xref: /openbmc/linux/arch/x86/kvm/x86.c (revision a8c5cb99)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142 
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145 
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149 
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152 
153 #define KVM_NR_SHARED_MSRS 16
154 
155 struct kvm_shared_msrs_global {
156 	int nr;
157 	u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159 
160 struct kvm_shared_msrs {
161 	struct user_return_notifier urn;
162 	bool registered;
163 	struct kvm_shared_msr_values {
164 		u64 host;
165 		u64 curr;
166 	} values[KVM_NR_SHARED_MSRS];
167 };
168 
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171 
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
174 	{ "pf_guest", VCPU_STAT(pf_guest) },
175 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
176 	{ "invlpg", VCPU_STAT(invlpg) },
177 	{ "exits", VCPU_STAT(exits) },
178 	{ "io_exits", VCPU_STAT(io_exits) },
179 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
180 	{ "signal_exits", VCPU_STAT(signal_exits) },
181 	{ "irq_window", VCPU_STAT(irq_window_exits) },
182 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
183 	{ "halt_exits", VCPU_STAT(halt_exits) },
184 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 	{ "hypercalls", VCPU_STAT(hypercalls) },
189 	{ "request_irq", VCPU_STAT(request_irq_exits) },
190 	{ "irq_exits", VCPU_STAT(irq_exits) },
191 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
192 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
193 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
194 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 	{ "irq_injections", VCPU_STAT(irq_injections) },
196 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
197 	{ "req_event", VCPU_STAT(req_event) },
198 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
199 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
200 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
201 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
202 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
203 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
204 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
205 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
206 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
207 	{ "largepages", VM_STAT(lpages) },
208 	{ "max_mmu_page_hash_collisions",
209 		VM_STAT(max_mmu_page_hash_collisions) },
210 	{ NULL }
211 };
212 
213 u64 __read_mostly host_xcr0;
214 
215 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
216 
217 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
218 {
219 	int i;
220 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
221 		vcpu->arch.apf.gfns[i] = ~0;
222 }
223 
224 static void kvm_on_user_return(struct user_return_notifier *urn)
225 {
226 	unsigned slot;
227 	struct kvm_shared_msrs *locals
228 		= container_of(urn, struct kvm_shared_msrs, urn);
229 	struct kvm_shared_msr_values *values;
230 	unsigned long flags;
231 
232 	/*
233 	 * Disabling irqs at this point since the following code could be
234 	 * interrupted and executed through kvm_arch_hardware_disable()
235 	 */
236 	local_irq_save(flags);
237 	if (locals->registered) {
238 		locals->registered = false;
239 		user_return_notifier_unregister(urn);
240 	}
241 	local_irq_restore(flags);
242 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
243 		values = &locals->values[slot];
244 		if (values->host != values->curr) {
245 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
246 			values->curr = values->host;
247 		}
248 	}
249 }
250 
251 static void shared_msr_update(unsigned slot, u32 msr)
252 {
253 	u64 value;
254 	unsigned int cpu = smp_processor_id();
255 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256 
257 	/* only read, and nobody should modify it at this time,
258 	 * so don't need lock */
259 	if (slot >= shared_msrs_global.nr) {
260 		printk(KERN_ERR "kvm: invalid MSR slot!");
261 		return;
262 	}
263 	rdmsrl_safe(msr, &value);
264 	smsr->values[slot].host = value;
265 	smsr->values[slot].curr = value;
266 }
267 
268 void kvm_define_shared_msr(unsigned slot, u32 msr)
269 {
270 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
271 	shared_msrs_global.msrs[slot] = msr;
272 	if (slot >= shared_msrs_global.nr)
273 		shared_msrs_global.nr = slot + 1;
274 }
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
276 
277 static void kvm_shared_msr_cpu_online(void)
278 {
279 	unsigned i;
280 
281 	for (i = 0; i < shared_msrs_global.nr; ++i)
282 		shared_msr_update(i, shared_msrs_global.msrs[i]);
283 }
284 
285 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
286 {
287 	unsigned int cpu = smp_processor_id();
288 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
289 	int err;
290 
291 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
292 		return 0;
293 	smsr->values[slot].curr = value;
294 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
295 	if (err)
296 		return 1;
297 
298 	if (!smsr->registered) {
299 		smsr->urn.on_user_return = kvm_on_user_return;
300 		user_return_notifier_register(&smsr->urn);
301 		smsr->registered = true;
302 	}
303 	return 0;
304 }
305 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
306 
307 static void drop_user_return_notifiers(void)
308 {
309 	unsigned int cpu = smp_processor_id();
310 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
311 
312 	if (smsr->registered)
313 		kvm_on_user_return(&smsr->urn);
314 }
315 
316 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
317 {
318 	return vcpu->arch.apic_base;
319 }
320 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
321 
322 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
323 {
324 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
325 }
326 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
327 
328 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
329 {
330 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
331 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
332 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
333 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
334 
335 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
336 		return 1;
337 	if (!msr_info->host_initiated) {
338 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
339 			return 1;
340 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
341 			return 1;
342 	}
343 
344 	kvm_lapic_set_base(vcpu, msr_info->data);
345 	return 0;
346 }
347 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
348 
349 asmlinkage __visible void kvm_spurious_fault(void)
350 {
351 	/* Fault while not rebooting.  We want the trace. */
352 	BUG();
353 }
354 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
355 
356 #define EXCPT_BENIGN		0
357 #define EXCPT_CONTRIBUTORY	1
358 #define EXCPT_PF		2
359 
360 static int exception_class(int vector)
361 {
362 	switch (vector) {
363 	case PF_VECTOR:
364 		return EXCPT_PF;
365 	case DE_VECTOR:
366 	case TS_VECTOR:
367 	case NP_VECTOR:
368 	case SS_VECTOR:
369 	case GP_VECTOR:
370 		return EXCPT_CONTRIBUTORY;
371 	default:
372 		break;
373 	}
374 	return EXCPT_BENIGN;
375 }
376 
377 #define EXCPT_FAULT		0
378 #define EXCPT_TRAP		1
379 #define EXCPT_ABORT		2
380 #define EXCPT_INTERRUPT		3
381 
382 static int exception_type(int vector)
383 {
384 	unsigned int mask;
385 
386 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
387 		return EXCPT_INTERRUPT;
388 
389 	mask = 1 << vector;
390 
391 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
392 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
393 		return EXCPT_TRAP;
394 
395 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
396 		return EXCPT_ABORT;
397 
398 	/* Reserved exceptions will result in fault */
399 	return EXCPT_FAULT;
400 }
401 
402 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
403 		unsigned nr, bool has_error, u32 error_code,
404 		bool reinject)
405 {
406 	u32 prev_nr;
407 	int class1, class2;
408 
409 	kvm_make_request(KVM_REQ_EVENT, vcpu);
410 
411 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
412 	queue:
413 		if (has_error && !is_protmode(vcpu))
414 			has_error = false;
415 		if (reinject) {
416 			/*
417 			 * On vmentry, vcpu->arch.exception.pending is only
418 			 * true if an event injection was blocked by
419 			 * nested_run_pending.  In that case, however,
420 			 * vcpu_enter_guest requests an immediate exit,
421 			 * and the guest shouldn't proceed far enough to
422 			 * need reinjection.
423 			 */
424 			WARN_ON_ONCE(vcpu->arch.exception.pending);
425 			vcpu->arch.exception.injected = true;
426 		} else {
427 			vcpu->arch.exception.pending = true;
428 			vcpu->arch.exception.injected = false;
429 		}
430 		vcpu->arch.exception.has_error_code = has_error;
431 		vcpu->arch.exception.nr = nr;
432 		vcpu->arch.exception.error_code = error_code;
433 		return;
434 	}
435 
436 	/* to check exception */
437 	prev_nr = vcpu->arch.exception.nr;
438 	if (prev_nr == DF_VECTOR) {
439 		/* triple fault -> shutdown */
440 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
441 		return;
442 	}
443 	class1 = exception_class(prev_nr);
444 	class2 = exception_class(nr);
445 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
446 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
447 		/*
448 		 * Generate double fault per SDM Table 5-5.  Set
449 		 * exception.pending = true so that the double fault
450 		 * can trigger a nested vmexit.
451 		 */
452 		vcpu->arch.exception.pending = true;
453 		vcpu->arch.exception.injected = false;
454 		vcpu->arch.exception.has_error_code = true;
455 		vcpu->arch.exception.nr = DF_VECTOR;
456 		vcpu->arch.exception.error_code = 0;
457 	} else
458 		/* replace previous exception with a new one in a hope
459 		   that instruction re-execution will regenerate lost
460 		   exception */
461 		goto queue;
462 }
463 
464 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
465 {
466 	kvm_multiple_exception(vcpu, nr, false, 0, false);
467 }
468 EXPORT_SYMBOL_GPL(kvm_queue_exception);
469 
470 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
471 {
472 	kvm_multiple_exception(vcpu, nr, false, 0, true);
473 }
474 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
475 
476 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
477 {
478 	if (err)
479 		kvm_inject_gp(vcpu, 0);
480 	else
481 		return kvm_skip_emulated_instruction(vcpu);
482 
483 	return 1;
484 }
485 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
486 
487 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
488 {
489 	++vcpu->stat.pf_guest;
490 	vcpu->arch.exception.nested_apf =
491 		is_guest_mode(vcpu) && fault->async_page_fault;
492 	if (vcpu->arch.exception.nested_apf)
493 		vcpu->arch.apf.nested_apf_token = fault->address;
494 	else
495 		vcpu->arch.cr2 = fault->address;
496 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
497 }
498 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
499 
500 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
501 {
502 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
503 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
504 	else
505 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
506 
507 	return fault->nested_page_fault;
508 }
509 
510 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
511 {
512 	atomic_inc(&vcpu->arch.nmi_queued);
513 	kvm_make_request(KVM_REQ_NMI, vcpu);
514 }
515 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
516 
517 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
518 {
519 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
520 }
521 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
522 
523 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
524 {
525 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
526 }
527 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
528 
529 /*
530  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
531  * a #GP and return false.
532  */
533 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
534 {
535 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
536 		return true;
537 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
538 	return false;
539 }
540 EXPORT_SYMBOL_GPL(kvm_require_cpl);
541 
542 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
543 {
544 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
545 		return true;
546 
547 	kvm_queue_exception(vcpu, UD_VECTOR);
548 	return false;
549 }
550 EXPORT_SYMBOL_GPL(kvm_require_dr);
551 
552 /*
553  * This function will be used to read from the physical memory of the currently
554  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
555  * can read from guest physical or from the guest's guest physical memory.
556  */
557 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
558 			    gfn_t ngfn, void *data, int offset, int len,
559 			    u32 access)
560 {
561 	struct x86_exception exception;
562 	gfn_t real_gfn;
563 	gpa_t ngpa;
564 
565 	ngpa     = gfn_to_gpa(ngfn);
566 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
567 	if (real_gfn == UNMAPPED_GVA)
568 		return -EFAULT;
569 
570 	real_gfn = gpa_to_gfn(real_gfn);
571 
572 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
573 }
574 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
575 
576 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
577 			       void *data, int offset, int len, u32 access)
578 {
579 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
580 				       data, offset, len, access);
581 }
582 
583 /*
584  * Load the pae pdptrs.  Return true is they are all valid.
585  */
586 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
587 {
588 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
589 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
590 	int i;
591 	int ret;
592 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
593 
594 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
595 				      offset * sizeof(u64), sizeof(pdpte),
596 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
597 	if (ret < 0) {
598 		ret = 0;
599 		goto out;
600 	}
601 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
602 		if ((pdpte[i] & PT_PRESENT_MASK) &&
603 		    (pdpte[i] &
604 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
605 			ret = 0;
606 			goto out;
607 		}
608 	}
609 	ret = 1;
610 
611 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
612 	__set_bit(VCPU_EXREG_PDPTR,
613 		  (unsigned long *)&vcpu->arch.regs_avail);
614 	__set_bit(VCPU_EXREG_PDPTR,
615 		  (unsigned long *)&vcpu->arch.regs_dirty);
616 out:
617 
618 	return ret;
619 }
620 EXPORT_SYMBOL_GPL(load_pdptrs);
621 
622 bool pdptrs_changed(struct kvm_vcpu *vcpu)
623 {
624 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
625 	bool changed = true;
626 	int offset;
627 	gfn_t gfn;
628 	int r;
629 
630 	if (is_long_mode(vcpu) || !is_pae(vcpu))
631 		return false;
632 
633 	if (!test_bit(VCPU_EXREG_PDPTR,
634 		      (unsigned long *)&vcpu->arch.regs_avail))
635 		return true;
636 
637 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
638 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
639 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
640 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
641 	if (r < 0)
642 		goto out;
643 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
644 out:
645 
646 	return changed;
647 }
648 EXPORT_SYMBOL_GPL(pdptrs_changed);
649 
650 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
651 {
652 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
653 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
654 
655 	cr0 |= X86_CR0_ET;
656 
657 #ifdef CONFIG_X86_64
658 	if (cr0 & 0xffffffff00000000UL)
659 		return 1;
660 #endif
661 
662 	cr0 &= ~CR0_RESERVED_BITS;
663 
664 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
665 		return 1;
666 
667 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
668 		return 1;
669 
670 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
671 #ifdef CONFIG_X86_64
672 		if ((vcpu->arch.efer & EFER_LME)) {
673 			int cs_db, cs_l;
674 
675 			if (!is_pae(vcpu))
676 				return 1;
677 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
678 			if (cs_l)
679 				return 1;
680 		} else
681 #endif
682 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
683 						 kvm_read_cr3(vcpu)))
684 			return 1;
685 	}
686 
687 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
688 		return 1;
689 
690 	kvm_x86_ops->set_cr0(vcpu, cr0);
691 
692 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
693 		kvm_clear_async_pf_completion_queue(vcpu);
694 		kvm_async_pf_hash_reset(vcpu);
695 	}
696 
697 	if ((cr0 ^ old_cr0) & update_bits)
698 		kvm_mmu_reset_context(vcpu);
699 
700 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
701 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
702 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
703 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
704 
705 	return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_cr0);
708 
709 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
710 {
711 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
712 }
713 EXPORT_SYMBOL_GPL(kvm_lmsw);
714 
715 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
716 {
717 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
718 			!vcpu->guest_xcr0_loaded) {
719 		/* kvm_set_xcr() also depends on this */
720 		if (vcpu->arch.xcr0 != host_xcr0)
721 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
722 		vcpu->guest_xcr0_loaded = 1;
723 	}
724 }
725 
726 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
727 {
728 	if (vcpu->guest_xcr0_loaded) {
729 		if (vcpu->arch.xcr0 != host_xcr0)
730 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
731 		vcpu->guest_xcr0_loaded = 0;
732 	}
733 }
734 
735 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 {
737 	u64 xcr0 = xcr;
738 	u64 old_xcr0 = vcpu->arch.xcr0;
739 	u64 valid_bits;
740 
741 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
742 	if (index != XCR_XFEATURE_ENABLED_MASK)
743 		return 1;
744 	if (!(xcr0 & XFEATURE_MASK_FP))
745 		return 1;
746 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
747 		return 1;
748 
749 	/*
750 	 * Do not allow the guest to set bits that we do not support
751 	 * saving.  However, xcr0 bit 0 is always set, even if the
752 	 * emulated CPU does not support XSAVE (see fx_init).
753 	 */
754 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
755 	if (xcr0 & ~valid_bits)
756 		return 1;
757 
758 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
759 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
760 		return 1;
761 
762 	if (xcr0 & XFEATURE_MASK_AVX512) {
763 		if (!(xcr0 & XFEATURE_MASK_YMM))
764 			return 1;
765 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
766 			return 1;
767 	}
768 	vcpu->arch.xcr0 = xcr0;
769 
770 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
771 		kvm_update_cpuid(vcpu);
772 	return 0;
773 }
774 
775 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
776 {
777 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
778 	    __kvm_set_xcr(vcpu, index, xcr)) {
779 		kvm_inject_gp(vcpu, 0);
780 		return 1;
781 	}
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_xcr);
785 
786 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
787 {
788 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
789 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
790 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
791 
792 	if (cr4 & CR4_RESERVED_BITS)
793 		return 1;
794 
795 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
796 		return 1;
797 
798 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
799 		return 1;
800 
801 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
802 		return 1;
803 
804 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
805 		return 1;
806 
807 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
808 		return 1;
809 
810 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
811 		return 1;
812 
813 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
814 		return 1;
815 
816 	if (is_long_mode(vcpu)) {
817 		if (!(cr4 & X86_CR4_PAE))
818 			return 1;
819 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
820 		   && ((cr4 ^ old_cr4) & pdptr_bits)
821 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
822 				   kvm_read_cr3(vcpu)))
823 		return 1;
824 
825 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
826 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
827 			return 1;
828 
829 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
830 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
831 			return 1;
832 	}
833 
834 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
835 		return 1;
836 
837 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
838 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
839 		kvm_mmu_reset_context(vcpu);
840 
841 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
842 		kvm_update_cpuid(vcpu);
843 
844 	return 0;
845 }
846 EXPORT_SYMBOL_GPL(kvm_set_cr4);
847 
848 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
849 {
850 #ifdef CONFIG_X86_64
851 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
852 
853 	if (pcid_enabled)
854 		cr3 &= ~CR3_PCID_INVD;
855 #endif
856 
857 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
858 		kvm_mmu_sync_roots(vcpu);
859 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
860 		return 0;
861 	}
862 
863 	if (is_long_mode(vcpu) &&
864 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
865 		return 1;
866 	else if (is_pae(vcpu) && is_paging(vcpu) &&
867 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
868 		return 1;
869 
870 	vcpu->arch.cr3 = cr3;
871 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
872 	kvm_mmu_new_cr3(vcpu);
873 	return 0;
874 }
875 EXPORT_SYMBOL_GPL(kvm_set_cr3);
876 
877 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
878 {
879 	if (cr8 & CR8_RESERVED_BITS)
880 		return 1;
881 	if (lapic_in_kernel(vcpu))
882 		kvm_lapic_set_tpr(vcpu, cr8);
883 	else
884 		vcpu->arch.cr8 = cr8;
885 	return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_set_cr8);
888 
889 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
890 {
891 	if (lapic_in_kernel(vcpu))
892 		return kvm_lapic_get_cr8(vcpu);
893 	else
894 		return vcpu->arch.cr8;
895 }
896 EXPORT_SYMBOL_GPL(kvm_get_cr8);
897 
898 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
899 {
900 	int i;
901 
902 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
903 		for (i = 0; i < KVM_NR_DB_REGS; i++)
904 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
905 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
906 	}
907 }
908 
909 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
910 {
911 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
912 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
913 }
914 
915 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
916 {
917 	unsigned long dr7;
918 
919 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
920 		dr7 = vcpu->arch.guest_debug_dr7;
921 	else
922 		dr7 = vcpu->arch.dr7;
923 	kvm_x86_ops->set_dr7(vcpu, dr7);
924 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
925 	if (dr7 & DR7_BP_EN_MASK)
926 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
927 }
928 
929 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
930 {
931 	u64 fixed = DR6_FIXED_1;
932 
933 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
934 		fixed |= DR6_RTM;
935 	return fixed;
936 }
937 
938 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
939 {
940 	switch (dr) {
941 	case 0 ... 3:
942 		vcpu->arch.db[dr] = val;
943 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
944 			vcpu->arch.eff_db[dr] = val;
945 		break;
946 	case 4:
947 		/* fall through */
948 	case 6:
949 		if (val & 0xffffffff00000000ULL)
950 			return -1; /* #GP */
951 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
952 		kvm_update_dr6(vcpu);
953 		break;
954 	case 5:
955 		/* fall through */
956 	default: /* 7 */
957 		if (val & 0xffffffff00000000ULL)
958 			return -1; /* #GP */
959 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
960 		kvm_update_dr7(vcpu);
961 		break;
962 	}
963 
964 	return 0;
965 }
966 
967 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
968 {
969 	if (__kvm_set_dr(vcpu, dr, val)) {
970 		kvm_inject_gp(vcpu, 0);
971 		return 1;
972 	}
973 	return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_dr);
976 
977 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
978 {
979 	switch (dr) {
980 	case 0 ... 3:
981 		*val = vcpu->arch.db[dr];
982 		break;
983 	case 4:
984 		/* fall through */
985 	case 6:
986 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
987 			*val = vcpu->arch.dr6;
988 		else
989 			*val = kvm_x86_ops->get_dr6(vcpu);
990 		break;
991 	case 5:
992 		/* fall through */
993 	default: /* 7 */
994 		*val = vcpu->arch.dr7;
995 		break;
996 	}
997 	return 0;
998 }
999 EXPORT_SYMBOL_GPL(kvm_get_dr);
1000 
1001 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1002 {
1003 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1004 	u64 data;
1005 	int err;
1006 
1007 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1008 	if (err)
1009 		return err;
1010 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1011 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1012 	return err;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1015 
1016 /*
1017  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1018  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1019  *
1020  * This list is modified at module load time to reflect the
1021  * capabilities of the host cpu. This capabilities test skips MSRs that are
1022  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1023  * may depend on host virtualization features rather than host cpu features.
1024  */
1025 
1026 static u32 msrs_to_save[] = {
1027 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1028 	MSR_STAR,
1029 #ifdef CONFIG_X86_64
1030 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1031 #endif
1032 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1033 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1034 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1035 };
1036 
1037 static unsigned num_msrs_to_save;
1038 
1039 static u32 emulated_msrs[] = {
1040 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1041 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1042 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1043 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1044 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1045 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1046 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1047 	HV_X64_MSR_RESET,
1048 	HV_X64_MSR_VP_INDEX,
1049 	HV_X64_MSR_VP_RUNTIME,
1050 	HV_X64_MSR_SCONTROL,
1051 	HV_X64_MSR_STIMER0_CONFIG,
1052 	HV_X64_MSR_VP_ASSIST_PAGE,
1053 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1054 	HV_X64_MSR_TSC_EMULATION_STATUS,
1055 
1056 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1057 	MSR_KVM_PV_EOI_EN,
1058 
1059 	MSR_IA32_TSC_ADJUST,
1060 	MSR_IA32_TSCDEADLINE,
1061 	MSR_IA32_MISC_ENABLE,
1062 	MSR_IA32_MCG_STATUS,
1063 	MSR_IA32_MCG_CTL,
1064 	MSR_IA32_MCG_EXT_CTL,
1065 	MSR_IA32_SMBASE,
1066 	MSR_SMI_COUNT,
1067 	MSR_PLATFORM_INFO,
1068 	MSR_MISC_FEATURES_ENABLES,
1069 	MSR_AMD64_VIRT_SPEC_CTRL,
1070 };
1071 
1072 static unsigned num_emulated_msrs;
1073 
1074 /*
1075  * List of msr numbers which are used to expose MSR-based features that
1076  * can be used by a hypervisor to validate requested CPU features.
1077  */
1078 static u32 msr_based_features[] = {
1079 	MSR_IA32_VMX_BASIC,
1080 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1081 	MSR_IA32_VMX_PINBASED_CTLS,
1082 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1083 	MSR_IA32_VMX_PROCBASED_CTLS,
1084 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1085 	MSR_IA32_VMX_EXIT_CTLS,
1086 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1087 	MSR_IA32_VMX_ENTRY_CTLS,
1088 	MSR_IA32_VMX_MISC,
1089 	MSR_IA32_VMX_CR0_FIXED0,
1090 	MSR_IA32_VMX_CR0_FIXED1,
1091 	MSR_IA32_VMX_CR4_FIXED0,
1092 	MSR_IA32_VMX_CR4_FIXED1,
1093 	MSR_IA32_VMX_VMCS_ENUM,
1094 	MSR_IA32_VMX_PROCBASED_CTLS2,
1095 	MSR_IA32_VMX_EPT_VPID_CAP,
1096 	MSR_IA32_VMX_VMFUNC,
1097 
1098 	MSR_F10H_DECFG,
1099 	MSR_IA32_UCODE_REV,
1100 	MSR_IA32_ARCH_CAPABILITIES,
1101 };
1102 
1103 static unsigned int num_msr_based_features;
1104 
1105 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1106 {
1107 	switch (msr->index) {
1108 	case MSR_IA32_UCODE_REV:
1109 	case MSR_IA32_ARCH_CAPABILITIES:
1110 		rdmsrl_safe(msr->index, &msr->data);
1111 		break;
1112 	default:
1113 		if (kvm_x86_ops->get_msr_feature(msr))
1114 			return 1;
1115 	}
1116 	return 0;
1117 }
1118 
1119 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1120 {
1121 	struct kvm_msr_entry msr;
1122 	int r;
1123 
1124 	msr.index = index;
1125 	r = kvm_get_msr_feature(&msr);
1126 	if (r)
1127 		return r;
1128 
1129 	*data = msr.data;
1130 
1131 	return 0;
1132 }
1133 
1134 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1135 {
1136 	if (efer & efer_reserved_bits)
1137 		return false;
1138 
1139 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1140 			return false;
1141 
1142 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1143 			return false;
1144 
1145 	return true;
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1148 
1149 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1150 {
1151 	u64 old_efer = vcpu->arch.efer;
1152 
1153 	if (!kvm_valid_efer(vcpu, efer))
1154 		return 1;
1155 
1156 	if (is_paging(vcpu)
1157 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1158 		return 1;
1159 
1160 	efer &= ~EFER_LMA;
1161 	efer |= vcpu->arch.efer & EFER_LMA;
1162 
1163 	kvm_x86_ops->set_efer(vcpu, efer);
1164 
1165 	/* Update reserved bits */
1166 	if ((efer ^ old_efer) & EFER_NX)
1167 		kvm_mmu_reset_context(vcpu);
1168 
1169 	return 0;
1170 }
1171 
1172 void kvm_enable_efer_bits(u64 mask)
1173 {
1174        efer_reserved_bits &= ~mask;
1175 }
1176 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1177 
1178 /*
1179  * Writes msr value into into the appropriate "register".
1180  * Returns 0 on success, non-0 otherwise.
1181  * Assumes vcpu_load() was already called.
1182  */
1183 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1184 {
1185 	switch (msr->index) {
1186 	case MSR_FS_BASE:
1187 	case MSR_GS_BASE:
1188 	case MSR_KERNEL_GS_BASE:
1189 	case MSR_CSTAR:
1190 	case MSR_LSTAR:
1191 		if (is_noncanonical_address(msr->data, vcpu))
1192 			return 1;
1193 		break;
1194 	case MSR_IA32_SYSENTER_EIP:
1195 	case MSR_IA32_SYSENTER_ESP:
1196 		/*
1197 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1198 		 * non-canonical address is written on Intel but not on
1199 		 * AMD (which ignores the top 32-bits, because it does
1200 		 * not implement 64-bit SYSENTER).
1201 		 *
1202 		 * 64-bit code should hence be able to write a non-canonical
1203 		 * value on AMD.  Making the address canonical ensures that
1204 		 * vmentry does not fail on Intel after writing a non-canonical
1205 		 * value, and that something deterministic happens if the guest
1206 		 * invokes 64-bit SYSENTER.
1207 		 */
1208 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1209 	}
1210 	return kvm_x86_ops->set_msr(vcpu, msr);
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_msr);
1213 
1214 /*
1215  * Adapt set_msr() to msr_io()'s calling convention
1216  */
1217 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1218 {
1219 	struct msr_data msr;
1220 	int r;
1221 
1222 	msr.index = index;
1223 	msr.host_initiated = true;
1224 	r = kvm_get_msr(vcpu, &msr);
1225 	if (r)
1226 		return r;
1227 
1228 	*data = msr.data;
1229 	return 0;
1230 }
1231 
1232 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1233 {
1234 	struct msr_data msr;
1235 
1236 	msr.data = *data;
1237 	msr.index = index;
1238 	msr.host_initiated = true;
1239 	return kvm_set_msr(vcpu, &msr);
1240 }
1241 
1242 #ifdef CONFIG_X86_64
1243 struct pvclock_gtod_data {
1244 	seqcount_t	seq;
1245 
1246 	struct { /* extract of a clocksource struct */
1247 		int vclock_mode;
1248 		u64	cycle_last;
1249 		u64	mask;
1250 		u32	mult;
1251 		u32	shift;
1252 	} clock;
1253 
1254 	u64		boot_ns;
1255 	u64		nsec_base;
1256 	u64		wall_time_sec;
1257 };
1258 
1259 static struct pvclock_gtod_data pvclock_gtod_data;
1260 
1261 static void update_pvclock_gtod(struct timekeeper *tk)
1262 {
1263 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1264 	u64 boot_ns;
1265 
1266 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1267 
1268 	write_seqcount_begin(&vdata->seq);
1269 
1270 	/* copy pvclock gtod data */
1271 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1272 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1273 	vdata->clock.mask		= tk->tkr_mono.mask;
1274 	vdata->clock.mult		= tk->tkr_mono.mult;
1275 	vdata->clock.shift		= tk->tkr_mono.shift;
1276 
1277 	vdata->boot_ns			= boot_ns;
1278 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1279 
1280 	vdata->wall_time_sec            = tk->xtime_sec;
1281 
1282 	write_seqcount_end(&vdata->seq);
1283 }
1284 #endif
1285 
1286 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1287 {
1288 	/*
1289 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1290 	 * vcpu_enter_guest.  This function is only called from
1291 	 * the physical CPU that is running vcpu.
1292 	 */
1293 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1294 }
1295 
1296 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1297 {
1298 	int version;
1299 	int r;
1300 	struct pvclock_wall_clock wc;
1301 	struct timespec64 boot;
1302 
1303 	if (!wall_clock)
1304 		return;
1305 
1306 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1307 	if (r)
1308 		return;
1309 
1310 	if (version & 1)
1311 		++version;  /* first time write, random junk */
1312 
1313 	++version;
1314 
1315 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1316 		return;
1317 
1318 	/*
1319 	 * The guest calculates current wall clock time by adding
1320 	 * system time (updated by kvm_guest_time_update below) to the
1321 	 * wall clock specified here.  guest system time equals host
1322 	 * system time for us, thus we must fill in host boot time here.
1323 	 */
1324 	getboottime64(&boot);
1325 
1326 	if (kvm->arch.kvmclock_offset) {
1327 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1328 		boot = timespec64_sub(boot, ts);
1329 	}
1330 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1331 	wc.nsec = boot.tv_nsec;
1332 	wc.version = version;
1333 
1334 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1335 
1336 	version++;
1337 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1338 }
1339 
1340 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1341 {
1342 	do_shl32_div32(dividend, divisor);
1343 	return dividend;
1344 }
1345 
1346 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1347 			       s8 *pshift, u32 *pmultiplier)
1348 {
1349 	uint64_t scaled64;
1350 	int32_t  shift = 0;
1351 	uint64_t tps64;
1352 	uint32_t tps32;
1353 
1354 	tps64 = base_hz;
1355 	scaled64 = scaled_hz;
1356 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1357 		tps64 >>= 1;
1358 		shift--;
1359 	}
1360 
1361 	tps32 = (uint32_t)tps64;
1362 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1363 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1364 			scaled64 >>= 1;
1365 		else
1366 			tps32 <<= 1;
1367 		shift++;
1368 	}
1369 
1370 	*pshift = shift;
1371 	*pmultiplier = div_frac(scaled64, tps32);
1372 
1373 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1374 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1375 }
1376 
1377 #ifdef CONFIG_X86_64
1378 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1379 #endif
1380 
1381 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1382 static unsigned long max_tsc_khz;
1383 
1384 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1385 {
1386 	u64 v = (u64)khz * (1000000 + ppm);
1387 	do_div(v, 1000000);
1388 	return v;
1389 }
1390 
1391 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1392 {
1393 	u64 ratio;
1394 
1395 	/* Guest TSC same frequency as host TSC? */
1396 	if (!scale) {
1397 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1398 		return 0;
1399 	}
1400 
1401 	/* TSC scaling supported? */
1402 	if (!kvm_has_tsc_control) {
1403 		if (user_tsc_khz > tsc_khz) {
1404 			vcpu->arch.tsc_catchup = 1;
1405 			vcpu->arch.tsc_always_catchup = 1;
1406 			return 0;
1407 		} else {
1408 			WARN(1, "user requested TSC rate below hardware speed\n");
1409 			return -1;
1410 		}
1411 	}
1412 
1413 	/* TSC scaling required  - calculate ratio */
1414 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1415 				user_tsc_khz, tsc_khz);
1416 
1417 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1418 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1419 			  user_tsc_khz);
1420 		return -1;
1421 	}
1422 
1423 	vcpu->arch.tsc_scaling_ratio = ratio;
1424 	return 0;
1425 }
1426 
1427 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1428 {
1429 	u32 thresh_lo, thresh_hi;
1430 	int use_scaling = 0;
1431 
1432 	/* tsc_khz can be zero if TSC calibration fails */
1433 	if (user_tsc_khz == 0) {
1434 		/* set tsc_scaling_ratio to a safe value */
1435 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1436 		return -1;
1437 	}
1438 
1439 	/* Compute a scale to convert nanoseconds in TSC cycles */
1440 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1441 			   &vcpu->arch.virtual_tsc_shift,
1442 			   &vcpu->arch.virtual_tsc_mult);
1443 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1444 
1445 	/*
1446 	 * Compute the variation in TSC rate which is acceptable
1447 	 * within the range of tolerance and decide if the
1448 	 * rate being applied is within that bounds of the hardware
1449 	 * rate.  If so, no scaling or compensation need be done.
