xref: /openbmc/linux/arch/x86/kvm/x86.c (revision a6c76bb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112 
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115 
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121 
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124 
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127 
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138 
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154 
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158 
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161 
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164 
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171 
172 struct kvm_user_return_msrs_global {
173 	int nr;
174 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176 
177 struct kvm_user_return_msrs {
178 	struct user_return_notifier urn;
179 	bool registered;
180 	struct kvm_user_return_msr_values {
181 		u64 host;
182 		u64 curr;
183 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185 
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188 
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192 				| XFEATURE_MASK_PKRU)
193 
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196 
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199 
200 u64 __read_mostly host_xss;
201 EXPORT_SYMBOL_GPL(host_xss);
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204 
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 	VCPU_STAT("pf_fixed", pf_fixed),
207 	VCPU_STAT("pf_guest", pf_guest),
208 	VCPU_STAT("tlb_flush", tlb_flush),
209 	VCPU_STAT("invlpg", invlpg),
210 	VCPU_STAT("exits", exits),
211 	VCPU_STAT("io_exits", io_exits),
212 	VCPU_STAT("mmio_exits", mmio_exits),
213 	VCPU_STAT("signal_exits", signal_exits),
214 	VCPU_STAT("irq_window", irq_window_exits),
215 	VCPU_STAT("nmi_window", nmi_window_exits),
216 	VCPU_STAT("halt_exits", halt_exits),
217 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 	VCPU_STAT("halt_wakeup", halt_wakeup),
221 	VCPU_STAT("hypercalls", hypercalls),
222 	VCPU_STAT("request_irq", request_irq_exits),
223 	VCPU_STAT("irq_exits", irq_exits),
224 	VCPU_STAT("host_state_reload", host_state_reload),
225 	VCPU_STAT("fpu_reload", fpu_reload),
226 	VCPU_STAT("insn_emulation", insn_emulation),
227 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 	VCPU_STAT("irq_injections", irq_injections),
229 	VCPU_STAT("nmi_injections", nmi_injections),
230 	VCPU_STAT("req_event", req_event),
231 	VCPU_STAT("l1d_flush", l1d_flush),
232 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
235 	VM_STAT("mmu_pte_write", mmu_pte_write),
236 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
237 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
238 	VM_STAT("mmu_flooded", mmu_flooded),
239 	VM_STAT("mmu_recycled", mmu_recycled),
240 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
241 	VM_STAT("mmu_unsync", mmu_unsync),
242 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
243 	VM_STAT("largepages", lpages, .mode = 0444),
244 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
245 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
246 	{ NULL }
247 };
248 
249 u64 __read_mostly host_xcr0;
250 u64 __read_mostly supported_xcr0;
251 EXPORT_SYMBOL_GPL(supported_xcr0);
252 
253 static struct kmem_cache *x86_fpu_cache;
254 
255 static struct kmem_cache *x86_emulator_cache;
256 
257 /*
258  * When called, it means the previous get/set msr reached an invalid msr.
259  * Return true if we want to ignore/silent this failed msr access.
260  */
261 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
262 				  u64 data, bool write)
263 {
264 	const char *op = write ? "wrmsr" : "rdmsr";
265 
266 	if (ignore_msrs) {
267 		if (report_ignored_msrs)
268 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
269 				      op, msr, data);
270 		/* Mask the error */
271 		return true;
272 	} else {
273 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
274 				      op, msr, data);
275 		return false;
276 	}
277 }
278 
279 static struct kmem_cache *kvm_alloc_emulator_cache(void)
280 {
281 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
282 	unsigned int size = sizeof(struct x86_emulate_ctxt);
283 
284 	return kmem_cache_create_usercopy("x86_emulator", size,
285 					  __alignof__(struct x86_emulate_ctxt),
286 					  SLAB_ACCOUNT, useroffset,
287 					  size - useroffset, NULL);
288 }
289 
290 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
291 
292 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
293 {
294 	int i;
295 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
296 		vcpu->arch.apf.gfns[i] = ~0;
297 }
298 
299 static void kvm_on_user_return(struct user_return_notifier *urn)
300 {
301 	unsigned slot;
302 	struct kvm_user_return_msrs *msrs
303 		= container_of(urn, struct kvm_user_return_msrs, urn);
304 	struct kvm_user_return_msr_values *values;
305 	unsigned long flags;
306 
307 	/*
308 	 * Disabling irqs at this point since the following code could be
309 	 * interrupted and executed through kvm_arch_hardware_disable()
310 	 */
311 	local_irq_save(flags);
312 	if (msrs->registered) {
313 		msrs->registered = false;
314 		user_return_notifier_unregister(urn);
315 	}
316 	local_irq_restore(flags);
317 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
318 		values = &msrs->values[slot];
319 		if (values->host != values->curr) {
320 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
321 			values->curr = values->host;
322 		}
323 	}
324 }
325 
326 void kvm_define_user_return_msr(unsigned slot, u32 msr)
327 {
328 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
329 	user_return_msrs_global.msrs[slot] = msr;
330 	if (slot >= user_return_msrs_global.nr)
331 		user_return_msrs_global.nr = slot + 1;
332 }
333 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
334 
335 static void kvm_user_return_msr_cpu_online(void)
336 {
337 	unsigned int cpu = smp_processor_id();
338 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
339 	u64 value;
340 	int i;
341 
342 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
343 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
344 		msrs->values[i].host = value;
345 		msrs->values[i].curr = value;
346 	}
347 }
348 
349 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
350 {
351 	unsigned int cpu = smp_processor_id();
352 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
353 	int err;
354 
355 	value = (value & mask) | (msrs->values[slot].host & ~mask);
356 	if (value == msrs->values[slot].curr)
357 		return 0;
358 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
359 	if (err)
360 		return 1;
361 
362 	msrs->values[slot].curr = value;
363 	if (!msrs->registered) {
364 		msrs->urn.on_user_return = kvm_on_user_return;
365 		user_return_notifier_register(&msrs->urn);
366 		msrs->registered = true;
367 	}
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
371 
372 static void drop_user_return_notifiers(void)
373 {
374 	unsigned int cpu = smp_processor_id();
375 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
376 
377 	if (msrs->registered)
378 		kvm_on_user_return(&msrs->urn);
379 }
380 
381 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
382 {
383 	return vcpu->arch.apic_base;
384 }
385 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
386 
387 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
388 {
389 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
390 }
391 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
392 
393 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
394 {
395 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
396 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
397 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
398 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
399 
400 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
401 		return 1;
402 	if (!msr_info->host_initiated) {
403 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
404 			return 1;
405 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
406 			return 1;
407 	}
408 
409 	kvm_lapic_set_base(vcpu, msr_info->data);
410 	kvm_recalculate_apic_map(vcpu->kvm);
411 	return 0;
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
414 
415 asmlinkage __visible noinstr void kvm_spurious_fault(void)
416 {
417 	/* Fault while not rebooting.  We want the trace. */
418 	BUG_ON(!kvm_rebooting);
419 }
420 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
421 
422 #define EXCPT_BENIGN		0
423 #define EXCPT_CONTRIBUTORY	1
424 #define EXCPT_PF		2
425 
426 static int exception_class(int vector)
427 {
428 	switch (vector) {
429 	case PF_VECTOR:
430 		return EXCPT_PF;
431 	case DE_VECTOR:
432 	case TS_VECTOR:
433 	case NP_VECTOR:
434 	case SS_VECTOR:
435 	case GP_VECTOR:
436 		return EXCPT_CONTRIBUTORY;
437 	default:
438 		break;
439 	}
440 	return EXCPT_BENIGN;
441 }
442 
443 #define EXCPT_FAULT		0
444 #define EXCPT_TRAP		1
445 #define EXCPT_ABORT		2
446 #define EXCPT_INTERRUPT		3
447 
448 static int exception_type(int vector)
449 {
450 	unsigned int mask;
451 
452 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
453 		return EXCPT_INTERRUPT;
454 
455 	mask = 1 << vector;
456 
457 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
458 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
459 		return EXCPT_TRAP;
460 
461 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
462 		return EXCPT_ABORT;
463 
464 	/* Reserved exceptions will result in fault */
465 	return EXCPT_FAULT;
466 }
467 
468 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
469 {
470 	unsigned nr = vcpu->arch.exception.nr;
471 	bool has_payload = vcpu->arch.exception.has_payload;
472 	unsigned long payload = vcpu->arch.exception.payload;
473 
474 	if (!has_payload)
475 		return;
476 
477 	switch (nr) {
478 	case DB_VECTOR:
479 		/*
480 		 * "Certain debug exceptions may clear bit 0-3.  The
481 		 * remaining contents of the DR6 register are never
482 		 * cleared by the processor".
483 		 */
484 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
485 		/*
486 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
487 		 */
488 		vcpu->arch.dr6 |= DR6_RTM;
489 		vcpu->arch.dr6 |= payload;
490 		/*
491 		 * Bit 16 should be set in the payload whenever the #DB
492 		 * exception should clear DR6.RTM. This makes the payload
493 		 * compatible with the pending debug exceptions under VMX.
494 		 * Though not currently documented in the SDM, this also
495 		 * makes the payload compatible with the exit qualification
496 		 * for #DB exceptions under VMX.
497 		 */
498 		vcpu->arch.dr6 ^= payload & DR6_RTM;
499 
500 		/*
501 		 * The #DB payload is defined as compatible with the 'pending
502 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
503 		 * defined in the 'pending debug exceptions' field (enabled
504 		 * breakpoint), it is reserved and must be zero in DR6.
505 		 */
506 		vcpu->arch.dr6 &= ~BIT(12);
507 		break;
508 	case PF_VECTOR:
509 		vcpu->arch.cr2 = payload;
510 		break;
511 	}
512 
513 	vcpu->arch.exception.has_payload = false;
514 	vcpu->arch.exception.payload = 0;
515 }
516 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
517 
518 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
519 		unsigned nr, bool has_error, u32 error_code,
520 	        bool has_payload, unsigned long payload, bool reinject)
521 {
522 	u32 prev_nr;
523 	int class1, class2;
524 
525 	kvm_make_request(KVM_REQ_EVENT, vcpu);
526 
527 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
528 	queue:
529 		if (has_error && !is_protmode(vcpu))
530 			has_error = false;
531 		if (reinject) {
532 			/*
533 			 * On vmentry, vcpu->arch.exception.pending is only
534 			 * true if an event injection was blocked by
535 			 * nested_run_pending.  In that case, however,
536 			 * vcpu_enter_guest requests an immediate exit,
537 			 * and the guest shouldn't proceed far enough to
538 			 * need reinjection.
539 			 */
540 			WARN_ON_ONCE(vcpu->arch.exception.pending);
541 			vcpu->arch.exception.injected = true;
542 			if (WARN_ON_ONCE(has_payload)) {
543 				/*
544 				 * A reinjected event has already
545 				 * delivered its payload.
546 				 */
547 				has_payload = false;
548 				payload = 0;
549 			}
550 		} else {
551 			vcpu->arch.exception.pending = true;
552 			vcpu->arch.exception.injected = false;
553 		}
554 		vcpu->arch.exception.has_error_code = has_error;
555 		vcpu->arch.exception.nr = nr;
556 		vcpu->arch.exception.error_code = error_code;
557 		vcpu->arch.exception.has_payload = has_payload;
558 		vcpu->arch.exception.payload = payload;
559 		if (!is_guest_mode(vcpu))
560 			kvm_deliver_exception_payload(vcpu);
561 		return;
562 	}
563 
564 	/* to check exception */
565 	prev_nr = vcpu->arch.exception.nr;
566 	if (prev_nr == DF_VECTOR) {
567 		/* triple fault -> shutdown */
568 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
569 		return;
570 	}
571 	class1 = exception_class(prev_nr);
572 	class2 = exception_class(nr);
573 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
574 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
575 		/*
576 		 * Generate double fault per SDM Table 5-5.  Set
577 		 * exception.pending = true so that the double fault
578 		 * can trigger a nested vmexit.
579 		 */
580 		vcpu->arch.exception.pending = true;
581 		vcpu->arch.exception.injected = false;
582 		vcpu->arch.exception.has_error_code = true;
583 		vcpu->arch.exception.nr = DF_VECTOR;
584 		vcpu->arch.exception.error_code = 0;
585 		vcpu->arch.exception.has_payload = false;
586 		vcpu->arch.exception.payload = 0;
587 	} else
588 		/* replace previous exception with a new one in a hope
589 		   that instruction re-execution will regenerate lost
590 		   exception */
591 		goto queue;
592 }
593 
594 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
595 {
596 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
597 }
598 EXPORT_SYMBOL_GPL(kvm_queue_exception);
599 
600 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
601 {
602 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
603 }
604 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
605 
606 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
607 			   unsigned long payload)
608 {
609 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
610 }
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
612 
613 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
614 				    u32 error_code, unsigned long payload)
615 {
616 	kvm_multiple_exception(vcpu, nr, true, error_code,
617 			       true, payload, false);
618 }
619 
620 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
621 {
622 	if (err)
623 		kvm_inject_gp(vcpu, 0);
624 	else
625 		return kvm_skip_emulated_instruction(vcpu);
626 
627 	return 1;
628 }
629 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
630 
631 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
632 {
633 	++vcpu->stat.pf_guest;
634 	vcpu->arch.exception.nested_apf =
635 		is_guest_mode(vcpu) && fault->async_page_fault;
636 	if (vcpu->arch.exception.nested_apf) {
637 		vcpu->arch.apf.nested_apf_token = fault->address;
638 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
639 	} else {
640 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
641 					fault->address);
642 	}
643 }
644 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
645 
646 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
647 				    struct x86_exception *fault)
648 {
649 	struct kvm_mmu *fault_mmu;
650 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
651 
652 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
653 					       vcpu->arch.walk_mmu;
654 
655 	/*
656 	 * Invalidate the TLB entry for the faulting address, if it exists,
657 	 * else the access will fault indefinitely (and to emulate hardware).
658 	 */
659 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
660 	    !(fault->error_code & PFERR_RSVD_MASK))
661 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
662 				       fault_mmu->root_hpa);
663 
664 	fault_mmu->inject_page_fault(vcpu, fault);
665 	return fault->nested_page_fault;
666 }
667 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
668 
669 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
670 {
671 	atomic_inc(&vcpu->arch.nmi_queued);
672 	kvm_make_request(KVM_REQ_NMI, vcpu);
673 }
674 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
675 
676 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
677 {
678 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
681 
682 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
683 {
684 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
687 
688 /*
689  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
690  * a #GP and return false.
691  */
692 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
693 {
694 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
695 		return true;
696 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
697 	return false;
698 }
699 EXPORT_SYMBOL_GPL(kvm_require_cpl);
700 
701 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
702 {
703 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
704 		return true;
705 
706 	kvm_queue_exception(vcpu, UD_VECTOR);
707 	return false;
708 }
709 EXPORT_SYMBOL_GPL(kvm_require_dr);
710 
711 /*
712  * This function will be used to read from the physical memory of the currently
713  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
714  * can read from guest physical or from the guest's guest physical memory.
715  */
716 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
717 			    gfn_t ngfn, void *data, int offset, int len,
718 			    u32 access)
719 {
720 	struct x86_exception exception;
721 	gfn_t real_gfn;
722 	gpa_t ngpa;
723 
724 	ngpa     = gfn_to_gpa(ngfn);
725 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
726 	if (real_gfn == UNMAPPED_GVA)
727 		return -EFAULT;
728 
729 	real_gfn = gpa_to_gfn(real_gfn);
730 
731 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
732 }
733 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
734 
735 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
736 			       void *data, int offset, int len, u32 access)
737 {
738 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
739 				       data, offset, len, access);
740 }
741 
742 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
743 {
744 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
745 	       rsvd_bits(1, 2);
746 }
747 
748 /*
749  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
750  */
751 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
752 {
753 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
754 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
755 	int i;
756 	int ret;
757 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
758 
759 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
760 				      offset * sizeof(u64), sizeof(pdpte),
761 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
762 	if (ret < 0) {
763 		ret = 0;
764 		goto out;
765 	}
766 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
767 		if ((pdpte[i] & PT_PRESENT_MASK) &&
768 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
769 			ret = 0;
770 			goto out;
771 		}
772 	}
773 	ret = 1;
774 
775 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
776 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
777 
778 out:
779 
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(load_pdptrs);
783 
784 bool pdptrs_changed(struct kvm_vcpu *vcpu)
785 {
786 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
787 	int offset;
788 	gfn_t gfn;
789 	int r;
790 
791 	if (!is_pae_paging(vcpu))
792 		return false;
793 
794 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
795 		return true;
796 
797 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
798 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
799 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
800 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
801 	if (r < 0)
802 		return true;
803 
804 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
805 }
806 EXPORT_SYMBOL_GPL(pdptrs_changed);
807 
808 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
809 {
810 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
811 
812 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
813 		kvm_clear_async_pf_completion_queue(vcpu);
814 		kvm_async_pf_hash_reset(vcpu);
815 	}
816 
817 	if ((cr0 ^ old_cr0) & update_bits)
818 		kvm_mmu_reset_context(vcpu);
819 
820 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
821 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
822 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
823 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
824 }
825 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
826 
827 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
828 {
829 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
830 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
831 
832 	cr0 |= X86_CR0_ET;
833 
834 #ifdef CONFIG_X86_64
835 	if (cr0 & 0xffffffff00000000UL)
836 		return 1;
837 #endif
838 
839 	cr0 &= ~CR0_RESERVED_BITS;
840 
841 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
842 		return 1;
843 
844 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
845 		return 1;
846 
847 #ifdef CONFIG_X86_64
848 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
849 	    (cr0 & X86_CR0_PG)) {
850 		int cs_db, cs_l;
851 
852 		if (!is_pae(vcpu))
853 			return 1;
854 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
855 		if (cs_l)
856 			return 1;
857 	}
858 #endif
859 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
860 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
861 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
862 		return 1;
863 
864 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
865 		return 1;
866 
867 	kvm_x86_ops.set_cr0(vcpu, cr0);
868 
869 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(kvm_set_cr0);
874 
875 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
876 {
877 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
878 }
879 EXPORT_SYMBOL_GPL(kvm_lmsw);
880 
881 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
882 {
883 	if (vcpu->arch.guest_state_protected)
884 		return;
885 
886 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
887 
888 		if (vcpu->arch.xcr0 != host_xcr0)
889 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
890 
891 		if (vcpu->arch.xsaves_enabled &&
892 		    vcpu->arch.ia32_xss != host_xss)
893 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
894 	}
895 
896 	if (static_cpu_has(X86_FEATURE_PKU) &&
897 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
898 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
899 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
900 		__write_pkru(vcpu->arch.pkru);
901 }
902 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
903 
904 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
905 {
906 	if (vcpu->arch.guest_state_protected)
907 		return;
908 
909 	if (static_cpu_has(X86_FEATURE_PKU) &&
910 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
911 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
912 		vcpu->arch.pkru = rdpkru();
913 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
914 			__write_pkru(vcpu->arch.host_pkru);
915 	}
916 
917 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
918 
919 		if (vcpu->arch.xcr0 != host_xcr0)
920 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
921 
922 		if (vcpu->arch.xsaves_enabled &&
923 		    vcpu->arch.ia32_xss != host_xss)
924 			wrmsrl(MSR_IA32_XSS, host_xss);
925 	}
926 
927 }
928 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
929 
930 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
931 {
932 	u64 xcr0 = xcr;
933 	u64 old_xcr0 = vcpu->arch.xcr0;
934 	u64 valid_bits;
935 
936 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
937 	if (index != XCR_XFEATURE_ENABLED_MASK)
938 		return 1;
939 	if (!(xcr0 & XFEATURE_MASK_FP))
940 		return 1;
941 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
942 		return 1;
943 
944 	/*
945 	 * Do not allow the guest to set bits that we do not support
946 	 * saving.  However, xcr0 bit 0 is always set, even if the
947 	 * emulated CPU does not support XSAVE (see fx_init).
948 	 */
949 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
950 	if (xcr0 & ~valid_bits)
951 		return 1;
952 
953 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
954 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
955 		return 1;
956 
957 	if (xcr0 & XFEATURE_MASK_AVX512) {
958 		if (!(xcr0 & XFEATURE_MASK_YMM))
959 			return 1;
960 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
961 			return 1;
962 	}
963 	vcpu->arch.xcr0 = xcr0;
964 
965 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
966 		kvm_update_cpuid_runtime(vcpu);
967 	return 0;
968 }
969 
970 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
971 {
972 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
973 	    __kvm_set_xcr(vcpu, index, xcr)) {
974 		kvm_inject_gp(vcpu, 0);
975 		return 1;
976 	}
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(kvm_set_xcr);
980 
981 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
982 {
983 	if (cr4 & cr4_reserved_bits)
984 		return false;
985 
986 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
987 		return false;
988 
989 	return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
990 }
991 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
992 
993 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
994 {
995 	unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
996 				      X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
997 
998 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
999 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1000 		kvm_mmu_reset_context(vcpu);
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1003 
1004 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1005 {
1006 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1007 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1008 				   X86_CR4_SMEP;
1009 
1010 	if (!kvm_is_valid_cr4(vcpu, cr4))
1011 		return 1;
1012 
1013 	if (is_long_mode(vcpu)) {
1014 		if (!(cr4 & X86_CR4_PAE))
1015 			return 1;
1016 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1017 			return 1;
1018 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1019 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1020 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1021 				   kvm_read_cr3(vcpu)))
1022 		return 1;
1023 
1024 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1025 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1026 			return 1;
1027 
1028 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1029 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1030 			return 1;
1031 	}
1032 
1033 	kvm_x86_ops.set_cr4(vcpu, cr4);
1034 
1035 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1036 
1037 	return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1040 
1041 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1042 {
1043 	bool skip_tlb_flush = false;
1044 #ifdef CONFIG_X86_64
1045 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1046 
1047 	if (pcid_enabled) {
1048 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1049 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1050 	}
1051 #endif
1052 
1053 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1054 		if (!skip_tlb_flush) {
1055 			kvm_mmu_sync_roots(vcpu);
1056 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1057 		}
1058 		return 0;
1059 	}
1060 
1061 	if (is_long_mode(vcpu) &&
1062 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1063 		return 1;
1064 	else if (is_pae_paging(vcpu) &&
1065 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1066 		return 1;
1067 
1068 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1069 	vcpu->arch.cr3 = cr3;
1070 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1071 
1072 	return 0;
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1075 
1076 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1077 {
1078 	if (cr8 & CR8_RESERVED_BITS)
1079 		return 1;
1080 	if (lapic_in_kernel(vcpu))
1081 		kvm_lapic_set_tpr(vcpu, cr8);
1082 	else
1083 		vcpu->arch.cr8 = cr8;
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1087 
1088 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1089 {
1090 	if (lapic_in_kernel(vcpu))
1091 		return kvm_lapic_get_cr8(vcpu);
1092 	else
1093 		return vcpu->arch.cr8;
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1096 
1097 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1098 {
1099 	int i;
1100 
1101 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1102 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1103 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1104 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1105 	}
1106 }
1107 
1108 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1109 {
1110 	unsigned long dr7;
1111 
1112 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1113 		dr7 = vcpu->arch.guest_debug_dr7;
1114 	else
1115 		dr7 = vcpu->arch.dr7;
1116 	kvm_x86_ops.set_dr7(vcpu, dr7);
1117 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1118 	if (dr7 & DR7_BP_EN_MASK)
1119 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1122 
1123 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1124 {
1125 	u64 fixed = DR6_FIXED_1;
1126 
1127 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1128 		fixed |= DR6_RTM;
1129 	return fixed;
1130 }
1131 
1132 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1133 {
1134 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1135 
1136 	switch (dr) {
1137 	case 0 ... 3:
1138 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1139 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1140 			vcpu->arch.eff_db[dr] = val;
1141 		break;
1142 	case 4:
1143 	case 6:
1144 		if (!kvm_dr6_valid(val))
1145 			return -1; /* #GP */
1146 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1147 		break;
1148 	case 5:
1149 	default: /* 7 */
1150 		if (!kvm_dr7_valid(val))
1151 			return -1; /* #GP */
1152 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1153 		kvm_update_dr7(vcpu);
1154 		break;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1161 {
1162 	if (__kvm_set_dr(vcpu, dr, val)) {
1163 		kvm_inject_gp(vcpu, 0);
1164 		return 1;
1165 	}
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_set_dr);
1169 
1170 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1171 {
1172 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1173 
1174 	switch (dr) {
1175 	case 0 ... 3:
1176 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1177 		break;
1178 	case 4:
1179 	case 6:
1180 		*val = vcpu->arch.dr6;
1181 		break;
1182 	case 5:
1183 	default: /* 7 */
1184 		*val = vcpu->arch.dr7;
1185 		break;
1186 	}
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_get_dr);
1190 
1191 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1192 {
1193 	u32 ecx = kvm_rcx_read(vcpu);
1194 	u64 data;
1195 	int err;
1196 
1197 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1198 	if (err)
1199 		return err;
1200 	kvm_rax_write(vcpu, (u32)data);
1201 	kvm_rdx_write(vcpu, data >> 32);
1202 	return err;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1205 
1206 /*
1207  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1208  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1209  *
1210  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1211  * extract the supported MSRs from the related const lists.
1212  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1213  * capabilities of the host cpu. This capabilities test skips MSRs that are
1214  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1215  * may depend on host virtualization features rather than host cpu features.
1216  */
1217 
1218 static const u32 msrs_to_save_all[] = {
1219 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1220 	MSR_STAR,
1221 #ifdef CONFIG_X86_64
1222 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1223 #endif
1224 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1225 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1226 	MSR_IA32_SPEC_CTRL,
1227 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1228 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1229 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1230 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1231 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1232 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1233 	MSR_IA32_UMWAIT_CONTROL,
1234 
1235 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1236 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1237 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1238 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1239 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1240 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1241 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1242 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1243 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1244 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1245 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1246 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1248 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1249 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1250 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1251 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1252 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1253 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1254 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1255 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1257 };
1258 
1259 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1260 static unsigned num_msrs_to_save;
1261 
1262 static const u32 emulated_msrs_all[] = {
1263 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1264 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1265 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1266 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1267 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1268 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1269 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1270 	HV_X64_MSR_RESET,
1271 	HV_X64_MSR_VP_INDEX,
1272 	HV_X64_MSR_VP_RUNTIME,
1273 	HV_X64_MSR_SCONTROL,
1274 	HV_X64_MSR_STIMER0_CONFIG,
1275 	HV_X64_MSR_VP_ASSIST_PAGE,
1276 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1277 	HV_X64_MSR_TSC_EMULATION_STATUS,
1278 	HV_X64_MSR_SYNDBG_OPTIONS,
1279 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1280 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1281 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1282 
1283 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1284 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1285 
1286 	MSR_IA32_TSC_ADJUST,
1287 	MSR_IA32_TSCDEADLINE,
1288 	MSR_IA32_ARCH_CAPABILITIES,
1289 	MSR_IA32_PERF_CAPABILITIES,
1290 	MSR_IA32_MISC_ENABLE,
1291 	MSR_IA32_MCG_STATUS,
1292 	MSR_IA32_MCG_CTL,
1293 	MSR_IA32_MCG_EXT_CTL,
1294 	MSR_IA32_SMBASE,
1295 	MSR_SMI_COUNT,
1296 	MSR_PLATFORM_INFO,
1297 	MSR_MISC_FEATURES_ENABLES,
1298 	MSR_AMD64_VIRT_SPEC_CTRL,
1299 	MSR_IA32_POWER_CTL,
1300 	MSR_IA32_UCODE_REV,
1301 
1302 	/*
1303 	 * The following list leaves out MSRs whose values are determined
1304 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1305 	 * We always support the "true" VMX control MSRs, even if the host
1306 	 * processor does not, so I am putting these registers here rather
1307 	 * than in msrs_to_save_all.
1308 	 */
1309 	MSR_IA32_VMX_BASIC,
1310 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1311 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1312 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1313 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1314 	MSR_IA32_VMX_MISC,
1315 	MSR_IA32_VMX_CR0_FIXED0,
1316 	MSR_IA32_VMX_CR4_FIXED0,
1317 	MSR_IA32_VMX_VMCS_ENUM,
1318 	MSR_IA32_VMX_PROCBASED_CTLS2,
1319 	MSR_IA32_VMX_EPT_VPID_CAP,
1320 	MSR_IA32_VMX_VMFUNC,
1321 
1322 	MSR_K7_HWCR,
1323 	MSR_KVM_POLL_CONTROL,
1324 };
1325 
1326 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1327 static unsigned num_emulated_msrs;
1328 
1329 /*
1330  * List of msr numbers which are used to expose MSR-based features that
1331  * can be used by a hypervisor to validate requested CPU features.
1332  */
1333 static const u32 msr_based_features_all[] = {
1334 	MSR_IA32_VMX_BASIC,
1335 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1336 	MSR_IA32_VMX_PINBASED_CTLS,
1337 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1338 	MSR_IA32_VMX_PROCBASED_CTLS,
1339 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1340 	MSR_IA32_VMX_EXIT_CTLS,
1341 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1342 	MSR_IA32_VMX_ENTRY_CTLS,
1343 	MSR_IA32_VMX_MISC,
1344 	MSR_IA32_VMX_CR0_FIXED0,
1345 	MSR_IA32_VMX_CR0_FIXED1,
1346 	MSR_IA32_VMX_CR4_FIXED0,
1347 	MSR_IA32_VMX_CR4_FIXED1,
1348 	MSR_IA32_VMX_VMCS_ENUM,
1349 	MSR_IA32_VMX_PROCBASED_CTLS2,
1350 	MSR_IA32_VMX_EPT_VPID_CAP,
1351 	MSR_IA32_VMX_VMFUNC,
1352 
1353 	MSR_F10H_DECFG,
1354 	MSR_IA32_UCODE_REV,
1355 	MSR_IA32_ARCH_CAPABILITIES,
1356 	MSR_IA32_PERF_CAPABILITIES,
1357 };
1358 
1359 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1360 static unsigned int num_msr_based_features;
1361 
1362 static u64 kvm_get_arch_capabilities(void)
1363 {
1364 	u64 data = 0;
1365 
1366 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1367 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1368 
1369 	/*
1370 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1371 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1372 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1373 	 * L1 guests, so it need not worry about its own (L2) guests.
1374 	 */
1375 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1376 
1377 	/*
1378 	 * If we're doing cache flushes (either "always" or "cond")
1379 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1380 	 * If an outer hypervisor is doing the cache flush for us
1381 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1382 	 * capability to the guest too, and if EPT is disabled we're not
1383 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1384 	 * require a nested hypervisor to do a flush of its own.
1385 	 */
1386 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1387 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1388 
1389 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1390 		data |= ARCH_CAP_RDCL_NO;
1391 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1392 		data |= ARCH_CAP_SSB_NO;
1393 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1394 		data |= ARCH_CAP_MDS_NO;
1395 
1396 	/*
1397 	 * On TAA affected systems:
1398 	 *      - nothing to do if TSX is disabled on the host.
1399 	 *      - we emulate TSX_CTRL if present on the host.
1400 	 *	  This lets the guest use VERW to clear CPU buffers.
1401 	 */
1402 	if (!boot_cpu_has(X86_FEATURE_RTM))
1403 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1404 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1405 		data |= ARCH_CAP_TAA_NO;
1406 
1407 	return data;
1408 }
1409 
1410 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1411 {
1412 	switch (msr->index) {
1413 	case MSR_IA32_ARCH_CAPABILITIES:
1414 		msr->data = kvm_get_arch_capabilities();
1415 		break;
1416 	case MSR_IA32_UCODE_REV:
1417 		rdmsrl_safe(msr->index, &msr->data);
1418 		break;
1419 	default:
1420 		return kvm_x86_ops.get_msr_feature(msr);
1421 	}
1422 	return 0;
1423 }
1424 
1425 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1426 {
1427 	struct kvm_msr_entry msr;
1428 	int r;
1429 
1430 	msr.index = index;
1431 	r = kvm_get_msr_feature(&msr);
1432 
1433 	if (r == KVM_MSR_RET_INVALID) {
1434 		/* Unconditionally clear the output for simplicity */
1435 		*data = 0;
1436 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1437 			r = 0;
1438 	}
1439 
1440 	if (r)
1441 		return r;
1442 
1443 	*data = msr.data;
1444 
1445 	return 0;
1446 }
1447 
1448 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1449 {
1450 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1451 		return false;
1452 
1453 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1454 		return false;
1455 
1456 	if (efer & (EFER_LME | EFER_LMA) &&
1457 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1458 		return false;
1459 
1460 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1461 		return false;
1462 
1463 	return true;
1464 
1465 }
1466 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1467 {
1468 	if (efer & efer_reserved_bits)
1469 		return false;
1470 
1471 	return __kvm_valid_efer(vcpu, efer);
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1474 
1475 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1476 {
1477 	u64 old_efer = vcpu->arch.efer;
1478 	u64 efer = msr_info->data;
1479 	int r;
1480 
1481 	if (efer & efer_reserved_bits)
1482 		return 1;
1483 
1484 	if (!msr_info->host_initiated) {
1485 		if (!__kvm_valid_efer(vcpu, efer))
1486 			return 1;
1487 
1488 		if (is_paging(vcpu) &&
1489 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1490 			return 1;
1491 	}
1492 
1493 	efer &= ~EFER_LMA;
1494 	efer |= vcpu->arch.efer & EFER_LMA;
1495 
1496 	r = kvm_x86_ops.set_efer(vcpu, efer);
1497 	if (r) {
1498 		WARN_ON(r > 0);
1499 		return r;
1500 	}
1501 
1502 	/* Update reserved bits */
1503 	if ((efer ^ old_efer) & EFER_NX)
1504 		kvm_mmu_reset_context(vcpu);
1505 
1506 	return 0;
1507 }
1508 
1509 void kvm_enable_efer_bits(u64 mask)
1510 {
1511        efer_reserved_bits &= ~mask;
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1514 
1515 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1516 {
1517 	struct kvm *kvm = vcpu->kvm;
1518 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1519 	u32 count = kvm->arch.msr_filter.count;
1520 	u32 i;
1521 	bool r = kvm->arch.msr_filter.default_allow;
1522 	int idx;
1523 
1524 	/* MSR filtering not set up or x2APIC enabled, allow everything */
1525 	if (!count || (index >= 0x800 && index <= 0x8ff))
1526 		return true;
1527 
1528 	/* Prevent collision with set_msr_filter */
1529 	idx = srcu_read_lock(&kvm->srcu);
1530 
1531 	for (i = 0; i < count; i++) {
1532 		u32 start = ranges[i].base;
1533 		u32 end = start + ranges[i].nmsrs;
1534 		u32 flags = ranges[i].flags;
1535 		unsigned long *bitmap = ranges[i].bitmap;
1536 
1537 		if ((index >= start) && (index < end) && (flags & type)) {
1538 			r = !!test_bit(index - start, bitmap);
1539 			break;
1540 		}
1541 	}
1542 
1543 	srcu_read_unlock(&kvm->srcu, idx);
1544 
1545 	return r;
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1548 
1549 /*
1550  * Write @data into the MSR specified by @index.  Select MSR specific fault
1551  * checks are bypassed if @host_initiated is %true.
1552  * Returns 0 on success, non-0 otherwise.
1553  * Assumes vcpu_load() was already called.
1554  */
1555 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1556 			 bool host_initiated)
1557 {
1558 	struct msr_data msr;
1559 
1560 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1561 		return KVM_MSR_RET_FILTERED;
1562 
1563 	switch (index) {
1564 	case MSR_FS_BASE:
1565 	case MSR_GS_BASE:
1566 	case MSR_KERNEL_GS_BASE:
1567 	case MSR_CSTAR:
1568 	case MSR_LSTAR:
1569 		if (is_noncanonical_address(data, vcpu))
1570 			return 1;
1571 		break;
1572 	case MSR_IA32_SYSENTER_EIP:
1573 	case MSR_IA32_SYSENTER_ESP:
1574 		/*
1575 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1576 		 * non-canonical address is written on Intel but not on
1577 		 * AMD (which ignores the top 32-bits, because it does
1578 		 * not implement 64-bit SYSENTER).
1579 		 *
1580 		 * 64-bit code should hence be able to write a non-canonical
1581 		 * value on AMD.  Making the address canonical ensures that
1582 		 * vmentry does not fail on Intel after writing a non-canonical
1583 		 * value, and that something deterministic happens if the guest
1584 		 * invokes 64-bit SYSENTER.
1585 		 */
1586 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1587 	}
1588 
1589 	msr.data = data;
1590 	msr.index = index;
1591 	msr.host_initiated = host_initiated;
1592 
1593 	return kvm_x86_ops.set_msr(vcpu, &msr);
1594 }
1595 
1596 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1597 				     u32 index, u64 data, bool host_initiated)
1598 {
1599 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1600 
1601 	if (ret == KVM_MSR_RET_INVALID)
1602 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1603 			ret = 0;
1604 
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Read the MSR specified by @index into @data.  Select MSR specific fault
1610  * checks are bypassed if @host_initiated is %true.
1611  * Returns 0 on success, non-0 otherwise.
1612  * Assumes vcpu_load() was already called.
1613  */
1614 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1615 		  bool host_initiated)
1616 {
1617 	struct msr_data msr;
1618 	int ret;
1619 
1620 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1621 		return KVM_MSR_RET_FILTERED;
1622 
1623 	msr.index = index;
1624 	msr.host_initiated = host_initiated;
1625 
1626 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1627 	if (!ret)
1628 		*data = msr.data;
1629 	return ret;
1630 }
1631 
1632 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1633 				     u32 index, u64 *data, bool host_initiated)
1634 {
1635 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1636 
1637 	if (ret == KVM_MSR_RET_INVALID) {
1638 		/* Unconditionally clear *data for simplicity */
1639 		*data = 0;
1640 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1641 			ret = 0;
1642 	}
1643 
1644 	return ret;
1645 }
1646 
1647 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1648 {
1649 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_get_msr);
1652 
1653 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1654 {
1655 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_set_msr);
1658 
1659 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1660 {
1661 	int err = vcpu->run->msr.error;
1662 	if (!err) {
1663 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1664 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1665 	}
1666 
1667 	return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1668 }
1669 
1670 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1671 {
1672 	return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1673 }
1674 
1675 static u64 kvm_msr_reason(int r)
1676 {
1677 	switch (r) {
1678 	case KVM_MSR_RET_INVALID:
1679 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1680 	case KVM_MSR_RET_FILTERED:
1681 		return KVM_MSR_EXIT_REASON_FILTER;
1682 	default:
1683 		return KVM_MSR_EXIT_REASON_INVAL;
1684 	}
1685 }
1686 
1687 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1688 			      u32 exit_reason, u64 data,
1689 			      int (*completion)(struct kvm_vcpu *vcpu),
1690 			      int r)
1691 {
1692 	u64 msr_reason = kvm_msr_reason(r);
1693 
1694 	/* Check if the user wanted to know about this MSR fault */
1695 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1696 		return 0;
1697 
1698 	vcpu->run->exit_reason = exit_reason;
1699 	vcpu->run->msr.error = 0;
1700 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1701 	vcpu->run->msr.reason = msr_reason;
1702 	vcpu->run->msr.index = index;
1703 	vcpu->run->msr.data = data;
1704 	vcpu->arch.complete_userspace_io = completion;
1705 
1706 	return 1;
1707 }
1708 
1709 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1710 {
1711 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1712 				   complete_emulated_rdmsr, r);
1713 }
1714 
1715 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1716 {
1717 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1718 				   complete_emulated_wrmsr, r);
1719 }
1720 
1721 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1722 {
1723 	u32 ecx = kvm_rcx_read(vcpu);
1724 	u64 data;
1725 	int r;
1726 
1727 	r = kvm_get_msr(vcpu, ecx, &data);
1728 
1729 	/* MSR read failed? See if we should ask user space */
1730 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1731 		/* Bounce to user space */
1732 		return 0;
1733 	}
1734 
1735 	if (!r) {
1736 		trace_kvm_msr_read(ecx, data);
1737 
1738 		kvm_rax_write(vcpu, data & -1u);
1739 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1740 	} else {
1741 		trace_kvm_msr_read_ex(ecx);
1742 	}
1743 
1744 	return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1745 }
1746 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1747 
1748 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1749 {
1750 	u32 ecx = kvm_rcx_read(vcpu);
1751 	u64 data = kvm_read_edx_eax(vcpu);
1752 	int r;
1753 
1754 	r = kvm_set_msr(vcpu, ecx, data);
1755 
1756 	/* MSR write failed? See if we should ask user space */
1757 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1758 		/* Bounce to user space */
1759 		return 0;
1760 
1761 	/* Signal all other negative errors to userspace */
1762 	if (r < 0)
1763 		return r;
1764 
1765 	if (!r)
1766 		trace_kvm_msr_write(ecx, data);
1767 	else
1768 		trace_kvm_msr_write_ex(ecx, data);
1769 
1770 	return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1773 
1774 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1775 {
1776 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1777 		xfer_to_guest_mode_work_pending();
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1780 
1781 /*
1782  * The fast path for frequent and performance sensitive wrmsr emulation,
1783  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1784  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1785  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1786  * other cases which must be called after interrupts are enabled on the host.
