xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 9cdb81c7)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64 
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 
69 #define emul_to_vcpu(ctxt) \
70 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71 
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82 
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88 
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91 
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94 
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99 
100 #define KVM_NR_SHARED_MSRS 16
101 
102 struct kvm_shared_msrs_global {
103 	int nr;
104 	u32 msrs[KVM_NR_SHARED_MSRS];
105 };
106 
107 struct kvm_shared_msrs {
108 	struct user_return_notifier urn;
109 	bool registered;
110 	struct kvm_shared_msr_values {
111 		u64 host;
112 		u64 curr;
113 	} values[KVM_NR_SHARED_MSRS];
114 };
115 
116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
117 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
118 
119 struct kvm_stats_debugfs_item debugfs_entries[] = {
120 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
121 	{ "pf_guest", VCPU_STAT(pf_guest) },
122 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
123 	{ "invlpg", VCPU_STAT(invlpg) },
124 	{ "exits", VCPU_STAT(exits) },
125 	{ "io_exits", VCPU_STAT(io_exits) },
126 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
127 	{ "signal_exits", VCPU_STAT(signal_exits) },
128 	{ "irq_window", VCPU_STAT(irq_window_exits) },
129 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
130 	{ "halt_exits", VCPU_STAT(halt_exits) },
131 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
132 	{ "hypercalls", VCPU_STAT(hypercalls) },
133 	{ "request_irq", VCPU_STAT(request_irq_exits) },
134 	{ "irq_exits", VCPU_STAT(irq_exits) },
135 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
136 	{ "efer_reload", VCPU_STAT(efer_reload) },
137 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
138 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
139 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
140 	{ "irq_injections", VCPU_STAT(irq_injections) },
141 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
142 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
143 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
144 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
145 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
146 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
147 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
148 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
149 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
150 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
151 	{ "largepages", VM_STAT(lpages) },
152 	{ NULL }
153 };
154 
155 u64 __read_mostly host_xcr0;
156 
157 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
158 
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161 	int i;
162 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 		vcpu->arch.apf.gfns[i] = ~0;
164 }
165 
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168 	unsigned slot;
169 	struct kvm_shared_msrs *locals
170 		= container_of(urn, struct kvm_shared_msrs, urn);
171 	struct kvm_shared_msr_values *values;
172 
173 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 		values = &locals->values[slot];
175 		if (values->host != values->curr) {
176 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 			values->curr = values->host;
178 		}
179 	}
180 	locals->registered = false;
181 	user_return_notifier_unregister(urn);
182 }
183 
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186 	struct kvm_shared_msrs *smsr;
187 	u64 value;
188 
189 	smsr = &__get_cpu_var(shared_msrs);
190 	/* only read, and nobody should modify it at this time,
191 	 * so don't need lock */
192 	if (slot >= shared_msrs_global.nr) {
193 		printk(KERN_ERR "kvm: invalid MSR slot!");
194 		return;
195 	}
196 	rdmsrl_safe(msr, &value);
197 	smsr->values[slot].host = value;
198 	smsr->values[slot].curr = value;
199 }
200 
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203 	if (slot >= shared_msrs_global.nr)
204 		shared_msrs_global.nr = slot + 1;
205 	shared_msrs_global.msrs[slot] = msr;
206 	/* we need ensured the shared_msr_global have been updated */
207 	smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210 
211 static void kvm_shared_msr_cpu_online(void)
212 {
213 	unsigned i;
214 
215 	for (i = 0; i < shared_msrs_global.nr; ++i)
216 		shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218 
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222 
223 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 		return;
225 	smsr->values[slot].curr = value;
226 	wrmsrl(shared_msrs_global.msrs[slot], value);
227 	if (!smsr->registered) {
228 		smsr->urn.on_user_return = kvm_on_user_return;
229 		user_return_notifier_register(&smsr->urn);
230 		smsr->registered = true;
231 	}
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234 
235 static void drop_user_return_notifiers(void *ignore)
236 {
237 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238 
239 	if (smsr->registered)
240 		kvm_on_user_return(&smsr->urn);
241 }
242 
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245 	if (irqchip_in_kernel(vcpu->kvm))
246 		return vcpu->arch.apic_base;
247 	else
248 		return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251 
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254 	/* TODO: reserve bits check */
255 	if (irqchip_in_kernel(vcpu->kvm))
256 		kvm_lapic_set_base(vcpu, data);
257 	else
258 		vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261 
262 #define EXCPT_BENIGN		0
263 #define EXCPT_CONTRIBUTORY	1
264 #define EXCPT_PF		2
265 
266 static int exception_class(int vector)
267 {
268 	switch (vector) {
269 	case PF_VECTOR:
270 		return EXCPT_PF;
271 	case DE_VECTOR:
272 	case TS_VECTOR:
273 	case NP_VECTOR:
274 	case SS_VECTOR:
275 	case GP_VECTOR:
276 		return EXCPT_CONTRIBUTORY;
277 	default:
278 		break;
279 	}
280 	return EXCPT_BENIGN;
281 }
282 
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 		unsigned nr, bool has_error, u32 error_code,
285 		bool reinject)
286 {
287 	u32 prev_nr;
288 	int class1, class2;
289 
290 	kvm_make_request(KVM_REQ_EVENT, vcpu);
291 
292 	if (!vcpu->arch.exception.pending) {
293 	queue:
294 		vcpu->arch.exception.pending = true;
295 		vcpu->arch.exception.has_error_code = has_error;
296 		vcpu->arch.exception.nr = nr;
297 		vcpu->arch.exception.error_code = error_code;
298 		vcpu->arch.exception.reinject = reinject;
299 		return;
300 	}
301 
302 	/* to check exception */
303 	prev_nr = vcpu->arch.exception.nr;
304 	if (prev_nr == DF_VECTOR) {
305 		/* triple fault -> shutdown */
306 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 		return;
308 	}
309 	class1 = exception_class(prev_nr);
310 	class2 = exception_class(nr);
311 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 		/* generate double fault per SDM Table 5-5 */
314 		vcpu->arch.exception.pending = true;
315 		vcpu->arch.exception.has_error_code = true;
316 		vcpu->arch.exception.nr = DF_VECTOR;
317 		vcpu->arch.exception.error_code = 0;
318 	} else
319 		/* replace previous exception with a new one in a hope
320 		   that instruction re-execution will regenerate lost
321 		   exception */
322 		goto queue;
323 }
324 
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327 	kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330 
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333 	kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336 
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339 	if (err)
340 		kvm_inject_gp(vcpu, 0);
341 	else
342 		kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345 
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348 	++vcpu->stat.pf_guest;
349 	vcpu->arch.cr2 = fault->address;
350 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
353 
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358 	else
359 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361 
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364 	atomic_inc(&vcpu->arch.nmi_queued);
365 	kvm_make_request(KVM_REQ_NMI, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368 
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374 
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380 
381 /*
382  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
383  * a #GP and return false.
384  */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388 		return true;
389 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390 	return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393 
394 /*
395  * This function will be used to read from the physical memory of the currently
396  * running guest. The difference to kvm_read_guest_page is that this function
397  * can read from guest physical or from the guest's guest physical memory.
398  */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400 			    gfn_t ngfn, void *data, int offset, int len,
401 			    u32 access)
402 {
403 	gfn_t real_gfn;
404 	gpa_t ngpa;
405 
406 	ngpa     = gfn_to_gpa(ngfn);
407 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408 	if (real_gfn == UNMAPPED_GVA)
409 		return -EFAULT;
410 
411 	real_gfn = gpa_to_gfn(real_gfn);
412 
413 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416 
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418 			       void *data, int offset, int len, u32 access)
419 {
420 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421 				       data, offset, len, access);
422 }
423 
424 /*
425  * Load the pae pdptrs.  Return true is they are all valid.
426  */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431 	int i;
432 	int ret;
433 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434 
435 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436 				      offset * sizeof(u64), sizeof(pdpte),
437 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
438 	if (ret < 0) {
439 		ret = 0;
440 		goto out;
441 	}
442 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443 		if (is_present_gpte(pdpte[i]) &&
444 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445 			ret = 0;
446 			goto out;
447 		}
448 	}
449 	ret = 1;
450 
451 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452 	__set_bit(VCPU_EXREG_PDPTR,
453 		  (unsigned long *)&vcpu->arch.regs_avail);
454 	__set_bit(VCPU_EXREG_PDPTR,
455 		  (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457 
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461 
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465 	bool changed = true;
466 	int offset;
467 	gfn_t gfn;
468 	int r;
469 
470 	if (is_long_mode(vcpu) || !is_pae(vcpu))
471 		return false;
472 
473 	if (!test_bit(VCPU_EXREG_PDPTR,
474 		      (unsigned long *)&vcpu->arch.regs_avail))
475 		return true;
476 
477 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
481 	if (r < 0)
482 		goto out;
483 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485 
486 	return changed;
487 }
488 
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
492 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493 				    X86_CR0_CD | X86_CR0_NW;
494 
495 	cr0 |= X86_CR0_ET;
496 
497 #ifdef CONFIG_X86_64
498 	if (cr0 & 0xffffffff00000000UL)
499 		return 1;
500 #endif
501 
502 	cr0 &= ~CR0_RESERVED_BITS;
503 
504 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505 		return 1;
506 
507 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508 		return 1;
509 
510 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512 		if ((vcpu->arch.efer & EFER_LME)) {
513 			int cs_db, cs_l;
514 
515 			if (!is_pae(vcpu))
516 				return 1;
517 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518 			if (cs_l)
519 				return 1;
520 		} else
521 #endif
522 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523 						 kvm_read_cr3(vcpu)))
524 			return 1;
525 	}
526 
527 	kvm_x86_ops->set_cr0(vcpu, cr0);
528 
529 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530 		kvm_clear_async_pf_completion_queue(vcpu);
531 		kvm_async_pf_hash_reset(vcpu);
532 	}
533 
534 	if ((cr0 ^ old_cr0) & update_bits)
535 		kvm_mmu_reset_context(vcpu);
536 	return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539 
540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545 
546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548 	u64 xcr0;
549 
550 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
551 	if (index != XCR_XFEATURE_ENABLED_MASK)
552 		return 1;
553 	xcr0 = xcr;
554 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
555 		return 1;
556 	if (!(xcr0 & XSTATE_FP))
557 		return 1;
558 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559 		return 1;
560 	if (xcr0 & ~host_xcr0)
561 		return 1;
562 	vcpu->arch.xcr0 = xcr0;
563 	vcpu->guest_xcr0_loaded = 0;
564 	return 0;
565 }
566 
567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569 	if (__kvm_set_xcr(vcpu, index, xcr)) {
570 		kvm_inject_gp(vcpu, 0);
571 		return 1;
572 	}
573 	return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576 
577 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
578 {
579 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
580 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
581 				   X86_CR4_PAE | X86_CR4_SMEP;
582 	if (cr4 & CR4_RESERVED_BITS)
583 		return 1;
584 
585 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
586 		return 1;
587 
588 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
589 		return 1;
590 
591 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
592 		return 1;
593 
594 	if (is_long_mode(vcpu)) {
595 		if (!(cr4 & X86_CR4_PAE))
596 			return 1;
597 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
598 		   && ((cr4 ^ old_cr4) & pdptr_bits)
599 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
600 				   kvm_read_cr3(vcpu)))
601 		return 1;
602 
603 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
604 		return 1;
605 
606 	if ((cr4 ^ old_cr4) & pdptr_bits)
607 		kvm_mmu_reset_context(vcpu);
608 
609 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
610 		kvm_update_cpuid(vcpu);
611 
612 	return 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_set_cr4);
615 
616 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
617 {
618 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
619 		kvm_mmu_sync_roots(vcpu);
620 		kvm_mmu_flush_tlb(vcpu);
621 		return 0;
622 	}
623 
624 	if (is_long_mode(vcpu)) {
625 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
626 			return 1;
627 	} else {
628 		if (is_pae(vcpu)) {
629 			if (cr3 & CR3_PAE_RESERVED_BITS)
630 				return 1;
631 			if (is_paging(vcpu) &&
632 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
633 				return 1;
634 		}
635 		/*
636 		 * We don't check reserved bits in nonpae mode, because
637 		 * this isn't enforced, and VMware depends on this.
638 		 */
639 	}
640 
641 	/*
642 	 * Does the new cr3 value map to physical memory? (Note, we
643 	 * catch an invalid cr3 even in real-mode, because it would
644 	 * cause trouble later on when we turn on paging anyway.)
645 	 *
646 	 * A real CPU would silently accept an invalid cr3 and would
647 	 * attempt to use it - with largely undefined (and often hard
648 	 * to debug) behavior on the guest side.
649 	 */
650 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
651 		return 1;
652 	vcpu->arch.cr3 = cr3;
653 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
654 	vcpu->arch.mmu.new_cr3(vcpu);
655 	return 0;
656 }
657 EXPORT_SYMBOL_GPL(kvm_set_cr3);
658 
659 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
660 {
661 	if (cr8 & CR8_RESERVED_BITS)
662 		return 1;
663 	if (irqchip_in_kernel(vcpu->kvm))
664 		kvm_lapic_set_tpr(vcpu, cr8);
665 	else
666 		vcpu->arch.cr8 = cr8;
667 	return 0;
668 }
669 EXPORT_SYMBOL_GPL(kvm_set_cr8);
670 
671 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
672 {
673 	if (irqchip_in_kernel(vcpu->kvm))
674 		return kvm_lapic_get_cr8(vcpu);
675 	else
676 		return vcpu->arch.cr8;
677 }
678 EXPORT_SYMBOL_GPL(kvm_get_cr8);
679 
680 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
681 {
682 	switch (dr) {
683 	case 0 ... 3:
684 		vcpu->arch.db[dr] = val;
685 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
686 			vcpu->arch.eff_db[dr] = val;
687 		break;
688 	case 4:
689 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
690 			return 1; /* #UD */
691 		/* fall through */
692 	case 6:
693 		if (val & 0xffffffff00000000ULL)
694 			return -1; /* #GP */
695 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
696 		break;
697 	case 5:
698 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
699 			return 1; /* #UD */
700 		/* fall through */
701 	default: /* 7 */
702 		if (val & 0xffffffff00000000ULL)
703 			return -1; /* #GP */
704 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
705 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
706 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
707 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
708 		}
709 		break;
710 	}
711 
712 	return 0;
713 }
714 
715 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
716 {
717 	int res;
718 
719 	res = __kvm_set_dr(vcpu, dr, val);
720 	if (res > 0)
721 		kvm_queue_exception(vcpu, UD_VECTOR);
722 	else if (res < 0)
723 		kvm_inject_gp(vcpu, 0);
724 
725 	return res;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_dr);
728 
729 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
730 {
731 	switch (dr) {
732 	case 0 ... 3:
733 		*val = vcpu->arch.db[dr];
734 		break;
735 	case 4:
736 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
737 			return 1;
738 		/* fall through */
739 	case 6:
740 		*val = vcpu->arch.dr6;
741 		break;
742 	case 5:
743 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744 			return 1;
745 		/* fall through */
746 	default: /* 7 */
747 		*val = vcpu->arch.dr7;
748 		break;
749 	}
750 
751 	return 0;
752 }
753 
754 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
755 {
756 	if (_kvm_get_dr(vcpu, dr, val)) {
757 		kvm_queue_exception(vcpu, UD_VECTOR);
758 		return 1;
759 	}
760 	return 0;
761 }
762 EXPORT_SYMBOL_GPL(kvm_get_dr);
763 
764 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
765 {
766 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
767 	u64 data;
768 	int err;
769 
770 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
771 	if (err)
772 		return err;
773 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
774 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
775 	return err;
776 }
777 EXPORT_SYMBOL_GPL(kvm_rdpmc);
778 
779 /*
780  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
781  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
782  *
783  * This list is modified at module load time to reflect the
784  * capabilities of the host cpu. This capabilities test skips MSRs that are
785  * kvm-specific. Those are put in the beginning of the list.
786  */
787 
788 #define KVM_SAVE_MSRS_BEGIN	9
789 static u32 msrs_to_save[] = {
790 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
791 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
792 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
793 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
794 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
795 	MSR_STAR,
796 #ifdef CONFIG_X86_64
797 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
798 #endif
799 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
800 };
801 
802 static unsigned num_msrs_to_save;
803 
804 static u32 emulated_msrs[] = {
805 	MSR_IA32_TSCDEADLINE,
806 	MSR_IA32_MISC_ENABLE,
807 	MSR_IA32_MCG_STATUS,
808 	MSR_IA32_MCG_CTL,
809 };
810 
811 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
812 {
813 	u64 old_efer = vcpu->arch.efer;
814 
815 	if (efer & efer_reserved_bits)
816 		return 1;
817 
818 	if (is_paging(vcpu)
819 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
820 		return 1;
821 
822 	if (efer & EFER_FFXSR) {
823 		struct kvm_cpuid_entry2 *feat;
824 
825 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
826 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
827 			return 1;
828 	}
829 
830 	if (efer & EFER_SVME) {
831 		struct kvm_cpuid_entry2 *feat;
832 
833 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
834 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
835 			return 1;
836 	}
837 
838 	efer &= ~EFER_LMA;
839 	efer |= vcpu->arch.efer & EFER_LMA;
840 
841 	kvm_x86_ops->set_efer(vcpu, efer);
842 
843 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
844 
845 	/* Update reserved bits */
846 	if ((efer ^ old_efer) & EFER_NX)
847 		kvm_mmu_reset_context(vcpu);
848 
849 	return 0;
850 }
851 
852 void kvm_enable_efer_bits(u64 mask)
853 {
854        efer_reserved_bits &= ~mask;
855 }
856 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
857 
858 
859 /*
860  * Writes msr value into into the appropriate "register".
861  * Returns 0 on success, non-0 otherwise.
862  * Assumes vcpu_load() was already called.
863  */
864 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
865 {
866 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
867 }
868 
869 /*
870  * Adapt set_msr() to msr_io()'s calling convention
871  */
872 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
873 {
874 	return kvm_set_msr(vcpu, index, *data);
875 }
876 
877 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
878 {
879 	int version;
880 	int r;
881 	struct pvclock_wall_clock wc;
882 	struct timespec boot;
883 
884 	if (!wall_clock)
885 		return;
886 
887 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
888 	if (r)
889 		return;
890 
891 	if (version & 1)
892 		++version;  /* first time write, random junk */
893 
894 	++version;
895 
896 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
897 
898 	/*
899 	 * The guest calculates current wall clock time by adding
900 	 * system time (updated by kvm_guest_time_update below) to the
901 	 * wall clock specified here.  guest system time equals host
902 	 * system time for us, thus we must fill in host boot time here.
903 	 */
904 	getboottime(&boot);
905 
906 	wc.sec = boot.tv_sec;
907 	wc.nsec = boot.tv_nsec;
908 	wc.version = version;
909 
910 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
911 
912 	version++;
913 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
914 }
915 
916 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
917 {
918 	uint32_t quotient, remainder;
919 
920 	/* Don't try to replace with do_div(), this one calculates
921 	 * "(dividend << 32) / divisor" */
922 	__asm__ ( "divl %4"
923 		  : "=a" (quotient), "=d" (remainder)
924 		  : "0" (0), "1" (dividend), "r" (divisor) );
925 	return quotient;
926 }
927 
928 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
929 			       s8 *pshift, u32 *pmultiplier)
930 {
931 	uint64_t scaled64;
932 	int32_t  shift = 0;
933 	uint64_t tps64;
934 	uint32_t tps32;
935 
936 	tps64 = base_khz * 1000LL;
937 	scaled64 = scaled_khz * 1000LL;
938 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
939 		tps64 >>= 1;
940 		shift--;
941 	}
942 
943 	tps32 = (uint32_t)tps64;
944 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
945 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
946 			scaled64 >>= 1;
947 		else
948 			tps32 <<= 1;
949 		shift++;
950 	}
951 
952 	*pshift = shift;
953 	*pmultiplier = div_frac(scaled64, tps32);
954 
955 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
956 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
957 }
958 
959 static inline u64 get_kernel_ns(void)
960 {
961 	struct timespec ts;
962 
963 	WARN_ON(preemptible());
964 	ktime_get_ts(&ts);
965 	monotonic_to_bootbased(&ts);
966 	return timespec_to_ns(&ts);
967 }
968 
969 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
970 unsigned long max_tsc_khz;
971 
972 static inline int kvm_tsc_changes_freq(void)
973 {
974 	int cpu = get_cpu();
975 	int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
976 		  cpufreq_quick_get(cpu) != 0;
977 	put_cpu();
978 	return ret;
979 }
980 
981 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
982 {
983 	if (vcpu->arch.virtual_tsc_khz)
984 		return vcpu->arch.virtual_tsc_khz;
985 	else
986 		return __this_cpu_read(cpu_tsc_khz);
987 }
988 
989 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
990 {
991 	u64 ret;
992 
993 	WARN_ON(preemptible());
994 	if (kvm_tsc_changes_freq())
995 		printk_once(KERN_WARNING
996 		 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
997 	ret = nsec * vcpu_tsc_khz(vcpu);
998 	do_div(ret, USEC_PER_SEC);
999 	return ret;
1000 }
1001 
1002 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1003 {
1004 	/* Compute a scale to convert nanoseconds in TSC cycles */
1005 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1006 			   &vcpu->arch.tsc_catchup_shift,
1007 			   &vcpu->arch.tsc_catchup_mult);
1008 }
1009 
1010 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1011 {
1012 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1013 				      vcpu->arch.tsc_catchup_mult,
1014 				      vcpu->arch.tsc_catchup_shift);
1015 	tsc += vcpu->arch.last_tsc_write;
1016 	return tsc;
1017 }
1018 
1019 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1020 {
1021 	struct kvm *kvm = vcpu->kvm;
1022 	u64 offset, ns, elapsed;
1023 	unsigned long flags;
1024 	s64 sdiff;
1025 
1026 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1027 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1028 	ns = get_kernel_ns();
1029 	elapsed = ns - kvm->arch.last_tsc_nsec;
1030 	sdiff = data - kvm->arch.last_tsc_write;
1031 	if (sdiff < 0)
1032 		sdiff = -sdiff;
1033 
1034 	/*
1035 	 * Special case: close write to TSC within 5 seconds of
1036 	 * another CPU is interpreted as an attempt to synchronize
1037 	 * The 5 seconds is to accommodate host load / swapping as
1038 	 * well as any reset of TSC during the boot process.
