xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 9b9c2cd4)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly backwards_tsc_observed = false;
127 
128 #define KVM_NR_SHARED_MSRS 16
129 
130 struct kvm_shared_msrs_global {
131 	int nr;
132 	u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134 
135 struct kvm_shared_msrs {
136 	struct user_return_notifier urn;
137 	bool registered;
138 	struct kvm_shared_msr_values {
139 		u64 host;
140 		u64 curr;
141 	} values[KVM_NR_SHARED_MSRS];
142 };
143 
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146 
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
149 	{ "pf_guest", VCPU_STAT(pf_guest) },
150 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
151 	{ "invlpg", VCPU_STAT(invlpg) },
152 	{ "exits", VCPU_STAT(exits) },
153 	{ "io_exits", VCPU_STAT(io_exits) },
154 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
155 	{ "signal_exits", VCPU_STAT(signal_exits) },
156 	{ "irq_window", VCPU_STAT(irq_window_exits) },
157 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
158 	{ "halt_exits", VCPU_STAT(halt_exits) },
159 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
162 	{ "hypercalls", VCPU_STAT(hypercalls) },
163 	{ "request_irq", VCPU_STAT(request_irq_exits) },
164 	{ "irq_exits", VCPU_STAT(irq_exits) },
165 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
166 	{ "efer_reload", VCPU_STAT(efer_reload) },
167 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
168 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
169 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170 	{ "irq_injections", VCPU_STAT(irq_injections) },
171 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
172 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
174 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
177 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
178 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
180 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181 	{ "largepages", VM_STAT(lpages) },
182 	{ NULL }
183 };
184 
185 u64 __read_mostly host_xcr0;
186 
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188 
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191 	int i;
192 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193 		vcpu->arch.apf.gfns[i] = ~0;
194 }
195 
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198 	unsigned slot;
199 	struct kvm_shared_msrs *locals
200 		= container_of(urn, struct kvm_shared_msrs, urn);
201 	struct kvm_shared_msr_values *values;
202 
203 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204 		values = &locals->values[slot];
205 		if (values->host != values->curr) {
206 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
207 			values->curr = values->host;
208 		}
209 	}
210 	locals->registered = false;
211 	user_return_notifier_unregister(urn);
212 }
213 
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216 	u64 value;
217 	unsigned int cpu = smp_processor_id();
218 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219 
220 	/* only read, and nobody should modify it at this time,
221 	 * so don't need lock */
222 	if (slot >= shared_msrs_global.nr) {
223 		printk(KERN_ERR "kvm: invalid MSR slot!");
224 		return;
225 	}
226 	rdmsrl_safe(msr, &value);
227 	smsr->values[slot].host = value;
228 	smsr->values[slot].curr = value;
229 }
230 
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234 	shared_msrs_global.msrs[slot] = msr;
235 	if (slot >= shared_msrs_global.nr)
236 		shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239 
240 static void kvm_shared_msr_cpu_online(void)
241 {
242 	unsigned i;
243 
244 	for (i = 0; i < shared_msrs_global.nr; ++i)
245 		shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247 
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250 	unsigned int cpu = smp_processor_id();
251 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252 	int err;
253 
254 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
255 		return 0;
256 	smsr->values[slot].curr = value;
257 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258 	if (err)
259 		return 1;
260 
261 	if (!smsr->registered) {
262 		smsr->urn.on_user_return = kvm_on_user_return;
263 		user_return_notifier_register(&smsr->urn);
264 		smsr->registered = true;
265 	}
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269 
270 static void drop_user_return_notifiers(void)
271 {
272 	unsigned int cpu = smp_processor_id();
273 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 
275 	if (smsr->registered)
276 		kvm_on_user_return(&smsr->urn);
277 }
278 
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281 	return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284 
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287 	u64 old_state = vcpu->arch.apic_base &
288 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289 	u64 new_state = msr_info->data &
290 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293 
294 	if (!msr_info->host_initiated &&
295 	    ((msr_info->data & reserved_bits) != 0 ||
296 	     new_state == X2APIC_ENABLE ||
297 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
298 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300 	      old_state == 0)))
301 		return 1;
302 
303 	kvm_lapic_set_base(vcpu, msr_info->data);
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307 
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310 	/* Fault while not rebooting.  We want the trace. */
311 	BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314 
315 #define EXCPT_BENIGN		0
316 #define EXCPT_CONTRIBUTORY	1
317 #define EXCPT_PF		2
318 
319 static int exception_class(int vector)
320 {
321 	switch (vector) {
322 	case PF_VECTOR:
323 		return EXCPT_PF;
324 	case DE_VECTOR:
325 	case TS_VECTOR:
326 	case NP_VECTOR:
327 	case SS_VECTOR:
328 	case GP_VECTOR:
329 		return EXCPT_CONTRIBUTORY;
330 	default:
331 		break;
332 	}
333 	return EXCPT_BENIGN;
334 }
335 
336 #define EXCPT_FAULT		0
337 #define EXCPT_TRAP		1
338 #define EXCPT_ABORT		2
339 #define EXCPT_INTERRUPT		3
340 
341 static int exception_type(int vector)
342 {
343 	unsigned int mask;
344 
345 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346 		return EXCPT_INTERRUPT;
347 
348 	mask = 1 << vector;
349 
350 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
351 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352 		return EXCPT_TRAP;
353 
354 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355 		return EXCPT_ABORT;
356 
357 	/* Reserved exceptions will result in fault */
358 	return EXCPT_FAULT;
359 }
360 
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362 		unsigned nr, bool has_error, u32 error_code,
363 		bool reinject)
364 {
365 	u32 prev_nr;
366 	int class1, class2;
367 
368 	kvm_make_request(KVM_REQ_EVENT, vcpu);
369 
370 	if (!vcpu->arch.exception.pending) {
371 	queue:
372 		if (has_error && !is_protmode(vcpu))
373 			has_error = false;
374 		vcpu->arch.exception.pending = true;
375 		vcpu->arch.exception.has_error_code = has_error;
376 		vcpu->arch.exception.nr = nr;
377 		vcpu->arch.exception.error_code = error_code;
378 		vcpu->arch.exception.reinject = reinject;
379 		return;
380 	}
381 
382 	/* to check exception */
383 	prev_nr = vcpu->arch.exception.nr;
384 	if (prev_nr == DF_VECTOR) {
385 		/* triple fault -> shutdown */
386 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387 		return;
388 	}
389 	class1 = exception_class(prev_nr);
390 	class2 = exception_class(nr);
391 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393 		/* generate double fault per SDM Table 5-5 */
394 		vcpu->arch.exception.pending = true;
395 		vcpu->arch.exception.has_error_code = true;
396 		vcpu->arch.exception.nr = DF_VECTOR;
397 		vcpu->arch.exception.error_code = 0;
398 	} else
399 		/* replace previous exception with a new one in a hope
400 		   that instruction re-execution will regenerate lost
401 		   exception */
402 		goto queue;
403 }
404 
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407 	kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410 
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413 	kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416 
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419 	if (err)
420 		kvm_inject_gp(vcpu, 0);
421 	else
422 		kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425 
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 	++vcpu->stat.pf_guest;
429 	vcpu->arch.cr2 = fault->address;
430 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433 
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438 	else
439 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440 
441 	return fault->nested_page_fault;
442 }
443 
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446 	atomic_inc(&vcpu->arch.nmi_queued);
447 	kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450 
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456 
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462 
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470 		return true;
471 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475 
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479 		return true;
480 
481 	kvm_queue_exception(vcpu, UD_VECTOR);
482 	return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485 
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492 			    gfn_t ngfn, void *data, int offset, int len,
493 			    u32 access)
494 {
495 	struct x86_exception exception;
496 	gfn_t real_gfn;
497 	gpa_t ngpa;
498 
499 	ngpa     = gfn_to_gpa(ngfn);
500 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501 	if (real_gfn == UNMAPPED_GVA)
502 		return -EFAULT;
503 
504 	real_gfn = gpa_to_gfn(real_gfn);
505 
506 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509 
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511 			       void *data, int offset, int len, u32 access)
512 {
513 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514 				       data, offset, len, access);
515 }
516 
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524 	int i;
525 	int ret;
526 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527 
528 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529 				      offset * sizeof(u64), sizeof(pdpte),
530 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
531 	if (ret < 0) {
532 		ret = 0;
533 		goto out;
534 	}
535 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536 		if (is_present_gpte(pdpte[i]) &&
537 		    (pdpte[i] &
538 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539 			ret = 0;
540 			goto out;
541 		}
542 	}
543 	ret = 1;
544 
545 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546 	__set_bit(VCPU_EXREG_PDPTR,
547 		  (unsigned long *)&vcpu->arch.regs_avail);
548 	__set_bit(VCPU_EXREG_PDPTR,
549 		  (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555 
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559 	bool changed = true;
560 	int offset;
561 	gfn_t gfn;
562 	int r;
563 
564 	if (is_long_mode(vcpu) || !is_pae(vcpu))
565 		return false;
566 
567 	if (!test_bit(VCPU_EXREG_PDPTR,
568 		      (unsigned long *)&vcpu->arch.regs_avail))
569 		return true;
570 
571 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
575 	if (r < 0)
576 		goto out;
577 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579 
580 	return changed;
581 }
582 
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
586 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587 
588 	cr0 |= X86_CR0_ET;
589 
590 #ifdef CONFIG_X86_64
591 	if (cr0 & 0xffffffff00000000UL)
592 		return 1;
593 #endif
594 
595 	cr0 &= ~CR0_RESERVED_BITS;
596 
597 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598 		return 1;
599 
600 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601 		return 1;
602 
603 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605 		if ((vcpu->arch.efer & EFER_LME)) {
606 			int cs_db, cs_l;
607 
608 			if (!is_pae(vcpu))
609 				return 1;
610 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611 			if (cs_l)
612 				return 1;
613 		} else
614 #endif
615 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 						 kvm_read_cr3(vcpu)))
617 			return 1;
618 	}
619 
620 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621 		return 1;
622 
623 	kvm_x86_ops->set_cr0(vcpu, cr0);
624 
625 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626 		kvm_clear_async_pf_completion_queue(vcpu);
627 		kvm_async_pf_hash_reset(vcpu);
628 	}
629 
630 	if ((cr0 ^ old_cr0) & update_bits)
631 		kvm_mmu_reset_context(vcpu);
632 
633 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641 
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647 
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651 			!vcpu->guest_xcr0_loaded) {
652 		/* kvm_set_xcr() also depends on this */
653 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654 		vcpu->guest_xcr0_loaded = 1;
655 	}
656 }
657 
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660 	if (vcpu->guest_xcr0_loaded) {
661 		if (vcpu->arch.xcr0 != host_xcr0)
662 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663 		vcpu->guest_xcr0_loaded = 0;
664 	}
665 }
666 
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 	u64 xcr0 = xcr;
670 	u64 old_xcr0 = vcpu->arch.xcr0;
671 	u64 valid_bits;
672 
673 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674 	if (index != XCR_XFEATURE_ENABLED_MASK)
675 		return 1;
676 	if (!(xcr0 & XFEATURE_MASK_FP))
677 		return 1;
678 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679 		return 1;
680 
681 	/*
682 	 * Do not allow the guest to set bits that we do not support
683 	 * saving.  However, xcr0 bit 0 is always set, even if the
684 	 * emulated CPU does not support XSAVE (see fx_init).
685 	 */
686 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687 	if (xcr0 & ~valid_bits)
688 		return 1;
689 
690 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692 		return 1;
693 
694 	if (xcr0 & XFEATURE_MASK_AVX512) {
695 		if (!(xcr0 & XFEATURE_MASK_YMM))
696 			return 1;
697 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698 			return 1;
699 	}
700 	kvm_put_guest_xcr0(vcpu);
701 	vcpu->arch.xcr0 = xcr0;
702 
703 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704 		kvm_update_cpuid(vcpu);
705 	return 0;
706 }
707 
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711 	    __kvm_set_xcr(vcpu, index, xcr)) {
712 		kvm_inject_gp(vcpu, 0);
713 		return 1;
714 	}
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718 
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
722 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723 				   X86_CR4_SMEP | X86_CR4_SMAP;
724 
725 	if (cr4 & CR4_RESERVED_BITS)
726 		return 1;
727 
728 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729 		return 1;
730 
731 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738 		return 1;
739 
740 	if (is_long_mode(vcpu)) {
741 		if (!(cr4 & X86_CR4_PAE))
742 			return 1;
743 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744 		   && ((cr4 ^ old_cr4) & pdptr_bits)
745 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746 				   kvm_read_cr3(vcpu)))
747 		return 1;
748 
749 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750 		if (!guest_cpuid_has_pcid(vcpu))
751 			return 1;
752 
753 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755 			return 1;
756 	}
757 
758 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
759 		return 1;
760 
761 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
762 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763 		kvm_mmu_reset_context(vcpu);
764 
765 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766 		kvm_update_cpuid(vcpu);
767 
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771 
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775 	cr3 &= ~CR3_PCID_INVD;
776 #endif
777 
778 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779 		kvm_mmu_sync_roots(vcpu);
780 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781 		return 0;
782 	}
783 
784 	if (is_long_mode(vcpu)) {
785 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
786 			return 1;
787 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
788 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789 		return 1;
790 
791 	vcpu->arch.cr3 = cr3;
792 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793 	kvm_mmu_new_cr3(vcpu);
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797 
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800 	if (cr8 & CR8_RESERVED_BITS)
801 		return 1;
802 	if (lapic_in_kernel(vcpu))
803 		kvm_lapic_set_tpr(vcpu, cr8);
804 	else
805 		vcpu->arch.cr8 = cr8;
806 	return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809 
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812 	if (lapic_in_kernel(vcpu))
813 		return kvm_lapic_get_cr8(vcpu);
814 	else
815 		return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818 
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821 	int i;
822 
823 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824 		for (i = 0; i < KVM_NR_DB_REGS; i++)
825 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827 	}
828 }
829 
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835 
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838 	unsigned long dr7;
839 
840 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841 		dr7 = vcpu->arch.guest_debug_dr7;
842 	else
843 		dr7 = vcpu->arch.dr7;
844 	kvm_x86_ops->set_dr7(vcpu, dr7);
845 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846 	if (dr7 & DR7_BP_EN_MASK)
847 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849 
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852 	u64 fixed = DR6_FIXED_1;
853 
854 	if (!guest_cpuid_has_rtm(vcpu))
855 		fixed |= DR6_RTM;
856 	return fixed;
857 }
858 
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861 	switch (dr) {
862 	case 0 ... 3:
863 		vcpu->arch.db[dr] = val;
864 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 			vcpu->arch.eff_db[dr] = val;
866 		break;
867 	case 4:
868 		/* fall through */
869 	case 6:
870 		if (val & 0xffffffff00000000ULL)
871 			return -1; /* #GP */
872 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873 		kvm_update_dr6(vcpu);
874 		break;
875 	case 5:
876 		/* fall through */
877 	default: /* 7 */
878 		if (val & 0xffffffff00000000ULL)
879 			return -1; /* #GP */
880 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881 		kvm_update_dr7(vcpu);
882 		break;
883 	}
884 
885 	return 0;
886 }
887 
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 	if (__kvm_set_dr(vcpu, dr, val)) {
891 		kvm_inject_gp(vcpu, 0);
892 		return 1;
893 	}
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897 
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900 	switch (dr) {
901 	case 0 ... 3:
902 		*val = vcpu->arch.db[dr];
903 		break;
904 	case 4:
905 		/* fall through */
906 	case 6:
907 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908 			*val = vcpu->arch.dr6;
909 		else
910 			*val = kvm_x86_ops->get_dr6(vcpu);
911 		break;
912 	case 5:
913 		/* fall through */
914 	default: /* 7 */
915 		*val = vcpu->arch.dr7;
916 		break;
917 	}
918 	return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921 
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925 	u64 data;
926 	int err;
927 
928 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929 	if (err)
930 		return err;
931 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933 	return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936 
937 /*
938  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940  *
941  * This list is modified at module load time to reflect the
942  * capabilities of the host cpu. This capabilities test skips MSRs that are
943  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944  * may depend on host virtualization features rather than host cpu features.
945  */
946 
947 static u32 msrs_to_save[] = {
948 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949 	MSR_STAR,
950 #ifdef CONFIG_X86_64
951 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
955 };
956 
957 static unsigned num_msrs_to_save;
958 
959 static u32 emulated_msrs[] = {
960 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966 	HV_X64_MSR_RESET,
967 	HV_X64_MSR_VP_INDEX,
968 	HV_X64_MSR_VP_RUNTIME,
969 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
970 	MSR_KVM_PV_EOI_EN,
971 
972 	MSR_IA32_TSC_ADJUST,
973 	MSR_IA32_TSCDEADLINE,
974 	MSR_IA32_MISC_ENABLE,
975 	MSR_IA32_MCG_STATUS,
976 	MSR_IA32_MCG_CTL,
977 	MSR_IA32_SMBASE,
978 };
979 
980 static unsigned num_emulated_msrs;
981 
982 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
983 {
984 	if (efer & efer_reserved_bits)
985 		return false;
986 
987 	if (efer & EFER_FFXSR) {
988 		struct kvm_cpuid_entry2 *feat;
989 
990 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
991 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
992 			return false;
993 	}
994 
995 	if (efer & EFER_SVME) {
996 		struct kvm_cpuid_entry2 *feat;
997 
998 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1000 			return false;
1001 	}
1002 
1003 	return true;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1006 
1007 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1008 {
1009 	u64 old_efer = vcpu->arch.efer;
1010 
1011 	if (!kvm_valid_efer(vcpu, efer))
1012 		return 1;
1013 
1014 	if (is_paging(vcpu)
1015 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1016 		return 1;
1017 
1018 	efer &= ~EFER_LMA;
1019 	efer |= vcpu->arch.efer & EFER_LMA;
1020 
1021 	kvm_x86_ops->set_efer(vcpu, efer);
1022 
1023 	/* Update reserved bits */
1024 	if ((efer ^ old_efer) & EFER_NX)
1025 		kvm_mmu_reset_context(vcpu);
1026 
1027 	return 0;
1028 }
1029 
1030 void kvm_enable_efer_bits(u64 mask)
1031 {
1032        efer_reserved_bits &= ~mask;
1033 }
1034 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1035 
1036 /*
1037  * Writes msr value into into the appropriate "register".
1038  * Returns 0 on success, non-0 otherwise.
1039  * Assumes vcpu_load() was already called.
1040  */
1041 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1042 {
1043 	switch (msr->index) {
1044 	case MSR_FS_BASE:
1045 	case MSR_GS_BASE:
1046 	case MSR_KERNEL_GS_BASE:
1047 	case MSR_CSTAR:
1048 	case MSR_LSTAR:
1049 		if (is_noncanonical_address(msr->data))
1050 			return 1;
1051 		break;
1052 	case MSR_IA32_SYSENTER_EIP:
1053 	case MSR_IA32_SYSENTER_ESP:
1054 		/*
1055 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1056 		 * non-canonical address is written on Intel but not on
1057 		 * AMD (which ignores the top 32-bits, because it does
1058 		 * not implement 64-bit SYSENTER).
1059 		 *
1060 		 * 64-bit code should hence be able to write a non-canonical
1061 		 * value on AMD.  Making the address canonical ensures that
1062 		 * vmentry does not fail on Intel after writing a non-canonical
1063 		 * value, and that something deterministic happens if the guest
1064 		 * invokes 64-bit SYSENTER.
1065 		 */
1066 		msr->data = get_canonical(msr->data);
1067 	}
1068 	return kvm_x86_ops->set_msr(vcpu, msr);
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_msr);
1071 
1072 /*
1073  * Adapt set_msr() to msr_io()'s calling convention
1074  */
1075 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1076 {
1077 	struct msr_data msr;
1078 	int r;
1079 
1080 	msr.index = index;
1081 	msr.host_initiated = true;
1082 	r = kvm_get_msr(vcpu, &msr);
1083 	if (r)
1084 		return r;
1085 
1086 	*data = msr.data;
1087 	return 0;
1088 }
1089 
1090 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1091 {
1092 	struct msr_data msr;
1093 
1094 	msr.data = *data;
1095 	msr.index = index;
1096 	msr.host_initiated = true;
1097 	return kvm_set_msr(vcpu, &msr);
1098 }
1099 
1100 #ifdef CONFIG_X86_64
1101 struct pvclock_gtod_data {
1102 	seqcount_t	seq;
1103 
1104 	struct { /* extract of a clocksource struct */
1105 		int vclock_mode;
1106 		cycle_t	cycle_last;
1107 		cycle_t	mask;
1108 		u32	mult;
1109 		u32	shift;
1110 	} clock;
1111 
1112 	u64		boot_ns;
1113 	u64		nsec_base;
1114 };
1115 
1116 static struct pvclock_gtod_data pvclock_gtod_data;
1117 
1118 static void update_pvclock_gtod(struct timekeeper *tk)
1119 {
1120 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1121 	u64 boot_ns;
1122 
1123 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1124 
1125 	write_seqcount_begin(&vdata->seq);
1126 
1127 	/* copy pvclock gtod data */
1128 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1129 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1130 	vdata->clock.mask		= tk->tkr_mono.mask;
1131 	vdata->clock.mult		= tk->tkr_mono.mult;
1132 	vdata->clock.shift		= tk->tkr_mono.shift;
1133 
1134 	vdata->boot_ns			= boot_ns;
1135 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1136 
1137 	write_seqcount_end(&vdata->seq);
1138 }
1139 #endif
1140 
1141 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1142 {
1143 	/*
1144 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1145 	 * vcpu_enter_guest.  This function is only called from
1146 	 * the physical CPU that is running vcpu.
1147 	 */
1148 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1149 }
1150 
1151 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1152 {
1153 	int version;
1154 	int r;
1155 	struct pvclock_wall_clock wc;
1156 	struct timespec boot;
1157 
1158 	if (!wall_clock)
1159 		return;
1160 
1161 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1162 	if (r)
1163 		return;
1164 
1165 	if (version & 1)
1166 		++version;  /* first time write, random junk */
1167 
1168 	++version;
1169 
1170 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1171 
1172 	/*
1173 	 * The guest calculates current wall clock time by adding
1174 	 * system time (updated by kvm_guest_time_update below) to the
1175 	 * wall clock specified here.  guest system time equals host
1176 	 * system time for us, thus we must fill in host boot time here.
