1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 #define KVM_NR_SHARED_MSRS 16 101 102 struct kvm_shared_msrs_global { 103 int nr; 104 u32 msrs[KVM_NR_SHARED_MSRS]; 105 }; 106 107 struct kvm_shared_msrs { 108 struct user_return_notifier urn; 109 bool registered; 110 struct kvm_shared_msr_values { 111 u64 host; 112 u64 curr; 113 } values[KVM_NR_SHARED_MSRS]; 114 }; 115 116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 117 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 118 119 struct kvm_stats_debugfs_item debugfs_entries[] = { 120 { "pf_fixed", VCPU_STAT(pf_fixed) }, 121 { "pf_guest", VCPU_STAT(pf_guest) }, 122 { "tlb_flush", VCPU_STAT(tlb_flush) }, 123 { "invlpg", VCPU_STAT(invlpg) }, 124 { "exits", VCPU_STAT(exits) }, 125 { "io_exits", VCPU_STAT(io_exits) }, 126 { "mmio_exits", VCPU_STAT(mmio_exits) }, 127 { "signal_exits", VCPU_STAT(signal_exits) }, 128 { "irq_window", VCPU_STAT(irq_window_exits) }, 129 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 130 { "halt_exits", VCPU_STAT(halt_exits) }, 131 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 132 { "hypercalls", VCPU_STAT(hypercalls) }, 133 { "request_irq", VCPU_STAT(request_irq_exits) }, 134 { "irq_exits", VCPU_STAT(irq_exits) }, 135 { "host_state_reload", VCPU_STAT(host_state_reload) }, 136 { "efer_reload", VCPU_STAT(efer_reload) }, 137 { "fpu_reload", VCPU_STAT(fpu_reload) }, 138 { "insn_emulation", VCPU_STAT(insn_emulation) }, 139 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 140 { "irq_injections", VCPU_STAT(irq_injections) }, 141 { "nmi_injections", VCPU_STAT(nmi_injections) }, 142 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 143 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 144 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 145 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 146 { "mmu_flooded", VM_STAT(mmu_flooded) }, 147 { "mmu_recycled", VM_STAT(mmu_recycled) }, 148 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 149 { "mmu_unsync", VM_STAT(mmu_unsync) }, 150 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 151 { "largepages", VM_STAT(lpages) }, 152 { NULL } 153 }; 154 155 u64 __read_mostly host_xcr0; 156 157 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 158 159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 160 { 161 int i; 162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 163 vcpu->arch.apf.gfns[i] = ~0; 164 } 165 166 static void kvm_on_user_return(struct user_return_notifier *urn) 167 { 168 unsigned slot; 169 struct kvm_shared_msrs *locals 170 = container_of(urn, struct kvm_shared_msrs, urn); 171 struct kvm_shared_msr_values *values; 172 173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 174 values = &locals->values[slot]; 175 if (values->host != values->curr) { 176 wrmsrl(shared_msrs_global.msrs[slot], values->host); 177 values->curr = values->host; 178 } 179 } 180 locals->registered = false; 181 user_return_notifier_unregister(urn); 182 } 183 184 static void shared_msr_update(unsigned slot, u32 msr) 185 { 186 struct kvm_shared_msrs *smsr; 187 u64 value; 188 189 smsr = &__get_cpu_var(shared_msrs); 190 /* only read, and nobody should modify it at this time, 191 * so don't need lock */ 192 if (slot >= shared_msrs_global.nr) { 193 printk(KERN_ERR "kvm: invalid MSR slot!"); 194 return; 195 } 196 rdmsrl_safe(msr, &value); 197 smsr->values[slot].host = value; 198 smsr->values[slot].curr = value; 199 } 200 201 void kvm_define_shared_msr(unsigned slot, u32 msr) 202 { 203 if (slot >= shared_msrs_global.nr) 204 shared_msrs_global.nr = slot + 1; 205 shared_msrs_global.msrs[slot] = msr; 206 /* we need ensured the shared_msr_global have been updated */ 207 smp_wmb(); 208 } 209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 210 211 static void kvm_shared_msr_cpu_online(void) 212 { 213 unsigned i; 214 215 for (i = 0; i < shared_msrs_global.nr; ++i) 216 shared_msr_update(i, shared_msrs_global.msrs[i]); 217 } 218 219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 220 { 221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 222 223 if (((value ^ smsr->values[slot].curr) & mask) == 0) 224 return; 225 smsr->values[slot].curr = value; 226 wrmsrl(shared_msrs_global.msrs[slot], value); 227 if (!smsr->registered) { 228 smsr->urn.on_user_return = kvm_on_user_return; 229 user_return_notifier_register(&smsr->urn); 230 smsr->registered = true; 231 } 232 } 233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 234 235 static void drop_user_return_notifiers(void *ignore) 236 { 237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 238 239 if (smsr->registered) 240 kvm_on_user_return(&smsr->urn); 241 } 242 243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 244 { 245 if (irqchip_in_kernel(vcpu->kvm)) 246 return vcpu->arch.apic_base; 247 else 248 return vcpu->arch.apic_base; 249 } 250 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 251 252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 253 { 254 /* TODO: reserve bits check */ 255 if (irqchip_in_kernel(vcpu->kvm)) 256 kvm_lapic_set_base(vcpu, data); 257 else 258 vcpu->arch.apic_base = data; 259 } 260 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 261 262 #define EXCPT_BENIGN 0 263 #define EXCPT_CONTRIBUTORY 1 264 #define EXCPT_PF 2 265 266 static int exception_class(int vector) 267 { 268 switch (vector) { 269 case PF_VECTOR: 270 return EXCPT_PF; 271 case DE_VECTOR: 272 case TS_VECTOR: 273 case NP_VECTOR: 274 case SS_VECTOR: 275 case GP_VECTOR: 276 return EXCPT_CONTRIBUTORY; 277 default: 278 break; 279 } 280 return EXCPT_BENIGN; 281 } 282 283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 284 unsigned nr, bool has_error, u32 error_code, 285 bool reinject) 286 { 287 u32 prev_nr; 288 int class1, class2; 289 290 kvm_make_request(KVM_REQ_EVENT, vcpu); 291 292 if (!vcpu->arch.exception.pending) { 293 queue: 294 vcpu->arch.exception.pending = true; 295 vcpu->arch.exception.has_error_code = has_error; 296 vcpu->arch.exception.nr = nr; 297 vcpu->arch.exception.error_code = error_code; 298 vcpu->arch.exception.reinject = reinject; 299 return; 300 } 301 302 /* to check exception */ 303 prev_nr = vcpu->arch.exception.nr; 304 if (prev_nr == DF_VECTOR) { 305 /* triple fault -> shutdown */ 306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 307 return; 308 } 309 class1 = exception_class(prev_nr); 310 class2 = exception_class(nr); 311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 313 /* generate double fault per SDM Table 5-5 */ 314 vcpu->arch.exception.pending = true; 315 vcpu->arch.exception.has_error_code = true; 316 vcpu->arch.exception.nr = DF_VECTOR; 317 vcpu->arch.exception.error_code = 0; 318 } else 319 /* replace previous exception with a new one in a hope 320 that instruction re-execution will regenerate lost 321 exception */ 322 goto queue; 323 } 324 325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 326 { 327 kvm_multiple_exception(vcpu, nr, false, 0, false); 328 } 329 EXPORT_SYMBOL_GPL(kvm_queue_exception); 330 331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 332 { 333 kvm_multiple_exception(vcpu, nr, false, 0, true); 334 } 335 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 336 337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 338 { 339 if (err) 340 kvm_inject_gp(vcpu, 0); 341 else 342 kvm_x86_ops->skip_emulated_instruction(vcpu); 343 } 344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 345 346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 347 { 348 ++vcpu->stat.pf_guest; 349 vcpu->arch.cr2 = fault->address; 350 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 351 } 352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 353 354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 355 { 356 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 357 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 358 else 359 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 360 } 361 362 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 363 { 364 atomic_inc(&vcpu->arch.nmi_queued); 365 kvm_make_request(KVM_REQ_NMI, vcpu); 366 } 367 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 368 369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 370 { 371 kvm_multiple_exception(vcpu, nr, true, error_code, false); 372 } 373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 374 375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 376 { 377 kvm_multiple_exception(vcpu, nr, true, error_code, true); 378 } 379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 380 381 /* 382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 383 * a #GP and return false. 384 */ 385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 386 { 387 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 388 return true; 389 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 390 return false; 391 } 392 EXPORT_SYMBOL_GPL(kvm_require_cpl); 393 394 /* 395 * This function will be used to read from the physical memory of the currently 396 * running guest. The difference to kvm_read_guest_page is that this function 397 * can read from guest physical or from the guest's guest physical memory. 398 */ 399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 400 gfn_t ngfn, void *data, int offset, int len, 401 u32 access) 402 { 403 gfn_t real_gfn; 404 gpa_t ngpa; 405 406 ngpa = gfn_to_gpa(ngfn); 407 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 408 if (real_gfn == UNMAPPED_GVA) 409 return -EFAULT; 410 411 real_gfn = gpa_to_gfn(real_gfn); 412 413 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 414 } 415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 416 417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 418 void *data, int offset, int len, u32 access) 419 { 420 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 421 data, offset, len, access); 422 } 423 424 /* 425 * Load the pae pdptrs. Return true is they are all valid. 426 */ 427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 428 { 429 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 430 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 431 int i; 432 int ret; 433 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 434 435 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 436 offset * sizeof(u64), sizeof(pdpte), 437 PFERR_USER_MASK|PFERR_WRITE_MASK); 438 if (ret < 0) { 439 ret = 0; 440 goto out; 441 } 442 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 443 if (is_present_gpte(pdpte[i]) && 444 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 445 ret = 0; 446 goto out; 447 } 448 } 449 ret = 1; 450 451 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 452 __set_bit(VCPU_EXREG_PDPTR, 453 (unsigned long *)&vcpu->arch.regs_avail); 454 __set_bit(VCPU_EXREG_PDPTR, 455 (unsigned long *)&vcpu->arch.regs_dirty); 456 out: 457 458 return ret; 459 } 460 EXPORT_SYMBOL_GPL(load_pdptrs); 461 462 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 463 { 464 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 465 bool changed = true; 466 int offset; 467 gfn_t gfn; 468 int r; 469 470 if (is_long_mode(vcpu) || !is_pae(vcpu)) 471 return false; 472 473 if (!test_bit(VCPU_EXREG_PDPTR, 474 (unsigned long *)&vcpu->arch.regs_avail)) 475 return true; 476 477 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 478 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 479 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 480 PFERR_USER_MASK | PFERR_WRITE_MASK); 481 if (r < 0) 482 goto out; 483 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 484 out: 485 486 return changed; 487 } 488 489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 490 { 491 unsigned long old_cr0 = kvm_read_cr0(vcpu); 492 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 493 X86_CR0_CD | X86_CR0_NW; 494 495 cr0 |= X86_CR0_ET; 496 497 #ifdef CONFIG_X86_64 498 if (cr0 & 0xffffffff00000000UL) 499 return 1; 500 #endif 501 502 cr0 &= ~CR0_RESERVED_BITS; 503 504 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 505 return 1; 506 507 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 508 return 1; 509 510 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 511 #ifdef CONFIG_X86_64 512 if ((vcpu->arch.efer & EFER_LME)) { 513 int cs_db, cs_l; 514 515 if (!is_pae(vcpu)) 516 return 1; 517 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 518 if (cs_l) 519 return 1; 520 } else 521 #endif 522 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 523 kvm_read_cr3(vcpu))) 524 return 1; 525 } 526 527 kvm_x86_ops->set_cr0(vcpu, cr0); 528 529 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 530 kvm_clear_async_pf_completion_queue(vcpu); 531 kvm_async_pf_hash_reset(vcpu); 532 } 533 534 if ((cr0 ^ old_cr0) & update_bits) 535 kvm_mmu_reset_context(vcpu); 536 return 0; 537 } 538 EXPORT_SYMBOL_GPL(kvm_set_cr0); 539 540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 541 { 542 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 543 } 544 EXPORT_SYMBOL_GPL(kvm_lmsw); 545 546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 547 { 548 u64 xcr0; 549 550 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 551 if (index != XCR_XFEATURE_ENABLED_MASK) 552 return 1; 553 xcr0 = xcr; 554 if (kvm_x86_ops->get_cpl(vcpu) != 0) 555 return 1; 556 if (!(xcr0 & XSTATE_FP)) 557 return 1; 558 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 559 return 1; 560 if (xcr0 & ~host_xcr0) 561 return 1; 562 vcpu->arch.xcr0 = xcr0; 563 vcpu->guest_xcr0_loaded = 0; 564 return 0; 565 } 566 567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 568 { 569 if (__kvm_set_xcr(vcpu, index, xcr)) { 570 kvm_inject_gp(vcpu, 0); 571 return 1; 572 } 573 return 0; 574 } 575 EXPORT_SYMBOL_GPL(kvm_set_xcr); 576 577 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 578 { 579 unsigned long old_cr4 = kvm_read_cr4(vcpu); 580 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 581 X86_CR4_PAE | X86_CR4_SMEP; 582 if (cr4 & CR4_RESERVED_BITS) 583 return 1; 584 585 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 586 return 1; 587 588 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 589 return 1; 590 591 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 592 return 1; 593 594 if (is_long_mode(vcpu)) { 595 if (!(cr4 & X86_CR4_PAE)) 596 return 1; 597 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 598 && ((cr4 ^ old_cr4) & pdptr_bits) 599 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 600 kvm_read_cr3(vcpu))) 601 return 1; 602 603 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 604 return 1; 605 606 if ((cr4 ^ old_cr4) & pdptr_bits) 607 kvm_mmu_reset_context(vcpu); 608 609 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 610 kvm_update_cpuid(vcpu); 611 612 return 0; 613 } 614 EXPORT_SYMBOL_GPL(kvm_set_cr4); 615 616 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 617 { 618 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 619 kvm_mmu_sync_roots(vcpu); 620 kvm_mmu_flush_tlb(vcpu); 621 return 0; 622 } 623 624 if (is_long_mode(vcpu)) { 625 if (cr3 & CR3_L_MODE_RESERVED_BITS) 626 return 1; 627 } else { 628 if (is_pae(vcpu)) { 629 if (cr3 & CR3_PAE_RESERVED_BITS) 630 return 1; 631 if (is_paging(vcpu) && 632 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 633 return 1; 634 } 635 /* 636 * We don't check reserved bits in nonpae mode, because 637 * this isn't enforced, and VMware depends on this. 638 */ 639 } 640 641 /* 642 * Does the new cr3 value map to physical memory? (Note, we 643 * catch an invalid cr3 even in real-mode, because it would 644 * cause trouble later on when we turn on paging anyway.) 645 * 646 * A real CPU would silently accept an invalid cr3 and would 647 * attempt to use it - with largely undefined (and often hard 648 * to debug) behavior on the guest side. 649 */ 650 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 651 return 1; 652 vcpu->arch.cr3 = cr3; 653 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 654 vcpu->arch.mmu.new_cr3(vcpu); 655 return 0; 656 } 657 EXPORT_SYMBOL_GPL(kvm_set_cr3); 658 659 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 660 { 661 if (cr8 & CR8_RESERVED_BITS) 662 return 1; 663 if (irqchip_in_kernel(vcpu->kvm)) 664 kvm_lapic_set_tpr(vcpu, cr8); 665 else 666 vcpu->arch.cr8 = cr8; 667 return 0; 668 } 669 EXPORT_SYMBOL_GPL(kvm_set_cr8); 670 671 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 672 { 673 if (irqchip_in_kernel(vcpu->kvm)) 674 return kvm_lapic_get_cr8(vcpu); 675 else 676 return vcpu->arch.cr8; 677 } 678 EXPORT_SYMBOL_GPL(kvm_get_cr8); 679 680 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 681 { 682 switch (dr) { 683 case 0 ... 3: 684 vcpu->arch.db[dr] = val; 685 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 686 vcpu->arch.eff_db[dr] = val; 687 break; 688 case 4: 689 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 690 return 1; /* #UD */ 691 /* fall through */ 692 case 6: 693 if (val & 0xffffffff00000000ULL) 694 return -1; /* #GP */ 695 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 696 break; 697 case 5: 698 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 699 return 1; /* #UD */ 700 /* fall through */ 701 default: /* 7 */ 702 if (val & 0xffffffff00000000ULL) 703 return -1; /* #GP */ 704 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 705 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 706 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); 707 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); 708 } 709 break; 710 } 711 712 return 0; 713 } 714 715 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 716 { 717 int res; 718 719 res = __kvm_set_dr(vcpu, dr, val); 720 if (res > 0) 721 kvm_queue_exception(vcpu, UD_VECTOR); 722 else if (res < 0) 723 kvm_inject_gp(vcpu, 0); 724 725 return res; 726 } 727 EXPORT_SYMBOL_GPL(kvm_set_dr); 728 729 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 730 { 731 switch (dr) { 732 case 0 ... 3: 733 *val = vcpu->arch.db[dr]; 734 break; 735 case 4: 736 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 737 return 1; 738 /* fall through */ 739 case 6: 740 *val = vcpu->arch.dr6; 741 break; 742 case 5: 743 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 744 return 1; 745 /* fall through */ 746 default: /* 7 */ 747 *val = vcpu->arch.dr7; 748 break; 749 } 750 751 return 0; 752 } 753 754 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 755 { 756 if (_kvm_get_dr(vcpu, dr, val)) { 757 kvm_queue_exception(vcpu, UD_VECTOR); 758 return 1; 759 } 760 return 0; 761 } 762 EXPORT_SYMBOL_GPL(kvm_get_dr); 763 764 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 765 { 766 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 767 u64 data; 768 int err; 769 770 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 771 if (err) 772 return err; 773 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 774 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 775 return err; 776 } 777 EXPORT_SYMBOL_GPL(kvm_rdpmc); 778 779 /* 780 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 781 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 782 * 783 * This list is modified at module load time to reflect the 784 * capabilities of the host cpu. This capabilities test skips MSRs that are 785 * kvm-specific. Those are put in the beginning of the list. 786 */ 787 788 #define KVM_SAVE_MSRS_BEGIN 9 789 static u32 msrs_to_save[] = { 790 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 791 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 792 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 793 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 794 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 795 MSR_STAR, 796 #ifdef CONFIG_X86_64 797 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 798 #endif 799 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 800 }; 801 802 static unsigned num_msrs_to_save; 803 804 static u32 emulated_msrs[] = { 805 MSR_IA32_TSCDEADLINE, 806 MSR_IA32_MISC_ENABLE, 807 MSR_IA32_MCG_STATUS, 808 MSR_IA32_MCG_CTL, 809 }; 810 811 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 812 { 813 u64 old_efer = vcpu->arch.efer; 814 815 if (efer & efer_reserved_bits) 816 return 1; 817 818 if (is_paging(vcpu) 819 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 820 return 1; 821 822 if (efer & EFER_FFXSR) { 823 struct kvm_cpuid_entry2 *feat; 824 825 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 826 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 827 return 1; 828 } 829 830 if (efer & EFER_SVME) { 831 struct kvm_cpuid_entry2 *feat; 832 833 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 834 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 835 return 1; 836 } 837 838 efer &= ~EFER_LMA; 839 efer |= vcpu->arch.efer & EFER_LMA; 840 841 kvm_x86_ops->set_efer(vcpu, efer); 842 843 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 844 845 /* Update reserved bits */ 846 if ((efer ^ old_efer) & EFER_NX) 847 kvm_mmu_reset_context(vcpu); 848 849 return 0; 850 } 851 852 void kvm_enable_efer_bits(u64 mask) 853 { 854 efer_reserved_bits &= ~mask; 855 } 856 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 857 858 859 /* 860 * Writes msr value into into the appropriate "register". 861 * Returns 0 on success, non-0 otherwise. 862 * Assumes vcpu_load() was already called. 