1787  */
1788 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1789 {
1790 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1791 		return 1;
1792 
1793 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1794 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1795 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1796 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1797 
1798 		data &= ~(1 << 12);
1799 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1800 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1801 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1802 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1803 		return 0;
1804 	}
1805 
1806 	return 1;
1807 }
1808 
1809 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1810 {
1811 	if (!kvm_can_use_hv_timer(vcpu))
1812 		return 1;
1813 
1814 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1815 	return 0;
1816 }
1817 
1818 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1819 {
1820 	u32 msr = kvm_rcx_read(vcpu);
1821 	u64 data;
1822 	fastpath_t ret = EXIT_FASTPATH_NONE;
1823 
1824 	switch (msr) {
1825 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1826 		data = kvm_read_edx_eax(vcpu);
1827 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1828 			kvm_skip_emulated_instruction(vcpu);
1829 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1830 		}
1831 		break;
1832 	case MSR_IA32_TSCDEADLINE:
1833 		data = kvm_read_edx_eax(vcpu);
1834 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1835 			kvm_skip_emulated_instruction(vcpu);
1836 			ret = EXIT_FASTPATH_REENTER_GUEST;
1837 		}
1838 		break;
1839 	default:
1840 		break;
1841 	}
1842 
1843 	if (ret != EXIT_FASTPATH_NONE)
1844 		trace_kvm_msr_write(msr, data);
1845 
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1849 
1850 /*
1851  * Adapt set_msr() to msr_io()'s calling convention
1852  */
1853 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1854 {
1855 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1856 }
1857 
1858 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1859 {
1860 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1861 }
1862 
1863 #ifdef CONFIG_X86_64
1864 struct pvclock_clock {
1865 	int vclock_mode;
1866 	u64 cycle_last;
1867 	u64 mask;
1868 	u32 mult;
1869 	u32 shift;
1870 	u64 base_cycles;
1871 	u64 offset;
1872 };
1873 
1874 struct pvclock_gtod_data {
1875 	seqcount_t	seq;
1876 
1877 	struct pvclock_clock clock; /* extract of a clocksource struct */
1878 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1879 
1880 	ktime_t		offs_boot;
1881 	u64		wall_time_sec;
1882 };
1883 
1884 static struct pvclock_gtod_data pvclock_gtod_data;
1885 
1886 static void update_pvclock_gtod(struct timekeeper *tk)
1887 {
1888 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1889 
1890 	write_seqcount_begin(&vdata->seq);
1891 
1892 	/* copy pvclock gtod data */
1893 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1894 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1895 	vdata->clock.mask		= tk->tkr_mono.mask;
1896 	vdata->clock.mult		= tk->tkr_mono.mult;
1897 	vdata->clock.shift		= tk->tkr_mono.shift;
1898 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1899 	vdata->clock.offset		= tk->tkr_mono.base;
1900 
1901 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1902 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1903 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1904 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1905 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1906 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1907 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1908 
1909 	vdata->wall_time_sec            = tk->xtime_sec;
1910 
1911 	vdata->offs_boot		= tk->offs_boot;
1912 
1913 	write_seqcount_end(&vdata->seq);
1914 }
1915 
1916 static s64 get_kvmclock_base_ns(void)
1917 {
1918 	/* Count up from boot time, but with the frequency of the raw clock.  */
1919 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1920 }
1921 #else
1922 static s64 get_kvmclock_base_ns(void)
1923 {
1924 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1925 	return ktime_get_boottime_ns();
1926 }
1927 #endif
1928 
1929 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1930 {
1931 	int version;
1932 	int r;
1933 	struct pvclock_wall_clock wc;
1934 	u64 wall_nsec;
1935 
1936 	kvm->arch.wall_clock = wall_clock;
1937 
1938 	if (!wall_clock)
1939 		return;
1940 
1941 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1942 	if (r)
1943 		return;
1944 
1945 	if (version & 1)
1946 		++version;  /* first time write, random junk */
1947 
1948 	++version;
1949 
1950 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1951 		return;
1952 
1953 	/*
1954 	 * The guest calculates current wall clock time by adding
1955 	 * system time (updated by kvm_guest_time_update below) to the
1956 	 * wall clock specified here.  We do the reverse here.
1957 	 */
1958 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1959 
1960 	wc.nsec = do_div(wall_nsec, 1000000000);
1961 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1962 	wc.version = version;
1963 
1964 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1965 
1966 	version++;
1967 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1968 }
1969 
1970 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1971 				  bool old_msr, bool host_initiated)
1972 {
1973 	struct kvm_arch *ka = &vcpu->kvm->arch;
1974 
1975 	if (vcpu->vcpu_id == 0 && !host_initiated) {
1976 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1977 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1978 
1979 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
1980 	}
1981 
1982 	vcpu->arch.time = system_time;
1983 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1984 
1985 	/* we verify if the enable bit is set... */
1986 	vcpu->arch.pv_time_enabled = false;
1987 	if (!(system_time & 1))
1988 		return;
1989 
1990 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1991 				       &vcpu->arch.pv_time, system_time & ~1ULL,
1992 				       sizeof(struct pvclock_vcpu_time_info)))
1993 		vcpu->arch.pv_time_enabled = true;
1994 
1995 	return;
1996 }
1997 
1998 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1999 {
2000 	do_shl32_div32(dividend, divisor);
2001 	return dividend;
2002 }
2003 
2004 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2005 			       s8 *pshift, u32 *pmultiplier)
2006 {
2007 	uint64_t scaled64;
2008 	int32_t  shift = 0;
2009 	uint64_t tps64;
2010 	uint32_t tps32;
2011 
2012 	tps64 = base_hz;
2013 	scaled64 = scaled_hz;
2014 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2015 		tps64 >>= 1;
2016 		shift--;
2017 	}
2018 
2019 	tps32 = (uint32_t)tps64;
2020 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2021 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2022 			scaled64 >>= 1;
2023 		else
2024 			tps32 <<= 1;
2025 		shift++;
2026 	}
2027 
2028 	*pshift = shift;
2029 	*pmultiplier = div_frac(scaled64, tps32);
2030 }
2031 
2032 #ifdef CONFIG_X86_64
2033 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2034 #endif
2035 
2036 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2037 static unsigned long max_tsc_khz;
2038 
2039 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2040 {
2041 	u64 v = (u64)khz * (1000000 + ppm);
2042 	do_div(v, 1000000);
2043 	return v;
2044 }
2045 
2046 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2047 {
2048 	u64 ratio;
2049 
2050 	/* Guest TSC same frequency as host TSC? */
2051 	if (!scale) {
2052 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2053 		return 0;
2054 	}
2055 
2056 	/* TSC scaling supported? */
2057 	if (!kvm_has_tsc_control) {
2058 		if (user_tsc_khz > tsc_khz) {
2059 			vcpu->arch.tsc_catchup = 1;
2060 			vcpu->arch.tsc_always_catchup = 1;
2061 			return 0;
2062 		} else {
2063 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2064 			return -1;
2065 		}
2066 	}
2067 
2068 	/* TSC scaling required  - calculate ratio */
2069 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2070 				user_tsc_khz, tsc_khz);
2071 
2072 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2073 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2074 			            user_tsc_khz);
2075 		return -1;
2076 	}
2077 
2078 	vcpu->arch.tsc_scaling_ratio = ratio;
2079 	return 0;
2080 }
2081 
2082 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2083 {
2084 	u32 thresh_lo, thresh_hi;
2085 	int use_scaling = 0;
2086 
2087 	/* tsc_khz can be zero if TSC calibration fails */
2088 	if (user_tsc_khz == 0) {
2089 		/* set tsc_scaling_ratio to a safe value */
2090 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2091 		return -1;
2092 	}
2093 
2094 	/* Compute a scale to convert nanoseconds in TSC cycles */
2095 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2096 			   &vcpu->arch.virtual_tsc_shift,
2097 			   &vcpu->arch.virtual_tsc_mult);
2098 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2099 
2100 	/*
2101 	 * Compute the variation in TSC rate which is acceptable
2102 	 * within the range of tolerance and decide if the
2103 	 * rate being applied is within that bounds of the hardware
2104 	 * rate.  If so, no scaling or compensation need be done.
2105 	 */
2106 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2107 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2108 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2109 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2110 		use_scaling = 1;
2111 	}
2112 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2113 }
2114 
2115 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2116 {
2117 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2118 				      vcpu->arch.virtual_tsc_mult,
2119 				      vcpu->arch.virtual_tsc_shift);
2120 	tsc += vcpu->arch.this_tsc_write;
2121 	return tsc;
2122 }
2123 
2124 static inline int gtod_is_based_on_tsc(int mode)
2125 {
2126 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2127 }
2128 
2129 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2130 {
2131 #ifdef CONFIG_X86_64
2132 	bool vcpus_matched;
2133 	struct kvm_arch *ka = &vcpu->kvm->arch;
2134 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2135 
2136 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2137 			 atomic_read(&vcpu->kvm->online_vcpus));
2138 
2139 	/*
2140 	 * Once the masterclock is enabled, always perform request in
2141 	 * order to update it.
2142 	 *
2143 	 * In order to enable masterclock, the host clocksource must be TSC
2144 	 * and the vcpus need to have matched TSCs.  When that happens,
2145 	 * perform request to enable masterclock.
2146 	 */
2147 	if (ka->use_master_clock ||
2148 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2149 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2150 
2151 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2152 			    atomic_read(&vcpu->kvm->online_vcpus),
2153 		            ka->use_master_clock, gtod->clock.vclock_mode);
2154 #endif
2155 }
2156 
2157 /*
2158  * Multiply tsc by a fixed point number represented by ratio.
2159  *
2160  * The most significant 64-N bits (mult) of ratio represent the
2161  * integral part of the fixed point number; the remaining N bits
2162  * (frac) represent the fractional part, ie. ratio represents a fixed
2163  * point number (mult + frac * 2^(-N)).
2164  *
2165  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2166  */
2167 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2168 {
2169 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2170 }
2171 
2172 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2173 {
2174 	u64 _tsc = tsc;
2175 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2176 
2177 	if (ratio != kvm_default_tsc_scaling_ratio)
2178 		_tsc = __scale_tsc(ratio, tsc);
2179 
2180 	return _tsc;
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2183 
2184 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2185 {
2186 	u64 tsc;
2187 
2188 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2189 
2190 	return target_tsc - tsc;
2191 }
2192 
2193 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2194 {
2195 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2198 
2199 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2200 {
2201 	vcpu->arch.l1_tsc_offset = offset;
2202 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2203 }
2204 
2205 static inline bool kvm_check_tsc_unstable(void)
2206 {
2207 #ifdef CONFIG_X86_64
2208 	/*
2209 	 * TSC is marked unstable when we're running on Hyper-V,
2210 	 * 'TSC page' clocksource is good.
2211 	 */
2212 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2213 		return false;
2214 #endif
2215 	return check_tsc_unstable();
2216 }
2217 
2218 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2219 {
2220 	struct kvm *kvm = vcpu->kvm;
2221 	u64 offset, ns, elapsed;
2222 	unsigned long flags;
2223 	bool matched;
2224 	bool already_matched;
2225 	bool synchronizing = false;
2226 
2227 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2228 	offset = kvm_compute_tsc_offset(vcpu, data);
2229 	ns = get_kvmclock_base_ns();
2230 	elapsed = ns - kvm->arch.last_tsc_nsec;
2231 
2232 	if (vcpu->arch.virtual_tsc_khz) {
2233 		if (data == 0) {
2234 			/*
2235 			 * detection of vcpu initialization -- need to sync
2236 			 * with other vCPUs. This particularly helps to keep
2237 			 * kvm_clock stable after CPU hotplug
2238 			 */
2239 			synchronizing = true;
2240 		} else {
2241 			u64 tsc_exp = kvm->arch.last_tsc_write +
2242 						nsec_to_cycles(vcpu, elapsed);
2243 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2244 			/*
2245 			 * Special case: TSC write with a small delta (1 second)
2246 			 * of virtual cycle time against real time is
2247 			 * interpreted as an attempt to synchronize the CPU.
2248 			 */
2249 			synchronizing = data < tsc_exp + tsc_hz &&
2250 					data + tsc_hz > tsc_exp;
2251 		}
2252 	}
2253 
2254 	/*
2255 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2256 	 * TSC, we add elapsed time in this computation.  We could let the
2257 	 * compensation code attempt to catch up if we fall behind, but
2258 	 * it's better to try to match offsets from the beginning.
2259          */
2260 	if (synchronizing &&
2261 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2262 		if (!kvm_check_tsc_unstable()) {
2263 			offset = kvm->arch.cur_tsc_offset;
2264 		} else {
2265 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2266 			data += delta;
2267 			offset = kvm_compute_tsc_offset(vcpu, data);
2268 		}
2269 		matched = true;
2270 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2271 	} else {
2272 		/*
2273 		 * We split periods of matched TSC writes into generations.
2274 		 * For each generation, we track the original measured
2275 		 * nanosecond time, offset, and write, so if TSCs are in
2276 		 * sync, we can match exact offset, and if not, we can match
2277 		 * exact software computation in compute_guest_tsc()
2278 		 *
2279 		 * These values are tracked in kvm->arch.cur_xxx variables.
2280 		 */
2281 		kvm->arch.cur_tsc_generation++;
2282 		kvm->arch.cur_tsc_nsec = ns;
2283 		kvm->arch.cur_tsc_write = data;
2284 		kvm->arch.cur_tsc_offset = offset;
2285 		matched = false;
2286 	}
2287 
2288 	/*
2289 	 * We also track th most recent recorded KHZ, write and time to
2290 	 * allow the matching interval to be extended at each write.
2291 	 */
2292 	kvm->arch.last_tsc_nsec = ns;
2293 	kvm->arch.last_tsc_write = data;
2294 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2295 
2296 	vcpu->arch.last_guest_tsc = data;
2297 
2298 	/* Keep track of which generation this VCPU has synchronized to */
2299 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2300 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2301 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2302 
2303 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2304 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2305 
2306 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2307 	if (!matched) {
2308 		kvm->arch.nr_vcpus_matched_tsc = 0;
2309 	} else if (!already_matched) {
2310 		kvm->arch.nr_vcpus_matched_tsc++;
2311 	}
2312 
2313 	kvm_track_tsc_matching(vcpu);
2314 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2315 }
2316 
2317 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2318 					   s64 adjustment)
2319 {
2320 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2321 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2322 }
2323 
2324 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2325 {
2326 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2327 		WARN_ON(adjustment < 0);
2328 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2329 	adjust_tsc_offset_guest(vcpu, adjustment);
2330 }
2331 
2332 #ifdef CONFIG_X86_64
2333 
2334 static u64 read_tsc(void)
2335 {
2336 	u64 ret = (u64)rdtsc_ordered();
2337 	u64 last = pvclock_gtod_data.clock.cycle_last;
2338 
2339 	if (likely(ret >= last))
2340 		return ret;
2341 
2342 	/*
2343 	 * GCC likes to generate cmov here, but this branch is extremely
2344 	 * predictable (it's just a function of time and the likely is
2345 	 * very likely) and there's a data dependence, so force GCC
2346 	 * to generate a branch instead.  I don't barrier() because
2347 	 * we don't actually need a barrier, and if this function
2348 	 * ever gets inlined it will generate worse code.
2349 	 */
2350 	asm volatile ("");
2351 	return last;
2352 }
2353 
2354 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2355 			  int *mode)
2356 {
2357 	long v;
2358 	u64 tsc_pg_val;
2359 
2360 	switch (clock->vclock_mode) {
2361 	case VDSO_CLOCKMODE_HVCLOCK:
2362 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2363 						  tsc_timestamp);
2364 		if (tsc_pg_val != U64_MAX) {
2365 			/* TSC page valid */
2366 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2367 			v = (tsc_pg_val - clock->cycle_last) &
2368 				clock->mask;
2369 		} else {
2370 			/* TSC page invalid */
2371 			*mode = VDSO_CLOCKMODE_NONE;
2372 		}
2373 		break;
2374 	case VDSO_CLOCKMODE_TSC:
2375 		*mode = VDSO_CLOCKMODE_TSC;
2376 		*tsc_timestamp = read_tsc();
2377 		v = (*tsc_timestamp - clock->cycle_last) &
2378 			clock->mask;
2379 		break;
2380 	default:
2381 		*mode = VDSO_CLOCKMODE_NONE;
2382 	}
2383 
2384 	if (*mode == VDSO_CLOCKMODE_NONE)
2385 		*tsc_timestamp = v = 0;
2386 
2387 	return v * clock->mult;
2388 }
2389 
2390 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2391 {
2392 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2393 	unsigned long seq;
2394 	int mode;
2395 	u64 ns;
2396 
2397 	do {
2398 		seq = read_seqcount_begin(&gtod->seq);
2399 		ns = gtod->raw_clock.base_cycles;
2400 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2401 		ns >>= gtod->raw_clock.shift;
2402 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2403 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2404 	*t = ns;
2405 
2406 	return mode;
2407 }
2408 
2409 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2410 {
2411 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2412 	unsigned long seq;
2413 	int mode;
2414 	u64 ns;
2415 
2416 	do {
2417 		seq = read_seqcount_begin(&gtod->seq);
2418 		ts->tv_sec = gtod->wall_time_sec;
2419 		ns = gtod->clock.base_cycles;
2420 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2421 		ns >>= gtod->clock.shift;
2422 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2423 
2424 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2425 	ts->tv_nsec = ns;
2426 
2427 	return mode;
2428 }
2429 
2430 /* returns true if host is using TSC based clocksource */
2431 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2432 {
2433 	/* checked again under seqlock below */
2434 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2435 		return false;
2436 
2437 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2438 						      tsc_timestamp));
2439 }
2440 
2441 /* returns true if host is using TSC based clocksource */
2442 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2443 					   u64 *tsc_timestamp)
2444 {
2445 	/* checked again under seqlock below */
2446 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2447 		return false;
2448 
2449 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2450 }
2451 #endif
2452 
2453 /*
2454  *
2455  * Assuming a stable TSC across physical CPUS, and a stable TSC
2456  * across virtual CPUs, the following condition is possible.
2457  * Each numbered line represents an event visible to both
2458  * CPUs at the next numbered event.
2459  *
2460  * "timespecX" represents host monotonic time. "tscX" represents
2461  * RDTSC value.
2462  *
2463  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2464  *
2465  * 1.  read timespec0,tsc0
2466  * 2.					| timespec1 = timespec0 + N
2467  * 					| tsc1 = tsc0 + M
2468  * 3. transition to guest		| transition to guest
2469  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2470  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2471  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2472  *
2473  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2474  *
2475  * 	- ret0 < ret1
2476  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2477  *		...
2478  *	- 0 < N - M => M < N
2479  *
2480  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2481  * always the case (the difference between two distinct xtime instances
2482  * might be smaller then the difference between corresponding TSC reads,
2483  * when updating guest vcpus pvclock areas).
2484  *
2485  * To avoid that problem, do not allow visibility of distinct
2486  * system_timestamp/tsc_timestamp values simultaneously: use a master
2487  * copy of host monotonic time values. Update that master copy
2488  * in lockstep.
2489  *
2490  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2491  *
2492  */
2493 
2494 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2495 {
2496 #ifdef CONFIG_X86_64
2497 	struct kvm_arch *ka = &kvm->arch;
2498 	int vclock_mode;
2499 	bool host_tsc_clocksource, vcpus_matched;
2500 
2501 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2502 			atomic_read(&kvm->online_vcpus));
2503 
2504 	/*
2505 	 * If the host uses TSC clock, then passthrough TSC as stable
2506 	 * to the guest.
2507 	 */
2508 	host_tsc_clocksource = kvm_get_time_and_clockread(
2509 					&ka->master_kernel_ns,
2510 					&ka->master_cycle_now);
2511 
2512 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2513 				&& !ka->backwards_tsc_observed
2514 				&& !ka->boot_vcpu_runs_old_kvmclock;
2515 
2516 	if (ka->use_master_clock)
2517 		atomic_set(&kvm_guest_has_master_clock, 1);
2518 
2519 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2520 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2521 					vcpus_matched);
2522 #endif
2523 }
2524 
2525 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2526 {
2527 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2528 }
2529 
2530 static void kvm_gen_update_masterclock(struct kvm *kvm)
2531 {
2532 #ifdef CONFIG_X86_64
2533 	int i;
2534 	struct kvm_vcpu *vcpu;
2535 	struct kvm_arch *ka = &kvm->arch;
2536 
2537 	spin_lock(&ka->pvclock_gtod_sync_lock);
2538 	kvm_make_mclock_inprogress_request(kvm);
2539 	/* no guest entries from this point */
2540 	pvclock_update_vm_gtod_copy(kvm);
2541 
2542 	kvm_for_each_vcpu(i, vcpu, kvm)
2543 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2544 
2545 	/* guest entries allowed */
2546 	kvm_for_each_vcpu(i, vcpu, kvm)
2547 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2548 
2549 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2550 #endif
2551 }
2552 
2553 u64 get_kvmclock_ns(struct kvm *kvm)
2554 {
2555 	struct kvm_arch *ka = &kvm->arch;
2556 	struct pvclock_vcpu_time_info hv_clock;
2557 	u64 ret;
2558 
2559 	spin_lock(&ka->pvclock_gtod_sync_lock);
2560 	if (!ka->use_master_clock) {
2561 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2562 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2563 	}
2564 
2565 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2566 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2567 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2568 
2569 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2570 	get_cpu();
2571 
2572 	if (__this_cpu_read(cpu_tsc_khz)) {
2573 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2574 				   &hv_clock.tsc_shift,
2575 				   &hv_clock.tsc_to_system_mul);
2576 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2577 	} else
2578 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2579 
2580 	put_cpu();
2581 
2582 	return ret;
2583 }
2584 
2585 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2586 {
2587 	struct kvm_vcpu_arch *vcpu = &v->arch;
2588 	struct pvclock_vcpu_time_info guest_hv_clock;
2589 
2590 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2591 		&guest_hv_clock, sizeof(guest_hv_clock))))
2592 		return;
2593 
2594 	/* This VCPU is paused, but it's legal for a guest to read another
2595 	 * VCPU's kvmclock, so we really have to follow the specification where
2596 	 * it says that version is odd if data is being modified, and even after
2597 	 * it is consistent.
2598 	 *
2599 	 * Version field updates must be kept separate.  This is because
2600 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2601 	 * writes within a string instruction are weakly ordered.  So there
2602 	 * are three writes overall.
2603 	 *
2604 	 * As a small optimization, only write the version field in the first
2605 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2606 	 * version field is the first in the struct.
2607 	 */
2608 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2609 
2610 	if (guest_hv_clock.version & 1)
2611 		++guest_hv_clock.version;  /* first time write, random junk */
2612 
2613 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2614 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2615 				&vcpu->hv_clock,
2616 				sizeof(vcpu->hv_clock.version));
2617 
2618 	smp_wmb();
2619 
2620 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2621 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2622 
2623 	if (vcpu->pvclock_set_guest_stopped_request) {
2624 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2625 		vcpu->pvclock_set_guest_stopped_request = false;
2626 	}
2627 
2628 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2629 
2630 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2631 				&vcpu->hv_clock,
2632 				sizeof(vcpu->hv_clock));
2633 
2634 	smp_wmb();
2635 
2636 	vcpu->hv_clock.version++;
2637 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2638 				&vcpu->hv_clock,
2639 				sizeof(vcpu->hv_clock.version));
2640 }
2641 
2642 static int kvm_guest_time_update(struct kvm_vcpu *v)
2643 {
2644 	unsigned long flags, tgt_tsc_khz;
2645 	struct kvm_vcpu_arch *vcpu = &v->arch;
2646 	struct kvm_arch *ka = &v->kvm->arch;
2647 	s64 kernel_ns;
2648 	u64 tsc_timestamp, host_tsc;
2649 	u8 pvclock_flags;
2650 	bool use_master_clock;
2651 
2652 	kernel_ns = 0;
2653 	host_tsc = 0;
2654 
2655 	/*
2656 	 * If the host uses TSC clock, then passthrough TSC as stable
2657 	 * to the guest.
2658 	 */
2659 	spin_lock(&ka->pvclock_gtod_sync_lock);
2660 	use_master_clock = ka->use_master_clock;
2661 	if (use_master_clock) {
2662 		host_tsc = ka->master_cycle_now;
2663 		kernel_ns = ka->master_kernel_ns;
2664 	}
2665 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2666 
2667 	/* Keep irq disabled to prevent changes to the clock */
2668 	local_irq_save(flags);
2669 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2670 	if (unlikely(tgt_tsc_khz == 0)) {
2671 		local_irq_restore(flags);
2672 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2673 		return 1;
2674 	}
2675 	if (!use_master_clock) {
2676 		host_tsc = rdtsc();
2677 		kernel_ns = get_kvmclock_base_ns();
2678 	}
2679 
2680 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2681 
2682 	/*
2683 	 * We may have to catch up the TSC to match elapsed wall clock
2684 	 * time for two reasons, even if kvmclock is used.
2685 	 *   1) CPU could have been running below the maximum TSC rate
2686 	 *   2) Broken TSC compensation resets the base at each VCPU
2687 	 *      entry to avoid unknown leaps of TSC even when running
2688 	 *      again on the same CPU.  This may cause apparent elapsed
2689 	 *      time to disappear, and the guest to stand still or run
2690 	 *	very slowly.
2691 	 */
2692 	if (vcpu->tsc_catchup) {
2693 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2694 		if (tsc > tsc_timestamp) {
2695 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2696 			tsc_timestamp = tsc;
2697 		}
2698 	}
2699 
2700 	local_irq_restore(flags);
2701 
2702 	/* With all the info we got, fill in the values */
2703 
2704 	if (kvm_has_tsc_control)
2705 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2706 
2707 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2708 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2709 				   &vcpu->hv_clock.tsc_shift,
2710 				   &vcpu->hv_clock.tsc_to_system_mul);
2711 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2712 	}
2713 
2714 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2715 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2716 	vcpu->last_guest_tsc = tsc_timestamp;
2717 
2718 	/* If the host uses TSC clocksource, then it is stable */
2719 	pvclock_flags = 0;
2720 	if (use_master_clock)
2721 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2722 
2723 	vcpu->hv_clock.flags = pvclock_flags;
2724 
2725 	if (vcpu->pv_time_enabled)
2726 		kvm_setup_pvclock_page(v);
2727 	if (v == kvm_get_vcpu(v->kvm, 0))
2728 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2729 	return 0;
2730 }
2731 
2732 /*
2733  * kvmclock updates which are isolated to a given vcpu, such as
2734  * vcpu->cpu migration, should not allow system_timestamp from
2735  * the rest of the vcpus to remain static. Otherwise ntp frequency
2736  * correction applies to one vcpu's system_timestamp but not
2737  * the others.
2738  *
2739  * So in those cases, request a kvmclock update for all vcpus.
2740  * We need to rate-limit these requests though, as they can
2741  * considerably slow guests that have a large number of vcpus.
2742  * The time for a remote vcpu to update its kvmclock is bound
2743  * by the delay we use to rate-limit the updates.
2744  */
2745 
2746 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2747 
2748 static void kvmclock_update_fn(struct work_struct *work)
2749 {
2750 	int i;
2751 	struct delayed_work *dwork = to_delayed_work(work);
2752 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2753 					   kvmclock_update_work);
2754 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2755 	struct kvm_vcpu *vcpu;
2756 
2757 	kvm_for_each_vcpu(i, vcpu, kvm) {
2758 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2759 		kvm_vcpu_kick(vcpu);
2760 	}
2761 }
2762 
2763 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2764 {
2765 	struct kvm *kvm = v->kvm;
2766 
2767 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2768 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2769 					KVMCLOCK_UPDATE_DELAY);
2770 }
2771 
2772 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2773 
2774 static void kvmclock_sync_fn(struct work_struct *work)
2775 {
2776 	struct delayed_work *dwork = to_delayed_work(work);
2777 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2778 					   kvmclock_sync_work);
2779 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2780 
2781 	if (!kvmclock_periodic_sync)
2782 		return;
2783 
2784 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2785 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2786 					KVMCLOCK_SYNC_PERIOD);
2787 }
2788 
2789 /*
2790  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2791  */
2792 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2793 {
2794 	/* McStatusWrEn enabled? */
2795 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2796 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2797 
2798 	return false;
2799 }
2800 
2801 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2802 {
2803 	u64 mcg_cap = vcpu->arch.mcg_cap;
2804 	unsigned bank_num = mcg_cap & 0xff;
2805 	u32 msr = msr_info->index;
2806 	u64 data = msr_info->data;
2807 
2808 	switch (msr) {
2809 	case MSR_IA32_MCG_STATUS:
2810 		vcpu->arch.mcg_status = data;
2811 		break;
2812 	case MSR_IA32_MCG_CTL:
2813 		if (!(mcg_cap & MCG_CTL_P) &&
2814 		    (data || !msr_info->host_initiated))
2815 			return 1;
2816 		if (data != 0 && data != ~(u64)0)
2817 			return 1;
2818 		vcpu->arch.mcg_ctl = data;
2819 		break;
2820 	default:
2821 		if (msr >= MSR_IA32_MC0_CTL &&
2822 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2823 			u32 offset = array_index_nospec(
2824 				msr - MSR_IA32_MC0_CTL,
2825 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2826 
2827 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2828 			 * some Linux kernels though clear bit 10 in bank 4 to
2829 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2830 			 * this to avoid an uncatched #GP in the guest
2831 			 */
2832 			if ((offset & 0x3) == 0 &&
2833 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2834 				return -1;
2835 
2836 			/* MCi_STATUS */
2837 			if (!msr_info->host_initiated &&
2838 			    (offset & 0x3) == 1 && data != 0) {
2839 				if (!can_set_mci_status(vcpu))
2840 					return -1;
2841 			}
2842 
2843 			vcpu->arch.mce_banks[offset] = data;
2844 			break;
2845 		}
2846 		return 1;
2847 	}
2848 	return 0;
2849 }
2850 
2851 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2852 {
2853 	struct kvm *kvm = vcpu->kvm;
2854 	int lm = is_long_mode(vcpu);
2855 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2856 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2857 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2858 		: kvm->arch.xen_hvm_config.blob_size_32;
2859 	u32 page_num = data & ~PAGE_MASK;
2860 	u64 page_addr = data & PAGE_MASK;
2861 	u8 *page;
2862 
2863 	if (page_num >= blob_size)
2864 		return 1;
2865 
2866 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2867 	if (IS_ERR(page))
2868 		return PTR_ERR(page);
2869 
2870 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2871 		kfree(page);
2872 		return 1;
2873 	}
2874 	return 0;
2875 }
2876 
2877 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2878 {
2879 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2880 
2881 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2882 }
2883 
2884 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2885 {
2886 	gpa_t gpa = data & ~0x3f;
2887 
2888 	/* Bits 4:5 are reserved, Should be zero */
2889 	if (data & 0x30)
2890 		return 1;
2891 
2892 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2893 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2894 		return 1;
2895 
2896 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2897 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2898 		return 1;
2899 
2900 	if (!lapic_in_kernel(vcpu))
2901 		return data ? 1 : 0;
2902 
2903 	vcpu->arch.apf.msr_en_val = data;
2904 
2905 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2906 		kvm_clear_async_pf_completion_queue(vcpu);
2907 		kvm_async_pf_hash_reset(vcpu);
2908 		return 0;
2909 	}
2910 
2911 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2912 					sizeof(u64)))
2913 		return 1;
2914 
2915 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2916 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2917 
2918 	kvm_async_pf_wakeup_all(vcpu);
2919 
2920 	return 0;
2921 }
2922 
2923 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2924 {
2925 	/* Bits 8-63 are reserved */
2926 	if (data >> 8)
2927 		return 1;
2928 
2929 	if (!lapic_in_kernel(vcpu))
2930 		return 1;
2931 
2932 	vcpu->arch.apf.msr_int_val = data;
2933 
2934 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2935 
2936 	return 0;
2937 }
2938 
2939 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2940 {
2941 	vcpu->arch.pv_time_enabled = false;
2942 	vcpu->arch.time = 0;
2943 }
2944 
2945 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2946 {
2947 	++vcpu->stat.tlb_flush;
2948 	kvm_x86_ops.tlb_flush_all(vcpu);
2949 }
2950 
2951 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2952 {
2953 	++vcpu->stat.tlb_flush;
2954 	kvm_x86_ops.tlb_flush_guest(vcpu);
2955 }
2956 
2957 static void record_steal_time(struct kvm_vcpu *vcpu)
2958 {
2959 	struct kvm_host_map map;
2960 	struct kvm_steal_time *st;
2961 
2962 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2963 		return;
2964 
2965 	/* -EAGAIN is returned in atomic context so we can just return. */
2966 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2967 			&map, &vcpu->arch.st.cache, false))
2968 		return;
2969 
2970 	st = map.hva +
2971 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2972 
2973 	/*
2974 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2975 	 * expensive IPIs.
2976 	 */
2977 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2978 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2979 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2980 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2981 			kvm_vcpu_flush_tlb_guest(vcpu);
2982 	}
2983 
2984 	vcpu->arch.st.preempted = 0;
2985 
2986 	if (st->version & 1)
2987 		st->version += 1;  /* first time write, random junk */
2988 
2989 	st->version += 1;
2990 
2991 	smp_wmb();
2992 
2993 	st->steal += current->sched_info.run_delay -
2994 		vcpu->arch.st.last_steal;
2995 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2996 
2997 	smp_wmb();
2998 
2999 	st->version += 1;
3000 
3001 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3002 }
3003 
3004 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3005 {
3006 	bool pr = false;
3007 	u32 msr = msr_info->index;
3008 	u64 data = msr_info->data;
3009 
3010 	switch (msr) {
3011 	case MSR_AMD64_NB_CFG:
3012 	case MSR_IA32_UCODE_WRITE:
3013 	case MSR_VM_HSAVE_PA:
3014 	case MSR_AMD64_PATCH_LOADER:
3015 	case MSR_AMD64_BU_CFG2:
3016 	case MSR_AMD64_DC_CFG:
3017 	case MSR_F15H_EX_CFG:
3018 		break;
3019 
3020 	case MSR_IA32_UCODE_REV:
3021 		if (msr_info->host_initiated)
3022 			vcpu->arch.microcode_version = data;
3023 		break;
3024 	case MSR_IA32_ARCH_CAPABILITIES:
3025 		if (!msr_info->host_initiated)
3026 			return 1;
3027 		vcpu->arch.arch_capabilities = data;
3028 		break;
3029 	case MSR_IA32_PERF_CAPABILITIES: {
3030 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3031 
3032 		if (!msr_info->host_initiated)
3033 			return 1;
3034 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3035 			return 1;
3036 		if (data & ~msr_ent.data)
3037 			return 1;
3038 
3039 		vcpu->arch.perf_capabilities = data;
3040 
3041 		return 0;
3042 		}
3043 	case MSR_EFER:
3044 		return set_efer(vcpu, msr_info);
3045 	case MSR_K7_HWCR:
3046 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3047 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3048 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3049 
3050 		/* Handle McStatusWrEn */
3051 		if (data == BIT_ULL(18)) {
3052 			vcpu->arch.msr_hwcr = data;
3053 		} else if (data != 0) {
3054 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3055 				    data);
3056 			return 1;
3057 		}
3058 		break;
3059 	case MSR_FAM10H_MMIO_CONF_BASE:
3060 		if (data != 0) {
3061 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3062 				    "0x%llx\n", data);
3063 			return 1;
3064 		}
3065 		break;
3066 	case MSR_IA32_DEBUGCTLMSR:
3067 		if (!data) {
3068 			/* We support the non-activated case already */
3069 			break;
3070 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3071 			/* Values other than LBR and BTF are vendor-specific,
3072 			   thus reserved and should throw a #GP */
3073 			return 1;
3074 		} else if (report_ignored_msrs)
3075 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3076 				    __func__, data);
3077 		break;
3078 	case 0x200 ... 0x2ff:
3079 		return kvm_mtrr_set_msr(vcpu, msr, data);
3080 	case MSR_IA32_APICBASE:
3081 		return kvm_set_apic_base(vcpu, msr_info);
3082 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3083 		return kvm_x2apic_msr_write(vcpu, msr, data);
3084 	case MSR_IA32_TSCDEADLINE:
3085 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3086 		break;
3087 	case MSR_IA32_TSC_ADJUST:
3088 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3089 			if (!msr_info->host_initiated) {
3090 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3091 				adjust_tsc_offset_guest(vcpu, adj);
3092 			}
3093 			vcpu->arch.ia32_tsc_adjust_msr = data;
3094 		}
3095 		break;
3096 	case MSR_IA32_MISC_ENABLE:
3097 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3098 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3099 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3100 				return 1;
3101 			vcpu->arch.ia32_misc_enable_msr = data;
3102 			kvm_update_cpuid_runtime(vcpu);
3103 		} else {
3104 			vcpu->arch.ia32_misc_enable_msr = data;
3105 		}
3106 		break;
3107 	case MSR_IA32_SMBASE:
3108 		if (!msr_info->host_initiated)
3109 			return 1;
3110 		vcpu->arch.smbase = data;
3111 		break;
3112 	case MSR_IA32_POWER_CTL:
3113 		vcpu->arch.msr_ia32_power_ctl = data;
3114 		break;
3115 	case MSR_IA32_TSC:
3116 		if (msr_info->host_initiated) {
3117 			kvm_synchronize_tsc(vcpu, data);
3118 		} else {
3119 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3120 			adjust_tsc_offset_guest(vcpu, adj);
3121 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3122 		}
3123 		break;
3124 	case MSR_IA32_XSS:
3125 		if (!msr_info->host_initiated &&
3126 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3127 			return 1;
3128 		/*
3129 		 * KVM supports exposing PT to the guest, but does not support
3130 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3131 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3132 		 */
3133 		if (data & ~supported_xss)
3134 			return 1;
3135 		vcpu->arch.ia32_xss = data;
3136 		break;
3137 	case MSR_SMI_COUNT:
3138 		if (!msr_info->host_initiated)
3139 			return 1;
3140 		vcpu->arch.smi_count = data;
3141 		break;
3142 	case MSR_KVM_WALL_CLOCK_NEW:
3143 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3144 			return 1;
3145 
3146 		kvm_write_wall_clock(vcpu->kvm, data);
3147 		break;
3148 	case MSR_KVM_WALL_CLOCK:
3149 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3150 			return 1;
3151 
3152 		kvm_write_wall_clock(vcpu->kvm, data);
3153 		break;
3154 	case MSR_KVM_SYSTEM_TIME_NEW:
3155 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3156 			return 1;
3157 
3158 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3159 		break;
3160 	case MSR_KVM_SYSTEM_TIME:
3161 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3162 			return 1;
3163 
3164 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3165 		break;
3166 	case MSR_KVM_ASYNC_PF_EN:
3167 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3168 			return 1;
3169 
3170 		if (kvm_pv_enable_async_pf(vcpu, data))
3171 			return 1;
3172 		break;
3173 	case MSR_KVM_ASYNC_PF_INT:
3174 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3175 			return 1;
3176 
3177 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3178 			return 1;
3179 		break;
3180 	case MSR_KVM_ASYNC_PF_ACK:
3181 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3182 			return 1;
3183 		if (data & 0x1) {
3184 			vcpu->arch.apf.pageready_pending = false;
3185 			kvm_check_async_pf_completion(vcpu);
3186 		}
3187 		break;
3188 	case MSR_KVM_STEAL_TIME:
3189 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3190 			return 1;
3191 
3192 		if (unlikely(!sched_info_on()))
3193 			return 1;
3194 
3195 		if (data & KVM_STEAL_RESERVED_MASK)
3196 			return 1;
3197 
3198 		vcpu->arch.st.msr_val = data;
3199 
3200 		if (!(data & KVM_MSR_ENABLED))
3201 			break;
3202 
3203 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3204 
3205 		break;
3206 	case MSR_KVM_PV_EOI_EN:
3207 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3208 			return 1;
3209 
3210 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3211 			return 1;
3212 		break;
3213 
3214 	case MSR_KVM_POLL_CONTROL:
3215 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3216 			return 1;
3217 
3218 		/* only enable bit supported */
3219 		if (data & (-1ULL << 1))
3220 			return 1;
3221 
3222 		vcpu->arch.msr_kvm_poll_control = data;
3223 		break;
3224 
3225 	case MSR_IA32_MCG_CTL:
3226 	case MSR_IA32_MCG_STATUS:
3227 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3228 		return set_msr_mce(vcpu, msr_info);
3229 
3230 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3231 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3232 		pr = true;
3233 		fallthrough;
3234 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3235 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3236 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3237 			return kvm_pmu_set_msr(vcpu, msr_info);
3238 
3239 		if (pr || data != 0)
3240 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3241 				    "0x%x data 0x%llx\n", msr, data);
3242 		break;
3243 	case MSR_K7_CLK_CTL:
3244 		/*
3245 		 * Ignore all writes to this no longer documented MSR.