1177 	 */
1178 	getboottime(&boot);
1179 
1180 	if (kvm->arch.kvmclock_offset) {
1181 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1182 		boot = timespec_sub(boot, ts);
1183 	}
1184 	wc.sec = boot.tv_sec;
1185 	wc.nsec = boot.tv_nsec;
1186 	wc.version = version;
1187 
1188 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1189 
1190 	version++;
1191 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1192 }
1193 
1194 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1195 {
1196 	uint32_t quotient, remainder;
1197 
1198 	/* Don't try to replace with do_div(), this one calculates
1199 	 * "(dividend << 32) / divisor" */
1200 	__asm__ ( "divl %4"
1201 		  : "=a" (quotient), "=d" (remainder)
1202 		  : "0" (0), "1" (dividend), "r" (divisor) );
1203 	return quotient;
1204 }
1205 
1206 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1207 			       s8 *pshift, u32 *pmultiplier)
1208 {
1209 	uint64_t scaled64;
1210 	int32_t  shift = 0;
1211 	uint64_t tps64;
1212 	uint32_t tps32;
1213 
1214 	tps64 = base_khz * 1000LL;
1215 	scaled64 = scaled_khz * 1000LL;
1216 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1217 		tps64 >>= 1;
1218 		shift--;
1219 	}
1220 
1221 	tps32 = (uint32_t)tps64;
1222 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1223 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1224 			scaled64 >>= 1;
1225 		else
1226 			tps32 <<= 1;
1227 		shift++;
1228 	}
1229 
1230 	*pshift = shift;
1231 	*pmultiplier = div_frac(scaled64, tps32);
1232 
1233 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1234 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1235 }
1236 
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1239 #endif
1240 
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1242 static unsigned long max_tsc_khz;
1243 
1244 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1245 {
1246 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1247 				   vcpu->arch.virtual_tsc_shift);
1248 }
1249 
1250 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1251 {
1252 	u64 v = (u64)khz * (1000000 + ppm);
1253 	do_div(v, 1000000);
1254 	return v;
1255 }
1256 
1257 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1258 {
1259 	u64 ratio;
1260 
1261 	/* Guest TSC same frequency as host TSC? */
1262 	if (!scale) {
1263 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1264 		return 0;
1265 	}
1266 
1267 	/* TSC scaling supported? */
1268 	if (!kvm_has_tsc_control) {
1269 		if (user_tsc_khz > tsc_khz) {
1270 			vcpu->arch.tsc_catchup = 1;
1271 			vcpu->arch.tsc_always_catchup = 1;
1272 			return 0;
1273 		} else {
1274 			WARN(1, "user requested TSC rate below hardware speed\n");
1275 			return -1;
1276 		}
1277 	}
1278 
1279 	/* TSC scaling required  - calculate ratio */
1280 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1281 				user_tsc_khz, tsc_khz);
1282 
1283 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1284 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1285 			  user_tsc_khz);
1286 		return -1;
1287 	}
1288 
1289 	vcpu->arch.tsc_scaling_ratio = ratio;
1290 	return 0;
1291 }
1292 
1293 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1294 {
1295 	u32 thresh_lo, thresh_hi;
1296 	int use_scaling = 0;
1297 
1298 	/* tsc_khz can be zero if TSC calibration fails */
1299 	if (this_tsc_khz == 0) {
1300 		/* set tsc_scaling_ratio to a safe value */
1301 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1302 		return -1;
1303 	}
1304 
1305 	/* Compute a scale to convert nanoseconds in TSC cycles */
1306 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1307 			   &vcpu->arch.virtual_tsc_shift,
1308 			   &vcpu->arch.virtual_tsc_mult);
1309 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1310 
1311 	/*
1312 	 * Compute the variation in TSC rate which is acceptable
1313 	 * within the range of tolerance and decide if the
1314 	 * rate being applied is within that bounds of the hardware
1315 	 * rate.  If so, no scaling or compensation need be done.
1316 	 */
1317 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1318 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1319 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1320 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1321 		use_scaling = 1;
1322 	}
1323 	return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1324 }
1325 
1326 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1327 {
1328 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1329 				      vcpu->arch.virtual_tsc_mult,
1330 				      vcpu->arch.virtual_tsc_shift);
1331 	tsc += vcpu->arch.this_tsc_write;
1332 	return tsc;
1333 }
1334 
1335 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338 	bool vcpus_matched;
1339 	struct kvm_arch *ka = &vcpu->kvm->arch;
1340 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1341 
1342 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1343 			 atomic_read(&vcpu->kvm->online_vcpus));
1344 
1345 	/*
1346 	 * Once the masterclock is enabled, always perform request in
1347 	 * order to update it.
1348 	 *
1349 	 * In order to enable masterclock, the host clocksource must be TSC
1350 	 * and the vcpus need to have matched TSCs.  When that happens,
1351 	 * perform request to enable masterclock.
1352 	 */
1353 	if (ka->use_master_clock ||
1354 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1355 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1356 
1357 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1358 			    atomic_read(&vcpu->kvm->online_vcpus),
1359 		            ka->use_master_clock, gtod->clock.vclock_mode);
1360 #endif
1361 }
1362 
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1364 {
1365 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1366 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1367 }
1368 
1369 /*
1370  * Multiply tsc by a fixed point number represented by ratio.
1371  *
1372  * The most significant 64-N bits (mult) of ratio represent the
1373  * integral part of the fixed point number; the remaining N bits
1374  * (frac) represent the fractional part, ie. ratio represents a fixed
1375  * point number (mult + frac * 2^(-N)).
1376  *
1377  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1378  */
1379 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1380 {
1381 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1382 }
1383 
1384 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1385 {
1386 	u64 _tsc = tsc;
1387 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1388 
1389 	if (ratio != kvm_default_tsc_scaling_ratio)
1390 		_tsc = __scale_tsc(ratio, tsc);
1391 
1392 	return _tsc;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1395 
1396 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1397 {
1398 	u64 tsc;
1399 
1400 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1401 
1402 	return target_tsc - tsc;
1403 }
1404 
1405 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1406 {
1407 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1410 
1411 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1412 {
1413 	struct kvm *kvm = vcpu->kvm;
1414 	u64 offset, ns, elapsed;
1415 	unsigned long flags;
1416 	s64 usdiff;
1417 	bool matched;
1418 	bool already_matched;
1419 	u64 data = msr->data;
1420 
1421 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1422 	offset = kvm_compute_tsc_offset(vcpu, data);
1423 	ns = get_kernel_ns();
1424 	elapsed = ns - kvm->arch.last_tsc_nsec;
1425 
1426 	if (vcpu->arch.virtual_tsc_khz) {
1427 		int faulted = 0;
1428 
1429 		/* n.b - signed multiplication and division required */
1430 		usdiff = data - kvm->arch.last_tsc_write;
1431 #ifdef CONFIG_X86_64
1432 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1433 #else
1434 		/* do_div() only does unsigned */
1435 		asm("1: idivl %[divisor]\n"
1436 		    "2: xor %%edx, %%edx\n"
1437 		    "   movl $0, %[faulted]\n"
1438 		    "3:\n"
1439 		    ".section .fixup,\"ax\"\n"
1440 		    "4: movl $1, %[faulted]\n"
1441 		    "   jmp  3b\n"
1442 		    ".previous\n"
1443 
1444 		_ASM_EXTABLE(1b, 4b)
1445 
1446 		: "=A"(usdiff), [faulted] "=r" (faulted)
1447 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1448 
1449 #endif
1450 		do_div(elapsed, 1000);
1451 		usdiff -= elapsed;
1452 		if (usdiff < 0)
1453 			usdiff = -usdiff;
1454 
1455 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1456 		if (faulted)
1457 			usdiff = USEC_PER_SEC;
1458 	} else
1459 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1460 
1461 	/*
1462 	 * Special case: TSC write with a small delta (1 second) of virtual
1463 	 * cycle time against real time is interpreted as an attempt to
1464 	 * synchronize the CPU.
1465          *
1466 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1467 	 * TSC, we add elapsed time in this computation.  We could let the
1468 	 * compensation code attempt to catch up if we fall behind, but
1469 	 * it's better to try to match offsets from the beginning.
1470          */
1471 	if (usdiff < USEC_PER_SEC &&
1472 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1473 		if (!check_tsc_unstable()) {
1474 			offset = kvm->arch.cur_tsc_offset;
1475 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1476 		} else {
1477 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1478 			data += delta;
1479 			offset = kvm_compute_tsc_offset(vcpu, data);
1480 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1481 		}
1482 		matched = true;
1483 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1484 	} else {
1485 		/*
1486 		 * We split periods of matched TSC writes into generations.
1487 		 * For each generation, we track the original measured
1488 		 * nanosecond time, offset, and write, so if TSCs are in
1489 		 * sync, we can match exact offset, and if not, we can match
1490 		 * exact software computation in compute_guest_tsc()
1491 		 *
1492 		 * These values are tracked in kvm->arch.cur_xxx variables.
1493 		 */
1494 		kvm->arch.cur_tsc_generation++;
1495 		kvm->arch.cur_tsc_nsec = ns;
1496 		kvm->arch.cur_tsc_write = data;
1497 		kvm->arch.cur_tsc_offset = offset;
1498 		matched = false;
1499 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500 			 kvm->arch.cur_tsc_generation, data);
1501 	}
1502 
1503 	/*
1504 	 * We also track th most recent recorded KHZ, write and time to
1505 	 * allow the matching interval to be extended at each write.
1506 	 */
1507 	kvm->arch.last_tsc_nsec = ns;
1508 	kvm->arch.last_tsc_write = data;
1509 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1510 
1511 	vcpu->arch.last_guest_tsc = data;
1512 
1513 	/* Keep track of which generation this VCPU has synchronized to */
1514 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1515 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1516 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1517 
1518 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1519 		update_ia32_tsc_adjust_msr(vcpu, offset);
1520 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1521 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1522 
1523 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1524 	if (!matched) {
1525 		kvm->arch.nr_vcpus_matched_tsc = 0;
1526 	} else if (!already_matched) {
1527 		kvm->arch.nr_vcpus_matched_tsc++;
1528 	}
1529 
1530 	kvm_track_tsc_matching(vcpu);
1531 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1532 }
1533 
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1535 
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1537 					   s64 adjustment)
1538 {
1539 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1540 }
1541 
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1543 {
1544 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1545 		WARN_ON(adjustment < 0);
1546 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1547 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1548 }
1549 
1550 #ifdef CONFIG_X86_64
1551 
1552 static cycle_t read_tsc(void)
1553 {
1554 	cycle_t ret = (cycle_t)rdtsc_ordered();
1555 	u64 last = pvclock_gtod_data.clock.cycle_last;
1556 
1557 	if (likely(ret >= last))
1558 		return ret;
1559 
1560 	/*
1561 	 * GCC likes to generate cmov here, but this branch is extremely
1562 	 * predictable (it's just a funciton of time and the likely is
1563 	 * very likely) and there's a data dependence, so force GCC
1564 	 * to generate a branch instead.  I don't barrier() because
1565 	 * we don't actually need a barrier, and if this function
1566 	 * ever gets inlined it will generate worse code.
1567 	 */
1568 	asm volatile ("");
1569 	return last;
1570 }
1571 
1572 static inline u64 vgettsc(cycle_t *cycle_now)
1573 {
1574 	long v;
1575 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1576 
1577 	*cycle_now = read_tsc();
1578 
1579 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1580 	return v * gtod->clock.mult;
1581 }
1582 
1583 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1584 {
1585 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586 	unsigned long seq;
1587 	int mode;
1588 	u64 ns;
1589 
1590 	do {
1591 		seq = read_seqcount_begin(&gtod->seq);
1592 		mode = gtod->clock.vclock_mode;
1593 		ns = gtod->nsec_base;
1594 		ns += vgettsc(cycle_now);
1595 		ns >>= gtod->clock.shift;
1596 		ns += gtod->boot_ns;
1597 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1598 	*t = ns;
1599 
1600 	return mode;
1601 }
1602 
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1605 {
1606 	/* checked again under seqlock below */
1607 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1608 		return false;
1609 
1610 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1611 }
1612 #endif
1613 
1614 /*
1615  *
1616  * Assuming a stable TSC across physical CPUS, and a stable TSC
1617  * across virtual CPUs, the following condition is possible.
1618  * Each numbered line represents an event visible to both
1619  * CPUs at the next numbered event.
1620  *
1621  * "timespecX" represents host monotonic time. "tscX" represents
1622  * RDTSC value.
1623  *
1624  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1625  *
1626  * 1.  read timespec0,tsc0
1627  * 2.					| timespec1 = timespec0 + N
1628  * 					| tsc1 = tsc0 + M
1629  * 3. transition to guest		| transition to guest
1630  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1632  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1633  *
1634  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1635  *
1636  * 	- ret0 < ret1
1637  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1638  *		...
1639  *	- 0 < N - M => M < N
1640  *
1641  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642  * always the case (the difference between two distinct xtime instances
1643  * might be smaller then the difference between corresponding TSC reads,
1644  * when updating guest vcpus pvclock areas).
1645  *
1646  * To avoid that problem, do not allow visibility of distinct
1647  * system_timestamp/tsc_timestamp values simultaneously: use a master
1648  * copy of host monotonic time values. Update that master copy
1649  * in lockstep.
1650  *
1651  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1652  *
1653  */
1654 
1655 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1656 {
1657 #ifdef CONFIG_X86_64
1658 	struct kvm_arch *ka = &kvm->arch;
1659 	int vclock_mode;
1660 	bool host_tsc_clocksource, vcpus_matched;
1661 
1662 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1663 			atomic_read(&kvm->online_vcpus));
1664 
1665 	/*
1666 	 * If the host uses TSC clock, then passthrough TSC as stable
1667 	 * to the guest.
1668 	 */
1669 	host_tsc_clocksource = kvm_get_time_and_clockread(
1670 					&ka->master_kernel_ns,
1671 					&ka->master_cycle_now);
1672 
1673 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1674 				&& !backwards_tsc_observed
1675 				&& !ka->boot_vcpu_runs_old_kvmclock;
1676 
1677 	if (ka->use_master_clock)
1678 		atomic_set(&kvm_guest_has_master_clock, 1);
1679 
1680 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1681 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1682 					vcpus_matched);
1683 #endif
1684 }
1685 
1686 static void kvm_gen_update_masterclock(struct kvm *kvm)
1687 {
1688 #ifdef CONFIG_X86_64
1689 	int i;
1690 	struct kvm_vcpu *vcpu;
1691 	struct kvm_arch *ka = &kvm->arch;
1692 
1693 	spin_lock(&ka->pvclock_gtod_sync_lock);
1694 	kvm_make_mclock_inprogress_request(kvm);
1695 	/* no guest entries from this point */
1696 	pvclock_update_vm_gtod_copy(kvm);
1697 
1698 	kvm_for_each_vcpu(i, vcpu, kvm)
1699 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1700 
1701 	/* guest entries allowed */
1702 	kvm_for_each_vcpu(i, vcpu, kvm)
1703 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1704 
1705 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1706 #endif
1707 }
1708 
1709 static int kvm_guest_time_update(struct kvm_vcpu *v)
1710 {
1711 	unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1712 	struct kvm_vcpu_arch *vcpu = &v->arch;
1713 	struct kvm_arch *ka = &v->kvm->arch;
1714 	s64 kernel_ns;
1715 	u64 tsc_timestamp, host_tsc;
1716 	struct pvclock_vcpu_time_info guest_hv_clock;
1717 	u8 pvclock_flags;
1718 	bool use_master_clock;
1719 
1720 	kernel_ns = 0;
1721 	host_tsc = 0;
1722 
1723 	/*
1724 	 * If the host uses TSC clock, then passthrough TSC as stable
1725 	 * to the guest.
1726 	 */
1727 	spin_lock(&ka->pvclock_gtod_sync_lock);
1728 	use_master_clock = ka->use_master_clock;
1729 	if (use_master_clock) {
1730 		host_tsc = ka->master_cycle_now;
1731 		kernel_ns = ka->master_kernel_ns;
1732 	}
1733 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 
1735 	/* Keep irq disabled to prevent changes to the clock */
1736 	local_irq_save(flags);
1737 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1738 	if (unlikely(this_tsc_khz == 0)) {
1739 		local_irq_restore(flags);
1740 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1741 		return 1;
1742 	}
1743 	if (!use_master_clock) {
1744 		host_tsc = rdtsc();
1745 		kernel_ns = get_kernel_ns();
1746 	}
1747 
1748 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1749 
1750 	/*
1751 	 * We may have to catch up the TSC to match elapsed wall clock
1752 	 * time for two reasons, even if kvmclock is used.
1753 	 *   1) CPU could have been running below the maximum TSC rate
1754 	 *   2) Broken TSC compensation resets the base at each VCPU
1755 	 *      entry to avoid unknown leaps of TSC even when running
1756 	 *      again on the same CPU.  This may cause apparent elapsed
1757 	 *      time to disappear, and the guest to stand still or run
1758 	 *	very slowly.
1759 	 */
1760 	if (vcpu->tsc_catchup) {
1761 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1762 		if (tsc > tsc_timestamp) {
1763 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1764 			tsc_timestamp = tsc;
1765 		}
1766 	}
1767 
1768 	local_irq_restore(flags);
1769 
1770 	if (!vcpu->pv_time_enabled)
1771 		return 0;
1772 
1773 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1774 		tgt_tsc_khz = kvm_has_tsc_control ?
1775 			vcpu->virtual_tsc_khz : this_tsc_khz;
1776 		kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1777 				   &vcpu->hv_clock.tsc_shift,
1778 				   &vcpu->hv_clock.tsc_to_system_mul);
1779 		vcpu->hw_tsc_khz = this_tsc_khz;
1780 	}
1781 
1782 	/* With all the info we got, fill in the values */
1783 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1784 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1785 	vcpu->last_guest_tsc = tsc_timestamp;
1786 
1787 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1788 		&guest_hv_clock, sizeof(guest_hv_clock))))
1789 		return 0;
1790 
1791 	/* This VCPU is paused, but it's legal for a guest to read another
1792 	 * VCPU's kvmclock, so we really have to follow the specification where
1793 	 * it says that version is odd if data is being modified, and even after
1794 	 * it is consistent.
1795 	 *
1796 	 * Version field updates must be kept separate.  This is because
1797 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1798 	 * writes within a string instruction are weakly ordered.  So there
1799 	 * are three writes overall.
1800 	 *
1801 	 * As a small optimization, only write the version field in the first
1802 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1803 	 * version field is the first in the struct.
1804 	 */
1805 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1806 
1807 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1808 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1809 				&vcpu->hv_clock,
1810 				sizeof(vcpu->hv_clock.version));
1811 
1812 	smp_wmb();
1813 
1814 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1815 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1816 
1817 	if (vcpu->pvclock_set_guest_stopped_request) {
1818 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1819 		vcpu->pvclock_set_guest_stopped_request = false;
1820 	}
1821 
1822 	/* If the host uses TSC clocksource, then it is stable */
1823 	if (use_master_clock)
1824 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1825 
1826 	vcpu->hv_clock.flags = pvclock_flags;
1827 
1828 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1829 
1830 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1831 				&vcpu->hv_clock,
1832 				sizeof(vcpu->hv_clock));
1833 
1834 	smp_wmb();
1835 
1836 	vcpu->hv_clock.version++;
1837 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1838 				&vcpu->hv_clock,
1839 				sizeof(vcpu->hv_clock.version));
1840 	return 0;
1841 }
1842 
1843 /*
1844  * kvmclock updates which are isolated to a given vcpu, such as
1845  * vcpu->cpu migration, should not allow system_timestamp from
1846  * the rest of the vcpus to remain static. Otherwise ntp frequency
1847  * correction applies to one vcpu's system_timestamp but not
1848  * the others.
1849  *
1850  * So in those cases, request a kvmclock update for all vcpus.
1851  * We need to rate-limit these requests though, as they can
1852  * considerably slow guests that have a large number of vcpus.
1853  * The time for a remote vcpu to update its kvmclock is bound
1854  * by the delay we use to rate-limit the updates.
