xref: /openbmc/linux/arch/x86/kvm/x86.c (revision a09d2831)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28 
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <trace/events/kvm.h>
42 #undef TRACE_INCLUDE_FILE
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45 
46 #include <asm/debugreg.h>
47 #include <asm/uaccess.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <asm/mtrr.h>
51 #include <asm/mce.h>
52 
53 #define MAX_IO_MSRS 256
54 #define CR0_RESERVED_BITS						\
55 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
56 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
57 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
58 #define CR4_RESERVED_BITS						\
59 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
60 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
61 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
62 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
63 
64 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
65 
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68 
69 /* EFER defaults:
70  * - enable syscall per default because its emulated by KVM
71  * - enable LME and LMA per default on 64 bit KVM
72  */
73 #ifdef CONFIG_X86_64
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
75 #else
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
77 #endif
78 
79 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
80 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
81 
82 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
83 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
84 				    struct kvm_cpuid_entry2 __user *entries);
85 
86 struct kvm_x86_ops *kvm_x86_ops;
87 EXPORT_SYMBOL_GPL(kvm_x86_ops);
88 
89 int ignore_msrs = 0;
90 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
91 
92 #define KVM_NR_SHARED_MSRS 16
93 
94 struct kvm_shared_msrs_global {
95 	int nr;
96 	struct kvm_shared_msr {
97 		u32 msr;
98 		u64 value;
99 	} msrs[KVM_NR_SHARED_MSRS];
100 };
101 
102 struct kvm_shared_msrs {
103 	struct user_return_notifier urn;
104 	bool registered;
105 	u64 current_value[KVM_NR_SHARED_MSRS];
106 };
107 
108 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
109 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
110 
111 struct kvm_stats_debugfs_item debugfs_entries[] = {
112 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
113 	{ "pf_guest", VCPU_STAT(pf_guest) },
114 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
115 	{ "invlpg", VCPU_STAT(invlpg) },
116 	{ "exits", VCPU_STAT(exits) },
117 	{ "io_exits", VCPU_STAT(io_exits) },
118 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
119 	{ "signal_exits", VCPU_STAT(signal_exits) },
120 	{ "irq_window", VCPU_STAT(irq_window_exits) },
121 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
122 	{ "halt_exits", VCPU_STAT(halt_exits) },
123 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
124 	{ "hypercalls", VCPU_STAT(hypercalls) },
125 	{ "request_irq", VCPU_STAT(request_irq_exits) },
126 	{ "irq_exits", VCPU_STAT(irq_exits) },
127 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
128 	{ "efer_reload", VCPU_STAT(efer_reload) },
129 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
130 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
131 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
132 	{ "irq_injections", VCPU_STAT(irq_injections) },
133 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
134 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
135 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
136 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
137 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
138 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
139 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
140 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
141 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
142 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
143 	{ "largepages", VM_STAT(lpages) },
144 	{ NULL }
145 };
146 
147 static void kvm_on_user_return(struct user_return_notifier *urn)
148 {
149 	unsigned slot;
150 	struct kvm_shared_msr *global;
151 	struct kvm_shared_msrs *locals
152 		= container_of(urn, struct kvm_shared_msrs, urn);
153 
154 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
155 		global = &shared_msrs_global.msrs[slot];
156 		if (global->value != locals->current_value[slot]) {
157 			wrmsrl(global->msr, global->value);
158 			locals->current_value[slot] = global->value;
159 		}
160 	}
161 	locals->registered = false;
162 	user_return_notifier_unregister(urn);
163 }
164 
165 void kvm_define_shared_msr(unsigned slot, u32 msr)
166 {
167 	int cpu;
168 	u64 value;
169 
170 	if (slot >= shared_msrs_global.nr)
171 		shared_msrs_global.nr = slot + 1;
172 	shared_msrs_global.msrs[slot].msr = msr;
173 	rdmsrl_safe(msr, &value);
174 	shared_msrs_global.msrs[slot].value = value;
175 	for_each_online_cpu(cpu)
176 		per_cpu(shared_msrs, cpu).current_value[slot] = value;
177 }
178 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
179 
180 static void kvm_shared_msr_cpu_online(void)
181 {
182 	unsigned i;
183 	struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
184 
185 	for (i = 0; i < shared_msrs_global.nr; ++i)
186 		locals->current_value[i] = shared_msrs_global.msrs[i].value;
187 }
188 
189 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
190 {
191 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
192 
193 	if (((value ^ smsr->current_value[slot]) & mask) == 0)
194 		return;
195 	smsr->current_value[slot] = value;
196 	wrmsrl(shared_msrs_global.msrs[slot].msr, value);
197 	if (!smsr->registered) {
198 		smsr->urn.on_user_return = kvm_on_user_return;
199 		user_return_notifier_register(&smsr->urn);
200 		smsr->registered = true;
201 	}
202 }
203 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
204 
205 static void drop_user_return_notifiers(void *ignore)
206 {
207 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
208 
209 	if (smsr->registered)
210 		kvm_on_user_return(&smsr->urn);
211 }
212 
213 unsigned long segment_base(u16 selector)
214 {
215 	struct descriptor_table gdt;
216 	struct desc_struct *d;
217 	unsigned long table_base;
218 	unsigned long v;
219 
220 	if (selector == 0)
221 		return 0;
222 
223 	kvm_get_gdt(&gdt);
224 	table_base = gdt.base;
225 
226 	if (selector & 4) {           /* from ldt */
227 		u16 ldt_selector = kvm_read_ldt();
228 
229 		table_base = segment_base(ldt_selector);
230 	}
231 	d = (struct desc_struct *)(table_base + (selector & ~7));
232 	v = get_desc_base(d);
233 #ifdef CONFIG_X86_64
234 	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
235 		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
236 #endif
237 	return v;
238 }
239 EXPORT_SYMBOL_GPL(segment_base);
240 
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 {
243 	if (irqchip_in_kernel(vcpu->kvm))
244 		return vcpu->arch.apic_base;
245 	else
246 		return vcpu->arch.apic_base;
247 }
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249 
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 {
252 	/* TODO: reserve bits check */
253 	if (irqchip_in_kernel(vcpu->kvm))
254 		kvm_lapic_set_base(vcpu, data);
255 	else
256 		vcpu->arch.apic_base = data;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259 
260 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
261 {
262 	WARN_ON(vcpu->arch.exception.pending);
263 	vcpu->arch.exception.pending = true;
264 	vcpu->arch.exception.has_error_code = false;
265 	vcpu->arch.exception.nr = nr;
266 }
267 EXPORT_SYMBOL_GPL(kvm_queue_exception);
268 
269 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
270 			   u32 error_code)
271 {
272 	++vcpu->stat.pf_guest;
273 
274 	if (vcpu->arch.exception.pending) {
275 		switch(vcpu->arch.exception.nr) {
276 		case DF_VECTOR:
277 			/* triple fault -> shutdown */
278 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
279 			return;
280 		case PF_VECTOR:
281 			vcpu->arch.exception.nr = DF_VECTOR;
282 			vcpu->arch.exception.error_code = 0;
283 			return;
284 		default:
285 			/* replace previous exception with a new one in a hope
286 			   that instruction re-execution will regenerate lost
287 			   exception */
288 			vcpu->arch.exception.pending = false;
289 			break;
290 		}
291 	}
292 	vcpu->arch.cr2 = addr;
293 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
294 }
295 
296 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
297 {
298 	vcpu->arch.nmi_pending = 1;
299 }
300 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
301 
302 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
303 {
304 	WARN_ON(vcpu->arch.exception.pending);
305 	vcpu->arch.exception.pending = true;
306 	vcpu->arch.exception.has_error_code = true;
307 	vcpu->arch.exception.nr = nr;
308 	vcpu->arch.exception.error_code = error_code;
309 }
310 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
311 
312 /*
313  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
314  * a #GP and return false.
315  */
316 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
317 {
318 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
319 		return true;
320 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
321 	return false;
322 }
323 EXPORT_SYMBOL_GPL(kvm_require_cpl);
324 
325 /*
326  * Load the pae pdptrs.  Return true is they are all valid.
327  */
328 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
329 {
330 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
331 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
332 	int i;
333 	int ret;
334 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
335 
336 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
337 				  offset * sizeof(u64), sizeof(pdpte));
338 	if (ret < 0) {
339 		ret = 0;
340 		goto out;
341 	}
342 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
343 		if (is_present_gpte(pdpte[i]) &&
344 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
345 			ret = 0;
346 			goto out;
347 		}
348 	}
349 	ret = 1;
350 
351 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
352 	__set_bit(VCPU_EXREG_PDPTR,
353 		  (unsigned long *)&vcpu->arch.regs_avail);
354 	__set_bit(VCPU_EXREG_PDPTR,
355 		  (unsigned long *)&vcpu->arch.regs_dirty);
356 out:
357 
358 	return ret;
359 }
360 EXPORT_SYMBOL_GPL(load_pdptrs);
361 
362 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
363 {
364 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
365 	bool changed = true;
366 	int r;
367 
368 	if (is_long_mode(vcpu) || !is_pae(vcpu))
369 		return false;
370 
371 	if (!test_bit(VCPU_EXREG_PDPTR,
372 		      (unsigned long *)&vcpu->arch.regs_avail))
373 		return true;
374 
375 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
376 	if (r < 0)
377 		goto out;
378 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
379 out:
380 
381 	return changed;
382 }
383 
384 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
385 {
386 	if (cr0 & CR0_RESERVED_BITS) {
387 		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
388 		       cr0, vcpu->arch.cr0);
389 		kvm_inject_gp(vcpu, 0);
390 		return;
391 	}
392 
393 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
394 		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
395 		kvm_inject_gp(vcpu, 0);
396 		return;
397 	}
398 
399 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
400 		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
401 		       "and a clear PE flag\n");
402 		kvm_inject_gp(vcpu, 0);
403 		return;
404 	}
405 
406 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
407 #ifdef CONFIG_X86_64
408 		if ((vcpu->arch.shadow_efer & EFER_LME)) {
409 			int cs_db, cs_l;
410 
411 			if (!is_pae(vcpu)) {
412 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
413 				       "in long mode while PAE is disabled\n");
414 				kvm_inject_gp(vcpu, 0);
415 				return;
416 			}
417 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
418 			if (cs_l) {
419 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
420 				       "in long mode while CS.L == 1\n");
421 				kvm_inject_gp(vcpu, 0);
422 				return;
423 
424 			}
425 		} else
426 #endif
427 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
428 			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
429 			       "reserved bits\n");
430 			kvm_inject_gp(vcpu, 0);
431 			return;
432 		}
433 
434 	}
435 
436 	kvm_x86_ops->set_cr0(vcpu, cr0);
437 	vcpu->arch.cr0 = cr0;
438 
439 	kvm_mmu_reset_context(vcpu);
440 	return;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_cr0);
443 
444 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
445 {
446 	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
447 }
448 EXPORT_SYMBOL_GPL(kvm_lmsw);
449 
450 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
451 {
452 	unsigned long old_cr4 = vcpu->arch.cr4;
453 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
454 
455 	if (cr4 & CR4_RESERVED_BITS) {
456 		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
457 		kvm_inject_gp(vcpu, 0);
458 		return;
459 	}
460 
461 	if (is_long_mode(vcpu)) {
462 		if (!(cr4 & X86_CR4_PAE)) {
463 			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
464 			       "in long mode\n");
465 			kvm_inject_gp(vcpu, 0);
466 			return;
467 		}
468 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
469 		   && ((cr4 ^ old_cr4) & pdptr_bits)
470 		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
471 		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
472 		kvm_inject_gp(vcpu, 0);
473 		return;
474 	}
475 
476 	if (cr4 & X86_CR4_VMXE) {
477 		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
478 		kvm_inject_gp(vcpu, 0);
479 		return;
480 	}
481 	kvm_x86_ops->set_cr4(vcpu, cr4);
482 	vcpu->arch.cr4 = cr4;
483 	vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
484 	kvm_mmu_reset_context(vcpu);
485 }
486 EXPORT_SYMBOL_GPL(kvm_set_cr4);
487 
488 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
489 {
490 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
491 		kvm_mmu_sync_roots(vcpu);
492 		kvm_mmu_flush_tlb(vcpu);
493 		return;
494 	}
495 
496 	if (is_long_mode(vcpu)) {
497 		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
498 			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
499 			kvm_inject_gp(vcpu, 0);
500 			return;
501 		}
502 	} else {
503 		if (is_pae(vcpu)) {
504 			if (cr3 & CR3_PAE_RESERVED_BITS) {
505 				printk(KERN_DEBUG
506 				       "set_cr3: #GP, reserved bits\n");
507 				kvm_inject_gp(vcpu, 0);
508 				return;
509 			}
510 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
511 				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
512 				       "reserved bits\n");
513 				kvm_inject_gp(vcpu, 0);
514 				return;
515 			}
516 		}
517 		/*
518 		 * We don't check reserved bits in nonpae mode, because
519 		 * this isn't enforced, and VMware depends on this.
520 		 */
521 	}
522 
523 	/*
524 	 * Does the new cr3 value map to physical memory? (Note, we
525 	 * catch an invalid cr3 even in real-mode, because it would
526 	 * cause trouble later on when we turn on paging anyway.)
527 	 *
528 	 * A real CPU would silently accept an invalid cr3 and would
529 	 * attempt to use it - with largely undefined (and often hard
530 	 * to debug) behavior on the guest side.
531 	 */
532 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
533 		kvm_inject_gp(vcpu, 0);
534 	else {
535 		vcpu->arch.cr3 = cr3;
536 		vcpu->arch.mmu.new_cr3(vcpu);
537 	}
538 }
539 EXPORT_SYMBOL_GPL(kvm_set_cr3);
540 
541 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
542 {
543 	if (cr8 & CR8_RESERVED_BITS) {
544 		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
545 		kvm_inject_gp(vcpu, 0);
546 		return;
547 	}
548 	if (irqchip_in_kernel(vcpu->kvm))
549 		kvm_lapic_set_tpr(vcpu, cr8);
550 	else
551 		vcpu->arch.cr8 = cr8;
552 }
553 EXPORT_SYMBOL_GPL(kvm_set_cr8);
554 
555 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
556 {
557 	if (irqchip_in_kernel(vcpu->kvm))
558 		return kvm_lapic_get_cr8(vcpu);
559 	else
560 		return vcpu->arch.cr8;
561 }
562 EXPORT_SYMBOL_GPL(kvm_get_cr8);
563 
564 static inline u32 bit(int bitno)
565 {
566 	return 1 << (bitno & 31);
567 }
568 
569 /*
570  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
571  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
572  *
573  * This list is modified at module load time to reflect the
574  * capabilities of the host cpu. This capabilities test skips MSRs that are
575  * kvm-specific. Those are put in the beginning of the list.
576  */
577 
578 #define KVM_SAVE_MSRS_BEGIN	2
579 static u32 msrs_to_save[] = {
580 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
581 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
582 	MSR_K6_STAR,
583 #ifdef CONFIG_X86_64
584 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
585 #endif
586 	MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
587 };
588 
589 static unsigned num_msrs_to_save;
590 
591 static u32 emulated_msrs[] = {
592 	MSR_IA32_MISC_ENABLE,
593 };
594 
595 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
596 {
597 	if (efer & efer_reserved_bits) {
598 		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
599 		       efer);
600 		kvm_inject_gp(vcpu, 0);
601 		return;
602 	}
603 
604 	if (is_paging(vcpu)
605 	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
606 		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
607 		kvm_inject_gp(vcpu, 0);
608 		return;
609 	}
610 
611 	if (efer & EFER_FFXSR) {
612 		struct kvm_cpuid_entry2 *feat;
613 
614 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
615 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
616 			printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
617 			kvm_inject_gp(vcpu, 0);
618 			return;
619 		}
620 	}
621 
622 	if (efer & EFER_SVME) {
623 		struct kvm_cpuid_entry2 *feat;
624 
625 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
626 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
627 			printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
628 			kvm_inject_gp(vcpu, 0);
629 			return;
630 		}
631 	}
632 
633 	kvm_x86_ops->set_efer(vcpu, efer);
634 
635 	efer &= ~EFER_LMA;
636 	efer |= vcpu->arch.shadow_efer & EFER_LMA;
637 
638 	vcpu->arch.shadow_efer = efer;
639 
640 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
641 	kvm_mmu_reset_context(vcpu);
642 }
643 
644 void kvm_enable_efer_bits(u64 mask)
645 {
646        efer_reserved_bits &= ~mask;
647 }
648 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
649 
650 
651 /*
652  * Writes msr value into into the appropriate "register".
653  * Returns 0 on success, non-0 otherwise.
654  * Assumes vcpu_load() was already called.
655  */
656 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
657 {
658 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
659 }
660 
661 /*
662  * Adapt set_msr() to msr_io()'s calling convention
663  */
664 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
665 {
666 	return kvm_set_msr(vcpu, index, *data);
667 }
668 
669 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
670 {
671 	static int version;
672 	struct pvclock_wall_clock wc;
673 	struct timespec now, sys, boot;
674 
675 	if (!wall_clock)
676 		return;
677 
678 	version++;
679 
680 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
681 
682 	/*
683 	 * The guest calculates current wall clock time by adding
684 	 * system time (updated by kvm_write_guest_time below) to the
685 	 * wall clock specified here.  guest system time equals host
686 	 * system time for us, thus we must fill in host boot time here.
687 	 */
688 	now = current_kernel_time();
689 	ktime_get_ts(&sys);
690 	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
691 
692 	wc.sec = boot.tv_sec;
693 	wc.nsec = boot.tv_nsec;
694 	wc.version = version;
695 
696 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
697 
698 	version++;
699 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
700 }
701 
702 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
703 {
704 	uint32_t quotient, remainder;
705 
706 	/* Don't try to replace with do_div(), this one calculates
707 	 * "(dividend << 32) / divisor" */
708 	__asm__ ( "divl %4"
709 		  : "=a" (quotient), "=d" (remainder)
710 		  : "0" (0), "1" (dividend), "r" (divisor) );
711 	return quotient;
712 }
713 
714 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
715 {
716 	uint64_t nsecs = 1000000000LL;
717 	int32_t  shift = 0;
718 	uint64_t tps64;
719 	uint32_t tps32;
720 
721 	tps64 = tsc_khz * 1000LL;
722 	while (tps64 > nsecs*2) {
723 		tps64 >>= 1;
724 		shift--;
725 	}
726 
727 	tps32 = (uint32_t)tps64;
728 	while (tps32 <= (uint32_t)nsecs) {
729 		tps32 <<= 1;
730 		shift++;
731 	}
732 
733 	hv_clock->tsc_shift = shift;
734 	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
735 
736 	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
737 		 __func__, tsc_khz, hv_clock->tsc_shift,
738 		 hv_clock->tsc_to_system_mul);
739 }
740 
741 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
742 
743 static void kvm_write_guest_time(struct kvm_vcpu *v)
744 {
745 	struct timespec ts;
746 	unsigned long flags;
747 	struct kvm_vcpu_arch *vcpu = &v->arch;
748 	void *shared_kaddr;
749 	unsigned long this_tsc_khz;
750 
751 	if ((!vcpu->time_page))
752 		return;
753 
754 	this_tsc_khz = get_cpu_var(cpu_tsc_khz);
755 	if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
756 		kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
757 		vcpu->hv_clock_tsc_khz = this_tsc_khz;
758 	}
759 	put_cpu_var(cpu_tsc_khz);
760 
761 	/* Keep irq disabled to prevent changes to the clock */
762 	local_irq_save(flags);
763 	kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
764 	ktime_get_ts(&ts);
765 	local_irq_restore(flags);
766 
767 	/* With all the info we got, fill in the values */
768 
769 	vcpu->hv_clock.system_time = ts.tv_nsec +
770 				     (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
771 
772 	/*
773 	 * The interface expects us to write an even number signaling that the
774 	 * update is finished. Since the guest won't see the intermediate
775 	 * state, we just increase by 2 at the end.
