xref: /openbmc/linux/arch/x86/kvm/x86.c (revision a8fe58ce)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly backwards_tsc_observed = false;
127 
128 #define KVM_NR_SHARED_MSRS 16
129 
130 struct kvm_shared_msrs_global {
131 	int nr;
132 	u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134 
135 struct kvm_shared_msrs {
136 	struct user_return_notifier urn;
137 	bool registered;
138 	struct kvm_shared_msr_values {
139 		u64 host;
140 		u64 curr;
141 	} values[KVM_NR_SHARED_MSRS];
142 };
143 
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146 
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
149 	{ "pf_guest", VCPU_STAT(pf_guest) },
150 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
151 	{ "invlpg", VCPU_STAT(invlpg) },
152 	{ "exits", VCPU_STAT(exits) },
153 	{ "io_exits", VCPU_STAT(io_exits) },
154 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
155 	{ "signal_exits", VCPU_STAT(signal_exits) },
156 	{ "irq_window", VCPU_STAT(irq_window_exits) },
157 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
158 	{ "halt_exits", VCPU_STAT(halt_exits) },
159 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
162 	{ "hypercalls", VCPU_STAT(hypercalls) },
163 	{ "request_irq", VCPU_STAT(request_irq_exits) },
164 	{ "irq_exits", VCPU_STAT(irq_exits) },
165 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
166 	{ "efer_reload", VCPU_STAT(efer_reload) },
167 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
168 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
169 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170 	{ "irq_injections", VCPU_STAT(irq_injections) },
171 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
172 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
174 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
177 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
178 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
180 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181 	{ "largepages", VM_STAT(lpages) },
182 	{ NULL }
183 };
184 
185 u64 __read_mostly host_xcr0;
186 
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188 
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191 	int i;
192 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193 		vcpu->arch.apf.gfns[i] = ~0;
194 }
195 
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198 	unsigned slot;
199 	struct kvm_shared_msrs *locals
200 		= container_of(urn, struct kvm_shared_msrs, urn);
201 	struct kvm_shared_msr_values *values;
202 
203 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204 		values = &locals->values[slot];
205 		if (values->host != values->curr) {
206 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
207 			values->curr = values->host;
208 		}
209 	}
210 	locals->registered = false;
211 	user_return_notifier_unregister(urn);
212 }
213 
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216 	u64 value;
217 	unsigned int cpu = smp_processor_id();
218 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219 
220 	/* only read, and nobody should modify it at this time,
221 	 * so don't need lock */
222 	if (slot >= shared_msrs_global.nr) {
223 		printk(KERN_ERR "kvm: invalid MSR slot!");
224 		return;
225 	}
226 	rdmsrl_safe(msr, &value);
227 	smsr->values[slot].host = value;
228 	smsr->values[slot].curr = value;
229 }
230 
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234 	shared_msrs_global.msrs[slot] = msr;
235 	if (slot >= shared_msrs_global.nr)
236 		shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239 
240 static void kvm_shared_msr_cpu_online(void)
241 {
242 	unsigned i;
243 
244 	for (i = 0; i < shared_msrs_global.nr; ++i)
245 		shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247 
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250 	unsigned int cpu = smp_processor_id();
251 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252 	int err;
253 
254 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
255 		return 0;
256 	smsr->values[slot].curr = value;
257 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258 	if (err)
259 		return 1;
260 
261 	if (!smsr->registered) {
262 		smsr->urn.on_user_return = kvm_on_user_return;
263 		user_return_notifier_register(&smsr->urn);
264 		smsr->registered = true;
265 	}
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269 
270 static void drop_user_return_notifiers(void)
271 {
272 	unsigned int cpu = smp_processor_id();
273 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 
275 	if (smsr->registered)
276 		kvm_on_user_return(&smsr->urn);
277 }
278 
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281 	return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284 
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287 	u64 old_state = vcpu->arch.apic_base &
288 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289 	u64 new_state = msr_info->data &
290 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293 
294 	if (!msr_info->host_initiated &&
295 	    ((msr_info->data & reserved_bits) != 0 ||
296 	     new_state == X2APIC_ENABLE ||
297 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
298 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300 	      old_state == 0)))
301 		return 1;
302 
303 	kvm_lapic_set_base(vcpu, msr_info->data);
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307 
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310 	/* Fault while not rebooting.  We want the trace. */
311 	BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314 
315 #define EXCPT_BENIGN		0
316 #define EXCPT_CONTRIBUTORY	1
317 #define EXCPT_PF		2
318 
319 static int exception_class(int vector)
320 {
321 	switch (vector) {
322 	case PF_VECTOR:
323 		return EXCPT_PF;
324 	case DE_VECTOR:
325 	case TS_VECTOR:
326 	case NP_VECTOR:
327 	case SS_VECTOR:
328 	case GP_VECTOR:
329 		return EXCPT_CONTRIBUTORY;
330 	default:
331 		break;
332 	}
333 	return EXCPT_BENIGN;
334 }
335 
336 #define EXCPT_FAULT		0
337 #define EXCPT_TRAP		1
338 #define EXCPT_ABORT		2
339 #define EXCPT_INTERRUPT		3
340 
341 static int exception_type(int vector)
342 {
343 	unsigned int mask;
344 
345 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346 		return EXCPT_INTERRUPT;
347 
348 	mask = 1 << vector;
349 
350 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
351 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352 		return EXCPT_TRAP;
353 
354 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355 		return EXCPT_ABORT;
356 
357 	/* Reserved exceptions will result in fault */
358 	return EXCPT_FAULT;
359 }
360 
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362 		unsigned nr, bool has_error, u32 error_code,
363 		bool reinject)
364 {
365 	u32 prev_nr;
366 	int class1, class2;
367 
368 	kvm_make_request(KVM_REQ_EVENT, vcpu);
369 
370 	if (!vcpu->arch.exception.pending) {
371 	queue:
372 		if (has_error && !is_protmode(vcpu))
373 			has_error = false;
374 		vcpu->arch.exception.pending = true;
375 		vcpu->arch.exception.has_error_code = has_error;
376 		vcpu->arch.exception.nr = nr;
377 		vcpu->arch.exception.error_code = error_code;
378 		vcpu->arch.exception.reinject = reinject;
379 		return;
380 	}
381 
382 	/* to check exception */
383 	prev_nr = vcpu->arch.exception.nr;
384 	if (prev_nr == DF_VECTOR) {
385 		/* triple fault -> shutdown */
386 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387 		return;
388 	}
389 	class1 = exception_class(prev_nr);
390 	class2 = exception_class(nr);
391 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393 		/* generate double fault per SDM Table 5-5 */
394 		vcpu->arch.exception.pending = true;
395 		vcpu->arch.exception.has_error_code = true;
396 		vcpu->arch.exception.nr = DF_VECTOR;
397 		vcpu->arch.exception.error_code = 0;
398 	} else
399 		/* replace previous exception with a new one in a hope
400 		   that instruction re-execution will regenerate lost
401 		   exception */
402 		goto queue;
403 }
404 
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407 	kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410 
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413 	kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416 
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419 	if (err)
420 		kvm_inject_gp(vcpu, 0);
421 	else
422 		kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425 
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 	++vcpu->stat.pf_guest;
429 	vcpu->arch.cr2 = fault->address;
430 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433 
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438 	else
439 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440 
441 	return fault->nested_page_fault;
442 }
443 
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446 	atomic_inc(&vcpu->arch.nmi_queued);
447 	kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450 
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456 
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462 
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470 		return true;
471 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475 
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479 		return true;
480 
481 	kvm_queue_exception(vcpu, UD_VECTOR);
482 	return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485 
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492 			    gfn_t ngfn, void *data, int offset, int len,
493 			    u32 access)
494 {
495 	struct x86_exception exception;
496 	gfn_t real_gfn;
497 	gpa_t ngpa;
498 
499 	ngpa     = gfn_to_gpa(ngfn);
500 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501 	if (real_gfn == UNMAPPED_GVA)
502 		return -EFAULT;
503 
504 	real_gfn = gpa_to_gfn(real_gfn);
505 
506 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509 
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511 			       void *data, int offset, int len, u32 access)
512 {
513 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514 				       data, offset, len, access);
515 }
516 
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524 	int i;
525 	int ret;
526 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527 
528 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529 				      offset * sizeof(u64), sizeof(pdpte),
530 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
531 	if (ret < 0) {
532 		ret = 0;
533 		goto out;
534 	}
535 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536 		if (is_present_gpte(pdpte[i]) &&
537 		    (pdpte[i] &
538 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539 			ret = 0;
540 			goto out;
541 		}
542 	}
543 	ret = 1;
544 
545 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546 	__set_bit(VCPU_EXREG_PDPTR,
547 		  (unsigned long *)&vcpu->arch.regs_avail);
548 	__set_bit(VCPU_EXREG_PDPTR,
549 		  (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555 
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559 	bool changed = true;
560 	int offset;
561 	gfn_t gfn;
562 	int r;
563 
564 	if (is_long_mode(vcpu) || !is_pae(vcpu))
565 		return false;
566 
567 	if (!test_bit(VCPU_EXREG_PDPTR,
568 		      (unsigned long *)&vcpu->arch.regs_avail))
569 		return true;
570 
571 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
575 	if (r < 0)
576 		goto out;
577 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579 
580 	return changed;
581 }
582 
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
586 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587 
588 	cr0 |= X86_CR0_ET;
589 
590 #ifdef CONFIG_X86_64
591 	if (cr0 & 0xffffffff00000000UL)
592 		return 1;
593 #endif
594 
595 	cr0 &= ~CR0_RESERVED_BITS;
596 
597 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598 		return 1;
599 
600 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601 		return 1;
602 
603 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605 		if ((vcpu->arch.efer & EFER_LME)) {
606 			int cs_db, cs_l;
607 
608 			if (!is_pae(vcpu))
609 				return 1;
610 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611 			if (cs_l)
612 				return 1;
613 		} else
614 #endif
615 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 						 kvm_read_cr3(vcpu)))
617 			return 1;
618 	}
619 
620 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621 		return 1;
622 
623 	kvm_x86_ops->set_cr0(vcpu, cr0);
624 
625 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626 		kvm_clear_async_pf_completion_queue(vcpu);
627 		kvm_async_pf_hash_reset(vcpu);
628 	}
629 
630 	if ((cr0 ^ old_cr0) & update_bits)
631 		kvm_mmu_reset_context(vcpu);
632 
633 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641 
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647 
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651 			!vcpu->guest_xcr0_loaded) {
652 		/* kvm_set_xcr() also depends on this */
653 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654 		vcpu->guest_xcr0_loaded = 1;
655 	}
656 }
657 
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660 	if (vcpu->guest_xcr0_loaded) {
661 		if (vcpu->arch.xcr0 != host_xcr0)
662 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663 		vcpu->guest_xcr0_loaded = 0;
664 	}
665 }
666 
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 	u64 xcr0 = xcr;
670 	u64 old_xcr0 = vcpu->arch.xcr0;
671 	u64 valid_bits;
672 
673 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674 	if (index != XCR_XFEATURE_ENABLED_MASK)
675 		return 1;
676 	if (!(xcr0 & XFEATURE_MASK_FP))
677 		return 1;
678 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679 		return 1;
680 
681 	/*
682 	 * Do not allow the guest to set bits that we do not support
683 	 * saving.  However, xcr0 bit 0 is always set, even if the
684 	 * emulated CPU does not support XSAVE (see fx_init).
685 	 */
686 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687 	if (xcr0 & ~valid_bits)
688 		return 1;
689 
690 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692 		return 1;
693 
694 	if (xcr0 & XFEATURE_MASK_AVX512) {
695 		if (!(xcr0 & XFEATURE_MASK_YMM))
696 			return 1;
697 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698 			return 1;
699 	}
700 	kvm_put_guest_xcr0(vcpu);
701 	vcpu->arch.xcr0 = xcr0;
702 
703 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704 		kvm_update_cpuid(vcpu);
705 	return 0;
706 }
707 
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711 	    __kvm_set_xcr(vcpu, index, xcr)) {
712 		kvm_inject_gp(vcpu, 0);
713 		return 1;
714 	}
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718 
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
722 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723 				   X86_CR4_SMEP | X86_CR4_SMAP;
724 
725 	if (cr4 & CR4_RESERVED_BITS)
726 		return 1;
727 
728 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729 		return 1;
730 
731 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738 		return 1;
739 
740 	if (is_long_mode(vcpu)) {
741 		if (!(cr4 & X86_CR4_PAE))
742 			return 1;
743 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744 		   && ((cr4 ^ old_cr4) & pdptr_bits)
745 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746 				   kvm_read_cr3(vcpu)))
747 		return 1;
748 
749 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750 		if (!guest_cpuid_has_pcid(vcpu))
751 			return 1;
752 
753 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755 			return 1;
756 	}
757 
758 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
759 		return 1;
760 
761 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
762 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763 		kvm_mmu_reset_context(vcpu);
764 
765 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766 		kvm_update_cpuid(vcpu);
767 
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771 
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775 	cr3 &= ~CR3_PCID_INVD;
776 #endif
777 
778 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779 		kvm_mmu_sync_roots(vcpu);
780 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781 		return 0;
782 	}
783 
784 	if (is_long_mode(vcpu)) {
785 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
786 			return 1;
787 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
788 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789 		return 1;
790 
791 	vcpu->arch.cr3 = cr3;
792 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793 	kvm_mmu_new_cr3(vcpu);
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797 
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800 	if (cr8 & CR8_RESERVED_BITS)
801 		return 1;
802 	if (lapic_in_kernel(vcpu))
803 		kvm_lapic_set_tpr(vcpu, cr8);
804 	else
805 		vcpu->arch.cr8 = cr8;
806 	return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809 
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812 	if (lapic_in_kernel(vcpu))
813 		return kvm_lapic_get_cr8(vcpu);
814 	else
815 		return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818 
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821 	int i;
822 
823 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824 		for (i = 0; i < KVM_NR_DB_REGS; i++)
825 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827 	}
828 }
829 
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835 
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838 	unsigned long dr7;
839 
840 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841 		dr7 = vcpu->arch.guest_debug_dr7;
842 	else
843 		dr7 = vcpu->arch.dr7;
844 	kvm_x86_ops->set_dr7(vcpu, dr7);
845 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846 	if (dr7 & DR7_BP_EN_MASK)
847 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849 
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852 	u64 fixed = DR6_FIXED_1;
853 
854 	if (!guest_cpuid_has_rtm(vcpu))
855 		fixed |= DR6_RTM;
856 	return fixed;
857 }
858 
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861 	switch (dr) {
862 	case 0 ... 3:
863 		vcpu->arch.db[dr] = val;
864 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 			vcpu->arch.eff_db[dr] = val;
866 		break;
867 	case 4:
868 		/* fall through */
869 	case 6:
870 		if (val & 0xffffffff00000000ULL)
871 			return -1; /* #GP */
872 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873 		kvm_update_dr6(vcpu);
874 		break;
875 	case 5:
876 		/* fall through */
877 	default: /* 7 */
878 		if (val & 0xffffffff00000000ULL)
879 			return -1; /* #GP */
880 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881 		kvm_update_dr7(vcpu);
882 		break;
883 	}
884 
885 	return 0;
886 }
887 
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 	if (__kvm_set_dr(vcpu, dr, val)) {
891 		kvm_inject_gp(vcpu, 0);
892 		return 1;
893 	}
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897 
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900 	switch (dr) {
901 	case 0 ... 3:
902 		*val = vcpu->arch.db[dr];
903 		break;
904 	case 4:
905 		/* fall through */
906 	case 6:
907 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908 			*val = vcpu->arch.dr6;
909 		else
910 			*val = kvm_x86_ops->get_dr6(vcpu);
911 		break;
912 	case 5:
913 		/* fall through */
914 	default: /* 7 */
915 		*val = vcpu->arch.dr7;
916 		break;
917 	}
918 	return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921 
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925 	u64 data;
926 	int err;
927 
928 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929 	if (err)
930 		return err;
931 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933 	return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936 
937 /*
938  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940  *
941  * This list is modified at module load time to reflect the
942  * capabilities of the host cpu. This capabilities test skips MSRs that are
943  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944  * may depend on host virtualization features rather than host cpu features.
945  */
946 
947 static u32 msrs_to_save[] = {
948 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949 	MSR_STAR,
950 #ifdef CONFIG_X86_64
951 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
955 };
956 
957 static unsigned num_msrs_to_save;
958 
959 static u32 emulated_msrs[] = {
960 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966 	HV_X64_MSR_RESET,
967 	HV_X64_MSR_VP_INDEX,
968 	HV_X64_MSR_VP_RUNTIME,
969 	HV_X64_MSR_SCONTROL,
970 	HV_X64_MSR_STIMER0_CONFIG,
971 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
972 	MSR_KVM_PV_EOI_EN,
973 
974 	MSR_IA32_TSC_ADJUST,
975 	MSR_IA32_TSCDEADLINE,
976 	MSR_IA32_MISC_ENABLE,
977 	MSR_IA32_MCG_STATUS,
978 	MSR_IA32_MCG_CTL,
979 	MSR_IA32_SMBASE,
980 };
981 
982 static unsigned num_emulated_msrs;
983 
984 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
985 {
986 	if (efer & efer_reserved_bits)
987 		return false;
988 
989 	if (efer & EFER_FFXSR) {
990 		struct kvm_cpuid_entry2 *feat;
991 
992 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
993 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
994 			return false;
995 	}
996 
997 	if (efer & EFER_SVME) {
998 		struct kvm_cpuid_entry2 *feat;
999 
1000 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1001 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1002 			return false;
1003 	}
1004 
1005 	return true;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1008 
1009 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1010 {
1011 	u64 old_efer = vcpu->arch.efer;
1012 
1013 	if (!kvm_valid_efer(vcpu, efer))
1014 		return 1;
1015 
1016 	if (is_paging(vcpu)
1017 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1018 		return 1;
1019 
1020 	efer &= ~EFER_LMA;
1021 	efer |= vcpu->arch.efer & EFER_LMA;
1022 
1023 	kvm_x86_ops->set_efer(vcpu, efer);
1024 
1025 	/* Update reserved bits */
1026 	if ((efer ^ old_efer) & EFER_NX)
1027 		kvm_mmu_reset_context(vcpu);
1028 
1029 	return 0;
1030 }
1031 
1032 void kvm_enable_efer_bits(u64 mask)
1033 {
1034        efer_reserved_bits &= ~mask;
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1037 
1038 /*
1039  * Writes msr value into into the appropriate "register".
1040  * Returns 0 on success, non-0 otherwise.
1041  * Assumes vcpu_load() was already called.
1042  */
1043 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1044 {
1045 	switch (msr->index) {
1046 	case MSR_FS_BASE:
1047 	case MSR_GS_BASE:
1048 	case MSR_KERNEL_GS_BASE:
1049 	case MSR_CSTAR:
1050 	case MSR_LSTAR:
1051 		if (is_noncanonical_address(msr->data))
1052 			return 1;
1053 		break;
1054 	case MSR_IA32_SYSENTER_EIP:
1055 	case MSR_IA32_SYSENTER_ESP:
1056 		/*
1057 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1058 		 * non-canonical address is written on Intel but not on
1059 		 * AMD (which ignores the top 32-bits, because it does
1060 		 * not implement 64-bit SYSENTER).
1061 		 *
1062 		 * 64-bit code should hence be able to write a non-canonical
1063 		 * value on AMD.  Making the address canonical ensures that
1064 		 * vmentry does not fail on Intel after writing a non-canonical
1065 		 * value, and that something deterministic happens if the guest
1066 		 * invokes 64-bit SYSENTER.
1067 		 */
1068 		msr->data = get_canonical(msr->data);
1069 	}
1070 	return kvm_x86_ops->set_msr(vcpu, msr);
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_msr);
1073 
1074 /*
1075  * Adapt set_msr() to msr_io()'s calling convention
1076  */
1077 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1078 {
1079 	struct msr_data msr;
1080 	int r;
1081 
1082 	msr.index = index;
1083 	msr.host_initiated = true;
1084 	r = kvm_get_msr(vcpu, &msr);
1085 	if (r)
1086 		return r;
1087 
1088 	*data = msr.data;
1089 	return 0;
1090 }
1091 
1092 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1093 {
1094 	struct msr_data msr;
1095 
1096 	msr.data = *data;
1097 	msr.index = index;
1098 	msr.host_initiated = true;
1099 	return kvm_set_msr(vcpu, &msr);
1100 }
1101 
1102 #ifdef CONFIG_X86_64
1103 struct pvclock_gtod_data {
1104 	seqcount_t	seq;
1105 
1106 	struct { /* extract of a clocksource struct */
1107 		int vclock_mode;
1108 		cycle_t	cycle_last;
1109 		cycle_t	mask;
1110 		u32	mult;
1111 		u32	shift;
1112 	} clock;
1113 
1114 	u64		boot_ns;
1115 	u64		nsec_base;
1116 };
1117 
1118 static struct pvclock_gtod_data pvclock_gtod_data;
1119 
1120 static void update_pvclock_gtod(struct timekeeper *tk)
1121 {
1122 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1123 	u64 boot_ns;
1124 
1125 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1126 
1127 	write_seqcount_begin(&vdata->seq);
1128 
1129 	/* copy pvclock gtod data */
1130 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1131 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1132 	vdata->clock.mask		= tk->tkr_mono.mask;
1133 	vdata->clock.mult		= tk->tkr_mono.mult;
1134 	vdata->clock.shift		= tk->tkr_mono.shift;
1135 
1136 	vdata->boot_ns			= boot_ns;
1137 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1138 
1139 	write_seqcount_end(&vdata->seq);
1140 }
1141 #endif
1142 
1143 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1144 {
1145 	/*
1146 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1147 	 * vcpu_enter_guest.  This function is only called from
1148 	 * the physical CPU that is running vcpu.
1149 	 */
1150 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1151 }
1152 
1153 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1154 {
1155 	int version;
1156 	int r;
1157 	struct pvclock_wall_clock wc;
1158 	struct timespec boot;
1159 
1160 	if (!wall_clock)
1161 		return;
1162 
1163 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1164 	if (r)
1165 		return;
1166 
1167 	if (version & 1)
1168 		++version;  /* first time write, random junk */
1169 
1170 	++version;
1171 
1172 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1173 		return;
1174 
1175 	/*
1176 	 * The guest calculates current wall clock time by adding
1177 	 * system time (updated by kvm_guest_time_update below) to the
1178 	 * wall clock specified here.  guest system time equals host
1179 	 * system time for us, thus we must fill in host boot time here.
1180 	 */
1181 	getboottime(&boot);
1182 
1183 	if (kvm->arch.kvmclock_offset) {
1184 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1185 		boot = timespec_sub(boot, ts);
1186 	}
1187 	wc.sec = boot.tv_sec;
1188 	wc.nsec = boot.tv_nsec;
1189 	wc.version = version;
1190 
1191 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1192 
1193 	version++;
1194 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1195 }
1196 
1197 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1198 {
1199 	uint32_t quotient, remainder;
1200 
1201 	/* Don't try to replace with do_div(), this one calculates
1202 	 * "(dividend << 32) / divisor" */
1203 	__asm__ ( "divl %4"
1204 		  : "=a" (quotient), "=d" (remainder)
1205 		  : "0" (0), "1" (dividend), "r" (divisor) );
1206 	return quotient;
1207 }
1208 
1209 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1210 			       s8 *pshift, u32 *pmultiplier)
1211 {
1212 	uint64_t scaled64;
1213 	int32_t  shift = 0;
1214 	uint64_t tps64;
1215 	uint32_t tps32;
1216 
1217 	tps64 = base_khz * 1000LL;
1218 	scaled64 = scaled_khz * 1000LL;
1219 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220 		tps64 >>= 1;
1221 		shift--;
1222 	}
1223 
1224 	tps32 = (uint32_t)tps64;
1225 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227 			scaled64 >>= 1;
1228 		else
1229 			tps32 <<= 1;
1230 		shift++;
1231 	}
1232 
1233 	*pshift = shift;
1234 	*pmultiplier = div_frac(scaled64, tps32);
1235 
1236 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1237 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1238 }
1239 
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243 
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246 
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250 				   vcpu->arch.virtual_tsc_shift);
1251 }
1252 
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255 	u64 v = (u64)khz * (1000000 + ppm);
1256 	do_div(v, 1000000);
1257 	return v;
1258 }
1259 
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262 	u64 ratio;
1263 
1264 	/* Guest TSC same frequency as host TSC? */
1265 	if (!scale) {
1266 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267 		return 0;
1268 	}
1269 
1270 	/* TSC scaling supported? */
1271 	if (!kvm_has_tsc_control) {
1272 		if (user_tsc_khz > tsc_khz) {
1273 			vcpu->arch.tsc_catchup = 1;
1274 			vcpu->arch.tsc_always_catchup = 1;
1275 			return 0;
1276 		} else {
1277 			WARN(1, "user requested TSC rate below hardware speed\n");
1278 			return -1;
1279 		}
1280 	}
1281 
1282 	/* TSC scaling required  - calculate ratio */
1283 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284 				user_tsc_khz, tsc_khz);
1285 
1286 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288 			  user_tsc_khz);
1289 		return -1;
1290 	}
1291 
1292 	vcpu->arch.tsc_scaling_ratio = ratio;
1293 	return 0;
1294 }
1295 
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1297 {
1298 	u32 thresh_lo, thresh_hi;
1299 	int use_scaling = 0;
1300 
1301 	/* tsc_khz can be zero if TSC calibration fails */
1302 	if (this_tsc_khz == 0) {
1303 		/* set tsc_scaling_ratio to a safe value */
1304 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305 		return -1;
1306 	}
1307 
1308 	/* Compute a scale to convert nanoseconds in TSC cycles */
1309 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1310 			   &vcpu->arch.virtual_tsc_shift,
1311 			   &vcpu->arch.virtual_tsc_mult);
1312 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1313 
1314 	/*
1315 	 * Compute the variation in TSC rate which is acceptable
1316 	 * within the range of tolerance and decide if the
1317 	 * rate being applied is within that bounds of the hardware
1318 	 * rate.  If so, no scaling or compensation need be done.
1319 	 */
1320 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1323 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1324 		use_scaling = 1;
1325 	}
1326 	return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1327 }
1328 
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332 				      vcpu->arch.virtual_tsc_mult,
1333 				      vcpu->arch.virtual_tsc_shift);
1334 	tsc += vcpu->arch.this_tsc_write;
1335 	return tsc;
1336 }
1337 
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341 	bool vcpus_matched;
1342 	struct kvm_arch *ka = &vcpu->kvm->arch;
1343 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344 
1345 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346 			 atomic_read(&vcpu->kvm->online_vcpus));
1347 
1348 	/*
1349 	 * Once the masterclock is enabled, always perform request in
1350 	 * order to update it.
1351 	 *
1352 	 * In order to enable masterclock, the host clocksource must be TSC
1353 	 * and the vcpus need to have matched TSCs.  When that happens,
1354 	 * perform request to enable masterclock.