1855  */
1856 
1857 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1858 
1859 static void kvmclock_update_fn(struct work_struct *work)
1860 {
1861 	int i;
1862 	struct delayed_work *dwork = to_delayed_work(work);
1863 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1864 					   kvmclock_update_work);
1865 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1866 	struct kvm_vcpu *vcpu;
1867 
1868 	kvm_for_each_vcpu(i, vcpu, kvm) {
1869 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1870 		kvm_vcpu_kick(vcpu);
1871 	}
1872 }
1873 
1874 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1875 {
1876 	struct kvm *kvm = v->kvm;
1877 
1878 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1880 					KVMCLOCK_UPDATE_DELAY);
1881 }
1882 
1883 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1884 
1885 static void kvmclock_sync_fn(struct work_struct *work)
1886 {
1887 	struct delayed_work *dwork = to_delayed_work(work);
1888 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1889 					   kvmclock_sync_work);
1890 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1891 
1892 	if (!kvmclock_periodic_sync)
1893 		return;
1894 
1895 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1896 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1897 					KVMCLOCK_SYNC_PERIOD);
1898 }
1899 
1900 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1901 {
1902 	u64 mcg_cap = vcpu->arch.mcg_cap;
1903 	unsigned bank_num = mcg_cap & 0xff;
1904 
1905 	switch (msr) {
1906 	case MSR_IA32_MCG_STATUS:
1907 		vcpu->arch.mcg_status = data;
1908 		break;
1909 	case MSR_IA32_MCG_CTL:
1910 		if (!(mcg_cap & MCG_CTL_P))
1911 			return 1;
1912 		if (data != 0 && data != ~(u64)0)
1913 			return -1;
1914 		vcpu->arch.mcg_ctl = data;
1915 		break;
1916 	default:
1917 		if (msr >= MSR_IA32_MC0_CTL &&
1918 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1919 			u32 offset = msr - MSR_IA32_MC0_CTL;
1920 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1921 			 * some Linux kernels though clear bit 10 in bank 4 to
1922 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1923 			 * this to avoid an uncatched #GP in the guest
1924 			 */
1925 			if ((offset & 0x3) == 0 &&
1926 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1927 				return -1;
1928 			vcpu->arch.mce_banks[offset] = data;
1929 			break;
1930 		}
1931 		return 1;
1932 	}
1933 	return 0;
1934 }
1935 
1936 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1937 {
1938 	struct kvm *kvm = vcpu->kvm;
1939 	int lm = is_long_mode(vcpu);
1940 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1941 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1942 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1943 		: kvm->arch.xen_hvm_config.blob_size_32;
1944 	u32 page_num = data & ~PAGE_MASK;
1945 	u64 page_addr = data & PAGE_MASK;
1946 	u8 *page;
1947 	int r;
1948 
1949 	r = -E2BIG;
1950 	if (page_num >= blob_size)
1951 		goto out;
1952 	r = -ENOMEM;
1953 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1954 	if (IS_ERR(page)) {
1955 		r = PTR_ERR(page);
1956 		goto out;
1957 	}
1958 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1959 		goto out_free;
1960 	r = 0;
1961 out_free:
1962 	kfree(page);
1963 out:
1964 	return r;
1965 }
1966 
1967 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1968 {
1969 	gpa_t gpa = data & ~0x3f;
1970 
1971 	/* Bits 2:5 are reserved, Should be zero */
1972 	if (data & 0x3c)
1973 		return 1;
1974 
1975 	vcpu->arch.apf.msr_val = data;
1976 
1977 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1978 		kvm_clear_async_pf_completion_queue(vcpu);
1979 		kvm_async_pf_hash_reset(vcpu);
1980 		return 0;
1981 	}
1982 
1983 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1984 					sizeof(u32)))
1985 		return 1;
1986 
1987 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1988 	kvm_async_pf_wakeup_all(vcpu);
1989 	return 0;
1990 }
1991 
1992 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1993 {
1994 	vcpu->arch.pv_time_enabled = false;
1995 }
1996 
1997 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1998 {
1999 	u64 delta;
2000 
2001 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2002 		return;
2003 
2004 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2005 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2006 	vcpu->arch.st.accum_steal = delta;
2007 }
2008 
2009 static void record_steal_time(struct kvm_vcpu *vcpu)
2010 {
2011 	accumulate_steal_time(vcpu);
2012 
2013 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2014 		return;
2015 
2016 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2017 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2018 		return;
2019 
2020 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2021 	vcpu->arch.st.steal.version += 2;
2022 	vcpu->arch.st.accum_steal = 0;
2023 
2024 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2026 }
2027 
2028 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2029 {
2030 	bool pr = false;
2031 	u32 msr = msr_info->index;
2032 	u64 data = msr_info->data;
2033 
2034 	switch (msr) {
2035 	case MSR_AMD64_NB_CFG:
2036 	case MSR_IA32_UCODE_REV:
2037 	case MSR_IA32_UCODE_WRITE:
2038 	case MSR_VM_HSAVE_PA:
2039 	case MSR_AMD64_PATCH_LOADER:
2040 	case MSR_AMD64_BU_CFG2:
2041 		break;
2042 
2043 	case MSR_EFER:
2044 		return set_efer(vcpu, data);
2045 	case MSR_K7_HWCR:
2046 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2047 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2048 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2049 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2050 		if (data != 0) {
2051 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2052 				    data);
2053 			return 1;
2054 		}
2055 		break;
2056 	case MSR_FAM10H_MMIO_CONF_BASE:
2057 		if (data != 0) {
2058 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2059 				    "0x%llx\n", data);
2060 			return 1;
2061 		}
2062 		break;
2063 	case MSR_IA32_DEBUGCTLMSR:
2064 		if (!data) {
2065 			/* We support the non-activated case already */
2066 			break;
2067 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2068 			/* Values other than LBR and BTF are vendor-specific,
2069 			   thus reserved and should throw a #GP */
2070 			return 1;
2071 		}
2072 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2073 			    __func__, data);
2074 		break;
2075 	case 0x200 ... 0x2ff:
2076 		return kvm_mtrr_set_msr(vcpu, msr, data);
2077 	case MSR_IA32_APICBASE:
2078 		return kvm_set_apic_base(vcpu, msr_info);
2079 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2080 		return kvm_x2apic_msr_write(vcpu, msr, data);
2081 	case MSR_IA32_TSCDEADLINE:
2082 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2083 		break;
2084 	case MSR_IA32_TSC_ADJUST:
2085 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2086 			if (!msr_info->host_initiated) {
2087 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2088 				adjust_tsc_offset_guest(vcpu, adj);
2089 			}
2090 			vcpu->arch.ia32_tsc_adjust_msr = data;
2091 		}
2092 		break;
2093 	case MSR_IA32_MISC_ENABLE:
2094 		vcpu->arch.ia32_misc_enable_msr = data;
2095 		break;
2096 	case MSR_IA32_SMBASE:
2097 		if (!msr_info->host_initiated)
2098 			return 1;
2099 		vcpu->arch.smbase = data;
2100 		break;
2101 	case MSR_KVM_WALL_CLOCK_NEW:
2102 	case MSR_KVM_WALL_CLOCK:
2103 		vcpu->kvm->arch.wall_clock = data;
2104 		kvm_write_wall_clock(vcpu->kvm, data);
2105 		break;
2106 	case MSR_KVM_SYSTEM_TIME_NEW:
2107 	case MSR_KVM_SYSTEM_TIME: {
2108 		u64 gpa_offset;
2109 		struct kvm_arch *ka = &vcpu->kvm->arch;
2110 
2111 		kvmclock_reset(vcpu);
2112 
2113 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2114 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2115 
2116 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2117 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2118 					&vcpu->requests);
2119 
2120 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2121 		}
2122 
2123 		vcpu->arch.time = data;
2124 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2125 
2126 		/* we verify if the enable bit is set... */
2127 		if (!(data & 1))
2128 			break;
2129 
2130 		gpa_offset = data & ~(PAGE_MASK | 1);
2131 
2132 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2133 		     &vcpu->arch.pv_time, data & ~1ULL,
2134 		     sizeof(struct pvclock_vcpu_time_info)))
2135 			vcpu->arch.pv_time_enabled = false;
2136 		else
2137 			vcpu->arch.pv_time_enabled = true;
2138 
2139 		break;
2140 	}
2141 	case MSR_KVM_ASYNC_PF_EN:
2142 		if (kvm_pv_enable_async_pf(vcpu, data))
2143 			return 1;
2144 		break;
2145 	case MSR_KVM_STEAL_TIME:
2146 
2147 		if (unlikely(!sched_info_on()))
2148 			return 1;
2149 
2150 		if (data & KVM_STEAL_RESERVED_MASK)
2151 			return 1;
2152 
2153 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2154 						data & KVM_STEAL_VALID_BITS,
2155 						sizeof(struct kvm_steal_time)))
2156 			return 1;
2157 
2158 		vcpu->arch.st.msr_val = data;
2159 
2160 		if (!(data & KVM_MSR_ENABLED))
2161 			break;
2162 
2163 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2164 
2165 		break;
2166 	case MSR_KVM_PV_EOI_EN:
2167 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2168 			return 1;
2169 		break;
2170 
2171 	case MSR_IA32_MCG_CTL:
2172 	case MSR_IA32_MCG_STATUS:
2173 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2174 		return set_msr_mce(vcpu, msr, data);
2175 
2176 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2177 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2178 		pr = true; /* fall through */
2179 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2180 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2181 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2182 			return kvm_pmu_set_msr(vcpu, msr_info);
2183 
2184 		if (pr || data != 0)
2185 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2186 				    "0x%x data 0x%llx\n", msr, data);
2187 		break;
2188 	case MSR_K7_CLK_CTL:
2189 		/*
2190 		 * Ignore all writes to this no longer documented MSR.
2191 		 * Writes are only relevant for old K7 processors,
2192 		 * all pre-dating SVM, but a recommended workaround from
2193 		 * AMD for these chips. It is possible to specify the
2194 		 * affected processor models on the command line, hence
2195 		 * the need to ignore the workaround.
2196 		 */
2197 		break;
2198 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2199 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2200 	case HV_X64_MSR_CRASH_CTL:
2201 		return kvm_hv_set_msr_common(vcpu, msr, data,
2202 					     msr_info->host_initiated);
2203 	case MSR_IA32_BBL_CR_CTL3:
2204 		/* Drop writes to this legacy MSR -- see rdmsr
2205 		 * counterpart for further detail.
2206 		 */
2207 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2208 		break;
2209 	case MSR_AMD64_OSVW_ID_LENGTH:
2210 		if (!guest_cpuid_has_osvw(vcpu))
2211 			return 1;
2212 		vcpu->arch.osvw.length = data;
2213 		break;
2214 	case MSR_AMD64_OSVW_STATUS:
2215 		if (!guest_cpuid_has_osvw(vcpu))
2216 			return 1;
2217 		vcpu->arch.osvw.status = data;
2218 		break;
2219 	default:
2220 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2221 			return xen_hvm_config(vcpu, data);
2222 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2223 			return kvm_pmu_set_msr(vcpu, msr_info);
2224 		if (!ignore_msrs) {
2225 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2226 				    msr, data);
2227 			return 1;
2228 		} else {
2229 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2230 				    msr, data);
2231 			break;
2232 		}
2233 	}
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2237 
2238 
2239 /*
2240  * Reads an msr value (of 'msr_index') into 'pdata'.
2241  * Returns 0 on success, non-0 otherwise.
2242  * Assumes vcpu_load() was already called.
2243  */
2244 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2245 {
2246 	return kvm_x86_ops->get_msr(vcpu, msr);
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_get_msr);
2249 
2250 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2251 {
2252 	u64 data;
2253 	u64 mcg_cap = vcpu->arch.mcg_cap;
2254 	unsigned bank_num = mcg_cap & 0xff;
2255 
2256 	switch (msr) {
2257 	case MSR_IA32_P5_MC_ADDR:
2258 	case MSR_IA32_P5_MC_TYPE:
2259 		data = 0;
2260 		break;
2261 	case MSR_IA32_MCG_CAP:
2262 		data = vcpu->arch.mcg_cap;
2263 		break;
2264 	case MSR_IA32_MCG_CTL:
2265 		if (!(mcg_cap & MCG_CTL_P))
2266 			return 1;
2267 		data = vcpu->arch.mcg_ctl;
2268 		break;
2269 	case MSR_IA32_MCG_STATUS:
2270 		data = vcpu->arch.mcg_status;
2271 		break;
2272 	default:
2273 		if (msr >= MSR_IA32_MC0_CTL &&
2274 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2275 			u32 offset = msr - MSR_IA32_MC0_CTL;
2276 			data = vcpu->arch.mce_banks[offset];
2277 			break;
2278 		}
2279 		return 1;
2280 	}
2281 	*pdata = data;
2282 	return 0;
2283 }
2284 
2285 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2286 {
2287 	switch (msr_info->index) {
2288 	case MSR_IA32_PLATFORM_ID:
2289 	case MSR_IA32_EBL_CR_POWERON:
2290 	case MSR_IA32_DEBUGCTLMSR:
2291 	case MSR_IA32_LASTBRANCHFROMIP:
2292 	case MSR_IA32_LASTBRANCHTOIP:
2293 	case MSR_IA32_LASTINTFROMIP:
2294 	case MSR_IA32_LASTINTTOIP:
2295 	case MSR_K8_SYSCFG:
2296 	case MSR_K8_TSEG_ADDR:
2297 	case MSR_K8_TSEG_MASK:
2298 	case MSR_K7_HWCR:
2299 	case MSR_VM_HSAVE_PA:
2300 	case MSR_K8_INT_PENDING_MSG:
2301 	case MSR_AMD64_NB_CFG:
2302 	case MSR_FAM10H_MMIO_CONF_BASE:
2303 	case MSR_AMD64_BU_CFG2:
2304 		msr_info->data = 0;
2305 		break;
2306 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2307 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2308 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2309 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2310 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2311 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2312 		msr_info->data = 0;
2313 		break;
2314 	case MSR_IA32_UCODE_REV:
2315 		msr_info->data = 0x100000000ULL;
2316 		break;
2317 	case MSR_MTRRcap:
2318 	case 0x200 ... 0x2ff:
2319 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2320 	case 0xcd: /* fsb frequency */
2321 		msr_info->data = 3;
2322 		break;
2323 		/*
2324 		 * MSR_EBC_FREQUENCY_ID
2325 		 * Conservative value valid for even the basic CPU models.
2326 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2327 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2328 		 * and 266MHz for model 3, or 4. Set Core Clock
2329 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2330 		 * 31:24) even though these are only valid for CPU
2331 		 * models > 2, however guests may end up dividing or
2332 		 * multiplying by zero otherwise.
2333 		 */
2334 	case MSR_EBC_FREQUENCY_ID:
2335 		msr_info->data = 1 << 24;
2336 		break;
2337 	case MSR_IA32_APICBASE:
2338 		msr_info->data = kvm_get_apic_base(vcpu);
2339 		break;
2340 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2341 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2342 		break;
2343 	case MSR_IA32_TSCDEADLINE:
2344 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2345 		break;
2346 	case MSR_IA32_TSC_ADJUST:
2347 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2348 		break;
2349 	case MSR_IA32_MISC_ENABLE:
2350 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2351 		break;
2352 	case MSR_IA32_SMBASE:
2353 		if (!msr_info->host_initiated)
2354 			return 1;
2355 		msr_info->data = vcpu->arch.smbase;
2356 		break;
2357 	case MSR_IA32_PERF_STATUS:
2358 		/* TSC increment by tick */
2359 		msr_info->data = 1000ULL;
2360 		/* CPU multiplier */
2361 		msr_info->data |= (((uint64_t)4ULL) << 40);
2362 		break;
2363 	case MSR_EFER:
2364 		msr_info->data = vcpu->arch.efer;
2365 		break;
2366 	case MSR_KVM_WALL_CLOCK:
2367 	case MSR_KVM_WALL_CLOCK_NEW:
2368 		msr_info->data = vcpu->kvm->arch.wall_clock;
2369 		break;
2370 	case MSR_KVM_SYSTEM_TIME:
2371 	case MSR_KVM_SYSTEM_TIME_NEW:
2372 		msr_info->data = vcpu->arch.time;
2373 		break;
2374 	case MSR_KVM_ASYNC_PF_EN:
2375 		msr_info->data = vcpu->arch.apf.msr_val;
2376 		break;
2377 	case MSR_KVM_STEAL_TIME:
2378 		msr_info->data = vcpu->arch.st.msr_val;
2379 		break;
2380 	case MSR_KVM_PV_EOI_EN:
2381 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2382 		break;
2383 	case MSR_IA32_P5_MC_ADDR:
2384 	case MSR_IA32_P5_MC_TYPE:
2385 	case MSR_IA32_MCG_CAP:
2386 	case MSR_IA32_MCG_CTL:
2387 	case MSR_IA32_MCG_STATUS:
2388 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2389 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2390 	case MSR_K7_CLK_CTL:
2391 		/*
2392 		 * Provide expected ramp-up count for K7. All other
2393 		 * are set to zero, indicating minimum divisors for
2394 		 * every field.
2395 		 *
2396 		 * This prevents guest kernels on AMD host with CPU
2397 		 * type 6, model 8 and higher from exploding due to
2398 		 * the rdmsr failing.
2399 		 */
2400 		msr_info->data = 0x20000000;
2401 		break;
2402 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2403 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2404 	case HV_X64_MSR_CRASH_CTL:
2405 		return kvm_hv_get_msr_common(vcpu,
2406 					     msr_info->index, &msr_info->data);
2407 		break;
2408 	case MSR_IA32_BBL_CR_CTL3:
2409 		/* This legacy MSR exists but isn't fully documented in current
2410 		 * silicon.  It is however accessed by winxp in very narrow
2411 		 * scenarios where it sets bit #19, itself documented as
2412 		 * a "reserved" bit.  Best effort attempt to source coherent
2413 		 * read data here should the balance of the register be
2414 		 * interpreted by the guest:
2415 		 *
2416 		 * L2 cache control register 3: 64GB range, 256KB size,
2417 		 * enabled, latency 0x1, configured
2418 		 */
2419 		msr_info->data = 0xbe702111;
2420 		break;
2421 	case MSR_AMD64_OSVW_ID_LENGTH:
2422 		if (!guest_cpuid_has_osvw(vcpu))
2423 			return 1;
2424 		msr_info->data = vcpu->arch.osvw.length;
2425 		break;
2426 	case MSR_AMD64_OSVW_STATUS:
2427 		if (!guest_cpuid_has_osvw(vcpu))
2428 			return 1;
2429 		msr_info->data = vcpu->arch.osvw.status;
2430 		break;
2431 	default:
2432 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2433 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2434 		if (!ignore_msrs) {
2435 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2436 			return 1;
2437 		} else {
2438 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2439 			msr_info->data = 0;
2440 		}
2441 		break;
2442 	}
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2446 
2447 /*
2448  * Read or write a bunch of msrs. All parameters are kernel addresses.
2449  *
2450  * @return number of msrs set successfully.
2451  */
2452 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2453 		    struct kvm_msr_entry *entries,
2454 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2455 				  unsigned index, u64 *data))
2456 {
2457 	int i, idx;
2458 
2459 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2460 	for (i = 0; i < msrs->nmsrs; ++i)
2461 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2462 			break;
2463 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2464 
2465 	return i;
2466 }
2467 
2468 /*
2469  * Read or write a bunch of msrs. Parameters are user addresses.
2470  *
2471  * @return number of msrs set successfully.
2472  */
2473 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2474 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2475 				unsigned index, u64 *data),
2476 		  int writeback)
2477 {
2478 	struct kvm_msrs msrs;
2479 	struct kvm_msr_entry *entries;
2480 	int r, n;
2481 	unsigned size;
2482 
2483 	r = -EFAULT;
2484 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2485 		goto out;
2486 
2487 	r = -E2BIG;
2488 	if (msrs.nmsrs >= MAX_IO_MSRS)
2489 		goto out;
2490 
2491 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2492 	entries = memdup_user(user_msrs->entries, size);
2493 	if (IS_ERR(entries)) {
2494 		r = PTR_ERR(entries);
2495 		goto out;
2496 	}
2497 
2498 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2499 	if (r < 0)
2500 		goto out_free;
2501 
2502 	r = -EFAULT;
2503 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2504 		goto out_free;
2505 
2506 	r = n;
2507 
2508 out_free:
2509 	kfree(entries);
2510 out:
2511 	return r;
2512 }
2513 
2514 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2515 {
2516 	int r;
2517 
2518 	switch (ext) {
2519 	case KVM_CAP_IRQCHIP:
2520 	case KVM_CAP_HLT:
2521 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2522 	case KVM_CAP_SET_TSS_ADDR:
2523 	case KVM_CAP_EXT_CPUID:
2524 	case KVM_CAP_EXT_EMUL_CPUID:
2525 	case KVM_CAP_CLOCKSOURCE:
2526 	case KVM_CAP_PIT:
2527 	case KVM_CAP_NOP_IO_DELAY:
2528 	case KVM_CAP_MP_STATE:
2529 	case KVM_CAP_SYNC_MMU:
2530 	case KVM_CAP_USER_NMI:
2531 	case KVM_CAP_REINJECT_CONTROL:
2532 	case KVM_CAP_IRQ_INJECT_STATUS:
2533 	case KVM_CAP_IOEVENTFD:
2534 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2535 	case KVM_CAP_PIT2:
2536 	case KVM_CAP_PIT_STATE2:
2537 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2538 	case KVM_CAP_XEN_HVM:
2539 	case KVM_CAP_ADJUST_CLOCK:
2540 	case KVM_CAP_VCPU_EVENTS:
2541 	case KVM_CAP_HYPERV:
2542 	case KVM_CAP_HYPERV_VAPIC:
2543 	case KVM_CAP_HYPERV_SPIN:
2544 	case KVM_CAP_PCI_SEGMENT:
2545 	case KVM_CAP_DEBUGREGS:
2546 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2547 	case KVM_CAP_XSAVE:
2548 	case KVM_CAP_ASYNC_PF:
2549 	case KVM_CAP_GET_TSC_KHZ:
2550 	case KVM_CAP_KVMCLOCK_CTRL:
2551 	case KVM_CAP_READONLY_MEM:
2552 	case KVM_CAP_HYPERV_TIME:
2553 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2554 	case KVM_CAP_TSC_DEADLINE_TIMER:
2555 	case KVM_CAP_ENABLE_CAP_VM:
2556 	case KVM_CAP_DISABLE_QUIRKS:
2557 	case KVM_CAP_SET_BOOT_CPU_ID:
2558  	case KVM_CAP_SPLIT_IRQCHIP:
2559 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2560 	case KVM_CAP_ASSIGN_DEV_IRQ:
2561 	case KVM_CAP_PCI_2_3:
2562 #endif
2563 		r = 1;
2564 		break;
2565 	case KVM_CAP_X86_SMM:
2566 		/* SMBASE is usually relocated above 1M on modern chipsets,
2567 		 * and SMM handlers might indeed rely on 4G segment limits,
2568 		 * so do not report SMM to be available if real mode is
2569 		 * emulated via vm86 mode.  Still, do not go to great lengths
2570 		 * to avoid userspace's usage of the feature, because it is a
2571 		 * fringe case that is not enabled except via specific settings
2572 		 * of the module parameters.