1039 	 *
1040 	 * In that case, for a reliable TSC, we can match TSC offsets,
1041 	 * or make a best guest using elapsed value.
1042 	 */
1043 	if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1044 	    elapsed < 5ULL * NSEC_PER_SEC) {
1045 		if (!check_tsc_unstable()) {
1046 			offset = kvm->arch.last_tsc_offset;
1047 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1048 		} else {
1049 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1050 			offset += delta;
1051 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1052 		}
1053 		ns = kvm->arch.last_tsc_nsec;
1054 	}
1055 	kvm->arch.last_tsc_nsec = ns;
1056 	kvm->arch.last_tsc_write = data;
1057 	kvm->arch.last_tsc_offset = offset;
1058 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1059 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1060 
1061 	/* Reset of TSC must disable overshoot protection below */
1062 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1063 	vcpu->arch.last_tsc_write = data;
1064 	vcpu->arch.last_tsc_nsec = ns;
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1067 
1068 static int kvm_guest_time_update(struct kvm_vcpu *v)
1069 {
1070 	unsigned long flags;
1071 	struct kvm_vcpu_arch *vcpu = &v->arch;
1072 	void *shared_kaddr;
1073 	unsigned long this_tsc_khz;
1074 	s64 kernel_ns, max_kernel_ns;
1075 	u64 tsc_timestamp;
1076 
1077 	/* Keep irq disabled to prevent changes to the clock */
1078 	local_irq_save(flags);
1079 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1080 	kernel_ns = get_kernel_ns();
1081 	this_tsc_khz = vcpu_tsc_khz(v);
1082 	if (unlikely(this_tsc_khz == 0)) {
1083 		local_irq_restore(flags);
1084 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1085 		return 1;
1086 	}
1087 
1088 	/*
1089 	 * We may have to catch up the TSC to match elapsed wall clock
1090 	 * time for two reasons, even if kvmclock is used.
1091 	 *   1) CPU could have been running below the maximum TSC rate
1092 	 *   2) Broken TSC compensation resets the base at each VCPU
1093 	 *      entry to avoid unknown leaps of TSC even when running
1094 	 *      again on the same CPU.  This may cause apparent elapsed
1095 	 *      time to disappear, and the guest to stand still or run
1096 	 *	very slowly.
1097 	 */
1098 	if (vcpu->tsc_catchup) {
1099 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1100 		if (tsc > tsc_timestamp) {
1101 			kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1102 			tsc_timestamp = tsc;
1103 		}
1104 	}
1105 
1106 	local_irq_restore(flags);
1107 
1108 	if (!vcpu->time_page)
1109 		return 0;
1110 
1111 	/*
1112 	 * Time as measured by the TSC may go backwards when resetting the base
1113 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1114 	 * higher than the resolution of the other clock scales.  Thus, many
1115 	 * possible measurments of the TSC correspond to one measurement of any
1116 	 * other clock, and so a spread of values is possible.  This is not a
1117 	 * problem for the computation of the nanosecond clock; with TSC rates
1118 	 * around 1GHZ, there can only be a few cycles which correspond to one
1119 	 * nanosecond value, and any path through this code will inevitably
1120 	 * take longer than that.  However, with the kernel_ns value itself,
1121 	 * the precision may be much lower, down to HZ granularity.  If the
1122 	 * first sampling of TSC against kernel_ns ends in the low part of the
1123 	 * range, and the second in the high end of the range, we can get:
1124 	 *
1125 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1126 	 *
1127 	 * As the sampling errors potentially range in the thousands of cycles,
1128 	 * it is possible such a time value has already been observed by the
1129 	 * guest.  To protect against this, we must compute the system time as
1130 	 * observed by the guest and ensure the new system time is greater.
1131 	 */
1132 	max_kernel_ns = 0;
1133 	if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1134 		max_kernel_ns = vcpu->last_guest_tsc -
1135 				vcpu->hv_clock.tsc_timestamp;
1136 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1137 				    vcpu->hv_clock.tsc_to_system_mul,
1138 				    vcpu->hv_clock.tsc_shift);
1139 		max_kernel_ns += vcpu->last_kernel_ns;
1140 	}
1141 
1142 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1143 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1144 				   &vcpu->hv_clock.tsc_shift,
1145 				   &vcpu->hv_clock.tsc_to_system_mul);
1146 		vcpu->hw_tsc_khz = this_tsc_khz;
1147 	}
1148 
1149 	if (max_kernel_ns > kernel_ns)
1150 		kernel_ns = max_kernel_ns;
1151 
1152 	/* With all the info we got, fill in the values */
1153 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1154 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1155 	vcpu->last_kernel_ns = kernel_ns;
1156 	vcpu->last_guest_tsc = tsc_timestamp;
1157 	vcpu->hv_clock.flags = 0;
1158 
1159 	/*
1160 	 * The interface expects us to write an even number signaling that the
1161 	 * update is finished. Since the guest won't see the intermediate
1162 	 * state, we just increase by 2 at the end.
1163 	 */
1164 	vcpu->hv_clock.version += 2;
1165 
1166 	shared_kaddr = kmap_atomic(vcpu->time_page);
1167 
1168 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1169 	       sizeof(vcpu->hv_clock));
1170 
1171 	kunmap_atomic(shared_kaddr);
1172 
1173 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1174 	return 0;
1175 }
1176 
1177 static bool msr_mtrr_valid(unsigned msr)
1178 {
1179 	switch (msr) {
1180 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1181 	case MSR_MTRRfix64K_00000:
1182 	case MSR_MTRRfix16K_80000:
1183 	case MSR_MTRRfix16K_A0000:
1184 	case MSR_MTRRfix4K_C0000:
1185 	case MSR_MTRRfix4K_C8000:
1186 	case MSR_MTRRfix4K_D0000:
1187 	case MSR_MTRRfix4K_D8000:
1188 	case MSR_MTRRfix4K_E0000:
1189 	case MSR_MTRRfix4K_E8000:
1190 	case MSR_MTRRfix4K_F0000:
1191 	case MSR_MTRRfix4K_F8000:
1192 	case MSR_MTRRdefType:
1193 	case MSR_IA32_CR_PAT:
1194 		return true;
1195 	case 0x2f8:
1196 		return true;
1197 	}
1198 	return false;
1199 }
1200 
1201 static bool valid_pat_type(unsigned t)
1202 {
1203 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1204 }
1205 
1206 static bool valid_mtrr_type(unsigned t)
1207 {
1208 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1209 }
1210 
1211 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1212 {
1213 	int i;
1214 
1215 	if (!msr_mtrr_valid(msr))
1216 		return false;
1217 
1218 	if (msr == MSR_IA32_CR_PAT) {
1219 		for (i = 0; i < 8; i++)
1220 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1221 				return false;
1222 		return true;
1223 	} else if (msr == MSR_MTRRdefType) {
1224 		if (data & ~0xcff)
1225 			return false;
1226 		return valid_mtrr_type(data & 0xff);
1227 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1228 		for (i = 0; i < 8 ; i++)
1229 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1230 				return false;
1231 		return true;
1232 	}
1233 
1234 	/* variable MTRRs */
1235 	return valid_mtrr_type(data & 0xff);
1236 }
1237 
1238 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1239 {
1240 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1241 
1242 	if (!mtrr_valid(vcpu, msr, data))
1243 		return 1;
1244 
1245 	if (msr == MSR_MTRRdefType) {
1246 		vcpu->arch.mtrr_state.def_type = data;
1247 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1248 	} else if (msr == MSR_MTRRfix64K_00000)
1249 		p[0] = data;
1250 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1251 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1252 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1253 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1254 	else if (msr == MSR_IA32_CR_PAT)
1255 		vcpu->arch.pat = data;
1256 	else {	/* Variable MTRRs */
1257 		int idx, is_mtrr_mask;
1258 		u64 *pt;
1259 
1260 		idx = (msr - 0x200) / 2;
1261 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1262 		if (!is_mtrr_mask)
1263 			pt =
1264 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1265 		else
1266 			pt =
1267 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1268 		*pt = data;
1269 	}
1270 
1271 	kvm_mmu_reset_context(vcpu);
1272 	return 0;
1273 }
1274 
1275 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1276 {
1277 	u64 mcg_cap = vcpu->arch.mcg_cap;
1278 	unsigned bank_num = mcg_cap & 0xff;
1279 
1280 	switch (msr) {
1281 	case MSR_IA32_MCG_STATUS:
1282 		vcpu->arch.mcg_status = data;
1283 		break;
1284 	case MSR_IA32_MCG_CTL:
1285 		if (!(mcg_cap & MCG_CTL_P))
1286 			return 1;
1287 		if (data != 0 && data != ~(u64)0)
1288 			return -1;
1289 		vcpu->arch.mcg_ctl = data;
1290 		break;
1291 	default:
1292 		if (msr >= MSR_IA32_MC0_CTL &&
1293 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1294 			u32 offset = msr - MSR_IA32_MC0_CTL;
1295 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1296 			 * some Linux kernels though clear bit 10 in bank 4 to
1297 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1298 			 * this to avoid an uncatched #GP in the guest
1299 			 */
1300 			if ((offset & 0x3) == 0 &&
1301 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1302 				return -1;
1303 			vcpu->arch.mce_banks[offset] = data;
1304 			break;
1305 		}
1306 		return 1;
1307 	}
1308 	return 0;
1309 }
1310 
1311 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1312 {
1313 	struct kvm *kvm = vcpu->kvm;
1314 	int lm = is_long_mode(vcpu);
1315 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1316 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1317 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1318 		: kvm->arch.xen_hvm_config.blob_size_32;
1319 	u32 page_num = data & ~PAGE_MASK;
1320 	u64 page_addr = data & PAGE_MASK;
1321 	u8 *page;
1322 	int r;
1323 
1324 	r = -E2BIG;
1325 	if (page_num >= blob_size)
1326 		goto out;
1327 	r = -ENOMEM;
1328 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1329 	if (IS_ERR(page)) {
1330 		r = PTR_ERR(page);
1331 		goto out;
1332 	}
1333 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1334 		goto out_free;
1335 	r = 0;
1336 out_free:
1337 	kfree(page);
1338 out:
1339 	return r;
1340 }
1341 
1342 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1343 {
1344 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1345 }
1346 
1347 static bool kvm_hv_msr_partition_wide(u32 msr)
1348 {
1349 	bool r = false;
1350 	switch (msr) {
1351 	case HV_X64_MSR_GUEST_OS_ID:
1352 	case HV_X64_MSR_HYPERCALL:
1353 		r = true;
1354 		break;
1355 	}
1356 
1357 	return r;
1358 }
1359 
1360 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1361 {
1362 	struct kvm *kvm = vcpu->kvm;
1363 
1364 	switch (msr) {
1365 	case HV_X64_MSR_GUEST_OS_ID:
1366 		kvm->arch.hv_guest_os_id = data;
1367 		/* setting guest os id to zero disables hypercall page */
1368 		if (!kvm->arch.hv_guest_os_id)
1369 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1370 		break;
1371 	case HV_X64_MSR_HYPERCALL: {
1372 		u64 gfn;
1373 		unsigned long addr;
1374 		u8 instructions[4];
1375 
1376 		/* if guest os id is not set hypercall should remain disabled */
1377 		if (!kvm->arch.hv_guest_os_id)
1378 			break;
1379 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1380 			kvm->arch.hv_hypercall = data;
1381 			break;
1382 		}
1383 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1384 		addr = gfn_to_hva(kvm, gfn);
1385 		if (kvm_is_error_hva(addr))
1386 			return 1;
1387 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1388 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1389 		if (__copy_to_user((void __user *)addr, instructions, 4))
1390 			return 1;
1391 		kvm->arch.hv_hypercall = data;
1392 		break;
1393 	}
1394 	default:
1395 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1396 			  "data 0x%llx\n", msr, data);
1397 		return 1;
1398 	}
1399 	return 0;
1400 }
1401 
1402 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1403 {
1404 	switch (msr) {
1405 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1406 		unsigned long addr;
1407 
1408 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1409 			vcpu->arch.hv_vapic = data;
1410 			break;
1411 		}
1412 		addr = gfn_to_hva(vcpu->kvm, data >>
1413 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1414 		if (kvm_is_error_hva(addr))
1415 			return 1;
1416 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1417 			return 1;
1418 		vcpu->arch.hv_vapic = data;
1419 		break;
1420 	}
1421 	case HV_X64_MSR_EOI:
1422 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1423 	case HV_X64_MSR_ICR:
1424 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1425 	case HV_X64_MSR_TPR:
1426 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1427 	default:
1428 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1429 			  "data 0x%llx\n", msr, data);
1430 		return 1;
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1437 {
1438 	gpa_t gpa = data & ~0x3f;
1439 
1440 	/* Bits 2:5 are resrved, Should be zero */
1441 	if (data & 0x3c)
1442 		return 1;
1443 
1444 	vcpu->arch.apf.msr_val = data;
1445 
1446 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1447 		kvm_clear_async_pf_completion_queue(vcpu);
1448 		kvm_async_pf_hash_reset(vcpu);
1449 		return 0;
1450 	}
1451 
1452 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1453 		return 1;
1454 
1455 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1456 	kvm_async_pf_wakeup_all(vcpu);
1457 	return 0;
1458 }
1459 
1460 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1461 {
1462 	if (vcpu->arch.time_page) {
1463 		kvm_release_page_dirty(vcpu->arch.time_page);
1464 		vcpu->arch.time_page = NULL;
1465 	}
1466 }
1467 
1468 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1469 {
1470 	u64 delta;
1471 
1472 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1473 		return;
1474 
1475 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1476 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1477 	vcpu->arch.st.accum_steal = delta;
1478 }
1479 
1480 static void record_steal_time(struct kvm_vcpu *vcpu)
1481 {
1482 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1483 		return;
1484 
1485 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1486 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1487 		return;
1488 
1489 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1490 	vcpu->arch.st.steal.version += 2;
1491 	vcpu->arch.st.accum_steal = 0;
1492 
1493 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1494 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1495 }
1496 
1497 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1498 {
1499 	bool pr = false;
1500 
1501 	switch (msr) {
1502 	case MSR_EFER:
1503 		return set_efer(vcpu, data);
1504 	case MSR_K7_HWCR:
1505 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1506 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1507 		if (data != 0) {
1508 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1509 				data);
1510 			return 1;
1511 		}
1512 		break;
1513 	case MSR_FAM10H_MMIO_CONF_BASE:
1514 		if (data != 0) {
1515 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1516 				"0x%llx\n", data);
1517 			return 1;
1518 		}
1519 		break;
1520 	case MSR_AMD64_NB_CFG:
1521 		break;
1522 	case MSR_IA32_DEBUGCTLMSR:
1523 		if (!data) {
1524 			/* We support the non-activated case already */
1525 			break;
1526 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1527 			/* Values other than LBR and BTF are vendor-specific,
1528 			   thus reserved and should throw a #GP */
1529 			return 1;
1530 		}
1531 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1532 			__func__, data);
1533 		break;
1534 	case MSR_IA32_UCODE_REV:
1535 	case MSR_IA32_UCODE_WRITE:
1536 	case MSR_VM_HSAVE_PA:
1537 	case MSR_AMD64_PATCH_LOADER:
1538 		break;
1539 	case 0x200 ... 0x2ff:
1540 		return set_msr_mtrr(vcpu, msr, data);
1541 	case MSR_IA32_APICBASE:
1542 		kvm_set_apic_base(vcpu, data);
1543 		break;
1544 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1545 		return kvm_x2apic_msr_write(vcpu, msr, data);
1546 	case MSR_IA32_TSCDEADLINE:
1547 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1548 		break;
1549 	case MSR_IA32_MISC_ENABLE:
1550 		vcpu->arch.ia32_misc_enable_msr = data;
1551 		break;
1552 	case MSR_KVM_WALL_CLOCK_NEW:
1553 	case MSR_KVM_WALL_CLOCK:
1554 		vcpu->kvm->arch.wall_clock = data;
1555 		kvm_write_wall_clock(vcpu->kvm, data);
1556 		break;
1557 	case MSR_KVM_SYSTEM_TIME_NEW:
1558 	case MSR_KVM_SYSTEM_TIME: {
1559 		kvmclock_reset(vcpu);
1560 
1561 		vcpu->arch.time = data;
1562 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1563 
1564 		/* we verify if the enable bit is set... */
1565 		if (!(data & 1))
1566 			break;
1567 
1568 		/* ...but clean it before doing the actual write */
1569 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1570 
1571 		vcpu->arch.time_page =
1572 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1573 
1574 		if (is_error_page(vcpu->arch.time_page)) {
1575 			kvm_release_page_clean(vcpu->arch.time_page);
1576 			vcpu->arch.time_page = NULL;
1577 		}
1578 		break;
1579 	}
1580 	case MSR_KVM_ASYNC_PF_EN:
1581 		if (kvm_pv_enable_async_pf(vcpu, data))
1582 			return 1;
1583 		break;
1584 	case MSR_KVM_STEAL_TIME:
1585 
1586 		if (unlikely(!sched_info_on()))
1587 			return 1;
1588 
1589 		if (data & KVM_STEAL_RESERVED_MASK)
1590 			return 1;
1591 
1592 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1593 							data & KVM_STEAL_VALID_BITS))
1594 			return 1;
1595 
1596 		vcpu->arch.st.msr_val = data;
1597 
1598 		if (!(data & KVM_MSR_ENABLED))
1599 			break;
1600 
1601 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1602 
1603 		preempt_disable();
1604 		accumulate_steal_time(vcpu);
1605 		preempt_enable();
1606 
1607 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1608 
1609 		break;
1610 
1611 	case MSR_IA32_MCG_CTL:
1612 	case MSR_IA32_MCG_STATUS:
1613 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1614 		return set_msr_mce(vcpu, msr, data);
1615 
1616 	/* Performance counters are not protected by a CPUID bit,
1617 	 * so we should check all of them in the generic path for the sake of
1618 	 * cross vendor migration.
1619 	 * Writing a zero into the event select MSRs disables them,
1620 	 * which we perfectly emulate ;-). Any other value should be at least
1621 	 * reported, some guests depend on them.
1622 	 */
1623 	case MSR_K7_EVNTSEL0:
1624 	case MSR_K7_EVNTSEL1:
1625 	case MSR_K7_EVNTSEL2:
1626 	case MSR_K7_EVNTSEL3:
1627 		if (data != 0)
1628 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1629 				"0x%x data 0x%llx\n", msr, data);
1630 		break;
1631 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1632 	 * so we ignore writes to make it happy.
1633 	 */
1634 	case MSR_K7_PERFCTR0:
1635 	case MSR_K7_PERFCTR1:
1636 	case MSR_K7_PERFCTR2:
1637 	case MSR_K7_PERFCTR3:
1638 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1639 			"0x%x data 0x%llx\n", msr, data);
1640 		break;
1641 	case MSR_P6_PERFCTR0:
1642 	case MSR_P6_PERFCTR1:
1643 		pr = true;
1644 	case MSR_P6_EVNTSEL0:
1645 	case MSR_P6_EVNTSEL1:
1646 		if (kvm_pmu_msr(vcpu, msr))
1647 			return kvm_pmu_set_msr(vcpu, msr, data);
1648 
1649 		if (pr || data != 0)
1650 			pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1651 				"0x%x data 0x%llx\n", msr, data);
1652 		break;
1653 	case MSR_K7_CLK_CTL:
1654 		/*
1655 		 * Ignore all writes to this no longer documented MSR.
1656 		 * Writes are only relevant for old K7 processors,
1657 		 * all pre-dating SVM, but a recommended workaround from
1658 		 * AMD for these chips. It is possible to speicify the
1659 		 * affected processor models on the command line, hence
1660 		 * the need to ignore the workaround.
1661 		 */
1662 		break;
1663 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1664 		if (kvm_hv_msr_partition_wide(msr)) {
1665 			int r;
1666 			mutex_lock(&vcpu->kvm->lock);
1667 			r = set_msr_hyperv_pw(vcpu, msr, data);
1668 			mutex_unlock(&vcpu->kvm->lock);
1669 			return r;
1670 		} else
1671 			return set_msr_hyperv(vcpu, msr, data);
1672 		break;
1673 	case MSR_IA32_BBL_CR_CTL3:
1674 		/* Drop writes to this legacy MSR -- see rdmsr
1675 		 * counterpart for further detail.
1676 		 */
1677 		pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1678 		break;
1679 	default:
1680 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1681 			return xen_hvm_config(vcpu, data);
1682 		if (kvm_pmu_msr(vcpu, msr))
1683 			return kvm_pmu_set_msr(vcpu, msr, data);
1684 		if (!ignore_msrs) {
1685 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1686 				msr, data);
1687 			return 1;
1688 		} else {
1689 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1690 				msr, data);
1691 			break;
1692 		}
1693 	}
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1697 
1698 
1699 /*
1700  * Reads an msr value (of 'msr_index') into 'pdata'.
1701  * Returns 0 on success, non-0 otherwise.
1702  * Assumes vcpu_load() was already called.