1450 	 */
1451 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1452 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1453 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1454 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1455 		use_scaling = 1;
1456 	}
1457 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1458 }
1459 
1460 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1461 {
1462 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1463 				      vcpu->arch.virtual_tsc_mult,
1464 				      vcpu->arch.virtual_tsc_shift);
1465 	tsc += vcpu->arch.this_tsc_write;
1466 	return tsc;
1467 }
1468 
1469 static inline int gtod_is_based_on_tsc(int mode)
1470 {
1471 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1472 }
1473 
1474 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1475 {
1476 #ifdef CONFIG_X86_64
1477 	bool vcpus_matched;
1478 	struct kvm_arch *ka = &vcpu->kvm->arch;
1479 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1480 
1481 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1482 			 atomic_read(&vcpu->kvm->online_vcpus));
1483 
1484 	/*
1485 	 * Once the masterclock is enabled, always perform request in
1486 	 * order to update it.
1487 	 *
1488 	 * In order to enable masterclock, the host clocksource must be TSC
1489 	 * and the vcpus need to have matched TSCs.  When that happens,
1490 	 * perform request to enable masterclock.
1491 	 */
1492 	if (ka->use_master_clock ||
1493 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1494 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1495 
1496 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1497 			    atomic_read(&vcpu->kvm->online_vcpus),
1498 		            ka->use_master_clock, gtod->clock.vclock_mode);
1499 #endif
1500 }
1501 
1502 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1503 {
1504 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1505 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1506 }
1507 
1508 /*
1509  * Multiply tsc by a fixed point number represented by ratio.
1510  *
1511  * The most significant 64-N bits (mult) of ratio represent the
1512  * integral part of the fixed point number; the remaining N bits
1513  * (frac) represent the fractional part, ie. ratio represents a fixed
1514  * point number (mult + frac * 2^(-N)).
1515  *
1516  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1517  */
1518 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1519 {
1520 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1521 }
1522 
1523 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1524 {
1525 	u64 _tsc = tsc;
1526 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1527 
1528 	if (ratio != kvm_default_tsc_scaling_ratio)
1529 		_tsc = __scale_tsc(ratio, tsc);
1530 
1531 	return _tsc;
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1534 
1535 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1536 {
1537 	u64 tsc;
1538 
1539 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1540 
1541 	return target_tsc - tsc;
1542 }
1543 
1544 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1545 {
1546 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1547 
1548 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1551 
1552 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1553 {
1554 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1555 	vcpu->arch.tsc_offset = offset;
1556 }
1557 
1558 static inline bool kvm_check_tsc_unstable(void)
1559 {
1560 #ifdef CONFIG_X86_64
1561 	/*
1562 	 * TSC is marked unstable when we're running on Hyper-V,
1563 	 * 'TSC page' clocksource is good.
1564 	 */
1565 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1566 		return false;
1567 #endif
1568 	return check_tsc_unstable();
1569 }
1570 
1571 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1572 {
1573 	struct kvm *kvm = vcpu->kvm;
1574 	u64 offset, ns, elapsed;
1575 	unsigned long flags;
1576 	bool matched;
1577 	bool already_matched;
1578 	u64 data = msr->data;
1579 	bool synchronizing = false;
1580 
1581 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1582 	offset = kvm_compute_tsc_offset(vcpu, data);
1583 	ns = ktime_get_boot_ns();
1584 	elapsed = ns - kvm->arch.last_tsc_nsec;
1585 
1586 	if (vcpu->arch.virtual_tsc_khz) {
1587 		if (data == 0 && msr->host_initiated) {
1588 			/*
1589 			 * detection of vcpu initialization -- need to sync
1590 			 * with other vCPUs. This particularly helps to keep
1591 			 * kvm_clock stable after CPU hotplug
1592 			 */
1593 			synchronizing = true;
1594 		} else {
1595 			u64 tsc_exp = kvm->arch.last_tsc_write +
1596 						nsec_to_cycles(vcpu, elapsed);
1597 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1598 			/*
1599 			 * Special case: TSC write with a small delta (1 second)
1600 			 * of virtual cycle time against real time is
1601 			 * interpreted as an attempt to synchronize the CPU.
1602 			 */
1603 			synchronizing = data < tsc_exp + tsc_hz &&
1604 					data + tsc_hz > tsc_exp;
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1610 	 * TSC, we add elapsed time in this computation.  We could let the
1611 	 * compensation code attempt to catch up if we fall behind, but
1612 	 * it's better to try to match offsets from the beginning.
1613          */
1614 	if (synchronizing &&
1615 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1616 		if (!kvm_check_tsc_unstable()) {
1617 			offset = kvm->arch.cur_tsc_offset;
1618 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1619 		} else {
1620 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1621 			data += delta;
1622 			offset = kvm_compute_tsc_offset(vcpu, data);
1623 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1624 		}
1625 		matched = true;
1626 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1627 	} else {
1628 		/*
1629 		 * We split periods of matched TSC writes into generations.
1630 		 * For each generation, we track the original measured
1631 		 * nanosecond time, offset, and write, so if TSCs are in
1632 		 * sync, we can match exact offset, and if not, we can match
1633 		 * exact software computation in compute_guest_tsc()
1634 		 *
1635 		 * These values are tracked in kvm->arch.cur_xxx variables.
1636 		 */
1637 		kvm->arch.cur_tsc_generation++;
1638 		kvm->arch.cur_tsc_nsec = ns;
1639 		kvm->arch.cur_tsc_write = data;
1640 		kvm->arch.cur_tsc_offset = offset;
1641 		matched = false;
1642 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1643 			 kvm->arch.cur_tsc_generation, data);
1644 	}
1645 
1646 	/*
1647 	 * We also track th most recent recorded KHZ, write and time to
1648 	 * allow the matching interval to be extended at each write.
1649 	 */
1650 	kvm->arch.last_tsc_nsec = ns;
1651 	kvm->arch.last_tsc_write = data;
1652 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1653 
1654 	vcpu->arch.last_guest_tsc = data;
1655 
1656 	/* Keep track of which generation this VCPU has synchronized to */
1657 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1658 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1659 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1660 
1661 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1662 		update_ia32_tsc_adjust_msr(vcpu, offset);
1663 
1664 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1665 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1666 
1667 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1668 	if (!matched) {
1669 		kvm->arch.nr_vcpus_matched_tsc = 0;
1670 	} else if (!already_matched) {
1671 		kvm->arch.nr_vcpus_matched_tsc++;
1672 	}
1673 
1674 	kvm_track_tsc_matching(vcpu);
1675 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1676 }
1677 
1678 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1679 
1680 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1681 					   s64 adjustment)
1682 {
1683 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1684 }
1685 
1686 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1687 {
1688 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1689 		WARN_ON(adjustment < 0);
1690 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1691 	adjust_tsc_offset_guest(vcpu, adjustment);
1692 }
1693 
1694 #ifdef CONFIG_X86_64
1695 
1696 static u64 read_tsc(void)
1697 {
1698 	u64 ret = (u64)rdtsc_ordered();
1699 	u64 last = pvclock_gtod_data.clock.cycle_last;
1700 
1701 	if (likely(ret >= last))
1702 		return ret;
1703 
1704 	/*
1705 	 * GCC likes to generate cmov here, but this branch is extremely
1706 	 * predictable (it's just a function of time and the likely is
1707 	 * very likely) and there's a data dependence, so force GCC
1708 	 * to generate a branch instead.  I don't barrier() because
1709 	 * we don't actually need a barrier, and if this function
1710 	 * ever gets inlined it will generate worse code.
1711 	 */
1712 	asm volatile ("");
1713 	return last;
1714 }
1715 
1716 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1717 {
1718 	long v;
1719 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1720 	u64 tsc_pg_val;
1721 
1722 	switch (gtod->clock.vclock_mode) {
1723 	case VCLOCK_HVCLOCK:
1724 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1725 						  tsc_timestamp);
1726 		if (tsc_pg_val != U64_MAX) {
1727 			/* TSC page valid */
1728 			*mode = VCLOCK_HVCLOCK;
1729 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1730 				gtod->clock.mask;
1731 		} else {
1732 			/* TSC page invalid */
1733 			*mode = VCLOCK_NONE;
1734 		}
1735 		break;
1736 	case VCLOCK_TSC:
1737 		*mode = VCLOCK_TSC;
1738 		*tsc_timestamp = read_tsc();
1739 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1740 			gtod->clock.mask;
1741 		break;
1742 	default:
1743 		*mode = VCLOCK_NONE;
1744 	}
1745 
1746 	if (*mode == VCLOCK_NONE)
1747 		*tsc_timestamp = v = 0;
1748 
1749 	return v * gtod->clock.mult;
1750 }
1751 
1752 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1753 {
1754 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1755 	unsigned long seq;
1756 	int mode;
1757 	u64 ns;
1758 
1759 	do {
1760 		seq = read_seqcount_begin(&gtod->seq);
1761 		ns = gtod->nsec_base;
1762 		ns += vgettsc(tsc_timestamp, &mode);
1763 		ns >>= gtod->clock.shift;
1764 		ns += gtod->boot_ns;
1765 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1766 	*t = ns;
1767 
1768 	return mode;
1769 }
1770 
1771 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1772 {
1773 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1774 	unsigned long seq;
1775 	int mode;
1776 	u64 ns;
1777 
1778 	do {
1779 		seq = read_seqcount_begin(&gtod->seq);
1780 		ts->tv_sec = gtod->wall_time_sec;
1781 		ns = gtod->nsec_base;
1782 		ns += vgettsc(tsc_timestamp, &mode);
1783 		ns >>= gtod->clock.shift;
1784 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1785 
1786 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1787 	ts->tv_nsec = ns;
1788 
1789 	return mode;
1790 }
1791 
1792 /* returns true if host is using TSC based clocksource */
1793 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1794 {
1795 	/* checked again under seqlock below */
1796 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1797 		return false;
1798 
1799 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1800 						      tsc_timestamp));
1801 }
1802 
1803 /* returns true if host is using TSC based clocksource */
1804 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1805 					   u64 *tsc_timestamp)
1806 {
1807 	/* checked again under seqlock below */
1808 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1809 		return false;
1810 
1811 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1812 }
1813 #endif
1814 
1815 /*
1816  *
1817  * Assuming a stable TSC across physical CPUS, and a stable TSC
1818  * across virtual CPUs, the following condition is possible.
1819  * Each numbered line represents an event visible to both
1820  * CPUs at the next numbered event.
1821  *
1822  * "timespecX" represents host monotonic time. "tscX" represents
1823  * RDTSC value.
1824  *
1825  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1826  *
1827  * 1.  read timespec0,tsc0
1828  * 2.					| timespec1 = timespec0 + N
1829  * 					| tsc1 = tsc0 + M
1830  * 3. transition to guest		| transition to guest
1831  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1832  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1833  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1834  *
1835  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1836  *
1837  * 	- ret0 < ret1
1838  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1839  *		...
1840  *	- 0 < N - M => M < N
1841  *
1842  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1843  * always the case (the difference between two distinct xtime instances
1844  * might be smaller then the difference between corresponding TSC reads,
1845  * when updating guest vcpus pvclock areas).
1846  *
1847  * To avoid that problem, do not allow visibility of distinct
1848  * system_timestamp/tsc_timestamp values simultaneously: use a master
1849  * copy of host monotonic time values. Update that master copy
1850  * in lockstep.
1851  *
1852  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1853  *
1854  */
1855 
1856 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1857 {
1858 #ifdef CONFIG_X86_64
1859 	struct kvm_arch *ka = &kvm->arch;
1860 	int vclock_mode;
1861 	bool host_tsc_clocksource, vcpus_matched;
1862 
1863 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1864 			atomic_read(&kvm->online_vcpus));
1865 
1866 	/*
1867 	 * If the host uses TSC clock, then passthrough TSC as stable
1868 	 * to the guest.
1869 	 */
1870 	host_tsc_clocksource = kvm_get_time_and_clockread(
1871 					&ka->master_kernel_ns,
1872 					&ka->master_cycle_now);
1873 
1874 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1875 				&& !ka->backwards_tsc_observed
1876 				&& !ka->boot_vcpu_runs_old_kvmclock;
1877 
1878 	if (ka->use_master_clock)
1879 		atomic_set(&kvm_guest_has_master_clock, 1);
1880 
1881 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1882 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1883 					vcpus_matched);
1884 #endif
1885 }
1886 
1887 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1888 {
1889 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1890 }
1891 
1892 static void kvm_gen_update_masterclock(struct kvm *kvm)
1893 {
1894 #ifdef CONFIG_X86_64
1895 	int i;
1896 	struct kvm_vcpu *vcpu;
1897 	struct kvm_arch *ka = &kvm->arch;
1898 
1899 	spin_lock(&ka->pvclock_gtod_sync_lock);
1900 	kvm_make_mclock_inprogress_request(kvm);
1901 	/* no guest entries from this point */
1902 	pvclock_update_vm_gtod_copy(kvm);
1903 
1904 	kvm_for_each_vcpu(i, vcpu, kvm)
1905 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1906 
1907 	/* guest entries allowed */
1908 	kvm_for_each_vcpu(i, vcpu, kvm)
1909 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1910 
1911 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1912 #endif
1913 }
1914 
1915 u64 get_kvmclock_ns(struct kvm *kvm)
1916 {
1917 	struct kvm_arch *ka = &kvm->arch;
1918 	struct pvclock_vcpu_time_info hv_clock;
1919 	u64 ret;
1920 
1921 	spin_lock(&ka->pvclock_gtod_sync_lock);
1922 	if (!ka->use_master_clock) {
1923 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1924 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1925 	}
1926 
1927 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1928 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1929 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1930 
1931 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1932 	get_cpu();
1933 
1934 	if (__this_cpu_read(cpu_tsc_khz)) {
1935 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1936 				   &hv_clock.tsc_shift,
1937 				   &hv_clock.tsc_to_system_mul);
1938 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1939 	} else
1940 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1941 
1942 	put_cpu();
1943 
1944 	return ret;
1945 }
1946 
1947 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1948 {
1949 	struct kvm_vcpu_arch *vcpu = &v->arch;
1950 	struct pvclock_vcpu_time_info guest_hv_clock;
1951 
1952 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1953 		&guest_hv_clock, sizeof(guest_hv_clock))))
1954 		return;
1955 
1956 	/* This VCPU is paused, but it's legal for a guest to read another
1957 	 * VCPU's kvmclock, so we really have to follow the specification where
1958 	 * it says that version is odd if data is being modified, and even after
1959 	 * it is consistent.
1960 	 *
1961 	 * Version field updates must be kept separate.  This is because
1962 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1963 	 * writes within a string instruction are weakly ordered.  So there
1964 	 * are three writes overall.
1965 	 *
1966 	 * As a small optimization, only write the version field in the first
1967 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1968 	 * version field is the first in the struct.
1969 	 */
1970 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1971 
1972 	if (guest_hv_clock.version & 1)
1973 		++guest_hv_clock.version;  /* first time write, random junk */
1974 
1975 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1976 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1977 				&vcpu->hv_clock,
1978 				sizeof(vcpu->hv_clock.version));
1979 
1980 	smp_wmb();
1981 
1982 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1983 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1984 
1985 	if (vcpu->pvclock_set_guest_stopped_request) {
1986 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1987 		vcpu->pvclock_set_guest_stopped_request = false;
1988 	}
1989 
1990 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1991 
1992 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1993 				&vcpu->hv_clock,
1994 				sizeof(vcpu->hv_clock));
1995 
1996 	smp_wmb();
1997 
1998 	vcpu->hv_clock.version++;
1999 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2000 				&vcpu->hv_clock,
2001 				sizeof(vcpu->hv_clock.version));
2002 }
2003 
2004 static int kvm_guest_time_update(struct kvm_vcpu *v)
2005 {
2006 	unsigned long flags, tgt_tsc_khz;
2007 	struct kvm_vcpu_arch *vcpu = &v->arch;
2008 	struct kvm_arch *ka = &v->kvm->arch;
2009 	s64 kernel_ns;
2010 	u64 tsc_timestamp, host_tsc;
2011 	u8 pvclock_flags;
2012 	bool use_master_clock;
2013 
2014 	kernel_ns = 0;
2015 	host_tsc = 0;
2016 
2017 	/*
2018 	 * If the host uses TSC clock, then passthrough TSC as stable
2019 	 * to the guest.
2020 	 */
2021 	spin_lock(&ka->pvclock_gtod_sync_lock);
2022 	use_master_clock = ka->use_master_clock;
2023 	if (use_master_clock) {
2024 		host_tsc = ka->master_cycle_now;
2025 		kernel_ns = ka->master_kernel_ns;
2026 	}
2027 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2028 
2029 	/* Keep irq disabled to prevent changes to the clock */
2030 	local_irq_save(flags);
2031 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2032 	if (unlikely(tgt_tsc_khz == 0)) {
2033 		local_irq_restore(flags);
2034 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2035 		return 1;
2036 	}
2037 	if (!use_master_clock) {
2038 		host_tsc = rdtsc();
2039 		kernel_ns = ktime_get_boot_ns();
2040 	}
2041 
2042 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2043 
2044 	/*
2045 	 * We may have to catch up the TSC to match elapsed wall clock
2046 	 * time for two reasons, even if kvmclock is used.
2047 	 *   1) CPU could have been running below the maximum TSC rate
2048 	 *   2) Broken TSC compensation resets the base at each VCPU
2049 	 *      entry to avoid unknown leaps of TSC even when running
2050 	 *      again on the same CPU.  This may cause apparent elapsed
2051 	 *      time to disappear, and the guest to stand still or run
2052 	 *	very slowly.
2053 	 */
2054 	if (vcpu->tsc_catchup) {
2055 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2056 		if (tsc > tsc_timestamp) {
2057 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2058 			tsc_timestamp = tsc;
2059 		}
2060 	}
2061 
2062 	local_irq_restore(flags);
2063 
2064 	/* With all the info we got, fill in the values */
2065 
2066 	if (kvm_has_tsc_control)
2067 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2068 
2069 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2070 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2071 				   &vcpu->hv_clock.tsc_shift,
2072 				   &vcpu->hv_clock.tsc_to_system_mul);
2073 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2074 	}
2075 
2076 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2077 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2078 	vcpu->last_guest_tsc = tsc_timestamp;
2079 
2080 	/* If the host uses TSC clocksource, then it is stable */
2081 	pvclock_flags = 0;
2082 	if (use_master_clock)
2083 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2084 
2085 	vcpu->hv_clock.flags = pvclock_flags;
2086 
2087 	if (vcpu->pv_time_enabled)
2088 		kvm_setup_pvclock_page(v);
2089 	if (v == kvm_get_vcpu(v->kvm, 0))
2090 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2091 	return 0;
2092 }
2093 
2094 /*
2095  * kvmclock updates which are isolated to a given vcpu, such as
2096  * vcpu->cpu migration, should not allow system_timestamp from
2097  * the rest of the vcpus to remain static. Otherwise ntp frequency
2098  * correction applies to one vcpu's system_timestamp but not
2099  * the others.
2100  *
2101  * So in those cases, request a kvmclock update for all vcpus.
2102  * We need to rate-limit these requests though, as they can
2103  * considerably slow guests that have a large number of vcpus.
2104  * The time for a remote vcpu to update its kvmclock is bound
2105  * by the delay we use to rate-limit the updates.
2106  */
2107 
2108 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2109 
2110 static void kvmclock_update_fn(struct work_struct *work)
2111 {
2112 	int i;
2113 	struct delayed_work *dwork = to_delayed_work(work);
2114 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2115 					   kvmclock_update_work);
2116 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2117 	struct kvm_vcpu *vcpu;
2118 
2119 	kvm_for_each_vcpu(i, vcpu, kvm) {
2120 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2121 		kvm_vcpu_kick(vcpu);
2122 	}
2123 }
2124 
2125 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2126 {
2127 	struct kvm *kvm = v->kvm;
2128 
2129 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2130 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2131 					KVMCLOCK_UPDATE_DELAY);
2132 }
2133 
2134 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2135 
2136 static void kvmclock_sync_fn(struct work_struct *work)
2137 {
2138 	struct delayed_work *dwork = to_delayed_work(work);
2139 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2140 					   kvmclock_sync_work);
2141 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2142 
2143 	if (!kvmclock_periodic_sync)
2144 		return;
2145 
2146 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2147 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2148 					KVMCLOCK_SYNC_PERIOD);
2149 }
2150 
2151 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2152 {
2153 	u64 mcg_cap = vcpu->arch.mcg_cap;
2154 	unsigned bank_num = mcg_cap & 0xff;
2155 	u32 msr = msr_info->index;
2156 	u64 data = msr_info->data;
2157 
2158 	switch (msr) {
2159 	case MSR_IA32_MCG_STATUS:
2160 		vcpu->arch.mcg_status = data;
2161 		break;
2162 	case MSR_IA32_MCG_CTL:
2163 		if (!(mcg_cap & MCG_CTL_P))
2164 			return 1;
2165 		if (data != 0 && data != ~(u64)0)
2166 			return -1;
2167 		vcpu->arch.mcg_ctl = data;
2168 		break;
2169 	default:
2170 		if (msr >= MSR_IA32_MC0_CTL &&
2171 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2172 			u32 offset = msr - MSR_IA32_MC0_CTL;
2173 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2174 			 * some Linux kernels though clear bit 10 in bank 4 to
2175 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2176 			 * this to avoid an uncatched #GP in the guest
2177 			 */
2178 			if ((offset & 0x3) == 0 &&
2179 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2180 				return -1;
2181 			if (!msr_info->host_initiated &&
2182 				(offset & 0x3) == 1 && data != 0)
2183 				return -1;
2184 			vcpu->arch.mce_banks[offset] = data;
2185 			break;
2186 		}
2187 		return 1;
2188 	}
2189 	return 0;
2190 }
2191 
2192 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2193 {
2194 	struct kvm *kvm = vcpu->kvm;
2195 	int lm = is_long_mode(vcpu);
2196 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2197 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2198 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2199 		: kvm->arch.xen_hvm_config.blob_size_32;
2200 	u32 page_num = data & ~PAGE_MASK;
2201 	u64 page_addr = data & PAGE_MASK;
2202 	u8 *page;
2203 	int r;
2204 
2205 	r = -E2BIG;
2206 	if (page_num >= blob_size)
2207 		goto out;
2208 	r = -ENOMEM;
2209 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2210 	if (IS_ERR(page)) {
2211 		r = PTR_ERR(page);
2212 		goto out;
2213 	}
2214 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2215 		goto out_free;
2216 	r = 0;
2217 out_free:
2218 	kfree(page);
2219 out:
2220 	return r;
2221 }
2222 
2223 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2224 {
2225 	gpa_t gpa = data & ~0x3f;
2226 
2227 	/* Bits 3:5 are reserved, Should be zero */
2228 	if (data & 0x38)
2229 		return 1;
2230 
2231 	vcpu->arch.apf.msr_val = data;
2232 
2233 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2234 		kvm_clear_async_pf_completion_queue(vcpu);
2235 		kvm_async_pf_hash_reset(vcpu);
2236 		return 0;
2237 	}
2238 
2239 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2240 					sizeof(u32)))
2241 		return 1;
2242 
2243 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2244 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2245 	kvm_async_pf_wakeup_all(vcpu);
2246 	return 0;
2247 }
2248 
2249 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2250 {
2251 	vcpu->arch.pv_time_enabled = false;
2252 }
2253 
2254 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2255 {
2256 	++vcpu->stat.tlb_flush;
2257 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2258 }
2259 
2260 static void record_steal_time(struct kvm_vcpu *vcpu)
2261 {
2262 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2263 		return;
2264 
2265 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2266 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2267 		return;
2268 
2269 	/*
2270 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2271 	 * expensive IPIs.
2272 	 */
2273 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2274 		kvm_vcpu_flush_tlb(vcpu, false);
2275 
2276 	if (vcpu->arch.st.steal.version & 1)
2277 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2278 
2279 	vcpu->arch.st.steal.version += 1;
2280 
2281 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2282 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2283 
2284 	smp_wmb();
2285 
2286 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2287 		vcpu->arch.st.last_steal;
2288 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2289 
2290 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2291 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2292 
2293 	smp_wmb();
2294 
2295 	vcpu->arch.st.steal.version += 1;
2296 
2297 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2299 }
2300 
2301 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2302 {
2303 	bool pr = false;
2304 	u32 msr = msr_info->index;
2305 	u64 data = msr_info->data;
2306 
2307 	switch (msr) {
2308 	case MSR_AMD64_NB_CFG:
2309 	case MSR_IA32_UCODE_WRITE:
2310 	case MSR_VM_HSAVE_PA:
2311 	case MSR_AMD64_PATCH_LOADER:
2312 	case MSR_AMD64_BU_CFG2:
2313 	case MSR_AMD64_DC_CFG:
2314 		break;
2315 
2316 	case MSR_IA32_UCODE_REV:
2317 		if (msr_info->host_initiated)
2318 			vcpu->arch.microcode_version = data;
2319 		break;
2320 	case MSR_EFER:
2321 		return set_efer(vcpu, data);
2322 	case MSR_K7_HWCR:
2323 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2324 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2325 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2326 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2327 		if (data != 0) {
2328 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2329 				    data);
2330 			return 1;
2331 		}
2332 		break;
2333 	case MSR_FAM10H_MMIO_CONF_BASE:
2334 		if (data != 0) {
2335 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2336 				    "0x%llx\n", data);
2337 			return 1;
2338 		}
2339 		break;
2340 	case MSR_IA32_DEBUGCTLMSR:
2341 		if (!data) {
2342 			/* We support the non-activated case already */
2343 			break;
2344 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2345 			/* Values other than LBR and BTF are vendor-specific,
2346 			   thus reserved and should throw a #GP */
2347 			return 1;
2348 		}
2349 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2350 			    __func__, data);
2351 		break;
2352 	case 0x200 ... 0x2ff:
2353 		return kvm_mtrr_set_msr(vcpu, msr, data);
2354 	case MSR_IA32_APICBASE:
2355 		return kvm_set_apic_base(vcpu, msr_info);
2356 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2357 		return kvm_x2apic_msr_write(vcpu, msr, data);
2358 	case MSR_IA32_TSCDEADLINE:
2359 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2360 		break;
2361 	case MSR_IA32_TSC_ADJUST:
2362 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2363 			if (!msr_info->host_initiated) {
2364 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2365 				adjust_tsc_offset_guest(vcpu, adj);
2366 			}
2367 			vcpu->arch.ia32_tsc_adjust_msr = data;
2368 		}
2369 		break;
2370 	case MSR_IA32_MISC_ENABLE:
2371 		vcpu->arch.ia32_misc_enable_msr = data;
2372 		break;
2373 	case MSR_IA32_SMBASE:
2374 		if (!msr_info->host_initiated)
2375 			return 1;
2376 		vcpu->arch.smbase = data;
2377 		break;
2378 	case MSR_IA32_TSC:
2379 		kvm_write_tsc(vcpu, msr_info);
2380 		break;
2381 	case MSR_SMI_COUNT:
2382 		if (!msr_info->host_initiated)
2383 			return 1;
2384 		vcpu->arch.smi_count = data;
2385 		break;
2386 	case MSR_KVM_WALL_CLOCK_NEW:
2387 	case MSR_KVM_WALL_CLOCK:
2388 		vcpu->kvm->arch.wall_clock = data;
2389 		kvm_write_wall_clock(vcpu->kvm, data);
2390 		break;
2391 	case MSR_KVM_SYSTEM_TIME_NEW:
2392 	case MSR_KVM_SYSTEM_TIME: {
2393 		struct kvm_arch *ka = &vcpu->kvm->arch;
2394 
2395 		kvmclock_reset(vcpu);
2396 
2397 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2398 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2399 
2400 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2401 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2402 
2403 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2404 		}
2405 
2406 		vcpu->arch.time = data;
2407 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2408 
2409 		/* we verify if the enable bit is set... */
2410 		if (!(data & 1))
2411 			break;
2412 
2413 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2414 		     &vcpu->arch.pv_time, data & ~1ULL,
2415 		     sizeof(struct pvclock_vcpu_time_info)))
2416 			vcpu->arch.pv_time_enabled = false;
2417 		else
2418 			vcpu->arch.pv_time_enabled = true;
2419 
2420 		break;
2421 	}
2422 	case MSR_KVM_ASYNC_PF_EN:
2423 		if (kvm_pv_enable_async_pf(vcpu, data))
2424 			return 1;
2425 		break;
2426 	case MSR_KVM_STEAL_TIME:
2427 
2428 		if (unlikely(!sched_info_on()))
2429 			return 1;
2430 
2431 		if (data & KVM_STEAL_RESERVED_MASK)
2432 			return 1;
2433 
2434 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2435 						data & KVM_STEAL_VALID_BITS,
2436 						sizeof(struct kvm_steal_time)))
2437 			return 1;
2438 
2439 		vcpu->arch.st.msr_val = data;
2440 
2441 		if (!(data & KVM_MSR_ENABLED))
2442 			break;
2443 
2444 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2445 
2446 		break;
2447 	case MSR_KVM_PV_EOI_EN:
2448 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2449 			return 1;
2450 		break;
2451 
2452 	case MSR_IA32_MCG_CTL:
2453 	case MSR_IA32_MCG_STATUS:
2454 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2455 		return set_msr_mce(vcpu, msr_info);
2456 
2457 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2458 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2459 		pr = true; /* fall through */
2460 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2461 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2462 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2463 			return kvm_pmu_set_msr(vcpu, msr_info);
2464 
2465 		if (pr || data != 0)
2466 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2467 				    "0x%x data 0x%llx\n", msr, data);
2468 		break;
2469 	case MSR_K7_CLK_CTL:
2470 		/*
2471 		 * Ignore all writes to this no longer documented MSR.
2472 		 * Writes are only relevant for old K7 processors,
2473 		 * all pre-dating SVM, but a recommended workaround from
2474 		 * AMD for these chips. It is possible to specify the
2475 		 * affected processor models on the command line, hence
2476 		 * the need to ignore the workaround.
2477 		 */
2478 		break;
2479 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2480 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2481 	case HV_X64_MSR_CRASH_CTL:
2482 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2483 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2484 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2485 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2486 		return kvm_hv_set_msr_common(vcpu, msr, data,
2487 					     msr_info->host_initiated);
2488 	case MSR_IA32_BBL_CR_CTL3:
2489 		/* Drop writes to this legacy MSR -- see rdmsr
2490 		 * counterpart for further detail.
2491 		 */
2492 		if (report_ignored_msrs)
2493 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2494 				msr, data);
2495 		break;
2496 	case MSR_AMD64_OSVW_ID_LENGTH:
2497 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2498 			return 1;
2499 		vcpu->arch.osvw.length = data;
2500 		break;
2501 	case MSR_AMD64_OSVW_STATUS:
2502 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2503 			return 1;
2504 		vcpu->arch.osvw.status = data;
2505 		break;
2506 	case MSR_PLATFORM_INFO:
2507 		if (!msr_info->host_initiated ||
2508 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2509 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2510 		     cpuid_fault_enabled(vcpu)))
2511 			return 1;
2512 		vcpu->arch.msr_platform_info = data;
2513 		break;
2514 	case MSR_MISC_FEATURES_ENABLES:
2515 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2516 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2517 		     !supports_cpuid_fault(vcpu)))
2518 			return 1;
2519 		vcpu->arch.msr_misc_features_enables = data;
2520 		break;
2521 	default:
2522 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2523 			return xen_hvm_config(vcpu, data);
2524 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2525 			return kvm_pmu_set_msr(vcpu, msr_info);
2526 		if (!ignore_msrs) {
2527 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2528 				    msr, data);
2529 			return 1;
2530 		} else {
2531 			if (report_ignored_msrs)
2532 				vcpu_unimpl(vcpu,
2533 					"ignored wrmsr: 0x%x data 0x%llx\n",
2534 					msr, data);
2535 			break;
2536 		}
2537 	}
2538 	return 0;
2539 }
2540 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2541 
2542 
2543 /*
2544  * Reads an msr value (of 'msr_index') into 'pdata'.