3246 		 * Writes are only relevant for old K7 processors,
3247 		 * all pre-dating SVM, but a recommended workaround from
3248 		 * AMD for these chips. It is possible to specify the
3249 		 * affected processor models on the command line, hence
3250 		 * the need to ignore the workaround.
3251 		 */
3252 		break;
3253 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3254 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3255 	case HV_X64_MSR_SYNDBG_OPTIONS:
3256 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3257 	case HV_X64_MSR_CRASH_CTL:
3258 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3259 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3260 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3261 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3262 		return kvm_hv_set_msr_common(vcpu, msr, data,
3263 					     msr_info->host_initiated);
3264 	case MSR_IA32_BBL_CR_CTL3:
3265 		/* Drop writes to this legacy MSR -- see rdmsr
3266 		 * counterpart for further detail.
3267 		 */
3268 		if (report_ignored_msrs)
3269 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3270 				msr, data);
3271 		break;
3272 	case MSR_AMD64_OSVW_ID_LENGTH:
3273 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3274 			return 1;
3275 		vcpu->arch.osvw.length = data;
3276 		break;
3277 	case MSR_AMD64_OSVW_STATUS:
3278 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3279 			return 1;
3280 		vcpu->arch.osvw.status = data;
3281 		break;
3282 	case MSR_PLATFORM_INFO:
3283 		if (!msr_info->host_initiated ||
3284 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3285 		     cpuid_fault_enabled(vcpu)))
3286 			return 1;
3287 		vcpu->arch.msr_platform_info = data;
3288 		break;
3289 	case MSR_MISC_FEATURES_ENABLES:
3290 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3291 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3292 		     !supports_cpuid_fault(vcpu)))
3293 			return 1;
3294 		vcpu->arch.msr_misc_features_enables = data;
3295 		break;
3296 	default:
3297 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3298 			return xen_hvm_config(vcpu, data);
3299 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3300 			return kvm_pmu_set_msr(vcpu, msr_info);
3301 		return KVM_MSR_RET_INVALID;
3302 	}
3303 	return 0;
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3306 
3307 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3308 {
3309 	u64 data;
3310 	u64 mcg_cap = vcpu->arch.mcg_cap;
3311 	unsigned bank_num = mcg_cap & 0xff;
3312 
3313 	switch (msr) {
3314 	case MSR_IA32_P5_MC_ADDR:
3315 	case MSR_IA32_P5_MC_TYPE:
3316 		data = 0;
3317 		break;
3318 	case MSR_IA32_MCG_CAP:
3319 		data = vcpu->arch.mcg_cap;
3320 		break;
3321 	case MSR_IA32_MCG_CTL:
3322 		if (!(mcg_cap & MCG_CTL_P) && !host)
3323 			return 1;
3324 		data = vcpu->arch.mcg_ctl;
3325 		break;
3326 	case MSR_IA32_MCG_STATUS:
3327 		data = vcpu->arch.mcg_status;
3328 		break;
3329 	default:
3330 		if (msr >= MSR_IA32_MC0_CTL &&
3331 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3332 			u32 offset = array_index_nospec(
3333 				msr - MSR_IA32_MC0_CTL,
3334 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3335 
3336 			data = vcpu->arch.mce_banks[offset];
3337 			break;
3338 		}
3339 		return 1;
3340 	}
3341 	*pdata = data;
3342 	return 0;
3343 }
3344 
3345 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3346 {
3347 	switch (msr_info->index) {
3348 	case MSR_IA32_PLATFORM_ID:
3349 	case MSR_IA32_EBL_CR_POWERON:
3350 	case MSR_IA32_DEBUGCTLMSR:
3351 	case MSR_IA32_LASTBRANCHFROMIP:
3352 	case MSR_IA32_LASTBRANCHTOIP:
3353 	case MSR_IA32_LASTINTFROMIP:
3354 	case MSR_IA32_LASTINTTOIP:
3355 	case MSR_K8_SYSCFG:
3356 	case MSR_K8_TSEG_ADDR:
3357 	case MSR_K8_TSEG_MASK:
3358 	case MSR_VM_HSAVE_PA:
3359 	case MSR_K8_INT_PENDING_MSG:
3360 	case MSR_AMD64_NB_CFG:
3361 	case MSR_FAM10H_MMIO_CONF_BASE:
3362 	case MSR_AMD64_BU_CFG2:
3363 	case MSR_IA32_PERF_CTL:
3364 	case MSR_AMD64_DC_CFG:
3365 	case MSR_F15H_EX_CFG:
3366 	/*
3367 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3368 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3369 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3370 	 * so for existing CPU-specific MSRs.
3371 	 */
3372 	case MSR_RAPL_POWER_UNIT:
3373 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3374 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3375 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3376 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3377 		msr_info->data = 0;
3378 		break;
3379 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3380 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3381 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3382 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3383 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3384 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3385 			return kvm_pmu_get_msr(vcpu, msr_info);
3386 		msr_info->data = 0;
3387 		break;
3388 	case MSR_IA32_UCODE_REV:
3389 		msr_info->data = vcpu->arch.microcode_version;
3390 		break;
3391 	case MSR_IA32_ARCH_CAPABILITIES:
3392 		if (!msr_info->host_initiated &&
3393 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3394 			return 1;
3395 		msr_info->data = vcpu->arch.arch_capabilities;
3396 		break;
3397 	case MSR_IA32_PERF_CAPABILITIES:
3398 		if (!msr_info->host_initiated &&
3399 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3400 			return 1;
3401 		msr_info->data = vcpu->arch.perf_capabilities;
3402 		break;
3403 	case MSR_IA32_POWER_CTL:
3404 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3405 		break;
3406 	case MSR_IA32_TSC: {
3407 		/*
3408 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3409 		 * even when not intercepted. AMD manual doesn't explicitly
3410 		 * state this but appears to behave the same.
3411 		 *
3412 		 * On userspace reads and writes, however, we unconditionally
3413 		 * return L1's TSC value to ensure backwards-compatible
3414 		 * behavior for migration.
3415 		 */
3416 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3417 							    vcpu->arch.tsc_offset;
3418 
3419 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3420 		break;
3421 	}
3422 	case MSR_MTRRcap:
3423 	case 0x200 ... 0x2ff:
3424 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3425 	case 0xcd: /* fsb frequency */
3426 		msr_info->data = 3;
3427 		break;
3428 		/*
3429 		 * MSR_EBC_FREQUENCY_ID
3430 		 * Conservative value valid for even the basic CPU models.
3431 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3432 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3433 		 * and 266MHz for model 3, or 4. Set Core Clock
3434 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3435 		 * 31:24) even though these are only valid for CPU
3436 		 * models > 2, however guests may end up dividing or
3437 		 * multiplying by zero otherwise.
3438 		 */
3439 	case MSR_EBC_FREQUENCY_ID:
3440 		msr_info->data = 1 << 24;
3441 		break;
3442 	case MSR_IA32_APICBASE:
3443 		msr_info->data = kvm_get_apic_base(vcpu);
3444 		break;
3445 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3446 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3447 	case MSR_IA32_TSCDEADLINE:
3448 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3449 		break;
3450 	case MSR_IA32_TSC_ADJUST:
3451 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3452 		break;
3453 	case MSR_IA32_MISC_ENABLE:
3454 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3455 		break;
3456 	case MSR_IA32_SMBASE:
3457 		if (!msr_info->host_initiated)
3458 			return 1;
3459 		msr_info->data = vcpu->arch.smbase;
3460 		break;
3461 	case MSR_SMI_COUNT:
3462 		msr_info->data = vcpu->arch.smi_count;
3463 		break;
3464 	case MSR_IA32_PERF_STATUS:
3465 		/* TSC increment by tick */
3466 		msr_info->data = 1000ULL;
3467 		/* CPU multiplier */
3468 		msr_info->data |= (((uint64_t)4ULL) << 40);
3469 		break;
3470 	case MSR_EFER:
3471 		msr_info->data = vcpu->arch.efer;
3472 		break;
3473 	case MSR_KVM_WALL_CLOCK:
3474 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3475 			return 1;
3476 
3477 		msr_info->data = vcpu->kvm->arch.wall_clock;
3478 		break;
3479 	case MSR_KVM_WALL_CLOCK_NEW:
3480 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3481 			return 1;
3482 
3483 		msr_info->data = vcpu->kvm->arch.wall_clock;
3484 		break;
3485 	case MSR_KVM_SYSTEM_TIME:
3486 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3487 			return 1;
3488 
3489 		msr_info->data = vcpu->arch.time;
3490 		break;
3491 	case MSR_KVM_SYSTEM_TIME_NEW:
3492 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3493 			return 1;
3494 
3495 		msr_info->data = vcpu->arch.time;
3496 		break;
3497 	case MSR_KVM_ASYNC_PF_EN:
3498 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3499 			return 1;
3500 
3501 		msr_info->data = vcpu->arch.apf.msr_en_val;
3502 		break;
3503 	case MSR_KVM_ASYNC_PF_INT:
3504 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3505 			return 1;
3506 
3507 		msr_info->data = vcpu->arch.apf.msr_int_val;
3508 		break;
3509 	case MSR_KVM_ASYNC_PF_ACK:
3510 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3511 			return 1;
3512 
3513 		msr_info->data = 0;
3514 		break;
3515 	case MSR_KVM_STEAL_TIME:
3516 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3517 			return 1;
3518 
3519 		msr_info->data = vcpu->arch.st.msr_val;
3520 		break;
3521 	case MSR_KVM_PV_EOI_EN:
3522 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3523 			return 1;
3524 
3525 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3526 		break;
3527 	case MSR_KVM_POLL_CONTROL:
3528 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3529 			return 1;
3530 
3531 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3532 		break;
3533 	case MSR_IA32_P5_MC_ADDR:
3534 	case MSR_IA32_P5_MC_TYPE:
3535 	case MSR_IA32_MCG_CAP:
3536 	case MSR_IA32_MCG_CTL:
3537 	case MSR_IA32_MCG_STATUS:
3538 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3539 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3540 				   msr_info->host_initiated);
3541 	case MSR_IA32_XSS:
3542 		if (!msr_info->host_initiated &&
3543 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3544 			return 1;
3545 		msr_info->data = vcpu->arch.ia32_xss;
3546 		break;
3547 	case MSR_K7_CLK_CTL:
3548 		/*
3549 		 * Provide expected ramp-up count for K7. All other
3550 		 * are set to zero, indicating minimum divisors for
3551 		 * every field.
3552 		 *
3553 		 * This prevents guest kernels on AMD host with CPU
3554 		 * type 6, model 8 and higher from exploding due to
3555 		 * the rdmsr failing.
3556 		 */
3557 		msr_info->data = 0x20000000;
3558 		break;
3559 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3560 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3561 	case HV_X64_MSR_SYNDBG_OPTIONS:
3562 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3563 	case HV_X64_MSR_CRASH_CTL:
3564 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3565 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3566 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3567 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3568 		return kvm_hv_get_msr_common(vcpu,
3569 					     msr_info->index, &msr_info->data,
3570 					     msr_info->host_initiated);
3571 	case MSR_IA32_BBL_CR_CTL3:
3572 		/* This legacy MSR exists but isn't fully documented in current
3573 		 * silicon.  It is however accessed by winxp in very narrow
3574 		 * scenarios where it sets bit #19, itself documented as
3575 		 * a "reserved" bit.  Best effort attempt to source coherent
3576 		 * read data here should the balance of the register be
3577 		 * interpreted by the guest:
3578 		 *
3579 		 * L2 cache control register 3: 64GB range, 256KB size,
3580 		 * enabled, latency 0x1, configured
3581 		 */
3582 		msr_info->data = 0xbe702111;
3583 		break;
3584 	case MSR_AMD64_OSVW_ID_LENGTH:
3585 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3586 			return 1;
3587 		msr_info->data = vcpu->arch.osvw.length;
3588 		break;
3589 	case MSR_AMD64_OSVW_STATUS:
3590 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3591 			return 1;
3592 		msr_info->data = vcpu->arch.osvw.status;
3593 		break;
3594 	case MSR_PLATFORM_INFO:
3595 		if (!msr_info->host_initiated &&
3596 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3597 			return 1;
3598 		msr_info->data = vcpu->arch.msr_platform_info;
3599 		break;
3600 	case MSR_MISC_FEATURES_ENABLES:
3601 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3602 		break;
3603 	case MSR_K7_HWCR:
3604 		msr_info->data = vcpu->arch.msr_hwcr;
3605 		break;
3606 	default:
3607 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3608 			return kvm_pmu_get_msr(vcpu, msr_info);
3609 		return KVM_MSR_RET_INVALID;
3610 	}
3611 	return 0;
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3614 
3615 /*
3616  * Read or write a bunch of msrs. All parameters are kernel addresses.
3617  *
3618  * @return number of msrs set successfully.
3619  */
3620 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3621 		    struct kvm_msr_entry *entries,
3622 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3623 				  unsigned index, u64 *data))
3624 {
3625 	int i;
3626 
3627 	for (i = 0; i < msrs->nmsrs; ++i)
3628 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3629 			break;
3630 
3631 	return i;
3632 }
3633 
3634 /*
3635  * Read or write a bunch of msrs. Parameters are user addresses.
3636  *
3637  * @return number of msrs set successfully.
3638  */
3639 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3640 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3641 				unsigned index, u64 *data),
3642 		  int writeback)
3643 {
3644 	struct kvm_msrs msrs;
3645 	struct kvm_msr_entry *entries;
3646 	int r, n;
3647 	unsigned size;
3648 
3649 	r = -EFAULT;
3650 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3651 		goto out;
3652 
3653 	r = -E2BIG;
3654 	if (msrs.nmsrs >= MAX_IO_MSRS)
3655 		goto out;
3656 
3657 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3658 	entries = memdup_user(user_msrs->entries, size);
3659 	if (IS_ERR(entries)) {
3660 		r = PTR_ERR(entries);
3661 		goto out;
3662 	}
3663 
3664 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3665 	if (r < 0)
3666 		goto out_free;
3667 
3668 	r = -EFAULT;
3669 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3670 		goto out_free;
3671 
3672 	r = n;
3673 
3674 out_free:
3675 	kfree(entries);
3676 out:
3677 	return r;
3678 }
3679 
3680 static inline bool kvm_can_mwait_in_guest(void)
3681 {
3682 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3683 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3684 		boot_cpu_has(X86_FEATURE_ARAT);
3685 }
3686 
3687 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3688 					    struct kvm_cpuid2 __user *cpuid_arg)
3689 {
3690 	struct kvm_cpuid2 cpuid;
3691 	int r;
3692 
3693 	r = -EFAULT;
3694 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3695 		return r;
3696 
3697 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3698 	if (r)
3699 		return r;
3700 
3701 	r = -EFAULT;
3702 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3703 		return r;
3704 
3705 	return 0;
3706 }
3707 
3708 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3709 {
3710 	int r = 0;
3711 
3712 	switch (ext) {
3713 	case KVM_CAP_IRQCHIP:
3714 	case KVM_CAP_HLT:
3715 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3716 	case KVM_CAP_SET_TSS_ADDR:
3717 	case KVM_CAP_EXT_CPUID:
3718 	case KVM_CAP_EXT_EMUL_CPUID:
3719 	case KVM_CAP_CLOCKSOURCE:
3720 	case KVM_CAP_PIT:
3721 	case KVM_CAP_NOP_IO_DELAY:
3722 	case KVM_CAP_MP_STATE:
3723 	case KVM_CAP_SYNC_MMU:
3724 	case KVM_CAP_USER_NMI:
3725 	case KVM_CAP_REINJECT_CONTROL:
3726 	case KVM_CAP_IRQ_INJECT_STATUS:
3727 	case KVM_CAP_IOEVENTFD:
3728 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3729 	case KVM_CAP_PIT2:
3730 	case KVM_CAP_PIT_STATE2:
3731 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3732 	case KVM_CAP_XEN_HVM:
3733 	case KVM_CAP_VCPU_EVENTS:
3734 	case KVM_CAP_HYPERV:
3735 	case KVM_CAP_HYPERV_VAPIC:
3736 	case KVM_CAP_HYPERV_SPIN:
3737 	case KVM_CAP_HYPERV_SYNIC:
3738 	case KVM_CAP_HYPERV_SYNIC2:
3739 	case KVM_CAP_HYPERV_VP_INDEX:
3740 	case KVM_CAP_HYPERV_EVENTFD:
3741 	case KVM_CAP_HYPERV_TLBFLUSH:
3742 	case KVM_CAP_HYPERV_SEND_IPI:
3743 	case KVM_CAP_HYPERV_CPUID:
3744 	case KVM_CAP_SYS_HYPERV_CPUID:
3745 	case KVM_CAP_PCI_SEGMENT:
3746 	case KVM_CAP_DEBUGREGS:
3747 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3748 	case KVM_CAP_XSAVE:
3749 	case KVM_CAP_ASYNC_PF:
3750 	case KVM_CAP_ASYNC_PF_INT:
3751 	case KVM_CAP_GET_TSC_KHZ:
3752 	case KVM_CAP_KVMCLOCK_CTRL:
3753 	case KVM_CAP_READONLY_MEM:
3754 	case KVM_CAP_HYPERV_TIME:
3755 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3756 	case KVM_CAP_TSC_DEADLINE_TIMER:
3757 	case KVM_CAP_DISABLE_QUIRKS:
3758 	case KVM_CAP_SET_BOOT_CPU_ID:
3759  	case KVM_CAP_SPLIT_IRQCHIP:
3760 	case KVM_CAP_IMMEDIATE_EXIT:
3761 	case KVM_CAP_PMU_EVENT_FILTER:
3762 	case KVM_CAP_GET_MSR_FEATURES:
3763 	case KVM_CAP_MSR_PLATFORM_INFO:
3764 	case KVM_CAP_EXCEPTION_PAYLOAD:
3765 	case KVM_CAP_SET_GUEST_DEBUG:
3766 	case KVM_CAP_LAST_CPU:
3767 	case KVM_CAP_X86_USER_SPACE_MSR:
3768 	case KVM_CAP_X86_MSR_FILTER:
3769 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3770 		r = 1;
3771 		break;
3772 	case KVM_CAP_SYNC_REGS:
3773 		r = KVM_SYNC_X86_VALID_FIELDS;
3774 		break;
3775 	case KVM_CAP_ADJUST_CLOCK:
3776 		r = KVM_CLOCK_TSC_STABLE;
3777 		break;
3778 	case KVM_CAP_X86_DISABLE_EXITS:
3779 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3780 		      KVM_X86_DISABLE_EXITS_CSTATE;
3781 		if(kvm_can_mwait_in_guest())
3782 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3783 		break;
3784 	case KVM_CAP_X86_SMM:
3785 		/* SMBASE is usually relocated above 1M on modern chipsets,
3786 		 * and SMM handlers might indeed rely on 4G segment limits,
3787 		 * so do not report SMM to be available if real mode is
3788 		 * emulated via vm86 mode.  Still, do not go to great lengths
3789 		 * to avoid userspace's usage of the feature, because it is a
3790 		 * fringe case that is not enabled except via specific settings
3791 		 * of the module parameters.
3792 		 */
3793 		r = kvm_x86_ops.has_emulated_msr(kvm, MSR_IA32_SMBASE);
3794 		break;
3795 	case KVM_CAP_VAPIC:
3796 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3797 		break;
3798 	case KVM_CAP_NR_VCPUS:
3799 		r = KVM_SOFT_MAX_VCPUS;
3800 		break;
3801 	case KVM_CAP_MAX_VCPUS:
3802 		r = KVM_MAX_VCPUS;
3803 		break;
3804 	case KVM_CAP_MAX_VCPU_ID:
3805 		r = KVM_MAX_VCPU_ID;
3806 		break;
3807 	case KVM_CAP_PV_MMU:	/* obsolete */
3808 		r = 0;
3809 		break;
3810 	case KVM_CAP_MCE:
3811 		r = KVM_MAX_MCE_BANKS;
3812 		break;
3813 	case KVM_CAP_XCRS:
3814 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3815 		break;
3816 	case KVM_CAP_TSC_CONTROL:
3817 		r = kvm_has_tsc_control;
3818 		break;
3819 	case KVM_CAP_X2APIC_API:
3820 		r = KVM_X2APIC_API_VALID_FLAGS;
3821 		break;
3822 	case KVM_CAP_NESTED_STATE:
3823 		r = kvm_x86_ops.nested_ops->get_state ?
3824 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3825 		break;
3826 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3827 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3828 		break;
3829 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3830 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3831 		break;
3832 	case KVM_CAP_SMALLER_MAXPHYADDR:
3833 		r = (int) allow_smaller_maxphyaddr;
3834 		break;
3835 	case KVM_CAP_STEAL_TIME:
3836 		r = sched_info_on();
3837 		break;
3838 	default:
3839 		break;
3840 	}
3841 	return r;
3842 
3843 }
3844 
3845 long kvm_arch_dev_ioctl(struct file *filp,
3846 			unsigned int ioctl, unsigned long arg)
3847 {
3848 	void __user *argp = (void __user *)arg;
3849 	long r;
3850 
3851 	switch (ioctl) {
3852 	case KVM_GET_MSR_INDEX_LIST: {
3853 		struct kvm_msr_list __user *user_msr_list = argp;
3854 		struct kvm_msr_list msr_list;
3855 		unsigned n;
3856 
3857 		r = -EFAULT;
3858 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3859 			goto out;
3860 		n = msr_list.nmsrs;
3861 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3862 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3863 			goto out;
3864 		r = -E2BIG;
3865 		if (n < msr_list.nmsrs)
3866 			goto out;
3867 		r = -EFAULT;
3868 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3869 				 num_msrs_to_save * sizeof(u32)))
3870 			goto out;
3871 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3872 				 &emulated_msrs,
3873 				 num_emulated_msrs * sizeof(u32)))
3874 			goto out;
3875 		r = 0;
3876 		break;
3877 	}
3878 	case KVM_GET_SUPPORTED_CPUID:
3879 	case KVM_GET_EMULATED_CPUID: {
3880 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3881 		struct kvm_cpuid2 cpuid;
3882 
3883 		r = -EFAULT;
3884 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3885 			goto out;
3886 
3887 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3888 					    ioctl);
3889 		if (r)
3890 			goto out;
3891 
3892 		r = -EFAULT;
3893 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3894 			goto out;
3895 		r = 0;
3896 		break;
3897 	}
3898 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3899 		r = -EFAULT;
3900 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3901 				 sizeof(kvm_mce_cap_supported)))
3902 			goto out;
3903 		r = 0;
3904 		break;
3905 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3906 		struct kvm_msr_list __user *user_msr_list = argp;
3907 		struct kvm_msr_list msr_list;
3908 		unsigned int n;
3909 
3910 		r = -EFAULT;
3911 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3912 			goto out;
3913 		n = msr_list.nmsrs;
3914 		msr_list.nmsrs = num_msr_based_features;
3915 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3916 			goto out;
3917 		r = -E2BIG;
3918 		if (n < msr_list.nmsrs)
3919 			goto out;
3920 		r = -EFAULT;
3921 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3922 				 num_msr_based_features * sizeof(u32)))
3923 			goto out;
3924 		r = 0;
3925 		break;
3926 	}
3927 	case KVM_GET_MSRS:
3928 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3929 		break;
3930 	case KVM_GET_SUPPORTED_HV_CPUID:
3931 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3932 		break;
3933 	default:
3934 		r = -EINVAL;
3935 		break;
3936 	}
3937 out:
3938 	return r;
3939 }
3940 
3941 static void wbinvd_ipi(void *garbage)
3942 {
3943 	wbinvd();
3944 }
3945 
3946 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3947 {
3948 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3949 }
3950 
3951 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3952 {
3953 	/* Address WBINVD may be executed by guest */
3954 	if (need_emulate_wbinvd(vcpu)) {
3955 		if (kvm_x86_ops.has_wbinvd_exit())
3956 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3957 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3958 			smp_call_function_single(vcpu->cpu,
3959 					wbinvd_ipi, NULL, 1);
3960 	}
3961 
3962 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3963 
3964 	/* Save host pkru register if supported */
3965 	vcpu->arch.host_pkru = read_pkru();
3966 
3967 	/* Apply any externally detected TSC adjustments (due to suspend) */
3968 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3969 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3970 		vcpu->arch.tsc_offset_adjustment = 0;
3971 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3972 	}
3973 
3974 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3975 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3976 				rdtsc() - vcpu->arch.last_host_tsc;
3977 		if (tsc_delta < 0)
3978 			mark_tsc_unstable("KVM discovered backwards TSC");
3979 
3980 		if (kvm_check_tsc_unstable()) {
3981 			u64 offset = kvm_compute_tsc_offset(vcpu,
3982 						vcpu->arch.last_guest_tsc);
3983 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3984 			vcpu->arch.tsc_catchup = 1;
3985 		}
3986 
3987 		if (kvm_lapic_hv_timer_in_use(vcpu))
3988 			kvm_lapic_restart_hv_timer(vcpu);
3989 
3990 		/*
3991 		 * On a host with synchronized TSC, there is no need to update
3992 		 * kvmclock on vcpu->cpu migration
3993 		 */
3994 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3995 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3996 		if (vcpu->cpu != cpu)
3997 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3998 		vcpu->cpu = cpu;
3999 	}
4000 
4001 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4002 }
4003 
4004 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4005 {
4006 	struct kvm_host_map map;
4007 	struct kvm_steal_time *st;
4008 
4009 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4010 		return;
4011 
4012 	if (vcpu->arch.st.preempted)
4013 		return;
4014 
4015 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4016 			&vcpu->arch.st.cache, true))
4017 		return;
4018 
4019 	st = map.hva +
4020 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4021 
4022 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4023 
4024 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4025 }
4026 
4027 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4028 {
4029 	int idx;
4030 
4031 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4032 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4033 
4034 	/*
4035 	 * Disable page faults because we're in atomic context here.
4036 	 * kvm_write_guest_offset_cached() would call might_fault()
4037 	 * that relies on pagefault_disable() to tell if there's a
4038 	 * bug. NOTE: the write to guest memory may not go through if
4039 	 * during postcopy live migration or if there's heavy guest
4040 	 * paging.
4041 	 */
4042 	pagefault_disable();
4043 	/*
4044 	 * kvm_memslots() will be called by
4045 	 * kvm_write_guest_offset_cached() so take the srcu lock.
4046 	 */
4047 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4048 	kvm_steal_time_set_preempted(vcpu);
4049 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4050 	pagefault_enable();
4051 	kvm_x86_ops.vcpu_put(vcpu);
4052 	vcpu->arch.last_host_tsc = rdtsc();
4053 	/*
4054 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4055 	 * on every vmexit, but if not, we might have a stale dr6 from the
4056 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4057 	 */
4058 	set_debugreg(0, 6);
4059 }
4060 
4061 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4062 				    struct kvm_lapic_state *s)
4063 {
4064 	if (vcpu->arch.apicv_active)
4065 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4066 
4067 	return kvm_apic_get_state(vcpu, s);
4068 }
4069 
4070 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4071 				    struct kvm_lapic_state *s)
4072 {
4073 	int r;
4074 
4075 	r = kvm_apic_set_state(vcpu, s);
4076 	if (r)
4077 		return r;
4078 	update_cr8_intercept(vcpu);
4079 
4080 	return 0;
4081 }
4082 
4083 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4084 {
4085 	/*
4086 	 * We can accept userspace's request for interrupt injection
4087 	 * as long as we have a place to store the interrupt number.
4088 	 * The actual injection will happen when the CPU is able to
4089 	 * deliver the interrupt.
4090 	 */
4091 	if (kvm_cpu_has_extint(vcpu))
4092 		return false;
4093 
4094 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4095 	return (!lapic_in_kernel(vcpu) ||
4096 		kvm_apic_accept_pic_intr(vcpu));
4097 }
4098 
4099 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4100 {
4101 	return kvm_arch_interrupt_allowed(vcpu) &&
4102 		kvm_cpu_accept_dm_intr(vcpu);
4103 }
4104 
4105 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4106 				    struct kvm_interrupt *irq)
4107 {
4108 	if (irq->irq >= KVM_NR_INTERRUPTS)
4109 		return -EINVAL;
4110 
4111 	if (!irqchip_in_kernel(vcpu->kvm)) {
4112 		kvm_queue_interrupt(vcpu, irq->irq, false);
4113 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4114 		return 0;
4115 	}
4116 
4117 	/*
4118 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4119 	 * fail for in-kernel 8259.
4120 	 */
4121 	if (pic_in_kernel(vcpu->kvm))
4122 		return -ENXIO;
4123 
4124 	if (vcpu->arch.pending_external_vector != -1)
4125 		return -EEXIST;
4126 
4127 	vcpu->arch.pending_external_vector = irq->irq;
4128 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4129 	return 0;
4130 }
4131 
4132 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4133 {
4134 	kvm_inject_nmi(vcpu);
4135 
4136 	return 0;
4137 }
4138 
4139 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4140 {
4141 	kvm_make_request(KVM_REQ_SMI, vcpu);
4142 
4143 	return 0;
4144 }
4145 
4146 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4147 					   struct kvm_tpr_access_ctl *tac)
4148 {
4149 	if (tac->flags)
4150 		return -EINVAL;
4151 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4152 	return 0;
4153 }
4154 
4155 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4156 					u64 mcg_cap)
4157 {
4158 	int r;
4159 	unsigned bank_num = mcg_cap & 0xff, bank;
4160 
4161 	r = -EINVAL;
4162 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4163 		goto out;
4164 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4165 		goto out;
4166 	r = 0;
4167 	vcpu->arch.mcg_cap = mcg_cap;
4168 	/* Init IA32_MCG_CTL to all 1s */
4169 	if (mcg_cap & MCG_CTL_P)
4170 		vcpu->arch.mcg_ctl = ~(u64)0;
4171 	/* Init IA32_MCi_CTL to all 1s */
4172 	for (bank = 0; bank < bank_num; bank++)
4173 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4174 
4175 	kvm_x86_ops.setup_mce(vcpu);
4176 out:
4177 	return r;
4178 }
4179 
4180 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4181 				      struct kvm_x86_mce *mce)
4182 {
4183 	u64 mcg_cap = vcpu->arch.mcg_cap;
4184 	unsigned bank_num = mcg_cap & 0xff;
4185 	u64 *banks = vcpu->arch.mce_banks;
4186 
4187 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4188 		return -EINVAL;
4189 	/*
4190 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4191 	 * reporting is disabled
4192 	 */
4193 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4194 	    vcpu->arch.mcg_ctl != ~(u64)0)
4195 		return 0;
4196 	banks += 4 * mce->bank;
4197 	/*
4198 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4199 	 * reporting is disabled for the bank
4200 	 */
4201 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4202 		return 0;
4203 	if (mce->status & MCI_STATUS_UC) {
4204 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4205 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4206 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4207 			return 0;
4208 		}
4209 		if (banks[1] & MCI_STATUS_VAL)
4210 			mce->status |= MCI_STATUS_OVER;
4211 		banks[2] = mce->addr;
4212 		banks[3] = mce->misc;
4213 		vcpu->arch.mcg_status = mce->mcg_status;
4214 		banks[1] = mce->status;
4215 		kvm_queue_exception(vcpu, MC_VECTOR);
4216 	} else if (!(banks[1] & MCI_STATUS_VAL)
4217 		   || !(banks[1] & MCI_STATUS_UC)) {
4218 		if (banks[1] & MCI_STATUS_VAL)
4219 			mce->status |= MCI_STATUS_OVER;
4220 		banks[2] = mce->addr;
4221 		banks[3] = mce->misc;
4222 		banks[1] = mce->status;
4223 	} else
4224 		banks[1] |= MCI_STATUS_OVER;
4225 	return 0;
4226 }
4227 
4228 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4229 					       struct kvm_vcpu_events *events)
4230 {
4231 	process_nmi(vcpu);
4232 
4233 	/*
4234 	 * In guest mode, payload delivery should be deferred,
4235 	 * so that the L1 hypervisor can intercept #PF before
4236 	 * CR2 is modified (or intercept #DB before DR6 is
4237 	 * modified under nVMX). Unless the per-VM capability,
4238 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4239 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4240 	 * opportunistically defer the exception payload, deliver it if the
4241 	 * capability hasn't been requested before processing a
4242 	 * KVM_GET_VCPU_EVENTS.
4243 	 */
4244 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4245 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4246 		kvm_deliver_exception_payload(vcpu);
4247 
4248 	/*
4249 	 * The API doesn't provide the instruction length for software
4250 	 * exceptions, so don't report them. As long as the guest RIP
4251 	 * isn't advanced, we should expect to encounter the exception
4252 	 * again.
4253 	 */
4254 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4255 		events->exception.injected = 0;
4256 		events->exception.pending = 0;
4257 	} else {
4258 		events->exception.injected = vcpu->arch.exception.injected;
4259 		events->exception.pending = vcpu->arch.exception.pending;
4260 		/*
4261 		 * For ABI compatibility, deliberately conflate
4262 		 * pending and injected exceptions when
4263 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4264 		 */
4265 		if (!vcpu->kvm->arch.exception_payload_enabled)
4266 			events->exception.injected |=
4267 				vcpu->arch.exception.pending;
4268 	}
4269 	events->exception.nr = vcpu->arch.exception.nr;
4270 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4271 	events->exception.error_code = vcpu->arch.exception.error_code;
4272 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4273 	events->exception_payload = vcpu->arch.exception.payload;
4274 
4275 	events->interrupt.injected =
4276 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4277 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4278 	events->interrupt.soft = 0;
4279 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4280 
4281 	events->nmi.injected = vcpu->arch.nmi_injected;
4282 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4283 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4284 	events->nmi.pad = 0;
4285 
4286 	events->sipi_vector = 0; /* never valid when reporting to user space */
4287 
4288 	events->smi.smm = is_smm(vcpu);
4289 	events->smi.pending = vcpu->arch.smi_pending;
4290 	events->smi.smm_inside_nmi =
4291 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4292 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4293 
4294 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4295 			 | KVM_VCPUEVENT_VALID_SHADOW
4296 			 | KVM_VCPUEVENT_VALID_SMM);
4297 	if (vcpu->kvm->arch.exception_payload_enabled)
4298 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4299 
4300 	memset(&events->reserved, 0, sizeof(events->reserved));
4301 }
4302 
4303 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4304 
4305 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4306 					      struct kvm_vcpu_events *events)
4307 {
4308 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4309 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4310 			      | KVM_VCPUEVENT_VALID_SHADOW
4311 			      | KVM_VCPUEVENT_VALID_SMM
4312 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4313 		return -EINVAL;
4314 
4315 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4316 		if (!vcpu->kvm->arch.exception_payload_enabled)
4317 			return -EINVAL;
4318 		if (events->exception.pending)
4319 			events->exception.injected = 0;
4320 		else
4321 			events->exception_has_payload = 0;
4322 	} else {
4323 		events->exception.pending = 0;
4324 		events->exception_has_payload = 0;
4325 	}
4326 
4327 	if ((events->exception.injected || events->exception.pending) &&
4328 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4329 		return -EINVAL;
4330 
4331 	/* INITs are latched while in SMM */
4332 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4333 	    (events->smi.smm || events->smi.pending) &&
4334 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4335 		return -EINVAL;
4336 
4337 	process_nmi(vcpu);
4338 	vcpu->arch.exception.injected = events->exception.injected;
4339 	vcpu->arch.exception.pending = events->exception.pending;
4340 	vcpu->arch.exception.nr = events->exception.nr;
4341 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4342 	vcpu->arch.exception.error_code = events->exception.error_code;
4343 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4344 	vcpu->arch.exception.payload = events->exception_payload;
4345 
4346 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4347 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4348 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4349 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4350 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4351 						  events->interrupt.shadow);
4352 
4353 	vcpu->arch.nmi_injected = events->nmi.injected;
4354 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4355 		vcpu->arch.nmi_pending = events->nmi.pending;
4356 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4357 
4358 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4359 	    lapic_in_kernel(vcpu))
4360 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4361 
4362 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4363 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4364 			if (events->smi.smm)
4365 				vcpu->arch.hflags |= HF_SMM_MASK;
4366 			else
4367 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4368 			kvm_smm_changed(vcpu);
4369 		}
4370 
4371 		vcpu->arch.smi_pending = events->smi.pending;
4372 
4373 		if (events->smi.smm) {
4374 			if (events->smi.smm_inside_nmi)
4375 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4376 			else
4377 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4378 		}
4379 
4380 		if (lapic_in_kernel(vcpu)) {
4381 			if (events->smi.latched_init)
4382 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4383 			else
4384 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4385 		}
4386 	}
4387 
4388 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4389 
4390 	return 0;
4391 }
4392 
4393 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4394 					     struct kvm_debugregs *dbgregs)
4395 {
4396 	unsigned long val;
4397 
4398 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4399 	kvm_get_dr(vcpu, 6, &val);
4400 	dbgregs->dr6 = val;
4401 	dbgregs->dr7 = vcpu->arch.dr7;
4402 	dbgregs->flags = 0;
4403 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4404 }
4405 
4406 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4407 					    struct kvm_debugregs *dbgregs)
4408 {
4409 	if (dbgregs->flags)
4410 		return -EINVAL;
4411 
4412 	if (dbgregs->dr6 & ~0xffffffffull)
4413 		return -EINVAL;
4414 	if (dbgregs->dr7 & ~0xffffffffull)
4415 		return -EINVAL;
4416 
4417 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4418 	kvm_update_dr0123(vcpu);
4419 	vcpu->arch.dr6 = dbgregs->dr6;
4420 	vcpu->arch.dr7 = dbgregs->dr7;
4421 	kvm_update_dr7(vcpu);
4422 
4423 	return 0;
4424 }
4425 
4426 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4427 
4428 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4429 {
4430 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4431 	u64 xstate_bv = xsave->header.xfeatures;
4432 	u64 valid;
4433 
4434 	/*
4435 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4436 	 * leaves 0 and 1 in the loop below.