1703  */
1704 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1705 {
1706 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1707 }
1708 
1709 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1710 {
1711 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1712 
1713 	if (!msr_mtrr_valid(msr))
1714 		return 1;
1715 
1716 	if (msr == MSR_MTRRdefType)
1717 		*pdata = vcpu->arch.mtrr_state.def_type +
1718 			 (vcpu->arch.mtrr_state.enabled << 10);
1719 	else if (msr == MSR_MTRRfix64K_00000)
1720 		*pdata = p[0];
1721 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1722 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1723 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1724 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1725 	else if (msr == MSR_IA32_CR_PAT)
1726 		*pdata = vcpu->arch.pat;
1727 	else {	/* Variable MTRRs */
1728 		int idx, is_mtrr_mask;
1729 		u64 *pt;
1730 
1731 		idx = (msr - 0x200) / 2;
1732 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1733 		if (!is_mtrr_mask)
1734 			pt =
1735 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1736 		else
1737 			pt =
1738 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1739 		*pdata = *pt;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1746 {
1747 	u64 data;
1748 	u64 mcg_cap = vcpu->arch.mcg_cap;
1749 	unsigned bank_num = mcg_cap & 0xff;
1750 
1751 	switch (msr) {
1752 	case MSR_IA32_P5_MC_ADDR:
1753 	case MSR_IA32_P5_MC_TYPE:
1754 		data = 0;
1755 		break;
1756 	case MSR_IA32_MCG_CAP:
1757 		data = vcpu->arch.mcg_cap;
1758 		break;
1759 	case MSR_IA32_MCG_CTL:
1760 		if (!(mcg_cap & MCG_CTL_P))
1761 			return 1;
1762 		data = vcpu->arch.mcg_ctl;
1763 		break;
1764 	case MSR_IA32_MCG_STATUS:
1765 		data = vcpu->arch.mcg_status;
1766 		break;
1767 	default:
1768 		if (msr >= MSR_IA32_MC0_CTL &&
1769 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1770 			u32 offset = msr - MSR_IA32_MC0_CTL;
1771 			data = vcpu->arch.mce_banks[offset];
1772 			break;
1773 		}
1774 		return 1;
1775 	}
1776 	*pdata = data;
1777 	return 0;
1778 }
1779 
1780 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1781 {
1782 	u64 data = 0;
1783 	struct kvm *kvm = vcpu->kvm;
1784 
1785 	switch (msr) {
1786 	case HV_X64_MSR_GUEST_OS_ID:
1787 		data = kvm->arch.hv_guest_os_id;
1788 		break;
1789 	case HV_X64_MSR_HYPERCALL:
1790 		data = kvm->arch.hv_hypercall;
1791 		break;
1792 	default:
1793 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1794 		return 1;
1795 	}
1796 
1797 	*pdata = data;
1798 	return 0;
1799 }
1800 
1801 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1802 {
1803 	u64 data = 0;
1804 
1805 	switch (msr) {
1806 	case HV_X64_MSR_VP_INDEX: {
1807 		int r;
1808 		struct kvm_vcpu *v;
1809 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1810 			if (v == vcpu)
1811 				data = r;
1812 		break;
1813 	}
1814 	case HV_X64_MSR_EOI:
1815 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1816 	case HV_X64_MSR_ICR:
1817 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1818 	case HV_X64_MSR_TPR:
1819 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1820 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1821 		data = vcpu->arch.hv_vapic;
1822 		break;
1823 	default:
1824 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1825 		return 1;
1826 	}
1827 	*pdata = data;
1828 	return 0;
1829 }
1830 
1831 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1832 {
1833 	u64 data;
1834 
1835 	switch (msr) {
1836 	case MSR_IA32_PLATFORM_ID:
1837 	case MSR_IA32_EBL_CR_POWERON:
1838 	case MSR_IA32_DEBUGCTLMSR:
1839 	case MSR_IA32_LASTBRANCHFROMIP:
1840 	case MSR_IA32_LASTBRANCHTOIP:
1841 	case MSR_IA32_LASTINTFROMIP:
1842 	case MSR_IA32_LASTINTTOIP:
1843 	case MSR_K8_SYSCFG:
1844 	case MSR_K7_HWCR:
1845 	case MSR_VM_HSAVE_PA:
1846 	case MSR_K7_EVNTSEL0:
1847 	case MSR_K7_PERFCTR0:
1848 	case MSR_K8_INT_PENDING_MSG:
1849 	case MSR_AMD64_NB_CFG:
1850 	case MSR_FAM10H_MMIO_CONF_BASE:
1851 		data = 0;
1852 		break;
1853 	case MSR_P6_PERFCTR0:
1854 	case MSR_P6_PERFCTR1:
1855 	case MSR_P6_EVNTSEL0:
1856 	case MSR_P6_EVNTSEL1:
1857 		if (kvm_pmu_msr(vcpu, msr))
1858 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1859 		data = 0;
1860 		break;
1861 	case MSR_IA32_UCODE_REV:
1862 		data = 0x100000000ULL;
1863 		break;
1864 	case MSR_MTRRcap:
1865 		data = 0x500 | KVM_NR_VAR_MTRR;
1866 		break;
1867 	case 0x200 ... 0x2ff:
1868 		return get_msr_mtrr(vcpu, msr, pdata);
1869 	case 0xcd: /* fsb frequency */
1870 		data = 3;
1871 		break;
1872 		/*
1873 		 * MSR_EBC_FREQUENCY_ID
1874 		 * Conservative value valid for even the basic CPU models.
1875 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1876 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1877 		 * and 266MHz for model 3, or 4. Set Core Clock
1878 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1879 		 * 31:24) even though these are only valid for CPU
1880 		 * models > 2, however guests may end up dividing or
1881 		 * multiplying by zero otherwise.
1882 		 */
1883 	case MSR_EBC_FREQUENCY_ID:
1884 		data = 1 << 24;
1885 		break;
1886 	case MSR_IA32_APICBASE:
1887 		data = kvm_get_apic_base(vcpu);
1888 		break;
1889 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1890 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1891 		break;
1892 	case MSR_IA32_TSCDEADLINE:
1893 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1894 		break;
1895 	case MSR_IA32_MISC_ENABLE:
1896 		data = vcpu->arch.ia32_misc_enable_msr;
1897 		break;
1898 	case MSR_IA32_PERF_STATUS:
1899 		/* TSC increment by tick */
1900 		data = 1000ULL;
1901 		/* CPU multiplier */
1902 		data |= (((uint64_t)4ULL) << 40);
1903 		break;
1904 	case MSR_EFER:
1905 		data = vcpu->arch.efer;
1906 		break;
1907 	case MSR_KVM_WALL_CLOCK:
1908 	case MSR_KVM_WALL_CLOCK_NEW:
1909 		data = vcpu->kvm->arch.wall_clock;
1910 		break;
1911 	case MSR_KVM_SYSTEM_TIME:
1912 	case MSR_KVM_SYSTEM_TIME_NEW:
1913 		data = vcpu->arch.time;
1914 		break;
1915 	case MSR_KVM_ASYNC_PF_EN:
1916 		data = vcpu->arch.apf.msr_val;
1917 		break;
1918 	case MSR_KVM_STEAL_TIME:
1919 		data = vcpu->arch.st.msr_val;
1920 		break;
1921 	case MSR_IA32_P5_MC_ADDR:
1922 	case MSR_IA32_P5_MC_TYPE:
1923 	case MSR_IA32_MCG_CAP:
1924 	case MSR_IA32_MCG_CTL:
1925 	case MSR_IA32_MCG_STATUS:
1926 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1927 		return get_msr_mce(vcpu, msr, pdata);
1928 	case MSR_K7_CLK_CTL:
1929 		/*
1930 		 * Provide expected ramp-up count for K7. All other
1931 		 * are set to zero, indicating minimum divisors for
1932 		 * every field.
1933 		 *
1934 		 * This prevents guest kernels on AMD host with CPU
1935 		 * type 6, model 8 and higher from exploding due to
1936 		 * the rdmsr failing.
1937 		 */
1938 		data = 0x20000000;
1939 		break;
1940 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1941 		if (kvm_hv_msr_partition_wide(msr)) {
1942 			int r;
1943 			mutex_lock(&vcpu->kvm->lock);
1944 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
1945 			mutex_unlock(&vcpu->kvm->lock);
1946 			return r;
1947 		} else
1948 			return get_msr_hyperv(vcpu, msr, pdata);
1949 		break;
1950 	case MSR_IA32_BBL_CR_CTL3:
1951 		/* This legacy MSR exists but isn't fully documented in current
1952 		 * silicon.  It is however accessed by winxp in very narrow
1953 		 * scenarios where it sets bit #19, itself documented as
1954 		 * a "reserved" bit.  Best effort attempt to source coherent
1955 		 * read data here should the balance of the register be
1956 		 * interpreted by the guest:
1957 		 *
1958 		 * L2 cache control register 3: 64GB range, 256KB size,
1959 		 * enabled, latency 0x1, configured
1960 		 */
1961 		data = 0xbe702111;
1962 		break;
1963 	default:
1964 		if (kvm_pmu_msr(vcpu, msr))
1965 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1966 		if (!ignore_msrs) {
1967 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1968 			return 1;
1969 		} else {
1970 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1971 			data = 0;
1972 		}
1973 		break;
1974 	}
1975 	*pdata = data;
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1979 
1980 /*
1981  * Read or write a bunch of msrs. All parameters are kernel addresses.
1982  *
1983  * @return number of msrs set successfully.
1984  */
1985 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1986 		    struct kvm_msr_entry *entries,
1987 		    int (*do_msr)(struct kvm_vcpu *vcpu,
1988 				  unsigned index, u64 *data))
1989 {
1990 	int i, idx;
1991 
1992 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1993 	for (i = 0; i < msrs->nmsrs; ++i)
1994 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
1995 			break;
1996 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1997 
1998 	return i;
1999 }
2000 
2001 /*
2002  * Read or write a bunch of msrs. Parameters are user addresses.
2003  *
2004  * @return number of msrs set successfully.
2005  */
2006 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2007 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2008 				unsigned index, u64 *data),
2009 		  int writeback)
2010 {
2011 	struct kvm_msrs msrs;
2012 	struct kvm_msr_entry *entries;
2013 	int r, n;
2014 	unsigned size;
2015 
2016 	r = -EFAULT;
2017 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2018 		goto out;
2019 
2020 	r = -E2BIG;
2021 	if (msrs.nmsrs >= MAX_IO_MSRS)
2022 		goto out;
2023 
2024 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2025 	entries = memdup_user(user_msrs->entries, size);
2026 	if (IS_ERR(entries)) {
2027 		r = PTR_ERR(entries);
2028 		goto out;
2029 	}
2030 
2031 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2032 	if (r < 0)
2033 		goto out_free;
2034 
2035 	r = -EFAULT;
2036 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2037 		goto out_free;
2038 
2039 	r = n;
2040 
2041 out_free:
2042 	kfree(entries);
2043 out:
2044 	return r;
2045 }
2046 
2047 int kvm_dev_ioctl_check_extension(long ext)
2048 {
2049 	int r;
2050 
2051 	switch (ext) {
2052 	case KVM_CAP_IRQCHIP:
2053 	case KVM_CAP_HLT:
2054 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2055 	case KVM_CAP_SET_TSS_ADDR:
2056 	case KVM_CAP_EXT_CPUID:
2057 	case KVM_CAP_CLOCKSOURCE:
2058 	case KVM_CAP_PIT:
2059 	case KVM_CAP_NOP_IO_DELAY:
2060 	case KVM_CAP_MP_STATE:
2061 	case KVM_CAP_SYNC_MMU:
2062 	case KVM_CAP_USER_NMI:
2063 	case KVM_CAP_REINJECT_CONTROL:
2064 	case KVM_CAP_IRQ_INJECT_STATUS:
2065 	case KVM_CAP_ASSIGN_DEV_IRQ:
2066 	case KVM_CAP_IRQFD:
2067 	case KVM_CAP_IOEVENTFD:
2068 	case KVM_CAP_PIT2:
2069 	case KVM_CAP_PIT_STATE2:
2070 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2071 	case KVM_CAP_XEN_HVM:
2072 	case KVM_CAP_ADJUST_CLOCK:
2073 	case KVM_CAP_VCPU_EVENTS:
2074 	case KVM_CAP_HYPERV:
2075 	case KVM_CAP_HYPERV_VAPIC:
2076 	case KVM_CAP_HYPERV_SPIN:
2077 	case KVM_CAP_PCI_SEGMENT:
2078 	case KVM_CAP_DEBUGREGS:
2079 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2080 	case KVM_CAP_XSAVE:
2081 	case KVM_CAP_ASYNC_PF:
2082 	case KVM_CAP_GET_TSC_KHZ:
2083 		r = 1;
2084 		break;
2085 	case KVM_CAP_COALESCED_MMIO:
2086 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2087 		break;
2088 	case KVM_CAP_VAPIC:
2089 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2090 		break;
2091 	case KVM_CAP_NR_VCPUS:
2092 		r = KVM_SOFT_MAX_VCPUS;
2093 		break;
2094 	case KVM_CAP_MAX_VCPUS:
2095 		r = KVM_MAX_VCPUS;
2096 		break;
2097 	case KVM_CAP_NR_MEMSLOTS:
2098 		r = KVM_MEMORY_SLOTS;
2099 		break;
2100 	case KVM_CAP_PV_MMU:	/* obsolete */
2101 		r = 0;
2102 		break;
2103 	case KVM_CAP_IOMMU:
2104 		r = iommu_present(&pci_bus_type);
2105 		break;
2106 	case KVM_CAP_MCE:
2107 		r = KVM_MAX_MCE_BANKS;
2108 		break;
2109 	case KVM_CAP_XCRS:
2110 		r = cpu_has_xsave;
2111 		break;
2112 	case KVM_CAP_TSC_CONTROL:
2113 		r = kvm_has_tsc_control;
2114 		break;
2115 	case KVM_CAP_TSC_DEADLINE_TIMER:
2116 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2117 		break;
2118 	default:
2119 		r = 0;
2120 		break;
2121 	}
2122 	return r;
2123 
2124 }
2125 
2126 long kvm_arch_dev_ioctl(struct file *filp,
2127 			unsigned int ioctl, unsigned long arg)
2128 {
2129 	void __user *argp = (void __user *)arg;
2130 	long r;
2131 
2132 	switch (ioctl) {
2133 	case KVM_GET_MSR_INDEX_LIST: {
2134 		struct kvm_msr_list __user *user_msr_list = argp;
2135 		struct kvm_msr_list msr_list;
2136 		unsigned n;
2137 
2138 		r = -EFAULT;
2139 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2140 			goto out;
2141 		n = msr_list.nmsrs;
2142 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2143 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2144 			goto out;
2145 		r = -E2BIG;
2146 		if (n < msr_list.nmsrs)
2147 			goto out;
2148 		r = -EFAULT;
2149 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2150 				 num_msrs_to_save * sizeof(u32)))
2151 			goto out;
2152 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2153 				 &emulated_msrs,
2154 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2155 			goto out;
2156 		r = 0;
2157 		break;
2158 	}
2159 	case KVM_GET_SUPPORTED_CPUID: {
2160 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2161 		struct kvm_cpuid2 cpuid;
2162 
2163 		r = -EFAULT;
2164 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2165 			goto out;
2166 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2167 						      cpuid_arg->entries);
2168 		if (r)
2169 			goto out;
2170 
2171 		r = -EFAULT;
2172 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2173 			goto out;
2174 		r = 0;
2175 		break;
2176 	}
2177 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2178 		u64 mce_cap;
2179 
2180 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2181 		r = -EFAULT;
2182 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2183 			goto out;
2184 		r = 0;
2185 		break;
2186 	}
2187 	default:
2188 		r = -EINVAL;
2189 	}
2190 out:
2191 	return r;
2192 }
2193 
2194 static void wbinvd_ipi(void *garbage)
2195 {
2196 	wbinvd();
2197 }
2198 
2199 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2200 {
2201 	return vcpu->kvm->arch.iommu_domain &&
2202 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2203 }
2204 
2205 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2206 {
2207 	/* Address WBINVD may be executed by guest */
2208 	if (need_emulate_wbinvd(vcpu)) {
2209 		if (kvm_x86_ops->has_wbinvd_exit())
2210 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2211 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2212 			smp_call_function_single(vcpu->cpu,
2213 					wbinvd_ipi, NULL, 1);
2214 	}
2215 
2216 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2217 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2218 		/* Make sure TSC doesn't go backwards */
2219 		s64 tsc_delta;
2220 		u64 tsc;
2221 
2222 		tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2223 		tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2224 			     tsc - vcpu->arch.last_guest_tsc;
2225 
2226 		if (tsc_delta < 0)
2227 			mark_tsc_unstable("KVM discovered backwards TSC");
2228 		if (check_tsc_unstable()) {
2229 			kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2230 			vcpu->arch.tsc_catchup = 1;
2231 		}
2232 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2233 		if (vcpu->cpu != cpu)
2234 			kvm_migrate_timers(vcpu);
2235 		vcpu->cpu = cpu;
2236 	}
2237 
2238 	accumulate_steal_time(vcpu);
2239 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2240 }
2241 
2242 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2243 {
2244 	kvm_x86_ops->vcpu_put(vcpu);
2245 	kvm_put_guest_fpu(vcpu);
2246 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2247 }
2248 
2249 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2250 				    struct kvm_lapic_state *s)
2251 {
2252 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2253 
2254 	return 0;
2255 }
2256 
2257 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2258 				    struct kvm_lapic_state *s)
2259 {
2260 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2261 	kvm_apic_post_state_restore(vcpu);
2262 	update_cr8_intercept(vcpu);
2263 
2264 	return 0;
2265 }
2266 
2267 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2268 				    struct kvm_interrupt *irq)
2269 {
2270 	if (irq->irq < 0 || irq->irq >= 256)
2271 		return -EINVAL;
2272 	if (irqchip_in_kernel(vcpu->kvm))
2273 		return -ENXIO;
2274 
2275 	kvm_queue_interrupt(vcpu, irq->irq, false);
2276 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2277 
2278 	return 0;
2279 }
2280 
2281 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2282 {
2283 	kvm_inject_nmi(vcpu);
2284 
2285 	return 0;
2286 }
2287 
2288 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2289 					   struct kvm_tpr_access_ctl *tac)
2290 {
2291 	if (tac->flags)
2292 		return -EINVAL;
2293 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2294 	return 0;
2295 }
2296 
2297 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2298 					u64 mcg_cap)
2299 {
2300 	int r;
2301 	unsigned bank_num = mcg_cap & 0xff, bank;
2302 
2303 	r = -EINVAL;
2304 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2305 		goto out;
2306 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2307 		goto out;
2308 	r = 0;
2309 	vcpu->arch.mcg_cap = mcg_cap;
2310 	/* Init IA32_MCG_CTL to all 1s */
2311 	if (mcg_cap & MCG_CTL_P)
2312 		vcpu->arch.mcg_ctl = ~(u64)0;
2313 	/* Init IA32_MCi_CTL to all 1s */
2314 	for (bank = 0; bank < bank_num; bank++)
2315 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2316 out:
2317 	return r;
2318 }
2319 
2320 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2321 				      struct kvm_x86_mce *mce)
2322 {
2323 	u64 mcg_cap = vcpu->arch.mcg_cap;
2324 	unsigned bank_num = mcg_cap & 0xff;
2325 	u64 *banks = vcpu->arch.mce_banks;
2326 
2327 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2328 		return -EINVAL;
2329 	/*
2330 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2331 	 * reporting is disabled
2332 	 */
2333 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2334 	    vcpu->arch.mcg_ctl != ~(u64)0)
2335 		return 0;
2336 	banks += 4 * mce->bank;
2337 	/*
2338 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2339 	 * reporting is disabled for the bank
2340 	 */
2341 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2342 		return 0;
2343 	if (mce->status & MCI_STATUS_UC) {
2344 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2345 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2346 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2347 			return 0;
2348 		}
2349 		if (banks[1] & MCI_STATUS_VAL)
2350 			mce->status |= MCI_STATUS_OVER;
2351 		banks[2] = mce->addr;
2352 		banks[3] = mce->misc;
2353 		vcpu->arch.mcg_status = mce->mcg_status;
2354 		banks[1] = mce->status;
2355 		kvm_queue_exception(vcpu, MC_VECTOR);
2356 	} else if (!(banks[1] & MCI_STATUS_VAL)
2357 		   || !(banks[1] & MCI_STATUS_UC)) {
2358 		if (banks[1] & MCI_STATUS_VAL)
2359 			mce->status |= MCI_STATUS_OVER;
2360 		banks[2] = mce->addr;
2361 		banks[3] = mce->misc;
2362 		banks[1] = mce->status;
2363 	} else
2364 		banks[1] |= MCI_STATUS_OVER;
2365 	return 0;
2366 }
2367 
2368 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2369 					       struct kvm_vcpu_events *events)
2370 {
2371 	process_nmi(vcpu);
2372 	events->exception.injected =
2373 		vcpu->arch.exception.pending &&
2374 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2375 	events->exception.nr = vcpu->arch.exception.nr;
2376 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2377 	events->exception.pad = 0;
2378 	events->exception.error_code = vcpu->arch.exception.error_code;
2379 
2380 	events->interrupt.injected =
2381 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2382 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2383 	events->interrupt.soft = 0;
2384 	events->interrupt.shadow =
2385 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2386 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2387 
2388 	events->nmi.injected = vcpu->arch.nmi_injected;
2389 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2390 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2391 	events->nmi.pad = 0;
2392 