2545  * Returns 0 on success, non-0 otherwise.
2546  * Assumes vcpu_load() was already called.
2547  */
2548 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2549 {
2550 	return kvm_x86_ops->get_msr(vcpu, msr);
2551 }
2552 EXPORT_SYMBOL_GPL(kvm_get_msr);
2553 
2554 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2555 {
2556 	u64 data;
2557 	u64 mcg_cap = vcpu->arch.mcg_cap;
2558 	unsigned bank_num = mcg_cap & 0xff;
2559 
2560 	switch (msr) {
2561 	case MSR_IA32_P5_MC_ADDR:
2562 	case MSR_IA32_P5_MC_TYPE:
2563 		data = 0;
2564 		break;
2565 	case MSR_IA32_MCG_CAP:
2566 		data = vcpu->arch.mcg_cap;
2567 		break;
2568 	case MSR_IA32_MCG_CTL:
2569 		if (!(mcg_cap & MCG_CTL_P))
2570 			return 1;
2571 		data = vcpu->arch.mcg_ctl;
2572 		break;
2573 	case MSR_IA32_MCG_STATUS:
2574 		data = vcpu->arch.mcg_status;
2575 		break;
2576 	default:
2577 		if (msr >= MSR_IA32_MC0_CTL &&
2578 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2579 			u32 offset = msr - MSR_IA32_MC0_CTL;
2580 			data = vcpu->arch.mce_banks[offset];
2581 			break;
2582 		}
2583 		return 1;
2584 	}
2585 	*pdata = data;
2586 	return 0;
2587 }
2588 
2589 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2590 {
2591 	switch (msr_info->index) {
2592 	case MSR_IA32_PLATFORM_ID:
2593 	case MSR_IA32_EBL_CR_POWERON:
2594 	case MSR_IA32_DEBUGCTLMSR:
2595 	case MSR_IA32_LASTBRANCHFROMIP:
2596 	case MSR_IA32_LASTBRANCHTOIP:
2597 	case MSR_IA32_LASTINTFROMIP:
2598 	case MSR_IA32_LASTINTTOIP:
2599 	case MSR_K8_SYSCFG:
2600 	case MSR_K8_TSEG_ADDR:
2601 	case MSR_K8_TSEG_MASK:
2602 	case MSR_K7_HWCR:
2603 	case MSR_VM_HSAVE_PA:
2604 	case MSR_K8_INT_PENDING_MSG:
2605 	case MSR_AMD64_NB_CFG:
2606 	case MSR_FAM10H_MMIO_CONF_BASE:
2607 	case MSR_AMD64_BU_CFG2:
2608 	case MSR_IA32_PERF_CTL:
2609 	case MSR_AMD64_DC_CFG:
2610 		msr_info->data = 0;
2611 		break;
2612 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2613 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2614 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2615 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2616 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2617 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2618 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2619 		msr_info->data = 0;
2620 		break;
2621 	case MSR_IA32_UCODE_REV:
2622 		msr_info->data = vcpu->arch.microcode_version;
2623 		break;
2624 	case MSR_IA32_TSC:
2625 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2626 		break;
2627 	case MSR_MTRRcap:
2628 	case 0x200 ... 0x2ff:
2629 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2630 	case 0xcd: /* fsb frequency */
2631 		msr_info->data = 3;
2632 		break;
2633 		/*
2634 		 * MSR_EBC_FREQUENCY_ID
2635 		 * Conservative value valid for even the basic CPU models.
2636 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2637 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2638 		 * and 266MHz for model 3, or 4. Set Core Clock
2639 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2640 		 * 31:24) even though these are only valid for CPU
2641 		 * models > 2, however guests may end up dividing or
2642 		 * multiplying by zero otherwise.
2643 		 */
2644 	case MSR_EBC_FREQUENCY_ID:
2645 		msr_info->data = 1 << 24;
2646 		break;
2647 	case MSR_IA32_APICBASE:
2648 		msr_info->data = kvm_get_apic_base(vcpu);
2649 		break;
2650 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2651 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2652 		break;
2653 	case MSR_IA32_TSCDEADLINE:
2654 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2655 		break;
2656 	case MSR_IA32_TSC_ADJUST:
2657 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2658 		break;
2659 	case MSR_IA32_MISC_ENABLE:
2660 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2661 		break;
2662 	case MSR_IA32_SMBASE:
2663 		if (!msr_info->host_initiated)
2664 			return 1;
2665 		msr_info->data = vcpu->arch.smbase;
2666 		break;
2667 	case MSR_SMI_COUNT:
2668 		msr_info->data = vcpu->arch.smi_count;
2669 		break;
2670 	case MSR_IA32_PERF_STATUS:
2671 		/* TSC increment by tick */
2672 		msr_info->data = 1000ULL;
2673 		/* CPU multiplier */
2674 		msr_info->data |= (((uint64_t)4ULL) << 40);
2675 		break;
2676 	case MSR_EFER:
2677 		msr_info->data = vcpu->arch.efer;
2678 		break;
2679 	case MSR_KVM_WALL_CLOCK:
2680 	case MSR_KVM_WALL_CLOCK_NEW:
2681 		msr_info->data = vcpu->kvm->arch.wall_clock;
2682 		break;
2683 	case MSR_KVM_SYSTEM_TIME:
2684 	case MSR_KVM_SYSTEM_TIME_NEW:
2685 		msr_info->data = vcpu->arch.time;
2686 		break;
2687 	case MSR_KVM_ASYNC_PF_EN:
2688 		msr_info->data = vcpu->arch.apf.msr_val;
2689 		break;
2690 	case MSR_KVM_STEAL_TIME:
2691 		msr_info->data = vcpu->arch.st.msr_val;
2692 		break;
2693 	case MSR_KVM_PV_EOI_EN:
2694 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2695 		break;
2696 	case MSR_IA32_P5_MC_ADDR:
2697 	case MSR_IA32_P5_MC_TYPE:
2698 	case MSR_IA32_MCG_CAP:
2699 	case MSR_IA32_MCG_CTL:
2700 	case MSR_IA32_MCG_STATUS:
2701 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2702 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2703 	case MSR_K7_CLK_CTL:
2704 		/*
2705 		 * Provide expected ramp-up count for K7. All other
2706 		 * are set to zero, indicating minimum divisors for
2707 		 * every field.
2708 		 *
2709 		 * This prevents guest kernels on AMD host with CPU
2710 		 * type 6, model 8 and higher from exploding due to
2711 		 * the rdmsr failing.
2712 		 */
2713 		msr_info->data = 0x20000000;
2714 		break;
2715 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2716 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2717 	case HV_X64_MSR_CRASH_CTL:
2718 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2719 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2720 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2721 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2722 		return kvm_hv_get_msr_common(vcpu,
2723 					     msr_info->index, &msr_info->data);
2724 		break;
2725 	case MSR_IA32_BBL_CR_CTL3:
2726 		/* This legacy MSR exists but isn't fully documented in current
2727 		 * silicon.  It is however accessed by winxp in very narrow
2728 		 * scenarios where it sets bit #19, itself documented as
2729 		 * a "reserved" bit.  Best effort attempt to source coherent
2730 		 * read data here should the balance of the register be
2731 		 * interpreted by the guest:
2732 		 *
2733 		 * L2 cache control register 3: 64GB range, 256KB size,
2734 		 * enabled, latency 0x1, configured
2735 		 */
2736 		msr_info->data = 0xbe702111;
2737 		break;
2738 	case MSR_AMD64_OSVW_ID_LENGTH:
2739 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2740 			return 1;
2741 		msr_info->data = vcpu->arch.osvw.length;
2742 		break;
2743 	case MSR_AMD64_OSVW_STATUS:
2744 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2745 			return 1;
2746 		msr_info->data = vcpu->arch.osvw.status;
2747 		break;
2748 	case MSR_PLATFORM_INFO:
2749 		msr_info->data = vcpu->arch.msr_platform_info;
2750 		break;
2751 	case MSR_MISC_FEATURES_ENABLES:
2752 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2753 		break;
2754 	default:
2755 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2756 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2757 		if (!ignore_msrs) {
2758 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2759 					       msr_info->index);
2760 			return 1;
2761 		} else {
2762 			if (report_ignored_msrs)
2763 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2764 					msr_info->index);
2765 			msr_info->data = 0;
2766 		}
2767 		break;
2768 	}
2769 	return 0;
2770 }
2771 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2772 
2773 /*
2774  * Read or write a bunch of msrs. All parameters are kernel addresses.
2775  *
2776  * @return number of msrs set successfully.
2777  */
2778 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2779 		    struct kvm_msr_entry *entries,
2780 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2781 				  unsigned index, u64 *data))
2782 {
2783 	int i;
2784 
2785 	for (i = 0; i < msrs->nmsrs; ++i)
2786 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2787 			break;
2788 
2789 	return i;
2790 }
2791 
2792 /*
2793  * Read or write a bunch of msrs. Parameters are user addresses.
2794  *
2795  * @return number of msrs set successfully.
2796  */
2797 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2798 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2799 				unsigned index, u64 *data),
2800 		  int writeback)
2801 {
2802 	struct kvm_msrs msrs;
2803 	struct kvm_msr_entry *entries;
2804 	int r, n;
2805 	unsigned size;
2806 
2807 	r = -EFAULT;
2808 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2809 		goto out;
2810 
2811 	r = -E2BIG;
2812 	if (msrs.nmsrs >= MAX_IO_MSRS)
2813 		goto out;
2814 
2815 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2816 	entries = memdup_user(user_msrs->entries, size);
2817 	if (IS_ERR(entries)) {
2818 		r = PTR_ERR(entries);
2819 		goto out;
2820 	}
2821 
2822 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2823 	if (r < 0)
2824 		goto out_free;
2825 
2826 	r = -EFAULT;
2827 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2828 		goto out_free;
2829 
2830 	r = n;
2831 
2832 out_free:
2833 	kfree(entries);
2834 out:
2835 	return r;
2836 }
2837 
2838 static inline bool kvm_can_mwait_in_guest(void)
2839 {
2840 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2841 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
2842 		boot_cpu_has(X86_FEATURE_ARAT);
2843 }
2844 
2845 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2846 {
2847 	int r = 0;
2848 
2849 	switch (ext) {
2850 	case KVM_CAP_IRQCHIP:
2851 	case KVM_CAP_HLT:
2852 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2853 	case KVM_CAP_SET_TSS_ADDR:
2854 	case KVM_CAP_EXT_CPUID:
2855 	case KVM_CAP_EXT_EMUL_CPUID:
2856 	case KVM_CAP_CLOCKSOURCE:
2857 	case KVM_CAP_PIT:
2858 	case KVM_CAP_NOP_IO_DELAY:
2859 	case KVM_CAP_MP_STATE:
2860 	case KVM_CAP_SYNC_MMU:
2861 	case KVM_CAP_USER_NMI:
2862 	case KVM_CAP_REINJECT_CONTROL:
2863 	case KVM_CAP_IRQ_INJECT_STATUS:
2864 	case KVM_CAP_IOEVENTFD:
2865 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2866 	case KVM_CAP_PIT2:
2867 	case KVM_CAP_PIT_STATE2:
2868 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2869 	case KVM_CAP_XEN_HVM:
2870 	case KVM_CAP_VCPU_EVENTS:
2871 	case KVM_CAP_HYPERV:
2872 	case KVM_CAP_HYPERV_VAPIC:
2873 	case KVM_CAP_HYPERV_SPIN:
2874 	case KVM_CAP_HYPERV_SYNIC:
2875 	case KVM_CAP_HYPERV_SYNIC2:
2876 	case KVM_CAP_HYPERV_VP_INDEX:
2877 	case KVM_CAP_HYPERV_EVENTFD:
2878 	case KVM_CAP_HYPERV_TLBFLUSH:
2879 	case KVM_CAP_PCI_SEGMENT:
2880 	case KVM_CAP_DEBUGREGS:
2881 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2882 	case KVM_CAP_XSAVE:
2883 	case KVM_CAP_ASYNC_PF:
2884 	case KVM_CAP_GET_TSC_KHZ:
2885 	case KVM_CAP_KVMCLOCK_CTRL:
2886 	case KVM_CAP_READONLY_MEM:
2887 	case KVM_CAP_HYPERV_TIME:
2888 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2889 	case KVM_CAP_TSC_DEADLINE_TIMER:
2890 	case KVM_CAP_ENABLE_CAP_VM:
2891 	case KVM_CAP_DISABLE_QUIRKS:
2892 	case KVM_CAP_SET_BOOT_CPU_ID:
2893  	case KVM_CAP_SPLIT_IRQCHIP:
2894 	case KVM_CAP_IMMEDIATE_EXIT:
2895 	case KVM_CAP_GET_MSR_FEATURES:
2896 		r = 1;
2897 		break;
2898 	case KVM_CAP_SYNC_REGS:
2899 		r = KVM_SYNC_X86_VALID_FIELDS;
2900 		break;
2901 	case KVM_CAP_ADJUST_CLOCK:
2902 		r = KVM_CLOCK_TSC_STABLE;
2903 		break;
2904 	case KVM_CAP_X86_DISABLE_EXITS:
2905 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2906 		if(kvm_can_mwait_in_guest())
2907 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
2908 		break;
2909 	case KVM_CAP_X86_SMM:
2910 		/* SMBASE is usually relocated above 1M on modern chipsets,
2911 		 * and SMM handlers might indeed rely on 4G segment limits,
2912 		 * so do not report SMM to be available if real mode is
2913 		 * emulated via vm86 mode.  Still, do not go to great lengths
2914 		 * to avoid userspace's usage of the feature, because it is a
2915 		 * fringe case that is not enabled except via specific settings
2916 		 * of the module parameters.
2917 		 */
2918 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2919 		break;
2920 	case KVM_CAP_VAPIC:
2921 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2922 		break;
2923 	case KVM_CAP_NR_VCPUS:
2924 		r = KVM_SOFT_MAX_VCPUS;
2925 		break;
2926 	case KVM_CAP_MAX_VCPUS:
2927 		r = KVM_MAX_VCPUS;
2928 		break;
2929 	case KVM_CAP_NR_MEMSLOTS:
2930 		r = KVM_USER_MEM_SLOTS;
2931 		break;
2932 	case KVM_CAP_PV_MMU:	/* obsolete */
2933 		r = 0;
2934 		break;
2935 	case KVM_CAP_MCE:
2936 		r = KVM_MAX_MCE_BANKS;
2937 		break;
2938 	case KVM_CAP_XCRS:
2939 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2940 		break;
2941 	case KVM_CAP_TSC_CONTROL:
2942 		r = kvm_has_tsc_control;
2943 		break;
2944 	case KVM_CAP_X2APIC_API:
2945 		r = KVM_X2APIC_API_VALID_FLAGS;
2946 		break;
2947 	default:
2948 		break;
2949 	}
2950 	return r;
2951 
2952 }
2953 
2954 long kvm_arch_dev_ioctl(struct file *filp,
2955 			unsigned int ioctl, unsigned long arg)
2956 {
2957 	void __user *argp = (void __user *)arg;
2958 	long r;
2959 
2960 	switch (ioctl) {
2961 	case KVM_GET_MSR_INDEX_LIST: {
2962 		struct kvm_msr_list __user *user_msr_list = argp;
2963 		struct kvm_msr_list msr_list;
2964 		unsigned n;
2965 
2966 		r = -EFAULT;
2967 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2968 			goto out;
2969 		n = msr_list.nmsrs;
2970 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2971 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2972 			goto out;
2973 		r = -E2BIG;
2974 		if (n < msr_list.nmsrs)
2975 			goto out;
2976 		r = -EFAULT;
2977 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2978 				 num_msrs_to_save * sizeof(u32)))
2979 			goto out;
2980 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2981 				 &emulated_msrs,
2982 				 num_emulated_msrs * sizeof(u32)))
2983 			goto out;
2984 		r = 0;
2985 		break;
2986 	}
2987 	case KVM_GET_SUPPORTED_CPUID:
2988 	case KVM_GET_EMULATED_CPUID: {
2989 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2990 		struct kvm_cpuid2 cpuid;
2991 
2992 		r = -EFAULT;
2993 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2994 			goto out;
2995 
2996 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2997 					    ioctl);
2998 		if (r)
2999 			goto out;
3000 
3001 		r = -EFAULT;
3002 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3003 			goto out;
3004 		r = 0;
3005 		break;
3006 	}
3007 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3008 		r = -EFAULT;
3009 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3010 				 sizeof(kvm_mce_cap_supported)))
3011 			goto out;
3012 		r = 0;
3013 		break;
3014 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3015 		struct kvm_msr_list __user *user_msr_list = argp;
3016 		struct kvm_msr_list msr_list;
3017 		unsigned int n;
3018 
3019 		r = -EFAULT;
3020 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3021 			goto out;
3022 		n = msr_list.nmsrs;
3023 		msr_list.nmsrs = num_msr_based_features;
3024 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3025 			goto out;
3026 		r = -E2BIG;
3027 		if (n < msr_list.nmsrs)
3028 			goto out;
3029 		r = -EFAULT;
3030 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3031 				 num_msr_based_features * sizeof(u32)))
3032 			goto out;
3033 		r = 0;
3034 		break;
3035 	}
3036 	case KVM_GET_MSRS:
3037 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3038 		break;
3039 	}
3040 	default:
3041 		r = -EINVAL;
3042 	}
3043 out:
3044 	return r;
3045 }
3046 
3047 static void wbinvd_ipi(void *garbage)
3048 {
3049 	wbinvd();
3050 }
3051 
3052 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3053 {
3054 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3055 }
3056 
3057 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3058 {
3059 	/* Address WBINVD may be executed by guest */
3060 	if (need_emulate_wbinvd(vcpu)) {
3061 		if (kvm_x86_ops->has_wbinvd_exit())
3062 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3063 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3064 			smp_call_function_single(vcpu->cpu,
3065 					wbinvd_ipi, NULL, 1);
3066 	}
3067 
3068 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3069 
3070 	/* Apply any externally detected TSC adjustments (due to suspend) */
3071 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3072 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3073 		vcpu->arch.tsc_offset_adjustment = 0;
3074 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3075 	}
3076 
3077 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3078 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3079 				rdtsc() - vcpu->arch.last_host_tsc;
3080 		if (tsc_delta < 0)
3081 			mark_tsc_unstable("KVM discovered backwards TSC");
3082 
3083 		if (kvm_check_tsc_unstable()) {
3084 			u64 offset = kvm_compute_tsc_offset(vcpu,
3085 						vcpu->arch.last_guest_tsc);
3086 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3087 			vcpu->arch.tsc_catchup = 1;
3088 		}
3089 
3090 		if (kvm_lapic_hv_timer_in_use(vcpu))
3091 			kvm_lapic_restart_hv_timer(vcpu);
3092 
3093 		/*
3094 		 * On a host with synchronized TSC, there is no need to update
3095 		 * kvmclock on vcpu->cpu migration
3096 		 */
3097 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3098 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3099 		if (vcpu->cpu != cpu)
3100 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3101 		vcpu->cpu = cpu;
3102 	}
3103 
3104 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3105 }
3106 
3107 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3108 {
3109 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3110 		return;
3111 
3112 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3113 
3114 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3115 			&vcpu->arch.st.steal.preempted,
3116 			offsetof(struct kvm_steal_time, preempted),
3117 			sizeof(vcpu->arch.st.steal.preempted));
3118 }
3119 
3120 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3121 {
3122 	int idx;
3123 
3124 	if (vcpu->preempted)
3125 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3126 
3127 	/*
3128 	 * Disable page faults because we're in atomic context here.
3129 	 * kvm_write_guest_offset_cached() would call might_fault()
3130 	 * that relies on pagefault_disable() to tell if there's a
3131 	 * bug. NOTE: the write to guest memory may not go through if
3132 	 * during postcopy live migration or if there's heavy guest
3133 	 * paging.
3134 	 */
3135 	pagefault_disable();
3136 	/*
3137 	 * kvm_memslots() will be called by
3138 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3139 	 */
3140 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3141 	kvm_steal_time_set_preempted(vcpu);
3142 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3143 	pagefault_enable();
3144 	kvm_x86_ops->vcpu_put(vcpu);
3145 	vcpu->arch.last_host_tsc = rdtsc();
3146 	/*
3147 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3148 	 * on every vmexit, but if not, we might have a stale dr6 from the
3149 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3150 	 */
3151 	set_debugreg(0, 6);
3152 }
3153 
3154 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3155 				    struct kvm_lapic_state *s)
3156 {
3157 	if (vcpu->arch.apicv_active)
3158 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3159 
3160 	return kvm_apic_get_state(vcpu, s);
3161 }
3162 
3163 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3164 				    struct kvm_lapic_state *s)
3165 {
3166 	int r;
3167 
3168 	r = kvm_apic_set_state(vcpu, s);
3169 	if (r)
3170 		return r;
3171 	update_cr8_intercept(vcpu);
3172 
3173 	return 0;
3174 }
3175 
3176 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3177 {
3178 	return (!lapic_in_kernel(vcpu) ||
3179 		kvm_apic_accept_pic_intr(vcpu));
3180 }
3181 
3182 /*
3183  * if userspace requested an interrupt window, check that the
3184  * interrupt window is open.
3185  *
3186  * No need to exit to userspace if we already have an interrupt queued.
3187  */
3188 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3189 {
3190 	return kvm_arch_interrupt_allowed(vcpu) &&
3191 		!kvm_cpu_has_interrupt(vcpu) &&
3192 		!kvm_event_needs_reinjection(vcpu) &&
3193 		kvm_cpu_accept_dm_intr(vcpu);
3194 }
3195 
3196 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3197 				    struct kvm_interrupt *irq)
3198 {
3199 	if (irq->irq >= KVM_NR_INTERRUPTS)
3200 		return -EINVAL;
3201 
3202 	if (!irqchip_in_kernel(vcpu->kvm)) {
3203 		kvm_queue_interrupt(vcpu, irq->irq, false);
3204 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3205 		return 0;
3206 	}
3207 
3208 	/*
3209 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3210 	 * fail for in-kernel 8259.
3211 	 */
3212 	if (pic_in_kernel(vcpu->kvm))
3213 		return -ENXIO;
3214 
3215 	if (vcpu->arch.pending_external_vector != -1)
3216 		return -EEXIST;
3217 
3218 	vcpu->arch.pending_external_vector = irq->irq;
3219 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3220 	return 0;
3221 }
3222 
3223 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3224 {
3225 	kvm_inject_nmi(vcpu);
3226 
3227 	return 0;
3228 }
3229 
3230 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3231 {
3232 	kvm_make_request(KVM_REQ_SMI, vcpu);
3233 
3234 	return 0;
3235 }
3236 
3237 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3238 					   struct kvm_tpr_access_ctl *tac)
3239 {
3240 	if (tac->flags)
3241 		return -EINVAL;
3242 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3243 	return 0;
3244 }
3245 
3246 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3247 					u64 mcg_cap)
3248 {
3249 	int r;
3250 	unsigned bank_num = mcg_cap & 0xff, bank;
3251 
3252 	r = -EINVAL;
3253 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3254 		goto out;
3255 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3256 		goto out;
3257 	r = 0;
3258 	vcpu->arch.mcg_cap = mcg_cap;
3259 	/* Init IA32_MCG_CTL to all 1s */
3260 	if (mcg_cap & MCG_CTL_P)
3261 		vcpu->arch.mcg_ctl = ~(u64)0;
3262 	/* Init IA32_MCi_CTL to all 1s */
3263 	for (bank = 0; bank < bank_num; bank++)
3264 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3265 
3266 	if (kvm_x86_ops->setup_mce)
3267 		kvm_x86_ops->setup_mce(vcpu);
3268 out:
3269 	return r;
3270 }
3271 
3272 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3273 				      struct kvm_x86_mce *mce)
3274 {
3275 	u64 mcg_cap = vcpu->arch.mcg_cap;
3276 	unsigned bank_num = mcg_cap & 0xff;
3277 	u64 *banks = vcpu->arch.mce_banks;
3278 
3279 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3280 		return -EINVAL;
3281 	/*
3282 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3283 	 * reporting is disabled
3284 	 */
3285 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3286 	    vcpu->arch.mcg_ctl != ~(u64)0)
3287 		return 0;
3288 	banks += 4 * mce->bank;
3289 	/*
3290 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3291 	 * reporting is disabled for the bank
3292 	 */
3293 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3294 		return 0;
3295 	if (mce->status & MCI_STATUS_UC) {
3296 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3297 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3298 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3299 			return 0;
3300 		}
3301 		if (banks[1] & MCI_STATUS_VAL)
3302 			mce->status |= MCI_STATUS_OVER;
3303 		banks[2] = mce->addr;
3304 		banks[3] = mce->misc;
3305 		vcpu->arch.mcg_status = mce->mcg_status;
3306 		banks[1] = mce->status;
3307 		kvm_queue_exception(vcpu, MC_VECTOR);
3308 	} else if (!(banks[1] & MCI_STATUS_VAL)
3309 		   || !(banks[1] & MCI_STATUS_UC)) {
3310 		if (banks[1] & MCI_STATUS_VAL)
3311 			mce->status |= MCI_STATUS_OVER;
3312 		banks[2] = mce->addr;
3313 		banks[3] = mce->misc;
3314 		banks[1] = mce->status;
3315 	} else
3316 		banks[1] |= MCI_STATUS_OVER;
3317 	return 0;
3318 }
3319 
3320 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3321 					       struct kvm_vcpu_events *events)
3322 {
3323 	process_nmi(vcpu);
3324 	/*
3325 	 * FIXME: pass injected and pending separately.  This is only
3326 	 * needed for nested virtualization, whose state cannot be
3327 	 * migrated yet.  For now we can combine them.
3328 	 */
3329 	events->exception.injected =
3330 		(vcpu->arch.exception.pending ||
3331 		 vcpu->arch.exception.injected) &&
3332 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3333 	events->exception.nr = vcpu->arch.exception.nr;
3334 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3335 	events->exception.pad = 0;
3336 	events->exception.error_code = vcpu->arch.exception.error_code;
3337 
3338 	events->interrupt.injected =
3339 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3340 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3341 	events->interrupt.soft = 0;
3342 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3343 
3344 	events->nmi.injected = vcpu->arch.nmi_injected;
3345 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3346 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3347 	events->nmi.pad = 0;
3348 
3349 	events->sipi_vector = 0; /* never valid when reporting to user space */
3350 
3351 	events->smi.smm = is_smm(vcpu);
3352 	events->smi.pending = vcpu->arch.smi_pending;
3353 	events->smi.smm_inside_nmi =
3354 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3355 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3356 
3357 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3358 			 | KVM_VCPUEVENT_VALID_SHADOW
3359 			 | KVM_VCPUEVENT_VALID_SMM);
3360 	memset(&events->reserved, 0, sizeof(events->reserved));
3361 }
3362 
3363 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3364 
3365 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3366 					      struct kvm_vcpu_events *events)
3367 {
3368 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3369 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3370 			      | KVM_VCPUEVENT_VALID_SHADOW
3371 			      | KVM_VCPUEVENT_VALID_SMM))
3372 		return -EINVAL;
3373 
3374 	if (events->exception.injected &&
3375 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3376 	     is_guest_mode(vcpu)))
3377 		return -EINVAL;
3378 
3379 	/* INITs are latched while in SMM */
3380 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3381 	    (events->smi.smm || events->smi.pending) &&
3382 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3383 		return -EINVAL;
3384 
3385 	process_nmi(vcpu);
3386 	vcpu->arch.exception.injected = false;
3387 	vcpu->arch.exception.pending = events->exception.injected;
3388 	vcpu->arch.exception.nr = events->exception.nr;
3389 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3390 	vcpu->arch.exception.error_code = events->exception.error_code;
3391 
3392 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3393 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3394 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3395 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3396 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3397 						  events->interrupt.shadow);
3398 
3399 	vcpu->arch.nmi_injected = events->nmi.injected;
3400 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3401 		vcpu->arch.nmi_pending = events->nmi.pending;
3402 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3403 
3404 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3405 	    lapic_in_kernel(vcpu))
3406 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3407 
3408 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3409 		u32 hflags = vcpu->arch.hflags;
3410 		if (events->smi.smm)
3411 			hflags |= HF_SMM_MASK;
3412 		else
3413 			hflags &= ~HF_SMM_MASK;
3414 		kvm_set_hflags(vcpu, hflags);
3415 
3416 		vcpu->arch.smi_pending = events->smi.pending;
3417 
3418 		if (events->smi.smm) {
3419 			if (events->smi.smm_inside_nmi)
3420 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3421 			else
3422 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3423 			if (lapic_in_kernel(vcpu)) {
3424 				if (events->smi.latched_init)
3425 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3426 				else
3427 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3428 			}
3429 		}
3430 	}
3431 
3432 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3433 
3434 	return 0;
3435 }
3436 
3437 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3438 					     struct kvm_debugregs *dbgregs)
3439 {
3440 	unsigned long val;
3441 
3442 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3443 	kvm_get_dr(vcpu, 6, &val);
3444 	dbgregs->dr6 = val;
3445 	dbgregs->dr7 = vcpu->arch.dr7;
3446 	dbgregs->flags = 0;
3447 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3448 }
3449 
3450 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3451 					    struct kvm_debugregs *dbgregs)
3452 {
3453 	if (dbgregs->flags)
3454 		return -EINVAL;
3455 
3456 	if (dbgregs->dr6 & ~0xffffffffull)
3457 		return -EINVAL;
3458 	if (dbgregs->dr7 & ~0xffffffffull)
3459 		return -EINVAL;
3460 
3461 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3462 	kvm_update_dr0123(vcpu);
3463 	vcpu->arch.dr6 = dbgregs->dr6;
3464 	kvm_update_dr6(vcpu);
3465 	vcpu->arch.dr7 = dbgregs->dr7;
3466 	kvm_update_dr7(vcpu);
3467 
3468 	return 0;
3469 }
3470 
3471 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3472 
3473 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3474 {
3475 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3476 	u64 xstate_bv = xsave->header.xfeatures;
3477 	u64 valid;
3478 
3479 	/*
3480 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3481 	 * leaves 0 and 1 in the loop below.
3482 	 */
3483 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3484 
3485 	/* Set XSTATE_BV */
3486 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3487 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3488 
3489 	/*
3490 	 * Copy each region from the possibly compacted offset to the
3491 	 * non-compacted offset.
3492 	 */
3493 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3494 	while (valid) {
3495 		u64 feature = valid & -valid;
3496 		int index = fls64(feature) - 1;
3497 		void *src = get_xsave_addr(xsave, feature);
3498 
3499 		if (src) {
3500 			u32 size, offset, ecx, edx;
3501 			cpuid_count(XSTATE_CPUID, index,
3502 				    &size, &offset, &ecx, &edx);
3503 			if (feature == XFEATURE_MASK_PKRU)
3504 				memcpy(dest + offset, &vcpu->arch.pkru,
3505 				       sizeof(vcpu->arch.pkru));
3506 			else
3507 				memcpy(dest + offset, src, size);
3508 
3509 		}
3510 
3511 		valid -= feature;
3512 	}
3513 }
3514 
3515 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3516 {
3517 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3518 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3519 	u64 valid;
3520 
3521 	/*
3522 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3523 	 * leaves 0 and 1 in the loop below.
3524 	 */
3525 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3526 
3527 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3528 	xsave->header.xfeatures = xstate_bv;
3529 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3530 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3531 
3532 	/*
3533 	 * Copy each region from the non-compacted offset to the
3534 	 * possibly compacted offset.