4437 	 */
4438 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4439 
4440 	/* Set XSTATE_BV */
4441 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4442 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4443 
4444 	/*
4445 	 * Copy each region from the possibly compacted offset to the
4446 	 * non-compacted offset.
4447 	 */
4448 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4449 	while (valid) {
4450 		u64 xfeature_mask = valid & -valid;
4451 		int xfeature_nr = fls64(xfeature_mask) - 1;
4452 		void *src = get_xsave_addr(xsave, xfeature_nr);
4453 
4454 		if (src) {
4455 			u32 size, offset, ecx, edx;
4456 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4457 				    &size, &offset, &ecx, &edx);
4458 			if (xfeature_nr == XFEATURE_PKRU)
4459 				memcpy(dest + offset, &vcpu->arch.pkru,
4460 				       sizeof(vcpu->arch.pkru));
4461 			else
4462 				memcpy(dest + offset, src, size);
4463 
4464 		}
4465 
4466 		valid -= xfeature_mask;
4467 	}
4468 }
4469 
4470 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4471 {
4472 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4473 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4474 	u64 valid;
4475 
4476 	/*
4477 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4478 	 * leaves 0 and 1 in the loop below.
4479 	 */
4480 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4481 
4482 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4483 	xsave->header.xfeatures = xstate_bv;
4484 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4485 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4486 
4487 	/*
4488 	 * Copy each region from the non-compacted offset to the
4489 	 * possibly compacted offset.
4490 	 */
4491 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4492 	while (valid) {
4493 		u64 xfeature_mask = valid & -valid;
4494 		int xfeature_nr = fls64(xfeature_mask) - 1;
4495 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4496 
4497 		if (dest) {
4498 			u32 size, offset, ecx, edx;
4499 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4500 				    &size, &offset, &ecx, &edx);
4501 			if (xfeature_nr == XFEATURE_PKRU)
4502 				memcpy(&vcpu->arch.pkru, src + offset,
4503 				       sizeof(vcpu->arch.pkru));
4504 			else
4505 				memcpy(dest, src + offset, size);
4506 		}
4507 
4508 		valid -= xfeature_mask;
4509 	}
4510 }
4511 
4512 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4513 					 struct kvm_xsave *guest_xsave)
4514 {
4515 	if (!vcpu->arch.guest_fpu)
4516 		return;
4517 
4518 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4519 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4520 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4521 	} else {
4522 		memcpy(guest_xsave->region,
4523 			&vcpu->arch.guest_fpu->state.fxsave,
4524 			sizeof(struct fxregs_state));
4525 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4526 			XFEATURE_MASK_FPSSE;
4527 	}
4528 }
4529 
4530 #define XSAVE_MXCSR_OFFSET 24
4531 
4532 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4533 					struct kvm_xsave *guest_xsave)
4534 {
4535 	u64 xstate_bv;
4536 	u32 mxcsr;
4537 
4538 	if (!vcpu->arch.guest_fpu)
4539 		return 0;
4540 
4541 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4542 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4543 
4544 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4545 		/*
4546 		 * Here we allow setting states that are not present in
4547 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4548 		 * with old userspace.
4549 		 */
4550 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4551 			return -EINVAL;
4552 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4553 	} else {
4554 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4555 			mxcsr & ~mxcsr_feature_mask)
4556 			return -EINVAL;
4557 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4558 			guest_xsave->region, sizeof(struct fxregs_state));
4559 	}
4560 	return 0;
4561 }
4562 
4563 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4564 					struct kvm_xcrs *guest_xcrs)
4565 {
4566 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4567 		guest_xcrs->nr_xcrs = 0;
4568 		return;
4569 	}
4570 
4571 	guest_xcrs->nr_xcrs = 1;
4572 	guest_xcrs->flags = 0;
4573 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4574 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4575 }
4576 
4577 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4578 				       struct kvm_xcrs *guest_xcrs)
4579 {
4580 	int i, r = 0;
4581 
4582 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4583 		return -EINVAL;
4584 
4585 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4586 		return -EINVAL;
4587 
4588 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4589 		/* Only support XCR0 currently */
4590 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4591 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4592 				guest_xcrs->xcrs[i].value);
4593 			break;
4594 		}
4595 	if (r)
4596 		r = -EINVAL;
4597 	return r;
4598 }
4599 
4600 /*
4601  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4602  * stopped by the hypervisor.  This function will be called from the host only.
4603  * EINVAL is returned when the host attempts to set the flag for a guest that
4604  * does not support pv clocks.
4605  */
4606 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4607 {
4608 	if (!vcpu->arch.pv_time_enabled)
4609 		return -EINVAL;
4610 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4611 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4612 	return 0;
4613 }
4614 
4615 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4616 				     struct kvm_enable_cap *cap)
4617 {
4618 	int r;
4619 	uint16_t vmcs_version;
4620 	void __user *user_ptr;
4621 
4622 	if (cap->flags)
4623 		return -EINVAL;
4624 
4625 	switch (cap->cap) {
4626 	case KVM_CAP_HYPERV_SYNIC2:
4627 		if (cap->args[0])
4628 			return -EINVAL;
4629 		fallthrough;
4630 
4631 	case KVM_CAP_HYPERV_SYNIC:
4632 		if (!irqchip_in_kernel(vcpu->kvm))
4633 			return -EINVAL;
4634 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4635 					     KVM_CAP_HYPERV_SYNIC2);
4636 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4637 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4638 			return -ENOTTY;
4639 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4640 		if (!r) {
4641 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4642 			if (copy_to_user(user_ptr, &vmcs_version,
4643 					 sizeof(vmcs_version)))
4644 				r = -EFAULT;
4645 		}
4646 		return r;
4647 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4648 		if (!kvm_x86_ops.enable_direct_tlbflush)
4649 			return -ENOTTY;
4650 
4651 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4652 
4653 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4654 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4655 		if (vcpu->arch.pv_cpuid.enforce)
4656 			kvm_update_pv_runtime(vcpu);
4657 
4658 		return 0;
4659 
4660 	default:
4661 		return -EINVAL;
4662 	}
4663 }
4664 
4665 long kvm_arch_vcpu_ioctl(struct file *filp,
4666 			 unsigned int ioctl, unsigned long arg)
4667 {
4668 	struct kvm_vcpu *vcpu = filp->private_data;
4669 	void __user *argp = (void __user *)arg;
4670 	int r;
4671 	union {
4672 		struct kvm_lapic_state *lapic;
4673 		struct kvm_xsave *xsave;
4674 		struct kvm_xcrs *xcrs;
4675 		void *buffer;
4676 	} u;
4677 
4678 	vcpu_load(vcpu);
4679 
4680 	u.buffer = NULL;
4681 	switch (ioctl) {
4682 	case KVM_GET_LAPIC: {
4683 		r = -EINVAL;
4684 		if (!lapic_in_kernel(vcpu))
4685 			goto out;
4686 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4687 				GFP_KERNEL_ACCOUNT);
4688 
4689 		r = -ENOMEM;
4690 		if (!u.lapic)
4691 			goto out;
4692 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4693 		if (r)
4694 			goto out;
4695 		r = -EFAULT;
4696 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4697 			goto out;
4698 		r = 0;
4699 		break;
4700 	}
4701 	case KVM_SET_LAPIC: {
4702 		r = -EINVAL;
4703 		if (!lapic_in_kernel(vcpu))
4704 			goto out;
4705 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4706 		if (IS_ERR(u.lapic)) {
4707 			r = PTR_ERR(u.lapic);
4708 			goto out_nofree;
4709 		}
4710 
4711 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4712 		break;
4713 	}
4714 	case KVM_INTERRUPT: {
4715 		struct kvm_interrupt irq;
4716 
4717 		r = -EFAULT;
4718 		if (copy_from_user(&irq, argp, sizeof(irq)))
4719 			goto out;
4720 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4721 		break;
4722 	}
4723 	case KVM_NMI: {
4724 		r = kvm_vcpu_ioctl_nmi(vcpu);
4725 		break;
4726 	}
4727 	case KVM_SMI: {
4728 		r = kvm_vcpu_ioctl_smi(vcpu);
4729 		break;
4730 	}
4731 	case KVM_SET_CPUID: {
4732 		struct kvm_cpuid __user *cpuid_arg = argp;
4733 		struct kvm_cpuid cpuid;
4734 
4735 		r = -EFAULT;
4736 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4737 			goto out;
4738 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4739 		break;
4740 	}
4741 	case KVM_SET_CPUID2: {
4742 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4743 		struct kvm_cpuid2 cpuid;
4744 
4745 		r = -EFAULT;
4746 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4747 			goto out;
4748 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4749 					      cpuid_arg->entries);
4750 		break;
4751 	}
4752 	case KVM_GET_CPUID2: {
4753 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4754 		struct kvm_cpuid2 cpuid;
4755 
4756 		r = -EFAULT;
4757 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4758 			goto out;
4759 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4760 					      cpuid_arg->entries);
4761 		if (r)
4762 			goto out;
4763 		r = -EFAULT;
4764 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4765 			goto out;
4766 		r = 0;
4767 		break;
4768 	}
4769 	case KVM_GET_MSRS: {
4770 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4771 		r = msr_io(vcpu, argp, do_get_msr, 1);
4772 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4773 		break;
4774 	}
4775 	case KVM_SET_MSRS: {
4776 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4777 		r = msr_io(vcpu, argp, do_set_msr, 0);
4778 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4779 		break;
4780 	}
4781 	case KVM_TPR_ACCESS_REPORTING: {
4782 		struct kvm_tpr_access_ctl tac;
4783 
4784 		r = -EFAULT;
4785 		if (copy_from_user(&tac, argp, sizeof(tac)))
4786 			goto out;
4787 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4788 		if (r)
4789 			goto out;
4790 		r = -EFAULT;
4791 		if (copy_to_user(argp, &tac, sizeof(tac)))
4792 			goto out;
4793 		r = 0;
4794 		break;
4795 	};
4796 	case KVM_SET_VAPIC_ADDR: {
4797 		struct kvm_vapic_addr va;
4798 		int idx;
4799 
4800 		r = -EINVAL;
4801 		if (!lapic_in_kernel(vcpu))
4802 			goto out;
4803 		r = -EFAULT;
4804 		if (copy_from_user(&va, argp, sizeof(va)))
4805 			goto out;
4806 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4807 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4808 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4809 		break;
4810 	}
4811 	case KVM_X86_SETUP_MCE: {
4812 		u64 mcg_cap;
4813 
4814 		r = -EFAULT;
4815 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4816 			goto out;
4817 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4818 		break;
4819 	}
4820 	case KVM_X86_SET_MCE: {
4821 		struct kvm_x86_mce mce;
4822 
4823 		r = -EFAULT;
4824 		if (copy_from_user(&mce, argp, sizeof(mce)))
4825 			goto out;
4826 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4827 		break;
4828 	}
4829 	case KVM_GET_VCPU_EVENTS: {
4830 		struct kvm_vcpu_events events;
4831 
4832 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4833 
4834 		r = -EFAULT;
4835 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4836 			break;
4837 		r = 0;
4838 		break;
4839 	}
4840 	case KVM_SET_VCPU_EVENTS: {
4841 		struct kvm_vcpu_events events;
4842 
4843 		r = -EFAULT;
4844 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4845 			break;
4846 
4847 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4848 		break;
4849 	}
4850 	case KVM_GET_DEBUGREGS: {
4851 		struct kvm_debugregs dbgregs;
4852 
4853 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4854 
4855 		r = -EFAULT;
4856 		if (copy_to_user(argp, &dbgregs,
4857 				 sizeof(struct kvm_debugregs)))
4858 			break;
4859 		r = 0;
4860 		break;
4861 	}
4862 	case KVM_SET_DEBUGREGS: {
4863 		struct kvm_debugregs dbgregs;
4864 
4865 		r = -EFAULT;
4866 		if (copy_from_user(&dbgregs, argp,
4867 				   sizeof(struct kvm_debugregs)))
4868 			break;
4869 
4870 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4871 		break;
4872 	}
4873 	case KVM_GET_XSAVE: {
4874 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4875 		r = -ENOMEM;
4876 		if (!u.xsave)
4877 			break;
4878 
4879 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4880 
4881 		r = -EFAULT;
4882 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4883 			break;
4884 		r = 0;
4885 		break;
4886 	}
4887 	case KVM_SET_XSAVE: {
4888 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4889 		if (IS_ERR(u.xsave)) {
4890 			r = PTR_ERR(u.xsave);
4891 			goto out_nofree;
4892 		}
4893 
4894 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4895 		break;
4896 	}
4897 	case KVM_GET_XCRS: {
4898 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4899 		r = -ENOMEM;
4900 		if (!u.xcrs)
4901 			break;
4902 
4903 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4904 
4905 		r = -EFAULT;
4906 		if (copy_to_user(argp, u.xcrs,
4907 				 sizeof(struct kvm_xcrs)))
4908 			break;
4909 		r = 0;
4910 		break;
4911 	}
4912 	case KVM_SET_XCRS: {
4913 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4914 		if (IS_ERR(u.xcrs)) {
4915 			r = PTR_ERR(u.xcrs);
4916 			goto out_nofree;
4917 		}
4918 
4919 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4920 		break;
4921 	}
4922 	case KVM_SET_TSC_KHZ: {
4923 		u32 user_tsc_khz;
4924 
4925 		r = -EINVAL;
4926 		user_tsc_khz = (u32)arg;
4927 
4928 		if (kvm_has_tsc_control &&
4929 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4930 			goto out;
4931 
4932 		if (user_tsc_khz == 0)
4933 			user_tsc_khz = tsc_khz;
4934 
4935 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4936 			r = 0;
4937 
4938 		goto out;
4939 	}
4940 	case KVM_GET_TSC_KHZ: {
4941 		r = vcpu->arch.virtual_tsc_khz;
4942 		goto out;
4943 	}
4944 	case KVM_KVMCLOCK_CTRL: {
4945 		r = kvm_set_guest_paused(vcpu);
4946 		goto out;
4947 	}
4948 	case KVM_ENABLE_CAP: {
4949 		struct kvm_enable_cap cap;
4950 
4951 		r = -EFAULT;
4952 		if (copy_from_user(&cap, argp, sizeof(cap)))
4953 			goto out;
4954 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4955 		break;
4956 	}
4957 	case KVM_GET_NESTED_STATE: {
4958 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4959 		u32 user_data_size;
4960 
4961 		r = -EINVAL;
4962 		if (!kvm_x86_ops.nested_ops->get_state)
4963 			break;
4964 
4965 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4966 		r = -EFAULT;
4967 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4968 			break;
4969 
4970 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4971 						     user_data_size);
4972 		if (r < 0)
4973 			break;
4974 
4975 		if (r > user_data_size) {
4976 			if (put_user(r, &user_kvm_nested_state->size))
4977 				r = -EFAULT;
4978 			else
4979 				r = -E2BIG;
4980 			break;
4981 		}
4982 
4983 		r = 0;
4984 		break;
4985 	}
4986 	case KVM_SET_NESTED_STATE: {
4987 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4988 		struct kvm_nested_state kvm_state;
4989 		int idx;
4990 
4991 		r = -EINVAL;
4992 		if (!kvm_x86_ops.nested_ops->set_state)
4993 			break;
4994 
4995 		r = -EFAULT;
4996 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4997 			break;
4998 
4999 		r = -EINVAL;
5000 		if (kvm_state.size < sizeof(kvm_state))
5001 			break;
5002 
5003 		if (kvm_state.flags &
5004 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5005 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5006 		      | KVM_STATE_NESTED_GIF_SET))
5007 			break;
5008 
5009 		/* nested_run_pending implies guest_mode.  */
5010 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5011 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5012 			break;
5013 
5014 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5015 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5016 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5017 		break;
5018 	}
5019 	case KVM_GET_SUPPORTED_HV_CPUID:
5020 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5021 		break;
5022 	default:
5023 		r = -EINVAL;
5024 	}
5025 out:
5026 	kfree(u.buffer);
5027 out_nofree:
5028 	vcpu_put(vcpu);
5029 	return r;
5030 }
5031 
5032 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5033 {
5034 	return VM_FAULT_SIGBUS;
5035 }
5036 
5037 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5038 {
5039 	int ret;
5040 
5041 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5042 		return -EINVAL;
5043 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5044 	return ret;
5045 }
5046 
5047 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5048 					      u64 ident_addr)
5049 {
5050 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5051 }
5052 
5053 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5054 					 unsigned long kvm_nr_mmu_pages)
5055 {
5056 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5057 		return -EINVAL;
5058 
5059 	mutex_lock(&kvm->slots_lock);
5060 
5061 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5062 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5063 
5064 	mutex_unlock(&kvm->slots_lock);
5065 	return 0;
5066 }
5067 
5068 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5069 {
5070 	return kvm->arch.n_max_mmu_pages;
5071 }
5072 
5073 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5074 {
5075 	struct kvm_pic *pic = kvm->arch.vpic;
5076 	int r;
5077 
5078 	r = 0;
5079 	switch (chip->chip_id) {
5080 	case KVM_IRQCHIP_PIC_MASTER:
5081 		memcpy(&chip->chip.pic, &pic->pics[0],
5082 			sizeof(struct kvm_pic_state));
5083 		break;
5084 	case KVM_IRQCHIP_PIC_SLAVE:
5085 		memcpy(&chip->chip.pic, &pic->pics[1],
5086 			sizeof(struct kvm_pic_state));
5087 		break;
5088 	case KVM_IRQCHIP_IOAPIC:
5089 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5090 		break;
5091 	default:
5092 		r = -EINVAL;
5093 		break;
5094 	}
5095 	return r;
5096 }
5097 
5098 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5099 {
5100 	struct kvm_pic *pic = kvm->arch.vpic;
5101 	int r;
5102 
5103 	r = 0;
5104 	switch (chip->chip_id) {
5105 	case KVM_IRQCHIP_PIC_MASTER:
5106 		spin_lock(&pic->lock);
5107 		memcpy(&pic->pics[0], &chip->chip.pic,
5108 			sizeof(struct kvm_pic_state));
5109 		spin_unlock(&pic->lock);
5110 		break;
5111 	case KVM_IRQCHIP_PIC_SLAVE:
5112 		spin_lock(&pic->lock);
5113 		memcpy(&pic->pics[1], &chip->chip.pic,
5114 			sizeof(struct kvm_pic_state));
5115 		spin_unlock(&pic->lock);
5116 		break;
5117 	case KVM_IRQCHIP_IOAPIC:
5118 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5119 		break;
5120 	default:
5121 		r = -EINVAL;
5122 		break;
5123 	}
5124 	kvm_pic_update_irq(pic);
5125 	return r;
5126 }
5127 
5128 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5129 {
5130 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5131 
5132 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5133 
5134 	mutex_lock(&kps->lock);
5135 	memcpy(ps, &kps->channels, sizeof(*ps));
5136 	mutex_unlock(&kps->lock);
5137 	return 0;
5138 }
5139 
5140 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5141 {
5142 	int i;
5143 	struct kvm_pit *pit = kvm->arch.vpit;
5144 
5145 	mutex_lock(&pit->pit_state.lock);
5146 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5147 	for (i = 0; i < 3; i++)
5148 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5149 	mutex_unlock(&pit->pit_state.lock);
5150 	return 0;
5151 }
5152 
5153 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5154 {
5155 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5156 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5157 		sizeof(ps->channels));
5158 	ps->flags = kvm->arch.vpit->pit_state.flags;
5159 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5160 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5161 	return 0;
5162 }
5163 
5164 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5165 {
5166 	int start = 0;
5167 	int i;
5168 	u32 prev_legacy, cur_legacy;
5169 	struct kvm_pit *pit = kvm->arch.vpit;
5170 
5171 	mutex_lock(&pit->pit_state.lock);
5172 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5173 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5174 	if (!prev_legacy && cur_legacy)
5175 		start = 1;
5176 	memcpy(&pit->pit_state.channels, &ps->channels,
5177 	       sizeof(pit->pit_state.channels));
5178 	pit->pit_state.flags = ps->flags;
5179 	for (i = 0; i < 3; i++)
5180 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5181 				   start && i == 0);
5182 	mutex_unlock(&pit->pit_state.lock);
5183 	return 0;
5184 }
5185 
5186 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5187 				 struct kvm_reinject_control *control)
5188 {
5189 	struct kvm_pit *pit = kvm->arch.vpit;
5190 
5191 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5192 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5193 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5194 	 */
5195 	mutex_lock(&pit->pit_state.lock);
5196 	kvm_pit_set_reinject(pit, control->pit_reinject);
5197 	mutex_unlock(&pit->pit_state.lock);
5198 
5199 	return 0;
5200 }
5201 
5202 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5203 {
5204 	/*
5205 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5206 	 */
5207 	if (kvm_x86_ops.flush_log_dirty)
5208 		kvm_x86_ops.flush_log_dirty(kvm);
5209 }
5210 
5211 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5212 			bool line_status)
5213 {
5214 	if (!irqchip_in_kernel(kvm))
5215 		return -ENXIO;
5216 
5217 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5218 					irq_event->irq, irq_event->level,
5219 					line_status);
5220 	return 0;
5221 }
5222 
5223 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5224 			    struct kvm_enable_cap *cap)
5225 {
5226 	int r;
5227 
5228 	if (cap->flags)
5229 		return -EINVAL;
5230 
5231 	switch (cap->cap) {
5232 	case KVM_CAP_DISABLE_QUIRKS:
5233 		kvm->arch.disabled_quirks = cap->args[0];
5234 		r = 0;
5235 		break;
5236 	case KVM_CAP_SPLIT_IRQCHIP: {
5237 		mutex_lock(&kvm->lock);
5238 		r = -EINVAL;
5239 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5240 			goto split_irqchip_unlock;
5241 		r = -EEXIST;
5242 		if (irqchip_in_kernel(kvm))
5243 			goto split_irqchip_unlock;
5244 		if (kvm->created_vcpus)
5245 			goto split_irqchip_unlock;
5246 		r = kvm_setup_empty_irq_routing(kvm);
5247 		if (r)
5248 			goto split_irqchip_unlock;
5249 		/* Pairs with irqchip_in_kernel. */
5250 		smp_wmb();
5251 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5252 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5253 		r = 0;
5254 split_irqchip_unlock:
5255 		mutex_unlock(&kvm->lock);
5256 		break;
5257 	}
5258 	case KVM_CAP_X2APIC_API:
5259 		r = -EINVAL;
5260 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5261 			break;
5262 
5263 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5264 			kvm->arch.x2apic_format = true;
5265 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5266 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5267 
5268 		r = 0;
5269 		break;
5270 	case KVM_CAP_X86_DISABLE_EXITS:
5271 		r = -EINVAL;
5272 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5273 			break;
5274 
5275 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5276 			kvm_can_mwait_in_guest())
5277 			kvm->arch.mwait_in_guest = true;
5278 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5279 			kvm->arch.hlt_in_guest = true;
5280 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5281 			kvm->arch.pause_in_guest = true;
5282 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5283 			kvm->arch.cstate_in_guest = true;
5284 		r = 0;
5285 		break;
5286 	case KVM_CAP_MSR_PLATFORM_INFO:
5287 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5288 		r = 0;
5289 		break;
5290 	case KVM_CAP_EXCEPTION_PAYLOAD:
5291 		kvm->arch.exception_payload_enabled = cap->args[0];
5292 		r = 0;
5293 		break;
5294 	case KVM_CAP_X86_USER_SPACE_MSR:
5295 		kvm->arch.user_space_msr_mask = cap->args[0];
5296 		r = 0;
5297 		break;
5298 	default:
5299 		r = -EINVAL;
5300 		break;
5301 	}
5302 	return r;
5303 }
5304 
5305 static void kvm_clear_msr_filter(struct kvm *kvm)
5306 {
5307 	u32 i;
5308 	u32 count = kvm->arch.msr_filter.count;
5309 	struct msr_bitmap_range ranges[16];
5310 
5311 	mutex_lock(&kvm->lock);
5312 	kvm->arch.msr_filter.count = 0;
5313 	memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5314 	mutex_unlock(&kvm->lock);
5315 	synchronize_srcu(&kvm->srcu);
5316 
5317 	for (i = 0; i < count; i++)
5318 		kfree(ranges[i].bitmap);
5319 }
5320 
5321 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5322 {
5323 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5324 	struct msr_bitmap_range range;
5325 	unsigned long *bitmap = NULL;
5326 	size_t bitmap_size;
5327 	int r;
5328 
5329 	if (!user_range->nmsrs)
5330 		return 0;
5331 
5332 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5333 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5334 		return -EINVAL;
5335 
5336 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5337 	if (IS_ERR(bitmap))
5338 		return PTR_ERR(bitmap);
5339 
5340 	range = (struct msr_bitmap_range) {
5341 		.flags = user_range->flags,
5342 		.base = user_range->base,
5343 		.nmsrs = user_range->nmsrs,
5344 		.bitmap = bitmap,
5345 	};
5346 
5347 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5348 		r = -EINVAL;
5349 		goto err;
5350 	}
5351 
5352 	if (!range.flags) {
5353 		r = -EINVAL;
5354 		goto err;
5355 	}
5356 
5357 	/* Everything ok, add this range identifier to our global pool */
5358 	ranges[kvm->arch.msr_filter.count] = range;
5359 	/* Make sure we filled the array before we tell anyone to walk it */
5360 	smp_wmb();
5361 	kvm->arch.msr_filter.count++;
5362 
5363 	return 0;
5364 err:
5365 	kfree(bitmap);
5366 	return r;
5367 }
5368 
5369 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5370 {
5371 	struct kvm_msr_filter __user *user_msr_filter = argp;
5372 	struct kvm_msr_filter filter;
5373 	bool default_allow;
5374 	int r = 0;
5375 	bool empty = true;
5376 	u32 i;
5377 
5378 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5379 		return -EFAULT;
5380 
5381 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5382 		empty &= !filter.ranges[i].nmsrs;
5383 
5384 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5385 	if (empty && !default_allow)
5386 		return -EINVAL;
5387 
5388 	kvm_clear_msr_filter(kvm);
5389 
5390 	kvm->arch.msr_filter.default_allow = default_allow;
5391 
5392 	/*
5393 	 * Protect from concurrent calls to this function that could trigger
5394 	 * a TOCTOU violation on kvm->arch.msr_filter.count.
5395 	 */
5396 	mutex_lock(&kvm->lock);
5397 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5398 		r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5399 		if (r)
5400 			break;
5401 	}
5402 
5403 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5404 	mutex_unlock(&kvm->lock);
5405 
5406 	return r;
5407 }
5408 
5409 long kvm_arch_vm_ioctl(struct file *filp,
5410 		       unsigned int ioctl, unsigned long arg)
5411 {
5412 	struct kvm *kvm = filp->private_data;
5413 	void __user *argp = (void __user *)arg;
5414 	int r = -ENOTTY;
5415 	/*
5416 	 * This union makes it completely explicit to gcc-3.x
5417 	 * that these two variables' stack usage should be
5418 	 * combined, not added together.
5419 	 */
5420 	union {
5421 		struct kvm_pit_state ps;
5422 		struct kvm_pit_state2 ps2;
5423 		struct kvm_pit_config pit_config;
5424 	} u;
5425 
5426 	switch (ioctl) {
5427 	case KVM_SET_TSS_ADDR:
5428 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5429 		break;
5430 	case KVM_SET_IDENTITY_MAP_ADDR: {
5431 		u64 ident_addr;
5432 
5433 		mutex_lock(&kvm->lock);
5434 		r = -EINVAL;
5435 		if (kvm->created_vcpus)
5436 			goto set_identity_unlock;
5437 		r = -EFAULT;
5438 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5439 			goto set_identity_unlock;
5440 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5441 set_identity_unlock:
5442 		mutex_unlock(&kvm->lock);
5443 		break;
5444 	}
5445 	case KVM_SET_NR_MMU_PAGES:
5446 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5447 		break;
5448 	case KVM_GET_NR_MMU_PAGES:
5449 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5450 		break;
5451 	case KVM_CREATE_IRQCHIP: {
5452 		mutex_lock(&kvm->lock);
5453 
5454 		r = -EEXIST;
5455 		if (irqchip_in_kernel(kvm))
5456 			goto create_irqchip_unlock;
5457 
5458 		r = -EINVAL;
5459 		if (kvm->created_vcpus)
5460 			goto create_irqchip_unlock;
5461 
5462 		r = kvm_pic_init(kvm);
5463 		if (r)
5464 			goto create_irqchip_unlock;
5465 
5466 		r = kvm_ioapic_init(kvm);
5467 		if (r) {
5468 			kvm_pic_destroy(kvm);
5469 			goto create_irqchip_unlock;
5470 		}
5471 
5472 		r = kvm_setup_default_irq_routing(kvm);
5473 		if (r) {
5474 			kvm_ioapic_destroy(kvm);
5475 			kvm_pic_destroy(kvm);
5476 			goto create_irqchip_unlock;
5477 		}
5478 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5479 		smp_wmb();
5480 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5481 	create_irqchip_unlock:
5482 		mutex_unlock(&kvm->lock);
5483 		break;
5484 	}
5485 	case KVM_CREATE_PIT:
5486 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5487 		goto create_pit;
5488 	case KVM_CREATE_PIT2:
5489 		r = -EFAULT;
5490 		if (copy_from_user(&u.pit_config, argp,
5491 				   sizeof(struct kvm_pit_config)))
5492 			goto out;
5493 	create_pit:
5494 		mutex_lock(&kvm->lock);
5495 		r = -EEXIST;
5496 		if (kvm->arch.vpit)
5497 			goto create_pit_unlock;
5498 		r = -ENOMEM;
5499 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5500 		if (kvm->arch.vpit)
5501 			r = 0;
5502 	create_pit_unlock:
5503 		mutex_unlock(&kvm->lock);
5504 		break;
5505 	case KVM_GET_IRQCHIP: {
5506 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5507 		struct kvm_irqchip *chip;
5508 
5509 		chip = memdup_user(argp, sizeof(*chip));
5510 		if (IS_ERR(chip)) {
5511 			r = PTR_ERR(chip);
5512 			goto out;
5513 		}
5514 
5515 		r = -ENXIO;
5516 		if (!irqchip_kernel(kvm))
5517 			goto get_irqchip_out;
5518 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5519 		if (r)
5520 			goto get_irqchip_out;
5521 		r = -EFAULT;
5522 		if (copy_to_user(argp, chip, sizeof(*chip)))
5523 			goto get_irqchip_out;
5524 		r = 0;
5525 	get_irqchip_out:
5526 		kfree(chip);
5527 		break;
5528 	}
5529 	case KVM_SET_IRQCHIP: {
5530 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5531 		struct kvm_irqchip *chip;
5532 
5533 		chip = memdup_user(argp, sizeof(*chip));
5534 		if (IS_ERR(chip)) {
5535 			r = PTR_ERR(chip);
5536 			goto out;
5537 		}
5538 
5539 		r = -ENXIO;
5540 		if (!irqchip_kernel(kvm))
5541 			goto set_irqchip_out;
5542 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5543 	set_irqchip_out:
5544 		kfree(chip);
5545 		break;
5546 	}
5547 	case KVM_GET_PIT: {
5548 		r = -EFAULT;
5549 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5550 			goto out;
5551 		r = -ENXIO;
5552 		if (!kvm->arch.vpit)
5553 			goto out;
5554 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5555 		if (r)
5556 			goto out;
5557 		r = -EFAULT;
5558 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5559 			goto out;
5560 		r = 0;
5561 		break;
5562 	}
5563 	case KVM_SET_PIT: {
5564 		r = -EFAULT;
5565 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5566 			goto out;
5567 		mutex_lock(&kvm->lock);
5568 		r = -ENXIO;
5569 		if (!kvm->arch.vpit)
5570 			goto set_pit_out;
5571 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5572 set_pit_out:
5573 		mutex_unlock(&kvm->lock);
5574 		break;
5575 	}
5576 	case KVM_GET_PIT2: {
5577 		r = -ENXIO;
5578 		if (!kvm->arch.vpit)
5579 			goto out;
5580 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5581 		if (r)
5582 			goto out;
5583 		r = -EFAULT;
5584 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5585 			goto out;
5586 		r = 0;
5587 		break;
5588 	}
5589 	case KVM_SET_PIT2: {
5590 		r = -EFAULT;
5591 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5592 			goto out;
5593 		mutex_lock(&kvm->lock);
5594 		r = -ENXIO;
5595 		if (!kvm->arch.vpit)
5596 			goto set_pit2_out;
5597 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5598 set_pit2_out:
5599 		mutex_unlock(&kvm->lock);
5600 		break;
5601 	}
5602 	case KVM_REINJECT_CONTROL: {
5603 		struct kvm_reinject_control control;
5604 		r =  -EFAULT;
5605 		if (copy_from_user(&control, argp, sizeof(control)))
5606 			goto out;
5607 		r = -ENXIO;
5608 		if (!kvm->arch.vpit)
5609 			goto out;
5610 		r = kvm_vm_ioctl_reinject(kvm, &control);
5611 		break;
5612 	}
5613 	case KVM_SET_BOOT_CPU_ID:
5614 		r = 0;
5615 		mutex_lock(&kvm->lock);
5616 		if (kvm->created_vcpus)
5617 			r = -EBUSY;
5618 		else
5619 			kvm->arch.bsp_vcpu_id = arg;
5620 		mutex_unlock(&kvm->lock);
5621 		break;
5622 	case KVM_XEN_HVM_CONFIG: {
5623 		struct kvm_xen_hvm_config xhc;
5624 		r = -EFAULT;
5625 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5626 			goto out;
5627 		r = -EINVAL;
5628 		if (xhc.flags)
5629 			goto out;
5630 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5631 		r = 0;
5632 		break;
5633 	}
5634 	case KVM_SET_CLOCK: {
5635 		struct kvm_clock_data user_ns;
5636 		u64 now_ns;
5637 
5638 		r = -EFAULT;
5639 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5640 			goto out;
5641 
5642 		r = -EINVAL;
5643 		if (user_ns.flags)
5644 			goto out;
5645 
5646 		r = 0;
5647 		/*
5648 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5649 		 * kvm_gen_update_masterclock() can be cut down to locked
5650 		 * pvclock_update_vm_gtod_copy().
5651 		 */
5652 		kvm_gen_update_masterclock(kvm);
5653 		now_ns = get_kvmclock_ns(kvm);
5654 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5655 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5656 		break;
5657 	}
5658 	case KVM_GET_CLOCK: {
5659 		struct kvm_clock_data user_ns;
5660 		u64 now_ns;
5661 
5662 		now_ns = get_kvmclock_ns(kvm);
5663 		user_ns.clock = now_ns;
5664 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5665 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5666 
5667 		r = -EFAULT;
5668 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5669 			goto out;
5670 		r = 0;
5671 		break;
5672 	}
5673 	case KVM_MEMORY_ENCRYPT_OP: {
5674 		r = -ENOTTY;
5675 		if (kvm_x86_ops.mem_enc_op)
5676 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5677 		break;
5678 	}
5679 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5680 		struct kvm_enc_region region;
5681 
5682 		r = -EFAULT;
5683 		if (copy_from_user(&region, argp, sizeof(region)))
5684 			goto out;
5685 
5686 		r = -ENOTTY;
5687 		if (kvm_x86_ops.mem_enc_reg_region)
5688 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5689 		break;
5690 	}
5691 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5692 		struct kvm_enc_region region;
5693 
5694 		r = -EFAULT;
5695 		if (copy_from_user(&region, argp, sizeof(region)))
5696 			goto out;
5697 
5698 		r = -ENOTTY;
5699 		if (kvm_x86_ops.mem_enc_unreg_region)
5700 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5701 		break;
5702 	}
5703 	case KVM_HYPERV_EVENTFD: {
5704 		struct kvm_hyperv_eventfd hvevfd;
5705 
5706 		r = -EFAULT;
5707 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5708 			goto out;
5709 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5710 		break;
5711 	}
5712 	case KVM_SET_PMU_EVENT_FILTER:
5713 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5714 		break;
5715 	case KVM_X86_SET_MSR_FILTER:
5716 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5717 		break;
5718 	default:
5719 		r = -ENOTTY;
5720 	}
5721 out:
5722 	return r;
5723 }
5724 
5725 static void kvm_init_msr_list(void)
5726 {
5727 	struct x86_pmu_capability x86_pmu;
5728 	u32 dummy[2];
5729 	unsigned i;
5730 
5731 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5732 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5733 
5734 	perf_get_x86_pmu_capability(&x86_pmu);
5735 
5736 	num_msrs_to_save = 0;
5737 	num_emulated_msrs = 0;
5738 	num_msr_based_features = 0;
5739 
5740 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5741 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5742 			continue;
5743 
5744 		/*
5745 		 * Even MSRs that are valid in the host may not be exposed
5746 		 * to the guests in some cases.