2573 		 */
2574 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2575 		break;
2576 	case KVM_CAP_COALESCED_MMIO:
2577 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2578 		break;
2579 	case KVM_CAP_VAPIC:
2580 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2581 		break;
2582 	case KVM_CAP_NR_VCPUS:
2583 		r = KVM_SOFT_MAX_VCPUS;
2584 		break;
2585 	case KVM_CAP_MAX_VCPUS:
2586 		r = KVM_MAX_VCPUS;
2587 		break;
2588 	case KVM_CAP_NR_MEMSLOTS:
2589 		r = KVM_USER_MEM_SLOTS;
2590 		break;
2591 	case KVM_CAP_PV_MMU:	/* obsolete */
2592 		r = 0;
2593 		break;
2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2595 	case KVM_CAP_IOMMU:
2596 		r = iommu_present(&pci_bus_type);
2597 		break;
2598 #endif
2599 	case KVM_CAP_MCE:
2600 		r = KVM_MAX_MCE_BANKS;
2601 		break;
2602 	case KVM_CAP_XCRS:
2603 		r = cpu_has_xsave;
2604 		break;
2605 	case KVM_CAP_TSC_CONTROL:
2606 		r = kvm_has_tsc_control;
2607 		break;
2608 	default:
2609 		r = 0;
2610 		break;
2611 	}
2612 	return r;
2613 
2614 }
2615 
2616 long kvm_arch_dev_ioctl(struct file *filp,
2617 			unsigned int ioctl, unsigned long arg)
2618 {
2619 	void __user *argp = (void __user *)arg;
2620 	long r;
2621 
2622 	switch (ioctl) {
2623 	case KVM_GET_MSR_INDEX_LIST: {
2624 		struct kvm_msr_list __user *user_msr_list = argp;
2625 		struct kvm_msr_list msr_list;
2626 		unsigned n;
2627 
2628 		r = -EFAULT;
2629 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2630 			goto out;
2631 		n = msr_list.nmsrs;
2632 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2633 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2634 			goto out;
2635 		r = -E2BIG;
2636 		if (n < msr_list.nmsrs)
2637 			goto out;
2638 		r = -EFAULT;
2639 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2640 				 num_msrs_to_save * sizeof(u32)))
2641 			goto out;
2642 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2643 				 &emulated_msrs,
2644 				 num_emulated_msrs * sizeof(u32)))
2645 			goto out;
2646 		r = 0;
2647 		break;
2648 	}
2649 	case KVM_GET_SUPPORTED_CPUID:
2650 	case KVM_GET_EMULATED_CPUID: {
2651 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2652 		struct kvm_cpuid2 cpuid;
2653 
2654 		r = -EFAULT;
2655 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2656 			goto out;
2657 
2658 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2659 					    ioctl);
2660 		if (r)
2661 			goto out;
2662 
2663 		r = -EFAULT;
2664 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2665 			goto out;
2666 		r = 0;
2667 		break;
2668 	}
2669 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2670 		u64 mce_cap;
2671 
2672 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2673 		r = -EFAULT;
2674 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2675 			goto out;
2676 		r = 0;
2677 		break;
2678 	}
2679 	default:
2680 		r = -EINVAL;
2681 	}
2682 out:
2683 	return r;
2684 }
2685 
2686 static void wbinvd_ipi(void *garbage)
2687 {
2688 	wbinvd();
2689 }
2690 
2691 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2692 {
2693 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2694 }
2695 
2696 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2697 {
2698 	/* Address WBINVD may be executed by guest */
2699 	if (need_emulate_wbinvd(vcpu)) {
2700 		if (kvm_x86_ops->has_wbinvd_exit())
2701 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2702 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2703 			smp_call_function_single(vcpu->cpu,
2704 					wbinvd_ipi, NULL, 1);
2705 	}
2706 
2707 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2708 
2709 	/* Apply any externally detected TSC adjustments (due to suspend) */
2710 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2711 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2712 		vcpu->arch.tsc_offset_adjustment = 0;
2713 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2714 	}
2715 
2716 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2717 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2718 				rdtsc() - vcpu->arch.last_host_tsc;
2719 		if (tsc_delta < 0)
2720 			mark_tsc_unstable("KVM discovered backwards TSC");
2721 		if (check_tsc_unstable()) {
2722 			u64 offset = kvm_compute_tsc_offset(vcpu,
2723 						vcpu->arch.last_guest_tsc);
2724 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2725 			vcpu->arch.tsc_catchup = 1;
2726 		}
2727 		/*
2728 		 * On a host with synchronized TSC, there is no need to update
2729 		 * kvmclock on vcpu->cpu migration
2730 		 */
2731 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2732 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2733 		if (vcpu->cpu != cpu)
2734 			kvm_migrate_timers(vcpu);
2735 		vcpu->cpu = cpu;
2736 	}
2737 
2738 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2739 }
2740 
2741 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2742 {
2743 	kvm_x86_ops->vcpu_put(vcpu);
2744 	kvm_put_guest_fpu(vcpu);
2745 	vcpu->arch.last_host_tsc = rdtsc();
2746 }
2747 
2748 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2749 				    struct kvm_lapic_state *s)
2750 {
2751 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2752 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2753 
2754 	return 0;
2755 }
2756 
2757 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2758 				    struct kvm_lapic_state *s)
2759 {
2760 	kvm_apic_post_state_restore(vcpu, s);
2761 	update_cr8_intercept(vcpu);
2762 
2763 	return 0;
2764 }
2765 
2766 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2767 {
2768 	return (!lapic_in_kernel(vcpu) ||
2769 		kvm_apic_accept_pic_intr(vcpu));
2770 }
2771 
2772 /*
2773  * if userspace requested an interrupt window, check that the
2774  * interrupt window is open.
2775  *
2776  * No need to exit to userspace if we already have an interrupt queued.
2777  */
2778 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2779 {
2780 	return kvm_arch_interrupt_allowed(vcpu) &&
2781 		!kvm_cpu_has_interrupt(vcpu) &&
2782 		!kvm_event_needs_reinjection(vcpu) &&
2783 		kvm_cpu_accept_dm_intr(vcpu);
2784 }
2785 
2786 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2787 				    struct kvm_interrupt *irq)
2788 {
2789 	if (irq->irq >= KVM_NR_INTERRUPTS)
2790 		return -EINVAL;
2791 
2792 	if (!irqchip_in_kernel(vcpu->kvm)) {
2793 		kvm_queue_interrupt(vcpu, irq->irq, false);
2794 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2795 		return 0;
2796 	}
2797 
2798 	/*
2799 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2800 	 * fail for in-kernel 8259.
2801 	 */
2802 	if (pic_in_kernel(vcpu->kvm))
2803 		return -ENXIO;
2804 
2805 	if (vcpu->arch.pending_external_vector != -1)
2806 		return -EEXIST;
2807 
2808 	vcpu->arch.pending_external_vector = irq->irq;
2809 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2810 	return 0;
2811 }
2812 
2813 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2814 {
2815 	kvm_inject_nmi(vcpu);
2816 
2817 	return 0;
2818 }
2819 
2820 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2821 {
2822 	kvm_make_request(KVM_REQ_SMI, vcpu);
2823 
2824 	return 0;
2825 }
2826 
2827 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2828 					   struct kvm_tpr_access_ctl *tac)
2829 {
2830 	if (tac->flags)
2831 		return -EINVAL;
2832 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2833 	return 0;
2834 }
2835 
2836 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2837 					u64 mcg_cap)
2838 {
2839 	int r;
2840 	unsigned bank_num = mcg_cap & 0xff, bank;
2841 
2842 	r = -EINVAL;
2843 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2844 		goto out;
2845 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2846 		goto out;
2847 	r = 0;
2848 	vcpu->arch.mcg_cap = mcg_cap;
2849 	/* Init IA32_MCG_CTL to all 1s */
2850 	if (mcg_cap & MCG_CTL_P)
2851 		vcpu->arch.mcg_ctl = ~(u64)0;
2852 	/* Init IA32_MCi_CTL to all 1s */
2853 	for (bank = 0; bank < bank_num; bank++)
2854 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2855 out:
2856 	return r;
2857 }
2858 
2859 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2860 				      struct kvm_x86_mce *mce)
2861 {
2862 	u64 mcg_cap = vcpu->arch.mcg_cap;
2863 	unsigned bank_num = mcg_cap & 0xff;
2864 	u64 *banks = vcpu->arch.mce_banks;
2865 
2866 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2867 		return -EINVAL;
2868 	/*
2869 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2870 	 * reporting is disabled
2871 	 */
2872 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2873 	    vcpu->arch.mcg_ctl != ~(u64)0)
2874 		return 0;
2875 	banks += 4 * mce->bank;
2876 	/*
2877 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2878 	 * reporting is disabled for the bank
2879 	 */
2880 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2881 		return 0;
2882 	if (mce->status & MCI_STATUS_UC) {
2883 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2884 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2885 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2886 			return 0;
2887 		}
2888 		if (banks[1] & MCI_STATUS_VAL)
2889 			mce->status |= MCI_STATUS_OVER;
2890 		banks[2] = mce->addr;
2891 		banks[3] = mce->misc;
2892 		vcpu->arch.mcg_status = mce->mcg_status;
2893 		banks[1] = mce->status;
2894 		kvm_queue_exception(vcpu, MC_VECTOR);
2895 	} else if (!(banks[1] & MCI_STATUS_VAL)
2896 		   || !(banks[1] & MCI_STATUS_UC)) {
2897 		if (banks[1] & MCI_STATUS_VAL)
2898 			mce->status |= MCI_STATUS_OVER;
2899 		banks[2] = mce->addr;
2900 		banks[3] = mce->misc;
2901 		banks[1] = mce->status;
2902 	} else
2903 		banks[1] |= MCI_STATUS_OVER;
2904 	return 0;
2905 }
2906 
2907 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2908 					       struct kvm_vcpu_events *events)
2909 {
2910 	process_nmi(vcpu);
2911 	events->exception.injected =
2912 		vcpu->arch.exception.pending &&
2913 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2914 	events->exception.nr = vcpu->arch.exception.nr;
2915 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2916 	events->exception.pad = 0;
2917 	events->exception.error_code = vcpu->arch.exception.error_code;
2918 
2919 	events->interrupt.injected =
2920 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2921 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2922 	events->interrupt.soft = 0;
2923 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2924 
2925 	events->nmi.injected = vcpu->arch.nmi_injected;
2926 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928 	events->nmi.pad = 0;
2929 
2930 	events->sipi_vector = 0; /* never valid when reporting to user space */
2931 
2932 	events->smi.smm = is_smm(vcpu);
2933 	events->smi.pending = vcpu->arch.smi_pending;
2934 	events->smi.smm_inside_nmi =
2935 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2936 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2937 
2938 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2939 			 | KVM_VCPUEVENT_VALID_SHADOW
2940 			 | KVM_VCPUEVENT_VALID_SMM);
2941 	memset(&events->reserved, 0, sizeof(events->reserved));
2942 }
2943 
2944 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2945 					      struct kvm_vcpu_events *events)
2946 {
2947 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2948 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2949 			      | KVM_VCPUEVENT_VALID_SHADOW
2950 			      | KVM_VCPUEVENT_VALID_SMM))
2951 		return -EINVAL;
2952 
2953 	process_nmi(vcpu);
2954 	vcpu->arch.exception.pending = events->exception.injected;
2955 	vcpu->arch.exception.nr = events->exception.nr;
2956 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2957 	vcpu->arch.exception.error_code = events->exception.error_code;
2958 
2959 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2960 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2961 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2962 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2963 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2964 						  events->interrupt.shadow);
2965 
2966 	vcpu->arch.nmi_injected = events->nmi.injected;
2967 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2968 		vcpu->arch.nmi_pending = events->nmi.pending;
2969 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2970 
2971 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2972 	    kvm_vcpu_has_lapic(vcpu))
2973 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2974 
2975 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2976 		if (events->smi.smm)
2977 			vcpu->arch.hflags |= HF_SMM_MASK;
2978 		else
2979 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2980 		vcpu->arch.smi_pending = events->smi.pending;
2981 		if (events->smi.smm_inside_nmi)
2982 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2983 		else
2984 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2985 		if (kvm_vcpu_has_lapic(vcpu)) {
2986 			if (events->smi.latched_init)
2987 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2988 			else
2989 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2990 		}
2991 	}
2992 
2993 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2994 
2995 	return 0;
2996 }
2997 
2998 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2999 					     struct kvm_debugregs *dbgregs)
3000 {
3001 	unsigned long val;
3002 
3003 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3004 	kvm_get_dr(vcpu, 6, &val);
3005 	dbgregs->dr6 = val;
3006 	dbgregs->dr7 = vcpu->arch.dr7;
3007 	dbgregs->flags = 0;
3008 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3009 }
3010 
3011 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3012 					    struct kvm_debugregs *dbgregs)
3013 {
3014 	if (dbgregs->flags)
3015 		return -EINVAL;
3016 
3017 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3018 	kvm_update_dr0123(vcpu);
3019 	vcpu->arch.dr6 = dbgregs->dr6;
3020 	kvm_update_dr6(vcpu);
3021 	vcpu->arch.dr7 = dbgregs->dr7;
3022 	kvm_update_dr7(vcpu);
3023 
3024 	return 0;
3025 }
3026 
3027 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3028 
3029 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3030 {
3031 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3032 	u64 xstate_bv = xsave->header.xfeatures;
3033 	u64 valid;
3034 
3035 	/*
3036 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3037 	 * leaves 0 and 1 in the loop below.
3038 	 */
3039 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3040 
3041 	/* Set XSTATE_BV */
3042 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3043 
3044 	/*
3045 	 * Copy each region from the possibly compacted offset to the
3046 	 * non-compacted offset.
3047 	 */
3048 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3049 	while (valid) {
3050 		u64 feature = valid & -valid;
3051 		int index = fls64(feature) - 1;
3052 		void *src = get_xsave_addr(xsave, feature);
3053 
3054 		if (src) {
3055 			u32 size, offset, ecx, edx;
3056 			cpuid_count(XSTATE_CPUID, index,
3057 				    &size, &offset, &ecx, &edx);
3058 			memcpy(dest + offset, src, size);
3059 		}
3060 
3061 		valid -= feature;
3062 	}
3063 }
3064 
3065 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3066 {
3067 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3068 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3069 	u64 valid;
3070 
3071 	/*
3072 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3073 	 * leaves 0 and 1 in the loop below.
3074 	 */
3075 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3076 
3077 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3078 	xsave->header.xfeatures = xstate_bv;
3079 	if (cpu_has_xsaves)
3080 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3081 
3082 	/*
3083 	 * Copy each region from the non-compacted offset to the
3084 	 * possibly compacted offset.
3085 	 */
3086 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3087 	while (valid) {
3088 		u64 feature = valid & -valid;
3089 		int index = fls64(feature) - 1;
3090 		void *dest = get_xsave_addr(xsave, feature);
3091 
3092 		if (dest) {
3093 			u32 size, offset, ecx, edx;
3094 			cpuid_count(XSTATE_CPUID, index,
3095 				    &size, &offset, &ecx, &edx);
3096 			memcpy(dest, src + offset, size);
3097 		}
3098 
3099 		valid -= feature;
3100 	}
3101 }
3102 
3103 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3104 					 struct kvm_xsave *guest_xsave)
3105 {
3106 	if (cpu_has_xsave) {
3107 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3108 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3109 	} else {
3110 		memcpy(guest_xsave->region,
3111 			&vcpu->arch.guest_fpu.state.fxsave,
3112 			sizeof(struct fxregs_state));
3113 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3114 			XFEATURE_MASK_FPSSE;
3115 	}
3116 }
3117 
3118 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3119 					struct kvm_xsave *guest_xsave)
3120 {
3121 	u64 xstate_bv =
3122 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3123 
3124 	if (cpu_has_xsave) {
3125 		/*
3126 		 * Here we allow setting states that are not present in
3127 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3128 		 * with old userspace.
3129 		 */
3130 		if (xstate_bv & ~kvm_supported_xcr0())
3131 			return -EINVAL;
3132 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3133 	} else {
3134 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3135 			return -EINVAL;
3136 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3137 			guest_xsave->region, sizeof(struct fxregs_state));
3138 	}
3139 	return 0;
3140 }
3141 
3142 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3143 					struct kvm_xcrs *guest_xcrs)
3144 {
3145 	if (!cpu_has_xsave) {
3146 		guest_xcrs->nr_xcrs = 0;
3147 		return;
3148 	}
3149 
3150 	guest_xcrs->nr_xcrs = 1;
3151 	guest_xcrs->flags = 0;
3152 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3153 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3154 }
3155 
3156 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3157 				       struct kvm_xcrs *guest_xcrs)
3158 {
3159 	int i, r = 0;
3160 
3161 	if (!cpu_has_xsave)
3162 		return -EINVAL;
3163 
3164 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3165 		return -EINVAL;
3166 
3167 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3168 		/* Only support XCR0 currently */
3169 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3170 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3171 				guest_xcrs->xcrs[i].value);
3172 			break;
3173 		}
3174 	if (r)
3175 		r = -EINVAL;
3176 	return r;
3177 }
3178 
3179 /*
3180  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3181  * stopped by the hypervisor.  This function will be called from the host only.
3182  * EINVAL is returned when the host attempts to set the flag for a guest that
3183  * does not support pv clocks.
