KVM_CAP_LAST_CPU: 4491 case KVM_CAP_X86_USER_SPACE_MSR: 4492 case KVM_CAP_X86_MSR_FILTER: 4493 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4494 #ifdef CONFIG_X86_SGX_KVM 4495 case KVM_CAP_SGX_ATTRIBUTE: 4496 #endif 4497 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4498 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4499 case KVM_CAP_SREGS2: 4500 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4501 case KVM_CAP_VCPU_ATTRIBUTES: 4502 case KVM_CAP_SYS_ATTRIBUTES: 4503 case KVM_CAP_VAPIC: 4504 case KVM_CAP_ENABLE_CAP: 4505 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4506 case KVM_CAP_IRQFD_RESAMPLE: 4507 r = 1; 4508 break; 4509 case KVM_CAP_EXIT_HYPERCALL: 4510 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4511 break; 4512 case KVM_CAP_SET_GUEST_DEBUG2: 4513 return KVM_GUESTDBG_VALID_MASK; 4514 #ifdef CONFIG_KVM_XEN 4515 case KVM_CAP_XEN_HVM: 4516 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4517 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4518 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4519 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4520 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4521 if (sched_info_on()) 4522 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4523 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4524 break; 4525 #endif 4526 case KVM_CAP_SYNC_REGS: 4527 r = KVM_SYNC_X86_VALID_FIELDS; 4528 break; 4529 case KVM_CAP_ADJUST_CLOCK: 4530 r = KVM_CLOCK_VALID_FLAGS; 4531 break; 4532 case KVM_CAP_X86_DISABLE_EXITS: 4533 r = KVM_X86_DISABLE_EXITS_PAUSE; 4534 4535 if (!mitigate_smt_rsb) { 4536 r |= KVM_X86_DISABLE_EXITS_HLT | 4537 KVM_X86_DISABLE_EXITS_CSTATE; 4538 4539 if (kvm_can_mwait_in_guest()) 4540 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4541 } 4542 break; 4543 case KVM_CAP_X86_SMM: 4544 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4545 break; 4546 4547 /* SMBASE is usually relocated above 1M on modern chipsets, 4548 * and SMM handlers might indeed rely on 4G segment limits, 4549 * so do not report SMM to be available if real mode is 4550 * emulated via vm86 mode. Still, do not go to great lengths 4551 * to avoid userspace's usage of the feature, because it is a 4552 * fringe case that is not enabled except via specific settings 4553 * of the module parameters. 4554 */ 4555 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4556 break; 4557 case KVM_CAP_NR_VCPUS: 4558 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4559 break; 4560 case KVM_CAP_MAX_VCPUS: 4561 r = KVM_MAX_VCPUS; 4562 break; 4563 case KVM_CAP_MAX_VCPU_ID: 4564 r = KVM_MAX_VCPU_IDS; 4565 break; 4566 case KVM_CAP_PV_MMU: /* obsolete */ 4567 r = 0; 4568 break; 4569 case KVM_CAP_MCE: 4570 r = KVM_MAX_MCE_BANKS; 4571 break; 4572 case KVM_CAP_XCRS: 4573 r = boot_cpu_has(X86_FEATURE_XSAVE); 4574 break; 4575 case KVM_CAP_TSC_CONTROL: 4576 case KVM_CAP_VM_TSC_CONTROL: 4577 r = kvm_caps.has_tsc_control; 4578 break; 4579 case KVM_CAP_X2APIC_API: 4580 r = KVM_X2APIC_API_VALID_FLAGS; 4581 break; 4582 case KVM_CAP_NESTED_STATE: 4583 r = kvm_x86_ops.nested_ops->get_state ? 4584 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4585 break; 4586 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4587 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4588 break; 4589 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4590 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4591 break; 4592 case KVM_CAP_SMALLER_MAXPHYADDR: 4593 r = (int) allow_smaller_maxphyaddr; 4594 break; 4595 case KVM_CAP_STEAL_TIME: 4596 r = sched_info_on(); 4597 break; 4598 case KVM_CAP_X86_BUS_LOCK_EXIT: 4599 if (kvm_caps.has_bus_lock_exit) 4600 r = KVM_BUS_LOCK_DETECTION_OFF | 4601 KVM_BUS_LOCK_DETECTION_EXIT; 4602 else 4603 r = 0; 4604 break; 4605 case KVM_CAP_XSAVE2: { 4606 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4607 if (r < sizeof(struct kvm_xsave)) 4608 r = sizeof(struct kvm_xsave); 4609 break; 4610 } 4611 case KVM_CAP_PMU_CAPABILITY: 4612 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4613 break; 4614 case KVM_CAP_DISABLE_QUIRKS2: 4615 r = KVM_X86_VALID_QUIRKS; 4616 break; 4617 case KVM_CAP_X86_NOTIFY_VMEXIT: 4618 r = kvm_caps.has_notify_vmexit; 4619 break; 4620 default: 4621 break; 4622 } 4623 return r; 4624 } 4625 4626 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4627 { 4628 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4629 4630 if ((u64)(unsigned long)uaddr != attr->addr) 4631 return ERR_PTR_USR(-EFAULT); 4632 return uaddr; 4633 } 4634 4635 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4636 { 4637 u64 __user *uaddr = kvm_get_attr_addr(attr); 4638 4639 if (attr->group) 4640 return -ENXIO; 4641 4642 if (IS_ERR(uaddr)) 4643 return PTR_ERR(uaddr); 4644 4645 switch (attr->attr) { 4646 case KVM_X86_XCOMP_GUEST_SUPP: 4647 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4648 return -EFAULT; 4649 return 0; 4650 default: 4651 return -ENXIO; 4652 break; 4653 } 4654 } 4655 4656 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4657 { 4658 if (attr->group) 4659 return -ENXIO; 4660 4661 switch (attr->attr) { 4662 case KVM_X86_XCOMP_GUEST_SUPP: 4663 return 0; 4664 default: 4665 return -ENXIO; 4666 } 4667 } 4668 4669 long kvm_arch_dev_ioctl(struct file *filp, 4670 unsigned int ioctl, unsigned long arg) 4671 { 4672 void __user *argp = (void __user *)arg; 4673 long r; 4674 4675 switch (ioctl) { 4676 case KVM_GET_MSR_INDEX_LIST: { 4677 struct kvm_msr_list __user *user_msr_list = argp; 4678 struct kvm_msr_list msr_list; 4679 unsigned n; 4680 4681 r = -EFAULT; 4682 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4683 goto out; 4684 n = msr_list.nmsrs; 4685 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4686 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4687 goto out; 4688 r = -E2BIG; 4689 if (n < msr_list.nmsrs) 4690 goto out; 4691 r = -EFAULT; 4692 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4693 num_msrs_to_save * sizeof(u32))) 4694 goto out; 4695 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4696 &emulated_msrs, 4697 num_emulated_msrs * sizeof(u32))) 4698 goto out; 4699 r = 0; 4700 break; 4701 } 4702 case KVM_GET_SUPPORTED_CPUID: 4703 case KVM_GET_EMULATED_CPUID: { 4704 struct kvm_cpuid2 __user *cpuid_arg = argp; 4705 struct kvm_cpuid2 cpuid; 4706 4707 r = -EFAULT; 4708 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4709 goto out; 4710 4711 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4712 ioctl); 4713 if (r) 4714 goto out; 4715 4716 r = -EFAULT; 4717 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4718 goto out; 4719 r = 0; 4720 break; 4721 } 4722 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4723 r = -EFAULT; 4724 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4725 sizeof(kvm_caps.supported_mce_cap))) 4726 goto out; 4727 r = 0; 4728 break; 4729 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4730 struct kvm_msr_list __user *user_msr_list = argp; 4731 struct kvm_msr_list msr_list; 4732 unsigned int n; 4733 4734 r = -EFAULT; 4735 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4736 goto out; 4737 n = msr_list.nmsrs; 4738 msr_list.nmsrs = num_msr_based_features; 4739 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4740 goto out; 4741 r = -E2BIG; 4742 if (n < msr_list.nmsrs) 4743 goto out; 4744 r = -EFAULT; 4745 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4746 num_msr_based_features * sizeof(u32))) 4747 goto out; 4748 r = 0; 4749 break; 4750 } 4751 case KVM_GET_MSRS: 4752 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4753 break; 4754 case KVM_GET_SUPPORTED_HV_CPUID: 4755 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4756 break; 4757 case KVM_GET_DEVICE_ATTR: { 4758 struct kvm_device_attr attr; 4759 r = -EFAULT; 4760 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4761 break; 4762 r = kvm_x86_dev_get_attr(&attr); 4763 break; 4764 } 4765 case KVM_HAS_DEVICE_ATTR: { 4766 struct kvm_device_attr attr; 4767 r = -EFAULT; 4768 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4769 break; 4770 r = kvm_x86_dev_has_attr(&attr); 4771 break; 4772 } 4773 default: 4774 r = -EINVAL; 4775 break; 4776 } 4777 out: 4778 return r; 4779 } 4780 4781 static void wbinvd_ipi(void *garbage) 4782 { 4783 wbinvd(); 4784 } 4785 4786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4787 { 4788 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4789 } 4790 4791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4792 { 4793 /* Address WBINVD may be executed by guest */ 4794 if (need_emulate_wbinvd(vcpu)) { 4795 if (static_call(kvm_x86_has_wbinvd_exit)()) 4796 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4797 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4798 smp_call_function_single(vcpu->cpu, 4799 wbinvd_ipi, NULL, 1); 4800 } 4801 4802 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4803 4804 /* Save host pkru register if supported */ 4805 vcpu->arch.host_pkru = read_pkru(); 4806 4807 /* Apply any externally detected TSC adjustments (due to suspend) */ 4808 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4809 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4810 vcpu->arch.tsc_offset_adjustment = 0; 4811 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4812 } 4813 4814 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4815 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4816 rdtsc() - vcpu->arch.last_host_tsc; 4817 if (tsc_delta < 0) 4818 mark_tsc_unstable("KVM discovered backwards TSC"); 4819 4820 if (kvm_check_tsc_unstable()) { 4821 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4822 vcpu->arch.last_guest_tsc); 4823 kvm_vcpu_write_tsc_offset(vcpu, offset); 4824 vcpu->arch.tsc_catchup = 1; 4825 } 4826 4827 if (kvm_lapic_hv_timer_in_use(vcpu)) 4828 kvm_lapic_restart_hv_timer(vcpu); 4829 4830 /* 4831 * On a host with synchronized TSC, there is no need to update 4832 * kvmclock on vcpu->cpu migration 4833 */ 4834 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4835 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4836 if (vcpu->cpu != cpu) 4837 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4838 vcpu->cpu = cpu; 4839 } 4840 4841 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4842 } 4843 4844 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4845 { 4846 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4847 struct kvm_steal_time __user *st; 4848 struct kvm_memslots *slots; 4849 static const u8 preempted = KVM_VCPU_PREEMPTED; 4850 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4851 4852 /* 4853 * The vCPU can be marked preempted if and only if the VM-Exit was on 4854 * an instruction boundary and will not trigger guest emulation of any 4855 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4856 * when this is true, for example allowing the vCPU to be marked 4857 * preempted if and only if the VM-Exit was due to a host interrupt. 4858 */ 4859 if (!vcpu->arch.at_instruction_boundary) { 4860 vcpu->stat.preemption_other++; 4861 return; 4862 } 4863 4864 vcpu->stat.preemption_reported++; 4865 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4866 return; 4867 4868 if (vcpu->arch.st.preempted) 4869 return; 4870 4871 /* This happens on process exit */ 4872 if (unlikely(current->mm != vcpu->kvm->mm)) 4873 return; 4874 4875 slots = kvm_memslots(vcpu->kvm); 4876 4877 if (unlikely(slots->generation != ghc->generation || 4878 gpa != ghc->gpa || 4879 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4880 return; 4881 4882 st = (struct kvm_steal_time __user *)ghc->hva; 4883 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4884 4885 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4886 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4887 4888 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4889 } 4890 4891 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4892 { 4893 int idx; 4894 4895 if (vcpu->preempted) { 4896 if (!vcpu->arch.guest_state_protected) 4897 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4898 4899 /* 4900 * Take the srcu lock as memslots will be accessed to check the gfn 4901 * cache generation against the memslots generation. 4902 */ 4903 idx = srcu_read_lock(&vcpu->kvm->srcu); 4904 if (kvm_xen_msr_enabled(vcpu->kvm)) 4905 kvm_xen_runstate_set_preempted(vcpu); 4906 else 4907 kvm_steal_time_set_preempted(vcpu); 4908 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4909 } 4910 4911 static_call(kvm_x86_vcpu_put)(vcpu); 4912 vcpu->arch.last_host_tsc = rdtsc(); 4913 } 4914 4915 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4916 struct kvm_lapic_state *s) 4917 { 4918 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4919 4920 return kvm_apic_get_state(vcpu, s); 4921 } 4922 4923 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4924 struct kvm_lapic_state *s) 4925 { 4926 int r; 4927 4928 r = kvm_apic_set_state(vcpu, s); 4929 if (r) 4930 return r; 4931 update_cr8_intercept(vcpu); 4932 4933 return 0; 4934 } 4935 4936 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4937 { 4938 /* 4939 * We can accept userspace's request for interrupt injection 4940 * as long as we have a place to store the interrupt number. 4941 * The actual injection will happen when the CPU is able to 4942 * deliver the interrupt. 4943 */ 4944 if (kvm_cpu_has_extint(vcpu)) 4945 return false; 4946 4947 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4948 return (!lapic_in_kernel(vcpu) || 4949 kvm_apic_accept_pic_intr(vcpu)); 4950 } 4951 4952 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4953 { 4954 /* 4955 * Do not cause an interrupt window exit if an exception 4956 * is pending or an event needs reinjection; userspace 4957 * might want to inject the interrupt manually using KVM_SET_REGS 4958 * or KVM_SET_SREGS. For that to work, we must be at an 4959 * instruction boundary and with no events half-injected. 4960 */ 4961 return (kvm_arch_interrupt_allowed(vcpu) && 4962 kvm_cpu_accept_dm_intr(vcpu) && 4963 !kvm_event_needs_reinjection(vcpu) && 4964 !kvm_is_exception_pending(vcpu)); 4965 } 4966 4967 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4968 struct kvm_interrupt *irq) 4969 { 4970 if (irq->irq >= KVM_NR_INTERRUPTS) 4971 return -EINVAL; 4972 4973 if (!irqchip_in_kernel(vcpu->kvm)) { 4974 kvm_queue_interrupt(vcpu, irq->irq, false); 4975 kvm_make_request(KVM_REQ_EVENT, vcpu); 4976 return 0; 4977 } 4978 4979 /* 4980 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4981 * fail for in-kernel 8259. 4982 */ 4983 if (pic_in_kernel(vcpu->kvm)) 4984 return -ENXIO; 4985 4986 if (vcpu->arch.pending_external_vector != -1) 4987 return -EEXIST; 4988 4989 vcpu->arch.pending_external_vector = irq->irq; 4990 kvm_make_request(KVM_REQ_EVENT, vcpu); 4991 return 0; 4992 } 4993 4994 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4995 { 4996 kvm_inject_nmi(vcpu); 4997 4998 return 0; 4999 } 5000 5001 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5002 struct kvm_tpr_access_ctl *tac) 5003 { 5004 if (tac->flags) 5005 return -EINVAL; 5006 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5007 return 0; 5008 } 5009 5010 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5011 u64 mcg_cap) 5012 { 5013 int r; 5014 unsigned bank_num = mcg_cap & 0xff, bank; 5015 5016 r = -EINVAL; 5017 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5018 goto out; 5019 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5020 goto out; 5021 r = 0; 5022 vcpu->arch.mcg_cap = mcg_cap; 5023 /* Init IA32_MCG_CTL to all 1s */ 5024 if (mcg_cap & MCG_CTL_P) 5025 vcpu->arch.mcg_ctl = ~(u64)0; 5026 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5027 for (bank = 0; bank < bank_num; bank++) { 5028 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5029 if (mcg_cap & MCG_CMCI_P) 5030 vcpu->arch.mci_ctl2_banks[bank] = 0; 5031 } 5032 5033 kvm_apic_after_set_mcg_cap(vcpu); 5034 5035 static_call(kvm_x86_setup_mce)(vcpu); 5036 out: 5037 return r; 5038 } 5039 5040 /* 5041 * Validate this is an UCNA (uncorrectable no action) error by checking the 5042 * MCG_STATUS and MCi_STATUS registers: 5043 * - none of the bits for Machine Check Exceptions are set 5044 * - both the VAL (valid) and UC (uncorrectable) bits are set 5045 * MCI_STATUS_PCC - Processor Context Corrupted 5046 * MCI_STATUS_S - Signaled as a Machine Check Exception 5047 * MCI_STATUS_AR - Software recoverable Action Required 5048 */ 5049 static bool is_ucna(struct kvm_x86_mce *mce) 5050 { 5051 return !mce->mcg_status && 5052 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5053 (mce->status & MCI_STATUS_VAL) && 5054 (mce->status & MCI_STATUS_UC); 5055 } 5056 5057 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5058 { 5059 u64 mcg_cap = vcpu->arch.mcg_cap; 5060 5061 banks[1] = mce->status; 5062 banks[2] = mce->addr; 5063 banks[3] = mce->misc; 5064 vcpu->arch.mcg_status = mce->mcg_status; 5065 5066 if (!(mcg_cap & MCG_CMCI_P) || 5067 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5068 return 0; 5069 5070 if (lapic_in_kernel(vcpu)) 5071 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5072 5073 return 0; 5074 } 5075 5076 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5077 struct kvm_x86_mce *mce) 5078 { 5079 u64 mcg_cap = vcpu->arch.mcg_cap; 5080 unsigned bank_num = mcg_cap & 0xff; 5081 u64 *banks = vcpu->arch.mce_banks; 5082 5083 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5084 return -EINVAL; 5085 5086 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5087 5088 if (is_ucna(mce)) 5089 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5090 5091 /* 5092 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5093 * reporting is disabled 5094 */ 5095 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5096 vcpu->arch.mcg_ctl != ~(u64)0) 5097 return 0; 5098 /* 5099 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5100 * reporting is disabled for the bank 5101 */ 5102 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5103 return 0; 5104 if (mce->status & MCI_STATUS_UC) { 5105 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5106 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5107 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5108 return 0; 5109 } 5110 if (banks[1] & MCI_STATUS_VAL) 5111 mce->status |= MCI_STATUS_OVER; 5112 banks[2] = mce->addr; 5113 banks[3] = mce->misc; 5114 vcpu->arch.mcg_status = mce->mcg_status; 5115 banks[1] = mce->status; 5116 kvm_queue_exception(vcpu, MC_VECTOR); 5117 } else if (!(banks[1] & MCI_STATUS_VAL) 5118 || !(banks[1] & MCI_STATUS_UC)) { 5119 if (banks[1] & MCI_STATUS_VAL) 5120 mce->status |= MCI_STATUS_OVER; 5121 banks[2] = mce->addr; 5122 banks[3] = mce->misc; 5123 banks[1] = mce->status; 5124 } else 5125 banks[1] |= MCI_STATUS_OVER; 5126 return 0; 5127 } 5128 5129 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5130 struct kvm_vcpu_events *events) 5131 { 5132 struct kvm_queued_exception *ex; 5133 5134 process_nmi(vcpu); 5135 5136 #ifdef CONFIG_KVM_SMM 5137 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5138 process_smi(vcpu); 5139 #endif 5140 5141 /* 5142 * KVM's ABI only allows for one exception to be migrated. Luckily, 5143 * the only time there can be two queued exceptions is if there's a 5144 * non-exiting _injected_ exception, and a pending exiting exception. 5145 * In that case, ignore the VM-Exiting exception as it's an extension 5146 * of the injected exception. 5147 */ 5148 if (vcpu->arch.exception_vmexit.pending && 5149 !vcpu->arch.exception.pending && 5150 !vcpu->arch.exception.injected) 5151 ex = &vcpu->arch.exception_vmexit; 5152 else 5153 ex = &vcpu->arch.exception; 5154 5155 /* 5156 * In guest mode, payload delivery should be deferred if the exception 5157 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5158 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5159 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5160 * propagate the payload and so it cannot be safely deferred. Deliver 5161 * the payload if the capability hasn't been requested. 5162 */ 5163 if (!vcpu->kvm->arch.exception_payload_enabled && 5164 ex->pending && ex->has_payload) 5165 kvm_deliver_exception_payload(vcpu, ex); 5166 5167 memset(events, 0, sizeof(*events)); 5168 5169 /* 5170 * The API doesn't provide the instruction length for software 5171 * exceptions, so don't report them. As long as the guest RIP 5172 * isn't advanced, we should expect to encounter the exception 5173 * again. 5174 */ 5175 if (!kvm_exception_is_soft(ex->vector)) { 5176 events->exception.injected = ex->injected; 5177 events->exception.pending = ex->pending; 5178 /* 5179 * For ABI compatibility, deliberately conflate 5180 * pending and injected exceptions when 5181 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5182 */ 5183 if (!vcpu->kvm->arch.exception_payload_enabled) 5184 events->exception.injected |= ex->pending; 5185 } 5186 events->exception.nr = ex->vector; 5187 events->exception.has_error_code = ex->has_error_code; 5188 events->exception.error_code = ex->error_code; 5189 events->exception_has_payload = ex->has_payload; 5190 events->exception_payload = ex->payload; 5191 5192 events->interrupt.injected = 5193 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5194 events->interrupt.nr = vcpu->arch.interrupt.nr; 5195 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5196 5197 events->nmi.injected = vcpu->arch.nmi_injected; 5198 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5199 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5200 5201 /* events->sipi_vector is never valid when reporting to user space */ 5202 5203 #ifdef CONFIG_KVM_SMM 5204 events->smi.smm = is_smm(vcpu); 5205 events->smi.pending = vcpu->arch.smi_pending; 5206 events->smi.smm_inside_nmi = 5207 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5208 #endif 5209 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5210 5211 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5212 | KVM_VCPUEVENT_VALID_SHADOW 5213 | KVM_VCPUEVENT_VALID_SMM); 5214 if (vcpu->kvm->arch.exception_payload_enabled) 5215 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5216 if (vcpu->kvm->arch.triple_fault_event) { 5217 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5218 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5219 } 5220 } 5221 5222 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5223 struct kvm_vcpu_events *events) 5224 { 5225 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5226 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5227 | KVM_VCPUEVENT_VALID_SHADOW 5228 | KVM_VCPUEVENT_VALID_SMM 5229 | KVM_VCPUEVENT_VALID_PAYLOAD 5230 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5231 return -EINVAL; 5232 5233 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5234 if (!vcpu->kvm->arch.exception_payload_enabled) 5235 return -EINVAL; 5236 if (events->exception.pending) 5237 events->exception.injected = 0; 5238 else 5239 events->exception_has_payload = 0; 5240 } else { 5241 events->exception.pending = 0; 5242 events->exception_has_payload = 0; 5243 } 5244 5245 if ((events->exception.injected || events->exception.pending) && 5246 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5247 return -EINVAL; 5248 5249 /* INITs are latched while in SMM */ 5250 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5251 (events->smi.smm || events->smi.pending) && 5252 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5253 return -EINVAL; 5254 5255 process_nmi(vcpu); 5256 5257 /* 5258 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5259 * morph the exception to a VM-Exit if appropriate. Do this only for 5260 * pending exceptions, already-injected exceptions are not subject to 5261 * intercpetion. Note, userspace that conflates pending and injected 5262 * is hosed, and will incorrectly convert an injected exception into a 5263 * pending exception, which in turn may cause a spurious VM-Exit. 5264 */ 5265 vcpu->arch.exception_from_userspace = events->exception.pending; 5266 5267 vcpu->arch.exception_vmexit.pending = false; 5268 5269 vcpu->arch.exception.injected = events->exception.injected; 5270 vcpu->arch.exception.pending = events->exception.pending; 5271 vcpu->arch.exception.vector = events->exception.nr; 5272 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5273 vcpu->arch.exception.error_code = events->exception.error_code; 5274 vcpu->arch.exception.has_payload = events->exception_has_payload; 5275 vcpu->arch.exception.payload = events->exception_payload; 5276 5277 vcpu->arch.interrupt.injected = events->interrupt.injected; 5278 vcpu->arch.interrupt.nr = events->interrupt.nr; 5279 vcpu->arch.interrupt.soft = events->interrupt.soft; 5280 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5281 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5282 events->interrupt.shadow); 5283 5284 vcpu->arch.nmi_injected = events->nmi.injected; 5285 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5286 vcpu->arch.nmi_pending = 0; 5287 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5288 kvm_make_request(KVM_REQ_NMI, vcpu); 5289 } 5290 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5291 5292 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5293 lapic_in_kernel(vcpu)) 5294 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5295 5296 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5297 #ifdef CONFIG_KVM_SMM 5298 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5299 kvm_leave_nested(vcpu); 5300 kvm_smm_changed(vcpu, events->smi.smm); 5301 } 5302 5303 vcpu->arch.smi_pending = events->smi.pending; 5304 5305 if (events->smi.smm) { 5306 if (events->smi.smm_inside_nmi) 5307 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5308 else 5309 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5310 } 5311 5312 #else 5313 if (events->smi.smm || events->smi.pending || 5314 events->smi.smm_inside_nmi) 5315 return -EINVAL; 5316 #endif 5317 5318 if (lapic_in_kernel(vcpu)) { 5319 if (events->smi.latched_init) 5320 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5321 else 5322 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5323 } 5324 } 5325 5326 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5327 if (!vcpu->kvm->arch.triple_fault_event) 5328 return -EINVAL; 5329 if (events->triple_fault.pending) 5330 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5331 else 5332 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5333 } 5334 5335 kvm_make_request(KVM_REQ_EVENT, vcpu); 5336 5337 return 0; 5338 } 5339 5340 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5341 struct kvm_debugregs *dbgregs) 5342 { 5343 unsigned long val; 5344 5345 memset(dbgregs, 0, sizeof(*dbgregs)); 5346 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5347 kvm_get_dr(vcpu, 6, &val); 5348 dbgregs->dr6 = val; 5349 dbgregs->dr7 = vcpu->arch.dr7; 5350 } 5351 5352 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5353 struct kvm_debugregs *dbgregs) 5354 { 5355 if (dbgregs->flags) 5356 return -EINVAL; 5357 5358 if (!kvm_dr6_valid(dbgregs->dr6)) 5359 return -EINVAL; 5360 if (!kvm_dr7_valid(dbgregs->dr7)) 5361 return -EINVAL; 5362 5363 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5364 kvm_update_dr0123(vcpu); 5365 vcpu->arch.dr6 = dbgregs->dr6; 5366 vcpu->arch.dr7 = dbgregs->dr7; 5367 kvm_update_dr7(vcpu); 5368 5369 return 0; 5370 } 5371 5372 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5373 struct kvm_xsave *guest_xsave) 5374 { 5375 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5376 return; 5377 5378 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5379 guest_xsave->region, 5380 sizeof(guest_xsave->region), 5381 vcpu->arch.pkru); 5382 } 5383 5384 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5385 u8 *state, unsigned int size) 5386 { 5387 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5388 return; 5389 5390 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5391 state, size, vcpu->arch.pkru); 5392 } 5393 5394 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5395 struct kvm_xsave *guest_xsave) 5396 { 5397 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5398 return 0; 5399 5400 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5401 guest_xsave->region, 5402 kvm_caps.supported_xcr0, 5403 &vcpu->arch.pkru); 5404 } 5405 5406 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5407 struct kvm_xcrs *guest_xcrs) 5408 { 5409 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5410 guest_xcrs->nr_xcrs = 0; 5411 return; 5412 } 5413 5414 guest_xcrs->nr_xcrs = 1; 5415 guest_xcrs->flags = 0; 5416 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5417 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5418 } 5419 5420 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5421 struct kvm_xcrs *guest_xcrs) 5422 { 5423 int i, r = 0; 5424 5425 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5426 return -EINVAL; 5427 5428 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5429 return -EINVAL; 5430 5431 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5432 /* Only support XCR0 currently */ 5433 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5434 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5435 guest_xcrs->xcrs[i].value); 5436 break; 5437 } 5438 if (r) 5439 r = -EINVAL; 5440 return r; 5441 } 5442 5443 /* 5444 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5445 * stopped by the hypervisor. This function will be called from the host only. 5446 * EINVAL is returned when the host attempts to set the flag for a guest that 5447 * does not support pv clocks. 