776 	 */
777 	vcpu->hv_clock.version += 2;
778 
779 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
780 
781 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
782 	       sizeof(vcpu->hv_clock));
783 
784 	kunmap_atomic(shared_kaddr, KM_USER0);
785 
786 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
787 }
788 
789 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
790 {
791 	struct kvm_vcpu_arch *vcpu = &v->arch;
792 
793 	if (!vcpu->time_page)
794 		return 0;
795 	set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
796 	return 1;
797 }
798 
799 static bool msr_mtrr_valid(unsigned msr)
800 {
801 	switch (msr) {
802 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
803 	case MSR_MTRRfix64K_00000:
804 	case MSR_MTRRfix16K_80000:
805 	case MSR_MTRRfix16K_A0000:
806 	case MSR_MTRRfix4K_C0000:
807 	case MSR_MTRRfix4K_C8000:
808 	case MSR_MTRRfix4K_D0000:
809 	case MSR_MTRRfix4K_D8000:
810 	case MSR_MTRRfix4K_E0000:
811 	case MSR_MTRRfix4K_E8000:
812 	case MSR_MTRRfix4K_F0000:
813 	case MSR_MTRRfix4K_F8000:
814 	case MSR_MTRRdefType:
815 	case MSR_IA32_CR_PAT:
816 		return true;
817 	case 0x2f8:
818 		return true;
819 	}
820 	return false;
821 }
822 
823 static bool valid_pat_type(unsigned t)
824 {
825 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
826 }
827 
828 static bool valid_mtrr_type(unsigned t)
829 {
830 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
831 }
832 
833 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
834 {
835 	int i;
836 
837 	if (!msr_mtrr_valid(msr))
838 		return false;
839 
840 	if (msr == MSR_IA32_CR_PAT) {
841 		for (i = 0; i < 8; i++)
842 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
843 				return false;
844 		return true;
845 	} else if (msr == MSR_MTRRdefType) {
846 		if (data & ~0xcff)
847 			return false;
848 		return valid_mtrr_type(data & 0xff);
849 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
850 		for (i = 0; i < 8 ; i++)
851 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
852 				return false;
853 		return true;
854 	}
855 
856 	/* variable MTRRs */
857 	return valid_mtrr_type(data & 0xff);
858 }
859 
860 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
861 {
862 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
863 
864 	if (!mtrr_valid(vcpu, msr, data))
865 		return 1;
866 
867 	if (msr == MSR_MTRRdefType) {
868 		vcpu->arch.mtrr_state.def_type = data;
869 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
870 	} else if (msr == MSR_MTRRfix64K_00000)
871 		p[0] = data;
872 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
873 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
874 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
875 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
876 	else if (msr == MSR_IA32_CR_PAT)
877 		vcpu->arch.pat = data;
878 	else {	/* Variable MTRRs */
879 		int idx, is_mtrr_mask;
880 		u64 *pt;
881 
882 		idx = (msr - 0x200) / 2;
883 		is_mtrr_mask = msr - 0x200 - 2 * idx;
884 		if (!is_mtrr_mask)
885 			pt =
886 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
887 		else
888 			pt =
889 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
890 		*pt = data;
891 	}
892 
893 	kvm_mmu_reset_context(vcpu);
894 	return 0;
895 }
896 
897 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
898 {
899 	u64 mcg_cap = vcpu->arch.mcg_cap;
900 	unsigned bank_num = mcg_cap & 0xff;
901 
902 	switch (msr) {
903 	case MSR_IA32_MCG_STATUS:
904 		vcpu->arch.mcg_status = data;
905 		break;
906 	case MSR_IA32_MCG_CTL:
907 		if (!(mcg_cap & MCG_CTL_P))
908 			return 1;
909 		if (data != 0 && data != ~(u64)0)
910 			return -1;
911 		vcpu->arch.mcg_ctl = data;
912 		break;
913 	default:
914 		if (msr >= MSR_IA32_MC0_CTL &&
915 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
916 			u32 offset = msr - MSR_IA32_MC0_CTL;
917 			/* only 0 or all 1s can be written to IA32_MCi_CTL */
918 			if ((offset & 0x3) == 0 &&
919 			    data != 0 && data != ~(u64)0)
920 				return -1;
921 			vcpu->arch.mce_banks[offset] = data;
922 			break;
923 		}
924 		return 1;
925 	}
926 	return 0;
927 }
928 
929 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
930 {
931 	struct kvm *kvm = vcpu->kvm;
932 	int lm = is_long_mode(vcpu);
933 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
934 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
935 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
936 		: kvm->arch.xen_hvm_config.blob_size_32;
937 	u32 page_num = data & ~PAGE_MASK;
938 	u64 page_addr = data & PAGE_MASK;
939 	u8 *page;
940 	int r;
941 
942 	r = -E2BIG;
943 	if (page_num >= blob_size)
944 		goto out;
945 	r = -ENOMEM;
946 	page = kzalloc(PAGE_SIZE, GFP_KERNEL);
947 	if (!page)
948 		goto out;
949 	r = -EFAULT;
950 	if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
951 		goto out_free;
952 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
953 		goto out_free;
954 	r = 0;
955 out_free:
956 	kfree(page);
957 out:
958 	return r;
959 }
960 
961 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
962 {
963 	switch (msr) {
964 	case MSR_EFER:
965 		set_efer(vcpu, data);
966 		break;
967 	case MSR_K7_HWCR:
968 		data &= ~(u64)0x40;	/* ignore flush filter disable */
969 		if (data != 0) {
970 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
971 				data);
972 			return 1;
973 		}
974 		break;
975 	case MSR_FAM10H_MMIO_CONF_BASE:
976 		if (data != 0) {
977 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
978 				"0x%llx\n", data);
979 			return 1;
980 		}
981 		break;
982 	case MSR_AMD64_NB_CFG:
983 		break;
984 	case MSR_IA32_DEBUGCTLMSR:
985 		if (!data) {
986 			/* We support the non-activated case already */
987 			break;
988 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
989 			/* Values other than LBR and BTF are vendor-specific,
990 			   thus reserved and should throw a #GP */
991 			return 1;
992 		}
993 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
994 			__func__, data);
995 		break;
996 	case MSR_IA32_UCODE_REV:
997 	case MSR_IA32_UCODE_WRITE:
998 	case MSR_VM_HSAVE_PA:
999 	case MSR_AMD64_PATCH_LOADER:
1000 		break;
1001 	case 0x200 ... 0x2ff:
1002 		return set_msr_mtrr(vcpu, msr, data);
1003 	case MSR_IA32_APICBASE:
1004 		kvm_set_apic_base(vcpu, data);
1005 		break;
1006 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1007 		return kvm_x2apic_msr_write(vcpu, msr, data);
1008 	case MSR_IA32_MISC_ENABLE:
1009 		vcpu->arch.ia32_misc_enable_msr = data;
1010 		break;
1011 	case MSR_KVM_WALL_CLOCK:
1012 		vcpu->kvm->arch.wall_clock = data;
1013 		kvm_write_wall_clock(vcpu->kvm, data);
1014 		break;
1015 	case MSR_KVM_SYSTEM_TIME: {
1016 		if (vcpu->arch.time_page) {
1017 			kvm_release_page_dirty(vcpu->arch.time_page);
1018 			vcpu->arch.time_page = NULL;
1019 		}
1020 
1021 		vcpu->arch.time = data;
1022 
1023 		/* we verify if the enable bit is set... */
1024 		if (!(data & 1))
1025 			break;
1026 
1027 		/* ...but clean it before doing the actual write */
1028 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1029 
1030 		vcpu->arch.time_page =
1031 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1032 
1033 		if (is_error_page(vcpu->arch.time_page)) {
1034 			kvm_release_page_clean(vcpu->arch.time_page);
1035 			vcpu->arch.time_page = NULL;
1036 		}
1037 
1038 		kvm_request_guest_time_update(vcpu);
1039 		break;
1040 	}
1041 	case MSR_IA32_MCG_CTL:
1042 	case MSR_IA32_MCG_STATUS:
1043 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1044 		return set_msr_mce(vcpu, msr, data);
1045 
1046 	/* Performance counters are not protected by a CPUID bit,
1047 	 * so we should check all of them in the generic path for the sake of
1048 	 * cross vendor migration.
1049 	 * Writing a zero into the event select MSRs disables them,
1050 	 * which we perfectly emulate ;-). Any other value should be at least
1051 	 * reported, some guests depend on them.
1052 	 */
1053 	case MSR_P6_EVNTSEL0:
1054 	case MSR_P6_EVNTSEL1:
1055 	case MSR_K7_EVNTSEL0:
1056 	case MSR_K7_EVNTSEL1:
1057 	case MSR_K7_EVNTSEL2:
1058 	case MSR_K7_EVNTSEL3:
1059 		if (data != 0)
1060 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1061 				"0x%x data 0x%llx\n", msr, data);
1062 		break;
1063 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1064 	 * so we ignore writes to make it happy.
1065 	 */
1066 	case MSR_P6_PERFCTR0:
1067 	case MSR_P6_PERFCTR1:
1068 	case MSR_K7_PERFCTR0:
1069 	case MSR_K7_PERFCTR1:
1070 	case MSR_K7_PERFCTR2:
1071 	case MSR_K7_PERFCTR3:
1072 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1073 			"0x%x data 0x%llx\n", msr, data);
1074 		break;
1075 	default:
1076 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1077 			return xen_hvm_config(vcpu, data);
1078 		if (!ignore_msrs) {
1079 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1080 				msr, data);
1081 			return 1;
1082 		} else {
1083 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1084 				msr, data);
1085 			break;
1086 		}
1087 	}
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1091 
1092 
1093 /*
1094  * Reads an msr value (of 'msr_index') into 'pdata'.
1095  * Returns 0 on success, non-0 otherwise.
1096  * Assumes vcpu_load() was already called.
1097  */
1098 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1099 {
1100 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1101 }
1102 
1103 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1104 {
1105 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1106 
1107 	if (!msr_mtrr_valid(msr))
1108 		return 1;
1109 
1110 	if (msr == MSR_MTRRdefType)
1111 		*pdata = vcpu->arch.mtrr_state.def_type +
1112 			 (vcpu->arch.mtrr_state.enabled << 10);
1113 	else if (msr == MSR_MTRRfix64K_00000)
1114 		*pdata = p[0];
1115 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1116 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1117 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1118 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1119 	else if (msr == MSR_IA32_CR_PAT)
1120 		*pdata = vcpu->arch.pat;
1121 	else {	/* Variable MTRRs */
1122 		int idx, is_mtrr_mask;
1123 		u64 *pt;
1124 
1125 		idx = (msr - 0x200) / 2;
1126 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1127 		if (!is_mtrr_mask)
1128 			pt =
1129 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1130 		else
1131 			pt =
1132 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1133 		*pdata = *pt;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1140 {
1141 	u64 data;
1142 	u64 mcg_cap = vcpu->arch.mcg_cap;
1143 	unsigned bank_num = mcg_cap & 0xff;
1144 
1145 	switch (msr) {
1146 	case MSR_IA32_P5_MC_ADDR:
1147 	case MSR_IA32_P5_MC_TYPE:
1148 		data = 0;
1149 		break;
1150 	case MSR_IA32_MCG_CAP:
1151 		data = vcpu->arch.mcg_cap;
1152 		break;
1153 	case MSR_IA32_MCG_CTL:
1154 		if (!(mcg_cap & MCG_CTL_P))
1155 			return 1;
1156 		data = vcpu->arch.mcg_ctl;
1157 		break;
1158 	case MSR_IA32_MCG_STATUS:
1159 		data = vcpu->arch.mcg_status;
1160 		break;
1161 	default:
1162 		if (msr >= MSR_IA32_MC0_CTL &&
1163 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1164 			u32 offset = msr - MSR_IA32_MC0_CTL;
1165 			data = vcpu->arch.mce_banks[offset];
1166 			break;
1167 		}
1168 		return 1;
1169 	}
1170 	*pdata = data;
1171 	return 0;
1172 }
1173 
1174 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1175 {
1176 	u64 data;
1177 
1178 	switch (msr) {
1179 	case MSR_IA32_PLATFORM_ID:
1180 	case MSR_IA32_UCODE_REV:
1181 	case MSR_IA32_EBL_CR_POWERON:
1182 	case MSR_IA32_DEBUGCTLMSR:
1183 	case MSR_IA32_LASTBRANCHFROMIP:
1184 	case MSR_IA32_LASTBRANCHTOIP:
1185 	case MSR_IA32_LASTINTFROMIP:
1186 	case MSR_IA32_LASTINTTOIP:
1187 	case MSR_K8_SYSCFG:
1188 	case MSR_K7_HWCR:
1189 	case MSR_VM_HSAVE_PA:
1190 	case MSR_P6_PERFCTR0:
1191 	case MSR_P6_PERFCTR1:
1192 	case MSR_P6_EVNTSEL0:
1193 	case MSR_P6_EVNTSEL1:
1194 	case MSR_K7_EVNTSEL0:
1195 	case MSR_K7_PERFCTR0:
1196 	case MSR_K8_INT_PENDING_MSG:
1197 	case MSR_AMD64_NB_CFG:
1198 	case MSR_FAM10H_MMIO_CONF_BASE:
1199 		data = 0;
1200 		break;
1201 	case MSR_MTRRcap:
1202 		data = 0x500 | KVM_NR_VAR_MTRR;
1203 		break;
1204 	case 0x200 ... 0x2ff:
1205 		return get_msr_mtrr(vcpu, msr, pdata);
1206 	case 0xcd: /* fsb frequency */
1207 		data = 3;
1208 		break;
1209 	case MSR_IA32_APICBASE:
1210 		data = kvm_get_apic_base(vcpu);
1211 		break;
1212 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1213 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1214 		break;
1215 	case MSR_IA32_MISC_ENABLE:
1216 		data = vcpu->arch.ia32_misc_enable_msr;
1217 		break;
1218 	case MSR_IA32_PERF_STATUS:
1219 		/* TSC increment by tick */
1220 		data = 1000ULL;
1221 		/* CPU multiplier */
1222 		data |= (((uint64_t)4ULL) << 40);
1223 		break;
1224 	case MSR_EFER:
1225 		data = vcpu->arch.shadow_efer;
1226 		break;
1227 	case MSR_KVM_WALL_CLOCK:
1228 		data = vcpu->kvm->arch.wall_clock;
1229 		break;
1230 	case MSR_KVM_SYSTEM_TIME:
1231 		data = vcpu->arch.time;
1232 		break;
1233 	case MSR_IA32_P5_MC_ADDR:
1234 	case MSR_IA32_P5_MC_TYPE:
1235 	case MSR_IA32_MCG_CAP:
1236 	case MSR_IA32_MCG_CTL:
1237 	case MSR_IA32_MCG_STATUS:
1238 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1239 		return get_msr_mce(vcpu, msr, pdata);
1240 	default:
1241 		if (!ignore_msrs) {
1242 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1243 			return 1;
1244 		} else {
1245 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1246 			data = 0;
1247 		}
1248 		break;
1249 	}
1250 	*pdata = data;
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1254 
1255 /*
1256  * Read or write a bunch of msrs. All parameters are kernel addresses.
1257  *
1258  * @return number of msrs set successfully.
1259  */
1260 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1261 		    struct kvm_msr_entry *entries,
1262 		    int (*do_msr)(struct kvm_vcpu *vcpu,
1263 				  unsigned index, u64 *data))
1264 {
1265 	int i;
1266 
1267 	vcpu_load(vcpu);
1268 
1269 	down_read(&vcpu->kvm->slots_lock);
1270 	for (i = 0; i < msrs->nmsrs; ++i)
1271 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
1272 			break;
1273 	up_read(&vcpu->kvm->slots_lock);
1274 
1275 	vcpu_put(vcpu);
1276 
1277 	return i;
1278 }
1279 
1280 /*
1281  * Read or write a bunch of msrs. Parameters are user addresses.
1282  *
1283  * @return number of msrs set successfully.