3184  */
3185 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3186 {
3187 	if (!vcpu->arch.pv_time_enabled)
3188 		return -EINVAL;
3189 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3190 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3191 	return 0;
3192 }
3193 
3194 long kvm_arch_vcpu_ioctl(struct file *filp,
3195 			 unsigned int ioctl, unsigned long arg)
3196 {
3197 	struct kvm_vcpu *vcpu = filp->private_data;
3198 	void __user *argp = (void __user *)arg;
3199 	int r;
3200 	union {
3201 		struct kvm_lapic_state *lapic;
3202 		struct kvm_xsave *xsave;
3203 		struct kvm_xcrs *xcrs;
3204 		void *buffer;
3205 	} u;
3206 
3207 	u.buffer = NULL;
3208 	switch (ioctl) {
3209 	case KVM_GET_LAPIC: {
3210 		r = -EINVAL;
3211 		if (!vcpu->arch.apic)
3212 			goto out;
3213 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3214 
3215 		r = -ENOMEM;
3216 		if (!u.lapic)
3217 			goto out;
3218 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3219 		if (r)
3220 			goto out;
3221 		r = -EFAULT;
3222 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3223 			goto out;
3224 		r = 0;
3225 		break;
3226 	}
3227 	case KVM_SET_LAPIC: {
3228 		r = -EINVAL;
3229 		if (!vcpu->arch.apic)
3230 			goto out;
3231 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3232 		if (IS_ERR(u.lapic))
3233 			return PTR_ERR(u.lapic);
3234 
3235 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3236 		break;
3237 	}
3238 	case KVM_INTERRUPT: {
3239 		struct kvm_interrupt irq;
3240 
3241 		r = -EFAULT;
3242 		if (copy_from_user(&irq, argp, sizeof irq))
3243 			goto out;
3244 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3245 		break;
3246 	}
3247 	case KVM_NMI: {
3248 		r = kvm_vcpu_ioctl_nmi(vcpu);
3249 		break;
3250 	}
3251 	case KVM_SMI: {
3252 		r = kvm_vcpu_ioctl_smi(vcpu);
3253 		break;
3254 	}
3255 	case KVM_SET_CPUID: {
3256 		struct kvm_cpuid __user *cpuid_arg = argp;
3257 		struct kvm_cpuid cpuid;
3258 
3259 		r = -EFAULT;
3260 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3261 			goto out;
3262 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3263 		break;
3264 	}
3265 	case KVM_SET_CPUID2: {
3266 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3267 		struct kvm_cpuid2 cpuid;
3268 
3269 		r = -EFAULT;
3270 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3271 			goto out;
3272 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3273 					      cpuid_arg->entries);
3274 		break;
3275 	}
3276 	case KVM_GET_CPUID2: {
3277 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3278 		struct kvm_cpuid2 cpuid;
3279 
3280 		r = -EFAULT;
3281 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3282 			goto out;
3283 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3284 					      cpuid_arg->entries);
3285 		if (r)
3286 			goto out;
3287 		r = -EFAULT;
3288 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3289 			goto out;
3290 		r = 0;
3291 		break;
3292 	}
3293 	case KVM_GET_MSRS:
3294 		r = msr_io(vcpu, argp, do_get_msr, 1);
3295 		break;
3296 	case KVM_SET_MSRS:
3297 		r = msr_io(vcpu, argp, do_set_msr, 0);
3298 		break;
3299 	case KVM_TPR_ACCESS_REPORTING: {
3300 		struct kvm_tpr_access_ctl tac;
3301 
3302 		r = -EFAULT;
3303 		if (copy_from_user(&tac, argp, sizeof tac))
3304 			goto out;
3305 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3306 		if (r)
3307 			goto out;
3308 		r = -EFAULT;
3309 		if (copy_to_user(argp, &tac, sizeof tac))
3310 			goto out;
3311 		r = 0;
3312 		break;
3313 	};
3314 	case KVM_SET_VAPIC_ADDR: {
3315 		struct kvm_vapic_addr va;
3316 
3317 		r = -EINVAL;
3318 		if (!lapic_in_kernel(vcpu))
3319 			goto out;
3320 		r = -EFAULT;
3321 		if (copy_from_user(&va, argp, sizeof va))
3322 			goto out;
3323 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3324 		break;
3325 	}
3326 	case KVM_X86_SETUP_MCE: {
3327 		u64 mcg_cap;
3328 
3329 		r = -EFAULT;
3330 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3331 			goto out;
3332 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3333 		break;
3334 	}
3335 	case KVM_X86_SET_MCE: {
3336 		struct kvm_x86_mce mce;
3337 
3338 		r = -EFAULT;
3339 		if (copy_from_user(&mce, argp, sizeof mce))
3340 			goto out;
3341 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3342 		break;
3343 	}
3344 	case KVM_GET_VCPU_EVENTS: {
3345 		struct kvm_vcpu_events events;
3346 
3347 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3348 
3349 		r = -EFAULT;
3350 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3351 			break;
3352 		r = 0;
3353 		break;
3354 	}
3355 	case KVM_SET_VCPU_EVENTS: {
3356 		struct kvm_vcpu_events events;
3357 
3358 		r = -EFAULT;
3359 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3360 			break;
3361 
3362 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3363 		break;
3364 	}
3365 	case KVM_GET_DEBUGREGS: {
3366 		struct kvm_debugregs dbgregs;
3367 
3368 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3369 
3370 		r = -EFAULT;
3371 		if (copy_to_user(argp, &dbgregs,
3372 				 sizeof(struct kvm_debugregs)))
3373 			break;
3374 		r = 0;
3375 		break;
3376 	}
3377 	case KVM_SET_DEBUGREGS: {
3378 		struct kvm_debugregs dbgregs;
3379 
3380 		r = -EFAULT;
3381 		if (copy_from_user(&dbgregs, argp,
3382 				   sizeof(struct kvm_debugregs)))
3383 			break;
3384 
3385 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3386 		break;
3387 	}
3388 	case KVM_GET_XSAVE: {
3389 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3390 		r = -ENOMEM;
3391 		if (!u.xsave)
3392 			break;
3393 
3394 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3395 
3396 		r = -EFAULT;
3397 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3398 			break;
3399 		r = 0;
3400 		break;
3401 	}
3402 	case KVM_SET_XSAVE: {
3403 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3404 		if (IS_ERR(u.xsave))
3405 			return PTR_ERR(u.xsave);
3406 
3407 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3408 		break;
3409 	}
3410 	case KVM_GET_XCRS: {
3411 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3412 		r = -ENOMEM;
3413 		if (!u.xcrs)
3414 			break;
3415 
3416 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3417 
3418 		r = -EFAULT;
3419 		if (copy_to_user(argp, u.xcrs,
3420 				 sizeof(struct kvm_xcrs)))
3421 			break;
3422 		r = 0;
3423 		break;
3424 	}
3425 	case KVM_SET_XCRS: {
3426 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3427 		if (IS_ERR(u.xcrs))
3428 			return PTR_ERR(u.xcrs);
3429 
3430 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3431 		break;
3432 	}
3433 	case KVM_SET_TSC_KHZ: {
3434 		u32 user_tsc_khz;
3435 
3436 		r = -EINVAL;
3437 		user_tsc_khz = (u32)arg;
3438 
3439 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3440 			goto out;
3441 
3442 		if (user_tsc_khz == 0)
3443 			user_tsc_khz = tsc_khz;
3444 
3445 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3446 			r = 0;
3447 
3448 		goto out;
3449 	}
3450 	case KVM_GET_TSC_KHZ: {
3451 		r = vcpu->arch.virtual_tsc_khz;
3452 		goto out;
3453 	}
3454 	case KVM_KVMCLOCK_CTRL: {
3455 		r = kvm_set_guest_paused(vcpu);
3456 		goto out;
3457 	}
3458 	default:
3459 		r = -EINVAL;
3460 	}
3461 out:
3462 	kfree(u.buffer);
3463 	return r;
3464 }
3465 
3466 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3467 {
3468 	return VM_FAULT_SIGBUS;
3469 }
3470 
3471 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3472 {
3473 	int ret;
3474 
3475 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3476 		return -EINVAL;
3477 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3478 	return ret;
3479 }
3480 
3481 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3482 					      u64 ident_addr)
3483 {
3484 	kvm->arch.ept_identity_map_addr = ident_addr;
3485 	return 0;
3486 }
3487 
3488 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3489 					  u32 kvm_nr_mmu_pages)
3490 {
3491 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3492 		return -EINVAL;
3493 
3494 	mutex_lock(&kvm->slots_lock);
3495 
3496 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3497 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3498 
3499 	mutex_unlock(&kvm->slots_lock);
3500 	return 0;
3501 }
3502 
3503 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3504 {
3505 	return kvm->arch.n_max_mmu_pages;
3506 }
3507 
3508 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3509 {
3510 	int r;
3511 
3512 	r = 0;
3513 	switch (chip->chip_id) {
3514 	case KVM_IRQCHIP_PIC_MASTER:
3515 		memcpy(&chip->chip.pic,
3516 			&pic_irqchip(kvm)->pics[0],
3517 			sizeof(struct kvm_pic_state));
3518 		break;
3519 	case KVM_IRQCHIP_PIC_SLAVE:
3520 		memcpy(&chip->chip.pic,
3521 			&pic_irqchip(kvm)->pics[1],
3522 			sizeof(struct kvm_pic_state));
3523 		break;
3524 	case KVM_IRQCHIP_IOAPIC:
3525 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3526 		break;
3527 	default:
3528 		r = -EINVAL;
3529 		break;
3530 	}
3531 	return r;
3532 }
3533 
3534 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3535 {
3536 	int r;
3537 
3538 	r = 0;
3539 	switch (chip->chip_id) {
3540 	case KVM_IRQCHIP_PIC_MASTER:
3541 		spin_lock(&pic_irqchip(kvm)->lock);
3542 		memcpy(&pic_irqchip(kvm)->pics[0],
3543 			&chip->chip.pic,
3544 			sizeof(struct kvm_pic_state));
3545 		spin_unlock(&pic_irqchip(kvm)->lock);
3546 		break;
3547 	case KVM_IRQCHIP_PIC_SLAVE:
3548 		spin_lock(&pic_irqchip(kvm)->lock);
3549 		memcpy(&pic_irqchip(kvm)->pics[1],
3550 			&chip->chip.pic,
3551 			sizeof(struct kvm_pic_state));
3552 		spin_unlock(&pic_irqchip(kvm)->lock);
3553 		break;
3554 	case KVM_IRQCHIP_IOAPIC:
3555 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3556 		break;
3557 	default:
3558 		r = -EINVAL;
3559 		break;
3560 	}
3561 	kvm_pic_update_irq(pic_irqchip(kvm));
3562 	return r;
3563 }
3564 
3565 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3566 {
3567 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3568 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3569 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3570 	return 0;
3571 }
3572 
3573 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3574 {
3575 	int i;
3576 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3577 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3578 	for (i = 0; i < 3; i++)
3579 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3580 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3581 	return 0;
3582 }
3583 
3584 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3585 {
3586 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3587 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3588 		sizeof(ps->channels));
3589 	ps->flags = kvm->arch.vpit->pit_state.flags;
3590 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3591 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3592 	return 0;
3593 }
3594 
3595 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3596 {
3597 	int start = 0;
3598 	int i;
3599 	u32 prev_legacy, cur_legacy;
3600 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3601 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3602 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3603 	if (!prev_legacy && cur_legacy)
3604 		start = 1;
3605 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3606 	       sizeof(kvm->arch.vpit->pit_state.channels));
3607 	kvm->arch.vpit->pit_state.flags = ps->flags;
3608 	for (i = 0; i < 3; i++)
3609 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count, start);
3610 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3611 	return 0;
3612 }
3613 
3614 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3615 				 struct kvm_reinject_control *control)
3616 {
3617 	if (!kvm->arch.vpit)
3618 		return -ENXIO;
3619 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3620 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3621 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3622 	return 0;
3623 }
3624 
3625 /**
3626  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3627  * @kvm: kvm instance
3628  * @log: slot id and address to which we copy the log
3629  *
3630  * Steps 1-4 below provide general overview of dirty page logging. See
3631  * kvm_get_dirty_log_protect() function description for additional details.
3632  *
3633  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3634  * always flush the TLB (step 4) even if previous step failed  and the dirty
3635  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3636  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3637  * writes will be marked dirty for next log read.
3638  *
3639  *   1. Take a snapshot of the bit and clear it if needed.
3640  *   2. Write protect the corresponding page.
3641  *   3. Copy the snapshot to the userspace.
3642  *   4. Flush TLB's if needed.
3643  */
3644 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3645 {
3646 	bool is_dirty = false;
3647 	int r;
3648 
3649 	mutex_lock(&kvm->slots_lock);
3650 
3651 	/*
3652 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3653 	 */
3654 	if (kvm_x86_ops->flush_log_dirty)
3655 		kvm_x86_ops->flush_log_dirty(kvm);
3656 
3657 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3658 
3659 	/*
3660 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3661 	 * kvm_mmu_slot_remove_write_access().
3662 	 */
3663 	lockdep_assert_held(&kvm->slots_lock);
3664 	if (is_dirty)
3665 		kvm_flush_remote_tlbs(kvm);
3666 
3667 	mutex_unlock(&kvm->slots_lock);
3668 	return r;
3669 }
3670 
3671 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3672 			bool line_status)
3673 {
3674 	if (!irqchip_in_kernel(kvm))
3675 		return -ENXIO;
3676 
3677 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3678 					irq_event->irq, irq_event->level,
3679 					line_status);
3680 	return 0;
3681 }
3682 
3683 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3684 				   struct kvm_enable_cap *cap)
3685 {
3686 	int r;
3687 
3688 	if (cap->flags)
3689 		return -EINVAL;
3690 
3691 	switch (cap->cap) {
3692 	case KVM_CAP_DISABLE_QUIRKS:
3693 		kvm->arch.disabled_quirks = cap->args[0];
3694 		r = 0;
3695 		break;
3696 	case KVM_CAP_SPLIT_IRQCHIP: {
3697 		mutex_lock(&kvm->lock);
3698 		r = -EINVAL;
3699 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3700 			goto split_irqchip_unlock;
3701 		r = -EEXIST;
3702 		if (irqchip_in_kernel(kvm))
3703 			goto split_irqchip_unlock;
3704 		if (atomic_read(&kvm->online_vcpus))
3705 			goto split_irqchip_unlock;
3706 		r = kvm_setup_empty_irq_routing(kvm);
3707 		if (r)
3708 			goto split_irqchip_unlock;
3709 		/* Pairs with irqchip_in_kernel. */
3710 		smp_wmb();
3711 		kvm->arch.irqchip_split = true;
3712 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3713 		r = 0;
3714 split_irqchip_unlock:
3715 		mutex_unlock(&kvm->lock);
3716 		break;
3717 	}
3718 	default:
3719 		r = -EINVAL;
3720 		break;
3721 	}
3722 	return r;
3723 }
3724 
3725 long kvm_arch_vm_ioctl(struct file *filp,
3726 		       unsigned int ioctl, unsigned long arg)
3727 {
3728 	struct kvm *kvm = filp->private_data;
3729 	void __user *argp = (void __user *)arg;
3730 	int r = -ENOTTY;
3731 	/*
3732 	 * This union makes it completely explicit to gcc-3.x
3733 	 * that these two variables' stack usage should be
3734 	 * combined, not added together.
3735 	 */
3736 	union {
3737 		struct kvm_pit_state ps;
3738 		struct kvm_pit_state2 ps2;
3739 		struct kvm_pit_config pit_config;
3740 	} u;
3741 
3742 	switch (ioctl) {
3743 	case KVM_SET_TSS_ADDR:
3744 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3745 		break;
3746 	case KVM_SET_IDENTITY_MAP_ADDR: {
3747 		u64 ident_addr;
3748 
3749 		r = -EFAULT;
3750 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3751 			goto out;
3752 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3753 		break;
3754 	}
3755 	case KVM_SET_NR_MMU_PAGES:
3756 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3757 		break;
3758 	case KVM_GET_NR_MMU_PAGES:
3759 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3760 		break;
3761 	case KVM_CREATE_IRQCHIP: {
3762 		struct kvm_pic *vpic;
3763 
3764 		mutex_lock(&kvm->lock);
3765 		r = -EEXIST;
3766 		if (kvm->arch.vpic)
3767 			goto create_irqchip_unlock;
3768 		r = -EINVAL;
3769 		if (atomic_read(&kvm->online_vcpus))
3770 			goto create_irqchip_unlock;
3771 		r = -ENOMEM;
3772 		vpic = kvm_create_pic(kvm);
3773 		if (vpic) {
3774 			r = kvm_ioapic_init(kvm);
3775 			if (r) {
3776 				mutex_lock(&kvm->slots_lock);
3777 				kvm_destroy_pic(vpic);
3778 				mutex_unlock(&kvm->slots_lock);
3779 				goto create_irqchip_unlock;
3780 			}
3781 		} else
3782 			goto create_irqchip_unlock;
3783 		r = kvm_setup_default_irq_routing(kvm);
3784 		if (r) {
3785 			mutex_lock(&kvm->slots_lock);
3786 			mutex_lock(&kvm->irq_lock);
3787 			kvm_ioapic_destroy(kvm);
3788 			kvm_destroy_pic(vpic);
3789 			mutex_unlock(&kvm->irq_lock);
3790 			mutex_unlock(&kvm->slots_lock);
3791 			goto create_irqchip_unlock;
3792 		}
3793 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3794 		smp_wmb();
3795 		kvm->arch.vpic = vpic;
3796 	create_irqchip_unlock:
3797 		mutex_unlock(&kvm->lock);
3798 		break;
3799 	}
3800 	case KVM_CREATE_PIT:
3801 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3802 		goto create_pit;
3803 	case KVM_CREATE_PIT2:
3804 		r = -EFAULT;
3805 		if (copy_from_user(&u.pit_config, argp,
3806 				   sizeof(struct kvm_pit_config)))
3807 			goto out;
3808 	create_pit:
3809 		mutex_lock(&kvm->slots_lock);
3810 		r = -EEXIST;
3811 		if (kvm->arch.vpit)
3812 			goto create_pit_unlock;
3813 		r = -ENOMEM;
3814 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3815 		if (kvm->arch.vpit)
3816 			r = 0;
3817 	create_pit_unlock:
3818 		mutex_unlock(&kvm->slots_lock);
3819 		break;
3820 	case KVM_GET_IRQCHIP: {
3821 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3822 		struct kvm_irqchip *chip;
3823 
3824 		chip = memdup_user(argp, sizeof(*chip));
3825 		if (IS_ERR(chip)) {
3826 			r = PTR_ERR(chip);
3827 			goto out;
3828 		}
3829 
3830 		r = -ENXIO;
3831 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3832 			goto get_irqchip_out;
3833 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3834 		if (r)
3835 			goto get_irqchip_out;
3836 		r = -EFAULT;
3837 		if (copy_to_user(argp, chip, sizeof *chip))
3838 			goto get_irqchip_out;
3839 		r = 0;
3840 	get_irqchip_out:
3841 		kfree(chip);
3842 		break;
3843 	}
3844 	case KVM_SET_IRQCHIP: {
3845 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3846 		struct kvm_irqchip *chip;
3847 
3848 		chip = memdup_user(argp, sizeof(*chip));
3849 		if (IS_ERR(chip)) {
3850 			r = PTR_ERR(chip);
3851 			goto out;
3852 		}
3853 
3854 		r = -ENXIO;
3855 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3856 			goto set_irqchip_out;
3857 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3858 		if (r)
3859 			goto set_irqchip_out;
3860 		r = 0;
3861 	set_irqchip_out:
3862 		kfree(chip);
3863 		break;
3864 	}
3865 	case KVM_GET_PIT: {
3866 		r = -EFAULT;
3867 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3868 			goto out;
3869 		r = -ENXIO;
3870 		if (!kvm->arch.vpit)
3871 			goto out;
3872 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3873 		if (r)
3874 			goto out;
3875 		r = -EFAULT;
3876 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3877 			goto out;
3878 		r = 0;
3879 		break;
3880 	}
3881 	case KVM_SET_PIT: {
3882 		r = -EFAULT;
3883 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3884 			goto out;
3885 		r = -ENXIO;
3886 		if (!kvm->arch.vpit)
3887 			goto out;
3888 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3889 		break;
3890 	}
3891 	case KVM_GET_PIT2: {
3892 		r = -ENXIO;
3893 		if (!kvm->arch.vpit)
3894 			goto out;
3895 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3896 		if (r)
3897 			goto out;
3898 		r = -EFAULT;
3899 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3900 			goto out;
3901 		r = 0;
3902 		break;
3903 	}
3904 	case KVM_SET_PIT2: {
3905 		r = -EFAULT;
3906 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3907 			goto out;
3908 		r = -ENXIO;
3909 		if (!kvm->arch.vpit)
3910 			goto out;
3911 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3912 		break;
3913 	}
3914 	case KVM_REINJECT_CONTROL: {
3915 		struct kvm_reinject_control control;
3916 		r =  -EFAULT;
3917 		if (copy_from_user(&control, argp, sizeof(control)))
3918 			goto out;
3919 		r = kvm_vm_ioctl_reinject(kvm, &control);
3920 		break;
3921 	}
3922 	case KVM_SET_BOOT_CPU_ID:
3923 		r = 0;
3924 		mutex_lock(&kvm->lock);
3925 		if (atomic_read(&kvm->online_vcpus) != 0)
3926 			r = -EBUSY;
3927 		else
3928 			kvm->arch.bsp_vcpu_id = arg;
3929 		mutex_unlock(&kvm->lock);
3930 		break;
3931 	case KVM_XEN_HVM_CONFIG: {
3932 		r = -EFAULT;
3933 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3934 				   sizeof(struct kvm_xen_hvm_config)))
3935 			goto out;
3936 		r = -EINVAL;
3937 		if (kvm->arch.xen_hvm_config.flags)
3938 			goto out;
3939 		r = 0;
3940 		break;
3941 	}
3942 	case KVM_SET_CLOCK: {
3943 		struct kvm_clock_data user_ns;
3944 		u64 now_ns;
3945 		s64 delta;
3946 
3947 		r = -EFAULT;
3948 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3949 			goto out;
3950 
3951 		r = -EINVAL;
3952 		if (user_ns.flags)
3953 			goto out;
3954 
3955 		r = 0;
3956 		local_irq_disable();
3957 		now_ns = get_kernel_ns();
3958 		delta = user_ns.clock - now_ns;
3959 		local_irq_enable();
3960 		kvm->arch.kvmclock_offset = delta;
3961 		kvm_gen_update_masterclock(kvm);
3962 		break;
3963 	}
3964 	case KVM_GET_CLOCK: {
3965 		struct kvm_clock_data user_ns;
3966 		u64 now_ns;
3967 
3968 		local_irq_disable();
3969 		now_ns = get_kernel_ns();
3970 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3971 		local_irq_enable();
3972 		user_ns.flags = 0;
3973 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3974 
3975 		r = -EFAULT;
3976 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3977 			goto out;
3978 		r = 0;
3979 		break;
3980 	}
3981 	case KVM_ENABLE_CAP: {
3982 		struct kvm_enable_cap cap;
3983 
3984 		r = -EFAULT;
3985 		if (copy_from_user(&cap, argp, sizeof(cap)))
3986 			goto out;
3987 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3988 		break;
3989 	}
3990 	default:
3991 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3992 	}
3993 out:
3994 	return r;
3995 }
3996 
3997 static void kvm_init_msr_list(void)
3998 {
3999 	u32 dummy[2];
4000 	unsigned i, j;
4001 
4002 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4003 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4004 			continue;
4005 
4006 		/*
4007 		 * Even MSRs that are valid in the host may not be exposed
4008 		 * to the guests in some cases.  We could work around this
4009 		 * in VMX with the generic MSR save/load machinery, but it
4010 		 * is not really worthwhile since it will really only
4011 		 * happen with nested virtualization.