5448 */ 5449 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5450 { 5451 if (!vcpu->arch.pv_time.active) 5452 return -EINVAL; 5453 vcpu->arch.pvclock_set_guest_stopped_request = true; 5454 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5455 return 0; 5456 } 5457 5458 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5459 struct kvm_device_attr *attr) 5460 { 5461 int r; 5462 5463 switch (attr->attr) { 5464 case KVM_VCPU_TSC_OFFSET: 5465 r = 0; 5466 break; 5467 default: 5468 r = -ENXIO; 5469 } 5470 5471 return r; 5472 } 5473 5474 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5475 struct kvm_device_attr *attr) 5476 { 5477 u64 __user *uaddr = kvm_get_attr_addr(attr); 5478 int r; 5479 5480 if (IS_ERR(uaddr)) 5481 return PTR_ERR(uaddr); 5482 5483 switch (attr->attr) { 5484 case KVM_VCPU_TSC_OFFSET: 5485 r = -EFAULT; 5486 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5487 break; 5488 r = 0; 5489 break; 5490 default: 5491 r = -ENXIO; 5492 } 5493 5494 return r; 5495 } 5496 5497 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5498 struct kvm_device_attr *attr) 5499 { 5500 u64 __user *uaddr = kvm_get_attr_addr(attr); 5501 struct kvm *kvm = vcpu->kvm; 5502 int r; 5503 5504 if (IS_ERR(uaddr)) 5505 return PTR_ERR(uaddr); 5506 5507 switch (attr->attr) { 5508 case KVM_VCPU_TSC_OFFSET: { 5509 u64 offset, tsc, ns; 5510 unsigned long flags; 5511 bool matched; 5512 5513 r = -EFAULT; 5514 if (get_user(offset, uaddr)) 5515 break; 5516 5517 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5518 5519 matched = (vcpu->arch.virtual_tsc_khz && 5520 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5521 kvm->arch.last_tsc_offset == offset); 5522 5523 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5524 ns = get_kvmclock_base_ns(); 5525 5526 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5527 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5528 5529 r = 0; 5530 break; 5531 } 5532 default: 5533 r = -ENXIO; 5534 } 5535 5536 return r; 5537 } 5538 5539 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5540 unsigned int ioctl, 5541 void __user *argp) 5542 { 5543 struct kvm_device_attr attr; 5544 int r; 5545 5546 if (copy_from_user(&attr, argp, sizeof(attr))) 5547 return -EFAULT; 5548 5549 if (attr.group != KVM_VCPU_TSC_CTRL) 5550 return -ENXIO; 5551 5552 switch (ioctl) { 5553 case KVM_HAS_DEVICE_ATTR: 5554 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5555 break; 5556 case KVM_GET_DEVICE_ATTR: 5557 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5558 break; 5559 case KVM_SET_DEVICE_ATTR: 5560 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5561 break; 5562 } 5563 5564 return r; 5565 } 5566 5567 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5568 struct kvm_enable_cap *cap) 5569 { 5570 int r; 5571 uint16_t vmcs_version; 5572 void __user *user_ptr; 5573 5574 if (cap->flags) 5575 return -EINVAL; 5576 5577 switch (cap->cap) { 5578 case KVM_CAP_HYPERV_SYNIC2: 5579 if (cap->args[0]) 5580 return -EINVAL; 5581 fallthrough; 5582 5583 case KVM_CAP_HYPERV_SYNIC: 5584 if (!irqchip_in_kernel(vcpu->kvm)) 5585 return -EINVAL; 5586 return kvm_hv_activate_synic(vcpu, cap->cap == 5587 KVM_CAP_HYPERV_SYNIC2); 5588 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5589 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5590 return -ENOTTY; 5591 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5592 if (!r) { 5593 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5594 if (copy_to_user(user_ptr, &vmcs_version, 5595 sizeof(vmcs_version))) 5596 r = -EFAULT; 5597 } 5598 return r; 5599 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5600 if (!kvm_x86_ops.enable_l2_tlb_flush) 5601 return -ENOTTY; 5602 5603 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5604 5605 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5606 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5607 5608 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5609 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5610 if (vcpu->arch.pv_cpuid.enforce) 5611 kvm_update_pv_runtime(vcpu); 5612 5613 return 0; 5614 default: 5615 return -EINVAL; 5616 } 5617 } 5618 5619 long kvm_arch_vcpu_ioctl(struct file *filp, 5620 unsigned int ioctl, unsigned long arg) 5621 { 5622 struct kvm_vcpu *vcpu = filp->private_data; 5623 void __user *argp = (void __user *)arg; 5624 int r; 5625 union { 5626 struct kvm_sregs2 *sregs2; 5627 struct kvm_lapic_state *lapic; 5628 struct kvm_xsave *xsave; 5629 struct kvm_xcrs *xcrs; 5630 void *buffer; 5631 } u; 5632 5633 vcpu_load(vcpu); 5634 5635 u.buffer = NULL; 5636 switch (ioctl) { 5637 case KVM_GET_LAPIC: { 5638 r = -EINVAL; 5639 if (!lapic_in_kernel(vcpu)) 5640 goto out; 5641 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5642 GFP_KERNEL_ACCOUNT); 5643 5644 r = -ENOMEM; 5645 if (!u.lapic) 5646 goto out; 5647 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5648 if (r) 5649 goto out; 5650 r = -EFAULT; 5651 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5652 goto out; 5653 r = 0; 5654 break; 5655 } 5656 case KVM_SET_LAPIC: { 5657 r = -EINVAL; 5658 if (!lapic_in_kernel(vcpu)) 5659 goto out; 5660 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5661 if (IS_ERR(u.lapic)) { 5662 r = PTR_ERR(u.lapic); 5663 goto out_nofree; 5664 } 5665 5666 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5667 break; 5668 } 5669 case KVM_INTERRUPT: { 5670 struct kvm_interrupt irq; 5671 5672 r = -EFAULT; 5673 if (copy_from_user(&irq, argp, sizeof(irq))) 5674 goto out; 5675 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5676 break; 5677 } 5678 case KVM_NMI: { 5679 r = kvm_vcpu_ioctl_nmi(vcpu); 5680 break; 5681 } 5682 case KVM_SMI: { 5683 r = kvm_inject_smi(vcpu); 5684 break; 5685 } 5686 case KVM_SET_CPUID: { 5687 struct kvm_cpuid __user *cpuid_arg = argp; 5688 struct kvm_cpuid cpuid; 5689 5690 r = -EFAULT; 5691 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5692 goto out; 5693 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5694 break; 5695 } 5696 case KVM_SET_CPUID2: { 5697 struct kvm_cpuid2 __user *cpuid_arg = argp; 5698 struct kvm_cpuid2 cpuid; 5699 5700 r = -EFAULT; 5701 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5702 goto out; 5703 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5704 cpuid_arg->entries); 5705 break; 5706 } 5707 case KVM_GET_CPUID2: { 5708 struct kvm_cpuid2 __user *cpuid_arg = argp; 5709 struct kvm_cpuid2 cpuid; 5710 5711 r = -EFAULT; 5712 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5713 goto out; 5714 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5715 cpuid_arg->entries); 5716 if (r) 5717 goto out; 5718 r = -EFAULT; 5719 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5720 goto out; 5721 r = 0; 5722 break; 5723 } 5724 case KVM_GET_MSRS: { 5725 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5726 r = msr_io(vcpu, argp, do_get_msr, 1); 5727 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5728 break; 5729 } 5730 case KVM_SET_MSRS: { 5731 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5732 r = msr_io(vcpu, argp, do_set_msr, 0); 5733 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5734 break; 5735 } 5736 case KVM_TPR_ACCESS_REPORTING: { 5737 struct kvm_tpr_access_ctl tac; 5738 5739 r = -EFAULT; 5740 if (copy_from_user(&tac, argp, sizeof(tac))) 5741 goto out; 5742 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5743 if (r) 5744 goto out; 5745 r = -EFAULT; 5746 if (copy_to_user(argp, &tac, sizeof(tac))) 5747 goto out; 5748 r = 0; 5749 break; 5750 }; 5751 case KVM_SET_VAPIC_ADDR: { 5752 struct kvm_vapic_addr va; 5753 int idx; 5754 5755 r = -EINVAL; 5756 if (!lapic_in_kernel(vcpu)) 5757 goto out; 5758 r = -EFAULT; 5759 if (copy_from_user(&va, argp, sizeof(va))) 5760 goto out; 5761 idx = srcu_read_lock(&vcpu->kvm->srcu); 5762 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5763 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5764 break; 5765 } 5766 case KVM_X86_SETUP_MCE: { 5767 u64 mcg_cap; 5768 5769 r = -EFAULT; 5770 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5771 goto out; 5772 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5773 break; 5774 } 5775 case KVM_X86_SET_MCE: { 5776 struct kvm_x86_mce mce; 5777 5778 r = -EFAULT; 5779 if (copy_from_user(&mce, argp, sizeof(mce))) 5780 goto out; 5781 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5782 break; 5783 } 5784 case KVM_GET_VCPU_EVENTS: { 5785 struct kvm_vcpu_events events; 5786 5787 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5788 5789 r = -EFAULT; 5790 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5791 break; 5792 r = 0; 5793 break; 5794 } 5795 case KVM_SET_VCPU_EVENTS: { 5796 struct kvm_vcpu_events events; 5797 5798 r = -EFAULT; 5799 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5800 break; 5801 5802 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5803 break; 5804 } 5805 case KVM_GET_DEBUGREGS: { 5806 struct kvm_debugregs dbgregs; 5807 5808 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5809 5810 r = -EFAULT; 5811 if (copy_to_user(argp, &dbgregs, 5812 sizeof(struct kvm_debugregs))) 5813 break; 5814 r = 0; 5815 break; 5816 } 5817 case KVM_SET_DEBUGREGS: { 5818 struct kvm_debugregs dbgregs; 5819 5820 r = -EFAULT; 5821 if (copy_from_user(&dbgregs, argp, 5822 sizeof(struct kvm_debugregs))) 5823 break; 5824 5825 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5826 break; 5827 } 5828 case KVM_GET_XSAVE: { 5829 r = -EINVAL; 5830 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5831 break; 5832 5833 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5834 r = -ENOMEM; 5835 if (!u.xsave) 5836 break; 5837 5838 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5839 5840 r = -EFAULT; 5841 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5842 break; 5843 r = 0; 5844 break; 5845 } 5846 case KVM_SET_XSAVE: { 5847 int size = vcpu->arch.guest_fpu.uabi_size; 5848 5849 u.xsave = memdup_user(argp, size); 5850 if (IS_ERR(u.xsave)) { 5851 r = PTR_ERR(u.xsave); 5852 goto out_nofree; 5853 } 5854 5855 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5856 break; 5857 } 5858 5859 case KVM_GET_XSAVE2: { 5860 int size = vcpu->arch.guest_fpu.uabi_size; 5861 5862 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5863 r = -ENOMEM; 5864 if (!u.xsave) 5865 break; 5866 5867 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5868 5869 r = -EFAULT; 5870 if (copy_to_user(argp, u.xsave, size)) 5871 break; 5872 5873 r = 0; 5874 break; 5875 } 5876 5877 case KVM_GET_XCRS: { 5878 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5879 r = -ENOMEM; 5880 if (!u.xcrs) 5881 break; 5882 5883 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5884 5885 r = -EFAULT; 5886 if (copy_to_user(argp, u.xcrs, 5887 sizeof(struct kvm_xcrs))) 5888 break; 5889 r = 0; 5890 break; 5891 } 5892 case KVM_SET_XCRS: { 5893 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5894 if (IS_ERR(u.xcrs)) { 5895 r = PTR_ERR(u.xcrs); 5896 goto out_nofree; 5897 } 5898 5899 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5900 break; 5901 } 5902 case KVM_SET_TSC_KHZ: { 5903 u32 user_tsc_khz; 5904 5905 r = -EINVAL; 5906 user_tsc_khz = (u32)arg; 5907 5908 if (kvm_caps.has_tsc_control && 5909 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5910 goto out; 5911 5912 if (user_tsc_khz == 0) 5913 user_tsc_khz = tsc_khz; 5914 5915 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5916 r = 0; 5917 5918 goto out; 5919 } 5920 case KVM_GET_TSC_KHZ: { 5921 r = vcpu->arch.virtual_tsc_khz; 5922 goto out; 5923 } 5924 case KVM_KVMCLOCK_CTRL: { 5925 r = kvm_set_guest_paused(vcpu); 5926 goto out; 5927 } 5928 case KVM_ENABLE_CAP: { 5929 struct kvm_enable_cap cap; 5930 5931 r = -EFAULT; 5932 if (copy_from_user(&cap, argp, sizeof(cap))) 5933 goto out; 5934 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5935 break; 5936 } 5937 case KVM_GET_NESTED_STATE: { 5938 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5939 u32 user_data_size; 5940 5941 r = -EINVAL; 5942 if (!kvm_x86_ops.nested_ops->get_state) 5943 break; 5944 5945 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5946 r = -EFAULT; 5947 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5948 break; 5949 5950 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5951 user_data_size); 5952 if (r < 0) 5953 break; 5954 5955 if (r > user_data_size) { 5956 if (put_user(r, &user_kvm_nested_state->size)) 5957 r = -EFAULT; 5958 else 5959 r = -E2BIG; 5960 break; 5961 } 5962 5963 r = 0; 5964 break; 5965 } 5966 case KVM_SET_NESTED_STATE: { 5967 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5968 struct kvm_nested_state kvm_state; 5969 int idx; 5970 5971 r = -EINVAL; 5972 if (!kvm_x86_ops.nested_ops->set_state) 5973 break; 5974 5975 r = -EFAULT; 5976 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5977 break; 5978 5979 r = -EINVAL; 5980 if (kvm_state.size < sizeof(kvm_state)) 5981 break; 5982 5983 if (kvm_state.flags & 5984 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5985 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5986 | KVM_STATE_NESTED_GIF_SET)) 5987 break; 5988 5989 /* nested_run_pending implies guest_mode. */ 5990 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5991 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5992 break; 5993 5994 idx = srcu_read_lock(&vcpu->kvm->srcu); 5995 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5996 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5997 break; 5998 } 5999 case KVM_GET_SUPPORTED_HV_CPUID: 6000 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6001 break; 6002 #ifdef CONFIG_KVM_XEN 6003 case KVM_XEN_VCPU_GET_ATTR: { 6004 struct kvm_xen_vcpu_attr xva; 6005 6006 r = -EFAULT; 6007 if (copy_from_user(&xva, argp, sizeof(xva))) 6008 goto out; 6009 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6010 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6011 r = -EFAULT; 6012 break; 6013 } 6014 case KVM_XEN_VCPU_SET_ATTR: { 6015 struct kvm_xen_vcpu_attr xva; 6016 6017 r = -EFAULT; 6018 if (copy_from_user(&xva, argp, sizeof(xva))) 6019 goto out; 6020 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6021 break; 6022 } 6023 #endif 6024 case KVM_GET_SREGS2: { 6025 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6026 r = -ENOMEM; 6027 if (!u.sregs2) 6028 goto out; 6029 __get_sregs2(vcpu, u.sregs2); 6030 r = -EFAULT; 6031 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6032 goto out; 6033 r = 0; 6034 break; 6035 } 6036 case KVM_SET_SREGS2: { 6037 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6038 if (IS_ERR(u.sregs2)) { 6039 r = PTR_ERR(u.sregs2); 6040 u.sregs2 = NULL; 6041 goto out; 6042 } 6043 r = __set_sregs2(vcpu, u.sregs2); 6044 break; 6045 } 6046 case KVM_HAS_DEVICE_ATTR: 6047 case KVM_GET_DEVICE_ATTR: 6048 case KVM_SET_DEVICE_ATTR: 6049 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6050 break; 6051 default: 6052 r = -EINVAL; 6053 } 6054 out: 6055 kfree(u.buffer); 6056 out_nofree: 6057 vcpu_put(vcpu); 6058 return r; 6059 } 6060 6061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6062 { 6063 return VM_FAULT_SIGBUS; 6064 } 6065 6066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6067 { 6068 int ret; 6069 6070 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6071 return -EINVAL; 6072 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6073 return ret; 6074 } 6075 6076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6077 u64 ident_addr) 6078 { 6079 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6080 } 6081 6082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6083 unsigned long kvm_nr_mmu_pages) 6084 { 6085 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6086 return -EINVAL; 6087 6088 mutex_lock(&kvm->slots_lock); 6089 6090 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6091 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6092 6093 mutex_unlock(&kvm->slots_lock); 6094 return 0; 6095 } 6096 6097 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6098 { 6099 struct kvm_pic *pic = kvm->arch.vpic; 6100 int r; 6101 6102 r = 0; 6103 switch (chip->chip_id) { 6104 case KVM_IRQCHIP_PIC_MASTER: 6105 memcpy(&chip->chip.pic, &pic->pics[0], 6106 sizeof(struct kvm_pic_state)); 6107 break; 6108 case KVM_IRQCHIP_PIC_SLAVE: 6109 memcpy(&chip->chip.pic, &pic->pics[1], 6110 sizeof(struct kvm_pic_state)); 6111 break; 6112 case KVM_IRQCHIP_IOAPIC: 6113 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6114 break; 6115 default: 6116 r = -EINVAL; 6117 break; 6118 } 6119 return r; 6120 } 6121 6122 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6123 { 6124 struct kvm_pic *pic = kvm->arch.vpic; 6125 int r; 6126 6127 r = 0; 6128 switch (chip->chip_id) { 6129 case KVM_IRQCHIP_PIC_MASTER: 6130 spin_lock(&pic->lock); 6131 memcpy(&pic->pics[0], &chip->chip.pic, 6132 sizeof(struct kvm_pic_state)); 6133 spin_unlock(&pic->lock); 6134 break; 6135 case KVM_IRQCHIP_PIC_SLAVE: 6136 spin_lock(&pic->lock); 6137 memcpy(&pic->pics[1], &chip->chip.pic, 6138 sizeof(struct kvm_pic_state)); 6139 spin_unlock(&pic->lock); 6140 break; 6141 case KVM_IRQCHIP_IOAPIC: 6142 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6143 break; 6144 default: 6145 r = -EINVAL; 6146 break; 6147 } 6148 kvm_pic_update_irq(pic); 6149 return r; 6150 } 6151 6152 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6153 { 6154 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6155 6156 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6157 6158 mutex_lock(&kps->lock); 6159 memcpy(ps, &kps->channels, sizeof(*ps)); 6160 mutex_unlock(&kps->lock); 6161 return 0; 6162 } 6163 6164 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6165 { 6166 int i; 6167 struct kvm_pit *pit = kvm->arch.vpit; 6168 6169 mutex_lock(&pit->pit_state.lock); 6170 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6171 for (i = 0; i < 3; i++) 6172 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6173 mutex_unlock(&pit->pit_state.lock); 6174 return 0; 6175 } 6176 6177 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6178 { 6179 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6180 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6181 sizeof(ps->channels)); 6182 ps->flags = kvm->arch.vpit->pit_state.flags; 6183 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6184 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6185 return 0; 6186 } 6187 6188 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6189 { 6190 int start = 0; 6191 int i; 6192 u32 prev_legacy, cur_legacy; 6193 struct kvm_pit *pit = kvm->arch.vpit; 6194 6195 mutex_lock(&pit->pit_state.lock); 6196 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6197 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6198 if (!prev_legacy && cur_legacy) 6199 start = 1; 6200 memcpy(&pit->pit_state.channels, &ps->channels, 6201 sizeof(pit->pit_state.channels)); 6202 pit->pit_state.flags = ps->flags; 6203 for (i = 0; i < 3; i++) 6204 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6205 start && i == 0); 6206 mutex_unlock(&pit->pit_state.lock); 6207 return 0; 6208 } 6209 6210 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6211 struct kvm_reinject_control *control) 6212 { 6213 struct kvm_pit *pit = kvm->arch.vpit; 6214 6215 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6216 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6217 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6218 */ 6219 mutex_lock(&pit->pit_state.lock); 6220 kvm_pit_set_reinject(pit, control->pit_reinject); 6221 mutex_unlock(&pit->pit_state.lock); 6222 6223 return 0; 6224 } 6225 6226 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6227 { 6228 6229 /* 6230 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6231 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6232 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6233 * VM-Exit. 6234 */ 6235 struct kvm_vcpu *vcpu; 6236 unsigned long i; 6237 6238 kvm_for_each_vcpu(i, vcpu, kvm) 6239 kvm_vcpu_kick(vcpu); 6240 } 6241 6242 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6243 bool line_status) 6244 { 6245 if (!irqchip_in_kernel(kvm)) 6246 return -ENXIO; 6247 6248 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6249 irq_event->irq, irq_event->level, 6250 line_status); 6251 return 0; 6252 } 6253 6254 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6255 struct kvm_enable_cap *cap) 6256 { 6257 int r; 6258 6259 if (cap->flags) 6260 return -EINVAL; 6261 6262 switch (cap->cap) { 6263 case KVM_CAP_DISABLE_QUIRKS2: 6264 r = -EINVAL; 6265 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6266 break; 6267 fallthrough; 6268 case KVM_CAP_DISABLE_QUIRKS: 6269 kvm->arch.disabled_quirks = cap->args[0]; 6270 r = 0; 6271 break; 6272 case KVM_CAP_SPLIT_IRQCHIP: { 6273 mutex_lock(&kvm->lock); 6274 r = -EINVAL; 6275 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6276 goto split_irqchip_unlock; 6277 r = -EEXIST; 6278 if (irqchip_in_kernel(kvm)) 6279 goto split_irqchip_unlock; 6280 if (kvm->created_vcpus) 6281 goto split_irqchip_unlock; 6282 r = kvm_setup_empty_irq_routing(kvm); 6283 if (r) 6284 goto split_irqchip_unlock; 6285 /* Pairs with irqchip_in_kernel. */ 6286 smp_wmb(); 6287 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6288 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6289 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6290 r = 0; 6291 split_irqchip_unlock: 6292 mutex_unlock(&kvm->lock); 6293 break; 6294 } 6295 case KVM_CAP_X2APIC_API: 6296 r = -EINVAL; 6297 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6298 break; 6299 6300 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6301 kvm->arch.x2apic_format = true; 6302 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6303 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6304 6305 r = 0; 6306 break; 6307 case KVM_CAP_X86_DISABLE_EXITS: 6308 r = -EINVAL; 6309 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6310 break; 6311 6312 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6313 kvm->arch.pause_in_guest = true; 6314 6315 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6316 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6317 6318 if (!mitigate_smt_rsb) { 6319 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6320 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6321 pr_warn_once(SMT_RSB_MSG); 6322 6323 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6324 kvm_can_mwait_in_guest()) 6325 kvm->arch.mwait_in_guest = true; 6326 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6327 kvm->arch.hlt_in_guest = true; 6328 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6329 kvm->arch.cstate_in_guest = true; 6330 } 6331 6332 r = 0; 6333 break; 6334 case KVM_CAP_MSR_PLATFORM_INFO: 6335 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6336 r = 0; 6337 break; 6338 case KVM_CAP_EXCEPTION_PAYLOAD: 6339 kvm->arch.exception_payload_enabled = cap->args[0]; 6340 r = 0; 6341 break; 6342 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6343 kvm->arch.triple_fault_event = cap->args[0]; 6344 r = 0; 6345 break; 6346 case KVM_CAP_X86_USER_SPACE_MSR: 6347 r = -EINVAL; 6348 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6349 break; 6350 kvm->arch.user_space_msr_mask = cap->args[0]; 6351 r = 0; 6352 break; 6353 case KVM_CAP_X86_BUS_LOCK_EXIT: 6354 r = -EINVAL; 6355 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6356 break; 6357 6358 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6359 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6360 break; 6361 6362 if (kvm_caps.has_bus_lock_exit && 6363 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6364 kvm->arch.bus_lock_detection_enabled = true; 6365 r = 0; 6366 break; 6367 #ifdef CONFIG_X86_SGX_KVM 6368 case KVM_CAP_SGX_ATTRIBUTE: { 6369 unsigned long allowed_attributes = 0; 6370 6371 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6372 if (r) 6373 break; 6374 6375 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6376 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6377 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6378 kvm->arch.sgx_provisioning_allowed = true; 6379 else 6380 r = -EINVAL; 6381 break; 6382 } 6383 #endif 6384 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6385 r = -EINVAL; 6386 if (!kvm_x86_ops.vm_copy_enc_context_from) 6387 break; 6388 6389 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6390 break; 6391 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6392 r = -EINVAL; 6393 if (!kvm_x86_ops.vm_move_enc_context_from) 6394 break; 6395 6396 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6397 break; 6398 case KVM_CAP_EXIT_HYPERCALL: 6399 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6400 r = -EINVAL; 6401 break; 6402 } 6403 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6404 r = 0; 6405 break; 6406 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6407 r = -EINVAL; 6408 if (cap->args[0] & ~1) 6409 break; 6410 kvm->arch.exit_on_emulation_error = cap->args[0]; 6411 r = 0; 6412 break; 6413 case KVM_CAP_PMU_CAPABILITY: 6414 r = -EINVAL; 6415 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6416 break; 6417 6418 mutex_lock(&kvm->lock); 6419 if (!kvm->created_vcpus) { 6420 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6421 r = 0; 6422 } 6423 mutex_unlock(&kvm->lock); 6424 break; 6425 case KVM_CAP_MAX_VCPU_ID: 6426 r = -EINVAL; 6427 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6428 break; 6429 6430 mutex_lock(&kvm->lock); 6431 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6432 r = 0; 6433 } else if (!kvm->arch.max_vcpu_ids) { 6434 kvm->arch.max_vcpu_ids = cap->args[0]; 6435 r = 0; 6436 } 6437 mutex_unlock(&kvm->lock); 6438 break; 6439 case KVM_CAP_X86_NOTIFY_VMEXIT: 6440 r = -EINVAL; 6441 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6442 break; 6443 if (!kvm_caps.has_notify_vmexit) 6444 break; 6445 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6446 break; 6447 mutex_lock(&kvm->lock); 6448 if (!kvm->created_vcpus) { 6449 kvm->arch.notify_window = cap->args[0] >> 32; 6450 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6451 r = 0; 6452 } 6453 mutex_unlock(&kvm->lock); 6454 break; 6455 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6456 r = -EINVAL; 6457 6458 /* 6459 * Since the risk of disabling NX hugepages is a guest crashing 6460 * the system, ensure the userspace process has permission to 6461 * reboot the system. 6462 * 6463 * Note that unlike the reboot() syscall, the process must have 6464 * this capability in the root namespace because exposing 6465 * /dev/kvm into a container does not limit the scope of the 6466 * iTLB multihit bug to that container. In other words, 6467 * this must use capable(), not ns_capable(). 6468 */ 6469 if (!capable(CAP_SYS_BOOT)) { 6470 r = -EPERM; 6471 break; 6472 } 6473 6474 if (cap->args[0]) 6475 break; 6476 6477 mutex_lock(&kvm->lock); 6478 if (!kvm->created_vcpus) { 6479 kvm->arch.disable_nx_huge_pages = true; 6480 r = 0; 6481 } 6482 mutex_unlock(&kvm->lock); 6483 break; 6484 default: 6485 r = -EINVAL; 6486 break; 6487 } 6488 return r; 6489 } 6490 6491 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6492 { 6493 struct kvm_x86_msr_filter *msr_filter; 6494 6495 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6496 if (!msr_filter) 6497 return NULL; 6498 6499 msr_filter->default_allow = default_allow; 6500 return msr_filter; 6501 } 6502 6503 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6504 { 6505 u32 i; 6506 6507 if (!msr_filter) 6508 return; 6509 6510 for (i = 0; i < msr_filter->count; i++) 6511 kfree(msr_filter->ranges[i].bitmap); 6512 6513 kfree(msr_filter); 6514 } 6515 6516 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6517 struct kvm_msr_filter_range *user_range) 6518 { 6519 unsigned long *bitmap = NULL; 6520 size_t bitmap_size; 6521 6522 if (!user_range->nmsrs) 6523 return 0; 6524 6525 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6526 return -EINVAL; 6527 6528 if (!user_range->flags) 6529 return -EINVAL; 6530 6531 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6532 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6533 return -EINVAL; 6534 6535 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6536 if (IS_ERR(bitmap)) 6537 return PTR_ERR(bitmap); 6538 6539 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6540 .flags = user_range->flags, 6541 .base = user_range->base, 6542 .nmsrs = user_range->nmsrs, 6543 .bitmap = bitmap, 6544 }; 6545 6546 msr_filter->count++; 6547 return 0; 6548 } 6549 6550 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6551 struct kvm_msr_filter *filter) 6552 { 6553 struct kvm_x86_msr_filter *new_filter, *old_filter; 6554 bool default_allow; 6555 bool empty = true; 6556 int r; 6557 u32 i; 6558 6559 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6560 return -EINVAL; 6561 6562 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6563 empty &= !filter->ranges[i].nmsrs; 6564 6565 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6566 if (empty && !default_allow) 6567 return -EINVAL; 6568 6569 new_filter = kvm_alloc_msr_filter(default_allow); 6570 if (!new_filter) 6571 return -ENOMEM; 6572 6573 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6574 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6575 if (r) { 6576 kvm_free_msr_filter(new_filter); 6577 return r; 6578 } 6579 } 6580 6581 mutex_lock(&kvm->lock); 6582 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6583 mutex_is_locked(&kvm->lock)); 6584 mutex_unlock(&kvm->lock); 6585 synchronize_srcu(&kvm->srcu); 6586 6587 kvm_free_msr_filter(old_filter); 6588 6589 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6590 6591 return 0; 6592 } 6593 6594 #ifdef CONFIG_KVM_COMPAT 6595 /* for KVM_X86_SET_MSR_FILTER */ 6596 struct kvm_msr_filter_range_compat { 6597 __u32 flags; 6598 __u32 nmsrs; 6599 __u32 base; 6600 __u32 bitmap; 6601 }; 6602 6603 struct kvm_msr_filter_compat { 6604 __u32 flags; 6605 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6606 }; 6607 6608 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6609 6610 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6611 unsigned long arg) 6612 { 6613 void __user *argp = (void __user *)arg; 6614 struct kvm *kvm = filp->private_data; 6615 long r = -ENOTTY; 6616 6617 switch (ioctl) { 6618 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6619 struct kvm_msr_filter __user *user_msr_filter = argp; 6620 struct kvm_msr_filter_compat filter_compat; 6621 struct kvm_msr_filter filter; 6622 int i; 6623 6624 if (copy_from_user(&filter_compat, user_msr_filter, 6625 sizeof(filter_compat))) 6626 return -EFAULT; 6627 6628 filter.flags = filter_compat.flags; 6629 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6630 struct kvm_msr_filter_range_compat *cr; 6631 6632 cr = &filter_compat.ranges[i]; 6633 filter.ranges[i] = (struct kvm_msr_filter_range) { 6634 .flags = cr->flags, 6635 .nmsrs = cr->nmsrs, 6636 .base = cr->base, 6637 .bitmap = (__u8 *)(ulong)cr->bitmap, 6638 }; 6639 } 6640 6641 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6642 break; 6643 } 6644 } 6645 6646 return r; 6647 } 6648 #endif 6649 6650 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6651 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6652 { 6653 struct kvm_vcpu *vcpu; 6654 unsigned long i; 6655 int ret = 0; 6656 6657 mutex_lock(&kvm->lock); 6658 kvm_for_each_vcpu(i, vcpu, kvm) { 6659 if (!vcpu->arch.pv_time.active) 6660 continue; 6661 6662 ret = kvm_set_guest_paused(vcpu); 6663 if (ret) { 6664 kvm_err("Failed to pause guest VCPU%d: %d\n", 6665 vcpu->vcpu_id, ret); 6666 break; 6667 } 6668 } 6669 mutex_unlock(&kvm->lock); 6670 6671 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6672 } 6673 6674 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6675 { 6676 switch (state) { 6677 case PM_HIBERNATION_PREPARE: 6678 case PM_SUSPEND_PREPARE: 6679 return kvm_arch_suspend_notifier(kvm); 6680 } 6681 6682 return NOTIFY_DONE; 6683 } 6684 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6685 6686 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6687 { 6688 struct kvm_clock_data data = { 0 }; 6689 6690 get_kvmclock(kvm, &data); 6691 if (copy_to_user(argp, &data, sizeof(data))) 6692 return -EFAULT; 6693 6694 return 0; 6695 } 6696 6697 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6698 { 6699 struct kvm_arch *ka = &kvm->arch; 6700 struct kvm_clock_data data; 6701 u64 now_raw_ns; 6702 6703 if (copy_from_user(&data, argp, sizeof(data))) 6704 return -EFAULT; 6705 6706 /* 6707 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6708 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6709 */ 6710 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6711 return -EINVAL; 6712 6713 kvm_hv_request_tsc_page_update(kvm); 6714 kvm_start_pvclock_update(kvm); 6715 pvclock_update_vm_gtod_copy(kvm); 6716 6717 /* 6718 * This pairs with kvm_guest_time_update(): when masterclock is 6719 * in use, we use master_kernel_ns + kvmclock_offset to set 6720 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6721 * is slightly ahead) here we risk going negative on unsigned 6722 * 'system_time' when 'data.clock' is very small. 6723 */ 6724 if (data.flags & KVM_CLOCK_REALTIME) { 6725 u64 now_real_ns = ktime_get_real_ns(); 6726 6727 /* 6728 * Avoid stepping the kvmclock backwards. 6729 */ 6730 if (now_real_ns > data.realtime) 6731 data.clock += now_real_ns - data.realtime; 6732 } 6733 6734 if (ka->use_master_clock) 6735 now_raw_ns = ka->master_kernel_ns; 6736 else 6737 now_raw_ns = get_kvmclock_base_ns(); 6738 ka->kvmclock_offset = data.clock - now_raw_ns; 6739 kvm_end_pvclock_update(kvm); 6740 return 0; 6741 } 6742 6743 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6744 { 6745 struct kvm *kvm = filp->private_data; 6746 void __user *argp = (void __user *)arg; 6747 int r = -ENOTTY; 6748 /* 6749 * This union makes it completely explicit to gcc-3.x 6750 * that these two variables' stack usage should be 6751 * combined, not added together. 6752 */ 6753 union { 6754 struct kvm_pit_state ps; 6755 struct kvm_pit_state2 ps2; 6756 struct kvm_pit_config pit_config; 6757 } u; 6758 6759 switch (ioctl) { 6760 case KVM_SET_TSS_ADDR: 6761 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6762 break; 6763 case KVM_SET_IDENTITY_MAP_ADDR: { 6764 u64 ident_addr; 6765 6766 mutex_lock(&kvm->lock); 6767 r = -EINVAL; 6768 if (kvm->created_vcpus) 6769 goto set_identity_unlock; 6770 r = -EFAULT; 6771 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6772 goto set_identity_unlock; 6773 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6774 set_identity_unlock: 6775 mutex_unlock(&kvm->lock); 6776 break; 6777 } 6778 case KVM_SET_NR_MMU_PAGES: 6779 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6780 break; 6781 case KVM_CREATE_IRQCHIP: { 6782 mutex_lock(&kvm->lock); 6783 6784 r = -EEXIST; 6785 if (irqchip_in_kernel(kvm)) 6786 goto create_irqchip_unlock; 6787 6788 r = -EINVAL; 6789 if (kvm->created_vcpus) 6790 goto create_irqchip_unlock; 6791 6792 r = kvm_pic_init(kvm); 6793 if (r) 6794 goto create_irqchip_unlock; 6795 6796 r = kvm_ioapic_init(kvm); 6797 if (r) { 6798 kvm_pic_destroy(kvm); 6799 goto create_irqchip_unlock; 6800 } 6801 6802 r = kvm_setup_default_irq_routing(kvm); 6803 if (r) { 6804 kvm_ioapic_destroy(kvm); 6805 kvm_pic_destroy(kvm); 6806 goto create_irqchip_unlock; 6807 } 6808 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6809 smp_wmb(); 6810 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6811 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6812 create_irqchip_unlock: 6813 mutex_unlock(&kvm->lock); 6814 break; 6815 } 6816 case KVM_CREATE_PIT: 6817 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6818 goto create_pit; 6819 case KVM_CREATE_PIT2: 6820 r = -EFAULT; 6821 if (copy_from_user(&u.pit_config, argp, 6822 sizeof(struct kvm_pit_config))) 6823 goto out; 6824 create_pit: 6825 mutex_lock(&kvm->lock); 6826 r = -EEXIST; 6827 if (kvm->arch.vpit) 6828 goto create_pit_unlock; 6829 r = -ENOMEM; 6830 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6831 if (kvm->arch.vpit) 6832 r = 0; 6833 create_pit_unlock: 6834 mutex_unlock(&kvm->lock); 6835 break; 6836 case KVM_GET_IRQCHIP: { 6837 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6838 struct kvm_irqchip *chip; 6839 6840 chip = memdup_user(argp, sizeof(*chip)); 6841 if (IS_ERR(chip)) { 6842 r = PTR_ERR(chip); 6843 goto out; 6844 } 6845 6846 r = -ENXIO; 6847 if (!irqchip_kernel(kvm)) 6848 goto get_irqchip_out; 6849 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6850 if (r) 6851 goto get_irqchip_out; 6852 r = -EFAULT; 6853 if (copy_to_user(argp, chip, sizeof(*chip))) 6854 goto get_irqchip_out; 6855 r = 0; 6856 get_irqchip_out: 6857 kfree(chip); 6858 break; 6859 } 6860 case KVM_SET_IRQCHIP: { 6861 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6862 struct kvm_irqchip *chip; 6863 6864 chip = memdup_user(argp, sizeof(*chip)); 6865 if (IS_ERR(chip)) { 6866 r = PTR_ERR(chip); 6867 goto out; 6868 } 6869 6870 r = -ENXIO; 6871 if (!irqchip_kernel(kvm)) 6872 goto set_irqchip_out; 6873 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6874 set_irqchip_out: 6875 kfree(chip); 6876 break; 6877 } 6878 case KVM_GET_PIT: { 6879 r = -EFAULT; 6880 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6881 goto out; 6882 r = -ENXIO; 6883 if (!kvm->arch.vpit) 6884 goto out; 6885 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6886 if (r) 6887 goto out; 6888 r = -EFAULT; 6889 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6890 goto out; 6891 r = 0; 6892 break; 6893 } 6894 case KVM_SET_PIT: { 6895 r = -EFAULT; 6896 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6897 goto out; 6898 mutex_lock(&kvm->lock); 6899 r = -ENXIO; 6900 if (!kvm->arch.vpit) 6901 goto set_pit_out; 6902 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6903 set_pit_out: 6904 mutex_unlock(&kvm->lock); 6905 break; 6906 } 6907 case KVM_GET_PIT2: { 6908 r = -ENXIO; 6909 if (!kvm->arch.vpit) 6910 goto out; 6911 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6912 if (r) 6913 goto out; 6914 r = -EFAULT; 6915 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6916 goto out; 6917 r = 0; 6918 break; 6919 } 6920 case KVM_SET_PIT2: { 6921 r = -EFAULT; 6922 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6923 goto out; 6924 mutex_lock(&kvm->lock); 6925 r = -ENXIO; 6926 if (!kvm->arch.vpit) 6927 goto set_pit2_out; 6928 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6929 set_pit2_out: 6930 mutex_unlock(&kvm->lock); 6931 break; 6932 } 6933 case KVM_REINJECT_CONTROL: { 6934 struct kvm_reinject_control control; 6935 r = -EFAULT; 6936 if (copy_from_user(&control, argp, sizeof(control))) 6937 goto out; 6938 r = -ENXIO; 6939 if (!kvm->arch.vpit) 6940 goto out; 6941 r = kvm_vm_ioctl_reinject(kvm, &control); 6942 break; 6943 } 6944 case KVM_SET_BOOT_CPU_ID: 6945 r = 0; 6946 mutex_lock(&kvm->lock); 6947 if (kvm->created_vcpus) 6948 r = -EBUSY; 6949 else 6950 kvm->arch.bsp_vcpu_id = arg; 6951 mutex_unlock(&kvm->lock); 6952 break; 6953 #ifdef CONFIG_KVM_XEN 6954 case KVM_XEN_HVM_CONFIG: { 6955 struct kvm_xen_hvm_config xhc; 6956 r = -EFAULT; 6957 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6958 goto out; 6959 r = kvm_xen_hvm_config(kvm, &xhc); 6960 break; 6961 } 6962 case KVM_XEN_HVM_GET_ATTR: { 6963 struct kvm_xen_hvm_attr xha; 6964 6965 r = -EFAULT; 6966 if (copy_from_user(&xha, argp, sizeof(xha))) 6967 goto out; 6968 r = kvm_xen_hvm_get_attr(kvm, &xha); 6969 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6970 r = -EFAULT; 6971 break; 6972 } 6973 case KVM_XEN_HVM_SET_ATTR: { 6974 struct kvm_xen_hvm_attr xha; 6975 6976 r = -EFAULT; 6977 if (copy_from_user(&xha, argp, sizeof(xha))) 6978 goto out; 6979 r = kvm_xen_hvm_set_attr(kvm, &xha); 6980 break; 6981 } 6982 case KVM_XEN_HVM_EVTCHN_SEND: { 6983 struct kvm_irq_routing_xen_evtchn uxe; 6984 6985 r = -EFAULT; 6986 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6987 goto out; 6988 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6989 break; 6990 } 6991 #endif 6992 case KVM_SET_CLOCK: 6993 r = kvm_vm_ioctl_set_clock(kvm, argp); 6994 break; 6995 case KVM_GET_CLOCK: 6996 r = kvm_vm_ioctl_get_clock(kvm, argp); 6997 break; 6998 case KVM_SET_TSC_KHZ: { 6999 u32 user_tsc_khz; 7000 7001 r = -EINVAL; 7002 user_tsc_khz = (u32)arg; 7003 7004 if (kvm_caps.has_tsc_control && 7005 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7006 goto out; 7007 7008 if (user_tsc_khz == 0) 7009 user_tsc_khz = tsc_khz; 7010 7011 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7012 r = 0; 7013 7014 goto out; 7015 } 7016 case KVM_GET_TSC_KHZ: { 7017 r = READ_ONCE(kvm->arch.default_tsc_khz); 7018 goto out; 7019 } 7020 case KVM_MEMORY_ENCRYPT_OP: { 7021 r = -ENOTTY; 7022 if (!kvm_x86_ops.mem_enc_ioctl) 7023 goto out; 7024 7025 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7026 break; 7027 } 7028 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7029 struct kvm_enc_region region; 7030 7031 r = -EFAULT; 7032 if (copy_from_user(®ion, argp, sizeof(region))) 7033 goto out; 7034 7035 r = -ENOTTY; 7036 if (!kvm_x86_ops.mem_enc_register_region) 7037 goto out; 7038 7039 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7040 break; 7041 } 7042 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7043 struct kvm_enc_region region; 7044 7045 r = -EFAULT; 7046 if (copy_from_user(®ion, argp, sizeof(region))) 7047 goto out; 7048 7049 r = -ENOTTY; 7050 if (!kvm_x86_ops.mem_enc_unregister_region) 7051 goto out; 7052 7053 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7054 break; 7055 } 7056 case KVM_HYPERV_EVENTFD: { 7057 struct kvm_hyperv_eventfd hvevfd; 7058 7059 r = -EFAULT; 7060 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7061 goto out; 7062 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7063 break; 7064 } 7065 case KVM_SET_PMU_EVENT_FILTER: 7066 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7067 break; 7068 case KVM_X86_SET_MSR_FILTER: { 7069 struct kvm_msr_filter __user *user_msr_filter = argp; 7070 struct kvm_msr_filter filter; 7071 7072 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7073 return -EFAULT; 7074 7075 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7076 break; 7077 } 7078 default: 7079 r = -ENOTTY; 7080 } 7081 out: 7082 return r; 7083 } 7084 7085 static void kvm_probe_feature_msr(u32 msr_index) 7086 { 7087 struct kvm_msr_entry msr = { 7088 .index = msr_index, 7089 }; 7090 7091 if (kvm_get_msr_feature(&msr)) 7092 return; 7093 7094 msr_based_features[num_msr_based_features++] = msr_index; 7095 } 7096 7097 static void kvm_probe_msr_to_save(u32 msr_index) 7098 { 7099 u32 dummy[2]; 7100 7101 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7102 return; 7103 7104 /* 7105 * Even MSRs that are valid in the host may not be exposed to guests in 7106 * some cases. 