1284  */
1285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1286 		  int (*do_msr)(struct kvm_vcpu *vcpu,
1287 				unsigned index, u64 *data),
1288 		  int writeback)
1289 {
1290 	struct kvm_msrs msrs;
1291 	struct kvm_msr_entry *entries;
1292 	int r, n;
1293 	unsigned size;
1294 
1295 	r = -EFAULT;
1296 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1297 		goto out;
1298 
1299 	r = -E2BIG;
1300 	if (msrs.nmsrs >= MAX_IO_MSRS)
1301 		goto out;
1302 
1303 	r = -ENOMEM;
1304 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1305 	entries = vmalloc(size);
1306 	if (!entries)
1307 		goto out;
1308 
1309 	r = -EFAULT;
1310 	if (copy_from_user(entries, user_msrs->entries, size))
1311 		goto out_free;
1312 
1313 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1314 	if (r < 0)
1315 		goto out_free;
1316 
1317 	r = -EFAULT;
1318 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
1319 		goto out_free;
1320 
1321 	r = n;
1322 
1323 out_free:
1324 	vfree(entries);
1325 out:
1326 	return r;
1327 }
1328 
1329 int kvm_dev_ioctl_check_extension(long ext)
1330 {
1331 	int r;
1332 
1333 	switch (ext) {
1334 	case KVM_CAP_IRQCHIP:
1335 	case KVM_CAP_HLT:
1336 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1337 	case KVM_CAP_SET_TSS_ADDR:
1338 	case KVM_CAP_EXT_CPUID:
1339 	case KVM_CAP_CLOCKSOURCE:
1340 	case KVM_CAP_PIT:
1341 	case KVM_CAP_NOP_IO_DELAY:
1342 	case KVM_CAP_MP_STATE:
1343 	case KVM_CAP_SYNC_MMU:
1344 	case KVM_CAP_REINJECT_CONTROL:
1345 	case KVM_CAP_IRQ_INJECT_STATUS:
1346 	case KVM_CAP_ASSIGN_DEV_IRQ:
1347 	case KVM_CAP_IRQFD:
1348 	case KVM_CAP_IOEVENTFD:
1349 	case KVM_CAP_PIT2:
1350 	case KVM_CAP_PIT_STATE2:
1351 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1352 	case KVM_CAP_XEN_HVM:
1353 	case KVM_CAP_ADJUST_CLOCK:
1354 	case KVM_CAP_VCPU_EVENTS:
1355 		r = 1;
1356 		break;
1357 	case KVM_CAP_COALESCED_MMIO:
1358 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1359 		break;
1360 	case KVM_CAP_VAPIC:
1361 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1362 		break;
1363 	case KVM_CAP_NR_VCPUS:
1364 		r = KVM_MAX_VCPUS;
1365 		break;
1366 	case KVM_CAP_NR_MEMSLOTS:
1367 		r = KVM_MEMORY_SLOTS;
1368 		break;
1369 	case KVM_CAP_PV_MMU:	/* obsolete */
1370 		r = 0;
1371 		break;
1372 	case KVM_CAP_IOMMU:
1373 		r = iommu_found();
1374 		break;
1375 	case KVM_CAP_MCE:
1376 		r = KVM_MAX_MCE_BANKS;
1377 		break;
1378 	default:
1379 		r = 0;
1380 		break;
1381 	}
1382 	return r;
1383 
1384 }
1385 
1386 long kvm_arch_dev_ioctl(struct file *filp,
1387 			unsigned int ioctl, unsigned long arg)
1388 {
1389 	void __user *argp = (void __user *)arg;
1390 	long r;
1391 
1392 	switch (ioctl) {
1393 	case KVM_GET_MSR_INDEX_LIST: {
1394 		struct kvm_msr_list __user *user_msr_list = argp;
1395 		struct kvm_msr_list msr_list;
1396 		unsigned n;
1397 
1398 		r = -EFAULT;
1399 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1400 			goto out;
1401 		n = msr_list.nmsrs;
1402 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1403 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1404 			goto out;
1405 		r = -E2BIG;
1406 		if (n < msr_list.nmsrs)
1407 			goto out;
1408 		r = -EFAULT;
1409 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1410 				 num_msrs_to_save * sizeof(u32)))
1411 			goto out;
1412 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1413 				 &emulated_msrs,
1414 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1415 			goto out;
1416 		r = 0;
1417 		break;
1418 	}
1419 	case KVM_GET_SUPPORTED_CPUID: {
1420 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1421 		struct kvm_cpuid2 cpuid;
1422 
1423 		r = -EFAULT;
1424 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1425 			goto out;
1426 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1427 						      cpuid_arg->entries);
1428 		if (r)
1429 			goto out;
1430 
1431 		r = -EFAULT;
1432 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1433 			goto out;
1434 		r = 0;
1435 		break;
1436 	}
1437 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1438 		u64 mce_cap;
1439 
1440 		mce_cap = KVM_MCE_CAP_SUPPORTED;
1441 		r = -EFAULT;
1442 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1443 			goto out;
1444 		r = 0;
1445 		break;
1446 	}
1447 	default:
1448 		r = -EINVAL;
1449 	}
1450 out:
1451 	return r;
1452 }
1453 
1454 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1455 {
1456 	kvm_x86_ops->vcpu_load(vcpu, cpu);
1457 	if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1458 		unsigned long khz = cpufreq_quick_get(cpu);
1459 		if (!khz)
1460 			khz = tsc_khz;
1461 		per_cpu(cpu_tsc_khz, cpu) = khz;
1462 	}
1463 	kvm_request_guest_time_update(vcpu);
1464 }
1465 
1466 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1467 {
1468 	kvm_x86_ops->vcpu_put(vcpu);
1469 	kvm_put_guest_fpu(vcpu);
1470 }
1471 
1472 static int is_efer_nx(void)
1473 {
1474 	unsigned long long efer = 0;
1475 
1476 	rdmsrl_safe(MSR_EFER, &efer);
1477 	return efer & EFER_NX;
1478 }
1479 
1480 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1481 {
1482 	int i;
1483 	struct kvm_cpuid_entry2 *e, *entry;
1484 
1485 	entry = NULL;
1486 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1487 		e = &vcpu->arch.cpuid_entries[i];
1488 		if (e->function == 0x80000001) {
1489 			entry = e;
1490 			break;
1491 		}
1492 	}
1493 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1494 		entry->edx &= ~(1 << 20);
1495 		printk(KERN_INFO "kvm: guest NX capability removed\n");
1496 	}
1497 }
1498 
1499 /* when an old userspace process fills a new kernel module */
1500 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1501 				    struct kvm_cpuid *cpuid,
1502 				    struct kvm_cpuid_entry __user *entries)
1503 {
1504 	int r, i;
1505 	struct kvm_cpuid_entry *cpuid_entries;
1506 
1507 	r = -E2BIG;
1508 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1509 		goto out;
1510 	r = -ENOMEM;
1511 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1512 	if (!cpuid_entries)
1513 		goto out;
1514 	r = -EFAULT;
1515 	if (copy_from_user(cpuid_entries, entries,
1516 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1517 		goto out_free;
1518 	for (i = 0; i < cpuid->nent; i++) {
1519 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1520 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1521 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1522 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1523 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1524 		vcpu->arch.cpuid_entries[i].index = 0;
1525 		vcpu->arch.cpuid_entries[i].flags = 0;
1526 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
1527 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
1528 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
1529 	}
1530 	vcpu->arch.cpuid_nent = cpuid->nent;
1531 	cpuid_fix_nx_cap(vcpu);
1532 	r = 0;
1533 	kvm_apic_set_version(vcpu);
1534 
1535 out_free:
1536 	vfree(cpuid_entries);
1537 out:
1538 	return r;
1539 }
1540 
1541 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1542 				     struct kvm_cpuid2 *cpuid,
1543 				     struct kvm_cpuid_entry2 __user *entries)
1544 {
1545 	int r;
1546 
1547 	r = -E2BIG;
1548 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1549 		goto out;
1550 	r = -EFAULT;
1551 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1552 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1553 		goto out;
1554 	vcpu->arch.cpuid_nent = cpuid->nent;
1555 	kvm_apic_set_version(vcpu);
1556 	return 0;
1557 
1558 out:
1559 	return r;
1560 }
1561 
1562 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1563 				     struct kvm_cpuid2 *cpuid,
1564 				     struct kvm_cpuid_entry2 __user *entries)
1565 {
1566 	int r;
1567 
1568 	r = -E2BIG;
1569 	if (cpuid->nent < vcpu->arch.cpuid_nent)
1570 		goto out;
1571 	r = -EFAULT;
1572 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1573 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1574 		goto out;
1575 	return 0;
1576 
1577 out:
1578 	cpuid->nent = vcpu->arch.cpuid_nent;
1579 	return r;
1580 }
1581 
1582 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1583 			   u32 index)
1584 {
1585 	entry->function = function;
1586 	entry->index = index;
1587 	cpuid_count(entry->function, entry->index,
1588 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1589 	entry->flags = 0;
1590 }
1591 
1592 #define F(x) bit(X86_FEATURE_##x)
1593 
1594 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1595 			 u32 index, int *nent, int maxnent)
1596 {
1597 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1598 	unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1599 #ifdef CONFIG_X86_64
1600 	unsigned f_lm = F(LM);
1601 #else
1602 	unsigned f_lm = 0;
1603 #endif
1604 
1605 	/* cpuid 1.edx */
1606 	const u32 kvm_supported_word0_x86_features =
1607 		F(FPU) | F(VME) | F(DE) | F(PSE) |
1608 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1609 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1610 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1611 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1612 		0 /* Reserved, DS, ACPI */ | F(MMX) |
1613 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1614 		0 /* HTT, TM, Reserved, PBE */;
1615 	/* cpuid 0x80000001.edx */
1616 	const u32 kvm_supported_word1_x86_features =
1617 		F(FPU) | F(VME) | F(DE) | F(PSE) |
1618 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1619 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1620 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1621 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
1622 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1623 		F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1624 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1625 	/* cpuid 1.ecx */
1626 	const u32 kvm_supported_word4_x86_features =
1627 		F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1628 		0 /* DS-CPL, VMX, SMX, EST */ |
1629 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1630 		0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1631 		0 /* Reserved, DCA */ | F(XMM4_1) |
1632 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1633 		0 /* Reserved, XSAVE, OSXSAVE */;
1634 	/* cpuid 0x80000001.ecx */
1635 	const u32 kvm_supported_word6_x86_features =
1636 		F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1637 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1638 		F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1639 		0 /* SKINIT */ | 0 /* WDT */;
1640 
1641 	/* all calls to cpuid_count() should be made on the same cpu */
1642 	get_cpu();
1643 	do_cpuid_1_ent(entry, function, index);
1644 	++*nent;
1645 
1646 	switch (function) {
1647 	case 0:
1648 		entry->eax = min(entry->eax, (u32)0xb);
1649 		break;
1650 	case 1:
1651 		entry->edx &= kvm_supported_word0_x86_features;
1652 		entry->ecx &= kvm_supported_word4_x86_features;
1653 		/* we support x2apic emulation even if host does not support
1654 		 * it since we emulate x2apic in software */
1655 		entry->ecx |= F(X2APIC);
1656 		break;
1657 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
1658 	 * may return different values. This forces us to get_cpu() before
1659 	 * issuing the first command, and also to emulate this annoying behavior
1660 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1661 	case 2: {
1662 		int t, times = entry->eax & 0xff;
1663 
1664 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1665 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1666 		for (t = 1; t < times && *nent < maxnent; ++t) {
1667 			do_cpuid_1_ent(&entry[t], function, 0);
1668 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1669 			++*nent;
1670 		}
1671 		break;
1672 	}
1673 	/* function 4 and 0xb have additional index. */
1674 	case 4: {
1675 		int i, cache_type;
1676 
1677 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1678 		/* read more entries until cache_type is zero */
1679 		for (i = 1; *nent < maxnent; ++i) {
1680 			cache_type = entry[i - 1].eax & 0x1f;
1681 			if (!cache_type)
1682 				break;
1683 			do_cpuid_1_ent(&entry[i], function, i);
1684 			entry[i].flags |=
1685 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1686 			++*nent;
1687 		}
1688 		break;
1689 	}
1690 	case 0xb: {
1691 		int i, level_type;
1692 
1693 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1694 		/* read more entries until level_type is zero */
1695 		for (i = 1; *nent < maxnent; ++i) {
1696 			level_type = entry[i - 1].ecx & 0xff00;
1697 			if (!level_type)
1698 				break;
1699 			do_cpuid_1_ent(&entry[i], function, i);
1700 			entry[i].flags |=
1701 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1702 			++*nent;
1703 		}
1704 		break;
1705 	}
1706 	case 0x80000000:
1707 		entry->eax = min(entry->eax, 0x8000001a);
1708 		break;
1709 	case 0x80000001:
1710 		entry->edx &= kvm_supported_word1_x86_features;
1711 		entry->ecx &= kvm_supported_word6_x86_features;
1712 		break;
1713 	}
1714 	put_cpu();
1715 }
1716 
1717 #undef F
1718 
1719 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1720 				     struct kvm_cpuid_entry2 __user *entries)
1721 {
1722 	struct kvm_cpuid_entry2 *cpuid_entries;
1723 	int limit, nent = 0, r = -E2BIG;
1724 	u32 func;
1725 
1726 	if (cpuid->nent < 1)
1727 		goto out;
1728 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1729 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1730 	r = -ENOMEM;
1731 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1732 	if (!cpuid_entries)
1733 		goto out;
1734 
1735 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1736 	limit = cpuid_entries[0].eax;
1737 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1738 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1739 			     &nent, cpuid->nent);
1740 	r = -E2BIG;
1741 	if (nent >= cpuid->nent)
1742 		goto out_free;
1743 
1744 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1745 	limit = cpuid_entries[nent - 1].eax;
1746 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1747 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1748 			     &nent, cpuid->nent);
1749 	r = -E2BIG;
1750 	if (nent >= cpuid->nent)
1751 		goto out_free;
1752 
1753 	r = -EFAULT;
1754 	if (copy_to_user(entries, cpuid_entries,
1755 			 nent * sizeof(struct kvm_cpuid_entry2)))
1756 		goto out_free;
1757 	cpuid->nent = nent;
1758 	r = 0;
1759 
1760 out_free:
1761 	vfree(cpuid_entries);
1762 out:
1763 	return r;
1764 }
1765 
1766 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1767 				    struct kvm_lapic_state *s)
1768 {
1769 	vcpu_load(vcpu);
1770 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1771 	vcpu_put(vcpu);
1772 
1773 	return 0;
1774 }
1775 
1776 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1777 				    struct kvm_lapic_state *s)
1778 {
1779 	vcpu_load(vcpu);
1780 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1781 	kvm_apic_post_state_restore(vcpu);
1782 	update_cr8_intercept(vcpu);
1783 	vcpu_put(vcpu);
1784 
1785 	return 0;
1786 }
1787 
1788 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1789 				    struct kvm_interrupt *irq)
1790 {
1791 	if (irq->irq < 0 || irq->irq >= 256)
1792 		return -EINVAL;
1793 	if (irqchip_in_kernel(vcpu->kvm))
1794 		return -ENXIO;
1795 	vcpu_load(vcpu);
1796 
1797 	kvm_queue_interrupt(vcpu, irq->irq, false);
1798 
1799 	vcpu_put(vcpu);
1800 
1801 	return 0;
1802 }
1803 
1804 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1805 {
1806 	vcpu_load(vcpu);
1807 	kvm_inject_nmi(vcpu);
1808 	vcpu_put(vcpu);
1809 
1810 	return 0;
1811 }
1812 
1813 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1814 					   struct kvm_tpr_access_ctl *tac)
1815 {
1816 	if (tac->flags)
1817 		return -EINVAL;
1818 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
1819 	return 0;
1820 }
1821 
1822 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1823 					u64 mcg_cap)
1824 {
1825 	int r;
1826 	unsigned bank_num = mcg_cap & 0xff, bank;
1827 
1828 	r = -EINVAL;
1829 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1830 		goto out;
1831 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1832 		goto out;
1833 	r = 0;
1834 	vcpu->arch.mcg_cap = mcg_cap;
1835 	/* Init IA32_MCG_CTL to all 1s */
1836 	if (mcg_cap & MCG_CTL_P)
1837 		vcpu->arch.mcg_ctl = ~(u64)0;
1838 	/* Init IA32_MCi_CTL to all 1s */
1839 	for (bank = 0; bank < bank_num; bank++)
1840 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1841 out:
1842 	return r;
1843 }
1844 
1845 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1846 				      struct kvm_x86_mce *mce)
1847 {
1848 	u64 mcg_cap = vcpu->arch.mcg_cap;
1849 	unsigned bank_num = mcg_cap & 0xff;
1850 	u64 *banks = vcpu->arch.mce_banks;
1851 
1852 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1853 		return -EINVAL;
1854 	/*
1855 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1856 	 * reporting is disabled
1857 	 */
1858 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1859 	    vcpu->arch.mcg_ctl != ~(u64)0)
1860 		return 0;
1861 	banks += 4 * mce->bank;
1862 	/*
1863 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1864 	 * reporting is disabled for the bank
1865 	 */
1866 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1867 		return 0;
1868 	if (mce->status & MCI_STATUS_UC) {
1869 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1870 		    !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1871 			printk(KERN_DEBUG "kvm: set_mce: "
1872 			       "injects mce exception while "
1873 			       "previous one is in progress!\n");
1874 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1875 			return 0;
1876 		}
1877 		if (banks[1] & MCI_STATUS_VAL)
1878 			mce->status |= MCI_STATUS_OVER;
1879 		banks[2] = mce->addr;
1880 		banks[3] = mce->misc;
1881 		vcpu->arch.mcg_status = mce->mcg_status;
1882 		banks[1] = mce->status;
1883 		kvm_queue_exception(vcpu, MC_VECTOR);
1884 	} else if (!(banks[1] & MCI_STATUS_VAL)
1885 		   || !(banks[1] & MCI_STATUS_UC)) {
1886 		if (banks[1] & MCI_STATUS_VAL)
1887 			mce->status |= MCI_STATUS_OVER;
1888 		banks[2] = mce->addr;
1889 		banks[3] = mce->misc;
1890 		banks[1] = mce->status;
1891 	} else
1892 		banks[1] |= MCI_STATUS_OVER;
1893 	return 0;
1894 }
1895 
1896 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
1897 					       struct kvm_vcpu_events *events)
1898 {
1899 	vcpu_load(vcpu);
1900 
1901 	events->exception.injected = vcpu->arch.exception.pending;
1902 	events->exception.nr = vcpu->arch.exception.nr;
1903 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
1904 	events->exception.error_code = vcpu->arch.exception.error_code;
1905 
1906 	events->interrupt.injected = vcpu->arch.interrupt.pending;
1907 	events->interrupt.nr = vcpu->arch.interrupt.nr;
1908 	events->interrupt.soft = vcpu->arch.interrupt.soft;
1909 
1910 	events->nmi.injected = vcpu->arch.nmi_injected;
1911 	events->nmi.pending = vcpu->arch.nmi_pending;
1912 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
1913 
1914 	events->sipi_vector = vcpu->arch.sipi_vector;
1915 
1916 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
1917 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
1918 
1919 	vcpu_put(vcpu);
1920 }
1921 
1922 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
1923 					      struct kvm_vcpu_events *events)
1924 {
1925 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
1926 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
1927 		return -EINVAL;
1928 
1929 	vcpu_load(vcpu);
1930 
1931 	vcpu->arch.exception.pending = events->exception.injected;
1932 	vcpu->arch.exception.nr = events->exception.nr;
1933 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
1934 	vcpu->arch.exception.error_code = events->exception.error_code;
1935 
1936 	vcpu->arch.interrupt.pending = events->interrupt.injected;
1937 	vcpu->arch.interrupt.nr = events->interrupt.nr;
1938 	vcpu->arch.interrupt.soft = events->interrupt.soft;
1939 	if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
1940 		kvm_pic_clear_isr_ack(vcpu->kvm);
1941 
1942 	vcpu->arch.nmi_injected = events->nmi.injected;
1943 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
1944 		vcpu->arch.nmi_pending = events->nmi.pending;
1945 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
1946 
1947 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
1948 		vcpu->arch.sipi_vector = events->sipi_vector;
1949 
1950 	vcpu_put(vcpu);
1951 
1952 	return 0;
1953 }
1954 
1955 long kvm_arch_vcpu_ioctl(struct file *filp,
1956 			 unsigned int ioctl, unsigned long arg)
1957 {
1958 	struct kvm_vcpu *vcpu = filp->private_data;
1959 	void __user *argp = (void __user *)arg;
1960 	int r;
1961 	struct kvm_lapic_state *lapic = NULL;
1962 
1963 	switch (ioctl) {
1964 	case KVM_GET_LAPIC: {
1965 		r = -EINVAL;
1966 		if (!vcpu->arch.apic)
1967 			goto out;
1968 		lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1969 
1970 		r = -ENOMEM;
1971 		if (!lapic)
1972 			goto out;
1973 		r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1974 		if (r)
1975 			goto out;
1976 		r = -EFAULT;
1977 		if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1978 			goto out;
1979 		r = 0;
1980 		break;
1981 	}
1982 	case KVM_SET_LAPIC: {
1983 		r = -EINVAL;
1984 		if (!vcpu->arch.apic)
1985 			goto out;
1986 		lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1987 		r = -ENOMEM;
1988 		if (!lapic)
1989 			goto out;
1990 		r = -EFAULT;
1991 		if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1992 			goto out;
1993 		r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1994 		if (r)
1995 			goto out;
1996 		r = 0;
1997 		break;
1998 	}
1999 	case KVM_INTERRUPT: {
2000 		struct kvm_interrupt irq;
2001 
2002 		r = -EFAULT;
2003 		if (copy_from_user(&irq, argp, sizeof irq))
2004 			goto out;
2005 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2006 		if (r)
2007 			goto out;
2008 		r = 0;
2009 		break;
2010 	}
2011 	case KVM_NMI: {
2012 		r = kvm_vcpu_ioctl_nmi(vcpu);
2013 		if (r)
2014 			goto out;
2015 		r = 0;
2016 		break;
2017 	}
2018 	case KVM_SET_CPUID: {
2019 		struct kvm_cpuid __user *cpuid_arg = argp;