2393 	events->sipi_vector = vcpu->arch.sipi_vector;
2394 
2395 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2396 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2397 			 | KVM_VCPUEVENT_VALID_SHADOW);
2398 	memset(&events->reserved, 0, sizeof(events->reserved));
2399 }
2400 
2401 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2402 					      struct kvm_vcpu_events *events)
2403 {
2404 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2405 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2406 			      | KVM_VCPUEVENT_VALID_SHADOW))
2407 		return -EINVAL;
2408 
2409 	process_nmi(vcpu);
2410 	vcpu->arch.exception.pending = events->exception.injected;
2411 	vcpu->arch.exception.nr = events->exception.nr;
2412 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2413 	vcpu->arch.exception.error_code = events->exception.error_code;
2414 
2415 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2416 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2417 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2418 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2419 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2420 						  events->interrupt.shadow);
2421 
2422 	vcpu->arch.nmi_injected = events->nmi.injected;
2423 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2424 		vcpu->arch.nmi_pending = events->nmi.pending;
2425 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2426 
2427 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2428 		vcpu->arch.sipi_vector = events->sipi_vector;
2429 
2430 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2431 
2432 	return 0;
2433 }
2434 
2435 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2436 					     struct kvm_debugregs *dbgregs)
2437 {
2438 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2439 	dbgregs->dr6 = vcpu->arch.dr6;
2440 	dbgregs->dr7 = vcpu->arch.dr7;
2441 	dbgregs->flags = 0;
2442 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2443 }
2444 
2445 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2446 					    struct kvm_debugregs *dbgregs)
2447 {
2448 	if (dbgregs->flags)
2449 		return -EINVAL;
2450 
2451 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2452 	vcpu->arch.dr6 = dbgregs->dr6;
2453 	vcpu->arch.dr7 = dbgregs->dr7;
2454 
2455 	return 0;
2456 }
2457 
2458 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2459 					 struct kvm_xsave *guest_xsave)
2460 {
2461 	if (cpu_has_xsave)
2462 		memcpy(guest_xsave->region,
2463 			&vcpu->arch.guest_fpu.state->xsave,
2464 			xstate_size);
2465 	else {
2466 		memcpy(guest_xsave->region,
2467 			&vcpu->arch.guest_fpu.state->fxsave,
2468 			sizeof(struct i387_fxsave_struct));
2469 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2470 			XSTATE_FPSSE;
2471 	}
2472 }
2473 
2474 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2475 					struct kvm_xsave *guest_xsave)
2476 {
2477 	u64 xstate_bv =
2478 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2479 
2480 	if (cpu_has_xsave)
2481 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2482 			guest_xsave->region, xstate_size);
2483 	else {
2484 		if (xstate_bv & ~XSTATE_FPSSE)
2485 			return -EINVAL;
2486 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2487 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2488 	}
2489 	return 0;
2490 }
2491 
2492 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2493 					struct kvm_xcrs *guest_xcrs)
2494 {
2495 	if (!cpu_has_xsave) {
2496 		guest_xcrs->nr_xcrs = 0;
2497 		return;
2498 	}
2499 
2500 	guest_xcrs->nr_xcrs = 1;
2501 	guest_xcrs->flags = 0;
2502 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2503 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2504 }
2505 
2506 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2507 				       struct kvm_xcrs *guest_xcrs)
2508 {
2509 	int i, r = 0;
2510 
2511 	if (!cpu_has_xsave)
2512 		return -EINVAL;
2513 
2514 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2515 		return -EINVAL;
2516 
2517 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2518 		/* Only support XCR0 currently */
2519 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2520 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2521 				guest_xcrs->xcrs[0].value);
2522 			break;
2523 		}
2524 	if (r)
2525 		r = -EINVAL;
2526 	return r;
2527 }
2528 
2529 long kvm_arch_vcpu_ioctl(struct file *filp,
2530 			 unsigned int ioctl, unsigned long arg)
2531 {
2532 	struct kvm_vcpu *vcpu = filp->private_data;
2533 	void __user *argp = (void __user *)arg;
2534 	int r;
2535 	union {
2536 		struct kvm_lapic_state *lapic;
2537 		struct kvm_xsave *xsave;
2538 		struct kvm_xcrs *xcrs;
2539 		void *buffer;
2540 	} u;
2541 
2542 	u.buffer = NULL;
2543 	switch (ioctl) {
2544 	case KVM_GET_LAPIC: {
2545 		r = -EINVAL;
2546 		if (!vcpu->arch.apic)
2547 			goto out;
2548 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2549 
2550 		r = -ENOMEM;
2551 		if (!u.lapic)
2552 			goto out;
2553 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2554 		if (r)
2555 			goto out;
2556 		r = -EFAULT;
2557 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2558 			goto out;
2559 		r = 0;
2560 		break;
2561 	}
2562 	case KVM_SET_LAPIC: {
2563 		r = -EINVAL;
2564 		if (!vcpu->arch.apic)
2565 			goto out;
2566 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
2567 		if (IS_ERR(u.lapic)) {
2568 			r = PTR_ERR(u.lapic);
2569 			goto out;
2570 		}
2571 
2572 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2573 		if (r)
2574 			goto out;
2575 		r = 0;
2576 		break;
2577 	}
2578 	case KVM_INTERRUPT: {
2579 		struct kvm_interrupt irq;
2580 
2581 		r = -EFAULT;
2582 		if (copy_from_user(&irq, argp, sizeof irq))
2583 			goto out;
2584 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2585 		if (r)
2586 			goto out;
2587 		r = 0;
2588 		break;
2589 	}
2590 	case KVM_NMI: {
2591 		r = kvm_vcpu_ioctl_nmi(vcpu);
2592 		if (r)
2593 			goto out;
2594 		r = 0;
2595 		break;
2596 	}
2597 	case KVM_SET_CPUID: {
2598 		struct kvm_cpuid __user *cpuid_arg = argp;
2599 		struct kvm_cpuid cpuid;
2600 
2601 		r = -EFAULT;
2602 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2603 			goto out;
2604 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2605 		if (r)
2606 			goto out;
2607 		break;
2608 	}
2609 	case KVM_SET_CPUID2: {
2610 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2611 		struct kvm_cpuid2 cpuid;
2612 
2613 		r = -EFAULT;
2614 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2615 			goto out;
2616 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2617 					      cpuid_arg->entries);
2618 		if (r)
2619 			goto out;
2620 		break;
2621 	}
2622 	case KVM_GET_CPUID2: {
2623 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2624 		struct kvm_cpuid2 cpuid;
2625 
2626 		r = -EFAULT;
2627 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2628 			goto out;
2629 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2630 					      cpuid_arg->entries);
2631 		if (r)
2632 			goto out;
2633 		r = -EFAULT;
2634 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2635 			goto out;
2636 		r = 0;
2637 		break;
2638 	}
2639 	case KVM_GET_MSRS:
2640 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2641 		break;
2642 	case KVM_SET_MSRS:
2643 		r = msr_io(vcpu, argp, do_set_msr, 0);
2644 		break;
2645 	case KVM_TPR_ACCESS_REPORTING: {
2646 		struct kvm_tpr_access_ctl tac;
2647 
2648 		r = -EFAULT;
2649 		if (copy_from_user(&tac, argp, sizeof tac))
2650 			goto out;
2651 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2652 		if (r)
2653 			goto out;
2654 		r = -EFAULT;
2655 		if (copy_to_user(argp, &tac, sizeof tac))
2656 			goto out;
2657 		r = 0;
2658 		break;
2659 	};
2660 	case KVM_SET_VAPIC_ADDR: {
2661 		struct kvm_vapic_addr va;
2662 
2663 		r = -EINVAL;
2664 		if (!irqchip_in_kernel(vcpu->kvm))
2665 			goto out;
2666 		r = -EFAULT;
2667 		if (copy_from_user(&va, argp, sizeof va))
2668 			goto out;
2669 		r = 0;
2670 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2671 		break;
2672 	}
2673 	case KVM_X86_SETUP_MCE: {
2674 		u64 mcg_cap;
2675 
2676 		r = -EFAULT;
2677 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2678 			goto out;
2679 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2680 		break;
2681 	}
2682 	case KVM_X86_SET_MCE: {
2683 		struct kvm_x86_mce mce;
2684 
2685 		r = -EFAULT;
2686 		if (copy_from_user(&mce, argp, sizeof mce))
2687 			goto out;
2688 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2689 		break;
2690 	}
2691 	case KVM_GET_VCPU_EVENTS: {
2692 		struct kvm_vcpu_events events;
2693 
2694 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2695 
2696 		r = -EFAULT;
2697 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2698 			break;
2699 		r = 0;
2700 		break;
2701 	}
2702 	case KVM_SET_VCPU_EVENTS: {
2703 		struct kvm_vcpu_events events;
2704 
2705 		r = -EFAULT;
2706 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2707 			break;
2708 
2709 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2710 		break;
2711 	}
2712 	case KVM_GET_DEBUGREGS: {
2713 		struct kvm_debugregs dbgregs;
2714 
2715 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2716 
2717 		r = -EFAULT;
2718 		if (copy_to_user(argp, &dbgregs,
2719 				 sizeof(struct kvm_debugregs)))
2720 			break;
2721 		r = 0;
2722 		break;
2723 	}
2724 	case KVM_SET_DEBUGREGS: {
2725 		struct kvm_debugregs dbgregs;
2726 
2727 		r = -EFAULT;
2728 		if (copy_from_user(&dbgregs, argp,
2729 				   sizeof(struct kvm_debugregs)))
2730 			break;
2731 
2732 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2733 		break;
2734 	}
2735 	case KVM_GET_XSAVE: {
2736 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2737 		r = -ENOMEM;
2738 		if (!u.xsave)
2739 			break;
2740 
2741 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2742 
2743 		r = -EFAULT;
2744 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2745 			break;
2746 		r = 0;
2747 		break;
2748 	}
2749 	case KVM_SET_XSAVE: {
2750 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
2751 		if (IS_ERR(u.xsave)) {
2752 			r = PTR_ERR(u.xsave);
2753 			goto out;
2754 		}
2755 
2756 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2757 		break;
2758 	}
2759 	case KVM_GET_XCRS: {
2760 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2761 		r = -ENOMEM;
2762 		if (!u.xcrs)
2763 			break;
2764 
2765 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2766 
2767 		r = -EFAULT;
2768 		if (copy_to_user(argp, u.xcrs,
2769 				 sizeof(struct kvm_xcrs)))
2770 			break;
2771 		r = 0;
2772 		break;
2773 	}
2774 	case KVM_SET_XCRS: {
2775 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2776 		if (IS_ERR(u.xcrs)) {
2777 			r = PTR_ERR(u.xcrs);
2778 			goto out;
2779 		}
2780 
2781 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2782 		break;
2783 	}
2784 	case KVM_SET_TSC_KHZ: {
2785 		u32 user_tsc_khz;
2786 
2787 		r = -EINVAL;
2788 		if (!kvm_has_tsc_control)
2789 			break;
2790 
2791 		user_tsc_khz = (u32)arg;
2792 
2793 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2794 			goto out;
2795 
2796 		kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
2797 
2798 		r = 0;
2799 		goto out;
2800 	}
2801 	case KVM_GET_TSC_KHZ: {
2802 		r = -EIO;
2803 		if (check_tsc_unstable())
2804 			goto out;
2805 
2806 		r = vcpu_tsc_khz(vcpu);
2807 
2808 		goto out;
2809 	}
2810 	default:
2811 		r = -EINVAL;
2812 	}
2813 out:
2814 	kfree(u.buffer);
2815 	return r;
2816 }
2817 
2818 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2819 {
2820 	int ret;
2821 
2822 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2823 		return -1;
2824 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2825 	return ret;
2826 }
2827 
2828 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2829 					      u64 ident_addr)
2830 {
2831 	kvm->arch.ept_identity_map_addr = ident_addr;
2832 	return 0;
2833 }
2834 
2835 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2836 					  u32 kvm_nr_mmu_pages)
2837 {
2838 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2839 		return -EINVAL;
2840 
2841 	mutex_lock(&kvm->slots_lock);
2842 	spin_lock(&kvm->mmu_lock);
2843 
2844 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2845 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2846 
2847 	spin_unlock(&kvm->mmu_lock);
2848 	mutex_unlock(&kvm->slots_lock);
2849 	return 0;
2850 }
2851 
2852 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2853 {
2854 	return kvm->arch.n_max_mmu_pages;
2855 }
2856 
2857 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2858 {
2859 	int r;
2860 
2861 	r = 0;
2862 	switch (chip->chip_id) {
2863 	case KVM_IRQCHIP_PIC_MASTER:
2864 		memcpy(&chip->chip.pic,
2865 			&pic_irqchip(kvm)->pics[0],
2866 			sizeof(struct kvm_pic_state));
2867 		break;
2868 	case KVM_IRQCHIP_PIC_SLAVE:
2869 		memcpy(&chip->chip.pic,
2870 			&pic_irqchip(kvm)->pics[1],
2871 			sizeof(struct kvm_pic_state));
2872 		break;
2873 	case KVM_IRQCHIP_IOAPIC:
2874 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2875 		break;
2876 	default:
2877 		r = -EINVAL;
2878 		break;
2879 	}
2880 	return r;
2881 }
2882 
2883 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2884 {
2885 	int r;
2886 
2887 	r = 0;
2888 	switch (chip->chip_id) {
2889 	case KVM_IRQCHIP_PIC_MASTER:
2890 		spin_lock(&pic_irqchip(kvm)->lock);
2891 		memcpy(&pic_irqchip(kvm)->pics[0],
2892 			&chip->chip.pic,
2893 			sizeof(struct kvm_pic_state));
2894 		spin_unlock(&pic_irqchip(kvm)->lock);
2895 		break;
2896 	case KVM_IRQCHIP_PIC_SLAVE:
2897 		spin_lock(&pic_irqchip(kvm)->lock);
2898 		memcpy(&pic_irqchip(kvm)->pics[1],
2899 			&chip->chip.pic,
2900 			sizeof(struct kvm_pic_state));
2901 		spin_unlock(&pic_irqchip(kvm)->lock);
2902 		break;
2903 	case KVM_IRQCHIP_IOAPIC:
2904 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2905 		break;
2906 	default:
2907 		r = -EINVAL;
2908 		break;
2909 	}
2910 	kvm_pic_update_irq(pic_irqchip(kvm));
2911 	return r;
2912 }
2913 
2914 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2915 {
2916 	int r = 0;
2917 
2918 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2919 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2920 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2921 	return r;
2922 }
2923 
2924 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2925 {
2926 	int r = 0;
2927 
2928 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2929 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2930 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2931 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2932 	return r;
2933 }
2934 
2935 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2936 {
2937 	int r = 0;
2938 
2939 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2940 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2941 		sizeof(ps->channels));
2942 	ps->flags = kvm->arch.vpit->pit_state.flags;
2943 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2944 	memset(&ps->reserved, 0, sizeof(ps->reserved));
2945 	return r;
2946 }
2947 
2948 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2949 {
2950 	int r = 0, start = 0;
2951 	u32 prev_legacy, cur_legacy;
2952 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2953 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2954 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2955 	if (!prev_legacy && cur_legacy)
2956 		start = 1;
2957 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2958 	       sizeof(kvm->arch.vpit->pit_state.channels));
2959 	kvm->arch.vpit->pit_state.flags = ps->flags;
2960 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2961 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2962 	return r;
2963 }
2964 
2965 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2966 				 struct kvm_reinject_control *control)
2967 {
2968 	if (!kvm->arch.vpit)
2969 		return -ENXIO;
2970 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2971 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2972 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2973 	return 0;
2974 }
2975 
2976 /**
2977  * write_protect_slot - write protect a slot for dirty logging
2978  * @kvm: the kvm instance
2979  * @memslot: the slot we protect
2980  * @dirty_bitmap: the bitmap indicating which pages are dirty
2981  * @nr_dirty_pages: the number of dirty pages
2982  *
2983  * We have two ways to find all sptes to protect:
2984  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2985  *    checks ones that have a spte mapping a page in the slot.
2986  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2987  *
2988  * Generally speaking, if there are not so many dirty pages compared to the
2989  * number of shadow pages, we should use the latter.
2990  *
2991  * Note that letting others write into a page marked dirty in the old bitmap
2992  * by using the remaining tlb entry is not a problem.  That page will become
2993  * write protected again when we flush the tlb and then be reported dirty to
2994  * the user space by copying the old bitmap.
2995  */
2996 static void write_protect_slot(struct kvm *kvm,
2997 			       struct kvm_memory_slot *memslot,
2998 			       unsigned long *dirty_bitmap,
2999 			       unsigned long nr_dirty_pages)
3000 {
3001 	/* Not many dirty pages compared to # of shadow pages. */
3002 	if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3003 		unsigned long gfn_offset;
3004 
3005 		for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3006 			unsigned long gfn = memslot->base_gfn + gfn_offset;
3007 
3008 			spin_lock(&kvm->mmu_lock);
3009 			kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3010 			spin_unlock(&kvm->mmu_lock);
3011 		}
3012 		kvm_flush_remote_tlbs(kvm);
3013 	} else {
3014 		spin_lock(&kvm->mmu_lock);
3015 		kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3016 		spin_unlock(&kvm->mmu_lock);
3017 	}
3018 }
3019 
3020 /*
3021  * Get (and clear) the dirty memory log for a memory slot.
3022  */
3023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3024 				      struct kvm_dirty_log *log)
3025 {
3026 	int r;
3027 	struct kvm_memory_slot *memslot;
3028 	unsigned long n, nr_dirty_pages;
3029 
3030 	mutex_lock(&kvm->slots_lock);
3031 
3032 	r = -EINVAL;
3033 	if (log->slot >= KVM_MEMORY_SLOTS)
3034 		goto out;
3035 
3036 	memslot = id_to_memslot(kvm->memslots, log->slot);
3037 	r = -ENOENT;
3038 	if (!memslot->dirty_bitmap)
3039 		goto out;
3040 
3041 	n = kvm_dirty_bitmap_bytes(memslot);
3042 	nr_dirty_pages = memslot->nr_dirty_pages;
3043 
3044 	/* If nothing is dirty, don't bother messing with page tables. */
3045 	if (nr_dirty_pages) {
3046 		struct kvm_memslots *slots, *old_slots;
3047 		unsigned long *dirty_bitmap, *dirty_bitmap_head;
3048 
3049 		dirty_bitmap = memslot->dirty_bitmap;
3050 		dirty_bitmap_head = memslot->dirty_bitmap_head;
3051 		if (dirty_bitmap == dirty_bitmap_head)
3052 			dirty_bitmap_head += n / sizeof(long);
3053 		memset(dirty_bitmap_head, 0, n);
3054 
3055 		r = -ENOMEM;
3056 		slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3057 		if (!slots)
3058 			goto out;
3059 
3060 		memslot = id_to_memslot(slots, log->slot);
3061 		memslot->nr_dirty_pages = 0;
3062 		memslot->dirty_bitmap = dirty_bitmap_head;
3063 		update_memslots(slots, NULL);
3064 
3065 		old_slots = kvm->memslots;
3066 		rcu_assign_pointer(kvm->memslots, slots);
3067 		synchronize_srcu_expedited(&kvm->srcu);
3068 		kfree(old_slots);
3069 
3070 		write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3071 
3072 		r = -EFAULT;
3073 		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3074 			goto out;
3075 	} else {
3076 		r = -EFAULT;
3077 		if (clear_user(log->dirty_bitmap, n))
3078 			goto out;
3079 	}
3080 
3081 	r = 0;
3082 out:
3083 	mutex_unlock(&kvm->slots_lock);
3084 	return r;
3085 }
3086 
3087 long kvm_arch_vm_ioctl(struct file *filp,
3088 		       unsigned int ioctl, unsigned long arg)
3089 {
3090 	struct kvm *kvm = filp->private_data;
3091 	void __user *argp = (void __user *)arg;
3092 	int r = -ENOTTY;
3093 	/*
3094 	 * This union makes it completely explicit to gcc-3.x
3095 	 * that these two variables' stack usage should be
3096 	 * combined, not added together.