1355 	 */
1356 	if (ka->use_master_clock ||
1357 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359 
1360 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361 			    atomic_read(&vcpu->kvm->online_vcpus),
1362 		            ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365 
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371 
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386 
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389 	u64 _tsc = tsc;
1390 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391 
1392 	if (ratio != kvm_default_tsc_scaling_ratio)
1393 		_tsc = __scale_tsc(ratio, tsc);
1394 
1395 	return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398 
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401 	u64 tsc;
1402 
1403 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1404 
1405 	return target_tsc - tsc;
1406 }
1407 
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413 
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416 	struct kvm *kvm = vcpu->kvm;
1417 	u64 offset, ns, elapsed;
1418 	unsigned long flags;
1419 	s64 usdiff;
1420 	bool matched;
1421 	bool already_matched;
1422 	u64 data = msr->data;
1423 
1424 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425 	offset = kvm_compute_tsc_offset(vcpu, data);
1426 	ns = get_kernel_ns();
1427 	elapsed = ns - kvm->arch.last_tsc_nsec;
1428 
1429 	if (vcpu->arch.virtual_tsc_khz) {
1430 		int faulted = 0;
1431 
1432 		/* n.b - signed multiplication and division required */
1433 		usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437 		/* do_div() only does unsigned */
1438 		asm("1: idivl %[divisor]\n"
1439 		    "2: xor %%edx, %%edx\n"
1440 		    "   movl $0, %[faulted]\n"
1441 		    "3:\n"
1442 		    ".section .fixup,\"ax\"\n"
1443 		    "4: movl $1, %[faulted]\n"
1444 		    "   jmp  3b\n"
1445 		    ".previous\n"
1446 
1447 		_ASM_EXTABLE(1b, 4b)
1448 
1449 		: "=A"(usdiff), [faulted] "=r" (faulted)
1450 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451 
1452 #endif
1453 		do_div(elapsed, 1000);
1454 		usdiff -= elapsed;
1455 		if (usdiff < 0)
1456 			usdiff = -usdiff;
1457 
1458 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1459 		if (faulted)
1460 			usdiff = USEC_PER_SEC;
1461 	} else
1462 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463 
1464 	/*
1465 	 * Special case: TSC write with a small delta (1 second) of virtual
1466 	 * cycle time against real time is interpreted as an attempt to
1467 	 * synchronize the CPU.
1468          *
1469 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1470 	 * TSC, we add elapsed time in this computation.  We could let the
1471 	 * compensation code attempt to catch up if we fall behind, but
1472 	 * it's better to try to match offsets from the beginning.
1473          */
1474 	if (usdiff < USEC_PER_SEC &&
1475 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476 		if (!check_tsc_unstable()) {
1477 			offset = kvm->arch.cur_tsc_offset;
1478 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1479 		} else {
1480 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1481 			data += delta;
1482 			offset = kvm_compute_tsc_offset(vcpu, data);
1483 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484 		}
1485 		matched = true;
1486 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487 	} else {
1488 		/*
1489 		 * We split periods of matched TSC writes into generations.
1490 		 * For each generation, we track the original measured
1491 		 * nanosecond time, offset, and write, so if TSCs are in
1492 		 * sync, we can match exact offset, and if not, we can match
1493 		 * exact software computation in compute_guest_tsc()
1494 		 *
1495 		 * These values are tracked in kvm->arch.cur_xxx variables.
1496 		 */
1497 		kvm->arch.cur_tsc_generation++;
1498 		kvm->arch.cur_tsc_nsec = ns;
1499 		kvm->arch.cur_tsc_write = data;
1500 		kvm->arch.cur_tsc_offset = offset;
1501 		matched = false;
1502 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503 			 kvm->arch.cur_tsc_generation, data);
1504 	}
1505 
1506 	/*
1507 	 * We also track th most recent recorded KHZ, write and time to
1508 	 * allow the matching interval to be extended at each write.
1509 	 */
1510 	kvm->arch.last_tsc_nsec = ns;
1511 	kvm->arch.last_tsc_write = data;
1512 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513 
1514 	vcpu->arch.last_guest_tsc = data;
1515 
1516 	/* Keep track of which generation this VCPU has synchronized to */
1517 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520 
1521 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522 		update_ia32_tsc_adjust_msr(vcpu, offset);
1523 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525 
1526 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527 	if (!matched) {
1528 		kvm->arch.nr_vcpus_matched_tsc = 0;
1529 	} else if (!already_matched) {
1530 		kvm->arch.nr_vcpus_matched_tsc++;
1531 	}
1532 
1533 	kvm_track_tsc_matching(vcpu);
1534 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536 
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538 
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540 					   s64 adjustment)
1541 {
1542 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544 
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548 		WARN_ON(adjustment < 0);
1549 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552 
1553 #ifdef CONFIG_X86_64
1554 
1555 static cycle_t read_tsc(void)
1556 {
1557 	cycle_t ret = (cycle_t)rdtsc_ordered();
1558 	u64 last = pvclock_gtod_data.clock.cycle_last;
1559 
1560 	if (likely(ret >= last))
1561 		return ret;
1562 
1563 	/*
1564 	 * GCC likes to generate cmov here, but this branch is extremely
1565 	 * predictable (it's just a funciton of time and the likely is
1566 	 * very likely) and there's a data dependence, so force GCC
1567 	 * to generate a branch instead.  I don't barrier() because
1568 	 * we don't actually need a barrier, and if this function
1569 	 * ever gets inlined it will generate worse code.
1570 	 */
1571 	asm volatile ("");
1572 	return last;
1573 }
1574 
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577 	long v;
1578 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579 
1580 	*cycle_now = read_tsc();
1581 
1582 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583 	return v * gtod->clock.mult;
1584 }
1585 
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589 	unsigned long seq;
1590 	int mode;
1591 	u64 ns;
1592 
1593 	do {
1594 		seq = read_seqcount_begin(&gtod->seq);
1595 		mode = gtod->clock.vclock_mode;
1596 		ns = gtod->nsec_base;
1597 		ns += vgettsc(cycle_now);
1598 		ns >>= gtod->clock.shift;
1599 		ns += gtod->boot_ns;
1600 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601 	*t = ns;
1602 
1603 	return mode;
1604 }
1605 
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609 	/* checked again under seqlock below */
1610 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611 		return false;
1612 
1613 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616 
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.					| timespec1 = timespec0 + N
1631  * 					| tsc1 = tsc0 + M
1632  * 3. transition to guest		| transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1635  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  * 	- ret0 < ret1
1640  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *		...
1642  *	- 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657 
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661 	struct kvm_arch *ka = &kvm->arch;
1662 	int vclock_mode;
1663 	bool host_tsc_clocksource, vcpus_matched;
1664 
1665 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666 			atomic_read(&kvm->online_vcpus));
1667 
1668 	/*
1669 	 * If the host uses TSC clock, then passthrough TSC as stable
1670 	 * to the guest.
1671 	 */
1672 	host_tsc_clocksource = kvm_get_time_and_clockread(
1673 					&ka->master_kernel_ns,
1674 					&ka->master_cycle_now);
1675 
1676 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677 				&& !backwards_tsc_observed
1678 				&& !ka->boot_vcpu_runs_old_kvmclock;
1679 
1680 	if (ka->use_master_clock)
1681 		atomic_set(&kvm_guest_has_master_clock, 1);
1682 
1683 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685 					vcpus_matched);
1686 #endif
1687 }
1688 
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693 
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697 	int i;
1698 	struct kvm_vcpu *vcpu;
1699 	struct kvm_arch *ka = &kvm->arch;
1700 
1701 	spin_lock(&ka->pvclock_gtod_sync_lock);
1702 	kvm_make_mclock_inprogress_request(kvm);
1703 	/* no guest entries from this point */
1704 	pvclock_update_vm_gtod_copy(kvm);
1705 
1706 	kvm_for_each_vcpu(i, vcpu, kvm)
1707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708 
1709 	/* guest entries allowed */
1710 	kvm_for_each_vcpu(i, vcpu, kvm)
1711 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712 
1713 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716 
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719 	unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1720 	struct kvm_vcpu_arch *vcpu = &v->arch;
1721 	struct kvm_arch *ka = &v->kvm->arch;
1722 	s64 kernel_ns;
1723 	u64 tsc_timestamp, host_tsc;
1724 	struct pvclock_vcpu_time_info guest_hv_clock;
1725 	u8 pvclock_flags;
1726 	bool use_master_clock;
1727 
1728 	kernel_ns = 0;
1729 	host_tsc = 0;
1730 
1731 	/*
1732 	 * If the host uses TSC clock, then passthrough TSC as stable
1733 	 * to the guest.
1734 	 */
1735 	spin_lock(&ka->pvclock_gtod_sync_lock);
1736 	use_master_clock = ka->use_master_clock;
1737 	if (use_master_clock) {
1738 		host_tsc = ka->master_cycle_now;
1739 		kernel_ns = ka->master_kernel_ns;
1740 	}
1741 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1742 
1743 	/* Keep irq disabled to prevent changes to the clock */
1744 	local_irq_save(flags);
1745 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746 	if (unlikely(this_tsc_khz == 0)) {
1747 		local_irq_restore(flags);
1748 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749 		return 1;
1750 	}
1751 	if (!use_master_clock) {
1752 		host_tsc = rdtsc();
1753 		kernel_ns = get_kernel_ns();
1754 	}
1755 
1756 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757 
1758 	/*
1759 	 * We may have to catch up the TSC to match elapsed wall clock
1760 	 * time for two reasons, even if kvmclock is used.
1761 	 *   1) CPU could have been running below the maximum TSC rate
1762 	 *   2) Broken TSC compensation resets the base at each VCPU
1763 	 *      entry to avoid unknown leaps of TSC even when running
1764 	 *      again on the same CPU.  This may cause apparent elapsed
1765 	 *      time to disappear, and the guest to stand still or run
1766 	 *	very slowly.
1767 	 */
1768 	if (vcpu->tsc_catchup) {
1769 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1770 		if (tsc > tsc_timestamp) {
1771 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772 			tsc_timestamp = tsc;
1773 		}
1774 	}
1775 
1776 	local_irq_restore(flags);
1777 
1778 	if (!vcpu->pv_time_enabled)
1779 		return 0;
1780 
1781 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1782 		tgt_tsc_khz = kvm_has_tsc_control ?
1783 			vcpu->virtual_tsc_khz : this_tsc_khz;
1784 		kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1785 				   &vcpu->hv_clock.tsc_shift,
1786 				   &vcpu->hv_clock.tsc_to_system_mul);
1787 		vcpu->hw_tsc_khz = this_tsc_khz;
1788 	}
1789 
1790 	/* With all the info we got, fill in the values */
1791 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1792 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1793 	vcpu->last_guest_tsc = tsc_timestamp;
1794 
1795 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1796 		&guest_hv_clock, sizeof(guest_hv_clock))))
1797 		return 0;
1798 
1799 	/* This VCPU is paused, but it's legal for a guest to read another
1800 	 * VCPU's kvmclock, so we really have to follow the specification where
1801 	 * it says that version is odd if data is being modified, and even after
1802 	 * it is consistent.
1803 	 *
1804 	 * Version field updates must be kept separate.  This is because
1805 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1806 	 * writes within a string instruction are weakly ordered.  So there
1807 	 * are three writes overall.
1808 	 *
1809 	 * As a small optimization, only write the version field in the first
1810 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1811 	 * version field is the first in the struct.
1812 	 */
1813 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1814 
1815 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1816 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1817 				&vcpu->hv_clock,
1818 				sizeof(vcpu->hv_clock.version));
1819 
1820 	smp_wmb();
1821 
1822 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1823 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1824 
1825 	if (vcpu->pvclock_set_guest_stopped_request) {
1826 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1827 		vcpu->pvclock_set_guest_stopped_request = false;
1828 	}
1829 
1830 	/* If the host uses TSC clocksource, then it is stable */
1831 	if (use_master_clock)
1832 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1833 
1834 	vcpu->hv_clock.flags = pvclock_flags;
1835 
1836 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1837 
1838 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1839 				&vcpu->hv_clock,
1840 				sizeof(vcpu->hv_clock));
1841 
1842 	smp_wmb();
1843 
1844 	vcpu->hv_clock.version++;
1845 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1846 				&vcpu->hv_clock,
1847 				sizeof(vcpu->hv_clock.version));
1848 	return 0;
1849 }
1850 
1851 /*
1852  * kvmclock updates which are isolated to a given vcpu, such as
1853  * vcpu->cpu migration, should not allow system_timestamp from
1854  * the rest of the vcpus to remain static. Otherwise ntp frequency
1855  * correction applies to one vcpu's system_timestamp but not
1856  * the others.
1857  *
1858  * So in those cases, request a kvmclock update for all vcpus.
1859  * We need to rate-limit these requests though, as they can
1860  * considerably slow guests that have a large number of vcpus.
1861  * The time for a remote vcpu to update its kvmclock is bound
1862  * by the delay we use to rate-limit the updates.
1863  */
1864 
1865 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1866 
1867 static void kvmclock_update_fn(struct work_struct *work)
1868 {
1869 	int i;
1870 	struct delayed_work *dwork = to_delayed_work(work);
1871 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1872 					   kvmclock_update_work);
1873 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1874 	struct kvm_vcpu *vcpu;
1875 
1876 	kvm_for_each_vcpu(i, vcpu, kvm) {
1877 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1878 		kvm_vcpu_kick(vcpu);
1879 	}
1880 }
1881 
1882 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1883 {
1884 	struct kvm *kvm = v->kvm;
1885 
1886 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1887 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1888 					KVMCLOCK_UPDATE_DELAY);
1889 }
1890 
1891 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1892 
1893 static void kvmclock_sync_fn(struct work_struct *work)
1894 {
1895 	struct delayed_work *dwork = to_delayed_work(work);
1896 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1897 					   kvmclock_sync_work);
1898 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1899 
1900 	if (!kvmclock_periodic_sync)
1901 		return;
1902 
1903 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1904 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1905 					KVMCLOCK_SYNC_PERIOD);
1906 }
1907 
1908 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1909 {
1910 	u64 mcg_cap = vcpu->arch.mcg_cap;
1911 	unsigned bank_num = mcg_cap & 0xff;
1912 
1913 	switch (msr) {
1914 	case MSR_IA32_MCG_STATUS:
1915 		vcpu->arch.mcg_status = data;
1916 		break;
1917 	case MSR_IA32_MCG_CTL:
1918 		if (!(mcg_cap & MCG_CTL_P))
1919 			return 1;
1920 		if (data != 0 && data != ~(u64)0)
1921 			return -1;
1922 		vcpu->arch.mcg_ctl = data;
1923 		break;
1924 	default:
1925 		if (msr >= MSR_IA32_MC0_CTL &&
1926 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1927 			u32 offset = msr - MSR_IA32_MC0_CTL;
1928 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1929 			 * some Linux kernels though clear bit 10 in bank 4 to
1930 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1931 			 * this to avoid an uncatched #GP in the guest
1932 			 */
1933 			if ((offset & 0x3) == 0 &&
1934 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1935 				return -1;
1936 			vcpu->arch.mce_banks[offset] = data;
1937 			break;
1938 		}
1939 		return 1;
1940 	}
1941 	return 0;
1942 }
1943 
1944 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1945 {
1946 	struct kvm *kvm = vcpu->kvm;
1947 	int lm = is_long_mode(vcpu);
1948 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1949 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1950 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1951 		: kvm->arch.xen_hvm_config.blob_size_32;
1952 	u32 page_num = data & ~PAGE_MASK;
1953 	u64 page_addr = data & PAGE_MASK;
1954 	u8 *page;
1955 	int r;
1956 
1957 	r = -E2BIG;
1958 	if (page_num >= blob_size)
1959 		goto out;
1960 	r = -ENOMEM;
1961 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1962 	if (IS_ERR(page)) {
1963 		r = PTR_ERR(page);
1964 		goto out;
1965 	}
1966 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1967 		goto out_free;
1968 	r = 0;
1969 out_free:
1970 	kfree(page);
1971 out:
1972 	return r;
1973 }
1974 
1975 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1976 {
1977 	gpa_t gpa = data & ~0x3f;
1978 
1979 	/* Bits 2:5 are reserved, Should be zero */
1980 	if (data & 0x3c)
1981 		return 1;
1982 
1983 	vcpu->arch.apf.msr_val = data;
1984 
1985 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1986 		kvm_clear_async_pf_completion_queue(vcpu);
1987 		kvm_async_pf_hash_reset(vcpu);
1988 		return 0;
1989 	}
1990 
1991 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1992 					sizeof(u32)))
1993 		return 1;
1994 
1995 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1996 	kvm_async_pf_wakeup_all(vcpu);
1997 	return 0;
1998 }
1999 
2000 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2001 {
2002 	vcpu->arch.pv_time_enabled = false;
2003 }
2004 
2005 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2006 {
2007 	u64 delta;
2008 
2009 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2010 		return;
2011 
2012 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2013 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2014 	vcpu->arch.st.accum_steal = delta;
2015 }
2016 
2017 static void record_steal_time(struct kvm_vcpu *vcpu)
2018 {
2019 	accumulate_steal_time(vcpu);
2020 
2021 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2022 		return;
2023 
2024 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2026 		return;
2027 
2028 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2029 	vcpu->arch.st.steal.version += 2;
2030 	vcpu->arch.st.accum_steal = 0;
2031 
2032 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2033 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2034 }
2035 
2036 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2037 {
2038 	bool pr = false;
2039 	u32 msr = msr_info->index;
2040 	u64 data = msr_info->data;
2041 
2042 	switch (msr) {
2043 	case MSR_AMD64_NB_CFG:
2044 	case MSR_IA32_UCODE_REV:
2045 	case MSR_IA32_UCODE_WRITE:
2046 	case MSR_VM_HSAVE_PA:
2047 	case MSR_AMD64_PATCH_LOADER:
2048 	case MSR_AMD64_BU_CFG2:
2049 		break;
2050 
2051 	case MSR_EFER:
2052 		return set_efer(vcpu, data);
2053 	case MSR_K7_HWCR:
2054 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2055 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2056 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2057 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2058 		if (data != 0) {
2059 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2060 				    data);
2061 			return 1;
2062 		}
2063 		break;
2064 	case MSR_FAM10H_MMIO_CONF_BASE:
2065 		if (data != 0) {
2066 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2067 				    "0x%llx\n", data);
2068 			return 1;
2069 		}
2070 		break;
2071 	case MSR_IA32_DEBUGCTLMSR:
2072 		if (!data) {
2073 			/* We support the non-activated case already */
2074 			break;
2075 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2076 			/* Values other than LBR and BTF are vendor-specific,
2077 			   thus reserved and should throw a #GP */
2078 			return 1;
2079 		}
2080 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2081 			    __func__, data);
2082 		break;
2083 	case 0x200 ... 0x2ff:
2084 		return kvm_mtrr_set_msr(vcpu, msr, data);
2085 	case MSR_IA32_APICBASE:
2086 		return kvm_set_apic_base(vcpu, msr_info);
2087 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2088 		return kvm_x2apic_msr_write(vcpu, msr, data);
2089 	case MSR_IA32_TSCDEADLINE:
2090 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2091 		break;
2092 	case MSR_IA32_TSC_ADJUST:
2093 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2094 			if (!msr_info->host_initiated) {
2095 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2096 				adjust_tsc_offset_guest(vcpu, adj);
2097 			}
2098 			vcpu->arch.ia32_tsc_adjust_msr = data;
2099 		}
2100 		break;
2101 	case MSR_IA32_MISC_ENABLE:
2102 		vcpu->arch.ia32_misc_enable_msr = data;
2103 		break;
2104 	case MSR_IA32_SMBASE:
2105 		if (!msr_info->host_initiated)
2106 			return 1;
2107 		vcpu->arch.smbase = data;
2108 		break;
2109 	case MSR_KVM_WALL_CLOCK_NEW:
2110 	case MSR_KVM_WALL_CLOCK:
2111 		vcpu->kvm->arch.wall_clock = data;
2112 		kvm_write_wall_clock(vcpu->kvm, data);
2113 		break;
2114 	case MSR_KVM_SYSTEM_TIME_NEW:
2115 	case MSR_KVM_SYSTEM_TIME: {
2116 		u64 gpa_offset;
2117 		struct kvm_arch *ka = &vcpu->kvm->arch;
2118 
2119 		kvmclock_reset(vcpu);
2120 
2121 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2122 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2123 
2124 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2125 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2126 					&vcpu->requests);
2127 
2128 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2129 		}
2130 
2131 		vcpu->arch.time = data;
2132 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2133 
2134 		/* we verify if the enable bit is set... */
2135 		if (!(data & 1))
2136 			break;
2137 
2138 		gpa_offset = data & ~(PAGE_MASK | 1);
2139 
2140 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2141 		     &vcpu->arch.pv_time, data & ~1ULL,
2142 		     sizeof(struct pvclock_vcpu_time_info)))
2143 			vcpu->arch.pv_time_enabled = false;
2144 		else
2145 			vcpu->arch.pv_time_enabled = true;
2146 
2147 		break;
2148 	}
2149 	case MSR_KVM_ASYNC_PF_EN:
2150 		if (kvm_pv_enable_async_pf(vcpu, data))
2151 			return 1;
2152 		break;
2153 	case MSR_KVM_STEAL_TIME:
2154 
2155 		if (unlikely(!sched_info_on()))
2156 			return 1;
2157 
2158 		if (data & KVM_STEAL_RESERVED_MASK)
2159 			return 1;
2160 
2161 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2162 						data & KVM_STEAL_VALID_BITS,
2163 						sizeof(struct kvm_steal_time)))
2164 			return 1;
2165 
2166 		vcpu->arch.st.msr_val = data;
2167 
2168 		if (!(data & KVM_MSR_ENABLED))
2169 			break;
2170 
2171 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2172 
2173 		break;
2174 	case MSR_KVM_PV_EOI_EN:
2175 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2176 			return 1;
2177 		break;
2178 
2179 	case MSR_IA32_MCG_CTL:
2180 	case MSR_IA32_MCG_STATUS:
2181 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2182 		return set_msr_mce(vcpu, msr, data);
2183 
2184 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2185 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2186 		pr = true; /* fall through */
2187 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2188 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2189 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2190 			return kvm_pmu_set_msr(vcpu, msr_info);
2191 
2192 		if (pr || data != 0)
2193 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2194 				    "0x%x data 0x%llx\n", msr, data);
2195 		break;
2196 	case MSR_K7_CLK_CTL:
2197 		/*
2198 		 * Ignore all writes to this no longer documented MSR.
2199 		 * Writes are only relevant for old K7 processors,
2200 		 * all pre-dating SVM, but a recommended workaround from
2201 		 * AMD for these chips. It is possible to specify the
2202 		 * affected processor models on the command line, hence
2203 		 * the need to ignore the workaround.
2204 		 */
2205 		break;
2206 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2207 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2208 	case HV_X64_MSR_CRASH_CTL:
2209 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2210 		return kvm_hv_set_msr_common(vcpu, msr, data,
2211 					     msr_info->host_initiated);
2212 	case MSR_IA32_BBL_CR_CTL3:
2213 		/* Drop writes to this legacy MSR -- see rdmsr
2214 		 * counterpart for further detail.
2215 		 */
2216 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2217 		break;
2218 	case MSR_AMD64_OSVW_ID_LENGTH:
2219 		if (!guest_cpuid_has_osvw(vcpu))
2220 			return 1;
2221 		vcpu->arch.osvw.length = data;
2222 		break;
2223 	case MSR_AMD64_OSVW_STATUS:
2224 		if (!guest_cpuid_has_osvw(vcpu))
2225 			return 1;
2226 		vcpu->arch.osvw.status = data;
2227 		break;
2228 	default:
2229 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2230 			return xen_hvm_config(vcpu, data);
2231 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2232 			return kvm_pmu_set_msr(vcpu, msr_info);
2233 		if (!ignore_msrs) {
2234 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2235 				    msr, data);
2236 			return 1;
2237 		} else {
2238 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2239 				    msr, data);
2240 			break;
2241 		}
2242 	}
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2246 
2247 
2248 /*
2249  * Reads an msr value (of 'msr_index') into 'pdata'.
2250  * Returns 0 on success, non-0 otherwise.
2251  * Assumes vcpu_load() was already called.
2252  */
2253 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2254 {
2255 	return kvm_x86_ops->get_msr(vcpu, msr);
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_get_msr);
2258 
2259 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2260 {
2261 	u64 data;
2262 	u64 mcg_cap = vcpu->arch.mcg_cap;
2263 	unsigned bank_num = mcg_cap & 0xff;
2264 
2265 	switch (msr) {
2266 	case MSR_IA32_P5_MC_ADDR:
2267 	case MSR_IA32_P5_MC_TYPE:
2268 		data = 0;
2269 		break;
2270 	case MSR_IA32_MCG_CAP:
2271 		data = vcpu->arch.mcg_cap;
2272 		break;
2273 	case MSR_IA32_MCG_CTL:
2274 		if (!(mcg_cap & MCG_CTL_P))
2275 			return 1;
2276 		data = vcpu->arch.mcg_ctl;
2277 		break;
2278 	case MSR_IA32_MCG_STATUS:
2279 		data = vcpu->arch.mcg_status;
2280 		break;
2281 	default:
2282 		if (msr >= MSR_IA32_MC0_CTL &&
2283 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2284 			u32 offset = msr - MSR_IA32_MC0_CTL;
2285 			data = vcpu->arch.mce_banks[offset];
2286 			break;
2287 		}
2288 		return 1;
2289 	}
2290 	*pdata = data;
2291 	return 0;
2292 }
2293 
2294 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2295 {
2296 	switch (msr_info->index) {
2297 	case MSR_IA32_PLATFORM_ID:
2298 	case MSR_IA32_EBL_CR_POWERON:
2299 	case MSR_IA32_DEBUGCTLMSR:
2300 	case MSR_IA32_LASTBRANCHFROMIP:
2301 	case MSR_IA32_LASTBRANCHTOIP:
2302 	case MSR_IA32_LASTINTFROMIP:
2303 	case MSR_IA32_LASTINTTOIP:
2304 	case MSR_K8_SYSCFG:
2305 	case MSR_K8_TSEG_ADDR:
2306 	case MSR_K8_TSEG_MASK:
2307 	case MSR_K7_HWCR:
2308 	case MSR_VM_HSAVE_PA:
2309 	case MSR_K8_INT_PENDING_MSG:
2310 	case MSR_AMD64_NB_CFG:
2311 	case MSR_FAM10H_MMIO_CONF_BASE:
2312 	case MSR_AMD64_BU_CFG2:
2313 		msr_info->data = 0;
2314 		break;
2315 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2316 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2317 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2318 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2319 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2320 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2321 		msr_info->data = 0;
2322 		break;
2323 	case MSR_IA32_UCODE_REV:
2324 		msr_info->data = 0x100000000ULL;
2325 		break;
2326 	case MSR_MTRRcap:
2327 	case 0x200 ... 0x2ff:
2328 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2329 	case 0xcd: /* fsb frequency */
2330 		msr_info->data = 3;
2331 		break;
2332 		/*
2333 		 * MSR_EBC_FREQUENCY_ID
2334 		 * Conservative value valid for even the basic CPU models.
2335 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337 		 * and 266MHz for model 3, or 4. Set Core Clock
2338 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2339 		 * 31:24) even though these are only valid for CPU
2340 		 * models > 2, however guests may end up dividing or
2341 		 * multiplying by zero otherwise.
2342 		 */
2343 	case MSR_EBC_FREQUENCY_ID:
2344 		msr_info->data = 1 << 24;
2345 		break;
2346 	case MSR_IA32_APICBASE:
2347 		msr_info->data = kvm_get_apic_base(vcpu);
2348 		break;
2349 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2351 		break;
2352 	case MSR_IA32_TSCDEADLINE:
2353 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2354 		break;
2355 	case MSR_IA32_TSC_ADJUST:
2356 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2357 		break;
2358 	case MSR_IA32_MISC_ENABLE:
2359 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2360 		break;
2361 	case MSR_IA32_SMBASE:
2362 		if (!msr_info->host_initiated)
2363 			return 1;
2364 		msr_info->data = vcpu->arch.smbase;
2365 		break;
2366 	case MSR_IA32_PERF_STATUS:
2367 		/* TSC increment by tick */
2368 		msr_info->data = 1000ULL;
2369 		/* CPU multiplier */
2370 		msr_info->data |= (((uint64_t)4ULL) << 40);
2371 		break;
2372 	case MSR_EFER:
2373 		msr_info->data = vcpu->arch.efer;
2374 		break;
2375 	case MSR_KVM_WALL_CLOCK:
2376 	case MSR_KVM_WALL_CLOCK_NEW:
2377 		msr_info->data = vcpu->kvm->arch.wall_clock;
2378 		break;
2379 	case MSR_KVM_SYSTEM_TIME:
2380 	case MSR_KVM_SYSTEM_TIME_NEW:
2381 		msr_info->data = vcpu->arch.time;
2382 		break;
2383 	case MSR_KVM_ASYNC_PF_EN:
2384 		msr_info->data = vcpu->arch.apf.msr_val;
2385 		break;
2386 	case MSR_KVM_STEAL_TIME:
2387 		msr_info->data = vcpu->arch.st.msr_val;
2388 		break;
2389 	case MSR_KVM_PV_EOI_EN:
2390 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2391 		break;
2392 	case MSR_IA32_P5_MC_ADDR:
2393 	case MSR_IA32_P5_MC_TYPE:
2394 	case MSR_IA32_MCG_CAP:
2395 	case MSR_IA32_MCG_CTL:
2396 	case MSR_IA32_MCG_STATUS:
2397 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2398 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2399 	case MSR_K7_CLK_CTL:
2400 		/*
2401 		 * Provide expected ramp-up count for K7. All other
2402 		 * are set to zero, indicating minimum divisors for
2403 		 * every field.