2020 		struct kvm_cpuid cpuid;
2021 
2022 		r = -EFAULT;
2023 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2024 			goto out;
2025 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2026 		if (r)
2027 			goto out;
2028 		break;
2029 	}
2030 	case KVM_SET_CPUID2: {
2031 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2032 		struct kvm_cpuid2 cpuid;
2033 
2034 		r = -EFAULT;
2035 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2036 			goto out;
2037 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2038 					      cpuid_arg->entries);
2039 		if (r)
2040 			goto out;
2041 		break;
2042 	}
2043 	case KVM_GET_CPUID2: {
2044 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2045 		struct kvm_cpuid2 cpuid;
2046 
2047 		r = -EFAULT;
2048 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2049 			goto out;
2050 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2051 					      cpuid_arg->entries);
2052 		if (r)
2053 			goto out;
2054 		r = -EFAULT;
2055 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2056 			goto out;
2057 		r = 0;
2058 		break;
2059 	}
2060 	case KVM_GET_MSRS:
2061 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2062 		break;
2063 	case KVM_SET_MSRS:
2064 		r = msr_io(vcpu, argp, do_set_msr, 0);
2065 		break;
2066 	case KVM_TPR_ACCESS_REPORTING: {
2067 		struct kvm_tpr_access_ctl tac;
2068 
2069 		r = -EFAULT;
2070 		if (copy_from_user(&tac, argp, sizeof tac))
2071 			goto out;
2072 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2073 		if (r)
2074 			goto out;
2075 		r = -EFAULT;
2076 		if (copy_to_user(argp, &tac, sizeof tac))
2077 			goto out;
2078 		r = 0;
2079 		break;
2080 	};
2081 	case KVM_SET_VAPIC_ADDR: {
2082 		struct kvm_vapic_addr va;
2083 
2084 		r = -EINVAL;
2085 		if (!irqchip_in_kernel(vcpu->kvm))
2086 			goto out;
2087 		r = -EFAULT;
2088 		if (copy_from_user(&va, argp, sizeof va))
2089 			goto out;
2090 		r = 0;
2091 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2092 		break;
2093 	}
2094 	case KVM_X86_SETUP_MCE: {
2095 		u64 mcg_cap;
2096 
2097 		r = -EFAULT;
2098 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2099 			goto out;
2100 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2101 		break;
2102 	}
2103 	case KVM_X86_SET_MCE: {
2104 		struct kvm_x86_mce mce;
2105 
2106 		r = -EFAULT;
2107 		if (copy_from_user(&mce, argp, sizeof mce))
2108 			goto out;
2109 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2110 		break;
2111 	}
2112 	case KVM_GET_VCPU_EVENTS: {
2113 		struct kvm_vcpu_events events;
2114 
2115 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2116 
2117 		r = -EFAULT;
2118 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2119 			break;
2120 		r = 0;
2121 		break;
2122 	}
2123 	case KVM_SET_VCPU_EVENTS: {
2124 		struct kvm_vcpu_events events;
2125 
2126 		r = -EFAULT;
2127 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2128 			break;
2129 
2130 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2131 		break;
2132 	}
2133 	default:
2134 		r = -EINVAL;
2135 	}
2136 out:
2137 	kfree(lapic);
2138 	return r;
2139 }
2140 
2141 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2142 {
2143 	int ret;
2144 
2145 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2146 		return -1;
2147 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2148 	return ret;
2149 }
2150 
2151 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2152 					      u64 ident_addr)
2153 {
2154 	kvm->arch.ept_identity_map_addr = ident_addr;
2155 	return 0;
2156 }
2157 
2158 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2159 					  u32 kvm_nr_mmu_pages)
2160 {
2161 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2162 		return -EINVAL;
2163 
2164 	down_write(&kvm->slots_lock);
2165 	spin_lock(&kvm->mmu_lock);
2166 
2167 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2168 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2169 
2170 	spin_unlock(&kvm->mmu_lock);
2171 	up_write(&kvm->slots_lock);
2172 	return 0;
2173 }
2174 
2175 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2176 {
2177 	return kvm->arch.n_alloc_mmu_pages;
2178 }
2179 
2180 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2181 {
2182 	int i;
2183 	struct kvm_mem_alias *alias;
2184 
2185 	for (i = 0; i < kvm->arch.naliases; ++i) {
2186 		alias = &kvm->arch.aliases[i];
2187 		if (gfn >= alias->base_gfn
2188 		    && gfn < alias->base_gfn + alias->npages)
2189 			return alias->target_gfn + gfn - alias->base_gfn;
2190 	}
2191 	return gfn;
2192 }
2193 
2194 /*
2195  * Set a new alias region.  Aliases map a portion of physical memory into
2196  * another portion.  This is useful for memory windows, for example the PC
2197  * VGA region.
2198  */
2199 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2200 					 struct kvm_memory_alias *alias)
2201 {
2202 	int r, n;
2203 	struct kvm_mem_alias *p;
2204 
2205 	r = -EINVAL;
2206 	/* General sanity checks */
2207 	if (alias->memory_size & (PAGE_SIZE - 1))
2208 		goto out;
2209 	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2210 		goto out;
2211 	if (alias->slot >= KVM_ALIAS_SLOTS)
2212 		goto out;
2213 	if (alias->guest_phys_addr + alias->memory_size
2214 	    < alias->guest_phys_addr)
2215 		goto out;
2216 	if (alias->target_phys_addr + alias->memory_size
2217 	    < alias->target_phys_addr)
2218 		goto out;
2219 
2220 	down_write(&kvm->slots_lock);
2221 	spin_lock(&kvm->mmu_lock);
2222 
2223 	p = &kvm->arch.aliases[alias->slot];
2224 	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2225 	p->npages = alias->memory_size >> PAGE_SHIFT;
2226 	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2227 
2228 	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2229 		if (kvm->arch.aliases[n - 1].npages)
2230 			break;
2231 	kvm->arch.naliases = n;
2232 
2233 	spin_unlock(&kvm->mmu_lock);
2234 	kvm_mmu_zap_all(kvm);
2235 
2236 	up_write(&kvm->slots_lock);
2237 
2238 	return 0;
2239 
2240 out:
2241 	return r;
2242 }
2243 
2244 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2245 {
2246 	int r;
2247 
2248 	r = 0;
2249 	switch (chip->chip_id) {
2250 	case KVM_IRQCHIP_PIC_MASTER:
2251 		memcpy(&chip->chip.pic,
2252 			&pic_irqchip(kvm)->pics[0],
2253 			sizeof(struct kvm_pic_state));
2254 		break;
2255 	case KVM_IRQCHIP_PIC_SLAVE:
2256 		memcpy(&chip->chip.pic,
2257 			&pic_irqchip(kvm)->pics[1],
2258 			sizeof(struct kvm_pic_state));
2259 		break;
2260 	case KVM_IRQCHIP_IOAPIC:
2261 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2262 		break;
2263 	default:
2264 		r = -EINVAL;
2265 		break;
2266 	}
2267 	return r;
2268 }
2269 
2270 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2271 {
2272 	int r;
2273 
2274 	r = 0;
2275 	switch (chip->chip_id) {
2276 	case KVM_IRQCHIP_PIC_MASTER:
2277 		spin_lock(&pic_irqchip(kvm)->lock);
2278 		memcpy(&pic_irqchip(kvm)->pics[0],
2279 			&chip->chip.pic,
2280 			sizeof(struct kvm_pic_state));
2281 		spin_unlock(&pic_irqchip(kvm)->lock);
2282 		break;
2283 	case KVM_IRQCHIP_PIC_SLAVE:
2284 		spin_lock(&pic_irqchip(kvm)->lock);
2285 		memcpy(&pic_irqchip(kvm)->pics[1],
2286 			&chip->chip.pic,
2287 			sizeof(struct kvm_pic_state));
2288 		spin_unlock(&pic_irqchip(kvm)->lock);
2289 		break;
2290 	case KVM_IRQCHIP_IOAPIC:
2291 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2292 		break;
2293 	default:
2294 		r = -EINVAL;
2295 		break;
2296 	}
2297 	kvm_pic_update_irq(pic_irqchip(kvm));
2298 	return r;
2299 }
2300 
2301 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2302 {
2303 	int r = 0;
2304 
2305 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2306 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2307 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2308 	return r;
2309 }
2310 
2311 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2312 {
2313 	int r = 0;
2314 
2315 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2316 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2317 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2318 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2319 	return r;
2320 }
2321 
2322 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2323 {
2324 	int r = 0;
2325 
2326 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2327 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2328 		sizeof(ps->channels));
2329 	ps->flags = kvm->arch.vpit->pit_state.flags;
2330 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2331 	return r;
2332 }
2333 
2334 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2335 {
2336 	int r = 0, start = 0;
2337 	u32 prev_legacy, cur_legacy;
2338 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2339 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2340 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2341 	if (!prev_legacy && cur_legacy)
2342 		start = 1;
2343 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2344 	       sizeof(kvm->arch.vpit->pit_state.channels));
2345 	kvm->arch.vpit->pit_state.flags = ps->flags;
2346 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2347 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2348 	return r;
2349 }
2350 
2351 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2352 				 struct kvm_reinject_control *control)
2353 {
2354 	if (!kvm->arch.vpit)
2355 		return -ENXIO;
2356 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2357 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2358 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2359 	return 0;
2360 }
2361 
2362 /*
2363  * Get (and clear) the dirty memory log for a memory slot.
2364  */
2365 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2366 				      struct kvm_dirty_log *log)
2367 {
2368 	int r;
2369 	int n;
2370 	struct kvm_memory_slot *memslot;
2371 	int is_dirty = 0;
2372 
2373 	down_write(&kvm->slots_lock);
2374 
2375 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
2376 	if (r)
2377 		goto out;
2378 
2379 	/* If nothing is dirty, don't bother messing with page tables. */
2380 	if (is_dirty) {
2381 		spin_lock(&kvm->mmu_lock);
2382 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
2383 		spin_unlock(&kvm->mmu_lock);
2384 		memslot = &kvm->memslots[log->slot];
2385 		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2386 		memset(memslot->dirty_bitmap, 0, n);
2387 	}
2388 	r = 0;
2389 out:
2390 	up_write(&kvm->slots_lock);
2391 	return r;
2392 }
2393 
2394 long kvm_arch_vm_ioctl(struct file *filp,
2395 		       unsigned int ioctl, unsigned long arg)
2396 {
2397 	struct kvm *kvm = filp->private_data;
2398 	void __user *argp = (void __user *)arg;
2399 	int r = -ENOTTY;
2400 	/*
2401 	 * This union makes it completely explicit to gcc-3.x
2402 	 * that these two variables' stack usage should be
2403 	 * combined, not added together.
2404 	 */
2405 	union {
2406 		struct kvm_pit_state ps;
2407 		struct kvm_pit_state2 ps2;
2408 		struct kvm_memory_alias alias;
2409 		struct kvm_pit_config pit_config;
2410 	} u;
2411 
2412 	switch (ioctl) {
2413 	case KVM_SET_TSS_ADDR:
2414 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2415 		if (r < 0)
2416 			goto out;
2417 		break;
2418 	case KVM_SET_IDENTITY_MAP_ADDR: {
2419 		u64 ident_addr;
2420 
2421 		r = -EFAULT;
2422 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2423 			goto out;
2424 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2425 		if (r < 0)
2426 			goto out;
2427 		break;
2428 	}
2429 	case KVM_SET_MEMORY_REGION: {
2430 		struct kvm_memory_region kvm_mem;
2431 		struct kvm_userspace_memory_region kvm_userspace_mem;
2432 
2433 		r = -EFAULT;
2434 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2435 			goto out;
2436 		kvm_userspace_mem.slot = kvm_mem.slot;
2437 		kvm_userspace_mem.flags = kvm_mem.flags;
2438 		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2439 		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2440 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2441 		if (r)
2442 			goto out;
2443 		break;
2444 	}
2445 	case KVM_SET_NR_MMU_PAGES:
2446 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2447 		if (r)
2448 			goto out;
2449 		break;
2450 	case KVM_GET_NR_MMU_PAGES:
2451 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2452 		break;
2453 	case KVM_SET_MEMORY_ALIAS:
2454 		r = -EFAULT;
2455 		if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2456 			goto out;
2457 		r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2458 		if (r)
2459 			goto out;
2460 		break;
2461 	case KVM_CREATE_IRQCHIP: {
2462 		struct kvm_pic *vpic;
2463 
2464 		mutex_lock(&kvm->lock);
2465 		r = -EEXIST;
2466 		if (kvm->arch.vpic)
2467 			goto create_irqchip_unlock;
2468 		r = -ENOMEM;
2469 		vpic = kvm_create_pic(kvm);
2470 		if (vpic) {
2471 			r = kvm_ioapic_init(kvm);
2472 			if (r) {
2473 				kfree(vpic);
2474 				goto create_irqchip_unlock;
2475 			}
2476 		} else
2477 			goto create_irqchip_unlock;
2478 		smp_wmb();
2479 		kvm->arch.vpic = vpic;
2480 		smp_wmb();
2481 		r = kvm_setup_default_irq_routing(kvm);
2482 		if (r) {
2483 			mutex_lock(&kvm->irq_lock);
2484 			kfree(kvm->arch.vpic);
2485 			kfree(kvm->arch.vioapic);
2486 			kvm->arch.vpic = NULL;
2487 			kvm->arch.vioapic = NULL;
2488 			mutex_unlock(&kvm->irq_lock);
2489 		}
2490 	create_irqchip_unlock:
2491 		mutex_unlock(&kvm->lock);
2492 		break;
2493 	}
2494 	case KVM_CREATE_PIT:
2495 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2496 		goto create_pit;
2497 	case KVM_CREATE_PIT2:
2498 		r = -EFAULT;
2499 		if (copy_from_user(&u.pit_config, argp,
2500 				   sizeof(struct kvm_pit_config)))
2501 			goto out;
2502 	create_pit:
2503 		down_write(&kvm->slots_lock);
2504 		r = -EEXIST;
2505 		if (kvm->arch.vpit)
2506 			goto create_pit_unlock;
2507 		r = -ENOMEM;
2508 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2509 		if (kvm->arch.vpit)
2510 			r = 0;
2511 	create_pit_unlock:
2512 		up_write(&kvm->slots_lock);
2513 		break;
2514 	case KVM_IRQ_LINE_STATUS:
2515 	case KVM_IRQ_LINE: {
2516 		struct kvm_irq_level irq_event;
2517 
2518 		r = -EFAULT;
2519 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2520 			goto out;
2521 		if (irqchip_in_kernel(kvm)) {
2522 			__s32 status;
2523 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2524 					irq_event.irq, irq_event.level);
2525 			if (ioctl == KVM_IRQ_LINE_STATUS) {
2526 				irq_event.status = status;
2527 				if (copy_to_user(argp, &irq_event,
2528 							sizeof irq_event))
2529 					goto out;
2530 			}
2531 			r = 0;
2532 		}
2533 		break;
2534 	}
2535 	case KVM_GET_IRQCHIP: {
2536 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2537 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2538 
2539 		r = -ENOMEM;
2540 		if (!chip)
2541 			goto out;
2542 		r = -EFAULT;
2543 		if (copy_from_user(chip, argp, sizeof *chip))
2544 			goto get_irqchip_out;
2545 		r = -ENXIO;
2546 		if (!irqchip_in_kernel(kvm))
2547 			goto get_irqchip_out;
2548 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2549 		if (r)
2550 			goto get_irqchip_out;
2551 		r = -EFAULT;
2552 		if (copy_to_user(argp, chip, sizeof *chip))
2553 			goto get_irqchip_out;
2554 		r = 0;
2555 	get_irqchip_out:
2556 		kfree(chip);
2557 		if (r)
2558 			goto out;
2559 		break;
2560 	}
2561 	case KVM_SET_IRQCHIP: {
2562 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2563 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2564 
2565 		r = -ENOMEM;
2566 		if (!chip)
2567 			goto out;
2568 		r = -EFAULT;
2569 		if (copy_from_user(chip, argp, sizeof *chip))
2570 			goto set_irqchip_out;
2571 		r = -ENXIO;
2572 		if (!irqchip_in_kernel(kvm))
2573 			goto set_irqchip_out;
2574 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2575 		if (r)
2576 			goto set_irqchip_out;
2577 		r = 0;
2578 	set_irqchip_out:
2579 		kfree(chip);
2580 		if (r)
2581 			goto out;
2582 		break;
2583 	}
2584 	case KVM_GET_PIT: {
2585 		r = -EFAULT;
2586 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2587 			goto out;
2588 		r = -ENXIO;
2589 		if (!kvm->arch.vpit)
2590 			goto out;
2591 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2592 		if (r)
2593 			goto out;
2594 		r = -EFAULT;
2595 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2596 			goto out;
2597 		r = 0;
2598 		break;
2599 	}
2600 	case KVM_SET_PIT: {
2601 		r = -EFAULT;
2602 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
2603 			goto out;
2604 		r = -ENXIO;
2605 		if (!kvm->arch.vpit)
2606 			goto out;
2607 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2608 		if (r)
2609 			goto out;
2610 		r = 0;
2611 		break;
2612 	}
2613 	case KVM_GET_PIT2: {
2614 		r = -ENXIO;
2615 		if (!kvm->arch.vpit)
2616 			goto out;
2617 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2618 		if (r)
2619 			goto out;
2620 		r = -EFAULT;
2621 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2622 			goto out;
2623 		r = 0;
2624 		break;
2625 	}
2626 	case KVM_SET_PIT2: {
2627 		r = -EFAULT;
2628 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2629 			goto out;
2630 		r = -ENXIO;
2631 		if (!kvm->arch.vpit)
2632 			goto out;
2633 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2634 		if (r)
2635 			goto out;
2636 		r = 0;
2637 		break;
2638 	}
2639 	case KVM_REINJECT_CONTROL: {
2640 		struct kvm_reinject_control control;
2641 		r =  -EFAULT;
2642 		if (copy_from_user(&control, argp, sizeof(control)))
2643 			goto out;
2644 		r = kvm_vm_ioctl_reinject(kvm, &control);
2645 		if (r)
2646 			goto out;
2647 		r = 0;
2648 		break;
2649 	}
2650 	case KVM_XEN_HVM_CONFIG: {
2651 		r = -EFAULT;
2652 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2653 				   sizeof(struct kvm_xen_hvm_config)))
2654 			goto out;
2655 		r = -EINVAL;
2656 		if (kvm->arch.xen_hvm_config.flags)
2657 			goto out;
2658 		r = 0;
2659 		break;
2660 	}
2661 	case KVM_SET_CLOCK: {
2662 		struct timespec now;
2663 		struct kvm_clock_data user_ns;
2664 		u64 now_ns;
2665 		s64 delta;
2666 
2667 		r = -EFAULT;
2668 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2669 			goto out;
2670 
2671 		r = -EINVAL;
2672 		if (user_ns.flags)
2673 			goto out;
2674 
2675 		r = 0;
2676 		ktime_get_ts(&now);
2677 		now_ns = timespec_to_ns(&now);
2678 		delta = user_ns.clock - now_ns;
2679 		kvm->arch.kvmclock_offset = delta;
2680 		break;
2681 	}
2682 	case KVM_GET_CLOCK: {
2683 		struct timespec now;
2684 		struct kvm_clock_data user_ns;
2685 		u64 now_ns;
2686 
2687 		ktime_get_ts(&now);
2688 		now_ns = timespec_to_ns(&now);
2689 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2690 		user_ns.flags = 0;
2691 
2692 		r = -EFAULT;
2693 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2694 			goto out;
2695 		r = 0;
2696 		break;
2697 	}
2698 
2699 	default:
2700 		;
2701 	}
2702 out:
2703 	return r;
2704 }
2705 
2706 static void kvm_init_msr_list(void)
2707 {
2708 	u32 dummy[2];
2709 	unsigned i, j;
2710 
2711 	/* skip the first msrs in the list. KVM-specific */
2712 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2713 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2714 			continue;
2715 		if (j < i)
2716 			msrs_to_save[j] = msrs_to_save[i];
2717 		j++;
2718 	}
2719 	num_msrs_to_save = j;
2720 }
2721 
2722 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2723 			   const void *v)
2724 {
2725 	if (vcpu->arch.apic &&
2726 	    !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2727 		return 0;
2728 
2729 	return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2730 }
2731 
2732 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2733 {
2734 	if (vcpu->arch.apic &&
2735 	    !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2736 		return 0;
2737 
2738 	return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2739 }
2740 
2741 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2742 			       struct kvm_vcpu *vcpu)
2743 {
2744 	void *data = val;
2745 	int r = X86EMUL_CONTINUE;
2746 
2747 	while (bytes) {
2748 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2749 		unsigned offset = addr & (PAGE_SIZE-1);
2750 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2751 		int ret;
2752 
2753 		if (gpa == UNMAPPED_GVA) {
2754 			r = X86EMUL_PROPAGATE_FAULT;
2755 			goto out;
2756 		}
2757 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2758 		if (ret < 0) {
2759 			r = X86EMUL_UNHANDLEABLE;
2760 			goto out;
2761 		}
2762 
2763 		bytes -= toread;
2764 		data += toread;
2765 		addr += toread;
2766 	}
2767 out:
2768 	return r;
2769 }
2770 
2771 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2772 				struct kvm_vcpu *vcpu)
2773 {
2774 	void *data = val;
2775 	int r = X86EMUL_CONTINUE;
2776 
2777 	while (bytes) {
2778 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2779 		unsigned offset = addr & (PAGE_SIZE-1);
2780 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2781 		int ret;
2782 
2783 		if (gpa == UNMAPPED_GVA) {
2784 			r = X86EMUL_PROPAGATE_FAULT;
2785 			goto out;
2786 		}
2787 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2788 		if (ret < 0) {
2789 			r = X86EMUL_UNHANDLEABLE;
2790 			goto out;
2791 		}
2792 
2793 		bytes -= towrite;
2794 		data += towrite;
2795 		addr += towrite;
2796 	}
2797 out:
2798 	return r;
2799 }
2800 
2801 
2802 static int emulator_read_emulated(unsigned long addr,
2803 				  void *val,
2804 				  unsigned int bytes,
2805 				  struct kvm_vcpu *vcpu)
2806 {
2807 	gpa_t                 gpa;
2808 
2809 	if (vcpu->mmio_read_completed) {
2810 		memcpy(val, vcpu->mmio_data, bytes);
2811 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2812 			       vcpu->mmio_phys_addr, *(u64 *)val);
2813 		vcpu->mmio_read_completed = 0;
2814 		return X86EMUL_CONTINUE;
2815 	}
2816 
2817 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2818 
2819 	/* For APIC access vmexit */
2820 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2821 		goto mmio;
2822 
2823 	if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2824 				== X86EMUL_CONTINUE)
2825 		return X86EMUL_CONTINUE;
2826 	if (gpa == UNMAPPED_GVA)
2827 		return X86EMUL_PROPAGATE_FAULT;
2828 
2829 mmio:
2830 	/*
2831 	 * Is this MMIO handled locally?