3097 	 */
3098 	union {
3099 		struct kvm_pit_state ps;
3100 		struct kvm_pit_state2 ps2;
3101 		struct kvm_pit_config pit_config;
3102 	} u;
3103 
3104 	switch (ioctl) {
3105 	case KVM_SET_TSS_ADDR:
3106 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3107 		if (r < 0)
3108 			goto out;
3109 		break;
3110 	case KVM_SET_IDENTITY_MAP_ADDR: {
3111 		u64 ident_addr;
3112 
3113 		r = -EFAULT;
3114 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3115 			goto out;
3116 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3117 		if (r < 0)
3118 			goto out;
3119 		break;
3120 	}
3121 	case KVM_SET_NR_MMU_PAGES:
3122 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3123 		if (r)
3124 			goto out;
3125 		break;
3126 	case KVM_GET_NR_MMU_PAGES:
3127 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3128 		break;
3129 	case KVM_CREATE_IRQCHIP: {
3130 		struct kvm_pic *vpic;
3131 
3132 		mutex_lock(&kvm->lock);
3133 		r = -EEXIST;
3134 		if (kvm->arch.vpic)
3135 			goto create_irqchip_unlock;
3136 		r = -ENOMEM;
3137 		vpic = kvm_create_pic(kvm);
3138 		if (vpic) {
3139 			r = kvm_ioapic_init(kvm);
3140 			if (r) {
3141 				mutex_lock(&kvm->slots_lock);
3142 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3143 							  &vpic->dev_master);
3144 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3145 							  &vpic->dev_slave);
3146 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3147 							  &vpic->dev_eclr);
3148 				mutex_unlock(&kvm->slots_lock);
3149 				kfree(vpic);
3150 				goto create_irqchip_unlock;
3151 			}
3152 		} else
3153 			goto create_irqchip_unlock;
3154 		smp_wmb();
3155 		kvm->arch.vpic = vpic;
3156 		smp_wmb();
3157 		r = kvm_setup_default_irq_routing(kvm);
3158 		if (r) {
3159 			mutex_lock(&kvm->slots_lock);
3160 			mutex_lock(&kvm->irq_lock);
3161 			kvm_ioapic_destroy(kvm);
3162 			kvm_destroy_pic(kvm);
3163 			mutex_unlock(&kvm->irq_lock);
3164 			mutex_unlock(&kvm->slots_lock);
3165 		}
3166 	create_irqchip_unlock:
3167 		mutex_unlock(&kvm->lock);
3168 		break;
3169 	}
3170 	case KVM_CREATE_PIT:
3171 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3172 		goto create_pit;
3173 	case KVM_CREATE_PIT2:
3174 		r = -EFAULT;
3175 		if (copy_from_user(&u.pit_config, argp,
3176 				   sizeof(struct kvm_pit_config)))
3177 			goto out;
3178 	create_pit:
3179 		mutex_lock(&kvm->slots_lock);
3180 		r = -EEXIST;
3181 		if (kvm->arch.vpit)
3182 			goto create_pit_unlock;
3183 		r = -ENOMEM;
3184 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3185 		if (kvm->arch.vpit)
3186 			r = 0;
3187 	create_pit_unlock:
3188 		mutex_unlock(&kvm->slots_lock);
3189 		break;
3190 	case KVM_IRQ_LINE_STATUS:
3191 	case KVM_IRQ_LINE: {
3192 		struct kvm_irq_level irq_event;
3193 
3194 		r = -EFAULT;
3195 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3196 			goto out;
3197 		r = -ENXIO;
3198 		if (irqchip_in_kernel(kvm)) {
3199 			__s32 status;
3200 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3201 					irq_event.irq, irq_event.level);
3202 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3203 				r = -EFAULT;
3204 				irq_event.status = status;
3205 				if (copy_to_user(argp, &irq_event,
3206 							sizeof irq_event))
3207 					goto out;
3208 			}
3209 			r = 0;
3210 		}
3211 		break;
3212 	}
3213 	case KVM_GET_IRQCHIP: {
3214 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3215 		struct kvm_irqchip *chip;
3216 
3217 		chip = memdup_user(argp, sizeof(*chip));
3218 		if (IS_ERR(chip)) {
3219 			r = PTR_ERR(chip);
3220 			goto out;
3221 		}
3222 
3223 		r = -ENXIO;
3224 		if (!irqchip_in_kernel(kvm))
3225 			goto get_irqchip_out;
3226 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3227 		if (r)
3228 			goto get_irqchip_out;
3229 		r = -EFAULT;
3230 		if (copy_to_user(argp, chip, sizeof *chip))
3231 			goto get_irqchip_out;
3232 		r = 0;
3233 	get_irqchip_out:
3234 		kfree(chip);
3235 		if (r)
3236 			goto out;
3237 		break;
3238 	}
3239 	case KVM_SET_IRQCHIP: {
3240 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3241 		struct kvm_irqchip *chip;
3242 
3243 		chip = memdup_user(argp, sizeof(*chip));
3244 		if (IS_ERR(chip)) {
3245 			r = PTR_ERR(chip);
3246 			goto out;
3247 		}
3248 
3249 		r = -ENXIO;
3250 		if (!irqchip_in_kernel(kvm))
3251 			goto set_irqchip_out;
3252 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3253 		if (r)
3254 			goto set_irqchip_out;
3255 		r = 0;
3256 	set_irqchip_out:
3257 		kfree(chip);
3258 		if (r)
3259 			goto out;
3260 		break;
3261 	}
3262 	case KVM_GET_PIT: {
3263 		r = -EFAULT;
3264 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3265 			goto out;
3266 		r = -ENXIO;
3267 		if (!kvm->arch.vpit)
3268 			goto out;
3269 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3270 		if (r)
3271 			goto out;
3272 		r = -EFAULT;
3273 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3274 			goto out;
3275 		r = 0;
3276 		break;
3277 	}
3278 	case KVM_SET_PIT: {
3279 		r = -EFAULT;
3280 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3281 			goto out;
3282 		r = -ENXIO;
3283 		if (!kvm->arch.vpit)
3284 			goto out;
3285 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3286 		if (r)
3287 			goto out;
3288 		r = 0;
3289 		break;
3290 	}
3291 	case KVM_GET_PIT2: {
3292 		r = -ENXIO;
3293 		if (!kvm->arch.vpit)
3294 			goto out;
3295 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3296 		if (r)
3297 			goto out;
3298 		r = -EFAULT;
3299 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3300 			goto out;
3301 		r = 0;
3302 		break;
3303 	}
3304 	case KVM_SET_PIT2: {
3305 		r = -EFAULT;
3306 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3307 			goto out;
3308 		r = -ENXIO;
3309 		if (!kvm->arch.vpit)
3310 			goto out;
3311 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3312 		if (r)
3313 			goto out;
3314 		r = 0;
3315 		break;
3316 	}
3317 	case KVM_REINJECT_CONTROL: {
3318 		struct kvm_reinject_control control;
3319 		r =  -EFAULT;
3320 		if (copy_from_user(&control, argp, sizeof(control)))
3321 			goto out;
3322 		r = kvm_vm_ioctl_reinject(kvm, &control);
3323 		if (r)
3324 			goto out;
3325 		r = 0;
3326 		break;
3327 	}
3328 	case KVM_XEN_HVM_CONFIG: {
3329 		r = -EFAULT;
3330 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3331 				   sizeof(struct kvm_xen_hvm_config)))
3332 			goto out;
3333 		r = -EINVAL;
3334 		if (kvm->arch.xen_hvm_config.flags)
3335 			goto out;
3336 		r = 0;
3337 		break;
3338 	}
3339 	case KVM_SET_CLOCK: {
3340 		struct kvm_clock_data user_ns;
3341 		u64 now_ns;
3342 		s64 delta;
3343 
3344 		r = -EFAULT;
3345 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3346 			goto out;
3347 
3348 		r = -EINVAL;
3349 		if (user_ns.flags)
3350 			goto out;
3351 
3352 		r = 0;
3353 		local_irq_disable();
3354 		now_ns = get_kernel_ns();
3355 		delta = user_ns.clock - now_ns;
3356 		local_irq_enable();
3357 		kvm->arch.kvmclock_offset = delta;
3358 		break;
3359 	}
3360 	case KVM_GET_CLOCK: {
3361 		struct kvm_clock_data user_ns;
3362 		u64 now_ns;
3363 
3364 		local_irq_disable();
3365 		now_ns = get_kernel_ns();
3366 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3367 		local_irq_enable();
3368 		user_ns.flags = 0;
3369 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3370 
3371 		r = -EFAULT;
3372 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3373 			goto out;
3374 		r = 0;
3375 		break;
3376 	}
3377 
3378 	default:
3379 		;
3380 	}
3381 out:
3382 	return r;
3383 }
3384 
3385 static void kvm_init_msr_list(void)
3386 {
3387 	u32 dummy[2];
3388 	unsigned i, j;
3389 
3390 	/* skip the first msrs in the list. KVM-specific */
3391 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3392 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3393 			continue;
3394 		if (j < i)
3395 			msrs_to_save[j] = msrs_to_save[i];
3396 		j++;
3397 	}
3398 	num_msrs_to_save = j;
3399 }
3400 
3401 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3402 			   const void *v)
3403 {
3404 	int handled = 0;
3405 	int n;
3406 
3407 	do {
3408 		n = min(len, 8);
3409 		if (!(vcpu->arch.apic &&
3410 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3411 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3412 			break;
3413 		handled += n;
3414 		addr += n;
3415 		len -= n;
3416 		v += n;
3417 	} while (len);
3418 
3419 	return handled;
3420 }
3421 
3422 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3423 {
3424 	int handled = 0;
3425 	int n;
3426 
3427 	do {
3428 		n = min(len, 8);
3429 		if (!(vcpu->arch.apic &&
3430 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3431 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3432 			break;
3433 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3434 		handled += n;
3435 		addr += n;
3436 		len -= n;
3437 		v += n;
3438 	} while (len);
3439 
3440 	return handled;
3441 }
3442 
3443 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3444 			struct kvm_segment *var, int seg)
3445 {
3446 	kvm_x86_ops->set_segment(vcpu, var, seg);
3447 }
3448 
3449 void kvm_get_segment(struct kvm_vcpu *vcpu,
3450 		     struct kvm_segment *var, int seg)
3451 {
3452 	kvm_x86_ops->get_segment(vcpu, var, seg);
3453 }
3454 
3455 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3456 {
3457 	gpa_t t_gpa;
3458 	struct x86_exception exception;
3459 
3460 	BUG_ON(!mmu_is_nested(vcpu));
3461 
3462 	/* NPT walks are always user-walks */
3463 	access |= PFERR_USER_MASK;
3464 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3465 
3466 	return t_gpa;
3467 }
3468 
3469 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3470 			      struct x86_exception *exception)
3471 {
3472 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3473 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3474 }
3475 
3476  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3477 				struct x86_exception *exception)
3478 {
3479 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3480 	access |= PFERR_FETCH_MASK;
3481 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3482 }
3483 
3484 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3485 			       struct x86_exception *exception)
3486 {
3487 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3488 	access |= PFERR_WRITE_MASK;
3489 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3490 }
3491 
3492 /* uses this to access any guest's mapped memory without checking CPL */
3493 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3494 				struct x86_exception *exception)
3495 {
3496 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3497 }
3498 
3499 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3500 				      struct kvm_vcpu *vcpu, u32 access,
3501 				      struct x86_exception *exception)
3502 {
3503 	void *data = val;
3504 	int r = X86EMUL_CONTINUE;
3505 
3506 	while (bytes) {
3507 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3508 							    exception);
3509 		unsigned offset = addr & (PAGE_SIZE-1);
3510 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3511 		int ret;
3512 
3513 		if (gpa == UNMAPPED_GVA)
3514 			return X86EMUL_PROPAGATE_FAULT;
3515 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3516 		if (ret < 0) {
3517 			r = X86EMUL_IO_NEEDED;
3518 			goto out;
3519 		}
3520 
3521 		bytes -= toread;
3522 		data += toread;
3523 		addr += toread;
3524 	}
3525 out:
3526 	return r;
3527 }
3528 
3529 /* used for instruction fetching */
3530 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3531 				gva_t addr, void *val, unsigned int bytes,
3532 				struct x86_exception *exception)
3533 {
3534 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3535 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3536 
3537 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3538 					  access | PFERR_FETCH_MASK,
3539 					  exception);
3540 }
3541 
3542 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3543 			       gva_t addr, void *val, unsigned int bytes,
3544 			       struct x86_exception *exception)
3545 {
3546 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3547 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3548 
3549 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3550 					  exception);
3551 }
3552 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3553 
3554 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3555 				      gva_t addr, void *val, unsigned int bytes,
3556 				      struct x86_exception *exception)
3557 {
3558 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3559 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3560 }
3561 
3562 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3563 				       gva_t addr, void *val,
3564 				       unsigned int bytes,
3565 				       struct x86_exception *exception)
3566 {
3567 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3568 	void *data = val;
3569 	int r = X86EMUL_CONTINUE;
3570 
3571 	while (bytes) {
3572 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3573 							     PFERR_WRITE_MASK,
3574 							     exception);
3575 		unsigned offset = addr & (PAGE_SIZE-1);
3576 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3577 		int ret;
3578 
3579 		if (gpa == UNMAPPED_GVA)
3580 			return X86EMUL_PROPAGATE_FAULT;
3581 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3582 		if (ret < 0) {
3583 			r = X86EMUL_IO_NEEDED;
3584 			goto out;
3585 		}
3586 
3587 		bytes -= towrite;
3588 		data += towrite;
3589 		addr += towrite;
3590 	}
3591 out:
3592 	return r;
3593 }
3594 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3595 
3596 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3597 				gpa_t *gpa, struct x86_exception *exception,
3598 				bool write)
3599 {
3600 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3601 
3602 	if (vcpu_match_mmio_gva(vcpu, gva) &&
3603 		  check_write_user_access(vcpu, write, access,
3604 		  vcpu->arch.access)) {
3605 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3606 					(gva & (PAGE_SIZE - 1));
3607 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3608 		return 1;
3609 	}
3610 
3611 	if (write)
3612 		access |= PFERR_WRITE_MASK;
3613 
3614 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3615 
3616 	if (*gpa == UNMAPPED_GVA)
3617 		return -1;
3618 
3619 	/* For APIC access vmexit */
3620 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3621 		return 1;
3622 
3623 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3624 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3625 		return 1;
3626 	}
3627 
3628 	return 0;
3629 }
3630 
3631 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3632 			const void *val, int bytes)
3633 {
3634 	int ret;
3635 
3636 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3637 	if (ret < 0)
3638 		return 0;
3639 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3640 	return 1;
3641 }
3642 
3643 struct read_write_emulator_ops {
3644 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3645 				  int bytes);
3646 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3647 				  void *val, int bytes);
3648 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3649 			       int bytes, void *val);
3650 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3651 				    void *val, int bytes);
3652 	bool write;
3653 };
3654 
3655 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3656 {
3657 	if (vcpu->mmio_read_completed) {
3658 		memcpy(val, vcpu->mmio_data, bytes);
3659 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3660 			       vcpu->mmio_phys_addr, *(u64 *)val);
3661 		vcpu->mmio_read_completed = 0;
3662 		return 1;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3669 			void *val, int bytes)
3670 {
3671 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3672 }
3673 
3674 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3675 			 void *val, int bytes)
3676 {
3677 	return emulator_write_phys(vcpu, gpa, val, bytes);
3678 }
3679 
3680 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3681 {
3682 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3683 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
3684 }
3685 
3686 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3687 			  void *val, int bytes)
3688 {
3689 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3690 	return X86EMUL_IO_NEEDED;
3691 }
3692 
3693 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3694 			   void *val, int bytes)
3695 {
3696 	memcpy(vcpu->mmio_data, val, bytes);
3697 	memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3698 	return X86EMUL_CONTINUE;
3699 }
3700 
3701 static struct read_write_emulator_ops read_emultor = {
3702 	.read_write_prepare = read_prepare,
3703 	.read_write_emulate = read_emulate,
3704 	.read_write_mmio = vcpu_mmio_read,
3705 	.read_write_exit_mmio = read_exit_mmio,
3706 };
3707 
3708 static struct read_write_emulator_ops write_emultor = {
3709 	.read_write_emulate = write_emulate,
3710 	.read_write_mmio = write_mmio,
3711 	.read_write_exit_mmio = write_exit_mmio,
3712 	.write = true,
3713 };
3714 
3715 static int emulator_read_write_onepage(unsigned long addr, void *val,
3716 				       unsigned int bytes,
3717 				       struct x86_exception *exception,
3718 				       struct kvm_vcpu *vcpu,
3719 				       struct read_write_emulator_ops *ops)
3720 {
3721 	gpa_t gpa;
3722 	int handled, ret;
3723 	bool write = ops->write;
3724 
3725 	if (ops->read_write_prepare &&
3726 		  ops->read_write_prepare(vcpu, val, bytes))
3727 		return X86EMUL_CONTINUE;
3728 
3729 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3730 
3731 	if (ret < 0)
3732 		return X86EMUL_PROPAGATE_FAULT;
3733 
3734 	/* For APIC access vmexit */
3735 	if (ret)
3736 		goto mmio;
3737 
3738 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3739 		return X86EMUL_CONTINUE;
3740 
3741 mmio:
3742 	/*
3743 	 * Is this MMIO handled locally?
3744 	 */
3745 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3746 	if (handled == bytes)
3747 		return X86EMUL_CONTINUE;
3748 
3749 	gpa += handled;
3750 	bytes -= handled;
3751 	val += handled;
3752 
3753 	vcpu->mmio_needed = 1;
3754 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3755 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3756 	vcpu->mmio_size = bytes;
3757 	vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3758 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3759 	vcpu->mmio_index = 0;
3760 
3761 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3762 }
3763 
3764 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3765 			void *val, unsigned int bytes,
3766 			struct x86_exception *exception,
3767 			struct read_write_emulator_ops *ops)
3768 {
3769 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3770 
3771 	/* Crossing a page boundary? */
3772 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3773 		int rc, now;
3774 
3775 		now = -addr & ~PAGE_MASK;
3776 		rc = emulator_read_write_onepage(addr, val, now, exception,
3777 						 vcpu, ops);
3778 
3779 		if (rc != X86EMUL_CONTINUE)
3780 			return rc;
3781 		addr += now;
3782 		val += now;
3783 		bytes -= now;
3784 	}
3785 
3786 	return emulator_read_write_onepage(addr, val, bytes, exception,
3787 					   vcpu, ops);
3788 }
3789 
3790 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3791 				  unsigned long addr,
3792 				  void *val,
3793 				  unsigned int bytes,
3794 				  struct x86_exception *exception)
3795 {
3796 	return emulator_read_write(ctxt, addr, val, bytes,
3797 				   exception, &read_emultor);
3798 }
3799 
3800 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3801 			    unsigned long addr,
3802 			    const void *val,
3803 			    unsigned int bytes,
3804 			    struct x86_exception *exception)
3805 {
3806 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
3807 				   exception, &write_emultor);
3808 }
3809 
3810 #define CMPXCHG_TYPE(t, ptr, old, new) \
3811 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3812 
3813 #ifdef CONFIG_X86_64
3814 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3815 #else
3816 #  define CMPXCHG64(ptr, old, new) \
3817 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3818 #endif
3819 
3820 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3821 				     unsigned long addr,
3822 				     const void *old,
3823 				     const void *new,
3824 				     unsigned int bytes,
3825 				     struct x86_exception *exception)
3826 {
3827 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3828 	gpa_t gpa;
3829 	struct page *page;
3830 	char *kaddr;
3831 	bool exchanged;
3832 
3833 	/* guests cmpxchg8b have to be emulated atomically */
3834 	if (bytes > 8 || (bytes & (bytes - 1)))
3835 		goto emul_write;
3836 
3837 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3838 
3839 	if (gpa == UNMAPPED_GVA ||
3840 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3841 		goto emul_write;
3842 
3843 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3844 		goto emul_write;
3845 
3846 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3847 	if (is_error_page(page)) {
3848 		kvm_release_page_clean(page);
3849 		goto emul_write;
3850 	}
3851 
3852 	kaddr = kmap_atomic(page);
3853 	kaddr += offset_in_page(gpa);
3854 	switch (bytes) {
3855 	case 1:
3856 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3857 		break;
3858 	case 2:
3859 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3860 		break;
3861 	case 4:
3862 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3863 		break;
3864 	case 8:
3865 		exchanged = CMPXCHG64(kaddr, old, new);
3866 		break;
3867 	default:
3868 		BUG();
3869 	}
3870 	kunmap_atomic(kaddr);
3871 	kvm_release_page_dirty(page);
3872 
3873 	if (!exchanged)
3874 		return X86EMUL_CMPXCHG_FAILED;
3875 
3876 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3877 
3878 	return X86EMUL_CONTINUE;
3879 
3880 emul_write:
3881 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3882 
3883 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3884 }
3885 
3886 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3887 {
3888 	/* TODO: String I/O for in kernel device */
3889 	int r;
3890 
3891 	if (vcpu->arch.pio.in)
3892 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3893 				    vcpu->arch.pio.size, pd);
3894 	else
3895 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3896 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
3897 				     pd);
3898 	return r;
3899 }
3900 
3901 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3902 			       unsigned short port, void *val,
3903 			       unsigned int count, bool in)
3904 {
3905 	trace_kvm_pio(!in, port, size, count);
3906 
3907 	vcpu->arch.pio.port = port;
3908 	vcpu->arch.pio.in = in;
3909 	vcpu->arch.pio.count  = count;
3910 	vcpu->arch.pio.size = size;
3911 
3912 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3913 		vcpu->arch.pio.count = 0;
3914 		return 1;
3915 	}
3916 
3917 	vcpu->run->exit_reason = KVM_EXIT_IO;
3918 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3919 	vcpu->run->io.size = size;
3920 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3921 	vcpu->run->io.count = count;
3922 	vcpu->run->io.port = port;
3923 
3924 	return 0;
3925 }
3926 
3927 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3928 				    int size, unsigned short port, void *val,
3929 				    unsigned int count)
3930 {
3931 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3932 	int ret;
3933 
3934 	if (vcpu->arch.pio.count)
3935 		goto data_avail;
3936 
3937 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3938 	if (ret) {
3939 data_avail:
3940 		memcpy(val, vcpu->arch.pio_data, size * count);
3941 		vcpu->arch.pio.count = 0;
3942 		return 1;
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3949 				     int size, unsigned short port,
3950 				     const void *val, unsigned int count)
3951 {
3952 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3953 
3954 	memcpy(vcpu->arch.pio_data, val, size * count);
3955 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3956 }
3957 
3958 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3959 {
3960 	return kvm_x86_ops->get_segment_base(vcpu, seg);
3961 }
3962 
3963 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
3964 {
3965 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
3966 }
3967 
3968 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3969 {
3970 	if (!need_emulate_wbinvd(vcpu))
3971 		return X86EMUL_CONTINUE;
3972 
3973 	if (kvm_x86_ops->has_wbinvd_exit()) {
3974 		int cpu = get_cpu();
3975 
3976 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3977 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3978 				wbinvd_ipi, NULL, 1);
3979 		put_cpu();
3980 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3981 	} else
3982 		wbinvd();
3983 	return X86EMUL_CONTINUE;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3986 
3987 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
3988 {
3989 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
3990 }
3991 
3992 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3993 {
3994 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
3995 }
3996 
3997 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3998 {
3999 
4000 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4001 }
4002 
4003 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4004 {
4005 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4006 }
4007 
4008 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4009 {
4010 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4011 	unsigned long value;
4012 
4013 	switch (cr) {
4014 	case 0:
4015 		value = kvm_read_cr0(vcpu);
4016 		break;
4017 	case 2:
4018 		value = vcpu->arch.cr2;
4019 		break;
4020 	case 3:
4021 		value = kvm_read_cr3(vcpu);
4022 		break;
4023 	case 4:
4024 		value = kvm_read_cr4(vcpu);
4025 		break;
4026 	case 8:
4027 		value = kvm_get_cr8(vcpu);
4028 		break;
4029 	default:
4030 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4031 		return 0;
4032 	}
4033 
4034 	return value;
4035 }
4036 
4037 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4038 {
4039 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4040 	int res = 0;
4041 
4042 	switch (cr) {
4043 	case 0:
4044 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4045 		break;
4046 	case 2:
4047 		vcpu->arch.cr2 = val;
4048 		break;
4049 	case 3:
4050 		res = kvm_set_cr3(vcpu, val);
4051 		break;
4052 	case 4:
4053 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4054 		break;
4055 	case 8:
4056 		res = kvm_set_cr8(vcpu, val);
4057 		break;
4058 	default:
4059 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4060 		res = -1;
4061 	}
4062 
4063 	return res;
4064 }
4065 
4066 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4067 {
4068 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4069 }
4070 
4071 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4072 {
4073 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4074 }
4075 
4076 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4077 {
4078 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4079 }
4080 
4081 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4082 {
4083 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4084 }
4085 
4086 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4087 {
4088 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4089 }
4090 
4091 static unsigned long emulator_get_cached_segment_base(
4092 	struct x86_emulate_ctxt *ctxt, int seg)
4093 {
4094 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4095 }
4096 
4097 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4098 				 struct desc_struct *desc, u32 *base3,
4099 				 int seg)
4100 {
4101 	struct kvm_segment var;
4102 
4103 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4104 	*selector = var.selector;
4105 
4106 	if (var.unusable)
4107 		return false;
4108 
4109 	if (var.g)
4110 		var.limit >>= 12;
4111 	set_desc_limit(desc, var.limit);
4112 	set_desc_base(desc, (unsigned long)var.base);
4113 #ifdef CONFIG_X86_64
4114 	if (base3)
4115 		*base3 = var.base >> 32;
4116 #endif
4117 	desc->type = var.type;
4118 	desc->s = var.s;
4119 	desc->dpl = var.dpl;
4120 	desc->p = var.present;
4121 	desc->avl = var.avl;
4122 	desc->l = var.l;
4123 	desc->d = var.db;
4124 	desc->g = var.g;
4125 
4126 	return true;
4127 }
4128 
4129 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4130 				 struct desc_struct *desc, u32 base3,
4131 				 int seg)
4132 {
4133 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4134 	struct kvm_segment var;
4135 
4136 	var.selector = selector;
4137 	var.base = get_desc_base(desc);
4138 #ifdef CONFIG_X86_64
4139 	var.base |= ((u64)base3) << 32;
4140 #endif
4141 	var.limit = get_desc_limit(desc);
4142 	if (desc->g)
4143 		var.limit = (var.limit << 12) | 0xfff;
4144 	var.type = desc->type;
4145 	var.present = desc->p;
4146 	var.dpl = desc->dpl;
4147 	var.db = desc->d;
4148 	var.s = desc->s;
4149 	var.l = desc->l;
4150 	var.g = desc->g;
4151 	var.avl = desc->avl;
4152 	var.present = desc->p;
4153 	var.unusable = !var.present;
4154 	var.padding = 0;
4155 
4156 	kvm_set_segment(vcpu, &var, seg);
4157 	return;
4158 }
4159 
4160 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4161 			    u32 msr_index, u64 *pdata)
4162 {
4163 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4164 }
4165 
4166 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4167 			    u32 msr_index, u64 data)
4168 {
4169 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4170 }
4171 
4172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4173 			     u32 pmc, u64 *pdata)
4174 {
4175 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4176 }
4177 
4178 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4179 {
4180 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4181 }
4182 
4183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4184 {
4185 	preempt_disable();
4186 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4187 	/*
4188 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4189 	 * so it may be clear at this point.