2404 		 *
2405 		 * This prevents guest kernels on AMD host with CPU
2406 		 * type 6, model 8 and higher from exploding due to
2407 		 * the rdmsr failing.
2408 		 */
2409 		msr_info->data = 0x20000000;
2410 		break;
2411 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2412 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2413 	case HV_X64_MSR_CRASH_CTL:
2414 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2415 		return kvm_hv_get_msr_common(vcpu,
2416 					     msr_info->index, &msr_info->data);
2417 		break;
2418 	case MSR_IA32_BBL_CR_CTL3:
2419 		/* This legacy MSR exists but isn't fully documented in current
2420 		 * silicon.  It is however accessed by winxp in very narrow
2421 		 * scenarios where it sets bit #19, itself documented as
2422 		 * a "reserved" bit.  Best effort attempt to source coherent
2423 		 * read data here should the balance of the register be
2424 		 * interpreted by the guest:
2425 		 *
2426 		 * L2 cache control register 3: 64GB range, 256KB size,
2427 		 * enabled, latency 0x1, configured
2428 		 */
2429 		msr_info->data = 0xbe702111;
2430 		break;
2431 	case MSR_AMD64_OSVW_ID_LENGTH:
2432 		if (!guest_cpuid_has_osvw(vcpu))
2433 			return 1;
2434 		msr_info->data = vcpu->arch.osvw.length;
2435 		break;
2436 	case MSR_AMD64_OSVW_STATUS:
2437 		if (!guest_cpuid_has_osvw(vcpu))
2438 			return 1;
2439 		msr_info->data = vcpu->arch.osvw.status;
2440 		break;
2441 	default:
2442 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2443 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2444 		if (!ignore_msrs) {
2445 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2446 			return 1;
2447 		} else {
2448 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2449 			msr_info->data = 0;
2450 		}
2451 		break;
2452 	}
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2456 
2457 /*
2458  * Read or write a bunch of msrs. All parameters are kernel addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2463 		    struct kvm_msr_entry *entries,
2464 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2465 				  unsigned index, u64 *data))
2466 {
2467 	int i, idx;
2468 
2469 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2470 	for (i = 0; i < msrs->nmsrs; ++i)
2471 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2472 			break;
2473 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2474 
2475 	return i;
2476 }
2477 
2478 /*
2479  * Read or write a bunch of msrs. Parameters are user addresses.
2480  *
2481  * @return number of msrs set successfully.
2482  */
2483 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2484 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2485 				unsigned index, u64 *data),
2486 		  int writeback)
2487 {
2488 	struct kvm_msrs msrs;
2489 	struct kvm_msr_entry *entries;
2490 	int r, n;
2491 	unsigned size;
2492 
2493 	r = -EFAULT;
2494 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2495 		goto out;
2496 
2497 	r = -E2BIG;
2498 	if (msrs.nmsrs >= MAX_IO_MSRS)
2499 		goto out;
2500 
2501 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2502 	entries = memdup_user(user_msrs->entries, size);
2503 	if (IS_ERR(entries)) {
2504 		r = PTR_ERR(entries);
2505 		goto out;
2506 	}
2507 
2508 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2509 	if (r < 0)
2510 		goto out_free;
2511 
2512 	r = -EFAULT;
2513 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2514 		goto out_free;
2515 
2516 	r = n;
2517 
2518 out_free:
2519 	kfree(entries);
2520 out:
2521 	return r;
2522 }
2523 
2524 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2525 {
2526 	int r;
2527 
2528 	switch (ext) {
2529 	case KVM_CAP_IRQCHIP:
2530 	case KVM_CAP_HLT:
2531 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2532 	case KVM_CAP_SET_TSS_ADDR:
2533 	case KVM_CAP_EXT_CPUID:
2534 	case KVM_CAP_EXT_EMUL_CPUID:
2535 	case KVM_CAP_CLOCKSOURCE:
2536 	case KVM_CAP_PIT:
2537 	case KVM_CAP_NOP_IO_DELAY:
2538 	case KVM_CAP_MP_STATE:
2539 	case KVM_CAP_SYNC_MMU:
2540 	case KVM_CAP_USER_NMI:
2541 	case KVM_CAP_REINJECT_CONTROL:
2542 	case KVM_CAP_IRQ_INJECT_STATUS:
2543 	case KVM_CAP_IOEVENTFD:
2544 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2545 	case KVM_CAP_PIT2:
2546 	case KVM_CAP_PIT_STATE2:
2547 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2548 	case KVM_CAP_XEN_HVM:
2549 	case KVM_CAP_ADJUST_CLOCK:
2550 	case KVM_CAP_VCPU_EVENTS:
2551 	case KVM_CAP_HYPERV:
2552 	case KVM_CAP_HYPERV_VAPIC:
2553 	case KVM_CAP_HYPERV_SPIN:
2554 	case KVM_CAP_HYPERV_SYNIC:
2555 	case KVM_CAP_PCI_SEGMENT:
2556 	case KVM_CAP_DEBUGREGS:
2557 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2558 	case KVM_CAP_XSAVE:
2559 	case KVM_CAP_ASYNC_PF:
2560 	case KVM_CAP_GET_TSC_KHZ:
2561 	case KVM_CAP_KVMCLOCK_CTRL:
2562 	case KVM_CAP_READONLY_MEM:
2563 	case KVM_CAP_HYPERV_TIME:
2564 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2565 	case KVM_CAP_TSC_DEADLINE_TIMER:
2566 	case KVM_CAP_ENABLE_CAP_VM:
2567 	case KVM_CAP_DISABLE_QUIRKS:
2568 	case KVM_CAP_SET_BOOT_CPU_ID:
2569  	case KVM_CAP_SPLIT_IRQCHIP:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571 	case KVM_CAP_ASSIGN_DEV_IRQ:
2572 	case KVM_CAP_PCI_2_3:
2573 #endif
2574 		r = 1;
2575 		break;
2576 	case KVM_CAP_X86_SMM:
2577 		/* SMBASE is usually relocated above 1M on modern chipsets,
2578 		 * and SMM handlers might indeed rely on 4G segment limits,
2579 		 * so do not report SMM to be available if real mode is
2580 		 * emulated via vm86 mode.  Still, do not go to great lengths
2581 		 * to avoid userspace's usage of the feature, because it is a
2582 		 * fringe case that is not enabled except via specific settings
2583 		 * of the module parameters.
2584 		 */
2585 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2586 		break;
2587 	case KVM_CAP_COALESCED_MMIO:
2588 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589 		break;
2590 	case KVM_CAP_VAPIC:
2591 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592 		break;
2593 	case KVM_CAP_NR_VCPUS:
2594 		r = KVM_SOFT_MAX_VCPUS;
2595 		break;
2596 	case KVM_CAP_MAX_VCPUS:
2597 		r = KVM_MAX_VCPUS;
2598 		break;
2599 	case KVM_CAP_NR_MEMSLOTS:
2600 		r = KVM_USER_MEM_SLOTS;
2601 		break;
2602 	case KVM_CAP_PV_MMU:	/* obsolete */
2603 		r = 0;
2604 		break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606 	case KVM_CAP_IOMMU:
2607 		r = iommu_present(&pci_bus_type);
2608 		break;
2609 #endif
2610 	case KVM_CAP_MCE:
2611 		r = KVM_MAX_MCE_BANKS;
2612 		break;
2613 	case KVM_CAP_XCRS:
2614 		r = cpu_has_xsave;
2615 		break;
2616 	case KVM_CAP_TSC_CONTROL:
2617 		r = kvm_has_tsc_control;
2618 		break;
2619 	default:
2620 		r = 0;
2621 		break;
2622 	}
2623 	return r;
2624 
2625 }
2626 
2627 long kvm_arch_dev_ioctl(struct file *filp,
2628 			unsigned int ioctl, unsigned long arg)
2629 {
2630 	void __user *argp = (void __user *)arg;
2631 	long r;
2632 
2633 	switch (ioctl) {
2634 	case KVM_GET_MSR_INDEX_LIST: {
2635 		struct kvm_msr_list __user *user_msr_list = argp;
2636 		struct kvm_msr_list msr_list;
2637 		unsigned n;
2638 
2639 		r = -EFAULT;
2640 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2641 			goto out;
2642 		n = msr_list.nmsrs;
2643 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2644 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2645 			goto out;
2646 		r = -E2BIG;
2647 		if (n < msr_list.nmsrs)
2648 			goto out;
2649 		r = -EFAULT;
2650 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2651 				 num_msrs_to_save * sizeof(u32)))
2652 			goto out;
2653 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2654 				 &emulated_msrs,
2655 				 num_emulated_msrs * sizeof(u32)))
2656 			goto out;
2657 		r = 0;
2658 		break;
2659 	}
2660 	case KVM_GET_SUPPORTED_CPUID:
2661 	case KVM_GET_EMULATED_CPUID: {
2662 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2663 		struct kvm_cpuid2 cpuid;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2667 			goto out;
2668 
2669 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2670 					    ioctl);
2671 		if (r)
2672 			goto out;
2673 
2674 		r = -EFAULT;
2675 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2676 			goto out;
2677 		r = 0;
2678 		break;
2679 	}
2680 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2681 		u64 mce_cap;
2682 
2683 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2684 		r = -EFAULT;
2685 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2686 			goto out;
2687 		r = 0;
2688 		break;
2689 	}
2690 	default:
2691 		r = -EINVAL;
2692 	}
2693 out:
2694 	return r;
2695 }
2696 
2697 static void wbinvd_ipi(void *garbage)
2698 {
2699 	wbinvd();
2700 }
2701 
2702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2703 {
2704 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2705 }
2706 
2707 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2708 {
2709 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2710 }
2711 
2712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2713 {
2714 	/* Address WBINVD may be executed by guest */
2715 	if (need_emulate_wbinvd(vcpu)) {
2716 		if (kvm_x86_ops->has_wbinvd_exit())
2717 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2718 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2719 			smp_call_function_single(vcpu->cpu,
2720 					wbinvd_ipi, NULL, 1);
2721 	}
2722 
2723 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2724 
2725 	/* Apply any externally detected TSC adjustments (due to suspend) */
2726 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2727 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2728 		vcpu->arch.tsc_offset_adjustment = 0;
2729 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2730 	}
2731 
2732 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2733 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2734 				rdtsc() - vcpu->arch.last_host_tsc;
2735 		if (tsc_delta < 0)
2736 			mark_tsc_unstable("KVM discovered backwards TSC");
2737 		if (check_tsc_unstable()) {
2738 			u64 offset = kvm_compute_tsc_offset(vcpu,
2739 						vcpu->arch.last_guest_tsc);
2740 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2741 			vcpu->arch.tsc_catchup = 1;
2742 		}
2743 		/*
2744 		 * On a host with synchronized TSC, there is no need to update
2745 		 * kvmclock on vcpu->cpu migration
2746 		 */
2747 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2748 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749 		if (vcpu->cpu != cpu)
2750 			kvm_migrate_timers(vcpu);
2751 		vcpu->cpu = cpu;
2752 	}
2753 
2754 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2755 }
2756 
2757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2758 {
2759 	kvm_x86_ops->vcpu_put(vcpu);
2760 	kvm_put_guest_fpu(vcpu);
2761 	vcpu->arch.last_host_tsc = rdtsc();
2762 }
2763 
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2765 				    struct kvm_lapic_state *s)
2766 {
2767 	if (vcpu->arch.apicv_active)
2768 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2769 
2770 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2771 
2772 	return 0;
2773 }
2774 
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2776 				    struct kvm_lapic_state *s)
2777 {
2778 	kvm_apic_post_state_restore(vcpu, s);
2779 	update_cr8_intercept(vcpu);
2780 
2781 	return 0;
2782 }
2783 
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2785 {
2786 	return (!lapic_in_kernel(vcpu) ||
2787 		kvm_apic_accept_pic_intr(vcpu));
2788 }
2789 
2790 /*
2791  * if userspace requested an interrupt window, check that the
2792  * interrupt window is open.
2793  *
2794  * No need to exit to userspace if we already have an interrupt queued.
2795  */
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2797 {
2798 	return kvm_arch_interrupt_allowed(vcpu) &&
2799 		!kvm_cpu_has_interrupt(vcpu) &&
2800 		!kvm_event_needs_reinjection(vcpu) &&
2801 		kvm_cpu_accept_dm_intr(vcpu);
2802 }
2803 
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805 				    struct kvm_interrupt *irq)
2806 {
2807 	if (irq->irq >= KVM_NR_INTERRUPTS)
2808 		return -EINVAL;
2809 
2810 	if (!irqchip_in_kernel(vcpu->kvm)) {
2811 		kvm_queue_interrupt(vcpu, irq->irq, false);
2812 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2813 		return 0;
2814 	}
2815 
2816 	/*
2817 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818 	 * fail for in-kernel 8259.
2819 	 */
2820 	if (pic_in_kernel(vcpu->kvm))
2821 		return -ENXIO;
2822 
2823 	if (vcpu->arch.pending_external_vector != -1)
2824 		return -EEXIST;
2825 
2826 	vcpu->arch.pending_external_vector = irq->irq;
2827 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2828 	return 0;
2829 }
2830 
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2832 {
2833 	kvm_inject_nmi(vcpu);
2834 
2835 	return 0;
2836 }
2837 
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2839 {
2840 	kvm_make_request(KVM_REQ_SMI, vcpu);
2841 
2842 	return 0;
2843 }
2844 
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2846 					   struct kvm_tpr_access_ctl *tac)
2847 {
2848 	if (tac->flags)
2849 		return -EINVAL;
2850 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2851 	return 0;
2852 }
2853 
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2855 					u64 mcg_cap)
2856 {
2857 	int r;
2858 	unsigned bank_num = mcg_cap & 0xff, bank;
2859 
2860 	r = -EINVAL;
2861 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2862 		goto out;
2863 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2864 		goto out;
2865 	r = 0;
2866 	vcpu->arch.mcg_cap = mcg_cap;
2867 	/* Init IA32_MCG_CTL to all 1s */
2868 	if (mcg_cap & MCG_CTL_P)
2869 		vcpu->arch.mcg_ctl = ~(u64)0;
2870 	/* Init IA32_MCi_CTL to all 1s */
2871 	for (bank = 0; bank < bank_num; bank++)
2872 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2873 out:
2874 	return r;
2875 }
2876 
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2878 				      struct kvm_x86_mce *mce)
2879 {
2880 	u64 mcg_cap = vcpu->arch.mcg_cap;
2881 	unsigned bank_num = mcg_cap & 0xff;
2882 	u64 *banks = vcpu->arch.mce_banks;
2883 
2884 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2885 		return -EINVAL;
2886 	/*
2887 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888 	 * reporting is disabled
2889 	 */
2890 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2891 	    vcpu->arch.mcg_ctl != ~(u64)0)
2892 		return 0;
2893 	banks += 4 * mce->bank;
2894 	/*
2895 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896 	 * reporting is disabled for the bank
2897 	 */
2898 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2899 		return 0;
2900 	if (mce->status & MCI_STATUS_UC) {
2901 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2902 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2903 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2904 			return 0;
2905 		}
2906 		if (banks[1] & MCI_STATUS_VAL)
2907 			mce->status |= MCI_STATUS_OVER;
2908 		banks[2] = mce->addr;
2909 		banks[3] = mce->misc;
2910 		vcpu->arch.mcg_status = mce->mcg_status;
2911 		banks[1] = mce->status;
2912 		kvm_queue_exception(vcpu, MC_VECTOR);
2913 	} else if (!(banks[1] & MCI_STATUS_VAL)
2914 		   || !(banks[1] & MCI_STATUS_UC)) {
2915 		if (banks[1] & MCI_STATUS_VAL)
2916 			mce->status |= MCI_STATUS_OVER;
2917 		banks[2] = mce->addr;
2918 		banks[3] = mce->misc;
2919 		banks[1] = mce->status;
2920 	} else
2921 		banks[1] |= MCI_STATUS_OVER;
2922 	return 0;
2923 }
2924 
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2926 					       struct kvm_vcpu_events *events)
2927 {
2928 	process_nmi(vcpu);
2929 	events->exception.injected =
2930 		vcpu->arch.exception.pending &&
2931 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2932 	events->exception.nr = vcpu->arch.exception.nr;
2933 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2934 	events->exception.pad = 0;
2935 	events->exception.error_code = vcpu->arch.exception.error_code;
2936 
2937 	events->interrupt.injected =
2938 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2939 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2940 	events->interrupt.soft = 0;
2941 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2942 
2943 	events->nmi.injected = vcpu->arch.nmi_injected;
2944 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2945 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2946 	events->nmi.pad = 0;
2947 
2948 	events->sipi_vector = 0; /* never valid when reporting to user space */
2949 
2950 	events->smi.smm = is_smm(vcpu);
2951 	events->smi.pending = vcpu->arch.smi_pending;
2952 	events->smi.smm_inside_nmi =
2953 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2954 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2955 
2956 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2957 			 | KVM_VCPUEVENT_VALID_SHADOW
2958 			 | KVM_VCPUEVENT_VALID_SMM);
2959 	memset(&events->reserved, 0, sizeof(events->reserved));
2960 }
2961 
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2963 					      struct kvm_vcpu_events *events)
2964 {
2965 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967 			      | KVM_VCPUEVENT_VALID_SHADOW
2968 			      | KVM_VCPUEVENT_VALID_SMM))
2969 		return -EINVAL;
2970 
2971 	process_nmi(vcpu);
2972 	vcpu->arch.exception.pending = events->exception.injected;
2973 	vcpu->arch.exception.nr = events->exception.nr;
2974 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2975 	vcpu->arch.exception.error_code = events->exception.error_code;
2976 
2977 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2978 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2979 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2980 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2981 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2982 						  events->interrupt.shadow);
2983 
2984 	vcpu->arch.nmi_injected = events->nmi.injected;
2985 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2986 		vcpu->arch.nmi_pending = events->nmi.pending;
2987 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2988 
2989 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2990 	    kvm_vcpu_has_lapic(vcpu))
2991 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2992 
2993 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2994 		if (events->smi.smm)
2995 			vcpu->arch.hflags |= HF_SMM_MASK;
2996 		else
2997 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2998 		vcpu->arch.smi_pending = events->smi.pending;
2999 		if (events->smi.smm_inside_nmi)
3000 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3001 		else
3002 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3003 		if (kvm_vcpu_has_lapic(vcpu)) {
3004 			if (events->smi.latched_init)
3005 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3006 			else
3007 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3008 		}
3009 	}
3010 
3011 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3012 
3013 	return 0;
3014 }
3015 
3016 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3017 					     struct kvm_debugregs *dbgregs)
3018 {
3019 	unsigned long val;
3020 
3021 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3022 	kvm_get_dr(vcpu, 6, &val);
3023 	dbgregs->dr6 = val;
3024 	dbgregs->dr7 = vcpu->arch.dr7;
3025 	dbgregs->flags = 0;
3026 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3027 }
3028 
3029 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3030 					    struct kvm_debugregs *dbgregs)
3031 {
3032 	if (dbgregs->flags)
3033 		return -EINVAL;
3034 
3035 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3036 	kvm_update_dr0123(vcpu);
3037 	vcpu->arch.dr6 = dbgregs->dr6;
3038 	kvm_update_dr6(vcpu);
3039 	vcpu->arch.dr7 = dbgregs->dr7;
3040 	kvm_update_dr7(vcpu);
3041 
3042 	return 0;
3043 }
3044 
3045 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3046 
3047 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3048 {
3049 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3050 	u64 xstate_bv = xsave->header.xfeatures;
3051 	u64 valid;
3052 
3053 	/*
3054 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3055 	 * leaves 0 and 1 in the loop below.
3056 	 */
3057 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3058 
3059 	/* Set XSTATE_BV */
3060 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3061 
3062 	/*
3063 	 * Copy each region from the possibly compacted offset to the
3064 	 * non-compacted offset.
3065 	 */
3066 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3067 	while (valid) {
3068 		u64 feature = valid & -valid;
3069 		int index = fls64(feature) - 1;
3070 		void *src = get_xsave_addr(xsave, feature);
3071 
3072 		if (src) {
3073 			u32 size, offset, ecx, edx;
3074 			cpuid_count(XSTATE_CPUID, index,
3075 				    &size, &offset, &ecx, &edx);
3076 			memcpy(dest + offset, src, size);
3077 		}
3078 
3079 		valid -= feature;
3080 	}
3081 }
3082 
3083 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3084 {
3085 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3086 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3087 	u64 valid;
3088 
3089 	/*
3090 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3091 	 * leaves 0 and 1 in the loop below.
3092 	 */
3093 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3094 
3095 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3096 	xsave->header.xfeatures = xstate_bv;
3097 	if (cpu_has_xsaves)
3098 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3099 
3100 	/*
3101 	 * Copy each region from the non-compacted offset to the
3102 	 * possibly compacted offset.
3103 	 */
3104 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3105 	while (valid) {
3106 		u64 feature = valid & -valid;
3107 		int index = fls64(feature) - 1;
3108 		void *dest = get_xsave_addr(xsave, feature);
3109 
3110 		if (dest) {
3111 			u32 size, offset, ecx, edx;
3112 			cpuid_count(XSTATE_CPUID, index,
3113 				    &size, &offset, &ecx, &edx);
3114 			memcpy(dest, src + offset, size);
3115 		}
3116 
3117 		valid -= feature;
3118 	}
3119 }
3120 
3121 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3122 					 struct kvm_xsave *guest_xsave)
3123 {
3124 	if (cpu_has_xsave) {
3125 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3126 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3127 	} else {
3128 		memcpy(guest_xsave->region,
3129 			&vcpu->arch.guest_fpu.state.fxsave,
3130 			sizeof(struct fxregs_state));
3131 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3132 			XFEATURE_MASK_FPSSE;
3133 	}
3134 }
3135 
3136 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3137 					struct kvm_xsave *guest_xsave)
3138 {
3139 	u64 xstate_bv =
3140 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3141 
3142 	if (cpu_has_xsave) {
3143 		/*
3144 		 * Here we allow setting states that are not present in
3145 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3146 		 * with old userspace.
3147 		 */
3148 		if (xstate_bv & ~kvm_supported_xcr0())
3149 			return -EINVAL;
3150 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3151 	} else {
3152 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3153 			return -EINVAL;
3154 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3155 			guest_xsave->region, sizeof(struct fxregs_state));
3156 	}
3157 	return 0;
3158 }
3159 
3160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3161 					struct kvm_xcrs *guest_xcrs)
3162 {
3163 	if (!cpu_has_xsave) {
3164 		guest_xcrs->nr_xcrs = 0;
3165 		return;
3166 	}
3167 
3168 	guest_xcrs->nr_xcrs = 1;
3169 	guest_xcrs->flags = 0;
3170 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3171 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3172 }
3173 
3174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3175 				       struct kvm_xcrs *guest_xcrs)
3176 {
3177 	int i, r = 0;
3178 
3179 	if (!cpu_has_xsave)
3180 		return -EINVAL;
3181 
3182 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3183 		return -EINVAL;
3184 
3185 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3186 		/* Only support XCR0 currently */
3187 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3188 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3189 				guest_xcrs->xcrs[i].value);
3190 			break;
3191 		}
3192 	if (r)
3193 		r = -EINVAL;
3194 	return r;
3195 }
3196 
3197 /*
3198  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3199  * stopped by the hypervisor.  This function will be called from the host only.
3200  * EINVAL is returned when the host attempts to set the flag for a guest that
3201  * does not support pv clocks.