2832 	 */
2833 	if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2834 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2835 		return X86EMUL_CONTINUE;
2836 	}
2837 
2838 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2839 
2840 	vcpu->mmio_needed = 1;
2841 	vcpu->mmio_phys_addr = gpa;
2842 	vcpu->mmio_size = bytes;
2843 	vcpu->mmio_is_write = 0;
2844 
2845 	return X86EMUL_UNHANDLEABLE;
2846 }
2847 
2848 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2849 			  const void *val, int bytes)
2850 {
2851 	int ret;
2852 
2853 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2854 	if (ret < 0)
2855 		return 0;
2856 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2857 	return 1;
2858 }
2859 
2860 static int emulator_write_emulated_onepage(unsigned long addr,
2861 					   const void *val,
2862 					   unsigned int bytes,
2863 					   struct kvm_vcpu *vcpu)
2864 {
2865 	gpa_t                 gpa;
2866 
2867 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2868 
2869 	if (gpa == UNMAPPED_GVA) {
2870 		kvm_inject_page_fault(vcpu, addr, 2);
2871 		return X86EMUL_PROPAGATE_FAULT;
2872 	}
2873 
2874 	/* For APIC access vmexit */
2875 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2876 		goto mmio;
2877 
2878 	if (emulator_write_phys(vcpu, gpa, val, bytes))
2879 		return X86EMUL_CONTINUE;
2880 
2881 mmio:
2882 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2883 	/*
2884 	 * Is this MMIO handled locally?
2885 	 */
2886 	if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2887 		return X86EMUL_CONTINUE;
2888 
2889 	vcpu->mmio_needed = 1;
2890 	vcpu->mmio_phys_addr = gpa;
2891 	vcpu->mmio_size = bytes;
2892 	vcpu->mmio_is_write = 1;
2893 	memcpy(vcpu->mmio_data, val, bytes);
2894 
2895 	return X86EMUL_CONTINUE;
2896 }
2897 
2898 int emulator_write_emulated(unsigned long addr,
2899 				   const void *val,
2900 				   unsigned int bytes,
2901 				   struct kvm_vcpu *vcpu)
2902 {
2903 	/* Crossing a page boundary? */
2904 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2905 		int rc, now;
2906 
2907 		now = -addr & ~PAGE_MASK;
2908 		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2909 		if (rc != X86EMUL_CONTINUE)
2910 			return rc;
2911 		addr += now;
2912 		val += now;
2913 		bytes -= now;
2914 	}
2915 	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2916 }
2917 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2918 
2919 static int emulator_cmpxchg_emulated(unsigned long addr,
2920 				     const void *old,
2921 				     const void *new,
2922 				     unsigned int bytes,
2923 				     struct kvm_vcpu *vcpu)
2924 {
2925 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2926 #ifndef CONFIG_X86_64
2927 	/* guests cmpxchg8b have to be emulated atomically */
2928 	if (bytes == 8) {
2929 		gpa_t gpa;
2930 		struct page *page;
2931 		char *kaddr;
2932 		u64 val;
2933 
2934 		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2935 
2936 		if (gpa == UNMAPPED_GVA ||
2937 		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2938 			goto emul_write;
2939 
2940 		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2941 			goto emul_write;
2942 
2943 		val = *(u64 *)new;
2944 
2945 		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2946 
2947 		kaddr = kmap_atomic(page, KM_USER0);
2948 		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2949 		kunmap_atomic(kaddr, KM_USER0);
2950 		kvm_release_page_dirty(page);
2951 	}
2952 emul_write:
2953 #endif
2954 
2955 	return emulator_write_emulated(addr, new, bytes, vcpu);
2956 }
2957 
2958 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2959 {
2960 	return kvm_x86_ops->get_segment_base(vcpu, seg);
2961 }
2962 
2963 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2964 {
2965 	kvm_mmu_invlpg(vcpu, address);
2966 	return X86EMUL_CONTINUE;
2967 }
2968 
2969 int emulate_clts(struct kvm_vcpu *vcpu)
2970 {
2971 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2972 	return X86EMUL_CONTINUE;
2973 }
2974 
2975 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2976 {
2977 	struct kvm_vcpu *vcpu = ctxt->vcpu;
2978 
2979 	switch (dr) {
2980 	case 0 ... 3:
2981 		*dest = kvm_x86_ops->get_dr(vcpu, dr);
2982 		return X86EMUL_CONTINUE;
2983 	default:
2984 		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2985 		return X86EMUL_UNHANDLEABLE;
2986 	}
2987 }
2988 
2989 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2990 {
2991 	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2992 	int exception;
2993 
2994 	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2995 	if (exception) {
2996 		/* FIXME: better handling */
2997 		return X86EMUL_UNHANDLEABLE;
2998 	}
2999 	return X86EMUL_CONTINUE;
3000 }
3001 
3002 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3003 {
3004 	u8 opcodes[4];
3005 	unsigned long rip = kvm_rip_read(vcpu);
3006 	unsigned long rip_linear;
3007 
3008 	if (!printk_ratelimit())
3009 		return;
3010 
3011 	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3012 
3013 	kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3014 
3015 	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3016 	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3017 }
3018 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3019 
3020 static struct x86_emulate_ops emulate_ops = {
3021 	.read_std            = kvm_read_guest_virt,
3022 	.read_emulated       = emulator_read_emulated,
3023 	.write_emulated      = emulator_write_emulated,
3024 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
3025 };
3026 
3027 static void cache_all_regs(struct kvm_vcpu *vcpu)
3028 {
3029 	kvm_register_read(vcpu, VCPU_REGS_RAX);
3030 	kvm_register_read(vcpu, VCPU_REGS_RSP);
3031 	kvm_register_read(vcpu, VCPU_REGS_RIP);
3032 	vcpu->arch.regs_dirty = ~0;
3033 }
3034 
3035 int emulate_instruction(struct kvm_vcpu *vcpu,
3036 			unsigned long cr2,
3037 			u16 error_code,
3038 			int emulation_type)
3039 {
3040 	int r, shadow_mask;
3041 	struct decode_cache *c;
3042 	struct kvm_run *run = vcpu->run;
3043 
3044 	kvm_clear_exception_queue(vcpu);
3045 	vcpu->arch.mmio_fault_cr2 = cr2;
3046 	/*
3047 	 * TODO: fix emulate.c to use guest_read/write_register
3048 	 * instead of direct ->regs accesses, can save hundred cycles
3049 	 * on Intel for instructions that don't read/change RSP, for
3050 	 * for example.
3051 	 */
3052 	cache_all_regs(vcpu);
3053 
3054 	vcpu->mmio_is_write = 0;
3055 	vcpu->arch.pio.string = 0;
3056 
3057 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3058 		int cs_db, cs_l;
3059 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3060 
3061 		vcpu->arch.emulate_ctxt.vcpu = vcpu;
3062 		vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3063 		vcpu->arch.emulate_ctxt.mode =
3064 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3065 			? X86EMUL_MODE_REAL : cs_l
3066 			? X86EMUL_MODE_PROT64 :	cs_db
3067 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3068 
3069 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3070 
3071 		/* Only allow emulation of specific instructions on #UD
3072 		 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3073 		c = &vcpu->arch.emulate_ctxt.decode;
3074 		if (emulation_type & EMULTYPE_TRAP_UD) {
3075 			if (!c->twobyte)
3076 				return EMULATE_FAIL;
3077 			switch (c->b) {
3078 			case 0x01: /* VMMCALL */
3079 				if (c->modrm_mod != 3 || c->modrm_rm != 1)
3080 					return EMULATE_FAIL;
3081 				break;
3082 			case 0x34: /* sysenter */
3083 			case 0x35: /* sysexit */
3084 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
3085 					return EMULATE_FAIL;
3086 				break;
3087 			case 0x05: /* syscall */
3088 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
3089 					return EMULATE_FAIL;
3090 				break;
3091 			default:
3092 				return EMULATE_FAIL;
3093 			}
3094 
3095 			if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3096 				return EMULATE_FAIL;
3097 		}
3098 
3099 		++vcpu->stat.insn_emulation;
3100 		if (r)  {
3101 			++vcpu->stat.insn_emulation_fail;
3102 			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3103 				return EMULATE_DONE;
3104 			return EMULATE_FAIL;
3105 		}
3106 	}
3107 
3108 	if (emulation_type & EMULTYPE_SKIP) {
3109 		kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3110 		return EMULATE_DONE;
3111 	}
3112 
3113 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3114 	shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3115 
3116 	if (r == 0)
3117 		kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3118 
3119 	if (vcpu->arch.pio.string)
3120 		return EMULATE_DO_MMIO;
3121 
3122 	if ((r || vcpu->mmio_is_write) && run) {
3123 		run->exit_reason = KVM_EXIT_MMIO;
3124 		run->mmio.phys_addr = vcpu->mmio_phys_addr;
3125 		memcpy(run->mmio.data, vcpu->mmio_data, 8);
3126 		run->mmio.len = vcpu->mmio_size;
3127 		run->mmio.is_write = vcpu->mmio_is_write;
3128 	}
3129 
3130 	if (r) {
3131 		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3132 			return EMULATE_DONE;
3133 		if (!vcpu->mmio_needed) {
3134 			kvm_report_emulation_failure(vcpu, "mmio");
3135 			return EMULATE_FAIL;
3136 		}
3137 		return EMULATE_DO_MMIO;
3138 	}
3139 
3140 	kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3141 
3142 	if (vcpu->mmio_is_write) {
3143 		vcpu->mmio_needed = 0;
3144 		return EMULATE_DO_MMIO;
3145 	}
3146 
3147 	return EMULATE_DONE;
3148 }
3149 EXPORT_SYMBOL_GPL(emulate_instruction);
3150 
3151 static int pio_copy_data(struct kvm_vcpu *vcpu)
3152 {
3153 	void *p = vcpu->arch.pio_data;
3154 	gva_t q = vcpu->arch.pio.guest_gva;
3155 	unsigned bytes;
3156 	int ret;
3157 
3158 	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3159 	if (vcpu->arch.pio.in)
3160 		ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3161 	else
3162 		ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3163 	return ret;
3164 }
3165 
3166 int complete_pio(struct kvm_vcpu *vcpu)
3167 {
3168 	struct kvm_pio_request *io = &vcpu->arch.pio;
3169 	long delta;
3170 	int r;
3171 	unsigned long val;
3172 
3173 	if (!io->string) {
3174 		if (io->in) {
3175 			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3176 			memcpy(&val, vcpu->arch.pio_data, io->size);
3177 			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3178 		}
3179 	} else {
3180 		if (io->in) {
3181 			r = pio_copy_data(vcpu);
3182 			if (r)
3183 				return r;
3184 		}
3185 
3186 		delta = 1;
3187 		if (io->rep) {
3188 			delta *= io->cur_count;
3189 			/*
3190 			 * The size of the register should really depend on
3191 			 * current address size.