863 */ 864 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 865 { 866 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 867 } 868 869 /* 870 * Adapt set_msr() to msr_io()'s calling convention 871 */ 872 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 873 { 874 return kvm_set_msr(vcpu, index, *data); 875 } 876 877 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 878 { 879 int version; 880 int r; 881 struct pvclock_wall_clock wc; 882 struct timespec boot; 883 884 if (!wall_clock) 885 return; 886 887 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 888 if (r) 889 return; 890 891 if (version & 1) 892 ++version; /* first time write, random junk */ 893 894 ++version; 895 896 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 897 898 /* 899 * The guest calculates current wall clock time by adding 900 * system time (updated by kvm_guest_time_update below) to the 901 * wall clock specified here. guest system time equals host 902 * system time for us, thus we must fill in host boot time here. 903 */ 904 getboottime(&boot); 905 906 wc.sec = boot.tv_sec; 907 wc.nsec = boot.tv_nsec; 908 wc.version = version; 909 910 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 911 912 version++; 913 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 914 } 915 916 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 917 { 918 uint32_t quotient, remainder; 919 920 /* Don't try to replace with do_div(), this one calculates 921 * "(dividend << 32) / divisor" */ 922 __asm__ ( "divl %4" 923 : "=a" (quotient), "=d" (remainder) 924 : "0" (0), "1" (dividend), "r" (divisor) ); 925 return quotient; 926 } 927 928 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 929 s8 *pshift, u32 *pmultiplier) 930 { 931 uint64_t scaled64; 932 int32_t shift = 0; 933 uint64_t tps64; 934 uint32_t tps32; 935 936 tps64 = base_khz * 1000LL; 937 scaled64 = scaled_khz * 1000LL; 938 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 939 tps64 >>= 1; 940 shift--; 941 } 942 943 tps32 = (uint32_t)tps64; 944 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 945 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 946 scaled64 >>= 1; 947 else 948 tps32 <<= 1; 949 shift++; 950 } 951 952 *pshift = shift; 953 *pmultiplier = div_frac(scaled64, tps32); 954 955 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 956 __func__, base_khz, scaled_khz, shift, *pmultiplier); 957 } 958 959 static inline u64 get_kernel_ns(void) 960 { 961 struct timespec ts; 962 963 WARN_ON(preemptible()); 964 ktime_get_ts(&ts); 965 monotonic_to_bootbased(&ts); 966 return timespec_to_ns(&ts); 967 } 968 969 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 970 unsigned long max_tsc_khz; 971 972 static inline int kvm_tsc_changes_freq(void) 973 { 974 int cpu = get_cpu(); 975 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && 976 cpufreq_quick_get(cpu) != 0; 977 put_cpu(); 978 return ret; 979 } 980 981 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu) 982 { 983 if (vcpu->arch.virtual_tsc_khz) 984 return vcpu->arch.virtual_tsc_khz; 985 else 986 return __this_cpu_read(cpu_tsc_khz); 987 } 988 989 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 990 { 991 u64 ret; 992 993 WARN_ON(preemptible()); 994 if (kvm_tsc_changes_freq()) 995 printk_once(KERN_WARNING 996 "kvm: unreliable cycle conversion on adjustable rate TSC\n"); 997 ret = nsec * vcpu_tsc_khz(vcpu); 998 do_div(ret, USEC_PER_SEC); 999 return ret; 1000 } 1001 1002 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1003 { 1004 /* Compute a scale to convert nanoseconds in TSC cycles */ 1005 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1006 &vcpu->arch.tsc_catchup_shift, 1007 &vcpu->arch.tsc_catchup_mult); 1008 } 1009 1010 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1011 { 1012 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec, 1013 vcpu->arch.tsc_catchup_mult, 1014 vcpu->arch.tsc_catchup_shift); 1015 tsc += vcpu->arch.last_tsc_write; 1016 return tsc; 1017 } 1018 1019 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1020 { 1021 struct kvm *kvm = vcpu->kvm; 1022 u64 offset, ns, elapsed; 1023 unsigned long flags; 1024 s64 sdiff; 1025 1026 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1027 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1028 ns = get_kernel_ns(); 1029 elapsed = ns - kvm->arch.last_tsc_nsec; 1030 sdiff = data - kvm->arch.last_tsc_write; 1031 if (sdiff < 0) 1032 sdiff = -sdiff; 1033 1034 /* 1035 * Special case: close write to TSC within 5 seconds of 1036 * another CPU is interpreted as an attempt to synchronize 1037 * The 5 seconds is to accommodate host load / swapping as 1038 * well as any reset of TSC during the boot process. 1039 * 1040 * In that case, for a reliable TSC, we can match TSC offsets, 1041 * or make a best guest using elapsed value. 1042 */ 1043 if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) && 1044 elapsed < 5ULL * NSEC_PER_SEC) { 1045 if (!check_tsc_unstable()) { 1046 offset = kvm->arch.last_tsc_offset; 1047 pr_debug("kvm: matched tsc offset for %llu\n", data); 1048 } else { 1049 u64 delta = nsec_to_cycles(vcpu, elapsed); 1050 offset += delta; 1051 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1052 } 1053 ns = kvm->arch.last_tsc_nsec; 1054 } 1055 kvm->arch.last_tsc_nsec = ns; 1056 kvm->arch.last_tsc_write = data; 1057 kvm->arch.last_tsc_offset = offset; 1058 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1059 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1060 1061 /* Reset of TSC must disable overshoot protection below */ 1062 vcpu->arch.hv_clock.tsc_timestamp = 0; 1063 vcpu->arch.last_tsc_write = data; 1064 vcpu->arch.last_tsc_nsec = ns; 1065 } 1066 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1067 1068 static int kvm_guest_time_update(struct kvm_vcpu *v) 1069 { 1070 unsigned long flags; 1071 struct kvm_vcpu_arch *vcpu = &v->arch; 1072 void *shared_kaddr; 1073 unsigned long this_tsc_khz; 1074 s64 kernel_ns, max_kernel_ns; 1075 u64 tsc_timestamp; 1076 1077 /* Keep irq disabled to prevent changes to the clock */ 1078 local_irq_save(flags); 1079 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1080 kernel_ns = get_kernel_ns(); 1081 this_tsc_khz = vcpu_tsc_khz(v); 1082 if (unlikely(this_tsc_khz == 0)) { 1083 local_irq_restore(flags); 1084 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1085 return 1; 1086 } 1087 1088 /* 1089 * We may have to catch up the TSC to match elapsed wall clock 1090 * time for two reasons, even if kvmclock is used. 1091 * 1) CPU could have been running below the maximum TSC rate 1092 * 2) Broken TSC compensation resets the base at each VCPU 1093 * entry to avoid unknown leaps of TSC even when running 1094 * again on the same CPU. This may cause apparent elapsed 1095 * time to disappear, and the guest to stand still or run 1096 * very slowly. 1097 */ 1098 if (vcpu->tsc_catchup) { 1099 u64 tsc = compute_guest_tsc(v, kernel_ns); 1100 if (tsc > tsc_timestamp) { 1101 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp); 1102 tsc_timestamp = tsc; 1103 } 1104 } 1105 1106 local_irq_restore(flags); 1107 1108 if (!vcpu->time_page) 1109 return 0; 1110 1111 /* 1112 * Time as measured by the TSC may go backwards when resetting the base 1113 * tsc_timestamp. The reason for this is that the TSC resolution is 1114 * higher than the resolution of the other clock scales. Thus, many 1115 * possible measurments of the TSC correspond to one measurement of any 1116 * other clock, and so a spread of values is possible. This is not a 1117 * problem for the computation of the nanosecond clock; with TSC rates 1118 * around 1GHZ, there can only be a few cycles which correspond to one 1119 * nanosecond value, and any path through this code will inevitably 1120 * take longer than that. However, with the kernel_ns value itself, 1121 * the precision may be much lower, down to HZ granularity. If the 1122 * first sampling of TSC against kernel_ns ends in the low part of the 1123 * range, and the second in the high end of the range, we can get: 1124 * 1125 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1126 * 1127 * As the sampling errors potentially range in the thousands of cycles, 1128 * it is possible such a time value has already been observed by the 1129 * guest. To protect against this, we must compute the system time as 1130 * observed by the guest and ensure the new system time is greater. 1131 */ 1132 max_kernel_ns = 0; 1133 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) { 1134 max_kernel_ns = vcpu->last_guest_tsc - 1135 vcpu->hv_clock.tsc_timestamp; 1136 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1137 vcpu->hv_clock.tsc_to_system_mul, 1138 vcpu->hv_clock.tsc_shift); 1139 max_kernel_ns += vcpu->last_kernel_ns; 1140 } 1141 1142 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1143 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1144 &vcpu->hv_clock.tsc_shift, 1145 &vcpu->hv_clock.tsc_to_system_mul); 1146 vcpu->hw_tsc_khz = this_tsc_khz; 1147 } 1148 1149 if (max_kernel_ns > kernel_ns) 1150 kernel_ns = max_kernel_ns; 1151 1152 /* With all the info we got, fill in the values */ 1153 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1154 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1155 vcpu->last_kernel_ns = kernel_ns; 1156 vcpu->last_guest_tsc = tsc_timestamp; 1157 vcpu->hv_clock.flags = 0; 1158 1159 /* 1160 * The interface expects us to write an even number signaling that the 1161 * update is finished. Since the guest won't see the intermediate 1162 * state, we just increase by 2 at the end. 1163 */ 1164 vcpu->hv_clock.version += 2; 1165 1166 shared_kaddr = kmap_atomic(vcpu->time_page); 1167 1168 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1169 sizeof(vcpu->hv_clock)); 1170 1171 kunmap_atomic(shared_kaddr); 1172 1173 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1174 return 0; 1175 } 1176 1177 static bool msr_mtrr_valid(unsigned msr) 1178 { 1179 switch (msr) { 1180 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1181 case MSR_MTRRfix64K_00000: 1182 case MSR_MTRRfix16K_80000: 1183 case MSR_MTRRfix16K_A0000: 1184 case MSR_MTRRfix4K_C0000: 1185 case MSR_MTRRfix4K_C8000: 1186 case MSR_MTRRfix4K_D0000: 1187 case MSR_MTRRfix4K_D8000: 1188 case MSR_MTRRfix4K_E0000: 1189 case MSR_MTRRfix4K_E8000: 1190 case MSR_MTRRfix4K_F0000: 1191 case MSR_MTRRfix4K_F8000: 1192 case MSR_MTRRdefType: 1193 case MSR_IA32_CR_PAT: 1194 return true; 1195 case 0x2f8: 1196 return true; 1197 } 1198 return false; 1199 } 1200 1201 static bool valid_pat_type(unsigned t) 1202 { 1203 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1204 } 1205 1206 static bool valid_mtrr_type(unsigned t) 1207 { 1208 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1209 } 1210 1211 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1212 { 1213 int i; 1214 1215 if (!msr_mtrr_valid(msr)) 1216 return false; 1217 1218 if (msr == MSR_IA32_CR_PAT) { 1219 for (i = 0; i < 8; i++) 1220 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1221 return false; 1222 return true; 1223 } else if (msr == MSR_MTRRdefType) { 1224 if (data & ~0xcff) 1225 return false; 1226 return valid_mtrr_type(data & 0xff); 1227 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1228 for (i = 0; i < 8 ; i++) 1229 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1230 return false; 1231 return true; 1232 } 1233 1234 /* variable MTRRs */ 1235 return valid_mtrr_type(data & 0xff); 1236 } 1237 1238 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1239 { 1240 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1241 1242 if (!mtrr_valid(vcpu, msr, data)) 1243 return 1; 1244 1245 if (msr == MSR_MTRRdefType) { 1246 vcpu->arch.mtrr_state.def_type = data; 1247 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1248 } else if (msr == MSR_MTRRfix64K_00000) 1249 p[0] = data; 1250 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1251 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1252 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1253 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1254 else if (msr == MSR_IA32_CR_PAT) 1255 vcpu->arch.pat = data; 1256 else { /* Variable MTRRs */ 1257 int idx, is_mtrr_mask; 1258 u64 *pt; 1259 1260 idx = (msr - 0x200) / 2; 1261 is_mtrr_mask = msr - 0x200 - 2 * idx; 1262 if (!is_mtrr_mask) 1263 pt = 1264 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1265 else 1266 pt = 1267 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1268 *pt = data; 1269 } 1270 1271 kvm_mmu_reset_context(vcpu); 1272 return 0; 1273 } 1274 1275 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1276 { 1277 u64 mcg_cap = vcpu->arch.mcg_cap; 1278 unsigned bank_num = mcg_cap & 0xff; 1279 1280 switch (msr) { 1281 case MSR_IA32_MCG_STATUS: 1282 vcpu->arch.mcg_status = data; 1283 break; 1284 case MSR_IA32_MCG_CTL: 1285 if (!(mcg_cap & MCG_CTL_P)) 1286 return 1; 1287 if (data != 0 && data != ~(u64)0) 1288 return -1; 1289 vcpu->arch.mcg_ctl = data; 1290 break; 1291 default: 1292 if (msr >= MSR_IA32_MC0_CTL && 1293 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1294 u32 offset = msr - MSR_IA32_MC0_CTL; 1295 /* only 0 or all 1s can be written to IA32_MCi_CTL 1296 * some Linux kernels though clear bit 10 in bank 4 to 1297 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1298 * this to avoid an uncatched #GP in the guest 1299 */ 1300 if ((offset & 0x3) == 0 && 1301 data != 0 && (data | (1 << 10)) != ~(u64)0) 1302 return -1; 1303 vcpu->arch.mce_banks[offset] = data; 1304 break; 1305 } 1306 return 1; 1307 } 1308 return 0; 1309 } 1310 1311 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1312 { 1313 struct kvm *kvm = vcpu->kvm; 1314 int lm = is_long_mode(vcpu); 1315 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1316 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1317 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1318 : kvm->arch.xen_hvm_config.blob_size_32; 1319 u32 page_num = data & ~PAGE_MASK; 1320 u64 page_addr = data & PAGE_MASK; 1321 u8 *page; 1322 int r; 1323 1324 r = -E2BIG; 1325 if (page_num >= blob_size) 1326 goto out; 1327 r = -ENOMEM; 1328 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1329 if (IS_ERR(page)) { 1330 r = PTR_ERR(page); 1331 goto out; 1332 } 1333 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1334 goto out_free; 1335 r = 0; 1336 out_free: 1337 kfree(page); 1338 out: 1339 return r; 1340 } 1341 1342 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1343 { 1344 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1345 } 1346 1347 static bool kvm_hv_msr_partition_wide(u32 msr) 1348 { 1349 bool r = false; 1350 switch (msr) { 1351 case HV_X64_MSR_GUEST_OS_ID: 1352 case HV_X64_MSR_HYPERCALL: 1353 r = true; 1354 break; 1355 } 1356 1357 return r; 1358 } 1359 1360 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1361 { 1362 struct kvm *kvm = vcpu->kvm; 1363 1364 switch (msr) { 1365 case HV_X64_MSR_GUEST_OS_ID: 1366 kvm->arch.hv_guest_os_id = data; 1367 /* setting guest os id to zero disables hypercall page */ 1368 if (!kvm->arch.hv_guest_os_id) 1369 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1370 break; 1371 case HV_X64_MSR_HYPERCALL: { 1372 u64 gfn; 1373 unsigned long addr; 1374 u8 instructions[4]; 1375 1376 /* if guest os id is not set hypercall should remain disabled */ 1377 if (!kvm->arch.hv_guest_os_id) 1378 break; 1379 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1380 kvm->arch.hv_hypercall = data; 1381 break; 1382 } 1383 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1384 addr = gfn_to_hva(kvm, gfn); 1385 if (kvm_is_error_hva(addr)) 1386 return 1; 1387 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1388 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1389 if (__copy_to_user((void __user *)addr, instructions, 4)) 1390 return 1; 1391 kvm->arch.hv_hypercall = data; 1392 break; 1393 } 1394 default: 1395 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1396 "data 0x%llx\n", msr, data); 1397 return 1; 1398 } 1399 return 0; 1400 } 1401 1402 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1403 { 1404 switch (msr) { 1405 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1406 unsigned long addr; 1407 1408 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1409 vcpu->arch.hv_vapic = data; 1410 break; 1411 } 1412 addr = gfn_to_hva(vcpu->kvm, data >> 1413 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1414 if (kvm_is_error_hva(addr)) 1415 return 1; 1416 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1417 return 1; 1418 vcpu->arch.hv_vapic = data; 1419 break; 1420 } 1421 case HV_X64_MSR_EOI: 1422 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1423 case HV_X64_MSR_ICR: 1424 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1425 case HV_X64_MSR_TPR: 1426 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1427 default: 1428 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1429 "data 0x%llx\n", msr, data); 1430 return 1; 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1437 { 1438 gpa_t gpa = data & ~0x3f; 1439 1440 /* Bits 2:5 are resrved, Should be zero */ 1441 if (data & 0x3c) 1442 return 1; 1443 1444 vcpu->arch.apf.msr_val = data; 1445 1446 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1447 kvm_clear_async_pf_completion_queue(vcpu); 1448 kvm_async_pf_hash_reset(vcpu); 1449 return 0; 1450 } 1451 1452 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1453 return 1; 1454 1455 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1456 kvm_async_pf_wakeup_all(vcpu); 1457 return 0; 1458 } 1459 1460 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1461 { 1462 if (vcpu->arch.time_page) { 1463 kvm_release_page_dirty(vcpu->arch.time_page); 1464 vcpu->arch.time_page = NULL; 1465 } 1466 } 1467 1468 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1469 { 1470 u64 delta; 1471 1472 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1473 return; 1474 1475 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1476 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1477 vcpu->arch.st.accum_steal = delta; 1478 } 1479 1480 static void record_steal_time(struct kvm_vcpu *vcpu) 1481 { 1482 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1483 return; 1484 1485 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1486 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1487 return; 1488 1489 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1490 vcpu->arch.st.steal.version += 2; 1491 vcpu->arch.st.accum_steal = 0; 1492 1493 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1494 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1495 } 1496 1497 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1498 { 1499 bool pr = false; 1500 1501 switch (msr) { 1502 case MSR_EFER: 1503 return set_efer(vcpu, data); 1504 case MSR_K7_HWCR: 1505 data &= ~(u64)0x40; /* ignore flush filter disable */ 1506 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1507 if (data != 0) { 1508 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1509 data); 1510 return 1; 1511 } 1512 break; 1513 case MSR_FAM10H_MMIO_CONF_BASE: 1514 if (data != 0) { 1515 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1516 "0x%llx\n", data); 1517 return 1; 1518 } 1519 break; 1520 case MSR_AMD64_NB_CFG: 1521 break; 1522 case MSR_IA32_DEBUGCTLMSR: 1523 if (!data) { 1524 /* We support the non-activated case already */ 1525 break; 1526 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1527 /* Values other than LBR and BTF are vendor-specific, 1528 thus reserved and should throw a #GP */ 1529 return 1; 1530 } 1531 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1532 __func__, data); 1533 break; 1534 case MSR_IA32_UCODE_REV: 1535 case MSR_IA32_UCODE_WRITE: 1536 case MSR_VM_HSAVE_PA: 1537 case MSR_AMD64_PATCH_LOADER: 1538 break; 1539 case 0x200 ... 0x2ff: 1540 return set_msr_mtrr(vcpu, msr, data); 1541 case MSR_IA32_APICBASE: 1542 kvm_set_apic_base(vcpu, data); 1543 break; 1544 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1545 return kvm_x2apic_msr_write(vcpu, msr, data); 1546 case MSR_IA32_TSCDEADLINE: 1547 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1548 break; 1549 case MSR_IA32_MISC_ENABLE: 1550 vcpu->arch.ia32_misc_enable_msr = data; 1551 break; 1552 case MSR_KVM_WALL_CLOCK_NEW: 1553 case MSR_KVM_WALL_CLOCK: 1554 vcpu->kvm->arch.wall_clock = data; 1555 kvm_write_wall_clock(vcpu->kvm, data); 1556 break; 1557 case MSR_KVM_SYSTEM_TIME_NEW: 1558 case MSR_KVM_SYSTEM_TIME: { 1559 kvmclock_reset(vcpu); 1560 1561 vcpu->arch.time = data; 1562 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1563 1564 /* we verify if the enable bit is set... */ 1565 if (!(data & 1)) 1566 break; 1567 1568 /* ...but clean it before doing the actual write */ 1569 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1570 1571 vcpu->arch.time_page = 1572 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1573 1574 if (is_error_page(vcpu->arch.time_page)) { 1575 kvm_release_page_clean(vcpu->arch.time_page); 1576 vcpu->arch.time_page = NULL; 1577 } 1578 break; 1579 } 1580 case MSR_KVM_ASYNC_PF_EN: 1581 if (kvm_pv_enable_async_pf(vcpu, data)) 1582 return 1; 1583 break; 1584 case MSR_KVM_STEAL_TIME: 1585 1586 if (unlikely(!sched_info_on())) 1587 return 1; 1588 1589 if (data & KVM_STEAL_RESERVED_MASK) 1590 return 1; 1591 1592 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1593 data & KVM_STEAL_VALID_BITS)) 1594 return 1; 1595 1596 vcpu->arch.st.msr_val = data; 1597 1598 if (!(data & KVM_MSR_ENABLED)) 1599 break; 1600 1601 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1602 1603 preempt_disable(); 1604 accumulate_steal_time(vcpu); 1605 preempt_enable(); 1606 1607 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1608 1609 break; 1610 1611 case MSR_IA32_MCG_CTL: 1612 case MSR_IA32_MCG_STATUS: 1613 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1614 return set_msr_mce(vcpu, msr, data); 1615 1616 /* Performance counters are not protected by a CPUID bit, 1617 * so we should check all of them in the generic path for the sake of 1618 * cross vendor migration. 1619 * Writing a zero into the event select MSRs disables them, 1620 * which we perfectly emulate ;-). Any other value should be at least 1621 * reported, some guests depend on them. 1622 */ 1623 case MSR_K7_EVNTSEL0: 1624 case MSR_K7_EVNTSEL1: 1625 case MSR_K7_EVNTSEL2: 1626 case MSR_K7_EVNTSEL3: 1627 if (data != 0) 1628 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1629 "0x%x data 0x%llx\n", msr, data); 1630 break; 1631 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1632 * so we ignore writes to make it happy. 