7107 */ 7108 switch (msr_index) { 7109 case MSR_IA32_BNDCFGS: 7110 if (!kvm_mpx_supported()) 7111 return; 7112 break; 7113 case MSR_TSC_AUX: 7114 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7115 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7116 return; 7117 break; 7118 case MSR_IA32_UMWAIT_CONTROL: 7119 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7120 return; 7121 break; 7122 case MSR_IA32_RTIT_CTL: 7123 case MSR_IA32_RTIT_STATUS: 7124 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7125 return; 7126 break; 7127 case MSR_IA32_RTIT_CR3_MATCH: 7128 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7129 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7130 return; 7131 break; 7132 case MSR_IA32_RTIT_OUTPUT_BASE: 7133 case MSR_IA32_RTIT_OUTPUT_MASK: 7134 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7135 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7136 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7137 return; 7138 break; 7139 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7140 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7141 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7142 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7143 return; 7144 break; 7145 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7146 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7147 kvm_pmu_cap.num_counters_gp) 7148 return; 7149 break; 7150 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7151 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7152 kvm_pmu_cap.num_counters_gp) 7153 return; 7154 break; 7155 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7156 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7157 kvm_pmu_cap.num_counters_fixed) 7158 return; 7159 break; 7160 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7161 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7162 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7163 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7164 return; 7165 break; 7166 case MSR_IA32_XFD: 7167 case MSR_IA32_XFD_ERR: 7168 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7169 return; 7170 break; 7171 case MSR_IA32_TSX_CTRL: 7172 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7173 return; 7174 break; 7175 default: 7176 break; 7177 } 7178 7179 msrs_to_save[num_msrs_to_save++] = msr_index; 7180 } 7181 7182 static void kvm_init_msr_lists(void) 7183 { 7184 unsigned i; 7185 7186 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7187 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7188 7189 num_msrs_to_save = 0; 7190 num_emulated_msrs = 0; 7191 num_msr_based_features = 0; 7192 7193 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7194 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7195 7196 if (enable_pmu) { 7197 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7198 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7199 } 7200 7201 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7202 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7203 continue; 7204 7205 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7206 } 7207 7208 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7209 kvm_probe_feature_msr(i); 7210 7211 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7212 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7213 } 7214 7215 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7216 const void *v) 7217 { 7218 int handled = 0; 7219 int n; 7220 7221 do { 7222 n = min(len, 8); 7223 if (!(lapic_in_kernel(vcpu) && 7224 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7225 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7226 break; 7227 handled += n; 7228 addr += n; 7229 len -= n; 7230 v += n; 7231 } while (len); 7232 7233 return handled; 7234 } 7235 7236 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7237 { 7238 int handled = 0; 7239 int n; 7240 7241 do { 7242 n = min(len, 8); 7243 if (!(lapic_in_kernel(vcpu) && 7244 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7245 addr, n, v)) 7246 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7247 break; 7248 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7249 handled += n; 7250 addr += n; 7251 len -= n; 7252 v += n; 7253 } while (len); 7254 7255 return handled; 7256 } 7257 7258 void kvm_set_segment(struct kvm_vcpu *vcpu, 7259 struct kvm_segment *var, int seg) 7260 { 7261 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7262 } 7263 7264 void kvm_get_segment(struct kvm_vcpu *vcpu, 7265 struct kvm_segment *var, int seg) 7266 { 7267 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7268 } 7269 7270 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7271 struct x86_exception *exception) 7272 { 7273 struct kvm_mmu *mmu = vcpu->arch.mmu; 7274 gpa_t t_gpa; 7275 7276 BUG_ON(!mmu_is_nested(vcpu)); 7277 7278 /* NPT walks are always user-walks */ 7279 access |= PFERR_USER_MASK; 7280 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7281 7282 return t_gpa; 7283 } 7284 7285 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7286 struct x86_exception *exception) 7287 { 7288 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7289 7290 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7291 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7292 } 7293 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7294 7295 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7296 struct x86_exception *exception) 7297 { 7298 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7299 7300 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7301 access |= PFERR_WRITE_MASK; 7302 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7303 } 7304 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7305 7306 /* uses this to access any guest's mapped memory without checking CPL */ 7307 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7308 struct x86_exception *exception) 7309 { 7310 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7311 7312 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7313 } 7314 7315 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7316 struct kvm_vcpu *vcpu, u64 access, 7317 struct x86_exception *exception) 7318 { 7319 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7320 void *data = val; 7321 int r = X86EMUL_CONTINUE; 7322 7323 while (bytes) { 7324 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7325 unsigned offset = addr & (PAGE_SIZE-1); 7326 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7327 int ret; 7328 7329 if (gpa == INVALID_GPA) 7330 return X86EMUL_PROPAGATE_FAULT; 7331 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7332 offset, toread); 7333 if (ret < 0) { 7334 r = X86EMUL_IO_NEEDED; 7335 goto out; 7336 } 7337 7338 bytes -= toread; 7339 data += toread; 7340 addr += toread; 7341 } 7342 out: 7343 return r; 7344 } 7345 7346 /* used for instruction fetching */ 7347 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7348 gva_t addr, void *val, unsigned int bytes, 7349 struct x86_exception *exception) 7350 { 7351 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7352 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7353 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7354 unsigned offset; 7355 int ret; 7356 7357 /* Inline kvm_read_guest_virt_helper for speed. */ 7358 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7359 exception); 7360 if (unlikely(gpa == INVALID_GPA)) 7361 return X86EMUL_PROPAGATE_FAULT; 7362 7363 offset = addr & (PAGE_SIZE-1); 7364 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7365 bytes = (unsigned)PAGE_SIZE - offset; 7366 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7367 offset, bytes); 7368 if (unlikely(ret < 0)) 7369 return X86EMUL_IO_NEEDED; 7370 7371 return X86EMUL_CONTINUE; 7372 } 7373 7374 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7375 gva_t addr, void *val, unsigned int bytes, 7376 struct x86_exception *exception) 7377 { 7378 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7379 7380 /* 7381 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7382 * is returned, but our callers are not ready for that and they blindly 7383 * call kvm_inject_page_fault. Ensure that they at least do not leak 7384 * uninitialized kernel stack memory into cr2 and error code. 7385 */ 7386 memset(exception, 0, sizeof(*exception)); 7387 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7388 exception); 7389 } 7390 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7391 7392 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7393 gva_t addr, void *val, unsigned int bytes, 7394 struct x86_exception *exception, bool system) 7395 { 7396 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7397 u64 access = 0; 7398 7399 if (system) 7400 access |= PFERR_IMPLICIT_ACCESS; 7401 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7402 access |= PFERR_USER_MASK; 7403 7404 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7405 } 7406 7407 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7408 struct kvm_vcpu *vcpu, u64 access, 7409 struct x86_exception *exception) 7410 { 7411 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7412 void *data = val; 7413 int r = X86EMUL_CONTINUE; 7414 7415 while (bytes) { 7416 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7417 unsigned offset = addr & (PAGE_SIZE-1); 7418 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7419 int ret; 7420 7421 if (gpa == INVALID_GPA) 7422 return X86EMUL_PROPAGATE_FAULT; 7423 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7424 if (ret < 0) { 7425 r = X86EMUL_IO_NEEDED; 7426 goto out; 7427 } 7428 7429 bytes -= towrite; 7430 data += towrite; 7431 addr += towrite; 7432 } 7433 out: 7434 return r; 7435 } 7436 7437 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7438 unsigned int bytes, struct x86_exception *exception, 7439 bool system) 7440 { 7441 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7442 u64 access = PFERR_WRITE_MASK; 7443 7444 if (system) 7445 access |= PFERR_IMPLICIT_ACCESS; 7446 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7447 access |= PFERR_USER_MASK; 7448 7449 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7450 access, exception); 7451 } 7452 7453 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7454 unsigned int bytes, struct x86_exception *exception) 7455 { 7456 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7457 vcpu->arch.l1tf_flush_l1d = true; 7458 7459 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7460 PFERR_WRITE_MASK, exception); 7461 } 7462 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7463 7464 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7465 void *insn, int insn_len) 7466 { 7467 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7468 insn, insn_len); 7469 } 7470 7471 int handle_ud(struct kvm_vcpu *vcpu) 7472 { 7473 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7474 int fep_flags = READ_ONCE(force_emulation_prefix); 7475 int emul_type = EMULTYPE_TRAP_UD; 7476 char sig[5]; /* ud2; .ascii "kvm" */ 7477 struct x86_exception e; 7478 7479 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7480 return 1; 7481 7482 if (fep_flags && 7483 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7484 sig, sizeof(sig), &e) == 0 && 7485 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7486 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7487 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7488 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7489 emul_type = EMULTYPE_TRAP_UD_FORCED; 7490 } 7491 7492 return kvm_emulate_instruction(vcpu, emul_type); 7493 } 7494 EXPORT_SYMBOL_GPL(handle_ud); 7495 7496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7497 gpa_t gpa, bool write) 7498 { 7499 /* For APIC access vmexit */ 7500 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7501 return 1; 7502 7503 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7504 trace_vcpu_match_mmio(gva, gpa, write, true); 7505 return 1; 7506 } 7507 7508 return 0; 7509 } 7510 7511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7512 gpa_t *gpa, struct x86_exception *exception, 7513 bool write) 7514 { 7515 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7516 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7517 | (write ? PFERR_WRITE_MASK : 0); 7518 7519 /* 7520 * currently PKRU is only applied to ept enabled guest so 7521 * there is no pkey in EPT page table for L1 guest or EPT 7522 * shadow page table for L2 guest. 7523 */ 7524 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7525 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7526 vcpu->arch.mmio_access, 0, access))) { 7527 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7528 (gva & (PAGE_SIZE - 1)); 7529 trace_vcpu_match_mmio(gva, *gpa, write, false); 7530 return 1; 7531 } 7532 7533 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7534 7535 if (*gpa == INVALID_GPA) 7536 return -1; 7537 7538 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7539 } 7540 7541 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7542 const void *val, int bytes) 7543 { 7544 int ret; 7545 7546 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7547 if (ret < 0) 7548 return 0; 7549 kvm_page_track_write(vcpu, gpa, val, bytes); 7550 return 1; 7551 } 7552 7553 struct read_write_emulator_ops { 7554 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7555 int bytes); 7556 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7557 void *val, int bytes); 7558 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7559 int bytes, void *val); 7560 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7561 void *val, int bytes); 7562 bool write; 7563 }; 7564 7565 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7566 { 7567 if (vcpu->mmio_read_completed) { 7568 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7569 vcpu->mmio_fragments[0].gpa, val); 7570 vcpu->mmio_read_completed = 0; 7571 return 1; 7572 } 7573 7574 return 0; 7575 } 7576 7577 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7578 void *val, int bytes) 7579 { 7580 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7581 } 7582 7583 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7584 void *val, int bytes) 7585 { 7586 return emulator_write_phys(vcpu, gpa, val, bytes); 7587 } 7588 7589 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7590 { 7591 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7592 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7593 } 7594 7595 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7596 void *val, int bytes) 7597 { 7598 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7599 return X86EMUL_IO_NEEDED; 7600 } 7601 7602 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7603 void *val, int bytes) 7604 { 7605 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7606 7607 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7608 return X86EMUL_CONTINUE; 7609 } 7610 7611 static const struct read_write_emulator_ops read_emultor = { 7612 .read_write_prepare = read_prepare, 7613 .read_write_emulate = read_emulate, 7614 .read_write_mmio = vcpu_mmio_read, 7615 .read_write_exit_mmio = read_exit_mmio, 7616 }; 7617 7618 static const struct read_write_emulator_ops write_emultor = { 7619 .read_write_emulate = write_emulate, 7620 .read_write_mmio = write_mmio, 7621 .read_write_exit_mmio = write_exit_mmio, 7622 .write = true, 7623 }; 7624 7625 static int emulator_read_write_onepage(unsigned long addr, void *val, 7626 unsigned int bytes, 7627 struct x86_exception *exception, 7628 struct kvm_vcpu *vcpu, 7629 const struct read_write_emulator_ops *ops) 7630 { 7631 gpa_t gpa; 7632 int handled, ret; 7633 bool write = ops->write; 7634 struct kvm_mmio_fragment *frag; 7635 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7636 7637 /* 7638 * If the exit was due to a NPF we may already have a GPA. 7639 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7640 * Note, this cannot be used on string operations since string 7641 * operation using rep will only have the initial GPA from the NPF 7642 * occurred. 7643 */ 7644 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7645 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7646 gpa = ctxt->gpa_val; 7647 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7648 } else { 7649 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7650 if (ret < 0) 7651 return X86EMUL_PROPAGATE_FAULT; 7652 } 7653 7654 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7655 return X86EMUL_CONTINUE; 7656 7657 /* 7658 * Is this MMIO handled locally? 7659 */ 7660 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7661 if (handled == bytes) 7662 return X86EMUL_CONTINUE; 7663 7664 gpa += handled; 7665 bytes -= handled; 7666 val += handled; 7667 7668 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7669 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7670 frag->gpa = gpa; 7671 frag->data = val; 7672 frag->len = bytes; 7673 return X86EMUL_CONTINUE; 7674 } 7675 7676 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7677 unsigned long addr, 7678 void *val, unsigned int bytes, 7679 struct x86_exception *exception, 7680 const struct read_write_emulator_ops *ops) 7681 { 7682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7683 gpa_t gpa; 7684 int rc; 7685 7686 if (ops->read_write_prepare && 7687 ops->read_write_prepare(vcpu, val, bytes)) 7688 return X86EMUL_CONTINUE; 7689 7690 vcpu->mmio_nr_fragments = 0; 7691 7692 /* Crossing a page boundary? */ 7693 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7694 int now; 7695 7696 now = -addr & ~PAGE_MASK; 7697 rc = emulator_read_write_onepage(addr, val, now, exception, 7698 vcpu, ops); 7699 7700 if (rc != X86EMUL_CONTINUE) 7701 return rc; 7702 addr += now; 7703 if (ctxt->mode != X86EMUL_MODE_PROT64) 7704 addr = (u32)addr; 7705 val += now; 7706 bytes -= now; 7707 } 7708 7709 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7710 vcpu, ops); 7711 if (rc != X86EMUL_CONTINUE) 7712 return rc; 7713 7714 if (!vcpu->mmio_nr_fragments) 7715 return rc; 7716 7717 gpa = vcpu->mmio_fragments[0].gpa; 7718 7719 vcpu->mmio_needed = 1; 7720 vcpu->mmio_cur_fragment = 0; 7721 7722 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7723 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7724 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7725 vcpu->run->mmio.phys_addr = gpa; 7726 7727 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7728 } 7729 7730 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7731 unsigned long addr, 7732 void *val, 7733 unsigned int bytes, 7734 struct x86_exception *exception) 7735 { 7736 return emulator_read_write(ctxt, addr, val, bytes, 7737 exception, &read_emultor); 7738 } 7739 7740 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7741 unsigned long addr, 7742 const void *val, 7743 unsigned int bytes, 7744 struct x86_exception *exception) 7745 { 7746 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7747 exception, &write_emultor); 7748 } 7749 7750 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7751 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7752 7753 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7754 unsigned long addr, 7755 const void *old, 7756 const void *new, 7757 unsigned int bytes, 7758 struct x86_exception *exception) 7759 { 7760 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7761 u64 page_line_mask; 7762 unsigned long hva; 7763 gpa_t gpa; 7764 int r; 7765 7766 /* guests cmpxchg8b have to be emulated atomically */ 7767 if (bytes > 8 || (bytes & (bytes - 1))) 7768 goto emul_write; 7769 7770 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7771 7772 if (gpa == INVALID_GPA || 7773 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7774 goto emul_write; 7775 7776 /* 7777 * Emulate the atomic as a straight write to avoid #AC if SLD is 7778 * enabled in the host and the access splits a cache line. 7779 */ 7780 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7781 page_line_mask = ~(cache_line_size() - 1); 7782 else 7783 page_line_mask = PAGE_MASK; 7784 7785 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7786 goto emul_write; 7787 7788 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7789 if (kvm_is_error_hva(hva)) 7790 goto emul_write; 7791 7792 hva += offset_in_page(gpa); 7793 7794 switch (bytes) { 7795 case 1: 7796 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7797 break; 7798 case 2: 7799 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7800 break; 7801 case 4: 7802 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7803 break; 7804 case 8: 7805 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7806 break; 7807 default: 7808 BUG(); 7809 } 7810 7811 if (r < 0) 7812 return X86EMUL_UNHANDLEABLE; 7813 if (r) 7814 return X86EMUL_CMPXCHG_FAILED; 7815 7816 kvm_page_track_write(vcpu, gpa, new, bytes); 7817 7818 return X86EMUL_CONTINUE; 7819 7820 emul_write: 7821 pr_warn_once("emulating exchange as write\n"); 7822 7823 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7824 } 7825 7826 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7827 unsigned short port, void *data, 7828 unsigned int count, bool in) 7829 { 7830 unsigned i; 7831 int r; 7832 7833 WARN_ON_ONCE(vcpu->arch.pio.count); 7834 for (i = 0; i < count; i++) { 7835 if (in) 7836 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7837 else 7838 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7839 7840 if (r) { 7841 if (i == 0) 7842 goto userspace_io; 7843 7844 /* 7845 * Userspace must have unregistered the device while PIO 7846 * was running. Drop writes / read as 0. 7847 */ 7848 if (in) 7849 memset(data, 0, size * (count - i)); 7850 break; 7851 } 7852 7853 data += size; 7854 } 7855 return 1; 7856 7857 userspace_io: 7858 vcpu->arch.pio.port = port; 7859 vcpu->arch.pio.in = in; 7860 vcpu->arch.pio.count = count; 7861 vcpu->arch.pio.size = size; 7862 7863 if (in) 7864 memset(vcpu->arch.pio_data, 0, size * count); 7865 else 7866 memcpy(vcpu->arch.pio_data, data, size * count); 7867 7868 vcpu->run->exit_reason = KVM_EXIT_IO; 7869 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7870 vcpu->run->io.size = size; 7871 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7872 vcpu->run->io.count = count; 7873 vcpu->run->io.port = port; 7874 return 0; 7875 } 7876 7877 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7878 unsigned short port, void *val, unsigned int count) 7879 { 7880 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7881 if (r) 7882 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7883 7884 return r; 7885 } 7886 7887 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7888 { 7889 int size = vcpu->arch.pio.size; 7890 unsigned int count = vcpu->arch.pio.count; 7891 memcpy(val, vcpu->arch.pio_data, size * count); 7892 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7893 vcpu->arch.pio.count = 0; 7894 } 7895 7896 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7897 int size, unsigned short port, void *val, 7898 unsigned int count) 7899 { 7900 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7901 if (vcpu->arch.pio.count) { 7902 /* 7903 * Complete a previous iteration that required userspace I/O. 7904 * Note, @count isn't guaranteed to match pio.count as userspace 7905 * can modify ECX before rerunning the vCPU. Ignore any such 7906 * shenanigans as KVM doesn't support modifying the rep count, 7907 * and the emulator ensures @count doesn't overflow the buffer. 7908 */ 7909 complete_emulator_pio_in(vcpu, val); 7910 return 1; 7911 } 7912 7913 return emulator_pio_in(vcpu, size, port, val, count); 7914 } 7915 7916 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7917 unsigned short port, const void *val, 7918 unsigned int count) 7919 { 7920 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7921 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7922 } 7923 7924 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7925 int size, unsigned short port, 7926 const void *val, unsigned int count) 7927 { 7928 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7929 } 7930 7931 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7932 { 7933 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7934 } 7935 7936 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7937 { 7938 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7939 } 7940 7941 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7942 { 7943 if (!need_emulate_wbinvd(vcpu)) 7944 return X86EMUL_CONTINUE; 7945 7946 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7947 int cpu = get_cpu(); 7948 7949 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7950 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7951 wbinvd_ipi, NULL, 1); 7952 put_cpu(); 7953 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7954 } else 7955 wbinvd(); 7956 return X86EMUL_CONTINUE; 7957 } 7958 7959 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7960 { 7961 kvm_emulate_wbinvd_noskip(vcpu); 7962 return kvm_skip_emulated_instruction(vcpu); 7963 } 7964 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7965 7966 7967 7968 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7969 { 7970 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7971 } 7972 7973 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7974 unsigned long *dest) 7975 { 7976 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7977 } 7978 7979 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7980 unsigned long value) 7981 { 7982 7983 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7984 } 7985 7986 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7987 { 7988 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7989 } 7990 7991 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7992 { 7993 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7994 unsigned long value; 7995 7996 switch (cr) { 7997 case 0: 7998 value = kvm_read_cr0(vcpu); 7999 break; 8000 case 2: 8001 value = vcpu->arch.cr2; 8002 break; 8003 case 3: 8004 value = kvm_read_cr3(vcpu); 8005 break; 8006 case 4: 8007 value = kvm_read_cr4(vcpu); 8008 break; 8009 case 8: 8010 value = kvm_get_cr8(vcpu); 8011 break; 8012 default: 8013 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8014 return 0; 8015 } 8016 8017 return value; 8018 } 8019 8020 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8021 { 8022 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8023 int res = 0; 8024 8025 switch (cr) { 8026 case 0: 8027 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8028 break; 8029 case 2: 8030 vcpu->arch.cr2 = val; 8031 break; 8032 case 3: 8033 res = kvm_set_cr3(vcpu, val); 8034 break; 8035 case 4: 8036 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8037 break; 8038 case 8: 8039 res = kvm_set_cr8(vcpu, val); 8040 break; 8041 default: 8042 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8043 res = -1; 8044 } 8045 8046 return res; 8047 } 8048 8049 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8050 { 8051 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8052 } 8053 8054 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8055 { 8056 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8057 } 8058 8059 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8060 { 8061 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8062 } 8063 8064 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8065 { 8066 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8067 } 8068 8069 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8070 { 8071 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8072 } 8073 8074 static unsigned long emulator_get_cached_segment_base( 8075 struct x86_emulate_ctxt *ctxt, int seg) 8076 { 8077 return get_segment_base(emul_to_vcpu(ctxt), seg); 8078 } 8079 8080 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8081 struct desc_struct *desc, u32 *base3, 8082 int seg) 8083 { 8084 struct kvm_segment var; 8085 8086 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8087 *selector = var.selector; 8088 8089 if (var.unusable) { 8090 memset(desc, 0, sizeof(*desc)); 8091 if (base3) 8092 *base3 = 0; 8093 return false; 8094 } 8095 8096 if (var.g) 8097 var.limit >>= 12; 8098 set_desc_limit(desc, var.limit); 8099 set_desc_base(desc, (unsigned long)var.base); 8100 #ifdef CONFIG_X86_64 8101 if (base3) 8102 *base3 = var.base >> 32; 8103 #endif 8104 desc->type = var.type; 8105 desc->s = var.s; 8106 desc->dpl = var.dpl; 8107 desc->p = var.present; 8108 desc->avl = var.avl; 8109 desc->l = var.l; 8110 desc->d = var.db; 8111 desc->g = var.g; 8112 8113 return true; 8114 } 8115 8116 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8117 struct desc_struct *desc, u32 base3, 8118 int seg) 8119 { 8120 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8121 struct kvm_segment var; 8122 8123 var.selector = selector; 8124 var.base = get_desc_base(desc); 8125 #ifdef CONFIG_X86_64 8126 var.base |= ((u64)base3) << 32; 8127 #endif 8128 var.limit = get_desc_limit(desc); 8129 if (desc->g) 8130 var.limit = (var.limit << 12) | 0xfff; 8131 var.type = desc->type; 8132 var.dpl = desc->dpl; 8133 var.db = desc->d; 8134 var.s = desc->s; 8135 var.l = desc->l; 8136 var.g = desc->g; 8137 var.avl = desc->avl; 8138 var.present = desc->p; 8139 var.unusable = !var.present; 8140 var.padding = 0; 8141 8142 kvm_set_segment(vcpu, &var, seg); 8143 return; 8144 } 8145 8146 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8147 u32 msr_index, u64 *pdata) 8148 { 8149 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8150 int r; 8151 8152 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8153 if (r < 0) 8154 return X86EMUL_UNHANDLEABLE; 8155 8156 if (r) { 8157 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8158 complete_emulated_rdmsr, r)) 8159 return X86EMUL_IO_NEEDED; 8160 8161 trace_kvm_msr_read_ex(msr_index); 8162 return X86EMUL_PROPAGATE_FAULT; 8163 } 8164 8165 trace_kvm_msr_read(msr_index, *pdata); 8166 return X86EMUL_CONTINUE; 8167 } 8168 8169 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8170 u32 msr_index, u64 data) 8171 { 8172 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8173 int r; 8174 8175 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8176 if (r < 0) 8177 return X86EMUL_UNHANDLEABLE; 8178 8179 if (r) { 8180 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8181 complete_emulated_msr_access, r)) 8182 return X86EMUL_IO_NEEDED; 8183 8184 trace_kvm_msr_write_ex(msr_index, data); 