3202  */
3203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3204 {
3205 	if (!vcpu->arch.pv_time_enabled)
3206 		return -EINVAL;
3207 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3208 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3209 	return 0;
3210 }
3211 
3212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3213 				     struct kvm_enable_cap *cap)
3214 {
3215 	if (cap->flags)
3216 		return -EINVAL;
3217 
3218 	switch (cap->cap) {
3219 	case KVM_CAP_HYPERV_SYNIC:
3220 		return kvm_hv_activate_synic(vcpu);
3221 	default:
3222 		return -EINVAL;
3223 	}
3224 }
3225 
3226 long kvm_arch_vcpu_ioctl(struct file *filp,
3227 			 unsigned int ioctl, unsigned long arg)
3228 {
3229 	struct kvm_vcpu *vcpu = filp->private_data;
3230 	void __user *argp = (void __user *)arg;
3231 	int r;
3232 	union {
3233 		struct kvm_lapic_state *lapic;
3234 		struct kvm_xsave *xsave;
3235 		struct kvm_xcrs *xcrs;
3236 		void *buffer;
3237 	} u;
3238 
3239 	u.buffer = NULL;
3240 	switch (ioctl) {
3241 	case KVM_GET_LAPIC: {
3242 		r = -EINVAL;
3243 		if (!vcpu->arch.apic)
3244 			goto out;
3245 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246 
3247 		r = -ENOMEM;
3248 		if (!u.lapic)
3249 			goto out;
3250 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251 		if (r)
3252 			goto out;
3253 		r = -EFAULT;
3254 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255 			goto out;
3256 		r = 0;
3257 		break;
3258 	}
3259 	case KVM_SET_LAPIC: {
3260 		r = -EINVAL;
3261 		if (!vcpu->arch.apic)
3262 			goto out;
3263 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264 		if (IS_ERR(u.lapic))
3265 			return PTR_ERR(u.lapic);
3266 
3267 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268 		break;
3269 	}
3270 	case KVM_INTERRUPT: {
3271 		struct kvm_interrupt irq;
3272 
3273 		r = -EFAULT;
3274 		if (copy_from_user(&irq, argp, sizeof irq))
3275 			goto out;
3276 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277 		break;
3278 	}
3279 	case KVM_NMI: {
3280 		r = kvm_vcpu_ioctl_nmi(vcpu);
3281 		break;
3282 	}
3283 	case KVM_SMI: {
3284 		r = kvm_vcpu_ioctl_smi(vcpu);
3285 		break;
3286 	}
3287 	case KVM_SET_CPUID: {
3288 		struct kvm_cpuid __user *cpuid_arg = argp;
3289 		struct kvm_cpuid cpuid;
3290 
3291 		r = -EFAULT;
3292 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3293 			goto out;
3294 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3295 		break;
3296 	}
3297 	case KVM_SET_CPUID2: {
3298 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3299 		struct kvm_cpuid2 cpuid;
3300 
3301 		r = -EFAULT;
3302 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3303 			goto out;
3304 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3305 					      cpuid_arg->entries);
3306 		break;
3307 	}
3308 	case KVM_GET_CPUID2: {
3309 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3310 		struct kvm_cpuid2 cpuid;
3311 
3312 		r = -EFAULT;
3313 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3314 			goto out;
3315 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3316 					      cpuid_arg->entries);
3317 		if (r)
3318 			goto out;
3319 		r = -EFAULT;
3320 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3321 			goto out;
3322 		r = 0;
3323 		break;
3324 	}
3325 	case KVM_GET_MSRS:
3326 		r = msr_io(vcpu, argp, do_get_msr, 1);
3327 		break;
3328 	case KVM_SET_MSRS:
3329 		r = msr_io(vcpu, argp, do_set_msr, 0);
3330 		break;
3331 	case KVM_TPR_ACCESS_REPORTING: {
3332 		struct kvm_tpr_access_ctl tac;
3333 
3334 		r = -EFAULT;
3335 		if (copy_from_user(&tac, argp, sizeof tac))
3336 			goto out;
3337 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3338 		if (r)
3339 			goto out;
3340 		r = -EFAULT;
3341 		if (copy_to_user(argp, &tac, sizeof tac))
3342 			goto out;
3343 		r = 0;
3344 		break;
3345 	};
3346 	case KVM_SET_VAPIC_ADDR: {
3347 		struct kvm_vapic_addr va;
3348 
3349 		r = -EINVAL;
3350 		if (!lapic_in_kernel(vcpu))
3351 			goto out;
3352 		r = -EFAULT;
3353 		if (copy_from_user(&va, argp, sizeof va))
3354 			goto out;
3355 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3356 		break;
3357 	}
3358 	case KVM_X86_SETUP_MCE: {
3359 		u64 mcg_cap;
3360 
3361 		r = -EFAULT;
3362 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3363 			goto out;
3364 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3365 		break;
3366 	}
3367 	case KVM_X86_SET_MCE: {
3368 		struct kvm_x86_mce mce;
3369 
3370 		r = -EFAULT;
3371 		if (copy_from_user(&mce, argp, sizeof mce))
3372 			goto out;
3373 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3374 		break;
3375 	}
3376 	case KVM_GET_VCPU_EVENTS: {
3377 		struct kvm_vcpu_events events;
3378 
3379 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3380 
3381 		r = -EFAULT;
3382 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3383 			break;
3384 		r = 0;
3385 		break;
3386 	}
3387 	case KVM_SET_VCPU_EVENTS: {
3388 		struct kvm_vcpu_events events;
3389 
3390 		r = -EFAULT;
3391 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3392 			break;
3393 
3394 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3395 		break;
3396 	}
3397 	case KVM_GET_DEBUGREGS: {
3398 		struct kvm_debugregs dbgregs;
3399 
3400 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3401 
3402 		r = -EFAULT;
3403 		if (copy_to_user(argp, &dbgregs,
3404 				 sizeof(struct kvm_debugregs)))
3405 			break;
3406 		r = 0;
3407 		break;
3408 	}
3409 	case KVM_SET_DEBUGREGS: {
3410 		struct kvm_debugregs dbgregs;
3411 
3412 		r = -EFAULT;
3413 		if (copy_from_user(&dbgregs, argp,
3414 				   sizeof(struct kvm_debugregs)))
3415 			break;
3416 
3417 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3418 		break;
3419 	}
3420 	case KVM_GET_XSAVE: {
3421 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3422 		r = -ENOMEM;
3423 		if (!u.xsave)
3424 			break;
3425 
3426 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3427 
3428 		r = -EFAULT;
3429 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3430 			break;
3431 		r = 0;
3432 		break;
3433 	}
3434 	case KVM_SET_XSAVE: {
3435 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3436 		if (IS_ERR(u.xsave))
3437 			return PTR_ERR(u.xsave);
3438 
3439 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3440 		break;
3441 	}
3442 	case KVM_GET_XCRS: {
3443 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3444 		r = -ENOMEM;
3445 		if (!u.xcrs)
3446 			break;
3447 
3448 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3449 
3450 		r = -EFAULT;
3451 		if (copy_to_user(argp, u.xcrs,
3452 				 sizeof(struct kvm_xcrs)))
3453 			break;
3454 		r = 0;
3455 		break;
3456 	}
3457 	case KVM_SET_XCRS: {
3458 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3459 		if (IS_ERR(u.xcrs))
3460 			return PTR_ERR(u.xcrs);
3461 
3462 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3463 		break;
3464 	}
3465 	case KVM_SET_TSC_KHZ: {
3466 		u32 user_tsc_khz;
3467 
3468 		r = -EINVAL;
3469 		user_tsc_khz = (u32)arg;
3470 
3471 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3472 			goto out;
3473 
3474 		if (user_tsc_khz == 0)
3475 			user_tsc_khz = tsc_khz;
3476 
3477 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3478 			r = 0;
3479 
3480 		goto out;
3481 	}
3482 	case KVM_GET_TSC_KHZ: {
3483 		r = vcpu->arch.virtual_tsc_khz;
3484 		goto out;
3485 	}
3486 	case KVM_KVMCLOCK_CTRL: {
3487 		r = kvm_set_guest_paused(vcpu);
3488 		goto out;
3489 	}
3490 	case KVM_ENABLE_CAP: {
3491 		struct kvm_enable_cap cap;
3492 
3493 		r = -EFAULT;
3494 		if (copy_from_user(&cap, argp, sizeof(cap)))
3495 			goto out;
3496 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3497 		break;
3498 	}
3499 	default:
3500 		r = -EINVAL;
3501 	}
3502 out:
3503 	kfree(u.buffer);
3504 	return r;
3505 }
3506 
3507 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3508 {
3509 	return VM_FAULT_SIGBUS;
3510 }
3511 
3512 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3513 {
3514 	int ret;
3515 
3516 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3517 		return -EINVAL;
3518 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3519 	return ret;
3520 }
3521 
3522 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3523 					      u64 ident_addr)
3524 {
3525 	kvm->arch.ept_identity_map_addr = ident_addr;
3526 	return 0;
3527 }
3528 
3529 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3530 					  u32 kvm_nr_mmu_pages)
3531 {
3532 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3533 		return -EINVAL;
3534 
3535 	mutex_lock(&kvm->slots_lock);
3536 
3537 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3538 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3539 
3540 	mutex_unlock(&kvm->slots_lock);
3541 	return 0;
3542 }
3543 
3544 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3545 {
3546 	return kvm->arch.n_max_mmu_pages;
3547 }
3548 
3549 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3550 {
3551 	int r;
3552 
3553 	r = 0;
3554 	switch (chip->chip_id) {
3555 	case KVM_IRQCHIP_PIC_MASTER:
3556 		memcpy(&chip->chip.pic,
3557 			&pic_irqchip(kvm)->pics[0],
3558 			sizeof(struct kvm_pic_state));
3559 		break;
3560 	case KVM_IRQCHIP_PIC_SLAVE:
3561 		memcpy(&chip->chip.pic,
3562 			&pic_irqchip(kvm)->pics[1],
3563 			sizeof(struct kvm_pic_state));
3564 		break;
3565 	case KVM_IRQCHIP_IOAPIC:
3566 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3567 		break;
3568 	default:
3569 		r = -EINVAL;
3570 		break;
3571 	}
3572 	return r;
3573 }
3574 
3575 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3576 {
3577 	int r;
3578 
3579 	r = 0;
3580 	switch (chip->chip_id) {
3581 	case KVM_IRQCHIP_PIC_MASTER:
3582 		spin_lock(&pic_irqchip(kvm)->lock);
3583 		memcpy(&pic_irqchip(kvm)->pics[0],
3584 			&chip->chip.pic,
3585 			sizeof(struct kvm_pic_state));
3586 		spin_unlock(&pic_irqchip(kvm)->lock);
3587 		break;
3588 	case KVM_IRQCHIP_PIC_SLAVE:
3589 		spin_lock(&pic_irqchip(kvm)->lock);
3590 		memcpy(&pic_irqchip(kvm)->pics[1],
3591 			&chip->chip.pic,
3592 			sizeof(struct kvm_pic_state));
3593 		spin_unlock(&pic_irqchip(kvm)->lock);
3594 		break;
3595 	case KVM_IRQCHIP_IOAPIC:
3596 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3597 		break;
3598 	default:
3599 		r = -EINVAL;
3600 		break;
3601 	}
3602 	kvm_pic_update_irq(pic_irqchip(kvm));
3603 	return r;
3604 }
3605 
3606 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3607 {
3608 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3609 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3610 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3611 	return 0;
3612 }
3613 
3614 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3615 {
3616 	int i;
3617 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3618 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3619 	for (i = 0; i < 3; i++)
3620 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3621 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3622 	return 0;
3623 }
3624 
3625 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3626 {
3627 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3628 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3629 		sizeof(ps->channels));
3630 	ps->flags = kvm->arch.vpit->pit_state.flags;
3631 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3632 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3633 	return 0;
3634 }
3635 
3636 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3637 {
3638 	int start = 0;
3639 	int i;
3640 	u32 prev_legacy, cur_legacy;
3641 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3642 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3643 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3644 	if (!prev_legacy && cur_legacy)
3645 		start = 1;
3646 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3647 	       sizeof(kvm->arch.vpit->pit_state.channels));
3648 	kvm->arch.vpit->pit_state.flags = ps->flags;
3649 	for (i = 0; i < 3; i++)
3650 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3651 				   start && i == 0);
3652 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3653 	return 0;
3654 }
3655 
3656 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3657 				 struct kvm_reinject_control *control)
3658 {
3659 	if (!kvm->arch.vpit)
3660 		return -ENXIO;
3661 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3662 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3663 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3664 	return 0;
3665 }
3666 
3667 /**
3668  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3669  * @kvm: kvm instance
3670  * @log: slot id and address to which we copy the log
3671  *
3672  * Steps 1-4 below provide general overview of dirty page logging. See
3673  * kvm_get_dirty_log_protect() function description for additional details.
3674  *
3675  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3676  * always flush the TLB (step 4) even if previous step failed  and the dirty
3677  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3678  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3679  * writes will be marked dirty for next log read.
3680  *
3681  *   1. Take a snapshot of the bit and clear it if needed.
3682  *   2. Write protect the corresponding page.
3683  *   3. Copy the snapshot to the userspace.
3684  *   4. Flush TLB's if needed.
3685  */
3686 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3687 {
3688 	bool is_dirty = false;
3689 	int r;
3690 
3691 	mutex_lock(&kvm->slots_lock);
3692 
3693 	/*
3694 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3695 	 */
3696 	if (kvm_x86_ops->flush_log_dirty)
3697 		kvm_x86_ops->flush_log_dirty(kvm);
3698 
3699 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3700 
3701 	/*
3702 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3703 	 * kvm_mmu_slot_remove_write_access().
3704 	 */
3705 	lockdep_assert_held(&kvm->slots_lock);
3706 	if (is_dirty)
3707 		kvm_flush_remote_tlbs(kvm);
3708 
3709 	mutex_unlock(&kvm->slots_lock);
3710 	return r;
3711 }
3712 
3713 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3714 			bool line_status)
3715 {
3716 	if (!irqchip_in_kernel(kvm))
3717 		return -ENXIO;
3718 
3719 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3720 					irq_event->irq, irq_event->level,
3721 					line_status);
3722 	return 0;
3723 }
3724 
3725 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3726 				   struct kvm_enable_cap *cap)
3727 {
3728 	int r;
3729 
3730 	if (cap->flags)
3731 		return -EINVAL;
3732 
3733 	switch (cap->cap) {
3734 	case KVM_CAP_DISABLE_QUIRKS:
3735 		kvm->arch.disabled_quirks = cap->args[0];
3736 		r = 0;
3737 		break;
3738 	case KVM_CAP_SPLIT_IRQCHIP: {
3739 		mutex_lock(&kvm->lock);
3740 		r = -EINVAL;
3741 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3742 			goto split_irqchip_unlock;
3743 		r = -EEXIST;
3744 		if (irqchip_in_kernel(kvm))
3745 			goto split_irqchip_unlock;
3746 		if (atomic_read(&kvm->online_vcpus))
3747 			goto split_irqchip_unlock;
3748 		r = kvm_setup_empty_irq_routing(kvm);
3749 		if (r)
3750 			goto split_irqchip_unlock;
3751 		/* Pairs with irqchip_in_kernel. */
3752 		smp_wmb();
3753 		kvm->arch.irqchip_split = true;
3754 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3755 		r = 0;
3756 split_irqchip_unlock:
3757 		mutex_unlock(&kvm->lock);
3758 		break;
3759 	}
3760 	default:
3761 		r = -EINVAL;
3762 		break;
3763 	}
3764 	return r;
3765 }
3766 
3767 long kvm_arch_vm_ioctl(struct file *filp,
3768 		       unsigned int ioctl, unsigned long arg)
3769 {
3770 	struct kvm *kvm = filp->private_data;
3771 	void __user *argp = (void __user *)arg;
3772 	int r = -ENOTTY;
3773 	/*
3774 	 * This union makes it completely explicit to gcc-3.x
3775 	 * that these two variables' stack usage should be
3776 	 * combined, not added together.
3777 	 */
3778 	union {
3779 		struct kvm_pit_state ps;
3780 		struct kvm_pit_state2 ps2;
3781 		struct kvm_pit_config pit_config;
3782 	} u;
3783 
3784 	switch (ioctl) {
3785 	case KVM_SET_TSS_ADDR:
3786 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3787 		break;
3788 	case KVM_SET_IDENTITY_MAP_ADDR: {
3789 		u64 ident_addr;
3790 
3791 		r = -EFAULT;
3792 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3793 			goto out;
3794 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3795 		break;
3796 	}
3797 	case KVM_SET_NR_MMU_PAGES:
3798 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3799 		break;
3800 	case KVM_GET_NR_MMU_PAGES:
3801 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3802 		break;
3803 	case KVM_CREATE_IRQCHIP: {
3804 		struct kvm_pic *vpic;
3805 
3806 		mutex_lock(&kvm->lock);
3807 		r = -EEXIST;
3808 		if (kvm->arch.vpic)
3809 			goto create_irqchip_unlock;
3810 		r = -EINVAL;
3811 		if (atomic_read(&kvm->online_vcpus))
3812 			goto create_irqchip_unlock;
3813 		r = -ENOMEM;
3814 		vpic = kvm_create_pic(kvm);
3815 		if (vpic) {
3816 			r = kvm_ioapic_init(kvm);
3817 			if (r) {
3818 				mutex_lock(&kvm->slots_lock);
3819 				kvm_destroy_pic(vpic);
3820 				mutex_unlock(&kvm->slots_lock);
3821 				goto create_irqchip_unlock;
3822 			}
3823 		} else
3824 			goto create_irqchip_unlock;
3825 		r = kvm_setup_default_irq_routing(kvm);
3826 		if (r) {
3827 			mutex_lock(&kvm->slots_lock);
3828 			mutex_lock(&kvm->irq_lock);
3829 			kvm_ioapic_destroy(kvm);
3830 			kvm_destroy_pic(vpic);
3831 			mutex_unlock(&kvm->irq_lock);
3832 			mutex_unlock(&kvm->slots_lock);
3833 			goto create_irqchip_unlock;
3834 		}
3835 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3836 		smp_wmb();
3837 		kvm->arch.vpic = vpic;
3838 	create_irqchip_unlock:
3839 		mutex_unlock(&kvm->lock);
3840 		break;
3841 	}
3842 	case KVM_CREATE_PIT:
3843 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3844 		goto create_pit;
3845 	case KVM_CREATE_PIT2:
3846 		r = -EFAULT;
3847 		if (copy_from_user(&u.pit_config, argp,
3848 				   sizeof(struct kvm_pit_config)))
3849 			goto out;
3850 	create_pit:
3851 		mutex_lock(&kvm->slots_lock);
3852 		r = -EEXIST;
3853 		if (kvm->arch.vpit)
3854 			goto create_pit_unlock;
3855 		r = -ENOMEM;
3856 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3857 		if (kvm->arch.vpit)
3858 			r = 0;
3859 	create_pit_unlock:
3860 		mutex_unlock(&kvm->slots_lock);
3861 		break;
3862 	case KVM_GET_IRQCHIP: {
3863 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3864 		struct kvm_irqchip *chip;
3865 
3866 		chip = memdup_user(argp, sizeof(*chip));
3867 		if (IS_ERR(chip)) {
3868 			r = PTR_ERR(chip);
3869 			goto out;
3870 		}
3871 
3872 		r = -ENXIO;
3873 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3874 			goto get_irqchip_out;
3875 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3876 		if (r)
3877 			goto get_irqchip_out;
3878 		r = -EFAULT;
3879 		if (copy_to_user(argp, chip, sizeof *chip))
3880 			goto get_irqchip_out;
3881 		r = 0;
3882 	get_irqchip_out:
3883 		kfree(chip);
3884 		break;
3885 	}
3886 	case KVM_SET_IRQCHIP: {
3887 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3888 		struct kvm_irqchip *chip;
3889 
3890 		chip = memdup_user(argp, sizeof(*chip));
3891 		if (IS_ERR(chip)) {
3892 			r = PTR_ERR(chip);
3893 			goto out;
3894 		}
3895 
3896 		r = -ENXIO;
3897 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3898 			goto set_irqchip_out;
3899 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3900 		if (r)
3901 			goto set_irqchip_out;
3902 		r = 0;
3903 	set_irqchip_out:
3904 		kfree(chip);
3905 		break;
3906 	}
3907 	case KVM_GET_PIT: {
3908 		r = -EFAULT;
3909 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3910 			goto out;
3911 		r = -ENXIO;
3912 		if (!kvm->arch.vpit)
3913 			goto out;
3914 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3915 		if (r)
3916 			goto out;
3917 		r = -EFAULT;
3918 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3919 			goto out;
3920 		r = 0;
3921 		break;
3922 	}
3923 	case KVM_SET_PIT: {
3924 		r = -EFAULT;
3925 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3926 			goto out;
3927 		r = -ENXIO;
3928 		if (!kvm->arch.vpit)
3929 			goto out;
3930 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3931 		break;
3932 	}
3933 	case KVM_GET_PIT2: {
3934 		r = -ENXIO;
3935 		if (!kvm->arch.vpit)
3936 			goto out;
3937 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3938 		if (r)
3939 			goto out;
3940 		r = -EFAULT;
3941 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3942 			goto out;
3943 		r = 0;
3944 		break;
3945 	}
3946 	case KVM_SET_PIT2: {
3947 		r = -EFAULT;
3948 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3949 			goto out;
3950 		r = -ENXIO;
3951 		if (!kvm->arch.vpit)
3952 			goto out;
3953 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3954 		break;
3955 	}
3956 	case KVM_REINJECT_CONTROL: {
3957 		struct kvm_reinject_control control;
3958 		r =  -EFAULT;
3959 		if (copy_from_user(&control, argp, sizeof(control)))
3960 			goto out;
3961 		r = kvm_vm_ioctl_reinject(kvm, &control);
3962 		break;
3963 	}
3964 	case KVM_SET_BOOT_CPU_ID:
3965 		r = 0;
3966 		mutex_lock(&kvm->lock);
3967 		if (atomic_read(&kvm->online_vcpus) != 0)
3968 			r = -EBUSY;
3969 		else
3970 			kvm->arch.bsp_vcpu_id = arg;
3971 		mutex_unlock(&kvm->lock);
3972 		break;
3973 	case KVM_XEN_HVM_CONFIG: {
3974 		r = -EFAULT;
3975 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3976 				   sizeof(struct kvm_xen_hvm_config)))
3977 			goto out;
3978 		r = -EINVAL;
3979 		if (kvm->arch.xen_hvm_config.flags)
3980 			goto out;
3981 		r = 0;
3982 		break;
3983 	}
3984 	case KVM_SET_CLOCK: {
3985 		struct kvm_clock_data user_ns;
3986 		u64 now_ns;
3987 		s64 delta;
3988 
3989 		r = -EFAULT;
3990 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3991 			goto out;
3992 
3993 		r = -EINVAL;
3994 		if (user_ns.flags)
3995 			goto out;
3996 
3997 		r = 0;
3998 		local_irq_disable();
3999 		now_ns = get_kernel_ns();
4000 		delta = user_ns.clock - now_ns;
4001 		local_irq_enable();
4002 		kvm->arch.kvmclock_offset = delta;
4003 		kvm_gen_update_masterclock(kvm);
4004 		break;
4005 	}
4006 	case KVM_GET_CLOCK: {
4007 		struct kvm_clock_data user_ns;
4008 		u64 now_ns;
4009 
4010 		local_irq_disable();
4011 		now_ns = get_kernel_ns();
4012 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4013 		local_irq_enable();
4014 		user_ns.flags = 0;
4015 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4016 
4017 		r = -EFAULT;
4018 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4019 			goto out;
4020 		r = 0;
4021 		break;
4022 	}
4023 	case KVM_ENABLE_CAP: {
4024 		struct kvm_enable_cap cap;
4025 
4026 		r = -EFAULT;
4027 		if (copy_from_user(&cap, argp, sizeof(cap)))
4028 			goto out;
4029 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4030 		break;
4031 	}
4032 	default:
4033 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4034 	}
4035 out:
4036 	return r;
4037 }
4038 
4039 static void kvm_init_msr_list(void)
4040 {
4041 	u32 dummy[2];
4042 	unsigned i, j;
4043 
4044 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4045 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4046 			continue;
4047 
4048 		/*
4049 		 * Even MSRs that are valid in the host may not be exposed
4050 		 * to the guests in some cases.
4051 		 */
4052 		switch (msrs_to_save[i]) {
4053 		case MSR_IA32_BNDCFGS:
4054 			if (!kvm_x86_ops->mpx_supported())
4055 				continue;
4056 			break;
4057 		case MSR_TSC_AUX:
4058 			if (!kvm_x86_ops->rdtscp_supported())
4059 				continue;
4060 			break;
4061 		default:
4062 			break;
4063 		}
4064 
4065 		if (j < i)
4066 			msrs_to_save[j] = msrs_to_save[i];
4067 		j++;
4068 	}
4069 	num_msrs_to_save = j;
4070 
4071 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4072 		switch (emulated_msrs[i]) {
4073 		case MSR_IA32_SMBASE:
4074 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4075 				continue;
4076 			break;
4077 		default:
4078 			break;
4079 		}
4080 
4081 		if (j < i)
4082 			emulated_msrs[j] = emulated_msrs[i];
4083 		j++;
4084 	}
4085 	num_emulated_msrs = j;
4086 }
4087 
4088 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4089 			   const void *v)
4090 {
4091 	int handled = 0;
4092 	int n;
4093 
4094 	do {
4095 		n = min(len, 8);
4096 		if (!(vcpu->arch.apic &&
4097 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4098 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4099 			break;
4100 		handled += n;
4101 		addr += n;
4102 		len -= n;
4103 		v += n;
4104 	} while (len);
4105 
4106 	return handled;
4107 }
4108 
4109 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4110 {
4111 	int handled = 0;
4112 	int n;
4113 
4114 	do {
4115 		n = min(len, 8);
4116 		if (!(vcpu->arch.apic &&
4117 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4118 					 addr, n, v))
4119 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4120 			break;
4121 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4122 		handled += n;
4123 		addr += n;
4124 		len -= n;
4125 		v += n;
4126 	} while (len);
4127 
4128 	return handled;
4129 }
4130 
4131 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4132 			struct kvm_segment *var, int seg)
4133 {
4134 	kvm_x86_ops->set_segment(vcpu, var, seg);
4135 }
4136 
4137 void kvm_get_segment(struct kvm_vcpu *vcpu,
4138 		     struct kvm_segment *var, int seg)
4139 {
4140 	kvm_x86_ops->get_segment(vcpu, var, seg);
4141 }
4142 
4143 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4144 			   struct x86_exception *exception)
4145 {
4146 	gpa_t t_gpa;
4147 
4148 	BUG_ON(!mmu_is_nested(vcpu));
4149 
4150 	/* NPT walks are always user-walks */
4151 	access |= PFERR_USER_MASK;
4152 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4153 
4154 	return t_gpa;
4155 }
4156 
4157 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4158 			      struct x86_exception *exception)
4159 {
4160 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4161 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4162 }
4163 
4164  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4165 				struct x86_exception *exception)
4166 {
4167 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4168 	access |= PFERR_FETCH_MASK;
4169 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4170 }
4171 
4172 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4173 			       struct x86_exception *exception)
4174 {
4175 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4176 	access |= PFERR_WRITE_MASK;
4177 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4178 }
4179 
4180 /* uses this to access any guest's mapped memory without checking CPL */
4181 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4182 				struct x86_exception *exception)
4183 {
4184 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4185 }
4186 
4187 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4188 				      struct kvm_vcpu *vcpu, u32 access,
4189 				      struct x86_exception *exception)
4190 {
4191 	void *data = val;
4192 	int r = X86EMUL_CONTINUE;
4193 
4194 	while (bytes) {
4195 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4196 							    exception);
4197 		unsigned offset = addr & (PAGE_SIZE-1);
4198 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4199 		int ret;
4200 
4201 		if (gpa == UNMAPPED_GVA)
4202 			return X86EMUL_PROPAGATE_FAULT;
4203 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4204 					       offset, toread);
4205 		if (ret < 0) {
4206 			r = X86EMUL_IO_NEEDED;
4207 			goto out;
4208 		}
4209 
4210 		bytes -= toread;
4211 		data += toread;
4212 		addr += toread;
4213 	}
4214 out:
4215 	return r;
4216 }
4217 
4218 /* used for instruction fetching */
4219 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4220 				gva_t addr, void *val, unsigned int bytes,
4221 				struct x86_exception *exception)
4222 {
4223 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4224 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4225 	unsigned offset;
4226 	int ret;
4227 
4228 	/* Inline kvm_read_guest_virt_helper for speed.  */
4229 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4230 						    exception);
4231 	if (unlikely(gpa == UNMAPPED_GVA))
4232 		return X86EMUL_PROPAGATE_FAULT;
4233 
4234 	offset = addr & (PAGE_SIZE-1);
4235 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4236 		bytes = (unsigned)PAGE_SIZE - offset;
4237 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4238 				       offset, bytes);
4239 	if (unlikely(ret < 0))
4240 		return X86EMUL_IO_NEEDED;
4241 
4242 	return X86EMUL_CONTINUE;
4243 }
4244 
4245 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4246 			       gva_t addr, void *val, unsigned int bytes,
4247 			       struct x86_exception *exception)
4248 {
4249 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4251 
4252 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4253 					  exception);
4254 }
4255 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4256 
4257 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4258 				      gva_t addr, void *val, unsigned int bytes,
4259 				      struct x86_exception *exception)
4260 {
4261 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4262 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4263 }
4264 
4265 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4266 		unsigned long addr, void *val, unsigned int bytes)
4267 {
4268 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4269 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4270 
4271 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4272 }
4273 
4274 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4275 				       gva_t addr, void *val,
4276 				       unsigned int bytes,
4277 				       struct x86_exception *exception)
4278 {
4279 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4280 	void *data = val;
4281 	int r = X86EMUL_CONTINUE;
4282 
4283 	while (bytes) {
4284 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4285 							     PFERR_WRITE_MASK,
4286 							     exception);
4287 		unsigned offset = addr & (PAGE_SIZE-1);
4288 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4289 		int ret;
4290 
4291 		if (gpa == UNMAPPED_GVA)
4292 			return X86EMUL_PROPAGATE_FAULT;
4293 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4294 		if (ret < 0) {
4295 			r = X86EMUL_IO_NEEDED;
4296 			goto out;
4297 		}
4298 
4299 		bytes -= towrite;
4300 		data += towrite;
4301 		addr += towrite;
4302 	}
4303 out:
4304 	return r;
4305 }
4306 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4307 
4308 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4309 				gpa_t *gpa, struct x86_exception *exception,
4310 				bool write)
4311 {
4312 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4313 		| (write ? PFERR_WRITE_MASK : 0);
4314 
4315 	if (vcpu_match_mmio_gva(vcpu, gva)
4316 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4317 				 vcpu->arch.access, access)) {
4318 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4319 					(gva & (PAGE_SIZE - 1));
4320 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4321 		return 1;
4322 	}
4323 
4324 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4325 
4326 	if (*gpa == UNMAPPED_GVA)
4327 		return -1;
4328 
4329 	/* For APIC access vmexit */
4330 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4331 		return 1;
4332 
4333 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4334 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4335 		return 1;
4336 	}
4337 
4338 	return 0;
4339 }
4340 
4341 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4342 			const void *val, int bytes)
4343 {
4344 	int ret;
4345 
4346 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4347 	if (ret < 0)
4348 		return 0;
4349 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4350 	return 1;
4351 }
4352 
4353 struct read_write_emulator_ops {
4354 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4355 				  int bytes);
4356 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4357 				  void *val, int bytes);
4358 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4359 			       int bytes, void *val);
4360 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4361 				    void *val, int bytes);
4362 	bool write;
4363 };
4364 
4365 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4366 {
4367 	if (vcpu->mmio_read_completed) {
4368 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4369 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4370 		vcpu->mmio_read_completed = 0;
4371 		return 1;
4372 	}
4373 
4374 	return 0;
4375 }
4376 
4377 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4378 			void *val, int bytes)
4379 {
4380 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4381 }
4382 
4383 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 			 void *val, int bytes)
4385 {
4386 	return emulator_write_phys(vcpu, gpa, val, bytes);
4387 }
4388 
4389 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4390 {
4391 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4392 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4393 }
4394 
4395 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4396 			  void *val, int bytes)
4397 {
4398 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4399 	return X86EMUL_IO_NEEDED;
4400 }
4401 
4402 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 			   void *val, int bytes)
4404 {
4405 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4406 
4407 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4408 	return X86EMUL_CONTINUE;
4409 }
4410 
4411 static const struct read_write_emulator_ops read_emultor = {
4412 	.read_write_prepare = read_prepare,
4413 	.read_write_emulate = read_emulate,
4414 	.read_write_mmio = vcpu_mmio_read,
4415 	.read_write_exit_mmio = read_exit_mmio,
4416 };
4417 
4418 static const struct read_write_emulator_ops write_emultor = {
4419 	.read_write_emulate = write_emulate,
4420 	.read_write_mmio = write_mmio,
4421 	.read_write_exit_mmio = write_exit_mmio,
4422 	.write = true,
4423 };
4424 
4425 static int emulator_read_write_onepage(unsigned long addr, void *val,
4426 				       unsigned int bytes,
4427 				       struct x86_exception *exception,
4428 				       struct kvm_vcpu *vcpu,
4429 				       const struct read_write_emulator_ops *ops)
4430 {
4431 	gpa_t gpa;
4432 	int handled, ret;
4433 	bool write = ops->write;
4434 	struct kvm_mmio_fragment *frag;
4435 
4436 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4437 
4438 	if (ret < 0)
4439 		return X86EMUL_PROPAGATE_FAULT;
4440 
4441 	/* For APIC access vmexit */
4442 	if (ret)
4443 		goto mmio;
4444 
4445 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4446 		return X86EMUL_CONTINUE;
4447 
4448 mmio:
4449 	/*
4450 	 * Is this MMIO handled locally?