1633 */ 1634 case MSR_K7_PERFCTR0: 1635 case MSR_K7_PERFCTR1: 1636 case MSR_K7_PERFCTR2: 1637 case MSR_K7_PERFCTR3: 1638 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1639 "0x%x data 0x%llx\n", msr, data); 1640 break; 1641 case MSR_P6_PERFCTR0: 1642 case MSR_P6_PERFCTR1: 1643 pr = true; 1644 case MSR_P6_EVNTSEL0: 1645 case MSR_P6_EVNTSEL1: 1646 if (kvm_pmu_msr(vcpu, msr)) 1647 return kvm_pmu_set_msr(vcpu, msr, data); 1648 1649 if (pr || data != 0) 1650 pr_unimpl(vcpu, "disabled perfctr wrmsr: " 1651 "0x%x data 0x%llx\n", msr, data); 1652 break; 1653 case MSR_K7_CLK_CTL: 1654 /* 1655 * Ignore all writes to this no longer documented MSR. 1656 * Writes are only relevant for old K7 processors, 1657 * all pre-dating SVM, but a recommended workaround from 1658 * AMD for these chips. It is possible to speicify the 1659 * affected processor models on the command line, hence 1660 * the need to ignore the workaround. 1661 */ 1662 break; 1663 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1664 if (kvm_hv_msr_partition_wide(msr)) { 1665 int r; 1666 mutex_lock(&vcpu->kvm->lock); 1667 r = set_msr_hyperv_pw(vcpu, msr, data); 1668 mutex_unlock(&vcpu->kvm->lock); 1669 return r; 1670 } else 1671 return set_msr_hyperv(vcpu, msr, data); 1672 break; 1673 case MSR_IA32_BBL_CR_CTL3: 1674 /* Drop writes to this legacy MSR -- see rdmsr 1675 * counterpart for further detail. 1676 */ 1677 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1678 break; 1679 default: 1680 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1681 return xen_hvm_config(vcpu, data); 1682 if (kvm_pmu_msr(vcpu, msr)) 1683 return kvm_pmu_set_msr(vcpu, msr, data); 1684 if (!ignore_msrs) { 1685 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1686 msr, data); 1687 return 1; 1688 } else { 1689 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1690 msr, data); 1691 break; 1692 } 1693 } 1694 return 0; 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1697 1698 1699 /* 1700 * Reads an msr value (of 'msr_index') into 'pdata'. 1701 * Returns 0 on success, non-0 otherwise. 1702 * Assumes vcpu_load() was already called. 1703 */ 1704 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1705 { 1706 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1707 } 1708 1709 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1710 { 1711 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1712 1713 if (!msr_mtrr_valid(msr)) 1714 return 1; 1715 1716 if (msr == MSR_MTRRdefType) 1717 *pdata = vcpu->arch.mtrr_state.def_type + 1718 (vcpu->arch.mtrr_state.enabled << 10); 1719 else if (msr == MSR_MTRRfix64K_00000) 1720 *pdata = p[0]; 1721 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1722 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1723 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1724 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1725 else if (msr == MSR_IA32_CR_PAT) 1726 *pdata = vcpu->arch.pat; 1727 else { /* Variable MTRRs */ 1728 int idx, is_mtrr_mask; 1729 u64 *pt; 1730 1731 idx = (msr - 0x200) / 2; 1732 is_mtrr_mask = msr - 0x200 - 2 * idx; 1733 if (!is_mtrr_mask) 1734 pt = 1735 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1736 else 1737 pt = 1738 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1739 *pdata = *pt; 1740 } 1741 1742 return 0; 1743 } 1744 1745 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1746 { 1747 u64 data; 1748 u64 mcg_cap = vcpu->arch.mcg_cap; 1749 unsigned bank_num = mcg_cap & 0xff; 1750 1751 switch (msr) { 1752 case MSR_IA32_P5_MC_ADDR: 1753 case MSR_IA32_P5_MC_TYPE: 1754 data = 0; 1755 break; 1756 case MSR_IA32_MCG_CAP: 1757 data = vcpu->arch.mcg_cap; 1758 break; 1759 case MSR_IA32_MCG_CTL: 1760 if (!(mcg_cap & MCG_CTL_P)) 1761 return 1; 1762 data = vcpu->arch.mcg_ctl; 1763 break; 1764 case MSR_IA32_MCG_STATUS: 1765 data = vcpu->arch.mcg_status; 1766 break; 1767 default: 1768 if (msr >= MSR_IA32_MC0_CTL && 1769 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1770 u32 offset = msr - MSR_IA32_MC0_CTL; 1771 data = vcpu->arch.mce_banks[offset]; 1772 break; 1773 } 1774 return 1; 1775 } 1776 *pdata = data; 1777 return 0; 1778 } 1779 1780 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1781 { 1782 u64 data = 0; 1783 struct kvm *kvm = vcpu->kvm; 1784 1785 switch (msr) { 1786 case HV_X64_MSR_GUEST_OS_ID: 1787 data = kvm->arch.hv_guest_os_id; 1788 break; 1789 case HV_X64_MSR_HYPERCALL: 1790 data = kvm->arch.hv_hypercall; 1791 break; 1792 default: 1793 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1794 return 1; 1795 } 1796 1797 *pdata = data; 1798 return 0; 1799 } 1800 1801 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1802 { 1803 u64 data = 0; 1804 1805 switch (msr) { 1806 case HV_X64_MSR_VP_INDEX: { 1807 int r; 1808 struct kvm_vcpu *v; 1809 kvm_for_each_vcpu(r, v, vcpu->kvm) 1810 if (v == vcpu) 1811 data = r; 1812 break; 1813 } 1814 case HV_X64_MSR_EOI: 1815 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1816 case HV_X64_MSR_ICR: 1817 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1818 case HV_X64_MSR_TPR: 1819 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1820 case HV_X64_MSR_APIC_ASSIST_PAGE: 1821 data = vcpu->arch.hv_vapic; 1822 break; 1823 default: 1824 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1825 return 1; 1826 } 1827 *pdata = data; 1828 return 0; 1829 } 1830 1831 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1832 { 1833 u64 data; 1834 1835 switch (msr) { 1836 case MSR_IA32_PLATFORM_ID: 1837 case MSR_IA32_EBL_CR_POWERON: 1838 case MSR_IA32_DEBUGCTLMSR: 1839 case MSR_IA32_LASTBRANCHFROMIP: 1840 case MSR_IA32_LASTBRANCHTOIP: 1841 case MSR_IA32_LASTINTFROMIP: 1842 case MSR_IA32_LASTINTTOIP: 1843 case MSR_K8_SYSCFG: 1844 case MSR_K7_HWCR: 1845 case MSR_VM_HSAVE_PA: 1846 case MSR_K7_EVNTSEL0: 1847 case MSR_K7_PERFCTR0: 1848 case MSR_K8_INT_PENDING_MSG: 1849 case MSR_AMD64_NB_CFG: 1850 case MSR_FAM10H_MMIO_CONF_BASE: 1851 data = 0; 1852 break; 1853 case MSR_P6_PERFCTR0: 1854 case MSR_P6_PERFCTR1: 1855 case MSR_P6_EVNTSEL0: 1856 case MSR_P6_EVNTSEL1: 1857 if (kvm_pmu_msr(vcpu, msr)) 1858 return kvm_pmu_get_msr(vcpu, msr, pdata); 1859 data = 0; 1860 break; 1861 case MSR_IA32_UCODE_REV: 1862 data = 0x100000000ULL; 1863 break; 1864 case MSR_MTRRcap: 1865 data = 0x500 | KVM_NR_VAR_MTRR; 1866 break; 1867 case 0x200 ... 0x2ff: 1868 return get_msr_mtrr(vcpu, msr, pdata); 1869 case 0xcd: /* fsb frequency */ 1870 data = 3; 1871 break; 1872 /* 1873 * MSR_EBC_FREQUENCY_ID 1874 * Conservative value valid for even the basic CPU models. 1875 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1876 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1877 * and 266MHz for model 3, or 4. Set Core Clock 1878 * Frequency to System Bus Frequency Ratio to 1 (bits 1879 * 31:24) even though these are only valid for CPU 1880 * models > 2, however guests may end up dividing or 1881 * multiplying by zero otherwise. 1882 */ 1883 case MSR_EBC_FREQUENCY_ID: 1884 data = 1 << 24; 1885 break; 1886 case MSR_IA32_APICBASE: 1887 data = kvm_get_apic_base(vcpu); 1888 break; 1889 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1890 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1891 break; 1892 case MSR_IA32_TSCDEADLINE: 1893 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1894 break; 1895 case MSR_IA32_MISC_ENABLE: 1896 data = vcpu->arch.ia32_misc_enable_msr; 1897 break; 1898 case MSR_IA32_PERF_STATUS: 1899 /* TSC increment by tick */ 1900 data = 1000ULL; 1901 /* CPU multiplier */ 1902 data |= (((uint64_t)4ULL) << 40); 1903 break; 1904 case MSR_EFER: 1905 data = vcpu->arch.efer; 1906 break; 1907 case MSR_KVM_WALL_CLOCK: 1908 case MSR_KVM_WALL_CLOCK_NEW: 1909 data = vcpu->kvm->arch.wall_clock; 1910 break; 1911 case MSR_KVM_SYSTEM_TIME: 1912 case MSR_KVM_SYSTEM_TIME_NEW: 1913 data = vcpu->arch.time; 1914 break; 1915 case MSR_KVM_ASYNC_PF_EN: 1916 data = vcpu->arch.apf.msr_val; 1917 break; 1918 case MSR_KVM_STEAL_TIME: 1919 data = vcpu->arch.st.msr_val; 1920 break; 1921 case MSR_IA32_P5_MC_ADDR: 1922 case MSR_IA32_P5_MC_TYPE: 1923 case MSR_IA32_MCG_CAP: 1924 case MSR_IA32_MCG_CTL: 1925 case MSR_IA32_MCG_STATUS: 1926 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1927 return get_msr_mce(vcpu, msr, pdata); 1928 case MSR_K7_CLK_CTL: 1929 /* 1930 * Provide expected ramp-up count for K7. All other 1931 * are set to zero, indicating minimum divisors for 1932 * every field. 1933 * 1934 * This prevents guest kernels on AMD host with CPU 1935 * type 6, model 8 and higher from exploding due to 1936 * the rdmsr failing. 1937 */ 1938 data = 0x20000000; 1939 break; 1940 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1941 if (kvm_hv_msr_partition_wide(msr)) { 1942 int r; 1943 mutex_lock(&vcpu->kvm->lock); 1944 r = get_msr_hyperv_pw(vcpu, msr, pdata); 1945 mutex_unlock(&vcpu->kvm->lock); 1946 return r; 1947 } else 1948 return get_msr_hyperv(vcpu, msr, pdata); 1949 break; 1950 case MSR_IA32_BBL_CR_CTL3: 1951 /* This legacy MSR exists but isn't fully documented in current 1952 * silicon. It is however accessed by winxp in very narrow 1953 * scenarios where it sets bit #19, itself documented as 1954 * a "reserved" bit. Best effort attempt to source coherent 1955 * read data here should the balance of the register be 1956 * interpreted by the guest: 1957 * 1958 * L2 cache control register 3: 64GB range, 256KB size, 1959 * enabled, latency 0x1, configured 1960 */ 1961 data = 0xbe702111; 1962 break; 1963 default: 1964 if (kvm_pmu_msr(vcpu, msr)) 1965 return kvm_pmu_get_msr(vcpu, msr, pdata); 1966 if (!ignore_msrs) { 1967 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 1968 return 1; 1969 } else { 1970 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 1971 data = 0; 1972 } 1973 break; 1974 } 1975 *pdata = data; 1976 return 0; 1977 } 1978 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 1979 1980 /* 1981 * Read or write a bunch of msrs. All parameters are kernel addresses. 1982 * 1983 * @return number of msrs set successfully. 1984 */ 1985 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 1986 struct kvm_msr_entry *entries, 1987 int (*do_msr)(struct kvm_vcpu *vcpu, 1988 unsigned index, u64 *data)) 1989 { 1990 int i, idx; 1991 1992 idx = srcu_read_lock(&vcpu->kvm->srcu); 1993 for (i = 0; i < msrs->nmsrs; ++i) 1994 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 1995 break; 1996 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1997 1998 return i; 1999 } 2000 2001 /* 2002 * Read or write a bunch of msrs. Parameters are user addresses. 2003 * 2004 * @return number of msrs set successfully. 2005 */ 2006 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2007 int (*do_msr)(struct kvm_vcpu *vcpu, 2008 unsigned index, u64 *data), 2009 int writeback) 2010 { 2011 struct kvm_msrs msrs; 2012 struct kvm_msr_entry *entries; 2013 int r, n; 2014 unsigned size; 2015 2016 r = -EFAULT; 2017 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2018 goto out; 2019 2020 r = -E2BIG; 2021 if (msrs.nmsrs >= MAX_IO_MSRS) 2022 goto out; 2023 2024 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2025 entries = memdup_user(user_msrs->entries, size); 2026 if (IS_ERR(entries)) { 2027 r = PTR_ERR(entries); 2028 goto out; 2029 } 2030 2031 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2032 if (r < 0) 2033 goto out_free; 2034 2035 r = -EFAULT; 2036 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2037 goto out_free; 2038 2039 r = n; 2040 2041 out_free: 2042 kfree(entries); 2043 out: 2044 return r; 2045 } 2046 2047 int kvm_dev_ioctl_check_extension(long ext) 2048 { 2049 int r; 2050 2051 switch (ext) { 2052 case KVM_CAP_IRQCHIP: 2053 case KVM_CAP_HLT: 2054 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2055 case KVM_CAP_SET_TSS_ADDR: 2056 case KVM_CAP_EXT_CPUID: 2057 case KVM_CAP_CLOCKSOURCE: 2058 case KVM_CAP_PIT: 2059 case KVM_CAP_NOP_IO_DELAY: 2060 case KVM_CAP_MP_STATE: 2061 case KVM_CAP_SYNC_MMU: 2062 case KVM_CAP_USER_NMI: 2063 case KVM_CAP_REINJECT_CONTROL: 2064 case KVM_CAP_IRQ_INJECT_STATUS: 2065 case KVM_CAP_ASSIGN_DEV_IRQ: 2066 case KVM_CAP_IRQFD: 2067 case KVM_CAP_IOEVENTFD: 2068 case KVM_CAP_PIT2: 2069 case KVM_CAP_PIT_STATE2: 2070 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2071 case KVM_CAP_XEN_HVM: 2072 case KVM_CAP_ADJUST_CLOCK: 2073 case KVM_CAP_VCPU_EVENTS: 2074 case KVM_CAP_HYPERV: 2075 case KVM_CAP_HYPERV_VAPIC: 2076 case KVM_CAP_HYPERV_SPIN: 2077 case KVM_CAP_PCI_SEGMENT: 2078 case KVM_CAP_DEBUGREGS: 2079 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2080 case KVM_CAP_XSAVE: 2081 case KVM_CAP_ASYNC_PF: 2082 case KVM_CAP_GET_TSC_KHZ: 2083 r = 1; 2084 break; 2085 case KVM_CAP_COALESCED_MMIO: 2086 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2087 break; 2088 case KVM_CAP_VAPIC: 2089 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2090 break; 2091 case KVM_CAP_NR_VCPUS: 2092 r = KVM_SOFT_MAX_VCPUS; 2093 break; 2094 case KVM_CAP_MAX_VCPUS: 2095 r = KVM_MAX_VCPUS; 2096 break; 2097 case KVM_CAP_NR_MEMSLOTS: 2098 r = KVM_MEMORY_SLOTS; 2099 break; 2100 case KVM_CAP_PV_MMU: /* obsolete */ 2101 r = 0; 2102 break; 2103 case KVM_CAP_IOMMU: 2104 r = iommu_present(&pci_bus_type); 2105 break; 2106 case KVM_CAP_MCE: 2107 r = KVM_MAX_MCE_BANKS; 2108 break; 2109 case KVM_CAP_XCRS: 2110 r = cpu_has_xsave; 2111 break; 2112 case KVM_CAP_TSC_CONTROL: 2113 r = kvm_has_tsc_control; 2114 break; 2115 case KVM_CAP_TSC_DEADLINE_TIMER: 2116 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2117 break; 2118 default: 2119 r = 0; 2120 break; 2121 } 2122 return r; 2123 2124 } 2125 2126 long kvm_arch_dev_ioctl(struct file *filp, 2127 unsigned int ioctl, unsigned long arg) 2128 { 2129 void __user *argp = (void __user *)arg; 2130 long r; 2131 2132 switch (ioctl) { 2133 case KVM_GET_MSR_INDEX_LIST: { 2134 struct kvm_msr_list __user *user_msr_list = argp; 2135 struct kvm_msr_list msr_list; 2136 unsigned n; 2137 2138 r = -EFAULT; 2139 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2140 goto out; 2141 n = msr_list.nmsrs; 2142 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2143 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2144 goto out; 2145 r = -E2BIG; 2146 if (n < msr_list.nmsrs) 2147 goto out; 2148 r = -EFAULT; 2149 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2150 num_msrs_to_save * sizeof(u32))) 2151 goto out; 2152 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2153 &emulated_msrs, 2154 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2155 goto out; 2156 r = 0; 2157 break; 2158 } 2159 case KVM_GET_SUPPORTED_CPUID: { 2160 struct kvm_cpuid2 __user *cpuid_arg = argp; 2161 struct kvm_cpuid2 cpuid; 2162 2163 r = -EFAULT; 2164 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2165 goto out; 2166 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2167 cpuid_arg->entries); 2168 if (r) 2169 goto out; 2170 2171 r = -EFAULT; 2172 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2173 goto out; 2174 r = 0; 2175 break; 2176 } 2177 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2178 u64 mce_cap; 2179 2180 mce_cap = KVM_MCE_CAP_SUPPORTED; 2181 r = -EFAULT; 2182 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2183 goto out; 2184 r = 0; 2185 break; 2186 } 2187 default: 2188 r = -EINVAL; 2189 } 2190 out: 2191 return r; 2192 } 2193 2194 static void wbinvd_ipi(void *garbage) 2195 { 2196 wbinvd(); 2197 } 2198 2199 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2200 { 2201 return vcpu->kvm->arch.iommu_domain && 2202 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2203 } 2204 2205 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2206 { 2207 /* Address WBINVD may be executed by guest */ 2208 if (need_emulate_wbinvd(vcpu)) { 2209 if (kvm_x86_ops->has_wbinvd_exit()) 2210 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2211 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2212 smp_call_function_single(vcpu->cpu, 2213 wbinvd_ipi, NULL, 1); 2214 } 2215 2216 kvm_x86_ops->vcpu_load(vcpu, cpu); 2217 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2218 /* Make sure TSC doesn't go backwards */ 2219 s64 tsc_delta; 2220 u64 tsc; 2221 2222 tsc = kvm_x86_ops->read_l1_tsc(vcpu); 2223 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 : 2224 tsc - vcpu->arch.last_guest_tsc; 2225 2226 if (tsc_delta < 0) 2227 mark_tsc_unstable("KVM discovered backwards TSC"); 2228 if (check_tsc_unstable()) { 2229 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta); 2230 vcpu->arch.tsc_catchup = 1; 2231 } 2232 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2233 if (vcpu->cpu != cpu) 2234 kvm_migrate_timers(vcpu); 2235 vcpu->cpu = cpu; 2236 } 2237 2238 accumulate_steal_time(vcpu); 2239 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2240 } 2241 2242 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2243 { 2244 kvm_x86_ops->vcpu_put(vcpu); 2245 kvm_put_guest_fpu(vcpu); 2246 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 2247 } 2248 2249 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2250 struct kvm_lapic_state *s) 2251 { 2252 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2253 2254 return 0; 2255 } 2256 2257 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2258 struct kvm_lapic_state *s) 2259 { 2260 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); 2261 kvm_apic_post_state_restore(vcpu); 2262 update_cr8_intercept(vcpu); 2263 2264 return 0; 2265 } 2266 2267 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2268 struct kvm_interrupt *irq) 2269 { 2270 if (irq->irq < 0 || irq->irq >= 256) 2271 return -EINVAL; 2272 if (irqchip_in_kernel(vcpu->kvm)) 2273 return -ENXIO; 2274 2275 kvm_queue_interrupt(vcpu, irq->irq, false); 2276 kvm_make_request(KVM_REQ_EVENT, vcpu); 2277 2278 return 0; 2279 } 2280 2281 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2282 { 2283 kvm_inject_nmi(vcpu); 2284 2285 return 0; 2286 } 2287 2288 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2289 struct kvm_tpr_access_ctl *tac) 2290 { 2291 if (tac->flags) 2292 return -EINVAL; 2293 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2294 return 0; 2295 } 2296 2297 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2298 u64 mcg_cap) 2299 { 2300 int r; 2301 unsigned bank_num = mcg_cap & 0xff, bank; 2302 2303 r = -EINVAL; 2304 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2305 goto out; 2306 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2307 goto out; 2308 r = 0; 2309 vcpu->arch.mcg_cap = mcg_cap; 2310 /* Init IA32_MCG_CTL to all 1s */ 2311 if (mcg_cap & MCG_CTL_P) 2312 vcpu->arch.mcg_ctl = ~(u64)0; 2313 /* Init IA32_MCi_CTL to all 1s */ 2314 for (bank = 0; bank < bank_num; bank++) 2315 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2316 out: 2317 return r; 2318 } 2319 2320 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2321 struct kvm_x86_mce *mce) 2322 { 2323 u64 mcg_cap = vcpu->arch.mcg_cap; 2324 unsigned bank_num = mcg_cap & 0xff; 2325 u64 *banks = vcpu->arch.mce_banks; 2326 2327 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2328 return -EINVAL; 2329 /* 2330 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2331 * reporting is disabled 2332 */ 2333 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2334 vcpu->arch.mcg_ctl != ~(u64)0) 2335 return 0; 2336 banks += 4 * mce->bank; 2337 /* 2338 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2339 * reporting is disabled for the bank 2340 */ 2341 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2342 return 0; 2343 if (mce->status & MCI_STATUS_UC) { 2344 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2345 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2346 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2347 return 0; 2348 } 2349 if (banks[1] & MCI_STATUS_VAL) 2350 mce->status |= MCI_STATUS_OVER; 2351 banks[2] = mce->addr; 2352 banks[3] = mce->misc; 2353 vcpu->arch.mcg_status = mce->mcg_status; 2354 banks[1] = mce->status; 2355 kvm_queue_exception(vcpu, MC_VECTOR); 2356 } else if (!(banks[1] & MCI_STATUS_VAL) 2357 || !