4190 	 */
4191 	clts();
4192 }
4193 
4194 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4195 {
4196 	preempt_enable();
4197 }
4198 
4199 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4200 			      struct x86_instruction_info *info,
4201 			      enum x86_intercept_stage stage)
4202 {
4203 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4204 }
4205 
4206 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4207 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4208 {
4209 	struct kvm_cpuid_entry2 *cpuid = NULL;
4210 
4211 	if (eax && ecx)
4212 		cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4213 					    *eax, *ecx);
4214 
4215 	if (cpuid) {
4216 		*eax = cpuid->eax;
4217 		*ecx = cpuid->ecx;
4218 		if (ebx)
4219 			*ebx = cpuid->ebx;
4220 		if (edx)
4221 			*edx = cpuid->edx;
4222 		return true;
4223 	}
4224 
4225 	return false;
4226 }
4227 
4228 static struct x86_emulate_ops emulate_ops = {
4229 	.read_std            = kvm_read_guest_virt_system,
4230 	.write_std           = kvm_write_guest_virt_system,
4231 	.fetch               = kvm_fetch_guest_virt,
4232 	.read_emulated       = emulator_read_emulated,
4233 	.write_emulated      = emulator_write_emulated,
4234 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4235 	.invlpg              = emulator_invlpg,
4236 	.pio_in_emulated     = emulator_pio_in_emulated,
4237 	.pio_out_emulated    = emulator_pio_out_emulated,
4238 	.get_segment         = emulator_get_segment,
4239 	.set_segment         = emulator_set_segment,
4240 	.get_cached_segment_base = emulator_get_cached_segment_base,
4241 	.get_gdt             = emulator_get_gdt,
4242 	.get_idt	     = emulator_get_idt,
4243 	.set_gdt             = emulator_set_gdt,
4244 	.set_idt	     = emulator_set_idt,
4245 	.get_cr              = emulator_get_cr,
4246 	.set_cr              = emulator_set_cr,
4247 	.cpl                 = emulator_get_cpl,
4248 	.get_dr              = emulator_get_dr,
4249 	.set_dr              = emulator_set_dr,
4250 	.set_msr             = emulator_set_msr,
4251 	.get_msr             = emulator_get_msr,
4252 	.read_pmc            = emulator_read_pmc,
4253 	.halt                = emulator_halt,
4254 	.wbinvd              = emulator_wbinvd,
4255 	.fix_hypercall       = emulator_fix_hypercall,
4256 	.get_fpu             = emulator_get_fpu,
4257 	.put_fpu             = emulator_put_fpu,
4258 	.intercept           = emulator_intercept,
4259 	.get_cpuid           = emulator_get_cpuid,
4260 };
4261 
4262 static void cache_all_regs(struct kvm_vcpu *vcpu)
4263 {
4264 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4265 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4266 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4267 	vcpu->arch.regs_dirty = ~0;
4268 }
4269 
4270 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4271 {
4272 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4273 	/*
4274 	 * an sti; sti; sequence only disable interrupts for the first
4275 	 * instruction. So, if the last instruction, be it emulated or
4276 	 * not, left the system with the INT_STI flag enabled, it
4277 	 * means that the last instruction is an sti. We should not
4278 	 * leave the flag on in this case. The same goes for mov ss
4279 	 */
4280 	if (!(int_shadow & mask))
4281 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4282 }
4283 
4284 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4285 {
4286 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4287 	if (ctxt->exception.vector == PF_VECTOR)
4288 		kvm_propagate_fault(vcpu, &ctxt->exception);
4289 	else if (ctxt->exception.error_code_valid)
4290 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4291 				      ctxt->exception.error_code);
4292 	else
4293 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4294 }
4295 
4296 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4297 			      const unsigned long *regs)
4298 {
4299 	memset(&ctxt->twobyte, 0,
4300 	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4301 	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4302 
4303 	ctxt->fetch.start = 0;
4304 	ctxt->fetch.end = 0;
4305 	ctxt->io_read.pos = 0;
4306 	ctxt->io_read.end = 0;
4307 	ctxt->mem_read.pos = 0;
4308 	ctxt->mem_read.end = 0;
4309 }
4310 
4311 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4312 {
4313 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4314 	int cs_db, cs_l;
4315 
4316 	/*
4317 	 * TODO: fix emulate.c to use guest_read/write_register
4318 	 * instead of direct ->regs accesses, can save hundred cycles
4319 	 * on Intel for instructions that don't read/change RSP, for
4320 	 * for example.
4321 	 */
4322 	cache_all_regs(vcpu);
4323 
4324 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4325 
4326 	ctxt->eflags = kvm_get_rflags(vcpu);
4327 	ctxt->eip = kvm_rip_read(vcpu);
4328 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4329 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4330 		     cs_l				? X86EMUL_MODE_PROT64 :
4331 		     cs_db				? X86EMUL_MODE_PROT32 :
4332 							  X86EMUL_MODE_PROT16;
4333 	ctxt->guest_mode = is_guest_mode(vcpu);
4334 
4335 	init_decode_cache(ctxt, vcpu->arch.regs);
4336 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4337 }
4338 
4339 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4340 {
4341 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4342 	int ret;
4343 
4344 	init_emulate_ctxt(vcpu);
4345 
4346 	ctxt->op_bytes = 2;
4347 	ctxt->ad_bytes = 2;
4348 	ctxt->_eip = ctxt->eip + inc_eip;
4349 	ret = emulate_int_real(ctxt, irq);
4350 
4351 	if (ret != X86EMUL_CONTINUE)
4352 		return EMULATE_FAIL;
4353 
4354 	ctxt->eip = ctxt->_eip;
4355 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4356 	kvm_rip_write(vcpu, ctxt->eip);
4357 	kvm_set_rflags(vcpu, ctxt->eflags);
4358 
4359 	if (irq == NMI_VECTOR)
4360 		vcpu->arch.nmi_pending = 0;
4361 	else
4362 		vcpu->arch.interrupt.pending = false;
4363 
4364 	return EMULATE_DONE;
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4367 
4368 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4369 {
4370 	int r = EMULATE_DONE;
4371 
4372 	++vcpu->stat.insn_emulation_fail;
4373 	trace_kvm_emulate_insn_failed(vcpu);
4374 	if (!is_guest_mode(vcpu)) {
4375 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4376 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4377 		vcpu->run->internal.ndata = 0;
4378 		r = EMULATE_FAIL;
4379 	}
4380 	kvm_queue_exception(vcpu, UD_VECTOR);
4381 
4382 	return r;
4383 }
4384 
4385 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4386 {
4387 	gpa_t gpa;
4388 
4389 	if (tdp_enabled)
4390 		return false;
4391 
4392 	/*
4393 	 * if emulation was due to access to shadowed page table
4394 	 * and it failed try to unshadow page and re-entetr the
4395 	 * guest to let CPU execute the instruction.
4396 	 */
4397 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4398 		return true;
4399 
4400 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4401 
4402 	if (gpa == UNMAPPED_GVA)
4403 		return true; /* let cpu generate fault */
4404 
4405 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4406 		return true;
4407 
4408 	return false;
4409 }
4410 
4411 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4412 			      unsigned long cr2,  int emulation_type)
4413 {
4414 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4415 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4416 
4417 	last_retry_eip = vcpu->arch.last_retry_eip;
4418 	last_retry_addr = vcpu->arch.last_retry_addr;
4419 
4420 	/*
4421 	 * If the emulation is caused by #PF and it is non-page_table
4422 	 * writing instruction, it means the VM-EXIT is caused by shadow
4423 	 * page protected, we can zap the shadow page and retry this
4424 	 * instruction directly.
4425 	 *
4426 	 * Note: if the guest uses a non-page-table modifying instruction
4427 	 * on the PDE that points to the instruction, then we will unmap
4428 	 * the instruction and go to an infinite loop. So, we cache the
4429 	 * last retried eip and the last fault address, if we meet the eip
4430 	 * and the address again, we can break out of the potential infinite
4431 	 * loop.
4432 	 */
4433 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4434 
4435 	if (!(emulation_type & EMULTYPE_RETRY))
4436 		return false;
4437 
4438 	if (x86_page_table_writing_insn(ctxt))
4439 		return false;
4440 
4441 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4442 		return false;
4443 
4444 	vcpu->arch.last_retry_eip = ctxt->eip;
4445 	vcpu->arch.last_retry_addr = cr2;
4446 
4447 	if (!vcpu->arch.mmu.direct_map)
4448 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4449 
4450 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4451 
4452 	return true;
4453 }
4454 
4455 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4456 			    unsigned long cr2,
4457 			    int emulation_type,
4458 			    void *insn,
4459 			    int insn_len)
4460 {
4461 	int r;
4462 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4463 	bool writeback = true;
4464 
4465 	kvm_clear_exception_queue(vcpu);
4466 
4467 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4468 		init_emulate_ctxt(vcpu);
4469 		ctxt->interruptibility = 0;
4470 		ctxt->have_exception = false;
4471 		ctxt->perm_ok = false;
4472 
4473 		ctxt->only_vendor_specific_insn
4474 			= emulation_type & EMULTYPE_TRAP_UD;
4475 
4476 		r = x86_decode_insn(ctxt, insn, insn_len);
4477 
4478 		trace_kvm_emulate_insn_start(vcpu);
4479 		++vcpu->stat.insn_emulation;
4480 		if (r != EMULATION_OK)  {
4481 			if (emulation_type & EMULTYPE_TRAP_UD)
4482 				return EMULATE_FAIL;
4483 			if (reexecute_instruction(vcpu, cr2))
4484 				return EMULATE_DONE;
4485 			if (emulation_type & EMULTYPE_SKIP)
4486 				return EMULATE_FAIL;
4487 			return handle_emulation_failure(vcpu);
4488 		}
4489 	}
4490 
4491 	if (emulation_type & EMULTYPE_SKIP) {
4492 		kvm_rip_write(vcpu, ctxt->_eip);
4493 		return EMULATE_DONE;
4494 	}
4495 
4496 	if (retry_instruction(ctxt, cr2, emulation_type))
4497 		return EMULATE_DONE;
4498 
4499 	/* this is needed for vmware backdoor interface to work since it
4500 	   changes registers values  during IO operation */
4501 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4502 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4503 		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4504 	}
4505 
4506 restart:
4507 	r = x86_emulate_insn(ctxt);
4508 
4509 	if (r == EMULATION_INTERCEPTED)
4510 		return EMULATE_DONE;
4511 
4512 	if (r == EMULATION_FAILED) {
4513 		if (reexecute_instruction(vcpu, cr2))
4514 			return EMULATE_DONE;
4515 
4516 		return handle_emulation_failure(vcpu);
4517 	}
4518 
4519 	if (ctxt->have_exception) {
4520 		inject_emulated_exception(vcpu);
4521 		r = EMULATE_DONE;
4522 	} else if (vcpu->arch.pio.count) {
4523 		if (!vcpu->arch.pio.in)
4524 			vcpu->arch.pio.count = 0;
4525 		else
4526 			writeback = false;
4527 		r = EMULATE_DO_MMIO;
4528 	} else if (vcpu->mmio_needed) {
4529 		if (!vcpu->mmio_is_write)
4530 			writeback = false;
4531 		r = EMULATE_DO_MMIO;
4532 	} else if (r == EMULATION_RESTART)
4533 		goto restart;
4534 	else
4535 		r = EMULATE_DONE;
4536 
4537 	if (writeback) {
4538 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4539 		kvm_set_rflags(vcpu, ctxt->eflags);
4540 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4541 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4542 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4543 		kvm_rip_write(vcpu, ctxt->eip);
4544 	} else
4545 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4546 
4547 	return r;
4548 }
4549 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4550 
4551 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4552 {
4553 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4554 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4555 					    size, port, &val, 1);
4556 	/* do not return to emulator after return from userspace */
4557 	vcpu->arch.pio.count = 0;
4558 	return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4561 
4562 static void tsc_bad(void *info)
4563 {
4564 	__this_cpu_write(cpu_tsc_khz, 0);
4565 }
4566 
4567 static void tsc_khz_changed(void *data)
4568 {
4569 	struct cpufreq_freqs *freq = data;
4570 	unsigned long khz = 0;
4571 
4572 	if (data)
4573 		khz = freq->new;
4574 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4575 		khz = cpufreq_quick_get(raw_smp_processor_id());
4576 	if (!khz)
4577 		khz = tsc_khz;
4578 	__this_cpu_write(cpu_tsc_khz, khz);
4579 }
4580 
4581 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4582 				     void *data)
4583 {
4584 	struct cpufreq_freqs *freq = data;
4585 	struct kvm *kvm;
4586 	struct kvm_vcpu *vcpu;
4587 	int i, send_ipi = 0;
4588 
4589 	/*
4590 	 * We allow guests to temporarily run on slowing clocks,
4591 	 * provided we notify them after, or to run on accelerating
4592 	 * clocks, provided we notify them before.  Thus time never
4593 	 * goes backwards.
4594 	 *
4595 	 * However, we have a problem.  We can't atomically update
4596 	 * the frequency of a given CPU from this function; it is
4597 	 * merely a notifier, which can be called from any CPU.
4598 	 * Changing the TSC frequency at arbitrary points in time
4599 	 * requires a recomputation of local variables related to
4600 	 * the TSC for each VCPU.  We must flag these local variables
4601 	 * to be updated and be sure the update takes place with the
4602 	 * new frequency before any guests proceed.
4603 	 *
4604 	 * Unfortunately, the combination of hotplug CPU and frequency
4605 	 * change creates an intractable locking scenario; the order
4606 	 * of when these callouts happen is undefined with respect to
4607 	 * CPU hotplug, and they can race with each other.  As such,
4608 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4609 	 * undefined; you can actually have a CPU frequency change take
4610 	 * place in between the computation of X and the setting of the
4611 	 * variable.  To protect against this problem, all updates of
4612 	 * the per_cpu tsc_khz variable are done in an interrupt
4613 	 * protected IPI, and all callers wishing to update the value
4614 	 * must wait for a synchronous IPI to complete (which is trivial
4615 	 * if the caller is on the CPU already).  This establishes the
4616 	 * necessary total order on variable updates.
4617 	 *
4618 	 * Note that because a guest time update may take place
4619 	 * anytime after the setting of the VCPU's request bit, the
4620 	 * correct TSC value must be set before the request.  However,
4621 	 * to ensure the update actually makes it to any guest which
4622 	 * starts running in hardware virtualization between the set
4623 	 * and the acquisition of the spinlock, we must also ping the
4624 	 * CPU after setting the request bit.
4625 	 *
4626 	 */
4627 
4628 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4629 		return 0;
4630 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4631 		return 0;
4632 
4633 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4634 
4635 	raw_spin_lock(&kvm_lock);
4636 	list_for_each_entry(kvm, &vm_list, vm_list) {
4637 		kvm_for_each_vcpu(i, vcpu, kvm) {
4638 			if (vcpu->cpu != freq->cpu)
4639 				continue;
4640 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4641 			if (vcpu->cpu != smp_processor_id())
4642 				send_ipi = 1;
4643 		}
4644 	}
4645 	raw_spin_unlock(&kvm_lock);
4646 
4647 	if (freq->old < freq->new && send_ipi) {
4648 		/*
4649 		 * We upscale the frequency.  Must make the guest
4650 		 * doesn't see old kvmclock values while running with
4651 		 * the new frequency, otherwise we risk the guest sees
4652 		 * time go backwards.
4653 		 *
4654 		 * In case we update the frequency for another cpu
4655 		 * (which might be in guest context) send an interrupt
4656 		 * to kick the cpu out of guest context.  Next time
4657 		 * guest context is entered kvmclock will be updated,
4658 		 * so the guest will not see stale values.
4659 		 */
4660 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4661 	}
4662 	return 0;
4663 }
4664 
4665 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4666 	.notifier_call  = kvmclock_cpufreq_notifier
4667 };
4668 
4669 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4670 					unsigned long action, void *hcpu)
4671 {
4672 	unsigned int cpu = (unsigned long)hcpu;
4673 
4674 	switch (action) {
4675 		case CPU_ONLINE:
4676 		case CPU_DOWN_FAILED:
4677 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4678 			break;
4679 		case CPU_DOWN_PREPARE:
4680 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4681 			break;
4682 	}
4683 	return NOTIFY_OK;
4684 }
4685 
4686 static struct notifier_block kvmclock_cpu_notifier_block = {
4687 	.notifier_call  = kvmclock_cpu_notifier,
4688 	.priority = -INT_MAX
4689 };
4690 
4691 static void kvm_timer_init(void)
4692 {
4693 	int cpu;
4694 
4695 	max_tsc_khz = tsc_khz;
4696 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4697 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4698 #ifdef CONFIG_CPU_FREQ
4699 		struct cpufreq_policy policy;
4700 		memset(&policy, 0, sizeof(policy));
4701 		cpu = get_cpu();
4702 		cpufreq_get_policy(&policy, cpu);
4703 		if (policy.cpuinfo.max_freq)
4704 			max_tsc_khz = policy.cpuinfo.max_freq;
4705 		put_cpu();
4706 #endif
4707 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4708 					  CPUFREQ_TRANSITION_NOTIFIER);
4709 	}
4710 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4711 	for_each_online_cpu(cpu)
4712 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4713 }
4714 
4715 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4716 
4717 int kvm_is_in_guest(void)
4718 {
4719 	return __this_cpu_read(current_vcpu) != NULL;
4720 }
4721 
4722 static int kvm_is_user_mode(void)
4723 {
4724 	int user_mode = 3;
4725 
4726 	if (__this_cpu_read(current_vcpu))
4727 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4728 
4729 	return user_mode != 0;
4730 }
4731 
4732 static unsigned long kvm_get_guest_ip(void)
4733 {
4734 	unsigned long ip = 0;
4735 
4736 	if (__this_cpu_read(current_vcpu))
4737 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4738 
4739 	return ip;
4740 }
4741 
4742 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4743 	.is_in_guest		= kvm_is_in_guest,
4744 	.is_user_mode		= kvm_is_user_mode,
4745 	.get_guest_ip		= kvm_get_guest_ip,
4746 };
4747 
4748 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4749 {
4750 	__this_cpu_write(current_vcpu, vcpu);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4753 
4754 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4755 {
4756 	__this_cpu_write(current_vcpu, NULL);
4757 }
4758 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4759 
4760 static void kvm_set_mmio_spte_mask(void)
4761 {
4762 	u64 mask;
4763 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
4764 
4765 	/*
4766 	 * Set the reserved bits and the present bit of an paging-structure
4767 	 * entry to generate page fault with PFER.RSV = 1.
4768 	 */
4769 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4770 	mask |= 1ull;
4771 
4772 #ifdef CONFIG_X86_64
4773 	/*
4774 	 * If reserved bit is not supported, clear the present bit to disable
4775 	 * mmio page fault.