8185 return X86EMUL_PROPAGATE_FAULT; 8186 } 8187 8188 trace_kvm_msr_write(msr_index, data); 8189 return X86EMUL_CONTINUE; 8190 } 8191 8192 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8193 u32 msr_index, u64 *pdata) 8194 { 8195 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8196 } 8197 8198 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8199 u32 pmc) 8200 { 8201 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8202 return 0; 8203 return -EINVAL; 8204 } 8205 8206 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8207 u32 pmc, u64 *pdata) 8208 { 8209 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8210 } 8211 8212 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8213 { 8214 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8215 } 8216 8217 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8218 struct x86_instruction_info *info, 8219 enum x86_intercept_stage stage) 8220 { 8221 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8222 &ctxt->exception); 8223 } 8224 8225 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8226 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8227 bool exact_only) 8228 { 8229 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8230 } 8231 8232 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8233 { 8234 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8235 } 8236 8237 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8238 { 8239 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8240 } 8241 8242 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8243 { 8244 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8245 } 8246 8247 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8248 { 8249 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8250 } 8251 8252 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8253 { 8254 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8255 } 8256 8257 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8258 { 8259 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8260 } 8261 8262 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8263 { 8264 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8265 } 8266 8267 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8268 { 8269 return is_smm(emul_to_vcpu(ctxt)); 8270 } 8271 8272 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8273 { 8274 return is_guest_mode(emul_to_vcpu(ctxt)); 8275 } 8276 8277 #ifndef CONFIG_KVM_SMM 8278 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8279 { 8280 WARN_ON_ONCE(1); 8281 return X86EMUL_UNHANDLEABLE; 8282 } 8283 #endif 8284 8285 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8286 { 8287 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8288 } 8289 8290 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8291 { 8292 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8293 } 8294 8295 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8296 { 8297 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8298 8299 if (!kvm->vm_bugged) 8300 kvm_vm_bugged(kvm); 8301 } 8302 8303 static const struct x86_emulate_ops emulate_ops = { 8304 .vm_bugged = emulator_vm_bugged, 8305 .read_gpr = emulator_read_gpr, 8306 .write_gpr = emulator_write_gpr, 8307 .read_std = emulator_read_std, 8308 .write_std = emulator_write_std, 8309 .fetch = kvm_fetch_guest_virt, 8310 .read_emulated = emulator_read_emulated, 8311 .write_emulated = emulator_write_emulated, 8312 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8313 .invlpg = emulator_invlpg, 8314 .pio_in_emulated = emulator_pio_in_emulated, 8315 .pio_out_emulated = emulator_pio_out_emulated, 8316 .get_segment = emulator_get_segment, 8317 .set_segment = emulator_set_segment, 8318 .get_cached_segment_base = emulator_get_cached_segment_base, 8319 .get_gdt = emulator_get_gdt, 8320 .get_idt = emulator_get_idt, 8321 .set_gdt = emulator_set_gdt, 8322 .set_idt = emulator_set_idt, 8323 .get_cr = emulator_get_cr, 8324 .set_cr = emulator_set_cr, 8325 .cpl = emulator_get_cpl, 8326 .get_dr = emulator_get_dr, 8327 .set_dr = emulator_set_dr, 8328 .set_msr_with_filter = emulator_set_msr_with_filter, 8329 .get_msr_with_filter = emulator_get_msr_with_filter, 8330 .get_msr = emulator_get_msr, 8331 .check_pmc = emulator_check_pmc, 8332 .read_pmc = emulator_read_pmc, 8333 .halt = emulator_halt, 8334 .wbinvd = emulator_wbinvd, 8335 .fix_hypercall = emulator_fix_hypercall, 8336 .intercept = emulator_intercept, 8337 .get_cpuid = emulator_get_cpuid, 8338 .guest_has_long_mode = emulator_guest_has_long_mode, 8339 .guest_has_movbe = emulator_guest_has_movbe, 8340 .guest_has_fxsr = emulator_guest_has_fxsr, 8341 .guest_has_rdpid = emulator_guest_has_rdpid, 8342 .set_nmi_mask = emulator_set_nmi_mask, 8343 .is_smm = emulator_is_smm, 8344 .is_guest_mode = emulator_is_guest_mode, 8345 .leave_smm = emulator_leave_smm, 8346 .triple_fault = emulator_triple_fault, 8347 .set_xcr = emulator_set_xcr, 8348 }; 8349 8350 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8351 { 8352 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8353 /* 8354 * an sti; sti; sequence only disable interrupts for the first 8355 * instruction. So, if the last instruction, be it emulated or 8356 * not, left the system with the INT_STI flag enabled, it 8357 * means that the last instruction is an sti. We should not 8358 * leave the flag on in this case. The same goes for mov ss 8359 */ 8360 if (int_shadow & mask) 8361 mask = 0; 8362 if (unlikely(int_shadow || mask)) { 8363 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8364 if (!mask) 8365 kvm_make_request(KVM_REQ_EVENT, vcpu); 8366 } 8367 } 8368 8369 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8370 { 8371 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8372 8373 if (ctxt->exception.vector == PF_VECTOR) 8374 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8375 else if (ctxt->exception.error_code_valid) 8376 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8377 ctxt->exception.error_code); 8378 else 8379 kvm_queue_exception(vcpu, ctxt->exception.vector); 8380 } 8381 8382 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8383 { 8384 struct x86_emulate_ctxt *ctxt; 8385 8386 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8387 if (!ctxt) { 8388 pr_err("failed to allocate vcpu's emulator\n"); 8389 return NULL; 8390 } 8391 8392 ctxt->vcpu = vcpu; 8393 ctxt->ops = &emulate_ops; 8394 vcpu->arch.emulate_ctxt = ctxt; 8395 8396 return ctxt; 8397 } 8398 8399 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8400 { 8401 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8402 int cs_db, cs_l; 8403 8404 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8405 8406 ctxt->gpa_available = false; 8407 ctxt->eflags = kvm_get_rflags(vcpu); 8408 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8409 8410 ctxt->eip = kvm_rip_read(vcpu); 8411 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8412 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8413 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8414 cs_db ? X86EMUL_MODE_PROT32 : 8415 X86EMUL_MODE_PROT16; 8416 ctxt->interruptibility = 0; 8417 ctxt->have_exception = false; 8418 ctxt->exception.vector = -1; 8419 ctxt->perm_ok = false; 8420 8421 init_decode_cache(ctxt); 8422 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8423 } 8424 8425 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8426 { 8427 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8428 int ret; 8429 8430 init_emulate_ctxt(vcpu); 8431 8432 ctxt->op_bytes = 2; 8433 ctxt->ad_bytes = 2; 8434 ctxt->_eip = ctxt->eip + inc_eip; 8435 ret = emulate_int_real(ctxt, irq); 8436 8437 if (ret != X86EMUL_CONTINUE) { 8438 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8439 } else { 8440 ctxt->eip = ctxt->_eip; 8441 kvm_rip_write(vcpu, ctxt->eip); 8442 kvm_set_rflags(vcpu, ctxt->eflags); 8443 } 8444 } 8445 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8446 8447 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8448 u8 ndata, u8 *insn_bytes, u8 insn_size) 8449 { 8450 struct kvm_run *run = vcpu->run; 8451 u64 info[5]; 8452 u8 info_start; 8453 8454 /* 8455 * Zero the whole array used to retrieve the exit info, as casting to 8456 * u32 for select entries will leave some chunks uninitialized. 8457 */ 8458 memset(&info, 0, sizeof(info)); 8459 8460 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8461 &info[2], (u32 *)&info[3], 8462 (u32 *)&info[4]); 8463 8464 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8465 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8466 8467 /* 8468 * There's currently space for 13 entries, but 5 are used for the exit 8469 * reason and info. Restrict to 4 to reduce the maintenance burden 8470 * when expanding kvm_run.emulation_failure in the future. 8471 */ 8472 if (WARN_ON_ONCE(ndata > 4)) 8473 ndata = 4; 8474 8475 /* Always include the flags as a 'data' entry. */ 8476 info_start = 1; 8477 run->emulation_failure.flags = 0; 8478 8479 if (insn_size) { 8480 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8481 sizeof(run->emulation_failure.insn_bytes) != 16)); 8482 info_start += 2; 8483 run->emulation_failure.flags |= 8484 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8485 run->emulation_failure.insn_size = insn_size; 8486 memset(run->emulation_failure.insn_bytes, 0x90, 8487 sizeof(run->emulation_failure.insn_bytes)); 8488 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8489 } 8490 8491 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8492 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8493 ndata * sizeof(data[0])); 8494 8495 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8496 } 8497 8498 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8499 { 8500 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8501 8502 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8503 ctxt->fetch.end - ctxt->fetch.data); 8504 } 8505 8506 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8507 u8 ndata) 8508 { 8509 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8510 } 8511 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8512 8513 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8514 { 8515 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8516 } 8517 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8518 8519 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8520 { 8521 struct kvm *kvm = vcpu->kvm; 8522 8523 ++vcpu->stat.insn_emulation_fail; 8524 trace_kvm_emulate_insn_failed(vcpu); 8525 8526 if (emulation_type & EMULTYPE_VMWARE_GP) { 8527 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8528 return 1; 8529 } 8530 8531 if (kvm->arch.exit_on_emulation_error || 8532 (emulation_type & EMULTYPE_SKIP)) { 8533 prepare_emulation_ctxt_failure_exit(vcpu); 8534 return 0; 8535 } 8536 8537 kvm_queue_exception(vcpu, UD_VECTOR); 8538 8539 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8540 prepare_emulation_ctxt_failure_exit(vcpu); 8541 return 0; 8542 } 8543 8544 return 1; 8545 } 8546 8547 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8548 int emulation_type) 8549 { 8550 gpa_t gpa = cr2_or_gpa; 8551 kvm_pfn_t pfn; 8552 8553 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8554 return false; 8555 8556 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8557 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8558 return false; 8559 8560 if (!vcpu->arch.mmu->root_role.direct) { 8561 /* 8562 * Write permission should be allowed since only 8563 * write access need to be emulated. 8564 */ 8565 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8566 8567 /* 8568 * If the mapping is invalid in guest, let cpu retry 8569 * it to generate fault. 8570 */ 8571 if (gpa == INVALID_GPA) 8572 return true; 8573 } 8574 8575 /* 8576 * Do not retry the unhandleable instruction if it faults on the 8577 * readonly host memory, otherwise it will goto a infinite loop: 8578 * retry instruction -> write #PF -> emulation fail -> retry 8579 * instruction -> ... 8580 */ 8581 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8582 8583 /* 8584 * If the instruction failed on the error pfn, it can not be fixed, 8585 * report the error to userspace. 8586 */ 8587 if (is_error_noslot_pfn(pfn)) 8588 return false; 8589 8590 kvm_release_pfn_clean(pfn); 8591 8592 /* The instructions are well-emulated on direct mmu. */ 8593 if (vcpu->arch.mmu->root_role.direct) { 8594 unsigned int indirect_shadow_pages; 8595 8596 write_lock(&vcpu->kvm->mmu_lock); 8597 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8598 write_unlock(&vcpu->kvm->mmu_lock); 8599 8600 if (indirect_shadow_pages) 8601 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8602 8603 return true; 8604 } 8605 8606 /* 8607 * if emulation was due to access to shadowed page table 8608 * and it failed try to unshadow page and re-enter the 8609 * guest to let CPU execute the instruction. 8610 */ 8611 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8612 8613 /* 8614 * If the access faults on its page table, it can not 8615 * be fixed by unprotecting shadow page and it should 8616 * be reported to userspace. 8617 */ 8618 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8619 } 8620 8621 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8622 gpa_t cr2_or_gpa, int emulation_type) 8623 { 8624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8625 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8626 8627 last_retry_eip = vcpu->arch.last_retry_eip; 8628 last_retry_addr = vcpu->arch.last_retry_addr; 8629 8630 /* 8631 * If the emulation is caused by #PF and it is non-page_table 8632 * writing instruction, it means the VM-EXIT is caused by shadow 8633 * page protected, we can zap the shadow page and retry this 8634 * instruction directly. 8635 * 8636 * Note: if the guest uses a non-page-table modifying instruction 8637 * on the PDE that points to the instruction, then we will unmap 8638 * the instruction and go to an infinite loop. So, we cache the 8639 * last retried eip and the last fault address, if we meet the eip 8640 * and the address again, we can break out of the potential infinite 8641 * loop. 8642 */ 8643 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8644 8645 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8646 return false; 8647 8648 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8649 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8650 return false; 8651 8652 if (x86_page_table_writing_insn(ctxt)) 8653 return false; 8654 8655 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8656 return false; 8657 8658 vcpu->arch.last_retry_eip = ctxt->eip; 8659 vcpu->arch.last_retry_addr = cr2_or_gpa; 8660 8661 if (!vcpu->arch.mmu->root_role.direct) 8662 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8663 8664 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8665 8666 return true; 8667 } 8668 8669 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8670 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8671 8672 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8673 unsigned long *db) 8674 { 8675 u32 dr6 = 0; 8676 int i; 8677 u32 enable, rwlen; 8678 8679 enable = dr7; 8680 rwlen = dr7 >> 16; 8681 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8682 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8683 dr6 |= (1 << i); 8684 return dr6; 8685 } 8686 8687 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8688 { 8689 struct kvm_run *kvm_run = vcpu->run; 8690 8691 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8692 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8693 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8694 kvm_run->debug.arch.exception = DB_VECTOR; 8695 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8696 return 0; 8697 } 8698 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8699 return 1; 8700 } 8701 8702 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8703 { 8704 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8705 int r; 8706 8707 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8708 if (unlikely(!r)) 8709 return 0; 8710 8711 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8712 8713 /* 8714 * rflags is the old, "raw" value of the flags. The new value has 8715 * not been saved yet. 8716 * 8717 * This is correct even for TF set by the guest, because "the 8718 * processor will not generate this exception after the instruction 8719 * that sets the TF flag". 8720 */ 8721 if (unlikely(rflags & X86_EFLAGS_TF)) 8722 r = kvm_vcpu_do_singlestep(vcpu); 8723 return r; 8724 } 8725 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8726 8727 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8728 { 8729 u32 shadow; 8730 8731 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8732 return true; 8733 8734 /* 8735 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8736 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8737 * to avoid the relatively expensive CPUID lookup. 8738 */ 8739 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8740 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8741 guest_cpuid_is_intel(vcpu); 8742 } 8743 8744 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8745 int emulation_type, int *r) 8746 { 8747 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8748 8749 /* 8750 * Do not check for code breakpoints if hardware has already done the 8751 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8752 * the instruction has passed all exception checks, and all intercepted 8753 * exceptions that trigger emulation have lower priority than code 8754 * breakpoints, i.e. the fact that the intercepted exception occurred 8755 * means any code breakpoints have already been serviced. 8756 * 8757 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8758 * hardware has checked the RIP of the magic prefix, but not the RIP of 8759 * the instruction being emulated. The intent of forced emulation is 8760 * to behave as if KVM intercepted the instruction without an exception 8761 * and without a prefix. 8762 */ 8763 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8764 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8765 return false; 8766 8767 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8768 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8769 struct kvm_run *kvm_run = vcpu->run; 8770 unsigned long eip = kvm_get_linear_rip(vcpu); 8771 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8772 vcpu->arch.guest_debug_dr7, 8773 vcpu->arch.eff_db); 8774 8775 if (dr6 != 0) { 8776 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8777 kvm_run->debug.arch.pc = eip; 8778 kvm_run->debug.arch.exception = DB_VECTOR; 8779 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8780 *r = 0; 8781 return true; 8782 } 8783 } 8784 8785 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8786 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8787 unsigned long eip = kvm_get_linear_rip(vcpu); 8788 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8789 vcpu->arch.dr7, 8790 vcpu->arch.db); 8791 8792 if (dr6 != 0) { 8793 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8794 *r = 1; 8795 return true; 8796 } 8797 } 8798 8799 return false; 8800 } 8801 8802 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8803 { 8804 switch (ctxt->opcode_len) { 8805 case 1: 8806 switch (ctxt->b) { 8807 case 0xe4: /* IN */ 8808 case 0xe5: 8809 case 0xec: 8810 case 0xed: 8811 case 0xe6: /* OUT */ 8812 case 0xe7: 8813 case 0xee: 8814 case 0xef: 8815 case 0x6c: /* INS */ 8816 case 0x6d: 8817 case 0x6e: /* OUTS */ 8818 case 0x6f: 8819 return true; 8820 } 8821 break; 8822 case 2: 8823 switch (ctxt->b) { 8824 case 0x33: /* RDPMC */ 8825 return true; 8826 } 8827 break; 8828 } 8829 8830 return false; 8831 } 8832 8833 /* 8834 * Decode an instruction for emulation. The caller is responsible for handling 8835 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8836 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8837 * code breakpoints have higher priority and thus have already been done by 8838 * hardware. 8839 * 8840 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8841 * response to a machine check. 8842 */ 8843 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8844 void *insn, int insn_len) 8845 { 8846 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8847 int r; 8848 8849 init_emulate_ctxt(vcpu); 8850 8851 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8852 8853 trace_kvm_emulate_insn_start(vcpu); 8854 ++vcpu->stat.insn_emulation; 8855 8856 return r; 8857 } 8858 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8859 8860 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8861 int emulation_type, void *insn, int insn_len) 8862 { 8863 int r; 8864 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8865 bool writeback = true; 8866 8867 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8868 return 1; 8869 8870 vcpu->arch.l1tf_flush_l1d = true; 8871 8872 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8873 kvm_clear_exception_queue(vcpu); 8874 8875 /* 8876 * Return immediately if RIP hits a code breakpoint, such #DBs 8877 * are fault-like and are higher priority than any faults on 8878 * the code fetch itself. 8879 */ 8880 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8881 return r; 8882 8883 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8884 insn, insn_len); 8885 if (r != EMULATION_OK) { 8886 if ((emulation_type & EMULTYPE_TRAP_UD) || 8887 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8888 kvm_queue_exception(vcpu, UD_VECTOR); 8889 return 1; 8890 } 8891 if (reexecute_instruction(vcpu, cr2_or_gpa, 8892 emulation_type)) 8893 return 1; 8894 8895 if (ctxt->have_exception && 8896 !(emulation_type & EMULTYPE_SKIP)) { 8897 /* 8898 * #UD should result in just EMULATION_FAILED, and trap-like 8899 * exception should not be encountered during decode. 8900 */ 8901 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8902 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8903 inject_emulated_exception(vcpu); 8904 return 1; 8905 } 8906 return handle_emulation_failure(vcpu, emulation_type); 8907 } 8908 } 8909 8910 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8911 !is_vmware_backdoor_opcode(ctxt)) { 8912 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8913 return 1; 8914 } 8915 8916 /* 8917 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8918 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8919 * The caller is responsible for updating interruptibility state and 8920 * injecting single-step #DBs. 8921 */ 8922 if (emulation_type & EMULTYPE_SKIP) { 8923 if (ctxt->mode != X86EMUL_MODE_PROT64) 8924 ctxt->eip = (u32)ctxt->_eip; 8925 else 8926 ctxt->eip = ctxt->_eip; 8927 8928 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8929 r = 1; 8930 goto writeback; 8931 } 8932 8933 kvm_rip_write(vcpu, ctxt->eip); 8934 if (ctxt->eflags & X86_EFLAGS_RF) 8935 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8936 return 1; 8937 } 8938 8939 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8940 return 1; 8941 8942 /* this is needed for vmware backdoor interface to work since it 8943 changes registers values during IO operation */ 8944 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8945 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8946 emulator_invalidate_register_cache(ctxt); 8947 } 8948 8949 restart: 8950 if (emulation_type & EMULTYPE_PF) { 8951 /* Save the faulting GPA (cr2) in the address field */ 8952 ctxt->exception.address = cr2_or_gpa; 8953 8954 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8955 if (vcpu->arch.mmu->root_role.direct) { 8956 ctxt->gpa_available = true; 8957 ctxt->gpa_val = cr2_or_gpa; 8958 } 8959 } else { 8960 /* Sanitize the address out of an abundance of paranoia. */ 8961 ctxt->exception.address = 0; 8962 } 8963 8964 r = x86_emulate_insn(ctxt); 8965 8966 if (r == EMULATION_INTERCEPTED) 8967 return 1; 8968 8969 if (r == EMULATION_FAILED) { 8970 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8971 return 1; 8972 8973 return handle_emulation_failure(vcpu, emulation_type); 8974 } 8975 8976 if (ctxt->have_exception) { 8977 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8978 vcpu->mmio_needed = false; 8979 r = 1; 8980 inject_emulated_exception(vcpu); 8981 } else if (vcpu->arch.pio.count) { 8982 if (!vcpu->arch.pio.in) { 8983 /* FIXME: return into emulator if single-stepping. */ 8984 vcpu->arch.pio.count = 0; 8985 } else { 8986 writeback = false; 8987 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8988 } 8989 r = 0; 8990 } else if (vcpu->mmio_needed) { 8991 ++vcpu->stat.mmio_exits; 8992 8993 if (!vcpu->mmio_is_write) 8994 writeback = false; 8995 r = 0; 8996 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8997 } else if (vcpu->arch.complete_userspace_io) { 8998 writeback = false; 8999 r = 0; 9000 } else if (r == EMULATION_RESTART) 9001 goto restart; 9002 else 9003 r = 1; 9004 9005 writeback: 9006 if (writeback) { 9007 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9008 toggle_interruptibility(vcpu, ctxt->interruptibility); 9009 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9010 9011 /* 9012 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9013 * only supports code breakpoints and general detect #DB, both 9014 * of which are fault-like. 9015 */ 9016 if (!ctxt->have_exception || 9017 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9018 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9019 if (ctxt->is_branch) 9020 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9021 kvm_rip_write(vcpu, ctxt->eip); 9022 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9023 r = kvm_vcpu_do_singlestep(vcpu); 9024 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9025 __kvm_set_rflags(vcpu, ctxt->eflags); 9026 } 9027 9028 /* 9029 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9030 * do nothing, and it will be requested again as soon as 9031 * the shadow expires. But we still need to check here, 9032 * because POPF has no interrupt shadow. 9033 */ 9034 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9035 kvm_make_request(KVM_REQ_EVENT, vcpu); 9036 } else 9037 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9038 9039 return r; 9040 } 9041 9042 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9043 { 9044 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9045 } 9046 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9047 9048 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9049 void *insn, int insn_len) 9050 { 9051 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9052 } 9053 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9054 9055 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9056 { 9057 vcpu->arch.pio.count = 0; 9058 return 1; 9059 } 9060 9061 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9062 { 9063 vcpu->arch.pio.count = 0; 9064 9065 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9066 return 1; 9067 9068 return kvm_skip_emulated_instruction(vcpu); 9069 } 9070 9071 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9072 unsigned short port) 9073 { 9074 unsigned long val = kvm_rax_read(vcpu); 9075 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9076 9077 if (ret) 9078 return ret; 9079 9080 /* 9081 * Workaround userspace that relies on old KVM behavior of %rip being 9082 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9083 */ 9084 if (port == 0x7e && 9085 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9086 vcpu->arch.complete_userspace_io = 9087 complete_fast_pio_out_port_0x7e; 9088 kvm_skip_emulated_instruction(vcpu); 9089 } else { 9090 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9091 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9092 } 9093 return 0; 9094 } 9095 9096 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9097 { 9098 unsigned long val; 9099 9100 /* We should only ever be called with arch.pio.count equal to 1 */ 9101 BUG_ON(vcpu->arch.pio.count != 1); 9102 9103 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9104 vcpu->arch.pio.count = 0; 9105 return 1; 9106 } 9107 9108 /* For size less than 4 we merge, else we zero extend */ 9109 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9110 9111 complete_emulator_pio_in(vcpu, &val); 9112 kvm_rax_write(vcpu, val); 9113 9114 return kvm_skip_emulated_instruction(vcpu); 9115 } 9116 9117 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9118 unsigned short port) 9119 { 9120 unsigned long val; 9121 int ret; 9122 9123 /* For size less than 4 we merge, else we zero extend */ 9124 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9125 9126 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9127 if (ret) { 9128 kvm_rax_write(vcpu, val); 9129 return ret; 9130 } 9131 9132 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9133 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9134 9135 return 0; 9136 } 9137 9138 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9139 { 9140 int ret; 9141 9142 if (in) 9143 ret = kvm_fast_pio_in(vcpu, size, port); 9144 else 9145 ret = kvm_fast_pio_out(vcpu, size, port); 9146 return ret && kvm_skip_emulated_instruction(vcpu); 9147 } 9148 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9149 9150 static int kvmclock_cpu_down_prep(unsigned int cpu) 9151 { 9152 __this_cpu_write(cpu_tsc_khz, 0); 9153 return 0; 9154 } 9155 9156 static void tsc_khz_changed(void *data) 9157 { 9158 struct cpufreq_freqs *freq = data; 9159 unsigned long khz = 0; 9160 9161 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9162 9163 if (data) 9164 khz = freq->new; 9165 else 9166 khz = cpufreq_quick_get(raw_smp_processor_id()); 9167 if (!khz) 9168 khz = tsc_khz; 9169 __this_cpu_write(cpu_tsc_khz, khz); 9170 } 9171 9172 #ifdef CONFIG_X86_64 9173 static void kvm_hyperv_tsc_notifier(void) 9174 { 9175 struct kvm *kvm; 9176 int cpu; 9177 9178 mutex_lock(&kvm_lock); 9179 list_for_each_entry(kvm, &vm_list, vm_list) 9180 kvm_make_mclock_inprogress_request(kvm); 9181 9182 /* no guest entries from this point */ 9183 hyperv_stop_tsc_emulation(); 9184 9185 /* TSC frequency always matches when on Hyper-V */ 9186 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9187 for_each_present_cpu(cpu) 9188 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9189 } 9190 kvm_caps.max_guest_tsc_khz = tsc_khz; 9191 9192 list_for_each_entry(kvm, &vm_list, vm_list) { 9193 __kvm_start_pvclock_update(kvm); 9194 pvclock_update_vm_gtod_copy(kvm); 9195 kvm_end_pvclock_update(kvm); 9196 } 9197 9198 mutex_unlock(&kvm_lock); 9199 } 9200 #endif 9201 9202 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9203 { 9204 struct kvm *kvm; 9205 struct kvm_vcpu *vcpu; 9206 int send_ipi = 0; 9207 unsigned long i; 9208 9209 /* 9210 * We allow guests to temporarily run on slowing clocks, 9211 * provided we notify them after, or to run on accelerating 9212 * clocks, provided we notify them before. Thus time never 9213 * goes backwards. 9214 * 9215 * However, we have a problem. We can't atomically update 9216 * the frequency of a given CPU from this function; it is 9217 * merely a notifier, which can be called from any CPU. 9218 * Changing the TSC frequency at arbitrary points in time 9219 * requires a recomputation of local variables related to 9220 * the TSC for each VCPU. We must flag these local variables 9221 * to be updated and be sure the update takes place with the 9222 * new frequency before any guests proceed. 9223 * 9224 * Unfortunately, the combination of hotplug CPU and frequency 9225 * change creates an intractable locking scenario; the order 9226 * of when these callouts happen is undefined with respect to 9227 * CPU hotplug, and they can race with each other. As such, 9228 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9229 * undefined; you can actually have a CPU frequency change take 9230 * place in between the computation of X and the setting of the 9231 * variable. To protect against this problem, all updates of 9232 * the per_cpu tsc_khz variable are done in an interrupt 9233 * protected IPI, and all callers wishing to update the value 9234 * must wait for a synchronous IPI to complete (which is trivial 9235 * if the caller is on the CPU already). This establishes the 9236 * necessary total order on variable updates. 9237 * 9238 * Note that because a guest time update may take place 9239 * anytime after the setting of the VCPU's request bit, the 9240 * correct TSC value must be set before the request. However, 9241 * to ensure the update actually makes it to any guest which 9242 * starts running in hardware virtualization between the set 9243 * and the acquisition of the spinlock, we must also ping the 9244 * CPU after setting the request bit. 9245 * 9246 */ 9247 9248 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9249 9250 mutex_lock(&kvm_lock); 9251 list_for_each_entry(kvm, &vm_list, vm_list) { 9252 kvm_for_each_vcpu(i, vcpu, kvm) { 9253 if (vcpu->cpu != cpu) 9254 continue; 9255 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9256 if (vcpu->cpu != raw_smp_processor_id()) 9257 send_ipi = 1; 9258 } 9259 } 9260 mutex_unlock(&kvm_lock); 9261 9262 if (freq->old < freq->new && send_ipi) { 9263 /* 9264 * We upscale the frequency. Must make the guest 9265 * doesn't see old kvmclock values while running with 9266 * the new frequency, otherwise we risk the guest sees 9267 * time go backwards. 9268 * 9269 * In case we update the frequency for another cpu 9270 * (which might be in guest context) send an interrupt 9271 * to kick the cpu out of guest context. Next time 9272 * guest context is entered kvmclock will be updated, 9273 * so the guest will not see stale values. 