3192 			 */
3193 			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3194 			val -= delta;
3195 			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3196 		}
3197 		if (io->down)
3198 			delta = -delta;
3199 		delta *= io->size;
3200 		if (io->in) {
3201 			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3202 			val += delta;
3203 			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3204 		} else {
3205 			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3206 			val += delta;
3207 			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3208 		}
3209 	}
3210 
3211 	io->count -= io->cur_count;
3212 	io->cur_count = 0;
3213 
3214 	return 0;
3215 }
3216 
3217 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3218 {
3219 	/* TODO: String I/O for in kernel device */
3220 	int r;
3221 
3222 	if (vcpu->arch.pio.in)
3223 		r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3224 				    vcpu->arch.pio.size, pd);
3225 	else
3226 		r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3227 				     vcpu->arch.pio.size, pd);
3228 	return r;
3229 }
3230 
3231 static int pio_string_write(struct kvm_vcpu *vcpu)
3232 {
3233 	struct kvm_pio_request *io = &vcpu->arch.pio;
3234 	void *pd = vcpu->arch.pio_data;
3235 	int i, r = 0;
3236 
3237 	for (i = 0; i < io->cur_count; i++) {
3238 		if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3239 				     io->port, io->size, pd)) {
3240 			r = -EOPNOTSUPP;
3241 			break;
3242 		}
3243 		pd += io->size;
3244 	}
3245 	return r;
3246 }
3247 
3248 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3249 {
3250 	unsigned long val;
3251 
3252 	vcpu->run->exit_reason = KVM_EXIT_IO;
3253 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3254 	vcpu->run->io.size = vcpu->arch.pio.size = size;
3255 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3256 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3257 	vcpu->run->io.port = vcpu->arch.pio.port = port;
3258 	vcpu->arch.pio.in = in;
3259 	vcpu->arch.pio.string = 0;
3260 	vcpu->arch.pio.down = 0;
3261 	vcpu->arch.pio.rep = 0;
3262 
3263 	trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3264 		      size, 1);
3265 
3266 	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3267 	memcpy(vcpu->arch.pio_data, &val, 4);
3268 
3269 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3270 		complete_pio(vcpu);
3271 		return 1;
3272 	}
3273 	return 0;
3274 }
3275 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3276 
3277 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3278 		  int size, unsigned long count, int down,
3279 		  gva_t address, int rep, unsigned port)
3280 {
3281 	unsigned now, in_page;
3282 	int ret = 0;
3283 
3284 	vcpu->run->exit_reason = KVM_EXIT_IO;
3285 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3286 	vcpu->run->io.size = vcpu->arch.pio.size = size;
3287 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3288 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3289 	vcpu->run->io.port = vcpu->arch.pio.port = port;
3290 	vcpu->arch.pio.in = in;
3291 	vcpu->arch.pio.string = 1;
3292 	vcpu->arch.pio.down = down;
3293 	vcpu->arch.pio.rep = rep;
3294 
3295 	trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3296 		      size, count);
3297 
3298 	if (!count) {
3299 		kvm_x86_ops->skip_emulated_instruction(vcpu);
3300 		return 1;
3301 	}
3302 
3303 	if (!down)
3304 		in_page = PAGE_SIZE - offset_in_page(address);
3305 	else
3306 		in_page = offset_in_page(address) + size;
3307 	now = min(count, (unsigned long)in_page / size);
3308 	if (!now)
3309 		now = 1;
3310 	if (down) {
3311 		/*
3312 		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3313 		 */
3314 		pr_unimpl(vcpu, "guest string pio down\n");
3315 		kvm_inject_gp(vcpu, 0);
3316 		return 1;
3317 	}
3318 	vcpu->run->io.count = now;
3319 	vcpu->arch.pio.cur_count = now;
3320 
3321 	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3322 		kvm_x86_ops->skip_emulated_instruction(vcpu);
3323 
3324 	vcpu->arch.pio.guest_gva = address;
3325 
3326 	if (!vcpu->arch.pio.in) {
3327 		/* string PIO write */
3328 		ret = pio_copy_data(vcpu);
3329 		if (ret == X86EMUL_PROPAGATE_FAULT) {
3330 			kvm_inject_gp(vcpu, 0);
3331 			return 1;
3332 		}
3333 		if (ret == 0 && !pio_string_write(vcpu)) {
3334 			complete_pio(vcpu);
3335 			if (vcpu->arch.pio.count == 0)
3336 				ret = 1;
3337 		}
3338 	}
3339 	/* no string PIO read support yet */
3340 
3341 	return ret;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3344 
3345 static void bounce_off(void *info)
3346 {
3347 	/* nothing */
3348 }
3349 
3350 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3351 				     void *data)
3352 {
3353 	struct cpufreq_freqs *freq = data;
3354 	struct kvm *kvm;
3355 	struct kvm_vcpu *vcpu;
3356 	int i, send_ipi = 0;
3357 
3358 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3359 		return 0;
3360 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3361 		return 0;
3362 	per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3363 
3364 	spin_lock(&kvm_lock);
3365 	list_for_each_entry(kvm, &vm_list, vm_list) {
3366 		kvm_for_each_vcpu(i, vcpu, kvm) {
3367 			if (vcpu->cpu != freq->cpu)
3368 				continue;
3369 			if (!kvm_request_guest_time_update(vcpu))
3370 				continue;
3371 			if (vcpu->cpu != smp_processor_id())
3372 				send_ipi++;
3373 		}
3374 	}
3375 	spin_unlock(&kvm_lock);
3376 
3377 	if (freq->old < freq->new && send_ipi) {
3378 		/*
3379 		 * We upscale the frequency.  Must make the guest
3380 		 * doesn't see old kvmclock values while running with
3381 		 * the new frequency, otherwise we risk the guest sees
3382 		 * time go backwards.
3383 		 *
3384 		 * In case we update the frequency for another cpu
3385 		 * (which might be in guest context) send an interrupt
3386 		 * to kick the cpu out of guest context.  Next time
3387 		 * guest context is entered kvmclock will be updated,
3388 		 * so the guest will not see stale values.
3389 		 */
3390 		smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3391 	}
3392 	return 0;
3393 }
3394 
3395 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3396         .notifier_call  = kvmclock_cpufreq_notifier
3397 };
3398 
3399 static void kvm_timer_init(void)
3400 {
3401 	int cpu;
3402 
3403 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3404 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3405 					  CPUFREQ_TRANSITION_NOTIFIER);
3406 		for_each_online_cpu(cpu) {
3407 			unsigned long khz = cpufreq_get(cpu);
3408 			if (!khz)
3409 				khz = tsc_khz;
3410 			per_cpu(cpu_tsc_khz, cpu) = khz;
3411 		}
3412 	} else {
3413 		for_each_possible_cpu(cpu)
3414 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3415 	}
3416 }
3417 
3418 int kvm_arch_init(void *opaque)
3419 {
3420 	int r;
3421 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3422 
3423 	if (kvm_x86_ops) {
3424 		printk(KERN_ERR "kvm: already loaded the other module\n");
3425 		r = -EEXIST;
3426 		goto out;
3427 	}
3428 
3429 	if (!ops->cpu_has_kvm_support()) {
3430 		printk(KERN_ERR "kvm: no hardware support\n");
3431 		r = -EOPNOTSUPP;
3432 		goto out;
3433 	}
3434 	if (ops->disabled_by_bios()) {
3435 		printk(KERN_ERR "kvm: disabled by bios\n");
3436 		r = -EOPNOTSUPP;
3437 		goto out;
3438 	}
3439 
3440 	r = kvm_mmu_module_init();
3441 	if (r)
3442 		goto out;
3443 
3444 	kvm_init_msr_list();
3445 
3446 	kvm_x86_ops = ops;
3447 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3448 	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3449 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3450 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
3451 
3452 	kvm_timer_init();
3453 
3454 	return 0;
3455 
3456 out:
3457 	return r;
3458 }
3459 
3460 void kvm_arch_exit(void)
3461 {
3462 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3463 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3464 					    CPUFREQ_TRANSITION_NOTIFIER);
3465 	kvm_x86_ops = NULL;
3466 	kvm_mmu_module_exit();
3467 }
3468 
3469 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3470 {
3471 	++vcpu->stat.halt_exits;
3472 	if (irqchip_in_kernel(vcpu->kvm)) {
3473 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3474 		return 1;
3475 	} else {
3476 		vcpu->run->exit_reason = KVM_EXIT_HLT;
3477 		return 0;
3478 	}
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3481 
3482 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3483 			   unsigned long a1)
3484 {
3485 	if (is_long_mode(vcpu))
3486 		return a0;
3487 	else
3488 		return a0 | ((gpa_t)a1 << 32);
3489 }
3490 
3491 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3492 {
3493 	unsigned long nr, a0, a1, a2, a3, ret;
3494 	int r = 1;
3495 
3496 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3497 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3498 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3499 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3500 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3501 
3502 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
3503 
3504 	if (!is_long_mode(vcpu)) {
3505 		nr &= 0xFFFFFFFF;
3506 		a0 &= 0xFFFFFFFF;
3507 		a1 &= 0xFFFFFFFF;
3508 		a2 &= 0xFFFFFFFF;
3509 		a3 &= 0xFFFFFFFF;
3510 	}
3511 
3512 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3513 		ret = -KVM_EPERM;
3514 		goto out;
3515 	}
3516 
3517 	switch (nr) {
3518 	case KVM_HC_VAPIC_POLL_IRQ:
3519 		ret = 0;
3520 		break;
3521 	case KVM_HC_MMU_OP:
3522 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3523 		break;
3524 	default:
3525 		ret = -KVM_ENOSYS;
3526 		break;
3527 	}
3528 out:
3529 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3530 	++vcpu->stat.hypercalls;
3531 	return r;
3532 }
3533 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3534 
3535 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3536 {
3537 	char instruction[3];
3538 	int ret = 0;
3539 	unsigned long rip = kvm_rip_read(vcpu);
3540 
3541 
3542 	/*
3543 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
3544 	 * to ensure that the updated hypercall appears atomically across all
3545 	 * VCPUs.
3546 	 */
3547 	kvm_mmu_zap_all(vcpu->kvm);
3548 
3549 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
3550 	if (emulator_write_emulated(rip, instruction, 3, vcpu)
3551 	    != X86EMUL_CONTINUE)
3552 		ret = -EFAULT;
3553 
3554 	return ret;
3555 }
3556 
3557 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3558 {
3559 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3560 }
3561 
3562 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3563 {
3564 	struct descriptor_table dt = { limit, base };
3565 
3566 	kvm_x86_ops->set_gdt(vcpu, &dt);
3567 }
3568 
3569 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3570 {
3571 	struct descriptor_table dt = { limit, base };
3572 
3573 	kvm_x86_ops->set_idt(vcpu, &dt);
3574 }
3575 
3576 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3577 		   unsigned long *rflags)
3578 {
3579 	kvm_lmsw(vcpu, msw);
3580 	*rflags = kvm_get_rflags(vcpu);
3581 }
3582 
3583 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3584 {
3585 	unsigned long value;
3586 
3587 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3588 	switch (cr) {
3589 	case 0:
3590 		value = vcpu->arch.cr0;
3591 		break;
3592 	case 2:
3593 		value = vcpu->arch.cr2;
3594 		break;
3595 	case 3:
3596 		value = vcpu->arch.cr3;
3597 		break;
3598 	case 4:
3599 		value = vcpu->arch.cr4;
3600 		break;
3601 	case 8:
3602 		value = kvm_get_cr8(vcpu);
3603 		break;
3604 	default:
3605 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3606 		return 0;
3607 	}
3608 
3609 	return value;
3610 }
3611 
3612 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3613 		     unsigned long *rflags)
3614 {
3615 	switch (cr) {
3616 	case 0:
3617 		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3618 		*rflags = kvm_get_rflags(vcpu);
3619 		break;
3620 	case 2:
3621 		vcpu->arch.cr2 = val;
3622 		break;
3623 	case 3:
3624 		kvm_set_cr3(vcpu, val);
3625 		break;
3626 	case 4:
3627 		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3628 		break;
3629 	case 8:
3630 		kvm_set_cr8(vcpu, val & 0xfUL);
3631 		break;
3632 	default:
3633 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3634 	}
3635 }
3636 
3637 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3638 {
3639 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3640 	int j, nent = vcpu->arch.cpuid_nent;
3641 
3642 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3643 	/* when no next entry is found, the current entry[i] is reselected */
3644 	for (j = i + 1; ; j = (j + 1) % nent) {
3645 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3646 		if (ej->function == e->function) {
3647 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3648 			return j;
3649 		}
3650 	}
3651 	return 0; /* silence gcc, even though control never reaches here */
3652 }
3653 
3654 /* find an entry with matching function, matching index (if needed), and that
3655  * should be read next (if it's stateful) */
3656 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3657 	u32 function, u32 index)
3658 {
3659 	if (e->function != function)
3660 		return 0;
3661 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3662 		return 0;
3663 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3664 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3665 		return 0;
3666 	return 1;
3667 }
3668 
3669 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3670 					      u32 function, u32 index)
3671 {
3672 	int i;
3673 	struct kvm_cpuid_entry2 *best = NULL;
3674 
3675 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3676 		struct kvm_cpuid_entry2 *e;
3677 
3678 		e = &vcpu->arch.cpuid_entries[i];
3679 		if (is_matching_cpuid_entry(e, function, index)) {
3680 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3681 				move_to_next_stateful_cpuid_entry(vcpu, i);
3682 			best = e;
3683 			break;
3684 		}
3685 		/*
3686 		 * Both basic or both extended?
3687 		 */
3688 		if (((e->function ^ function) & 0x80000000) == 0)
3689 			if (!best || e->function > best->function)
3690 				best = e;
3691 	}
3692 	return best;
3693 }
3694 
3695 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3696 {
3697 	struct kvm_cpuid_entry2 *best;
3698 
3699 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3700 	if (best)
3701 		return best->eax & 0xff;
3702 	return 36;
3703 }
3704 
3705 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3706 {
3707 	u32 function, index;
3708 	struct kvm_cpuid_entry2 *best;
3709 
3710 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3711 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3712 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3713 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3714 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3715 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3716 	best = kvm_find_cpuid_entry(vcpu, function, index);
3717 	if (best) {
3718 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3719 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3720 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3721 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3722 	}
3723 	kvm_x86_ops->skip_emulated_instruction(vcpu);
3724 	trace_kvm_cpuid(function,
3725 			kvm_register_read(vcpu, VCPU_REGS_RAX),
3726 			kvm_register_read(vcpu, VCPU_REGS_RBX),
3727 			kvm_register_read(vcpu, VCPU_REGS_RCX),
3728 			kvm_register_read(vcpu, VCPU_REGS_RDX));
3729 }
3730 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3731 
3732 /*
3733  * Check if userspace requested an interrupt window, and that the
3734  * interrupt window is open.
3735  *
3736  * No need to exit to userspace if we already have an interrupt queued.
3737  */
3738 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3739 {
3740 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3741 		vcpu->run->request_interrupt_window &&
3742 		kvm_arch_interrupt_allowed(vcpu));
3743 }
3744 
3745 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3746 {
3747 	struct kvm_run *kvm_run = vcpu->run;
3748 
3749 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3750 	kvm_run->cr8 = kvm_get_cr8(vcpu);
3751 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
3752 	if (irqchip_in_kernel(vcpu->kvm))
3753 		kvm_run->ready_for_interrupt_injection = 1;
3754 	else
3755 		kvm_run->ready_for_interrupt_injection =
3756 			kvm_arch_interrupt_allowed(vcpu) &&
3757 			!kvm_cpu_has_interrupt(vcpu) &&
3758 			!kvm_event_needs_reinjection(vcpu);
3759 }
3760 
3761 static void vapic_enter(struct kvm_vcpu *vcpu)
3762 {
3763 	struct kvm_lapic *apic = vcpu->arch.apic;
3764 	struct page *page;
3765 
3766 	if (!apic || !apic->vapic_addr)
3767 		return;
3768 
3769 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3770 
3771 	vcpu->arch.apic->vapic_page = page;
3772 }
3773 
3774 static void vapic_exit(struct kvm_vcpu *vcpu)
3775 {
3776 	struct kvm_lapic *apic = vcpu->arch.apic;
3777 
3778 	if (!apic || !apic->vapic_addr)
3779 		return;
3780 
3781 	down_read(&vcpu->kvm->slots_lock);
3782 	kvm_release_page_dirty(apic->vapic_page);
3783 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3784 	up_read(&vcpu->kvm->slots_lock);
3785 }
3786 
3787 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3788 {
3789 	int max_irr, tpr;
3790 
3791 	if (!kvm_x86_ops->update_cr8_intercept)
3792 		return;
3793 
3794 	if (!vcpu->arch.apic)
3795 		return;
3796 
3797 	if (!vcpu->arch.apic->vapic_addr)
3798 		max_irr = kvm_lapic_find_highest_irr(vcpu);
3799 	else
3800 		max_irr = -1;
3801 
3802 	if (max_irr != -1)
3803 		max_irr >>= 4;
3804 
3805 	tpr = kvm_lapic_get_cr8(vcpu);
3806 
3807 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3808 }
3809 
3810 static void inject_pending_event(struct kvm_vcpu *vcpu)
3811 {
3812 	/* try to reinject previous events if any */
3813 	if (vcpu->arch.exception.pending) {
3814 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3815 					  vcpu->arch.exception.has_error_code,
3816 					  vcpu->arch.exception.error_code);
3817 		return;
3818 	}
3819 
3820 	if (vcpu->arch.nmi_injected) {
3821 		kvm_x86_ops->set_nmi(vcpu);
3822 		return;
3823 	}
3824 
3825 	if (vcpu->arch.interrupt.pending) {
3826 		kvm_x86_ops->set_irq(vcpu);
3827 		return;
3828 	}
3829 
3830 	/* try to inject new event if pending */
3831 	if (vcpu->arch.nmi_pending) {
3832 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
3833 			vcpu->arch.nmi_pending = false;
3834 			vcpu->arch.nmi_injected = true;
3835 			kvm_x86_ops->set_nmi(vcpu);
3836 		}
3837 	} else if (kvm_cpu_has_interrupt(vcpu)) {
3838 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3839 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3840 					    false);
3841 			kvm_x86_ops->set_irq(vcpu);
3842 		}
3843 	}
3844 }
3845 
3846 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3847 {
3848 	int r;
3849 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3850 		vcpu->run->request_interrupt_window;
3851 
3852 	if (vcpu->requests)
3853 		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3854 			kvm_mmu_unload(vcpu);
3855 
3856 	r = kvm_mmu_reload(vcpu);
3857 	if (unlikely(r))
3858 		goto out;
3859 
3860 	if (vcpu->requests) {
3861 		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3862 			__kvm_migrate_timers(vcpu);
3863 		if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3864 			kvm_write_guest_time(vcpu);
3865 		if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3866 			kvm_mmu_sync_roots(vcpu);
3867 		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3868 			kvm_x86_ops->tlb_flush(vcpu);
3869 		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3870 				       &vcpu->requests)) {
3871 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3872 			r = 0;
3873 			goto out;
3874 		}
3875 		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3876 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3877 			r = 0;
3878 			goto out;
3879 		}
3880 	}
3881 
3882 	preempt_disable();
3883 
3884 	kvm_x86_ops->prepare_guest_switch(vcpu);
3885 	kvm_load_guest_fpu(vcpu);
3886 
3887 	local_irq_disable();
3888 
3889 	clear_bit(KVM_REQ_KICK, &vcpu->requests);
3890 	smp_mb__after_clear_bit();
3891 
3892 	if (vcpu->requests || need_resched() || signal_pending(current)) {
3893 		set_bit(KVM_REQ_KICK, &vcpu->requests);
3894 		local_irq_enable();
3895 		preempt_enable();
3896 		r = 1;
3897 		goto out;
3898 	}
3899 
3900 	inject_pending_event(vcpu);
3901 
3902 	/* enable NMI/IRQ window open exits if needed */
3903 	if (vcpu->arch.nmi_pending)
3904 		kvm_x86_ops->enable_nmi_window(vcpu);
3905 	else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3906 		kvm_x86_ops->enable_irq_window(vcpu);
3907 
3908 	if (kvm_lapic_enabled(vcpu)) {
3909 		update_cr8_intercept(vcpu);
3910 		kvm_lapic_sync_to_vapic(vcpu);
3911 	}
3912 
3913 	up_read(&vcpu->kvm->slots_lock);
3914 
3915 	kvm_guest_enter();
3916 
3917 	if (unlikely(vcpu->arch.switch_db_regs)) {
3918 		set_debugreg(0, 7);
3919 		set_debugreg(vcpu->arch.eff_db[0], 0);
3920 		set_debugreg(vcpu->arch.eff_db[1], 1);
3921 		set_debugreg(vcpu->arch.eff_db[2], 2);
3922 		set_debugreg(vcpu->arch.eff_db[3], 3);
3923 	}
3924 
3925 	trace_kvm_entry(vcpu->vcpu_id);
3926 	kvm_x86_ops->run(vcpu);
3927 
3928 	/*
3929 	 * If the guest has used debug registers, at least dr7
3930 	 * will be disabled while returning to the host.
3931 	 * If we don't have active breakpoints in the host, we don't
3932 	 * care about the messed up debug address registers. But if
3933 	 * we have some of them active, restore the old state.
3934 	 */
3935 	if (hw_breakpoint_active())
3936 		hw_breakpoint_restore();
3937 
3938 	set_bit(KVM_REQ_KICK, &vcpu->requests);
3939 	local_irq_enable();
3940 
3941 	++vcpu->stat.exits;
3942 
3943 	/*
3944 	 * We must have an instruction between local_irq_enable() and
3945 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3946 	 * the interrupt shadow.  The stat.exits increment will do nicely.