4012 		 */
4013 		switch (msrs_to_save[i]) {
4014 		case MSR_IA32_BNDCFGS:
4015 			if (!kvm_x86_ops->mpx_supported())
4016 				continue;
4017 			break;
4018 		default:
4019 			break;
4020 		}
4021 
4022 		if (j < i)
4023 			msrs_to_save[j] = msrs_to_save[i];
4024 		j++;
4025 	}
4026 	num_msrs_to_save = j;
4027 
4028 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4029 		switch (emulated_msrs[i]) {
4030 		case MSR_IA32_SMBASE:
4031 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4032 				continue;
4033 			break;
4034 		default:
4035 			break;
4036 		}
4037 
4038 		if (j < i)
4039 			emulated_msrs[j] = emulated_msrs[i];
4040 		j++;
4041 	}
4042 	num_emulated_msrs = j;
4043 }
4044 
4045 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4046 			   const void *v)
4047 {
4048 	int handled = 0;
4049 	int n;
4050 
4051 	do {
4052 		n = min(len, 8);
4053 		if (!(vcpu->arch.apic &&
4054 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4055 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4056 			break;
4057 		handled += n;
4058 		addr += n;
4059 		len -= n;
4060 		v += n;
4061 	} while (len);
4062 
4063 	return handled;
4064 }
4065 
4066 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4067 {
4068 	int handled = 0;
4069 	int n;
4070 
4071 	do {
4072 		n = min(len, 8);
4073 		if (!(vcpu->arch.apic &&
4074 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4075 					 addr, n, v))
4076 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4077 			break;
4078 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4079 		handled += n;
4080 		addr += n;
4081 		len -= n;
4082 		v += n;
4083 	} while (len);
4084 
4085 	return handled;
4086 }
4087 
4088 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4089 			struct kvm_segment *var, int seg)
4090 {
4091 	kvm_x86_ops->set_segment(vcpu, var, seg);
4092 }
4093 
4094 void kvm_get_segment(struct kvm_vcpu *vcpu,
4095 		     struct kvm_segment *var, int seg)
4096 {
4097 	kvm_x86_ops->get_segment(vcpu, var, seg);
4098 }
4099 
4100 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4101 			   struct x86_exception *exception)
4102 {
4103 	gpa_t t_gpa;
4104 
4105 	BUG_ON(!mmu_is_nested(vcpu));
4106 
4107 	/* NPT walks are always user-walks */
4108 	access |= PFERR_USER_MASK;
4109 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4110 
4111 	return t_gpa;
4112 }
4113 
4114 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4115 			      struct x86_exception *exception)
4116 {
4117 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4118 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4119 }
4120 
4121  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4122 				struct x86_exception *exception)
4123 {
4124 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4125 	access |= PFERR_FETCH_MASK;
4126 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4127 }
4128 
4129 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4130 			       struct x86_exception *exception)
4131 {
4132 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4133 	access |= PFERR_WRITE_MASK;
4134 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4135 }
4136 
4137 /* uses this to access any guest's mapped memory without checking CPL */
4138 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4139 				struct x86_exception *exception)
4140 {
4141 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4142 }
4143 
4144 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4145 				      struct kvm_vcpu *vcpu, u32 access,
4146 				      struct x86_exception *exception)
4147 {
4148 	void *data = val;
4149 	int r = X86EMUL_CONTINUE;
4150 
4151 	while (bytes) {
4152 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4153 							    exception);
4154 		unsigned offset = addr & (PAGE_SIZE-1);
4155 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4156 		int ret;
4157 
4158 		if (gpa == UNMAPPED_GVA)
4159 			return X86EMUL_PROPAGATE_FAULT;
4160 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4161 					       offset, toread);
4162 		if (ret < 0) {
4163 			r = X86EMUL_IO_NEEDED;
4164 			goto out;
4165 		}
4166 
4167 		bytes -= toread;
4168 		data += toread;
4169 		addr += toread;
4170 	}
4171 out:
4172 	return r;
4173 }
4174 
4175 /* used for instruction fetching */
4176 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4177 				gva_t addr, void *val, unsigned int bytes,
4178 				struct x86_exception *exception)
4179 {
4180 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4181 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4182 	unsigned offset;
4183 	int ret;
4184 
4185 	/* Inline kvm_read_guest_virt_helper for speed.  */
4186 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4187 						    exception);
4188 	if (unlikely(gpa == UNMAPPED_GVA))
4189 		return X86EMUL_PROPAGATE_FAULT;
4190 
4191 	offset = addr & (PAGE_SIZE-1);
4192 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4193 		bytes = (unsigned)PAGE_SIZE - offset;
4194 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4195 				       offset, bytes);
4196 	if (unlikely(ret < 0))
4197 		return X86EMUL_IO_NEEDED;
4198 
4199 	return X86EMUL_CONTINUE;
4200 }
4201 
4202 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4203 			       gva_t addr, void *val, unsigned int bytes,
4204 			       struct x86_exception *exception)
4205 {
4206 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4207 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208 
4209 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4210 					  exception);
4211 }
4212 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4213 
4214 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4215 				      gva_t addr, void *val, unsigned int bytes,
4216 				      struct x86_exception *exception)
4217 {
4218 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4219 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4220 }
4221 
4222 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4223 		unsigned long addr, void *val, unsigned int bytes)
4224 {
4225 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4226 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4227 
4228 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4229 }
4230 
4231 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4232 				       gva_t addr, void *val,
4233 				       unsigned int bytes,
4234 				       struct x86_exception *exception)
4235 {
4236 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4237 	void *data = val;
4238 	int r = X86EMUL_CONTINUE;
4239 
4240 	while (bytes) {
4241 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4242 							     PFERR_WRITE_MASK,
4243 							     exception);
4244 		unsigned offset = addr & (PAGE_SIZE-1);
4245 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4246 		int ret;
4247 
4248 		if (gpa == UNMAPPED_GVA)
4249 			return X86EMUL_PROPAGATE_FAULT;
4250 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4251 		if (ret < 0) {
4252 			r = X86EMUL_IO_NEEDED;
4253 			goto out;
4254 		}
4255 
4256 		bytes -= towrite;
4257 		data += towrite;
4258 		addr += towrite;
4259 	}
4260 out:
4261 	return r;
4262 }
4263 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4264 
4265 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4266 				gpa_t *gpa, struct x86_exception *exception,
4267 				bool write)
4268 {
4269 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4270 		| (write ? PFERR_WRITE_MASK : 0);
4271 
4272 	if (vcpu_match_mmio_gva(vcpu, gva)
4273 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4274 				 vcpu->arch.access, access)) {
4275 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4276 					(gva & (PAGE_SIZE - 1));
4277 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4278 		return 1;
4279 	}
4280 
4281 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4282 
4283 	if (*gpa == UNMAPPED_GVA)
4284 		return -1;
4285 
4286 	/* For APIC access vmexit */
4287 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4288 		return 1;
4289 
4290 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4291 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4292 		return 1;
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4299 			const void *val, int bytes)
4300 {
4301 	int ret;
4302 
4303 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4304 	if (ret < 0)
4305 		return 0;
4306 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4307 	return 1;
4308 }
4309 
4310 struct read_write_emulator_ops {
4311 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4312 				  int bytes);
4313 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4314 				  void *val, int bytes);
4315 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4316 			       int bytes, void *val);
4317 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4318 				    void *val, int bytes);
4319 	bool write;
4320 };
4321 
4322 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4323 {
4324 	if (vcpu->mmio_read_completed) {
4325 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4326 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4327 		vcpu->mmio_read_completed = 0;
4328 		return 1;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4335 			void *val, int bytes)
4336 {
4337 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4338 }
4339 
4340 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4341 			 void *val, int bytes)
4342 {
4343 	return emulator_write_phys(vcpu, gpa, val, bytes);
4344 }
4345 
4346 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4347 {
4348 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4349 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4350 }
4351 
4352 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4353 			  void *val, int bytes)
4354 {
4355 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4356 	return X86EMUL_IO_NEEDED;
4357 }
4358 
4359 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4360 			   void *val, int bytes)
4361 {
4362 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4363 
4364 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4365 	return X86EMUL_CONTINUE;
4366 }
4367 
4368 static const struct read_write_emulator_ops read_emultor = {
4369 	.read_write_prepare = read_prepare,
4370 	.read_write_emulate = read_emulate,
4371 	.read_write_mmio = vcpu_mmio_read,
4372 	.read_write_exit_mmio = read_exit_mmio,
4373 };
4374 
4375 static const struct read_write_emulator_ops write_emultor = {
4376 	.read_write_emulate = write_emulate,
4377 	.read_write_mmio = write_mmio,
4378 	.read_write_exit_mmio = write_exit_mmio,
4379 	.write = true,
4380 };
4381 
4382 static int emulator_read_write_onepage(unsigned long addr, void *val,
4383 				       unsigned int bytes,
4384 				       struct x86_exception *exception,
4385 				       struct kvm_vcpu *vcpu,
4386 				       const struct read_write_emulator_ops *ops)
4387 {
4388 	gpa_t gpa;
4389 	int handled, ret;
4390 	bool write = ops->write;
4391 	struct kvm_mmio_fragment *frag;
4392 
4393 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4394 
4395 	if (ret < 0)
4396 		return X86EMUL_PROPAGATE_FAULT;
4397 
4398 	/* For APIC access vmexit */
4399 	if (ret)
4400 		goto mmio;
4401 
4402 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4403 		return X86EMUL_CONTINUE;
4404 
4405 mmio:
4406 	/*
4407 	 * Is this MMIO handled locally?
4408 	 */
4409 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4410 	if (handled == bytes)
4411 		return X86EMUL_CONTINUE;
4412 
4413 	gpa += handled;
4414 	bytes -= handled;
4415 	val += handled;
4416 
4417 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4418 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4419 	frag->gpa = gpa;
4420 	frag->data = val;
4421 	frag->len = bytes;
4422 	return X86EMUL_CONTINUE;
4423 }
4424 
4425 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4426 			unsigned long addr,
4427 			void *val, unsigned int bytes,
4428 			struct x86_exception *exception,
4429 			const struct read_write_emulator_ops *ops)
4430 {
4431 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4432 	gpa_t gpa;
4433 	int rc;
4434 
4435 	if (ops->read_write_prepare &&
4436 		  ops->read_write_prepare(vcpu, val, bytes))
4437 		return X86EMUL_CONTINUE;
4438 
4439 	vcpu->mmio_nr_fragments = 0;
4440 
4441 	/* Crossing a page boundary? */
4442 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4443 		int now;
4444 
4445 		now = -addr & ~PAGE_MASK;
4446 		rc = emulator_read_write_onepage(addr, val, now, exception,
4447 						 vcpu, ops);
4448 
4449 		if (rc != X86EMUL_CONTINUE)
4450 			return rc;
4451 		addr += now;
4452 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4453 			addr = (u32)addr;
4454 		val += now;
4455 		bytes -= now;
4456 	}
4457 
4458 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4459 					 vcpu, ops);
4460 	if (rc != X86EMUL_CONTINUE)
4461 		return rc;
4462 
4463 	if (!vcpu->mmio_nr_fragments)
4464 		return rc;
4465 
4466 	gpa = vcpu->mmio_fragments[0].gpa;
4467 
4468 	vcpu->mmio_needed = 1;
4469 	vcpu->mmio_cur_fragment = 0;
4470 
4471 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4472 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4473 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4474 	vcpu->run->mmio.phys_addr = gpa;
4475 
4476 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4477 }
4478 
4479 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4480 				  unsigned long addr,
4481 				  void *val,
4482 				  unsigned int bytes,
4483 				  struct x86_exception *exception)
4484 {
4485 	return emulator_read_write(ctxt, addr, val, bytes,
4486 				   exception, &read_emultor);
4487 }
4488 
4489 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4490 			    unsigned long addr,
4491 			    const void *val,
4492 			    unsigned int bytes,
4493 			    struct x86_exception *exception)
4494 {
4495 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4496 				   exception, &write_emultor);
4497 }
4498 
4499 #define CMPXCHG_TYPE(t, ptr, old, new) \
4500 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4501 
4502 #ifdef CONFIG_X86_64
4503 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4504 #else
4505 #  define CMPXCHG64(ptr, old, new) \
4506 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4507 #endif
4508 
4509 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4510 				     unsigned long addr,
4511 				     const void *old,
4512 				     const void *new,
4513 				     unsigned int bytes,
4514 				     struct x86_exception *exception)
4515 {
4516 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4517 	gpa_t gpa;
4518 	struct page *page;
4519 	char *kaddr;
4520 	bool exchanged;
4521 
4522 	/* guests cmpxchg8b have to be emulated atomically */
4523 	if (bytes > 8 || (bytes & (bytes - 1)))
4524 		goto emul_write;
4525 
4526 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4527 
4528 	if (gpa == UNMAPPED_GVA ||
4529 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4530 		goto emul_write;
4531 
4532 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4533 		goto emul_write;
4534 
4535 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4536 	if (is_error_page(page))
4537 		goto emul_write;
4538 
4539 	kaddr = kmap_atomic(page);
4540 	kaddr += offset_in_page(gpa);
4541 	switch (bytes) {
4542 	case 1:
4543 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4544 		break;
4545 	case 2:
4546 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4547 		break;
4548 	case 4:
4549 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4550 		break;
4551 	case 8:
4552 		exchanged = CMPXCHG64(kaddr, old, new);
4553 		break;
4554 	default:
4555 		BUG();
4556 	}
4557 	kunmap_atomic(kaddr);
4558 	kvm_release_page_dirty(page);
4559 
4560 	if (!exchanged)
4561 		return X86EMUL_CMPXCHG_FAILED;
4562 
4563 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4564 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4565 
4566 	return X86EMUL_CONTINUE;
4567 
4568 emul_write:
4569 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4570 
4571 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4572 }
4573 
4574 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4575 {
4576 	/* TODO: String I/O for in kernel device */
4577 	int r;
4578 
4579 	if (vcpu->arch.pio.in)
4580 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4581 				    vcpu->arch.pio.size, pd);
4582 	else
4583 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4584 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4585 				     pd);
4586 	return r;
4587 }
4588 
4589 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4590 			       unsigned short port, void *val,
4591 			       unsigned int count, bool in)
4592 {
4593 	vcpu->arch.pio.port = port;
4594 	vcpu->arch.pio.in = in;
4595 	vcpu->arch.pio.count  = count;
4596 	vcpu->arch.pio.size = size;
4597 
4598 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4599 		vcpu->arch.pio.count = 0;
4600 		return 1;
4601 	}
4602 
4603 	vcpu->run->exit_reason = KVM_EXIT_IO;
4604 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4605 	vcpu->run->io.size = size;
4606 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4607 	vcpu->run->io.count = count;
4608 	vcpu->run->io.port = port;
4609 
4610 	return 0;
4611 }
4612 
4613 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4614 				    int size, unsigned short port, void *val,
4615 				    unsigned int count)
4616 {
4617 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4618 	int ret;
4619 
4620 	if (vcpu->arch.pio.count)
4621 		goto data_avail;
4622 
4623 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4624 	if (ret) {
4625 data_avail:
4626 		memcpy(val, vcpu->arch.pio_data, size * count);
4627 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4628 		vcpu->arch.pio.count = 0;
4629 		return 1;
4630 	}
4631 
4632 	return 0;
4633 }
4634 
4635 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4636 				     int size, unsigned short port,
4637 				     const void *val, unsigned int count)
4638 {
4639 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4640 
4641 	memcpy(vcpu->arch.pio_data, val, size * count);
4642 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4643 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4644 }
4645 
4646 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4647 {
4648 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4649 }
4650 
4651 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4652 {
4653 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4654 }
4655 
4656 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4657 {
4658 	if (!need_emulate_wbinvd(vcpu))
4659 		return X86EMUL_CONTINUE;
4660 
4661 	if (kvm_x86_ops->has_wbinvd_exit()) {
4662 		int cpu = get_cpu();
4663 
4664 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4665 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4666 				wbinvd_ipi, NULL, 1);
4667 		put_cpu();
4668 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4669 	} else
4670 		wbinvd();
4671 	return X86EMUL_CONTINUE;
4672 }
4673 
4674 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4675 {
4676 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4677 	return kvm_emulate_wbinvd_noskip(vcpu);
4678 }
4679 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4680 
4681 
4682 
4683 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4684 {
4685 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4686 }
4687 
4688 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4689 			   unsigned long *dest)
4690 {
4691 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4692 }
4693 
4694 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4695 			   unsigned long value)
4696 {
4697 
4698 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4699 }
4700 
4701 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4702 {
4703 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4704 }
4705 
4706 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4707 {
4708 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4709 	unsigned long value;
4710 
4711 	switch (cr) {
4712 	case 0:
4713 		value = kvm_read_cr0(vcpu);
4714 		break;
4715 	case 2:
4716 		value = vcpu->arch.cr2;
4717 		break;
4718 	case 3:
4719 		value = kvm_read_cr3(vcpu);
4720 		break;
4721 	case 4:
4722 		value = kvm_read_cr4(vcpu);
4723 		break;
4724 	case 8:
4725 		value = kvm_get_cr8(vcpu);
4726 		break;
4727 	default:
4728 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4729 		return 0;
4730 	}
4731 
4732 	return value;
4733 }
4734 
4735 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4736 {
4737 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4738 	int res = 0;
4739 
4740 	switch (cr) {
4741 	case 0:
4742 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4743 		break;
4744 	case 2:
4745 		vcpu->arch.cr2 = val;
4746 		break;
4747 	case 3:
4748 		res = kvm_set_cr3(vcpu, val);
4749 		break;
4750 	case 4:
4751 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4752 		break;
4753 	case 8:
4754 		res = kvm_set_cr8(vcpu, val);
4755 		break;
4756 	default:
4757 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4758 		res = -1;
4759 	}
4760 
4761 	return res;
4762 }
4763 
4764 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4765 {
4766 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4767 }
4768 
4769 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4770 {
4771 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4772 }
4773 
4774 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4775 {
4776 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4777 }
4778 
4779 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4780 {
4781 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4782 }
4783 
4784 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4785 {
4786 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4787 }
4788 
4789 static unsigned long emulator_get_cached_segment_base(
4790 	struct x86_emulate_ctxt *ctxt, int seg)
4791 {
4792 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4793 }
4794 
4795 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4796 				 struct desc_struct *desc, u32 *base3,
4797 				 int seg)
4798 {
4799 	struct kvm_segment var;
4800 
4801 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4802 	*selector = var.selector;
4803 
4804 	if (var.unusable) {
4805 		memset(desc, 0, sizeof(*desc));
4806 		return false;
4807 	}
4808 
4809 	if (var.g)
4810 		var.limit >>= 12;
4811 	set_desc_limit(desc, var.limit);
4812 	set_desc_base(desc, (unsigned long)var.base);
4813 #ifdef CONFIG_X86_64
4814 	if (base3)
4815 		*base3 = var.base >> 32;
4816 #endif
4817 	desc->type = var.type;
4818 	desc->s = var.s;
4819 	desc->dpl = var.dpl;
4820 	desc->p = var.present;
4821 	desc->avl = var.avl;
4822 	desc->l = var.l;
4823 	desc->d = var.db;
4824 	desc->g = var.g;
4825 
4826 	return true;
4827 }
4828 
4829 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4830 				 struct desc_struct *desc, u32 base3,
4831 				 int seg)
4832 {
4833 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4834 	struct kvm_segment var;
4835 
4836 	var.selector = selector;
4837 	var.base = get_desc_base(desc);
4838 #ifdef CONFIG_X86_64
4839 	var.base |= ((u64)base3) << 32;
4840 #endif
4841 	var.limit = get_desc_limit(desc);
4842 	if (desc->g)
4843 		var.limit = (var.limit << 12) | 0xfff;
4844 	var.type = desc->type;
4845 	var.dpl = desc->dpl;
4846 	var.db = desc->d;
4847 	var.s = desc->s;
4848 	var.l = desc->l;
4849 	var.g = desc->g;
4850 	var.avl = desc->avl;
4851 	var.present = desc->p;
4852 	var.unusable = !var.present;
4853 	var.padding = 0;
4854 
4855 	kvm_set_segment(vcpu, &var, seg);
4856 	return;
4857 }
4858 
4859 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4860 			    u32 msr_index, u64 *pdata)
4861 {
4862 	struct msr_data msr;
4863 	int r;
4864 
4865 	msr.index = msr_index;
4866 	msr.host_initiated = false;
4867 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4868 	if (r)
4869 		return r;
4870 
4871 	*pdata = msr.data;
4872 	return 0;
4873 }
4874 
4875 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4876 			    u32 msr_index, u64 data)
4877 {
4878 	struct msr_data msr;
4879 
4880 	msr.data = data;
4881 	msr.index = msr_index;
4882 	msr.host_initiated = false;
4883 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4884 }
4885 
4886 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4887 {
4888 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 
4890 	return vcpu->arch.smbase;
4891 }
4892 
4893 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4894 {
4895 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4896 
4897 	vcpu->arch.smbase = smbase;
4898 }
4899 
4900 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4901 			      u32 pmc)
4902 {
4903 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4904 }
4905 
4906 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4907 			     u32 pmc, u64 *pdata)
4908 {
4909 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4910 }
4911 
4912 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4913 {
4914 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4915 }
4916 
4917 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4918 {
4919 	preempt_disable();
4920 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4921 	/*
4922 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4923 	 * so it may be clear at this point.
4924 	 */
4925 	clts();
4926 }
4927 
4928 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4929 {
4930 	preempt_enable();
4931 }
4932 
4933 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4934 			      struct x86_instruction_info *info,
4935 			      enum x86_intercept_stage stage)
4936 {
4937 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4938 }
4939 
4940 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4941 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4942 {
4943 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4944 }
4945 
4946 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4947 {
4948 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4949 }
4950 
4951 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4952 {
4953 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4954 }
4955 
4956 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4957 {
4958 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4959 }
4960 
4961 static const struct x86_emulate_ops emulate_ops = {
4962 	.read_gpr            = emulator_read_gpr,
4963 	.write_gpr           = emulator_write_gpr,
4964 	.read_std            = kvm_read_guest_virt_system,
4965 	.write_std           = kvm_write_guest_virt_system,
4966 	.read_phys           = kvm_read_guest_phys_system,
4967 	.fetch               = kvm_fetch_guest_virt,
4968 	.read_emulated       = emulator_read_emulated,
4969 	.write_emulated      = emulator_write_emulated,
4970 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4971 	.invlpg              = emulator_invlpg,
4972 	.pio_in_emulated     = emulator_pio_in_emulated,
4973 	.pio_out_emulated    = emulator_pio_out_emulated,
4974 	.get_segment         = emulator_get_segment,
4975 	.set_segment         = emulator_set_segment,
4976 	.get_cached_segment_base = emulator_get_cached_segment_base,
4977 	.get_gdt             = emulator_get_gdt,
4978 	.get_idt	     = emulator_get_idt,
4979 	.set_gdt             = emulator_set_gdt,
4980 	.set_idt	     = emulator_set_idt,
4981 	.get_cr              = emulator_get_cr,
4982 	.set_cr              = emulator_set_cr,
4983 	.cpl                 = emulator_get_cpl,
4984 	.get_dr              = emulator_get_dr,
4985 	.set_dr              = emulator_set_dr,
4986 	.get_smbase          = emulator_get_smbase,
4987 	.set_smbase          = emulator_set_smbase,
4988 	.set_msr             = emulator_set_msr,
4989 	.get_msr             = emulator_get_msr,
4990 	.check_pmc	     = emulator_check_pmc,
4991 	.read_pmc            = emulator_read_pmc,
4992 	.halt                = emulator_halt,
4993 	.wbinvd              = emulator_wbinvd,
4994 	.fix_hypercall       = emulator_fix_hypercall,
4995 	.get_fpu             = emulator_get_fpu,
4996 	.put_fpu             = emulator_put_fpu,
4997 	.intercept           = emulator_intercept,
4998 	.get_cpuid           = emulator_get_cpuid,
4999 	.set_nmi_mask        = emulator_set_nmi_mask,
5000 };
5001 
5002 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5003 {
5004 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5005 	/*
5006 	 * an sti; sti; sequence only disable interrupts for the first
5007 	 * instruction. So, if the last instruction, be it emulated or
5008 	 * not, left the system with the INT_STI flag enabled, it
5009 	 * means that the last instruction is an sti. We should not
5010 	 * leave the flag on in this case. The same goes for mov ss
5011 	 */
5012 	if (int_shadow & mask)
5013 		mask = 0;
5014 	if (unlikely(int_shadow || mask)) {
5015 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5016 		if (!mask)
5017 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5018 	}
5019 }
5020 
5021 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5022 {
5023 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5024 	if (ctxt->exception.vector == PF_VECTOR)
5025 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5026 
5027 	if (ctxt->exception.error_code_valid)
5028 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5029 				      ctxt->exception.error_code);
5030 	else
5031 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5032 	return false;
5033 }
5034 
5035 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5036 {
5037 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5038 	int cs_db, cs_l;
5039 
5040 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5041 
5042 	ctxt->eflags = kvm_get_rflags(vcpu);
5043 	ctxt->eip = kvm_rip_read(vcpu);
5044 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5045 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5046 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5047 		     cs_db				? X86EMUL_MODE_PROT32 :
5048 							  X86EMUL_MODE_PROT16;
5049 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5050 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5051 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5052 	ctxt->emul_flags = vcpu->arch.hflags;
5053 
5054 	init_decode_cache(ctxt);
5055 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5056 }
5057 
5058 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5059 {
5060 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5061 	int ret;
5062 
5063 	init_emulate_ctxt(vcpu);
5064 
5065 	ctxt->op_bytes = 2;
5066 	ctxt->ad_bytes = 2;
5067 	ctxt->_eip = ctxt->eip + inc_eip;
5068 	ret = emulate_int_real(ctxt, irq);
5069 
5070 	if (ret != X86EMUL_CONTINUE)
5071 		return EMULATE_FAIL;
5072 
5073 	ctxt->eip = ctxt->_eip;
5074 	kvm_rip_write(vcpu, ctxt->eip);
5075 	kvm_set_rflags(vcpu, ctxt->eflags);
5076 
5077 	if (irq == NMI_VECTOR)
5078 		vcpu->arch.nmi_pending = 0;
5079 	else
5080 		vcpu->arch.interrupt.pending = false;
5081 
5082 	return EMULATE_DONE;
5083 }
5084 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5085 
5086 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5087 {
5088 	int r = EMULATE_DONE;
5089 
5090 	++vcpu->stat.insn_emulation_fail;
5091 	trace_kvm_emulate_insn_failed(vcpu);
5092 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5093 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5094 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5095 		vcpu->run->internal.ndata = 0;
5096 		r = EMULATE_FAIL;
5097 	}
5098 	kvm_queue_exception(vcpu, UD_VECTOR);
5099 
5100 	return r;
5101 }
5102 
5103 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5104 				  bool write_fault_to_shadow_pgtable,
5105 				  int emulation_type)
5106 {
5107 	gpa_t gpa = cr2;
5108 	pfn_t pfn;
5109 
5110 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5111 		return false;
5112 
5113 	if (!vcpu->arch.mmu.direct_map) {
5114 		/*
5115 		 * Write permission should be allowed since only
5116 		 * write access need to be emulated.