4451 	 */
4452 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4453 	if (handled == bytes)
4454 		return X86EMUL_CONTINUE;
4455 
4456 	gpa += handled;
4457 	bytes -= handled;
4458 	val += handled;
4459 
4460 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4461 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4462 	frag->gpa = gpa;
4463 	frag->data = val;
4464 	frag->len = bytes;
4465 	return X86EMUL_CONTINUE;
4466 }
4467 
4468 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4469 			unsigned long addr,
4470 			void *val, unsigned int bytes,
4471 			struct x86_exception *exception,
4472 			const struct read_write_emulator_ops *ops)
4473 {
4474 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4475 	gpa_t gpa;
4476 	int rc;
4477 
4478 	if (ops->read_write_prepare &&
4479 		  ops->read_write_prepare(vcpu, val, bytes))
4480 		return X86EMUL_CONTINUE;
4481 
4482 	vcpu->mmio_nr_fragments = 0;
4483 
4484 	/* Crossing a page boundary? */
4485 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4486 		int now;
4487 
4488 		now = -addr & ~PAGE_MASK;
4489 		rc = emulator_read_write_onepage(addr, val, now, exception,
4490 						 vcpu, ops);
4491 
4492 		if (rc != X86EMUL_CONTINUE)
4493 			return rc;
4494 		addr += now;
4495 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4496 			addr = (u32)addr;
4497 		val += now;
4498 		bytes -= now;
4499 	}
4500 
4501 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4502 					 vcpu, ops);
4503 	if (rc != X86EMUL_CONTINUE)
4504 		return rc;
4505 
4506 	if (!vcpu->mmio_nr_fragments)
4507 		return rc;
4508 
4509 	gpa = vcpu->mmio_fragments[0].gpa;
4510 
4511 	vcpu->mmio_needed = 1;
4512 	vcpu->mmio_cur_fragment = 0;
4513 
4514 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4515 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4516 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4517 	vcpu->run->mmio.phys_addr = gpa;
4518 
4519 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4520 }
4521 
4522 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4523 				  unsigned long addr,
4524 				  void *val,
4525 				  unsigned int bytes,
4526 				  struct x86_exception *exception)
4527 {
4528 	return emulator_read_write(ctxt, addr, val, bytes,
4529 				   exception, &read_emultor);
4530 }
4531 
4532 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4533 			    unsigned long addr,
4534 			    const void *val,
4535 			    unsigned int bytes,
4536 			    struct x86_exception *exception)
4537 {
4538 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4539 				   exception, &write_emultor);
4540 }
4541 
4542 #define CMPXCHG_TYPE(t, ptr, old, new) \
4543 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4544 
4545 #ifdef CONFIG_X86_64
4546 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4547 #else
4548 #  define CMPXCHG64(ptr, old, new) \
4549 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4550 #endif
4551 
4552 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4553 				     unsigned long addr,
4554 				     const void *old,
4555 				     const void *new,
4556 				     unsigned int bytes,
4557 				     struct x86_exception *exception)
4558 {
4559 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4560 	gpa_t gpa;
4561 	struct page *page;
4562 	char *kaddr;
4563 	bool exchanged;
4564 
4565 	/* guests cmpxchg8b have to be emulated atomically */
4566 	if (bytes > 8 || (bytes & (bytes - 1)))
4567 		goto emul_write;
4568 
4569 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4570 
4571 	if (gpa == UNMAPPED_GVA ||
4572 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4573 		goto emul_write;
4574 
4575 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4576 		goto emul_write;
4577 
4578 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4579 	if (is_error_page(page))
4580 		goto emul_write;
4581 
4582 	kaddr = kmap_atomic(page);
4583 	kaddr += offset_in_page(gpa);
4584 	switch (bytes) {
4585 	case 1:
4586 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4587 		break;
4588 	case 2:
4589 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4590 		break;
4591 	case 4:
4592 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4593 		break;
4594 	case 8:
4595 		exchanged = CMPXCHG64(kaddr, old, new);
4596 		break;
4597 	default:
4598 		BUG();
4599 	}
4600 	kunmap_atomic(kaddr);
4601 	kvm_release_page_dirty(page);
4602 
4603 	if (!exchanged)
4604 		return X86EMUL_CMPXCHG_FAILED;
4605 
4606 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4607 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4608 
4609 	return X86EMUL_CONTINUE;
4610 
4611 emul_write:
4612 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4613 
4614 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4615 }
4616 
4617 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4618 {
4619 	/* TODO: String I/O for in kernel device */
4620 	int r;
4621 
4622 	if (vcpu->arch.pio.in)
4623 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4624 				    vcpu->arch.pio.size, pd);
4625 	else
4626 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4627 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4628 				     pd);
4629 	return r;
4630 }
4631 
4632 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4633 			       unsigned short port, void *val,
4634 			       unsigned int count, bool in)
4635 {
4636 	vcpu->arch.pio.port = port;
4637 	vcpu->arch.pio.in = in;
4638 	vcpu->arch.pio.count  = count;
4639 	vcpu->arch.pio.size = size;
4640 
4641 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4642 		vcpu->arch.pio.count = 0;
4643 		return 1;
4644 	}
4645 
4646 	vcpu->run->exit_reason = KVM_EXIT_IO;
4647 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4648 	vcpu->run->io.size = size;
4649 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4650 	vcpu->run->io.count = count;
4651 	vcpu->run->io.port = port;
4652 
4653 	return 0;
4654 }
4655 
4656 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4657 				    int size, unsigned short port, void *val,
4658 				    unsigned int count)
4659 {
4660 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4661 	int ret;
4662 
4663 	if (vcpu->arch.pio.count)
4664 		goto data_avail;
4665 
4666 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4667 	if (ret) {
4668 data_avail:
4669 		memcpy(val, vcpu->arch.pio_data, size * count);
4670 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4671 		vcpu->arch.pio.count = 0;
4672 		return 1;
4673 	}
4674 
4675 	return 0;
4676 }
4677 
4678 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4679 				     int size, unsigned short port,
4680 				     const void *val, unsigned int count)
4681 {
4682 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683 
4684 	memcpy(vcpu->arch.pio_data, val, size * count);
4685 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4686 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4687 }
4688 
4689 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4690 {
4691 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4692 }
4693 
4694 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4695 {
4696 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4697 }
4698 
4699 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4700 {
4701 	if (!need_emulate_wbinvd(vcpu))
4702 		return X86EMUL_CONTINUE;
4703 
4704 	if (kvm_x86_ops->has_wbinvd_exit()) {
4705 		int cpu = get_cpu();
4706 
4707 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4708 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4709 				wbinvd_ipi, NULL, 1);
4710 		put_cpu();
4711 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4712 	} else
4713 		wbinvd();
4714 	return X86EMUL_CONTINUE;
4715 }
4716 
4717 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4718 {
4719 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4720 	return kvm_emulate_wbinvd_noskip(vcpu);
4721 }
4722 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4723 
4724 
4725 
4726 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4727 {
4728 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4729 }
4730 
4731 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4732 			   unsigned long *dest)
4733 {
4734 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4735 }
4736 
4737 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4738 			   unsigned long value)
4739 {
4740 
4741 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4742 }
4743 
4744 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4745 {
4746 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4747 }
4748 
4749 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4750 {
4751 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4752 	unsigned long value;
4753 
4754 	switch (cr) {
4755 	case 0:
4756 		value = kvm_read_cr0(vcpu);
4757 		break;
4758 	case 2:
4759 		value = vcpu->arch.cr2;
4760 		break;
4761 	case 3:
4762 		value = kvm_read_cr3(vcpu);
4763 		break;
4764 	case 4:
4765 		value = kvm_read_cr4(vcpu);
4766 		break;
4767 	case 8:
4768 		value = kvm_get_cr8(vcpu);
4769 		break;
4770 	default:
4771 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4772 		return 0;
4773 	}
4774 
4775 	return value;
4776 }
4777 
4778 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4779 {
4780 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781 	int res = 0;
4782 
4783 	switch (cr) {
4784 	case 0:
4785 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4786 		break;
4787 	case 2:
4788 		vcpu->arch.cr2 = val;
4789 		break;
4790 	case 3:
4791 		res = kvm_set_cr3(vcpu, val);
4792 		break;
4793 	case 4:
4794 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4795 		break;
4796 	case 8:
4797 		res = kvm_set_cr8(vcpu, val);
4798 		break;
4799 	default:
4800 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4801 		res = -1;
4802 	}
4803 
4804 	return res;
4805 }
4806 
4807 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4808 {
4809 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4810 }
4811 
4812 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4813 {
4814 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4815 }
4816 
4817 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4818 {
4819 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4820 }
4821 
4822 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4823 {
4824 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4825 }
4826 
4827 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4828 {
4829 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4830 }
4831 
4832 static unsigned long emulator_get_cached_segment_base(
4833 	struct x86_emulate_ctxt *ctxt, int seg)
4834 {
4835 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4836 }
4837 
4838 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4839 				 struct desc_struct *desc, u32 *base3,
4840 				 int seg)
4841 {
4842 	struct kvm_segment var;
4843 
4844 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4845 	*selector = var.selector;
4846 
4847 	if (var.unusable) {
4848 		memset(desc, 0, sizeof(*desc));
4849 		return false;
4850 	}
4851 
4852 	if (var.g)
4853 		var.limit >>= 12;
4854 	set_desc_limit(desc, var.limit);
4855 	set_desc_base(desc, (unsigned long)var.base);
4856 #ifdef CONFIG_X86_64
4857 	if (base3)
4858 		*base3 = var.base >> 32;
4859 #endif
4860 	desc->type = var.type;
4861 	desc->s = var.s;
4862 	desc->dpl = var.dpl;
4863 	desc->p = var.present;
4864 	desc->avl = var.avl;
4865 	desc->l = var.l;
4866 	desc->d = var.db;
4867 	desc->g = var.g;
4868 
4869 	return true;
4870 }
4871 
4872 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4873 				 struct desc_struct *desc, u32 base3,
4874 				 int seg)
4875 {
4876 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4877 	struct kvm_segment var;
4878 
4879 	var.selector = selector;
4880 	var.base = get_desc_base(desc);
4881 #ifdef CONFIG_X86_64
4882 	var.base |= ((u64)base3) << 32;
4883 #endif
4884 	var.limit = get_desc_limit(desc);
4885 	if (desc->g)
4886 		var.limit = (var.limit << 12) | 0xfff;
4887 	var.type = desc->type;
4888 	var.dpl = desc->dpl;
4889 	var.db = desc->d;
4890 	var.s = desc->s;
4891 	var.l = desc->l;
4892 	var.g = desc->g;
4893 	var.avl = desc->avl;
4894 	var.present = desc->p;
4895 	var.unusable = !var.present;
4896 	var.padding = 0;
4897 
4898 	kvm_set_segment(vcpu, &var, seg);
4899 	return;
4900 }
4901 
4902 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4903 			    u32 msr_index, u64 *pdata)
4904 {
4905 	struct msr_data msr;
4906 	int r;
4907 
4908 	msr.index = msr_index;
4909 	msr.host_initiated = false;
4910 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4911 	if (r)
4912 		return r;
4913 
4914 	*pdata = msr.data;
4915 	return 0;
4916 }
4917 
4918 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4919 			    u32 msr_index, u64 data)
4920 {
4921 	struct msr_data msr;
4922 
4923 	msr.data = data;
4924 	msr.index = msr_index;
4925 	msr.host_initiated = false;
4926 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4927 }
4928 
4929 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4930 {
4931 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4932 
4933 	return vcpu->arch.smbase;
4934 }
4935 
4936 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4937 {
4938 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4939 
4940 	vcpu->arch.smbase = smbase;
4941 }
4942 
4943 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4944 			      u32 pmc)
4945 {
4946 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4947 }
4948 
4949 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4950 			     u32 pmc, u64 *pdata)
4951 {
4952 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4953 }
4954 
4955 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4956 {
4957 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4958 }
4959 
4960 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4961 {
4962 	preempt_disable();
4963 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4964 	/*
4965 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4966 	 * so it may be clear at this point.
4967 	 */
4968 	clts();
4969 }
4970 
4971 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4972 {
4973 	preempt_enable();
4974 }
4975 
4976 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4977 			      struct x86_instruction_info *info,
4978 			      enum x86_intercept_stage stage)
4979 {
4980 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4981 }
4982 
4983 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4984 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4985 {
4986 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4987 }
4988 
4989 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4990 {
4991 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4992 }
4993 
4994 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4995 {
4996 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4997 }
4998 
4999 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5000 {
5001 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5002 }
5003 
5004 static const struct x86_emulate_ops emulate_ops = {
5005 	.read_gpr            = emulator_read_gpr,
5006 	.write_gpr           = emulator_write_gpr,
5007 	.read_std            = kvm_read_guest_virt_system,
5008 	.write_std           = kvm_write_guest_virt_system,
5009 	.read_phys           = kvm_read_guest_phys_system,
5010 	.fetch               = kvm_fetch_guest_virt,
5011 	.read_emulated       = emulator_read_emulated,
5012 	.write_emulated      = emulator_write_emulated,
5013 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5014 	.invlpg              = emulator_invlpg,
5015 	.pio_in_emulated     = emulator_pio_in_emulated,
5016 	.pio_out_emulated    = emulator_pio_out_emulated,
5017 	.get_segment         = emulator_get_segment,
5018 	.set_segment         = emulator_set_segment,
5019 	.get_cached_segment_base = emulator_get_cached_segment_base,
5020 	.get_gdt             = emulator_get_gdt,
5021 	.get_idt	     = emulator_get_idt,
5022 	.set_gdt             = emulator_set_gdt,
5023 	.set_idt	     = emulator_set_idt,
5024 	.get_cr              = emulator_get_cr,
5025 	.set_cr              = emulator_set_cr,
5026 	.cpl                 = emulator_get_cpl,
5027 	.get_dr              = emulator_get_dr,
5028 	.set_dr              = emulator_set_dr,
5029 	.get_smbase          = emulator_get_smbase,
5030 	.set_smbase          = emulator_set_smbase,
5031 	.set_msr             = emulator_set_msr,
5032 	.get_msr             = emulator_get_msr,
5033 	.check_pmc	     = emulator_check_pmc,
5034 	.read_pmc            = emulator_read_pmc,
5035 	.halt                = emulator_halt,
5036 	.wbinvd              = emulator_wbinvd,
5037 	.fix_hypercall       = emulator_fix_hypercall,
5038 	.get_fpu             = emulator_get_fpu,
5039 	.put_fpu             = emulator_put_fpu,
5040 	.intercept           = emulator_intercept,
5041 	.get_cpuid           = emulator_get_cpuid,
5042 	.set_nmi_mask        = emulator_set_nmi_mask,
5043 };
5044 
5045 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5046 {
5047 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5048 	/*
5049 	 * an sti; sti; sequence only disable interrupts for the first
5050 	 * instruction. So, if the last instruction, be it emulated or
5051 	 * not, left the system with the INT_STI flag enabled, it
5052 	 * means that the last instruction is an sti. We should not
5053 	 * leave the flag on in this case. The same goes for mov ss
5054 	 */
5055 	if (int_shadow & mask)
5056 		mask = 0;
5057 	if (unlikely(int_shadow || mask)) {
5058 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5059 		if (!mask)
5060 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5061 	}
5062 }
5063 
5064 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5065 {
5066 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5067 	if (ctxt->exception.vector == PF_VECTOR)
5068 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5069 
5070 	if (ctxt->exception.error_code_valid)
5071 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5072 				      ctxt->exception.error_code);
5073 	else
5074 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5075 	return false;
5076 }
5077 
5078 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5079 {
5080 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5081 	int cs_db, cs_l;
5082 
5083 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5084 
5085 	ctxt->eflags = kvm_get_rflags(vcpu);
5086 	ctxt->eip = kvm_rip_read(vcpu);
5087 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5088 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5089 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5090 		     cs_db				? X86EMUL_MODE_PROT32 :
5091 							  X86EMUL_MODE_PROT16;
5092 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5093 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5094 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5095 	ctxt->emul_flags = vcpu->arch.hflags;
5096 
5097 	init_decode_cache(ctxt);
5098 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5099 }
5100 
5101 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5102 {
5103 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5104 	int ret;
5105 
5106 	init_emulate_ctxt(vcpu);
5107 
5108 	ctxt->op_bytes = 2;
5109 	ctxt->ad_bytes = 2;
5110 	ctxt->_eip = ctxt->eip + inc_eip;
5111 	ret = emulate_int_real(ctxt, irq);
5112 
5113 	if (ret != X86EMUL_CONTINUE)
5114 		return EMULATE_FAIL;
5115 
5116 	ctxt->eip = ctxt->_eip;
5117 	kvm_rip_write(vcpu, ctxt->eip);
5118 	kvm_set_rflags(vcpu, ctxt->eflags);
5119 
5120 	if (irq == NMI_VECTOR)
5121 		vcpu->arch.nmi_pending = 0;
5122 	else
5123 		vcpu->arch.interrupt.pending = false;
5124 
5125 	return EMULATE_DONE;
5126 }
5127 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5128 
5129 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5130 {
5131 	int r = EMULATE_DONE;
5132 
5133 	++vcpu->stat.insn_emulation_fail;
5134 	trace_kvm_emulate_insn_failed(vcpu);
5135 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5136 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5137 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5138 		vcpu->run->internal.ndata = 0;
5139 		r = EMULATE_FAIL;
5140 	}
5141 	kvm_queue_exception(vcpu, UD_VECTOR);
5142 
5143 	return r;
5144 }
5145 
5146 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5147 				  bool write_fault_to_shadow_pgtable,
5148 				  int emulation_type)
5149 {
5150 	gpa_t gpa = cr2;
5151 	kvm_pfn_t pfn;
5152 
5153 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5154 		return false;
5155 
5156 	if (!vcpu->arch.mmu.direct_map) {
5157 		/*
5158 		 * Write permission should be allowed since only
5159 		 * write access need to be emulated.
5160 		 */
5161 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5162 
5163 		/*
5164 		 * If the mapping is invalid in guest, let cpu retry
5165 		 * it to generate fault.
5166 		 */
5167 		if (gpa == UNMAPPED_GVA)
5168 			return true;
5169 	}
5170 
5171 	/*
5172 	 * Do not retry the unhandleable instruction if it faults on the
5173 	 * readonly host memory, otherwise it will goto a infinite loop:
5174 	 * retry instruction -> write #PF -> emulation fail -> retry
5175 	 * instruction -> ...
5176 	 */
5177 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5178 
5179 	/*
5180 	 * If the instruction failed on the error pfn, it can not be fixed,
5181 	 * report the error to userspace.
5182 	 */
5183 	if (is_error_noslot_pfn(pfn))
5184 		return false;
5185 
5186 	kvm_release_pfn_clean(pfn);
5187 
5188 	/* The instructions are well-emulated on direct mmu. */
5189 	if (vcpu->arch.mmu.direct_map) {
5190 		unsigned int indirect_shadow_pages;
5191 
5192 		spin_lock(&vcpu->kvm->mmu_lock);
5193 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5194 		spin_unlock(&vcpu->kvm->mmu_lock);
5195 
5196 		if (indirect_shadow_pages)
5197 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5198 
5199 		return true;
5200 	}
5201 
5202 	/*
5203 	 * if emulation was due to access to shadowed page table
5204 	 * and it failed try to unshadow page and re-enter the
5205 	 * guest to let CPU execute the instruction.
5206 	 */
5207 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5208 
5209 	/*
5210 	 * If the access faults on its page table, it can not
5211 	 * be fixed by unprotecting shadow page and it should
5212 	 * be reported to userspace.
5213 	 */
5214 	return !write_fault_to_shadow_pgtable;
5215 }
5216 
5217 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5218 			      unsigned long cr2,  int emulation_type)
5219 {
5220 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5221 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5222 
5223 	last_retry_eip = vcpu->arch.last_retry_eip;
5224 	last_retry_addr = vcpu->arch.last_retry_addr;
5225 
5226 	/*
5227 	 * If the emulation is caused by #PF and it is non-page_table
5228 	 * writing instruction, it means the VM-EXIT is caused by shadow
5229 	 * page protected, we can zap the shadow page and retry this
5230 	 * instruction directly.
5231 	 *
5232 	 * Note: if the guest uses a non-page-table modifying instruction
5233 	 * on the PDE that points to the instruction, then we will unmap
5234 	 * the instruction and go to an infinite loop. So, we cache the
5235 	 * last retried eip and the last fault address, if we meet the eip
5236 	 * and the address again, we can break out of the potential infinite
5237 	 * loop.
5238 	 */
5239 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5240 
5241 	if (!(emulation_type & EMULTYPE_RETRY))
5242 		return false;
5243 
5244 	if (x86_page_table_writing_insn(ctxt))
5245 		return false;
5246 
5247 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5248 		return false;
5249 
5250 	vcpu->arch.last_retry_eip = ctxt->eip;
5251 	vcpu->arch.last_retry_addr = cr2;
5252 
5253 	if (!vcpu->arch.mmu.direct_map)
5254 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5255 
5256 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5257 
5258 	return true;
5259 }
5260 
5261 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5262 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5263 
5264 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5265 {
5266 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5267 		/* This is a good place to trace that we are exiting SMM.  */
5268 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5269 
5270 		if (unlikely(vcpu->arch.smi_pending)) {
5271 			kvm_make_request(KVM_REQ_SMI, vcpu);
5272 			vcpu->arch.smi_pending = 0;
5273 		} else {
5274 			/* Process a latched INIT, if any.  */
5275 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5276 		}
5277 	}
5278 
5279 	kvm_mmu_reset_context(vcpu);
5280 }
5281 
5282 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5283 {
5284 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5285 
5286 	vcpu->arch.hflags = emul_flags;
5287 
5288 	if (changed & HF_SMM_MASK)
5289 		kvm_smm_changed(vcpu);
5290 }
5291 
5292 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5293 				unsigned long *db)
5294 {
5295 	u32 dr6 = 0;
5296 	int i;
5297 	u32 enable, rwlen;
5298 
5299 	enable = dr7;
5300 	rwlen = dr7 >> 16;
5301 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5302 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5303 			dr6 |= (1 << i);
5304 	return dr6;
5305 }
5306 
5307 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5308 {
5309 	struct kvm_run *kvm_run = vcpu->run;
5310 
5311 	/*
5312 	 * rflags is the old, "raw" value of the flags.  The new value has
5313 	 * not been saved yet.
5314 	 *
5315 	 * This is correct even for TF set by the guest, because "the
5316 	 * processor will not generate this exception after the instruction
5317 	 * that sets the TF flag".
5318 	 */
5319 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5320 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5321 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5322 						  DR6_RTM;
5323 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5324 			kvm_run->debug.arch.exception = DB_VECTOR;
5325 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5326 			*r = EMULATE_USER_EXIT;
5327 		} else {
5328 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5329 			/*
5330 			 * "Certain debug exceptions may clear bit 0-3.  The
5331 			 * remaining contents of the DR6 register are never
5332 			 * cleared by the processor".
5333 			 */
5334 			vcpu->arch.dr6 &= ~15;
5335 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5336 			kvm_queue_exception(vcpu, DB_VECTOR);
5337 		}
5338 	}
5339 }
5340 
5341 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5342 {
5343 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5344 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5345 		struct kvm_run *kvm_run = vcpu->run;
5346 		unsigned long eip = kvm_get_linear_rip(vcpu);
5347 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5348 					   vcpu->arch.guest_debug_dr7,
5349 					   vcpu->arch.eff_db);
5350 
5351 		if (dr6 != 0) {
5352 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5353 			kvm_run->debug.arch.pc = eip;
5354 			kvm_run->debug.arch.exception = DB_VECTOR;
5355 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5356 			*r = EMULATE_USER_EXIT;
5357 			return true;
5358 		}
5359 	}
5360 
5361 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5362 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5363 		unsigned long eip = kvm_get_linear_rip(vcpu);
5364 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5365 					   vcpu->arch.dr7,
5366 					   vcpu->arch.db);
5367 
5368 		if (dr6 != 0) {
5369 			vcpu->arch.dr6 &= ~15;
5370 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5371 			kvm_queue_exception(vcpu, DB_VECTOR);
5372 			*r = EMULATE_DONE;
5373 			return true;
5374 		}
5375 	}
5376 
5377 	return false;
5378 }
5379 
5380 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5381 			    unsigned long cr2,
5382 			    int emulation_type,
5383 			    void *insn,
5384 			    int insn_len)
5385 {
5386 	int r;
5387 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5388 	bool writeback = true;
5389 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5390 
5391 	/*
5392 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5393 	 * never reused.
5394 	 */
5395 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5396 	kvm_clear_exception_queue(vcpu);
5397 
5398 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5399 		init_emulate_ctxt(vcpu);
5400 
5401 		/*
5402 		 * We will reenter on the same instruction since
5403 		 * we do not set complete_userspace_io.  This does not
5404 		 * handle watchpoints yet, those would be handled in
5405 		 * the emulate_ops.