(banks[1] & MCI_STATUS_UC)) { 2358 if (banks[1] & MCI_STATUS_VAL) 2359 mce->status |= MCI_STATUS_OVER; 2360 banks[2] = mce->addr; 2361 banks[3] = mce->misc; 2362 banks[1] = mce->status; 2363 } else 2364 banks[1] |= MCI_STATUS_OVER; 2365 return 0; 2366 } 2367 2368 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2369 struct kvm_vcpu_events *events) 2370 { 2371 process_nmi(vcpu); 2372 events->exception.injected = 2373 vcpu->arch.exception.pending && 2374 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2375 events->exception.nr = vcpu->arch.exception.nr; 2376 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2377 events->exception.pad = 0; 2378 events->exception.error_code = vcpu->arch.exception.error_code; 2379 2380 events->interrupt.injected = 2381 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2382 events->interrupt.nr = vcpu->arch.interrupt.nr; 2383 events->interrupt.soft = 0; 2384 events->interrupt.shadow = 2385 kvm_x86_ops->get_interrupt_shadow(vcpu, 2386 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2387 2388 events->nmi.injected = vcpu->arch.nmi_injected; 2389 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2390 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2391 events->nmi.pad = 0; 2392 2393 events->sipi_vector = vcpu->arch.sipi_vector; 2394 2395 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2396 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2397 | KVM_VCPUEVENT_VALID_SHADOW); 2398 memset(&events->reserved, 0, sizeof(events->reserved)); 2399 } 2400 2401 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2402 struct kvm_vcpu_events *events) 2403 { 2404 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2405 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2406 | KVM_VCPUEVENT_VALID_SHADOW)) 2407 return -EINVAL; 2408 2409 process_nmi(vcpu); 2410 vcpu->arch.exception.pending = events->exception.injected; 2411 vcpu->arch.exception.nr = events->exception.nr; 2412 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2413 vcpu->arch.exception.error_code = events->exception.error_code; 2414 2415 vcpu->arch.interrupt.pending = events->interrupt.injected; 2416 vcpu->arch.interrupt.nr = events->interrupt.nr; 2417 vcpu->arch.interrupt.soft = events->interrupt.soft; 2418 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2419 kvm_x86_ops->set_interrupt_shadow(vcpu, 2420 events->interrupt.shadow); 2421 2422 vcpu->arch.nmi_injected = events->nmi.injected; 2423 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2424 vcpu->arch.nmi_pending = events->nmi.pending; 2425 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2426 2427 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2428 vcpu->arch.sipi_vector = events->sipi_vector; 2429 2430 kvm_make_request(KVM_REQ_EVENT, vcpu); 2431 2432 return 0; 2433 } 2434 2435 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2436 struct kvm_debugregs *dbgregs) 2437 { 2438 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2439 dbgregs->dr6 = vcpu->arch.dr6; 2440 dbgregs->dr7 = vcpu->arch.dr7; 2441 dbgregs->flags = 0; 2442 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2443 } 2444 2445 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2446 struct kvm_debugregs *dbgregs) 2447 { 2448 if (dbgregs->flags) 2449 return -EINVAL; 2450 2451 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2452 vcpu->arch.dr6 = dbgregs->dr6; 2453 vcpu->arch.dr7 = dbgregs->dr7; 2454 2455 return 0; 2456 } 2457 2458 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2459 struct kvm_xsave *guest_xsave) 2460 { 2461 if (cpu_has_xsave) 2462 memcpy(guest_xsave->region, 2463 &vcpu->arch.guest_fpu.state->xsave, 2464 xstate_size); 2465 else { 2466 memcpy(guest_xsave->region, 2467 &vcpu->arch.guest_fpu.state->fxsave, 2468 sizeof(struct i387_fxsave_struct)); 2469 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2470 XSTATE_FPSSE; 2471 } 2472 } 2473 2474 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2475 struct kvm_xsave *guest_xsave) 2476 { 2477 u64 xstate_bv = 2478 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2479 2480 if (cpu_has_xsave) 2481 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2482 guest_xsave->region, xstate_size); 2483 else { 2484 if (xstate_bv & ~XSTATE_FPSSE) 2485 return -EINVAL; 2486 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2487 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2488 } 2489 return 0; 2490 } 2491 2492 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2493 struct kvm_xcrs *guest_xcrs) 2494 { 2495 if (!cpu_has_xsave) { 2496 guest_xcrs->nr_xcrs = 0; 2497 return; 2498 } 2499 2500 guest_xcrs->nr_xcrs = 1; 2501 guest_xcrs->flags = 0; 2502 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2503 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2504 } 2505 2506 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2507 struct kvm_xcrs *guest_xcrs) 2508 { 2509 int i, r = 0; 2510 2511 if (!cpu_has_xsave) 2512 return -EINVAL; 2513 2514 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2515 return -EINVAL; 2516 2517 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2518 /* Only support XCR0 currently */ 2519 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2520 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2521 guest_xcrs->xcrs[0].value); 2522 break; 2523 } 2524 if (r) 2525 r = -EINVAL; 2526 return r; 2527 } 2528 2529 long kvm_arch_vcpu_ioctl(struct file *filp, 2530 unsigned int ioctl, unsigned long arg) 2531 { 2532 struct kvm_vcpu *vcpu = filp->private_data; 2533 void __user *argp = (void __user *)arg; 2534 int r; 2535 union { 2536 struct kvm_lapic_state *lapic; 2537 struct kvm_xsave *xsave; 2538 struct kvm_xcrs *xcrs; 2539 void *buffer; 2540 } u; 2541 2542 u.buffer = NULL; 2543 switch (ioctl) { 2544 case KVM_GET_LAPIC: { 2545 r = -EINVAL; 2546 if (!vcpu->arch.apic) 2547 goto out; 2548 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2549 2550 r = -ENOMEM; 2551 if (!u.lapic) 2552 goto out; 2553 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2554 if (r) 2555 goto out; 2556 r = -EFAULT; 2557 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2558 goto out; 2559 r = 0; 2560 break; 2561 } 2562 case KVM_SET_LAPIC: { 2563 r = -EINVAL; 2564 if (!vcpu->arch.apic) 2565 goto out; 2566 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2567 if (IS_ERR(u.lapic)) { 2568 r = PTR_ERR(u.lapic); 2569 goto out; 2570 } 2571 2572 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2573 if (r) 2574 goto out; 2575 r = 0; 2576 break; 2577 } 2578 case KVM_INTERRUPT: { 2579 struct kvm_interrupt irq; 2580 2581 r = -EFAULT; 2582 if (copy_from_user(&irq, argp, sizeof irq)) 2583 goto out; 2584 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2585 if (r) 2586 goto out; 2587 r = 0; 2588 break; 2589 } 2590 case KVM_NMI: { 2591 r = kvm_vcpu_ioctl_nmi(vcpu); 2592 if (r) 2593 goto out; 2594 r = 0; 2595 break; 2596 } 2597 case KVM_SET_CPUID: { 2598 struct kvm_cpuid __user *cpuid_arg = argp; 2599 struct kvm_cpuid cpuid; 2600 2601 r = -EFAULT; 2602 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2603 goto out; 2604 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2605 if (r) 2606 goto out; 2607 break; 2608 } 2609 case KVM_SET_CPUID2: { 2610 struct kvm_cpuid2 __user *cpuid_arg = argp; 2611 struct kvm_cpuid2 cpuid; 2612 2613 r = -EFAULT; 2614 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2615 goto out; 2616 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2617 cpuid_arg->entries); 2618 if (r) 2619 goto out; 2620 break; 2621 } 2622 case KVM_GET_CPUID2: { 2623 struct kvm_cpuid2 __user *cpuid_arg = argp; 2624 struct kvm_cpuid2 cpuid; 2625 2626 r = -EFAULT; 2627 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2628 goto out; 2629 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2630 cpuid_arg->entries); 2631 if (r) 2632 goto out; 2633 r = -EFAULT; 2634 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2635 goto out; 2636 r = 0; 2637 break; 2638 } 2639 case KVM_GET_MSRS: 2640 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2641 break; 2642 case KVM_SET_MSRS: 2643 r = msr_io(vcpu, argp, do_set_msr, 0); 2644 break; 2645 case KVM_TPR_ACCESS_REPORTING: { 2646 struct kvm_tpr_access_ctl tac; 2647 2648 r = -EFAULT; 2649 if (copy_from_user(&tac, argp, sizeof tac)) 2650 goto out; 2651 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2652 if (r) 2653 goto out; 2654 r = -EFAULT; 2655 if (copy_to_user(argp, &tac, sizeof tac)) 2656 goto out; 2657 r = 0; 2658 break; 2659 }; 2660 case KVM_SET_VAPIC_ADDR: { 2661 struct kvm_vapic_addr va; 2662 2663 r = -EINVAL; 2664 if (!irqchip_in_kernel(vcpu->kvm)) 2665 goto out; 2666 r = -EFAULT; 2667 if (copy_from_user(&va, argp, sizeof va)) 2668 goto out; 2669 r = 0; 2670 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2671 break; 2672 } 2673 case KVM_X86_SETUP_MCE: { 2674 u64 mcg_cap; 2675 2676 r = -EFAULT; 2677 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2678 goto out; 2679 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2680 break; 2681 } 2682 case KVM_X86_SET_MCE: { 2683 struct kvm_x86_mce mce; 2684 2685 r = -EFAULT; 2686 if (copy_from_user(&mce, argp, sizeof mce)) 2687 goto out; 2688 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2689 break; 2690 } 2691 case KVM_GET_VCPU_EVENTS: { 2692 struct kvm_vcpu_events events; 2693 2694 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2695 2696 r = -EFAULT; 2697 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2698 break; 2699 r = 0; 2700 break; 2701 } 2702 case KVM_SET_VCPU_EVENTS: { 2703 struct kvm_vcpu_events events; 2704 2705 r = -EFAULT; 2706 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2707 break; 2708 2709 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2710 break; 2711 } 2712 case KVM_GET_DEBUGREGS: { 2713 struct kvm_debugregs dbgregs; 2714 2715 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2716 2717 r = -EFAULT; 2718 if (copy_to_user(argp, &dbgregs, 2719 sizeof(struct kvm_debugregs))) 2720 break; 2721 r = 0; 2722 break; 2723 } 2724 case KVM_SET_DEBUGREGS: { 2725 struct kvm_debugregs dbgregs; 2726 2727 r = -EFAULT; 2728 if (copy_from_user(&dbgregs, argp, 2729 sizeof(struct kvm_debugregs))) 2730 break; 2731 2732 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2733 break; 2734 } 2735 case KVM_GET_XSAVE: { 2736 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2737 r = -ENOMEM; 2738 if (!u.xsave) 2739 break; 2740 2741 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2742 2743 r = -EFAULT; 2744 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2745 break; 2746 r = 0; 2747 break; 2748 } 2749 case KVM_SET_XSAVE: { 2750 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2751 if (IS_ERR(u.xsave)) { 2752 r = PTR_ERR(u.xsave); 2753 goto out; 2754 } 2755 2756 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2757 break; 2758 } 2759 case KVM_GET_XCRS: { 2760 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2761 r = -ENOMEM; 2762 if (!u.xcrs) 2763 break; 2764 2765 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2766 2767 r = -EFAULT; 2768 if (copy_to_user(argp, u.xcrs, 2769 sizeof(struct kvm_xcrs))) 2770 break; 2771 r = 0; 2772 break; 2773 } 2774 case KVM_SET_XCRS: { 2775 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2776 if (IS_ERR(u.xcrs)) { 2777 r = PTR_ERR(u.xcrs); 2778 goto out; 2779 } 2780 2781 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2782 break; 2783 } 2784 case KVM_SET_TSC_KHZ: { 2785 u32 user_tsc_khz; 2786 2787 r = -EINVAL; 2788 if (!kvm_has_tsc_control) 2789 break; 2790 2791 user_tsc_khz = (u32)arg; 2792 2793 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2794 goto out; 2795 2796 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz); 2797 2798 r = 0; 2799 goto out; 2800 } 2801 case KVM_GET_TSC_KHZ: { 2802 r = -EIO; 2803 if (check_tsc_unstable()) 2804 goto out; 2805 2806 r = vcpu_tsc_khz(vcpu); 2807 2808 goto out; 2809 } 2810 default: 2811 r = -EINVAL; 2812 } 2813 out: 2814 kfree(u.buffer); 2815 return r; 2816 } 2817 2818 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2819 { 2820 int ret; 2821 2822 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2823 return -1; 2824 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2825 return ret; 2826 } 2827 2828 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2829 u64 ident_addr) 2830 { 2831 kvm->arch.ept_identity_map_addr = ident_addr; 2832 return 0; 2833 } 2834 2835 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2836 u32 kvm_nr_mmu_pages) 2837 { 2838 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2839 return -EINVAL; 2840 2841 mutex_lock(&kvm->slots_lock); 2842 spin_lock(&kvm->mmu_lock); 2843 2844 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2845 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2846 2847 spin_unlock(&kvm->mmu_lock); 2848 mutex_unlock(&kvm->slots_lock); 2849 return 0; 2850 } 2851 2852 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2853 { 2854 return kvm->arch.n_max_mmu_pages; 2855 } 2856 2857 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2858 { 2859 int r; 2860 2861 r = 0; 2862 switch (chip->chip_id) { 2863 case KVM_IRQCHIP_PIC_MASTER: 2864 memcpy(&chip->chip.pic, 2865 &pic_irqchip(kvm)->pics[0], 2866 sizeof(struct kvm_pic_state)); 2867 break; 2868 case KVM_IRQCHIP_PIC_SLAVE: 2869 memcpy(&chip->chip.pic, 2870 &pic_irqchip(kvm)->pics[1], 2871 sizeof(struct kvm_pic_state)); 2872 break; 2873 case KVM_IRQCHIP_IOAPIC: 2874 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 2875 break; 2876 default: 2877 r = -EINVAL; 2878 break; 2879 } 2880 return r; 2881 } 2882 2883 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2884 { 2885 int r; 2886 2887 r = 0; 2888 switch (chip->chip_id) { 2889 case KVM_IRQCHIP_PIC_MASTER: 2890 spin_lock(&pic_irqchip(kvm)->lock); 2891 memcpy(&pic_irqchip(kvm)->pics[0], 2892 &chip->chip.pic, 2893 sizeof(struct kvm_pic_state)); 2894 spin_unlock(&pic_irqchip(kvm)->lock); 2895 break; 2896 case KVM_IRQCHIP_PIC_SLAVE: 2897 spin_lock(&pic_irqchip(kvm)->lock); 2898 memcpy(&pic_irqchip(kvm)->pics[1], 2899 &chip->chip.pic, 2900 sizeof(struct kvm_pic_state)); 2901 spin_unlock(&pic_irqchip(kvm)->lock); 2902 break; 2903 case KVM_IRQCHIP_IOAPIC: 2904 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 2905 break; 2906 default: 2907 r = -EINVAL; 2908 break; 2909 } 2910 kvm_pic_update_irq(pic_irqchip(kvm)); 2911 return r; 2912 } 2913 2914 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 2915 { 2916 int r = 0; 2917 2918 mutex_lock(&kvm->arch.vpit->pit_state.lock); 2919 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 2920 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 2921 return r; 2922 } 2923 2924 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 2925 { 2926 int r = 0; 2927 2928 mutex_lock(&kvm->arch.vpit->pit_state.lock); 2929 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 2930 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 2931 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 2932 return r; 2933 } 2934 2935 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 2936 { 2937 int r = 0; 2938 2939 mutex_lock(&kvm->arch.vpit->pit_state.lock); 2940 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 2941 sizeof(ps->channels)); 2942 ps->flags = kvm->arch.vpit->pit_state.flags; 2943 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 2944 memset(&ps->reserved, 0, sizeof(ps->reserved)); 2945 return r; 2946 } 2947 2948 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 2949 { 2950 int r = 0, start = 0; 2951 u32 prev_legacy, cur_legacy; 2952 mutex_lock(&kvm->arch.vpit->pit_state.lock); 2953 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 2954 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 2955 if (!prev_legacy && cur_legacy) 2956 start = 1; 2957 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 2958 sizeof(kvm->arch.vpit->pit_state.channels)); 2959 kvm->arch.vpit->pit_state.flags = ps->flags; 2960 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 2961 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 2962 return r; 2963 } 2964 2965 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 2966 struct kvm_reinject_control *control) 2967 { 2968 if (!kvm->arch.vpit) 2969 return -ENXIO; 2970 mutex_lock(&kvm->arch.vpit->pit_state.lock); 2971 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; 2972 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 2973 return 0; 2974 } 2975 2976 /** 2977 * write_protect_slot - write protect a slot for dirty logging 2978 * @kvm: the kvm instance 2979 * @memslot: the slot we protect 2980 * @dirty_bitmap: the bitmap indicating which pages are dirty 2981 * @nr_dirty_pages: the number of dirty pages 2982 * 2983 * We have two ways to find all sptes to protect: 2984 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and 2985 * checks ones that have a spte mapping a page in the slot. 2986 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap. 2987 * 2988 * Generally speaking, if there are not so many dirty pages compared to the 2989 * number of shadow pages, we should use the latter. 2990 * 2991 * Note that letting others write into a page marked dirty in the old bitmap 2992 * by using the remaining tlb entry is not a problem. That page will become 2993 * write protected again when we flush the tlb and then be reported dirty to 2994 * the user space by copying the old bitmap. 2995 */ 2996 static void write_protect_slot(struct kvm *kvm, 2997 struct kvm_memory_slot *memslot, 2998 unsigned long *dirty_bitmap, 2999 unsigned long nr_dirty_pages) 3000 { 3001 /* Not many dirty pages compared to # of shadow pages. */ 3002 if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) { 3003 unsigned long gfn_offset; 3004 3005 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) { 3006 unsigned long gfn = memslot->base_gfn + gfn_offset; 3007 3008 spin_lock(&kvm->mmu_lock); 3009 kvm_mmu_rmap_write_protect(kvm, gfn, memslot); 3010 spin_unlock(&kvm->mmu_lock); 3011 } 3012 kvm_flush_remote_tlbs(kvm); 3013 } else { 3014 spin_lock(&kvm->mmu_lock); 3015 kvm_mmu_slot_remove_write_access(kvm, memslot->id); 3016 spin_unlock(&kvm->mmu_lock); 3017 } 3018 } 3019 3020 /* 3021 * Get (and clear) the dirty memory log for a memory slot. 3022 */ 3023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 3024 struct kvm_dirty_log *log) 3025 { 3026 int r; 3027 struct kvm_memory_slot *memslot; 3028 unsigned long n, nr_dirty_pages; 3029 3030 mutex_lock(&kvm->slots_lock); 3031 3032 r = -EINVAL; 3033 if (log->slot >= KVM_MEMORY_SLOTS) 3034 goto out; 3035 3036 memslot = id_to_memslot(kvm->memslots, log->slot); 3037 r = -ENOENT; 3038 if (!memslot->dirty_bitmap) 3039 goto out; 3040 3041 n = kvm_dirty_bitmap_bytes(memslot); 3042 nr_dirty_pages = memslot->nr_dirty_pages; 3043 3044 /* If nothing is dirty, don't bother messing with page tables. */ 3045 if (nr_dirty_pages) { 3046 struct kvm_memslots *slots, *old_slots; 3047 unsigned long *dirty_bitmap, *dirty_bitmap_head; 3048 3049 dirty_bitmap = memslot->dirty_bitmap; 3050 dirty_bitmap_head = memslot->dirty_bitmap_head; 3051 if (dirty_bitmap == dirty_bitmap_head) 3052 dirty_bitmap_head += n / sizeof(long); 3053 memset(dirty_bitmap_head, 0, n); 3054 3055 r = -ENOMEM; 3056 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL); 3057 if (!slots) 3058 goto out; 3059 3060 memslot = id_to_memslot(slots, log->slot); 3061 memslot->nr_dirty_pages = 0; 3062 memslot->dirty_bitmap = dirty_bitmap_head; 3063 update_memslots(slots, NULL); 3064 3065 old_slots = kvm->memslots; 3066 rcu_assign_pointer(kvm->memslots, slots); 3067 synchronize_srcu_expedited(&kvm->srcu); 3068 kfree(old_slots); 3069 3070 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages); 3071 3072 r = -EFAULT; 3073 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) 3074 goto out; 3075 } else { 3076 r = -EFAULT; 3077 if (clear_user(log->dirty_bitmap, n)) 3078 goto out; 3079 } 3080 3081 r = 0; 3082 out: 3083 mutex_unlock(&kvm->slots_lock); 3084 return r; 3085 } 3086 3087 long kvm_arch_vm_ioctl(struct file *filp, 3088 unsigned int ioctl, unsigned long arg) 3089 { 3090 struct kvm *kvm = filp->private_data; 3091 void __user *argp = (void __user *)arg; 3092 int r = -ENOTTY; 3093 /* 3094 * This union makes it completely explicit to gcc-3.x 3095 * that these two variables' stack usage should be 3096 * combined, not added together. 3097 */ 3098 union { 3099 struct kvm_pit_state ps; 3100 struct kvm_pit_state2 ps2; 3101 struct kvm_pit_config pit_config; 3102 } u; 3103 3104 switch (ioctl) { 3105 case KVM_SET_TSS_ADDR: 3106 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3107 if (r < 0) 3108 goto out; 3109 break; 3110 case KVM_SET_IDENTITY_MAP_ADDR: { 3111 u64 ident_addr; 3112 3113 r = -EFAULT; 3114 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3115 goto out; 3116 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3117 if (r < 0) 3118 goto out; 3119 break; 3120 } 3121 case KVM_SET_NR_MMU_PAGES: 3122 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3123 if (r) 3124 goto out; 3125 break; 3126 case KVM_GET_NR_MMU_PAGES: 3127 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3128 break; 3129 case KVM_CREATE_IRQCHIP: { 3130 struct kvm_pic *vpic; 3131 3132 mutex_lock(&kvm->lock); 3133 r = -EEXIST; 3134 if (kvm->arch.vpic) 3135 goto create_irqchip_unlock; 3136 r = -ENOMEM; 3137 vpic = kvm_create_pic(kvm); 3138 if (vpic) { 3139 r = kvm_ioapic_init(kvm); 3140 if (r) { 3141 mutex_lock(&kvm->slots_lock); 3142 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3143 &vpic->dev_master); 3144 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3145 &vpic->dev_slave); 3146 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3147 &vpic->dev_eclr); 3148 mutex_unlock(&kvm->slots_lock); 3149 kfree(vpic); 3150 goto create_irqchip_unlock; 3151 } 3152 } else 3153 goto create_irqchip_unlock; 3154 smp_wmb(); 3155 kvm->arch.vpic = vpic; 3156 smp_wmb(); 3157 r = kvm_setup_default_irq_routing(kvm); 3158 if (r) { 3159 mutex_lock(&kvm->slots_lock); 3160 mutex_lock(&kvm->irq_lock); 3161 kvm_ioapic_destroy(kvm); 3162 kvm_destroy_pic(kvm); 3163 mutex_unlock(&kvm->irq_lock); 3164 mutex_unlock(&kvm->slots_lock); 3165 } 3166 create_irqchip_unlock: 3167 mutex_unlock(&kvm->lock); 3168 break; 3169 } 3170 case KVM_CREATE_PIT: 3171 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3172 goto create_pit; 3173 case KVM_CREATE_PIT2: 3174 r = -EFAULT; 3175 if (copy_from_user(&u.pit_config, argp, 3176 sizeof(struct kvm_pit_config))) 3177 goto out; 3178 create_pit: 3179 mutex_lock(&kvm->slots_lock); 3180 r = -EEXIST; 3181 if (kvm->arch.vpit) 3182 goto create_pit_unlock; 3183 r = -ENOMEM; 3184 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3185 if (kvm->arch.vpit) 3186 r = 0; 3187 create_pit_unlock: 3188 mutex_unlock(&kvm->slots_lock); 3189 break; 3190 case KVM_IRQ_LINE_STATUS: 3191 case KVM_IRQ_LINE: { 3192 struct kvm_irq_level irq_event; 3193 3194 r = -EFAULT; 3195 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 3196 goto out; 3197 r = -ENXIO; 3198 if (irqchip_in_kernel(kvm)) { 3199 __s32 status; 3200 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3201 irq_event.irq, irq_event.level); 3202 if (ioctl == KVM_IRQ_LINE_STATUS) { 3203 r = -EFAULT; 3204 irq_event.status = status; 3205 if (copy_to_user(argp, &irq_event, 3206 sizeof irq_event)) 3207 goto out; 3208 } 3209 r = 0; 3210 } 3211 break; 3212 } 3213 case KVM_GET_IRQCHIP: { 3214 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3215 struct kvm_irqchip *chip; 3216 3217 chip = memdup_user(argp, sizeof(*chip)); 3218 if (IS_ERR(chip)) { 3219 r = PTR_ERR(chip); 3220 goto out; 3221 } 3222 3223 r = -ENXIO; 3224 if (!irqchip_in_kernel(kvm)) 3225 goto get_irqchip_out; 3226 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3227 if (r) 3228 goto get_irqchip_out; 3229 r = -EFAULT; 3230 if (copy_to_user(argp, chip, sizeof *chip)) 3231 goto get_irqchip_out; 3232 r = 0; 3233 get_irqchip_out: 3234 kfree(chip); 3235 if (r) 3236 goto out; 3237 break; 3238 } 3239 case KVM_SET_IRQCHIP: { 3240 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3241 struct kvm_irqchip *chip; 3242 3243 chip = memdup_user(argp, sizeof(*chip)); 3244 if (IS_ERR(chip)) { 3245 r = PTR_ERR(chip); 3246 goto out; 3247 } 3248 3249 r = -ENXIO; 3250 if (!irqchip_in_kernel(kvm)) 3251 goto set_irqchip_out; 3252 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3253 if (r) 3254 goto set_irqchip_out; 3255 r = 0; 3256 set_irqchip_out: 3257 kfree(chip); 3258 if (r) 