9274 */ 9275 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9276 } 9277 } 9278 9279 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9280 void *data) 9281 { 9282 struct cpufreq_freqs *freq = data; 9283 int cpu; 9284 9285 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9286 return 0; 9287 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9288 return 0; 9289 9290 for_each_cpu(cpu, freq->policy->cpus) 9291 __kvmclock_cpufreq_notifier(freq, cpu); 9292 9293 return 0; 9294 } 9295 9296 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9297 .notifier_call = kvmclock_cpufreq_notifier 9298 }; 9299 9300 static int kvmclock_cpu_online(unsigned int cpu) 9301 { 9302 tsc_khz_changed(NULL); 9303 return 0; 9304 } 9305 9306 static void kvm_timer_init(void) 9307 { 9308 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9309 max_tsc_khz = tsc_khz; 9310 9311 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9312 struct cpufreq_policy *policy; 9313 int cpu; 9314 9315 cpu = get_cpu(); 9316 policy = cpufreq_cpu_get(cpu); 9317 if (policy) { 9318 if (policy->cpuinfo.max_freq) 9319 max_tsc_khz = policy->cpuinfo.max_freq; 9320 cpufreq_cpu_put(policy); 9321 } 9322 put_cpu(); 9323 } 9324 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9325 CPUFREQ_TRANSITION_NOTIFIER); 9326 9327 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9328 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9329 } 9330 } 9331 9332 #ifdef CONFIG_X86_64 9333 static void pvclock_gtod_update_fn(struct work_struct *work) 9334 { 9335 struct kvm *kvm; 9336 struct kvm_vcpu *vcpu; 9337 unsigned long i; 9338 9339 mutex_lock(&kvm_lock); 9340 list_for_each_entry(kvm, &vm_list, vm_list) 9341 kvm_for_each_vcpu(i, vcpu, kvm) 9342 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9343 atomic_set(&kvm_guest_has_master_clock, 0); 9344 mutex_unlock(&kvm_lock); 9345 } 9346 9347 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9348 9349 /* 9350 * Indirection to move queue_work() out of the tk_core.seq write held 9351 * region to prevent possible deadlocks against time accessors which 9352 * are invoked with work related locks held. 9353 */ 9354 static void pvclock_irq_work_fn(struct irq_work *w) 9355 { 9356 queue_work(system_long_wq, &pvclock_gtod_work); 9357 } 9358 9359 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9360 9361 /* 9362 * Notification about pvclock gtod data update. 9363 */ 9364 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9365 void *priv) 9366 { 9367 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9368 struct timekeeper *tk = priv; 9369 9370 update_pvclock_gtod(tk); 9371 9372 /* 9373 * Disable master clock if host does not trust, or does not use, 9374 * TSC based clocksource. Delegate queue_work() to irq_work as 9375 * this is invoked with tk_core.seq write held. 9376 */ 9377 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9378 atomic_read(&kvm_guest_has_master_clock) != 0) 9379 irq_work_queue(&pvclock_irq_work); 9380 return 0; 9381 } 9382 9383 static struct notifier_block pvclock_gtod_notifier = { 9384 .notifier_call = pvclock_gtod_notify, 9385 }; 9386 #endif 9387 9388 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9389 { 9390 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9391 9392 #define __KVM_X86_OP(func) \ 9393 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9394 #define KVM_X86_OP(func) \ 9395 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9396 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9397 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9398 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9399 (void *)__static_call_return0); 9400 #include <asm/kvm-x86-ops.h> 9401 #undef __KVM_X86_OP 9402 9403 kvm_pmu_ops_update(ops->pmu_ops); 9404 } 9405 9406 static int kvm_x86_check_processor_compatibility(void) 9407 { 9408 int cpu = smp_processor_id(); 9409 struct cpuinfo_x86 *c = &cpu_data(cpu); 9410 9411 /* 9412 * Compatibility checks are done when loading KVM and when enabling 9413 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9414 * compatible, i.e. KVM should never perform a compatibility check on 9415 * an offline CPU. 9416 */ 9417 WARN_ON(!cpu_online(cpu)); 9418 9419 if (__cr4_reserved_bits(cpu_has, c) != 9420 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9421 return -EIO; 9422 9423 return static_call(kvm_x86_check_processor_compatibility)(); 9424 } 9425 9426 static void kvm_x86_check_cpu_compat(void *ret) 9427 { 9428 *(int *)ret = kvm_x86_check_processor_compatibility(); 9429 } 9430 9431 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9432 { 9433 u64 host_pat; 9434 int r, cpu; 9435 9436 if (kvm_x86_ops.hardware_enable) { 9437 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9438 return -EEXIST; 9439 } 9440 9441 /* 9442 * KVM explicitly assumes that the guest has an FPU and 9443 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9444 * vCPU's FPU state as a fxregs_state struct. 9445 */ 9446 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9447 pr_err("inadequate fpu\n"); 9448 return -EOPNOTSUPP; 9449 } 9450 9451 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9452 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9453 return -EOPNOTSUPP; 9454 } 9455 9456 /* 9457 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9458 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9459 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9460 * with an exception. PAT[0] is set to WB on RESET and also by the 9461 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9462 */ 9463 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9464 (host_pat & GENMASK(2, 0)) != 6) { 9465 pr_err("host PAT[0] is not WB\n"); 9466 return -EIO; 9467 } 9468 9469 x86_emulator_cache = kvm_alloc_emulator_cache(); 9470 if (!x86_emulator_cache) { 9471 pr_err("failed to allocate cache for x86 emulator\n"); 9472 return -ENOMEM; 9473 } 9474 9475 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9476 if (!user_return_msrs) { 9477 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9478 r = -ENOMEM; 9479 goto out_free_x86_emulator_cache; 9480 } 9481 kvm_nr_uret_msrs = 0; 9482 9483 r = kvm_mmu_vendor_module_init(); 9484 if (r) 9485 goto out_free_percpu; 9486 9487 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9488 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9489 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9490 } 9491 9492 rdmsrl_safe(MSR_EFER, &host_efer); 9493 9494 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9495 rdmsrl(MSR_IA32_XSS, host_xss); 9496 9497 kvm_init_pmu_capability(ops->pmu_ops); 9498 9499 r = ops->hardware_setup(); 9500 if (r != 0) 9501 goto out_mmu_exit; 9502 9503 kvm_ops_update(ops); 9504 9505 for_each_online_cpu(cpu) { 9506 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9507 if (r < 0) 9508 goto out_unwind_ops; 9509 } 9510 9511 /* 9512 * Point of no return! DO NOT add error paths below this point unless 9513 * absolutely necessary, as most operations from this point forward 9514 * require unwinding. 9515 */ 9516 kvm_timer_init(); 9517 9518 if (pi_inject_timer == -1) 9519 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9520 #ifdef CONFIG_X86_64 9521 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9522 9523 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9524 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9525 #endif 9526 9527 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9528 9529 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9530 kvm_caps.supported_xss = 0; 9531 9532 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9533 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9534 #undef __kvm_cpu_cap_has 9535 9536 if (kvm_caps.has_tsc_control) { 9537 /* 9538 * Make sure the user can only configure tsc_khz values that 9539 * fit into a signed integer. 9540 * A min value is not calculated because it will always 9541 * be 1 on all machines. 9542 */ 9543 u64 max = min(0x7fffffffULL, 9544 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9545 kvm_caps.max_guest_tsc_khz = max; 9546 } 9547 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9548 kvm_init_msr_lists(); 9549 return 0; 9550 9551 out_unwind_ops: 9552 kvm_x86_ops.hardware_enable = NULL; 9553 static_call(kvm_x86_hardware_unsetup)(); 9554 out_mmu_exit: 9555 kvm_mmu_vendor_module_exit(); 9556 out_free_percpu: 9557 free_percpu(user_return_msrs); 9558 out_free_x86_emulator_cache: 9559 kmem_cache_destroy(x86_emulator_cache); 9560 return r; 9561 } 9562 9563 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9564 { 9565 int r; 9566 9567 mutex_lock(&vendor_module_lock); 9568 r = __kvm_x86_vendor_init(ops); 9569 mutex_unlock(&vendor_module_lock); 9570 9571 return r; 9572 } 9573 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9574 9575 void kvm_x86_vendor_exit(void) 9576 { 9577 kvm_unregister_perf_callbacks(); 9578 9579 #ifdef CONFIG_X86_64 9580 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9581 clear_hv_tscchange_cb(); 9582 #endif 9583 kvm_lapic_exit(); 9584 9585 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9586 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9587 CPUFREQ_TRANSITION_NOTIFIER); 9588 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9589 } 9590 #ifdef CONFIG_X86_64 9591 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9592 irq_work_sync(&pvclock_irq_work); 9593 cancel_work_sync(&pvclock_gtod_work); 9594 #endif 9595 static_call(kvm_x86_hardware_unsetup)(); 9596 kvm_mmu_vendor_module_exit(); 9597 free_percpu(user_return_msrs); 9598 kmem_cache_destroy(x86_emulator_cache); 9599 #ifdef CONFIG_KVM_XEN 9600 static_key_deferred_flush(&kvm_xen_enabled); 9601 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9602 #endif 9603 mutex_lock(&vendor_module_lock); 9604 kvm_x86_ops.hardware_enable = NULL; 9605 mutex_unlock(&vendor_module_lock); 9606 } 9607 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9608 9609 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9610 { 9611 /* 9612 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9613 * local APIC is in-kernel, the run loop will detect the non-runnable 9614 * state and halt the vCPU. Exit to userspace if the local APIC is 9615 * managed by userspace, in which case userspace is responsible for 9616 * handling wake events. 9617 */ 9618 ++vcpu->stat.halt_exits; 9619 if (lapic_in_kernel(vcpu)) { 9620 vcpu->arch.mp_state = state; 9621 return 1; 9622 } else { 9623 vcpu->run->exit_reason = reason; 9624 return 0; 9625 } 9626 } 9627 9628 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9629 { 9630 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9631 } 9632 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9633 9634 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9635 { 9636 int ret = kvm_skip_emulated_instruction(vcpu); 9637 /* 9638 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9639 * KVM_EXIT_DEBUG here. 9640 */ 9641 return kvm_emulate_halt_noskip(vcpu) && ret; 9642 } 9643 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9644 9645 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9646 { 9647 int ret = kvm_skip_emulated_instruction(vcpu); 9648 9649 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9650 KVM_EXIT_AP_RESET_HOLD) && ret; 9651 } 9652 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9653 9654 #ifdef CONFIG_X86_64 9655 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9656 unsigned long clock_type) 9657 { 9658 struct kvm_clock_pairing clock_pairing; 9659 struct timespec64 ts; 9660 u64 cycle; 9661 int ret; 9662 9663 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9664 return -KVM_EOPNOTSUPP; 9665 9666 /* 9667 * When tsc is in permanent catchup mode guests won't be able to use 9668 * pvclock_read_retry loop to get consistent view of pvclock 9669 */ 9670 if (vcpu->arch.tsc_always_catchup) 9671 return -KVM_EOPNOTSUPP; 9672 9673 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9674 return -KVM_EOPNOTSUPP; 9675 9676 clock_pairing.sec = ts.tv_sec; 9677 clock_pairing.nsec = ts.tv_nsec; 9678 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9679 clock_pairing.flags = 0; 9680 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9681 9682 ret = 0; 9683 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9684 sizeof(struct kvm_clock_pairing))) 9685 ret = -KVM_EFAULT; 9686 9687 return ret; 9688 } 9689 #endif 9690 9691 /* 9692 * kvm_pv_kick_cpu_op: Kick a vcpu. 9693 * 9694 * @apicid - apicid of vcpu to be kicked. 9695 */ 9696 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9697 { 9698 /* 9699 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9700 * common code, e.g. for tracing. Defer initialization to the compiler. 9701 */ 9702 struct kvm_lapic_irq lapic_irq = { 9703 .delivery_mode = APIC_DM_REMRD, 9704 .dest_mode = APIC_DEST_PHYSICAL, 9705 .shorthand = APIC_DEST_NOSHORT, 9706 .dest_id = apicid, 9707 }; 9708 9709 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9710 } 9711 9712 bool kvm_apicv_activated(struct kvm *kvm) 9713 { 9714 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9715 } 9716 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9717 9718 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9719 { 9720 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9721 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9722 9723 return (vm_reasons | vcpu_reasons) == 0; 9724 } 9725 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9726 9727 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9728 enum kvm_apicv_inhibit reason, bool set) 9729 { 9730 if (set) 9731 __set_bit(reason, inhibits); 9732 else 9733 __clear_bit(reason, inhibits); 9734 9735 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9736 } 9737 9738 static void kvm_apicv_init(struct kvm *kvm) 9739 { 9740 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9741 9742 init_rwsem(&kvm->arch.apicv_update_lock); 9743 9744 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9745 9746 if (!enable_apicv) 9747 set_or_clear_apicv_inhibit(inhibits, 9748 APICV_INHIBIT_REASON_DISABLE, true); 9749 } 9750 9751 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9752 { 9753 struct kvm_vcpu *target = NULL; 9754 struct kvm_apic_map *map; 9755 9756 vcpu->stat.directed_yield_attempted++; 9757 9758 if (single_task_running()) 9759 goto no_yield; 9760 9761 rcu_read_lock(); 9762 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9763 9764 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9765 target = map->phys_map[dest_id]->vcpu; 9766 9767 rcu_read_unlock(); 9768 9769 if (!target || !READ_ONCE(target->ready)) 9770 goto no_yield; 9771 9772 /* Ignore requests to yield to self */ 9773 if (vcpu == target) 9774 goto no_yield; 9775 9776 if (kvm_vcpu_yield_to(target) <= 0) 9777 goto no_yield; 9778 9779 vcpu->stat.directed_yield_successful++; 9780 9781 no_yield: 9782 return; 9783 } 9784 9785 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9786 { 9787 u64 ret = vcpu->run->hypercall.ret; 9788 9789 if (!is_64_bit_mode(vcpu)) 9790 ret = (u32)ret; 9791 kvm_rax_write(vcpu, ret); 9792 ++vcpu->stat.hypercalls; 9793 return kvm_skip_emulated_instruction(vcpu); 9794 } 9795 9796 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9797 { 9798 unsigned long nr, a0, a1, a2, a3, ret; 9799 int op_64_bit; 9800 9801 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9802 return kvm_xen_hypercall(vcpu); 9803 9804 if (kvm_hv_hypercall_enabled(vcpu)) 9805 return kvm_hv_hypercall(vcpu); 9806 9807 nr = kvm_rax_read(vcpu); 9808 a0 = kvm_rbx_read(vcpu); 9809 a1 = kvm_rcx_read(vcpu); 9810 a2 = kvm_rdx_read(vcpu); 9811 a3 = kvm_rsi_read(vcpu); 9812 9813 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9814 9815 op_64_bit = is_64_bit_hypercall(vcpu); 9816 if (!op_64_bit) { 9817 nr &= 0xFFFFFFFF; 9818 a0 &= 0xFFFFFFFF; 9819 a1 &= 0xFFFFFFFF; 9820 a2 &= 0xFFFFFFFF; 9821 a3 &= 0xFFFFFFFF; 9822 } 9823 9824 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9825 ret = -KVM_EPERM; 9826 goto out; 9827 } 9828 9829 ret = -KVM_ENOSYS; 9830 9831 switch (nr) { 9832 case KVM_HC_VAPIC_POLL_IRQ: 9833 ret = 0; 9834 break; 9835 case KVM_HC_KICK_CPU: 9836 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9837 break; 9838 9839 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9840 kvm_sched_yield(vcpu, a1); 9841 ret = 0; 9842 break; 9843 #ifdef CONFIG_X86_64 9844 case KVM_HC_CLOCK_PAIRING: 9845 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9846 break; 9847 #endif 9848 case KVM_HC_SEND_IPI: 9849 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9850 break; 9851 9852 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9853 break; 9854 case KVM_HC_SCHED_YIELD: 9855 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9856 break; 9857 9858 kvm_sched_yield(vcpu, a0); 9859 ret = 0; 9860 break; 9861 case KVM_HC_MAP_GPA_RANGE: { 9862 u64 gpa = a0, npages = a1, attrs = a2; 9863 9864 ret = -KVM_ENOSYS; 9865 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9866 break; 9867 9868 if (!PAGE_ALIGNED(gpa) || !npages || 9869 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9870 ret = -KVM_EINVAL; 9871 break; 9872 } 9873 9874 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9875 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9876 vcpu->run->hypercall.args[0] = gpa; 9877 vcpu->run->hypercall.args[1] = npages; 9878 vcpu->run->hypercall.args[2] = attrs; 9879 vcpu->run->hypercall.flags = 0; 9880 if (op_64_bit) 9881 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9882 9883 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9884 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9885 return 0; 9886 } 9887 default: 9888 ret = -KVM_ENOSYS; 9889 break; 9890 } 9891 out: 9892 if (!op_64_bit) 9893 ret = (u32)ret; 9894 kvm_rax_write(vcpu, ret); 9895 9896 ++vcpu->stat.hypercalls; 9897 return kvm_skip_emulated_instruction(vcpu); 9898 } 9899 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9900 9901 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9902 { 9903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9904 char instruction[3]; 9905 unsigned long rip = kvm_rip_read(vcpu); 9906 9907 /* 9908 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9909 * the pieces. 9910 */ 9911 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9912 ctxt->exception.error_code_valid = false; 9913 ctxt->exception.vector = UD_VECTOR; 9914 ctxt->have_exception = true; 9915 return X86EMUL_PROPAGATE_FAULT; 9916 } 9917 9918 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9919 9920 return emulator_write_emulated(ctxt, rip, instruction, 3, 9921 &ctxt->exception); 9922 } 9923 9924 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9925 { 9926 return vcpu->run->request_interrupt_window && 9927 likely(!pic_in_kernel(vcpu->kvm)); 9928 } 9929 9930 /* Called within kvm->srcu read side. */ 9931 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9932 { 9933 struct kvm_run *kvm_run = vcpu->run; 9934 9935 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9936 kvm_run->cr8 = kvm_get_cr8(vcpu); 9937 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9938 9939 kvm_run->ready_for_interrupt_injection = 9940 pic_in_kernel(vcpu->kvm) || 9941 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9942 9943 if (is_smm(vcpu)) 9944 kvm_run->flags |= KVM_RUN_X86_SMM; 9945 } 9946 9947 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9948 { 9949 int max_irr, tpr; 9950 9951 if (!kvm_x86_ops.update_cr8_intercept) 9952 return; 9953 9954 if (!lapic_in_kernel(vcpu)) 9955 return; 9956 9957 if (vcpu->arch.apic->apicv_active) 9958 return; 9959 9960 if (!vcpu->arch.apic->vapic_addr) 9961 max_irr = kvm_lapic_find_highest_irr(vcpu); 9962 else 9963 max_irr = -1; 9964 9965 if (max_irr != -1) 9966 max_irr >>= 4; 9967 9968 tpr = kvm_lapic_get_cr8(vcpu); 9969 9970 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9971 } 9972 9973 9974 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9975 { 9976 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9977 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9978 return 1; 9979 } 9980 9981 return kvm_x86_ops.nested_ops->check_events(vcpu); 9982 } 9983 9984 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9985 { 9986 /* 9987 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 9988 * exceptions don't report error codes. The presence of an error code 9989 * is carried with the exception and only stripped when the exception 9990 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 9991 * report an error code despite the CPU being in Real Mode. 9992 */ 9993 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 9994 9995 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9996 vcpu->arch.exception.has_error_code, 9997 vcpu->arch.exception.error_code, 9998 vcpu->arch.exception.injected); 9999 10000 static_call(kvm_x86_inject_exception)(vcpu); 10001 } 10002 10003 /* 10004 * Check for any event (interrupt or exception) that is ready to be injected, 10005 * and if there is at least one event, inject the event with the highest 10006 * priority. This handles both "pending" events, i.e. events that have never 10007 * been injected into the guest, and "injected" events, i.e. events that were 10008 * injected as part of a previous VM-Enter, but weren't successfully delivered 10009 * and need to be re-injected. 10010 * 10011 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10012 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10013 * be able to inject exceptions in the "middle" of an instruction, and so must 10014 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10015 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10016 * boundaries is necessary and correct. 10017 * 10018 * For simplicity, KVM uses a single path to inject all events (except events 10019 * that are injected directly from L1 to L2) and doesn't explicitly track 10020 * instruction boundaries for asynchronous events. However, because VM-Exits 10021 * that can occur during instruction execution typically result in KVM skipping 10022 * the instruction or injecting an exception, e.g. instruction and exception 10023 * intercepts, and because pending exceptions have higher priority than pending 10024 * interrupts, KVM still honors instruction boundaries in most scenarios. 10025 * 10026 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10027 * the instruction or inject an exception, then KVM can incorrecty inject a new 10028 * asynchrounous event if the event became pending after the CPU fetched the 10029 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10030 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10031 * injected on the restarted instruction instead of being deferred until the 10032 * instruction completes. 10033 * 10034 * In practice, this virtualization hole is unlikely to be observed by the 10035 * guest, and even less likely to cause functional problems. To detect the 10036 * hole, the guest would have to trigger an event on a side effect of an early 10037 * phase of instruction execution, e.g. on the instruction fetch from memory. 10038 * And for it to be a functional problem, the guest would need to depend on the 10039 * ordering between that side effect, the instruction completing, _and_ the 10040 * delivery of the asynchronous event. 10041 */ 10042 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10043 bool *req_immediate_exit) 10044 { 10045 bool can_inject; 10046 int r; 10047 10048 /* 10049 * Process nested events first, as nested VM-Exit supercedes event 10050 * re-injection. If there's an event queued for re-injection, it will 10051 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10052 */ 10053 if (is_guest_mode(vcpu)) 10054 r = kvm_check_nested_events(vcpu); 10055 else 10056 r = 0; 10057 10058 /* 10059 * Re-inject exceptions and events *especially* if immediate entry+exit 10060 * to/from L2 is needed, as any event that has already been injected 10061 * into L2 needs to complete its lifecycle before injecting a new event. 10062 * 10063 * Don't re-inject an NMI or interrupt if there is a pending exception. 10064 * This collision arises if an exception occurred while vectoring the 10065 * injected event, KVM intercepted said exception, and KVM ultimately 10066 * determined the fault belongs to the guest and queues the exception 10067 * for injection back into the guest. 10068 * 10069 * "Injected" interrupts can also collide with pending exceptions if 10070 * userspace ignores the "ready for injection" flag and blindly queues 10071 * an interrupt. In that case, prioritizing the exception is correct, 10072 * as the exception "occurred" before the exit to userspace. Trap-like 10073 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10074 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10075 * priority, they're only generated (pended) during instruction 10076 * execution, and interrupts are recognized at instruction boundaries. 10077 * Thus a pending fault-like exception means the fault occurred on the 10078 * *previous* instruction and must be serviced prior to recognizing any 10079 * new events in order to fully complete the previous instruction. 10080 */ 10081 if (vcpu->arch.exception.injected) 10082 kvm_inject_exception(vcpu); 10083 else if (kvm_is_exception_pending(vcpu)) 10084 ; /* see above */ 10085 else if (vcpu->arch.nmi_injected) 10086 static_call(kvm_x86_inject_nmi)(vcpu); 10087 else if (vcpu->arch.interrupt.injected) 10088 static_call(kvm_x86_inject_irq)(vcpu, true); 10089 10090 /* 10091 * Exceptions that morph to VM-Exits are handled above, and pending 10092 * exceptions on top of injected exceptions that do not VM-Exit should 10093 * either morph to #DF or, sadly, override the injected exception. 10094 */ 10095 WARN_ON_ONCE(vcpu->arch.exception.injected && 10096 vcpu->arch.exception.pending); 10097 10098 /* 10099 * Bail if immediate entry+exit to/from the guest is needed to complete 10100 * nested VM-Enter or event re-injection so that a different pending 10101 * event can be serviced (or if KVM needs to exit to userspace). 10102 * 10103 * Otherwise, continue processing events even if VM-Exit occurred. The 10104 * VM-Exit will have cleared exceptions that were meant for L2, but 10105 * there may now be events that can be injected into L1. 10106 */ 10107 if (r < 0) 10108 goto out; 10109 10110 /* 10111 * A pending exception VM-Exit should either result in nested VM-Exit 10112 * or force an immediate re-entry and exit to/from L2, and exception 10113 * VM-Exits cannot be injected (flag should _never_ be set). 10114 */ 10115 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10116 vcpu->arch.exception_vmexit.pending); 10117 10118 /* 10119 * New events, other than exceptions, cannot be injected if KVM needs 10120 * to re-inject a previous event. See above comments on re-injecting 10121 * for why pending exceptions get priority. 10122 */ 10123 can_inject = !kvm_event_needs_reinjection(vcpu); 10124 10125 if (vcpu->arch.exception.pending) { 10126 /* 10127 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10128 * value pushed on the stack. Trap-like exception and all #DBs 10129 * leave RF as-is (KVM follows Intel's behavior in this regard; 10130 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10131 * 10132 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10133 * describe the behavior of General Detect #DBs, which are 10134 * fault-like. They do _not_ set RF, a la code breakpoints. 10135 */ 10136 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10137 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10138 X86_EFLAGS_RF); 10139 10140 if (vcpu->arch.exception.vector == DB_VECTOR) { 10141 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10142 if (vcpu->arch.dr7 & DR7_GD) { 10143 vcpu->arch.dr7 &= ~DR7_GD; 10144 kvm_update_dr7(vcpu); 10145 } 10146 } 10147 10148 kvm_inject_exception(vcpu); 10149 10150 vcpu->arch.exception.pending = false; 10151 vcpu->arch.exception.injected = true; 10152 10153 can_inject = false; 10154 } 10155 10156 /* Don't inject interrupts if the user asked to avoid doing so */ 10157 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10158 return 0; 10159 10160 /* 10161 * Finally, inject interrupt events. If an event cannot be injected 10162 * due to architectural conditions (e.g. IF=0) a window-open exit 10163 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10164 * and can architecturally be injected, but we cannot do it right now: 10165 * an interrupt could have arrived just now and we have to inject it 10166 * as a vmexit, or there could already an event in the queue, which is 10167 * indicated by can_inject. In that case we request an immediate exit 10168 * in order to make progress and get back here for another iteration. 10169 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10170 */ 10171 #ifdef CONFIG_KVM_SMM 10172 if (vcpu->arch.smi_pending) { 10173 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10174 if (r < 0) 10175 goto out; 10176 if (r) { 10177 vcpu->arch.smi_pending = false; 10178 ++vcpu->arch.smi_count; 10179 enter_smm(vcpu); 10180 can_inject = false; 10181 } else 10182 static_call(kvm_x86_enable_smi_window)(vcpu); 10183 } 10184 #endif 10185 10186 if (vcpu->arch.nmi_pending) { 10187 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10188 if (r < 0) 10189 goto out; 10190 if (r) { 10191 --vcpu->arch.nmi_pending; 10192 vcpu->arch.nmi_injected = true; 10193 static_call(kvm_x86_inject_nmi)(vcpu); 10194 can_inject = false; 10195 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10196 } 10197 if (vcpu->arch.nmi_pending) 10198 static_call(kvm_x86_enable_nmi_window)(vcpu); 10199 } 10200 10201 if (kvm_cpu_has_injectable_intr(vcpu)) { 10202 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10203 if (r < 0) 10204 goto out; 10205 if (r) { 10206 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10207 static_call(kvm_x86_inject_irq)(vcpu, false); 10208 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10209 } 10210 if (kvm_cpu_has_injectable_intr(vcpu)) 10211 static_call(kvm_x86_enable_irq_window)(vcpu); 10212 } 10213 10214 if (is_guest_mode(vcpu) && 10215 kvm_x86_ops.nested_ops->has_events && 10216 kvm_x86_ops.nested_ops->has_events(vcpu)) 10217 *req_immediate_exit = true; 10218 10219 /* 10220 * KVM must never queue a new exception while injecting an event; KVM 10221 * is done emulating and should only propagate the to-be-injected event 10222 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10223 * infinite loop as KVM will bail from VM-Enter to inject the pending 10224 * exception and start the cycle all over. 10225 * 10226 * Exempt triple faults as they have special handling and won't put the 10227 * vCPU into an infinite loop. Triple fault can be queued when running 10228 * VMX without unrestricted guest, as that requires KVM to emulate Real 10229 * Mode events (see kvm_inject_realmode_interrupt()). 10230 */ 10231 WARN_ON_ONCE(vcpu->arch.exception.pending || 10232 vcpu->arch.exception_vmexit.pending); 10233 return 0; 10234 10235 out: 10236 if (r == -EBUSY) { 10237 *req_immediate_exit = true; 10238 r = 0; 10239 } 10240 return r; 10241 } 10242 10243 static void process_nmi(struct kvm_vcpu *vcpu) 10244 { 10245 unsigned int limit; 10246 10247 /* 10248 * x86 is limited to one NMI pending, but because KVM can't react to 10249 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10250 * scheduled out, KVM needs to play nice with two queued NMIs showing 10251 * up at the same time. To handle this scenario, allow two NMIs to be 10252 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10253 * waiting for a previous NMI injection to complete (which effectively 10254 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10255 * will request an NMI window to handle the second NMI. 10256 */ 10257 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10258 limit = 1; 10259 else 10260 limit = 2; 10261 10262 /* 10263 * Adjust the limit to account for pending virtual NMIs, which aren't 10264 * tracked in vcpu->arch.nmi_pending. 10265 */ 10266 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10267 limit--; 10268 10269 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10270 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10271 10272 if (vcpu->arch.nmi_pending && 10273 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10274 vcpu->arch.nmi_pending--; 10275 10276 if (vcpu->arch.nmi_pending) 10277 kvm_make_request(KVM_REQ_EVENT, vcpu); 10278 } 10279 10280 /* Return total number of NMIs pending injection to the VM */ 10281 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10282 { 10283 return vcpu->arch.nmi_pending + 10284 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10285 } 10286 10287 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10288 unsigned long *vcpu_bitmap) 10289 { 10290 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10291 } 10292 10293 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10294 { 10295 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10296 } 10297 10298 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10299 { 10300 struct kvm_lapic *apic = vcpu->arch.apic; 10301 bool activate; 10302 10303 if (!lapic_in_kernel(vcpu)) 10304 return; 10305 10306 down_read(&vcpu->kvm->arch.apicv_update_lock); 10307 preempt_disable(); 10308 10309 /* Do not activate APICV when APIC is disabled */ 10310 activate = kvm_vcpu_apicv_activated(vcpu) && 10311 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10312 10313 if (apic->apicv_active == activate) 10314 goto out; 10315 10316 apic->apicv_active = activate; 10317 kvm_apic_update_apicv(vcpu); 10318 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10319 10320 /* 10321 * When APICv gets disabled, we may still have injected interrupts 10322 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10323 * still active when the interrupt got accepted. Make sure 10324 * kvm_check_and_inject_events() is called to check for that. 10325 */ 10326 if (!apic->apicv_active) 10327 kvm_make_request(KVM_REQ_EVENT, vcpu); 10328 10329 out: 10330 preempt_enable(); 10331 up_read(&vcpu->kvm->arch.apicv_update_lock); 10332 } 10333 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10334 10335 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10336 { 10337 if (!lapic_in_kernel(vcpu)) 10338 return; 10339 10340 /* 10341 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10342 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10343 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10344 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10345 * this case so that KVM can the AVIC doorbell to inject interrupts to 10346 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10347 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10348 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10349 * access page is sticky. 