5406 		 */
5407 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5408 			return r;
5409 
5410 		ctxt->interruptibility = 0;
5411 		ctxt->have_exception = false;
5412 		ctxt->exception.vector = -1;
5413 		ctxt->perm_ok = false;
5414 
5415 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5416 
5417 		r = x86_decode_insn(ctxt, insn, insn_len);
5418 
5419 		trace_kvm_emulate_insn_start(vcpu);
5420 		++vcpu->stat.insn_emulation;
5421 		if (r != EMULATION_OK)  {
5422 			if (emulation_type & EMULTYPE_TRAP_UD)
5423 				return EMULATE_FAIL;
5424 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5425 						emulation_type))
5426 				return EMULATE_DONE;
5427 			if (emulation_type & EMULTYPE_SKIP)
5428 				return EMULATE_FAIL;
5429 			return handle_emulation_failure(vcpu);
5430 		}
5431 	}
5432 
5433 	if (emulation_type & EMULTYPE_SKIP) {
5434 		kvm_rip_write(vcpu, ctxt->_eip);
5435 		if (ctxt->eflags & X86_EFLAGS_RF)
5436 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5437 		return EMULATE_DONE;
5438 	}
5439 
5440 	if (retry_instruction(ctxt, cr2, emulation_type))
5441 		return EMULATE_DONE;
5442 
5443 	/* this is needed for vmware backdoor interface to work since it
5444 	   changes registers values  during IO operation */
5445 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5446 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5447 		emulator_invalidate_register_cache(ctxt);
5448 	}
5449 
5450 restart:
5451 	r = x86_emulate_insn(ctxt);
5452 
5453 	if (r == EMULATION_INTERCEPTED)
5454 		return EMULATE_DONE;
5455 
5456 	if (r == EMULATION_FAILED) {
5457 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5458 					emulation_type))
5459 			return EMULATE_DONE;
5460 
5461 		return handle_emulation_failure(vcpu);
5462 	}
5463 
5464 	if (ctxt->have_exception) {
5465 		r = EMULATE_DONE;
5466 		if (inject_emulated_exception(vcpu))
5467 			return r;
5468 	} else if (vcpu->arch.pio.count) {
5469 		if (!vcpu->arch.pio.in) {
5470 			/* FIXME: return into emulator if single-stepping.  */
5471 			vcpu->arch.pio.count = 0;
5472 		} else {
5473 			writeback = false;
5474 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5475 		}
5476 		r = EMULATE_USER_EXIT;
5477 	} else if (vcpu->mmio_needed) {
5478 		if (!vcpu->mmio_is_write)
5479 			writeback = false;
5480 		r = EMULATE_USER_EXIT;
5481 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5482 	} else if (r == EMULATION_RESTART)
5483 		goto restart;
5484 	else
5485 		r = EMULATE_DONE;
5486 
5487 	if (writeback) {
5488 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5489 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5490 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5491 		if (vcpu->arch.hflags != ctxt->emul_flags)
5492 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5493 		kvm_rip_write(vcpu, ctxt->eip);
5494 		if (r == EMULATE_DONE)
5495 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5496 		if (!ctxt->have_exception ||
5497 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5498 			__kvm_set_rflags(vcpu, ctxt->eflags);
5499 
5500 		/*
5501 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5502 		 * do nothing, and it will be requested again as soon as
5503 		 * the shadow expires.  But we still need to check here,
5504 		 * because POPF has no interrupt shadow.
5505 		 */
5506 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5507 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5508 	} else
5509 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5510 
5511 	return r;
5512 }
5513 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5514 
5515 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5516 {
5517 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5518 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5519 					    size, port, &val, 1);
5520 	/* do not return to emulator after return from userspace */
5521 	vcpu->arch.pio.count = 0;
5522 	return ret;
5523 }
5524 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5525 
5526 static void tsc_bad(void *info)
5527 {
5528 	__this_cpu_write(cpu_tsc_khz, 0);
5529 }
5530 
5531 static void tsc_khz_changed(void *data)
5532 {
5533 	struct cpufreq_freqs *freq = data;
5534 	unsigned long khz = 0;
5535 
5536 	if (data)
5537 		khz = freq->new;
5538 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5539 		khz = cpufreq_quick_get(raw_smp_processor_id());
5540 	if (!khz)
5541 		khz = tsc_khz;
5542 	__this_cpu_write(cpu_tsc_khz, khz);
5543 }
5544 
5545 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5546 				     void *data)
5547 {
5548 	struct cpufreq_freqs *freq = data;
5549 	struct kvm *kvm;
5550 	struct kvm_vcpu *vcpu;
5551 	int i, send_ipi = 0;
5552 
5553 	/*
5554 	 * We allow guests to temporarily run on slowing clocks,
5555 	 * provided we notify them after, or to run on accelerating
5556 	 * clocks, provided we notify them before.  Thus time never
5557 	 * goes backwards.
5558 	 *
5559 	 * However, we have a problem.  We can't atomically update
5560 	 * the frequency of a given CPU from this function; it is
5561 	 * merely a notifier, which can be called from any CPU.
5562 	 * Changing the TSC frequency at arbitrary points in time
5563 	 * requires a recomputation of local variables related to
5564 	 * the TSC for each VCPU.  We must flag these local variables
5565 	 * to be updated and be sure the update takes place with the
5566 	 * new frequency before any guests proceed.
5567 	 *
5568 	 * Unfortunately, the combination of hotplug CPU and frequency
5569 	 * change creates an intractable locking scenario; the order
5570 	 * of when these callouts happen is undefined with respect to
5571 	 * CPU hotplug, and they can race with each other.  As such,
5572 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5573 	 * undefined; you can actually have a CPU frequency change take
5574 	 * place in between the computation of X and the setting of the
5575 	 * variable.  To protect against this problem, all updates of
5576 	 * the per_cpu tsc_khz variable are done in an interrupt
5577 	 * protected IPI, and all callers wishing to update the value
5578 	 * must wait for a synchronous IPI to complete (which is trivial
5579 	 * if the caller is on the CPU already).  This establishes the
5580 	 * necessary total order on variable updates.
5581 	 *
5582 	 * Note that because a guest time update may take place
5583 	 * anytime after the setting of the VCPU's request bit, the
5584 	 * correct TSC value must be set before the request.  However,
5585 	 * to ensure the update actually makes it to any guest which
5586 	 * starts running in hardware virtualization between the set
5587 	 * and the acquisition of the spinlock, we must also ping the
5588 	 * CPU after setting the request bit.
5589 	 *
5590 	 */
5591 
5592 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5593 		return 0;
5594 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5595 		return 0;
5596 
5597 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5598 
5599 	spin_lock(&kvm_lock);
5600 	list_for_each_entry(kvm, &vm_list, vm_list) {
5601 		kvm_for_each_vcpu(i, vcpu, kvm) {
5602 			if (vcpu->cpu != freq->cpu)
5603 				continue;
5604 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5605 			if (vcpu->cpu != smp_processor_id())
5606 				send_ipi = 1;
5607 		}
5608 	}
5609 	spin_unlock(&kvm_lock);
5610 
5611 	if (freq->old < freq->new && send_ipi) {
5612 		/*
5613 		 * We upscale the frequency.  Must make the guest
5614 		 * doesn't see old kvmclock values while running with
5615 		 * the new frequency, otherwise we risk the guest sees
5616 		 * time go backwards.
5617 		 *
5618 		 * In case we update the frequency for another cpu
5619 		 * (which might be in guest context) send an interrupt
5620 		 * to kick the cpu out of guest context.  Next time
5621 		 * guest context is entered kvmclock will be updated,
5622 		 * so the guest will not see stale values.
5623 		 */
5624 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5625 	}
5626 	return 0;
5627 }
5628 
5629 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5630 	.notifier_call  = kvmclock_cpufreq_notifier
5631 };
5632 
5633 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5634 					unsigned long action, void *hcpu)
5635 {
5636 	unsigned int cpu = (unsigned long)hcpu;
5637 
5638 	switch (action) {
5639 		case CPU_ONLINE:
5640 		case CPU_DOWN_FAILED:
5641 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5642 			break;
5643 		case CPU_DOWN_PREPARE:
5644 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5645 			break;
5646 	}
5647 	return NOTIFY_OK;
5648 }
5649 
5650 static struct notifier_block kvmclock_cpu_notifier_block = {
5651 	.notifier_call  = kvmclock_cpu_notifier,
5652 	.priority = -INT_MAX
5653 };
5654 
5655 static void kvm_timer_init(void)
5656 {
5657 	int cpu;
5658 
5659 	max_tsc_khz = tsc_khz;
5660 
5661 	cpu_notifier_register_begin();
5662 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5663 #ifdef CONFIG_CPU_FREQ
5664 		struct cpufreq_policy policy;
5665 		memset(&policy, 0, sizeof(policy));
5666 		cpu = get_cpu();
5667 		cpufreq_get_policy(&policy, cpu);
5668 		if (policy.cpuinfo.max_freq)
5669 			max_tsc_khz = policy.cpuinfo.max_freq;
5670 		put_cpu();
5671 #endif
5672 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5673 					  CPUFREQ_TRANSITION_NOTIFIER);
5674 	}
5675 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5676 	for_each_online_cpu(cpu)
5677 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5678 
5679 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5680 	cpu_notifier_register_done();
5681 
5682 }
5683 
5684 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5685 
5686 int kvm_is_in_guest(void)
5687 {
5688 	return __this_cpu_read(current_vcpu) != NULL;
5689 }
5690 
5691 static int kvm_is_user_mode(void)
5692 {
5693 	int user_mode = 3;
5694 
5695 	if (__this_cpu_read(current_vcpu))
5696 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5697 
5698 	return user_mode != 0;
5699 }
5700 
5701 static unsigned long kvm_get_guest_ip(void)
5702 {
5703 	unsigned long ip = 0;
5704 
5705 	if (__this_cpu_read(current_vcpu))
5706 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5707 
5708 	return ip;
5709 }
5710 
5711 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5712 	.is_in_guest		= kvm_is_in_guest,
5713 	.is_user_mode		= kvm_is_user_mode,
5714 	.get_guest_ip		= kvm_get_guest_ip,
5715 };
5716 
5717 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5718 {
5719 	__this_cpu_write(current_vcpu, vcpu);
5720 }
5721 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5722 
5723 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5724 {
5725 	__this_cpu_write(current_vcpu, NULL);
5726 }
5727 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5728 
5729 static void kvm_set_mmio_spte_mask(void)
5730 {
5731 	u64 mask;
5732 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5733 
5734 	/*
5735 	 * Set the reserved bits and the present bit of an paging-structure
5736 	 * entry to generate page fault with PFER.RSV = 1.
5737 	 */
5738 	 /* Mask the reserved physical address bits. */
5739 	mask = rsvd_bits(maxphyaddr, 51);
5740 
5741 	/* Bit 62 is always reserved for 32bit host. */
5742 	mask |= 0x3ull << 62;
5743 
5744 	/* Set the present bit. */
5745 	mask |= 1ull;
5746 
5747 #ifdef CONFIG_X86_64
5748 	/*
5749 	 * If reserved bit is not supported, clear the present bit to disable
5750 	 * mmio page fault.
5751 	 */
5752 	if (maxphyaddr == 52)
5753 		mask &= ~1ull;
5754 #endif
5755 
5756 	kvm_mmu_set_mmio_spte_mask(mask);
5757 }
5758 
5759 #ifdef CONFIG_X86_64
5760 static void pvclock_gtod_update_fn(struct work_struct *work)
5761 {
5762 	struct kvm *kvm;
5763 
5764 	struct kvm_vcpu *vcpu;
5765 	int i;
5766 
5767 	spin_lock(&kvm_lock);
5768 	list_for_each_entry(kvm, &vm_list, vm_list)
5769 		kvm_for_each_vcpu(i, vcpu, kvm)
5770 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5771 	atomic_set(&kvm_guest_has_master_clock, 0);
5772 	spin_unlock(&kvm_lock);
5773 }
5774 
5775 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5776 
5777 /*
5778  * Notification about pvclock gtod data update.
5779  */
5780 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5781 			       void *priv)
5782 {
5783 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5784 	struct timekeeper *tk = priv;
5785 
5786 	update_pvclock_gtod(tk);
5787 
5788 	/* disable master clock if host does not trust, or does not
5789 	 * use, TSC clocksource
5790 	 */
5791 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5792 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5793 		queue_work(system_long_wq, &pvclock_gtod_work);
5794 
5795 	return 0;
5796 }
5797 
5798 static struct notifier_block pvclock_gtod_notifier = {
5799 	.notifier_call = pvclock_gtod_notify,
5800 };
5801 #endif
5802 
5803 int kvm_arch_init(void *opaque)
5804 {
5805 	int r;
5806 	struct kvm_x86_ops *ops = opaque;
5807 
5808 	if (kvm_x86_ops) {
5809 		printk(KERN_ERR "kvm: already loaded the other module\n");
5810 		r = -EEXIST;
5811 		goto out;
5812 	}
5813 
5814 	if (!ops->cpu_has_kvm_support()) {
5815 		printk(KERN_ERR "kvm: no hardware support\n");
5816 		r = -EOPNOTSUPP;
5817 		goto out;
5818 	}
5819 	if (ops->disabled_by_bios()) {
5820 		printk(KERN_ERR "kvm: disabled by bios\n");
5821 		r = -EOPNOTSUPP;
5822 		goto out;
5823 	}
5824 
5825 	r = -ENOMEM;
5826 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5827 	if (!shared_msrs) {
5828 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5829 		goto out;
5830 	}
5831 
5832 	r = kvm_mmu_module_init();
5833 	if (r)
5834 		goto out_free_percpu;
5835 
5836 	kvm_set_mmio_spte_mask();
5837 
5838 	kvm_x86_ops = ops;
5839 
5840 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5841 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5842 
5843 	kvm_timer_init();
5844 
5845 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5846 
5847 	if (cpu_has_xsave)
5848 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5849 
5850 	kvm_lapic_init();
5851 #ifdef CONFIG_X86_64
5852 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5853 #endif
5854 
5855 	return 0;
5856 
5857 out_free_percpu:
5858 	free_percpu(shared_msrs);
5859 out:
5860 	return r;
5861 }
5862 
5863 void kvm_arch_exit(void)
5864 {
5865 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5866 
5867 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5868 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5869 					    CPUFREQ_TRANSITION_NOTIFIER);
5870 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5871 #ifdef CONFIG_X86_64
5872 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5873 #endif
5874 	kvm_x86_ops = NULL;
5875 	kvm_mmu_module_exit();
5876 	free_percpu(shared_msrs);
5877 }
5878 
5879 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5880 {
5881 	++vcpu->stat.halt_exits;
5882 	if (lapic_in_kernel(vcpu)) {
5883 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5884 		return 1;
5885 	} else {
5886 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5887 		return 0;
5888 	}
5889 }
5890 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5891 
5892 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5893 {
5894 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5895 	return kvm_vcpu_halt(vcpu);
5896 }
5897 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5898 
5899 /*
5900  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5901  *
5902  * @apicid - apicid of vcpu to be kicked.
5903  */
5904 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5905 {
5906 	struct kvm_lapic_irq lapic_irq;
5907 
5908 	lapic_irq.shorthand = 0;
5909 	lapic_irq.dest_mode = 0;
5910 	lapic_irq.dest_id = apicid;
5911 	lapic_irq.msi_redir_hint = false;
5912 
5913 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5914 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5915 }
5916 
5917 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5918 {
5919 	vcpu->arch.apicv_active = false;
5920 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5921 }
5922 
5923 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5924 {
5925 	unsigned long nr, a0, a1, a2, a3, ret;
5926 	int op_64_bit, r = 1;
5927 
5928 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5929 
5930 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5931 		return kvm_hv_hypercall(vcpu);
5932 
5933 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5934 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5935 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5936 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5937 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5938 
5939 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5940 
5941 	op_64_bit = is_64_bit_mode(vcpu);
5942 	if (!op_64_bit) {
5943 		nr &= 0xFFFFFFFF;
5944 		a0 &= 0xFFFFFFFF;
5945 		a1 &= 0xFFFFFFFF;
5946 		a2 &= 0xFFFFFFFF;
5947 		a3 &= 0xFFFFFFFF;
5948 	}
5949 
5950 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5951 		ret = -KVM_EPERM;
5952 		goto out;
5953 	}
5954 
5955 	switch (nr) {
5956 	case KVM_HC_VAPIC_POLL_IRQ:
5957 		ret = 0;
5958 		break;
5959 	case KVM_HC_KICK_CPU:
5960 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5961 		ret = 0;
5962 		break;
5963 	default:
5964 		ret = -KVM_ENOSYS;
5965 		break;
5966 	}
5967 out:
5968 	if (!op_64_bit)
5969 		ret = (u32)ret;
5970 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5971 	++vcpu->stat.hypercalls;
5972 	return r;
5973 }
5974 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5975 
5976 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5977 {
5978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5979 	char instruction[3];
5980 	unsigned long rip = kvm_rip_read(vcpu);
5981 
5982 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5983 
5984 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5985 }
5986 
5987 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5988 {
5989 	return vcpu->run->request_interrupt_window &&
5990 		likely(!pic_in_kernel(vcpu->kvm));
5991 }
5992 
5993 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5994 {
5995 	struct kvm_run *kvm_run = vcpu->run;
5996 
5997 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5998 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5999 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6000 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6001 	kvm_run->ready_for_interrupt_injection =
6002 		pic_in_kernel(vcpu->kvm) ||
6003 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6004 }
6005 
6006 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6007 {
6008 	int max_irr, tpr;
6009 
6010 	if (!kvm_x86_ops->update_cr8_intercept)
6011 		return;
6012 
6013 	if (!vcpu->arch.apic)
6014 		return;
6015 
6016 	if (vcpu->arch.apicv_active)
6017 		return;
6018 
6019 	if (!vcpu->arch.apic->vapic_addr)
6020 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6021 	else
6022 		max_irr = -1;
6023 
6024 	if (max_irr != -1)
6025 		max_irr >>= 4;
6026 
6027 	tpr = kvm_lapic_get_cr8(vcpu);
6028 
6029 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6030 }
6031 
6032 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6033 {
6034 	int r;
6035 
6036 	/* try to reinject previous events if any */
6037 	if (vcpu->arch.exception.pending) {
6038 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6039 					vcpu->arch.exception.has_error_code,
6040 					vcpu->arch.exception.error_code);
6041 
6042 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6043 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6044 					     X86_EFLAGS_RF);
6045 
6046 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6047 		    (vcpu->arch.dr7 & DR7_GD)) {
6048 			vcpu->arch.dr7 &= ~DR7_GD;
6049 			kvm_update_dr7(vcpu);
6050 		}
6051 
6052 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6053 					  vcpu->arch.exception.has_error_code,
6054 					  vcpu->arch.exception.error_code,
6055 					  vcpu->arch.exception.reinject);
6056 		return 0;
6057 	}
6058 
6059 	if (vcpu->arch.nmi_injected) {
6060 		kvm_x86_ops->set_nmi(vcpu);
6061 		return 0;
6062 	}
6063 
6064 	if (vcpu->arch.interrupt.pending) {
6065 		kvm_x86_ops->set_irq(vcpu);
6066 		return 0;
6067 	}
6068 
6069 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6070 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6071 		if (r != 0)
6072 			return r;
6073 	}
6074 
6075 	/* try to inject new event if pending */
6076 	if (vcpu->arch.nmi_pending) {
6077 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6078 			--vcpu->arch.nmi_pending;
6079 			vcpu->arch.nmi_injected = true;
6080 			kvm_x86_ops->set_nmi(vcpu);
6081 		}
6082 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6083 		/*
6084 		 * Because interrupts can be injected asynchronously, we are
6085 		 * calling check_nested_events again here to avoid a race condition.
6086 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6087 		 * proposal and current concerns.  Perhaps we should be setting
6088 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6089 		 */
6090 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6091 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6092 			if (r != 0)
6093 				return r;
6094 		}
6095 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6096 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6097 					    false);
6098 			kvm_x86_ops->set_irq(vcpu);
6099 		}
6100 	}
6101 	return 0;
6102 }
6103 
6104 static void process_nmi(struct kvm_vcpu *vcpu)
6105 {
6106 	unsigned limit = 2;
6107 
6108 	/*
6109 	 * x86 is limited to one NMI running, and one NMI pending after it.
6110 	 * If an NMI is already in progress, limit further NMIs to just one.
6111 	 * Otherwise, allow two (and we'll inject the first one immediately).
6112 	 */
6113 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6114 		limit = 1;
6115 
6116 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6117 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6118 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6119 }
6120 
6121 #define put_smstate(type, buf, offset, val)			  \
6122 	*(type *)((buf) + (offset) - 0x7e00) = val
6123 
6124 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6125 {
6126 	u32 flags = 0;
6127 	flags |= seg->g       << 23;
6128 	flags |= seg->db      << 22;
6129 	flags |= seg->l       << 21;
6130 	flags |= seg->avl     << 20;
6131 	flags |= seg->present << 15;
6132 	flags |= seg->dpl     << 13;
6133 	flags |= seg->s       << 12;
6134 	flags |= seg->type    << 8;
6135 	return flags;
6136 }
6137 
6138 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6139 {
6140 	struct kvm_segment seg;
6141 	int offset;
6142 
6143 	kvm_get_segment(vcpu, &seg, n);
6144 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6145 
6146 	if (n < 3)
6147 		offset = 0x7f84 + n * 12;
6148 	else
6149 		offset = 0x7f2c + (n - 3) * 12;
6150 
6151 	put_smstate(u32, buf, offset + 8, seg.base);
6152 	put_smstate(u32, buf, offset + 4, seg.limit);
6153 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6154 }
6155 
6156 #ifdef CONFIG_X86_64
6157 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6158 {
6159 	struct kvm_segment seg;
6160 	int offset;
6161 	u16 flags;
6162 
6163 	kvm_get_segment(vcpu, &seg, n);
6164 	offset = 0x7e00 + n * 16;
6165 
6166 	flags = process_smi_get_segment_flags(&seg) >> 8;
6167 	put_smstate(u16, buf, offset, seg.selector);
6168 	put_smstate(u16, buf, offset + 2, flags);
6169 	put_smstate(u32, buf, offset + 4, seg.limit);
6170 	put_smstate(u64, buf, offset + 8, seg.base);
6171 }
6172 #endif
6173 
6174 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6175 {
6176 	struct desc_ptr dt;
6177 	struct kvm_segment seg;
6178 	unsigned long val;
6179 	int i;
6180 
6181 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6182 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6183 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6184 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6185 
6186 	for (i = 0; i < 8; i++)
6187 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6188 
6189 	kvm_get_dr(vcpu, 6, &val);
6190 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6191 	kvm_get_dr(vcpu, 7, &val);
6192 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6193 
6194 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6195 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6196 	put_smstate(u32, buf, 0x7f64, seg.base);
6197 	put_smstate(u32, buf, 0x7f60, seg.limit);
6198 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6199 
6200 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6201 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6202 	put_smstate(u32, buf, 0x7f80, seg.base);
6203 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6204 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6205 
6206 	kvm_x86_ops->get_gdt(vcpu, &dt);
6207 	put_smstate(u32, buf, 0x7f74, dt.address);
6208 	put_smstate(u32, buf, 0x7f70, dt.size);
6209 
6210 	kvm_x86_ops->get_idt(vcpu, &dt);
6211 	put_smstate(u32, buf, 0x7f58, dt.address);
6212 	put_smstate(u32, buf, 0x7f54, dt.size);
6213 
6214 	for (i = 0; i < 6; i++)
6215 		process_smi_save_seg_32(vcpu, buf, i);
6216 
6217 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6218 
6219 	/* revision id */
6220 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6221 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6222 }
6223 
6224 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6225 {
6226 #ifdef CONFIG_X86_64
6227 	struct desc_ptr dt;
6228 	struct kvm_segment seg;
6229 	unsigned long val;
6230 	int i;
6231 
6232 	for (i = 0; i < 16; i++)
6233 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6234 
6235 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6236 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6237 
6238 	kvm_get_dr(vcpu, 6, &val);
6239 	put_smstate(u64, buf, 0x7f68, val);
6240 	kvm_get_dr(vcpu, 7, &val);
6241 	put_smstate(u64, buf, 0x7f60, val);
6242 
6243 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6244 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6245 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6246 
6247 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6248 
6249 	/* revision id */
6250 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6251 
6252 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6253 
6254 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6255 	put_smstate(u16, buf, 0x7e90, seg.selector);
6256 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6257 	put_smstate(u32, buf, 0x7e94, seg.limit);
6258 	put_smstate(u64, buf, 0x7e98, seg.base);
6259 
6260 	kvm_x86_ops->get_idt(vcpu, &dt);
6261 	put_smstate(u32, buf, 0x7e84, dt.size);
6262 	put_smstate(u64, buf, 0x7e88, dt.address);
6263 
6264 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6265 	put_smstate(u16, buf, 0x7e70, seg.selector);
6266 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6267 	put_smstate(u32, buf, 0x7e74, seg.limit);
6268 	put_smstate(u64, buf, 0x7e78, seg.base);
6269 
6270 	kvm_x86_ops->get_gdt(vcpu, &dt);
6271 	put_smstate(u32, buf, 0x7e64, dt.size);
6272 	put_smstate(u64, buf, 0x7e68, dt.address);
6273 
6274 	for (i = 0; i < 6; i++)
6275 		process_smi_save_seg_64(vcpu, buf, i);
6276 #else
6277 	WARN_ON_ONCE(1);
6278 #endif
6279 }
6280 
6281 static void process_smi(struct kvm_vcpu *vcpu)
6282 {
6283 	struct kvm_segment cs, ds;
6284 	struct desc_ptr dt;
6285 	char buf[512];
6286 	u32 cr0;
6287 
6288 	if (is_smm(vcpu)) {
6289 		vcpu->arch.smi_pending = true;
6290 		return;
6291 	}
6292 
6293 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6294 	vcpu->arch.hflags |= HF_SMM_MASK;
6295 	memset(buf, 0, 512);
6296 	if (guest_cpuid_has_longmode(vcpu))
6297 		process_smi_save_state_64(vcpu, buf);
6298 	else
6299 		process_smi_save_state_32(vcpu, buf);
6300 
6301 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6302 
6303 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6304 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6305 	else
6306 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6307 
6308 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6309 	kvm_rip_write(vcpu, 0x8000);
6310 
6311 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6312 	kvm_x86_ops->set_cr0(vcpu, cr0);
6313 	vcpu->arch.cr0 = cr0;
6314 
6315 	kvm_x86_ops->set_cr4(vcpu, 0);
6316 
6317 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6318 	dt.address = dt.size = 0;
6319 	kvm_x86_ops->set_idt(vcpu, &dt);
6320 
6321 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6322 
6323 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6324 	cs.base = vcpu->arch.smbase;
6325 
6326 	ds.selector = 0;
6327 	ds.base = 0;
6328 
6329 	cs.limit    = ds.limit = 0xffffffff;
6330 	cs.type     = ds.type = 0x3;
6331 	cs.dpl      = ds.dpl = 0;
6332 	cs.db       = ds.db = 0;
6333 	cs.s        = ds.s = 1;
6334 	cs.l        = ds.l = 0;
6335 	cs.g        = ds.g = 1;
6336 	cs.avl      = ds.avl = 0;
6337 	cs.present  = ds.present = 1;
6338 	cs.unusable = ds.unusable = 0;
6339 	cs.padding  = ds.padding = 0;
6340 
6341 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6342 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6343 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6344 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6345 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6346 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6347 
6348 	if (guest_cpuid_has_longmode(vcpu))
6349 		kvm_x86_ops->set_efer(vcpu, 0);
6350 
6351 	kvm_update_cpuid(vcpu);
6352 	kvm_mmu_reset_context(vcpu);
6353 }
6354 
6355 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6356 {
6357 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6358 }
6359 
6360 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6361 {
6362 	u64 eoi_exit_bitmap[4];
6363 
6364 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6365 		return;
6366 
6367 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6368 
6369 	if (irqchip_split(vcpu->kvm))
6370 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6371 	else {
6372 		if (vcpu->arch.apicv_active)
6373 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6374 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6375 	}
6376 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6377 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6378 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6379 }
6380 
6381 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6382 {
6383 	++vcpu->stat.tlb_flush;
6384 	kvm_x86_ops->tlb_flush(vcpu);
6385 }
6386 
6387 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6388 {
6389 	struct page *page = NULL;
6390 
6391 	if (!lapic_in_kernel(vcpu))
6392 		return;
6393 
6394 	if (!kvm_x86_ops->set_apic_access_page_addr)
6395 		return;
6396 
6397 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6398 	if (is_error_page(page))
6399 		return;
6400 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6401 
6402 	/*
6403 	 * Do not pin apic access page in memory, the MMU notifier
6404 	 * will call us again if it is migrated or swapped out.