4776 	 */
4777 	if (maxphyaddr == 52)
4778 		mask &= ~1ull;
4779 #endif
4780 
4781 	kvm_mmu_set_mmio_spte_mask(mask);
4782 }
4783 
4784 int kvm_arch_init(void *opaque)
4785 {
4786 	int r;
4787 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4788 
4789 	if (kvm_x86_ops) {
4790 		printk(KERN_ERR "kvm: already loaded the other module\n");
4791 		r = -EEXIST;
4792 		goto out;
4793 	}
4794 
4795 	if (!ops->cpu_has_kvm_support()) {
4796 		printk(KERN_ERR "kvm: no hardware support\n");
4797 		r = -EOPNOTSUPP;
4798 		goto out;
4799 	}
4800 	if (ops->disabled_by_bios()) {
4801 		printk(KERN_ERR "kvm: disabled by bios\n");
4802 		r = -EOPNOTSUPP;
4803 		goto out;
4804 	}
4805 
4806 	r = kvm_mmu_module_init();
4807 	if (r)
4808 		goto out;
4809 
4810 	kvm_set_mmio_spte_mask();
4811 	kvm_init_msr_list();
4812 
4813 	kvm_x86_ops = ops;
4814 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4815 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4816 
4817 	kvm_timer_init();
4818 
4819 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4820 
4821 	if (cpu_has_xsave)
4822 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4823 
4824 	return 0;
4825 
4826 out:
4827 	return r;
4828 }
4829 
4830 void kvm_arch_exit(void)
4831 {
4832 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4833 
4834 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4835 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4836 					    CPUFREQ_TRANSITION_NOTIFIER);
4837 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4838 	kvm_x86_ops = NULL;
4839 	kvm_mmu_module_exit();
4840 }
4841 
4842 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4843 {
4844 	++vcpu->stat.halt_exits;
4845 	if (irqchip_in_kernel(vcpu->kvm)) {
4846 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4847 		return 1;
4848 	} else {
4849 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4850 		return 0;
4851 	}
4852 }
4853 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4854 
4855 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4856 {
4857 	u64 param, ingpa, outgpa, ret;
4858 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4859 	bool fast, longmode;
4860 	int cs_db, cs_l;
4861 
4862 	/*
4863 	 * hypercall generates UD from non zero cpl and real mode
4864 	 * per HYPER-V spec
4865 	 */
4866 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4867 		kvm_queue_exception(vcpu, UD_VECTOR);
4868 		return 0;
4869 	}
4870 
4871 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4872 	longmode = is_long_mode(vcpu) && cs_l == 1;
4873 
4874 	if (!longmode) {
4875 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4876 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4877 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4878 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4879 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4880 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4881 	}
4882 #ifdef CONFIG_X86_64
4883 	else {
4884 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4885 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4886 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4887 	}
4888 #endif
4889 
4890 	code = param & 0xffff;
4891 	fast = (param >> 16) & 0x1;
4892 	rep_cnt = (param >> 32) & 0xfff;
4893 	rep_idx = (param >> 48) & 0xfff;
4894 
4895 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4896 
4897 	switch (code) {
4898 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4899 		kvm_vcpu_on_spin(vcpu);
4900 		break;
4901 	default:
4902 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
4903 		break;
4904 	}
4905 
4906 	ret = res | (((u64)rep_done & 0xfff) << 32);
4907 	if (longmode) {
4908 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4909 	} else {
4910 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4911 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4912 	}
4913 
4914 	return 1;
4915 }
4916 
4917 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4918 {
4919 	unsigned long nr, a0, a1, a2, a3, ret;
4920 	int r = 1;
4921 
4922 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
4923 		return kvm_hv_hypercall(vcpu);
4924 
4925 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4926 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4927 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4928 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4929 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4930 
4931 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
4932 
4933 	if (!is_long_mode(vcpu)) {
4934 		nr &= 0xFFFFFFFF;
4935 		a0 &= 0xFFFFFFFF;
4936 		a1 &= 0xFFFFFFFF;
4937 		a2 &= 0xFFFFFFFF;
4938 		a3 &= 0xFFFFFFFF;
4939 	}
4940 
4941 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4942 		ret = -KVM_EPERM;
4943 		goto out;
4944 	}
4945 
4946 	switch (nr) {
4947 	case KVM_HC_VAPIC_POLL_IRQ:
4948 		ret = 0;
4949 		break;
4950 	default:
4951 		ret = -KVM_ENOSYS;
4952 		break;
4953 	}
4954 out:
4955 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4956 	++vcpu->stat.hypercalls;
4957 	return r;
4958 }
4959 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4960 
4961 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4962 {
4963 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4964 	char instruction[3];
4965 	unsigned long rip = kvm_rip_read(vcpu);
4966 
4967 	/*
4968 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
4969 	 * to ensure that the updated hypercall appears atomically across all
4970 	 * VCPUs.
4971 	 */
4972 	kvm_mmu_zap_all(vcpu->kvm);
4973 
4974 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
4975 
4976 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
4977 }
4978 
4979 /*
4980  * Check if userspace requested an interrupt window, and that the
4981  * interrupt window is open.
4982  *
4983  * No need to exit to userspace if we already have an interrupt queued.
4984  */
4985 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4986 {
4987 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4988 		vcpu->run->request_interrupt_window &&
4989 		kvm_arch_interrupt_allowed(vcpu));
4990 }
4991 
4992 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4993 {
4994 	struct kvm_run *kvm_run = vcpu->run;
4995 
4996 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4997 	kvm_run->cr8 = kvm_get_cr8(vcpu);
4998 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
4999 	if (irqchip_in_kernel(vcpu->kvm))
5000 		kvm_run->ready_for_interrupt_injection = 1;
5001 	else
5002 		kvm_run->ready_for_interrupt_injection =
5003 			kvm_arch_interrupt_allowed(vcpu) &&
5004 			!kvm_cpu_has_interrupt(vcpu) &&
5005 			!kvm_event_needs_reinjection(vcpu);
5006 }
5007 
5008 static void vapic_enter(struct kvm_vcpu *vcpu)
5009 {
5010 	struct kvm_lapic *apic = vcpu->arch.apic;
5011 	struct page *page;
5012 
5013 	if (!apic || !apic->vapic_addr)
5014 		return;
5015 
5016 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5017 
5018 	vcpu->arch.apic->vapic_page = page;
5019 }
5020 
5021 static void vapic_exit(struct kvm_vcpu *vcpu)
5022 {
5023 	struct kvm_lapic *apic = vcpu->arch.apic;
5024 	int idx;
5025 
5026 	if (!apic || !apic->vapic_addr)
5027 		return;
5028 
5029 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5030 	kvm_release_page_dirty(apic->vapic_page);
5031 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5032 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5033 }
5034 
5035 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5036 {
5037 	int max_irr, tpr;
5038 
5039 	if (!kvm_x86_ops->update_cr8_intercept)
5040 		return;
5041 
5042 	if (!vcpu->arch.apic)
5043 		return;
5044 
5045 	if (!vcpu->arch.apic->vapic_addr)
5046 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5047 	else
5048 		max_irr = -1;
5049 
5050 	if (max_irr != -1)
5051 		max_irr >>= 4;
5052 
5053 	tpr = kvm_lapic_get_cr8(vcpu);
5054 
5055 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5056 }
5057 
5058 static void inject_pending_event(struct kvm_vcpu *vcpu)
5059 {
5060 	/* try to reinject previous events if any */
5061 	if (vcpu->arch.exception.pending) {
5062 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5063 					vcpu->arch.exception.has_error_code,
5064 					vcpu->arch.exception.error_code);
5065 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5066 					  vcpu->arch.exception.has_error_code,
5067 					  vcpu->arch.exception.error_code,
5068 					  vcpu->arch.exception.reinject);
5069 		return;
5070 	}
5071 
5072 	if (vcpu->arch.nmi_injected) {
5073 		kvm_x86_ops->set_nmi(vcpu);
5074 		return;
5075 	}
5076 
5077 	if (vcpu->arch.interrupt.pending) {
5078 		kvm_x86_ops->set_irq(vcpu);
5079 		return;
5080 	}
5081 
5082 	/* try to inject new event if pending */
5083 	if (vcpu->arch.nmi_pending) {
5084 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5085 			--vcpu->arch.nmi_pending;
5086 			vcpu->arch.nmi_injected = true;
5087 			kvm_x86_ops->set_nmi(vcpu);
5088 		}
5089 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5090 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5091 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5092 					    false);
5093 			kvm_x86_ops->set_irq(vcpu);
5094 		}
5095 	}
5096 }
5097 
5098 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5099 {
5100 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5101 			!vcpu->guest_xcr0_loaded) {
5102 		/* kvm_set_xcr() also depends on this */
5103 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5104 		vcpu->guest_xcr0_loaded = 1;
5105 	}
5106 }
5107 
5108 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5109 {
5110 	if (vcpu->guest_xcr0_loaded) {
5111 		if (vcpu->arch.xcr0 != host_xcr0)
5112 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5113 		vcpu->guest_xcr0_loaded = 0;
5114 	}
5115 }
5116 
5117 static void process_nmi(struct kvm_vcpu *vcpu)
5118 {
5119 	unsigned limit = 2;
5120 
5121 	/*
5122 	 * x86 is limited to one NMI running, and one NMI pending after it.
5123 	 * If an NMI is already in progress, limit further NMIs to just one.
5124 	 * Otherwise, allow two (and we'll inject the first one immediately).
5125 	 */
5126 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5127 		limit = 1;
5128 
5129 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5130 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5131 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5132 }
5133 
5134 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5135 {
5136 	int r;
5137 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5138 		vcpu->run->request_interrupt_window;
5139 	bool req_immediate_exit = 0;
5140 
5141 	if (vcpu->requests) {
5142 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5143 			kvm_mmu_unload(vcpu);
5144 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5145 			__kvm_migrate_timers(vcpu);
5146 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5147 			r = kvm_guest_time_update(vcpu);
5148 			if (unlikely(r))
5149 				goto out;
5150 		}
5151 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5152 			kvm_mmu_sync_roots(vcpu);
5153 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5154 			kvm_x86_ops->tlb_flush(vcpu);
5155 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5156 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5157 			r = 0;
5158 			goto out;
5159 		}
5160 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5161 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5162 			r = 0;
5163 			goto out;
5164 		}
5165 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5166 			vcpu->fpu_active = 0;
5167 			kvm_x86_ops->fpu_deactivate(vcpu);
5168 		}
5169 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5170 			/* Page is swapped out. Do synthetic halt */
5171 			vcpu->arch.apf.halted = true;
5172 			r = 1;
5173 			goto out;
5174 		}
5175 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5176 			record_steal_time(vcpu);
5177 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5178 			process_nmi(vcpu);
5179 		req_immediate_exit =
5180 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5181 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5182 			kvm_handle_pmu_event(vcpu);
5183 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5184 			kvm_deliver_pmi(vcpu);
5185 	}
5186 
5187 	r = kvm_mmu_reload(vcpu);
5188 	if (unlikely(r))
5189 		goto out;
5190 
5191 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5192 		inject_pending_event(vcpu);
5193 
5194 		/* enable NMI/IRQ window open exits if needed */
5195 		if (vcpu->arch.nmi_pending)
5196 			kvm_x86_ops->enable_nmi_window(vcpu);
5197 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5198 			kvm_x86_ops->enable_irq_window(vcpu);
5199 
5200 		if (kvm_lapic_enabled(vcpu)) {
5201 			update_cr8_intercept(vcpu);
5202 			kvm_lapic_sync_to_vapic(vcpu);
5203 		}
5204 	}
5205 
5206 	preempt_disable();
5207 
5208 	kvm_x86_ops->prepare_guest_switch(vcpu);
5209 	if (vcpu->fpu_active)
5210 		kvm_load_guest_fpu(vcpu);
5211 	kvm_load_guest_xcr0(vcpu);
5212 
5213 	vcpu->mode = IN_GUEST_MODE;
5214 
5215 	/* We should set ->mode before check ->requests,
5216 	 * see the comment in make_all_cpus_request.
5217 	 */
5218 	smp_mb();
5219 
5220 	local_irq_disable();
5221 
5222 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5223 	    || need_resched() || signal_pending(current)) {
5224 		vcpu->mode = OUTSIDE_GUEST_MODE;
5225 		smp_wmb();
5226 		local_irq_enable();
5227 		preempt_enable();
5228 		kvm_x86_ops->cancel_injection(vcpu);
5229 		r = 1;
5230 		goto out;
5231 	}
5232 
5233 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5234 
5235 	if (req_immediate_exit)
5236 		smp_send_reschedule(vcpu->cpu);
5237 
5238 	kvm_guest_enter();
5239 
5240 	if (unlikely(vcpu->arch.switch_db_regs)) {
5241 		set_debugreg(0, 7);
5242 		set_debugreg(vcpu->arch.eff_db[0], 0);
5243 		set_debugreg(vcpu->arch.eff_db[1], 1);
5244 		set_debugreg(vcpu->arch.eff_db[2], 2);
5245 		set_debugreg(vcpu->arch.eff_db[3], 3);
5246 	}
5247 
5248 	trace_kvm_entry(vcpu->vcpu_id);
5249 	kvm_x86_ops->run(vcpu);
5250 
5251 	/*
5252 	 * If the guest has used debug registers, at least dr7
5253 	 * will be disabled while returning to the host.
5254 	 * If we don't have active breakpoints in the host, we don't
5255 	 * care about the messed up debug address registers. But if
5256 	 * we have some of them active, restore the old state.
5257 	 */
5258 	if (hw_breakpoint_active())
5259 		hw_breakpoint_restore();
5260 
5261 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5262 
5263 	vcpu->mode = OUTSIDE_GUEST_MODE;
5264 	smp_wmb();
5265 	local_irq_enable();
5266 
5267 	++vcpu->stat.exits;
5268 
5269 	/*
5270 	 * We must have an instruction between local_irq_enable() and
5271 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5272 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5273 	 * But we need to prevent reordering, hence this barrier():
5274 	 */
5275 	barrier();
5276 
5277 	kvm_guest_exit();
5278 
5279 	preempt_enable();
5280 
5281 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5282 
5283 	/*
5284 	 * Profile KVM exit RIPs:
5285 	 */
5286 	if (unlikely(prof_on == KVM_PROFILING)) {
5287 		unsigned long rip = kvm_rip_read(vcpu);
5288 		profile_hit(KVM_PROFILING, (void *)rip);
5289 	}
5290 
5291 
5292 	kvm_lapic_sync_from_vapic(vcpu);
5293 
5294 	r = kvm_x86_ops->handle_exit(vcpu);
5295 out:
5296 	return r;
5297 }
5298 
5299 
5300 static int __vcpu_run(struct kvm_vcpu *vcpu)
5301 {
5302 	int r;
5303 	struct kvm *kvm = vcpu->kvm;
5304 
5305 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5306 		pr_debug("vcpu %d received sipi with vector # %x\n",
5307 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5308 		kvm_lapic_reset(vcpu);
5309 		r = kvm_arch_vcpu_reset(vcpu);
5310 		if (r)
5311 			return r;
5312 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5313 	}
5314 
5315 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5316 	vapic_enter(vcpu);
5317 
5318 	r = 1;
5319 	while (r > 0) {
5320 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5321 		    !vcpu->arch.apf.halted)
5322 			r = vcpu_enter_guest(vcpu);
5323 		else {
5324 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5325 			kvm_vcpu_block(vcpu);
5326 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5327 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5328 			{
5329 				switch(vcpu->arch.mp_state) {
5330 				case KVM_MP_STATE_HALTED:
5331 					vcpu->arch.mp_state =
5332 						KVM_MP_STATE_RUNNABLE;
5333 				case KVM_MP_STATE_RUNNABLE:
5334 					vcpu->arch.apf.halted = false;
5335 					break;
5336 				case KVM_MP_STATE_SIPI_RECEIVED:
5337 				default:
5338 					r = -EINTR;
5339 					break;
5340 				}
5341 			}
5342 		}
5343 
5344 		if (r <= 0)
5345 			break;
5346 
5347 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5348 		if (kvm_cpu_has_pending_timer(vcpu))
5349 			kvm_inject_pending_timer_irqs(vcpu);
5350 
5351 		if (dm_request_for_irq_injection(vcpu)) {
5352 			r = -EINTR;
5353 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5354 			++vcpu->stat.request_irq_exits;
5355 		}
5356 
5357 		kvm_check_async_pf_completion(vcpu);
5358 
5359 		if (signal_pending(current)) {
5360 			r = -EINTR;
5361 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5362 			++vcpu->stat.signal_exits;
5363 		}
5364 		if (need_resched()) {
5365 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5366 			kvm_resched(vcpu);
5367 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5368 		}
5369 	}
5370 
5371 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5372 
5373 	vapic_exit(vcpu);
5374 
5375 	return r;
5376 }
5377 
5378 static int complete_mmio(struct kvm_vcpu *vcpu)
5379 {
5380 	struct kvm_run *run = vcpu->run;
5381 	int r;
5382 
5383 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5384 		return 1;
5385 
5386 	if (vcpu->mmio_needed) {
5387 		vcpu->mmio_needed = 0;
5388 		if (!vcpu->mmio_is_write)
5389 			memcpy(vcpu->mmio_data + vcpu->mmio_index,
5390 			       run->mmio.data, 8);
5391 		vcpu->mmio_index += 8;
5392 		if (vcpu->mmio_index < vcpu->mmio_size) {
5393 			run->exit_reason = KVM_EXIT_MMIO;
5394 			run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5395 			memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5396 			run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5397 			run->mmio.is_write = vcpu->mmio_is_write;
5398 			vcpu->mmio_needed = 1;
5399 			return 0;
5400 		}
5401 		if (vcpu->mmio_is_write)
5402 			return 1;
5403 		vcpu->mmio_read_completed = 1;
5404 	}
5405 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5406 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5407 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5408 	if (r != EMULATE_DONE)
5409 		return 0;
5410 	return 1;
5411 }
5412 
5413 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5414 {
5415 	int r;
5416 	sigset_t sigsaved;
5417 
5418 	if (!tsk_used_math(current) && init_fpu(current))
5419 		return -ENOMEM;
5420 
5421 	if (vcpu->sigset_active)
5422 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5423 
5424 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5425 		kvm_vcpu_block(vcpu);
5426 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5427 		r = -EAGAIN;
5428 		goto out;
5429 	}
5430 
5431 	/* re-sync apic's tpr */
5432 	if (!irqchip_in_kernel(vcpu->kvm)) {
5433 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5434 			r = -EINVAL;
5435 			goto out;
5436 		}
5437 	}
5438 
5439 	r = complete_mmio(vcpu);
5440 	if (r <= 0)
5441 		goto out;
5442 
5443 	r = __vcpu_run(vcpu);
5444 
5445 out:
5446 	post_kvm_run_save(vcpu);
5447 	if (vcpu->sigset_active)
5448 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5449 
5450 	return r;
5451 }
5452 
5453 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5454 {
5455 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5456 		/*
5457 		 * We are here if userspace calls get_regs() in the middle of
5458 		 * instruction emulation. Registers state needs to be copied
5459 		 * back from emulation context to vcpu. Usrapace shouldn't do
5460 		 * that usually, but some bad designed PV devices (vmware
5461 		 * backdoor interface) need this to work
5462 		 */
5463 		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5464 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5465 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5466 	}
5467 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5468 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5469 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5470 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5471 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5472 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5473 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5474 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5475 #ifdef CONFIG_X86_64
5476 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5477 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5478 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5479 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5480 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5481 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5482 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5483 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5484 #endif
5485 
5486 	regs->rip = kvm_rip_read(vcpu);
5487 	regs->rflags = kvm_get_rflags(vcpu);
5488 
5489 	return 0;
5490 }
5491 
5492 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5493 {
5494 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5495 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5496 
5497 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5498 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5499 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5500 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5501 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5502 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5503 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5504 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5505 #ifdef CONFIG_X86_64
5506 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5507 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5508 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5509 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5510 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5511 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5512 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5513 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5514 #endif
5515 
5516 	kvm_rip_write(vcpu, regs->rip);
5517 	kvm_set_rflags(vcpu, regs->rflags);
5518 
5519 	vcpu->arch.exception.pending = false;
5520 
5521 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5522 
5523 	return 0;
5524 }
5525 
5526 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5527 {
5528 	struct kvm_segment cs;
5529 
5530 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5531 	*db = cs.db;
5532 	*l = cs.l;
5533 }
5534 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5535 
5536 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5537 				  struct kvm_sregs *sregs)
5538 {
5539 	struct desc_ptr dt;
5540 
5541 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5542 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5543 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5544 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5545 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5546 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5547 
5548 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5549 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5550 
5551 	kvm_x86_ops->get_idt(vcpu, &dt);
5552 	sregs->idt.limit = dt.size;
5553 	sregs->idt.base = dt.address;
5554 	kvm_x86_ops->get_gdt(vcpu, &dt);
5555 	sregs->gdt.limit = dt.size;
5556 	sregs->gdt.base = dt.address;
5557 
5558 	sregs->cr0 = kvm_read_cr0(vcpu);
5559 	sregs->cr2 = vcpu->arch.cr2;
5560 	sregs->cr3 = kvm_read_cr3(vcpu);
5561 	sregs->cr4 = kvm_read_cr4(vcpu);
5562 	sregs->cr8 = kvm_get_cr8(vcpu);
5563 	sregs->efer = vcpu->arch.efer;
5564 	sregs->apic_base = kvm_get_apic_base(vcpu);
5565 
5566 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5567 
5568 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5569 		set_bit(vcpu->arch.interrupt.nr,
5570 			(unsigned long *)sregs->interrupt_bitmap);
5571 
5572 	return 0;
5573 }
5574 
5575 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5576 				    struct kvm_mp_state *mp_state)
5577 {
5578 	mp_state->mp_state = vcpu->arch.mp_state;
5579 	return 0;
5580 }
5581 
5582 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5583 				    struct kvm_mp_state *mp_state)
5584 {
5585 	vcpu->arch.mp_state = mp_state->mp_state;
5586 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5587 	return 0;
5588 }
5589 
5590 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5591 		    bool has_error_code, u32 error_code)
5592 {
5593 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5594 	int ret;
5595 
5596 	init_emulate_ctxt(vcpu);
5597 
5598 	ret = emulator_task_switch(ctxt, tss_selector, reason,
5599 				   has_error_code, error_code);
5600 
5601 	if (ret)
5602 		return EMULATE_FAIL;
5603 
5604 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5605 	kvm_rip_write(vcpu, ctxt->eip);
5606 	kvm_set_rflags(vcpu, ctxt->eflags);
5607 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5608 	return EMULATE_DONE;
5609 }
5610 EXPORT_SYMBOL_GPL(kvm_task_switch);
5611 
5612 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5613 				  struct kvm_sregs *sregs)
5614 {
5615 	int mmu_reset_needed = 0;
5616 	int pending_vec, max_bits, idx;
5617 	struct desc_ptr dt;
5618 
5619 	dt.size = sregs->idt.limit;
5620 	dt.address = sregs->idt.base;
5621 	kvm_x86_ops->set_idt(vcpu, &dt);
5622 	dt.size = sregs->gdt.limit;
5623 	dt.address = sregs->gdt.base;
5624 	kvm_x86_ops->set_gdt(vcpu, &dt);
5625 
5626 	vcpu->arch.cr2 = sregs->cr2;
5627 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5628 	vcpu->arch.cr3 = sregs->cr3;
5629 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5630 
5631 	kvm_set_cr8(vcpu, sregs->cr8);
5632 
5633 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5634 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5635 	kvm_set_apic_base(vcpu, sregs->apic_base);
5636 
5637 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5638 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5639 	vcpu->arch.cr0 = sregs->cr0;
5640 
5641 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5642 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5643 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5644 		kvm_update_cpuid(vcpu);
5645 
5646 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5647 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5648 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5649 		mmu_reset_needed = 1;
5650 	}
5651 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5652 
5653 	if (mmu_reset_needed)
5654 		kvm_mmu_reset_context(vcpu);
5655 
5656 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5657 	pending_vec = find_first_bit(
5658 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5659 	if (pending_vec < max_bits) {
5660 		kvm_queue_interrupt(vcpu, pending_vec, false);
5661 		pr_debug("Set back pending irq %d\n", pending_vec);
5662 	}
5663 
5664 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5665 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5666 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5667 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5668 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5669 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5670 
5671 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5672 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5673 
5674 	update_cr8_intercept(vcpu);
5675 
5676 	/* Older userspace won't unhalt the vcpu on reset. */
5677 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5678 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5679 	    !is_protmode(vcpu))
5680 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5681 
5682 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5683 
5684 	return 0;
5685 }
5686 
5687 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5688 					struct kvm_guest_debug *dbg)
5689 {
5690 	unsigned long rflags;
5691 	int i, r;
5692 
5693 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5694 		r = -EBUSY;
5695 		if (vcpu->arch.exception.pending)
5696 			goto out;
5697 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5698 			kvm_queue_exception(vcpu, DB_VECTOR);
5699 		else
5700 			kvm_queue_exception(vcpu, BP_VECTOR);
5701 	}
5702 
5703 	/*
5704 	 * Read rflags as long as potentially injected trace flags are still
5705 	 * filtered out.