10350 */ 10351 if (apic_x2apic_mode(vcpu->arch.apic) && 10352 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10353 kvm_inhibit_apic_access_page(vcpu); 10354 10355 __kvm_vcpu_update_apicv(vcpu); 10356 } 10357 10358 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10359 enum kvm_apicv_inhibit reason, bool set) 10360 { 10361 unsigned long old, new; 10362 10363 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10364 10365 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10366 return; 10367 10368 old = new = kvm->arch.apicv_inhibit_reasons; 10369 10370 set_or_clear_apicv_inhibit(&new, reason, set); 10371 10372 if (!!old != !!new) { 10373 /* 10374 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10375 * false positives in the sanity check WARN in svm_vcpu_run(). 10376 * This task will wait for all vCPUs to ack the kick IRQ before 10377 * updating apicv_inhibit_reasons, and all other vCPUs will 10378 * block on acquiring apicv_update_lock so that vCPUs can't 10379 * redo svm_vcpu_run() without seeing the new inhibit state. 10380 * 10381 * Note, holding apicv_update_lock and taking it in the read 10382 * side (handling the request) also prevents other vCPUs from 10383 * servicing the request with a stale apicv_inhibit_reasons. 10384 */ 10385 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10386 kvm->arch.apicv_inhibit_reasons = new; 10387 if (new) { 10388 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10389 int idx = srcu_read_lock(&kvm->srcu); 10390 10391 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10392 srcu_read_unlock(&kvm->srcu, idx); 10393 } 10394 } else { 10395 kvm->arch.apicv_inhibit_reasons = new; 10396 } 10397 } 10398 10399 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10400 enum kvm_apicv_inhibit reason, bool set) 10401 { 10402 if (!enable_apicv) 10403 return; 10404 10405 down_write(&kvm->arch.apicv_update_lock); 10406 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10407 up_write(&kvm->arch.apicv_update_lock); 10408 } 10409 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10410 10411 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10412 { 10413 if (!kvm_apic_present(vcpu)) 10414 return; 10415 10416 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10417 10418 if (irqchip_split(vcpu->kvm)) 10419 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10420 else { 10421 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10422 if (ioapic_in_kernel(vcpu->kvm)) 10423 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10424 } 10425 10426 if (is_guest_mode(vcpu)) 10427 vcpu->arch.load_eoi_exitmap_pending = true; 10428 else 10429 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10430 } 10431 10432 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10433 { 10434 u64 eoi_exit_bitmap[4]; 10435 10436 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10437 return; 10438 10439 if (to_hv_vcpu(vcpu)) { 10440 bitmap_or((ulong *)eoi_exit_bitmap, 10441 vcpu->arch.ioapic_handled_vectors, 10442 to_hv_synic(vcpu)->vec_bitmap, 256); 10443 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10444 return; 10445 } 10446 10447 static_call_cond(kvm_x86_load_eoi_exitmap)( 10448 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10449 } 10450 10451 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10452 { 10453 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10454 } 10455 10456 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10457 { 10458 if (!lapic_in_kernel(vcpu)) 10459 return; 10460 10461 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10462 } 10463 10464 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10465 { 10466 smp_send_reschedule(vcpu->cpu); 10467 } 10468 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10469 10470 /* 10471 * Called within kvm->srcu read side. 10472 * Returns 1 to let vcpu_run() continue the guest execution loop without 10473 * exiting to the userspace. Otherwise, the value will be returned to the 10474 * userspace. 10475 */ 10476 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10477 { 10478 int r; 10479 bool req_int_win = 10480 dm_request_for_irq_injection(vcpu) && 10481 kvm_cpu_accept_dm_intr(vcpu); 10482 fastpath_t exit_fastpath; 10483 10484 bool req_immediate_exit = false; 10485 10486 if (kvm_request_pending(vcpu)) { 10487 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10488 r = -EIO; 10489 goto out; 10490 } 10491 10492 if (kvm_dirty_ring_check_request(vcpu)) { 10493 r = 0; 10494 goto out; 10495 } 10496 10497 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10498 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10499 r = 0; 10500 goto out; 10501 } 10502 } 10503 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10504 kvm_mmu_free_obsolete_roots(vcpu); 10505 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10506 __kvm_migrate_timers(vcpu); 10507 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10508 kvm_update_masterclock(vcpu->kvm); 10509 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10510 kvm_gen_kvmclock_update(vcpu); 10511 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10512 r = kvm_guest_time_update(vcpu); 10513 if (unlikely(r)) 10514 goto out; 10515 } 10516 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10517 kvm_mmu_sync_roots(vcpu); 10518 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10519 kvm_mmu_load_pgd(vcpu); 10520 10521 /* 10522 * Note, the order matters here, as flushing "all" TLB entries 10523 * also flushes the "current" TLB entries, i.e. servicing the 10524 * flush "all" will clear any request to flush "current". 10525 */ 10526 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10527 kvm_vcpu_flush_tlb_all(vcpu); 10528 10529 kvm_service_local_tlb_flush_requests(vcpu); 10530 10531 /* 10532 * Fall back to a "full" guest flush if Hyper-V's precise 10533 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10534 * the flushes are considered "remote" and not "local" because 10535 * the requests can be initiated from other vCPUs. 10536 */ 10537 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10538 kvm_hv_vcpu_flush_tlb(vcpu)) 10539 kvm_vcpu_flush_tlb_guest(vcpu); 10540 10541 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10542 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10543 r = 0; 10544 goto out; 10545 } 10546 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10547 if (is_guest_mode(vcpu)) 10548 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10549 10550 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10551 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10552 vcpu->mmio_needed = 0; 10553 r = 0; 10554 goto out; 10555 } 10556 } 10557 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10558 /* Page is swapped out. Do synthetic halt */ 10559 vcpu->arch.apf.halted = true; 10560 r = 1; 10561 goto out; 10562 } 10563 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10564 record_steal_time(vcpu); 10565 #ifdef CONFIG_KVM_SMM 10566 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10567 process_smi(vcpu); 10568 #endif 10569 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10570 process_nmi(vcpu); 10571 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10572 kvm_pmu_handle_event(vcpu); 10573 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10574 kvm_pmu_deliver_pmi(vcpu); 10575 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10576 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10577 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10578 vcpu->arch.ioapic_handled_vectors)) { 10579 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10580 vcpu->run->eoi.vector = 10581 vcpu->arch.pending_ioapic_eoi; 10582 r = 0; 10583 goto out; 10584 } 10585 } 10586 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10587 vcpu_scan_ioapic(vcpu); 10588 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10589 vcpu_load_eoi_exitmap(vcpu); 10590 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10591 kvm_vcpu_reload_apic_access_page(vcpu); 10592 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10593 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10594 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10595 vcpu->run->system_event.ndata = 0; 10596 r = 0; 10597 goto out; 10598 } 10599 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10600 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10601 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10602 vcpu->run->system_event.ndata = 0; 10603 r = 0; 10604 goto out; 10605 } 10606 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10607 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10608 10609 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10610 vcpu->run->hyperv = hv_vcpu->exit; 10611 r = 0; 10612 goto out; 10613 } 10614 10615 /* 10616 * KVM_REQ_HV_STIMER has to be processed after 10617 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10618 * depend on the guest clock being up-to-date 10619 */ 10620 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10621 kvm_hv_process_stimers(vcpu); 10622 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10623 kvm_vcpu_update_apicv(vcpu); 10624 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10625 kvm_check_async_pf_completion(vcpu); 10626 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10627 static_call(kvm_x86_msr_filter_changed)(vcpu); 10628 10629 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10630 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10631 } 10632 10633 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10634 kvm_xen_has_interrupt(vcpu)) { 10635 ++vcpu->stat.req_event; 10636 r = kvm_apic_accept_events(vcpu); 10637 if (r < 0) { 10638 r = 0; 10639 goto out; 10640 } 10641 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10642 r = 1; 10643 goto out; 10644 } 10645 10646 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10647 if (r < 0) { 10648 r = 0; 10649 goto out; 10650 } 10651 if (req_int_win) 10652 static_call(kvm_x86_enable_irq_window)(vcpu); 10653 10654 if (kvm_lapic_enabled(vcpu)) { 10655 update_cr8_intercept(vcpu); 10656 kvm_lapic_sync_to_vapic(vcpu); 10657 } 10658 } 10659 10660 r = kvm_mmu_reload(vcpu); 10661 if (unlikely(r)) { 10662 goto cancel_injection; 10663 } 10664 10665 preempt_disable(); 10666 10667 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10668 10669 /* 10670 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10671 * IPI are then delayed after guest entry, which ensures that they 10672 * result in virtual interrupt delivery. 10673 */ 10674 local_irq_disable(); 10675 10676 /* Store vcpu->apicv_active before vcpu->mode. */ 10677 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10678 10679 kvm_vcpu_srcu_read_unlock(vcpu); 10680 10681 /* 10682 * 1) We should set ->mode before checking ->requests. Please see 10683 * the comment in kvm_vcpu_exiting_guest_mode(). 10684 * 10685 * 2) For APICv, we should set ->mode before checking PID.ON. This 10686 * pairs with the memory barrier implicit in pi_test_and_set_on 10687 * (see vmx_deliver_posted_interrupt). 10688 * 10689 * 3) This also orders the write to mode from any reads to the page 10690 * tables done while the VCPU is running. Please see the comment 10691 * in kvm_flush_remote_tlbs. 10692 */ 10693 smp_mb__after_srcu_read_unlock(); 10694 10695 /* 10696 * Process pending posted interrupts to handle the case where the 10697 * notification IRQ arrived in the host, or was never sent (because the 10698 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10699 * status, KVM doesn't update assigned devices when APICv is inhibited, 10700 * i.e. they can post interrupts even if APICv is temporarily disabled. 10701 */ 10702 if (kvm_lapic_enabled(vcpu)) 10703 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10704 10705 if (kvm_vcpu_exit_request(vcpu)) { 10706 vcpu->mode = OUTSIDE_GUEST_MODE; 10707 smp_wmb(); 10708 local_irq_enable(); 10709 preempt_enable(); 10710 kvm_vcpu_srcu_read_lock(vcpu); 10711 r = 1; 10712 goto cancel_injection; 10713 } 10714 10715 if (req_immediate_exit) { 10716 kvm_make_request(KVM_REQ_EVENT, vcpu); 10717 static_call(kvm_x86_request_immediate_exit)(vcpu); 10718 } 10719 10720 fpregs_assert_state_consistent(); 10721 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10722 switch_fpu_return(); 10723 10724 if (vcpu->arch.guest_fpu.xfd_err) 10725 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10726 10727 if (unlikely(vcpu->arch.switch_db_regs)) { 10728 set_debugreg(0, 7); 10729 set_debugreg(vcpu->arch.eff_db[0], 0); 10730 set_debugreg(vcpu->arch.eff_db[1], 1); 10731 set_debugreg(vcpu->arch.eff_db[2], 2); 10732 set_debugreg(vcpu->arch.eff_db[3], 3); 10733 } else if (unlikely(hw_breakpoint_active())) { 10734 set_debugreg(0, 7); 10735 } 10736 10737 guest_timing_enter_irqoff(); 10738 10739 for (;;) { 10740 /* 10741 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10742 * update must kick and wait for all vCPUs before toggling the 10743 * per-VM state, and responsing vCPUs must wait for the update 10744 * to complete before servicing KVM_REQ_APICV_UPDATE. 10745 */ 10746 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10747 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10748 10749 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10750 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10751 break; 10752 10753 if (kvm_lapic_enabled(vcpu)) 10754 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10755 10756 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10757 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10758 break; 10759 } 10760 10761 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10762 ++vcpu->stat.exits; 10763 } 10764 10765 /* 10766 * Do this here before restoring debug registers on the host. And 10767 * since we do this before handling the vmexit, a DR access vmexit 10768 * can (a) read the correct value of the debug registers, (b) set 10769 * KVM_DEBUGREG_WONT_EXIT again. 10770 */ 10771 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10772 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10773 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10774 kvm_update_dr0123(vcpu); 10775 kvm_update_dr7(vcpu); 10776 } 10777 10778 /* 10779 * If the guest has used debug registers, at least dr7 10780 * will be disabled while returning to the host. 10781 * If we don't have active breakpoints in the host, we don't 10782 * care about the messed up debug address registers. But if 10783 * we have some of them active, restore the old state. 10784 */ 10785 if (hw_breakpoint_active()) 10786 hw_breakpoint_restore(); 10787 10788 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10789 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10790 10791 vcpu->mode = OUTSIDE_GUEST_MODE; 10792 smp_wmb(); 10793 10794 /* 10795 * Sync xfd before calling handle_exit_irqoff() which may 10796 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10797 * in #NM irqoff handler). 10798 */ 10799 if (vcpu->arch.xfd_no_write_intercept) 10800 fpu_sync_guest_vmexit_xfd_state(); 10801 10802 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10803 10804 if (vcpu->arch.guest_fpu.xfd_err) 10805 wrmsrl(MSR_IA32_XFD_ERR, 0); 10806 10807 /* 10808 * Consume any pending interrupts, including the possible source of 10809 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10810 * An instruction is required after local_irq_enable() to fully unblock 10811 * interrupts on processors that implement an interrupt shadow, the 10812 * stat.exits increment will do nicely. 10813 */ 10814 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10815 local_irq_enable(); 10816 ++vcpu->stat.exits; 10817 local_irq_disable(); 10818 kvm_after_interrupt(vcpu); 10819 10820 /* 10821 * Wait until after servicing IRQs to account guest time so that any 10822 * ticks that occurred while running the guest are properly accounted 10823 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10824 * of accounting via context tracking, but the loss of accuracy is 10825 * acceptable for all known use cases. 10826 */ 10827 guest_timing_exit_irqoff(); 10828 10829 local_irq_enable(); 10830 preempt_enable(); 10831 10832 kvm_vcpu_srcu_read_lock(vcpu); 10833 10834 /* 10835 * Profile KVM exit RIPs: 10836 */ 10837 if (unlikely(prof_on == KVM_PROFILING)) { 10838 unsigned long rip = kvm_rip_read(vcpu); 10839 profile_hit(KVM_PROFILING, (void *)rip); 10840 } 10841 10842 if (unlikely(vcpu->arch.tsc_always_catchup)) 10843 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10844 10845 if (vcpu->arch.apic_attention) 10846 kvm_lapic_sync_from_vapic(vcpu); 10847 10848 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10849 return r; 10850 10851 cancel_injection: 10852 if (req_immediate_exit) 10853 kvm_make_request(KVM_REQ_EVENT, vcpu); 10854 static_call(kvm_x86_cancel_injection)(vcpu); 10855 if (unlikely(vcpu->arch.apic_attention)) 10856 kvm_lapic_sync_from_vapic(vcpu); 10857 out: 10858 return r; 10859 } 10860 10861 /* Called within kvm->srcu read side. */ 10862 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10863 { 10864 bool hv_timer; 10865 10866 if (!kvm_arch_vcpu_runnable(vcpu)) { 10867 /* 10868 * Switch to the software timer before halt-polling/blocking as 10869 * the guest's timer may be a break event for the vCPU, and the 10870 * hypervisor timer runs only when the CPU is in guest mode. 10871 * Switch before halt-polling so that KVM recognizes an expired 10872 * timer before blocking. 10873 */ 10874 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10875 if (hv_timer) 10876 kvm_lapic_switch_to_sw_timer(vcpu); 10877 10878 kvm_vcpu_srcu_read_unlock(vcpu); 10879 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10880 kvm_vcpu_halt(vcpu); 10881 else 10882 kvm_vcpu_block(vcpu); 10883 kvm_vcpu_srcu_read_lock(vcpu); 10884 10885 if (hv_timer) 10886 kvm_lapic_switch_to_hv_timer(vcpu); 10887 10888 /* 10889 * If the vCPU is not runnable, a signal or another host event 10890 * of some kind is pending; service it without changing the 10891 * vCPU's activity state. 10892 */ 10893 if (!kvm_arch_vcpu_runnable(vcpu)) 10894 return 1; 10895 } 10896 10897 /* 10898 * Evaluate nested events before exiting the halted state. This allows 10899 * the halt state to be recorded properly in the VMCS12's activity 10900 * state field (AMD does not have a similar field and a VM-Exit always 10901 * causes a spurious wakeup from HLT). 10902 */ 10903 if (is_guest_mode(vcpu)) { 10904 if (kvm_check_nested_events(vcpu) < 0) 10905 return 0; 10906 } 10907 10908 if (kvm_apic_accept_events(vcpu) < 0) 10909 return 0; 10910 switch(vcpu->arch.mp_state) { 10911 case KVM_MP_STATE_HALTED: 10912 case KVM_MP_STATE_AP_RESET_HOLD: 10913 vcpu->arch.pv.pv_unhalted = false; 10914 vcpu->arch.mp_state = 10915 KVM_MP_STATE_RUNNABLE; 10916 fallthrough; 10917 case KVM_MP_STATE_RUNNABLE: 10918 vcpu->arch.apf.halted = false; 10919 break; 10920 case KVM_MP_STATE_INIT_RECEIVED: 10921 break; 10922 default: 10923 WARN_ON_ONCE(1); 10924 break; 10925 } 10926 return 1; 10927 } 10928 10929 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10930 { 10931 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10932 !vcpu->arch.apf.halted); 10933 } 10934 10935 /* Called within kvm->srcu read side. */ 10936 static int vcpu_run(struct kvm_vcpu *vcpu) 10937 { 10938 int r; 10939 10940 vcpu->arch.l1tf_flush_l1d = true; 10941 10942 for (;;) { 10943 /* 10944 * If another guest vCPU requests a PV TLB flush in the middle 10945 * of instruction emulation, the rest of the emulation could 10946 * use a stale page translation. Assume that any code after 10947 * this point can start executing an instruction. 10948 */ 10949 vcpu->arch.at_instruction_boundary = false; 10950 if (kvm_vcpu_running(vcpu)) { 10951 r = vcpu_enter_guest(vcpu); 10952 } else { 10953 r = vcpu_block(vcpu); 10954 } 10955 10956 if (r <= 0) 10957 break; 10958 10959 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10960 if (kvm_xen_has_pending_events(vcpu)) 10961 kvm_xen_inject_pending_events(vcpu); 10962 10963 if (kvm_cpu_has_pending_timer(vcpu)) 10964 kvm_inject_pending_timer_irqs(vcpu); 10965 10966 if (dm_request_for_irq_injection(vcpu) && 10967 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10968 r = 0; 10969 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10970 ++vcpu->stat.request_irq_exits; 10971 break; 10972 } 10973 10974 if (__xfer_to_guest_mode_work_pending()) { 10975 kvm_vcpu_srcu_read_unlock(vcpu); 10976 r = xfer_to_guest_mode_handle_work(vcpu); 10977 kvm_vcpu_srcu_read_lock(vcpu); 10978 if (r) 10979 return r; 10980 } 10981 } 10982 10983 return r; 10984 } 10985 10986 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10987 { 10988 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10989 } 10990 10991 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10992 { 10993 BUG_ON(!vcpu->arch.pio.count); 10994 10995 return complete_emulated_io(vcpu); 10996 } 10997 10998 /* 10999 * Implements the following, as a state machine: 11000 * 11001 * read: 11002 * for each fragment 11003 * for each mmio piece in the fragment 11004 * write gpa, len 11005 * exit 11006 * copy data 11007 * execute insn 11008 * 11009 * write: 11010 * for each fragment 11011 * for each mmio piece in the fragment 11012 * write gpa, len 11013 * copy data 11014 * exit 11015 */ 11016 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11017 { 11018 struct kvm_run *run = vcpu->run; 11019 struct kvm_mmio_fragment *frag; 11020 unsigned len; 11021 11022 BUG_ON(!vcpu->mmio_needed); 11023 11024 /* Complete previous fragment */ 11025 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11026 len = min(8u, frag->len); 11027 if (!vcpu->mmio_is_write) 11028 memcpy(frag->data, run->mmio.data, len); 11029 11030 if (frag->len <= 8) { 11031 /* Switch to the next fragment. */ 11032 frag++; 11033 vcpu->mmio_cur_fragment++; 11034 } else { 11035 /* Go forward to the next mmio piece. */ 11036 frag->data += len; 11037 frag->gpa += len; 11038 frag->len -= len; 11039 } 11040 11041 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11042 vcpu->mmio_needed = 0; 11043 11044 /* FIXME: return into emulator if single-stepping. */ 11045 if (vcpu->mmio_is_write) 11046 return 1; 11047 vcpu->mmio_read_completed = 1; 11048 return complete_emulated_io(vcpu); 11049 } 11050 11051 run->exit_reason = KVM_EXIT_MMIO; 11052 run->mmio.phys_addr = frag->gpa; 11053 if (vcpu->mmio_is_write) 11054 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11055 run->mmio.len = min(8u, frag->len); 11056 run->mmio.is_write = vcpu->mmio_is_write; 11057 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11058 return 0; 11059 } 11060 11061 /* Swap (qemu) user FPU context for the guest FPU context. */ 11062 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11063 { 11064 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11065 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11066 trace_kvm_fpu(1); 11067 } 11068 11069 /* When vcpu_run ends, restore user space FPU context. */ 11070 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11071 { 11072 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11073 ++vcpu->stat.fpu_reload; 11074 trace_kvm_fpu(0); 11075 } 11076 11077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11078 { 11079 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11080 struct kvm_run *kvm_run = vcpu->run; 11081 int r; 11082 11083 vcpu_load(vcpu); 11084 kvm_sigset_activate(vcpu); 11085 kvm_run->flags = 0; 11086 kvm_load_guest_fpu(vcpu); 11087 11088 kvm_vcpu_srcu_read_lock(vcpu); 11089 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11090 if (kvm_run->immediate_exit) { 11091 r = -EINTR; 11092 goto out; 11093 } 11094 /* 11095 * It should be impossible for the hypervisor timer to be in 11096 * use before KVM has ever run the vCPU. 11097 */ 11098 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11099 11100 kvm_vcpu_srcu_read_unlock(vcpu); 11101 kvm_vcpu_block(vcpu); 11102 kvm_vcpu_srcu_read_lock(vcpu); 11103 11104 if (kvm_apic_accept_events(vcpu) < 0) { 11105 r = 0; 11106 goto out; 11107 } 11108 r = -EAGAIN; 11109 if (signal_pending(current)) { 11110 r = -EINTR; 11111 kvm_run->exit_reason = KVM_EXIT_INTR; 11112 ++vcpu->stat.signal_exits; 11113 } 11114 goto out; 11115 } 11116 11117 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11118 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11119 r = -EINVAL; 11120 goto out; 11121 } 11122 11123 if (kvm_run->kvm_dirty_regs) { 11124 r = sync_regs(vcpu); 11125 if (r != 0) 11126 goto out; 11127 } 11128 11129 /* re-sync apic's tpr */ 11130 if (!lapic_in_kernel(vcpu)) { 11131 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11132 r = -EINVAL; 11133 goto out; 11134 } 11135 } 11136 11137 /* 11138 * If userspace set a pending exception and L2 is active, convert it to 11139 * a pending VM-Exit if L1 wants to intercept the exception. 11140 */ 11141 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11142 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11143 ex->error_code)) { 11144 kvm_queue_exception_vmexit(vcpu, ex->vector, 11145 ex->has_error_code, ex->error_code, 11146 ex->has_payload, ex->payload); 11147 ex->injected = false; 11148 ex->pending = false; 11149 } 11150 vcpu->arch.exception_from_userspace = false; 11151 11152 if (unlikely(vcpu->arch.complete_userspace_io)) { 11153 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11154 vcpu->arch.complete_userspace_io = NULL; 11155 r = cui(vcpu); 11156 if (r <= 0) 11157 goto out; 11158 } else { 11159 WARN_ON_ONCE(vcpu->arch.pio.count); 11160 WARN_ON_ONCE(vcpu->mmio_needed); 11161 } 11162 11163 if (kvm_run->immediate_exit) { 11164 r = -EINTR; 11165 goto out; 11166 } 11167 11168 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11169 if (r <= 0) 11170 goto out; 11171 11172 r = vcpu_run(vcpu); 11173 11174 out: 11175 kvm_put_guest_fpu(vcpu); 11176 if (kvm_run->kvm_valid_regs) 11177 store_regs(vcpu); 11178 post_kvm_run_save(vcpu); 11179 kvm_vcpu_srcu_read_unlock(vcpu); 11180 11181 kvm_sigset_deactivate(vcpu); 11182 vcpu_put(vcpu); 11183 return r; 11184 } 11185 11186 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11187 { 11188 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11189 /* 11190 * We are here if userspace calls get_regs() in the middle of 11191 * instruction emulation. Registers state needs to be copied 11192 * back from emulation context to vcpu. Userspace shouldn't do 11193 * that usually, but some bad designed PV devices (vmware 11194 * backdoor interface) need this to work 11195 */ 11196 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11197 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11198 } 11199 regs->rax = kvm_rax_read(vcpu); 11200 regs->rbx = kvm_rbx_read(vcpu); 11201 regs->rcx = kvm_rcx_read(vcpu); 11202 regs->rdx = kvm_rdx_read(vcpu); 11203 regs->rsi = kvm_rsi_read(vcpu); 11204 regs->rdi = kvm_rdi_read(vcpu); 11205 regs->rsp = kvm_rsp_read(vcpu); 11206 regs->rbp = kvm_rbp_read(vcpu); 11207 #ifdef CONFIG_X86_64 11208 regs->r8 = kvm_r8_read(vcpu); 11209 regs->r9 = kvm_r9_read(vcpu); 11210 regs->r10 = kvm_r10_read(vcpu); 11211 regs->r11 = kvm_r11_read(vcpu); 11212 regs->r12 = kvm_r12_read(vcpu); 11213 regs->r13 = kvm_r13_read(vcpu); 11214 regs->r14 = kvm_r14_read(vcpu); 11215 regs->r15 = kvm_r15_read(vcpu); 11216 #endif 11217 11218 regs->rip = kvm_rip_read(vcpu); 11219 regs->rflags = kvm_get_rflags(vcpu); 11220 } 11221 11222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11223 { 11224 vcpu_load(vcpu); 11225 __get_regs(vcpu, regs); 11226 vcpu_put(vcpu); 11227 return 0; 11228 } 11229 11230 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11231 { 11232 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11233 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11234 11235 kvm_rax_write(vcpu, regs->rax); 11236 kvm_rbx_write(vcpu, regs->rbx); 11237 kvm_rcx_write(vcpu, regs->rcx); 11238 kvm_rdx_write(vcpu, regs->rdx); 11239 kvm_rsi_write(vcpu, regs->rsi); 11240 kvm_rdi_write(vcpu, regs->rdi); 11241 kvm_rsp_write(vcpu, regs->rsp); 11242 kvm_rbp_write(vcpu, regs->rbp); 11243 #ifdef CONFIG_X86_64 11244 kvm_r8_write(vcpu, regs->r8); 11245 kvm_r9_write(vcpu, regs->r9); 11246 kvm_r10_write(vcpu, regs->r10); 11247 kvm_r11_write(vcpu, regs->r11); 11248 kvm_r12_write(vcpu, regs->r12); 11249 kvm_r13_write(vcpu, regs->r13); 11250 kvm_r14_write(vcpu, regs->r14); 11251 kvm_r15_write(vcpu, regs->r15); 11252 #endif 11253 11254 kvm_rip_write(vcpu, regs->rip); 11255 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11256 11257 vcpu->arch.exception.pending = false; 11258 vcpu->arch.exception_vmexit.pending = false; 11259 11260 kvm_make_request(KVM_REQ_EVENT, vcpu); 11261 } 11262 11263 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11264 { 11265 vcpu_load(vcpu); 11266 __set_regs(vcpu, regs); 11267 vcpu_put(vcpu); 11268 return 0; 11269 } 11270 11271 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11272 { 11273 struct desc_ptr dt; 11274 11275 if (vcpu->arch.guest_state_protected) 11276 goto skip_protected_regs; 11277 11278 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11279 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11280 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11281 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11282 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11283 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11284 11285 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11286 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11287 11288 static_call(kvm_x86_get_idt)(vcpu, &dt); 11289 sregs->idt.limit = dt.size; 11290 sregs->idt.base = dt.address; 11291 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11292 sregs->gdt.limit = dt.size; 11293 sregs->gdt.base = dt.address; 11294 11295 sregs->cr2 = vcpu->arch.cr2; 11296 sregs->cr3 = kvm_read_cr3(vcpu); 11297 11298 skip_protected_regs: 11299 sregs->cr0 = kvm_read_cr0(vcpu); 11300 sregs->cr4 = kvm_read_cr4(vcpu); 11301 sregs->cr8 = kvm_get_cr8(vcpu); 11302 sregs->efer = vcpu->arch.efer; 11303 sregs->apic_base = kvm_get_apic_base(vcpu); 11304 } 11305 11306 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11307 { 11308 __get_sregs_common(vcpu, sregs); 11309 11310 if (vcpu->arch.guest_state_protected) 11311 return; 11312 11313 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11314 set_bit(vcpu->arch.interrupt.nr, 11315 (unsigned long *)sregs->interrupt_bitmap); 11316 } 11317 11318 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11319 { 11320 int i; 11321 11322 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11323 11324 if (vcpu->arch.guest_state_protected) 11325 return; 11326 11327 if (is_pae_paging(vcpu)) { 11328 for (i = 0 ; i < 4 ; i++) 11329 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11330 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11331 } 11332 } 11333 11334 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11335 struct kvm_sregs *sregs) 11336 { 11337 vcpu_load(vcpu); 11338 __get_sregs(vcpu, sregs); 11339 vcpu_put(vcpu); 11340 return 0; 11341 } 11342 11343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11344 struct kvm_mp_state *mp_state) 11345 { 11346 int r; 11347 11348 vcpu_load(vcpu); 11349 if (kvm_mpx_supported()) 11350 kvm_load_guest_fpu(vcpu); 11351 11352 r = kvm_apic_accept_events(vcpu); 11353 if (r < 0) 11354 goto out; 11355 r = 0; 11356 11357 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11358 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11359 vcpu->arch.pv.pv_unhalted) 11360 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11361 else 11362 mp_state->mp_state = vcpu->arch.mp_state; 11363 11364 out: 11365 if (kvm_mpx_supported()) 11366 kvm_put_guest_fpu(vcpu); 11367 vcpu_put(vcpu); 11368 return r; 11369 } 11370 11371 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11372 struct kvm_mp_state *mp_state) 11373 { 11374 int ret = -EINVAL; 11375 11376 vcpu_load(vcpu); 11377 11378 switch (mp_state->mp_state) { 11379 case KVM_MP_STATE_UNINITIALIZED: 11380 case KVM_MP_STATE_HALTED: 11381 case KVM_MP_STATE_AP_RESET_HOLD: 11382 case KVM_MP_STATE_INIT_RECEIVED: 11383 case KVM_MP_STATE_SIPI_RECEIVED: 11384 if (!lapic_in_kernel(vcpu)) 11385 goto out; 11386 break; 11387 11388 case KVM_MP_STATE_RUNNABLE: 11389 break; 11390 11391 default: 11392 goto out; 11393 } 11394 11395 /* 11396 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11397 * forcing the guest into INIT/SIPI if those events are supposed to be 11398 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11399 * if an SMI is pending as well. 11400 */ 11401 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11402 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11403 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11404 goto out; 11405 11406 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11407 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11408 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11409 } else 11410 vcpu->arch.mp_state = mp_state->mp_state; 11411 kvm_make_request(KVM_REQ_EVENT, vcpu); 11412 11413 ret = 0; 11414 out: 11415 vcpu_put(vcpu); 11416 return ret; 11417 } 11418 11419 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11420 int reason, bool has_error_code, u32 error_code) 11421 { 11422 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11423 int ret; 11424 11425 init_emulate_ctxt(vcpu); 11426 11427 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11428 has_error_code, error_code); 11429 if (ret) { 11430 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11431 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11432 vcpu->run->internal.ndata = 0; 11433 return 0; 11434 } 11435 11436 kvm_rip_write(vcpu, ctxt->eip); 11437 kvm_set_rflags(vcpu, ctxt->eflags); 11438 return 1; 11439 } 11440 EXPORT_SYMBOL_GPL(kvm_task_switch); 11441 11442 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11443 { 11444 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11445 /* 11446 * When EFER.LME and CR0.PG are set, the processor is in 11447 * 64-bit mode (though maybe in a 32-bit code segment). 