5747 		 */
5748 		switch (msrs_to_save_all[i]) {
5749 		case MSR_IA32_BNDCFGS:
5750 			if (!kvm_mpx_supported())
5751 				continue;
5752 			break;
5753 		case MSR_TSC_AUX:
5754 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5755 				continue;
5756 			break;
5757 		case MSR_IA32_UMWAIT_CONTROL:
5758 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5759 				continue;
5760 			break;
5761 		case MSR_IA32_RTIT_CTL:
5762 		case MSR_IA32_RTIT_STATUS:
5763 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5764 				continue;
5765 			break;
5766 		case MSR_IA32_RTIT_CR3_MATCH:
5767 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5768 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5769 				continue;
5770 			break;
5771 		case MSR_IA32_RTIT_OUTPUT_BASE:
5772 		case MSR_IA32_RTIT_OUTPUT_MASK:
5773 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5774 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5775 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5776 				continue;
5777 			break;
5778 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5779 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5780 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5781 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5782 				continue;
5783 			break;
5784 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5785 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5786 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5787 				continue;
5788 			break;
5789 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5790 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5791 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5792 				continue;
5793 			break;
5794 		default:
5795 			break;
5796 		}
5797 
5798 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5799 	}
5800 
5801 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5802 		if (!kvm_x86_ops.has_emulated_msr(NULL, emulated_msrs_all[i]))
5803 			continue;
5804 
5805 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5806 	}
5807 
5808 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5809 		struct kvm_msr_entry msr;
5810 
5811 		msr.index = msr_based_features_all[i];
5812 		if (kvm_get_msr_feature(&msr))
5813 			continue;
5814 
5815 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5816 	}
5817 }
5818 
5819 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5820 			   const void *v)
5821 {
5822 	int handled = 0;
5823 	int n;
5824 
5825 	do {
5826 		n = min(len, 8);
5827 		if (!(lapic_in_kernel(vcpu) &&
5828 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5829 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5830 			break;
5831 		handled += n;
5832 		addr += n;
5833 		len -= n;
5834 		v += n;
5835 	} while (len);
5836 
5837 	return handled;
5838 }
5839 
5840 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5841 {
5842 	int handled = 0;
5843 	int n;
5844 
5845 	do {
5846 		n = min(len, 8);
5847 		if (!(lapic_in_kernel(vcpu) &&
5848 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5849 					 addr, n, v))
5850 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5851 			break;
5852 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5853 		handled += n;
5854 		addr += n;
5855 		len -= n;
5856 		v += n;
5857 	} while (len);
5858 
5859 	return handled;
5860 }
5861 
5862 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5863 			struct kvm_segment *var, int seg)
5864 {
5865 	kvm_x86_ops.set_segment(vcpu, var, seg);
5866 }
5867 
5868 void kvm_get_segment(struct kvm_vcpu *vcpu,
5869 		     struct kvm_segment *var, int seg)
5870 {
5871 	kvm_x86_ops.get_segment(vcpu, var, seg);
5872 }
5873 
5874 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5875 			   struct x86_exception *exception)
5876 {
5877 	gpa_t t_gpa;
5878 
5879 	BUG_ON(!mmu_is_nested(vcpu));
5880 
5881 	/* NPT walks are always user-walks */
5882 	access |= PFERR_USER_MASK;
5883 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5884 
5885 	return t_gpa;
5886 }
5887 
5888 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5889 			      struct x86_exception *exception)
5890 {
5891 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5892 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5893 }
5894 
5895  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5896 				struct x86_exception *exception)
5897 {
5898 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5899 	access |= PFERR_FETCH_MASK;
5900 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5901 }
5902 
5903 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5904 			       struct x86_exception *exception)
5905 {
5906 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5907 	access |= PFERR_WRITE_MASK;
5908 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5909 }
5910 
5911 /* uses this to access any guest's mapped memory without checking CPL */
5912 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5913 				struct x86_exception *exception)
5914 {
5915 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5916 }
5917 
5918 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5919 				      struct kvm_vcpu *vcpu, u32 access,
5920 				      struct x86_exception *exception)
5921 {
5922 	void *data = val;
5923 	int r = X86EMUL_CONTINUE;
5924 
5925 	while (bytes) {
5926 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5927 							    exception);
5928 		unsigned offset = addr & (PAGE_SIZE-1);
5929 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5930 		int ret;
5931 
5932 		if (gpa == UNMAPPED_GVA)
5933 			return X86EMUL_PROPAGATE_FAULT;
5934 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5935 					       offset, toread);
5936 		if (ret < 0) {
5937 			r = X86EMUL_IO_NEEDED;
5938 			goto out;
5939 		}
5940 
5941 		bytes -= toread;
5942 		data += toread;
5943 		addr += toread;
5944 	}
5945 out:
5946 	return r;
5947 }
5948 
5949 /* used for instruction fetching */
5950 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5951 				gva_t addr, void *val, unsigned int bytes,
5952 				struct x86_exception *exception)
5953 {
5954 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5955 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5956 	unsigned offset;
5957 	int ret;
5958 
5959 	/* Inline kvm_read_guest_virt_helper for speed.  */
5960 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5961 						    exception);
5962 	if (unlikely(gpa == UNMAPPED_GVA))
5963 		return X86EMUL_PROPAGATE_FAULT;
5964 
5965 	offset = addr & (PAGE_SIZE-1);
5966 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5967 		bytes = (unsigned)PAGE_SIZE - offset;
5968 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5969 				       offset, bytes);
5970 	if (unlikely(ret < 0))
5971 		return X86EMUL_IO_NEEDED;
5972 
5973 	return X86EMUL_CONTINUE;
5974 }
5975 
5976 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5977 			       gva_t addr, void *val, unsigned int bytes,
5978 			       struct x86_exception *exception)
5979 {
5980 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5981 
5982 	/*
5983 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5984 	 * is returned, but our callers are not ready for that and they blindly
5985 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5986 	 * uninitialized kernel stack memory into cr2 and error code.
5987 	 */
5988 	memset(exception, 0, sizeof(*exception));
5989 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5990 					  exception);
5991 }
5992 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5993 
5994 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5995 			     gva_t addr, void *val, unsigned int bytes,
5996 			     struct x86_exception *exception, bool system)
5997 {
5998 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5999 	u32 access = 0;
6000 
6001 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6002 		access |= PFERR_USER_MASK;
6003 
6004 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6005 }
6006 
6007 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6008 		unsigned long addr, void *val, unsigned int bytes)
6009 {
6010 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6011 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6012 
6013 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6014 }
6015 
6016 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6017 				      struct kvm_vcpu *vcpu, u32 access,
6018 				      struct x86_exception *exception)
6019 {
6020 	void *data = val;
6021 	int r = X86EMUL_CONTINUE;
6022 
6023 	while (bytes) {
6024 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6025 							     access,
6026 							     exception);
6027 		unsigned offset = addr & (PAGE_SIZE-1);
6028 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6029 		int ret;
6030 
6031 		if (gpa == UNMAPPED_GVA)
6032 			return X86EMUL_PROPAGATE_FAULT;
6033 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6034 		if (ret < 0) {
6035 			r = X86EMUL_IO_NEEDED;
6036 			goto out;
6037 		}
6038 
6039 		bytes -= towrite;
6040 		data += towrite;
6041 		addr += towrite;
6042 	}
6043 out:
6044 	return r;
6045 }
6046 
6047 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6048 			      unsigned int bytes, struct x86_exception *exception,
6049 			      bool system)
6050 {
6051 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6052 	u32 access = PFERR_WRITE_MASK;
6053 
6054 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6055 		access |= PFERR_USER_MASK;
6056 
6057 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6058 					   access, exception);
6059 }
6060 
6061 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6062 				unsigned int bytes, struct x86_exception *exception)
6063 {
6064 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6065 	vcpu->arch.l1tf_flush_l1d = true;
6066 
6067 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6068 					   PFERR_WRITE_MASK, exception);
6069 }
6070 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6071 
6072 int handle_ud(struct kvm_vcpu *vcpu)
6073 {
6074 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6075 	int emul_type = EMULTYPE_TRAP_UD;
6076 	char sig[5]; /* ud2; .ascii "kvm" */
6077 	struct x86_exception e;
6078 
6079 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6080 		return 1;
6081 
6082 	if (force_emulation_prefix &&
6083 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6084 				sig, sizeof(sig), &e) == 0 &&
6085 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6086 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6087 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6088 	}
6089 
6090 	return kvm_emulate_instruction(vcpu, emul_type);
6091 }
6092 EXPORT_SYMBOL_GPL(handle_ud);
6093 
6094 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6095 			    gpa_t gpa, bool write)
6096 {
6097 	/* For APIC access vmexit */
6098 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6099 		return 1;
6100 
6101 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6102 		trace_vcpu_match_mmio(gva, gpa, write, true);
6103 		return 1;
6104 	}
6105 
6106 	return 0;
6107 }
6108 
6109 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6110 				gpa_t *gpa, struct x86_exception *exception,
6111 				bool write)
6112 {
6113 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6114 		| (write ? PFERR_WRITE_MASK : 0);
6115 
6116 	/*
6117 	 * currently PKRU is only applied to ept enabled guest so
6118 	 * there is no pkey in EPT page table for L1 guest or EPT
6119 	 * shadow page table for L2 guest.
6120 	 */
6121 	if (vcpu_match_mmio_gva(vcpu, gva)
6122 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6123 				 vcpu->arch.mmio_access, 0, access)) {
6124 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6125 					(gva & (PAGE_SIZE - 1));
6126 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6127 		return 1;
6128 	}
6129 
6130 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6131 
6132 	if (*gpa == UNMAPPED_GVA)
6133 		return -1;
6134 
6135 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6136 }
6137 
6138 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6139 			const void *val, int bytes)
6140 {
6141 	int ret;
6142 
6143 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6144 	if (ret < 0)
6145 		return 0;
6146 	kvm_page_track_write(vcpu, gpa, val, bytes);
6147 	return 1;
6148 }
6149 
6150 struct read_write_emulator_ops {
6151 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6152 				  int bytes);
6153 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6154 				  void *val, int bytes);
6155 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6156 			       int bytes, void *val);
6157 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6158 				    void *val, int bytes);
6159 	bool write;
6160 };
6161 
6162 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6163 {
6164 	if (vcpu->mmio_read_completed) {
6165 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6166 			       vcpu->mmio_fragments[0].gpa, val);
6167 		vcpu->mmio_read_completed = 0;
6168 		return 1;
6169 	}
6170 
6171 	return 0;
6172 }
6173 
6174 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6175 			void *val, int bytes)
6176 {
6177 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6178 }
6179 
6180 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6181 			 void *val, int bytes)
6182 {
6183 	return emulator_write_phys(vcpu, gpa, val, bytes);
6184 }
6185 
6186 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6187 {
6188 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6189 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6190 }
6191 
6192 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6193 			  void *val, int bytes)
6194 {
6195 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6196 	return X86EMUL_IO_NEEDED;
6197 }
6198 
6199 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6200 			   void *val, int bytes)
6201 {
6202 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6203 
6204 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6205 	return X86EMUL_CONTINUE;
6206 }
6207 
6208 static const struct read_write_emulator_ops read_emultor = {
6209 	.read_write_prepare = read_prepare,
6210 	.read_write_emulate = read_emulate,
6211 	.read_write_mmio = vcpu_mmio_read,
6212 	.read_write_exit_mmio = read_exit_mmio,
6213 };
6214 
6215 static const struct read_write_emulator_ops write_emultor = {
6216 	.read_write_emulate = write_emulate,
6217 	.read_write_mmio = write_mmio,
6218 	.read_write_exit_mmio = write_exit_mmio,
6219 	.write = true,
6220 };
6221 
6222 static int emulator_read_write_onepage(unsigned long addr, void *val,
6223 				       unsigned int bytes,
6224 				       struct x86_exception *exception,
6225 				       struct kvm_vcpu *vcpu,
6226 				       const struct read_write_emulator_ops *ops)
6227 {
6228 	gpa_t gpa;
6229 	int handled, ret;
6230 	bool write = ops->write;
6231 	struct kvm_mmio_fragment *frag;
6232 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6233 
6234 	/*
6235 	 * If the exit was due to a NPF we may already have a GPA.
6236 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6237 	 * Note, this cannot be used on string operations since string
6238 	 * operation using rep will only have the initial GPA from the NPF
6239 	 * occurred.
6240 	 */
6241 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6242 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6243 		gpa = ctxt->gpa_val;
6244 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6245 	} else {
6246 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6247 		if (ret < 0)
6248 			return X86EMUL_PROPAGATE_FAULT;
6249 	}
6250 
6251 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6252 		return X86EMUL_CONTINUE;
6253 
6254 	/*
6255 	 * Is this MMIO handled locally?
6256 	 */
6257 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6258 	if (handled == bytes)
6259 		return X86EMUL_CONTINUE;
6260 
6261 	gpa += handled;
6262 	bytes -= handled;
6263 	val += handled;
6264 
6265 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6266 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6267 	frag->gpa = gpa;
6268 	frag->data = val;
6269 	frag->len = bytes;
6270 	return X86EMUL_CONTINUE;
6271 }
6272 
6273 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6274 			unsigned long addr,
6275 			void *val, unsigned int bytes,
6276 			struct x86_exception *exception,
6277 			const struct read_write_emulator_ops *ops)
6278 {
6279 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6280 	gpa_t gpa;
6281 	int rc;
6282 
6283 	if (ops->read_write_prepare &&
6284 		  ops->read_write_prepare(vcpu, val, bytes))
6285 		return X86EMUL_CONTINUE;
6286 
6287 	vcpu->mmio_nr_fragments = 0;
6288 
6289 	/* Crossing a page boundary? */
6290 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6291 		int now;
6292 
6293 		now = -addr & ~PAGE_MASK;
6294 		rc = emulator_read_write_onepage(addr, val, now, exception,
6295 						 vcpu, ops);
6296 
6297 		if (rc != X86EMUL_CONTINUE)
6298 			return rc;
6299 		addr += now;
6300 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6301 			addr = (u32)addr;
6302 		val += now;
6303 		bytes -= now;
6304 	}
6305 
6306 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6307 					 vcpu, ops);
6308 	if (rc != X86EMUL_CONTINUE)
6309 		return rc;
6310 
6311 	if (!vcpu->mmio_nr_fragments)
6312 		return rc;
6313 
6314 	gpa = vcpu->mmio_fragments[0].gpa;
6315 
6316 	vcpu->mmio_needed = 1;
6317 	vcpu->mmio_cur_fragment = 0;
6318 
6319 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6320 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6321 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6322 	vcpu->run->mmio.phys_addr = gpa;
6323 
6324 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6325 }
6326 
6327 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6328 				  unsigned long addr,
6329 				  void *val,
6330 				  unsigned int bytes,
6331 				  struct x86_exception *exception)
6332 {
6333 	return emulator_read_write(ctxt, addr, val, bytes,
6334 				   exception, &read_emultor);
6335 }
6336 
6337 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6338 			    unsigned long addr,
6339 			    const void *val,
6340 			    unsigned int bytes,
6341 			    struct x86_exception *exception)
6342 {
6343 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6344 				   exception, &write_emultor);
6345 }
6346 
6347 #define CMPXCHG_TYPE(t, ptr, old, new) \
6348 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6349 
6350 #ifdef CONFIG_X86_64
6351 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6352 #else
6353 #  define CMPXCHG64(ptr, old, new) \
6354 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6355 #endif
6356 
6357 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6358 				     unsigned long addr,
6359 				     const void *old,
6360 				     const void *new,
6361 				     unsigned int bytes,
6362 				     struct x86_exception *exception)
6363 {
6364 	struct kvm_host_map map;
6365 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6366 	u64 page_line_mask;
6367 	gpa_t gpa;
6368 	char *kaddr;
6369 	bool exchanged;
6370 
6371 	/* guests cmpxchg8b have to be emulated atomically */
6372 	if (bytes > 8 || (bytes & (bytes - 1)))
6373 		goto emul_write;
6374 
6375 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6376 
6377 	if (gpa == UNMAPPED_GVA ||
6378 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6379 		goto emul_write;
6380 
6381 	/*
6382 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6383 	 * enabled in the host and the access splits a cache line.
6384 	 */
6385 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6386 		page_line_mask = ~(cache_line_size() - 1);
6387 	else
6388 		page_line_mask = PAGE_MASK;
6389 
6390 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6391 		goto emul_write;
6392 
6393 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6394 		goto emul_write;
6395 
6396 	kaddr = map.hva + offset_in_page(gpa);
6397 
6398 	switch (bytes) {
6399 	case 1:
6400 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6401 		break;
6402 	case 2:
6403 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6404 		break;
6405 	case 4:
6406 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6407 		break;
6408 	case 8:
6409 		exchanged = CMPXCHG64(kaddr, old, new);
6410 		break;
6411 	default:
6412 		BUG();
6413 	}
6414 
6415 	kvm_vcpu_unmap(vcpu, &map, true);
6416 
6417 	if (!exchanged)
6418 		return X86EMUL_CMPXCHG_FAILED;
6419 
6420 	kvm_page_track_write(vcpu, gpa, new, bytes);
6421 
6422 	return X86EMUL_CONTINUE;
6423 
6424 emul_write:
6425 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6426 
6427 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6428 }
6429 
6430 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6431 {
6432 	int r = 0, i;
6433 
6434 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6435 		if (vcpu->arch.pio.in)
6436 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6437 					    vcpu->arch.pio.size, pd);
6438 		else
6439 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6440 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6441 					     pd);
6442 		if (r)
6443 			break;
6444 		pd += vcpu->arch.pio.size;
6445 	}
6446 	return r;
6447 }
6448 
6449 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6450 			       unsigned short port, void *val,
6451 			       unsigned int count, bool in)
6452 {
6453 	vcpu->arch.pio.port = port;
6454 	vcpu->arch.pio.in = in;
6455 	vcpu->arch.pio.count  = count;
6456 	vcpu->arch.pio.size = size;
6457 
6458 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6459 		vcpu->arch.pio.count = 0;
6460 		return 1;
6461 	}
6462 
6463 	vcpu->run->exit_reason = KVM_EXIT_IO;
6464 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6465 	vcpu->run->io.size = size;
6466 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6467 	vcpu->run->io.count = count;
6468 	vcpu->run->io.port = port;
6469 
6470 	return 0;
6471 }
6472 
6473 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6474 			   unsigned short port, void *val, unsigned int count)
6475 {
6476 	int ret;
6477 
6478 	if (vcpu->arch.pio.count)
6479 		goto data_avail;
6480 
6481 	memset(vcpu->arch.pio_data, 0, size * count);
6482 
6483 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6484 	if (ret) {
6485 data_avail:
6486 		memcpy(val, vcpu->arch.pio_data, size * count);
6487 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6488 		vcpu->arch.pio.count = 0;
6489 		return 1;
6490 	}
6491 
6492 	return 0;
6493 }
6494 
6495 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6496 				    int size, unsigned short port, void *val,
6497 				    unsigned int count)
6498 {
6499 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6500 
6501 }
6502 
6503 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6504 			    unsigned short port, const void *val,
6505 			    unsigned int count)
6506 {
6507 	memcpy(vcpu->arch.pio_data, val, size * count);
6508 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6509 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6510 }
6511 
6512 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6513 				     int size, unsigned short port,
6514 				     const void *val, unsigned int count)
6515 {
6516 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6517 }
6518 
6519 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6520 {
6521 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6522 }
6523 
6524 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6525 {
6526 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6527 }
6528 
6529 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6530 {
6531 	if (!need_emulate_wbinvd(vcpu))
6532 		return X86EMUL_CONTINUE;
6533 
6534 	if (kvm_x86_ops.has_wbinvd_exit()) {
6535 		int cpu = get_cpu();
6536 
6537 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6538 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6539 				wbinvd_ipi, NULL, 1);
6540 		put_cpu();
6541 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6542 	} else
6543 		wbinvd();
6544 	return X86EMUL_CONTINUE;
6545 }
6546 
6547 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6548 {
6549 	kvm_emulate_wbinvd_noskip(vcpu);
6550 	return kvm_skip_emulated_instruction(vcpu);
6551 }
6552 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6553 
6554 
6555 
6556 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6557 {
6558 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6559 }
6560 
6561 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6562 			   unsigned long *dest)
6563 {
6564 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6565 }
6566 
6567 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6568 			   unsigned long value)
6569 {
6570 
6571 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6572 }
6573 
6574 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6575 {
6576 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6577 }
6578 
6579 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6580 {
6581 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6582 	unsigned long value;
6583 
6584 	switch (cr) {
6585 	case 0:
6586 		value = kvm_read_cr0(vcpu);
6587 		break;
6588 	case 2:
6589 		value = vcpu->arch.cr2;
6590 		break;
6591 	case 3:
6592 		value = kvm_read_cr3(vcpu);
6593 		break;
6594 	case 4:
6595 		value = kvm_read_cr4(vcpu);
6596 		break;
6597 	case 8:
6598 		value = kvm_get_cr8(vcpu);
6599 		break;
6600 	default:
6601 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6602 		return 0;
6603 	}
6604 
6605 	return value;
6606 }
6607 
6608 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6609 {
6610 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6611 	int res = 0;
6612 
6613 	switch (cr) {
6614 	case 0:
6615 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6616 		break;
6617 	case 2:
6618 		vcpu->arch.cr2 = val;
6619 		break;
6620 	case 3:
6621 		res = kvm_set_cr3(vcpu, val);
6622 		break;
6623 	case 4:
6624 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6625 		break;
6626 	case 8:
6627 		res = kvm_set_cr8(vcpu, val);
6628 		break;
6629 	default:
6630 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6631 		res = -1;
6632 	}
6633 
6634 	return res;
6635 }
6636 
6637 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6638 {
6639 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6640 }
6641 
6642 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6643 {
6644 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6645 }
6646 
6647 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6648 {
6649 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6650 }
6651 
6652 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6653 {
6654 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6655 }
6656 
6657 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6658 {
6659 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6660 }
6661 
6662 static unsigned long emulator_get_cached_segment_base(
6663 	struct x86_emulate_ctxt *ctxt, int seg)
6664 {
6665 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6666 }
6667 
6668 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6669 				 struct desc_struct *desc, u32 *base3,
6670 				 int seg)
6671 {
6672 	struct kvm_segment var;
6673 
6674 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6675 	*selector = var.selector;
6676 
6677 	if (var.unusable) {
6678 		memset(desc, 0, sizeof(*desc));
6679 		if (base3)
6680 			*base3 = 0;
6681 		return false;
6682 	}
6683 
6684 	if (var.g)
6685 		var.limit >>= 12;
6686 	set_desc_limit(desc, var.limit);
6687 	set_desc_base(desc, (unsigned long)var.base);
6688 #ifdef CONFIG_X86_64
6689 	if (base3)
6690 		*base3 = var.base >> 32;
6691 #endif
6692 	desc->type = var.type;
6693 	desc->s = var.s;
6694 	desc->dpl = var.dpl;
6695 	desc->p = var.present;
6696 	desc->avl = var.avl;
6697 	desc->l = var.l;
6698 	desc->d = var.db;
6699 	desc->g = var.g;
6700 
6701 	return true;
6702 }
6703 
6704 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6705 				 struct desc_struct *desc, u32 base3,
6706 				 int seg)
6707 {
6708 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6709 	struct kvm_segment var;
6710 
6711 	var.selector = selector;
6712 	var.base = get_desc_base(desc);
6713 #ifdef CONFIG_X86_64
6714 	var.base |= ((u64)base3) << 32;
6715 #endif
6716 	var.limit = get_desc_limit(desc);
6717 	if (desc->g)
6718 		var.limit = (var.limit << 12) | 0xfff;
6719 	var.type = desc->type;
6720 	var.dpl = desc->dpl;
6721 	var.db = desc->d;
6722 	var.s = desc->s;
6723 	var.l = desc->l;
6724 	var.g = desc->g;
6725 	var.avl = desc->avl;
6726 	var.present = desc->p;
6727 	var.unusable = !var.present;
6728 	var.padding = 0;
6729 
6730 	kvm_set_segment(vcpu, &var, seg);
6731 	return;
6732 }
6733 
6734 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6735 			    u32 msr_index, u64 *pdata)
6736 {
6737 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6738 	int r;
6739 
6740 	r = kvm_get_msr(vcpu, msr_index, pdata);
6741 
6742 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6743 		/* Bounce to user space */
6744 		return X86EMUL_IO_NEEDED;
6745 	}
6746 
6747 	return r;
6748 }
6749 
6750 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6751 			    u32 msr_index, u64 data)
6752 {
6753 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6754 	int r;
6755 
6756 	r = kvm_set_msr(vcpu, msr_index, data);
6757 
6758 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6759 		/* Bounce to user space */
6760 		return X86EMUL_IO_NEEDED;
6761 	}
6762 
6763 	return r;
6764 }
6765 
6766 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6767 {
6768 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6769 
6770 	return vcpu->arch.smbase;
6771 }
6772 
6773 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6774 {
6775 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6776 
6777 	vcpu->arch.smbase = smbase;
6778 }
6779 
6780 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6781 			      u32 pmc)
6782 {
6783 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6784 }
6785 
6786 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6787 			     u32 pmc, u64 *pdata)
6788 {
6789 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6790 }
6791 
6792 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6793 {
6794 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6795 }
6796 
6797 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6798 			      struct x86_instruction_info *info,
6799 			      enum x86_intercept_stage stage)
6800 {
6801 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6802 					    &ctxt->exception);
6803 }
6804 
6805 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6806 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6807 			      bool exact_only)
6808 {
6809 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6810 }
6811 
6812 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6813 {
6814 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6815 }
6816 
6817 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6818 {
6819 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6820 }
6821 
6822 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6823 {
6824 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6825 }
6826 
6827 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6828 {
6829 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6830 }
6831 
6832 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6833 {
6834 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6835 }
6836 
6837 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6838 {
6839 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6840 }
6841 
6842 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6843 {
6844 	return emul_to_vcpu(ctxt)->arch.hflags;
6845 }
6846 
6847 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6848 {
6849 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6850 }
6851 
6852 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6853 				  const char *smstate)
6854 {
6855 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6856 }
6857 
6858 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6859 {
6860 	kvm_smm_changed(emul_to_vcpu(ctxt));
6861 }
6862 
6863 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6864 {
6865 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6866 }
6867 
6868 static const struct x86_emulate_ops emulate_ops = {
6869 	.read_gpr            = emulator_read_gpr,
6870 	.write_gpr           = emulator_write_gpr,
6871 	.read_std            = emulator_read_std,
6872 	.write_std           = emulator_write_std,
6873 	.read_phys           = kvm_read_guest_phys_system,
6874 	.fetch               = kvm_fetch_guest_virt,
6875 	.read_emulated       = emulator_read_emulated,
6876 	.write_emulated      = emulator_write_emulated,
6877 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6878 	.invlpg              = emulator_invlpg,
6879 	.pio_in_emulated     = emulator_pio_in_emulated,
6880 	.pio_out_emulated    = emulator_pio_out_emulated,
6881 	.get_segment         = emulator_get_segment,
6882 	.set_segment         = emulator_set_segment,
6883 	.get_cached_segment_base = emulator_get_cached_segment_base,
6884 	.get_gdt             = emulator_get_gdt,
6885 	.get_idt	     = emulator_get_idt,
6886 	.set_gdt             = emulator_set_gdt,
6887 	.set_idt	     = emulator_set_idt,
6888 	.get_cr              = emulator_get_cr,
6889 	.set_cr              = emulator_set_cr,
6890 	.cpl                 = emulator_get_cpl,
6891 	.get_dr              = emulator_get_dr,
6892 	.set_dr              = emulator_set_dr,
6893 	.get_smbase          = emulator_get_smbase,
6894 	.set_smbase          = emulator_set_smbase,
6895 	.set_msr             = emulator_set_msr,
6896 	.get_msr             = emulator_get_msr,
6897 	.check_pmc	     = emulator_check_pmc,
6898 	.read_pmc            = emulator_read_pmc,
6899 	.halt                = emulator_halt,
6900 	.wbinvd              = emulator_wbinvd,
6901 	.fix_hypercall       = emulator_fix_hypercall,
6902 	.intercept           = emulator_intercept,
6903 	.get_cpuid           = emulator_get_cpuid,
6904 	.guest_has_long_mode = emulator_guest_has_long_mode,
6905 	.guest_has_movbe     = emulator_guest_has_movbe,
6906 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6907 	.set_nmi_mask        = emulator_set_nmi_mask,
6908 	.get_hflags          = emulator_get_hflags,
6909 	.set_hflags          = emulator_set_hflags,
6910 	.pre_leave_smm       = emulator_pre_leave_smm,
6911 	.post_leave_smm      = emulator_post_leave_smm,
6912 	.set_xcr             = emulator_set_xcr,
6913 };
6914 
6915 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6916 {
6917 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6918 	/*
6919 	 * an sti; sti; sequence only disable interrupts for the first
6920 	 * instruction. So, if the last instruction, be it emulated or
6921 	 * not, left the system with the INT_STI flag enabled, it
6922 	 * means that the last instruction is an sti. We should not
6923 	 * leave the flag on in this case. The same goes for mov ss
6924 	 */
6925 	if (int_shadow & mask)
6926 		mask = 0;
6927 	if (unlikely(int_shadow || mask)) {
6928 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6929 		if (!mask)
6930 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6931 	}
6932 }
6933 
6934 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6935 {
6936 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6937 	if (ctxt->exception.vector == PF_VECTOR)
6938 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6939 
6940 	if (ctxt->exception.error_code_valid)
6941 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6942 				      ctxt->exception.error_code);
6943 	else
6944 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6945 	return false;
6946 }
6947 
6948 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6949 {
6950 	struct x86_emulate_ctxt *ctxt;
6951 
6952 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6953 	if (!ctxt) {
6954 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6955 		return NULL;
6956 	}
6957 
6958 	ctxt->vcpu = vcpu;
6959 	ctxt->ops = &emulate_ops;
6960 	vcpu->arch.emulate_ctxt = ctxt;
6961 
6962 	return ctxt;
6963 }
6964 
6965 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6966 {
6967 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6968 	int cs_db, cs_l;
6969 
6970 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6971 
6972 	ctxt->gpa_available = false;
6973 	ctxt->eflags = kvm_get_rflags(vcpu);
6974 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6975 
6976 	ctxt->eip = kvm_rip_read(vcpu);
6977 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6978 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6979 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6980 		     cs_db				? X86EMUL_MODE_PROT32 :
6981 							  X86EMUL_MODE_PROT16;
6982 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6983 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6984 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6985 
6986 	init_decode_cache(ctxt);
6987 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6988 }
6989 
6990 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6991 {
6992 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6993 	int ret;
6994 
6995 	init_emulate_ctxt(vcpu);
6996 
6997 	ctxt->op_bytes = 2;
6998 	ctxt->ad_bytes = 2;
6999 	ctxt->_eip = ctxt->eip + inc_eip;
7000 	ret = emulate_int_real(ctxt, irq);
7001 
7002 	if (ret != X86EMUL_CONTINUE) {
7003 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7004 	} else {
7005 		ctxt->eip = ctxt->_eip;
7006 		kvm_rip_write(vcpu, ctxt->eip);
7007 		kvm_set_rflags(vcpu, ctxt->eflags);
7008 	}
7009 }
7010 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7011 
7012 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7013 {
7014 	++vcpu->stat.insn_emulation_fail;
7015 	trace_kvm_emulate_insn_failed(vcpu);
7016 
7017 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7018 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7019 		return 1;
7020 	}
7021 
7022 	if (emulation_type & EMULTYPE_SKIP) {
7023 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7024 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7025 		vcpu->run->internal.ndata = 0;
7026 		return 0;
7027 	}
7028 
7029 	kvm_queue_exception(vcpu, UD_VECTOR);
7030 
7031 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7032 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7033 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7034 		vcpu->run->internal.ndata = 0;
7035 		return 0;
7036 	}
7037 
7038 	return 1;
7039 }
7040 
7041 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7042 				  bool write_fault_to_shadow_pgtable,
7043 				  int emulation_type)
7044 {
7045 	gpa_t gpa = cr2_or_gpa;
7046 	kvm_pfn_t pfn;
7047 
7048 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7049 		return false;
7050 
7051 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7052 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7053 		return false;
7054 
7055 	if (!vcpu->arch.mmu->direct_map) {
7056 		/*
7057 		 * Write permission should be allowed since only
7058 		 * write access need to be emulated.
7059 		 */
7060 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7061 
7062 		/*
7063 		 * If the mapping is invalid in guest, let cpu retry
7064 		 * it to generate fault.
7065 		 */
7066 		if (gpa == UNMAPPED_GVA)
7067 			return true;
7068 	}
7069 
7070 	/*
7071 	 * Do not retry the unhandleable instruction if it faults on the
7072 	 * readonly host memory, otherwise it will goto a infinite loop:
7073 	 * retry instruction -> write #PF -> emulation fail -> retry
7074 	 * instruction -> ...
7075 	 */
7076 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7077 
7078 	/*
7079 	 * If the instruction failed on the error pfn, it can not be fixed,
7080 	 * report the error to userspace.
7081 	 */
7082 	if (is_error_noslot_pfn(pfn))
7083 		return false;
7084 
7085 	kvm_release_pfn_clean(pfn);
7086 
7087 	/* The instructions are well-emulated on direct mmu. */
7088 	if (vcpu->arch.mmu->direct_map) {
7089 		unsigned int indirect_shadow_pages;
7090 
7091 		spin_lock(&vcpu->kvm->mmu_lock);
7092 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7093 		spin_unlock(&vcpu->kvm->mmu_lock);
7094 
7095 		if (indirect_shadow_pages)
7096 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7097 
7098 		return true;
7099 	}
7100 
7101 	/*
7102 	 * if emulation was due to access to shadowed page table
7103 	 * and it failed try to unshadow page and re-enter the
7104 	 * guest to let CPU execute the instruction.
7105 	 */
7106 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7107 
7108 	/*
7109 	 * If the access faults on its page table, it can not
7110 	 * be fixed by unprotecting shadow page and it should
7111 	 * be reported to userspace.
7112 	 */
7113 	return !write_fault_to_shadow_pgtable;
7114 }
7115 
7116 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7117 			      gpa_t cr2_or_gpa,  int emulation_type)
7118 {
7119 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7120 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7121 
7122 	last_retry_eip = vcpu->arch.last_retry_eip;
7123 	last_retry_addr = vcpu->arch.last_retry_addr;
7124 
7125 	/*
7126 	 * If the emulation is caused by #PF and it is non-page_table
7127 	 * writing instruction, it means the VM-EXIT is caused by shadow
7128 	 * page protected, we can zap the shadow page and retry this
7129 	 * instruction directly.
7130 	 *
7131 	 * Note: if the guest uses a non-page-table modifying instruction
7132 	 * on the PDE that points to the instruction, then we will unmap
7133 	 * the instruction and go to an infinite loop. So, we cache the
7134 	 * last retried eip and the last fault address, if we meet the eip
7135 	 * and the address again, we can break out of the potential infinite
7136 	 * loop.
7137 	 */
7138 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7139 
7140 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7141 		return false;
7142 
7143 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7144 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7145 		return false;
7146 
7147 	if (x86_page_table_writing_insn(ctxt))
7148 		return false;
7149 
7150 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7151 		return false;
7152 
7153 	vcpu->arch.last_retry_eip = ctxt->eip;
7154 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7155 
7156 	if (!vcpu->arch.mmu->direct_map)
7157 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7158 
7159 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7160 
7161 	return true;
7162 }
7163 
7164 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7165 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7166 
7167 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7168 {
7169 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7170 		/* This is a good place to trace that we are exiting SMM.  */
7171 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7172 
7173 		/* Process a latched INIT or SMI, if any.  */
7174 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7175 	}
7176 
7177 	kvm_mmu_reset_context(vcpu);
7178 }
7179 
7180 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7181 				unsigned long *db)
7182 {
7183 	u32 dr6 = 0;
7184 	int i;
7185 	u32 enable, rwlen;
7186 
7187 	enable = dr7;
7188 	rwlen = dr7 >> 16;
7189 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7190 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7191 			dr6 |= (1 << i);
7192 	return dr6;
7193 }
7194 
7195 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7196 {
7197 	struct kvm_run *kvm_run = vcpu->run;
7198 
7199 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7200 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7201 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7202 		kvm_run->debug.arch.exception = DB_VECTOR;
7203 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7204 		return 0;
7205 	}
7206 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7207 	return 1;
7208 }
7209 
7210 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7211 {
7212 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7213 	int r;
7214 
7215 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7216 	if (unlikely(!r))
7217 		return 0;
7218 
7219 	/*
7220 	 * rflags is the old, "raw" value of the flags.  The new value has
7221 	 * not been saved yet.
7222 	 *
7223 	 * This is correct even for TF set by the guest, because "the
7224 	 * processor will not generate this exception after the instruction
7225 	 * that sets the TF flag".
7226 	 */
7227 	if (unlikely(rflags & X86_EFLAGS_TF))
7228 		r = kvm_vcpu_do_singlestep(vcpu);
7229 	return r;
7230 }
7231 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7232 
7233 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7234 {
7235 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7236 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7237 		struct kvm_run *kvm_run = vcpu->run;
7238 		unsigned long eip = kvm_get_linear_rip(vcpu);
7239 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7240 					   vcpu->arch.guest_debug_dr7,
7241 					   vcpu->arch.eff_db);
7242 
7243 		if (dr6 != 0) {
7244 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7245 			kvm_run->debug.arch.pc = eip;
7246 			kvm_run->debug.arch.exception = DB_VECTOR;
7247 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7248 			*r = 0;
7249 			return true;
7250 		}
7251 	}
7252 
7253 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7254 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7255 		unsigned long eip = kvm_get_linear_rip(vcpu);
7256 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7257 					   vcpu->arch.dr7,
7258 					   vcpu->arch.db);
7259 
7260 		if (dr6 != 0) {
7261 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7262 			*r = 1;
7263 			return true;
7264 		}
7265 	}
7266 
7267 	return false;
7268 }
7269 
7270 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7271 {
7272 	switch (ctxt->opcode_len) {
7273 	case 1:
7274 		switch (ctxt->b) {
7275 		case 0xe4:	/* IN */
7276 		case 0xe5:
7277 		case 0xec:
7278 		case 0xed:
7279 		case 0xe6:	/* OUT */
7280 		case 0xe7:
7281 		case 0xee:
7282 		case 0xef:
7283 		case 0x6c:	/* INS */
7284 		case 0x6d:
7285 		case 0x6e:	/* OUTS */
7286 		case 0x6f:
7287 			return true;
7288 		}
7289 		break;
7290 	case 2:
7291 		switch (ctxt->b) {
7292 		case 0x33:	/* RDPMC */
7293 			return true;
7294 		}
7295 		break;
7296 	}
7297 
7298 	return false;
7299 }
7300 
7301 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7302 			    int emulation_type, void *insn, int insn_len)
7303 {
7304 	int r;
7305 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7306 	bool writeback = true;
7307 	bool write_fault_to_spt;
7308 
7309 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7310 		return 1;
7311 
7312 	vcpu->arch.l1tf_flush_l1d = true;
7313 
7314 	/*
7315 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7316 	 * never reused.
7317 	 */
7318 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7319 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7320 	kvm_clear_exception_queue(vcpu);
7321 
7322 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7323 		init_emulate_ctxt(vcpu);
7324 
7325 		/*
7326 		 * We will reenter on the same instruction since
7327 		 * we do not set complete_userspace_io.  This does not
7328 		 * handle watchpoints yet, those would be handled in
7329 		 * the emulate_ops.
7330 		 */
7331 		if (!(emulation_type & EMULTYPE_SKIP) &&
7332 		    kvm_vcpu_check_breakpoint(vcpu, &r))
7333 			return r;
7334 
7335 		ctxt->interruptibility = 0;
7336 		ctxt->have_exception = false;
7337 		ctxt->exception.vector = -1;
7338 		ctxt->perm_ok = false;
7339 
7340 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7341 
7342 		r = x86_decode_insn(ctxt, insn, insn_len);
7343 
7344 		trace_kvm_emulate_insn_start(vcpu);
7345 		++vcpu->stat.insn_emulation;
7346 		if (r != EMULATION_OK)  {
7347 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7348 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7349 				kvm_queue_exception(vcpu, UD_VECTOR);
7350 				return 1;
7351 			}
7352 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7353 						  write_fault_to_spt,
7354 						  emulation_type))
7355 				return 1;
7356 			if (ctxt->have_exception) {
7357 				/*
7358 				 * #UD should result in just EMULATION_FAILED, and trap-like
7359 				 * exception should not be encountered during decode.
7360 				 */
7361 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7362 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7363 				inject_emulated_exception(vcpu);
7364 				return 1;
7365 			}
7366 			return handle_emulation_failure(vcpu, emulation_type);
7367 		}
7368 	}
7369 
7370 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7371 	    !is_vmware_backdoor_opcode(ctxt)) {
7372 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7373 		return 1;
7374 	}
7375 
7376 	/*
7377 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7378 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7379 	 * updating interruptibility state and injecting single-step #DBs.