5117 		 */
5118 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5119 
5120 		/*
5121 		 * If the mapping is invalid in guest, let cpu retry
5122 		 * it to generate fault.
5123 		 */
5124 		if (gpa == UNMAPPED_GVA)
5125 			return true;
5126 	}
5127 
5128 	/*
5129 	 * Do not retry the unhandleable instruction if it faults on the
5130 	 * readonly host memory, otherwise it will goto a infinite loop:
5131 	 * retry instruction -> write #PF -> emulation fail -> retry
5132 	 * instruction -> ...
5133 	 */
5134 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5135 
5136 	/*
5137 	 * If the instruction failed on the error pfn, it can not be fixed,
5138 	 * report the error to userspace.
5139 	 */
5140 	if (is_error_noslot_pfn(pfn))
5141 		return false;
5142 
5143 	kvm_release_pfn_clean(pfn);
5144 
5145 	/* The instructions are well-emulated on direct mmu. */
5146 	if (vcpu->arch.mmu.direct_map) {
5147 		unsigned int indirect_shadow_pages;
5148 
5149 		spin_lock(&vcpu->kvm->mmu_lock);
5150 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5151 		spin_unlock(&vcpu->kvm->mmu_lock);
5152 
5153 		if (indirect_shadow_pages)
5154 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5155 
5156 		return true;
5157 	}
5158 
5159 	/*
5160 	 * if emulation was due to access to shadowed page table
5161 	 * and it failed try to unshadow page and re-enter the
5162 	 * guest to let CPU execute the instruction.
5163 	 */
5164 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5165 
5166 	/*
5167 	 * If the access faults on its page table, it can not
5168 	 * be fixed by unprotecting shadow page and it should
5169 	 * be reported to userspace.
5170 	 */
5171 	return !write_fault_to_shadow_pgtable;
5172 }
5173 
5174 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5175 			      unsigned long cr2,  int emulation_type)
5176 {
5177 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5178 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5179 
5180 	last_retry_eip = vcpu->arch.last_retry_eip;
5181 	last_retry_addr = vcpu->arch.last_retry_addr;
5182 
5183 	/*
5184 	 * If the emulation is caused by #PF and it is non-page_table
5185 	 * writing instruction, it means the VM-EXIT is caused by shadow
5186 	 * page protected, we can zap the shadow page and retry this
5187 	 * instruction directly.
5188 	 *
5189 	 * Note: if the guest uses a non-page-table modifying instruction
5190 	 * on the PDE that points to the instruction, then we will unmap
5191 	 * the instruction and go to an infinite loop. So, we cache the
5192 	 * last retried eip and the last fault address, if we meet the eip
5193 	 * and the address again, we can break out of the potential infinite
5194 	 * loop.
5195 	 */
5196 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5197 
5198 	if (!(emulation_type & EMULTYPE_RETRY))
5199 		return false;
5200 
5201 	if (x86_page_table_writing_insn(ctxt))
5202 		return false;
5203 
5204 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5205 		return false;
5206 
5207 	vcpu->arch.last_retry_eip = ctxt->eip;
5208 	vcpu->arch.last_retry_addr = cr2;
5209 
5210 	if (!vcpu->arch.mmu.direct_map)
5211 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5212 
5213 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5214 
5215 	return true;
5216 }
5217 
5218 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5219 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5220 
5221 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5222 {
5223 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5224 		/* This is a good place to trace that we are exiting SMM.  */
5225 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5226 
5227 		if (unlikely(vcpu->arch.smi_pending)) {
5228 			kvm_make_request(KVM_REQ_SMI, vcpu);
5229 			vcpu->arch.smi_pending = 0;
5230 		} else {
5231 			/* Process a latched INIT, if any.  */
5232 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5233 		}
5234 	}
5235 
5236 	kvm_mmu_reset_context(vcpu);
5237 }
5238 
5239 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5240 {
5241 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5242 
5243 	vcpu->arch.hflags = emul_flags;
5244 
5245 	if (changed & HF_SMM_MASK)
5246 		kvm_smm_changed(vcpu);
5247 }
5248 
5249 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5250 				unsigned long *db)
5251 {
5252 	u32 dr6 = 0;
5253 	int i;
5254 	u32 enable, rwlen;
5255 
5256 	enable = dr7;
5257 	rwlen = dr7 >> 16;
5258 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5259 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5260 			dr6 |= (1 << i);
5261 	return dr6;
5262 }
5263 
5264 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5265 {
5266 	struct kvm_run *kvm_run = vcpu->run;
5267 
5268 	/*
5269 	 * rflags is the old, "raw" value of the flags.  The new value has
5270 	 * not been saved yet.
5271 	 *
5272 	 * This is correct even for TF set by the guest, because "the
5273 	 * processor will not generate this exception after the instruction
5274 	 * that sets the TF flag".
5275 	 */
5276 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5277 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5278 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5279 						  DR6_RTM;
5280 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5281 			kvm_run->debug.arch.exception = DB_VECTOR;
5282 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5283 			*r = EMULATE_USER_EXIT;
5284 		} else {
5285 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5286 			/*
5287 			 * "Certain debug exceptions may clear bit 0-3.  The
5288 			 * remaining contents of the DR6 register are never
5289 			 * cleared by the processor".
5290 			 */
5291 			vcpu->arch.dr6 &= ~15;
5292 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5293 			kvm_queue_exception(vcpu, DB_VECTOR);
5294 		}
5295 	}
5296 }
5297 
5298 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5299 {
5300 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5301 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5302 		struct kvm_run *kvm_run = vcpu->run;
5303 		unsigned long eip = kvm_get_linear_rip(vcpu);
5304 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5305 					   vcpu->arch.guest_debug_dr7,
5306 					   vcpu->arch.eff_db);
5307 
5308 		if (dr6 != 0) {
5309 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5310 			kvm_run->debug.arch.pc = eip;
5311 			kvm_run->debug.arch.exception = DB_VECTOR;
5312 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5313 			*r = EMULATE_USER_EXIT;
5314 			return true;
5315 		}
5316 	}
5317 
5318 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5319 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5320 		unsigned long eip = kvm_get_linear_rip(vcpu);
5321 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5322 					   vcpu->arch.dr7,
5323 					   vcpu->arch.db);
5324 
5325 		if (dr6 != 0) {
5326 			vcpu->arch.dr6 &= ~15;
5327 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5328 			kvm_queue_exception(vcpu, DB_VECTOR);
5329 			*r = EMULATE_DONE;
5330 			return true;
5331 		}
5332 	}
5333 
5334 	return false;
5335 }
5336 
5337 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5338 			    unsigned long cr2,
5339 			    int emulation_type,
5340 			    void *insn,
5341 			    int insn_len)
5342 {
5343 	int r;
5344 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5345 	bool writeback = true;
5346 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5347 
5348 	/*
5349 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5350 	 * never reused.
5351 	 */
5352 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5353 	kvm_clear_exception_queue(vcpu);
5354 
5355 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5356 		init_emulate_ctxt(vcpu);
5357 
5358 		/*
5359 		 * We will reenter on the same instruction since
5360 		 * we do not set complete_userspace_io.  This does not
5361 		 * handle watchpoints yet, those would be handled in
5362 		 * the emulate_ops.
5363 		 */
5364 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5365 			return r;
5366 
5367 		ctxt->interruptibility = 0;
5368 		ctxt->have_exception = false;
5369 		ctxt->exception.vector = -1;
5370 		ctxt->perm_ok = false;
5371 
5372 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5373 
5374 		r = x86_decode_insn(ctxt, insn, insn_len);
5375 
5376 		trace_kvm_emulate_insn_start(vcpu);
5377 		++vcpu->stat.insn_emulation;
5378 		if (r != EMULATION_OK)  {
5379 			if (emulation_type & EMULTYPE_TRAP_UD)
5380 				return EMULATE_FAIL;
5381 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5382 						emulation_type))
5383 				return EMULATE_DONE;
5384 			if (emulation_type & EMULTYPE_SKIP)
5385 				return EMULATE_FAIL;
5386 			return handle_emulation_failure(vcpu);
5387 		}
5388 	}
5389 
5390 	if (emulation_type & EMULTYPE_SKIP) {
5391 		kvm_rip_write(vcpu, ctxt->_eip);
5392 		if (ctxt->eflags & X86_EFLAGS_RF)
5393 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5394 		return EMULATE_DONE;
5395 	}
5396 
5397 	if (retry_instruction(ctxt, cr2, emulation_type))
5398 		return EMULATE_DONE;
5399 
5400 	/* this is needed for vmware backdoor interface to work since it
5401 	   changes registers values  during IO operation */
5402 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5403 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5404 		emulator_invalidate_register_cache(ctxt);
5405 	}
5406 
5407 restart:
5408 	r = x86_emulate_insn(ctxt);
5409 
5410 	if (r == EMULATION_INTERCEPTED)
5411 		return EMULATE_DONE;
5412 
5413 	if (r == EMULATION_FAILED) {
5414 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5415 					emulation_type))
5416 			return EMULATE_DONE;
5417 
5418 		return handle_emulation_failure(vcpu);
5419 	}
5420 
5421 	if (ctxt->have_exception) {
5422 		r = EMULATE_DONE;
5423 		if (inject_emulated_exception(vcpu))
5424 			return r;
5425 	} else if (vcpu->arch.pio.count) {
5426 		if (!vcpu->arch.pio.in) {
5427 			/* FIXME: return into emulator if single-stepping.  */
5428 			vcpu->arch.pio.count = 0;
5429 		} else {
5430 			writeback = false;
5431 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5432 		}
5433 		r = EMULATE_USER_EXIT;
5434 	} else if (vcpu->mmio_needed) {
5435 		if (!vcpu->mmio_is_write)
5436 			writeback = false;
5437 		r = EMULATE_USER_EXIT;
5438 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5439 	} else if (r == EMULATION_RESTART)
5440 		goto restart;
5441 	else
5442 		r = EMULATE_DONE;
5443 
5444 	if (writeback) {
5445 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5446 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5447 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5448 		if (vcpu->arch.hflags != ctxt->emul_flags)
5449 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5450 		kvm_rip_write(vcpu, ctxt->eip);
5451 		if (r == EMULATE_DONE)
5452 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5453 		if (!ctxt->have_exception ||
5454 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5455 			__kvm_set_rflags(vcpu, ctxt->eflags);
5456 
5457 		/*
5458 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5459 		 * do nothing, and it will be requested again as soon as
5460 		 * the shadow expires.  But we still need to check here,
5461 		 * because POPF has no interrupt shadow.
5462 		 */
5463 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5464 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5465 	} else
5466 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5467 
5468 	return r;
5469 }
5470 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5471 
5472 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5473 {
5474 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5475 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5476 					    size, port, &val, 1);
5477 	/* do not return to emulator after return from userspace */
5478 	vcpu->arch.pio.count = 0;
5479 	return ret;
5480 }
5481 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5482 
5483 static void tsc_bad(void *info)
5484 {
5485 	__this_cpu_write(cpu_tsc_khz, 0);
5486 }
5487 
5488 static void tsc_khz_changed(void *data)
5489 {
5490 	struct cpufreq_freqs *freq = data;
5491 	unsigned long khz = 0;
5492 
5493 	if (data)
5494 		khz = freq->new;
5495 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5496 		khz = cpufreq_quick_get(raw_smp_processor_id());
5497 	if (!khz)
5498 		khz = tsc_khz;
5499 	__this_cpu_write(cpu_tsc_khz, khz);
5500 }
5501 
5502 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5503 				     void *data)
5504 {
5505 	struct cpufreq_freqs *freq = data;
5506 	struct kvm *kvm;
5507 	struct kvm_vcpu *vcpu;
5508 	int i, send_ipi = 0;
5509 
5510 	/*
5511 	 * We allow guests to temporarily run on slowing clocks,
5512 	 * provided we notify them after, or to run on accelerating
5513 	 * clocks, provided we notify them before.  Thus time never
5514 	 * goes backwards.
5515 	 *
5516 	 * However, we have a problem.  We can't atomically update
5517 	 * the frequency of a given CPU from this function; it is
5518 	 * merely a notifier, which can be called from any CPU.
5519 	 * Changing the TSC frequency at arbitrary points in time
5520 	 * requires a recomputation of local variables related to
5521 	 * the TSC for each VCPU.  We must flag these local variables
5522 	 * to be updated and be sure the update takes place with the
5523 	 * new frequency before any guests proceed.
5524 	 *
5525 	 * Unfortunately, the combination of hotplug CPU and frequency
5526 	 * change creates an intractable locking scenario; the order
5527 	 * of when these callouts happen is undefined with respect to
5528 	 * CPU hotplug, and they can race with each other.  As such,
5529 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5530 	 * undefined; you can actually have a CPU frequency change take
5531 	 * place in between the computation of X and the setting of the
5532 	 * variable.  To protect against this problem, all updates of
5533 	 * the per_cpu tsc_khz variable are done in an interrupt
5534 	 * protected IPI, and all callers wishing to update the value
5535 	 * must wait for a synchronous IPI to complete (which is trivial
5536 	 * if the caller is on the CPU already).  This establishes the
5537 	 * necessary total order on variable updates.
5538 	 *
5539 	 * Note that because a guest time update may take place
5540 	 * anytime after the setting of the VCPU's request bit, the
5541 	 * correct TSC value must be set before the request.  However,
5542 	 * to ensure the update actually makes it to any guest which
5543 	 * starts running in hardware virtualization between the set
5544 	 * and the acquisition of the spinlock, we must also ping the
5545 	 * CPU after setting the request bit.
5546 	 *
5547 	 */
5548 
5549 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5550 		return 0;
5551 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5552 		return 0;
5553 
5554 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5555 
5556 	spin_lock(&kvm_lock);
5557 	list_for_each_entry(kvm, &vm_list, vm_list) {
5558 		kvm_for_each_vcpu(i, vcpu, kvm) {
5559 			if (vcpu->cpu != freq->cpu)
5560 				continue;
5561 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5562 			if (vcpu->cpu != smp_processor_id())
5563 				send_ipi = 1;
5564 		}
5565 	}
5566 	spin_unlock(&kvm_lock);
5567 
5568 	if (freq->old < freq->new && send_ipi) {
5569 		/*
5570 		 * We upscale the frequency.  Must make the guest
5571 		 * doesn't see old kvmclock values while running with
5572 		 * the new frequency, otherwise we risk the guest sees
5573 		 * time go backwards.
5574 		 *
5575 		 * In case we update the frequency for another cpu
5576 		 * (which might be in guest context) send an interrupt
5577 		 * to kick the cpu out of guest context.  Next time
5578 		 * guest context is entered kvmclock will be updated,
5579 		 * so the guest will not see stale values.
5580 		 */
5581 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5582 	}
5583 	return 0;
5584 }
5585 
5586 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5587 	.notifier_call  = kvmclock_cpufreq_notifier
5588 };
5589 
5590 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5591 					unsigned long action, void *hcpu)
5592 {
5593 	unsigned int cpu = (unsigned long)hcpu;
5594 
5595 	switch (action) {
5596 		case CPU_ONLINE:
5597 		case CPU_DOWN_FAILED:
5598 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5599 			break;
5600 		case CPU_DOWN_PREPARE:
5601 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5602 			break;
5603 	}
5604 	return NOTIFY_OK;
5605 }
5606 
5607 static struct notifier_block kvmclock_cpu_notifier_block = {
5608 	.notifier_call  = kvmclock_cpu_notifier,
5609 	.priority = -INT_MAX
5610 };
5611 
5612 static void kvm_timer_init(void)
5613 {
5614 	int cpu;
5615 
5616 	max_tsc_khz = tsc_khz;
5617 
5618 	cpu_notifier_register_begin();
5619 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5620 #ifdef CONFIG_CPU_FREQ
5621 		struct cpufreq_policy policy;
5622 		memset(&policy, 0, sizeof(policy));
5623 		cpu = get_cpu();
5624 		cpufreq_get_policy(&policy, cpu);
5625 		if (policy.cpuinfo.max_freq)
5626 			max_tsc_khz = policy.cpuinfo.max_freq;
5627 		put_cpu();
5628 #endif
5629 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5630 					  CPUFREQ_TRANSITION_NOTIFIER);
5631 	}
5632 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5633 	for_each_online_cpu(cpu)
5634 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5635 
5636 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5637 	cpu_notifier_register_done();
5638 
5639 }
5640 
5641 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5642 
5643 int kvm_is_in_guest(void)
5644 {
5645 	return __this_cpu_read(current_vcpu) != NULL;
5646 }
5647 
5648 static int kvm_is_user_mode(void)
5649 {
5650 	int user_mode = 3;
5651 
5652 	if (__this_cpu_read(current_vcpu))
5653 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5654 
5655 	return user_mode != 0;
5656 }
5657 
5658 static unsigned long kvm_get_guest_ip(void)
5659 {
5660 	unsigned long ip = 0;
5661 
5662 	if (__this_cpu_read(current_vcpu))
5663 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5664 
5665 	return ip;
5666 }
5667 
5668 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5669 	.is_in_guest		= kvm_is_in_guest,
5670 	.is_user_mode		= kvm_is_user_mode,
5671 	.get_guest_ip		= kvm_get_guest_ip,
5672 };
5673 
5674 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5675 {
5676 	__this_cpu_write(current_vcpu, vcpu);
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5679 
5680 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5681 {
5682 	__this_cpu_write(current_vcpu, NULL);
5683 }
5684 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5685 
5686 static void kvm_set_mmio_spte_mask(void)
5687 {
5688 	u64 mask;
5689 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5690 
5691 	/*
5692 	 * Set the reserved bits and the present bit of an paging-structure
5693 	 * entry to generate page fault with PFER.RSV = 1.
5694 	 */
5695 	 /* Mask the reserved physical address bits. */
5696 	mask = rsvd_bits(maxphyaddr, 51);
5697 
5698 	/* Bit 62 is always reserved for 32bit host. */
5699 	mask |= 0x3ull << 62;
5700 
5701 	/* Set the present bit. */
5702 	mask |= 1ull;
5703 
5704 #ifdef CONFIG_X86_64
5705 	/*
5706 	 * If reserved bit is not supported, clear the present bit to disable
5707 	 * mmio page fault.
5708 	 */
5709 	if (maxphyaddr == 52)
5710 		mask &= ~1ull;
5711 #endif
5712 
5713 	kvm_mmu_set_mmio_spte_mask(mask);
5714 }
5715 
5716 #ifdef CONFIG_X86_64
5717 static void pvclock_gtod_update_fn(struct work_struct *work)
5718 {
5719 	struct kvm *kvm;
5720 
5721 	struct kvm_vcpu *vcpu;
5722 	int i;
5723 
5724 	spin_lock(&kvm_lock);
5725 	list_for_each_entry(kvm, &vm_list, vm_list)
5726 		kvm_for_each_vcpu(i, vcpu, kvm)
5727 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5728 	atomic_set(&kvm_guest_has_master_clock, 0);
5729 	spin_unlock(&kvm_lock);
5730 }
5731 
5732 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5733 
5734 /*
5735  * Notification about pvclock gtod data update.