11448 * CR4.PAE and EFER.LMA must be set. 11449 */ 11450 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11451 return false; 11452 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11453 return false; 11454 } else { 11455 /* 11456 * Not in 64-bit mode: EFER.LMA is clear and the code 11457 * segment cannot be 64-bit. 11458 */ 11459 if (sregs->efer & EFER_LMA || sregs->cs.l) 11460 return false; 11461 } 11462 11463 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11464 } 11465 11466 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11467 int *mmu_reset_needed, bool update_pdptrs) 11468 { 11469 struct msr_data apic_base_msr; 11470 int idx; 11471 struct desc_ptr dt; 11472 11473 if (!kvm_is_valid_sregs(vcpu, sregs)) 11474 return -EINVAL; 11475 11476 apic_base_msr.data = sregs->apic_base; 11477 apic_base_msr.host_initiated = true; 11478 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11479 return -EINVAL; 11480 11481 if (vcpu->arch.guest_state_protected) 11482 return 0; 11483 11484 dt.size = sregs->idt.limit; 11485 dt.address = sregs->idt.base; 11486 static_call(kvm_x86_set_idt)(vcpu, &dt); 11487 dt.size = sregs->gdt.limit; 11488 dt.address = sregs->gdt.base; 11489 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11490 11491 vcpu->arch.cr2 = sregs->cr2; 11492 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11493 vcpu->arch.cr3 = sregs->cr3; 11494 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11495 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11496 11497 kvm_set_cr8(vcpu, sregs->cr8); 11498 11499 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11500 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11501 11502 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11503 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11504 vcpu->arch.cr0 = sregs->cr0; 11505 11506 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11507 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11508 11509 if (update_pdptrs) { 11510 idx = srcu_read_lock(&vcpu->kvm->srcu); 11511 if (is_pae_paging(vcpu)) { 11512 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11513 *mmu_reset_needed = 1; 11514 } 11515 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11516 } 11517 11518 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11519 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11520 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11521 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11522 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11523 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11524 11525 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11526 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11527 11528 update_cr8_intercept(vcpu); 11529 11530 /* Older userspace won't unhalt the vcpu on reset. */ 11531 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11532 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11533 !is_protmode(vcpu)) 11534 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11535 11536 return 0; 11537 } 11538 11539 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11540 { 11541 int pending_vec, max_bits; 11542 int mmu_reset_needed = 0; 11543 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11544 11545 if (ret) 11546 return ret; 11547 11548 if (mmu_reset_needed) 11549 kvm_mmu_reset_context(vcpu); 11550 11551 max_bits = KVM_NR_INTERRUPTS; 11552 pending_vec = find_first_bit( 11553 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11554 11555 if (pending_vec < max_bits) { 11556 kvm_queue_interrupt(vcpu, pending_vec, false); 11557 pr_debug("Set back pending irq %d\n", pending_vec); 11558 kvm_make_request(KVM_REQ_EVENT, vcpu); 11559 } 11560 return 0; 11561 } 11562 11563 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11564 { 11565 int mmu_reset_needed = 0; 11566 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11567 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11568 !(sregs2->efer & EFER_LMA); 11569 int i, ret; 11570 11571 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11572 return -EINVAL; 11573 11574 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11575 return -EINVAL; 11576 11577 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11578 &mmu_reset_needed, !valid_pdptrs); 11579 if (ret) 11580 return ret; 11581 11582 if (valid_pdptrs) { 11583 for (i = 0; i < 4 ; i++) 11584 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11585 11586 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11587 mmu_reset_needed = 1; 11588 vcpu->arch.pdptrs_from_userspace = true; 11589 } 11590 if (mmu_reset_needed) 11591 kvm_mmu_reset_context(vcpu); 11592 return 0; 11593 } 11594 11595 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11596 struct kvm_sregs *sregs) 11597 { 11598 int ret; 11599 11600 vcpu_load(vcpu); 11601 ret = __set_sregs(vcpu, sregs); 11602 vcpu_put(vcpu); 11603 return ret; 11604 } 11605 11606 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11607 { 11608 bool set = false; 11609 struct kvm_vcpu *vcpu; 11610 unsigned long i; 11611 11612 if (!enable_apicv) 11613 return; 11614 11615 down_write(&kvm->arch.apicv_update_lock); 11616 11617 kvm_for_each_vcpu(i, vcpu, kvm) { 11618 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11619 set = true; 11620 break; 11621 } 11622 } 11623 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11624 up_write(&kvm->arch.apicv_update_lock); 11625 } 11626 11627 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11628 struct kvm_guest_debug *dbg) 11629 { 11630 unsigned long rflags; 11631 int i, r; 11632 11633 if (vcpu->arch.guest_state_protected) 11634 return -EINVAL; 11635 11636 vcpu_load(vcpu); 11637 11638 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11639 r = -EBUSY; 11640 if (kvm_is_exception_pending(vcpu)) 11641 goto out; 11642 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11643 kvm_queue_exception(vcpu, DB_VECTOR); 11644 else 11645 kvm_queue_exception(vcpu, BP_VECTOR); 11646 } 11647 11648 /* 11649 * Read rflags as long as potentially injected trace flags are still 11650 * filtered out. 11651 */ 11652 rflags = kvm_get_rflags(vcpu); 11653 11654 vcpu->guest_debug = dbg->control; 11655 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11656 vcpu->guest_debug = 0; 11657 11658 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11659 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11660 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11661 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11662 } else { 11663 for (i = 0; i < KVM_NR_DB_REGS; i++) 11664 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11665 } 11666 kvm_update_dr7(vcpu); 11667 11668 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11669 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11670 11671 /* 11672 * Trigger an rflags update that will inject or remove the trace 11673 * flags. 11674 */ 11675 kvm_set_rflags(vcpu, rflags); 11676 11677 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11678 11679 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11680 11681 r = 0; 11682 11683 out: 11684 vcpu_put(vcpu); 11685 return r; 11686 } 11687 11688 /* 11689 * Translate a guest virtual address to a guest physical address. 11690 */ 11691 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11692 struct kvm_translation *tr) 11693 { 11694 unsigned long vaddr = tr->linear_address; 11695 gpa_t gpa; 11696 int idx; 11697 11698 vcpu_load(vcpu); 11699 11700 idx = srcu_read_lock(&vcpu->kvm->srcu); 11701 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11702 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11703 tr->physical_address = gpa; 11704 tr->valid = gpa != INVALID_GPA; 11705 tr->writeable = 1; 11706 tr->usermode = 0; 11707 11708 vcpu_put(vcpu); 11709 return 0; 11710 } 11711 11712 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11713 { 11714 struct fxregs_state *fxsave; 11715 11716 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11717 return 0; 11718 11719 vcpu_load(vcpu); 11720 11721 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11722 memcpy(fpu->fpr, fxsave->st_space, 128); 11723 fpu->fcw = fxsave->cwd; 11724 fpu->fsw = fxsave->swd; 11725 fpu->ftwx = fxsave->twd; 11726 fpu->last_opcode = fxsave->fop; 11727 fpu->last_ip = fxsave->rip; 11728 fpu->last_dp = fxsave->rdp; 11729 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11730 11731 vcpu_put(vcpu); 11732 return 0; 11733 } 11734 11735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11736 { 11737 struct fxregs_state *fxsave; 11738 11739 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11740 return 0; 11741 11742 vcpu_load(vcpu); 11743 11744 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11745 11746 memcpy(fxsave->st_space, fpu->fpr, 128); 11747 fxsave->cwd = fpu->fcw; 11748 fxsave->swd = fpu->fsw; 11749 fxsave->twd = fpu->ftwx; 11750 fxsave->fop = fpu->last_opcode; 11751 fxsave->rip = fpu->last_ip; 11752 fxsave->rdp = fpu->last_dp; 11753 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11754 11755 vcpu_put(vcpu); 11756 return 0; 11757 } 11758 11759 static void store_regs(struct kvm_vcpu *vcpu) 11760 { 11761 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11762 11763 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11764 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11765 11766 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11767 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11768 11769 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11770 kvm_vcpu_ioctl_x86_get_vcpu_events( 11771 vcpu, &vcpu->run->s.regs.events); 11772 } 11773 11774 static int sync_regs(struct kvm_vcpu *vcpu) 11775 { 11776 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11777 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11778 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11779 } 11780 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11781 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11782 return -EINVAL; 11783 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11784 } 11785 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11786 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11787 vcpu, &vcpu->run->s.regs.events)) 11788 return -EINVAL; 11789 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11790 } 11791 11792 return 0; 11793 } 11794 11795 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11796 { 11797 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11798 pr_warn_once("SMP vm created on host with unstable TSC; " 11799 "guest TSC will not be reliable\n"); 11800 11801 if (!kvm->arch.max_vcpu_ids) 11802 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11803 11804 if (id >= kvm->arch.max_vcpu_ids) 11805 return -EINVAL; 11806 11807 return static_call(kvm_x86_vcpu_precreate)(kvm); 11808 } 11809 11810 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11811 { 11812 struct page *page; 11813 int r; 11814 11815 vcpu->arch.last_vmentry_cpu = -1; 11816 vcpu->arch.regs_avail = ~0; 11817 vcpu->arch.regs_dirty = ~0; 11818 11819 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11820 11821 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11822 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11823 else 11824 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11825 11826 r = kvm_mmu_create(vcpu); 11827 if (r < 0) 11828 return r; 11829 11830 if (irqchip_in_kernel(vcpu->kvm)) { 11831 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11832 if (r < 0) 11833 goto fail_mmu_destroy; 11834 11835 /* 11836 * Defer evaluating inhibits until the vCPU is first run, as 11837 * this vCPU will not get notified of any changes until this 11838 * vCPU is visible to other vCPUs (marked online and added to 11839 * the set of vCPUs). Opportunistically mark APICv active as 11840 * VMX in particularly is highly unlikely to have inhibits. 11841 * Ignore the current per-VM APICv state so that vCPU creation 11842 * is guaranteed to run with a deterministic value, the request 11843 * will ensure the vCPU gets the correct state before VM-Entry. 11844 */ 11845 if (enable_apicv) { 11846 vcpu->arch.apic->apicv_active = true; 11847 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11848 } 11849 } else 11850 static_branch_inc(&kvm_has_noapic_vcpu); 11851 11852 r = -ENOMEM; 11853 11854 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11855 if (!page) 11856 goto fail_free_lapic; 11857 vcpu->arch.pio_data = page_address(page); 11858 11859 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11860 GFP_KERNEL_ACCOUNT); 11861 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11862 GFP_KERNEL_ACCOUNT); 11863 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11864 goto fail_free_mce_banks; 11865 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11866 11867 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11868 GFP_KERNEL_ACCOUNT)) 11869 goto fail_free_mce_banks; 11870 11871 if (!alloc_emulate_ctxt(vcpu)) 11872 goto free_wbinvd_dirty_mask; 11873 11874 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11875 pr_err("failed to allocate vcpu's fpu\n"); 11876 goto free_emulate_ctxt; 11877 } 11878 11879 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11880 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11881 11882 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11883 11884 kvm_async_pf_hash_reset(vcpu); 11885 11886 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11887 kvm_pmu_init(vcpu); 11888 11889 vcpu->arch.pending_external_vector = -1; 11890 vcpu->arch.preempted_in_kernel = false; 11891 11892 #if IS_ENABLED(CONFIG_HYPERV) 11893 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11894 #endif 11895 11896 r = static_call(kvm_x86_vcpu_create)(vcpu); 11897 if (r) 11898 goto free_guest_fpu; 11899 11900 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11901 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11902 kvm_xen_init_vcpu(vcpu); 11903 kvm_vcpu_mtrr_init(vcpu); 11904 vcpu_load(vcpu); 11905 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11906 kvm_vcpu_reset(vcpu, false); 11907 kvm_init_mmu(vcpu); 11908 vcpu_put(vcpu); 11909 return 0; 11910 11911 free_guest_fpu: 11912 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11913 free_emulate_ctxt: 11914 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11915 free_wbinvd_dirty_mask: 11916 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11917 fail_free_mce_banks: 11918 kfree(vcpu->arch.mce_banks); 11919 kfree(vcpu->arch.mci_ctl2_banks); 11920 free_page((unsigned long)vcpu->arch.pio_data); 11921 fail_free_lapic: 11922 kvm_free_lapic(vcpu); 11923 fail_mmu_destroy: 11924 kvm_mmu_destroy(vcpu); 11925 return r; 11926 } 11927 11928 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11929 { 11930 struct kvm *kvm = vcpu->kvm; 11931 11932 if (mutex_lock_killable(&vcpu->mutex)) 11933 return; 11934 vcpu_load(vcpu); 11935 kvm_synchronize_tsc(vcpu, 0); 11936 vcpu_put(vcpu); 11937 11938 /* poll control enabled by default */ 11939 vcpu->arch.msr_kvm_poll_control = 1; 11940 11941 mutex_unlock(&vcpu->mutex); 11942 11943 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11944 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11945 KVMCLOCK_SYNC_PERIOD); 11946 } 11947 11948 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11949 { 11950 int idx; 11951 11952 kvmclock_reset(vcpu); 11953 11954 static_call(kvm_x86_vcpu_free)(vcpu); 11955 11956 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11957 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11958 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11959 11960 kvm_xen_destroy_vcpu(vcpu); 11961 kvm_hv_vcpu_uninit(vcpu); 11962 kvm_pmu_destroy(vcpu); 11963 kfree(vcpu->arch.mce_banks); 11964 kfree(vcpu->arch.mci_ctl2_banks); 11965 kvm_free_lapic(vcpu); 11966 idx = srcu_read_lock(&vcpu->kvm->srcu); 11967 kvm_mmu_destroy(vcpu); 11968 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11969 free_page((unsigned long)vcpu->arch.pio_data); 11970 kvfree(vcpu->arch.cpuid_entries); 11971 if (!lapic_in_kernel(vcpu)) 11972 static_branch_dec(&kvm_has_noapic_vcpu); 11973 } 11974 11975 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11976 { 11977 struct kvm_cpuid_entry2 *cpuid_0x1; 11978 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11979 unsigned long new_cr0; 11980 11981 /* 11982 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11983 * to handle side effects. RESET emulation hits those flows and relies 11984 * on emulated/virtualized registers, including those that are loaded 11985 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11986 * to detect improper or missing initialization. 11987 */ 11988 WARN_ON_ONCE(!init_event && 11989 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11990 11991 /* 11992 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11993 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11994 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11995 * bits), i.e. virtualization is disabled. 11996 */ 11997 if (is_guest_mode(vcpu)) 11998 kvm_leave_nested(vcpu); 11999 12000 kvm_lapic_reset(vcpu, init_event); 12001 12002 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12003 vcpu->arch.hflags = 0; 12004 12005 vcpu->arch.smi_pending = 0; 12006 vcpu->arch.smi_count = 0; 12007 atomic_set(&vcpu->arch.nmi_queued, 0); 12008 vcpu->arch.nmi_pending = 0; 12009 vcpu->arch.nmi_injected = false; 12010 kvm_clear_interrupt_queue(vcpu); 12011 kvm_clear_exception_queue(vcpu); 12012 12013 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12014 kvm_update_dr0123(vcpu); 12015 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12016 vcpu->arch.dr7 = DR7_FIXED_1; 12017 kvm_update_dr7(vcpu); 12018 12019 vcpu->arch.cr2 = 0; 12020 12021 kvm_make_request(KVM_REQ_EVENT, vcpu); 12022 vcpu->arch.apf.msr_en_val = 0; 12023 vcpu->arch.apf.msr_int_val = 0; 12024 vcpu->arch.st.msr_val = 0; 12025 12026 kvmclock_reset(vcpu); 12027 12028 kvm_clear_async_pf_completion_queue(vcpu); 12029 kvm_async_pf_hash_reset(vcpu); 12030 vcpu->arch.apf.halted = false; 12031 12032 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12033 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12034 12035 /* 12036 * All paths that lead to INIT are required to load the guest's 12037 * FPU state (because most paths are buried in KVM_RUN). 12038 */ 12039 if (init_event) 12040 kvm_put_guest_fpu(vcpu); 12041 12042 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12043 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12044 12045 if (init_event) 12046 kvm_load_guest_fpu(vcpu); 12047 } 12048 12049 if (!init_event) { 12050 kvm_pmu_reset(vcpu); 12051 vcpu->arch.smbase = 0x30000; 12052 12053 vcpu->arch.msr_misc_features_enables = 0; 12054 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12055 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12056 12057 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12058 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12059 } 12060 12061 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12062 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12063 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12064 12065 /* 12066 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12067 * if no CPUID match is found. Note, it's impossible to get a match at 12068 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12069 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12070 * on RESET. But, go through the motions in case that's ever remedied. 12071 */ 12072 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12073 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12074 12075 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12076 12077 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12078 kvm_rip_write(vcpu, 0xfff0); 12079 12080 vcpu->arch.cr3 = 0; 12081 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12082 12083 /* 12084 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12085 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12086 * (or qualify) that with a footnote stating that CD/NW are preserved. 12087 */ 12088 new_cr0 = X86_CR0_ET; 12089 if (init_event) 12090 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12091 else 12092 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12093 12094 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12095 static_call(kvm_x86_set_cr4)(vcpu, 0); 12096 static_call(kvm_x86_set_efer)(vcpu, 0); 12097 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12098 12099 /* 12100 * On the standard CR0/CR4/EFER modification paths, there are several 12101 * complex conditions determining whether the MMU has to be reset and/or 12102 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12103 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12104 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12105 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12106 */ 12107 if (old_cr0 & X86_CR0_PG) { 12108 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12109 kvm_mmu_reset_context(vcpu); 12110 } 12111 12112 /* 12113 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12114 * APM states the TLBs are untouched by INIT, but it also states that 12115 * the TLBs are flushed on "External initialization of the processor." 12116 * Flush the guest TLB regardless of vendor, there is no meaningful 12117 * benefit in relying on the guest to flush the TLB immediately after 12118 * INIT. A spurious TLB flush is benign and likely negligible from a 12119 * performance perspective. 12120 */ 12121 if (init_event) 12122 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12123 } 12124 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12125 12126 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12127 { 12128 struct kvm_segment cs; 12129 12130 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12131 cs.selector = vector << 8; 12132 cs.base = vector << 12; 12133 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12134 kvm_rip_write(vcpu, 0); 12135 } 12136 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12137 12138 int kvm_arch_hardware_enable(void) 12139 { 12140 struct kvm *kvm; 12141 struct kvm_vcpu *vcpu; 12142 unsigned long i; 12143 int ret; 12144 u64 local_tsc; 12145 u64 max_tsc = 0; 12146 bool stable, backwards_tsc = false; 12147 12148 kvm_user_return_msr_cpu_online(); 12149 12150 ret = kvm_x86_check_processor_compatibility(); 12151 if (ret) 12152 return ret; 12153 12154 ret = static_call(kvm_x86_hardware_enable)(); 12155 if (ret != 0) 12156 return ret; 12157 12158 local_tsc = rdtsc(); 12159 stable = !kvm_check_tsc_unstable(); 12160 list_for_each_entry(kvm, &vm_list, vm_list) { 12161 kvm_for_each_vcpu(i, vcpu, kvm) { 12162 if (!stable && vcpu->cpu == smp_processor_id()) 12163 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12164 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12165 backwards_tsc = true; 12166 if (vcpu->arch.last_host_tsc > max_tsc) 12167 max_tsc = vcpu->arch.last_host_tsc; 12168 } 12169 } 12170 } 12171 12172 /* 12173 * Sometimes, even reliable TSCs go backwards. This happens on 12174 * platforms that reset TSC during suspend or hibernate actions, but 12175 * maintain synchronization. We must compensate. Fortunately, we can 12176 * detect that condition here, which happens early in CPU bringup, 12177 * before any KVM threads can be running. Unfortunately, we can't 12178 * bring the TSCs fully up to date with real time, as we aren't yet far 12179 * enough into CPU bringup that we know how much real time has actually 12180 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12181 * variables that haven't been updated yet. 12182 * 12183 * So we simply find the maximum observed TSC above, then record the 12184 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12185 * the adjustment will be applied. Note that we accumulate 12186 * adjustments, in case multiple suspend cycles happen before some VCPU 12187 * gets a chance to run again. In the event that no KVM threads get a 12188 * chance to run, we will miss the entire elapsed period, as we'll have 12189 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12190 * loose cycle time. This isn't too big a deal, since the loss will be 12191 * uniform across all VCPUs (not to mention the scenario is extremely 12192 * unlikely). It is possible that a second hibernate recovery happens 12193 * much faster than a first, causing the observed TSC here to be 12194 * smaller; this would require additional padding adjustment, which is 12195 * why we set last_host_tsc to the local tsc observed here. 12196 * 12197 * N.B. - this code below runs only on platforms with reliable TSC, 12198 * as that is the only way backwards_tsc is set above. Also note 12199 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12200 * have the same delta_cyc adjustment applied if backwards_tsc 12201 * is detected. Note further, this adjustment is only done once, 12202 * as we reset last_host_tsc on all VCPUs to stop this from being 12203 * called multiple times (one for each physical CPU bringup). 12204 * 12205 * Platforms with unreliable TSCs don't have to deal with this, they 12206 * will be compensated by the logic in vcpu_load, which sets the TSC to 12207 * catchup mode. This will catchup all VCPUs to real time, but cannot 12208 * guarantee that they stay in perfect synchronization. 12209 */ 12210 if (backwards_tsc) { 12211 u64 delta_cyc = max_tsc - local_tsc; 12212 list_for_each_entry(kvm, &vm_list, vm_list) { 12213 kvm->arch.backwards_tsc_observed = true; 12214 kvm_for_each_vcpu(i, vcpu, kvm) { 12215 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12216 vcpu->arch.last_host_tsc = local_tsc; 12217 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12218 } 12219 12220 /* 12221 * We have to disable TSC offset matching.. if you were 12222 * booting a VM while issuing an S4 host suspend.... 12223 * you may have some problem. Solving this issue is 12224 * left as an exercise to the reader. 12225 */ 12226 kvm->arch.last_tsc_nsec = 0; 12227 kvm->arch.last_tsc_write = 0; 12228 } 12229 12230 } 12231 return 0; 12232 } 12233 12234 void kvm_arch_hardware_disable(void) 12235 { 12236 static_call(kvm_x86_hardware_disable)(); 12237 drop_user_return_notifiers(); 12238 } 12239 12240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12241 { 12242 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12243 } 12244 12245 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12246 { 12247 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12248 } 12249 12250 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12251 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12252 12253 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12254 { 12255 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12256 12257 vcpu->arch.l1tf_flush_l1d = true; 12258 if (pmu->version && unlikely(pmu->event_count)) { 12259 pmu->need_cleanup = true; 12260 kvm_make_request(KVM_REQ_PMU, vcpu); 12261 } 12262 static_call(kvm_x86_sched_in)(vcpu, cpu); 12263 } 12264 12265 void kvm_arch_free_vm(struct kvm *kvm) 12266 { 12267 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12268 __kvm_arch_free_vm(kvm); 12269 } 12270 12271 12272 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12273 { 12274 int ret; 12275 unsigned long flags; 12276 12277 if (type) 12278 return -EINVAL; 12279 12280 ret = kvm_page_track_init(kvm); 12281 if (ret) 12282 goto out; 12283 12284 ret = kvm_mmu_init_vm(kvm); 12285 if (ret) 12286 goto out_page_track; 12287 12288 ret = static_call(kvm_x86_vm_init)(kvm); 12289 if (ret) 12290 goto out_uninit_mmu; 12291 12292 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12293 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12294 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12295 12296 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12297 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12298 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12299 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12300 &kvm->arch.irq_sources_bitmap); 12301 12302 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12303 mutex_init(&kvm->arch.apic_map_lock); 12304 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12305 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12306 12307 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12308 pvclock_update_vm_gtod_copy(kvm); 12309 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12310 12311 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12312 kvm->arch.guest_can_read_msr_platform_info = true; 12313 kvm->arch.enable_pmu = enable_pmu; 12314 12315 #if IS_ENABLED(CONFIG_HYPERV) 12316 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12317 kvm->arch.hv_root_tdp = INVALID_PAGE; 12318 #endif 12319 12320 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12321 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12322 12323 kvm_apicv_init(kvm); 12324 kvm_hv_init_vm(kvm); 12325 kvm_xen_init_vm(kvm); 12326 12327 return 0; 12328 12329 out_uninit_mmu: 12330 kvm_mmu_uninit_vm(kvm); 12331 out_page_track: 12332 kvm_page_track_cleanup(kvm); 12333 out: 12334 return ret; 12335 } 12336 12337 int kvm_arch_post_init_vm(struct kvm *kvm) 12338 { 12339 return kvm_mmu_post_init_vm(kvm); 12340 } 12341 12342 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12343 { 12344 vcpu_load(vcpu); 12345 kvm_mmu_unload(vcpu); 12346 vcpu_put(vcpu); 12347 } 12348 12349 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12350 { 12351 unsigned long i; 12352 struct kvm_vcpu *vcpu; 12353 12354 kvm_for_each_vcpu(i, vcpu, kvm) { 12355 kvm_clear_async_pf_completion_queue(vcpu); 12356 kvm_unload_vcpu_mmu(vcpu); 12357 } 12358 } 12359 12360 void kvm_arch_sync_events(struct kvm *kvm) 12361 { 12362 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12363 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12364 kvm_free_pit(kvm); 12365 } 12366 12367 /** 12368 * __x86_set_memory_region: Setup KVM internal memory slot 12369 * 12370 * @kvm: the kvm pointer to the VM. 12371 * @id: the slot ID to setup. 12372 * @gpa: the GPA to install the slot (unused when @size == 0). 12373 * @size: the size of the slot. Set to zero to uninstall a slot. 12374 * 12375 * This function helps to setup a KVM internal memory slot. Specify 12376 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12377 * slot. The return code can be one of the following: 12378 * 12379 * HVA: on success (uninstall will return a bogus HVA) 12380 * -errno: on error 12381 * 12382 * The caller should always use IS_ERR() to check the return value 12383 * before use. Note, the KVM internal memory slots are guaranteed to 12384 * remain valid and unchanged until the VM is destroyed, i.e., the 12385 * GPA->HVA translation will not change. However, the HVA is a user 12386 * address, i.e. its accessibility is not guaranteed, and must be 12387 * accessed via __copy_{to,from}_user(). 12388 */ 12389 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12390 u32 size) 12391 { 12392 int i, r; 12393 unsigned long hva, old_npages; 12394 struct kvm_memslots *slots = kvm_memslots(kvm); 12395 struct kvm_memory_slot *slot; 12396 12397 /* Called with kvm->slots_lock held. */ 12398 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12399 return ERR_PTR_USR(-EINVAL); 12400 12401 slot = id_to_memslot(slots, id); 12402 if (size) { 12403 if (slot && slot->npages) 12404 return ERR_PTR_USR(-EEXIST); 12405 12406 /* 12407 * MAP_SHARED to prevent internal slot pages from being moved 12408 * by fork()/COW. 12409 */ 12410 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12411 MAP_SHARED | MAP_ANONYMOUS, 0); 12412 if (IS_ERR_VALUE(hva)) 12413 return (void __user *)hva; 12414 } else { 12415 if (!slot || !slot->npages) 12416 return NULL; 12417 12418 old_npages = slot->npages; 12419 hva = slot->userspace_addr; 12420 } 12421 12422 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12423 struct kvm_userspace_memory_region m; 12424 12425 m.slot = id | (i << 16); 12426 m.flags = 0; 12427 m.guest_phys_addr = gpa; 12428 m.userspace_addr = hva; 12429 m.memory_size = size; 12430 r = __kvm_set_memory_region(kvm, &m); 12431 if (r < 0) 12432 return ERR_PTR_USR(r); 12433 } 12434 12435 if (!size) 12436 vm_munmap(hva, old_npages * PAGE_SIZE); 12437 12438 return (void __user *)hva; 12439 } 12440 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12441 12442 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12443 { 12444 kvm_mmu_pre_destroy_vm(kvm); 12445 } 12446 12447 void kvm_arch_destroy_vm(struct kvm *kvm) 12448 { 12449 if (current->mm == kvm->mm) { 12450 /* 12451 * Free memory regions allocated on behalf of userspace, 12452 * unless the memory map has changed due to process exit 12453 * or fd copying. 12454 */ 12455 mutex_lock(&kvm->slots_lock); 12456 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12457 0, 0); 12458 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12459 0, 0); 12460 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12461 mutex_unlock(&kvm->slots_lock); 12462 } 12463 kvm_unload_vcpu_mmus(kvm); 12464 static_call_cond(kvm_x86_vm_destroy)(kvm); 12465 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12466 kvm_pic_destroy(kvm); 12467 kvm_ioapic_destroy(kvm); 12468 kvm_destroy_vcpus(kvm); 12469 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12470 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12471 kvm_mmu_uninit_vm(kvm); 12472 kvm_page_track_cleanup(kvm); 12473 kvm_xen_destroy_vm(kvm); 12474 kvm_hv_destroy_vm(kvm); 12475 } 12476 12477 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12478 { 12479 int i; 12480 12481 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12482 kvfree(slot->arch.rmap[i]); 12483 slot->arch.rmap[i] = NULL; 12484 } 12485 } 12486 12487 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12488 { 12489 int i; 12490 12491 memslot_rmap_free(slot); 12492 12493 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12494 kvfree(slot->arch.lpage_info[i - 1]); 12495 slot->arch.lpage_info[i - 1] = NULL; 12496 } 12497 12498 kvm_page_track_free_memslot(slot); 12499 } 12500 12501 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12502 { 12503 const int sz = sizeof(*slot->arch.rmap[0]); 12504 int i; 12505 12506 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12507 int level = i + 1; 12508 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12509 12510 if (slot->arch.rmap[i]) 12511 continue; 12512 12513 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12514 if (!slot->arch.rmap[i]) { 12515 memslot_rmap_free(slot); 12516 return -ENOMEM; 12517 } 12518 } 12519 12520 return 0; 12521 } 12522 12523 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12524 struct kvm_memory_slot *slot) 12525 { 12526 unsigned long npages = slot->npages; 12527 int i, r; 12528 12529 /* 12530 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12531 * old arrays will be freed by __kvm_set_memory_region() if installing 12532 * the new memslot is successful. 