3259 goto out; 3260 break; 3261 } 3262 case KVM_GET_PIT: { 3263 r = -EFAULT; 3264 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3265 goto out; 3266 r = -ENXIO; 3267 if (!kvm->arch.vpit) 3268 goto out; 3269 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3270 if (r) 3271 goto out; 3272 r = -EFAULT; 3273 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3274 goto out; 3275 r = 0; 3276 break; 3277 } 3278 case KVM_SET_PIT: { 3279 r = -EFAULT; 3280 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3281 goto out; 3282 r = -ENXIO; 3283 if (!kvm->arch.vpit) 3284 goto out; 3285 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3286 if (r) 3287 goto out; 3288 r = 0; 3289 break; 3290 } 3291 case KVM_GET_PIT2: { 3292 r = -ENXIO; 3293 if (!kvm->arch.vpit) 3294 goto out; 3295 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3296 if (r) 3297 goto out; 3298 r = -EFAULT; 3299 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3300 goto out; 3301 r = 0; 3302 break; 3303 } 3304 case KVM_SET_PIT2: { 3305 r = -EFAULT; 3306 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3307 goto out; 3308 r = -ENXIO; 3309 if (!kvm->arch.vpit) 3310 goto out; 3311 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3312 if (r) 3313 goto out; 3314 r = 0; 3315 break; 3316 } 3317 case KVM_REINJECT_CONTROL: { 3318 struct kvm_reinject_control control; 3319 r = -EFAULT; 3320 if (copy_from_user(&control, argp, sizeof(control))) 3321 goto out; 3322 r = kvm_vm_ioctl_reinject(kvm, &control); 3323 if (r) 3324 goto out; 3325 r = 0; 3326 break; 3327 } 3328 case KVM_XEN_HVM_CONFIG: { 3329 r = -EFAULT; 3330 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3331 sizeof(struct kvm_xen_hvm_config))) 3332 goto out; 3333 r = -EINVAL; 3334 if (kvm->arch.xen_hvm_config.flags) 3335 goto out; 3336 r = 0; 3337 break; 3338 } 3339 case KVM_SET_CLOCK: { 3340 struct kvm_clock_data user_ns; 3341 u64 now_ns; 3342 s64 delta; 3343 3344 r = -EFAULT; 3345 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3346 goto out; 3347 3348 r = -EINVAL; 3349 if (user_ns.flags) 3350 goto out; 3351 3352 r = 0; 3353 local_irq_disable(); 3354 now_ns = get_kernel_ns(); 3355 delta = user_ns.clock - now_ns; 3356 local_irq_enable(); 3357 kvm->arch.kvmclock_offset = delta; 3358 break; 3359 } 3360 case KVM_GET_CLOCK: { 3361 struct kvm_clock_data user_ns; 3362 u64 now_ns; 3363 3364 local_irq_disable(); 3365 now_ns = get_kernel_ns(); 3366 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3367 local_irq_enable(); 3368 user_ns.flags = 0; 3369 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3370 3371 r = -EFAULT; 3372 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3373 goto out; 3374 r = 0; 3375 break; 3376 } 3377 3378 default: 3379 ; 3380 } 3381 out: 3382 return r; 3383 } 3384 3385 static void kvm_init_msr_list(void) 3386 { 3387 u32 dummy[2]; 3388 unsigned i, j; 3389 3390 /* skip the first msrs in the list. KVM-specific */ 3391 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3392 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3393 continue; 3394 if (j < i) 3395 msrs_to_save[j] = msrs_to_save[i]; 3396 j++; 3397 } 3398 num_msrs_to_save = j; 3399 } 3400 3401 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3402 const void *v) 3403 { 3404 int handled = 0; 3405 int n; 3406 3407 do { 3408 n = min(len, 8); 3409 if (!(vcpu->arch.apic && 3410 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3411 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3412 break; 3413 handled += n; 3414 addr += n; 3415 len -= n; 3416 v += n; 3417 } while (len); 3418 3419 return handled; 3420 } 3421 3422 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3423 { 3424 int handled = 0; 3425 int n; 3426 3427 do { 3428 n = min(len, 8); 3429 if (!(vcpu->arch.apic && 3430 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3431 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3432 break; 3433 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3434 handled += n; 3435 addr += n; 3436 len -= n; 3437 v += n; 3438 } while (len); 3439 3440 return handled; 3441 } 3442 3443 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3444 struct kvm_segment *var, int seg) 3445 { 3446 kvm_x86_ops->set_segment(vcpu, var, seg); 3447 } 3448 3449 void kvm_get_segment(struct kvm_vcpu *vcpu, 3450 struct kvm_segment *var, int seg) 3451 { 3452 kvm_x86_ops->get_segment(vcpu, var, seg); 3453 } 3454 3455 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3456 { 3457 gpa_t t_gpa; 3458 struct x86_exception exception; 3459 3460 BUG_ON(!mmu_is_nested(vcpu)); 3461 3462 /* NPT walks are always user-walks */ 3463 access |= PFERR_USER_MASK; 3464 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3465 3466 return t_gpa; 3467 } 3468 3469 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3470 struct x86_exception *exception) 3471 { 3472 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3473 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3474 } 3475 3476 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3477 struct x86_exception *exception) 3478 { 3479 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3480 access |= PFERR_FETCH_MASK; 3481 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3482 } 3483 3484 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3485 struct x86_exception *exception) 3486 { 3487 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3488 access |= PFERR_WRITE_MASK; 3489 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3490 } 3491 3492 /* uses this to access any guest's mapped memory without checking CPL */ 3493 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3494 struct x86_exception *exception) 3495 { 3496 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3497 } 3498 3499 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3500 struct kvm_vcpu *vcpu, u32 access, 3501 struct x86_exception *exception) 3502 { 3503 void *data = val; 3504 int r = X86EMUL_CONTINUE; 3505 3506 while (bytes) { 3507 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3508 exception); 3509 unsigned offset = addr & (PAGE_SIZE-1); 3510 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3511 int ret; 3512 3513 if (gpa == UNMAPPED_GVA) 3514 return X86EMUL_PROPAGATE_FAULT; 3515 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3516 if (ret < 0) { 3517 r = X86EMUL_IO_NEEDED; 3518 goto out; 3519 } 3520 3521 bytes -= toread; 3522 data += toread; 3523 addr += toread; 3524 } 3525 out: 3526 return r; 3527 } 3528 3529 /* used for instruction fetching */ 3530 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3531 gva_t addr, void *val, unsigned int bytes, 3532 struct x86_exception *exception) 3533 { 3534 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3535 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3536 3537 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3538 access | PFERR_FETCH_MASK, 3539 exception); 3540 } 3541 3542 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3543 gva_t addr, void *val, unsigned int bytes, 3544 struct x86_exception *exception) 3545 { 3546 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3547 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3548 3549 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3550 exception); 3551 } 3552 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3553 3554 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3555 gva_t addr, void *val, unsigned int bytes, 3556 struct x86_exception *exception) 3557 { 3558 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3559 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3560 } 3561 3562 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3563 gva_t addr, void *val, 3564 unsigned int bytes, 3565 struct x86_exception *exception) 3566 { 3567 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3568 void *data = val; 3569 int r = X86EMUL_CONTINUE; 3570 3571 while (bytes) { 3572 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3573 PFERR_WRITE_MASK, 3574 exception); 3575 unsigned offset = addr & (PAGE_SIZE-1); 3576 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3577 int ret; 3578 3579 if (gpa == UNMAPPED_GVA) 3580 return X86EMUL_PROPAGATE_FAULT; 3581 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3582 if (ret < 0) { 3583 r = X86EMUL_IO_NEEDED; 3584 goto out; 3585 } 3586 3587 bytes -= towrite; 3588 data += towrite; 3589 addr += towrite; 3590 } 3591 out: 3592 return r; 3593 } 3594 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3595 3596 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3597 gpa_t *gpa, struct x86_exception *exception, 3598 bool write) 3599 { 3600 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3601 3602 if (vcpu_match_mmio_gva(vcpu, gva) && 3603 check_write_user_access(vcpu, write, access, 3604 vcpu->arch.access)) { 3605 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3606 (gva & (PAGE_SIZE - 1)); 3607 trace_vcpu_match_mmio(gva, *gpa, write, false); 3608 return 1; 3609 } 3610 3611 if (write) 3612 access |= PFERR_WRITE_MASK; 3613 3614 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3615 3616 if (*gpa == UNMAPPED_GVA) 3617 return -1; 3618 3619 /* For APIC access vmexit */ 3620 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3621 return 1; 3622 3623 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3624 trace_vcpu_match_mmio(gva, *gpa, write, true); 3625 return 1; 3626 } 3627 3628 return 0; 3629 } 3630 3631 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3632 const void *val, int bytes) 3633 { 3634 int ret; 3635 3636 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3637 if (ret < 0) 3638 return 0; 3639 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3640 return 1; 3641 } 3642 3643 struct read_write_emulator_ops { 3644 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3645 int bytes); 3646 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3647 void *val, int bytes); 3648 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3649 int bytes, void *val); 3650 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3651 void *val, int bytes); 3652 bool write; 3653 }; 3654 3655 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3656 { 3657 if (vcpu->mmio_read_completed) { 3658 memcpy(val, vcpu->mmio_data, bytes); 3659 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3660 vcpu->mmio_phys_addr, *(u64 *)val); 3661 vcpu->mmio_read_completed = 0; 3662 return 1; 3663 } 3664 3665 return 0; 3666 } 3667 3668 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3669 void *val, int bytes) 3670 { 3671 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3672 } 3673 3674 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3675 void *val, int bytes) 3676 { 3677 return emulator_write_phys(vcpu, gpa, val, bytes); 3678 } 3679 3680 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3681 { 3682 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3683 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3684 } 3685 3686 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3687 void *val, int bytes) 3688 { 3689 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3690 return X86EMUL_IO_NEEDED; 3691 } 3692 3693 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3694 void *val, int bytes) 3695 { 3696 memcpy(vcpu->mmio_data, val, bytes); 3697 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8); 3698 return X86EMUL_CONTINUE; 3699 } 3700 3701 static struct read_write_emulator_ops read_emultor = { 3702 .read_write_prepare = read_prepare, 3703 .read_write_emulate = read_emulate, 3704 .read_write_mmio = vcpu_mmio_read, 3705 .read_write_exit_mmio = read_exit_mmio, 3706 }; 3707 3708 static struct read_write_emulator_ops write_emultor = { 3709 .read_write_emulate = write_emulate, 3710 .read_write_mmio = write_mmio, 3711 .read_write_exit_mmio = write_exit_mmio, 3712 .write = true, 3713 }; 3714 3715 static int emulator_read_write_onepage(unsigned long addr, void *val, 3716 unsigned int bytes, 3717 struct x86_exception *exception, 3718 struct kvm_vcpu *vcpu, 3719 struct read_write_emulator_ops *ops) 3720 { 3721 gpa_t gpa; 3722 int handled, ret; 3723 bool write = ops->write; 3724 3725 if (ops->read_write_prepare && 3726 ops->read_write_prepare(vcpu, val, bytes)) 3727 return X86EMUL_CONTINUE; 3728 3729 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3730 3731 if (ret < 0) 3732 return X86EMUL_PROPAGATE_FAULT; 3733 3734 /* For APIC access vmexit */ 3735 if (ret) 3736 goto mmio; 3737 3738 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3739 return X86EMUL_CONTINUE; 3740 3741 mmio: 3742 /* 3743 * Is this MMIO handled locally? 3744 */ 3745 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3746 if (handled == bytes) 3747 return X86EMUL_CONTINUE; 3748 3749 gpa += handled; 3750 bytes -= handled; 3751 val += handled; 3752 3753 vcpu->mmio_needed = 1; 3754 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3755 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; 3756 vcpu->mmio_size = bytes; 3757 vcpu->run->mmio.len = min(vcpu->mmio_size, 8); 3758 vcpu->run->mmio.is_write = vcpu->mmio_is_write = write; 3759 vcpu->mmio_index = 0; 3760 3761 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3762 } 3763 3764 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3765 void *val, unsigned int bytes, 3766 struct x86_exception *exception, 3767 struct read_write_emulator_ops *ops) 3768 { 3769 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3770 3771 /* Crossing a page boundary? */ 3772 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3773 int rc, now; 3774 3775 now = -addr & ~PAGE_MASK; 3776 rc = emulator_read_write_onepage(addr, val, now, exception, 3777 vcpu, ops); 3778 3779 if (rc != X86EMUL_CONTINUE) 3780 return rc; 3781 addr += now; 3782 val += now; 3783 bytes -= now; 3784 } 3785 3786 return emulator_read_write_onepage(addr, val, bytes, exception, 3787 vcpu, ops); 3788 } 3789 3790 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3791 unsigned long addr, 3792 void *val, 3793 unsigned int bytes, 3794 struct x86_exception *exception) 3795 { 3796 return emulator_read_write(ctxt, addr, val, bytes, 3797 exception, &read_emultor); 3798 } 3799 3800 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3801 unsigned long addr, 3802 const void *val, 3803 unsigned int bytes, 3804 struct x86_exception *exception) 3805 { 3806 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3807 exception, &write_emultor); 3808 } 3809 3810 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3811 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3812 3813 #ifdef CONFIG_X86_64 3814 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3815 #else 3816 # define CMPXCHG64(ptr, old, new) \ 3817 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3818 #endif 3819 3820 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3821 unsigned long addr, 3822 const void *old, 3823 const void *new, 3824 unsigned int bytes, 3825 struct x86_exception *exception) 3826 { 3827 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3828 gpa_t gpa; 3829 struct page *page; 3830 char *kaddr; 3831 bool exchanged; 3832 3833 /* guests cmpxchg8b have to be emulated atomically */ 3834 if (bytes > 8 || (bytes & (bytes - 1))) 3835 goto emul_write; 3836 3837 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3838 3839 if (gpa == UNMAPPED_GVA || 3840 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3841 goto emul_write; 3842 3843 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3844 goto emul_write; 3845 3846 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3847 if (is_error_page(page)) { 3848 kvm_release_page_clean(page); 3849 goto emul_write; 3850 } 3851 3852 kaddr = kmap_atomic(page); 3853 kaddr += offset_in_page(gpa); 3854 switch (bytes) { 3855 case 1: 3856 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3857 break; 3858 case 2: 3859 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3860 break; 3861 case 4: 3862 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3863 break; 3864 case 8: 3865 exchanged = CMPXCHG64(kaddr, old, new); 3866 break; 3867 default: 3868 BUG(); 3869 } 3870 kunmap_atomic(kaddr); 3871 kvm_release_page_dirty(page); 3872 3873 if (!exchanged) 3874 return X86EMUL_CMPXCHG_FAILED; 3875 3876 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3877 3878 return X86EMUL_CONTINUE; 3879 3880 emul_write: 3881 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 3882 3883 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 3884 } 3885 3886 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 3887 { 3888 /* TODO: String I/O for in kernel device */ 3889 int r; 3890 3891 if (vcpu->arch.pio.in) 3892 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 3893 vcpu->arch.pio.size, pd); 3894 else 3895 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 3896 vcpu->arch.pio.port, vcpu->arch.pio.size, 3897 pd); 3898 return r; 3899 } 3900 3901 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 3902 unsigned short port, void *val, 3903 unsigned int count, bool in) 3904 { 3905 trace_kvm_pio(!in, port, size, count); 3906 3907 vcpu->arch.pio.port = port; 3908 vcpu->arch.pio.in = in; 3909 vcpu->arch.pio.count = count; 3910 vcpu->arch.pio.size = size; 3911 3912 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 3913 vcpu->arch.pio.count = 0; 3914 return 1; 3915 } 3916 3917 vcpu->run->exit_reason = KVM_EXIT_IO; 3918 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 3919 vcpu->run->io.size = size; 3920 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 3921 vcpu->run->io.count = count; 3922 vcpu->run->io.port = port; 3923 3924 return 0; 3925 } 3926 3927 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 3928 int size, unsigned short port, void *val, 3929 unsigned int count) 3930 { 3931 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3932 int ret; 3933 3934 if (vcpu->arch.pio.count) 3935 goto data_avail; 3936 3937 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 3938 if (ret) { 3939 data_avail: 3940 memcpy(val, vcpu->arch.pio_data, size * count); 3941 vcpu->arch.pio.count = 0; 3942 return 1; 3943 } 3944 3945 return 0; 3946 } 3947 3948 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 3949 int size, unsigned short port, 3950 const void *val, unsigned int count) 3951 { 3952 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3953 3954 memcpy(vcpu->arch.pio_data, val, size * count); 3955 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 3956 } 3957 3958 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 3959 { 3960 return kvm_x86_ops->get_segment_base(vcpu, seg); 3961 } 3962 3963 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 3964 { 3965 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 3966 } 3967 3968 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 3969 { 3970 if (!need_emulate_wbinvd(vcpu)) 3971 return X86EMUL_CONTINUE; 3972 3973 if (kvm_x86_ops->has_wbinvd_exit()) { 3974 int cpu = get_cpu(); 3975 3976 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3977 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 3978 wbinvd_ipi, NULL, 1); 3979 put_cpu(); 3980 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 3981 } else 3982 wbinvd(); 3983 return X86EMUL_CONTINUE; 3984 } 3985 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 3986 3987 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 3988 { 3989 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 3990 } 3991 3992 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 3993 { 3994 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 3995 } 3996 3997 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 3998 { 3999 4000 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4001 } 4002 4003 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4004 { 4005 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4006 } 4007 4008 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4009 { 4010 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4011 unsigned long value; 4012 4013 switch (cr) { 4014 case 0: 4015 value = kvm_read_cr0(vcpu); 4016 break; 4017 case 2: 4018 value = vcpu->arch.cr2; 4019 break; 4020 case 3: 4021 value = kvm_read_cr3(vcpu); 4022 break; 4023 case 4: 4024 value = kvm_read_cr4(vcpu); 4025 break; 4026 case 8: 4027 value = kvm_get_cr8(vcpu); 4028 break; 4029 default: 4030 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); 4031 return 0; 4032 } 4033 4034 return value; 4035 } 4036 4037 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4038 { 4039 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4040 int res = 0; 4041 4042 switch (cr) { 4043 case 0: 4044 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4045 break; 4046 case 2: 4047 vcpu->arch.cr2 = val; 4048 break; 4049 case 3: 4050 res = kvm_set_cr3(vcpu, val); 4051 break; 4052 case 4: 4053 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4054 break; 4055 case 8: 4056 res = kvm_set_cr8(vcpu, val); 4057 break; 4058 default: 4059 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); 4060 res = -1; 4061 } 4062 4063 return res; 4064 } 4065 4066 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4067 { 4068 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4069 } 4070 4071 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4072 { 4073 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4074 } 4075 4076 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4077 { 4078 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4079 } 4080 4081 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4082 { 4083 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4084 } 4085 4086 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4087 { 4088 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4089 } 4090 4091 static unsigned long emulator_get_cached_segment_base( 4092 struct x86_emulate_ctxt *ctxt, int seg) 4093 { 4094 return get_segment_base(emul_to_vcpu(ctxt), seg); 4095 } 4096 4097 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4098 struct desc_struct *desc, u32 *base3, 4099 int seg) 4100 { 4101 struct kvm_segment var; 4102 4103 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4104 *selector = var.selector; 4105 4106 if (var.unusable) 4107 return false; 4108 4109 if (var.g) 4110 var.limit >>= 12; 4111 set_desc_limit(desc, var.limit); 4112 set_desc_base(desc, (unsigned long)var.base); 4113 #ifdef CONFIG_X86_64 4114 if (base3) 4115 *base3 = var.base >> 32; 4116 #endif 4117 desc->type = var.type; 4118 desc->s = var.s; 4119 desc->dpl = var.dpl; 4120 desc->p = var.present; 4121 desc->avl = var.avl; 4122 desc->l = var.l; 4123 desc->d = var.db; 4124 desc->g = var.g; 4125 4126 return true; 4127 } 4128 4129 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4130 struct desc_struct *desc, u32 base3, 4131 int seg) 4132 { 4133 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4134 struct kvm_segment var; 4135 4136 var.selector = selector; 4137 var.base = get_desc_base(desc); 4138 #ifdef CONFIG_X86_64 4139 var.base |= ((u64)base3) << 32; 4140 #endif 4141 var.limit = get_desc_limit(desc); 4142 if (desc->g) 4143 var.limit = (var.limit << 12) | 0xfff; 4144 var.type = desc->type; 4145 var.present = desc->p; 4146 var.dpl = desc->dpl; 4147 var.db = desc->d; 4148 var.s = desc->s; 4149 var.l = desc->l; 4150 var.g = desc->g; 4151 var.avl = desc->avl; 4152 var.present = desc->p; 4153 var.unusable = !var.present; 4154 var.padding = 0; 4155 4156 kvm_set_segment(vcpu, &var, seg); 4157 return; 4158 } 4159 4160 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4161 u32 msr_index, u64 *pdata) 4162 { 4163 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4164 } 4165 4166 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4167 u32 msr_index, u64 data) 4168 { 4169 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4170 } 4171 4172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4173 u32 pmc, u64 *pdata) 4174 { 4175 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4176 } 4177 4178 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4179 { 4180 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4181 } 4182 4183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4184 { 4185 preempt_disable(); 4186 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4187 /* 4188 * CR0.TS may reference the host fpu state, not the guest fpu state, 4189 * so it may be clear at this point. 