7380 	 */
7381 	if (emulation_type & EMULTYPE_SKIP) {
7382 		kvm_rip_write(vcpu, ctxt->_eip);
7383 		if (ctxt->eflags & X86_EFLAGS_RF)
7384 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7385 		return 1;
7386 	}
7387 
7388 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7389 		return 1;
7390 
7391 	/* this is needed for vmware backdoor interface to work since it
7392 	   changes registers values  during IO operation */
7393 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7394 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7395 		emulator_invalidate_register_cache(ctxt);
7396 	}
7397 
7398 restart:
7399 	if (emulation_type & EMULTYPE_PF) {
7400 		/* Save the faulting GPA (cr2) in the address field */
7401 		ctxt->exception.address = cr2_or_gpa;
7402 
7403 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7404 		if (vcpu->arch.mmu->direct_map) {
7405 			ctxt->gpa_available = true;
7406 			ctxt->gpa_val = cr2_or_gpa;
7407 		}
7408 	} else {
7409 		/* Sanitize the address out of an abundance of paranoia. */
7410 		ctxt->exception.address = 0;
7411 	}
7412 
7413 	r = x86_emulate_insn(ctxt);
7414 
7415 	if (r == EMULATION_INTERCEPTED)
7416 		return 1;
7417 
7418 	if (r == EMULATION_FAILED) {
7419 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7420 					emulation_type))
7421 			return 1;
7422 
7423 		return handle_emulation_failure(vcpu, emulation_type);
7424 	}
7425 
7426 	if (ctxt->have_exception) {
7427 		r = 1;
7428 		if (inject_emulated_exception(vcpu))
7429 			return r;
7430 	} else if (vcpu->arch.pio.count) {
7431 		if (!vcpu->arch.pio.in) {
7432 			/* FIXME: return into emulator if single-stepping.  */
7433 			vcpu->arch.pio.count = 0;
7434 		} else {
7435 			writeback = false;
7436 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7437 		}
7438 		r = 0;
7439 	} else if (vcpu->mmio_needed) {
7440 		++vcpu->stat.mmio_exits;
7441 
7442 		if (!vcpu->mmio_is_write)
7443 			writeback = false;
7444 		r = 0;
7445 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7446 	} else if (r == EMULATION_RESTART)
7447 		goto restart;
7448 	else
7449 		r = 1;
7450 
7451 	if (writeback) {
7452 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7453 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7454 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7455 		if (!ctxt->have_exception ||
7456 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7457 			kvm_rip_write(vcpu, ctxt->eip);
7458 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7459 				r = kvm_vcpu_do_singlestep(vcpu);
7460 			if (kvm_x86_ops.update_emulated_instruction)
7461 				kvm_x86_ops.update_emulated_instruction(vcpu);
7462 			__kvm_set_rflags(vcpu, ctxt->eflags);
7463 		}
7464 
7465 		/*
7466 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7467 		 * do nothing, and it will be requested again as soon as
7468 		 * the shadow expires.  But we still need to check here,
7469 		 * because POPF has no interrupt shadow.
7470 		 */
7471 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7472 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7473 	} else
7474 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7475 
7476 	return r;
7477 }
7478 
7479 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7480 {
7481 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7482 }
7483 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7484 
7485 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7486 					void *insn, int insn_len)
7487 {
7488 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7489 }
7490 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7491 
7492 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7493 {
7494 	vcpu->arch.pio.count = 0;
7495 	return 1;
7496 }
7497 
7498 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7499 {
7500 	vcpu->arch.pio.count = 0;
7501 
7502 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7503 		return 1;
7504 
7505 	return kvm_skip_emulated_instruction(vcpu);
7506 }
7507 
7508 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7509 			    unsigned short port)
7510 {
7511 	unsigned long val = kvm_rax_read(vcpu);
7512 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7513 
7514 	if (ret)
7515 		return ret;
7516 
7517 	/*
7518 	 * Workaround userspace that relies on old KVM behavior of %rip being
7519 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7520 	 */
7521 	if (port == 0x7e &&
7522 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7523 		vcpu->arch.complete_userspace_io =
7524 			complete_fast_pio_out_port_0x7e;
7525 		kvm_skip_emulated_instruction(vcpu);
7526 	} else {
7527 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7528 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7529 	}
7530 	return 0;
7531 }
7532 
7533 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7534 {
7535 	unsigned long val;
7536 
7537 	/* We should only ever be called with arch.pio.count equal to 1 */
7538 	BUG_ON(vcpu->arch.pio.count != 1);
7539 
7540 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7541 		vcpu->arch.pio.count = 0;
7542 		return 1;
7543 	}
7544 
7545 	/* For size less than 4 we merge, else we zero extend */
7546 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7547 
7548 	/*
7549 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7550 	 * the copy and tracing
7551 	 */
7552 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7553 	kvm_rax_write(vcpu, val);
7554 
7555 	return kvm_skip_emulated_instruction(vcpu);
7556 }
7557 
7558 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7559 			   unsigned short port)
7560 {
7561 	unsigned long val;
7562 	int ret;
7563 
7564 	/* For size less than 4 we merge, else we zero extend */
7565 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7566 
7567 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7568 	if (ret) {
7569 		kvm_rax_write(vcpu, val);
7570 		return ret;
7571 	}
7572 
7573 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7574 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7575 
7576 	return 0;
7577 }
7578 
7579 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7580 {
7581 	int ret;
7582 
7583 	if (in)
7584 		ret = kvm_fast_pio_in(vcpu, size, port);
7585 	else
7586 		ret = kvm_fast_pio_out(vcpu, size, port);
7587 	return ret && kvm_skip_emulated_instruction(vcpu);
7588 }
7589 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7590 
7591 static int kvmclock_cpu_down_prep(unsigned int cpu)
7592 {
7593 	__this_cpu_write(cpu_tsc_khz, 0);
7594 	return 0;
7595 }
7596 
7597 static void tsc_khz_changed(void *data)
7598 {
7599 	struct cpufreq_freqs *freq = data;
7600 	unsigned long khz = 0;
7601 
7602 	if (data)
7603 		khz = freq->new;
7604 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7605 		khz = cpufreq_quick_get(raw_smp_processor_id());
7606 	if (!khz)
7607 		khz = tsc_khz;
7608 	__this_cpu_write(cpu_tsc_khz, khz);
7609 }
7610 
7611 #ifdef CONFIG_X86_64
7612 static void kvm_hyperv_tsc_notifier(void)
7613 {
7614 	struct kvm *kvm;
7615 	struct kvm_vcpu *vcpu;
7616 	int cpu;
7617 
7618 	mutex_lock(&kvm_lock);
7619 	list_for_each_entry(kvm, &vm_list, vm_list)
7620 		kvm_make_mclock_inprogress_request(kvm);
7621 
7622 	hyperv_stop_tsc_emulation();
7623 
7624 	/* TSC frequency always matches when on Hyper-V */
7625 	for_each_present_cpu(cpu)
7626 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7627 	kvm_max_guest_tsc_khz = tsc_khz;
7628 
7629 	list_for_each_entry(kvm, &vm_list, vm_list) {
7630 		struct kvm_arch *ka = &kvm->arch;
7631 
7632 		spin_lock(&ka->pvclock_gtod_sync_lock);
7633 
7634 		pvclock_update_vm_gtod_copy(kvm);
7635 
7636 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7637 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7638 
7639 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7640 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7641 
7642 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7643 	}
7644 	mutex_unlock(&kvm_lock);
7645 }
7646 #endif
7647 
7648 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7649 {
7650 	struct kvm *kvm;
7651 	struct kvm_vcpu *vcpu;
7652 	int i, send_ipi = 0;
7653 
7654 	/*
7655 	 * We allow guests to temporarily run on slowing clocks,
7656 	 * provided we notify them after, or to run on accelerating
7657 	 * clocks, provided we notify them before.  Thus time never
7658 	 * goes backwards.
7659 	 *
7660 	 * However, we have a problem.  We can't atomically update
7661 	 * the frequency of a given CPU from this function; it is
7662 	 * merely a notifier, which can be called from any CPU.
7663 	 * Changing the TSC frequency at arbitrary points in time
7664 	 * requires a recomputation of local variables related to
7665 	 * the TSC for each VCPU.  We must flag these local variables
7666 	 * to be updated and be sure the update takes place with the
7667 	 * new frequency before any guests proceed.
7668 	 *
7669 	 * Unfortunately, the combination of hotplug CPU and frequency
7670 	 * change creates an intractable locking scenario; the order
7671 	 * of when these callouts happen is undefined with respect to
7672 	 * CPU hotplug, and they can race with each other.  As such,
7673 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7674 	 * undefined; you can actually have a CPU frequency change take
7675 	 * place in between the computation of X and the setting of the
7676 	 * variable.  To protect against this problem, all updates of
7677 	 * the per_cpu tsc_khz variable are done in an interrupt
7678 	 * protected IPI, and all callers wishing to update the value
7679 	 * must wait for a synchronous IPI to complete (which is trivial
7680 	 * if the caller is on the CPU already).  This establishes the
7681 	 * necessary total order on variable updates.
7682 	 *
7683 	 * Note that because a guest time update may take place
7684 	 * anytime after the setting of the VCPU's request bit, the
7685 	 * correct TSC value must be set before the request.  However,
7686 	 * to ensure the update actually makes it to any guest which
7687 	 * starts running in hardware virtualization between the set
7688 	 * and the acquisition of the spinlock, we must also ping the
7689 	 * CPU after setting the request bit.
7690 	 *
7691 	 */
7692 
7693 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7694 
7695 	mutex_lock(&kvm_lock);
7696 	list_for_each_entry(kvm, &vm_list, vm_list) {
7697 		kvm_for_each_vcpu(i, vcpu, kvm) {
7698 			if (vcpu->cpu != cpu)
7699 				continue;
7700 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7701 			if (vcpu->cpu != raw_smp_processor_id())
7702 				send_ipi = 1;
7703 		}
7704 	}
7705 	mutex_unlock(&kvm_lock);
7706 
7707 	if (freq->old < freq->new && send_ipi) {
7708 		/*
7709 		 * We upscale the frequency.  Must make the guest
7710 		 * doesn't see old kvmclock values while running with
7711 		 * the new frequency, otherwise we risk the guest sees
7712 		 * time go backwards.
7713 		 *
7714 		 * In case we update the frequency for another cpu
7715 		 * (which might be in guest context) send an interrupt
7716 		 * to kick the cpu out of guest context.  Next time
7717 		 * guest context is entered kvmclock will be updated,
7718 		 * so the guest will not see stale values.
7719 		 */
7720 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7721 	}
7722 }
7723 
7724 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7725 				     void *data)
7726 {
7727 	struct cpufreq_freqs *freq = data;
7728 	int cpu;
7729 
7730 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7731 		return 0;
7732 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7733 		return 0;
7734 
7735 	for_each_cpu(cpu, freq->policy->cpus)
7736 		__kvmclock_cpufreq_notifier(freq, cpu);
7737 
7738 	return 0;
7739 }
7740 
7741 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7742 	.notifier_call  = kvmclock_cpufreq_notifier
7743 };
7744 
7745 static int kvmclock_cpu_online(unsigned int cpu)
7746 {
7747 	tsc_khz_changed(NULL);
7748 	return 0;
7749 }
7750 
7751 static void kvm_timer_init(void)
7752 {
7753 	max_tsc_khz = tsc_khz;
7754 
7755 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7756 #ifdef CONFIG_CPU_FREQ
7757 		struct cpufreq_policy *policy;
7758 		int cpu;
7759 
7760 		cpu = get_cpu();
7761 		policy = cpufreq_cpu_get(cpu);
7762 		if (policy) {
7763 			if (policy->cpuinfo.max_freq)
7764 				max_tsc_khz = policy->cpuinfo.max_freq;
7765 			cpufreq_cpu_put(policy);
7766 		}
7767 		put_cpu();
7768 #endif
7769 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7770 					  CPUFREQ_TRANSITION_NOTIFIER);
7771 	}
7772 
7773 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7774 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7775 }
7776 
7777 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7778 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7779 
7780 int kvm_is_in_guest(void)
7781 {
7782 	return __this_cpu_read(current_vcpu) != NULL;
7783 }
7784 
7785 static int kvm_is_user_mode(void)
7786 {
7787 	int user_mode = 3;
7788 
7789 	if (__this_cpu_read(current_vcpu))
7790 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7791 
7792 	return user_mode != 0;
7793 }
7794 
7795 static unsigned long kvm_get_guest_ip(void)
7796 {
7797 	unsigned long ip = 0;
7798 
7799 	if (__this_cpu_read(current_vcpu))
7800 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7801 
7802 	return ip;
7803 }
7804 
7805 static void kvm_handle_intel_pt_intr(void)
7806 {
7807 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7808 
7809 	kvm_make_request(KVM_REQ_PMI, vcpu);
7810 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7811 			(unsigned long *)&vcpu->arch.pmu.global_status);
7812 }
7813 
7814 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7815 	.is_in_guest		= kvm_is_in_guest,
7816 	.is_user_mode		= kvm_is_user_mode,
7817 	.get_guest_ip		= kvm_get_guest_ip,
7818 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7819 };
7820 
7821 #ifdef CONFIG_X86_64
7822 static void pvclock_gtod_update_fn(struct work_struct *work)
7823 {
7824 	struct kvm *kvm;
7825 
7826 	struct kvm_vcpu *vcpu;
7827 	int i;
7828 
7829 	mutex_lock(&kvm_lock);
7830 	list_for_each_entry(kvm, &vm_list, vm_list)
7831 		kvm_for_each_vcpu(i, vcpu, kvm)
7832 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7833 	atomic_set(&kvm_guest_has_master_clock, 0);
7834 	mutex_unlock(&kvm_lock);
7835 }
7836 
7837 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7838 
7839 /*
7840  * Notification about pvclock gtod data update.
7841  */
7842 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7843 			       void *priv)
7844 {
7845 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7846 	struct timekeeper *tk = priv;
7847 
7848 	update_pvclock_gtod(tk);
7849 
7850 	/* disable master clock if host does not trust, or does not
7851 	 * use, TSC based clocksource.
7852 	 */
7853 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7854 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7855 		queue_work(system_long_wq, &pvclock_gtod_work);
7856 
7857 	return 0;
7858 }
7859 
7860 static struct notifier_block pvclock_gtod_notifier = {
7861 	.notifier_call = pvclock_gtod_notify,
7862 };
7863 #endif
7864 
7865 int kvm_arch_init(void *opaque)
7866 {
7867 	struct kvm_x86_init_ops *ops = opaque;
7868 	int r;
7869 
7870 	if (kvm_x86_ops.hardware_enable) {
7871 		printk(KERN_ERR "kvm: already loaded the other module\n");
7872 		r = -EEXIST;
7873 		goto out;
7874 	}
7875 
7876 	if (!ops->cpu_has_kvm_support()) {
7877 		pr_err_ratelimited("kvm: no hardware support\n");
7878 		r = -EOPNOTSUPP;
7879 		goto out;
7880 	}
7881 	if (ops->disabled_by_bios()) {
7882 		pr_err_ratelimited("kvm: disabled by bios\n");
7883 		r = -EOPNOTSUPP;
7884 		goto out;
7885 	}
7886 
7887 	/*
7888 	 * KVM explicitly assumes that the guest has an FPU and
7889 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7890 	 * vCPU's FPU state as a fxregs_state struct.
7891 	 */
7892 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7893 		printk(KERN_ERR "kvm: inadequate fpu\n");
7894 		r = -EOPNOTSUPP;
7895 		goto out;
7896 	}
7897 
7898 	r = -ENOMEM;
7899 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7900 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7901 					  NULL);
7902 	if (!x86_fpu_cache) {
7903 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7904 		goto out;
7905 	}
7906 
7907 	x86_emulator_cache = kvm_alloc_emulator_cache();
7908 	if (!x86_emulator_cache) {
7909 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7910 		goto out_free_x86_fpu_cache;
7911 	}
7912 
7913 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7914 	if (!user_return_msrs) {
7915 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7916 		goto out_free_x86_emulator_cache;
7917 	}
7918 
7919 	r = kvm_mmu_module_init();
7920 	if (r)
7921 		goto out_free_percpu;
7922 
7923 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7924 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7925 			PT_PRESENT_MASK, 0, sme_me_mask);
7926 	kvm_timer_init();
7927 
7928 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7929 
7930 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7931 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7932 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7933 	}
7934 
7935 	kvm_lapic_init();
7936 	if (pi_inject_timer == -1)
7937 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7938 #ifdef CONFIG_X86_64
7939 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7940 
7941 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7942 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7943 #endif
7944 
7945 	return 0;
7946 
7947 out_free_percpu:
7948 	free_percpu(user_return_msrs);
7949 out_free_x86_emulator_cache:
7950 	kmem_cache_destroy(x86_emulator_cache);
7951 out_free_x86_fpu_cache:
7952 	kmem_cache_destroy(x86_fpu_cache);
7953 out:
7954 	return r;
7955 }
7956 
7957 void kvm_arch_exit(void)
7958 {
7959 #ifdef CONFIG_X86_64
7960 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7961 		clear_hv_tscchange_cb();
7962 #endif
7963 	kvm_lapic_exit();
7964 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7965 
7966 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7967 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7968 					    CPUFREQ_TRANSITION_NOTIFIER);
7969 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7970 #ifdef CONFIG_X86_64
7971 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7972 #endif
7973 	kvm_x86_ops.hardware_enable = NULL;
7974 	kvm_mmu_module_exit();
7975 	free_percpu(user_return_msrs);
7976 	kmem_cache_destroy(x86_fpu_cache);
7977 }
7978 
7979 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
7980 {
7981 	++vcpu->stat.halt_exits;
7982 	if (lapic_in_kernel(vcpu)) {
7983 		vcpu->arch.mp_state = state;
7984 		return 1;
7985 	} else {
7986 		vcpu->run->exit_reason = reason;
7987 		return 0;
7988 	}
7989 }
7990 
7991 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7992 {
7993 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
7994 }
7995 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7996 
7997 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7998 {
7999 	int ret = kvm_skip_emulated_instruction(vcpu);
8000 	/*
8001 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8002 	 * KVM_EXIT_DEBUG here.
8003 	 */
8004 	return kvm_vcpu_halt(vcpu) && ret;
8005 }
8006 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8007 
8008 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8009 {
8010 	int ret = kvm_skip_emulated_instruction(vcpu);
8011 
8012 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8013 }
8014 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8015 
8016 #ifdef CONFIG_X86_64
8017 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8018 			        unsigned long clock_type)
8019 {
8020 	struct kvm_clock_pairing clock_pairing;
8021 	struct timespec64 ts;
8022 	u64 cycle;
8023 	int ret;
8024 
8025 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8026 		return -KVM_EOPNOTSUPP;
8027 
8028 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8029 		return -KVM_EOPNOTSUPP;
8030 
8031 	clock_pairing.sec = ts.tv_sec;
8032 	clock_pairing.nsec = ts.tv_nsec;
8033 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8034 	clock_pairing.flags = 0;
8035 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8036 
8037 	ret = 0;
8038 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8039 			    sizeof(struct kvm_clock_pairing)))
8040 		ret = -KVM_EFAULT;
8041 
8042 	return ret;
8043 }
8044 #endif
8045 
8046 /*
8047  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8048  *
8049  * @apicid - apicid of vcpu to be kicked.
8050  */
8051 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8052 {
8053 	struct kvm_lapic_irq lapic_irq;
8054 
8055 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8056 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8057 	lapic_irq.level = 0;
8058 	lapic_irq.dest_id = apicid;
8059 	lapic_irq.msi_redir_hint = false;
8060 
8061 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8062 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8063 }
8064 
8065 bool kvm_apicv_activated(struct kvm *kvm)
8066 {
8067 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8068 }
8069 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8070 
8071 void kvm_apicv_init(struct kvm *kvm, bool enable)
8072 {
8073 	if (enable)
8074 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8075 			  &kvm->arch.apicv_inhibit_reasons);
8076 	else
8077 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8078 			&kvm->arch.apicv_inhibit_reasons);
8079 }
8080 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8081 
8082 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8083 {
8084 	struct kvm_vcpu *target = NULL;
8085 	struct kvm_apic_map *map;
8086 
8087 	rcu_read_lock();
8088 	map = rcu_dereference(kvm->arch.apic_map);
8089 
8090 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8091 		target = map->phys_map[dest_id]->vcpu;
8092 
8093 	rcu_read_unlock();
8094 
8095 	if (target && READ_ONCE(target->ready))
8096 		kvm_vcpu_yield_to(target);
8097 }
8098 
8099 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8100 {
8101 	unsigned long nr, a0, a1, a2, a3, ret;
8102 	int op_64_bit;
8103 
8104 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8105 		return kvm_hv_hypercall(vcpu);
8106 
8107 	nr = kvm_rax_read(vcpu);
8108 	a0 = kvm_rbx_read(vcpu);
8109 	a1 = kvm_rcx_read(vcpu);
8110 	a2 = kvm_rdx_read(vcpu);
8111 	a3 = kvm_rsi_read(vcpu);
8112 
8113 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8114 
8115 	op_64_bit = is_64_bit_mode(vcpu);
8116 	if (!op_64_bit) {
8117 		nr &= 0xFFFFFFFF;
8118 		a0 &= 0xFFFFFFFF;
8119 		a1 &= 0xFFFFFFFF;
8120 		a2 &= 0xFFFFFFFF;
8121 		a3 &= 0xFFFFFFFF;
8122 	}
8123 
8124 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8125 		ret = -KVM_EPERM;
8126 		goto out;
8127 	}
8128 
8129 	ret = -KVM_ENOSYS;
8130 
8131 	switch (nr) {
8132 	case KVM_HC_VAPIC_POLL_IRQ:
8133 		ret = 0;
8134 		break;
8135 	case KVM_HC_KICK_CPU:
8136 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8137 			break;
8138 
8139 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8140 		kvm_sched_yield(vcpu->kvm, a1);
8141 		ret = 0;
8142 		break;
8143 #ifdef CONFIG_X86_64
8144 	case KVM_HC_CLOCK_PAIRING:
8145 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8146 		break;
8147 #endif
8148 	case KVM_HC_SEND_IPI:
8149 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8150 			break;
8151 
8152 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8153 		break;
8154 	case KVM_HC_SCHED_YIELD:
8155 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8156 			break;
8157 
8158 		kvm_sched_yield(vcpu->kvm, a0);
8159 		ret = 0;
8160 		break;
8161 	default:
8162 		ret = -KVM_ENOSYS;
8163 		break;
8164 	}
8165 out:
8166 	if (!op_64_bit)
8167 		ret = (u32)ret;
8168 	kvm_rax_write(vcpu, ret);
8169 
8170 	++vcpu->stat.hypercalls;
8171 	return kvm_skip_emulated_instruction(vcpu);
8172 }
8173 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8174 
8175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8176 {
8177 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8178 	char instruction[3];
8179 	unsigned long rip = kvm_rip_read(vcpu);
8180 
8181 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8182 
8183 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8184 		&ctxt->exception);
8185 }
8186 
8187 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8188 {
8189 	return vcpu->run->request_interrupt_window &&
8190 		likely(!pic_in_kernel(vcpu->kvm));
8191 }
8192 
8193 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8194 {
8195 	struct kvm_run *kvm_run = vcpu->run;
8196 
8197 	/*
8198 	 * if_flag is obsolete and useless, so do not bother
8199 	 * setting it for SEV-ES guests.  Userspace can just
8200 	 * use kvm_run->ready_for_interrupt_injection.
8201 	 */
8202 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8203 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8204 
8205 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8206 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8207 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8208 	kvm_run->ready_for_interrupt_injection =
8209 		pic_in_kernel(vcpu->kvm) ||
8210 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8211 }
8212 
8213 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8214 {
8215 	int max_irr, tpr;
8216 
8217 	if (!kvm_x86_ops.update_cr8_intercept)
8218 		return;
8219 
8220 	if (!lapic_in_kernel(vcpu))
8221 		return;
8222 
8223 	if (vcpu->arch.apicv_active)
8224 		return;
8225 
8226 	if (!vcpu->arch.apic->vapic_addr)
8227 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8228 	else
8229 		max_irr = -1;
8230 
8231 	if (max_irr != -1)
8232 		max_irr >>= 4;
8233 
8234 	tpr = kvm_lapic_get_cr8(vcpu);
8235 
8236 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8237 }
8238 
8239 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8240 {
8241 	int r;
8242 	bool can_inject = true;
8243 
8244 	/* try to reinject previous events if any */
8245 
8246 	if (vcpu->arch.exception.injected) {
8247 		kvm_x86_ops.queue_exception(vcpu);
8248 		can_inject = false;
8249 	}
8250 	/*
8251 	 * Do not inject an NMI or interrupt if there is a pending
8252 	 * exception.  Exceptions and interrupts are recognized at
8253 	 * instruction boundaries, i.e. the start of an instruction.
8254 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8255 	 * NMIs and interrupts, i.e. traps are recognized before an
8256 	 * NMI/interrupt that's pending on the same instruction.
8257 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8258 	 * priority, but are only generated (pended) during instruction
8259 	 * execution, i.e. a pending fault-like exception means the
8260 	 * fault occurred on the *previous* instruction and must be
8261 	 * serviced prior to recognizing any new events in order to
8262 	 * fully complete the previous instruction.
8263 	 */
8264 	else if (!vcpu->arch.exception.pending) {
8265 		if (vcpu->arch.nmi_injected) {
8266 			kvm_x86_ops.set_nmi(vcpu);
8267 			can_inject = false;
8268 		} else if (vcpu->arch.interrupt.injected) {
8269 			kvm_x86_ops.set_irq(vcpu);
8270 			can_inject = false;
8271 		}
8272 	}
8273 
8274 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8275 		     vcpu->arch.exception.pending);
8276 
8277 	/*
8278 	 * Call check_nested_events() even if we reinjected a previous event
8279 	 * in order for caller to determine if it should require immediate-exit
8280 	 * from L2 to L1 due to pending L1 events which require exit
8281 	 * from L2 to L1.
8282 	 */
8283 	if (is_guest_mode(vcpu)) {
8284 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8285 		if (r < 0)
8286 			goto busy;
8287 	}
8288 
8289 	/* try to inject new event if pending */
8290 	if (vcpu->arch.exception.pending) {
8291 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8292 					vcpu->arch.exception.has_error_code,
8293 					vcpu->arch.exception.error_code);
8294 
8295 		vcpu->arch.exception.pending = false;
8296 		vcpu->arch.exception.injected = true;
8297 
8298 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8299 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8300 					     X86_EFLAGS_RF);
8301 
8302 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8303 			kvm_deliver_exception_payload(vcpu);
8304 			if (vcpu->arch.dr7 & DR7_GD) {
8305 				vcpu->arch.dr7 &= ~DR7_GD;
8306 				kvm_update_dr7(vcpu);
8307 			}
8308 		}
8309 
8310 		kvm_x86_ops.queue_exception(vcpu);
8311 		can_inject = false;
8312 	}
8313 
8314 	/*
8315 	 * Finally, inject interrupt events.  If an event cannot be injected
8316 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8317 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8318 	 * and can architecturally be injected, but we cannot do it right now:
8319 	 * an interrupt could have arrived just now and we have to inject it
8320 	 * as a vmexit, or there could already an event in the queue, which is
8321 	 * indicated by can_inject.  In that case we request an immediate exit
8322 	 * in order to make progress and get back here for another iteration.
8323 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8324 	 */
8325 	if (vcpu->arch.smi_pending) {
8326 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8327 		if (r < 0)
8328 			goto busy;
8329 		if (r) {
8330 			vcpu->arch.smi_pending = false;
8331 			++vcpu->arch.smi_count;
8332 			enter_smm(vcpu);
8333 			can_inject = false;
8334 		} else
8335 			kvm_x86_ops.enable_smi_window(vcpu);
8336 	}
8337 
8338 	if (vcpu->arch.nmi_pending) {
8339 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8340 		if (r < 0)
8341 			goto busy;
8342 		if (r) {
8343 			--vcpu->arch.nmi_pending;
8344 			vcpu->arch.nmi_injected = true;
8345 			kvm_x86_ops.set_nmi(vcpu);
8346 			can_inject = false;
8347 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8348 		}
8349 		if (vcpu->arch.nmi_pending)
8350 			kvm_x86_ops.enable_nmi_window(vcpu);
8351 	}
8352 
8353 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8354 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8355 		if (r < 0)
8356 			goto busy;
8357 		if (r) {
8358 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8359 			kvm_x86_ops.set_irq(vcpu);
8360 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8361 		}
8362 		if (kvm_cpu_has_injectable_intr(vcpu))
8363 			kvm_x86_ops.enable_irq_window(vcpu);
8364 	}
8365 
8366 	if (is_guest_mode(vcpu) &&
8367 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8368 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8369 		*req_immediate_exit = true;
8370 
8371 	WARN_ON(vcpu->arch.exception.pending);
8372 	return;
8373 
8374 busy:
8375 	*req_immediate_exit = true;
8376 	return;
8377 }
8378 
8379 static void process_nmi(struct kvm_vcpu *vcpu)
8380 {
8381 	unsigned limit = 2;
8382 
8383 	/*
8384 	 * x86 is limited to one NMI running, and one NMI pending after it.
8385 	 * If an NMI is already in progress, limit further NMIs to just one.
8386 	 * Otherwise, allow two (and we'll inject the first one immediately).
8387 	 */
8388 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8389 		limit = 1;
8390 
8391 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8392 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8393 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8394 }
8395 
8396 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8397 {
8398 	u32 flags = 0;
8399 	flags |= seg->g       << 23;
8400 	flags |= seg->db      << 22;
8401 	flags |= seg->l       << 21;
8402 	flags |= seg->avl     << 20;
8403 	flags |= seg->present << 15;
8404 	flags |= seg->dpl     << 13;
8405 	flags |= seg->s       << 12;
8406 	flags |= seg->type    << 8;
8407 	return flags;
8408 }
8409 
8410 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8411 {
8412 	struct kvm_segment seg;
8413 	int offset;
8414 
8415 	kvm_get_segment(vcpu, &seg, n);
8416 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8417 
8418 	if (n < 3)
8419 		offset = 0x7f84 + n * 12;
8420 	else
8421 		offset = 0x7f2c + (n - 3) * 12;
8422 
8423 	put_smstate(u32, buf, offset + 8, seg.base);
8424 	put_smstate(u32, buf, offset + 4, seg.limit);
8425 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8426 }
8427 
8428 #ifdef CONFIG_X86_64
8429 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8430 {
8431 	struct kvm_segment seg;
8432 	int offset;
8433 	u16 flags;
8434 
8435 	kvm_get_segment(vcpu, &seg, n);
8436 	offset = 0x7e00 + n * 16;
8437 
8438 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8439 	put_smstate(u16, buf, offset, seg.selector);
8440 	put_smstate(u16, buf, offset + 2, flags);
8441 	put_smstate(u32, buf, offset + 4, seg.limit);
8442 	put_smstate(u64, buf, offset + 8, seg.base);
8443 }
8444 #endif
8445 
8446 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8447 {
8448 	struct desc_ptr dt;
8449 	struct kvm_segment seg;
8450 	unsigned long val;
8451 	int i;
8452 
8453 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8454 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8455 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8456 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8457 
8458 	for (i = 0; i < 8; i++)
8459 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8460 
8461 	kvm_get_dr(vcpu, 6, &val);
8462 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8463 	kvm_get_dr(vcpu, 7, &val);
8464 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8465 
8466 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8467 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8468 	put_smstate(u32, buf, 0x7f64, seg.base);
8469 	put_smstate(u32, buf, 0x7f60, seg.limit);
8470 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8471 
8472 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8473 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8474 	put_smstate(u32, buf, 0x7f80, seg.base);
8475 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8476 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8477 
8478 	kvm_x86_ops.get_gdt(vcpu, &dt);
8479 	put_smstate(u32, buf, 0x7f74, dt.address);
8480 	put_smstate(u32, buf, 0x7f70, dt.size);
8481 
8482 	kvm_x86_ops.get_idt(vcpu, &dt);
8483 	put_smstate(u32, buf, 0x7f58, dt.address);
8484 	put_smstate(u32, buf, 0x7f54, dt.size);
8485 
8486 	for (i = 0; i < 6; i++)
8487 		enter_smm_save_seg_32(vcpu, buf, i);
8488 
8489 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8490 
8491 	/* revision id */
8492 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8493 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8494 }
8495 
8496 #ifdef CONFIG_X86_64
8497 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8498 {
8499 	struct desc_ptr dt;
8500 	struct kvm_segment seg;
8501 	unsigned long val;
8502 	int i;
8503 
8504 	for (i = 0; i < 16; i++)
8505 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8506 
8507 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8508 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8509 
8510 	kvm_get_dr(vcpu, 6, &val);
8511 	put_smstate(u64, buf, 0x7f68, val);
8512 	kvm_get_dr(vcpu, 7, &val);
8513 	put_smstate(u64, buf, 0x7f60, val);
8514 
8515 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8516 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8517 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8518 
8519 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8520 
8521 	/* revision id */
8522 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8523 
8524 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8525 
8526 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8527 	put_smstate(u16, buf, 0x7e90, seg.selector);
8528 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8529 	put_smstate(u32, buf, 0x7e94, seg.limit);
8530 	put_smstate(u64, buf, 0x7e98, seg.base);
8531 
8532 	kvm_x86_ops.get_idt(vcpu, &dt);
8533 	put_smstate(u32, buf, 0x7e84, dt.size);
8534 	put_smstate(u64, buf, 0x7e88, dt.address);
8535 
8536 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8537 	put_smstate(u16, buf, 0x7e70, seg.selector);
8538 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8539 	put_smstate(u32, buf, 0x7e74, seg.limit);
8540 	put_smstate(u64, buf, 0x7e78, seg.base);
8541 
8542 	kvm_x86_ops.get_gdt(vcpu, &dt);
8543 	put_smstate(u32, buf, 0x7e64, dt.size);
8544 	put_smstate(u64, buf, 0x7e68, dt.address);
8545 
8546 	for (i = 0; i < 6; i++)
8547 		enter_smm_save_seg_64(vcpu, buf, i);
8548 }
8549 #endif
8550 
8551 static void enter_smm(struct kvm_vcpu *vcpu)
8552 {
8553 	struct kvm_segment cs, ds;
8554 	struct desc_ptr dt;
8555 	char buf[512];
8556 	u32 cr0;
8557 
8558 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8559 	memset(buf, 0, 512);
8560 #ifdef CONFIG_X86_64
8561 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8562 		enter_smm_save_state_64(vcpu, buf);
8563 	else
8564 #endif
8565 		enter_smm_save_state_32(vcpu, buf);
8566 
8567 	/*
8568 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8569 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8570 	 * the SMM state-save area.
8571 	 */
8572 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8573 
8574 	vcpu->arch.hflags |= HF_SMM_MASK;
8575 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8576 
8577 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8578 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8579 	else
8580 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8581 
8582 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8583 	kvm_rip_write(vcpu, 0x8000);
8584 
8585 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8586 	kvm_x86_ops.set_cr0(vcpu, cr0);
8587 	vcpu->arch.cr0 = cr0;
8588 
8589 	kvm_x86_ops.set_cr4(vcpu, 0);
8590 
8591 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8592 	dt.address = dt.size = 0;
8593 	kvm_x86_ops.set_idt(vcpu, &dt);
8594 
8595 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8596 
8597 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8598 	cs.base = vcpu->arch.smbase;
8599 
8600 	ds.selector = 0;
8601 	ds.base = 0;
8602 
8603 	cs.limit    = ds.limit = 0xffffffff;
8604 	cs.type     = ds.type = 0x3;
8605 	cs.dpl      = ds.dpl = 0;
8606 	cs.db       = ds.db = 0;
8607 	cs.s        = ds.s = 1;
8608 	cs.l        = ds.l = 0;
8609 	cs.g        = ds.g = 1;
8610 	cs.avl      = ds.avl = 0;
8611 	cs.present  = ds.present = 1;
8612 	cs.unusable = ds.unusable = 0;
8613 	cs.padding  = ds.padding = 0;
8614 
8615 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8616 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8617 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8618 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8619 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8620 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8621 
8622 #ifdef CONFIG_X86_64
8623 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8624 		kvm_x86_ops.set_efer(vcpu, 0);
8625 #endif
8626 
8627 	kvm_update_cpuid_runtime(vcpu);
8628 	kvm_mmu_reset_context(vcpu);
8629 }
8630 
8631 static void process_smi(struct kvm_vcpu *vcpu)
8632 {
8633 	vcpu->arch.smi_pending = true;
8634 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8635 }
8636 
8637 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8638 				       unsigned long *vcpu_bitmap)
8639 {
8640 	cpumask_var_t cpus;
8641 
8642 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8643 
8644 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8645 				    NULL, vcpu_bitmap, cpus);
8646 
8647 	free_cpumask_var(cpus);
8648 }
8649 
8650 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8651 {
8652 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8653 }
8654 
8655 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8656 {
8657 	if (!lapic_in_kernel(vcpu))
8658 		return;
8659 
8660 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8661 	kvm_apic_update_apicv(vcpu);
8662 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8663 }
8664 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8665 
8666 /*
8667  * NOTE: Do not hold any lock prior to calling this.
8668  *
8669  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8670  * locked, because it calls __x86_set_memory_region() which does
8671  * synchronize_srcu(&kvm->srcu).
8672  */
8673 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8674 {
8675 	struct kvm_vcpu *except;
8676 	unsigned long old, new, expected;
8677 
8678 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8679 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8680 		return;
8681 
8682 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8683 	do {
8684 		expected = new = old;
8685 		if (activate)
8686 			__clear_bit(bit, &new);
8687 		else
8688 			__set_bit(bit, &new);
8689 		if (new == old)
8690 			break;
8691 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8692 	} while (old != expected);
8693 
8694 	if (!!old == !!new)
8695 		return;
8696 
8697 	trace_kvm_apicv_update_request(activate, bit);
8698 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8699 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8700 
8701 	/*
8702 	 * Sending request to update APICV for all other vcpus,
8703 	 * while update the calling vcpu immediately instead of
8704 	 * waiting for another #VMEXIT to handle the request.
8705 	 */
8706 	except = kvm_get_running_vcpu();
8707 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8708 					 except);
8709 	if (except)
8710 		kvm_vcpu_update_apicv(except);
8711 }
8712 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8713 
8714 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8715 {
8716 	if (!kvm_apic_present(vcpu))
8717 		return;
8718 
8719 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8720 
8721 	if (irqchip_split(vcpu->kvm))
8722 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8723 	else {
8724 		if (vcpu->arch.apicv_active)
8725 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8726 		if (ioapic_in_kernel(vcpu->kvm))
8727 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8728 	}
8729 
8730 	if (is_guest_mode(vcpu))
8731 		vcpu->arch.load_eoi_exitmap_pending = true;
8732 	else
8733 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8734 }
8735 
8736 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8737 {
8738 	u64 eoi_exit_bitmap[4];
8739 
8740 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8741 		return;
8742 
8743 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8744 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8745 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8746 }
8747 
8748 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8749 					    unsigned long start, unsigned long end)
8750 {
8751 	unsigned long apic_address;
8752 
8753 	/*
8754 	 * The physical address of apic access page is stored in the VMCS.
8755 	 * Update it when it becomes invalid.