3947 	 * But we need to prevent reordering, hence this barrier():
3948 	 */
3949 	barrier();
3950 
3951 	kvm_guest_exit();
3952 
3953 	preempt_enable();
3954 
3955 	down_read(&vcpu->kvm->slots_lock);
3956 
3957 	/*
3958 	 * Profile KVM exit RIPs:
3959 	 */
3960 	if (unlikely(prof_on == KVM_PROFILING)) {
3961 		unsigned long rip = kvm_rip_read(vcpu);
3962 		profile_hit(KVM_PROFILING, (void *)rip);
3963 	}
3964 
3965 
3966 	kvm_lapic_sync_from_vapic(vcpu);
3967 
3968 	r = kvm_x86_ops->handle_exit(vcpu);
3969 out:
3970 	return r;
3971 }
3972 
3973 
3974 static int __vcpu_run(struct kvm_vcpu *vcpu)
3975 {
3976 	int r;
3977 
3978 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3979 		pr_debug("vcpu %d received sipi with vector # %x\n",
3980 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3981 		kvm_lapic_reset(vcpu);
3982 		r = kvm_arch_vcpu_reset(vcpu);
3983 		if (r)
3984 			return r;
3985 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3986 	}
3987 
3988 	down_read(&vcpu->kvm->slots_lock);
3989 	vapic_enter(vcpu);
3990 
3991 	r = 1;
3992 	while (r > 0) {
3993 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3994 			r = vcpu_enter_guest(vcpu);
3995 		else {
3996 			up_read(&vcpu->kvm->slots_lock);
3997 			kvm_vcpu_block(vcpu);
3998 			down_read(&vcpu->kvm->slots_lock);
3999 			if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4000 			{
4001 				switch(vcpu->arch.mp_state) {
4002 				case KVM_MP_STATE_HALTED:
4003 					vcpu->arch.mp_state =
4004 						KVM_MP_STATE_RUNNABLE;
4005 				case KVM_MP_STATE_RUNNABLE:
4006 					break;
4007 				case KVM_MP_STATE_SIPI_RECEIVED:
4008 				default:
4009 					r = -EINTR;
4010 					break;
4011 				}
4012 			}
4013 		}
4014 
4015 		if (r <= 0)
4016 			break;
4017 
4018 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4019 		if (kvm_cpu_has_pending_timer(vcpu))
4020 			kvm_inject_pending_timer_irqs(vcpu);
4021 
4022 		if (dm_request_for_irq_injection(vcpu)) {
4023 			r = -EINTR;
4024 			vcpu->run->exit_reason = KVM_EXIT_INTR;
4025 			++vcpu->stat.request_irq_exits;
4026 		}
4027 		if (signal_pending(current)) {
4028 			r = -EINTR;
4029 			vcpu->run->exit_reason = KVM_EXIT_INTR;
4030 			++vcpu->stat.signal_exits;
4031 		}
4032 		if (need_resched()) {
4033 			up_read(&vcpu->kvm->slots_lock);
4034 			kvm_resched(vcpu);
4035 			down_read(&vcpu->kvm->slots_lock);
4036 		}
4037 	}
4038 
4039 	up_read(&vcpu->kvm->slots_lock);
4040 	post_kvm_run_save(vcpu);
4041 
4042 	vapic_exit(vcpu);
4043 
4044 	return r;
4045 }
4046 
4047 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4048 {
4049 	int r;
4050 	sigset_t sigsaved;
4051 
4052 	vcpu_load(vcpu);
4053 
4054 	if (vcpu->sigset_active)
4055 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4056 
4057 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4058 		kvm_vcpu_block(vcpu);
4059 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4060 		r = -EAGAIN;
4061 		goto out;
4062 	}
4063 
4064 	/* re-sync apic's tpr */
4065 	if (!irqchip_in_kernel(vcpu->kvm))
4066 		kvm_set_cr8(vcpu, kvm_run->cr8);
4067 
4068 	if (vcpu->arch.pio.cur_count) {
4069 		r = complete_pio(vcpu);
4070 		if (r)
4071 			goto out;
4072 	}
4073 	if (vcpu->mmio_needed) {
4074 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4075 		vcpu->mmio_read_completed = 1;
4076 		vcpu->mmio_needed = 0;
4077 
4078 		down_read(&vcpu->kvm->slots_lock);
4079 		r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4080 					EMULTYPE_NO_DECODE);
4081 		up_read(&vcpu->kvm->slots_lock);
4082 		if (r == EMULATE_DO_MMIO) {
4083 			/*
4084 			 * Read-modify-write.  Back to userspace.
4085 			 */
4086 			r = 0;
4087 			goto out;
4088 		}
4089 	}
4090 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4091 		kvm_register_write(vcpu, VCPU_REGS_RAX,
4092 				     kvm_run->hypercall.ret);
4093 
4094 	r = __vcpu_run(vcpu);
4095 
4096 out:
4097 	if (vcpu->sigset_active)
4098 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4099 
4100 	vcpu_put(vcpu);
4101 	return r;
4102 }
4103 
4104 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4105 {
4106 	vcpu_load(vcpu);
4107 
4108 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4109 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4110 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4111 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4112 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4113 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4114 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4115 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4116 #ifdef CONFIG_X86_64
4117 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4118 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4119 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4120 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4121 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4122 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4123 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4124 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4125 #endif
4126 
4127 	regs->rip = kvm_rip_read(vcpu);
4128 	regs->rflags = kvm_get_rflags(vcpu);
4129 
4130 	vcpu_put(vcpu);
4131 
4132 	return 0;
4133 }
4134 
4135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4136 {
4137 	vcpu_load(vcpu);
4138 
4139 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4140 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4141 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4142 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4143 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4144 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4145 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4146 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4147 #ifdef CONFIG_X86_64
4148 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4149 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4150 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4151 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4152 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4153 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4154 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4155 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4156 #endif
4157 
4158 	kvm_rip_write(vcpu, regs->rip);
4159 	kvm_set_rflags(vcpu, regs->rflags);
4160 
4161 	vcpu->arch.exception.pending = false;
4162 
4163 	vcpu_put(vcpu);
4164 
4165 	return 0;
4166 }
4167 
4168 void kvm_get_segment(struct kvm_vcpu *vcpu,
4169 		     struct kvm_segment *var, int seg)
4170 {
4171 	kvm_x86_ops->get_segment(vcpu, var, seg);
4172 }
4173 
4174 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4175 {
4176 	struct kvm_segment cs;
4177 
4178 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4179 	*db = cs.db;
4180 	*l = cs.l;
4181 }
4182 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4183 
4184 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4185 				  struct kvm_sregs *sregs)
4186 {
4187 	struct descriptor_table dt;
4188 
4189 	vcpu_load(vcpu);
4190 
4191 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4192 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4193 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4194 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4195 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4196 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4197 
4198 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4199 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4200 
4201 	kvm_x86_ops->get_idt(vcpu, &dt);
4202 	sregs->idt.limit = dt.limit;
4203 	sregs->idt.base = dt.base;
4204 	kvm_x86_ops->get_gdt(vcpu, &dt);
4205 	sregs->gdt.limit = dt.limit;
4206 	sregs->gdt.base = dt.base;
4207 
4208 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4209 	sregs->cr0 = vcpu->arch.cr0;
4210 	sregs->cr2 = vcpu->arch.cr2;
4211 	sregs->cr3 = vcpu->arch.cr3;
4212 	sregs->cr4 = vcpu->arch.cr4;
4213 	sregs->cr8 = kvm_get_cr8(vcpu);
4214 	sregs->efer = vcpu->arch.shadow_efer;
4215 	sregs->apic_base = kvm_get_apic_base(vcpu);
4216 
4217 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4218 
4219 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4220 		set_bit(vcpu->arch.interrupt.nr,
4221 			(unsigned long *)sregs->interrupt_bitmap);
4222 
4223 	vcpu_put(vcpu);
4224 
4225 	return 0;
4226 }
4227 
4228 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4229 				    struct kvm_mp_state *mp_state)
4230 {
4231 	vcpu_load(vcpu);
4232 	mp_state->mp_state = vcpu->arch.mp_state;
4233 	vcpu_put(vcpu);
4234 	return 0;
4235 }
4236 
4237 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4238 				    struct kvm_mp_state *mp_state)
4239 {
4240 	vcpu_load(vcpu);
4241 	vcpu->arch.mp_state = mp_state->mp_state;
4242 	vcpu_put(vcpu);
4243 	return 0;
4244 }
4245 
4246 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4247 			struct kvm_segment *var, int seg)
4248 {
4249 	kvm_x86_ops->set_segment(vcpu, var, seg);
4250 }
4251 
4252 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4253 				   struct kvm_segment *kvm_desct)
4254 {
4255 	kvm_desct->base = get_desc_base(seg_desc);
4256 	kvm_desct->limit = get_desc_limit(seg_desc);
4257 	if (seg_desc->g) {
4258 		kvm_desct->limit <<= 12;
4259 		kvm_desct->limit |= 0xfff;
4260 	}
4261 	kvm_desct->selector = selector;
4262 	kvm_desct->type = seg_desc->type;
4263 	kvm_desct->present = seg_desc->p;
4264 	kvm_desct->dpl = seg_desc->dpl;
4265 	kvm_desct->db = seg_desc->d;
4266 	kvm_desct->s = seg_desc->s;
4267 	kvm_desct->l = seg_desc->l;
4268 	kvm_desct->g = seg_desc->g;
4269 	kvm_desct->avl = seg_desc->avl;
4270 	if (!selector)
4271 		kvm_desct->unusable = 1;
4272 	else
4273 		kvm_desct->unusable = 0;
4274 	kvm_desct->padding = 0;
4275 }
4276 
4277 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4278 					  u16 selector,
4279 					  struct descriptor_table *dtable)
4280 {
4281 	if (selector & 1 << 2) {
4282 		struct kvm_segment kvm_seg;
4283 
4284 		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4285 
4286 		if (kvm_seg.unusable)
4287 			dtable->limit = 0;
4288 		else
4289 			dtable->limit = kvm_seg.limit;
4290 		dtable->base = kvm_seg.base;
4291 	}
4292 	else
4293 		kvm_x86_ops->get_gdt(vcpu, dtable);
4294 }
4295 
4296 /* allowed just for 8 bytes segments */
4297 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4298 					 struct desc_struct *seg_desc)
4299 {
4300 	struct descriptor_table dtable;
4301 	u16 index = selector >> 3;
4302 
4303 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
4304 
4305 	if (dtable.limit < index * 8 + 7) {
4306 		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4307 		return 1;
4308 	}
4309 	return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4310 }
4311 
4312 /* allowed just for 8 bytes segments */
4313 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4314 					 struct desc_struct *seg_desc)
4315 {
4316 	struct descriptor_table dtable;
4317 	u16 index = selector >> 3;
4318 
4319 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
4320 
4321 	if (dtable.limit < index * 8 + 7)
4322 		return 1;
4323 	return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4324 }
4325 
4326 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4327 			     struct desc_struct *seg_desc)
4328 {
4329 	u32 base_addr = get_desc_base(seg_desc);
4330 
4331 	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4332 }
4333 
4334 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4335 {
4336 	struct kvm_segment kvm_seg;
4337 
4338 	kvm_get_segment(vcpu, &kvm_seg, seg);
4339 	return kvm_seg.selector;
4340 }
4341 
4342 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4343 						u16 selector,
4344 						struct kvm_segment *kvm_seg)
4345 {
4346 	struct desc_struct seg_desc;
4347 
4348 	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4349 		return 1;
4350 	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4351 	return 0;
4352 }
4353 
4354 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4355 {
4356 	struct kvm_segment segvar = {
4357 		.base = selector << 4,
4358 		.limit = 0xffff,
4359 		.selector = selector,
4360 		.type = 3,
4361 		.present = 1,
4362 		.dpl = 3,
4363 		.db = 0,
4364 		.s = 1,
4365 		.l = 0,
4366 		.g = 0,
4367 		.avl = 0,
4368 		.unusable = 0,
4369 	};
4370 	kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4371 	return 0;
4372 }
4373 
4374 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4375 {
4376 	return (seg != VCPU_SREG_LDTR) &&
4377 		(seg != VCPU_SREG_TR) &&
4378 		(kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4379 }
4380 
4381 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4382 				int type_bits, int seg)
4383 {
4384 	struct kvm_segment kvm_seg;
4385 
4386 	if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4387 		return kvm_load_realmode_segment(vcpu, selector, seg);
4388 	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4389 		return 1;
4390 	kvm_seg.type |= type_bits;
4391 
4392 	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4393 	    seg != VCPU_SREG_LDTR)
4394 		if (!kvm_seg.s)
4395 			kvm_seg.unusable = 1;
4396 
4397 	kvm_set_segment(vcpu, &kvm_seg, seg);
4398 	return 0;
4399 }
4400 
4401 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4402 				struct tss_segment_32 *tss)
4403 {
4404 	tss->cr3 = vcpu->arch.cr3;
4405 	tss->eip = kvm_rip_read(vcpu);
4406 	tss->eflags = kvm_get_rflags(vcpu);
4407 	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4408 	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4409 	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4410 	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4411 	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4412 	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4413 	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4414 	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4415 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4416 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4417 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4418 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4419 	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4420 	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4421 	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4422 }
4423 
4424 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4425 				  struct tss_segment_32 *tss)
4426 {
4427 	kvm_set_cr3(vcpu, tss->cr3);
4428 
4429 	kvm_rip_write(vcpu, tss->eip);
4430 	kvm_set_rflags(vcpu, tss->eflags | 2);
4431 
4432 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4433 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4434 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4435 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4436 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4437 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4438 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4439 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4440 
4441 	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4442 		return 1;
4443 
4444 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4445 		return 1;
4446 
4447 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4448 		return 1;
4449 
4450 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4451 		return 1;
4452 
4453 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4454 		return 1;
4455 
4456 	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4457 		return 1;
4458 
4459 	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4460 		return 1;
4461 	return 0;
4462 }
4463 
4464 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4465 				struct tss_segment_16 *tss)
4466 {
4467 	tss->ip = kvm_rip_read(vcpu);
4468 	tss->flag = kvm_get_rflags(vcpu);
4469 	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4470 	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4471 	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4472 	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4473 	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4474 	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4475 	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4476 	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4477 
4478 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4479 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4480 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4481 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4482 	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4483 }
4484 
4485 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4486 				 struct tss_segment_16 *tss)
4487 {
4488 	kvm_rip_write(vcpu, tss->ip);
4489 	kvm_set_rflags(vcpu, tss->flag | 2);
4490 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4491 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4492 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4493 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4494 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4495 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4496 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4497 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4498 
4499 	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4500 		return 1;
4501 
4502 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4503 		return 1;
4504 
4505 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4506 		return 1;
4507 
4508 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4509 		return 1;
4510 
4511 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4512 		return 1;
4513 	return 0;
4514 }
4515 
4516 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4517 			      u16 old_tss_sel, u32 old_tss_base,
4518 			      struct desc_struct *nseg_desc)
4519 {
4520 	struct tss_segment_16 tss_segment_16;
4521 	int ret = 0;
4522 
4523 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4524 			   sizeof tss_segment_16))
4525 		goto out;
4526 
4527 	save_state_to_tss16(vcpu, &tss_segment_16);
4528 
4529 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4530 			    sizeof tss_segment_16))
4531 		goto out;
4532 
4533 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4534 			   &tss_segment_16, sizeof tss_segment_16))
4535 		goto out;
4536 
4537 	if (old_tss_sel != 0xffff) {
4538 		tss_segment_16.prev_task_link = old_tss_sel;
4539 
4540 		if (kvm_write_guest(vcpu->kvm,
4541 				    get_tss_base_addr(vcpu, nseg_desc),
4542 				    &tss_segment_16.prev_task_link,
4543 				    sizeof tss_segment_16.prev_task_link))
4544 			goto out;
4545 	}
4546 
4547 	if (load_state_from_tss16(vcpu, &tss_segment_16))
4548 		goto out;
4549 
4550 	ret = 1;
4551 out:
4552 	return ret;
4553 }
4554 
4555 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4556 		       u16 old_tss_sel, u32 old_tss_base,
4557 		       struct desc_struct *nseg_desc)
4558 {
4559 	struct tss_segment_32 tss_segment_32;
4560 	int ret = 0;
4561 
4562 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4563 			   sizeof tss_segment_32))
4564 		goto out;
4565 
4566 	save_state_to_tss32(vcpu, &tss_segment_32);
4567 
4568 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4569 			    sizeof tss_segment_32))
4570 		goto out;
4571 
4572 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4573 			   &tss_segment_32, sizeof tss_segment_32))
4574 		goto out;
4575 
4576 	if (old_tss_sel != 0xffff) {
4577 		tss_segment_32.prev_task_link = old_tss_sel;
4578 
4579 		if (kvm_write_guest(vcpu->kvm,
4580 				    get_tss_base_addr(vcpu, nseg_desc),
4581 				    &tss_segment_32.prev_task_link,
4582 				    sizeof tss_segment_32.prev_task_link))
4583 			goto out;
4584 	}
4585 
4586 	if (load_state_from_tss32(vcpu, &tss_segment_32))
4587 		goto out;
4588 
4589 	ret = 1;
4590 out:
4591 	return ret;
4592 }
4593 
4594 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4595 {
4596 	struct kvm_segment tr_seg;
4597 	struct desc_struct cseg_desc;
4598 	struct desc_struct nseg_desc;
4599 	int ret = 0;
4600 	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4601 	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4602 
4603 	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4604 
4605 	/* FIXME: Handle errors. Failure to read either TSS or their
4606 	 * descriptors should generate a pagefault.