6405 	 */
6406 	put_page(page);
6407 }
6408 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6409 
6410 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6411 					   unsigned long address)
6412 {
6413 	/*
6414 	 * The physical address of apic access page is stored in the VMCS.
6415 	 * Update it when it becomes invalid.
6416 	 */
6417 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6418 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6419 }
6420 
6421 /*
6422  * Returns 1 to let vcpu_run() continue the guest execution loop without
6423  * exiting to the userspace.  Otherwise, the value will be returned to the
6424  * userspace.
6425  */
6426 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6427 {
6428 	int r;
6429 	bool req_int_win =
6430 		dm_request_for_irq_injection(vcpu) &&
6431 		kvm_cpu_accept_dm_intr(vcpu);
6432 
6433 	bool req_immediate_exit = false;
6434 
6435 	if (vcpu->requests) {
6436 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6437 			kvm_mmu_unload(vcpu);
6438 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6439 			__kvm_migrate_timers(vcpu);
6440 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6441 			kvm_gen_update_masterclock(vcpu->kvm);
6442 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6443 			kvm_gen_kvmclock_update(vcpu);
6444 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6445 			r = kvm_guest_time_update(vcpu);
6446 			if (unlikely(r))
6447 				goto out;
6448 		}
6449 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6450 			kvm_mmu_sync_roots(vcpu);
6451 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6452 			kvm_vcpu_flush_tlb(vcpu);
6453 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6454 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6455 			r = 0;
6456 			goto out;
6457 		}
6458 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6459 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6460 			r = 0;
6461 			goto out;
6462 		}
6463 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6464 			vcpu->fpu_active = 0;
6465 			kvm_x86_ops->fpu_deactivate(vcpu);
6466 		}
6467 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6468 			/* Page is swapped out. Do synthetic halt */
6469 			vcpu->arch.apf.halted = true;
6470 			r = 1;
6471 			goto out;
6472 		}
6473 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6474 			record_steal_time(vcpu);
6475 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6476 			process_smi(vcpu);
6477 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6478 			process_nmi(vcpu);
6479 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6480 			kvm_pmu_handle_event(vcpu);
6481 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6482 			kvm_pmu_deliver_pmi(vcpu);
6483 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6484 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6485 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6486 				     vcpu->arch.ioapic_handled_vectors)) {
6487 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6488 				vcpu->run->eoi.vector =
6489 						vcpu->arch.pending_ioapic_eoi;
6490 				r = 0;
6491 				goto out;
6492 			}
6493 		}
6494 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6495 			vcpu_scan_ioapic(vcpu);
6496 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6497 			kvm_vcpu_reload_apic_access_page(vcpu);
6498 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6499 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6500 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6501 			r = 0;
6502 			goto out;
6503 		}
6504 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6505 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6506 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6507 			r = 0;
6508 			goto out;
6509 		}
6510 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6511 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6512 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6513 			r = 0;
6514 			goto out;
6515 		}
6516 
6517 		/*
6518 		 * KVM_REQ_HV_STIMER has to be processed after
6519 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6520 		 * depend on the guest clock being up-to-date
6521 		 */
6522 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6523 			kvm_hv_process_stimers(vcpu);
6524 	}
6525 
6526 	/*
6527 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6528 	 * VT-d hardware, so we have to update RVI unconditionally.
6529 	 */
6530 	if (kvm_lapic_enabled(vcpu)) {
6531 		/*
6532 		 * Update architecture specific hints for APIC
6533 		 * virtual interrupt delivery.
6534 		 */
6535 		if (vcpu->arch.apicv_active)
6536 			kvm_x86_ops->hwapic_irr_update(vcpu,
6537 				kvm_lapic_find_highest_irr(vcpu));
6538 	}
6539 
6540 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6541 		kvm_apic_accept_events(vcpu);
6542 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6543 			r = 1;
6544 			goto out;
6545 		}
6546 
6547 		if (inject_pending_event(vcpu, req_int_win) != 0)
6548 			req_immediate_exit = true;
6549 		/* enable NMI/IRQ window open exits if needed */
6550 		else if (vcpu->arch.nmi_pending)
6551 			kvm_x86_ops->enable_nmi_window(vcpu);
6552 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6553 			kvm_x86_ops->enable_irq_window(vcpu);
6554 
6555 		if (kvm_lapic_enabled(vcpu)) {
6556 			update_cr8_intercept(vcpu);
6557 			kvm_lapic_sync_to_vapic(vcpu);
6558 		}
6559 	}
6560 
6561 	r = kvm_mmu_reload(vcpu);
6562 	if (unlikely(r)) {
6563 		goto cancel_injection;
6564 	}
6565 
6566 	preempt_disable();
6567 
6568 	kvm_x86_ops->prepare_guest_switch(vcpu);
6569 	if (vcpu->fpu_active)
6570 		kvm_load_guest_fpu(vcpu);
6571 	kvm_load_guest_xcr0(vcpu);
6572 
6573 	vcpu->mode = IN_GUEST_MODE;
6574 
6575 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6576 
6577 	/* We should set ->mode before check ->requests,
6578 	 * see the comment in make_all_cpus_request.
6579 	 */
6580 	smp_mb__after_srcu_read_unlock();
6581 
6582 	local_irq_disable();
6583 
6584 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6585 	    || need_resched() || signal_pending(current)) {
6586 		vcpu->mode = OUTSIDE_GUEST_MODE;
6587 		smp_wmb();
6588 		local_irq_enable();
6589 		preempt_enable();
6590 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6591 		r = 1;
6592 		goto cancel_injection;
6593 	}
6594 
6595 	if (req_immediate_exit)
6596 		smp_send_reschedule(vcpu->cpu);
6597 
6598 	trace_kvm_entry(vcpu->vcpu_id);
6599 	wait_lapic_expire(vcpu);
6600 	__kvm_guest_enter();
6601 
6602 	if (unlikely(vcpu->arch.switch_db_regs)) {
6603 		set_debugreg(0, 7);
6604 		set_debugreg(vcpu->arch.eff_db[0], 0);
6605 		set_debugreg(vcpu->arch.eff_db[1], 1);
6606 		set_debugreg(vcpu->arch.eff_db[2], 2);
6607 		set_debugreg(vcpu->arch.eff_db[3], 3);
6608 		set_debugreg(vcpu->arch.dr6, 6);
6609 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6610 	}
6611 
6612 	kvm_x86_ops->run(vcpu);
6613 
6614 	/*
6615 	 * Do this here before restoring debug registers on the host.  And
6616 	 * since we do this before handling the vmexit, a DR access vmexit
6617 	 * can (a) read the correct value of the debug registers, (b) set
6618 	 * KVM_DEBUGREG_WONT_EXIT again.
6619 	 */
6620 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6621 		int i;
6622 
6623 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6624 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6625 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6626 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6627 	}
6628 
6629 	/*
6630 	 * If the guest has used debug registers, at least dr7
6631 	 * will be disabled while returning to the host.
6632 	 * If we don't have active breakpoints in the host, we don't
6633 	 * care about the messed up debug address registers. But if
6634 	 * we have some of them active, restore the old state.
6635 	 */
6636 	if (hw_breakpoint_active())
6637 		hw_breakpoint_restore();
6638 
6639 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6640 
6641 	vcpu->mode = OUTSIDE_GUEST_MODE;
6642 	smp_wmb();
6643 
6644 	/* Interrupt is enabled by handle_external_intr() */
6645 	kvm_x86_ops->handle_external_intr(vcpu);
6646 
6647 	++vcpu->stat.exits;
6648 
6649 	/*
6650 	 * We must have an instruction between local_irq_enable() and
6651 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6652 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6653 	 * But we need to prevent reordering, hence this barrier():
6654 	 */
6655 	barrier();
6656 
6657 	kvm_guest_exit();
6658 
6659 	preempt_enable();
6660 
6661 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6662 
6663 	/*
6664 	 * Profile KVM exit RIPs:
6665 	 */
6666 	if (unlikely(prof_on == KVM_PROFILING)) {
6667 		unsigned long rip = kvm_rip_read(vcpu);
6668 		profile_hit(KVM_PROFILING, (void *)rip);
6669 	}
6670 
6671 	if (unlikely(vcpu->arch.tsc_always_catchup))
6672 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6673 
6674 	if (vcpu->arch.apic_attention)
6675 		kvm_lapic_sync_from_vapic(vcpu);
6676 
6677 	r = kvm_x86_ops->handle_exit(vcpu);
6678 	return r;
6679 
6680 cancel_injection:
6681 	kvm_x86_ops->cancel_injection(vcpu);
6682 	if (unlikely(vcpu->arch.apic_attention))
6683 		kvm_lapic_sync_from_vapic(vcpu);
6684 out:
6685 	return r;
6686 }
6687 
6688 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6689 {
6690 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6691 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6692 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6693 		kvm_vcpu_block(vcpu);
6694 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6695 
6696 		if (kvm_x86_ops->post_block)
6697 			kvm_x86_ops->post_block(vcpu);
6698 
6699 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6700 			return 1;
6701 	}
6702 
6703 	kvm_apic_accept_events(vcpu);
6704 	switch(vcpu->arch.mp_state) {
6705 	case KVM_MP_STATE_HALTED:
6706 		vcpu->arch.pv.pv_unhalted = false;
6707 		vcpu->arch.mp_state =
6708 			KVM_MP_STATE_RUNNABLE;
6709 	case KVM_MP_STATE_RUNNABLE:
6710 		vcpu->arch.apf.halted = false;
6711 		break;
6712 	case KVM_MP_STATE_INIT_RECEIVED:
6713 		break;
6714 	default:
6715 		return -EINTR;
6716 		break;
6717 	}
6718 	return 1;
6719 }
6720 
6721 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6722 {
6723 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6724 		!vcpu->arch.apf.halted);
6725 }
6726 
6727 static int vcpu_run(struct kvm_vcpu *vcpu)
6728 {
6729 	int r;
6730 	struct kvm *kvm = vcpu->kvm;
6731 
6732 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6733 
6734 	for (;;) {
6735 		if (kvm_vcpu_running(vcpu)) {
6736 			r = vcpu_enter_guest(vcpu);
6737 		} else {
6738 			r = vcpu_block(kvm, vcpu);
6739 		}
6740 
6741 		if (r <= 0)
6742 			break;
6743 
6744 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6745 		if (kvm_cpu_has_pending_timer(vcpu))
6746 			kvm_inject_pending_timer_irqs(vcpu);
6747 
6748 		if (dm_request_for_irq_injection(vcpu) &&
6749 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6750 			r = 0;
6751 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6752 			++vcpu->stat.request_irq_exits;
6753 			break;
6754 		}
6755 
6756 		kvm_check_async_pf_completion(vcpu);
6757 
6758 		if (signal_pending(current)) {
6759 			r = -EINTR;
6760 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6761 			++vcpu->stat.signal_exits;
6762 			break;
6763 		}
6764 		if (need_resched()) {
6765 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6766 			cond_resched();
6767 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6768 		}
6769 	}
6770 
6771 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6772 
6773 	return r;
6774 }
6775 
6776 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6777 {
6778 	int r;
6779 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6780 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6781 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6782 	if (r != EMULATE_DONE)
6783 		return 0;
6784 	return 1;
6785 }
6786 
6787 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6788 {
6789 	BUG_ON(!vcpu->arch.pio.count);
6790 
6791 	return complete_emulated_io(vcpu);
6792 }
6793 
6794 /*
6795  * Implements the following, as a state machine:
6796  *
6797  * read:
6798  *   for each fragment
6799  *     for each mmio piece in the fragment
6800  *       write gpa, len
6801  *       exit
6802  *       copy data
6803  *   execute insn
6804  *
6805  * write:
6806  *   for each fragment
6807  *     for each mmio piece in the fragment
6808  *       write gpa, len
6809  *       copy data
6810  *       exit
6811  */
6812 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6813 {
6814 	struct kvm_run *run = vcpu->run;
6815 	struct kvm_mmio_fragment *frag;
6816 	unsigned len;
6817 
6818 	BUG_ON(!vcpu->mmio_needed);
6819 
6820 	/* Complete previous fragment */
6821 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6822 	len = min(8u, frag->len);
6823 	if (!vcpu->mmio_is_write)
6824 		memcpy(frag->data, run->mmio.data, len);
6825 
6826 	if (frag->len <= 8) {
6827 		/* Switch to the next fragment. */
6828 		frag++;
6829 		vcpu->mmio_cur_fragment++;
6830 	} else {
6831 		/* Go forward to the next mmio piece. */
6832 		frag->data += len;
6833 		frag->gpa += len;
6834 		frag->len -= len;
6835 	}
6836 
6837 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6838 		vcpu->mmio_needed = 0;
6839 
6840 		/* FIXME: return into emulator if single-stepping.  */
6841 		if (vcpu->mmio_is_write)
6842 			return 1;
6843 		vcpu->mmio_read_completed = 1;
6844 		return complete_emulated_io(vcpu);
6845 	}
6846 
6847 	run->exit_reason = KVM_EXIT_MMIO;
6848 	run->mmio.phys_addr = frag->gpa;
6849 	if (vcpu->mmio_is_write)
6850 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6851 	run->mmio.len = min(8u, frag->len);
6852 	run->mmio.is_write = vcpu->mmio_is_write;
6853 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6854 	return 0;
6855 }
6856 
6857 
6858 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6859 {
6860 	struct fpu *fpu = &current->thread.fpu;
6861 	int r;
6862 	sigset_t sigsaved;
6863 
6864 	fpu__activate_curr(fpu);
6865 
6866 	if (vcpu->sigset_active)
6867 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6868 
6869 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6870 		kvm_vcpu_block(vcpu);
6871 		kvm_apic_accept_events(vcpu);
6872 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6873 		r = -EAGAIN;
6874 		goto out;
6875 	}
6876 
6877 	/* re-sync apic's tpr */
6878 	if (!lapic_in_kernel(vcpu)) {
6879 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6880 			r = -EINVAL;
6881 			goto out;
6882 		}
6883 	}
6884 
6885 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6886 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6887 		vcpu->arch.complete_userspace_io = NULL;
6888 		r = cui(vcpu);
6889 		if (r <= 0)
6890 			goto out;
6891 	} else
6892 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6893 
6894 	r = vcpu_run(vcpu);
6895 
6896 out:
6897 	post_kvm_run_save(vcpu);
6898 	if (vcpu->sigset_active)
6899 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6900 
6901 	return r;
6902 }
6903 
6904 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6905 {
6906 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6907 		/*
6908 		 * We are here if userspace calls get_regs() in the middle of
6909 		 * instruction emulation. Registers state needs to be copied
6910 		 * back from emulation context to vcpu. Userspace shouldn't do
6911 		 * that usually, but some bad designed PV devices (vmware
6912 		 * backdoor interface) need this to work
6913 		 */
6914 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6915 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6916 	}
6917 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6918 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6919 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6920 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6921 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6922 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6923 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6924 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6925 #ifdef CONFIG_X86_64
6926 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6927 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6928 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6929 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6930 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6931 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6932 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6933 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6934 #endif
6935 
6936 	regs->rip = kvm_rip_read(vcpu);
6937 	regs->rflags = kvm_get_rflags(vcpu);
6938 
6939 	return 0;
6940 }
6941 
6942 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6943 {
6944 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6945 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6946 
6947 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6948 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6949 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6950 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6951 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6952 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6953 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6954 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6955 #ifdef CONFIG_X86_64
6956 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6957 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6958 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6959 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6960 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6961 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6962 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6963 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6964 #endif
6965 
6966 	kvm_rip_write(vcpu, regs->rip);
6967 	kvm_set_rflags(vcpu, regs->rflags);
6968 
6969 	vcpu->arch.exception.pending = false;
6970 
6971 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6972 
6973 	return 0;
6974 }
6975 
6976 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6977 {
6978 	struct kvm_segment cs;
6979 
6980 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6981 	*db = cs.db;
6982 	*l = cs.l;
6983 }
6984 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6985 
6986 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6987 				  struct kvm_sregs *sregs)
6988 {
6989 	struct desc_ptr dt;
6990 
6991 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6992 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6993 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6994 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6995 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6996 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6997 
6998 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6999 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7000 
7001 	kvm_x86_ops->get_idt(vcpu, &dt);
7002 	sregs->idt.limit = dt.size;
7003 	sregs->idt.base = dt.address;
7004 	kvm_x86_ops->get_gdt(vcpu, &dt);
7005 	sregs->gdt.limit = dt.size;
7006 	sregs->gdt.base = dt.address;
7007 
7008 	sregs->cr0 = kvm_read_cr0(vcpu);
7009 	sregs->cr2 = vcpu->arch.cr2;
7010 	sregs->cr3 = kvm_read_cr3(vcpu);
7011 	sregs->cr4 = kvm_read_cr4(vcpu);
7012 	sregs->cr8 = kvm_get_cr8(vcpu);
7013 	sregs->efer = vcpu->arch.efer;
7014 	sregs->apic_base = kvm_get_apic_base(vcpu);
7015 
7016 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7017 
7018 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7019 		set_bit(vcpu->arch.interrupt.nr,
7020 			(unsigned long *)sregs->interrupt_bitmap);
7021 
7022 	return 0;
7023 }
7024 
7025 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7026 				    struct kvm_mp_state *mp_state)
7027 {
7028 	kvm_apic_accept_events(vcpu);
7029 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7030 					vcpu->arch.pv.pv_unhalted)
7031 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7032 	else
7033 		mp_state->mp_state = vcpu->arch.mp_state;
7034 
7035 	return 0;
7036 }
7037 
7038 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7039 				    struct kvm_mp_state *mp_state)
7040 {
7041 	if (!kvm_vcpu_has_lapic(vcpu) &&
7042 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7043 		return -EINVAL;
7044 
7045 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7046 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7047 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7048 	} else
7049 		vcpu->arch.mp_state = mp_state->mp_state;
7050 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7051 	return 0;
7052 }
7053 
7054 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7055 		    int reason, bool has_error_code, u32 error_code)
7056 {
7057 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7058 	int ret;
7059 
7060 	init_emulate_ctxt(vcpu);
7061 
7062 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7063 				   has_error_code, error_code);
7064 
7065 	if (ret)
7066 		return EMULATE_FAIL;
7067 
7068 	kvm_rip_write(vcpu, ctxt->eip);
7069 	kvm_set_rflags(vcpu, ctxt->eflags);
7070 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7071 	return EMULATE_DONE;
7072 }
7073 EXPORT_SYMBOL_GPL(kvm_task_switch);
7074 
7075 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7076 				  struct kvm_sregs *sregs)
7077 {
7078 	struct msr_data apic_base_msr;
7079 	int mmu_reset_needed = 0;
7080 	int pending_vec, max_bits, idx;
7081 	struct desc_ptr dt;
7082 
7083 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7084 		return -EINVAL;
7085 
7086 	dt.size = sregs->idt.limit;
7087 	dt.address = sregs->idt.base;
7088 	kvm_x86_ops->set_idt(vcpu, &dt);
7089 	dt.size = sregs->gdt.limit;
7090 	dt.address = sregs->gdt.base;
7091 	kvm_x86_ops->set_gdt(vcpu, &dt);
7092 
7093 	vcpu->arch.cr2 = sregs->cr2;
7094 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7095 	vcpu->arch.cr3 = sregs->cr3;
7096 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7097 
7098 	kvm_set_cr8(vcpu, sregs->cr8);
7099 
7100 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7101 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7102 	apic_base_msr.data = sregs->apic_base;
7103 	apic_base_msr.host_initiated = true;
7104 	kvm_set_apic_base(vcpu, &apic_base_msr);
7105 
7106 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7107 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7108 	vcpu->arch.cr0 = sregs->cr0;
7109 
7110 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7111 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7112 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7113 		kvm_update_cpuid(vcpu);
7114 
7115 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7116 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7117 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7118 		mmu_reset_needed = 1;
7119 	}
7120 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7121 
7122 	if (mmu_reset_needed)
7123 		kvm_mmu_reset_context(vcpu);
7124 
7125 	max_bits = KVM_NR_INTERRUPTS;
7126 	pending_vec = find_first_bit(
7127 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7128 	if (pending_vec < max_bits) {
7129 		kvm_queue_interrupt(vcpu, pending_vec, false);
7130 		pr_debug("Set back pending irq %d\n", pending_vec);
7131 	}
7132 
7133 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7134 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7135 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7136 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7137 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7138 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7139 
7140 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7141 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7142 
7143 	update_cr8_intercept(vcpu);
7144 
7145 	/* Older userspace won't unhalt the vcpu on reset. */
7146 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7147 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7148 	    !is_protmode(vcpu))
7149 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7150 
7151 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7152 
7153 	return 0;
7154 }
7155 
7156 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7157 					struct kvm_guest_debug *dbg)
7158 {
7159 	unsigned long rflags;
7160 	int i, r;
7161 
7162 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7163 		r = -EBUSY;
7164 		if (vcpu->arch.exception.pending)
7165 			goto out;
7166 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7167 			kvm_queue_exception(vcpu, DB_VECTOR);
7168 		else
7169 			kvm_queue_exception(vcpu, BP_VECTOR);
7170 	}
7171 
7172 	/*
7173 	 * Read rflags as long as potentially injected trace flags are still
7174 	 * filtered out.
7175 	 */
7176 	rflags = kvm_get_rflags(vcpu);
7177 
7178 	vcpu->guest_debug = dbg->control;
7179 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7180 		vcpu->guest_debug = 0;
7181 
7182 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7183 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7184 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7185 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7186 	} else {
7187 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7188 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7189 	}
7190 	kvm_update_dr7(vcpu);
7191 
7192 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7193 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7194 			get_segment_base(vcpu, VCPU_SREG_CS);
7195 
7196 	/*
7197 	 * Trigger an rflags update that will inject or remove the trace
7198 	 * flags.
7199 	 */
7200 	kvm_set_rflags(vcpu, rflags);
7201 
7202 	kvm_x86_ops->update_bp_intercept(vcpu);
7203 
7204 	r = 0;
7205 
7206 out:
7207 
7208 	return r;
7209 }
7210 
7211 /*
7212  * Translate a guest virtual address to a guest physical address.
7213  */
7214 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7215 				    struct kvm_translation *tr)
7216 {
7217 	unsigned long vaddr = tr->linear_address;
7218 	gpa_t gpa;
7219 	int idx;
7220 
7221 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7222 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7223 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7224 	tr->physical_address = gpa;
7225 	tr->valid = gpa != UNMAPPED_GVA;
7226 	tr->writeable = 1;
7227 	tr->usermode = 0;
7228 
7229 	return 0;
7230 }
7231 
7232 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7233 {
7234 	struct fxregs_state *fxsave =
7235 			&vcpu->arch.guest_fpu.state.fxsave;
7236 
7237 	memcpy(fpu->fpr, fxsave->st_space, 128);
7238 	fpu->fcw = fxsave->cwd;
7239 	fpu->fsw = fxsave->swd;
7240 	fpu->ftwx = fxsave->twd;
7241 	fpu->last_opcode = fxsave->fop;
7242 	fpu->last_ip = fxsave->rip;
7243 	fpu->last_dp = fxsave->rdp;
7244 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7245 
7246 	return 0;
7247 }
7248 
7249 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7250 {
7251 	struct fxregs_state *fxsave =
7252 			&vcpu->arch.guest_fpu.state.fxsave;
7253 
7254 	memcpy(fxsave->st_space, fpu->fpr, 128);
7255 	fxsave->cwd = fpu->fcw;
7256 	fxsave->swd = fpu->fsw;
7257 	fxsave->twd = fpu->ftwx;
7258 	fxsave->fop = fpu->last_opcode;
7259 	fxsave->rip = fpu->last_ip;
7260 	fxsave->rdp = fpu->last_dp;
7261 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7262 
7263 	return 0;
7264 }
7265 
7266 static void fx_init(struct kvm_vcpu *vcpu)
7267 {
7268 	fpstate_init(&vcpu->arch.guest_fpu.state);
7269 	if (cpu_has_xsaves)
7270 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7271 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7272 
7273 	/*
7274 	 * Ensure guest xcr0 is valid for loading
7275 	 */
7276 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7277 
7278 	vcpu->arch.cr0 |= X86_CR0_ET;
7279 }
7280 
7281 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7282 {
7283 	if (vcpu->guest_fpu_loaded)
7284 		return;
7285 
7286 	/*
7287 	 * Restore all possible states in the guest,
7288 	 * and assume host would use all available bits.
7289 	 * Guest xcr0 would be loaded later.
7290 	 */
7291 	kvm_put_guest_xcr0(vcpu);
7292 	vcpu->guest_fpu_loaded = 1;
7293 	__kernel_fpu_begin();
7294 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7295 	trace_kvm_fpu(1);
7296 }
7297 
7298 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7299 {
7300 	kvm_put_guest_xcr0(vcpu);
7301 
7302 	if (!vcpu->guest_fpu_loaded) {
7303 		vcpu->fpu_counter = 0;
7304 		return;
7305 	}
7306 
7307 	vcpu->guest_fpu_loaded = 0;
7308 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7309 	__kernel_fpu_end();
7310 	++vcpu->stat.fpu_reload;
7311 	/*
7312 	 * If using eager FPU mode, or if the guest is a frequent user
7313 	 * of the FPU, just leave the FPU active for next time.
7314 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7315 	 * the FPU in bursts will revert to loading it on demand.