8756 	 */
8757 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8758 	if (start <= apic_address && apic_address < end)
8759 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8760 }
8761 
8762 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8763 {
8764 	if (!lapic_in_kernel(vcpu))
8765 		return;
8766 
8767 	if (!kvm_x86_ops.set_apic_access_page_addr)
8768 		return;
8769 
8770 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8771 }
8772 
8773 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8774 {
8775 	smp_send_reschedule(vcpu->cpu);
8776 }
8777 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8778 
8779 /*
8780  * Returns 1 to let vcpu_run() continue the guest execution loop without
8781  * exiting to the userspace.  Otherwise, the value will be returned to the
8782  * userspace.
8783  */
8784 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8785 {
8786 	int r;
8787 	bool req_int_win =
8788 		dm_request_for_irq_injection(vcpu) &&
8789 		kvm_cpu_accept_dm_intr(vcpu);
8790 	fastpath_t exit_fastpath;
8791 
8792 	bool req_immediate_exit = false;
8793 
8794 	/* Forbid vmenter if vcpu dirty ring is soft-full */
8795 	if (unlikely(vcpu->kvm->dirty_ring_size &&
8796 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8797 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8798 		trace_kvm_dirty_ring_exit(vcpu);
8799 		r = 0;
8800 		goto out;
8801 	}
8802 
8803 	if (kvm_request_pending(vcpu)) {
8804 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8805 			if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
8806 				;
8807 			else if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8808 				r = 0;
8809 				goto out;
8810 			}
8811 		}
8812 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8813 			kvm_mmu_unload(vcpu);
8814 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8815 			__kvm_migrate_timers(vcpu);
8816 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8817 			kvm_gen_update_masterclock(vcpu->kvm);
8818 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8819 			kvm_gen_kvmclock_update(vcpu);
8820 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8821 			r = kvm_guest_time_update(vcpu);
8822 			if (unlikely(r))
8823 				goto out;
8824 		}
8825 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8826 			kvm_mmu_sync_roots(vcpu);
8827 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8828 			kvm_mmu_load_pgd(vcpu);
8829 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8830 			kvm_vcpu_flush_tlb_all(vcpu);
8831 
8832 			/* Flushing all ASIDs flushes the current ASID... */
8833 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8834 		}
8835 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8836 			kvm_vcpu_flush_tlb_current(vcpu);
8837 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8838 			kvm_vcpu_flush_tlb_guest(vcpu);
8839 
8840 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8841 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8842 			r = 0;
8843 			goto out;
8844 		}
8845 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8846 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8847 			vcpu->mmio_needed = 0;
8848 			r = 0;
8849 			goto out;
8850 		}
8851 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8852 			/* Page is swapped out. Do synthetic halt */
8853 			vcpu->arch.apf.halted = true;
8854 			r = 1;
8855 			goto out;
8856 		}
8857 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8858 			record_steal_time(vcpu);
8859 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8860 			process_smi(vcpu);
8861 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8862 			process_nmi(vcpu);
8863 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8864 			kvm_pmu_handle_event(vcpu);
8865 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8866 			kvm_pmu_deliver_pmi(vcpu);
8867 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8868 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8869 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8870 				     vcpu->arch.ioapic_handled_vectors)) {
8871 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8872 				vcpu->run->eoi.vector =
8873 						vcpu->arch.pending_ioapic_eoi;
8874 				r = 0;
8875 				goto out;
8876 			}
8877 		}
8878 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8879 			vcpu_scan_ioapic(vcpu);
8880 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8881 			vcpu_load_eoi_exitmap(vcpu);
8882 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8883 			kvm_vcpu_reload_apic_access_page(vcpu);
8884 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8885 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8886 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8887 			r = 0;
8888 			goto out;
8889 		}
8890 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8891 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8892 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8893 			r = 0;
8894 			goto out;
8895 		}
8896 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8897 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8898 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8899 			r = 0;
8900 			goto out;
8901 		}
8902 
8903 		/*
8904 		 * KVM_REQ_HV_STIMER has to be processed after
8905 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8906 		 * depend on the guest clock being up-to-date
8907 		 */
8908 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8909 			kvm_hv_process_stimers(vcpu);
8910 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8911 			kvm_vcpu_update_apicv(vcpu);
8912 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8913 			kvm_check_async_pf_completion(vcpu);
8914 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8915 			kvm_x86_ops.msr_filter_changed(vcpu);
8916 	}
8917 
8918 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8919 		++vcpu->stat.req_event;
8920 		kvm_apic_accept_events(vcpu);
8921 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8922 			r = 1;
8923 			goto out;
8924 		}
8925 
8926 		inject_pending_event(vcpu, &req_immediate_exit);
8927 		if (req_int_win)
8928 			kvm_x86_ops.enable_irq_window(vcpu);
8929 
8930 		if (kvm_lapic_enabled(vcpu)) {
8931 			update_cr8_intercept(vcpu);
8932 			kvm_lapic_sync_to_vapic(vcpu);
8933 		}
8934 	}
8935 
8936 	r = kvm_mmu_reload(vcpu);
8937 	if (unlikely(r)) {
8938 		goto cancel_injection;
8939 	}
8940 
8941 	preempt_disable();
8942 
8943 	kvm_x86_ops.prepare_guest_switch(vcpu);
8944 
8945 	/*
8946 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8947 	 * IPI are then delayed after guest entry, which ensures that they
8948 	 * result in virtual interrupt delivery.
8949 	 */
8950 	local_irq_disable();
8951 	vcpu->mode = IN_GUEST_MODE;
8952 
8953 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8954 
8955 	/*
8956 	 * 1) We should set ->mode before checking ->requests.  Please see
8957 	 * the comment in kvm_vcpu_exiting_guest_mode().
8958 	 *
8959 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8960 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8961 	 * (see vmx_deliver_posted_interrupt).
8962 	 *
8963 	 * 3) This also orders the write to mode from any reads to the page
8964 	 * tables done while the VCPU is running.  Please see the comment
8965 	 * in kvm_flush_remote_tlbs.
8966 	 */
8967 	smp_mb__after_srcu_read_unlock();
8968 
8969 	/*
8970 	 * This handles the case where a posted interrupt was
8971 	 * notified with kvm_vcpu_kick.
8972 	 */
8973 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8974 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8975 
8976 	if (kvm_vcpu_exit_request(vcpu)) {
8977 		vcpu->mode = OUTSIDE_GUEST_MODE;
8978 		smp_wmb();
8979 		local_irq_enable();
8980 		preempt_enable();
8981 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8982 		r = 1;
8983 		goto cancel_injection;
8984 	}
8985 
8986 	if (req_immediate_exit) {
8987 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8988 		kvm_x86_ops.request_immediate_exit(vcpu);
8989 	}
8990 
8991 	trace_kvm_entry(vcpu);
8992 
8993 	fpregs_assert_state_consistent();
8994 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8995 		switch_fpu_return();
8996 
8997 	if (unlikely(vcpu->arch.switch_db_regs)) {
8998 		set_debugreg(0, 7);
8999 		set_debugreg(vcpu->arch.eff_db[0], 0);
9000 		set_debugreg(vcpu->arch.eff_db[1], 1);
9001 		set_debugreg(vcpu->arch.eff_db[2], 2);
9002 		set_debugreg(vcpu->arch.eff_db[3], 3);
9003 		set_debugreg(vcpu->arch.dr6, 6);
9004 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9005 	}
9006 
9007 	exit_fastpath = kvm_x86_ops.run(vcpu);
9008 
9009 	/*
9010 	 * Do this here before restoring debug registers on the host.  And
9011 	 * since we do this before handling the vmexit, a DR access vmexit
9012 	 * can (a) read the correct value of the debug registers, (b) set
9013 	 * KVM_DEBUGREG_WONT_EXIT again.
9014 	 */
9015 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9016 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9017 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9018 		kvm_update_dr0123(vcpu);
9019 		kvm_update_dr7(vcpu);
9020 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9021 	}
9022 
9023 	/*
9024 	 * If the guest has used debug registers, at least dr7
9025 	 * will be disabled while returning to the host.
9026 	 * If we don't have active breakpoints in the host, we don't
9027 	 * care about the messed up debug address registers. But if
9028 	 * we have some of them active, restore the old state.
9029 	 */
9030 	if (hw_breakpoint_active())
9031 		hw_breakpoint_restore();
9032 
9033 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9034 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9035 
9036 	vcpu->mode = OUTSIDE_GUEST_MODE;
9037 	smp_wmb();
9038 
9039 	kvm_x86_ops.handle_exit_irqoff(vcpu);
9040 
9041 	/*
9042 	 * Consume any pending interrupts, including the possible source of
9043 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9044 	 * An instruction is required after local_irq_enable() to fully unblock
9045 	 * interrupts on processors that implement an interrupt shadow, the
9046 	 * stat.exits increment will do nicely.
9047 	 */
9048 	kvm_before_interrupt(vcpu);
9049 	local_irq_enable();
9050 	++vcpu->stat.exits;
9051 	local_irq_disable();
9052 	kvm_after_interrupt(vcpu);
9053 
9054 	if (lapic_in_kernel(vcpu)) {
9055 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9056 		if (delta != S64_MIN) {
9057 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9058 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9059 		}
9060 	}
9061 
9062 	local_irq_enable();
9063 	preempt_enable();
9064 
9065 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9066 
9067 	/*
9068 	 * Profile KVM exit RIPs:
9069 	 */
9070 	if (unlikely(prof_on == KVM_PROFILING)) {
9071 		unsigned long rip = kvm_rip_read(vcpu);
9072 		profile_hit(KVM_PROFILING, (void *)rip);
9073 	}
9074 
9075 	if (unlikely(vcpu->arch.tsc_always_catchup))
9076 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9077 
9078 	if (vcpu->arch.apic_attention)
9079 		kvm_lapic_sync_from_vapic(vcpu);
9080 
9081 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9082 	return r;
9083 
9084 cancel_injection:
9085 	if (req_immediate_exit)
9086 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9087 	kvm_x86_ops.cancel_injection(vcpu);
9088 	if (unlikely(vcpu->arch.apic_attention))
9089 		kvm_lapic_sync_from_vapic(vcpu);
9090 out:
9091 	return r;
9092 }
9093 
9094 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9095 {
9096 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9097 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9098 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9099 		kvm_vcpu_block(vcpu);
9100 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9101 
9102 		if (kvm_x86_ops.post_block)
9103 			kvm_x86_ops.post_block(vcpu);
9104 
9105 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9106 			return 1;
9107 	}
9108 
9109 	kvm_apic_accept_events(vcpu);
9110 	switch(vcpu->arch.mp_state) {
9111 	case KVM_MP_STATE_HALTED:
9112 	case KVM_MP_STATE_AP_RESET_HOLD:
9113 		vcpu->arch.pv.pv_unhalted = false;
9114 		vcpu->arch.mp_state =
9115 			KVM_MP_STATE_RUNNABLE;
9116 		fallthrough;
9117 	case KVM_MP_STATE_RUNNABLE:
9118 		vcpu->arch.apf.halted = false;
9119 		break;
9120 	case KVM_MP_STATE_INIT_RECEIVED:
9121 		break;
9122 	default:
9123 		return -EINTR;
9124 	}
9125 	return 1;
9126 }
9127 
9128 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9129 {
9130 	if (is_guest_mode(vcpu))
9131 		kvm_x86_ops.nested_ops->check_events(vcpu);
9132 
9133 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9134 		!vcpu->arch.apf.halted);
9135 }
9136 
9137 static int vcpu_run(struct kvm_vcpu *vcpu)
9138 {
9139 	int r;
9140 	struct kvm *kvm = vcpu->kvm;
9141 
9142 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9143 	vcpu->arch.l1tf_flush_l1d = true;
9144 
9145 	for (;;) {
9146 		if (kvm_vcpu_running(vcpu)) {
9147 			r = vcpu_enter_guest(vcpu);
9148 		} else {
9149 			r = vcpu_block(kvm, vcpu);
9150 		}
9151 
9152 		if (r <= 0)
9153 			break;
9154 
9155 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9156 		if (kvm_cpu_has_pending_timer(vcpu))
9157 			kvm_inject_pending_timer_irqs(vcpu);
9158 
9159 		if (dm_request_for_irq_injection(vcpu) &&
9160 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9161 			r = 0;
9162 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9163 			++vcpu->stat.request_irq_exits;
9164 			break;
9165 		}
9166 
9167 		if (__xfer_to_guest_mode_work_pending()) {
9168 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9169 			r = xfer_to_guest_mode_handle_work(vcpu);
9170 			if (r)
9171 				return r;
9172 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9173 		}
9174 	}
9175 
9176 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9177 
9178 	return r;
9179 }
9180 
9181 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9182 {
9183 	int r;
9184 
9185 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9186 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9187 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9188 	return r;
9189 }
9190 
9191 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9192 {
9193 	BUG_ON(!vcpu->arch.pio.count);
9194 
9195 	return complete_emulated_io(vcpu);
9196 }
9197 
9198 /*
9199  * Implements the following, as a state machine:
9200  *
9201  * read:
9202  *   for each fragment
9203  *     for each mmio piece in the fragment
9204  *       write gpa, len
9205  *       exit
9206  *       copy data
9207  *   execute insn
9208  *
9209  * write:
9210  *   for each fragment
9211  *     for each mmio piece in the fragment
9212  *       write gpa, len
9213  *       copy data
9214  *       exit
9215  */
9216 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9217 {
9218 	struct kvm_run *run = vcpu->run;
9219 	struct kvm_mmio_fragment *frag;
9220 	unsigned len;
9221 
9222 	BUG_ON(!vcpu->mmio_needed);
9223 
9224 	/* Complete previous fragment */
9225 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9226 	len = min(8u, frag->len);
9227 	if (!vcpu->mmio_is_write)
9228 		memcpy(frag->data, run->mmio.data, len);
9229 
9230 	if (frag->len <= 8) {
9231 		/* Switch to the next fragment. */
9232 		frag++;
9233 		vcpu->mmio_cur_fragment++;
9234 	} else {
9235 		/* Go forward to the next mmio piece. */
9236 		frag->data += len;
9237 		frag->gpa += len;
9238 		frag->len -= len;
9239 	}
9240 
9241 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9242 		vcpu->mmio_needed = 0;
9243 
9244 		/* FIXME: return into emulator if single-stepping.  */
9245 		if (vcpu->mmio_is_write)
9246 			return 1;
9247 		vcpu->mmio_read_completed = 1;
9248 		return complete_emulated_io(vcpu);
9249 	}
9250 
9251 	run->exit_reason = KVM_EXIT_MMIO;
9252 	run->mmio.phys_addr = frag->gpa;
9253 	if (vcpu->mmio_is_write)
9254 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9255 	run->mmio.len = min(8u, frag->len);
9256 	run->mmio.is_write = vcpu->mmio_is_write;
9257 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9258 	return 0;
9259 }
9260 
9261 static void kvm_save_current_fpu(struct fpu *fpu)
9262 {
9263 	/*
9264 	 * If the target FPU state is not resident in the CPU registers, just
9265 	 * memcpy() from current, else save CPU state directly to the target.
9266 	 */
9267 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9268 		memcpy(&fpu->state, &current->thread.fpu.state,
9269 		       fpu_kernel_xstate_size);
9270 	else
9271 		copy_fpregs_to_fpstate(fpu);
9272 }
9273 
9274 /* Swap (qemu) user FPU context for the guest FPU context. */
9275 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9276 {
9277 	fpregs_lock();
9278 
9279 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9280 
9281 	/*
9282 	 * Guests with protected state can't have it set by the hypervisor,
9283 	 * so skip trying to set it.
9284 	 */
9285 	if (vcpu->arch.guest_fpu)
9286 		/* PKRU is separately restored in kvm_x86_ops.run. */
9287 		__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9288 					~XFEATURE_MASK_PKRU);
9289 
9290 	fpregs_mark_activate();
9291 	fpregs_unlock();
9292 
9293 	trace_kvm_fpu(1);
9294 }
9295 
9296 /* When vcpu_run ends, restore user space FPU context. */
9297 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9298 {
9299 	fpregs_lock();
9300 
9301 	/*
9302 	 * Guests with protected state can't have it read by the hypervisor,
9303 	 * so skip trying to save it.
9304 	 */
9305 	if (vcpu->arch.guest_fpu)
9306 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9307 
9308 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9309 
9310 	fpregs_mark_activate();
9311 	fpregs_unlock();
9312 
9313 	++vcpu->stat.fpu_reload;
9314 	trace_kvm_fpu(0);
9315 }
9316 
9317 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9318 {
9319 	struct kvm_run *kvm_run = vcpu->run;
9320 	int r;
9321 
9322 	vcpu_load(vcpu);
9323 	kvm_sigset_activate(vcpu);
9324 	kvm_load_guest_fpu(vcpu);
9325 
9326 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9327 		if (kvm_run->immediate_exit) {
9328 			r = -EINTR;
9329 			goto out;
9330 		}
9331 		kvm_vcpu_block(vcpu);
9332 		kvm_apic_accept_events(vcpu);
9333 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9334 		r = -EAGAIN;
9335 		if (signal_pending(current)) {
9336 			r = -EINTR;
9337 			kvm_run->exit_reason = KVM_EXIT_INTR;
9338 			++vcpu->stat.signal_exits;
9339 		}
9340 		goto out;
9341 	}
9342 
9343 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9344 		r = -EINVAL;
9345 		goto out;
9346 	}
9347 
9348 	if (kvm_run->kvm_dirty_regs) {
9349 		r = sync_regs(vcpu);
9350 		if (r != 0)
9351 			goto out;
9352 	}
9353 
9354 	/* re-sync apic's tpr */
9355 	if (!lapic_in_kernel(vcpu)) {
9356 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9357 			r = -EINVAL;
9358 			goto out;
9359 		}
9360 	}
9361 
9362 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9363 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9364 		vcpu->arch.complete_userspace_io = NULL;
9365 		r = cui(vcpu);
9366 		if (r <= 0)
9367 			goto out;
9368 	} else
9369 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9370 
9371 	if (kvm_run->immediate_exit)
9372 		r = -EINTR;
9373 	else
9374 		r = vcpu_run(vcpu);
9375 
9376 out:
9377 	kvm_put_guest_fpu(vcpu);
9378 	if (kvm_run->kvm_valid_regs)
9379 		store_regs(vcpu);
9380 	post_kvm_run_save(vcpu);
9381 	kvm_sigset_deactivate(vcpu);
9382 
9383 	vcpu_put(vcpu);
9384 	return r;
9385 }
9386 
9387 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9388 {
9389 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9390 		/*
9391 		 * We are here if userspace calls get_regs() in the middle of
9392 		 * instruction emulation. Registers state needs to be copied
9393 		 * back from emulation context to vcpu. Userspace shouldn't do
9394 		 * that usually, but some bad designed PV devices (vmware
9395 		 * backdoor interface) need this to work
9396 		 */
9397 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9398 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9399 	}
9400 	regs->rax = kvm_rax_read(vcpu);
9401 	regs->rbx = kvm_rbx_read(vcpu);
9402 	regs->rcx = kvm_rcx_read(vcpu);
9403 	regs->rdx = kvm_rdx_read(vcpu);
9404 	regs->rsi = kvm_rsi_read(vcpu);
9405 	regs->rdi = kvm_rdi_read(vcpu);
9406 	regs->rsp = kvm_rsp_read(vcpu);
9407 	regs->rbp = kvm_rbp_read(vcpu);
9408 #ifdef CONFIG_X86_64
9409 	regs->r8 = kvm_r8_read(vcpu);
9410 	regs->r9 = kvm_r9_read(vcpu);
9411 	regs->r10 = kvm_r10_read(vcpu);
9412 	regs->r11 = kvm_r11_read(vcpu);
9413 	regs->r12 = kvm_r12_read(vcpu);
9414 	regs->r13 = kvm_r13_read(vcpu);
9415 	regs->r14 = kvm_r14_read(vcpu);
9416 	regs->r15 = kvm_r15_read(vcpu);
9417 #endif
9418 
9419 	regs->rip = kvm_rip_read(vcpu);
9420 	regs->rflags = kvm_get_rflags(vcpu);
9421 }
9422 
9423 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9424 {
9425 	vcpu_load(vcpu);
9426 	__get_regs(vcpu, regs);
9427 	vcpu_put(vcpu);
9428 	return 0;
9429 }
9430 
9431 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9432 {
9433 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9434 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9435 
9436 	kvm_rax_write(vcpu, regs->rax);
9437 	kvm_rbx_write(vcpu, regs->rbx);
9438 	kvm_rcx_write(vcpu, regs->rcx);
9439 	kvm_rdx_write(vcpu, regs->rdx);
9440 	kvm_rsi_write(vcpu, regs->rsi);
9441 	kvm_rdi_write(vcpu, regs->rdi);
9442 	kvm_rsp_write(vcpu, regs->rsp);
9443 	kvm_rbp_write(vcpu, regs->rbp);
9444 #ifdef CONFIG_X86_64
9445 	kvm_r8_write(vcpu, regs->r8);
9446 	kvm_r9_write(vcpu, regs->r9);
9447 	kvm_r10_write(vcpu, regs->r10);
9448 	kvm_r11_write(vcpu, regs->r11);
9449 	kvm_r12_write(vcpu, regs->r12);
9450 	kvm_r13_write(vcpu, regs->r13);
9451 	kvm_r14_write(vcpu, regs->r14);
9452 	kvm_r15_write(vcpu, regs->r15);
9453 #endif
9454 
9455 	kvm_rip_write(vcpu, regs->rip);
9456 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9457 
9458 	vcpu->arch.exception.pending = false;
9459 
9460 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9461 }
9462 
9463 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9464 {
9465 	vcpu_load(vcpu);
9466 	__set_regs(vcpu, regs);
9467 	vcpu_put(vcpu);
9468 	return 0;
9469 }
9470 
9471 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9472 {
9473 	struct kvm_segment cs;
9474 
9475 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9476 	*db = cs.db;
9477 	*l = cs.l;
9478 }
9479 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9480 
9481 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9482 {
9483 	struct desc_ptr dt;
9484 
9485 	if (vcpu->arch.guest_state_protected)
9486 		goto skip_protected_regs;
9487 
9488 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9489 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9490 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9491 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9492 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9493 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9494 
9495 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9496 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9497 
9498 	kvm_x86_ops.get_idt(vcpu, &dt);
9499 	sregs->idt.limit = dt.size;
9500 	sregs->idt.base = dt.address;
9501 	kvm_x86_ops.get_gdt(vcpu, &dt);
9502 	sregs->gdt.limit = dt.size;
9503 	sregs->gdt.base = dt.address;
9504 
9505 	sregs->cr2 = vcpu->arch.cr2;
9506 	sregs->cr3 = kvm_read_cr3(vcpu);
9507 
9508 skip_protected_regs:
9509 	sregs->cr0 = kvm_read_cr0(vcpu);
9510 	sregs->cr4 = kvm_read_cr4(vcpu);
9511 	sregs->cr8 = kvm_get_cr8(vcpu);
9512 	sregs->efer = vcpu->arch.efer;
9513 	sregs->apic_base = kvm_get_apic_base(vcpu);
9514 
9515 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9516 
9517 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9518 		set_bit(vcpu->arch.interrupt.nr,
9519 			(unsigned long *)sregs->interrupt_bitmap);
9520 }
9521 
9522 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9523 				  struct kvm_sregs *sregs)
9524 {
9525 	vcpu_load(vcpu);
9526 	__get_sregs(vcpu, sregs);
9527 	vcpu_put(vcpu);
9528 	return 0;
9529 }
9530 
9531 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9532 				    struct kvm_mp_state *mp_state)
9533 {
9534 	vcpu_load(vcpu);
9535 	if (kvm_mpx_supported())
9536 		kvm_load_guest_fpu(vcpu);
9537 
9538 	kvm_apic_accept_events(vcpu);
9539 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9540 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9541 	    vcpu->arch.pv.pv_unhalted)
9542 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9543 	else
9544 		mp_state->mp_state = vcpu->arch.mp_state;
9545 
9546 	if (kvm_mpx_supported())
9547 		kvm_put_guest_fpu(vcpu);
9548 	vcpu_put(vcpu);
9549 	return 0;
9550 }
9551 
9552 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9553 				    struct kvm_mp_state *mp_state)
9554 {
9555 	int ret = -EINVAL;
9556 
9557 	vcpu_load(vcpu);
9558 
9559 	if (!lapic_in_kernel(vcpu) &&
9560 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9561 		goto out;
9562 
9563 	/*
9564 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9565 	 * INIT state; latched init should be reported using
9566 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9567 	 */
9568 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9569 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9570 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9571 		goto out;
9572 
9573 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9574 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9575 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9576 	} else
9577 		vcpu->arch.mp_state = mp_state->mp_state;
9578 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9579 
9580 	ret = 0;
9581 out:
9582 	vcpu_put(vcpu);
9583 	return ret;
9584 }
9585 
9586 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9587 		    int reason, bool has_error_code, u32 error_code)
9588 {
9589 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9590 	int ret;
9591 
9592 	init_emulate_ctxt(vcpu);
9593 
9594 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9595 				   has_error_code, error_code);
9596 	if (ret) {
9597 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9598 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9599 		vcpu->run->internal.ndata = 0;
9600 		return 0;
9601 	}
9602 
9603 	kvm_rip_write(vcpu, ctxt->eip);
9604 	kvm_set_rflags(vcpu, ctxt->eflags);
9605 	return 1;
9606 }
9607 EXPORT_SYMBOL_GPL(kvm_task_switch);
9608 
9609 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9610 {
9611 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9612 		/*
9613 		 * When EFER.LME and CR0.PG are set, the processor is in
9614 		 * 64-bit mode (though maybe in a 32-bit code segment).
9615 		 * CR4.PAE and EFER.LMA must be set.
9616 		 */
9617 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9618 			return false;
9619 	} else {
9620 		/*
9621 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9622 		 * segment cannot be 64-bit.
9623 		 */
9624 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9625 			return false;
9626 	}
9627 
9628 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
9629 }
9630 
9631 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9632 {
9633 	struct msr_data apic_base_msr;
9634 	int mmu_reset_needed = 0;
9635 	int pending_vec, max_bits, idx;
9636 	struct desc_ptr dt;
9637 	int ret = -EINVAL;
9638 
9639 	if (!kvm_is_valid_sregs(vcpu, sregs))
9640 		goto out;
9641 
9642 	apic_base_msr.data = sregs->apic_base;
9643 	apic_base_msr.host_initiated = true;
9644 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9645 		goto out;
9646 
9647 	if (vcpu->arch.guest_state_protected)
9648 		goto skip_protected_regs;
9649 
9650 	dt.size = sregs->idt.limit;
9651 	dt.address = sregs->idt.base;
9652 	kvm_x86_ops.set_idt(vcpu, &dt);
9653 	dt.size = sregs->gdt.limit;
9654 	dt.address = sregs->gdt.base;
9655 	kvm_x86_ops.set_gdt(vcpu, &dt);
9656 
9657 	vcpu->arch.cr2 = sregs->cr2;
9658 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9659 	vcpu->arch.cr3 = sregs->cr3;
9660 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9661 
9662 	kvm_set_cr8(vcpu, sregs->cr8);
9663 
9664 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9665 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9666 
9667 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9668 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9669 	vcpu->arch.cr0 = sregs->cr0;
9670 
9671 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9672 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9673 
9674 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9675 	if (is_pae_paging(vcpu)) {
9676 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9677 		mmu_reset_needed = 1;
9678 	}
9679 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9680 
9681 	if (mmu_reset_needed)
9682 		kvm_mmu_reset_context(vcpu);
9683 
9684 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9685 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9686 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9687 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9688 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9689 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9690 
9691 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9692 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9693 
9694 	update_cr8_intercept(vcpu);
9695 
9696 	/* Older userspace won't unhalt the vcpu on reset. */
9697 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9698 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9699 	    !is_protmode(vcpu))
9700 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9701 
9702 skip_protected_regs:
9703 	max_bits = KVM_NR_INTERRUPTS;
9704 	pending_vec = find_first_bit(
9705 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9706 	if (pending_vec < max_bits) {
9707 		kvm_queue_interrupt(vcpu, pending_vec, false);
9708 		pr_debug("Set back pending irq %d\n", pending_vec);
9709 	}
9710 
9711 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9712 
9713 	ret = 0;
9714 out:
9715 	return ret;
9716 }
9717 
9718 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9719 				  struct kvm_sregs *sregs)
9720 {
9721 	int ret;
9722 
9723 	vcpu_load(vcpu);
9724 	ret = __set_sregs(vcpu, sregs);
9725 	vcpu_put(vcpu);
9726 	return ret;
9727 }
9728 
9729 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9730 					struct kvm_guest_debug *dbg)
9731 {
9732 	unsigned long rflags;
9733 	int i, r;
9734 
9735 	if (vcpu->arch.guest_state_protected)
9736 		return -EINVAL;
9737 
9738 	vcpu_load(vcpu);
9739 
9740 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9741 		r = -EBUSY;
9742 		if (vcpu->arch.exception.pending)
9743 			goto out;
9744 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9745 			kvm_queue_exception(vcpu, DB_VECTOR);
9746 		else
9747 			kvm_queue_exception(vcpu, BP_VECTOR);
9748 	}
9749 
9750 	/*
9751 	 * Read rflags as long as potentially injected trace flags are still
9752 	 * filtered out.
9753 	 */
9754 	rflags = kvm_get_rflags(vcpu);
9755 
9756 	vcpu->guest_debug = dbg->control;
9757 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9758 		vcpu->guest_debug = 0;
9759 
9760 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9761 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9762 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9763 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9764 	} else {
9765 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9766 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9767 	}
9768 	kvm_update_dr7(vcpu);
9769 
9770 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9771 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9772 			get_segment_base(vcpu, VCPU_SREG_CS);
9773 
9774 	/*
9775 	 * Trigger an rflags update that will inject or remove the trace
9776 	 * flags.
9777 	 */
9778 	kvm_set_rflags(vcpu, rflags);
9779 
9780 	kvm_x86_ops.update_exception_bitmap(vcpu);
9781 
9782 	r = 0;
9783 
9784 out:
9785 	vcpu_put(vcpu);
9786 	return r;
9787 }
9788 
9789 /*
9790  * Translate a guest virtual address to a guest physical address.
9791  */
9792 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9793 				    struct kvm_translation *tr)
9794 {
9795 	unsigned long vaddr = tr->linear_address;
9796 	gpa_t gpa;
9797 	int idx;
9798 
9799 	vcpu_load(vcpu);
9800 
9801 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9802 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9803 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9804 	tr->physical_address = gpa;
9805 	tr->valid = gpa != UNMAPPED_GVA;
9806 	tr->writeable = 1;
9807 	tr->usermode = 0;
9808 
9809 	vcpu_put(vcpu);
9810 	return 0;
9811 }
9812 
9813 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9814 {
9815 	struct fxregs_state *fxsave;
9816 
9817 	if (!vcpu->arch.guest_fpu)
9818 		return 0;
9819 
9820 	vcpu_load(vcpu);
9821 
9822 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9823 	memcpy(fpu->fpr, fxsave->st_space, 128);
9824 	fpu->fcw = fxsave->cwd;
9825 	fpu->fsw = fxsave->swd;
9826 	fpu->ftwx = fxsave->twd;
9827 	fpu->last_opcode = fxsave->fop;
9828 	fpu->last_ip = fxsave->rip;
9829 	fpu->last_dp = fxsave->rdp;
9830 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9831 
9832 	vcpu_put(vcpu);
9833 	return 0;
9834 }
9835 
9836 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9837 {
9838 	struct fxregs_state *fxsave;
9839 
9840 	if (!vcpu->arch.guest_fpu)
9841 		return 0;
9842 
9843 	vcpu_load(vcpu);
9844 
9845 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9846 
9847 	memcpy(fxsave->st_space, fpu->fpr, 128);
9848 	fxsave->cwd = fpu->fcw;
9849 	fxsave->swd = fpu->fsw;
9850 	fxsave->twd = fpu->ftwx;
9851 	fxsave->fop = fpu->last_opcode;
9852 	fxsave->rip = fpu->last_ip;
9853 	fxsave->rdp = fpu->last_dp;
9854 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9855 
9856 	vcpu_put(vcpu);
9857 	return 0;
9858 }
9859 
9860 static void store_regs(struct kvm_vcpu *vcpu)
9861 {
9862 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9863 
9864 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9865 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9866 
9867 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9868 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9869 
9870 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9871 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9872 				vcpu, &vcpu->run->s.regs.events);
9873 }
9874 
9875 static int sync_regs(struct kvm_vcpu *vcpu)
9876 {
9877 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9878 		return -EINVAL;
9879 
9880 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9881 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9882 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9883 	}
9884 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9885 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9886 			return -EINVAL;
9887 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9888 	}
9889 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9890 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9891 				vcpu, &vcpu->run->s.regs.events))
9892 			return -EINVAL;
9893 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9894 	}
9895 
9896 	return 0;
9897 }
9898 
9899 static void fx_init(struct kvm_vcpu *vcpu)
9900 {
9901 	if (!vcpu->arch.guest_fpu)
9902 		return;
9903 
9904 	fpstate_init(&vcpu->arch.guest_fpu->state);
9905 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9906 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9907 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9908 
9909 	/*
9910 	 * Ensure guest xcr0 is valid for loading
9911 	 */
9912 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9913 
9914 	vcpu->arch.cr0 |= X86_CR0_ET;
9915 }
9916 
9917 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
9918 {
9919 	if (vcpu->arch.guest_fpu) {
9920 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9921 		vcpu->arch.guest_fpu = NULL;
9922 	}
9923 }
9924 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
9925 
9926 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9927 {
9928 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9929 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9930 			     "guest TSC will not be reliable\n");
9931 
9932 	return 0;
9933 }
9934 
9935 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9936 {
9937 	struct page *page;
9938 	int r;
9939 
9940 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9941 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9942 	else
9943 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9944 
9945 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9946 
9947 	r = kvm_mmu_create(vcpu);
9948 	if (r < 0)
9949 		return r;
9950 
9951 	if (irqchip_in_kernel(vcpu->kvm)) {
9952 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9953 		if (r < 0)
9954 			goto fail_mmu_destroy;
9955 		if (kvm_apicv_activated(vcpu->kvm))
9956 			vcpu->arch.apicv_active = true;
9957 	} else
9958 		static_key_slow_inc(&kvm_no_apic_vcpu);
9959 
9960 	r = -ENOMEM;
9961 
9962 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
9963 	if (!page)
9964 		goto fail_free_lapic;
9965 	vcpu->arch.pio_data = page_address(page);
9966 
9967 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9968 				       GFP_KERNEL_ACCOUNT);
9969 	if (!vcpu->arch.mce_banks)
9970 		goto fail_free_pio_data;
9971 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9972 
9973 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9974 				GFP_KERNEL_ACCOUNT))
9975 		goto fail_free_mce_banks;
9976 
9977 	if (!alloc_emulate_ctxt(vcpu))
9978 		goto free_wbinvd_dirty_mask;
9979 
9980 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9981 						GFP_KERNEL_ACCOUNT);
9982 	if (!vcpu->arch.user_fpu) {
9983 		pr_err("kvm: failed to allocate userspace's fpu\n");
9984 		goto free_emulate_ctxt;
9985 	}
9986 
9987 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9988 						 GFP_KERNEL_ACCOUNT);
9989 	if (!vcpu->arch.guest_fpu) {
9990 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9991 		goto free_user_fpu;
9992 	}
9993 	fx_init(vcpu);
9994 
9995 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9996 
9997 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9998 
9999 	kvm_async_pf_hash_reset(vcpu);
10000 	kvm_pmu_init(vcpu);
10001 
10002 	vcpu->arch.pending_external_vector = -1;
10003 	vcpu->arch.preempted_in_kernel = false;
10004 
10005 	kvm_hv_vcpu_init(vcpu);
10006 
10007 	r = kvm_x86_ops.vcpu_create(vcpu);
10008 	if (r)
10009 		goto free_guest_fpu;
10010 
10011 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10012 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10013 	kvm_vcpu_mtrr_init(vcpu);
10014 	vcpu_load(vcpu);
10015 	kvm_vcpu_reset(vcpu, false);
10016 	kvm_init_mmu(vcpu, false);
10017 	vcpu_put(vcpu);
10018 	return 0;
10019 
10020 free_guest_fpu:
10021 	kvm_free_guest_fpu(vcpu);
10022 free_user_fpu:
10023 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10024 free_emulate_ctxt:
10025 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10026 free_wbinvd_dirty_mask:
10027 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10028 fail_free_mce_banks:
10029 	kfree(vcpu->arch.mce_banks);
10030 fail_free_pio_data:
10031 	free_page((unsigned long)vcpu->arch.pio_data);
10032 fail_free_lapic:
10033 	kvm_free_lapic(vcpu);
10034 fail_mmu_destroy:
10035 	kvm_mmu_destroy(vcpu);
10036 	return r;
10037 }
10038 
10039 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10040 {
10041 	struct kvm *kvm = vcpu->kvm;
10042 
10043 	kvm_hv_vcpu_postcreate(vcpu);
10044 
10045 	if (mutex_lock_killable(&vcpu->mutex))
10046 		return;
10047 	vcpu_load(vcpu);
10048 	kvm_synchronize_tsc(vcpu, 0);
10049 	vcpu_put(vcpu);
10050 
10051 	/* poll control enabled by default */
10052 	vcpu->arch.msr_kvm_poll_control = 1;
10053 
10054 	mutex_unlock(&vcpu->mutex);
10055 
10056 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10057 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10058 						KVMCLOCK_SYNC_PERIOD);
10059 }
10060 
10061 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10062 {
10063 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10064 	int idx;
10065 
10066 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10067 
10068 	kvmclock_reset(vcpu);
10069 
10070 	kvm_x86_ops.vcpu_free(vcpu);
10071 
10072 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10073 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10074 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10075 	kvm_free_guest_fpu(vcpu);
10076 
10077 	kvm_hv_vcpu_uninit(vcpu);
10078 	kvm_pmu_destroy(vcpu);
10079 	kfree(vcpu->arch.mce_banks);
10080 	kvm_free_lapic(vcpu);
10081 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10082 	kvm_mmu_destroy(vcpu);
10083 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10084 	free_page((unsigned long)vcpu->arch.pio_data);
10085 	kvfree(vcpu->arch.cpuid_entries);
10086 	if (!lapic_in_kernel(vcpu))
10087 		static_key_slow_dec(&kvm_no_apic_vcpu);
10088 }
10089 
10090 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10091 {
10092 	kvm_lapic_reset(vcpu, init_event);
10093 
10094 	vcpu->arch.hflags = 0;
10095 
10096 	vcpu->arch.smi_pending = 0;
10097 	vcpu->arch.smi_count = 0;
10098 	atomic_set(&vcpu->arch.nmi_queued, 0);
10099 	vcpu->arch.nmi_pending = 0;
10100 	vcpu->arch.nmi_injected = false;
10101 	kvm_clear_interrupt_queue(vcpu);
10102 	kvm_clear_exception_queue(vcpu);
10103 
10104 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10105 	kvm_update_dr0123(vcpu);
10106 	vcpu->arch.dr6 = DR6_INIT;
10107 	vcpu->arch.dr7 = DR7_FIXED_1;
10108 	kvm_update_dr7(vcpu);
10109 
10110 	vcpu->arch.cr2 = 0;
10111 
10112 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10113 	vcpu->arch.apf.msr_en_val = 0;
10114 	vcpu->arch.apf.msr_int_val = 0;
10115 	vcpu->arch.st.msr_val = 0;
10116 
10117 	kvmclock_reset(vcpu);
10118 
10119 	kvm_clear_async_pf_completion_queue(vcpu);
10120 	kvm_async_pf_hash_reset(vcpu);
10121 	vcpu->arch.apf.halted = false;
10122 
10123 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10124 		void *mpx_state_buffer;
10125 
10126 		/*
10127 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10128 		 * called with loaded FPU and does not let userspace fix the state.