3535 	 */
3536 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3537 	while (valid) {
3538 		u64 feature = valid & -valid;
3539 		int index = fls64(feature) - 1;
3540 		void *dest = get_xsave_addr(xsave, feature);
3541 
3542 		if (dest) {
3543 			u32 size, offset, ecx, edx;
3544 			cpuid_count(XSTATE_CPUID, index,
3545 				    &size, &offset, &ecx, &edx);
3546 			if (feature == XFEATURE_MASK_PKRU)
3547 				memcpy(&vcpu->arch.pkru, src + offset,
3548 				       sizeof(vcpu->arch.pkru));
3549 			else
3550 				memcpy(dest, src + offset, size);
3551 		}
3552 
3553 		valid -= feature;
3554 	}
3555 }
3556 
3557 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3558 					 struct kvm_xsave *guest_xsave)
3559 {
3560 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3561 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3562 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3563 	} else {
3564 		memcpy(guest_xsave->region,
3565 			&vcpu->arch.guest_fpu.state.fxsave,
3566 			sizeof(struct fxregs_state));
3567 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3568 			XFEATURE_MASK_FPSSE;
3569 	}
3570 }
3571 
3572 #define XSAVE_MXCSR_OFFSET 24
3573 
3574 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3575 					struct kvm_xsave *guest_xsave)
3576 {
3577 	u64 xstate_bv =
3578 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3579 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3580 
3581 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3582 		/*
3583 		 * Here we allow setting states that are not present in
3584 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3585 		 * with old userspace.
3586 		 */
3587 		if (xstate_bv & ~kvm_supported_xcr0() ||
3588 			mxcsr & ~mxcsr_feature_mask)
3589 			return -EINVAL;
3590 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3591 	} else {
3592 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3593 			mxcsr & ~mxcsr_feature_mask)
3594 			return -EINVAL;
3595 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3596 			guest_xsave->region, sizeof(struct fxregs_state));
3597 	}
3598 	return 0;
3599 }
3600 
3601 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3602 					struct kvm_xcrs *guest_xcrs)
3603 {
3604 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3605 		guest_xcrs->nr_xcrs = 0;
3606 		return;
3607 	}
3608 
3609 	guest_xcrs->nr_xcrs = 1;
3610 	guest_xcrs->flags = 0;
3611 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3612 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3613 }
3614 
3615 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3616 				       struct kvm_xcrs *guest_xcrs)
3617 {
3618 	int i, r = 0;
3619 
3620 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3621 		return -EINVAL;
3622 
3623 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3624 		return -EINVAL;
3625 
3626 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3627 		/* Only support XCR0 currently */
3628 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3629 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3630 				guest_xcrs->xcrs[i].value);
3631 			break;
3632 		}
3633 	if (r)
3634 		r = -EINVAL;
3635 	return r;
3636 }
3637 
3638 /*
3639  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3640  * stopped by the hypervisor.  This function will be called from the host only.
3641  * EINVAL is returned when the host attempts to set the flag for a guest that
3642  * does not support pv clocks.
3643  */
3644 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3645 {
3646 	if (!vcpu->arch.pv_time_enabled)
3647 		return -EINVAL;
3648 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3649 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3650 	return 0;
3651 }
3652 
3653 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3654 				     struct kvm_enable_cap *cap)
3655 {
3656 	if (cap->flags)
3657 		return -EINVAL;
3658 
3659 	switch (cap->cap) {
3660 	case KVM_CAP_HYPERV_SYNIC2:
3661 		if (cap->args[0])
3662 			return -EINVAL;
3663 	case KVM_CAP_HYPERV_SYNIC:
3664 		if (!irqchip_in_kernel(vcpu->kvm))
3665 			return -EINVAL;
3666 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3667 					     KVM_CAP_HYPERV_SYNIC2);
3668 	default:
3669 		return -EINVAL;
3670 	}
3671 }
3672 
3673 long kvm_arch_vcpu_ioctl(struct file *filp,
3674 			 unsigned int ioctl, unsigned long arg)
3675 {
3676 	struct kvm_vcpu *vcpu = filp->private_data;
3677 	void __user *argp = (void __user *)arg;
3678 	int r;
3679 	union {
3680 		struct kvm_lapic_state *lapic;
3681 		struct kvm_xsave *xsave;
3682 		struct kvm_xcrs *xcrs;
3683 		void *buffer;
3684 	} u;
3685 
3686 	vcpu_load(vcpu);
3687 
3688 	u.buffer = NULL;
3689 	switch (ioctl) {
3690 	case KVM_GET_LAPIC: {
3691 		r = -EINVAL;
3692 		if (!lapic_in_kernel(vcpu))
3693 			goto out;
3694 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3695 
3696 		r = -ENOMEM;
3697 		if (!u.lapic)
3698 			goto out;
3699 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3700 		if (r)
3701 			goto out;
3702 		r = -EFAULT;
3703 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3704 			goto out;
3705 		r = 0;
3706 		break;
3707 	}
3708 	case KVM_SET_LAPIC: {
3709 		r = -EINVAL;
3710 		if (!lapic_in_kernel(vcpu))
3711 			goto out;
3712 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3713 		if (IS_ERR(u.lapic)) {
3714 			r = PTR_ERR(u.lapic);
3715 			goto out_nofree;
3716 		}
3717 
3718 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3719 		break;
3720 	}
3721 	case KVM_INTERRUPT: {
3722 		struct kvm_interrupt irq;
3723 
3724 		r = -EFAULT;
3725 		if (copy_from_user(&irq, argp, sizeof irq))
3726 			goto out;
3727 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3728 		break;
3729 	}
3730 	case KVM_NMI: {
3731 		r = kvm_vcpu_ioctl_nmi(vcpu);
3732 		break;
3733 	}
3734 	case KVM_SMI: {
3735 		r = kvm_vcpu_ioctl_smi(vcpu);
3736 		break;
3737 	}
3738 	case KVM_SET_CPUID: {
3739 		struct kvm_cpuid __user *cpuid_arg = argp;
3740 		struct kvm_cpuid cpuid;
3741 
3742 		r = -EFAULT;
3743 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3744 			goto out;
3745 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3746 		break;
3747 	}
3748 	case KVM_SET_CPUID2: {
3749 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3750 		struct kvm_cpuid2 cpuid;
3751 
3752 		r = -EFAULT;
3753 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3754 			goto out;
3755 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3756 					      cpuid_arg->entries);
3757 		break;
3758 	}
3759 	case KVM_GET_CPUID2: {
3760 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3761 		struct kvm_cpuid2 cpuid;
3762 
3763 		r = -EFAULT;
3764 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3765 			goto out;
3766 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3767 					      cpuid_arg->entries);
3768 		if (r)
3769 			goto out;
3770 		r = -EFAULT;
3771 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3772 			goto out;
3773 		r = 0;
3774 		break;
3775 	}
3776 	case KVM_GET_MSRS: {
3777 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3778 		r = msr_io(vcpu, argp, do_get_msr, 1);
3779 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3780 		break;
3781 	}
3782 	case KVM_SET_MSRS: {
3783 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3784 		r = msr_io(vcpu, argp, do_set_msr, 0);
3785 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3786 		break;
3787 	}
3788 	case KVM_TPR_ACCESS_REPORTING: {
3789 		struct kvm_tpr_access_ctl tac;
3790 
3791 		r = -EFAULT;
3792 		if (copy_from_user(&tac, argp, sizeof tac))
3793 			goto out;
3794 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3795 		if (r)
3796 			goto out;
3797 		r = -EFAULT;
3798 		if (copy_to_user(argp, &tac, sizeof tac))
3799 			goto out;
3800 		r = 0;
3801 		break;
3802 	};
3803 	case KVM_SET_VAPIC_ADDR: {
3804 		struct kvm_vapic_addr va;
3805 		int idx;
3806 
3807 		r = -EINVAL;
3808 		if (!lapic_in_kernel(vcpu))
3809 			goto out;
3810 		r = -EFAULT;
3811 		if (copy_from_user(&va, argp, sizeof va))
3812 			goto out;
3813 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3814 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3815 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3816 		break;
3817 	}
3818 	case KVM_X86_SETUP_MCE: {
3819 		u64 mcg_cap;
3820 
3821 		r = -EFAULT;
3822 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3823 			goto out;
3824 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3825 		break;
3826 	}
3827 	case KVM_X86_SET_MCE: {
3828 		struct kvm_x86_mce mce;
3829 
3830 		r = -EFAULT;
3831 		if (copy_from_user(&mce, argp, sizeof mce))
3832 			goto out;
3833 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3834 		break;
3835 	}
3836 	case KVM_GET_VCPU_EVENTS: {
3837 		struct kvm_vcpu_events events;
3838 
3839 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3840 
3841 		r = -EFAULT;
3842 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3843 			break;
3844 		r = 0;
3845 		break;
3846 	}
3847 	case KVM_SET_VCPU_EVENTS: {
3848 		struct kvm_vcpu_events events;
3849 
3850 		r = -EFAULT;
3851 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3852 			break;
3853 
3854 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3855 		break;
3856 	}
3857 	case KVM_GET_DEBUGREGS: {
3858 		struct kvm_debugregs dbgregs;
3859 
3860 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3861 
3862 		r = -EFAULT;
3863 		if (copy_to_user(argp, &dbgregs,
3864 				 sizeof(struct kvm_debugregs)))
3865 			break;
3866 		r = 0;
3867 		break;
3868 	}
3869 	case KVM_SET_DEBUGREGS: {
3870 		struct kvm_debugregs dbgregs;
3871 
3872 		r = -EFAULT;
3873 		if (copy_from_user(&dbgregs, argp,
3874 				   sizeof(struct kvm_debugregs)))
3875 			break;
3876 
3877 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3878 		break;
3879 	}
3880 	case KVM_GET_XSAVE: {
3881 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3882 		r = -ENOMEM;
3883 		if (!u.xsave)
3884 			break;
3885 
3886 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3887 
3888 		r = -EFAULT;
3889 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3890 			break;
3891 		r = 0;
3892 		break;
3893 	}
3894 	case KVM_SET_XSAVE: {
3895 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3896 		if (IS_ERR(u.xsave)) {
3897 			r = PTR_ERR(u.xsave);
3898 			goto out_nofree;
3899 		}
3900 
3901 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3902 		break;
3903 	}
3904 	case KVM_GET_XCRS: {
3905 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3906 		r = -ENOMEM;
3907 		if (!u.xcrs)
3908 			break;
3909 
3910 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3911 
3912 		r = -EFAULT;
3913 		if (copy_to_user(argp, u.xcrs,
3914 				 sizeof(struct kvm_xcrs)))
3915 			break;
3916 		r = 0;
3917 		break;
3918 	}
3919 	case KVM_SET_XCRS: {
3920 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3921 		if (IS_ERR(u.xcrs)) {
3922 			r = PTR_ERR(u.xcrs);
3923 			goto out_nofree;
3924 		}
3925 
3926 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3927 		break;
3928 	}
3929 	case KVM_SET_TSC_KHZ: {
3930 		u32 user_tsc_khz;
3931 
3932 		r = -EINVAL;
3933 		user_tsc_khz = (u32)arg;
3934 
3935 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3936 			goto out;
3937 
3938 		if (user_tsc_khz == 0)
3939 			user_tsc_khz = tsc_khz;
3940 
3941 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3942 			r = 0;
3943 
3944 		goto out;
3945 	}
3946 	case KVM_GET_TSC_KHZ: {
3947 		r = vcpu->arch.virtual_tsc_khz;
3948 		goto out;
3949 	}
3950 	case KVM_KVMCLOCK_CTRL: {
3951 		r = kvm_set_guest_paused(vcpu);
3952 		goto out;
3953 	}
3954 	case KVM_ENABLE_CAP: {
3955 		struct kvm_enable_cap cap;
3956 
3957 		r = -EFAULT;
3958 		if (copy_from_user(&cap, argp, sizeof(cap)))
3959 			goto out;
3960 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3961 		break;
3962 	}
3963 	default:
3964 		r = -EINVAL;
3965 	}
3966 out:
3967 	kfree(u.buffer);
3968 out_nofree:
3969 	vcpu_put(vcpu);
3970 	return r;
3971 }
3972 
3973 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3974 {
3975 	return VM_FAULT_SIGBUS;
3976 }
3977 
3978 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3979 {
3980 	int ret;
3981 
3982 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3983 		return -EINVAL;
3984 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3985 	return ret;
3986 }
3987 
3988 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3989 					      u64 ident_addr)
3990 {
3991 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3992 }
3993 
3994 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3995 					  u32 kvm_nr_mmu_pages)
3996 {
3997 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3998 		return -EINVAL;
3999 
4000 	mutex_lock(&kvm->slots_lock);
4001 
4002 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4003 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4004 
4005 	mutex_unlock(&kvm->slots_lock);
4006 	return 0;
4007 }
4008 
4009 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4010 {
4011 	return kvm->arch.n_max_mmu_pages;
4012 }
4013 
4014 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4015 {
4016 	struct kvm_pic *pic = kvm->arch.vpic;
4017 	int r;
4018 
4019 	r = 0;
4020 	switch (chip->chip_id) {
4021 	case KVM_IRQCHIP_PIC_MASTER:
4022 		memcpy(&chip->chip.pic, &pic->pics[0],
4023 			sizeof(struct kvm_pic_state));
4024 		break;
4025 	case KVM_IRQCHIP_PIC_SLAVE:
4026 		memcpy(&chip->chip.pic, &pic->pics[1],
4027 			sizeof(struct kvm_pic_state));
4028 		break;
4029 	case KVM_IRQCHIP_IOAPIC:
4030 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4031 		break;
4032 	default:
4033 		r = -EINVAL;
4034 		break;
4035 	}
4036 	return r;
4037 }
4038 
4039 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4040 {
4041 	struct kvm_pic *pic = kvm->arch.vpic;
4042 	int r;
4043 
4044 	r = 0;
4045 	switch (chip->chip_id) {
4046 	case KVM_IRQCHIP_PIC_MASTER:
4047 		spin_lock(&pic->lock);
4048 		memcpy(&pic->pics[0], &chip->chip.pic,
4049 			sizeof(struct kvm_pic_state));
4050 		spin_unlock(&pic->lock);
4051 		break;
4052 	case KVM_IRQCHIP_PIC_SLAVE:
4053 		spin_lock(&pic->lock);
4054 		memcpy(&pic->pics[1], &chip->chip.pic,
4055 			sizeof(struct kvm_pic_state));
4056 		spin_unlock(&pic->lock);
4057 		break;
4058 	case KVM_IRQCHIP_IOAPIC:
4059 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4060 		break;
4061 	default:
4062 		r = -EINVAL;
4063 		break;
4064 	}
4065 	kvm_pic_update_irq(pic);
4066 	return r;
4067 }
4068 
4069 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4070 {
4071 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4072 
4073 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4074 
4075 	mutex_lock(&kps->lock);
4076 	memcpy(ps, &kps->channels, sizeof(*ps));
4077 	mutex_unlock(&kps->lock);
4078 	return 0;
4079 }
4080 
4081 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4082 {
4083 	int i;
4084 	struct kvm_pit *pit = kvm->arch.vpit;
4085 
4086 	mutex_lock(&pit->pit_state.lock);
4087 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4088 	for (i = 0; i < 3; i++)
4089 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4090 	mutex_unlock(&pit->pit_state.lock);
4091 	return 0;
4092 }
4093 
4094 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4095 {
4096 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4097 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4098 		sizeof(ps->channels));
4099 	ps->flags = kvm->arch.vpit->pit_state.flags;
4100 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4101 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4102 	return 0;
4103 }
4104 
4105 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4106 {
4107 	int start = 0;
4108 	int i;
4109 	u32 prev_legacy, cur_legacy;
4110 	struct kvm_pit *pit = kvm->arch.vpit;
4111 
4112 	mutex_lock(&pit->pit_state.lock);
4113 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4114 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4115 	if (!prev_legacy && cur_legacy)
4116 		start = 1;
4117 	memcpy(&pit->pit_state.channels, &ps->channels,
4118 	       sizeof(pit->pit_state.channels));
4119 	pit->pit_state.flags = ps->flags;
4120 	for (i = 0; i < 3; i++)
4121 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4122 				   start && i == 0);
4123 	mutex_unlock(&pit->pit_state.lock);
4124 	return 0;
4125 }
4126 
4127 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4128 				 struct kvm_reinject_control *control)
4129 {
4130 	struct kvm_pit *pit = kvm->arch.vpit;
4131 
4132 	if (!pit)
4133 		return -ENXIO;
4134 
4135 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4136 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4137 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4138 	 */
4139 	mutex_lock(&pit->pit_state.lock);
4140 	kvm_pit_set_reinject(pit, control->pit_reinject);
4141 	mutex_unlock(&pit->pit_state.lock);
4142 
4143 	return 0;
4144 }
4145 
4146 /**
4147  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4148  * @kvm: kvm instance
4149  * @log: slot id and address to which we copy the log
4150  *
4151  * Steps 1-4 below provide general overview of dirty page logging. See
4152  * kvm_get_dirty_log_protect() function description for additional details.
4153  *
4154  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4155  * always flush the TLB (step 4) even if previous step failed  and the dirty
4156  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4157  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4158  * writes will be marked dirty for next log read.
4159  *
4160  *   1. Take a snapshot of the bit and clear it if needed.
4161  *   2. Write protect the corresponding page.
4162  *   3. Copy the snapshot to the userspace.
4163  *   4. Flush TLB's if needed.
4164  */
4165 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4166 {
4167 	bool is_dirty = false;
4168 	int r;
4169 
4170 	mutex_lock(&kvm->slots_lock);
4171 
4172 	/*
4173 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4174 	 */
4175 	if (kvm_x86_ops->flush_log_dirty)
4176 		kvm_x86_ops->flush_log_dirty(kvm);
4177 
4178 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4179 
4180 	/*
4181 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4182 	 * kvm_mmu_slot_remove_write_access().
4183 	 */
4184 	lockdep_assert_held(&kvm->slots_lock);
4185 	if (is_dirty)
4186 		kvm_flush_remote_tlbs(kvm);
4187 
4188 	mutex_unlock(&kvm->slots_lock);
4189 	return r;
4190 }
4191 
4192 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4193 			bool line_status)
4194 {
4195 	if (!irqchip_in_kernel(kvm))
4196 		return -ENXIO;
4197 
4198 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4199 					irq_event->irq, irq_event->level,
4200 					line_status);
4201 	return 0;
4202 }
4203 
4204 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4205 				   struct kvm_enable_cap *cap)
4206 {
4207 	int r;
4208 
4209 	if (cap->flags)
4210 		return -EINVAL;
4211 
4212 	switch (cap->cap) {
4213 	case KVM_CAP_DISABLE_QUIRKS:
4214 		kvm->arch.disabled_quirks = cap->args[0];
4215 		r = 0;
4216 		break;
4217 	case KVM_CAP_SPLIT_IRQCHIP: {
4218 		mutex_lock(&kvm->lock);
4219 		r = -EINVAL;
4220 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4221 			goto split_irqchip_unlock;
4222 		r = -EEXIST;
4223 		if (irqchip_in_kernel(kvm))
4224 			goto split_irqchip_unlock;
4225 		if (kvm->created_vcpus)
4226 			goto split_irqchip_unlock;
4227 		r = kvm_setup_empty_irq_routing(kvm);
4228 		if (r)
4229 			goto split_irqchip_unlock;
4230 		/* Pairs with irqchip_in_kernel. */
4231 		smp_wmb();
4232 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4233 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4234 		r = 0;
4235 split_irqchip_unlock:
4236 		mutex_unlock(&kvm->lock);
4237 		break;
4238 	}
4239 	case KVM_CAP_X2APIC_API:
4240 		r = -EINVAL;
4241 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4242 			break;
4243 
4244 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4245 			kvm->arch.x2apic_format = true;
4246 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4247 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4248 
4249 		r = 0;
4250 		break;
4251 	case KVM_CAP_X86_DISABLE_EXITS:
4252 		r = -EINVAL;
4253 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4254 			break;
4255 
4256 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4257 			kvm_can_mwait_in_guest())
4258 			kvm->arch.mwait_in_guest = true;
4259 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4260 			kvm->arch.hlt_in_guest = true;
4261 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4262 			kvm->arch.pause_in_guest = true;
4263 		r = 0;
4264 		break;
4265 	default:
4266 		r = -EINVAL;
4267 		break;
4268 	}
4269 	return r;
4270 }
4271 
4272 long kvm_arch_vm_ioctl(struct file *filp,
4273 		       unsigned int ioctl, unsigned long arg)
4274 {
4275 	struct kvm *kvm = filp->private_data;
4276 	void __user *argp = (void __user *)arg;
4277 	int r = -ENOTTY;
4278 	/*
4279 	 * This union makes it completely explicit to gcc-3.x
4280 	 * that these two variables' stack usage should be
4281 	 * combined, not added together.
4282 	 */
4283 	union {
4284 		struct kvm_pit_state ps;
4285 		struct kvm_pit_state2 ps2;
4286 		struct kvm_pit_config pit_config;
4287 	} u;
4288 
4289 	switch (ioctl) {
4290 	case KVM_SET_TSS_ADDR:
4291 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4292 		break;
4293 	case KVM_SET_IDENTITY_MAP_ADDR: {
4294 		u64 ident_addr;
4295 
4296 		mutex_lock(&kvm->lock);
4297 		r = -EINVAL;
4298 		if (kvm->created_vcpus)
4299 			goto set_identity_unlock;
4300 		r = -EFAULT;
4301 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4302 			goto set_identity_unlock;
4303 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4304 set_identity_unlock:
4305 		mutex_unlock(&kvm->lock);
4306 		break;
4307 	}
4308 	case KVM_SET_NR_MMU_PAGES:
4309 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4310 		break;
4311 	case KVM_GET_NR_MMU_PAGES:
4312 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4313 		break;
4314 	case KVM_CREATE_IRQCHIP: {
4315 		mutex_lock(&kvm->lock);
4316 
4317 		r = -EEXIST;
4318 		if (irqchip_in_kernel(kvm))
4319 			goto create_irqchip_unlock;
4320 
4321 		r = -EINVAL;
4322 		if (kvm->created_vcpus)
4323 			goto create_irqchip_unlock;
4324 
4325 		r = kvm_pic_init(kvm);
4326 		if (r)
4327 			goto create_irqchip_unlock;
4328 
4329 		r = kvm_ioapic_init(kvm);
4330 		if (r) {
4331 			kvm_pic_destroy(kvm);
4332 			goto create_irqchip_unlock;
4333 		}
4334 
4335 		r = kvm_setup_default_irq_routing(kvm);
4336 		if (r) {
4337 			kvm_ioapic_destroy(kvm);
4338 			kvm_pic_destroy(kvm);
4339 			goto create_irqchip_unlock;
4340 		}
4341 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4342 		smp_wmb();
4343 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4344 	create_irqchip_unlock:
4345 		mutex_unlock(&kvm->lock);
4346 		break;
4347 	}
4348 	case KVM_CREATE_PIT:
4349 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4350 		goto create_pit;
4351 	case KVM_CREATE_PIT2:
4352 		r = -EFAULT;
4353 		if (copy_from_user(&u.pit_config, argp,
4354 				   sizeof(struct kvm_pit_config)))
4355 			goto out;
4356 	create_pit:
4357 		mutex_lock(&kvm->lock);
4358 		r = -EEXIST;
4359 		if (kvm->arch.vpit)
4360 			goto create_pit_unlock;
4361 		r = -ENOMEM;
4362 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4363 		if (kvm->arch.vpit)
4364 			r = 0;
4365 	create_pit_unlock:
4366 		mutex_unlock(&kvm->lock);
4367 		break;
4368 	case KVM_GET_IRQCHIP: {
4369 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4370 		struct kvm_irqchip *chip;
4371 
4372 		chip = memdup_user(argp, sizeof(*chip));
4373 		if (IS_ERR(chip)) {
4374 			r = PTR_ERR(chip);
4375 			goto out;
4376 		}
4377 
4378 		r = -ENXIO;
4379 		if (!irqchip_kernel(kvm))
4380 			goto get_irqchip_out;
4381 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4382 		if (r)
4383 			goto get_irqchip_out;
4384 		r = -EFAULT;
4385 		if (copy_to_user(argp, chip, sizeof *chip))
4386 			goto get_irqchip_out;
4387 		r = 0;
4388 	get_irqchip_out:
4389 		kfree(chip);
4390 		break;
4391 	}
4392 	case KVM_SET_IRQCHIP: {
4393 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4394 		struct kvm_irqchip *chip;
4395 
4396 		chip = memdup_user(argp, sizeof(*chip));
4397 		if (IS_ERR(chip)) {
4398 			r = PTR_ERR(chip);
4399 			goto out;
4400 		}
4401 
4402 		r = -ENXIO;
4403 		if (!irqchip_kernel(kvm))
4404 			goto set_irqchip_out;
4405 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4406 		if (r)
4407 			goto set_irqchip_out;
4408 		r = 0;
4409 	set_irqchip_out:
4410 		kfree(chip);
4411 		break;
4412 	}
4413 	case KVM_GET_PIT: {
4414 		r = -EFAULT;
4415 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4416 			goto out;
4417 		r = -ENXIO;
4418 		if (!kvm->arch.vpit)
4419 			goto out;
4420 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4421 		if (r)
4422 			goto out;
4423 		r = -EFAULT;
4424 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4425 			goto out;
4426 		r = 0;
4427 		break;
4428 	}
4429 	case KVM_SET_PIT: {
4430 		r = -EFAULT;
4431 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4432 			goto out;
4433 		r = -ENXIO;
4434 		if (!kvm->arch.vpit)
4435 			goto out;
4436 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4437 		break;
4438 	}
4439 	case KVM_GET_PIT2: {
4440 		r = -ENXIO;
4441 		if (!kvm->arch.vpit)
4442 			goto out;
4443 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4444 		if (r)
4445 			goto out;
4446 		r = -EFAULT;
4447 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4448 			goto out;
4449 		r = 0;
4450 		break;
4451 	}
4452 	case KVM_SET_PIT2: {
4453 		r = -EFAULT;
4454 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4455 			goto out;
4456 		r = -ENXIO;
4457 		if (!kvm->arch.vpit)
4458 			goto out;
4459 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4460 		break;
4461 	}
4462 	case KVM_REINJECT_CONTROL: {
4463 		struct kvm_reinject_control control;
4464 		r =  -EFAULT;
4465 		if (copy_from_user(&control, argp, sizeof(control)))
4466 			goto out;
4467 		r = kvm_vm_ioctl_reinject(kvm, &control);
4468 		break;
4469 	}
4470 	case KVM_SET_BOOT_CPU_ID:
4471 		r = 0;
4472 		mutex_lock(&kvm->lock);
4473 		if (kvm->created_vcpus)
4474 			r = -EBUSY;
4475 		else
4476 			kvm->arch.bsp_vcpu_id = arg;
4477 		mutex_unlock(&kvm->lock);
4478 		break;
4479 	case KVM_XEN_HVM_CONFIG: {
4480 		struct kvm_xen_hvm_config xhc;
4481 		r = -EFAULT;
4482 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4483 			goto out;
4484 		r = -EINVAL;
4485 		if (xhc.flags)
4486 			goto out;
4487 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4488 		r = 0;
4489 		break;
4490 	}
4491 	case KVM_SET_CLOCK: {
4492 		struct kvm_clock_data user_ns;
4493 		u64 now_ns;
4494 
4495 		r = -EFAULT;
4496 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4497 			goto out;
4498 
4499 		r = -EINVAL;
4500 		if (user_ns.flags)
4501 			goto out;
4502 
4503 		r = 0;
4504 		/*
4505 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4506 		 * kvm_gen_update_masterclock() can be cut down to locked
4507 		 * pvclock_update_vm_gtod_copy().
4508 		 */
4509 		kvm_gen_update_masterclock(kvm);
4510 		now_ns = get_kvmclock_ns(kvm);
4511 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4512 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4513 		break;
4514 	}
4515 	case KVM_GET_CLOCK: {
4516 		struct kvm_clock_data user_ns;
4517 		u64 now_ns;
4518 
4519 		now_ns = get_kvmclock_ns(kvm);
4520 		user_ns.clock = now_ns;
4521 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4522 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4523 
4524 		r = -EFAULT;
4525 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4526 			goto out;
4527 		r = 0;
4528 		break;
4529 	}
4530 	case KVM_ENABLE_CAP: {
4531 		struct kvm_enable_cap cap;
4532 
4533 		r = -EFAULT;
4534 		if (copy_from_user(&cap, argp, sizeof(cap)))
4535 			goto out;
4536 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4537 		break;
4538 	}
4539 	case KVM_MEMORY_ENCRYPT_OP: {
4540 		r = -ENOTTY;
4541 		if (kvm_x86_ops->mem_enc_op)
4542 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4543 		break;
4544 	}
4545 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4546 		struct kvm_enc_region region;
4547 
4548 		r = -EFAULT;
4549 		if (copy_from_user(&region, argp, sizeof(region)))
4550 			goto out;
4551 
4552 		r = -ENOTTY;
4553 		if (kvm_x86_ops->mem_enc_reg_region)
4554 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4555 		break;
4556 	}
4557 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4558 		struct kvm_enc_region region;
4559 
4560 		r = -EFAULT;
4561 		if (copy_from_user(&region, argp, sizeof(region)))
4562 			goto out;
4563 
4564 		r = -ENOTTY;
4565 		if (kvm_x86_ops->mem_enc_unreg_region)
4566 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4567 		break;
4568 	}
4569 	case KVM_HYPERV_EVENTFD: {
4570 		struct kvm_hyperv_eventfd hvevfd;
4571 
4572 		r = -EFAULT;
4573 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4574 			goto out;
4575 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4576 		break;
4577 	}
4578 	default:
4579 		r = -ENOTTY;
4580 	}
4581 out:
4582 	return r;
4583 }
4584 
4585 static void kvm_init_msr_list(void)
4586 {
4587 	u32 dummy[2];
4588 	unsigned i, j;
4589 
4590 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4591 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4592 			continue;
4593 
4594 		/*
4595 		 * Even MSRs that are valid in the host may not be exposed
4596 		 * to the guests in some cases.