12533 */ 12534 memset(&slot->arch, 0, sizeof(slot->arch)); 12535 12536 if (kvm_memslots_have_rmaps(kvm)) { 12537 r = memslot_rmap_alloc(slot, npages); 12538 if (r) 12539 return r; 12540 } 12541 12542 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12543 struct kvm_lpage_info *linfo; 12544 unsigned long ugfn; 12545 int lpages; 12546 int level = i + 1; 12547 12548 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12549 12550 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12551 if (!linfo) 12552 goto out_free; 12553 12554 slot->arch.lpage_info[i - 1] = linfo; 12555 12556 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12557 linfo[0].disallow_lpage = 1; 12558 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12559 linfo[lpages - 1].disallow_lpage = 1; 12560 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12561 /* 12562 * If the gfn and userspace address are not aligned wrt each 12563 * other, disable large page support for this slot. 12564 */ 12565 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12566 unsigned long j; 12567 12568 for (j = 0; j < lpages; ++j) 12569 linfo[j].disallow_lpage = 1; 12570 } 12571 } 12572 12573 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12574 goto out_free; 12575 12576 return 0; 12577 12578 out_free: 12579 memslot_rmap_free(slot); 12580 12581 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12582 kvfree(slot->arch.lpage_info[i - 1]); 12583 slot->arch.lpage_info[i - 1] = NULL; 12584 } 12585 return -ENOMEM; 12586 } 12587 12588 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12589 { 12590 struct kvm_vcpu *vcpu; 12591 unsigned long i; 12592 12593 /* 12594 * memslots->generation has been incremented. 12595 * mmio generation may have reached its maximum value. 12596 */ 12597 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12598 12599 /* Force re-initialization of steal_time cache */ 12600 kvm_for_each_vcpu(i, vcpu, kvm) 12601 kvm_vcpu_kick(vcpu); 12602 } 12603 12604 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12605 const struct kvm_memory_slot *old, 12606 struct kvm_memory_slot *new, 12607 enum kvm_mr_change change) 12608 { 12609 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12610 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12611 return -EINVAL; 12612 12613 return kvm_alloc_memslot_metadata(kvm, new); 12614 } 12615 12616 if (change == KVM_MR_FLAGS_ONLY) 12617 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12618 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12619 return -EIO; 12620 12621 return 0; 12622 } 12623 12624 12625 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12626 { 12627 int nr_slots; 12628 12629 if (!kvm_x86_ops.cpu_dirty_log_size) 12630 return; 12631 12632 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12633 if ((enable && nr_slots == 1) || !nr_slots) 12634 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12635 } 12636 12637 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12638 struct kvm_memory_slot *old, 12639 const struct kvm_memory_slot *new, 12640 enum kvm_mr_change change) 12641 { 12642 u32 old_flags = old ? old->flags : 0; 12643 u32 new_flags = new ? new->flags : 0; 12644 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12645 12646 /* 12647 * Update CPU dirty logging if dirty logging is being toggled. This 12648 * applies to all operations. 12649 */ 12650 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12651 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12652 12653 /* 12654 * Nothing more to do for RO slots (which can't be dirtied and can't be 12655 * made writable) or CREATE/MOVE/DELETE of a slot. 12656 * 12657 * For a memslot with dirty logging disabled: 12658 * CREATE: No dirty mappings will already exist. 12659 * MOVE/DELETE: The old mappings will already have been cleaned up by 12660 * kvm_arch_flush_shadow_memslot() 12661 * 12662 * For a memslot with dirty logging enabled: 12663 * CREATE: No shadow pages exist, thus nothing to write-protect 12664 * and no dirty bits to clear. 12665 * MOVE/DELETE: The old mappings will already have been cleaned up by 12666 * kvm_arch_flush_shadow_memslot(). 12667 */ 12668 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12669 return; 12670 12671 /* 12672 * READONLY and non-flags changes were filtered out above, and the only 12673 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12674 * logging isn't being toggled on or off. 12675 */ 12676 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12677 return; 12678 12679 if (!log_dirty_pages) { 12680 /* 12681 * Dirty logging tracks sptes in 4k granularity, meaning that 12682 * large sptes have to be split. If live migration succeeds, 12683 * the guest in the source machine will be destroyed and large 12684 * sptes will be created in the destination. However, if the 12685 * guest continues to run in the source machine (for example if 12686 * live migration fails), small sptes will remain around and 12687 * cause bad performance. 12688 * 12689 * Scan sptes if dirty logging has been stopped, dropping those 12690 * which can be collapsed into a single large-page spte. Later 12691 * page faults will create the large-page sptes. 12692 */ 12693 kvm_mmu_zap_collapsible_sptes(kvm, new); 12694 } else { 12695 /* 12696 * Initially-all-set does not require write protecting any page, 12697 * because they're all assumed to be dirty. 12698 */ 12699 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12700 return; 12701 12702 if (READ_ONCE(eager_page_split)) 12703 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12704 12705 if (kvm_x86_ops.cpu_dirty_log_size) { 12706 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12707 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12708 } else { 12709 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12710 } 12711 12712 /* 12713 * Unconditionally flush the TLBs after enabling dirty logging. 12714 * A flush is almost always going to be necessary (see below), 12715 * and unconditionally flushing allows the helpers to omit 12716 * the subtly complex checks when removing write access. 12717 * 12718 * Do the flush outside of mmu_lock to reduce the amount of 12719 * time mmu_lock is held. Flushing after dropping mmu_lock is 12720 * safe as KVM only needs to guarantee the slot is fully 12721 * write-protected before returning to userspace, i.e. before 12722 * userspace can consume the dirty status. 12723 * 12724 * Flushing outside of mmu_lock requires KVM to be careful when 12725 * making decisions based on writable status of an SPTE, e.g. a 12726 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12727 * 12728 * Specifically, KVM also write-protects guest page tables to 12729 * monitor changes when using shadow paging, and must guarantee 12730 * no CPUs can write to those page before mmu_lock is dropped. 12731 * Because CPUs may have stale TLB entries at this point, a 12732 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12733 * 12734 * KVM also allows making SPTES writable outside of mmu_lock, 12735 * e.g. to allow dirty logging without taking mmu_lock. 12736 * 12737 * To handle these scenarios, KVM uses a separate software-only 12738 * bit (MMU-writable) to track if a SPTE is !writable due to 12739 * a guest page table being write-protected (KVM clears the 12740 * MMU-writable flag when write-protecting for shadow paging). 12741 * 12742 * The use of MMU-writable is also the primary motivation for 12743 * the unconditional flush. Because KVM must guarantee that a 12744 * CPU doesn't contain stale, writable TLB entries for a 12745 * !MMU-writable SPTE, KVM must flush if it encounters any 12746 * MMU-writable SPTE regardless of whether the actual hardware 12747 * writable bit was set. I.e. KVM is almost guaranteed to need 12748 * to flush, while unconditionally flushing allows the "remove 12749 * write access" helpers to ignore MMU-writable entirely. 12750 * 12751 * See is_writable_pte() for more details (the case involving 12752 * access-tracked SPTEs is particularly relevant). 12753 */ 12754 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12755 } 12756 } 12757 12758 void kvm_arch_commit_memory_region(struct kvm *kvm, 12759 struct kvm_memory_slot *old, 12760 const struct kvm_memory_slot *new, 12761 enum kvm_mr_change change) 12762 { 12763 if (!kvm->arch.n_requested_mmu_pages && 12764 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12765 unsigned long nr_mmu_pages; 12766 12767 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12768 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12769 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12770 } 12771 12772 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12773 12774 /* Free the arrays associated with the old memslot. */ 12775 if (change == KVM_MR_MOVE) 12776 kvm_arch_free_memslot(kvm, old); 12777 } 12778 12779 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12780 { 12781 kvm_mmu_zap_all(kvm); 12782 } 12783 12784 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12785 struct kvm_memory_slot *slot) 12786 { 12787 kvm_page_track_flush_slot(kvm, slot); 12788 } 12789 12790 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12791 { 12792 return (is_guest_mode(vcpu) && 12793 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12794 } 12795 12796 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12797 { 12798 if (!list_empty_careful(&vcpu->async_pf.done)) 12799 return true; 12800 12801 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12802 kvm_apic_init_sipi_allowed(vcpu)) 12803 return true; 12804 12805 if (vcpu->arch.pv.pv_unhalted) 12806 return true; 12807 12808 if (kvm_is_exception_pending(vcpu)) 12809 return true; 12810 12811 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12812 (vcpu->arch.nmi_pending && 12813 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12814 return true; 12815 12816 #ifdef CONFIG_KVM_SMM 12817 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12818 (vcpu->arch.smi_pending && 12819 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12820 return true; 12821 #endif 12822 12823 if (kvm_arch_interrupt_allowed(vcpu) && 12824 (kvm_cpu_has_interrupt(vcpu) || 12825 kvm_guest_apic_has_interrupt(vcpu))) 12826 return true; 12827 12828 if (kvm_hv_has_stimer_pending(vcpu)) 12829 return true; 12830 12831 if (is_guest_mode(vcpu) && 12832 kvm_x86_ops.nested_ops->has_events && 12833 kvm_x86_ops.nested_ops->has_events(vcpu)) 12834 return true; 12835 12836 if (kvm_xen_has_pending_events(vcpu)) 12837 return true; 12838 12839 return false; 12840 } 12841 12842 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12843 { 12844 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12845 } 12846 12847 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12848 { 12849 if (kvm_vcpu_apicv_active(vcpu) && 12850 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12851 return true; 12852 12853 return false; 12854 } 12855 12856 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12857 { 12858 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12859 return true; 12860 12861 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12862 #ifdef CONFIG_KVM_SMM 12863 kvm_test_request(KVM_REQ_SMI, vcpu) || 12864 #endif 12865 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12866 return true; 12867 12868 return kvm_arch_dy_has_pending_interrupt(vcpu); 12869 } 12870 12871 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12872 { 12873 if (vcpu->arch.guest_state_protected) 12874 return true; 12875 12876 return vcpu->arch.preempted_in_kernel; 12877 } 12878 12879 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12880 { 12881 return kvm_rip_read(vcpu); 12882 } 12883 12884 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12885 { 12886 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12887 } 12888 12889 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12890 { 12891 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12892 } 12893 12894 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12895 { 12896 /* Can't read the RIP when guest state is protected, just return 0 */ 12897 if (vcpu->arch.guest_state_protected) 12898 return 0; 12899 12900 if (is_64_bit_mode(vcpu)) 12901 return kvm_rip_read(vcpu); 12902 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12903 kvm_rip_read(vcpu)); 12904 } 12905 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12906 12907 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12908 { 12909 return kvm_get_linear_rip(vcpu) == linear_rip; 12910 } 12911 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12912 12913 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12914 { 12915 unsigned long rflags; 12916 12917 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12918 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12919 rflags &= ~X86_EFLAGS_TF; 12920 return rflags; 12921 } 12922 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12923 12924 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12925 { 12926 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12927 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12928 rflags |= X86_EFLAGS_TF; 12929 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12930 } 12931 12932 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12933 { 12934 __kvm_set_rflags(vcpu, rflags); 12935 kvm_make_request(KVM_REQ_EVENT, vcpu); 12936 } 12937 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12938 12939 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12940 { 12941 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12942 12943 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12944 } 12945 12946 static inline u32 kvm_async_pf_next_probe(u32 key) 12947 { 12948 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12949 } 12950 12951 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12952 { 12953 u32 key = kvm_async_pf_hash_fn(gfn); 12954 12955 while (vcpu->arch.apf.gfns[key] != ~0) 12956 key = kvm_async_pf_next_probe(key); 12957 12958 vcpu->arch.apf.gfns[key] = gfn; 12959 } 12960 12961 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12962 { 12963 int i; 12964 u32 key = kvm_async_pf_hash_fn(gfn); 12965 12966 for (i = 0; i < ASYNC_PF_PER_VCPU && 12967 (vcpu->arch.apf.gfns[key] != gfn && 12968 vcpu->arch.apf.gfns[key] != ~0); i++) 12969 key = kvm_async_pf_next_probe(key); 12970 12971 return key; 12972 } 12973 12974 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12975 { 12976 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12977 } 12978 12979 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12980 { 12981 u32 i, j, k; 12982 12983 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12984 12985 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12986 return; 12987 12988 while (true) { 12989 vcpu->arch.apf.gfns[i] = ~0; 12990 do { 12991 j = kvm_async_pf_next_probe(j); 12992 if (vcpu->arch.apf.gfns[j] == ~0) 12993 return; 12994 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12995 /* 12996 * k lies cyclically in ]i,j] 12997 * | i.k.j | 12998 * |....j i.k.| or |.k..j i...| 12999 */ 13000 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13001 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13002 i = j; 13003 } 13004 } 13005 13006 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13007 { 13008 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13009 13010 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13011 sizeof(reason)); 13012 } 13013 13014 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13015 { 13016 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13017 13018 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13019 &token, offset, sizeof(token)); 13020 } 13021 13022 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13023 { 13024 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13025 u32 val; 13026 13027 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13028 &val, offset, sizeof(val))) 13029 return false; 13030 13031 return !val; 13032 } 13033 13034 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13035 { 13036 13037 if (!kvm_pv_async_pf_enabled(vcpu)) 13038 return false; 13039 13040 if (vcpu->arch.apf.send_user_only && 13041 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13042 return false; 13043 13044 if (is_guest_mode(vcpu)) { 13045 /* 13046 * L1 needs to opt into the special #PF vmexits that are 13047 * used to deliver async page faults. 13048 */ 13049 return vcpu->arch.apf.delivery_as_pf_vmexit; 13050 } else { 13051 /* 13052 * Play it safe in case the guest temporarily disables paging. 13053 * The real mode IDT in particular is unlikely to have a #PF 13054 * exception setup. 13055 */ 13056 return is_paging(vcpu); 13057 } 13058 } 13059 13060 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13061 { 13062 if (unlikely(!lapic_in_kernel(vcpu) || 13063 kvm_event_needs_reinjection(vcpu) || 13064 kvm_is_exception_pending(vcpu))) 13065 return false; 13066 13067 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13068 return false; 13069 13070 /* 13071 * If interrupts are off we cannot even use an artificial 13072 * halt state. 13073 */ 13074 return kvm_arch_interrupt_allowed(vcpu); 13075 } 13076 13077 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13078 struct kvm_async_pf *work) 13079 { 13080 struct x86_exception fault; 13081 13082 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13083 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13084 13085 if (kvm_can_deliver_async_pf(vcpu) && 13086 !apf_put_user_notpresent(vcpu)) { 13087 fault.vector = PF_VECTOR; 13088 fault.error_code_valid = true; 13089 fault.error_code = 0; 13090 fault.nested_page_fault = false; 13091 fault.address = work->arch.token; 13092 fault.async_page_fault = true; 13093 kvm_inject_page_fault(vcpu, &fault); 13094 return true; 13095 } else { 13096 /* 13097 * It is not possible to deliver a paravirtualized asynchronous 13098 * page fault, but putting the guest in an artificial halt state 13099 * can be beneficial nevertheless: if an interrupt arrives, we 13100 * can deliver it timely and perhaps the guest will schedule 13101 * another process. When the instruction that triggered a page 13102 * fault is retried, hopefully the page will be ready in the host. 13103 */ 13104 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13105 return false; 13106 } 13107 } 13108 13109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13110 struct kvm_async_pf *work) 13111 { 13112 struct kvm_lapic_irq irq = { 13113 .delivery_mode = APIC_DM_FIXED, 13114 .vector = vcpu->arch.apf.vec 13115 }; 13116 13117 if (work->wakeup_all) 13118 work->arch.token = ~0; /* broadcast wakeup */ 13119 else 13120 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13121 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13122 13123 if ((work->wakeup_all || work->notpresent_injected) && 13124 kvm_pv_async_pf_enabled(vcpu) && 13125 !apf_put_user_ready(vcpu, work->arch.token)) { 13126 vcpu->arch.apf.pageready_pending = true; 13127 kvm_apic_set_irq(vcpu, &irq, NULL); 13128 } 13129 13130 vcpu->arch.apf.halted = false; 13131 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13132 } 13133 13134 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13135 { 13136 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13137 if (!vcpu->arch.apf.pageready_pending) 13138 kvm_vcpu_kick(vcpu); 13139 } 13140 13141 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13142 { 13143 if (!kvm_pv_async_pf_enabled(vcpu)) 13144 return true; 13145 else 13146 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13147 } 13148 13149 void kvm_arch_start_assignment(struct kvm *kvm) 13150 { 13151 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13152 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13153 } 13154 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13155 13156 void kvm_arch_end_assignment(struct kvm *kvm) 13157 { 13158 atomic_dec(&kvm->arch.assigned_device_count); 13159 } 13160 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13161 13162 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13163 { 13164 return raw_atomic_read(&kvm->arch.assigned_device_count); 13165 } 13166 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13167 13168 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13169 { 13170 atomic_inc(&kvm->arch.noncoherent_dma_count); 13171 } 13172 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13173 13174 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13175 { 13176 atomic_dec(&kvm->arch.noncoherent_dma_count); 13177 } 13178 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13179 13180 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13181 { 13182 return atomic_read(&kvm->arch.noncoherent_dma_count); 13183 } 13184 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13185 13186 bool kvm_arch_has_irq_bypass(void) 13187 { 13188 return true; 13189 } 13190 13191 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13192 struct irq_bypass_producer *prod) 13193 { 13194 struct kvm_kernel_irqfd *irqfd = 13195 container_of(cons, struct kvm_kernel_irqfd, consumer); 13196 int ret; 13197 13198 irqfd->producer = prod; 13199 kvm_arch_start_assignment(irqfd->kvm); 13200 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13201 prod->irq, irqfd->gsi, 1); 13202 13203 if (ret) 13204 kvm_arch_end_assignment(irqfd->kvm); 13205 13206 return ret; 13207 } 13208 13209 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13210 struct irq_bypass_producer *prod) 13211 { 13212 int ret; 13213 struct kvm_kernel_irqfd *irqfd = 13214 container_of(cons, struct kvm_kernel_irqfd, consumer); 13215 13216 WARN_ON(irqfd->producer != prod); 13217 irqfd->producer = NULL; 13218 13219 /* 13220 * When producer of consumer is unregistered, we change back to 13221 * remapped mode, so we can re-use the current implementation 13222 * when the irq is masked/disabled or the consumer side (KVM 13223 * int this case doesn't want to receive the interrupts. 13224 */ 13225 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13226 if (ret) 13227 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13228 " fails: %d\n", irqfd->consumer.token, ret); 13229 13230 kvm_arch_end_assignment(irqfd->kvm); 13231 } 13232 13233 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13234 uint32_t guest_irq, bool set) 13235 { 13236 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13237 } 13238 13239 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13240 struct kvm_kernel_irq_routing_entry *new) 13241 { 13242 if (new->type != KVM_IRQ_ROUTING_MSI) 13243 return true; 13244 13245 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13246 } 13247 13248 bool kvm_vector_hashing_enabled(void) 13249 { 13250 return vector_hashing; 13251 } 13252 13253 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13254 { 13255 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13256 } 13257 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13258 13259 13260 int kvm_spec_ctrl_test_value(u64 value) 13261 { 13262 /* 13263 * test that setting IA32_SPEC_CTRL to given value 13264 * is allowed by the host processor 13265 */ 13266 13267 u64 saved_value; 13268 unsigned long flags; 13269 int ret = 0; 13270 13271 local_irq_save(flags); 13272 13273 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13274 ret = 1; 13275 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13276 ret = 1; 13277 else 13278 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13279 13280 local_irq_restore(flags); 13281 13282 return ret; 13283 } 13284 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13285 13286 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13287 { 13288 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13289 struct x86_exception fault; 13290 u64 access = error_code & 13291 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13292 13293 if (!(error_code & PFERR_PRESENT_MASK) || 13294 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13295 /* 13296 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13297 * tables probably do not match the TLB. Just proceed 13298 * with the error code that the processor gave. 13299 */ 13300 fault.vector = PF_VECTOR; 13301 fault.error_code_valid = true; 13302 fault.error_code = error_code; 13303 fault.nested_page_fault = false; 13304 fault.address = gva; 13305 fault.async_page_fault = false; 13306 } 13307 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13308 } 13309 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13310 13311 /* 13312 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13313 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13314 * indicates whether exit to userspace is needed. 13315 */ 13316 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13317 struct x86_exception *e) 13318 { 13319 if (r == X86EMUL_PROPAGATE_FAULT) { 13320 if (KVM_BUG_ON(!e, vcpu->kvm)) 13321 return -EIO; 13322 13323 kvm_inject_emulated_page_fault(vcpu, e); 13324 return 1; 13325 } 13326 13327 /* 13328 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13329 * while handling a VMX instruction KVM could've handled the request 13330 * correctly by exiting to userspace and performing I/O but there 13331 * doesn't seem to be a real use-case behind such requests, just return 13332 * KVM_EXIT_INTERNAL_ERROR for now. 13333 */ 13334 kvm_prepare_emulation_failure_exit(vcpu); 13335 13336 return 0; 13337 } 13338 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13339 13340 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13341 { 13342 bool pcid_enabled; 13343 struct x86_exception e; 13344 struct { 13345 u64 pcid; 13346 u64 gla; 13347 } operand; 13348 int r; 13349 13350 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13351 if (r != X86EMUL_CONTINUE) 13352 return kvm_handle_memory_failure(vcpu, r, &e); 13353 13354 if (operand.pcid >> 12 != 0) { 13355 kvm_inject_gp(vcpu, 0); 13356 return 1; 13357 } 13358 13359 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13360 13361 switch (type) { 13362 case INVPCID_TYPE_INDIV_ADDR: 13363 if ((!pcid_enabled && (operand.pcid != 0)) || 13364 is_noncanonical_address(operand.gla, vcpu)) { 13365 kvm_inject_gp(vcpu, 0); 13366 return 1; 13367 } 13368 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13369 return kvm_skip_emulated_instruction(vcpu); 13370 13371 case INVPCID_TYPE_SINGLE_CTXT: 13372 if (!pcid_enabled && (operand.pcid != 0)) { 13373 kvm_inject_gp(vcpu, 0); 13374 return 1; 13375 } 13376 13377 kvm_invalidate_pcid(vcpu, operand.pcid); 13378 return kvm_skip_emulated_instruction(vcpu); 13379 13380 case INVPCID_TYPE_ALL_NON_GLOBAL: 13381 /* 13382 * Currently, KVM doesn't mark global entries in the shadow 13383 * page tables, so a non-global flush just degenerates to a 13384 * global flush. If needed, we could optimize this later by 13385 * keeping track of global entries in shadow page tables. 13386 */ 13387 13388 fallthrough; 13389 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13390 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13391 return kvm_skip_emulated_instruction(vcpu); 13392 13393 default: 13394 kvm_inject_gp(vcpu, 0); 13395 return 1; 13396 } 13397 } 13398 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13399 13400 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13401 { 13402 struct kvm_run *run = vcpu->run; 13403 struct kvm_mmio_fragment *frag; 13404 unsigned int len; 13405 13406 BUG_ON(!vcpu->mmio_needed); 13407 13408 /* Complete previous fragment */ 13409 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13410 len = min(8u, frag->len); 13411 if (!vcpu->mmio_is_write) 13412 memcpy(frag->data, run->mmio.data, len); 13413 13414 if (frag->len <= 8) { 13415 /* Switch to the next fragment. */ 13416 frag++; 13417 vcpu->mmio_cur_fragment++; 13418 } else { 13419 /* Go forward to the next mmio piece. */ 13420 frag->data += len; 13421 frag->gpa += len; 13422 frag->len -= len; 13423 } 13424 13425 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13426 vcpu->mmio_needed = 0; 13427 13428 // VMG change, at this point, we're always done 13429 // RIP has already been advanced 13430 return 1; 13431 } 13432 13433 // More MMIO is needed 13434 run->mmio.phys_addr = frag->gpa; 13435 run->mmio.len = min(8u, frag->len); 13436 run->mmio.is_write = vcpu->mmio_is_write; 13437 if (run->mmio.is_write) 13438 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13439 run->exit_reason = KVM_EXIT_MMIO; 13440 13441 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13442 13443 return 0; 13444 } 13445 13446 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13447 void *data) 13448 { 13449 int handled; 13450 struct kvm_mmio_fragment *frag; 13451 13452 if (!data) 13453 return -EINVAL; 13454 13455 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13456 if (handled == bytes) 13457 return 1; 13458 13459 bytes -= handled; 13460 gpa += handled; 13461 data += handled; 13462 13463 /*TODO: Check if need to increment number of frags */ 13464 frag = vcpu->mmio_fragments; 13465 vcpu->mmio_nr_fragments = 1; 13466 frag->len = bytes; 13467 frag->gpa = gpa; 13468 frag->data = data; 13469 13470 vcpu->mmio_needed = 1; 13471 vcpu->mmio_cur_fragment = 0; 13472 13473 vcpu->run->mmio.phys_addr = gpa; 13474 vcpu->run->mmio.len = min(8u, frag->len); 13475 vcpu->run->mmio.is_write = 1; 13476 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13477 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13478 13479 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13480 13481 return 0; 13482 } 13483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13484 13485 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13486 void *data) 13487 { 13488 int handled; 13489 struct kvm_mmio_fragment *frag; 13490 13491 if (!data) 13492 return -EINVAL; 13493 13494 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13495 if (handled == bytes) 13496 return 1; 13497 13498 bytes -= handled; 13499 gpa += handled; 13500 data += handled; 13501 13502 /*TODO: Check if need to increment number of frags */ 13503 frag = vcpu->mmio_fragments; 13504 vcpu->mmio_nr_fragments = 1; 13505 frag->len = bytes; 13506 frag->gpa = gpa; 13507 frag->data = data; 13508 13509 vcpu->mmio_needed = 1; 13510 vcpu->mmio_cur_fragment = 0; 13511 13512 vcpu->run->mmio.phys_addr = gpa; 13513 vcpu->run->mmio.len = min(8u, frag->len); 13514 vcpu->run->mmio.is_write = 0; 13515 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13516 13517 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13518 13519 return 0; 13520 } 13521 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13522 13523 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13524 { 13525 vcpu->arch.sev_pio_count -= count; 13526 vcpu->arch.sev_pio_data += count * size; 13527 } 13528 13529 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13530 unsigned int port); 13531 13532 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13533 { 13534 int size = vcpu->arch.pio.size; 13535 int port = vcpu->arch.pio.port; 13536 13537 vcpu->arch.pio.count = 0; 13538 if (vcpu->arch.sev_pio_count) 13539 return kvm_sev_es_outs(vcpu, size, port); 13540 return 1; 13541 } 13542 13543 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13544 unsigned int port) 13545 { 13546 for (;;) { 13547 unsigned int count = 13548 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13549 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13550 13551 /* memcpy done already by emulator_pio_out. */ 13552 advance_sev_es_emulated_pio(vcpu, count, size); 13553 if (!ret) 13554 break; 13555 13556 /* Emulation done by the kernel. */ 13557 if (!vcpu->arch.sev_pio_count) 13558 return 1; 13559 } 13560 13561 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13562 return 0; 13563 } 13564 13565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13566 unsigned int port); 13567 13568 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13569 { 13570 unsigned count = vcpu->arch.pio.count; 13571 int size = vcpu->arch.pio.size; 13572 int port = vcpu->arch.pio.port; 13573 13574 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13575 advance_sev_es_emulated_pio(vcpu, count, size); 13576 if (vcpu->arch.sev_pio_count) 13577 return kvm_sev_es_ins(vcpu, size, port); 13578 return 1; 13579 } 13580 13581 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13582 unsigned int port) 13583 { 13584 for (;;) { 13585 unsigned int count = 13586 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13587 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13588 break; 13589 13590 /* Emulation done by the kernel. */ 13591 advance_sev_es_emulated_pio(vcpu, count, size); 13592 if (!vcpu->arch.sev_pio_count) 13593 return 1; 13594 } 13595 13596 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13597 return 0; 13598 } 13599 13600 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13601 unsigned int port, void *data, unsigned int count, 13602 int in) 13603 { 13604 vcpu->arch.sev_pio_data = data; 13605 vcpu->arch.sev_pio_count = count; 13606 return in ? kvm_sev_es_ins(vcpu, size, port) 13607 : kvm_sev_es_outs(vcpu, size, port); 13608 } 13609 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13610 13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13640 13641 static int __init kvm_x86_init(void) 13642 { 13643 kvm_mmu_x86_module_init(); 13644 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13645 return 0; 13646 } 13647 module_init(kvm_x86_init); 13648 13649 static void __exit kvm_x86_exit(void) 13650 { 13651 /* 13652 * If module_init() is implemented, module_exit() must also be 13653 * implemented to allow module unload. 13654 */ 13655 } 13656 module_exit(kvm_x86_exit); 13657