4607 	 */
4608 	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4609 		goto out;
4610 
4611 	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4612 		goto out;
4613 
4614 	if (reason != TASK_SWITCH_IRET) {
4615 		int cpl;
4616 
4617 		cpl = kvm_x86_ops->get_cpl(vcpu);
4618 		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4619 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4620 			return 1;
4621 		}
4622 	}
4623 
4624 	if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4625 		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4626 		return 1;
4627 	}
4628 
4629 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4630 		cseg_desc.type &= ~(1 << 1); //clear the B flag
4631 		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4632 	}
4633 
4634 	if (reason == TASK_SWITCH_IRET) {
4635 		u32 eflags = kvm_get_rflags(vcpu);
4636 		kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4637 	}
4638 
4639 	/* set back link to prev task only if NT bit is set in eflags
4640 	   note that old_tss_sel is not used afetr this point */
4641 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4642 		old_tss_sel = 0xffff;
4643 
4644 	if (nseg_desc.type & 8)
4645 		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4646 					 old_tss_base, &nseg_desc);
4647 	else
4648 		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4649 					 old_tss_base, &nseg_desc);
4650 
4651 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4652 		u32 eflags = kvm_get_rflags(vcpu);
4653 		kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4654 	}
4655 
4656 	if (reason != TASK_SWITCH_IRET) {
4657 		nseg_desc.type |= (1 << 1);
4658 		save_guest_segment_descriptor(vcpu, tss_selector,
4659 					      &nseg_desc);
4660 	}
4661 
4662 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4663 	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4664 	tr_seg.type = 11;
4665 	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4666 out:
4667 	return ret;
4668 }
4669 EXPORT_SYMBOL_GPL(kvm_task_switch);
4670 
4671 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4672 				  struct kvm_sregs *sregs)
4673 {
4674 	int mmu_reset_needed = 0;
4675 	int pending_vec, max_bits;
4676 	struct descriptor_table dt;
4677 
4678 	vcpu_load(vcpu);
4679 
4680 	dt.limit = sregs->idt.limit;
4681 	dt.base = sregs->idt.base;
4682 	kvm_x86_ops->set_idt(vcpu, &dt);
4683 	dt.limit = sregs->gdt.limit;
4684 	dt.base = sregs->gdt.base;
4685 	kvm_x86_ops->set_gdt(vcpu, &dt);
4686 
4687 	vcpu->arch.cr2 = sregs->cr2;
4688 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4689 	vcpu->arch.cr3 = sregs->cr3;
4690 
4691 	kvm_set_cr8(vcpu, sregs->cr8);
4692 
4693 	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4694 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
4695 	kvm_set_apic_base(vcpu, sregs->apic_base);
4696 
4697 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4698 
4699 	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4700 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4701 	vcpu->arch.cr0 = sregs->cr0;
4702 
4703 	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4704 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4705 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4706 		load_pdptrs(vcpu, vcpu->arch.cr3);
4707 		mmu_reset_needed = 1;
4708 	}
4709 
4710 	if (mmu_reset_needed)
4711 		kvm_mmu_reset_context(vcpu);
4712 
4713 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4714 	pending_vec = find_first_bit(
4715 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
4716 	if (pending_vec < max_bits) {
4717 		kvm_queue_interrupt(vcpu, pending_vec, false);
4718 		pr_debug("Set back pending irq %d\n", pending_vec);
4719 		if (irqchip_in_kernel(vcpu->kvm))
4720 			kvm_pic_clear_isr_ack(vcpu->kvm);
4721 	}
4722 
4723 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4724 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4725 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4726 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4727 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4728 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4729 
4730 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4731 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4732 
4733 	update_cr8_intercept(vcpu);
4734 
4735 	/* Older userspace won't unhalt the vcpu on reset. */
4736 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4737 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4738 	    !(vcpu->arch.cr0 & X86_CR0_PE))
4739 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4740 
4741 	vcpu_put(vcpu);
4742 
4743 	return 0;
4744 }
4745 
4746 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4747 					struct kvm_guest_debug *dbg)
4748 {
4749 	unsigned long rflags;
4750 	int i, r;
4751 
4752 	vcpu_load(vcpu);
4753 
4754 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4755 		r = -EBUSY;
4756 		if (vcpu->arch.exception.pending)
4757 			goto unlock_out;
4758 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4759 			kvm_queue_exception(vcpu, DB_VECTOR);
4760 		else
4761 			kvm_queue_exception(vcpu, BP_VECTOR);
4762 	}
4763 
4764 	/*
4765 	 * Read rflags as long as potentially injected trace flags are still
4766 	 * filtered out.
4767 	 */
4768 	rflags = kvm_get_rflags(vcpu);
4769 
4770 	vcpu->guest_debug = dbg->control;
4771 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4772 		vcpu->guest_debug = 0;
4773 
4774 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4775 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
4776 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4777 		vcpu->arch.switch_db_regs =
4778 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4779 	} else {
4780 		for (i = 0; i < KVM_NR_DB_REGS; i++)
4781 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4782 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4783 	}
4784 
4785 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4786 		vcpu->arch.singlestep_cs =
4787 			get_segment_selector(vcpu, VCPU_SREG_CS);
4788 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4789 	}
4790 
4791 	/*
4792 	 * Trigger an rflags update that will inject or remove the trace
4793 	 * flags.
4794 	 */
4795 	kvm_set_rflags(vcpu, rflags);
4796 
4797 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
4798 
4799 	r = 0;
4800 
4801 unlock_out:
4802 	vcpu_put(vcpu);
4803 
4804 	return r;
4805 }
4806 
4807 /*
4808  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4809  * we have asm/x86/processor.h
4810  */
4811 struct fxsave {
4812 	u16	cwd;
4813 	u16	swd;
4814 	u16	twd;
4815 	u16	fop;
4816 	u64	rip;
4817 	u64	rdp;
4818 	u32	mxcsr;
4819 	u32	mxcsr_mask;
4820 	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
4821 #ifdef CONFIG_X86_64
4822 	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
4823 #else
4824 	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
4825 #endif
4826 };
4827 
4828 /*
4829  * Translate a guest virtual address to a guest physical address.
4830  */
4831 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4832 				    struct kvm_translation *tr)
4833 {
4834 	unsigned long vaddr = tr->linear_address;
4835 	gpa_t gpa;
4836 
4837 	vcpu_load(vcpu);
4838 	down_read(&vcpu->kvm->slots_lock);
4839 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4840 	up_read(&vcpu->kvm->slots_lock);
4841 	tr->physical_address = gpa;
4842 	tr->valid = gpa != UNMAPPED_GVA;
4843 	tr->writeable = 1;
4844 	tr->usermode = 0;
4845 	vcpu_put(vcpu);
4846 
4847 	return 0;
4848 }
4849 
4850 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4851 {
4852 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4853 
4854 	vcpu_load(vcpu);
4855 
4856 	memcpy(fpu->fpr, fxsave->st_space, 128);
4857 	fpu->fcw = fxsave->cwd;
4858 	fpu->fsw = fxsave->swd;
4859 	fpu->ftwx = fxsave->twd;
4860 	fpu->last_opcode = fxsave->fop;
4861 	fpu->last_ip = fxsave->rip;
4862 	fpu->last_dp = fxsave->rdp;
4863 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4864 
4865 	vcpu_put(vcpu);
4866 
4867 	return 0;
4868 }
4869 
4870 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4871 {
4872 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4873 
4874 	vcpu_load(vcpu);
4875 
4876 	memcpy(fxsave->st_space, fpu->fpr, 128);
4877 	fxsave->cwd = fpu->fcw;
4878 	fxsave->swd = fpu->fsw;
4879 	fxsave->twd = fpu->ftwx;
4880 	fxsave->fop = fpu->last_opcode;
4881 	fxsave->rip = fpu->last_ip;
4882 	fxsave->rdp = fpu->last_dp;
4883 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4884 
4885 	vcpu_put(vcpu);
4886 
4887 	return 0;
4888 }
4889 
4890 void fx_init(struct kvm_vcpu *vcpu)
4891 {
4892 	unsigned after_mxcsr_mask;
4893 
4894 	/*
4895 	 * Touch the fpu the first time in non atomic context as if
4896 	 * this is the first fpu instruction the exception handler
4897 	 * will fire before the instruction returns and it'll have to
4898 	 * allocate ram with GFP_KERNEL.
4899 	 */
4900 	if (!used_math())
4901 		kvm_fx_save(&vcpu->arch.host_fx_image);
4902 
4903 	/* Initialize guest FPU by resetting ours and saving into guest's */
4904 	preempt_disable();
4905 	kvm_fx_save(&vcpu->arch.host_fx_image);
4906 	kvm_fx_finit();
4907 	kvm_fx_save(&vcpu->arch.guest_fx_image);
4908 	kvm_fx_restore(&vcpu->arch.host_fx_image);
4909 	preempt_enable();
4910 
4911 	vcpu->arch.cr0 |= X86_CR0_ET;
4912 	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4913 	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4914 	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4915 	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4916 }
4917 EXPORT_SYMBOL_GPL(fx_init);
4918 
4919 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4920 {
4921 	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4922 		return;
4923 
4924 	vcpu->guest_fpu_loaded = 1;
4925 	kvm_fx_save(&vcpu->arch.host_fx_image);
4926 	kvm_fx_restore(&vcpu->arch.guest_fx_image);
4927 }
4928 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4929 
4930 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4931 {
4932 	if (!vcpu->guest_fpu_loaded)
4933 		return;
4934 
4935 	vcpu->guest_fpu_loaded = 0;
4936 	kvm_fx_save(&vcpu->arch.guest_fx_image);
4937 	kvm_fx_restore(&vcpu->arch.host_fx_image);
4938 	++vcpu->stat.fpu_reload;
4939 }
4940 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4941 
4942 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4943 {
4944 	if (vcpu->arch.time_page) {
4945 		kvm_release_page_dirty(vcpu->arch.time_page);
4946 		vcpu->arch.time_page = NULL;
4947 	}
4948 
4949 	kvm_x86_ops->vcpu_free(vcpu);
4950 }
4951 
4952 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4953 						unsigned int id)
4954 {
4955 	return kvm_x86_ops->vcpu_create(kvm, id);
4956 }
4957 
4958 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4959 {
4960 	int r;
4961 
4962 	/* We do fxsave: this must be aligned. */
4963 	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4964 
4965 	vcpu->arch.mtrr_state.have_fixed = 1;
4966 	vcpu_load(vcpu);
4967 	r = kvm_arch_vcpu_reset(vcpu);
4968 	if (r == 0)
4969 		r = kvm_mmu_setup(vcpu);
4970 	vcpu_put(vcpu);
4971 	if (r < 0)
4972 		goto free_vcpu;
4973 
4974 	return 0;
4975 free_vcpu:
4976 	kvm_x86_ops->vcpu_free(vcpu);
4977 	return r;
4978 }
4979 
4980 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4981 {
4982 	vcpu_load(vcpu);
4983 	kvm_mmu_unload(vcpu);
4984 	vcpu_put(vcpu);
4985 
4986 	kvm_x86_ops->vcpu_free(vcpu);
4987 }
4988 
4989 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4990 {
4991 	vcpu->arch.nmi_pending = false;
4992 	vcpu->arch.nmi_injected = false;
4993 
4994 	vcpu->arch.switch_db_regs = 0;
4995 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4996 	vcpu->arch.dr6 = DR6_FIXED_1;
4997 	vcpu->arch.dr7 = DR7_FIXED_1;
4998 
4999 	return kvm_x86_ops->vcpu_reset(vcpu);
5000 }
5001 
5002 int kvm_arch_hardware_enable(void *garbage)
5003 {
5004 	/*
5005 	 * Since this may be called from a hotplug notifcation,
5006 	 * we can't get the CPU frequency directly.
5007 	 */
5008 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5009 		int cpu = raw_smp_processor_id();
5010 		per_cpu(cpu_tsc_khz, cpu) = 0;
5011 	}
5012 
5013 	kvm_shared_msr_cpu_online();
5014 
5015 	return kvm_x86_ops->hardware_enable(garbage);
5016 }
5017 
5018 void kvm_arch_hardware_disable(void *garbage)
5019 {
5020 	kvm_x86_ops->hardware_disable(garbage);
5021 	drop_user_return_notifiers(garbage);
5022 }
5023 
5024 int kvm_arch_hardware_setup(void)
5025 {
5026 	return kvm_x86_ops->hardware_setup();
5027 }
5028 
5029 void kvm_arch_hardware_unsetup(void)
5030 {
5031 	kvm_x86_ops->hardware_unsetup();
5032 }
5033 
5034 void kvm_arch_check_processor_compat(void *rtn)
5035 {
5036 	kvm_x86_ops->check_processor_compatibility(rtn);
5037 }
5038 
5039 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5040 {
5041 	struct page *page;
5042 	struct kvm *kvm;
5043 	int r;
5044 
5045 	BUG_ON(vcpu->kvm == NULL);
5046 	kvm = vcpu->kvm;
5047 
5048 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5049 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5050 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5051 	else
5052 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5053 
5054 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5055 	if (!page) {
5056 		r = -ENOMEM;
5057 		goto fail;
5058 	}
5059 	vcpu->arch.pio_data = page_address(page);
5060 
5061 	r = kvm_mmu_create(vcpu);
5062 	if (r < 0)
5063 		goto fail_free_pio_data;
5064 
5065 	if (irqchip_in_kernel(kvm)) {
5066 		r = kvm_create_lapic(vcpu);
5067 		if (r < 0)
5068 			goto fail_mmu_destroy;
5069 	}
5070 
5071 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5072 				       GFP_KERNEL);
5073 	if (!vcpu->arch.mce_banks) {
5074 		r = -ENOMEM;
5075 		goto fail_mmu_destroy;
5076 	}
5077 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5078 
5079 	return 0;
5080 
5081 fail_mmu_destroy:
5082 	kvm_mmu_destroy(vcpu);
5083 fail_free_pio_data:
5084 	free_page((unsigned long)vcpu->arch.pio_data);
5085 fail:
5086 	return r;
5087 }
5088 
5089 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5090 {
5091 	kvm_free_lapic(vcpu);
5092 	down_read(&vcpu->kvm->slots_lock);
5093 	kvm_mmu_destroy(vcpu);
5094 	up_read(&vcpu->kvm->slots_lock);
5095 	free_page((unsigned long)vcpu->arch.pio_data);
5096 }
5097 
5098 struct  kvm *kvm_arch_create_vm(void)
5099 {
5100 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5101 
5102 	if (!kvm)
5103 		return ERR_PTR(-ENOMEM);
5104 
5105 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5106 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5107 
5108 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5109 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5110 
5111 	rdtscll(kvm->arch.vm_init_tsc);
5112 
5113 	return kvm;
5114 }
5115 
5116 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5117 {
5118 	vcpu_load(vcpu);
5119 	kvm_mmu_unload(vcpu);
5120 	vcpu_put(vcpu);
5121 }
5122 
5123 static void kvm_free_vcpus(struct kvm *kvm)
5124 {
5125 	unsigned int i;
5126 	struct kvm_vcpu *vcpu;
5127 
5128 	/*
5129 	 * Unpin any mmu pages first.
5130 	 */
5131 	kvm_for_each_vcpu(i, vcpu, kvm)
5132 		kvm_unload_vcpu_mmu(vcpu);
5133 	kvm_for_each_vcpu(i, vcpu, kvm)
5134 		kvm_arch_vcpu_free(vcpu);
5135 
5136 	mutex_lock(&kvm->lock);
5137 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5138 		kvm->vcpus[i] = NULL;
5139 
5140 	atomic_set(&kvm->online_vcpus, 0);
5141 	mutex_unlock(&kvm->lock);
5142 }
5143 
5144 void kvm_arch_sync_events(struct kvm *kvm)
5145 {
5146 	kvm_free_all_assigned_devices(kvm);
5147 }
5148 
5149 void kvm_arch_destroy_vm(struct kvm *kvm)
5150 {
5151 	kvm_iommu_unmap_guest(kvm);
5152 	kvm_free_pit(kvm);
5153 	kfree(kvm->arch.vpic);
5154 	kfree(kvm->arch.vioapic);
5155 	kvm_free_vcpus(kvm);
5156 	kvm_free_physmem(kvm);
5157 	if (kvm->arch.apic_access_page)
5158 		put_page(kvm->arch.apic_access_page);
5159 	if (kvm->arch.ept_identity_pagetable)
5160 		put_page(kvm->arch.ept_identity_pagetable);
5161 	kfree(kvm);
5162 }
5163 
5164 int kvm_arch_set_memory_region(struct kvm *kvm,
5165 				struct kvm_userspace_memory_region *mem,
5166 				struct kvm_memory_slot old,
5167 				int user_alloc)
5168 {
5169 	int npages = mem->memory_size >> PAGE_SHIFT;
5170 	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
5171 
5172 	/*To keep backward compatibility with older userspace,
5173 	 *x86 needs to hanlde !user_alloc case.
5174 	 */
5175 	if (!user_alloc) {
5176 		if (npages && !old.rmap) {
5177 			unsigned long userspace_addr;
5178 
5179 			down_write(&current->mm->mmap_sem);
5180 			userspace_addr = do_mmap(NULL, 0,
5181 						 npages * PAGE_SIZE,
5182 						 PROT_READ | PROT_WRITE,
5183 						 MAP_PRIVATE | MAP_ANONYMOUS,
5184 						 0);
5185 			up_write(&current->mm->mmap_sem);
5186 
5187 			if (IS_ERR((void *)userspace_addr))
5188 				return PTR_ERR((void *)userspace_addr);
5189 
5190 			/* set userspace_addr atomically for kvm_hva_to_rmapp */
5191 			spin_lock(&kvm->mmu_lock);
5192 			memslot->userspace_addr = userspace_addr;
5193 			spin_unlock(&kvm->mmu_lock);
5194 		} else {
5195 			if (!old.user_alloc && old.rmap) {
5196 				int ret;
5197 
5198 				down_write(&current->mm->mmap_sem);
5199 				ret = do_munmap(current->mm, old.userspace_addr,
5200 						old.npages * PAGE_SIZE);
5201 				up_write(&current->mm->mmap_sem);
5202 				if (ret < 0)
5203 					printk(KERN_WARNING
5204 				       "kvm_vm_ioctl_set_memory_region: "
5205 				       "failed to munmap memory\n");
5206 			}
5207 		}
5208 	}
5209 
5210 	spin_lock(&kvm->mmu_lock);
5211 	if (!kvm->arch.n_requested_mmu_pages) {
5212 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5213 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5214 	}
5215 
5216 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5217 	spin_unlock(&kvm->mmu_lock);
5218 
5219 	return 0;
5220 }
5221 
5222 void kvm_arch_flush_shadow(struct kvm *kvm)
5223 {
5224 	kvm_mmu_zap_all(kvm);
5225 	kvm_reload_remote_mmus(kvm);
5226 }
5227 
5228 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5229 {
5230 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5231 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5232 		|| vcpu->arch.nmi_pending ||
5233 		(kvm_arch_interrupt_allowed(vcpu) &&
5234 		 kvm_cpu_has_interrupt(vcpu));
5235 }
5236 
5237 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5238 {
5239 	int me;
5240 	int cpu = vcpu->cpu;
5241 
5242 	if (waitqueue_active(&vcpu->wq)) {
5243 		wake_up_interruptible(&vcpu->wq);
5244 		++vcpu->stat.halt_wakeup;
5245 	}
5246 
5247 	me = get_cpu();
5248 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5249 		if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5250 			smp_send_reschedule(cpu);
5251 	put_cpu();
5252 }
5253 
5254 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5255 {
5256 	return kvm_x86_ops->interrupt_allowed(vcpu);
5257 }
5258 
5259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5260 {
5261 	unsigned long rflags;
5262 
5263 	rflags = kvm_x86_ops->get_rflags(vcpu);
5264 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5265 		rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5266 	return rflags;
5267 }
5268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5269 
5270 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5271 {
5272 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5273 	    vcpu->arch.singlestep_cs ==
5274 			get_segment_selector(vcpu, VCPU_SREG_CS) &&
5275 	    vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5276 		rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5277 	kvm_x86_ops->set_rflags(vcpu, rflags);
5278 }
5279 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5280 
5281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5286 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5288 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5289 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5290 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5291 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5292