4597 		 */
4598 		switch (msrs_to_save[i]) {
4599 		case MSR_IA32_BNDCFGS:
4600 			if (!kvm_x86_ops->mpx_supported())
4601 				continue;
4602 			break;
4603 		case MSR_TSC_AUX:
4604 			if (!kvm_x86_ops->rdtscp_supported())
4605 				continue;
4606 			break;
4607 		default:
4608 			break;
4609 		}
4610 
4611 		if (j < i)
4612 			msrs_to_save[j] = msrs_to_save[i];
4613 		j++;
4614 	}
4615 	num_msrs_to_save = j;
4616 
4617 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4618 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4619 			continue;
4620 
4621 		if (j < i)
4622 			emulated_msrs[j] = emulated_msrs[i];
4623 		j++;
4624 	}
4625 	num_emulated_msrs = j;
4626 
4627 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4628 		struct kvm_msr_entry msr;
4629 
4630 		msr.index = msr_based_features[i];
4631 		if (kvm_get_msr_feature(&msr))
4632 			continue;
4633 
4634 		if (j < i)
4635 			msr_based_features[j] = msr_based_features[i];
4636 		j++;
4637 	}
4638 	num_msr_based_features = j;
4639 }
4640 
4641 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4642 			   const void *v)
4643 {
4644 	int handled = 0;
4645 	int n;
4646 
4647 	do {
4648 		n = min(len, 8);
4649 		if (!(lapic_in_kernel(vcpu) &&
4650 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4651 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4652 			break;
4653 		handled += n;
4654 		addr += n;
4655 		len -= n;
4656 		v += n;
4657 	} while (len);
4658 
4659 	return handled;
4660 }
4661 
4662 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4663 {
4664 	int handled = 0;
4665 	int n;
4666 
4667 	do {
4668 		n = min(len, 8);
4669 		if (!(lapic_in_kernel(vcpu) &&
4670 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4671 					 addr, n, v))
4672 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4673 			break;
4674 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4675 		handled += n;
4676 		addr += n;
4677 		len -= n;
4678 		v += n;
4679 	} while (len);
4680 
4681 	return handled;
4682 }
4683 
4684 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4685 			struct kvm_segment *var, int seg)
4686 {
4687 	kvm_x86_ops->set_segment(vcpu, var, seg);
4688 }
4689 
4690 void kvm_get_segment(struct kvm_vcpu *vcpu,
4691 		     struct kvm_segment *var, int seg)
4692 {
4693 	kvm_x86_ops->get_segment(vcpu, var, seg);
4694 }
4695 
4696 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4697 			   struct x86_exception *exception)
4698 {
4699 	gpa_t t_gpa;
4700 
4701 	BUG_ON(!mmu_is_nested(vcpu));
4702 
4703 	/* NPT walks are always user-walks */
4704 	access |= PFERR_USER_MASK;
4705 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4706 
4707 	return t_gpa;
4708 }
4709 
4710 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4711 			      struct x86_exception *exception)
4712 {
4713 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4714 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4715 }
4716 
4717  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4718 				struct x86_exception *exception)
4719 {
4720 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4721 	access |= PFERR_FETCH_MASK;
4722 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4723 }
4724 
4725 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4726 			       struct x86_exception *exception)
4727 {
4728 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4729 	access |= PFERR_WRITE_MASK;
4730 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4731 }
4732 
4733 /* uses this to access any guest's mapped memory without checking CPL */
4734 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4735 				struct x86_exception *exception)
4736 {
4737 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4738 }
4739 
4740 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4741 				      struct kvm_vcpu *vcpu, u32 access,
4742 				      struct x86_exception *exception)
4743 {
4744 	void *data = val;
4745 	int r = X86EMUL_CONTINUE;
4746 
4747 	while (bytes) {
4748 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4749 							    exception);
4750 		unsigned offset = addr & (PAGE_SIZE-1);
4751 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4752 		int ret;
4753 
4754 		if (gpa == UNMAPPED_GVA)
4755 			return X86EMUL_PROPAGATE_FAULT;
4756 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4757 					       offset, toread);
4758 		if (ret < 0) {
4759 			r = X86EMUL_IO_NEEDED;
4760 			goto out;
4761 		}
4762 
4763 		bytes -= toread;
4764 		data += toread;
4765 		addr += toread;
4766 	}
4767 out:
4768 	return r;
4769 }
4770 
4771 /* used for instruction fetching */
4772 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4773 				gva_t addr, void *val, unsigned int bytes,
4774 				struct x86_exception *exception)
4775 {
4776 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4777 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4778 	unsigned offset;
4779 	int ret;
4780 
4781 	/* Inline kvm_read_guest_virt_helper for speed.  */
4782 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4783 						    exception);
4784 	if (unlikely(gpa == UNMAPPED_GVA))
4785 		return X86EMUL_PROPAGATE_FAULT;
4786 
4787 	offset = addr & (PAGE_SIZE-1);
4788 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4789 		bytes = (unsigned)PAGE_SIZE - offset;
4790 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4791 				       offset, bytes);
4792 	if (unlikely(ret < 0))
4793 		return X86EMUL_IO_NEEDED;
4794 
4795 	return X86EMUL_CONTINUE;
4796 }
4797 
4798 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4799 			       gva_t addr, void *val, unsigned int bytes,
4800 			       struct x86_exception *exception)
4801 {
4802 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4803 
4804 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4805 					  exception);
4806 }
4807 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4808 
4809 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4810 			     gva_t addr, void *val, unsigned int bytes,
4811 			     struct x86_exception *exception, bool system)
4812 {
4813 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4814 	u32 access = 0;
4815 
4816 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4817 		access |= PFERR_USER_MASK;
4818 
4819 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4820 }
4821 
4822 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4823 		unsigned long addr, void *val, unsigned int bytes)
4824 {
4825 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4826 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4827 
4828 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4829 }
4830 
4831 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4832 				      struct kvm_vcpu *vcpu, u32 access,
4833 				      struct x86_exception *exception)
4834 {
4835 	void *data = val;
4836 	int r = X86EMUL_CONTINUE;
4837 
4838 	while (bytes) {
4839 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4840 							     access,
4841 							     exception);
4842 		unsigned offset = addr & (PAGE_SIZE-1);
4843 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4844 		int ret;
4845 
4846 		if (gpa == UNMAPPED_GVA)
4847 			return X86EMUL_PROPAGATE_FAULT;
4848 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4849 		if (ret < 0) {
4850 			r = X86EMUL_IO_NEEDED;
4851 			goto out;
4852 		}
4853 
4854 		bytes -= towrite;
4855 		data += towrite;
4856 		addr += towrite;
4857 	}
4858 out:
4859 	return r;
4860 }
4861 
4862 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4863 			      unsigned int bytes, struct x86_exception *exception,
4864 			      bool system)
4865 {
4866 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4867 	u32 access = PFERR_WRITE_MASK;
4868 
4869 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4870 		access |= PFERR_USER_MASK;
4871 
4872 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4873 					   access, exception);
4874 }
4875 
4876 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4877 				unsigned int bytes, struct x86_exception *exception)
4878 {
4879 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4880 					   PFERR_WRITE_MASK, exception);
4881 }
4882 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4883 
4884 int handle_ud(struct kvm_vcpu *vcpu)
4885 {
4886 	int emul_type = EMULTYPE_TRAP_UD;
4887 	enum emulation_result er;
4888 	char sig[5]; /* ud2; .ascii "kvm" */
4889 	struct x86_exception e;
4890 
4891 	if (force_emulation_prefix &&
4892 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4893 				sig, sizeof(sig), &e) == 0 &&
4894 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4895 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4896 		emul_type = 0;
4897 	}
4898 
4899 	er = emulate_instruction(vcpu, emul_type);
4900 	if (er == EMULATE_USER_EXIT)
4901 		return 0;
4902 	if (er != EMULATE_DONE)
4903 		kvm_queue_exception(vcpu, UD_VECTOR);
4904 	return 1;
4905 }
4906 EXPORT_SYMBOL_GPL(handle_ud);
4907 
4908 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4909 			    gpa_t gpa, bool write)
4910 {
4911 	/* For APIC access vmexit */
4912 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4913 		return 1;
4914 
4915 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4916 		trace_vcpu_match_mmio(gva, gpa, write, true);
4917 		return 1;
4918 	}
4919 
4920 	return 0;
4921 }
4922 
4923 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4924 				gpa_t *gpa, struct x86_exception *exception,
4925 				bool write)
4926 {
4927 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4928 		| (write ? PFERR_WRITE_MASK : 0);
4929 
4930 	/*
4931 	 * currently PKRU is only applied to ept enabled guest so
4932 	 * there is no pkey in EPT page table for L1 guest or EPT
4933 	 * shadow page table for L2 guest.
4934 	 */
4935 	if (vcpu_match_mmio_gva(vcpu, gva)
4936 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4937 				 vcpu->arch.access, 0, access)) {
4938 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4939 					(gva & (PAGE_SIZE - 1));
4940 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4941 		return 1;
4942 	}
4943 
4944 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4945 
4946 	if (*gpa == UNMAPPED_GVA)
4947 		return -1;
4948 
4949 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4950 }
4951 
4952 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4953 			const void *val, int bytes)
4954 {
4955 	int ret;
4956 
4957 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4958 	if (ret < 0)
4959 		return 0;
4960 	kvm_page_track_write(vcpu, gpa, val, bytes);
4961 	return 1;
4962 }
4963 
4964 struct read_write_emulator_ops {
4965 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4966 				  int bytes);
4967 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4968 				  void *val, int bytes);
4969 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4970 			       int bytes, void *val);
4971 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4972 				    void *val, int bytes);
4973 	bool write;
4974 };
4975 
4976 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4977 {
4978 	if (vcpu->mmio_read_completed) {
4979 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4980 			       vcpu->mmio_fragments[0].gpa, val);
4981 		vcpu->mmio_read_completed = 0;
4982 		return 1;
4983 	}
4984 
4985 	return 0;
4986 }
4987 
4988 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4989 			void *val, int bytes)
4990 {
4991 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4992 }
4993 
4994 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4995 			 void *val, int bytes)
4996 {
4997 	return emulator_write_phys(vcpu, gpa, val, bytes);
4998 }
4999 
5000 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5001 {
5002 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5003 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5004 }
5005 
5006 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5007 			  void *val, int bytes)
5008 {
5009 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5010 	return X86EMUL_IO_NEEDED;
5011 }
5012 
5013 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5014 			   void *val, int bytes)
5015 {
5016 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5017 
5018 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5019 	return X86EMUL_CONTINUE;
5020 }
5021 
5022 static const struct read_write_emulator_ops read_emultor = {
5023 	.read_write_prepare = read_prepare,
5024 	.read_write_emulate = read_emulate,
5025 	.read_write_mmio = vcpu_mmio_read,
5026 	.read_write_exit_mmio = read_exit_mmio,
5027 };
5028 
5029 static const struct read_write_emulator_ops write_emultor = {
5030 	.read_write_emulate = write_emulate,
5031 	.read_write_mmio = write_mmio,
5032 	.read_write_exit_mmio = write_exit_mmio,
5033 	.write = true,
5034 };
5035 
5036 static int emulator_read_write_onepage(unsigned long addr, void *val,
5037 				       unsigned int bytes,
5038 				       struct x86_exception *exception,
5039 				       struct kvm_vcpu *vcpu,
5040 				       const struct read_write_emulator_ops *ops)
5041 {
5042 	gpa_t gpa;
5043 	int handled, ret;
5044 	bool write = ops->write;
5045 	struct kvm_mmio_fragment *frag;
5046 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5047 
5048 	/*
5049 	 * If the exit was due to a NPF we may already have a GPA.
5050 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5051 	 * Note, this cannot be used on string operations since string
5052 	 * operation using rep will only have the initial GPA from the NPF
5053 	 * occurred.
5054 	 */
5055 	if (vcpu->arch.gpa_available &&
5056 	    emulator_can_use_gpa(ctxt) &&
5057 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5058 		gpa = vcpu->arch.gpa_val;
5059 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5060 	} else {
5061 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5062 		if (ret < 0)
5063 			return X86EMUL_PROPAGATE_FAULT;
5064 	}
5065 
5066 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5067 		return X86EMUL_CONTINUE;
5068 
5069 	/*
5070 	 * Is this MMIO handled locally?
5071 	 */
5072 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5073 	if (handled == bytes)
5074 		return X86EMUL_CONTINUE;
5075 
5076 	gpa += handled;
5077 	bytes -= handled;
5078 	val += handled;
5079 
5080 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5081 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5082 	frag->gpa = gpa;
5083 	frag->data = val;
5084 	frag->len = bytes;
5085 	return X86EMUL_CONTINUE;
5086 }
5087 
5088 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5089 			unsigned long addr,
5090 			void *val, unsigned int bytes,
5091 			struct x86_exception *exception,
5092 			const struct read_write_emulator_ops *ops)
5093 {
5094 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5095 	gpa_t gpa;
5096 	int rc;
5097 
5098 	if (ops->read_write_prepare &&
5099 		  ops->read_write_prepare(vcpu, val, bytes))
5100 		return X86EMUL_CONTINUE;
5101 
5102 	vcpu->mmio_nr_fragments = 0;
5103 
5104 	/* Crossing a page boundary? */
5105 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5106 		int now;
5107 
5108 		now = -addr & ~PAGE_MASK;
5109 		rc = emulator_read_write_onepage(addr, val, now, exception,
5110 						 vcpu, ops);
5111 
5112 		if (rc != X86EMUL_CONTINUE)
5113 			return rc;
5114 		addr += now;
5115 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5116 			addr = (u32)addr;
5117 		val += now;
5118 		bytes -= now;
5119 	}
5120 
5121 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5122 					 vcpu, ops);
5123 	if (rc != X86EMUL_CONTINUE)
5124 		return rc;
5125 
5126 	if (!vcpu->mmio_nr_fragments)
5127 		return rc;
5128 
5129 	gpa = vcpu->mmio_fragments[0].gpa;
5130 
5131 	vcpu->mmio_needed = 1;
5132 	vcpu->mmio_cur_fragment = 0;
5133 
5134 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5135 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5136 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5137 	vcpu->run->mmio.phys_addr = gpa;
5138 
5139 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5140 }
5141 
5142 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5143 				  unsigned long addr,
5144 				  void *val,
5145 				  unsigned int bytes,
5146 				  struct x86_exception *exception)
5147 {
5148 	return emulator_read_write(ctxt, addr, val, bytes,
5149 				   exception, &read_emultor);
5150 }
5151 
5152 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5153 			    unsigned long addr,
5154 			    const void *val,
5155 			    unsigned int bytes,
5156 			    struct x86_exception *exception)
5157 {
5158 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5159 				   exception, &write_emultor);
5160 }
5161 
5162 #define CMPXCHG_TYPE(t, ptr, old, new) \
5163 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5164 
5165 #ifdef CONFIG_X86_64
5166 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5167 #else
5168 #  define CMPXCHG64(ptr, old, new) \
5169 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5170 #endif
5171 
5172 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5173 				     unsigned long addr,
5174 				     const void *old,
5175 				     const void *new,
5176 				     unsigned int bytes,
5177 				     struct x86_exception *exception)
5178 {
5179 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5180 	gpa_t gpa;
5181 	struct page *page;
5182 	char *kaddr;
5183 	bool exchanged;
5184 
5185 	/* guests cmpxchg8b have to be emulated atomically */
5186 	if (bytes > 8 || (bytes & (bytes - 1)))
5187 		goto emul_write;
5188 
5189 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5190 
5191 	if (gpa == UNMAPPED_GVA ||
5192 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5193 		goto emul_write;
5194 
5195 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5196 		goto emul_write;
5197 
5198 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5199 	if (is_error_page(page))
5200 		goto emul_write;
5201 
5202 	kaddr = kmap_atomic(page);
5203 	kaddr += offset_in_page(gpa);
5204 	switch (bytes) {
5205 	case 1:
5206 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5207 		break;
5208 	case 2:
5209 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5210 		break;
5211 	case 4:
5212 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5213 		break;
5214 	case 8:
5215 		exchanged = CMPXCHG64(kaddr, old, new);
5216 		break;
5217 	default:
5218 		BUG();
5219 	}
5220 	kunmap_atomic(kaddr);
5221 	kvm_release_page_dirty(page);
5222 
5223 	if (!exchanged)
5224 		return X86EMUL_CMPXCHG_FAILED;
5225 
5226 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5227 	kvm_page_track_write(vcpu, gpa, new, bytes);
5228 
5229 	return X86EMUL_CONTINUE;
5230 
5231 emul_write:
5232 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5233 
5234 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5235 }
5236 
5237 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5238 {
5239 	int r = 0, i;
5240 
5241 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5242 		if (vcpu->arch.pio.in)
5243 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5244 					    vcpu->arch.pio.size, pd);
5245 		else
5246 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5247 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5248 					     pd);
5249 		if (r)
5250 			break;
5251 		pd += vcpu->arch.pio.size;
5252 	}
5253 	return r;
5254 }
5255 
5256 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5257 			       unsigned short port, void *val,
5258 			       unsigned int count, bool in)
5259 {
5260 	vcpu->arch.pio.port = port;
5261 	vcpu->arch.pio.in = in;
5262 	vcpu->arch.pio.count  = count;
5263 	vcpu->arch.pio.size = size;
5264 
5265 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5266 		vcpu->arch.pio.count = 0;
5267 		return 1;
5268 	}
5269 
5270 	vcpu->run->exit_reason = KVM_EXIT_IO;
5271 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5272 	vcpu->run->io.size = size;
5273 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5274 	vcpu->run->io.count = count;
5275 	vcpu->run->io.port = port;
5276 
5277 	return 0;
5278 }
5279 
5280 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5281 				    int size, unsigned short port, void *val,
5282 				    unsigned int count)
5283 {
5284 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5285 	int ret;
5286 
5287 	if (vcpu->arch.pio.count)
5288 		goto data_avail;
5289 
5290 	memset(vcpu->arch.pio_data, 0, size * count);
5291 
5292 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5293 	if (ret) {
5294 data_avail:
5295 		memcpy(val, vcpu->arch.pio_data, size * count);
5296 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5297 		vcpu->arch.pio.count = 0;
5298 		return 1;
5299 	}
5300 
5301 	return 0;
5302 }
5303 
5304 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5305 				     int size, unsigned short port,
5306 				     const void *val, unsigned int count)
5307 {
5308 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5309 
5310 	memcpy(vcpu->arch.pio_data, val, size * count);
5311 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5312 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5313 }
5314 
5315 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5316 {
5317 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5318 }
5319 
5320 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5321 {
5322 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5323 }
5324 
5325 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5326 {
5327 	if (!need_emulate_wbinvd(vcpu))
5328 		return X86EMUL_CONTINUE;
5329 
5330 	if (kvm_x86_ops->has_wbinvd_exit()) {
5331 		int cpu = get_cpu();
5332 
5333 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5334 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5335 				wbinvd_ipi, NULL, 1);
5336 		put_cpu();
5337 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5338 	} else
5339 		wbinvd();
5340 	return X86EMUL_CONTINUE;
5341 }
5342 
5343 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5344 {
5345 	kvm_emulate_wbinvd_noskip(vcpu);
5346 	return kvm_skip_emulated_instruction(vcpu);
5347 }
5348 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5349 
5350 
5351 
5352 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5353 {
5354 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5355 }
5356 
5357 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5358 			   unsigned long *dest)
5359 {
5360 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5361 }
5362 
5363 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5364 			   unsigned long value)
5365 {
5366 
5367 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5368 }
5369 
5370 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5371 {
5372 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5373 }
5374 
5375 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5376 {
5377 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5378 	unsigned long value;
5379 
5380 	switch (cr) {
5381 	case 0:
5382 		value = kvm_read_cr0(vcpu);
5383 		break;
5384 	case 2:
5385 		value = vcpu->arch.cr2;
5386 		break;
5387 	case 3:
5388 		value = kvm_read_cr3(vcpu);
5389 		break;
5390 	case 4:
5391 		value = kvm_read_cr4(vcpu);
5392 		break;
5393 	case 8:
5394 		value = kvm_get_cr8(vcpu);
5395 		break;
5396 	default:
5397 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5398 		return 0;
5399 	}
5400 
5401 	return value;
5402 }
5403 
5404 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5405 {
5406 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5407 	int res = 0;
5408 
5409 	switch (cr) {
5410 	case 0:
5411 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5412 		break;
5413 	case 2:
5414 		vcpu->arch.cr2 = val;
5415 		break;
5416 	case 3:
5417 		res = kvm_set_cr3(vcpu, val);
5418 		break;
5419 	case 4:
5420 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5421 		break;
5422 	case 8:
5423 		res = kvm_set_cr8(vcpu, val);
5424 		break;
5425 	default:
5426 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5427 		res = -1;
5428 	}
5429 
5430 	return res;
5431 }
5432 
5433 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5434 {
5435 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5436 }
5437 
5438 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5439 {
5440 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5441 }
5442 
5443 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5444 {
5445 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5446 }
5447 
5448 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5449 {
5450 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5451 }
5452 
5453 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5454 {
5455 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5456 }
5457 
5458 static unsigned long emulator_get_cached_segment_base(
5459 	struct x86_emulate_ctxt *ctxt, int seg)
5460 {
5461 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5462 }
5463 
5464 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5465 				 struct desc_struct *desc, u32 *base3,
5466 				 int seg)
5467 {
5468 	struct kvm_segment var;
5469 
5470 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5471 	*selector = var.selector;
5472 
5473 	if (var.unusable) {
5474 		memset(desc, 0, sizeof(*desc));
5475 		if (base3)
5476 			*base3 = 0;
5477 		return false;
5478 	}
5479 
5480 	if (var.g)
5481 		var.limit >>= 12;
5482 	set_desc_limit(desc, var.limit);
5483 	set_desc_base(desc, (unsigned long)var.base);
5484 #ifdef CONFIG_X86_64
5485 	if (base3)
5486 		*base3 = var.base >> 32;
5487 #endif
5488 	desc->type = var.type;
5489 	desc->s = var.s;
5490 	desc->dpl = var.dpl;
5491 	desc->p = var.present;
5492 	desc->avl = var.avl;
5493 	desc->l = var.l;
5494 	desc->d = var.db;
5495 	desc->g = var.g;
5496 
5497 	return true;
5498 }
5499 
5500 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5501 				 struct desc_struct *desc, u32 base3,
5502 				 int seg)
5503 {
5504 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5505 	struct kvm_segment var;
5506 
5507 	var.selector = selector;
5508 	var.base = get_desc_base(desc);
5509 #ifdef CONFIG_X86_64
5510 	var.base |= ((u64)base3) << 32;
5511 #endif
5512 	var.limit = get_desc_limit(desc);
5513 	if (desc->g)
5514 		var.limit = (var.limit << 12) | 0xfff;
5515 	var.type = desc->type;
5516 	var.dpl = desc->dpl;
5517 	var.db = desc->d;
5518 	var.s = desc->s;
5519 	var.l = desc->l;
5520 	var.g = desc->g;
5521 	var.avl = desc->avl;
5522 	var.present = desc->p;
5523 	var.unusable = !var.present;
5524 	var.padding = 0;
5525 
5526 	kvm_set_segment(vcpu, &var, seg);
5527 	return;
5528 }
5529 
5530 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5531 			    u32 msr_index, u64 *pdata)
5532 {
5533 	struct msr_data msr;
5534 	int r;
5535 
5536 	msr.index = msr_index;
5537 	msr.host_initiated = false;
5538 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5539 	if (r)
5540 		return r;
5541 
5542 	*pdata = msr.data;
5543 	return 0;
5544 }
5545 
5546 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5547 			    u32 msr_index, u64 data)
5548 {
5549 	struct msr_data msr;
5550 
5551 	msr.data = data;
5552 	msr.index = msr_index;
5553 	msr.host_initiated = false;
5554 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5555 }
5556 
5557 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5558 {
5559 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5560 
5561 	return vcpu->arch.smbase;
5562 }
5563 
5564 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5565 {
5566 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5567 
5568 	vcpu->arch.smbase = smbase;
5569 }
5570 
5571 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5572 			      u32 pmc)
5573 {
5574 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5575 }
5576 
5577 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5578 			     u32 pmc, u64 *pdata)
5579 {
5580 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5581 }
5582 
5583 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5584 {
5585 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5586 }
5587 
5588 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5589 			      struct x86_instruction_info *info,
5590 			      enum x86_intercept_stage stage)
5591 {
5592 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5593 }
5594 
5595 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5596 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5597 {
5598 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5599 }
5600 
5601 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5602 {
5603 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5604 }
5605 
5606 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5607 {
5608 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5609 }
5610 
5611 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5612 {
5613 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5614 }
5615 
5616 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5617 {
5618 	return emul_to_vcpu(ctxt)->arch.hflags;
5619 }
5620 
5621 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5622 {
5623 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5624 }
5625 
5626 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5627 {
5628 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5629 }
5630 
5631 static const struct x86_emulate_ops emulate_ops = {
5632 	.read_gpr            = emulator_read_gpr,
5633 	.write_gpr           = emulator_write_gpr,
5634 	.read_std            = emulator_read_std,
5635 	.write_std           = emulator_write_std,
5636 	.read_phys           = kvm_read_guest_phys_system,
5637 	.fetch               = kvm_fetch_guest_virt,
5638 	.read_emulated       = emulator_read_emulated,
5639 	.write_emulated      = emulator_write_emulated,
5640 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5641 	.invlpg              = emulator_invlpg,
5642 	.pio_in_emulated     = emulator_pio_in_emulated,
5643 	.pio_out_emulated    = emulator_pio_out_emulated,
5644 	.get_segment         = emulator_get_segment,
5645 	.set_segment         = emulator_set_segment,
5646 	.get_cached_segment_base = emulator_get_cached_segment_base,
5647 	.get_gdt             = emulator_get_gdt,
5648 	.get_idt	     = emulator_get_idt,
5649 	.set_gdt             = emulator_set_gdt,
5650 	.set_idt	     = emulator_set_idt,
5651 	.get_cr              = emulator_get_cr,
5652 	.set_cr              = emulator_set_cr,
5653 	.cpl                 = emulator_get_cpl,
5654 	.get_dr              = emulator_get_dr,
5655 	.set_dr              = emulator_set_dr,
5656 	.get_smbase          = emulator_get_smbase,
5657 	.set_smbase          = emulator_set_smbase,
5658 	.set_msr             = emulator_set_msr,
5659 	.get_msr             = emulator_get_msr,
5660 	.check_pmc	     = emulator_check_pmc,
5661 	.read_pmc            = emulator_read_pmc,
5662 	.halt                = emulator_halt,
5663 	.wbinvd              = emulator_wbinvd,
5664 	.fix_hypercall       = emulator_fix_hypercall,
5665 	.intercept           = emulator_intercept,
5666 	.get_cpuid           = emulator_get_cpuid,
5667 	.set_nmi_mask        = emulator_set_nmi_mask,
5668 	.get_hflags          = emulator_get_hflags,
5669 	.set_hflags          = emulator_set_hflags,
5670 	.pre_leave_smm       = emulator_pre_leave_smm,
5671 };
5672 
5673 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5674 {
5675 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5676 	/*
5677 	 * an sti; sti; sequence only disable interrupts for the first
5678 	 * instruction. So, if the last instruction, be it emulated or
5679 	 * not, left the system with the INT_STI flag enabled, it
5680 	 * means that the last instruction is an sti. We should not
5681 	 * leave the flag on in this case. The same goes for mov ss
5682 	 */
5683 	if (int_shadow & mask)
5684 		mask = 0;
5685 	if (unlikely(int_shadow || mask)) {
5686 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5687 		if (!mask)
5688 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5689 	}
5690 }
5691 
5692 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5693 {
5694 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5695 	if (ctxt->exception.vector == PF_VECTOR)
5696 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5697 
5698 	if (ctxt->exception.error_code_valid)
5699 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5700 				      ctxt->exception.error_code);
5701 	else
5702 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5703 	return false;
5704 }
5705 
5706 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5707 {
5708 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5709 	int cs_db, cs_l;
5710 
5711 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5712 
5713 	ctxt->eflags = kvm_get_rflags(vcpu);
5714 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5715 
5716 	ctxt->eip = kvm_rip_read(vcpu);
5717 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5718 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5719 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5720 		     cs_db				? X86EMUL_MODE_PROT32 :
5721 							  X86EMUL_MODE_PROT16;
5722 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5723 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5724 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5725 
5726 	init_decode_cache(ctxt);
5727 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5728 }
5729 
5730 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5731 {
5732 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5733 	int ret;
5734 
5735 	init_emulate_ctxt(vcpu);
5736 
5737 	ctxt->op_bytes = 2;
5738 	ctxt->ad_bytes = 2;
5739 	ctxt->_eip = ctxt->eip + inc_eip;
5740 	ret = emulate_int_real(ctxt, irq);
5741 
5742 	if (ret != X86EMUL_CONTINUE)
5743 		return EMULATE_FAIL;
5744 
5745 	ctxt->eip = ctxt->_eip;
5746 	kvm_rip_write(vcpu, ctxt->eip);
5747 	kvm_set_rflags(vcpu, ctxt->eflags);
5748 
5749 	return EMULATE_DONE;
5750 }
5751 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5752 
5753 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5754 {
5755 	int r = EMULATE_DONE;
5756 
5757 	++vcpu->stat.insn_emulation_fail;
5758 	trace_kvm_emulate_insn_failed(vcpu);
5759 
5760 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5761 		return EMULATE_FAIL;
5762 
5763 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5764 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5765 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5766 		vcpu->run->internal.ndata = 0;
5767 		r = EMULATE_USER_EXIT;
5768 	}
5769 
5770 	kvm_queue_exception(vcpu, UD_VECTOR);
5771 
5772 	return r;
5773 }
5774 
5775 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5776 				  bool write_fault_to_shadow_pgtable,
5777 				  int emulation_type)
5778 {
5779 	gpa_t gpa = cr2;
5780 	kvm_pfn_t pfn;
5781 
5782 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5783 		return false;
5784 
5785 	if (!vcpu->arch.mmu.direct_map) {
5786 		/*
5787 		 * Write permission should be allowed since only
5788 		 * write access need to be emulated.
5789 		 */
5790 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5791 
5792 		/*
5793 		 * If the mapping is invalid in guest, let cpu retry
5794 		 * it to generate fault.
5795 		 */
5796 		if (gpa == UNMAPPED_GVA)
5797 			return true;
5798 	}
5799 
5800 	/*
5801 	 * Do not retry the unhandleable instruction if it faults on the
5802 	 * readonly host memory, otherwise it will goto a infinite loop:
5803 	 * retry instruction -> write #PF -> emulation fail -> retry
5804 	 * instruction -> ...
5805 	 */
5806 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5807 
5808 	/*
5809 	 * If the instruction failed on the error pfn, it can not be fixed,
5810 	 * report the error to userspace.
5811 	 */
5812 	if (is_error_noslot_pfn(pfn))
5813 		return false;
5814 
5815 	kvm_release_pfn_clean(pfn);
5816 
5817 	/* The instructions are well-emulated on direct mmu. */
5818 	if (vcpu->arch.mmu.direct_map) {
5819 		unsigned int indirect_shadow_pages;
5820 
5821 		spin_lock(&vcpu->kvm->mmu_lock);
5822 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5823 		spin_unlock(&vcpu->kvm->mmu_lock);
5824 
5825 		if (indirect_shadow_pages)
5826 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5827 
5828 		return true;
5829 	}
5830 
5831 	/*
5832 	 * if emulation was due to access to shadowed page table
5833 	 * and it failed try to unshadow page and re-enter the
5834 	 * guest to let CPU execute the instruction.
5835 	 */
5836 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5837 
5838 	/*
5839 	 * If the access faults on its page table, it can not
5840 	 * be fixed by unprotecting shadow page and it should
5841 	 * be reported to userspace.
5842 	 */
5843 	return !write_fault_to_shadow_pgtable;
5844 }
5845 
5846 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5847 			      unsigned long cr2,  int emulation_type)
5848 {
5849 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5850 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5851 
5852 	last_retry_eip = vcpu->arch.last_retry_eip;
5853 	last_retry_addr = vcpu->arch.last_retry_addr;
5854 
5855 	/*
5856 	 * If the emulation is caused by #PF and it is non-page_table
5857 	 * writing instruction, it means the VM-EXIT is caused by shadow
5858 	 * page protected, we can zap the shadow page and retry this
5859 	 * instruction directly.
5860 	 *
5861 	 * Note: if the guest uses a non-page-table modifying instruction
5862 	 * on the PDE that points to the instruction, then we will unmap
5863 	 * the instruction and go to an infinite loop. So, we cache the
5864 	 * last retried eip and the last fault address, if we meet the eip
5865 	 * and the address again, we can break out of the potential infinite
5866 	 * loop.
5867 	 */
5868 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5869 
5870 	if (!(emulation_type & EMULTYPE_RETRY))
5871 		return false;
5872 
5873 	if (x86_page_table_writing_insn(ctxt))
5874 		return false;
5875 
5876 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5877 		return false;
5878 
5879 	vcpu->arch.last_retry_eip = ctxt->eip;
5880 	vcpu->arch.last_retry_addr = cr2;
5881 
5882 	if (!vcpu->arch.mmu.direct_map)
5883 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5884 
5885 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5886 
5887 	return true;
5888 }
5889 
5890 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5891 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5892 
5893 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5894 {
5895 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5896 		/* This is a good place to trace that we are exiting SMM.  */
5897 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5898 
5899 		/* Process a latched INIT or SMI, if any.  */
5900 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5901 	}
5902 
5903 	kvm_mmu_reset_context(vcpu);
5904 }
5905 
5906 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5907 {
5908 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5909 
5910 	vcpu->arch.hflags = emul_flags;
5911 
5912 	if (changed & HF_SMM_MASK)
5913 		kvm_smm_changed(vcpu);
5914 }
5915 
5916 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5917 				unsigned long *db)
5918 {
5919 	u32 dr6 = 0;
5920 	int i;
5921 	u32 enable, rwlen;
5922 
5923 	enable = dr7;
5924 	rwlen = dr7 >> 16;
5925 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5926 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5927 			dr6 |= (1 << i);
5928 	return dr6;
5929 }
5930 
5931 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5932 {
5933 	struct kvm_run *kvm_run = vcpu->run;
5934 
5935 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5936 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5937 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5938 		kvm_run->debug.arch.exception = DB_VECTOR;
5939 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5940 		*r = EMULATE_USER_EXIT;
5941 	} else {
5942 		/*
5943 		 * "Certain debug exceptions may clear bit 0-3.  The
5944 		 * remaining contents of the DR6 register are never
5945 		 * cleared by the processor".
5946 		 */
5947 		vcpu->arch.dr6 &= ~15;
5948 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5949 		kvm_queue_exception(vcpu, DB_VECTOR);
5950 	}
5951 }
5952 
5953 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5954 {
5955 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5956 	int r = EMULATE_DONE;
5957 
5958 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5959 
5960 	/*
5961 	 * rflags is the old, "raw" value of the flags.  The new value has
5962 	 * not been saved yet.
5963 	 *
5964 	 * This is correct even for TF set by the guest, because "the
5965 	 * processor will not generate this exception after the instruction
5966 	 * that sets the TF flag".