4190 */ 4191 clts(); 4192 } 4193 4194 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4195 { 4196 preempt_enable(); 4197 } 4198 4199 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4200 struct x86_instruction_info *info, 4201 enum x86_intercept_stage stage) 4202 { 4203 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4204 } 4205 4206 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4207 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4208 { 4209 struct kvm_cpuid_entry2 *cpuid = NULL; 4210 4211 if (eax && ecx) 4212 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt), 4213 *eax, *ecx); 4214 4215 if (cpuid) { 4216 *eax = cpuid->eax; 4217 *ecx = cpuid->ecx; 4218 if (ebx) 4219 *ebx = cpuid->ebx; 4220 if (edx) 4221 *edx = cpuid->edx; 4222 return true; 4223 } 4224 4225 return false; 4226 } 4227 4228 static struct x86_emulate_ops emulate_ops = { 4229 .read_std = kvm_read_guest_virt_system, 4230 .write_std = kvm_write_guest_virt_system, 4231 .fetch = kvm_fetch_guest_virt, 4232 .read_emulated = emulator_read_emulated, 4233 .write_emulated = emulator_write_emulated, 4234 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4235 .invlpg = emulator_invlpg, 4236 .pio_in_emulated = emulator_pio_in_emulated, 4237 .pio_out_emulated = emulator_pio_out_emulated, 4238 .get_segment = emulator_get_segment, 4239 .set_segment = emulator_set_segment, 4240 .get_cached_segment_base = emulator_get_cached_segment_base, 4241 .get_gdt = emulator_get_gdt, 4242 .get_idt = emulator_get_idt, 4243 .set_gdt = emulator_set_gdt, 4244 .set_idt = emulator_set_idt, 4245 .get_cr = emulator_get_cr, 4246 .set_cr = emulator_set_cr, 4247 .cpl = emulator_get_cpl, 4248 .get_dr = emulator_get_dr, 4249 .set_dr = emulator_set_dr, 4250 .set_msr = emulator_set_msr, 4251 .get_msr = emulator_get_msr, 4252 .read_pmc = emulator_read_pmc, 4253 .halt = emulator_halt, 4254 .wbinvd = emulator_wbinvd, 4255 .fix_hypercall = emulator_fix_hypercall, 4256 .get_fpu = emulator_get_fpu, 4257 .put_fpu = emulator_put_fpu, 4258 .intercept = emulator_intercept, 4259 .get_cpuid = emulator_get_cpuid, 4260 }; 4261 4262 static void cache_all_regs(struct kvm_vcpu *vcpu) 4263 { 4264 kvm_register_read(vcpu, VCPU_REGS_RAX); 4265 kvm_register_read(vcpu, VCPU_REGS_RSP); 4266 kvm_register_read(vcpu, VCPU_REGS_RIP); 4267 vcpu->arch.regs_dirty = ~0; 4268 } 4269 4270 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4271 { 4272 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4273 /* 4274 * an sti; sti; sequence only disable interrupts for the first 4275 * instruction. So, if the last instruction, be it emulated or 4276 * not, left the system with the INT_STI flag enabled, it 4277 * means that the last instruction is an sti. We should not 4278 * leave the flag on in this case. The same goes for mov ss 4279 */ 4280 if (!(int_shadow & mask)) 4281 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4282 } 4283 4284 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4285 { 4286 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4287 if (ctxt->exception.vector == PF_VECTOR) 4288 kvm_propagate_fault(vcpu, &ctxt->exception); 4289 else if (ctxt->exception.error_code_valid) 4290 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4291 ctxt->exception.error_code); 4292 else 4293 kvm_queue_exception(vcpu, ctxt->exception.vector); 4294 } 4295 4296 static void init_decode_cache(struct x86_emulate_ctxt *ctxt, 4297 const unsigned long *regs) 4298 { 4299 memset(&ctxt->twobyte, 0, 4300 (void *)&ctxt->regs - (void *)&ctxt->twobyte); 4301 memcpy(ctxt->regs, regs, sizeof(ctxt->regs)); 4302 4303 ctxt->fetch.start = 0; 4304 ctxt->fetch.end = 0; 4305 ctxt->io_read.pos = 0; 4306 ctxt->io_read.end = 0; 4307 ctxt->mem_read.pos = 0; 4308 ctxt->mem_read.end = 0; 4309 } 4310 4311 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4312 { 4313 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4314 int cs_db, cs_l; 4315 4316 /* 4317 * TODO: fix emulate.c to use guest_read/write_register 4318 * instead of direct ->regs accesses, can save hundred cycles 4319 * on Intel for instructions that don't read/change RSP, for 4320 * for example. 4321 */ 4322 cache_all_regs(vcpu); 4323 4324 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4325 4326 ctxt->eflags = kvm_get_rflags(vcpu); 4327 ctxt->eip = kvm_rip_read(vcpu); 4328 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4329 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4330 cs_l ? X86EMUL_MODE_PROT64 : 4331 cs_db ? X86EMUL_MODE_PROT32 : 4332 X86EMUL_MODE_PROT16; 4333 ctxt->guest_mode = is_guest_mode(vcpu); 4334 4335 init_decode_cache(ctxt, vcpu->arch.regs); 4336 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4337 } 4338 4339 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4340 { 4341 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4342 int ret; 4343 4344 init_emulate_ctxt(vcpu); 4345 4346 ctxt->op_bytes = 2; 4347 ctxt->ad_bytes = 2; 4348 ctxt->_eip = ctxt->eip + inc_eip; 4349 ret = emulate_int_real(ctxt, irq); 4350 4351 if (ret != X86EMUL_CONTINUE) 4352 return EMULATE_FAIL; 4353 4354 ctxt->eip = ctxt->_eip; 4355 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4356 kvm_rip_write(vcpu, ctxt->eip); 4357 kvm_set_rflags(vcpu, ctxt->eflags); 4358 4359 if (irq == NMI_VECTOR) 4360 vcpu->arch.nmi_pending = 0; 4361 else 4362 vcpu->arch.interrupt.pending = false; 4363 4364 return EMULATE_DONE; 4365 } 4366 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4367 4368 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4369 { 4370 int r = EMULATE_DONE; 4371 4372 ++vcpu->stat.insn_emulation_fail; 4373 trace_kvm_emulate_insn_failed(vcpu); 4374 if (!is_guest_mode(vcpu)) { 4375 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4376 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4377 vcpu->run->internal.ndata = 0; 4378 r = EMULATE_FAIL; 4379 } 4380 kvm_queue_exception(vcpu, UD_VECTOR); 4381 4382 return r; 4383 } 4384 4385 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4386 { 4387 gpa_t gpa; 4388 4389 if (tdp_enabled) 4390 return false; 4391 4392 /* 4393 * if emulation was due to access to shadowed page table 4394 * and it failed try to unshadow page and re-entetr the 4395 * guest to let CPU execute the instruction. 4396 */ 4397 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4398 return true; 4399 4400 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4401 4402 if (gpa == UNMAPPED_GVA) 4403 return true; /* let cpu generate fault */ 4404 4405 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) 4406 return true; 4407 4408 return false; 4409 } 4410 4411 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4412 unsigned long cr2, int emulation_type) 4413 { 4414 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4415 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4416 4417 last_retry_eip = vcpu->arch.last_retry_eip; 4418 last_retry_addr = vcpu->arch.last_retry_addr; 4419 4420 /* 4421 * If the emulation is caused by #PF and it is non-page_table 4422 * writing instruction, it means the VM-EXIT is caused by shadow 4423 * page protected, we can zap the shadow page and retry this 4424 * instruction directly. 4425 * 4426 * Note: if the guest uses a non-page-table modifying instruction 4427 * on the PDE that points to the instruction, then we will unmap 4428 * the instruction and go to an infinite loop. So, we cache the 4429 * last retried eip and the last fault address, if we meet the eip 4430 * and the address again, we can break out of the potential infinite 4431 * loop. 4432 */ 4433 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4434 4435 if (!(emulation_type & EMULTYPE_RETRY)) 4436 return false; 4437 4438 if (x86_page_table_writing_insn(ctxt)) 4439 return false; 4440 4441 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4442 return false; 4443 4444 vcpu->arch.last_retry_eip = ctxt->eip; 4445 vcpu->arch.last_retry_addr = cr2; 4446 4447 if (!vcpu->arch.mmu.direct_map) 4448 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4449 4450 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4451 4452 return true; 4453 } 4454 4455 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4456 unsigned long cr2, 4457 int emulation_type, 4458 void *insn, 4459 int insn_len) 4460 { 4461 int r; 4462 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4463 bool writeback = true; 4464 4465 kvm_clear_exception_queue(vcpu); 4466 4467 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4468 init_emulate_ctxt(vcpu); 4469 ctxt->interruptibility = 0; 4470 ctxt->have_exception = false; 4471 ctxt->perm_ok = false; 4472 4473 ctxt->only_vendor_specific_insn 4474 = emulation_type & EMULTYPE_TRAP_UD; 4475 4476 r = x86_decode_insn(ctxt, insn, insn_len); 4477 4478 trace_kvm_emulate_insn_start(vcpu); 4479 ++vcpu->stat.insn_emulation; 4480 if (r != EMULATION_OK) { 4481 if (emulation_type & EMULTYPE_TRAP_UD) 4482 return EMULATE_FAIL; 4483 if (reexecute_instruction(vcpu, cr2)) 4484 return EMULATE_DONE; 4485 if (emulation_type & EMULTYPE_SKIP) 4486 return EMULATE_FAIL; 4487 return handle_emulation_failure(vcpu); 4488 } 4489 } 4490 4491 if (emulation_type & EMULTYPE_SKIP) { 4492 kvm_rip_write(vcpu, ctxt->_eip); 4493 return EMULATE_DONE; 4494 } 4495 4496 if (retry_instruction(ctxt, cr2, emulation_type)) 4497 return EMULATE_DONE; 4498 4499 /* this is needed for vmware backdoor interface to work since it 4500 changes registers values during IO operation */ 4501 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4502 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4503 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs); 4504 } 4505 4506 restart: 4507 r = x86_emulate_insn(ctxt); 4508 4509 if (r == EMULATION_INTERCEPTED) 4510 return EMULATE_DONE; 4511 4512 if (r == EMULATION_FAILED) { 4513 if (reexecute_instruction(vcpu, cr2)) 4514 return EMULATE_DONE; 4515 4516 return handle_emulation_failure(vcpu); 4517 } 4518 4519 if (ctxt->have_exception) { 4520 inject_emulated_exception(vcpu); 4521 r = EMULATE_DONE; 4522 } else if (vcpu->arch.pio.count) { 4523 if (!vcpu->arch.pio.in) 4524 vcpu->arch.pio.count = 0; 4525 else 4526 writeback = false; 4527 r = EMULATE_DO_MMIO; 4528 } else if (vcpu->mmio_needed) { 4529 if (!vcpu->mmio_is_write) 4530 writeback = false; 4531 r = EMULATE_DO_MMIO; 4532 } else if (r == EMULATION_RESTART) 4533 goto restart; 4534 else 4535 r = EMULATE_DONE; 4536 4537 if (writeback) { 4538 toggle_interruptibility(vcpu, ctxt->interruptibility); 4539 kvm_set_rflags(vcpu, ctxt->eflags); 4540 kvm_make_request(KVM_REQ_EVENT, vcpu); 4541 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4542 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4543 kvm_rip_write(vcpu, ctxt->eip); 4544 } else 4545 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4546 4547 return r; 4548 } 4549 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4550 4551 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4552 { 4553 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4554 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4555 size, port, &val, 1); 4556 /* do not return to emulator after return from userspace */ 4557 vcpu->arch.pio.count = 0; 4558 return ret; 4559 } 4560 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4561 4562 static void tsc_bad(void *info) 4563 { 4564 __this_cpu_write(cpu_tsc_khz, 0); 4565 } 4566 4567 static void tsc_khz_changed(void *data) 4568 { 4569 struct cpufreq_freqs *freq = data; 4570 unsigned long khz = 0; 4571 4572 if (data) 4573 khz = freq->new; 4574 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4575 khz = cpufreq_quick_get(raw_smp_processor_id()); 4576 if (!khz) 4577 khz = tsc_khz; 4578 __this_cpu_write(cpu_tsc_khz, khz); 4579 } 4580 4581 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4582 void *data) 4583 { 4584 struct cpufreq_freqs *freq = data; 4585 struct kvm *kvm; 4586 struct kvm_vcpu *vcpu; 4587 int i, send_ipi = 0; 4588 4589 /* 4590 * We allow guests to temporarily run on slowing clocks, 4591 * provided we notify them after, or to run on accelerating 4592 * clocks, provided we notify them before. Thus time never 4593 * goes backwards. 4594 * 4595 * However, we have a problem. We can't atomically update 4596 * the frequency of a given CPU from this function; it is 4597 * merely a notifier, which can be called from any CPU. 4598 * Changing the TSC frequency at arbitrary points in time 4599 * requires a recomputation of local variables related to 4600 * the TSC for each VCPU. We must flag these local variables 4601 * to be updated and be sure the update takes place with the 4602 * new frequency before any guests proceed. 4603 * 4604 * Unfortunately, the combination of hotplug CPU and frequency 4605 * change creates an intractable locking scenario; the order 4606 * of when these callouts happen is undefined with respect to 4607 * CPU hotplug, and they can race with each other. As such, 4608 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4609 * undefined; you can actually have a CPU frequency change take 4610 * place in between the computation of X and the setting of the 4611 * variable. To protect against this problem, all updates of 4612 * the per_cpu tsc_khz variable are done in an interrupt 4613 * protected IPI, and all callers wishing to update the value 4614 * must wait for a synchronous IPI to complete (which is trivial 4615 * if the caller is on the CPU already). This establishes the 4616 * necessary total order on variable updates. 4617 * 4618 * Note that because a guest time update may take place 4619 * anytime after the setting of the VCPU's request bit, the 4620 * correct TSC value must be set before the request. However, 4621 * to ensure the update actually makes it to any guest which 4622 * starts running in hardware virtualization between the set 4623 * and the acquisition of the spinlock, we must also ping the 4624 * CPU after setting the request bit. 4625 * 4626 */ 4627 4628 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4629 return 0; 4630 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4631 return 0; 4632 4633 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4634 4635 raw_spin_lock(&kvm_lock); 4636 list_for_each_entry(kvm, &vm_list, vm_list) { 4637 kvm_for_each_vcpu(i, vcpu, kvm) { 4638 if (vcpu->cpu != freq->cpu) 4639 continue; 4640 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4641 if (vcpu->cpu != smp_processor_id()) 4642 send_ipi = 1; 4643 } 4644 } 4645 raw_spin_unlock(&kvm_lock); 4646 4647 if (freq->old < freq->new && send_ipi) { 4648 /* 4649 * We upscale the frequency. Must make the guest 4650 * doesn't see old kvmclock values while running with 4651 * the new frequency, otherwise we risk the guest sees 4652 * time go backwards. 4653 * 4654 * In case we update the frequency for another cpu 4655 * (which might be in guest context) send an interrupt 4656 * to kick the cpu out of guest context. Next time 4657 * guest context is entered kvmclock will be updated, 4658 * so the guest will not see stale values. 4659 */ 4660 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4661 } 4662 return 0; 4663 } 4664 4665 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4666 .notifier_call = kvmclock_cpufreq_notifier 4667 }; 4668 4669 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4670 unsigned long action, void *hcpu) 4671 { 4672 unsigned int cpu = (unsigned long)hcpu; 4673 4674 switch (action) { 4675 case CPU_ONLINE: 4676 case CPU_DOWN_FAILED: 4677 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4678 break; 4679 case CPU_DOWN_PREPARE: 4680 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4681 break; 4682 } 4683 return NOTIFY_OK; 4684 } 4685 4686 static struct notifier_block kvmclock_cpu_notifier_block = { 4687 .notifier_call = kvmclock_cpu_notifier, 4688 .priority = -INT_MAX 4689 }; 4690 4691 static void kvm_timer_init(void) 4692 { 4693 int cpu; 4694 4695 max_tsc_khz = tsc_khz; 4696 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4697 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4698 #ifdef CONFIG_CPU_FREQ 4699 struct cpufreq_policy policy; 4700 memset(&policy, 0, sizeof(policy)); 4701 cpu = get_cpu(); 4702 cpufreq_get_policy(&policy, cpu); 4703 if (policy.cpuinfo.max_freq) 4704 max_tsc_khz = policy.cpuinfo.max_freq; 4705 put_cpu(); 4706 #endif 4707 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4708 CPUFREQ_TRANSITION_NOTIFIER); 4709 } 4710 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4711 for_each_online_cpu(cpu) 4712 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4713 } 4714 4715 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4716 4717 int kvm_is_in_guest(void) 4718 { 4719 return __this_cpu_read(current_vcpu) != NULL; 4720 } 4721 4722 static int kvm_is_user_mode(void) 4723 { 4724 int user_mode = 3; 4725 4726 if (__this_cpu_read(current_vcpu)) 4727 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4728 4729 return user_mode != 0; 4730 } 4731 4732 static unsigned long kvm_get_guest_ip(void) 4733 { 4734 unsigned long ip = 0; 4735 4736 if (__this_cpu_read(current_vcpu)) 4737 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4738 4739 return ip; 4740 } 4741 4742 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4743 .is_in_guest = kvm_is_in_guest, 4744 .is_user_mode = kvm_is_user_mode, 4745 .get_guest_ip = kvm_get_guest_ip, 4746 }; 4747 4748 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4749 { 4750 __this_cpu_write(current_vcpu, vcpu); 4751 } 4752 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4753 4754 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4755 { 4756 __this_cpu_write(current_vcpu, NULL); 4757 } 4758 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4759 4760 static void kvm_set_mmio_spte_mask(void) 4761 { 4762 u64 mask; 4763 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4764 4765 /* 4766 * Set the reserved bits and the present bit of an paging-structure 4767 * entry to generate page fault with PFER.RSV = 1. 4768 */ 4769 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4770 mask |= 1ull; 4771 4772 #ifdef CONFIG_X86_64 4773 /* 4774 * If reserved bit is not supported, clear the present bit to disable 4775 * mmio page fault. 