10129 		 */
10130 		if (init_event)
10131 			kvm_put_guest_fpu(vcpu);
10132 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10133 					XFEATURE_BNDREGS);
10134 		if (mpx_state_buffer)
10135 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10136 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10137 					XFEATURE_BNDCSR);
10138 		if (mpx_state_buffer)
10139 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10140 		if (init_event)
10141 			kvm_load_guest_fpu(vcpu);
10142 	}
10143 
10144 	if (!init_event) {
10145 		kvm_pmu_reset(vcpu);
10146 		vcpu->arch.smbase = 0x30000;
10147 
10148 		vcpu->arch.msr_misc_features_enables = 0;
10149 
10150 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10151 	}
10152 
10153 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10154 	vcpu->arch.regs_avail = ~0;
10155 	vcpu->arch.regs_dirty = ~0;
10156 
10157 	vcpu->arch.ia32_xss = 0;
10158 
10159 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10160 }
10161 
10162 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10163 {
10164 	struct kvm_segment cs;
10165 
10166 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10167 	cs.selector = vector << 8;
10168 	cs.base = vector << 12;
10169 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10170 	kvm_rip_write(vcpu, 0);
10171 }
10172 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10173 
10174 int kvm_arch_hardware_enable(void)
10175 {
10176 	struct kvm *kvm;
10177 	struct kvm_vcpu *vcpu;
10178 	int i;
10179 	int ret;
10180 	u64 local_tsc;
10181 	u64 max_tsc = 0;
10182 	bool stable, backwards_tsc = false;
10183 
10184 	kvm_user_return_msr_cpu_online();
10185 	ret = kvm_x86_ops.hardware_enable();
10186 	if (ret != 0)
10187 		return ret;
10188 
10189 	local_tsc = rdtsc();
10190 	stable = !kvm_check_tsc_unstable();
10191 	list_for_each_entry(kvm, &vm_list, vm_list) {
10192 		kvm_for_each_vcpu(i, vcpu, kvm) {
10193 			if (!stable && vcpu->cpu == smp_processor_id())
10194 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10195 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10196 				backwards_tsc = true;
10197 				if (vcpu->arch.last_host_tsc > max_tsc)
10198 					max_tsc = vcpu->arch.last_host_tsc;
10199 			}
10200 		}
10201 	}
10202 
10203 	/*
10204 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10205 	 * platforms that reset TSC during suspend or hibernate actions, but
10206 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10207 	 * detect that condition here, which happens early in CPU bringup,
10208 	 * before any KVM threads can be running.  Unfortunately, we can't
10209 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10210 	 * enough into CPU bringup that we know how much real time has actually
10211 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10212 	 * variables that haven't been updated yet.
10213 	 *
10214 	 * So we simply find the maximum observed TSC above, then record the
10215 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10216 	 * the adjustment will be applied.  Note that we accumulate
10217 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10218 	 * gets a chance to run again.  In the event that no KVM threads get a
10219 	 * chance to run, we will miss the entire elapsed period, as we'll have
10220 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10221 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10222 	 * uniform across all VCPUs (not to mention the scenario is extremely
10223 	 * unlikely). It is possible that a second hibernate recovery happens
10224 	 * much faster than a first, causing the observed TSC here to be
10225 	 * smaller; this would require additional padding adjustment, which is
10226 	 * why we set last_host_tsc to the local tsc observed here.
10227 	 *
10228 	 * N.B. - this code below runs only on platforms with reliable TSC,
10229 	 * as that is the only way backwards_tsc is set above.  Also note
10230 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10231 	 * have the same delta_cyc adjustment applied if backwards_tsc
10232 	 * is detected.  Note further, this adjustment is only done once,
10233 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10234 	 * called multiple times (one for each physical CPU bringup).
10235 	 *
10236 	 * Platforms with unreliable TSCs don't have to deal with this, they
10237 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10238 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10239 	 * guarantee that they stay in perfect synchronization.
10240 	 */
10241 	if (backwards_tsc) {
10242 		u64 delta_cyc = max_tsc - local_tsc;
10243 		list_for_each_entry(kvm, &vm_list, vm_list) {
10244 			kvm->arch.backwards_tsc_observed = true;
10245 			kvm_for_each_vcpu(i, vcpu, kvm) {
10246 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10247 				vcpu->arch.last_host_tsc = local_tsc;
10248 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10249 			}
10250 
10251 			/*
10252 			 * We have to disable TSC offset matching.. if you were
10253 			 * booting a VM while issuing an S4 host suspend....
10254 			 * you may have some problem.  Solving this issue is
10255 			 * left as an exercise to the reader.
10256 			 */
10257 			kvm->arch.last_tsc_nsec = 0;
10258 			kvm->arch.last_tsc_write = 0;
10259 		}
10260 
10261 	}
10262 	return 0;
10263 }
10264 
10265 void kvm_arch_hardware_disable(void)
10266 {
10267 	kvm_x86_ops.hardware_disable();
10268 	drop_user_return_notifiers();
10269 }
10270 
10271 int kvm_arch_hardware_setup(void *opaque)
10272 {
10273 	struct kvm_x86_init_ops *ops = opaque;
10274 	int r;
10275 
10276 	rdmsrl_safe(MSR_EFER, &host_efer);
10277 
10278 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10279 		rdmsrl(MSR_IA32_XSS, host_xss);
10280 
10281 	r = ops->hardware_setup();
10282 	if (r != 0)
10283 		return r;
10284 
10285 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10286 
10287 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10288 		supported_xss = 0;
10289 
10290 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10291 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10292 #undef __kvm_cpu_cap_has
10293 
10294 	if (kvm_has_tsc_control) {
10295 		/*
10296 		 * Make sure the user can only configure tsc_khz values that
10297 		 * fit into a signed integer.
10298 		 * A min value is not calculated because it will always
10299 		 * be 1 on all machines.
10300 		 */
10301 		u64 max = min(0x7fffffffULL,
10302 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10303 		kvm_max_guest_tsc_khz = max;
10304 
10305 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10306 	}
10307 
10308 	kvm_init_msr_list();
10309 	return 0;
10310 }
10311 
10312 void kvm_arch_hardware_unsetup(void)
10313 {
10314 	kvm_x86_ops.hardware_unsetup();
10315 }
10316 
10317 int kvm_arch_check_processor_compat(void *opaque)
10318 {
10319 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10320 	struct kvm_x86_init_ops *ops = opaque;
10321 
10322 	WARN_ON(!irqs_disabled());
10323 
10324 	if (__cr4_reserved_bits(cpu_has, c) !=
10325 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10326 		return -EIO;
10327 
10328 	return ops->check_processor_compatibility();
10329 }
10330 
10331 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10332 {
10333 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10334 }
10335 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10336 
10337 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10338 {
10339 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10340 }
10341 
10342 struct static_key kvm_no_apic_vcpu __read_mostly;
10343 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10344 
10345 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10346 {
10347 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10348 
10349 	vcpu->arch.l1tf_flush_l1d = true;
10350 	if (pmu->version && unlikely(pmu->event_count)) {
10351 		pmu->need_cleanup = true;
10352 		kvm_make_request(KVM_REQ_PMU, vcpu);
10353 	}
10354 	kvm_x86_ops.sched_in(vcpu, cpu);
10355 }
10356 
10357 void kvm_arch_free_vm(struct kvm *kvm)
10358 {
10359 	kfree(kvm->arch.hyperv.hv_pa_pg);
10360 	vfree(kvm);
10361 }
10362 
10363 
10364 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10365 {
10366 	if (type)
10367 		return -EINVAL;
10368 
10369 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10370 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10371 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10372 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10373 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10374 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10375 
10376 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10377 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10378 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10379 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10380 		&kvm->arch.irq_sources_bitmap);
10381 
10382 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10383 	mutex_init(&kvm->arch.apic_map_lock);
10384 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10385 
10386 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10387 	pvclock_update_vm_gtod_copy(kvm);
10388 
10389 	kvm->arch.guest_can_read_msr_platform_info = true;
10390 
10391 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10392 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10393 
10394 	kvm_hv_init_vm(kvm);
10395 	kvm_page_track_init(kvm);
10396 	kvm_mmu_init_vm(kvm);
10397 
10398 	return kvm_x86_ops.vm_init(kvm);
10399 }
10400 
10401 int kvm_arch_post_init_vm(struct kvm *kvm)
10402 {
10403 	return kvm_mmu_post_init_vm(kvm);
10404 }
10405 
10406 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10407 {
10408 	vcpu_load(vcpu);
10409 	kvm_mmu_unload(vcpu);
10410 	vcpu_put(vcpu);
10411 }
10412 
10413 static void kvm_free_vcpus(struct kvm *kvm)
10414 {
10415 	unsigned int i;
10416 	struct kvm_vcpu *vcpu;
10417 
10418 	/*
10419 	 * Unpin any mmu pages first.
10420 	 */
10421 	kvm_for_each_vcpu(i, vcpu, kvm) {
10422 		kvm_clear_async_pf_completion_queue(vcpu);
10423 		kvm_unload_vcpu_mmu(vcpu);
10424 	}
10425 	kvm_for_each_vcpu(i, vcpu, kvm)
10426 		kvm_vcpu_destroy(vcpu);
10427 
10428 	mutex_lock(&kvm->lock);
10429 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10430 		kvm->vcpus[i] = NULL;
10431 
10432 	atomic_set(&kvm->online_vcpus, 0);
10433 	mutex_unlock(&kvm->lock);
10434 }
10435 
10436 void kvm_arch_sync_events(struct kvm *kvm)
10437 {
10438 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10439 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10440 	kvm_free_pit(kvm);
10441 }
10442 
10443 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10444 
10445 /**
10446  * __x86_set_memory_region: Setup KVM internal memory slot
10447  *
10448  * @kvm: the kvm pointer to the VM.
10449  * @id: the slot ID to setup.
10450  * @gpa: the GPA to install the slot (unused when @size == 0).
10451  * @size: the size of the slot. Set to zero to uninstall a slot.
10452  *
10453  * This function helps to setup a KVM internal memory slot.  Specify
10454  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10455  * slot.  The return code can be one of the following:
10456  *
10457  *   HVA:           on success (uninstall will return a bogus HVA)
10458  *   -errno:        on error
10459  *
10460  * The caller should always use IS_ERR() to check the return value
10461  * before use.  Note, the KVM internal memory slots are guaranteed to
10462  * remain valid and unchanged until the VM is destroyed, i.e., the
10463  * GPA->HVA translation will not change.  However, the HVA is a user
10464  * address, i.e. its accessibility is not guaranteed, and must be
10465  * accessed via __copy_{to,from}_user().
10466  */
10467 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10468 				      u32 size)
10469 {
10470 	int i, r;
10471 	unsigned long hva, old_npages;
10472 	struct kvm_memslots *slots = kvm_memslots(kvm);
10473 	struct kvm_memory_slot *slot;
10474 
10475 	/* Called with kvm->slots_lock held.  */
10476 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10477 		return ERR_PTR_USR(-EINVAL);
10478 
10479 	slot = id_to_memslot(slots, id);
10480 	if (size) {
10481 		if (slot && slot->npages)
10482 			return ERR_PTR_USR(-EEXIST);
10483 
10484 		/*
10485 		 * MAP_SHARED to prevent internal slot pages from being moved
10486 		 * by fork()/COW.
10487 		 */
10488 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10489 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10490 		if (IS_ERR((void *)hva))
10491 			return (void __user *)hva;
10492 	} else {
10493 		if (!slot || !slot->npages)
10494 			return 0;
10495 
10496 		old_npages = slot->npages;
10497 		hva = 0;
10498 	}
10499 
10500 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10501 		struct kvm_userspace_memory_region m;
10502 
10503 		m.slot = id | (i << 16);
10504 		m.flags = 0;
10505 		m.guest_phys_addr = gpa;
10506 		m.userspace_addr = hva;
10507 		m.memory_size = size;
10508 		r = __kvm_set_memory_region(kvm, &m);
10509 		if (r < 0)
10510 			return ERR_PTR_USR(r);
10511 	}
10512 
10513 	if (!size)
10514 		vm_munmap(hva, old_npages * PAGE_SIZE);
10515 
10516 	return (void __user *)hva;
10517 }
10518 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10519 
10520 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10521 {
10522 	kvm_mmu_pre_destroy_vm(kvm);
10523 }
10524 
10525 void kvm_arch_destroy_vm(struct kvm *kvm)
10526 {
10527 	u32 i;
10528 
10529 	if (current->mm == kvm->mm) {
10530 		/*
10531 		 * Free memory regions allocated on behalf of userspace,
10532 		 * unless the the memory map has changed due to process exit
10533 		 * or fd copying.
10534 		 */
10535 		mutex_lock(&kvm->slots_lock);
10536 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10537 					0, 0);
10538 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10539 					0, 0);
10540 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10541 		mutex_unlock(&kvm->slots_lock);
10542 	}
10543 	if (kvm_x86_ops.vm_destroy)
10544 		kvm_x86_ops.vm_destroy(kvm);
10545 	for (i = 0; i < kvm->arch.msr_filter.count; i++)
10546 		kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10547 	kvm_pic_destroy(kvm);
10548 	kvm_ioapic_destroy(kvm);
10549 	kvm_free_vcpus(kvm);
10550 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10551 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10552 	kvm_mmu_uninit_vm(kvm);
10553 	kvm_page_track_cleanup(kvm);
10554 	kvm_hv_destroy_vm(kvm);
10555 }
10556 
10557 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10558 {
10559 	int i;
10560 
10561 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10562 		kvfree(slot->arch.rmap[i]);
10563 		slot->arch.rmap[i] = NULL;
10564 
10565 		if (i == 0)
10566 			continue;
10567 
10568 		kvfree(slot->arch.lpage_info[i - 1]);
10569 		slot->arch.lpage_info[i - 1] = NULL;
10570 	}
10571 
10572 	kvm_page_track_free_memslot(slot);
10573 }
10574 
10575 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10576 				      unsigned long npages)
10577 {
10578 	int i;
10579 
10580 	/*
10581 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10582 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10583 	 * the new memslot is successful.
10584 	 */
10585 	memset(&slot->arch, 0, sizeof(slot->arch));
10586 
10587 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10588 		struct kvm_lpage_info *linfo;
10589 		unsigned long ugfn;
10590 		int lpages;
10591 		int level = i + 1;
10592 
10593 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10594 				      slot->base_gfn, level) + 1;
10595 
10596 		slot->arch.rmap[i] =
10597 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10598 				 GFP_KERNEL_ACCOUNT);
10599 		if (!slot->arch.rmap[i])
10600 			goto out_free;
10601 		if (i == 0)
10602 			continue;
10603 
10604 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10605 		if (!linfo)
10606 			goto out_free;
10607 
10608 		slot->arch.lpage_info[i - 1] = linfo;
10609 
10610 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10611 			linfo[0].disallow_lpage = 1;
10612 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10613 			linfo[lpages - 1].disallow_lpage = 1;
10614 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10615 		/*
10616 		 * If the gfn and userspace address are not aligned wrt each
10617 		 * other, disable large page support for this slot.
10618 		 */
10619 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10620 			unsigned long j;
10621 
10622 			for (j = 0; j < lpages; ++j)
10623 				linfo[j].disallow_lpage = 1;
10624 		}
10625 	}
10626 
10627 	if (kvm_page_track_create_memslot(slot, npages))
10628 		goto out_free;
10629 
10630 	return 0;
10631 
10632 out_free:
10633 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10634 		kvfree(slot->arch.rmap[i]);
10635 		slot->arch.rmap[i] = NULL;
10636 		if (i == 0)
10637 			continue;
10638 
10639 		kvfree(slot->arch.lpage_info[i - 1]);
10640 		slot->arch.lpage_info[i - 1] = NULL;
10641 	}
10642 	return -ENOMEM;
10643 }
10644 
10645 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10646 {
10647 	struct kvm_vcpu *vcpu;
10648 	int i;
10649 
10650 	/*
10651 	 * memslots->generation has been incremented.
10652 	 * mmio generation may have reached its maximum value.
10653 	 */
10654 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10655 
10656 	/* Force re-initialization of steal_time cache */
10657 	kvm_for_each_vcpu(i, vcpu, kvm)
10658 		kvm_vcpu_kick(vcpu);
10659 }
10660 
10661 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10662 				struct kvm_memory_slot *memslot,
10663 				const struct kvm_userspace_memory_region *mem,
10664 				enum kvm_mr_change change)
10665 {
10666 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10667 		return kvm_alloc_memslot_metadata(memslot,
10668 						  mem->memory_size >> PAGE_SHIFT);
10669 	return 0;
10670 }
10671 
10672 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10673 				     struct kvm_memory_slot *old,
10674 				     struct kvm_memory_slot *new,
10675 				     enum kvm_mr_change change)
10676 {
10677 	/*
10678 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10679 	 * See comments below.
10680 	 */
10681 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10682 		return;
10683 
10684 	/*
10685 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10686 	 * sptes have to be split.  If live migration is successful, the guest
10687 	 * in the source machine will be destroyed and large sptes will be
10688 	 * created in the destination. However, if the guest continues to run
10689 	 * in the source machine (for example if live migration fails), small
10690 	 * sptes will remain around and cause bad performance.
10691 	 *
10692 	 * Scan sptes if dirty logging has been stopped, dropping those
10693 	 * which can be collapsed into a single large-page spte.  Later
10694 	 * page faults will create the large-page sptes.
10695 	 *
10696 	 * There is no need to do this in any of the following cases:
10697 	 * CREATE:      No dirty mappings will already exist.
10698 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10699 	 *		kvm_arch_flush_shadow_memslot()
10700 	 */
10701 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10702 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10703 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10704 
10705 	/*
10706 	 * Enable or disable dirty logging for the slot.
10707 	 *
10708 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10709 	 * slot have been zapped so no dirty logging updates are needed for
10710 	 * the old slot.
10711 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10712 	 * any mappings that might be created in it will consume the
10713 	 * properties of the new slot and do not need to be updated here.
10714 	 *
10715 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10716 	 * called to enable/disable dirty logging.
10717 	 *
10718 	 * When disabling dirty logging with PML enabled, the D-bit is set
10719 	 * for sptes in the slot in order to prevent unnecessary GPA
10720 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10721 	 * This guarantees leaving PML enabled for the guest's lifetime
10722 	 * won't have any additional overhead from PML when the guest is
10723 	 * running with dirty logging disabled.
10724 	 *
10725 	 * When enabling dirty logging, large sptes are write-protected
10726 	 * so they can be split on first write.  New large sptes cannot
10727 	 * be created for this slot until the end of the logging.
10728 	 * See the comments in fast_page_fault().
10729 	 * For small sptes, nothing is done if the dirty log is in the
10730 	 * initial-all-set state.  Otherwise, depending on whether pml
10731 	 * is enabled the D-bit or the W-bit will be cleared.
10732 	 */
10733 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10734 		if (kvm_x86_ops.slot_enable_log_dirty) {
10735 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10736 		} else {
10737 			int level =
10738 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10739 				PG_LEVEL_2M : PG_LEVEL_4K;
10740 
10741 			/*
10742 			 * If we're with initial-all-set, we don't need
10743 			 * to write protect any small page because
10744 			 * they're reported as dirty already.  However
10745 			 * we still need to write-protect huge pages
10746 			 * so that the page split can happen lazily on
10747 			 * the first write to the huge page.
10748 			 */
10749 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10750 		}
10751 	} else {
10752 		if (kvm_x86_ops.slot_disable_log_dirty)
10753 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10754 	}
10755 }
10756 
10757 void kvm_arch_commit_memory_region(struct kvm *kvm,
10758 				const struct kvm_userspace_memory_region *mem,
10759 				struct kvm_memory_slot *old,
10760 				const struct kvm_memory_slot *new,
10761 				enum kvm_mr_change change)
10762 {
10763 	if (!kvm->arch.n_requested_mmu_pages)
10764 		kvm_mmu_change_mmu_pages(kvm,
10765 				kvm_mmu_calculate_default_mmu_pages(kvm));
10766 
10767 	/*
10768 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10769 	 */
10770 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10771 
10772 	/* Free the arrays associated with the old memslot. */
10773 	if (change == KVM_MR_MOVE)
10774 		kvm_arch_free_memslot(kvm, old);
10775 }
10776 
10777 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10778 {
10779 	kvm_mmu_zap_all(kvm);
10780 }
10781 
10782 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10783 				   struct kvm_memory_slot *slot)
10784 {
10785 	kvm_page_track_flush_slot(kvm, slot);
10786 }
10787 
10788 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10789 {
10790 	return (is_guest_mode(vcpu) &&
10791 			kvm_x86_ops.guest_apic_has_interrupt &&
10792 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10793 }
10794 
10795 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10796 {
10797 	if (!list_empty_careful(&vcpu->async_pf.done))
10798 		return true;
10799 
10800 	if (kvm_apic_has_events(vcpu))
10801 		return true;
10802 
10803 	if (vcpu->arch.pv.pv_unhalted)
10804 		return true;
10805 
10806 	if (vcpu->arch.exception.pending)
10807 		return true;
10808 
10809 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10810 	    (vcpu->arch.nmi_pending &&
10811 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10812 		return true;
10813 
10814 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10815 	    (vcpu->arch.smi_pending &&
10816 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10817 		return true;
10818 
10819 	if (kvm_arch_interrupt_allowed(vcpu) &&
10820 	    (kvm_cpu_has_interrupt(vcpu) ||
10821 	    kvm_guest_apic_has_interrupt(vcpu)))
10822 		return true;
10823 
10824 	if (kvm_hv_has_stimer_pending(vcpu))
10825 		return true;
10826 
10827 	if (is_guest_mode(vcpu) &&
10828 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10829 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10830 		return true;
10831 
10832 	return false;
10833 }
10834 
10835 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10836 {
10837 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10838 }
10839 
10840 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10841 {
10842 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10843 		return true;
10844 
10845 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10846 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10847 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10848 		return true;
10849 
10850 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10851 		return true;
10852 
10853 	return false;
10854 }
10855 
10856 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10857 {
10858 	return vcpu->arch.preempted_in_kernel;
10859 }
10860 
10861 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10862 {
10863 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10864 }
10865 
10866 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10867 {
10868 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10869 }
10870 
10871 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10872 {
10873 	/* Can't read the RIP when guest state is protected, just return 0 */
10874 	if (vcpu->arch.guest_state_protected)
10875 		return 0;
10876 
10877 	if (is_64_bit_mode(vcpu))
10878 		return kvm_rip_read(vcpu);
10879 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10880 		     kvm_rip_read(vcpu));
10881 }
10882 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10883 
10884 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10885 {
10886 	return kvm_get_linear_rip(vcpu) == linear_rip;
10887 }
10888 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10889 
10890 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10891 {
10892 	unsigned long rflags;
10893 
10894 	rflags = kvm_x86_ops.get_rflags(vcpu);
10895 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10896 		rflags &= ~X86_EFLAGS_TF;
10897 	return rflags;
10898 }
10899 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10900 
10901 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10902 {
10903 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10904 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10905 		rflags |= X86_EFLAGS_TF;
10906 	kvm_x86_ops.set_rflags(vcpu, rflags);
10907 }
10908 
10909 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10910 {
10911 	__kvm_set_rflags(vcpu, rflags);
10912 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10913 }
10914 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10915 
10916 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10917 {
10918 	int r;
10919 
10920 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10921 	      work->wakeup_all)
10922 		return;
10923 
10924 	r = kvm_mmu_reload(vcpu);
10925 	if (unlikely(r))
10926 		return;
10927 
10928 	if (!vcpu->arch.mmu->direct_map &&
10929 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10930 		return;
10931 
10932 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10933 }
10934 
10935 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10936 {
10937 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10938 
10939 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10940 }
10941 
10942 static inline u32 kvm_async_pf_next_probe(u32 key)
10943 {
10944 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10945 }
10946 
10947 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10948 {
10949 	u32 key = kvm_async_pf_hash_fn(gfn);
10950 
10951 	while (vcpu->arch.apf.gfns[key] != ~0)
10952 		key = kvm_async_pf_next_probe(key);
10953 
10954 	vcpu->arch.apf.gfns[key] = gfn;
10955 }
10956 
10957 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10958 {
10959 	int i;
10960 	u32 key = kvm_async_pf_hash_fn(gfn);
10961 
10962 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10963 		     (vcpu->arch.apf.gfns[key] != gfn &&
10964 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10965 		key = kvm_async_pf_next_probe(key);
10966 
10967 	return key;
10968 }
10969 
10970 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10971 {
10972 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10973 }
10974 
10975 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10976 {
10977 	u32 i, j, k;
10978 
10979 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10980 
10981 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10982 		return;
10983 
10984 	while (true) {
10985 		vcpu->arch.apf.gfns[i] = ~0;
10986 		do {
10987 			j = kvm_async_pf_next_probe(j);
10988 			if (vcpu->arch.apf.gfns[j] == ~0)
10989 				return;
10990 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10991 			/*
10992 			 * k lies cyclically in ]i,j]
10993 			 * |    i.k.j |
10994 			 * |....j i.k.| or  |.k..j i...|
10995 			 */
10996 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10997 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10998 		i = j;
10999 	}
11000 }
11001 
11002 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11003 {
11004 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11005 
11006 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11007 				      sizeof(reason));
11008 }
11009 
11010 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11011 {
11012 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11013 
11014 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11015 					     &token, offset, sizeof(token));
11016 }
11017 
11018 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11019 {
11020 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11021 	u32 val;
11022 
11023 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11024 					 &val, offset, sizeof(val)))
11025 		return false;
11026 
11027 	return !val;
11028 }
11029 
11030 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11031 {
11032 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11033 		return false;
11034 
11035 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11036 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11037 		return false;
11038 
11039 	return true;
11040 }
11041 
11042 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11043 {
11044 	if (unlikely(!lapic_in_kernel(vcpu) ||
11045 		     kvm_event_needs_reinjection(vcpu) ||
11046 		     vcpu->arch.exception.pending))
11047 		return false;
11048 
11049 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11050 		return false;
11051 
11052 	/*
11053 	 * If interrupts are off we cannot even use an artificial
11054 	 * halt state.
11055 	 */
11056 	return kvm_arch_interrupt_allowed(vcpu);
11057 }
11058 
11059 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11060 				     struct kvm_async_pf *work)
11061 {
11062 	struct x86_exception fault;
11063 
11064 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11065 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11066 
11067 	if (kvm_can_deliver_async_pf(vcpu) &&
11068 	    !apf_put_user_notpresent(vcpu)) {
11069 		fault.vector = PF_VECTOR;
11070 		fault.error_code_valid = true;
11071 		fault.error_code = 0;
11072 		fault.nested_page_fault = false;
11073 		fault.address = work->arch.token;
11074 		fault.async_page_fault = true;
11075 		kvm_inject_page_fault(vcpu, &fault);
11076 		return true;
11077 	} else {
11078 		/*
11079 		 * It is not possible to deliver a paravirtualized asynchronous
11080 		 * page fault, but putting the guest in an artificial halt state
11081 		 * can be beneficial nevertheless: if an interrupt arrives, we
11082 		 * can deliver it timely and perhaps the guest will schedule
11083 		 * another process.  When the instruction that triggered a page
11084 		 * fault is retried, hopefully the page will be ready in the host.
11085 		 */
11086 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11087 		return false;
11088 	}
11089 }
11090 
11091 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11092 				 struct kvm_async_pf *work)
11093 {
11094 	struct kvm_lapic_irq irq = {
11095 		.delivery_mode = APIC_DM_FIXED,
11096 		.vector = vcpu->arch.apf.vec
11097 	};
11098 
11099 	if (work->wakeup_all)
11100 		work->arch.token = ~0; /* broadcast wakeup */
11101 	else
11102 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11103 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11104 
11105 	if ((work->wakeup_all || work->notpresent_injected) &&
11106 	    kvm_pv_async_pf_enabled(vcpu) &&
11107 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11108 		vcpu->arch.apf.pageready_pending = true;
11109 		kvm_apic_set_irq(vcpu, &irq, NULL);
11110 	}
11111 
11112 	vcpu->arch.apf.halted = false;
11113 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11114 }
11115 
11116 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11117 {
11118 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11119 	if (!vcpu->arch.apf.pageready_pending)
11120 		kvm_vcpu_kick(vcpu);
11121 }
11122 
11123 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11124 {
11125 	if (!kvm_pv_async_pf_enabled(vcpu))
11126 		return true;
11127 	else
11128 		return apf_pageready_slot_free(vcpu);
11129 }
11130 
11131 void kvm_arch_start_assignment(struct kvm *kvm)
11132 {
11133 	atomic_inc(&kvm->arch.assigned_device_count);
11134 }
11135 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11136 
11137 void kvm_arch_end_assignment(struct kvm *kvm)
11138 {
11139 	atomic_dec(&kvm->arch.assigned_device_count);
11140 }
11141 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11142 
11143 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11144 {
11145 	return atomic_read(&kvm->arch.assigned_device_count);
11146 }
11147 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11148 
11149 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11150 {
11151 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11152 }
11153 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11154 
11155 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11156 {
11157 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11158 }
11159 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11160 
11161 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11162 {
11163 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11164 }
11165 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11166 
11167 bool kvm_arch_has_irq_bypass(void)
11168 {
11169 	return true;
11170 }
11171 
11172 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11173 				      struct irq_bypass_producer *prod)
11174 {
11175 	struct kvm_kernel_irqfd *irqfd =
11176 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11177 	int ret;
11178 
11179 	irqfd->producer = prod;
11180 	kvm_arch_start_assignment(irqfd->kvm);
11181 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11182 					 prod->irq, irqfd->gsi, 1);
11183 
11184 	if (ret)
11185 		kvm_arch_end_assignment(irqfd->kvm);
11186 
11187 	return ret;
11188 }
11189 
11190 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11191 				      struct irq_bypass_producer *prod)
11192 {
11193 	int ret;
11194 	struct kvm_kernel_irqfd *irqfd =
11195 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11196 
11197 	WARN_ON(irqfd->producer != prod);
11198 	irqfd->producer = NULL;
11199 
11200 	/*
11201 	 * When producer of consumer is unregistered, we change back to
11202 	 * remapped mode, so we can re-use the current implementation
11203 	 * when the irq is masked/disabled or the consumer side (KVM
11204 	 * int this case doesn't want to receive the interrupts.
11205 	*/
11206 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11207 	if (ret)
11208 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11209 		       " fails: %d\n", irqfd->consumer.token, ret);
11210 
11211 	kvm_arch_end_assignment(irqfd->kvm);
11212 }
11213 
11214 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11215 				   uint32_t guest_irq, bool set)
11216 {
11217 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11218 }
11219 
11220 bool kvm_vector_hashing_enabled(void)
11221 {
11222 	return vector_hashing;
11223 }
11224 
11225 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11226 {
11227 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11228 }
11229 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11230 
11231 
11232 int kvm_spec_ctrl_test_value(u64 value)
11233 {
11234 	/*
11235 	 * test that setting IA32_SPEC_CTRL to given value
11236 	 * is allowed by the host processor
11237 	 */
11238 
11239 	u64 saved_value;
11240 	unsigned long flags;
11241 	int ret = 0;
11242 
11243 	local_irq_save(flags);
11244 
11245 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11246 		ret = 1;
11247 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11248 		ret = 1;
11249 	else
11250 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11251 
11252 	local_irq_restore(flags);
11253 
11254 	return ret;
11255 }
11256 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11257 
11258 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11259 {
11260 	struct x86_exception fault;
11261 	u32 access = error_code &
11262 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11263 
11264 	if (!(error_code & PFERR_PRESENT_MASK) ||
11265 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11266 		/*
11267 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11268 		 * tables probably do not match the TLB.  Just proceed
11269 		 * with the error code that the processor gave.
11270 		 */
11271 		fault.vector = PF_VECTOR;
11272 		fault.error_code_valid = true;
11273 		fault.error_code = error_code;
11274 		fault.nested_page_fault = false;
11275 		fault.address = gva;
11276 	}
11277 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11278 }
11279 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11280 
11281 /*
11282  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11283  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11284  * indicates whether exit to userspace is needed.
11285  */
11286 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11287 			      struct x86_exception *e)
11288 {
11289 	if (r == X86EMUL_PROPAGATE_FAULT) {
11290 		kvm_inject_emulated_page_fault(vcpu, e);
11291 		return 1;
11292 	}
11293 
11294 	/*
11295 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11296 	 * while handling a VMX instruction KVM could've handled the request
11297 	 * correctly by exiting to userspace and performing I/O but there
11298 	 * doesn't seem to be a real use-case behind such requests, just return
11299 	 * KVM_EXIT_INTERNAL_ERROR for now.
11300 	 */
11301 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11302 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11303 	vcpu->run->internal.ndata = 0;
11304 
11305 	return 0;
11306 }
11307 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11308 
11309 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11310 {
11311 	bool pcid_enabled;
11312 	struct x86_exception e;
11313 	unsigned i;
11314 	unsigned long roots_to_free = 0;
11315 	struct {
11316 		u64 pcid;
11317 		u64 gla;
11318 	} operand;
11319 	int r;
11320 
11321 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11322 	if (r != X86EMUL_CONTINUE)
11323 		return kvm_handle_memory_failure(vcpu, r, &e);
11324 
11325 	if (operand.pcid >> 12 != 0) {
11326 		kvm_inject_gp(vcpu, 0);
11327 		return 1;
11328 	}
11329 
11330 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11331 
11332 	switch (type) {
11333 	case INVPCID_TYPE_INDIV_ADDR:
11334 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11335 		    is_noncanonical_address(operand.gla, vcpu)) {
11336 			kvm_inject_gp(vcpu, 0);
11337 			return 1;
11338 		}
11339 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11340 		return kvm_skip_emulated_instruction(vcpu);
11341 
11342 	case INVPCID_TYPE_SINGLE_CTXT:
11343 		if (!pcid_enabled && (operand.pcid != 0)) {
11344 			kvm_inject_gp(vcpu, 0);
11345 			return 1;
11346 		}
11347 
11348 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11349 			kvm_mmu_sync_roots(vcpu);
11350 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11351 		}
11352 
11353 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11354 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11355 			    == operand.pcid)
11356 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11357 
11358 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11359 		/*
11360 		 * If neither the current cr3 nor any of the prev_roots use the
11361 		 * given PCID, then nothing needs to be done here because a
11362 		 * resync will happen anyway before switching to any other CR3.
11363 		 */
11364 
11365 		return kvm_skip_emulated_instruction(vcpu);
11366 
11367 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11368 		/*
11369 		 * Currently, KVM doesn't mark global entries in the shadow
11370 		 * page tables, so a non-global flush just degenerates to a
11371 		 * global flush. If needed, we could optimize this later by
11372 		 * keeping track of global entries in shadow page tables.
11373 		 */
11374 
11375 		fallthrough;
11376 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11377 		kvm_mmu_unload(vcpu);
11378 		return kvm_skip_emulated_instruction(vcpu);
11379 
11380 	default:
11381 		BUG(); /* We have already checked above that type <= 3 */
11382 	}
11383 }
11384 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11385 
11386 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11387 {
11388 	struct kvm_run *run = vcpu->run;
11389 	struct kvm_mmio_fragment *frag;
11390 	unsigned int len;
11391 
11392 	BUG_ON(!vcpu->mmio_needed);
11393 
11394 	/* Complete previous fragment */
11395 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11396 	len = min(8u, frag->len);
11397 	if (!vcpu->mmio_is_write)
11398 		memcpy(frag->data, run->mmio.data, len);
11399 
11400 	if (frag->len <= 8) {
11401 		/* Switch to the next fragment. */
11402 		frag++;
11403 		vcpu->mmio_cur_fragment++;
11404 	} else {
11405 		/* Go forward to the next mmio piece. */
11406 		frag->data += len;
11407 		frag->gpa += len;
11408 		frag->len -= len;
11409 	}
11410 
11411 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11412 		vcpu->mmio_needed = 0;
11413 
11414 		// VMG change, at this point, we're always done
11415 		// RIP has already been advanced
11416 		return 1;
11417 	}
11418 
11419 	// More MMIO is needed
11420 	run->mmio.phys_addr = frag->gpa;
11421 	run->mmio.len = min(8u, frag->len);
11422 	run->mmio.is_write = vcpu->mmio_is_write;
11423 	if (run->mmio.is_write)
11424 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11425 	run->exit_reason = KVM_EXIT_MMIO;
11426 
11427 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11428 
11429 	return 0;
11430 }
11431 
11432 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11433 			  void *data)
11434 {
11435 	int handled;
11436 	struct kvm_mmio_fragment *frag;
11437 
11438 	if (!data)
11439 		return -EINVAL;
11440 
11441 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11442 	if (handled == bytes)
11443 		return 1;
11444 
11445 	bytes -= handled;
11446 	gpa += handled;
11447 	data += handled;
11448 
11449 	/*TODO: Check if need to increment number of frags */
11450 	frag = vcpu->mmio_fragments;
11451 	vcpu->mmio_nr_fragments = 1;
11452 	frag->len = bytes;
11453 	frag->gpa = gpa;
11454 	frag->data = data;
11455 
11456 	vcpu->mmio_needed = 1;
11457 	vcpu->mmio_cur_fragment = 0;
11458 
11459 	vcpu->run->mmio.phys_addr = gpa;
11460 	vcpu->run->mmio.len = min(8u, frag->len);
11461 	vcpu->run->mmio.is_write = 1;
11462 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11463 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11464 
11465 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11466 
11467 	return 0;
11468 }
11469 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11470 
11471 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11472 			 void *data)
11473 {
11474 	int handled;
11475 	struct kvm_mmio_fragment *frag;
11476 
11477 	if (!data)
11478 		return -EINVAL;
11479 
11480 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11481 	if (handled == bytes)
11482 		return 1;
11483 
11484 	bytes -= handled;
11485 	gpa += handled;
11486 	data += handled;
11487 
11488 	/*TODO: Check if need to increment number of frags */
11489 	frag = vcpu->mmio_fragments;
11490 	vcpu->mmio_nr_fragments = 1;
11491 	frag->len = bytes;
11492 	frag->gpa = gpa;
11493 	frag->data = data;
11494 
11495 	vcpu->mmio_needed = 1;
11496 	vcpu->mmio_cur_fragment = 0;
11497 
11498 	vcpu->run->mmio.phys_addr = gpa;
11499 	vcpu->run->mmio.len = min(8u, frag->len);
11500 	vcpu->run->mmio.is_write = 0;
11501 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11502 
11503 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11504 
11505 	return 0;
11506 }
11507 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11508 
11509 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11510 {
11511 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11512 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
11513 	vcpu->arch.pio.count = 0;
11514 
11515 	return 1;
11516 }
11517 
11518 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11519 			   unsigned int port, void *data,  unsigned int count)
11520 {
11521 	int ret;
11522 
11523 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11524 					data, count);
11525 	if (ret)
11526 		return ret;
11527 
11528 	vcpu->arch.pio.count = 0;
11529 
11530 	return 0;
11531 }
11532 
11533 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11534 			  unsigned int port, void *data, unsigned int count)
11535 {
11536 	int ret;
11537 
11538 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11539 				       data, count);
11540 	if (ret) {
11541 		vcpu->arch.pio.count = 0;
11542 	} else {
11543 		vcpu->arch.guest_ins_data = data;
11544 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11545 	}
11546 
11547 	return 0;
11548 }
11549 
11550 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11551 			 unsigned int port, void *data,  unsigned int count,
11552 			 int in)
11553 {
11554 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11555 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
11556 }
11557 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11558 
11559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
11585