5967 	 */
5968 	if (unlikely(rflags & X86_EFLAGS_TF))
5969 		kvm_vcpu_do_singlestep(vcpu, &r);
5970 	return r == EMULATE_DONE;
5971 }
5972 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5973 
5974 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5975 {
5976 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5977 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5978 		struct kvm_run *kvm_run = vcpu->run;
5979 		unsigned long eip = kvm_get_linear_rip(vcpu);
5980 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5981 					   vcpu->arch.guest_debug_dr7,
5982 					   vcpu->arch.eff_db);
5983 
5984 		if (dr6 != 0) {
5985 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5986 			kvm_run->debug.arch.pc = eip;
5987 			kvm_run->debug.arch.exception = DB_VECTOR;
5988 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5989 			*r = EMULATE_USER_EXIT;
5990 			return true;
5991 		}
5992 	}
5993 
5994 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5995 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5996 		unsigned long eip = kvm_get_linear_rip(vcpu);
5997 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5998 					   vcpu->arch.dr7,
5999 					   vcpu->arch.db);
6000 
6001 		if (dr6 != 0) {
6002 			vcpu->arch.dr6 &= ~15;
6003 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6004 			kvm_queue_exception(vcpu, DB_VECTOR);
6005 			*r = EMULATE_DONE;
6006 			return true;
6007 		}
6008 	}
6009 
6010 	return false;
6011 }
6012 
6013 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6014 {
6015 	switch (ctxt->opcode_len) {
6016 	case 1:
6017 		switch (ctxt->b) {
6018 		case 0xe4:	/* IN */
6019 		case 0xe5:
6020 		case 0xec:
6021 		case 0xed:
6022 		case 0xe6:	/* OUT */
6023 		case 0xe7:
6024 		case 0xee:
6025 		case 0xef:
6026 		case 0x6c:	/* INS */
6027 		case 0x6d:
6028 		case 0x6e:	/* OUTS */
6029 		case 0x6f:
6030 			return true;
6031 		}
6032 		break;
6033 	case 2:
6034 		switch (ctxt->b) {
6035 		case 0x33:	/* RDPMC */
6036 			return true;
6037 		}
6038 		break;
6039 	}
6040 
6041 	return false;
6042 }
6043 
6044 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6045 			    unsigned long cr2,
6046 			    int emulation_type,
6047 			    void *insn,
6048 			    int insn_len)
6049 {
6050 	int r;
6051 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6052 	bool writeback = true;
6053 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6054 
6055 	/*
6056 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6057 	 * never reused.
6058 	 */
6059 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6060 	kvm_clear_exception_queue(vcpu);
6061 
6062 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6063 		init_emulate_ctxt(vcpu);
6064 
6065 		/*
6066 		 * We will reenter on the same instruction since
6067 		 * we do not set complete_userspace_io.  This does not
6068 		 * handle watchpoints yet, those would be handled in
6069 		 * the emulate_ops.
6070 		 */
6071 		if (!(emulation_type & EMULTYPE_SKIP) &&
6072 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6073 			return r;
6074 
6075 		ctxt->interruptibility = 0;
6076 		ctxt->have_exception = false;
6077 		ctxt->exception.vector = -1;
6078 		ctxt->perm_ok = false;
6079 
6080 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6081 
6082 		r = x86_decode_insn(ctxt, insn, insn_len);
6083 
6084 		trace_kvm_emulate_insn_start(vcpu);
6085 		++vcpu->stat.insn_emulation;
6086 		if (r != EMULATION_OK)  {
6087 			if (emulation_type & EMULTYPE_TRAP_UD)
6088 				return EMULATE_FAIL;
6089 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6090 						emulation_type))
6091 				return EMULATE_DONE;
6092 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6093 				return EMULATE_DONE;
6094 			if (emulation_type & EMULTYPE_SKIP)
6095 				return EMULATE_FAIL;
6096 			return handle_emulation_failure(vcpu, emulation_type);
6097 		}
6098 	}
6099 
6100 	if ((emulation_type & EMULTYPE_VMWARE) &&
6101 	    !is_vmware_backdoor_opcode(ctxt))
6102 		return EMULATE_FAIL;
6103 
6104 	if (emulation_type & EMULTYPE_SKIP) {
6105 		kvm_rip_write(vcpu, ctxt->_eip);
6106 		if (ctxt->eflags & X86_EFLAGS_RF)
6107 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6108 		return EMULATE_DONE;
6109 	}
6110 
6111 	if (retry_instruction(ctxt, cr2, emulation_type))
6112 		return EMULATE_DONE;
6113 
6114 	/* this is needed for vmware backdoor interface to work since it
6115 	   changes registers values  during IO operation */
6116 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6117 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6118 		emulator_invalidate_register_cache(ctxt);
6119 	}
6120 
6121 restart:
6122 	/* Save the faulting GPA (cr2) in the address field */
6123 	ctxt->exception.address = cr2;
6124 
6125 	r = x86_emulate_insn(ctxt);
6126 
6127 	if (r == EMULATION_INTERCEPTED)
6128 		return EMULATE_DONE;
6129 
6130 	if (r == EMULATION_FAILED) {
6131 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6132 					emulation_type))
6133 			return EMULATE_DONE;
6134 
6135 		return handle_emulation_failure(vcpu, emulation_type);
6136 	}
6137 
6138 	if (ctxt->have_exception) {
6139 		r = EMULATE_DONE;
6140 		if (inject_emulated_exception(vcpu))
6141 			return r;
6142 	} else if (vcpu->arch.pio.count) {
6143 		if (!vcpu->arch.pio.in) {
6144 			/* FIXME: return into emulator if single-stepping.  */
6145 			vcpu->arch.pio.count = 0;
6146 		} else {
6147 			writeback = false;
6148 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6149 		}
6150 		r = EMULATE_USER_EXIT;
6151 	} else if (vcpu->mmio_needed) {
6152 		if (!vcpu->mmio_is_write)
6153 			writeback = false;
6154 		r = EMULATE_USER_EXIT;
6155 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6156 	} else if (r == EMULATION_RESTART)
6157 		goto restart;
6158 	else
6159 		r = EMULATE_DONE;
6160 
6161 	if (writeback) {
6162 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6163 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6164 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6165 		kvm_rip_write(vcpu, ctxt->eip);
6166 		if (r == EMULATE_DONE &&
6167 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6168 			kvm_vcpu_do_singlestep(vcpu, &r);
6169 		if (!ctxt->have_exception ||
6170 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6171 			__kvm_set_rflags(vcpu, ctxt->eflags);
6172 
6173 		/*
6174 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6175 		 * do nothing, and it will be requested again as soon as
6176 		 * the shadow expires.  But we still need to check here,
6177 		 * because POPF has no interrupt shadow.
6178 		 */
6179 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6180 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6181 	} else
6182 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6183 
6184 	return r;
6185 }
6186 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6187 
6188 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6189 			    unsigned short port)
6190 {
6191 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6192 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6193 					    size, port, &val, 1);
6194 	/* do not return to emulator after return from userspace */
6195 	vcpu->arch.pio.count = 0;
6196 	return ret;
6197 }
6198 
6199 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6200 {
6201 	unsigned long val;
6202 
6203 	/* We should only ever be called with arch.pio.count equal to 1 */
6204 	BUG_ON(vcpu->arch.pio.count != 1);
6205 
6206 	/* For size less than 4 we merge, else we zero extend */
6207 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6208 					: 0;
6209 
6210 	/*
6211 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6212 	 * the copy and tracing
6213 	 */
6214 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6215 				 vcpu->arch.pio.port, &val, 1);
6216 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6217 
6218 	return 1;
6219 }
6220 
6221 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6222 			   unsigned short port)
6223 {
6224 	unsigned long val;
6225 	int ret;
6226 
6227 	/* For size less than 4 we merge, else we zero extend */
6228 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6229 
6230 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6231 				       &val, 1);
6232 	if (ret) {
6233 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6234 		return ret;
6235 	}
6236 
6237 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6238 
6239 	return 0;
6240 }
6241 
6242 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6243 {
6244 	int ret = kvm_skip_emulated_instruction(vcpu);
6245 
6246 	/*
6247 	 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6248 	 * KVM_EXIT_DEBUG here.
6249 	 */
6250 	if (in)
6251 		return kvm_fast_pio_in(vcpu, size, port) && ret;
6252 	else
6253 		return kvm_fast_pio_out(vcpu, size, port) && ret;
6254 }
6255 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6256 
6257 static int kvmclock_cpu_down_prep(unsigned int cpu)
6258 {
6259 	__this_cpu_write(cpu_tsc_khz, 0);
6260 	return 0;
6261 }
6262 
6263 static void tsc_khz_changed(void *data)
6264 {
6265 	struct cpufreq_freqs *freq = data;
6266 	unsigned long khz = 0;
6267 
6268 	if (data)
6269 		khz = freq->new;
6270 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6271 		khz = cpufreq_quick_get(raw_smp_processor_id());
6272 	if (!khz)
6273 		khz = tsc_khz;
6274 	__this_cpu_write(cpu_tsc_khz, khz);
6275 }
6276 
6277 #ifdef CONFIG_X86_64
6278 static void kvm_hyperv_tsc_notifier(void)
6279 {
6280 	struct kvm *kvm;
6281 	struct kvm_vcpu *vcpu;
6282 	int cpu;
6283 
6284 	spin_lock(&kvm_lock);
6285 	list_for_each_entry(kvm, &vm_list, vm_list)
6286 		kvm_make_mclock_inprogress_request(kvm);
6287 
6288 	hyperv_stop_tsc_emulation();
6289 
6290 	/* TSC frequency always matches when on Hyper-V */
6291 	for_each_present_cpu(cpu)
6292 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6293 	kvm_max_guest_tsc_khz = tsc_khz;
6294 
6295 	list_for_each_entry(kvm, &vm_list, vm_list) {
6296 		struct kvm_arch *ka = &kvm->arch;
6297 
6298 		spin_lock(&ka->pvclock_gtod_sync_lock);
6299 
6300 		pvclock_update_vm_gtod_copy(kvm);
6301 
6302 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6303 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6304 
6305 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6306 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6307 
6308 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6309 	}
6310 	spin_unlock(&kvm_lock);
6311 }
6312 #endif
6313 
6314 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6315 				     void *data)
6316 {
6317 	struct cpufreq_freqs *freq = data;
6318 	struct kvm *kvm;
6319 	struct kvm_vcpu *vcpu;
6320 	int i, send_ipi = 0;
6321 
6322 	/*
6323 	 * We allow guests to temporarily run on slowing clocks,
6324 	 * provided we notify them after, or to run on accelerating
6325 	 * clocks, provided we notify them before.  Thus time never
6326 	 * goes backwards.
6327 	 *
6328 	 * However, we have a problem.  We can't atomically update
6329 	 * the frequency of a given CPU from this function; it is
6330 	 * merely a notifier, which can be called from any CPU.
6331 	 * Changing the TSC frequency at arbitrary points in time
6332 	 * requires a recomputation of local variables related to
6333 	 * the TSC for each VCPU.  We must flag these local variables
6334 	 * to be updated and be sure the update takes place with the
6335 	 * new frequency before any guests proceed.
6336 	 *
6337 	 * Unfortunately, the combination of hotplug CPU and frequency
6338 	 * change creates an intractable locking scenario; the order
6339 	 * of when these callouts happen is undefined with respect to
6340 	 * CPU hotplug, and they can race with each other.  As such,
6341 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6342 	 * undefined; you can actually have a CPU frequency change take
6343 	 * place in between the computation of X and the setting of the
6344 	 * variable.  To protect against this problem, all updates of
6345 	 * the per_cpu tsc_khz variable are done in an interrupt
6346 	 * protected IPI, and all callers wishing to update the value
6347 	 * must wait for a synchronous IPI to complete (which is trivial
6348 	 * if the caller is on the CPU already).  This establishes the
6349 	 * necessary total order on variable updates.
6350 	 *
6351 	 * Note that because a guest time update may take place
6352 	 * anytime after the setting of the VCPU's request bit, the
6353 	 * correct TSC value must be set before the request.  However,
6354 	 * to ensure the update actually makes it to any guest which
6355 	 * starts running in hardware virtualization between the set
6356 	 * and the acquisition of the spinlock, we must also ping the
6357 	 * CPU after setting the request bit.
6358 	 *
6359 	 */
6360 
6361 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6362 		return 0;
6363 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6364 		return 0;
6365 
6366 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6367 
6368 	spin_lock(&kvm_lock);
6369 	list_for_each_entry(kvm, &vm_list, vm_list) {
6370 		kvm_for_each_vcpu(i, vcpu, kvm) {
6371 			if (vcpu->cpu != freq->cpu)
6372 				continue;
6373 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6374 			if (vcpu->cpu != smp_processor_id())
6375 				send_ipi = 1;
6376 		}
6377 	}
6378 	spin_unlock(&kvm_lock);
6379 
6380 	if (freq->old < freq->new && send_ipi) {
6381 		/*
6382 		 * We upscale the frequency.  Must make the guest
6383 		 * doesn't see old kvmclock values while running with
6384 		 * the new frequency, otherwise we risk the guest sees
6385 		 * time go backwards.
6386 		 *
6387 		 * In case we update the frequency for another cpu
6388 		 * (which might be in guest context) send an interrupt
6389 		 * to kick the cpu out of guest context.  Next time
6390 		 * guest context is entered kvmclock will be updated,
6391 		 * so the guest will not see stale values.
6392 		 */
6393 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6394 	}
6395 	return 0;
6396 }
6397 
6398 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6399 	.notifier_call  = kvmclock_cpufreq_notifier
6400 };
6401 
6402 static int kvmclock_cpu_online(unsigned int cpu)
6403 {
6404 	tsc_khz_changed(NULL);
6405 	return 0;
6406 }
6407 
6408 static void kvm_timer_init(void)
6409 {
6410 	max_tsc_khz = tsc_khz;
6411 
6412 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6413 #ifdef CONFIG_CPU_FREQ
6414 		struct cpufreq_policy policy;
6415 		int cpu;
6416 
6417 		memset(&policy, 0, sizeof(policy));
6418 		cpu = get_cpu();
6419 		cpufreq_get_policy(&policy, cpu);
6420 		if (policy.cpuinfo.max_freq)
6421 			max_tsc_khz = policy.cpuinfo.max_freq;
6422 		put_cpu();
6423 #endif
6424 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6425 					  CPUFREQ_TRANSITION_NOTIFIER);
6426 	}
6427 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6428 
6429 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6430 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6431 }
6432 
6433 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6434 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6435 
6436 int kvm_is_in_guest(void)
6437 {
6438 	return __this_cpu_read(current_vcpu) != NULL;
6439 }
6440 
6441 static int kvm_is_user_mode(void)
6442 {
6443 	int user_mode = 3;
6444 
6445 	if (__this_cpu_read(current_vcpu))
6446 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6447 
6448 	return user_mode != 0;
6449 }
6450 
6451 static unsigned long kvm_get_guest_ip(void)
6452 {
6453 	unsigned long ip = 0;
6454 
6455 	if (__this_cpu_read(current_vcpu))
6456 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6457 
6458 	return ip;
6459 }
6460 
6461 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6462 	.is_in_guest		= kvm_is_in_guest,
6463 	.is_user_mode		= kvm_is_user_mode,
6464 	.get_guest_ip		= kvm_get_guest_ip,
6465 };
6466 
6467 static void kvm_set_mmio_spte_mask(void)
6468 {
6469 	u64 mask;
6470 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6471 
6472 	/*
6473 	 * Set the reserved bits and the present bit of an paging-structure
6474 	 * entry to generate page fault with PFER.RSV = 1.
6475 	 */
6476 	 /* Mask the reserved physical address bits. */
6477 	mask = rsvd_bits(maxphyaddr, 51);
6478 
6479 	/* Set the present bit. */
6480 	mask |= 1ull;
6481 
6482 #ifdef CONFIG_X86_64
6483 	/*
6484 	 * If reserved bit is not supported, clear the present bit to disable
6485 	 * mmio page fault.
6486 	 */
6487 	if (maxphyaddr == 52)
6488 		mask &= ~1ull;
6489 #endif
6490 
6491 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6492 }
6493 
6494 #ifdef CONFIG_X86_64
6495 static void pvclock_gtod_update_fn(struct work_struct *work)
6496 {
6497 	struct kvm *kvm;
6498 
6499 	struct kvm_vcpu *vcpu;
6500 	int i;
6501 
6502 	spin_lock(&kvm_lock);
6503 	list_for_each_entry(kvm, &vm_list, vm_list)
6504 		kvm_for_each_vcpu(i, vcpu, kvm)
6505 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6506 	atomic_set(&kvm_guest_has_master_clock, 0);
6507 	spin_unlock(&kvm_lock);
6508 }
6509 
6510 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6511 
6512 /*
6513  * Notification about pvclock gtod data update.
6514  */
6515 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6516 			       void *priv)
6517 {
6518 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6519 	struct timekeeper *tk = priv;
6520 
6521 	update_pvclock_gtod(tk);
6522 
6523 	/* disable master clock if host does not trust, or does not
6524 	 * use, TSC based clocksource.
6525 	 */
6526 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6527 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6528 		queue_work(system_long_wq, &pvclock_gtod_work);
6529 
6530 	return 0;
6531 }
6532 
6533 static struct notifier_block pvclock_gtod_notifier = {
6534 	.notifier_call = pvclock_gtod_notify,
6535 };
6536 #endif
6537 
6538 int kvm_arch_init(void *opaque)
6539 {
6540 	int r;
6541 	struct kvm_x86_ops *ops = opaque;
6542 
6543 	if (kvm_x86_ops) {
6544 		printk(KERN_ERR "kvm: already loaded the other module\n");
6545 		r = -EEXIST;
6546 		goto out;
6547 	}
6548 
6549 	if (!ops->cpu_has_kvm_support()) {
6550 		printk(KERN_ERR "kvm: no hardware support\n");
6551 		r = -EOPNOTSUPP;
6552 		goto out;
6553 	}
6554 	if (ops->disabled_by_bios()) {
6555 		printk(KERN_ERR "kvm: disabled by bios\n");
6556 		r = -EOPNOTSUPP;
6557 		goto out;
6558 	}
6559 
6560 	r = -ENOMEM;
6561 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6562 	if (!shared_msrs) {
6563 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6564 		goto out;
6565 	}
6566 
6567 	r = kvm_mmu_module_init();
6568 	if (r)
6569 		goto out_free_percpu;
6570 
6571 	kvm_set_mmio_spte_mask();
6572 
6573 	kvm_x86_ops = ops;
6574 
6575 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6576 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6577 			PT_PRESENT_MASK, 0, sme_me_mask);
6578 	kvm_timer_init();
6579 
6580 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6581 
6582 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6583 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6584 
6585 	kvm_lapic_init();
6586 #ifdef CONFIG_X86_64
6587 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6588 
6589 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6590 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6591 #endif
6592 
6593 	return 0;
6594 
6595 out_free_percpu:
6596 	free_percpu(shared_msrs);
6597 out:
6598 	return r;
6599 }
6600 
6601 void kvm_arch_exit(void)
6602 {
6603 #ifdef CONFIG_X86_64
6604 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6605 		clear_hv_tscchange_cb();
6606 #endif
6607 	kvm_lapic_exit();
6608 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6609 
6610 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6611 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6612 					    CPUFREQ_TRANSITION_NOTIFIER);
6613 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6614 #ifdef CONFIG_X86_64
6615 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6616 #endif
6617 	kvm_x86_ops = NULL;
6618 	kvm_mmu_module_exit();
6619 	free_percpu(shared_msrs);
6620 }
6621 
6622 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6623 {
6624 	++vcpu->stat.halt_exits;
6625 	if (lapic_in_kernel(vcpu)) {
6626 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6627 		return 1;
6628 	} else {
6629 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6630 		return 0;
6631 	}
6632 }
6633 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6634 
6635 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6636 {
6637 	int ret = kvm_skip_emulated_instruction(vcpu);
6638 	/*
6639 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6640 	 * KVM_EXIT_DEBUG here.
6641 	 */
6642 	return kvm_vcpu_halt(vcpu) && ret;
6643 }
6644 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6645 
6646 #ifdef CONFIG_X86_64
6647 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6648 			        unsigned long clock_type)
6649 {
6650 	struct kvm_clock_pairing clock_pairing;
6651 	struct timespec64 ts;
6652 	u64 cycle;
6653 	int ret;
6654 
6655 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6656 		return -KVM_EOPNOTSUPP;
6657 
6658 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6659 		return -KVM_EOPNOTSUPP;
6660 
6661 	clock_pairing.sec = ts.tv_sec;
6662 	clock_pairing.nsec = ts.tv_nsec;
6663 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6664 	clock_pairing.flags = 0;
6665 
6666 	ret = 0;
6667 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6668 			    sizeof(struct kvm_clock_pairing)))
6669 		ret = -KVM_EFAULT;
6670 
6671 	return ret;
6672 }
6673 #endif
6674 
6675 /*
6676  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6677  *
6678  * @apicid - apicid of vcpu to be kicked.
6679  */
6680 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6681 {
6682 	struct kvm_lapic_irq lapic_irq;
6683 
6684 	lapic_irq.shorthand = 0;
6685 	lapic_irq.dest_mode = 0;
6686 	lapic_irq.level = 0;
6687 	lapic_irq.dest_id = apicid;
6688 	lapic_irq.msi_redir_hint = false;
6689 
6690 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6691 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6692 }
6693 
6694 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6695 {
6696 	vcpu->arch.apicv_active = false;
6697 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6698 }
6699 
6700 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6701 {
6702 	unsigned long nr, a0, a1, a2, a3, ret;
6703 	int op_64_bit;
6704 
6705 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6706 		return kvm_hv_hypercall(vcpu);
6707 
6708 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6709 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6710 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6711 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6712 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6713 
6714 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6715 
6716 	op_64_bit = is_64_bit_mode(vcpu);
6717 	if (!op_64_bit) {
6718 		nr &= 0xFFFFFFFF;
6719 		a0 &= 0xFFFFFFFF;
6720 		a1 &= 0xFFFFFFFF;
6721 		a2 &= 0xFFFFFFFF;
6722 		a3 &= 0xFFFFFFFF;
6723 	}
6724 
6725 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6726 		ret = -KVM_EPERM;
6727 		goto out;
6728 	}
6729 
6730 	switch (nr) {
6731 	case KVM_HC_VAPIC_POLL_IRQ:
6732 		ret = 0;
6733 		break;
6734 	case KVM_HC_KICK_CPU:
6735 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6736 		ret = 0;
6737 		break;
6738 #ifdef CONFIG_X86_64
6739 	case KVM_HC_CLOCK_PAIRING:
6740 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6741 		break;
6742 #endif
6743 	default:
6744 		ret = -KVM_ENOSYS;
6745 		break;
6746 	}
6747 out:
6748 	if (!op_64_bit)
6749 		ret = (u32)ret;
6750 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6751 
6752 	++vcpu->stat.hypercalls;
6753 	return kvm_skip_emulated_instruction(vcpu);
6754 }
6755 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6756 
6757 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6758 {
6759 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6760 	char instruction[3];
6761 	unsigned long rip = kvm_rip_read(vcpu);
6762 
6763 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6764 
6765 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6766 		&ctxt->exception);
6767 }
6768 
6769 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6770 {
6771 	return vcpu->run->request_interrupt_window &&
6772 		likely(!pic_in_kernel(vcpu->kvm));
6773 }
6774 
6775 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6776 {
6777 	struct kvm_run *kvm_run = vcpu->run;
6778 
6779 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6780 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6781 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6782 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6783 	kvm_run->ready_for_interrupt_injection =
6784 		pic_in_kernel(vcpu->kvm) ||
6785 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6786 }
6787 
6788 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6789 {
6790 	int max_irr, tpr;
6791 
6792 	if (!kvm_x86_ops->update_cr8_intercept)
6793 		return;
6794 
6795 	if (!lapic_in_kernel(vcpu))
6796 		return;
6797 
6798 	if (vcpu->arch.apicv_active)
6799 		return;
6800 
6801 	if (!vcpu->arch.apic->vapic_addr)
6802 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6803 	else
6804 		max_irr = -1;
6805 
6806 	if (max_irr != -1)
6807 		max_irr >>= 4;
6808 
6809 	tpr = kvm_lapic_get_cr8(vcpu);
6810 
6811 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6812 }
6813 
6814 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6815 {
6816 	int r;
6817 
6818 	/* try to reinject previous events if any */
6819 
6820 	if (vcpu->arch.exception.injected)
6821 		kvm_x86_ops->queue_exception(vcpu);
6822 	/*
6823 	 * Do not inject an NMI or interrupt if there is a pending
6824 	 * exception.  Exceptions and interrupts are recognized at
6825 	 * instruction boundaries, i.e. the start of an instruction.
6826 	 * Trap-like exceptions, e.g. #DB, have higher priority than
6827 	 * NMIs and interrupts, i.e. traps are recognized before an
6828 	 * NMI/interrupt that's pending on the same instruction.
6829 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6830 	 * priority, but are only generated (pended) during instruction
6831 	 * execution, i.e. a pending fault-like exception means the
6832 	 * fault occurred on the *previous* instruction and must be
6833 	 * serviced prior to recognizing any new events in order to
6834 	 * fully complete the previous instruction.
6835 	 */
6836 	else if (!vcpu->arch.exception.pending) {
6837 		if (vcpu->arch.nmi_injected)
6838 			kvm_x86_ops->set_nmi(vcpu);
6839 		else if (vcpu->arch.interrupt.injected)
6840 			kvm_x86_ops->set_irq(vcpu);
6841 	}
6842 
6843 	/*
6844 	 * Call check_nested_events() even if we reinjected a previous event
6845 	 * in order for caller to determine if it should require immediate-exit
6846 	 * from L2 to L1 due to pending L1 events which require exit
6847 	 * from L2 to L1.
6848 	 */
6849 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6850 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6851 		if (r != 0)
6852 			return r;
6853 	}
6854 
6855 	/* try to inject new event if pending */
6856 	if (vcpu->arch.exception.pending) {
6857 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6858 					vcpu->arch.exception.has_error_code,
6859 					vcpu->arch.exception.error_code);
6860 
6861 		WARN_ON_ONCE(vcpu->arch.exception.injected);
6862 		vcpu->arch.exception.pending = false;
6863 		vcpu->arch.exception.injected = true;
6864 
6865 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6866 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6867 					     X86_EFLAGS_RF);
6868 
6869 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6870 		    (vcpu->arch.dr7 & DR7_GD)) {
6871 			vcpu->arch.dr7 &= ~DR7_GD;
6872 			kvm_update_dr7(vcpu);
6873 		}
6874 
6875 		kvm_x86_ops->queue_exception(vcpu);
6876 	}
6877 
6878 	/* Don't consider new event if we re-injected an event */
6879 	if (kvm_event_needs_reinjection(vcpu))
6880 		return 0;
6881 
6882 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6883 	    kvm_x86_ops->smi_allowed(vcpu)) {
6884 		vcpu->arch.smi_pending = false;
6885 		++vcpu->arch.smi_count;
6886 		enter_smm(vcpu);
6887 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6888 		--vcpu->arch.nmi_pending;
6889 		vcpu->arch.nmi_injected = true;
6890 		kvm_x86_ops->set_nmi(vcpu);
6891 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6892 		/*
6893 		 * Because interrupts can be injected asynchronously, we are
6894 		 * calling check_nested_events again here to avoid a race condition.
6895 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6896 		 * proposal and current concerns.  Perhaps we should be setting
6897 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6898 		 */
6899 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6900 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6901 			if (r != 0)
6902 				return r;
6903 		}
6904 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6905 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6906 					    false);
6907 			kvm_x86_ops->set_irq(vcpu);
6908 		}
6909 	}
6910 
6911 	return 0;
6912 }
6913 
6914 static void process_nmi(struct kvm_vcpu *vcpu)
6915 {
6916 	unsigned limit = 2;
6917 
6918 	/*
6919 	 * x86 is limited to one NMI running, and one NMI pending after it.
6920 	 * If an NMI is already in progress, limit further NMIs to just one.
6921 	 * Otherwise, allow two (and we'll inject the first one immediately).
6922 	 */
6923 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6924 		limit = 1;
6925 
6926 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6927 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6928 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6929 }
6930 
6931 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6932 {
6933 	u32 flags = 0;
6934 	flags |= seg->g       << 23;
6935 	flags |= seg->db      << 22;
6936 	flags |= seg->l       << 21;
6937 	flags |= seg->avl     << 20;
6938 	flags |= seg->present << 15;
6939 	flags |= seg->dpl     << 13;
6940 	flags |= seg->s       << 12;
6941 	flags |= seg->type    << 8;
6942 	return flags;
6943 }
6944 
6945 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6946 {
6947 	struct kvm_segment seg;
6948 	int offset;
6949 
6950 	kvm_get_segment(vcpu, &seg, n);
6951 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6952 
6953 	if (n < 3)
6954 		offset = 0x7f84 + n * 12;
6955 	else
6956 		offset = 0x7f2c + (n - 3) * 12;
6957 
6958 	put_smstate(u32, buf, offset + 8, seg.base);
6959 	put_smstate(u32, buf, offset + 4, seg.limit);
6960 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6961 }
6962 
6963 #ifdef CONFIG_X86_64
6964 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6965 {
6966 	struct kvm_segment seg;
6967 	int offset;
6968 	u16 flags;
6969 
6970 	kvm_get_segment(vcpu, &seg, n);
6971 	offset = 0x7e00 + n * 16;
6972 
6973 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6974 	put_smstate(u16, buf, offset, seg.selector);
6975 	put_smstate(u16, buf, offset + 2, flags);
6976 	put_smstate(u32, buf, offset + 4, seg.limit);
6977 	put_smstate(u64, buf, offset + 8, seg.base);
6978 }
6979 #endif
6980 
6981 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6982 {
6983 	struct desc_ptr dt;
6984 	struct kvm_segment seg;
6985 	unsigned long val;
6986 	int i;
6987 
6988 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6989 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6990 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6991 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6992 
6993 	for (i = 0; i < 8; i++)
6994 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6995 
6996 	kvm_get_dr(vcpu, 6, &val);
6997 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6998 	kvm_get_dr(vcpu, 7, &val);
6999 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7000 
7001 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7002 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7003 	put_smstate(u32, buf, 0x7f64, seg.base);
7004 	put_smstate(u32, buf, 0x7f60, seg.limit);
7005 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7006 
7007 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7008 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7009 	put_smstate(u32, buf, 0x7f80, seg.base);
7010 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7011 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7012 
7013 	kvm_x86_ops->get_gdt(vcpu, &dt);
7014 	put_smstate(u32, buf, 0x7f74, dt.address);
7015 	put_smstate(u32, buf, 0x7f70, dt.size);
7016 
7017 	kvm_x86_ops->get_idt(vcpu, &dt);
7018 	put_smstate(u32, buf, 0x7f58, dt.address);
7019 	put_smstate(u32, buf, 0x7f54, dt.size);
7020 
7021 	for (i = 0; i < 6; i++)
7022 		enter_smm_save_seg_32(vcpu, buf, i);
7023 
7024 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7025 
7026 	/* revision id */
7027 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7028 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7029 }
7030 
7031 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7032 {
7033 #ifdef CONFIG_X86_64
7034 	struct desc_ptr dt;
7035 	struct kvm_segment seg;
7036 	unsigned long val;
7037 	int i;
7038 
7039 	for (i = 0; i < 16; i++)
7040 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7041 
7042 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7043 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7044 
7045 	kvm_get_dr(vcpu, 6, &val);
7046 	put_smstate(u64, buf, 0x7f68, val);
7047 	kvm_get_dr(vcpu, 7, &val);
7048 	put_smstate(u64, buf, 0x7f60, val);
7049 
7050 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7051 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7052 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7053 
7054 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7055 
7056 	/* revision id */
7057 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7058 
7059 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7060 
7061 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7062 	put_smstate(u16, buf, 0x7e90, seg.selector);
7063 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7064 	put_smstate(u32, buf, 0x7e94, seg.limit);
7065 	put_smstate(u64, buf, 0x7e98, seg.base);
7066 
7067 	kvm_x86_ops->get_idt(vcpu, &dt);
7068 	put_smstate(u32, buf, 0x7e84, dt.size);
7069 	put_smstate(u64, buf, 0x7e88, dt.address);
7070 
7071 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7072 	put_smstate(u16, buf, 0x7e70, seg.selector);
7073 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7074 	put_smstate(u32, buf, 0x7e74, seg.limit);
7075 	put_smstate(u64, buf, 0x7e78, seg.base);
7076 
7077 	kvm_x86_ops->get_gdt(vcpu, &dt);
7078 	put_smstate(u32, buf, 0x7e64, dt.size);
7079 	put_smstate(u64, buf, 0x7e68, dt.address);
7080 
7081 	for (i = 0; i < 6; i++)
7082 		enter_smm_save_seg_64(vcpu, buf, i);
7083 #else
7084 	WARN_ON_ONCE(1);
7085 #endif
7086 }
7087 
7088 static void enter_smm(struct kvm_vcpu *vcpu)
7089 {
7090 	struct kvm_segment cs, ds;
7091 	struct desc_ptr dt;
7092 	char buf[512];
7093 	u32 cr0;
7094 
7095 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7096 	memset(buf, 0, 512);
7097 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7098 		enter_smm_save_state_64(vcpu, buf);
7099 	else
7100 		enter_smm_save_state_32(vcpu, buf);
7101 
7102 	/*
7103 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7104 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7105 	 * the SMM state-save area.