4776 */ 4777 if (maxphyaddr == 52) 4778 mask &= ~1ull; 4779 #endif 4780 4781 kvm_mmu_set_mmio_spte_mask(mask); 4782 } 4783 4784 int kvm_arch_init(void *opaque) 4785 { 4786 int r; 4787 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4788 4789 if (kvm_x86_ops) { 4790 printk(KERN_ERR "kvm: already loaded the other module\n"); 4791 r = -EEXIST; 4792 goto out; 4793 } 4794 4795 if (!ops->cpu_has_kvm_support()) { 4796 printk(KERN_ERR "kvm: no hardware support\n"); 4797 r = -EOPNOTSUPP; 4798 goto out; 4799 } 4800 if (ops->disabled_by_bios()) { 4801 printk(KERN_ERR "kvm: disabled by bios\n"); 4802 r = -EOPNOTSUPP; 4803 goto out; 4804 } 4805 4806 r = kvm_mmu_module_init(); 4807 if (r) 4808 goto out; 4809 4810 kvm_set_mmio_spte_mask(); 4811 kvm_init_msr_list(); 4812 4813 kvm_x86_ops = ops; 4814 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4815 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4816 4817 kvm_timer_init(); 4818 4819 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4820 4821 if (cpu_has_xsave) 4822 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4823 4824 return 0; 4825 4826 out: 4827 return r; 4828 } 4829 4830 void kvm_arch_exit(void) 4831 { 4832 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4833 4834 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4835 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4836 CPUFREQ_TRANSITION_NOTIFIER); 4837 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4838 kvm_x86_ops = NULL; 4839 kvm_mmu_module_exit(); 4840 } 4841 4842 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4843 { 4844 ++vcpu->stat.halt_exits; 4845 if (irqchip_in_kernel(vcpu->kvm)) { 4846 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4847 return 1; 4848 } else { 4849 vcpu->run->exit_reason = KVM_EXIT_HLT; 4850 return 0; 4851 } 4852 } 4853 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4854 4855 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4856 { 4857 u64 param, ingpa, outgpa, ret; 4858 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4859 bool fast, longmode; 4860 int cs_db, cs_l; 4861 4862 /* 4863 * hypercall generates UD from non zero cpl and real mode 4864 * per HYPER-V spec 4865 */ 4866 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4867 kvm_queue_exception(vcpu, UD_VECTOR); 4868 return 0; 4869 } 4870 4871 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4872 longmode = is_long_mode(vcpu) && cs_l == 1; 4873 4874 if (!longmode) { 4875 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4876 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4877 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4878 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4879 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4880 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4881 } 4882 #ifdef CONFIG_X86_64 4883 else { 4884 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4885 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4886 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4887 } 4888 #endif 4889 4890 code = param & 0xffff; 4891 fast = (param >> 16) & 0x1; 4892 rep_cnt = (param >> 32) & 0xfff; 4893 rep_idx = (param >> 48) & 0xfff; 4894 4895 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 4896 4897 switch (code) { 4898 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 4899 kvm_vcpu_on_spin(vcpu); 4900 break; 4901 default: 4902 res = HV_STATUS_INVALID_HYPERCALL_CODE; 4903 break; 4904 } 4905 4906 ret = res | (((u64)rep_done & 0xfff) << 32); 4907 if (longmode) { 4908 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 4909 } else { 4910 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 4911 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 4912 } 4913 4914 return 1; 4915 } 4916 4917 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 4918 { 4919 unsigned long nr, a0, a1, a2, a3, ret; 4920 int r = 1; 4921 4922 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 4923 return kvm_hv_hypercall(vcpu); 4924 4925 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 4926 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 4927 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 4928 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 4929 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 4930 4931 trace_kvm_hypercall(nr, a0, a1, a2, a3); 4932 4933 if (!is_long_mode(vcpu)) { 4934 nr &= 0xFFFFFFFF; 4935 a0 &= 0xFFFFFFFF; 4936 a1 &= 0xFFFFFFFF; 4937 a2 &= 0xFFFFFFFF; 4938 a3 &= 0xFFFFFFFF; 4939 } 4940 4941 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 4942 ret = -KVM_EPERM; 4943 goto out; 4944 } 4945 4946 switch (nr) { 4947 case KVM_HC_VAPIC_POLL_IRQ: 4948 ret = 0; 4949 break; 4950 default: 4951 ret = -KVM_ENOSYS; 4952 break; 4953 } 4954 out: 4955 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 4956 ++vcpu->stat.hypercalls; 4957 return r; 4958 } 4959 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 4960 4961 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 4962 { 4963 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4964 char instruction[3]; 4965 unsigned long rip = kvm_rip_read(vcpu); 4966 4967 /* 4968 * Blow out the MMU to ensure that no other VCPU has an active mapping 4969 * to ensure that the updated hypercall appears atomically across all 4970 * VCPUs. 4971 */ 4972 kvm_mmu_zap_all(vcpu->kvm); 4973 4974 kvm_x86_ops->patch_hypercall(vcpu, instruction); 4975 4976 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 4977 } 4978 4979 /* 4980 * Check if userspace requested an interrupt window, and that the 4981 * interrupt window is open. 4982 * 4983 * No need to exit to userspace if we already have an interrupt queued. 4984 */ 4985 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 4986 { 4987 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 4988 vcpu->run->request_interrupt_window && 4989 kvm_arch_interrupt_allowed(vcpu)); 4990 } 4991 4992 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 4993 { 4994 struct kvm_run *kvm_run = vcpu->run; 4995 4996 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 4997 kvm_run->cr8 = kvm_get_cr8(vcpu); 4998 kvm_run->apic_base = kvm_get_apic_base(vcpu); 4999 if (irqchip_in_kernel(vcpu->kvm)) 5000 kvm_run->ready_for_interrupt_injection = 1; 5001 else 5002 kvm_run->ready_for_interrupt_injection = 5003 kvm_arch_interrupt_allowed(vcpu) && 5004 !kvm_cpu_has_interrupt(vcpu) && 5005 !kvm_event_needs_reinjection(vcpu); 5006 } 5007 5008 static void vapic_enter(struct kvm_vcpu *vcpu) 5009 { 5010 struct kvm_lapic *apic = vcpu->arch.apic; 5011 struct page *page; 5012 5013 if (!apic || !apic->vapic_addr) 5014 return; 5015 5016 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5017 5018 vcpu->arch.apic->vapic_page = page; 5019 } 5020 5021 static void vapic_exit(struct kvm_vcpu *vcpu) 5022 { 5023 struct kvm_lapic *apic = vcpu->arch.apic; 5024 int idx; 5025 5026 if (!apic || !apic->vapic_addr) 5027 return; 5028 5029 idx = srcu_read_lock(&vcpu->kvm->srcu); 5030 kvm_release_page_dirty(apic->vapic_page); 5031 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5032 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5033 } 5034 5035 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5036 { 5037 int max_irr, tpr; 5038 5039 if (!kvm_x86_ops->update_cr8_intercept) 5040 return; 5041 5042 if (!vcpu->arch.apic) 5043 return; 5044 5045 if (!vcpu->arch.apic->vapic_addr) 5046 max_irr = kvm_lapic_find_highest_irr(vcpu); 5047 else 5048 max_irr = -1; 5049 5050 if (max_irr != -1) 5051 max_irr >>= 4; 5052 5053 tpr = kvm_lapic_get_cr8(vcpu); 5054 5055 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5056 } 5057 5058 static void inject_pending_event(struct kvm_vcpu *vcpu) 5059 { 5060 /* try to reinject previous events if any */ 5061 if (vcpu->arch.exception.pending) { 5062 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5063 vcpu->arch.exception.has_error_code, 5064 vcpu->arch.exception.error_code); 5065 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5066 vcpu->arch.exception.has_error_code, 5067 vcpu->arch.exception.error_code, 5068 vcpu->arch.exception.reinject); 5069 return; 5070 } 5071 5072 if (vcpu->arch.nmi_injected) { 5073 kvm_x86_ops->set_nmi(vcpu); 5074 return; 5075 } 5076 5077 if (vcpu->arch.interrupt.pending) { 5078 kvm_x86_ops->set_irq(vcpu); 5079 return; 5080 } 5081 5082 /* try to inject new event if pending */ 5083 if (vcpu->arch.nmi_pending) { 5084 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5085 --vcpu->arch.nmi_pending; 5086 vcpu->arch.nmi_injected = true; 5087 kvm_x86_ops->set_nmi(vcpu); 5088 } 5089 } else if (kvm_cpu_has_interrupt(vcpu)) { 5090 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5091 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5092 false); 5093 kvm_x86_ops->set_irq(vcpu); 5094 } 5095 } 5096 } 5097 5098 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5099 { 5100 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5101 !vcpu->guest_xcr0_loaded) { 5102 /* kvm_set_xcr() also depends on this */ 5103 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5104 vcpu->guest_xcr0_loaded = 1; 5105 } 5106 } 5107 5108 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5109 { 5110 if (vcpu->guest_xcr0_loaded) { 5111 if (vcpu->arch.xcr0 != host_xcr0) 5112 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5113 vcpu->guest_xcr0_loaded = 0; 5114 } 5115 } 5116 5117 static void process_nmi(struct kvm_vcpu *vcpu) 5118 { 5119 unsigned limit = 2; 5120 5121 /* 5122 * x86 is limited to one NMI running, and one NMI pending after it. 5123 * If an NMI is already in progress, limit further NMIs to just one. 5124 * Otherwise, allow two (and we'll inject the first one immediately). 5125 */ 5126 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5127 limit = 1; 5128 5129 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5130 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5131 kvm_make_request(KVM_REQ_EVENT, vcpu); 5132 } 5133 5134 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5135 { 5136 int r; 5137 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5138 vcpu->run->request_interrupt_window; 5139 bool req_immediate_exit = 0; 5140 5141 if (vcpu->requests) { 5142 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5143 kvm_mmu_unload(vcpu); 5144 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5145 __kvm_migrate_timers(vcpu); 5146 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5147 r = kvm_guest_time_update(vcpu); 5148 if (unlikely(r)) 5149 goto out; 5150 } 5151 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5152 kvm_mmu_sync_roots(vcpu); 5153 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5154 kvm_x86_ops->tlb_flush(vcpu); 5155 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5156 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5157 r = 0; 5158 goto out; 5159 } 5160 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5161 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5162 r = 0; 5163 goto out; 5164 } 5165 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5166 vcpu->fpu_active = 0; 5167 kvm_x86_ops->fpu_deactivate(vcpu); 5168 } 5169 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5170 /* Page is swapped out. Do synthetic halt */ 5171 vcpu->arch.apf.halted = true; 5172 r = 1; 5173 goto out; 5174 } 5175 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5176 record_steal_time(vcpu); 5177 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5178 process_nmi(vcpu); 5179 req_immediate_exit = 5180 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5181 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5182 kvm_handle_pmu_event(vcpu); 5183 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5184 kvm_deliver_pmi(vcpu); 5185 } 5186 5187 r = kvm_mmu_reload(vcpu); 5188 if (unlikely(r)) 5189 goto out; 5190 5191 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5192 inject_pending_event(vcpu); 5193 5194 /* enable NMI/IRQ window open exits if needed */ 5195 if (vcpu->arch.nmi_pending) 5196 kvm_x86_ops->enable_nmi_window(vcpu); 5197 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5198 kvm_x86_ops->enable_irq_window(vcpu); 5199 5200 if (kvm_lapic_enabled(vcpu)) { 5201 update_cr8_intercept(vcpu); 5202 kvm_lapic_sync_to_vapic(vcpu); 5203 } 5204 } 5205 5206 preempt_disable(); 5207 5208 kvm_x86_ops->prepare_guest_switch(vcpu); 5209 if (vcpu->fpu_active) 5210 kvm_load_guest_fpu(vcpu); 5211 kvm_load_guest_xcr0(vcpu); 5212 5213 vcpu->mode = IN_GUEST_MODE; 5214 5215 /* We should set ->mode before check ->requests, 5216 * see the comment in make_all_cpus_request. 5217 */ 5218 smp_mb(); 5219 5220 local_irq_disable(); 5221 5222 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5223 || need_resched() || signal_pending(current)) { 5224 vcpu->mode = OUTSIDE_GUEST_MODE; 5225 smp_wmb(); 5226 local_irq_enable(); 5227 preempt_enable(); 5228 kvm_x86_ops->cancel_injection(vcpu); 5229 r = 1; 5230 goto out; 5231 } 5232 5233 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5234 5235 if (req_immediate_exit) 5236 smp_send_reschedule(vcpu->cpu); 5237 5238 kvm_guest_enter(); 5239 5240 if (unlikely(vcpu->arch.switch_db_regs)) { 5241 set_debugreg(0, 7); 5242 set_debugreg(vcpu->arch.eff_db[0], 0); 5243 set_debugreg(vcpu->arch.eff_db[1], 1); 5244 set_debugreg(vcpu->arch.eff_db[2], 2); 5245 set_debugreg(vcpu->arch.eff_db[3], 3); 5246 } 5247 5248 trace_kvm_entry(vcpu->vcpu_id); 5249 kvm_x86_ops->run(vcpu); 5250 5251 /* 5252 * If the guest has used debug registers, at least dr7 5253 * will be disabled while returning to the host. 5254 * If we don't have active breakpoints in the host, we don't 5255 * care about the messed up debug address registers. But if 5256 * we have some of them active, restore the old state. 5257 */ 5258 if (hw_breakpoint_active()) 5259 hw_breakpoint_restore(); 5260 5261 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5262 5263 vcpu->mode = OUTSIDE_GUEST_MODE; 5264 smp_wmb(); 5265 local_irq_enable(); 5266 5267 ++vcpu->stat.exits; 5268 5269 /* 5270 * We must have an instruction between local_irq_enable() and 5271 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5272 * the interrupt shadow. The stat.exits increment will do nicely. 5273 * But we need to prevent reordering, hence this barrier(): 5274 */ 5275 barrier(); 5276 5277 kvm_guest_exit(); 5278 5279 preempt_enable(); 5280 5281 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5282 5283 /* 5284 * Profile KVM exit RIPs: 5285 */ 5286 if (unlikely(prof_on == KVM_PROFILING)) { 5287 unsigned long rip = kvm_rip_read(vcpu); 5288 profile_hit(KVM_PROFILING, (void *)rip); 5289 } 5290 5291 5292 kvm_lapic_sync_from_vapic(vcpu); 5293 5294 r = kvm_x86_ops->handle_exit(vcpu); 5295 out: 5296 return r; 5297 } 5298 5299 5300 static int __vcpu_run(struct kvm_vcpu *vcpu) 5301 { 5302 int r; 5303 struct kvm *kvm = vcpu->kvm; 5304 5305 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5306 pr_debug("vcpu %d received sipi with vector # %x\n", 5307 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5308 kvm_lapic_reset(vcpu); 5309 r = kvm_arch_vcpu_reset(vcpu); 5310 if (r) 5311 return r; 5312 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5313 } 5314 5315 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5316 vapic_enter(vcpu); 5317 5318 r = 1; 5319 while (r > 0) { 5320 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5321 !vcpu->arch.apf.halted) 5322 r = vcpu_enter_guest(vcpu); 5323 else { 5324 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5325 kvm_vcpu_block(vcpu); 5326 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5327 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5328 { 5329 switch(vcpu->arch.mp_state) { 5330 case KVM_MP_STATE_HALTED: 5331 vcpu->arch.mp_state = 5332 KVM_MP_STATE_RUNNABLE; 5333 case KVM_MP_STATE_RUNNABLE: 5334 vcpu->arch.apf.halted = false; 5335 break; 5336 case KVM_MP_STATE_SIPI_RECEIVED: 5337 default: 5338 r = -EINTR; 5339 break; 5340 } 5341 } 5342 } 5343 5344 if (r <= 0) 5345 break; 5346 5347 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5348 if (kvm_cpu_has_pending_timer(vcpu)) 5349 kvm_inject_pending_timer_irqs(vcpu); 5350 5351 if (dm_request_for_irq_injection(vcpu)) { 5352 r = -EINTR; 5353 vcpu->run->exit_reason = KVM_EXIT_INTR; 5354 ++vcpu->stat.request_irq_exits; 5355 } 5356 5357 kvm_check_async_pf_completion(vcpu); 5358 5359 if (signal_pending(current)) { 5360 r = -EINTR; 5361 vcpu->run->exit_reason = KVM_EXIT_INTR; 5362 ++vcpu->stat.signal_exits; 5363 } 5364 if (need_resched()) { 5365 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5366 kvm_resched(vcpu); 5367 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5368 } 5369 } 5370 5371 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5372 5373 vapic_exit(vcpu); 5374 5375 return r; 5376 } 5377 5378 static int complete_mmio(struct kvm_vcpu *vcpu) 5379 { 5380 struct kvm_run *run = vcpu->run; 5381 int r; 5382 5383 if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) 5384 return 1; 5385 5386 if (vcpu->mmio_needed) { 5387 vcpu->mmio_needed = 0; 5388 if (!vcpu->mmio_is_write) 5389 memcpy(vcpu->mmio_data + vcpu->mmio_index, 5390 run->mmio.data, 8); 5391 vcpu->mmio_index += 8; 5392 if (vcpu->mmio_index < vcpu->mmio_size) { 5393 run->exit_reason = KVM_EXIT_MMIO; 5394 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index; 5395 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8); 5396 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8); 5397 run->mmio.is_write = vcpu->mmio_is_write; 5398 vcpu->mmio_needed = 1; 5399 return 0; 5400 } 5401 if (vcpu->mmio_is_write) 5402 return 1; 5403 vcpu->mmio_read_completed = 1; 5404 } 5405 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5406 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5407 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5408 if (r != EMULATE_DONE) 5409 return 0; 5410 return 1; 5411 } 5412 5413 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5414 { 5415 int r; 5416 sigset_t sigsaved; 5417 5418 if (!tsk_used_math(current) && init_fpu(current)) 5419 return -ENOMEM; 5420 5421 if (vcpu->sigset_active) 5422 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5423 5424 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5425 kvm_vcpu_block(vcpu); 5426 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5427 r = -EAGAIN; 5428 goto out; 5429 } 5430 5431 /* re-sync apic's tpr */ 5432 if (!irqchip_in_kernel(vcpu->kvm)) { 5433 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5434 r = -EINVAL; 5435 goto out; 5436 } 5437 } 5438 5439 r = complete_mmio(vcpu); 5440 if (r <= 0) 5441 goto out; 5442 5443 r = __vcpu_run(vcpu); 5444 5445 out: 5446 post_kvm_run_save(vcpu); 5447 if (vcpu->sigset_active) 5448 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5449 5450 return r; 5451 } 5452 5453 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5454 { 5455 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5456 /* 5457 * We are here if userspace calls get_regs() in the middle of 5458 * instruction emulation. Registers state needs to be copied 5459 * back from emulation context to vcpu. Usrapace shouldn't do 5460 * that usually, but some bad designed PV devices (vmware 5461 * backdoor interface) need this to work 5462 */ 5463 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5464 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5465 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5466 } 5467 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5468 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5469 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5470 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5471 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5472 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5473 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5474 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5475 #ifdef CONFIG_X86_64 5476 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5477 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5478 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5479 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5480 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5481 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5482 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5483 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5484 #endif 5485 5486 regs->rip = kvm_rip_read(vcpu); 5487 regs->rflags = kvm_get_rflags(vcpu); 5488 5489 return 0; 5490 } 5491 5492 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5493 { 5494 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5495 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5496 5497 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5498 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5499 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5500 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5501 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5502 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5503 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5504 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5505 #ifdef CONFIG_X86_64 5506 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5507 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5508 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5509 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5510 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5511 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5512 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5513 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5514 #endif 5515 5516 kvm_rip_write(vcpu, regs->rip); 5517 kvm_set_rflags(vcpu, regs->rflags); 5518 5519 vcpu->arch.exception.pending = false; 5520 5521 kvm_make_request(KVM_REQ_EVENT, vcpu); 5522 5523 return 0; 5524 } 5525 5526 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5527 { 5528 struct kvm_segment cs; 5529 5530 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5531 *db = cs.db; 5532 *l = cs.l; 5533 } 5534 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5535 5536 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5537 struct kvm_sregs *sregs) 5538 { 5539 struct desc_ptr dt; 5540 5541 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5542 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5543 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5544 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5545 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5546 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5547 5548 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5549 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5550 5551 kvm_x86_ops->get_idt(vcpu, &dt); 5552 sregs->idt.limit = dt.size; 5553 sregs->idt.base = dt.address; 5554 kvm_x86_ops->get_gdt(vcpu, &dt); 5555 sregs->gdt.limit = dt.size; 5556 sregs->gdt.base = dt.address; 5557 5558 sregs->cr0 = kvm_read_cr0(vcpu); 5559 sregs->cr2 = vcpu->arch.cr2; 5560 sregs->cr3 = kvm_read_cr3(vcpu); 5561 sregs->cr4 = kvm_read_cr4(vcpu); 5562 sregs->cr8 = kvm_get_cr8(vcpu); 5563 sregs->efer = vcpu->arch.efer; 5564 sregs->apic_base = kvm_get_apic_base(vcpu); 5565 5566 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5567 5568 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5569 set_bit(vcpu->arch.interrupt.nr, 5570 (unsigned long *)sregs->interrupt_bitmap); 5571 5572 return 0; 5573 } 5574 5575 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5576 struct kvm_mp_state *mp_state) 5577 { 5578 mp_state->mp_state = vcpu->arch.mp_state; 5579 return 0; 5580 } 5581 5582 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5583 