7316 	 */
7317 	if (!vcpu->arch.eager_fpu) {
7318 		if (++vcpu->fpu_counter < 5)
7319 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7320 	}
7321 	trace_kvm_fpu(0);
7322 }
7323 
7324 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7325 {
7326 	kvmclock_reset(vcpu);
7327 
7328 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7329 	kvm_x86_ops->vcpu_free(vcpu);
7330 }
7331 
7332 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7333 						unsigned int id)
7334 {
7335 	struct kvm_vcpu *vcpu;
7336 
7337 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7338 		printk_once(KERN_WARNING
7339 		"kvm: SMP vm created on host with unstable TSC; "
7340 		"guest TSC will not be reliable\n");
7341 
7342 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7343 
7344 	return vcpu;
7345 }
7346 
7347 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7348 {
7349 	int r;
7350 
7351 	kvm_vcpu_mtrr_init(vcpu);
7352 	r = vcpu_load(vcpu);
7353 	if (r)
7354 		return r;
7355 	kvm_vcpu_reset(vcpu, false);
7356 	kvm_mmu_setup(vcpu);
7357 	vcpu_put(vcpu);
7358 	return r;
7359 }
7360 
7361 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7362 {
7363 	struct msr_data msr;
7364 	struct kvm *kvm = vcpu->kvm;
7365 
7366 	if (vcpu_load(vcpu))
7367 		return;
7368 	msr.data = 0x0;
7369 	msr.index = MSR_IA32_TSC;
7370 	msr.host_initiated = true;
7371 	kvm_write_tsc(vcpu, &msr);
7372 	vcpu_put(vcpu);
7373 
7374 	if (!kvmclock_periodic_sync)
7375 		return;
7376 
7377 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7378 					KVMCLOCK_SYNC_PERIOD);
7379 }
7380 
7381 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7382 {
7383 	int r;
7384 	vcpu->arch.apf.msr_val = 0;
7385 
7386 	r = vcpu_load(vcpu);
7387 	BUG_ON(r);
7388 	kvm_mmu_unload(vcpu);
7389 	vcpu_put(vcpu);
7390 
7391 	kvm_x86_ops->vcpu_free(vcpu);
7392 }
7393 
7394 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7395 {
7396 	vcpu->arch.hflags = 0;
7397 
7398 	atomic_set(&vcpu->arch.nmi_queued, 0);
7399 	vcpu->arch.nmi_pending = 0;
7400 	vcpu->arch.nmi_injected = false;
7401 	kvm_clear_interrupt_queue(vcpu);
7402 	kvm_clear_exception_queue(vcpu);
7403 
7404 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7405 	kvm_update_dr0123(vcpu);
7406 	vcpu->arch.dr6 = DR6_INIT;
7407 	kvm_update_dr6(vcpu);
7408 	vcpu->arch.dr7 = DR7_FIXED_1;
7409 	kvm_update_dr7(vcpu);
7410 
7411 	vcpu->arch.cr2 = 0;
7412 
7413 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7414 	vcpu->arch.apf.msr_val = 0;
7415 	vcpu->arch.st.msr_val = 0;
7416 
7417 	kvmclock_reset(vcpu);
7418 
7419 	kvm_clear_async_pf_completion_queue(vcpu);
7420 	kvm_async_pf_hash_reset(vcpu);
7421 	vcpu->arch.apf.halted = false;
7422 
7423 	if (!init_event) {
7424 		kvm_pmu_reset(vcpu);
7425 		vcpu->arch.smbase = 0x30000;
7426 	}
7427 
7428 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7429 	vcpu->arch.regs_avail = ~0;
7430 	vcpu->arch.regs_dirty = ~0;
7431 
7432 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7433 }
7434 
7435 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7436 {
7437 	struct kvm_segment cs;
7438 
7439 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7440 	cs.selector = vector << 8;
7441 	cs.base = vector << 12;
7442 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7443 	kvm_rip_write(vcpu, 0);
7444 }
7445 
7446 int kvm_arch_hardware_enable(void)
7447 {
7448 	struct kvm *kvm;
7449 	struct kvm_vcpu *vcpu;
7450 	int i;
7451 	int ret;
7452 	u64 local_tsc;
7453 	u64 max_tsc = 0;
7454 	bool stable, backwards_tsc = false;
7455 
7456 	kvm_shared_msr_cpu_online();
7457 	ret = kvm_x86_ops->hardware_enable();
7458 	if (ret != 0)
7459 		return ret;
7460 
7461 	local_tsc = rdtsc();
7462 	stable = !check_tsc_unstable();
7463 	list_for_each_entry(kvm, &vm_list, vm_list) {
7464 		kvm_for_each_vcpu(i, vcpu, kvm) {
7465 			if (!stable && vcpu->cpu == smp_processor_id())
7466 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7467 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7468 				backwards_tsc = true;
7469 				if (vcpu->arch.last_host_tsc > max_tsc)
7470 					max_tsc = vcpu->arch.last_host_tsc;
7471 			}
7472 		}
7473 	}
7474 
7475 	/*
7476 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7477 	 * platforms that reset TSC during suspend or hibernate actions, but
7478 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7479 	 * detect that condition here, which happens early in CPU bringup,
7480 	 * before any KVM threads can be running.  Unfortunately, we can't
7481 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7482 	 * enough into CPU bringup that we know how much real time has actually
7483 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7484 	 * variables that haven't been updated yet.
7485 	 *
7486 	 * So we simply find the maximum observed TSC above, then record the
7487 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7488 	 * the adjustment will be applied.  Note that we accumulate
7489 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7490 	 * gets a chance to run again.  In the event that no KVM threads get a
7491 	 * chance to run, we will miss the entire elapsed period, as we'll have
7492 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7493 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7494 	 * uniform across all VCPUs (not to mention the scenario is extremely
7495 	 * unlikely). It is possible that a second hibernate recovery happens
7496 	 * much faster than a first, causing the observed TSC here to be
7497 	 * smaller; this would require additional padding adjustment, which is
7498 	 * why we set last_host_tsc to the local tsc observed here.
7499 	 *
7500 	 * N.B. - this code below runs only on platforms with reliable TSC,
7501 	 * as that is the only way backwards_tsc is set above.  Also note
7502 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7503 	 * have the same delta_cyc adjustment applied if backwards_tsc
7504 	 * is detected.  Note further, this adjustment is only done once,
7505 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7506 	 * called multiple times (one for each physical CPU bringup).
7507 	 *
7508 	 * Platforms with unreliable TSCs don't have to deal with this, they
7509 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7510 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7511 	 * guarantee that they stay in perfect synchronization.
7512 	 */
7513 	if (backwards_tsc) {
7514 		u64 delta_cyc = max_tsc - local_tsc;
7515 		backwards_tsc_observed = true;
7516 		list_for_each_entry(kvm, &vm_list, vm_list) {
7517 			kvm_for_each_vcpu(i, vcpu, kvm) {
7518 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7519 				vcpu->arch.last_host_tsc = local_tsc;
7520 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7521 			}
7522 
7523 			/*
7524 			 * We have to disable TSC offset matching.. if you were
7525 			 * booting a VM while issuing an S4 host suspend....
7526 			 * you may have some problem.  Solving this issue is
7527 			 * left as an exercise to the reader.
7528 			 */
7529 			kvm->arch.last_tsc_nsec = 0;
7530 			kvm->arch.last_tsc_write = 0;
7531 		}
7532 
7533 	}
7534 	return 0;
7535 }
7536 
7537 void kvm_arch_hardware_disable(void)
7538 {
7539 	kvm_x86_ops->hardware_disable();
7540 	drop_user_return_notifiers();
7541 }
7542 
7543 int kvm_arch_hardware_setup(void)
7544 {
7545 	int r;
7546 
7547 	r = kvm_x86_ops->hardware_setup();
7548 	if (r != 0)
7549 		return r;
7550 
7551 	if (kvm_has_tsc_control) {
7552 		/*
7553 		 * Make sure the user can only configure tsc_khz values that
7554 		 * fit into a signed integer.
7555 		 * A min value is not calculated needed because it will always
7556 		 * be 1 on all machines.
7557 		 */
7558 		u64 max = min(0x7fffffffULL,
7559 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7560 		kvm_max_guest_tsc_khz = max;
7561 
7562 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7563 	}
7564 
7565 	kvm_init_msr_list();
7566 	return 0;
7567 }
7568 
7569 void kvm_arch_hardware_unsetup(void)
7570 {
7571 	kvm_x86_ops->hardware_unsetup();
7572 }
7573 
7574 void kvm_arch_check_processor_compat(void *rtn)
7575 {
7576 	kvm_x86_ops->check_processor_compatibility(rtn);
7577 }
7578 
7579 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7580 {
7581 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7582 }
7583 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7584 
7585 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7586 {
7587 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7588 }
7589 
7590 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7591 {
7592 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7593 }
7594 
7595 struct static_key kvm_no_apic_vcpu __read_mostly;
7596 
7597 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7598 {
7599 	struct page *page;
7600 	struct kvm *kvm;
7601 	int r;
7602 
7603 	BUG_ON(vcpu->kvm == NULL);
7604 	kvm = vcpu->kvm;
7605 
7606 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7607 	vcpu->arch.pv.pv_unhalted = false;
7608 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7609 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7610 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7611 	else
7612 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7613 
7614 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7615 	if (!page) {
7616 		r = -ENOMEM;
7617 		goto fail;
7618 	}
7619 	vcpu->arch.pio_data = page_address(page);
7620 
7621 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7622 
7623 	r = kvm_mmu_create(vcpu);
7624 	if (r < 0)
7625 		goto fail_free_pio_data;
7626 
7627 	if (irqchip_in_kernel(kvm)) {
7628 		r = kvm_create_lapic(vcpu);
7629 		if (r < 0)
7630 			goto fail_mmu_destroy;
7631 	} else
7632 		static_key_slow_inc(&kvm_no_apic_vcpu);
7633 
7634 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7635 				       GFP_KERNEL);
7636 	if (!vcpu->arch.mce_banks) {
7637 		r = -ENOMEM;
7638 		goto fail_free_lapic;
7639 	}
7640 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7641 
7642 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7643 		r = -ENOMEM;
7644 		goto fail_free_mce_banks;
7645 	}
7646 
7647 	fx_init(vcpu);
7648 
7649 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7650 	vcpu->arch.pv_time_enabled = false;
7651 
7652 	vcpu->arch.guest_supported_xcr0 = 0;
7653 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7654 
7655 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7656 
7657 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7658 
7659 	kvm_async_pf_hash_reset(vcpu);
7660 	kvm_pmu_init(vcpu);
7661 
7662 	vcpu->arch.pending_external_vector = -1;
7663 
7664 	kvm_hv_vcpu_init(vcpu);
7665 
7666 	return 0;
7667 
7668 fail_free_mce_banks:
7669 	kfree(vcpu->arch.mce_banks);
7670 fail_free_lapic:
7671 	kvm_free_lapic(vcpu);
7672 fail_mmu_destroy:
7673 	kvm_mmu_destroy(vcpu);
7674 fail_free_pio_data:
7675 	free_page((unsigned long)vcpu->arch.pio_data);
7676 fail:
7677 	return r;
7678 }
7679 
7680 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7681 {
7682 	int idx;
7683 
7684 	kvm_hv_vcpu_uninit(vcpu);
7685 	kvm_pmu_destroy(vcpu);
7686 	kfree(vcpu->arch.mce_banks);
7687 	kvm_free_lapic(vcpu);
7688 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7689 	kvm_mmu_destroy(vcpu);
7690 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7691 	free_page((unsigned long)vcpu->arch.pio_data);
7692 	if (!lapic_in_kernel(vcpu))
7693 		static_key_slow_dec(&kvm_no_apic_vcpu);
7694 }
7695 
7696 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7697 {
7698 	kvm_x86_ops->sched_in(vcpu, cpu);
7699 }
7700 
7701 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7702 {
7703 	if (type)
7704 		return -EINVAL;
7705 
7706 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7707 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7708 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7709 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7710 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7711 
7712 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7713 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7714 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7715 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7716 		&kvm->arch.irq_sources_bitmap);
7717 
7718 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7719 	mutex_init(&kvm->arch.apic_map_lock);
7720 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7721 
7722 	pvclock_update_vm_gtod_copy(kvm);
7723 
7724 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7725 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7726 
7727 	return 0;
7728 }
7729 
7730 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7731 {
7732 	int r;
7733 	r = vcpu_load(vcpu);
7734 	BUG_ON(r);
7735 	kvm_mmu_unload(vcpu);
7736 	vcpu_put(vcpu);
7737 }
7738 
7739 static void kvm_free_vcpus(struct kvm *kvm)
7740 {
7741 	unsigned int i;
7742 	struct kvm_vcpu *vcpu;
7743 
7744 	/*
7745 	 * Unpin any mmu pages first.
7746 	 */
7747 	kvm_for_each_vcpu(i, vcpu, kvm) {
7748 		kvm_clear_async_pf_completion_queue(vcpu);
7749 		kvm_unload_vcpu_mmu(vcpu);
7750 	}
7751 	kvm_for_each_vcpu(i, vcpu, kvm)
7752 		kvm_arch_vcpu_free(vcpu);
7753 
7754 	mutex_lock(&kvm->lock);
7755 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7756 		kvm->vcpus[i] = NULL;
7757 
7758 	atomic_set(&kvm->online_vcpus, 0);
7759 	mutex_unlock(&kvm->lock);
7760 }
7761 
7762 void kvm_arch_sync_events(struct kvm *kvm)
7763 {
7764 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7765 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7766 	kvm_free_all_assigned_devices(kvm);
7767 	kvm_free_pit(kvm);
7768 }
7769 
7770 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7771 {
7772 	int i, r;
7773 	unsigned long hva;
7774 	struct kvm_memslots *slots = kvm_memslots(kvm);
7775 	struct kvm_memory_slot *slot, old;
7776 
7777 	/* Called with kvm->slots_lock held.  */
7778 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7779 		return -EINVAL;
7780 
7781 	slot = id_to_memslot(slots, id);
7782 	if (size) {
7783 		if (WARN_ON(slot->npages))
7784 			return -EEXIST;
7785 
7786 		/*
7787 		 * MAP_SHARED to prevent internal slot pages from being moved
7788 		 * by fork()/COW.
7789 		 */
7790 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7791 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7792 		if (IS_ERR((void *)hva))
7793 			return PTR_ERR((void *)hva);
7794 	} else {
7795 		if (!slot->npages)
7796 			return 0;
7797 
7798 		hva = 0;
7799 	}
7800 
7801 	old = *slot;
7802 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7803 		struct kvm_userspace_memory_region m;
7804 
7805 		m.slot = id | (i << 16);
7806 		m.flags = 0;
7807 		m.guest_phys_addr = gpa;
7808 		m.userspace_addr = hva;
7809 		m.memory_size = size;
7810 		r = __kvm_set_memory_region(kvm, &m);
7811 		if (r < 0)
7812 			return r;
7813 	}
7814 
7815 	if (!size) {
7816 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7817 		WARN_ON(r < 0);
7818 	}
7819 
7820 	return 0;
7821 }
7822 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7823 
7824 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7825 {
7826 	int r;
7827 
7828 	mutex_lock(&kvm->slots_lock);
7829 	r = __x86_set_memory_region(kvm, id, gpa, size);
7830 	mutex_unlock(&kvm->slots_lock);
7831 
7832 	return r;
7833 }
7834 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7835 
7836 void kvm_arch_destroy_vm(struct kvm *kvm)
7837 {
7838 	if (current->mm == kvm->mm) {
7839 		/*
7840 		 * Free memory regions allocated on behalf of userspace,
7841 		 * unless the the memory map has changed due to process exit
7842 		 * or fd copying.
7843 		 */
7844 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7845 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7846 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7847 	}
7848 	kvm_iommu_unmap_guest(kvm);
7849 	kfree(kvm->arch.vpic);
7850 	kfree(kvm->arch.vioapic);
7851 	kvm_free_vcpus(kvm);
7852 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7853 }
7854 
7855 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7856 			   struct kvm_memory_slot *dont)
7857 {
7858 	int i;
7859 
7860 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7861 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7862 			kvfree(free->arch.rmap[i]);
7863 			free->arch.rmap[i] = NULL;
7864 		}
7865 		if (i == 0)
7866 			continue;
7867 
7868 		if (!dont || free->arch.lpage_info[i - 1] !=
7869 			     dont->arch.lpage_info[i - 1]) {
7870 			kvfree(free->arch.lpage_info[i - 1]);
7871 			free->arch.lpage_info[i - 1] = NULL;
7872 		}
7873 	}
7874 }
7875 
7876 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7877 			    unsigned long npages)
7878 {
7879 	int i;
7880 
7881 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7882 		unsigned long ugfn;
7883 		int lpages;
7884 		int level = i + 1;
7885 
7886 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7887 				      slot->base_gfn, level) + 1;
7888 
7889 		slot->arch.rmap[i] =
7890 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7891 		if (!slot->arch.rmap[i])
7892 			goto out_free;
7893 		if (i == 0)
7894 			continue;
7895 
7896 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7897 					sizeof(*slot->arch.lpage_info[i - 1]));
7898 		if (!slot->arch.lpage_info[i - 1])
7899 			goto out_free;
7900 
7901 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7902 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7903 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7904 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7905 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7906 		/*
7907 		 * If the gfn and userspace address are not aligned wrt each
7908 		 * other, or if explicitly asked to, disable large page
7909 		 * support for this slot
7910 		 */
7911 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7912 		    !kvm_largepages_enabled()) {
7913 			unsigned long j;
7914 
7915 			for (j = 0; j < lpages; ++j)
7916 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7917 		}
7918 	}
7919 
7920 	return 0;
7921 
7922 out_free:
7923 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7924 		kvfree(slot->arch.rmap[i]);
7925 		slot->arch.rmap[i] = NULL;
7926 		if (i == 0)
7927 			continue;
7928 
7929 		kvfree(slot->arch.lpage_info[i - 1]);
7930 		slot->arch.lpage_info[i - 1] = NULL;
7931 	}
7932 	return -ENOMEM;
7933 }
7934 
7935 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7936 {
7937 	/*
7938 	 * memslots->generation has been incremented.
7939 	 * mmio generation may have reached its maximum value.
7940 	 */
7941 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7942 }
7943 
7944 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7945 				struct kvm_memory_slot *memslot,
7946 				const struct kvm_userspace_memory_region *mem,
7947 				enum kvm_mr_change change)
7948 {
7949 	return 0;
7950 }
7951 
7952 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7953 				     struct kvm_memory_slot *new)
7954 {
7955 	/* Still write protect RO slot */
7956 	if (new->flags & KVM_MEM_READONLY) {
7957 		kvm_mmu_slot_remove_write_access(kvm, new);
7958 		return;
7959 	}
7960 
7961 	/*
7962 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7963 	 *
7964 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7965 	 *
7966 	 *  - KVM_MR_CREATE with dirty logging is disabled
7967 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7968 	 *
7969 	 * The reason is, in case of PML, we need to set D-bit for any slots
7970 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7971 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7972 	 * guarantees leaving PML enabled during guest's lifetime won't have
7973 	 * any additonal overhead from PML when guest is running with dirty
7974 	 * logging disabled for memory slots.
7975 	 *
7976 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7977 	 * to dirty logging mode.
7978 	 *
7979 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7980 	 *
7981 	 * In case of write protect:
7982 	 *
7983 	 * Write protect all pages for dirty logging.
7984 	 *
7985 	 * All the sptes including the large sptes which point to this
7986 	 * slot are set to readonly. We can not create any new large
7987 	 * spte on this slot until the end of the logging.
7988 	 *
7989 	 * See the comments in fast_page_fault().
7990 	 */
7991 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7992 		if (kvm_x86_ops->slot_enable_log_dirty)
7993 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7994 		else
7995 			kvm_mmu_slot_remove_write_access(kvm, new);
7996 	} else {
7997 		if (kvm_x86_ops->slot_disable_log_dirty)
7998 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7999 	}
8000 }
8001 
8002 void kvm_arch_commit_memory_region(struct kvm *kvm,
8003 				const struct kvm_userspace_memory_region *mem,
8004 				const struct kvm_memory_slot *old,
8005 				const struct kvm_memory_slot *new,
8006 				enum kvm_mr_change change)
8007 {
8008 	int nr_mmu_pages = 0;
8009 
8010 	if (!kvm->arch.n_requested_mmu_pages)
8011 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8012 
8013 	if (nr_mmu_pages)
8014 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8015 
8016 	/*
8017 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8018 	 * sptes have to be split.  If live migration is successful, the guest
8019 	 * in the source machine will be destroyed and large sptes will be
8020 	 * created in the destination. However, if the guest continues to run
8021 	 * in the source machine (for example if live migration fails), small
8022 	 * sptes will remain around and cause bad performance.
8023 	 *
8024 	 * Scan sptes if dirty logging has been stopped, dropping those
8025 	 * which can be collapsed into a single large-page spte.  Later
8026 	 * page faults will create the large-page sptes.
8027 	 */
8028 	if ((change != KVM_MR_DELETE) &&
8029 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8030 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8031 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8032 
8033 	/*
8034 	 * Set up write protection and/or dirty logging for the new slot.
8035 	 *
8036 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8037 	 * been zapped so no dirty logging staff is needed for old slot. For
8038 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8039 	 * new and it's also covered when dealing with the new slot.
8040 	 *
8041 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8042 	 */
8043 	if (change != KVM_MR_DELETE)
8044 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8045 }
8046 
8047 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8048 {
8049 	kvm_mmu_invalidate_zap_all_pages(kvm);
8050 }
8051 
8052 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8053 				   struct kvm_memory_slot *slot)
8054 {
8055 	kvm_mmu_invalidate_zap_all_pages(kvm);
8056 }
8057 
8058 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8059 {
8060 	if (!list_empty_careful(&vcpu->async_pf.done))
8061 		return true;
8062 
8063 	if (kvm_apic_has_events(vcpu))
8064 		return true;
8065 
8066 	if (vcpu->arch.pv.pv_unhalted)
8067 		return true;
8068 
8069 	if (atomic_read(&vcpu->arch.nmi_queued))
8070 		return true;
8071 
8072 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8073 		return true;
8074 
8075 	if (kvm_arch_interrupt_allowed(vcpu) &&
8076 	    kvm_cpu_has_interrupt(vcpu))
8077 		return true;
8078 
8079 	if (kvm_hv_has_stimer_pending(vcpu))
8080 		return true;
8081 
8082 	return false;
8083 }
8084 
8085 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8086 {
8087 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8088 		kvm_x86_ops->check_nested_events(vcpu, false);
8089 
8090 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8091 }
8092 
8093 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8094 {
8095 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8096 }
8097 
8098 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8099 {
8100 	return kvm_x86_ops->interrupt_allowed(vcpu);
8101 }
8102 
8103 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8104 {
8105 	if (is_64_bit_mode(vcpu))
8106 		return kvm_rip_read(vcpu);
8107 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8108 		     kvm_rip_read(vcpu));
8109 }
8110 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8111 
8112 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8113 {
8114 	return kvm_get_linear_rip(vcpu) == linear_rip;
8115 }
8116 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8117 
8118 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8119 {
8120 	unsigned long rflags;
8121 
8122 	rflags = kvm_x86_ops->get_rflags(vcpu);
8123 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8124 		rflags &= ~X86_EFLAGS_TF;
8125 	return rflags;
8126 }
8127 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8128 
8129 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8130 {
8131 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8132 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8133 		rflags |= X86_EFLAGS_TF;
8134 	kvm_x86_ops->set_rflags(vcpu, rflags);
8135 }
8136 
8137 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8138 {
8139 	__kvm_set_rflags(vcpu, rflags);
8140 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8141 }
8142 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8143 
8144 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8145 {
8146 	int r;
8147 
8148 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8149 	      work->wakeup_all)
8150 		return;
8151 
8152 	r = kvm_mmu_reload(vcpu);
8153 	if (unlikely(r))
8154 		return;
8155 
8156 	if (!vcpu->arch.mmu.direct_map &&
8157 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8158 		return;
8159 
8160 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8161 }
8162 
8163 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8164 {
8165 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8166 }
8167 
8168 static inline u32 kvm_async_pf_next_probe(u32 key)
8169 {
8170 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8171 }
8172 
8173 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8174 {
8175 	u32 key = kvm_async_pf_hash_fn(gfn);
8176 
8177 	while (vcpu->arch.apf.gfns[key] != ~0)
8178 		key = kvm_async_pf_next_probe(key);
8179 
8180 	vcpu->arch.apf.gfns[key] = gfn;
8181 }
8182 
8183 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8184 {
8185 	int i;
8186 	u32 key = kvm_async_pf_hash_fn(gfn);
8187 
8188 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8189 		     (vcpu->arch.apf.gfns[key] != gfn &&
8190 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8191 		key = kvm_async_pf_next_probe(key);
8192 
8193 	return key;
8194 }
8195 
8196 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8197 {
8198 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8199 }
8200 
8201 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8202 {
8203 	u32 i, j, k;
8204 
8205 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8206 	while (true) {
8207 		vcpu->arch.apf.gfns[i] = ~0;
8208 		do {
8209 			j = kvm_async_pf_next_probe(j);
8210 			if (vcpu->arch.apf.gfns[j] == ~0)
8211 				return;
8212 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8213 			/*
8214 			 * k lies cyclically in ]i,j]
8215 			 * |    i.k.j |
8216 			 * |....j i.k.| or  |.k..j i...|
8217 			 */
8218 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8219 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8220 		i = j;
8221 	}
8222 }
8223 
8224 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8225 {
8226 
8227 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8228 				      sizeof(val));
8229 }
8230 
8231 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8232 				     struct kvm_async_pf *work)
8233 {
8234 	struct x86_exception fault;
8235 
8236 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8237 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8238 
8239 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8240 	    (vcpu->arch.apf.send_user_only &&
8241 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8242 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8243 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8244 		fault.vector = PF_VECTOR;
8245 		fault.error_code_valid = true;
8246 		fault.error_code = 0;
8247 		fault.nested_page_fault = false;
8248 		fault.address = work->arch.token;
8249 		kvm_inject_page_fault(vcpu, &fault);
8250 	}
8251 }
8252 
8253 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8254 				 struct kvm_async_pf *work)
8255 {
8256 	struct x86_exception fault;
8257 
8258 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8259 	if (work->wakeup_all)
8260 		work->arch.token = ~0; /* broadcast wakeup */
8261 	else
8262 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8263 
8264 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8265 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8266 		fault.vector = PF_VECTOR;
8267 		fault.error_code_valid = true;
8268 		fault.error_code = 0;
8269 		fault.nested_page_fault = false;
8270 		fault.address = work->arch.token;
8271 		kvm_inject_page_fault(vcpu, &fault);
8272 	}
8273 	vcpu->arch.apf.halted = false;
8274 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8275 }
8276 
8277 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8278 {
8279 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8280 		return true;
8281 	else
8282 		return !kvm_event_needs_reinjection(vcpu) &&
8283 			kvm_x86_ops->interrupt_allowed(vcpu);
8284 }
8285 
8286 void kvm_arch_start_assignment(struct kvm *kvm)
8287 {
8288 	atomic_inc(&kvm->arch.assigned_device_count);
8289 }
8290 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8291 
8292 void kvm_arch_end_assignment(struct kvm *kvm)
8293 {
8294 	atomic_dec(&kvm->arch.assigned_device_count);
8295 }
8296 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8297 
8298 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8299 {
8300 	return atomic_read(&kvm->arch.assigned_device_count);
8301 }
8302 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8303 
8304 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8305 {
8306 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8307 }
8308 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8309 
8310 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8311 {
8312 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8313 }
8314 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8315 
8316 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8317 {
8318 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8319 }
8320 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8321 
8322 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8323 				      struct irq_bypass_producer *prod)
8324 {
8325 	struct kvm_kernel_irqfd *irqfd =
8326 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8327 
8328 	if (kvm_x86_ops->update_pi_irte) {
8329 		irqfd->producer = prod;
8330 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8331 				prod->irq, irqfd->gsi, 1);
8332 	}
8333 
8334 	return -EINVAL;
8335 }
8336 
8337 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8338 				      struct irq_bypass_producer *prod)
8339 {
8340 	int ret;
8341 	struct kvm_kernel_irqfd *irqfd =
8342 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8343 
8344 	if (!kvm_x86_ops->update_pi_irte) {
8345 		WARN_ON(irqfd->producer != NULL);
8346 		return;
8347 	}
8348 
8349 	WARN_ON(irqfd->producer != prod);
8350 	irqfd->producer = NULL;
8351 
8352 	/*
8353 	 * When producer of consumer is unregistered, we change back to
8354 	 * remapped mode, so we can re-use the current implementation
8355 	 * when the irq is masked/disabed or the consumer side (KVM
8356 	 * int this case doesn't want to receive the interrupts.
8357 	*/
8358 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8359 	if (ret)
8360 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8361 		       " fails: %d\n", irqfd->consumer.token, ret);
8362 }
8363 
8364 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8365 				   uint32_t guest_irq, bool set)
8366 {
8367 	if (!kvm_x86_ops->update_pi_irte)
8368 		return -EINVAL;
8369 
8370 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8371 }
8372 
8373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8390