7106 	 */
7107 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7108 
7109 	vcpu->arch.hflags |= HF_SMM_MASK;
7110 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7111 
7112 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7113 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7114 	else
7115 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7116 
7117 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7118 	kvm_rip_write(vcpu, 0x8000);
7119 
7120 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7121 	kvm_x86_ops->set_cr0(vcpu, cr0);
7122 	vcpu->arch.cr0 = cr0;
7123 
7124 	kvm_x86_ops->set_cr4(vcpu, 0);
7125 
7126 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7127 	dt.address = dt.size = 0;
7128 	kvm_x86_ops->set_idt(vcpu, &dt);
7129 
7130 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7131 
7132 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7133 	cs.base = vcpu->arch.smbase;
7134 
7135 	ds.selector = 0;
7136 	ds.base = 0;
7137 
7138 	cs.limit    = ds.limit = 0xffffffff;
7139 	cs.type     = ds.type = 0x3;
7140 	cs.dpl      = ds.dpl = 0;
7141 	cs.db       = ds.db = 0;
7142 	cs.s        = ds.s = 1;
7143 	cs.l        = ds.l = 0;
7144 	cs.g        = ds.g = 1;
7145 	cs.avl      = ds.avl = 0;
7146 	cs.present  = ds.present = 1;
7147 	cs.unusable = ds.unusable = 0;
7148 	cs.padding  = ds.padding = 0;
7149 
7150 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7151 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7152 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7153 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7154 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7155 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7156 
7157 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7158 		kvm_x86_ops->set_efer(vcpu, 0);
7159 
7160 	kvm_update_cpuid(vcpu);
7161 	kvm_mmu_reset_context(vcpu);
7162 }
7163 
7164 static void process_smi(struct kvm_vcpu *vcpu)
7165 {
7166 	vcpu->arch.smi_pending = true;
7167 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7168 }
7169 
7170 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7171 {
7172 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7173 }
7174 
7175 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7176 {
7177 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7178 		return;
7179 
7180 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7181 
7182 	if (irqchip_split(vcpu->kvm))
7183 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7184 	else {
7185 		if (vcpu->arch.apicv_active)
7186 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7187 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7188 	}
7189 
7190 	if (is_guest_mode(vcpu))
7191 		vcpu->arch.load_eoi_exitmap_pending = true;
7192 	else
7193 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7194 }
7195 
7196 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7197 {
7198 	u64 eoi_exit_bitmap[4];
7199 
7200 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7201 		return;
7202 
7203 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7204 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7205 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7206 }
7207 
7208 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7209 		unsigned long start, unsigned long end)
7210 {
7211 	unsigned long apic_address;
7212 
7213 	/*
7214 	 * The physical address of apic access page is stored in the VMCS.
7215 	 * Update it when it becomes invalid.
7216 	 */
7217 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7218 	if (start <= apic_address && apic_address < end)
7219 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7220 }
7221 
7222 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7223 {
7224 	struct page *page = NULL;
7225 
7226 	if (!lapic_in_kernel(vcpu))
7227 		return;
7228 
7229 	if (!kvm_x86_ops->set_apic_access_page_addr)
7230 		return;
7231 
7232 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7233 	if (is_error_page(page))
7234 		return;
7235 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7236 
7237 	/*
7238 	 * Do not pin apic access page in memory, the MMU notifier
7239 	 * will call us again if it is migrated or swapped out.
7240 	 */
7241 	put_page(page);
7242 }
7243 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7244 
7245 /*
7246  * Returns 1 to let vcpu_run() continue the guest execution loop without
7247  * exiting to the userspace.  Otherwise, the value will be returned to the
7248  * userspace.
7249  */
7250 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7251 {
7252 	int r;
7253 	bool req_int_win =
7254 		dm_request_for_irq_injection(vcpu) &&
7255 		kvm_cpu_accept_dm_intr(vcpu);
7256 
7257 	bool req_immediate_exit = false;
7258 
7259 	if (kvm_request_pending(vcpu)) {
7260 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7261 			kvm_mmu_unload(vcpu);
7262 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7263 			__kvm_migrate_timers(vcpu);
7264 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7265 			kvm_gen_update_masterclock(vcpu->kvm);
7266 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7267 			kvm_gen_kvmclock_update(vcpu);
7268 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7269 			r = kvm_guest_time_update(vcpu);
7270 			if (unlikely(r))
7271 				goto out;
7272 		}
7273 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7274 			kvm_mmu_sync_roots(vcpu);
7275 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7276 			kvm_vcpu_flush_tlb(vcpu, true);
7277 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7278 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7279 			r = 0;
7280 			goto out;
7281 		}
7282 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7283 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7284 			vcpu->mmio_needed = 0;
7285 			r = 0;
7286 			goto out;
7287 		}
7288 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7289 			/* Page is swapped out. Do synthetic halt */
7290 			vcpu->arch.apf.halted = true;
7291 			r = 1;
7292 			goto out;
7293 		}
7294 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7295 			record_steal_time(vcpu);
7296 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7297 			process_smi(vcpu);
7298 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7299 			process_nmi(vcpu);
7300 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7301 			kvm_pmu_handle_event(vcpu);
7302 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7303 			kvm_pmu_deliver_pmi(vcpu);
7304 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7305 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7306 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7307 				     vcpu->arch.ioapic_handled_vectors)) {
7308 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7309 				vcpu->run->eoi.vector =
7310 						vcpu->arch.pending_ioapic_eoi;
7311 				r = 0;
7312 				goto out;
7313 			}
7314 		}
7315 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7316 			vcpu_scan_ioapic(vcpu);
7317 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7318 			vcpu_load_eoi_exitmap(vcpu);
7319 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7320 			kvm_vcpu_reload_apic_access_page(vcpu);
7321 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7322 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7323 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7324 			r = 0;
7325 			goto out;
7326 		}
7327 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7328 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7329 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7330 			r = 0;
7331 			goto out;
7332 		}
7333 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7334 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7335 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7336 			r = 0;
7337 			goto out;
7338 		}
7339 
7340 		/*
7341 		 * KVM_REQ_HV_STIMER has to be processed after
7342 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7343 		 * depend on the guest clock being up-to-date
7344 		 */
7345 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7346 			kvm_hv_process_stimers(vcpu);
7347 	}
7348 
7349 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7350 		++vcpu->stat.req_event;
7351 		kvm_apic_accept_events(vcpu);
7352 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7353 			r = 1;
7354 			goto out;
7355 		}
7356 
7357 		if (inject_pending_event(vcpu, req_int_win) != 0)
7358 			req_immediate_exit = true;
7359 		else {
7360 			/* Enable SMI/NMI/IRQ window open exits if needed.
7361 			 *
7362 			 * SMIs have three cases:
7363 			 * 1) They can be nested, and then there is nothing to
7364 			 *    do here because RSM will cause a vmexit anyway.
7365 			 * 2) There is an ISA-specific reason why SMI cannot be
7366 			 *    injected, and the moment when this changes can be
7367 			 *    intercepted.
7368 			 * 3) Or the SMI can be pending because
7369 			 *    inject_pending_event has completed the injection
7370 			 *    of an IRQ or NMI from the previous vmexit, and
7371 			 *    then we request an immediate exit to inject the
7372 			 *    SMI.
7373 			 */
7374 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7375 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7376 					req_immediate_exit = true;
7377 			if (vcpu->arch.nmi_pending)
7378 				kvm_x86_ops->enable_nmi_window(vcpu);
7379 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7380 				kvm_x86_ops->enable_irq_window(vcpu);
7381 			WARN_ON(vcpu->arch.exception.pending);
7382 		}
7383 
7384 		if (kvm_lapic_enabled(vcpu)) {
7385 			update_cr8_intercept(vcpu);
7386 			kvm_lapic_sync_to_vapic(vcpu);
7387 		}
7388 	}
7389 
7390 	r = kvm_mmu_reload(vcpu);
7391 	if (unlikely(r)) {
7392 		goto cancel_injection;
7393 	}
7394 
7395 	preempt_disable();
7396 
7397 	kvm_x86_ops->prepare_guest_switch(vcpu);
7398 
7399 	/*
7400 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7401 	 * IPI are then delayed after guest entry, which ensures that they
7402 	 * result in virtual interrupt delivery.
7403 	 */
7404 	local_irq_disable();
7405 	vcpu->mode = IN_GUEST_MODE;
7406 
7407 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7408 
7409 	/*
7410 	 * 1) We should set ->mode before checking ->requests.  Please see
7411 	 * the comment in kvm_vcpu_exiting_guest_mode().
7412 	 *
7413 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7414 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7415 	 * (see vmx_deliver_posted_interrupt).
7416 	 *
7417 	 * 3) This also orders the write to mode from any reads to the page
7418 	 * tables done while the VCPU is running.  Please see the comment
7419 	 * in kvm_flush_remote_tlbs.
7420 	 */
7421 	smp_mb__after_srcu_read_unlock();
7422 
7423 	/*
7424 	 * This handles the case where a posted interrupt was
7425 	 * notified with kvm_vcpu_kick.
7426 	 */
7427 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7428 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7429 
7430 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7431 	    || need_resched() || signal_pending(current)) {
7432 		vcpu->mode = OUTSIDE_GUEST_MODE;
7433 		smp_wmb();
7434 		local_irq_enable();
7435 		preempt_enable();
7436 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7437 		r = 1;
7438 		goto cancel_injection;
7439 	}
7440 
7441 	kvm_load_guest_xcr0(vcpu);
7442 
7443 	if (req_immediate_exit) {
7444 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7445 		smp_send_reschedule(vcpu->cpu);
7446 	}
7447 
7448 	trace_kvm_entry(vcpu->vcpu_id);
7449 	if (lapic_timer_advance_ns)
7450 		wait_lapic_expire(vcpu);
7451 	guest_enter_irqoff();
7452 
7453 	if (unlikely(vcpu->arch.switch_db_regs)) {
7454 		set_debugreg(0, 7);
7455 		set_debugreg(vcpu->arch.eff_db[0], 0);
7456 		set_debugreg(vcpu->arch.eff_db[1], 1);
7457 		set_debugreg(vcpu->arch.eff_db[2], 2);
7458 		set_debugreg(vcpu->arch.eff_db[3], 3);
7459 		set_debugreg(vcpu->arch.dr6, 6);
7460 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7461 	}
7462 
7463 	kvm_x86_ops->run(vcpu);
7464 
7465 	/*
7466 	 * Do this here before restoring debug registers on the host.  And
7467 	 * since we do this before handling the vmexit, a DR access vmexit
7468 	 * can (a) read the correct value of the debug registers, (b) set
7469 	 * KVM_DEBUGREG_WONT_EXIT again.
7470 	 */
7471 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7472 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7473 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7474 		kvm_update_dr0123(vcpu);
7475 		kvm_update_dr6(vcpu);
7476 		kvm_update_dr7(vcpu);
7477 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7478 	}
7479 
7480 	/*
7481 	 * If the guest has used debug registers, at least dr7
7482 	 * will be disabled while returning to the host.
7483 	 * If we don't have active breakpoints in the host, we don't
7484 	 * care about the messed up debug address registers. But if
7485 	 * we have some of them active, restore the old state.
7486 	 */
7487 	if (hw_breakpoint_active())
7488 		hw_breakpoint_restore();
7489 
7490 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7491 
7492 	vcpu->mode = OUTSIDE_GUEST_MODE;
7493 	smp_wmb();
7494 
7495 	kvm_put_guest_xcr0(vcpu);
7496 
7497 	kvm_before_interrupt(vcpu);
7498 	kvm_x86_ops->handle_external_intr(vcpu);
7499 	kvm_after_interrupt(vcpu);
7500 
7501 	++vcpu->stat.exits;
7502 
7503 	guest_exit_irqoff();
7504 
7505 	local_irq_enable();
7506 	preempt_enable();
7507 
7508 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7509 
7510 	/*
7511 	 * Profile KVM exit RIPs:
7512 	 */
7513 	if (unlikely(prof_on == KVM_PROFILING)) {
7514 		unsigned long rip = kvm_rip_read(vcpu);
7515 		profile_hit(KVM_PROFILING, (void *)rip);
7516 	}
7517 
7518 	if (unlikely(vcpu->arch.tsc_always_catchup))
7519 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7520 
7521 	if (vcpu->arch.apic_attention)
7522 		kvm_lapic_sync_from_vapic(vcpu);
7523 
7524 	vcpu->arch.gpa_available = false;
7525 	r = kvm_x86_ops->handle_exit(vcpu);
7526 	return r;
7527 
7528 cancel_injection:
7529 	kvm_x86_ops->cancel_injection(vcpu);
7530 	if (unlikely(vcpu->arch.apic_attention))
7531 		kvm_lapic_sync_from_vapic(vcpu);
7532 out:
7533 	return r;
7534 }
7535 
7536 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7537 {
7538 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7539 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7540 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7541 		kvm_vcpu_block(vcpu);
7542 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7543 
7544 		if (kvm_x86_ops->post_block)
7545 			kvm_x86_ops->post_block(vcpu);
7546 
7547 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7548 			return 1;
7549 	}
7550 
7551 	kvm_apic_accept_events(vcpu);
7552 	switch(vcpu->arch.mp_state) {
7553 	case KVM_MP_STATE_HALTED:
7554 		vcpu->arch.pv.pv_unhalted = false;
7555 		vcpu->arch.mp_state =
7556 			KVM_MP_STATE_RUNNABLE;
7557 	case KVM_MP_STATE_RUNNABLE:
7558 		vcpu->arch.apf.halted = false;
7559 		break;
7560 	case KVM_MP_STATE_INIT_RECEIVED:
7561 		break;
7562 	default:
7563 		return -EINTR;
7564 		break;
7565 	}
7566 	return 1;
7567 }
7568 
7569 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7570 {
7571 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7572 		kvm_x86_ops->check_nested_events(vcpu, false);
7573 
7574 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7575 		!vcpu->arch.apf.halted);
7576 }
7577 
7578 static int vcpu_run(struct kvm_vcpu *vcpu)
7579 {
7580 	int r;
7581 	struct kvm *kvm = vcpu->kvm;
7582 
7583 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7584 
7585 	for (;;) {
7586 		if (kvm_vcpu_running(vcpu)) {
7587 			r = vcpu_enter_guest(vcpu);
7588 		} else {
7589 			r = vcpu_block(kvm, vcpu);
7590 		}
7591 
7592 		if (r <= 0)
7593 			break;
7594 
7595 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7596 		if (kvm_cpu_has_pending_timer(vcpu))
7597 			kvm_inject_pending_timer_irqs(vcpu);
7598 
7599 		if (dm_request_for_irq_injection(vcpu) &&
7600 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7601 			r = 0;
7602 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7603 			++vcpu->stat.request_irq_exits;
7604 			break;
7605 		}
7606 
7607 		kvm_check_async_pf_completion(vcpu);
7608 
7609 		if (signal_pending(current)) {
7610 			r = -EINTR;
7611 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7612 			++vcpu->stat.signal_exits;
7613 			break;
7614 		}
7615 		if (need_resched()) {
7616 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7617 			cond_resched();
7618 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7619 		}
7620 	}
7621 
7622 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7623 
7624 	return r;
7625 }
7626 
7627 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7628 {
7629 	int r;
7630 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7631 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7632 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7633 	if (r != EMULATE_DONE)
7634 		return 0;
7635 	return 1;
7636 }
7637 
7638 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7639 {
7640 	BUG_ON(!vcpu->arch.pio.count);
7641 
7642 	return complete_emulated_io(vcpu);
7643 }
7644 
7645 /*
7646  * Implements the following, as a state machine:
7647  *
7648  * read:
7649  *   for each fragment
7650  *     for each mmio piece in the fragment
7651  *       write gpa, len
7652  *       exit
7653  *       copy data
7654  *   execute insn
7655  *
7656  * write:
7657  *   for each fragment
7658  *     for each mmio piece in the fragment
7659  *       write gpa, len
7660  *       copy data
7661  *       exit
7662  */
7663 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7664 {
7665 	struct kvm_run *run = vcpu->run;
7666 	struct kvm_mmio_fragment *frag;
7667 	unsigned len;
7668 
7669 	BUG_ON(!vcpu->mmio_needed);
7670 
7671 	/* Complete previous fragment */
7672 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7673 	len = min(8u, frag->len);
7674 	if (!vcpu->mmio_is_write)
7675 		memcpy(frag->data, run->mmio.data, len);
7676 
7677 	if (frag->len <= 8) {
7678 		/* Switch to the next fragment. */
7679 		frag++;
7680 		vcpu->mmio_cur_fragment++;
7681 	} else {
7682 		/* Go forward to the next mmio piece. */
7683 		frag->data += len;
7684 		frag->gpa += len;
7685 		frag->len -= len;
7686 	}
7687 
7688 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7689 		vcpu->mmio_needed = 0;
7690 
7691 		/* FIXME: return into emulator if single-stepping.  */
7692 		if (vcpu->mmio_is_write)
7693 			return 1;
7694 		vcpu->mmio_read_completed = 1;
7695 		return complete_emulated_io(vcpu);
7696 	}
7697 
7698 	run->exit_reason = KVM_EXIT_MMIO;
7699 	run->mmio.phys_addr = frag->gpa;
7700 	if (vcpu->mmio_is_write)
7701 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7702 	run->mmio.len = min(8u, frag->len);
7703 	run->mmio.is_write = vcpu->mmio_is_write;
7704 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7705 	return 0;
7706 }
7707 
7708 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7709 {
7710 	int r;
7711 
7712 	vcpu_load(vcpu);
7713 	kvm_sigset_activate(vcpu);
7714 	kvm_load_guest_fpu(vcpu);
7715 
7716 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7717 		if (kvm_run->immediate_exit) {
7718 			r = -EINTR;
7719 			goto out;
7720 		}
7721 		kvm_vcpu_block(vcpu);
7722 		kvm_apic_accept_events(vcpu);
7723 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7724 		r = -EAGAIN;
7725 		if (signal_pending(current)) {
7726 			r = -EINTR;
7727 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7728 			++vcpu->stat.signal_exits;
7729 		}
7730 		goto out;
7731 	}
7732 
7733 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7734 		r = -EINVAL;
7735 		goto out;
7736 	}
7737 
7738 	if (vcpu->run->kvm_dirty_regs) {
7739 		r = sync_regs(vcpu);
7740 		if (r != 0)
7741 			goto out;
7742 	}
7743 
7744 	/* re-sync apic's tpr */
7745 	if (!lapic_in_kernel(vcpu)) {
7746 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7747 			r = -EINVAL;
7748 			goto out;
7749 		}
7750 	}
7751 
7752 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7753 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7754 		vcpu->arch.complete_userspace_io = NULL;
7755 		r = cui(vcpu);
7756 		if (r <= 0)
7757 			goto out;
7758 	} else
7759 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7760 
7761 	if (kvm_run->immediate_exit)
7762 		r = -EINTR;
7763 	else
7764 		r = vcpu_run(vcpu);
7765 
7766 out:
7767 	kvm_put_guest_fpu(vcpu);
7768 	if (vcpu->run->kvm_valid_regs)
7769 		store_regs(vcpu);
7770 	post_kvm_run_save(vcpu);
7771 	kvm_sigset_deactivate(vcpu);
7772 
7773 	vcpu_put(vcpu);
7774 	return r;
7775 }
7776 
7777 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7778 {
7779 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7780 		/*
7781 		 * We are here if userspace calls get_regs() in the middle of
7782 		 * instruction emulation. Registers state needs to be copied
7783 		 * back from emulation context to vcpu. Userspace shouldn't do
7784 		 * that usually, but some bad designed PV devices (vmware
7785 		 * backdoor interface) need this to work
7786 		 */
7787 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7788 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7789 	}
7790 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7791 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7792 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7793 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7794 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7795 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7796 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7797 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7798 #ifdef CONFIG_X86_64
7799 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7800 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7801 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7802 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7803 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7804 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7805 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7806 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7807 #endif
7808 
7809 	regs->rip = kvm_rip_read(vcpu);
7810 	regs->rflags = kvm_get_rflags(vcpu);
7811 }
7812 
7813 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7814 {
7815 	vcpu_load(vcpu);
7816 	__get_regs(vcpu, regs);
7817 	vcpu_put(vcpu);
7818 	return 0;
7819 }
7820 
7821 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7822 {
7823 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7824 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7825 
7826 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7827 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7828 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7829 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7830 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7831 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7832 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7833 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7834 #ifdef CONFIG_X86_64
7835 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7836 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7837 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7838 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7839 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7840 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7841 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7842 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7843 #endif
7844 
7845 	kvm_rip_write(vcpu, regs->rip);
7846 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7847 
7848 	vcpu->arch.exception.pending = false;
7849 
7850 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7851 }
7852 
7853 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7854 {
7855 	vcpu_load(vcpu);
7856 	__set_regs(vcpu, regs);
7857 	vcpu_put(vcpu);
7858 	return 0;
7859 }
7860 
7861 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7862 {
7863 	struct kvm_segment cs;
7864 
7865 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7866 	*db = cs.db;
7867 	*l = cs.l;
7868 }
7869 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7870 
7871 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7872 {
7873 	struct desc_ptr dt;
7874 
7875 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7876 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7877 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7878 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7879 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7880 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7881 
7882 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7883 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7884 
7885 	kvm_x86_ops->get_idt(vcpu, &dt);
7886 	sregs->idt.limit = dt.size;
7887 	sregs->idt.base = dt.address;
7888 	kvm_x86_ops->get_gdt(vcpu, &dt);
7889 	sregs->gdt.limit = dt.size;
7890 	sregs->gdt.base = dt.address;
7891 
7892 	sregs->cr0 = kvm_read_cr0(vcpu);
7893 	sregs->cr2 = vcpu->arch.cr2;
7894 	sregs->cr3 = kvm_read_cr3(vcpu);
7895 	sregs->cr4 = kvm_read_cr4(vcpu);
7896 	sregs->cr8 = kvm_get_cr8(vcpu);
7897 	sregs->efer = vcpu->arch.efer;
7898 	sregs->apic_base = kvm_get_apic_base(vcpu);
7899 
7900 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7901 
7902 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7903 		set_bit(vcpu->arch.interrupt.nr,
7904 			(unsigned long *)sregs->interrupt_bitmap);
7905 }
7906 
7907 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7908 				  struct kvm_sregs *sregs)
7909 {
7910 	vcpu_load(vcpu);
7911 	__get_sregs(vcpu, sregs);
7912 	vcpu_put(vcpu);
7913 	return 0;
7914 }
7915 
7916 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7917 				    struct kvm_mp_state *mp_state)
7918 {
7919 	vcpu_load(vcpu);
7920 
7921 	kvm_apic_accept_events(vcpu);
7922 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7923 					vcpu->arch.pv.pv_unhalted)
7924 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7925 	else
7926 		mp_state->mp_state = vcpu->arch.mp_state;
7927 
7928 	vcpu_put(vcpu);
7929 	return 0;
7930 }
7931 
7932 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7933 				    struct kvm_mp_state *mp_state)
7934 {
7935 	int ret = -EINVAL;
7936 
7937 	vcpu_load(vcpu);
7938 
7939 	if (!lapic_in_kernel(vcpu) &&
7940 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7941 		goto out;
7942 
7943 	/* INITs are latched while in SMM */
7944 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7945 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7946 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7947 		goto out;
7948 
7949 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7950 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7951 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7952 	} else
7953 		vcpu->arch.mp_state = mp_state->mp_state;
7954 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7955 
7956 	ret = 0;
7957 out:
7958 	vcpu_put(vcpu);
7959 	return ret;
7960 }
7961 
7962 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7963 		    int reason, bool has_error_code, u32 error_code)
7964 {
7965 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7966 	int ret;
7967 
7968 	init_emulate_ctxt(vcpu);
7969 
7970 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7971 				   has_error_code, error_code);
7972 
7973 	if (ret)
7974 		return EMULATE_FAIL;
7975 
7976 	kvm_rip_write(vcpu, ctxt->eip);
7977 	kvm_set_rflags(vcpu, ctxt->eflags);
7978 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7979 	return EMULATE_DONE;
7980 }
7981 EXPORT_SYMBOL_GPL(kvm_task_switch);
7982 
7983 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7984 {
7985 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7986 		/*
7987 		 * When EFER.LME and CR0.PG are set, the processor is in
7988 		 * 64-bit mode (though maybe in a 32-bit code segment).
7989 		 * CR4.PAE and EFER.LMA must be set.
7990 		 */
7991 		if (!(sregs->cr4 & X86_CR4_PAE)
7992 		    || !(sregs->efer & EFER_LMA))
7993 			return -EINVAL;
7994 	} else {
7995 		/*
7996 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7997 		 * segment cannot be 64-bit.
7998 		 */
7999 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8000 			return -EINVAL;
8001 	}
8002 
8003 	return 0;
8004 }
8005 
8006 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8007 {
8008 	struct msr_data apic_base_msr;
8009 	int mmu_reset_needed = 0;
8010 	int cpuid_update_needed = 0;
8011 	int pending_vec, max_bits, idx;
8012 	struct desc_ptr dt;
8013 	int ret = -EINVAL;
8014 
8015 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8016 			(sregs->cr4 & X86_CR4_OSXSAVE))
8017 		goto out;
8018 
8019 	if (kvm_valid_sregs(vcpu, sregs))
8020 		goto out;
8021 
8022 	apic_base_msr.data = sregs->apic_base;
8023 	apic_base_msr.host_initiated = true;
8024 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8025 		goto out;
8026 
8027 	dt.size = sregs->idt.limit;
8028 	dt.address = sregs->idt.base;
8029 	kvm_x86_ops->set_idt(vcpu, &dt);
8030 	dt.size = sregs->gdt.limit;
8031 	dt.address = sregs->gdt.base;
8032 	kvm_x86_ops->set_gdt(vcpu, &dt);
8033 
8034 	vcpu->arch.cr2 = sregs->cr2;
8035 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8036 	vcpu->arch.cr3 = sregs->cr3;
8037 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8038 
8039 	kvm_set_cr8(vcpu, sregs->cr8);
8040 
8041 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8042 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8043 
8044 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8045 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8046 	vcpu->arch.cr0 = sregs->cr0;
8047 
8048 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8049 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8050 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8051 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8052 	if (cpuid_update_needed)
8053 		kvm_update_cpuid(vcpu);
8054 
8055 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8056 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8057 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8058 		mmu_reset_needed = 1;
8059 	}
8060 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8061 
8062 	if (mmu_reset_needed)
8063 		kvm_mmu_reset_context(vcpu);
8064 
8065 	max_bits = KVM_NR_INTERRUPTS;
8066 	pending_vec = find_first_bit(
8067 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8068 	if (pending_vec < max_bits) {
8069 		kvm_queue_interrupt(vcpu, pending_vec, false);
8070 		pr_debug("Set back pending irq %d\n", pending_vec);
8071 	}
8072 
8073 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8074 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8075 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8076 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8077 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8078 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8079 
8080 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8081 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8082 
8083 	update_cr8_intercept(vcpu);
8084 
8085 	/* Older userspace won't unhalt the vcpu on reset. */
8086 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8087 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8088 	    !is_protmode(vcpu))
8089 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8090 
8091 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8092 
8093 	ret = 0;
8094 out:
8095 	return ret;
8096 }
8097 
8098 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8099 				  struct kvm_sregs *sregs)
8100 {
8101 	int ret;
8102 
8103 	vcpu_load(vcpu);
8104 	ret = __set_sregs(vcpu, sregs);
8105 	vcpu_put(vcpu);
8106 	return ret;
8107 }
8108 
8109 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8110 					struct kvm_guest_debug *dbg)
8111 {
8112 	unsigned long rflags;
8113 	int i, r;
8114 
8115 	vcpu_load(vcpu);
8116 
8117 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8118 		r = -EBUSY;
8119 		if (vcpu->arch.exception.pending)
8120 			goto out;
8121 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8122 			kvm_queue_exception(vcpu, DB_VECTOR);
8123 		else
8124 			kvm_queue_exception(vcpu, BP_VECTOR);
8125 	}
8126 
8127 	/*
8128 	 * Read rflags as long as potentially injected trace flags are still
8129 	 * filtered out.
8130 	 */
8131 	rflags = kvm_get_rflags(vcpu);
8132 
8133 	vcpu->guest_debug = dbg->control;
8134 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8135 		vcpu->guest_debug = 0;
8136 
8137 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8138 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8139 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8140 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8141 	} else {
8142 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8143 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8144 	}
8145 	kvm_update_dr7(vcpu);
8146 
8147 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8148 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8149 			get_segment_base(vcpu, VCPU_SREG_CS);
8150 
8151 	/*
8152 	 * Trigger an rflags update that will inject or remove the trace
8153 	 * flags.
8154 	 */
8155 	kvm_set_rflags(vcpu, rflags);
8156 
8157 	kvm_x86_ops->update_bp_intercept(vcpu);
8158 
8159 	r = 0;
8160 
8161 out:
8162 	vcpu_put(vcpu);
8163 	return r;
8164 }
8165 
8166 /*
8167  * Translate a guest virtual address to a guest physical address.