5706 	 */
5707 	rflags = kvm_get_rflags(vcpu);
5708 
5709 	vcpu->guest_debug = dbg->control;
5710 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5711 		vcpu->guest_debug = 0;
5712 
5713 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5714 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5715 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5716 		vcpu->arch.switch_db_regs =
5717 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5718 	} else {
5719 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5720 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5721 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5722 	}
5723 
5724 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5725 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5726 			get_segment_base(vcpu, VCPU_SREG_CS);
5727 
5728 	/*
5729 	 * Trigger an rflags update that will inject or remove the trace
5730 	 * flags.
5731 	 */
5732 	kvm_set_rflags(vcpu, rflags);
5733 
5734 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5735 
5736 	r = 0;
5737 
5738 out:
5739 
5740 	return r;
5741 }
5742 
5743 /*
5744  * Translate a guest virtual address to a guest physical address.
5745  */
5746 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5747 				    struct kvm_translation *tr)
5748 {
5749 	unsigned long vaddr = tr->linear_address;
5750 	gpa_t gpa;
5751 	int idx;
5752 
5753 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5754 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5755 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5756 	tr->physical_address = gpa;
5757 	tr->valid = gpa != UNMAPPED_GVA;
5758 	tr->writeable = 1;
5759 	tr->usermode = 0;
5760 
5761 	return 0;
5762 }
5763 
5764 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5765 {
5766 	struct i387_fxsave_struct *fxsave =
5767 			&vcpu->arch.guest_fpu.state->fxsave;
5768 
5769 	memcpy(fpu->fpr, fxsave->st_space, 128);
5770 	fpu->fcw = fxsave->cwd;
5771 	fpu->fsw = fxsave->swd;
5772 	fpu->ftwx = fxsave->twd;
5773 	fpu->last_opcode = fxsave->fop;
5774 	fpu->last_ip = fxsave->rip;
5775 	fpu->last_dp = fxsave->rdp;
5776 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5777 
5778 	return 0;
5779 }
5780 
5781 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5782 {
5783 	struct i387_fxsave_struct *fxsave =
5784 			&vcpu->arch.guest_fpu.state->fxsave;
5785 
5786 	memcpy(fxsave->st_space, fpu->fpr, 128);
5787 	fxsave->cwd = fpu->fcw;
5788 	fxsave->swd = fpu->fsw;
5789 	fxsave->twd = fpu->ftwx;
5790 	fxsave->fop = fpu->last_opcode;
5791 	fxsave->rip = fpu->last_ip;
5792 	fxsave->rdp = fpu->last_dp;
5793 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5794 
5795 	return 0;
5796 }
5797 
5798 int fx_init(struct kvm_vcpu *vcpu)
5799 {
5800 	int err;
5801 
5802 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5803 	if (err)
5804 		return err;
5805 
5806 	fpu_finit(&vcpu->arch.guest_fpu);
5807 
5808 	/*
5809 	 * Ensure guest xcr0 is valid for loading
5810 	 */
5811 	vcpu->arch.xcr0 = XSTATE_FP;
5812 
5813 	vcpu->arch.cr0 |= X86_CR0_ET;
5814 
5815 	return 0;
5816 }
5817 EXPORT_SYMBOL_GPL(fx_init);
5818 
5819 static void fx_free(struct kvm_vcpu *vcpu)
5820 {
5821 	fpu_free(&vcpu->arch.guest_fpu);
5822 }
5823 
5824 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5825 {
5826 	if (vcpu->guest_fpu_loaded)
5827 		return;
5828 
5829 	/*
5830 	 * Restore all possible states in the guest,
5831 	 * and assume host would use all available bits.
5832 	 * Guest xcr0 would be loaded later.
5833 	 */
5834 	kvm_put_guest_xcr0(vcpu);
5835 	vcpu->guest_fpu_loaded = 1;
5836 	unlazy_fpu(current);
5837 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5838 	trace_kvm_fpu(1);
5839 }
5840 
5841 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5842 {
5843 	kvm_put_guest_xcr0(vcpu);
5844 
5845 	if (!vcpu->guest_fpu_loaded)
5846 		return;
5847 
5848 	vcpu->guest_fpu_loaded = 0;
5849 	fpu_save_init(&vcpu->arch.guest_fpu);
5850 	++vcpu->stat.fpu_reload;
5851 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5852 	trace_kvm_fpu(0);
5853 }
5854 
5855 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5856 {
5857 	kvmclock_reset(vcpu);
5858 
5859 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5860 	fx_free(vcpu);
5861 	kvm_x86_ops->vcpu_free(vcpu);
5862 }
5863 
5864 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5865 						unsigned int id)
5866 {
5867 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5868 		printk_once(KERN_WARNING
5869 		"kvm: SMP vm created on host with unstable TSC; "
5870 		"guest TSC will not be reliable\n");
5871 	return kvm_x86_ops->vcpu_create(kvm, id);
5872 }
5873 
5874 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5875 {
5876 	int r;
5877 
5878 	vcpu->arch.mtrr_state.have_fixed = 1;
5879 	vcpu_load(vcpu);
5880 	r = kvm_arch_vcpu_reset(vcpu);
5881 	if (r == 0)
5882 		r = kvm_mmu_setup(vcpu);
5883 	vcpu_put(vcpu);
5884 
5885 	return r;
5886 }
5887 
5888 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5889 {
5890 	vcpu->arch.apf.msr_val = 0;
5891 
5892 	vcpu_load(vcpu);
5893 	kvm_mmu_unload(vcpu);
5894 	vcpu_put(vcpu);
5895 
5896 	fx_free(vcpu);
5897 	kvm_x86_ops->vcpu_free(vcpu);
5898 }
5899 
5900 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5901 {
5902 	atomic_set(&vcpu->arch.nmi_queued, 0);
5903 	vcpu->arch.nmi_pending = 0;
5904 	vcpu->arch.nmi_injected = false;
5905 
5906 	vcpu->arch.switch_db_regs = 0;
5907 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5908 	vcpu->arch.dr6 = DR6_FIXED_1;
5909 	vcpu->arch.dr7 = DR7_FIXED_1;
5910 
5911 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5912 	vcpu->arch.apf.msr_val = 0;
5913 	vcpu->arch.st.msr_val = 0;
5914 
5915 	kvmclock_reset(vcpu);
5916 
5917 	kvm_clear_async_pf_completion_queue(vcpu);
5918 	kvm_async_pf_hash_reset(vcpu);
5919 	vcpu->arch.apf.halted = false;
5920 
5921 	kvm_pmu_reset(vcpu);
5922 
5923 	return kvm_x86_ops->vcpu_reset(vcpu);
5924 }
5925 
5926 int kvm_arch_hardware_enable(void *garbage)
5927 {
5928 	struct kvm *kvm;
5929 	struct kvm_vcpu *vcpu;
5930 	int i;
5931 
5932 	kvm_shared_msr_cpu_online();
5933 	list_for_each_entry(kvm, &vm_list, vm_list)
5934 		kvm_for_each_vcpu(i, vcpu, kvm)
5935 			if (vcpu->cpu == smp_processor_id())
5936 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5937 	return kvm_x86_ops->hardware_enable(garbage);
5938 }
5939 
5940 void kvm_arch_hardware_disable(void *garbage)
5941 {
5942 	kvm_x86_ops->hardware_disable(garbage);
5943 	drop_user_return_notifiers(garbage);
5944 }
5945 
5946 int kvm_arch_hardware_setup(void)
5947 {
5948 	return kvm_x86_ops->hardware_setup();
5949 }
5950 
5951 void kvm_arch_hardware_unsetup(void)
5952 {
5953 	kvm_x86_ops->hardware_unsetup();
5954 }
5955 
5956 void kvm_arch_check_processor_compat(void *rtn)
5957 {
5958 	kvm_x86_ops->check_processor_compatibility(rtn);
5959 }
5960 
5961 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5962 {
5963 	struct page *page;
5964 	struct kvm *kvm;
5965 	int r;
5966 
5967 	BUG_ON(vcpu->kvm == NULL);
5968 	kvm = vcpu->kvm;
5969 
5970 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5971 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5972 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5973 	else
5974 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5975 
5976 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5977 	if (!page) {
5978 		r = -ENOMEM;
5979 		goto fail;
5980 	}
5981 	vcpu->arch.pio_data = page_address(page);
5982 
5983 	kvm_init_tsc_catchup(vcpu, max_tsc_khz);
5984 
5985 	r = kvm_mmu_create(vcpu);
5986 	if (r < 0)
5987 		goto fail_free_pio_data;
5988 
5989 	if (irqchip_in_kernel(kvm)) {
5990 		r = kvm_create_lapic(vcpu);
5991 		if (r < 0)
5992 			goto fail_mmu_destroy;
5993 	}
5994 
5995 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5996 				       GFP_KERNEL);
5997 	if (!vcpu->arch.mce_banks) {
5998 		r = -ENOMEM;
5999 		goto fail_free_lapic;
6000 	}
6001 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6002 
6003 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6004 		goto fail_free_mce_banks;
6005 
6006 	kvm_async_pf_hash_reset(vcpu);
6007 	kvm_pmu_init(vcpu);
6008 
6009 	return 0;
6010 fail_free_mce_banks:
6011 	kfree(vcpu->arch.mce_banks);
6012 fail_free_lapic:
6013 	kvm_free_lapic(vcpu);
6014 fail_mmu_destroy:
6015 	kvm_mmu_destroy(vcpu);
6016 fail_free_pio_data:
6017 	free_page((unsigned long)vcpu->arch.pio_data);
6018 fail:
6019 	return r;
6020 }
6021 
6022 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6023 {
6024 	int idx;
6025 
6026 	kvm_pmu_destroy(vcpu);
6027 	kfree(vcpu->arch.mce_banks);
6028 	kvm_free_lapic(vcpu);
6029 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6030 	kvm_mmu_destroy(vcpu);
6031 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6032 	free_page((unsigned long)vcpu->arch.pio_data);
6033 }
6034 
6035 int kvm_arch_init_vm(struct kvm *kvm)
6036 {
6037 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6038 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6039 
6040 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6041 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6042 
6043 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6044 
6045 	return 0;
6046 }
6047 
6048 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6049 {
6050 	vcpu_load(vcpu);
6051 	kvm_mmu_unload(vcpu);
6052 	vcpu_put(vcpu);
6053 }
6054 
6055 static void kvm_free_vcpus(struct kvm *kvm)
6056 {
6057 	unsigned int i;
6058 	struct kvm_vcpu *vcpu;
6059 
6060 	/*
6061 	 * Unpin any mmu pages first.
6062 	 */
6063 	kvm_for_each_vcpu(i, vcpu, kvm) {
6064 		kvm_clear_async_pf_completion_queue(vcpu);
6065 		kvm_unload_vcpu_mmu(vcpu);
6066 	}
6067 	kvm_for_each_vcpu(i, vcpu, kvm)
6068 		kvm_arch_vcpu_free(vcpu);
6069 
6070 	mutex_lock(&kvm->lock);
6071 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6072 		kvm->vcpus[i] = NULL;
6073 
6074 	atomic_set(&kvm->online_vcpus, 0);
6075 	mutex_unlock(&kvm->lock);
6076 }
6077 
6078 void kvm_arch_sync_events(struct kvm *kvm)
6079 {
6080 	kvm_free_all_assigned_devices(kvm);
6081 	kvm_free_pit(kvm);
6082 }
6083 
6084 void kvm_arch_destroy_vm(struct kvm *kvm)
6085 {
6086 	kvm_iommu_unmap_guest(kvm);
6087 	kfree(kvm->arch.vpic);
6088 	kfree(kvm->arch.vioapic);
6089 	kvm_free_vcpus(kvm);
6090 	if (kvm->arch.apic_access_page)
6091 		put_page(kvm->arch.apic_access_page);
6092 	if (kvm->arch.ept_identity_pagetable)
6093 		put_page(kvm->arch.ept_identity_pagetable);
6094 }
6095 
6096 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6097 				struct kvm_memory_slot *memslot,
6098 				struct kvm_memory_slot old,
6099 				struct kvm_userspace_memory_region *mem,
6100 				int user_alloc)
6101 {
6102 	int npages = memslot->npages;
6103 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6104 
6105 	/* Prevent internal slot pages from being moved by fork()/COW. */
6106 	if (memslot->id >= KVM_MEMORY_SLOTS)
6107 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6108 
6109 	/*To keep backward compatibility with older userspace,
6110 	 *x86 needs to hanlde !user_alloc case.
6111 	 */
6112 	if (!user_alloc) {
6113 		if (npages && !old.rmap) {
6114 			unsigned long userspace_addr;
6115 
6116 			down_write(&current->mm->mmap_sem);
6117 			userspace_addr = do_mmap(NULL, 0,
6118 						 npages * PAGE_SIZE,
6119 						 PROT_READ | PROT_WRITE,
6120 						 map_flags,
6121 						 0);
6122 			up_write(&current->mm->mmap_sem);
6123 
6124 			if (IS_ERR((void *)userspace_addr))
6125 				return PTR_ERR((void *)userspace_addr);
6126 
6127 			memslot->userspace_addr = userspace_addr;
6128 		}
6129 	}
6130 
6131 
6132 	return 0;
6133 }
6134 
6135 void kvm_arch_commit_memory_region(struct kvm *kvm,
6136 				struct kvm_userspace_memory_region *mem,
6137 				struct kvm_memory_slot old,
6138 				int user_alloc)
6139 {
6140 
6141 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6142 
6143 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6144 		int ret;
6145 
6146 		down_write(&current->mm->mmap_sem);
6147 		ret = do_munmap(current->mm, old.userspace_addr,
6148 				old.npages * PAGE_SIZE);
6149 		up_write(&current->mm->mmap_sem);
6150 		if (ret < 0)
6151 			printk(KERN_WARNING
6152 			       "kvm_vm_ioctl_set_memory_region: "
6153 			       "failed to munmap memory\n");
6154 	}
6155 
6156 	if (!kvm->arch.n_requested_mmu_pages)
6157 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6158 
6159 	spin_lock(&kvm->mmu_lock);
6160 	if (nr_mmu_pages)
6161 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6162 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6163 	spin_unlock(&kvm->mmu_lock);
6164 }
6165 
6166 void kvm_arch_flush_shadow(struct kvm *kvm)
6167 {
6168 	kvm_mmu_zap_all(kvm);
6169 	kvm_reload_remote_mmus(kvm);
6170 }
6171 
6172 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6173 {
6174 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6175 		!vcpu->arch.apf.halted)
6176 		|| !list_empty_careful(&vcpu->async_pf.done)
6177 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6178 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6179 		(kvm_arch_interrupt_allowed(vcpu) &&
6180 		 kvm_cpu_has_interrupt(vcpu));
6181 }
6182 
6183 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6184 {
6185 	int me;
6186 	int cpu = vcpu->cpu;
6187 
6188 	if (waitqueue_active(&vcpu->wq)) {
6189 		wake_up_interruptible(&vcpu->wq);
6190 		++vcpu->stat.halt_wakeup;
6191 	}
6192 
6193 	me = get_cpu();
6194 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6195 		if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6196 			smp_send_reschedule(cpu);
6197 	put_cpu();
6198 }
6199 
6200 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6201 {
6202 	return kvm_x86_ops->interrupt_allowed(vcpu);
6203 }
6204 
6205 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6206 {
6207 	unsigned long current_rip = kvm_rip_read(vcpu) +
6208 		get_segment_base(vcpu, VCPU_SREG_CS);
6209 
6210 	return current_rip == linear_rip;
6211 }
6212 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6213 
6214 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6215 {
6216 	unsigned long rflags;
6217 
6218 	rflags = kvm_x86_ops->get_rflags(vcpu);
6219 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6220 		rflags &= ~X86_EFLAGS_TF;
6221 	return rflags;
6222 }
6223 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6224 
6225 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6226 {
6227 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6228 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6229 		rflags |= X86_EFLAGS_TF;
6230 	kvm_x86_ops->set_rflags(vcpu, rflags);
6231 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6232 }
6233 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6234 
6235 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6236 {
6237 	int r;
6238 
6239 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6240 	      is_error_page(work->page))
6241 		return;
6242 
6243 	r = kvm_mmu_reload(vcpu);
6244 	if (unlikely(r))
6245 		return;
6246 
6247 	if (!vcpu->arch.mmu.direct_map &&
6248 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6249 		return;
6250 
6251 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6252 }
6253 
6254 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6255 {
6256 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6257 }
6258 
6259 static inline u32 kvm_async_pf_next_probe(u32 key)
6260 {
6261 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6262 }
6263 
6264 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6265 {
6266 	u32 key = kvm_async_pf_hash_fn(gfn);
6267 
6268 	while (vcpu->arch.apf.gfns[key] != ~0)
6269 		key = kvm_async_pf_next_probe(key);
6270 
6271 	vcpu->arch.apf.gfns[key] = gfn;
6272 }
6273 
6274 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6275 {
6276 	int i;
6277 	u32 key = kvm_async_pf_hash_fn(gfn);
6278 
6279 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6280 		     (vcpu->arch.apf.gfns[key] != gfn &&
6281 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6282 		key = kvm_async_pf_next_probe(key);
6283 
6284 	return key;
6285 }
6286 
6287 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6288 {
6289 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6290 }
6291 
6292 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6293 {
6294 	u32 i, j, k;
6295 
6296 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6297 	while (true) {
6298 		vcpu->arch.apf.gfns[i] = ~0;
6299 		do {
6300 			j = kvm_async_pf_next_probe(j);
6301 			if (vcpu->arch.apf.gfns[j] == ~0)
6302 				return;
6303 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6304 			/*
6305 			 * k lies cyclically in ]i,j]
6306 			 * |    i.k.j |
6307 			 * |....j i.k.| or  |.k..j i...|
6308 			 */
6309 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6310 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6311 		i = j;
6312 	}
6313 }
6314 
6315 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6316 {
6317 
6318 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6319 				      sizeof(val));
6320 }
6321 
6322 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6323 				     struct kvm_async_pf *work)
6324 {
6325 	struct x86_exception fault;
6326 
6327 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6328 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6329 
6330 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6331 	    (vcpu->arch.apf.send_user_only &&
6332 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6333 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6334 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6335 		fault.vector = PF_VECTOR;
6336 		fault.error_code_valid = true;
6337 		fault.error_code = 0;
6338 		fault.nested_page_fault = false;
6339 		fault.address = work->arch.token;
6340 		kvm_inject_page_fault(vcpu, &fault);
6341 	}
6342 }
6343 
6344 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6345 				 struct kvm_async_pf *work)
6346 {
6347 	struct x86_exception fault;
6348 
6349 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6350 	if (is_error_page(work->page))
6351 		work->arch.token = ~0; /* broadcast wakeup */
6352 	else
6353 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6354 
6355 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6356 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6357 		fault.vector = PF_VECTOR;
6358 		fault.error_code_valid = true;
6359 		fault.error_code = 0;
6360 		fault.nested_page_fault = false;
6361 		fault.address = work->arch.token;
6362 		kvm_inject_page_fault(vcpu, &fault);
6363 	}
6364 	vcpu->arch.apf.halted = false;
6365 }
6366 
6367 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6368 {
6369 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6370 		return true;
6371 	else
6372 		return !kvm_event_needs_reinjection(vcpu) &&
6373 			kvm_x86_ops->interrupt_allowed(vcpu);
6374 }
6375 
6376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6388