struct kvm_mp_state *mp_state) 5584 { 5585 vcpu->arch.mp_state = mp_state->mp_state; 5586 kvm_make_request(KVM_REQ_EVENT, vcpu); 5587 return 0; 5588 } 5589 5590 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, 5591 bool has_error_code, u32 error_code) 5592 { 5593 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5594 int ret; 5595 5596 init_emulate_ctxt(vcpu); 5597 5598 ret = emulator_task_switch(ctxt, tss_selector, reason, 5599 has_error_code, error_code); 5600 5601 if (ret) 5602 return EMULATE_FAIL; 5603 5604 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5605 kvm_rip_write(vcpu, ctxt->eip); 5606 kvm_set_rflags(vcpu, ctxt->eflags); 5607 kvm_make_request(KVM_REQ_EVENT, vcpu); 5608 return EMULATE_DONE; 5609 } 5610 EXPORT_SYMBOL_GPL(kvm_task_switch); 5611 5612 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5613 struct kvm_sregs *sregs) 5614 { 5615 int mmu_reset_needed = 0; 5616 int pending_vec, max_bits, idx; 5617 struct desc_ptr dt; 5618 5619 dt.size = sregs->idt.limit; 5620 dt.address = sregs->idt.base; 5621 kvm_x86_ops->set_idt(vcpu, &dt); 5622 dt.size = sregs->gdt.limit; 5623 dt.address = sregs->gdt.base; 5624 kvm_x86_ops->set_gdt(vcpu, &dt); 5625 5626 vcpu->arch.cr2 = sregs->cr2; 5627 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5628 vcpu->arch.cr3 = sregs->cr3; 5629 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5630 5631 kvm_set_cr8(vcpu, sregs->cr8); 5632 5633 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5634 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5635 kvm_set_apic_base(vcpu, sregs->apic_base); 5636 5637 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5638 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5639 vcpu->arch.cr0 = sregs->cr0; 5640 5641 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5642 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5643 if (sregs->cr4 & X86_CR4_OSXSAVE) 5644 kvm_update_cpuid(vcpu); 5645 5646 idx = srcu_read_lock(&vcpu->kvm->srcu); 5647 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5648 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5649 mmu_reset_needed = 1; 5650 } 5651 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5652 5653 if (mmu_reset_needed) 5654 kvm_mmu_reset_context(vcpu); 5655 5656 max_bits = (sizeof sregs->interrupt_bitmap) << 3; 5657 pending_vec = find_first_bit( 5658 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5659 if (pending_vec < max_bits) { 5660 kvm_queue_interrupt(vcpu, pending_vec, false); 5661 pr_debug("Set back pending irq %d\n", pending_vec); 5662 } 5663 5664 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5665 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5666 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5667 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5668 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5669 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5670 5671 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5672 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5673 5674 update_cr8_intercept(vcpu); 5675 5676 /* Older userspace won't unhalt the vcpu on reset. */ 5677 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5678 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5679 !is_protmode(vcpu)) 5680 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5681 5682 kvm_make_request(KVM_REQ_EVENT, vcpu); 5683 5684 return 0; 5685 } 5686 5687 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5688 struct kvm_guest_debug *dbg) 5689 { 5690 unsigned long rflags; 5691 int i, r; 5692 5693 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5694 r = -EBUSY; 5695 if (vcpu->arch.exception.pending) 5696 goto out; 5697 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5698 kvm_queue_exception(vcpu, DB_VECTOR); 5699 else 5700 kvm_queue_exception(vcpu, BP_VECTOR); 5701 } 5702 5703 /* 5704 * Read rflags as long as potentially injected trace flags are still 5705 * filtered out. 5706 */ 5707 rflags = kvm_get_rflags(vcpu); 5708 5709 vcpu->guest_debug = dbg->control; 5710 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5711 vcpu->guest_debug = 0; 5712 5713 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5714 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5715 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5716 vcpu->arch.switch_db_regs = 5717 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); 5718 } else { 5719 for (i = 0; i < KVM_NR_DB_REGS; i++) 5720 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5721 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); 5722 } 5723 5724 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5725 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5726 get_segment_base(vcpu, VCPU_SREG_CS); 5727 5728 /* 5729 * Trigger an rflags update that will inject or remove the trace 5730 * flags. 5731 */ 5732 kvm_set_rflags(vcpu, rflags); 5733 5734 kvm_x86_ops->set_guest_debug(vcpu, dbg); 5735 5736 r = 0; 5737 5738 out: 5739 5740 return r; 5741 } 5742 5743 /* 5744 * Translate a guest virtual address to a guest physical address. 5745 */ 5746 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5747 struct kvm_translation *tr) 5748 { 5749 unsigned long vaddr = tr->linear_address; 5750 gpa_t gpa; 5751 int idx; 5752 5753 idx = srcu_read_lock(&vcpu->kvm->srcu); 5754 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5755 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5756 tr->physical_address = gpa; 5757 tr->valid = gpa != UNMAPPED_GVA; 5758 tr->writeable = 1; 5759 tr->usermode = 0; 5760 5761 return 0; 5762 } 5763 5764 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5765 { 5766 struct i387_fxsave_struct *fxsave = 5767 &vcpu->arch.guest_fpu.state->fxsave; 5768 5769 memcpy(fpu->fpr, fxsave->st_space, 128); 5770 fpu->fcw = fxsave->cwd; 5771 fpu->fsw = fxsave->swd; 5772 fpu->ftwx = fxsave->twd; 5773 fpu->last_opcode = fxsave->fop; 5774 fpu->last_ip = fxsave->rip; 5775 fpu->last_dp = fxsave->rdp; 5776 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5777 5778 return 0; 5779 } 5780 5781 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5782 { 5783 struct i387_fxsave_struct *fxsave = 5784 &vcpu->arch.guest_fpu.state->fxsave; 5785 5786 memcpy(fxsave->st_space, fpu->fpr, 128); 5787 fxsave->cwd = fpu->fcw; 5788 fxsave->swd = fpu->fsw; 5789 fxsave->twd = fpu->ftwx; 5790 fxsave->fop = fpu->last_opcode; 5791 fxsave->rip = fpu->last_ip; 5792 fxsave->rdp = fpu->last_dp; 5793 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5794 5795 return 0; 5796 } 5797 5798 int fx_init(struct kvm_vcpu *vcpu) 5799 { 5800 int err; 5801 5802 err = fpu_alloc(&vcpu->arch.guest_fpu); 5803 if (err) 5804 return err; 5805 5806 fpu_finit(&vcpu->arch.guest_fpu); 5807 5808 /* 5809 * Ensure guest xcr0 is valid for loading 5810 */ 5811 vcpu->arch.xcr0 = XSTATE_FP; 5812 5813 vcpu->arch.cr0 |= X86_CR0_ET; 5814 5815 return 0; 5816 } 5817 EXPORT_SYMBOL_GPL(fx_init); 5818 5819 static void fx_free(struct kvm_vcpu *vcpu) 5820 { 5821 fpu_free(&vcpu->arch.guest_fpu); 5822 } 5823 5824 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5825 { 5826 if (vcpu->guest_fpu_loaded) 5827 return; 5828 5829 /* 5830 * Restore all possible states in the guest, 5831 * and assume host would use all available bits. 5832 * Guest xcr0 would be loaded later. 5833 */ 5834 kvm_put_guest_xcr0(vcpu); 5835 vcpu->guest_fpu_loaded = 1; 5836 unlazy_fpu(current); 5837 fpu_restore_checking(&vcpu->arch.guest_fpu); 5838 trace_kvm_fpu(1); 5839 } 5840 5841 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 5842 { 5843 kvm_put_guest_xcr0(vcpu); 5844 5845 if (!vcpu->guest_fpu_loaded) 5846 return; 5847 5848 vcpu->guest_fpu_loaded = 0; 5849 fpu_save_init(&vcpu->arch.guest_fpu); 5850 ++vcpu->stat.fpu_reload; 5851 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 5852 trace_kvm_fpu(0); 5853 } 5854 5855 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 5856 { 5857 kvmclock_reset(vcpu); 5858 5859 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 5860 fx_free(vcpu); 5861 kvm_x86_ops->vcpu_free(vcpu); 5862 } 5863 5864 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 5865 unsigned int id) 5866 { 5867 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 5868 printk_once(KERN_WARNING 5869 "kvm: SMP vm created on host with unstable TSC; " 5870 "guest TSC will not be reliable\n"); 5871 return kvm_x86_ops->vcpu_create(kvm, id); 5872 } 5873 5874 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 5875 { 5876 int r; 5877 5878 vcpu->arch.mtrr_state.have_fixed = 1; 5879 vcpu_load(vcpu); 5880 r = kvm_arch_vcpu_reset(vcpu); 5881 if (r == 0) 5882 r = kvm_mmu_setup(vcpu); 5883 vcpu_put(vcpu); 5884 5885 return r; 5886 } 5887 5888 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 5889 { 5890 vcpu->arch.apf.msr_val = 0; 5891 5892 vcpu_load(vcpu); 5893 kvm_mmu_unload(vcpu); 5894 vcpu_put(vcpu); 5895 5896 fx_free(vcpu); 5897 kvm_x86_ops->vcpu_free(vcpu); 5898 } 5899 5900 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 5901 { 5902 atomic_set(&vcpu->arch.nmi_queued, 0); 5903 vcpu->arch.nmi_pending = 0; 5904 vcpu->arch.nmi_injected = false; 5905 5906 vcpu->arch.switch_db_regs = 0; 5907 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 5908 vcpu->arch.dr6 = DR6_FIXED_1; 5909 vcpu->arch.dr7 = DR7_FIXED_1; 5910 5911 kvm_make_request(KVM_REQ_EVENT, vcpu); 5912 vcpu->arch.apf.msr_val = 0; 5913 vcpu->arch.st.msr_val = 0; 5914 5915 kvmclock_reset(vcpu); 5916 5917 kvm_clear_async_pf_completion_queue(vcpu); 5918 kvm_async_pf_hash_reset(vcpu); 5919 vcpu->arch.apf.halted = false; 5920 5921 kvm_pmu_reset(vcpu); 5922 5923 return kvm_x86_ops->vcpu_reset(vcpu); 5924 } 5925 5926 int kvm_arch_hardware_enable(void *garbage) 5927 { 5928 struct kvm *kvm; 5929 struct kvm_vcpu *vcpu; 5930 int i; 5931 5932 kvm_shared_msr_cpu_online(); 5933 list_for_each_entry(kvm, &vm_list, vm_list) 5934 kvm_for_each_vcpu(i, vcpu, kvm) 5935 if (vcpu->cpu == smp_processor_id()) 5936 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5937 return kvm_x86_ops->hardware_enable(garbage); 5938 } 5939 5940 void kvm_arch_hardware_disable(void *garbage) 5941 { 5942 kvm_x86_ops->hardware_disable(garbage); 5943 drop_user_return_notifiers(garbage); 5944 } 5945 5946 int kvm_arch_hardware_setup(void) 5947 { 5948 return kvm_x86_ops->hardware_setup(); 5949 } 5950 5951 void kvm_arch_hardware_unsetup(void) 5952 { 5953 kvm_x86_ops->hardware_unsetup(); 5954 } 5955 5956 void kvm_arch_check_processor_compat(void *rtn) 5957 { 5958 kvm_x86_ops->check_processor_compatibility(rtn); 5959 } 5960 5961 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 5962 { 5963 struct page *page; 5964 struct kvm *kvm; 5965 int r; 5966 5967 BUG_ON(vcpu->kvm == NULL); 5968 kvm = vcpu->kvm; 5969 5970 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 5971 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 5972 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5973 else 5974 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 5975 5976 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 5977 if (!page) { 5978 r = -ENOMEM; 5979 goto fail; 5980 } 5981 vcpu->arch.pio_data = page_address(page); 5982 5983 kvm_init_tsc_catchup(vcpu, max_tsc_khz); 5984 5985 r = kvm_mmu_create(vcpu); 5986 if (r < 0) 5987 goto fail_free_pio_data; 5988 5989 if (irqchip_in_kernel(kvm)) { 5990 r = kvm_create_lapic(vcpu); 5991 if (r < 0) 5992 goto fail_mmu_destroy; 5993 } 5994 5995 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 5996 GFP_KERNEL); 5997 if (!vcpu->arch.mce_banks) { 5998 r = -ENOMEM; 5999 goto fail_free_lapic; 6000 } 6001 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6002 6003 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6004 goto fail_free_mce_banks; 6005 6006 kvm_async_pf_hash_reset(vcpu); 6007 kvm_pmu_init(vcpu); 6008 6009 return 0; 6010 fail_free_mce_banks: 6011 kfree(vcpu->arch.mce_banks); 6012 fail_free_lapic: 6013 kvm_free_lapic(vcpu); 6014 fail_mmu_destroy: 6015 kvm_mmu_destroy(vcpu); 6016 fail_free_pio_data: 6017 free_page((unsigned long)vcpu->arch.pio_data); 6018 fail: 6019 return r; 6020 } 6021 6022 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6023 { 6024 int idx; 6025 6026 kvm_pmu_destroy(vcpu); 6027 kfree(vcpu->arch.mce_banks); 6028 kvm_free_lapic(vcpu); 6029 idx = srcu_read_lock(&vcpu->kvm->srcu); 6030 kvm_mmu_destroy(vcpu); 6031 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6032 free_page((unsigned long)vcpu->arch.pio_data); 6033 } 6034 6035 int kvm_arch_init_vm(struct kvm *kvm) 6036 { 6037 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6038 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6039 6040 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6041 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6042 6043 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6044 6045 return 0; 6046 } 6047 6048 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6049 { 6050 vcpu_load(vcpu); 6051 kvm_mmu_unload(vcpu); 6052 vcpu_put(vcpu); 6053 } 6054 6055 static void kvm_free_vcpus(struct kvm *kvm) 6056 { 6057 unsigned int i; 6058 struct kvm_vcpu *vcpu; 6059 6060 /* 6061 * Unpin any mmu pages first. 6062 */ 6063 kvm_for_each_vcpu(i, vcpu, kvm) { 6064 kvm_clear_async_pf_completion_queue(vcpu); 6065 kvm_unload_vcpu_mmu(vcpu); 6066 } 6067 kvm_for_each_vcpu(i, vcpu, kvm) 6068 kvm_arch_vcpu_free(vcpu); 6069 6070 mutex_lock(&kvm->lock); 6071 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6072 kvm->vcpus[i] = NULL; 6073 6074 atomic_set(&kvm->online_vcpus, 0); 6075 mutex_unlock(&kvm->lock); 6076 } 6077 6078 void kvm_arch_sync_events(struct kvm *kvm) 6079 { 6080 kvm_free_all_assigned_devices(kvm); 6081 kvm_free_pit(kvm); 6082 } 6083 6084 void kvm_arch_destroy_vm(struct kvm *kvm) 6085 { 6086 kvm_iommu_unmap_guest(kvm); 6087 kfree(kvm->arch.vpic); 6088 kfree(kvm->arch.vioapic); 6089 kvm_free_vcpus(kvm); 6090 if (kvm->arch.apic_access_page) 6091 put_page(kvm->arch.apic_access_page); 6092 if (kvm->arch.ept_identity_pagetable) 6093 put_page(kvm->arch.ept_identity_pagetable); 6094 } 6095 6096 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6097 struct kvm_memory_slot *memslot, 6098 struct kvm_memory_slot old, 6099 struct kvm_userspace_memory_region *mem, 6100 int user_alloc) 6101 { 6102 int npages = memslot->npages; 6103 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6104 6105 /* Prevent internal slot pages from being moved by fork()/COW. */ 6106 if (memslot->id >= KVM_MEMORY_SLOTS) 6107 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6108 6109 /*To keep backward compatibility with older userspace, 6110 *x86 needs to hanlde !user_alloc case. 6111 */ 6112 if (!user_alloc) { 6113 if (npages && !old.rmap) { 6114 unsigned long userspace_addr; 6115 6116 down_write(¤t->mm->mmap_sem); 6117 userspace_addr = do_mmap(NULL, 0, 6118 npages * PAGE_SIZE, 6119 PROT_READ | PROT_WRITE, 6120 map_flags, 6121 0); 6122 up_write(¤t->mm->mmap_sem); 6123 6124 if (IS_ERR((void *)userspace_addr)) 6125 return PTR_ERR((void *)userspace_addr); 6126 6127 memslot->userspace_addr = userspace_addr; 6128 } 6129 } 6130 6131 6132 return 0; 6133 } 6134 6135 void kvm_arch_commit_memory_region(struct kvm *kvm, 6136 struct kvm_userspace_memory_region *mem, 6137 struct kvm_memory_slot old, 6138 int user_alloc) 6139 { 6140 6141 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6142 6143 if (!user_alloc && !old.user_alloc && old.rmap && !npages) { 6144 int ret; 6145 6146 down_write(¤t->mm->mmap_sem); 6147 ret = do_munmap(current->mm, old.userspace_addr, 6148 old.npages * PAGE_SIZE); 6149 up_write(¤t->mm->mmap_sem); 6150 if (ret < 0) 6151 printk(KERN_WARNING 6152 "kvm_vm_ioctl_set_memory_region: " 6153 "failed to munmap memory\n"); 6154 } 6155 6156 if (!kvm->arch.n_requested_mmu_pages) 6157 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6158 6159 spin_lock(&kvm->mmu_lock); 6160 if (nr_mmu_pages) 6161 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6162 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6163 spin_unlock(&kvm->mmu_lock); 6164 } 6165 6166 void kvm_arch_flush_shadow(struct kvm *kvm) 6167 { 6168 kvm_mmu_zap_all(kvm); 6169 kvm_reload_remote_mmus(kvm); 6170 } 6171 6172 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6173 { 6174 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6175 !vcpu->arch.apf.halted) 6176 || !list_empty_careful(&vcpu->async_pf.done) 6177 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6178 || atomic_read(&vcpu->arch.nmi_queued) || 6179 (kvm_arch_interrupt_allowed(vcpu) && 6180 kvm_cpu_has_interrupt(vcpu)); 6181 } 6182 6183 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 6184 { 6185 int me; 6186 int cpu = vcpu->cpu; 6187 6188 if (waitqueue_active(&vcpu->wq)) { 6189 wake_up_interruptible(&vcpu->wq); 6190 ++vcpu->stat.halt_wakeup; 6191 } 6192 6193 me = get_cpu(); 6194 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 6195 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE) 6196 smp_send_reschedule(cpu); 6197 put_cpu(); 6198 } 6199 6200 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6201 { 6202 return kvm_x86_ops->interrupt_allowed(vcpu); 6203 } 6204 6205 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6206 { 6207 unsigned long current_rip = kvm_rip_read(vcpu) + 6208 get_segment_base(vcpu, VCPU_SREG_CS); 6209 6210 return current_rip == linear_rip; 6211 } 6212 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6213 6214 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6215 { 6216 unsigned long rflags; 6217 6218 rflags = kvm_x86_ops->get_rflags(vcpu); 6219 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6220 rflags &= ~X86_EFLAGS_TF; 6221 return rflags; 6222 } 6223 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6224 6225 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6226 { 6227 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6228 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6229 rflags |= X86_EFLAGS_TF; 6230 kvm_x86_ops->set_rflags(vcpu, rflags); 6231 kvm_make_request(KVM_REQ_EVENT, vcpu); 6232 } 6233 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6234 6235 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6236 { 6237 int r; 6238 6239 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6240 is_error_page(work->page)) 6241 return; 6242 6243 r = kvm_mmu_reload(vcpu); 6244 if (unlikely(r)) 6245 return; 6246 6247 if (!vcpu->arch.mmu.direct_map && 6248 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6249 return; 6250 6251 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6252 } 6253 6254 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6255 { 6256 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6257 } 6258 6259 static inline u32 kvm_async_pf_next_probe(u32 key) 6260 { 6261 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6262 } 6263 6264 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6265 { 6266 u32 key = kvm_async_pf_hash_fn(gfn); 6267 6268 while (vcpu->arch.apf.gfns[key] != ~0) 6269 key = kvm_async_pf_next_probe(key); 6270 6271 vcpu->arch.apf.gfns[key] = gfn; 6272 } 6273 6274 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6275 { 6276 int i; 6277 u32 key = kvm_async_pf_hash_fn(gfn); 6278 6279 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6280 (vcpu->arch.apf.gfns[key] != gfn && 6281 vcpu->arch.apf.gfns[key] != ~0); i++) 6282 key = kvm_async_pf_next_probe(key); 6283 6284 return key; 6285 } 6286 6287 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6288 { 6289 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6290 } 6291 6292 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6293 { 6294 u32 i, j, k; 6295 6296 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6297 while (true) { 6298 vcpu->arch.apf.gfns[i] = ~0; 6299 do { 6300 j = kvm_async_pf_next_probe(j); 6301 if (vcpu->arch.apf.gfns[j] == ~0) 6302 return; 6303 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6304 /* 6305 * k lies cyclically in ]i,j] 6306 * | i.k.j | 6307 * |....j i.k.| or |.k..j i...| 6308 */ 6309 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6310 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6311 i = j; 6312 } 6313 } 6314 6315 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6316 { 6317 6318 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6319 sizeof(val)); 6320 } 6321 6322 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6323 struct kvm_async_pf *work) 6324 { 6325 struct x86_exception fault; 6326 6327 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6328 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6329 6330 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6331 (vcpu->arch.apf.send_user_only && 6332 kvm_x86_ops->get_cpl(vcpu) == 0)) 6333 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6334 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6335 fault.vector = PF_VECTOR; 6336 fault.error_code_valid = true; 6337 fault.error_code = 0; 6338 fault.nested_page_fault = false; 6339 fault.address = work->arch.token; 6340 kvm_inject_page_fault(vcpu, &fault); 6341 } 6342 } 6343 6344 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6345 struct kvm_async_pf *work) 6346 { 6347 struct x86_exception fault; 6348 6349 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6350 if (is_error_page(work->page)) 6351 work->arch.token = ~0; /* broadcast wakeup */ 6352 else 6353 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6354 6355 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6356 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6357 fault.vector = PF_VECTOR; 6358 fault.error_code_valid = true; 6359 fault.error_code = 0; 6360 fault.nested_page_fault = false; 6361 fault.address = work->arch.token; 6362 kvm_inject_page_fault(vcpu, &fault); 6363 } 6364 vcpu->arch.apf.halted = false; 6365 } 6366 6367 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6368 { 6369 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6370 return true; 6371 else 6372 return !kvm_event_needs_reinjection(vcpu) && 6373 kvm_x86_ops->interrupt_allowed(vcpu); 6374 } 6375 6376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6388