8168  */
8169 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8170 				    struct kvm_translation *tr)
8171 {
8172 	unsigned long vaddr = tr->linear_address;
8173 	gpa_t gpa;
8174 	int idx;
8175 
8176 	vcpu_load(vcpu);
8177 
8178 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8179 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8180 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8181 	tr->physical_address = gpa;
8182 	tr->valid = gpa != UNMAPPED_GVA;
8183 	tr->writeable = 1;
8184 	tr->usermode = 0;
8185 
8186 	vcpu_put(vcpu);
8187 	return 0;
8188 }
8189 
8190 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8191 {
8192 	struct fxregs_state *fxsave;
8193 
8194 	vcpu_load(vcpu);
8195 
8196 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8197 	memcpy(fpu->fpr, fxsave->st_space, 128);
8198 	fpu->fcw = fxsave->cwd;
8199 	fpu->fsw = fxsave->swd;
8200 	fpu->ftwx = fxsave->twd;
8201 	fpu->last_opcode = fxsave->fop;
8202 	fpu->last_ip = fxsave->rip;
8203 	fpu->last_dp = fxsave->rdp;
8204 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8205 
8206 	vcpu_put(vcpu);
8207 	return 0;
8208 }
8209 
8210 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8211 {
8212 	struct fxregs_state *fxsave;
8213 
8214 	vcpu_load(vcpu);
8215 
8216 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8217 
8218 	memcpy(fxsave->st_space, fpu->fpr, 128);
8219 	fxsave->cwd = fpu->fcw;
8220 	fxsave->swd = fpu->fsw;
8221 	fxsave->twd = fpu->ftwx;
8222 	fxsave->fop = fpu->last_opcode;
8223 	fxsave->rip = fpu->last_ip;
8224 	fxsave->rdp = fpu->last_dp;
8225 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8226 
8227 	vcpu_put(vcpu);
8228 	return 0;
8229 }
8230 
8231 static void store_regs(struct kvm_vcpu *vcpu)
8232 {
8233 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8234 
8235 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8236 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8237 
8238 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8239 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8240 
8241 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8242 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8243 				vcpu, &vcpu->run->s.regs.events);
8244 }
8245 
8246 static int sync_regs(struct kvm_vcpu *vcpu)
8247 {
8248 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8249 		return -EINVAL;
8250 
8251 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8252 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8253 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8254 	}
8255 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8256 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8257 			return -EINVAL;
8258 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8259 	}
8260 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8261 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8262 				vcpu, &vcpu->run->s.regs.events))
8263 			return -EINVAL;
8264 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8265 	}
8266 
8267 	return 0;
8268 }
8269 
8270 static void fx_init(struct kvm_vcpu *vcpu)
8271 {
8272 	fpstate_init(&vcpu->arch.guest_fpu.state);
8273 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8274 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8275 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8276 
8277 	/*
8278 	 * Ensure guest xcr0 is valid for loading
8279 	 */
8280 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8281 
8282 	vcpu->arch.cr0 |= X86_CR0_ET;
8283 }
8284 
8285 /* Swap (qemu) user FPU context for the guest FPU context. */
8286 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8287 {
8288 	preempt_disable();
8289 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8290 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8291 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8292 				~XFEATURE_MASK_PKRU);
8293 	preempt_enable();
8294 	trace_kvm_fpu(1);
8295 }
8296 
8297 /* When vcpu_run ends, restore user space FPU context. */
8298 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8299 {
8300 	preempt_disable();
8301 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8302 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8303 	preempt_enable();
8304 	++vcpu->stat.fpu_reload;
8305 	trace_kvm_fpu(0);
8306 }
8307 
8308 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8309 {
8310 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8311 
8312 	kvmclock_reset(vcpu);
8313 
8314 	kvm_x86_ops->vcpu_free(vcpu);
8315 	free_cpumask_var(wbinvd_dirty_mask);
8316 }
8317 
8318 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8319 						unsigned int id)
8320 {
8321 	struct kvm_vcpu *vcpu;
8322 
8323 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8324 		printk_once(KERN_WARNING
8325 		"kvm: SMP vm created on host with unstable TSC; "
8326 		"guest TSC will not be reliable\n");
8327 
8328 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8329 
8330 	return vcpu;
8331 }
8332 
8333 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8334 {
8335 	kvm_vcpu_mtrr_init(vcpu);
8336 	vcpu_load(vcpu);
8337 	kvm_vcpu_reset(vcpu, false);
8338 	kvm_mmu_setup(vcpu);
8339 	vcpu_put(vcpu);
8340 	return 0;
8341 }
8342 
8343 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8344 {
8345 	struct msr_data msr;
8346 	struct kvm *kvm = vcpu->kvm;
8347 
8348 	kvm_hv_vcpu_postcreate(vcpu);
8349 
8350 	if (mutex_lock_killable(&vcpu->mutex))
8351 		return;
8352 	vcpu_load(vcpu);
8353 	msr.data = 0x0;
8354 	msr.index = MSR_IA32_TSC;
8355 	msr.host_initiated = true;
8356 	kvm_write_tsc(vcpu, &msr);
8357 	vcpu_put(vcpu);
8358 	mutex_unlock(&vcpu->mutex);
8359 
8360 	if (!kvmclock_periodic_sync)
8361 		return;
8362 
8363 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8364 					KVMCLOCK_SYNC_PERIOD);
8365 }
8366 
8367 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8368 {
8369 	vcpu->arch.apf.msr_val = 0;
8370 
8371 	vcpu_load(vcpu);
8372 	kvm_mmu_unload(vcpu);
8373 	vcpu_put(vcpu);
8374 
8375 	kvm_x86_ops->vcpu_free(vcpu);
8376 }
8377 
8378 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8379 {
8380 	kvm_lapic_reset(vcpu, init_event);
8381 
8382 	vcpu->arch.hflags = 0;
8383 
8384 	vcpu->arch.smi_pending = 0;
8385 	vcpu->arch.smi_count = 0;
8386 	atomic_set(&vcpu->arch.nmi_queued, 0);
8387 	vcpu->arch.nmi_pending = 0;
8388 	vcpu->arch.nmi_injected = false;
8389 	kvm_clear_interrupt_queue(vcpu);
8390 	kvm_clear_exception_queue(vcpu);
8391 	vcpu->arch.exception.pending = false;
8392 
8393 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8394 	kvm_update_dr0123(vcpu);
8395 	vcpu->arch.dr6 = DR6_INIT;
8396 	kvm_update_dr6(vcpu);
8397 	vcpu->arch.dr7 = DR7_FIXED_1;
8398 	kvm_update_dr7(vcpu);
8399 
8400 	vcpu->arch.cr2 = 0;
8401 
8402 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8403 	vcpu->arch.apf.msr_val = 0;
8404 	vcpu->arch.st.msr_val = 0;
8405 
8406 	kvmclock_reset(vcpu);
8407 
8408 	kvm_clear_async_pf_completion_queue(vcpu);
8409 	kvm_async_pf_hash_reset(vcpu);
8410 	vcpu->arch.apf.halted = false;
8411 
8412 	if (kvm_mpx_supported()) {
8413 		void *mpx_state_buffer;
8414 
8415 		/*
8416 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8417 		 * called with loaded FPU and does not let userspace fix the state.
8418 		 */
8419 		if (init_event)
8420 			kvm_put_guest_fpu(vcpu);
8421 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8422 					XFEATURE_MASK_BNDREGS);
8423 		if (mpx_state_buffer)
8424 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8425 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8426 					XFEATURE_MASK_BNDCSR);
8427 		if (mpx_state_buffer)
8428 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8429 		if (init_event)
8430 			kvm_load_guest_fpu(vcpu);
8431 	}
8432 
8433 	if (!init_event) {
8434 		kvm_pmu_reset(vcpu);
8435 		vcpu->arch.smbase = 0x30000;
8436 
8437 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8438 		vcpu->arch.msr_misc_features_enables = 0;
8439 
8440 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8441 	}
8442 
8443 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8444 	vcpu->arch.regs_avail = ~0;
8445 	vcpu->arch.regs_dirty = ~0;
8446 
8447 	vcpu->arch.ia32_xss = 0;
8448 
8449 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8450 }
8451 
8452 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8453 {
8454 	struct kvm_segment cs;
8455 
8456 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8457 	cs.selector = vector << 8;
8458 	cs.base = vector << 12;
8459 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8460 	kvm_rip_write(vcpu, 0);
8461 }
8462 
8463 int kvm_arch_hardware_enable(void)
8464 {
8465 	struct kvm *kvm;
8466 	struct kvm_vcpu *vcpu;
8467 	int i;
8468 	int ret;
8469 	u64 local_tsc;
8470 	u64 max_tsc = 0;
8471 	bool stable, backwards_tsc = false;
8472 
8473 	kvm_shared_msr_cpu_online();
8474 	ret = kvm_x86_ops->hardware_enable();
8475 	if (ret != 0)
8476 		return ret;
8477 
8478 	local_tsc = rdtsc();
8479 	stable = !kvm_check_tsc_unstable();
8480 	list_for_each_entry(kvm, &vm_list, vm_list) {
8481 		kvm_for_each_vcpu(i, vcpu, kvm) {
8482 			if (!stable && vcpu->cpu == smp_processor_id())
8483 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8484 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8485 				backwards_tsc = true;
8486 				if (vcpu->arch.last_host_tsc > max_tsc)
8487 					max_tsc = vcpu->arch.last_host_tsc;
8488 			}
8489 		}
8490 	}
8491 
8492 	/*
8493 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8494 	 * platforms that reset TSC during suspend or hibernate actions, but
8495 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8496 	 * detect that condition here, which happens early in CPU bringup,
8497 	 * before any KVM threads can be running.  Unfortunately, we can't
8498 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8499 	 * enough into CPU bringup that we know how much real time has actually
8500 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8501 	 * variables that haven't been updated yet.
8502 	 *
8503 	 * So we simply find the maximum observed TSC above, then record the
8504 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8505 	 * the adjustment will be applied.  Note that we accumulate
8506 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8507 	 * gets a chance to run again.  In the event that no KVM threads get a
8508 	 * chance to run, we will miss the entire elapsed period, as we'll have
8509 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8510 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8511 	 * uniform across all VCPUs (not to mention the scenario is extremely
8512 	 * unlikely). It is possible that a second hibernate recovery happens
8513 	 * much faster than a first, causing the observed TSC here to be
8514 	 * smaller; this would require additional padding adjustment, which is
8515 	 * why we set last_host_tsc to the local tsc observed here.
8516 	 *
8517 	 * N.B. - this code below runs only on platforms with reliable TSC,
8518 	 * as that is the only way backwards_tsc is set above.  Also note
8519 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8520 	 * have the same delta_cyc adjustment applied if backwards_tsc
8521 	 * is detected.  Note further, this adjustment is only done once,
8522 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8523 	 * called multiple times (one for each physical CPU bringup).
8524 	 *
8525 	 * Platforms with unreliable TSCs don't have to deal with this, they
8526 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8527 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8528 	 * guarantee that they stay in perfect synchronization.
8529 	 */
8530 	if (backwards_tsc) {
8531 		u64 delta_cyc = max_tsc - local_tsc;
8532 		list_for_each_entry(kvm, &vm_list, vm_list) {
8533 			kvm->arch.backwards_tsc_observed = true;
8534 			kvm_for_each_vcpu(i, vcpu, kvm) {
8535 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8536 				vcpu->arch.last_host_tsc = local_tsc;
8537 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8538 			}
8539 
8540 			/*
8541 			 * We have to disable TSC offset matching.. if you were
8542 			 * booting a VM while issuing an S4 host suspend....
8543 			 * you may have some problem.  Solving this issue is
8544 			 * left as an exercise to the reader.
8545 			 */
8546 			kvm->arch.last_tsc_nsec = 0;
8547 			kvm->arch.last_tsc_write = 0;
8548 		}
8549 
8550 	}
8551 	return 0;
8552 }
8553 
8554 void kvm_arch_hardware_disable(void)
8555 {
8556 	kvm_x86_ops->hardware_disable();
8557 	drop_user_return_notifiers();
8558 }
8559 
8560 int kvm_arch_hardware_setup(void)
8561 {
8562 	int r;
8563 
8564 	r = kvm_x86_ops->hardware_setup();
8565 	if (r != 0)
8566 		return r;
8567 
8568 	if (kvm_has_tsc_control) {
8569 		/*
8570 		 * Make sure the user can only configure tsc_khz values that
8571 		 * fit into a signed integer.
8572 		 * A min value is not calculated because it will always
8573 		 * be 1 on all machines.
8574 		 */
8575 		u64 max = min(0x7fffffffULL,
8576 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8577 		kvm_max_guest_tsc_khz = max;
8578 
8579 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8580 	}
8581 
8582 	kvm_init_msr_list();
8583 	return 0;
8584 }
8585 
8586 void kvm_arch_hardware_unsetup(void)
8587 {
8588 	kvm_x86_ops->hardware_unsetup();
8589 }
8590 
8591 void kvm_arch_check_processor_compat(void *rtn)
8592 {
8593 	kvm_x86_ops->check_processor_compatibility(rtn);
8594 }
8595 
8596 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8597 {
8598 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8599 }
8600 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8601 
8602 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8603 {
8604 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8605 }
8606 
8607 struct static_key kvm_no_apic_vcpu __read_mostly;
8608 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8609 
8610 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8611 {
8612 	struct page *page;
8613 	int r;
8614 
8615 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8616 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8617 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8618 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8619 	else
8620 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8621 
8622 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8623 	if (!page) {
8624 		r = -ENOMEM;
8625 		goto fail;
8626 	}
8627 	vcpu->arch.pio_data = page_address(page);
8628 
8629 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8630 
8631 	r = kvm_mmu_create(vcpu);
8632 	if (r < 0)
8633 		goto fail_free_pio_data;
8634 
8635 	if (irqchip_in_kernel(vcpu->kvm)) {
8636 		r = kvm_create_lapic(vcpu);
8637 		if (r < 0)
8638 			goto fail_mmu_destroy;
8639 	} else
8640 		static_key_slow_inc(&kvm_no_apic_vcpu);
8641 
8642 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8643 				       GFP_KERNEL);
8644 	if (!vcpu->arch.mce_banks) {
8645 		r = -ENOMEM;
8646 		goto fail_free_lapic;
8647 	}
8648 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8649 
8650 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8651 		r = -ENOMEM;
8652 		goto fail_free_mce_banks;
8653 	}
8654 
8655 	fx_init(vcpu);
8656 
8657 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8658 
8659 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8660 
8661 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8662 
8663 	kvm_async_pf_hash_reset(vcpu);
8664 	kvm_pmu_init(vcpu);
8665 
8666 	vcpu->arch.pending_external_vector = -1;
8667 	vcpu->arch.preempted_in_kernel = false;
8668 
8669 	kvm_hv_vcpu_init(vcpu);
8670 
8671 	return 0;
8672 
8673 fail_free_mce_banks:
8674 	kfree(vcpu->arch.mce_banks);
8675 fail_free_lapic:
8676 	kvm_free_lapic(vcpu);
8677 fail_mmu_destroy:
8678 	kvm_mmu_destroy(vcpu);
8679 fail_free_pio_data:
8680 	free_page((unsigned long)vcpu->arch.pio_data);
8681 fail:
8682 	return r;
8683 }
8684 
8685 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8686 {
8687 	int idx;
8688 
8689 	kvm_hv_vcpu_uninit(vcpu);
8690 	kvm_pmu_destroy(vcpu);
8691 	kfree(vcpu->arch.mce_banks);
8692 	kvm_free_lapic(vcpu);
8693 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8694 	kvm_mmu_destroy(vcpu);
8695 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8696 	free_page((unsigned long)vcpu->arch.pio_data);
8697 	if (!lapic_in_kernel(vcpu))
8698 		static_key_slow_dec(&kvm_no_apic_vcpu);
8699 }
8700 
8701 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8702 {
8703 	kvm_x86_ops->sched_in(vcpu, cpu);
8704 }
8705 
8706 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8707 {
8708 	if (type)
8709 		return -EINVAL;
8710 
8711 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8712 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8713 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8714 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8715 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8716 
8717 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8718 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8719 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8720 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8721 		&kvm->arch.irq_sources_bitmap);
8722 
8723 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8724 	mutex_init(&kvm->arch.apic_map_lock);
8725 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8726 
8727 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8728 	pvclock_update_vm_gtod_copy(kvm);
8729 
8730 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8731 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8732 
8733 	kvm_hv_init_vm(kvm);
8734 	kvm_page_track_init(kvm);
8735 	kvm_mmu_init_vm(kvm);
8736 
8737 	if (kvm_x86_ops->vm_init)
8738 		return kvm_x86_ops->vm_init(kvm);
8739 
8740 	return 0;
8741 }
8742 
8743 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8744 {
8745 	vcpu_load(vcpu);
8746 	kvm_mmu_unload(vcpu);
8747 	vcpu_put(vcpu);
8748 }
8749 
8750 static void kvm_free_vcpus(struct kvm *kvm)
8751 {
8752 	unsigned int i;
8753 	struct kvm_vcpu *vcpu;
8754 
8755 	/*
8756 	 * Unpin any mmu pages first.
8757 	 */
8758 	kvm_for_each_vcpu(i, vcpu, kvm) {
8759 		kvm_clear_async_pf_completion_queue(vcpu);
8760 		kvm_unload_vcpu_mmu(vcpu);
8761 	}
8762 	kvm_for_each_vcpu(i, vcpu, kvm)
8763 		kvm_arch_vcpu_free(vcpu);
8764 
8765 	mutex_lock(&kvm->lock);
8766 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8767 		kvm->vcpus[i] = NULL;
8768 
8769 	atomic_set(&kvm->online_vcpus, 0);
8770 	mutex_unlock(&kvm->lock);
8771 }
8772 
8773 void kvm_arch_sync_events(struct kvm *kvm)
8774 {
8775 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8776 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8777 	kvm_free_pit(kvm);
8778 }
8779 
8780 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8781 {
8782 	int i, r;
8783 	unsigned long hva;
8784 	struct kvm_memslots *slots = kvm_memslots(kvm);
8785 	struct kvm_memory_slot *slot, old;
8786 
8787 	/* Called with kvm->slots_lock held.  */
8788 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8789 		return -EINVAL;
8790 
8791 	slot = id_to_memslot(slots, id);
8792 	if (size) {
8793 		if (slot->npages)
8794 			return -EEXIST;
8795 
8796 		/*
8797 		 * MAP_SHARED to prevent internal slot pages from being moved
8798 		 * by fork()/COW.
8799 		 */
8800 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8801 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8802 		if (IS_ERR((void *)hva))
8803 			return PTR_ERR((void *)hva);
8804 	} else {
8805 		if (!slot->npages)
8806 			return 0;
8807 
8808 		hva = 0;
8809 	}
8810 
8811 	old = *slot;
8812 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8813 		struct kvm_userspace_memory_region m;
8814 
8815 		m.slot = id | (i << 16);
8816 		m.flags = 0;
8817 		m.guest_phys_addr = gpa;
8818 		m.userspace_addr = hva;
8819 		m.memory_size = size;
8820 		r = __kvm_set_memory_region(kvm, &m);
8821 		if (r < 0)
8822 			return r;
8823 	}
8824 
8825 	if (!size)
8826 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8827 
8828 	return 0;
8829 }
8830 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8831 
8832 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8833 {
8834 	int r;
8835 
8836 	mutex_lock(&kvm->slots_lock);
8837 	r = __x86_set_memory_region(kvm, id, gpa, size);
8838 	mutex_unlock(&kvm->slots_lock);
8839 
8840 	return r;
8841 }
8842 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8843 
8844 void kvm_arch_destroy_vm(struct kvm *kvm)
8845 {
8846 	if (current->mm == kvm->mm) {
8847 		/*
8848 		 * Free memory regions allocated on behalf of userspace,
8849 		 * unless the the memory map has changed due to process exit
8850 		 * or fd copying.
8851 		 */
8852 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8853 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8854 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8855 	}
8856 	if (kvm_x86_ops->vm_destroy)
8857 		kvm_x86_ops->vm_destroy(kvm);
8858 	kvm_pic_destroy(kvm);
8859 	kvm_ioapic_destroy(kvm);
8860 	kvm_free_vcpus(kvm);
8861 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8862 	kvm_mmu_uninit_vm(kvm);
8863 	kvm_page_track_cleanup(kvm);
8864 	kvm_hv_destroy_vm(kvm);
8865 }
8866 
8867 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8868 			   struct kvm_memory_slot *dont)
8869 {
8870 	int i;
8871 
8872 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8873 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8874 			kvfree(free->arch.rmap[i]);
8875 			free->arch.rmap[i] = NULL;
8876 		}
8877 		if (i == 0)
8878 			continue;
8879 
8880 		if (!dont || free->arch.lpage_info[i - 1] !=
8881 			     dont->arch.lpage_info[i - 1]) {
8882 			kvfree(free->arch.lpage_info[i - 1]);
8883 			free->arch.lpage_info[i - 1] = NULL;
8884 		}
8885 	}
8886 
8887 	kvm_page_track_free_memslot(free, dont);
8888 }
8889 
8890 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8891 			    unsigned long npages)
8892 {
8893 	int i;
8894 
8895 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8896 		struct kvm_lpage_info *linfo;
8897 		unsigned long ugfn;
8898 		int lpages;
8899 		int level = i + 1;
8900 
8901 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8902 				      slot->base_gfn, level) + 1;
8903 
8904 		slot->arch.rmap[i] =
8905 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
8906 				 GFP_KERNEL);
8907 		if (!slot->arch.rmap[i])
8908 			goto out_free;
8909 		if (i == 0)
8910 			continue;
8911 
8912 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
8913 		if (!linfo)
8914 			goto out_free;
8915 
8916 		slot->arch.lpage_info[i - 1] = linfo;
8917 
8918 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8919 			linfo[0].disallow_lpage = 1;
8920 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8921 			linfo[lpages - 1].disallow_lpage = 1;
8922 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8923 		/*
8924 		 * If the gfn and userspace address are not aligned wrt each
8925 		 * other, or if explicitly asked to, disable large page
8926 		 * support for this slot
8927 		 */
8928 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8929 		    !kvm_largepages_enabled()) {
8930 			unsigned long j;
8931 
8932 			for (j = 0; j < lpages; ++j)
8933 				linfo[j].disallow_lpage = 1;
8934 		}
8935 	}
8936 
8937 	if (kvm_page_track_create_memslot(slot, npages))
8938 		goto out_free;
8939 
8940 	return 0;
8941 
8942 out_free:
8943 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8944 		kvfree(slot->arch.rmap[i]);
8945 		slot->arch.rmap[i] = NULL;
8946 		if (i == 0)
8947 			continue;
8948 
8949 		kvfree(slot->arch.lpage_info[i - 1]);
8950 		slot->arch.lpage_info[i - 1] = NULL;
8951 	}
8952 	return -ENOMEM;
8953 }
8954 
8955 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8956 {
8957 	/*
8958 	 * memslots->generation has been incremented.
8959 	 * mmio generation may have reached its maximum value.
8960 	 */
8961 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8962 }
8963 
8964 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8965 				struct kvm_memory_slot *memslot,
8966 				const struct kvm_userspace_memory_region *mem,
8967 				enum kvm_mr_change change)
8968 {
8969 	return 0;
8970 }
8971 
8972 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8973 				     struct kvm_memory_slot *new)
8974 {
8975 	/* Still write protect RO slot */
8976 	if (new->flags & KVM_MEM_READONLY) {
8977 		kvm_mmu_slot_remove_write_access(kvm, new);
8978 		return;
8979 	}
8980 
8981 	/*
8982 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8983 	 *
8984 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8985 	 *
8986 	 *  - KVM_MR_CREATE with dirty logging is disabled
8987 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8988 	 *
8989 	 * The reason is, in case of PML, we need to set D-bit for any slots
8990 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8991 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8992 	 * guarantees leaving PML enabled during guest's lifetime won't have
8993 	 * any additonal overhead from PML when guest is running with dirty
8994 	 * logging disabled for memory slots.
8995 	 *
8996 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8997 	 * to dirty logging mode.
8998 	 *
8999 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9000 	 *
9001 	 * In case of write protect:
9002 	 *
9003 	 * Write protect all pages for dirty logging.
9004 	 *
9005 	 * All the sptes including the large sptes which point to this
9006 	 * slot are set to readonly. We can not create any new large
9007 	 * spte on this slot until the end of the logging.
9008 	 *
9009 	 * See the comments in fast_page_fault().
9010 	 */
9011 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9012 		if (kvm_x86_ops->slot_enable_log_dirty)
9013 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9014 		else
9015 			kvm_mmu_slot_remove_write_access(kvm, new);
9016 	} else {
9017 		if (kvm_x86_ops->slot_disable_log_dirty)
9018 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9019 	}
9020 }
9021 
9022 void kvm_arch_commit_memory_region(struct kvm *kvm,
9023 				const struct kvm_userspace_memory_region *mem,
9024 				const struct kvm_memory_slot *old,
9025 				const struct kvm_memory_slot *new,
9026 				enum kvm_mr_change change)
9027 {
9028 	int nr_mmu_pages = 0;
9029 
9030 	if (!kvm->arch.n_requested_mmu_pages)
9031 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9032 
9033 	if (nr_mmu_pages)
9034 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9035 
9036 	/*
9037 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9038 	 * sptes have to be split.  If live migration is successful, the guest
9039 	 * in the source machine will be destroyed and large sptes will be
9040 	 * created in the destination. However, if the guest continues to run
9041 	 * in the source machine (for example if live migration fails), small
9042 	 * sptes will remain around and cause bad performance.
9043 	 *
9044 	 * Scan sptes if dirty logging has been stopped, dropping those
9045 	 * which can be collapsed into a single large-page spte.  Later
9046 	 * page faults will create the large-page sptes.
9047 	 */
9048 	if ((change != KVM_MR_DELETE) &&
9049 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9050 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9051 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9052 
9053 	/*
9054 	 * Set up write protection and/or dirty logging for the new slot.
9055 	 *
9056 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9057 	 * been zapped so no dirty logging staff is needed for old slot. For
9058 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9059 	 * new and it's also covered when dealing with the new slot.
9060 	 *
9061 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9062 	 */
9063 	if (change != KVM_MR_DELETE)
9064 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9065 }
9066 
9067 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9068 {
9069 	kvm_mmu_invalidate_zap_all_pages(kvm);
9070 }
9071 
9072 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9073 				   struct kvm_memory_slot *slot)
9074 {
9075 	kvm_page_track_flush_slot(kvm, slot);
9076 }
9077 
9078 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9079 {
9080 	if (!list_empty_careful(&vcpu->async_pf.done))
9081 		return true;
9082 
9083 	if (kvm_apic_has_events(vcpu))
9084 		return true;
9085 
9086 	if (vcpu->arch.pv.pv_unhalted)
9087 		return true;
9088 
9089 	if (vcpu->arch.exception.pending)
9090 		return true;
9091 
9092 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9093 	    (vcpu->arch.nmi_pending &&
9094 	     kvm_x86_ops->nmi_allowed(vcpu)))
9095 		return true;
9096 
9097 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9098 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9099 		return true;
9100 
9101 	if (kvm_arch_interrupt_allowed(vcpu) &&
9102 	    kvm_cpu_has_interrupt(vcpu))
9103 		return true;
9104 
9105 	if (kvm_hv_has_stimer_pending(vcpu))
9106 		return true;
9107 
9108 	return false;
9109 }
9110 
9111 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9112 {
9113 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9114 }
9115 
9116 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9117 {
9118 	return vcpu->arch.preempted_in_kernel;
9119 }
9120 
9121 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9122 {
9123 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9124 }
9125 
9126 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9127 {
9128 	return kvm_x86_ops->interrupt_allowed(vcpu);
9129 }
9130 
9131 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9132 {
9133 	if (is_64_bit_mode(vcpu))
9134 		return kvm_rip_read(vcpu);
9135 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9136 		     kvm_rip_read(vcpu));
9137 }
9138 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9139 
9140 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9141 {
9142 	return kvm_get_linear_rip(vcpu) == linear_rip;
9143 }
9144 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9145 
9146 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9147 {
9148 	unsigned long rflags;
9149 
9150 	rflags = kvm_x86_ops->get_rflags(vcpu);
9151 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9152 		rflags &= ~X86_EFLAGS_TF;
9153 	return rflags;
9154 }
9155 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9156 
9157 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9158 {
9159 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9160 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9161 		rflags |= X86_EFLAGS_TF;
9162 	kvm_x86_ops->set_rflags(vcpu, rflags);
9163 }
9164 
9165 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9166 {
9167 	__kvm_set_rflags(vcpu, rflags);
9168 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9169 }
9170 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9171 
9172 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9173 {
9174 	int r;
9175 
9176 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9177 	      work->wakeup_all)
9178 		return;
9179 
9180 	r = kvm_mmu_reload(vcpu);
9181 	if (unlikely(r))
9182 		return;
9183 
9184 	if (!vcpu->arch.mmu.direct_map &&
9185 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9186 		return;
9187 
9188 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9189 }
9190 
9191 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9192 {
9193 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9194 }
9195 
9196 static inline u32 kvm_async_pf_next_probe(u32 key)
9197 {
9198 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9199 }
9200 
9201 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9202 {
9203 	u32 key = kvm_async_pf_hash_fn(gfn);
9204 
9205 	while (vcpu->arch.apf.gfns[key] != ~0)
9206 		key = kvm_async_pf_next_probe(key);
9207 
9208 	vcpu->arch.apf.gfns[key] = gfn;
9209 }
9210 
9211 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9212 {
9213 	int i;
9214 	u32 key = kvm_async_pf_hash_fn(gfn);
9215 
9216 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9217 		     (vcpu->arch.apf.gfns[key] != gfn &&
9218 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9219 		key = kvm_async_pf_next_probe(key);
9220 
9221 	return key;
9222 }
9223 
9224 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9225 {
9226 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9227 }
9228 
9229 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9230 {
9231 	u32 i, j, k;
9232 
9233 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9234 	while (true) {
9235 		vcpu->arch.apf.gfns[i] = ~0;
9236 		do {
9237 			j = kvm_async_pf_next_probe(j);
9238 			if (vcpu->arch.apf.gfns[j] == ~0)
9239 				return;
9240 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9241 			/*
9242 			 * k lies cyclically in ]i,j]
9243 			 * |    i.k.j |
9244 			 * |....j i.k.| or  |.k..j i...|
9245 			 */
9246 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9247 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9248 		i = j;
9249 	}
9250 }
9251 
9252 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9253 {
9254 
9255 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9256 				      sizeof(val));
9257 }
9258 
9259 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9260 {
9261 
9262 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9263 				      sizeof(u32));
9264 }
9265 
9266 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9267 				     struct kvm_async_pf *work)
9268 {
9269 	struct x86_exception fault;
9270 
9271 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9272 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9273 
9274 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9275 	    (vcpu->arch.apf.send_user_only &&
9276 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9277 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9278 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9279 		fault.vector = PF_VECTOR;
9280 		fault.error_code_valid = true;
9281 		fault.error_code = 0;
9282 		fault.nested_page_fault = false;
9283 		fault.address = work->arch.token;
9284 		fault.async_page_fault = true;
9285 		kvm_inject_page_fault(vcpu, &fault);
9286 	}
9287 }
9288 
9289 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9290 				 struct kvm_async_pf *work)
9291 {
9292 	struct x86_exception fault;
9293 	u32 val;
9294 
9295 	if (work->wakeup_all)
9296 		work->arch.token = ~0; /* broadcast wakeup */
9297 	else
9298 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9299 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9300 
9301 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9302 	    !apf_get_user(vcpu, &val)) {
9303 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9304 		    vcpu->arch.exception.pending &&
9305 		    vcpu->arch.exception.nr == PF_VECTOR &&
9306 		    !apf_put_user(vcpu, 0)) {
9307 			vcpu->arch.exception.injected = false;
9308 			vcpu->arch.exception.pending = false;
9309 			vcpu->arch.exception.nr = 0;
9310 			vcpu->arch.exception.has_error_code = false;
9311 			vcpu->arch.exception.error_code = 0;
9312 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9313 			fault.vector = PF_VECTOR;
9314 			fault.error_code_valid = true;
9315 			fault.error_code = 0;
9316 			fault.nested_page_fault = false;
9317 			fault.address = work->arch.token;
9318 			fault.async_page_fault = true;
9319 			kvm_inject_page_fault(vcpu, &fault);
9320 		}
9321 	}
9322 	vcpu->arch.apf.halted = false;
9323 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9324 }
9325 
9326 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9327 {
9328 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9329 		return true;
9330 	else
9331 		return kvm_can_do_async_pf(vcpu);
9332 }
9333 
9334 void kvm_arch_start_assignment(struct kvm *kvm)
9335 {
9336 	atomic_inc(&kvm->arch.assigned_device_count);
9337 }
9338 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9339 
9340 void kvm_arch_end_assignment(struct kvm *kvm)
9341 {
9342 	atomic_dec(&kvm->arch.assigned_device_count);
9343 }
9344 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9345 
9346 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9347 {
9348 	return atomic_read(&kvm->arch.assigned_device_count);
9349 }
9350 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9351 
9352 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9353 {
9354 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9355 }
9356 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9357 
9358 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9359 {
9360 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9361 }
9362 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9363 
9364 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9365 {
9366 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9367 }
9368 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9369 
9370 bool kvm_arch_has_irq_bypass(void)
9371 {
9372 	return kvm_x86_ops->update_pi_irte != NULL;
9373 }
9374 
9375 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9376 				      struct irq_bypass_producer *prod)
9377 {
9378 	struct kvm_kernel_irqfd *irqfd =
9379 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9380 
9381 	irqfd->producer = prod;
9382 
9383 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9384 					   prod->irq, irqfd->gsi, 1);
9385 }
9386 
9387 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9388 				      struct irq_bypass_producer *prod)
9389 {
9390 	int ret;
9391 	struct kvm_kernel_irqfd *irqfd =
9392 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9393 
9394 	WARN_ON(irqfd->producer != prod);
9395 	irqfd->producer = NULL;
9396 
9397 	/*
9398 	 * When producer of consumer is unregistered, we change back to
9399 	 * remapped mode, so we can re-use the current implementation
9400 	 * when the irq is masked/disabled or the consumer side (KVM
9401 	 * int this case doesn't want to receive the interrupts.
9402 	*/
9403 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9404 	if (ret)
9405 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9406 		       " fails: %d\n", irqfd->consumer.token, ret);
9407 }
9408 
9409 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9410 				   uint32_t guest_irq, bool set)
9411 {
9412 	if (!kvm_x86_ops->update_pi_irte)
9413 		return -EINVAL;
9414 
9415 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9416 }
9417 
9418 bool kvm_vector_hashing_enabled(void)
9419 {
9420 	return vector_hashing;
9421 }
9422 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9423 
9424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9443