5736  */
5737 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5738 			       void *priv)
5739 {
5740 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5741 	struct timekeeper *tk = priv;
5742 
5743 	update_pvclock_gtod(tk);
5744 
5745 	/* disable master clock if host does not trust, or does not
5746 	 * use, TSC clocksource
5747 	 */
5748 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5749 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5750 		queue_work(system_long_wq, &pvclock_gtod_work);
5751 
5752 	return 0;
5753 }
5754 
5755 static struct notifier_block pvclock_gtod_notifier = {
5756 	.notifier_call = pvclock_gtod_notify,
5757 };
5758 #endif
5759 
5760 int kvm_arch_init(void *opaque)
5761 {
5762 	int r;
5763 	struct kvm_x86_ops *ops = opaque;
5764 
5765 	if (kvm_x86_ops) {
5766 		printk(KERN_ERR "kvm: already loaded the other module\n");
5767 		r = -EEXIST;
5768 		goto out;
5769 	}
5770 
5771 	if (!ops->cpu_has_kvm_support()) {
5772 		printk(KERN_ERR "kvm: no hardware support\n");
5773 		r = -EOPNOTSUPP;
5774 		goto out;
5775 	}
5776 	if (ops->disabled_by_bios()) {
5777 		printk(KERN_ERR "kvm: disabled by bios\n");
5778 		r = -EOPNOTSUPP;
5779 		goto out;
5780 	}
5781 
5782 	r = -ENOMEM;
5783 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5784 	if (!shared_msrs) {
5785 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5786 		goto out;
5787 	}
5788 
5789 	r = kvm_mmu_module_init();
5790 	if (r)
5791 		goto out_free_percpu;
5792 
5793 	kvm_set_mmio_spte_mask();
5794 
5795 	kvm_x86_ops = ops;
5796 
5797 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5798 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5799 
5800 	kvm_timer_init();
5801 
5802 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5803 
5804 	if (cpu_has_xsave)
5805 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5806 
5807 	kvm_lapic_init();
5808 #ifdef CONFIG_X86_64
5809 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5810 #endif
5811 
5812 	return 0;
5813 
5814 out_free_percpu:
5815 	free_percpu(shared_msrs);
5816 out:
5817 	return r;
5818 }
5819 
5820 void kvm_arch_exit(void)
5821 {
5822 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5823 
5824 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5825 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5826 					    CPUFREQ_TRANSITION_NOTIFIER);
5827 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5828 #ifdef CONFIG_X86_64
5829 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5830 #endif
5831 	kvm_x86_ops = NULL;
5832 	kvm_mmu_module_exit();
5833 	free_percpu(shared_msrs);
5834 }
5835 
5836 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5837 {
5838 	++vcpu->stat.halt_exits;
5839 	if (lapic_in_kernel(vcpu)) {
5840 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5841 		return 1;
5842 	} else {
5843 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5844 		return 0;
5845 	}
5846 }
5847 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5848 
5849 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5850 {
5851 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5852 	return kvm_vcpu_halt(vcpu);
5853 }
5854 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5855 
5856 /*
5857  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5858  *
5859  * @apicid - apicid of vcpu to be kicked.
5860  */
5861 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5862 {
5863 	struct kvm_lapic_irq lapic_irq;
5864 
5865 	lapic_irq.shorthand = 0;
5866 	lapic_irq.dest_mode = 0;
5867 	lapic_irq.dest_id = apicid;
5868 	lapic_irq.msi_redir_hint = false;
5869 
5870 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5871 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5872 }
5873 
5874 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5875 {
5876 	unsigned long nr, a0, a1, a2, a3, ret;
5877 	int op_64_bit, r = 1;
5878 
5879 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5880 
5881 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5882 		return kvm_hv_hypercall(vcpu);
5883 
5884 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5885 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5886 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5887 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5888 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5889 
5890 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5891 
5892 	op_64_bit = is_64_bit_mode(vcpu);
5893 	if (!op_64_bit) {
5894 		nr &= 0xFFFFFFFF;
5895 		a0 &= 0xFFFFFFFF;
5896 		a1 &= 0xFFFFFFFF;
5897 		a2 &= 0xFFFFFFFF;
5898 		a3 &= 0xFFFFFFFF;
5899 	}
5900 
5901 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5902 		ret = -KVM_EPERM;
5903 		goto out;
5904 	}
5905 
5906 	switch (nr) {
5907 	case KVM_HC_VAPIC_POLL_IRQ:
5908 		ret = 0;
5909 		break;
5910 	case KVM_HC_KICK_CPU:
5911 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5912 		ret = 0;
5913 		break;
5914 	default:
5915 		ret = -KVM_ENOSYS;
5916 		break;
5917 	}
5918 out:
5919 	if (!op_64_bit)
5920 		ret = (u32)ret;
5921 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5922 	++vcpu->stat.hypercalls;
5923 	return r;
5924 }
5925 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5926 
5927 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5928 {
5929 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5930 	char instruction[3];
5931 	unsigned long rip = kvm_rip_read(vcpu);
5932 
5933 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5934 
5935 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5936 }
5937 
5938 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5939 {
5940 	return vcpu->run->request_interrupt_window &&
5941 		likely(!pic_in_kernel(vcpu->kvm));
5942 }
5943 
5944 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5945 {
5946 	struct kvm_run *kvm_run = vcpu->run;
5947 
5948 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5949 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5950 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5951 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5952 	kvm_run->ready_for_interrupt_injection =
5953 		pic_in_kernel(vcpu->kvm) ||
5954 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
5955 }
5956 
5957 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5958 {
5959 	int max_irr, tpr;
5960 
5961 	if (!kvm_x86_ops->update_cr8_intercept)
5962 		return;
5963 
5964 	if (!vcpu->arch.apic)
5965 		return;
5966 
5967 	if (!vcpu->arch.apic->vapic_addr)
5968 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5969 	else
5970 		max_irr = -1;
5971 
5972 	if (max_irr != -1)
5973 		max_irr >>= 4;
5974 
5975 	tpr = kvm_lapic_get_cr8(vcpu);
5976 
5977 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5978 }
5979 
5980 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5981 {
5982 	int r;
5983 
5984 	/* try to reinject previous events if any */
5985 	if (vcpu->arch.exception.pending) {
5986 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5987 					vcpu->arch.exception.has_error_code,
5988 					vcpu->arch.exception.error_code);
5989 
5990 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5991 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5992 					     X86_EFLAGS_RF);
5993 
5994 		if (vcpu->arch.exception.nr == DB_VECTOR &&
5995 		    (vcpu->arch.dr7 & DR7_GD)) {
5996 			vcpu->arch.dr7 &= ~DR7_GD;
5997 			kvm_update_dr7(vcpu);
5998 		}
5999 
6000 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6001 					  vcpu->arch.exception.has_error_code,
6002 					  vcpu->arch.exception.error_code,
6003 					  vcpu->arch.exception.reinject);
6004 		return 0;
6005 	}
6006 
6007 	if (vcpu->arch.nmi_injected) {
6008 		kvm_x86_ops->set_nmi(vcpu);
6009 		return 0;
6010 	}
6011 
6012 	if (vcpu->arch.interrupt.pending) {
6013 		kvm_x86_ops->set_irq(vcpu);
6014 		return 0;
6015 	}
6016 
6017 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6018 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6019 		if (r != 0)
6020 			return r;
6021 	}
6022 
6023 	/* try to inject new event if pending */
6024 	if (vcpu->arch.nmi_pending) {
6025 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6026 			--vcpu->arch.nmi_pending;
6027 			vcpu->arch.nmi_injected = true;
6028 			kvm_x86_ops->set_nmi(vcpu);
6029 		}
6030 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6031 		/*
6032 		 * Because interrupts can be injected asynchronously, we are
6033 		 * calling check_nested_events again here to avoid a race condition.
6034 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6035 		 * proposal and current concerns.  Perhaps we should be setting
6036 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6037 		 */
6038 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6039 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6040 			if (r != 0)
6041 				return r;
6042 		}
6043 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6044 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6045 					    false);
6046 			kvm_x86_ops->set_irq(vcpu);
6047 		}
6048 	}
6049 	return 0;
6050 }
6051 
6052 static void process_nmi(struct kvm_vcpu *vcpu)
6053 {
6054 	unsigned limit = 2;
6055 
6056 	/*
6057 	 * x86 is limited to one NMI running, and one NMI pending after it.
6058 	 * If an NMI is already in progress, limit further NMIs to just one.
6059 	 * Otherwise, allow two (and we'll inject the first one immediately).
6060 	 */
6061 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6062 		limit = 1;
6063 
6064 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6065 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6066 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6067 }
6068 
6069 #define put_smstate(type, buf, offset, val)			  \
6070 	*(type *)((buf) + (offset) - 0x7e00) = val
6071 
6072 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6073 {
6074 	u32 flags = 0;
6075 	flags |= seg->g       << 23;
6076 	flags |= seg->db      << 22;
6077 	flags |= seg->l       << 21;
6078 	flags |= seg->avl     << 20;
6079 	flags |= seg->present << 15;
6080 	flags |= seg->dpl     << 13;
6081 	flags |= seg->s       << 12;
6082 	flags |= seg->type    << 8;
6083 	return flags;
6084 }
6085 
6086 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6087 {
6088 	struct kvm_segment seg;
6089 	int offset;
6090 
6091 	kvm_get_segment(vcpu, &seg, n);
6092 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6093 
6094 	if (n < 3)
6095 		offset = 0x7f84 + n * 12;
6096 	else
6097 		offset = 0x7f2c + (n - 3) * 12;
6098 
6099 	put_smstate(u32, buf, offset + 8, seg.base);
6100 	put_smstate(u32, buf, offset + 4, seg.limit);
6101 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6102 }
6103 
6104 #ifdef CONFIG_X86_64
6105 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6106 {
6107 	struct kvm_segment seg;
6108 	int offset;
6109 	u16 flags;
6110 
6111 	kvm_get_segment(vcpu, &seg, n);
6112 	offset = 0x7e00 + n * 16;
6113 
6114 	flags = process_smi_get_segment_flags(&seg) >> 8;
6115 	put_smstate(u16, buf, offset, seg.selector);
6116 	put_smstate(u16, buf, offset + 2, flags);
6117 	put_smstate(u32, buf, offset + 4, seg.limit);
6118 	put_smstate(u64, buf, offset + 8, seg.base);
6119 }
6120 #endif
6121 
6122 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6123 {
6124 	struct desc_ptr dt;
6125 	struct kvm_segment seg;
6126 	unsigned long val;
6127 	int i;
6128 
6129 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6130 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6131 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6132 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6133 
6134 	for (i = 0; i < 8; i++)
6135 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6136 
6137 	kvm_get_dr(vcpu, 6, &val);
6138 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6139 	kvm_get_dr(vcpu, 7, &val);
6140 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6141 
6142 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6143 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6144 	put_smstate(u32, buf, 0x7f64, seg.base);
6145 	put_smstate(u32, buf, 0x7f60, seg.limit);
6146 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6147 
6148 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6149 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6150 	put_smstate(u32, buf, 0x7f80, seg.base);
6151 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6152 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6153 
6154 	kvm_x86_ops->get_gdt(vcpu, &dt);
6155 	put_smstate(u32, buf, 0x7f74, dt.address);
6156 	put_smstate(u32, buf, 0x7f70, dt.size);
6157 
6158 	kvm_x86_ops->get_idt(vcpu, &dt);
6159 	put_smstate(u32, buf, 0x7f58, dt.address);
6160 	put_smstate(u32, buf, 0x7f54, dt.size);
6161 
6162 	for (i = 0; i < 6; i++)
6163 		process_smi_save_seg_32(vcpu, buf, i);
6164 
6165 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6166 
6167 	/* revision id */
6168 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6169 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6170 }
6171 
6172 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6173 {
6174 #ifdef CONFIG_X86_64
6175 	struct desc_ptr dt;
6176 	struct kvm_segment seg;
6177 	unsigned long val;
6178 	int i;
6179 
6180 	for (i = 0; i < 16; i++)
6181 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6182 
6183 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6184 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6185 
6186 	kvm_get_dr(vcpu, 6, &val);
6187 	put_smstate(u64, buf, 0x7f68, val);
6188 	kvm_get_dr(vcpu, 7, &val);
6189 	put_smstate(u64, buf, 0x7f60, val);
6190 
6191 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6192 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6193 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6194 
6195 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6196 
6197 	/* revision id */
6198 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6199 
6200 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6201 
6202 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6203 	put_smstate(u16, buf, 0x7e90, seg.selector);
6204 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6205 	put_smstate(u32, buf, 0x7e94, seg.limit);
6206 	put_smstate(u64, buf, 0x7e98, seg.base);
6207 
6208 	kvm_x86_ops->get_idt(vcpu, &dt);
6209 	put_smstate(u32, buf, 0x7e84, dt.size);
6210 	put_smstate(u64, buf, 0x7e88, dt.address);
6211 
6212 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6213 	put_smstate(u16, buf, 0x7e70, seg.selector);
6214 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6215 	put_smstate(u32, buf, 0x7e74, seg.limit);
6216 	put_smstate(u64, buf, 0x7e78, seg.base);
6217 
6218 	kvm_x86_ops->get_gdt(vcpu, &dt);
6219 	put_smstate(u32, buf, 0x7e64, dt.size);
6220 	put_smstate(u64, buf, 0x7e68, dt.address);
6221 
6222 	for (i = 0; i < 6; i++)
6223 		process_smi_save_seg_64(vcpu, buf, i);
6224 #else
6225 	WARN_ON_ONCE(1);
6226 #endif
6227 }
6228 
6229 static void process_smi(struct kvm_vcpu *vcpu)
6230 {
6231 	struct kvm_segment cs, ds;
6232 	struct desc_ptr dt;
6233 	char buf[512];
6234 	u32 cr0;
6235 
6236 	if (is_smm(vcpu)) {
6237 		vcpu->arch.smi_pending = true;
6238 		return;
6239 	}
6240 
6241 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6242 	vcpu->arch.hflags |= HF_SMM_MASK;
6243 	memset(buf, 0, 512);
6244 	if (guest_cpuid_has_longmode(vcpu))
6245 		process_smi_save_state_64(vcpu, buf);
6246 	else
6247 		process_smi_save_state_32(vcpu, buf);
6248 
6249 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6250 
6251 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6252 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6253 	else
6254 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6255 
6256 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6257 	kvm_rip_write(vcpu, 0x8000);
6258 
6259 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6260 	kvm_x86_ops->set_cr0(vcpu, cr0);
6261 	vcpu->arch.cr0 = cr0;
6262 
6263 	kvm_x86_ops->set_cr4(vcpu, 0);
6264 
6265 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6266 	dt.address = dt.size = 0;
6267 	kvm_x86_ops->set_idt(vcpu, &dt);
6268 
6269 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6270 
6271 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6272 	cs.base = vcpu->arch.smbase;
6273 
6274 	ds.selector = 0;
6275 	ds.base = 0;
6276 
6277 	cs.limit    = ds.limit = 0xffffffff;
6278 	cs.type     = ds.type = 0x3;
6279 	cs.dpl      = ds.dpl = 0;
6280 	cs.db       = ds.db = 0;
6281 	cs.s        = ds.s = 1;
6282 	cs.l        = ds.l = 0;
6283 	cs.g        = ds.g = 1;
6284 	cs.avl      = ds.avl = 0;
6285 	cs.present  = ds.present = 1;
6286 	cs.unusable = ds.unusable = 0;
6287 	cs.padding  = ds.padding = 0;
6288 
6289 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6290 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6291 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6292 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6293 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6294 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6295 
6296 	if (guest_cpuid_has_longmode(vcpu))
6297 		kvm_x86_ops->set_efer(vcpu, 0);
6298 
6299 	kvm_update_cpuid(vcpu);
6300 	kvm_mmu_reset_context(vcpu);
6301 }
6302 
6303 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6304 {
6305 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6306 		return;
6307 
6308 	memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6309 
6310 	if (irqchip_split(vcpu->kvm))
6311 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6312 	else {
6313 		kvm_x86_ops->sync_pir_to_irr(vcpu);
6314 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6315 	}
6316 	kvm_x86_ops->load_eoi_exitmap(vcpu);
6317 }
6318 
6319 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6320 {
6321 	++vcpu->stat.tlb_flush;
6322 	kvm_x86_ops->tlb_flush(vcpu);
6323 }
6324 
6325 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6326 {
6327 	struct page *page = NULL;
6328 
6329 	if (!lapic_in_kernel(vcpu))
6330 		return;
6331 
6332 	if (!kvm_x86_ops->set_apic_access_page_addr)
6333 		return;
6334 
6335 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6336 	if (is_error_page(page))
6337 		return;
6338 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6339 
6340 	/*
6341 	 * Do not pin apic access page in memory, the MMU notifier
6342 	 * will call us again if it is migrated or swapped out.
6343 	 */
6344 	put_page(page);
6345 }
6346 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6347 
6348 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6349 					   unsigned long address)
6350 {
6351 	/*
6352 	 * The physical address of apic access page is stored in the VMCS.
6353 	 * Update it when it becomes invalid.
6354 	 */
6355 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6356 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6357 }
6358 
6359 /*
6360  * Returns 1 to let vcpu_run() continue the guest execution loop without
6361  * exiting to the userspace.  Otherwise, the value will be returned to the
6362  * userspace.
6363  */
6364 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6365 {
6366 	int r;
6367 	bool req_int_win =
6368 		dm_request_for_irq_injection(vcpu) &&
6369 		kvm_cpu_accept_dm_intr(vcpu);
6370 
6371 	bool req_immediate_exit = false;
6372 
6373 	if (vcpu->requests) {
6374 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6375 			kvm_mmu_unload(vcpu);
6376 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6377 			__kvm_migrate_timers(vcpu);
6378 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6379 			kvm_gen_update_masterclock(vcpu->kvm);
6380 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6381 			kvm_gen_kvmclock_update(vcpu);
6382 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6383 			r = kvm_guest_time_update(vcpu);
6384 			if (unlikely(r))
6385 				goto out;
6386 		}
6387 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6388 			kvm_mmu_sync_roots(vcpu);
6389 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6390 			kvm_vcpu_flush_tlb(vcpu);
6391 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6392 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6393 			r = 0;
6394 			goto out;
6395 		}
6396 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6397 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6398 			r = 0;
6399 			goto out;
6400 		}
6401 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6402 			vcpu->fpu_active = 0;
6403 			kvm_x86_ops->fpu_deactivate(vcpu);
6404 		}
6405 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6406 			/* Page is swapped out. Do synthetic halt */
6407 			vcpu->arch.apf.halted = true;
6408 			r = 1;
6409 			goto out;
6410 		}
6411 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6412 			record_steal_time(vcpu);
6413 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6414 			process_smi(vcpu);
6415 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6416 			process_nmi(vcpu);
6417 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6418 			kvm_pmu_handle_event(vcpu);
6419 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6420 			kvm_pmu_deliver_pmi(vcpu);
6421 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6422 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6423 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6424 				     (void *) vcpu->arch.eoi_exit_bitmap)) {
6425 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6426 				vcpu->run->eoi.vector =
6427 						vcpu->arch.pending_ioapic_eoi;
6428 				r = 0;
6429 				goto out;
6430 			}
6431 		}
6432 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6433 			vcpu_scan_ioapic(vcpu);
6434 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6435 			kvm_vcpu_reload_apic_access_page(vcpu);
6436 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6437 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6438 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6439 			r = 0;
6440 			goto out;
6441 		}
6442 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6443 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6444 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6445 			r = 0;
6446 			goto out;
6447 		}
6448 	}
6449 
6450 	/*
6451 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6452 	 * VT-d hardware, so we have to update RVI unconditionally.
6453 	 */
6454 	if (kvm_lapic_enabled(vcpu)) {
6455 		/*
6456 		 * Update architecture specific hints for APIC
6457 		 * virtual interrupt delivery.
6458 		 */
6459 		if (kvm_x86_ops->hwapic_irr_update)
6460 			kvm_x86_ops->hwapic_irr_update(vcpu,
6461 				kvm_lapic_find_highest_irr(vcpu));
6462 	}
6463 
6464 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6465 		kvm_apic_accept_events(vcpu);
6466 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6467 			r = 1;
6468 			goto out;
6469 		}
6470 
6471 		if (inject_pending_event(vcpu, req_int_win) != 0)
6472 			req_immediate_exit = true;
6473 		/* enable NMI/IRQ window open exits if needed */
6474 		else if (vcpu->arch.nmi_pending)
6475 			kvm_x86_ops->enable_nmi_window(vcpu);
6476 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6477 			kvm_x86_ops->enable_irq_window(vcpu);
6478 
6479 		if (kvm_lapic_enabled(vcpu)) {
6480 			update_cr8_intercept(vcpu);
6481 			kvm_lapic_sync_to_vapic(vcpu);
6482 		}
6483 	}
6484 
6485 	r = kvm_mmu_reload(vcpu);
6486 	if (unlikely(r)) {
6487 		goto cancel_injection;
6488 	}
6489 
6490 	preempt_disable();
6491 
6492 	kvm_x86_ops->prepare_guest_switch(vcpu);
6493 	if (vcpu->fpu_active)
6494 		kvm_load_guest_fpu(vcpu);
6495 	kvm_load_guest_xcr0(vcpu);
6496 
6497 	vcpu->mode = IN_GUEST_MODE;
6498 
6499 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6500 
6501 	/* We should set ->mode before check ->requests,
6502 	 * see the comment in make_all_cpus_request.
6503 	 */
6504 	smp_mb__after_srcu_read_unlock();
6505 
6506 	local_irq_disable();
6507 
6508 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6509 	    || need_resched() || signal_pending(current)) {
6510 		vcpu->mode = OUTSIDE_GUEST_MODE;
6511 		smp_wmb();
6512 		local_irq_enable();
6513 		preempt_enable();
6514 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6515 		r = 1;
6516 		goto cancel_injection;
6517 	}
6518 
6519 	if (req_immediate_exit)
6520 		smp_send_reschedule(vcpu->cpu);
6521 
6522 	trace_kvm_entry(vcpu->vcpu_id);
6523 	wait_lapic_expire(vcpu);
6524 	__kvm_guest_enter();
6525 
6526 	if (unlikely(vcpu->arch.switch_db_regs)) {
6527 		set_debugreg(0, 7);
6528 		set_debugreg(vcpu->arch.eff_db[0], 0);
6529 		set_debugreg(vcpu->arch.eff_db[1], 1);
6530 		set_debugreg(vcpu->arch.eff_db[2], 2);
6531 		set_debugreg(vcpu->arch.eff_db[3], 3);
6532 		set_debugreg(vcpu->arch.dr6, 6);
6533 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6534 	}
6535 
6536 	kvm_x86_ops->run(vcpu);
6537 
6538 	/*
6539 	 * Do this here before restoring debug registers on the host.  And
6540 	 * since we do this before handling the vmexit, a DR access vmexit
6541 	 * can (a) read the correct value of the debug registers, (b) set
6542 	 * KVM_DEBUGREG_WONT_EXIT again.
6543 	 */
6544 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6545 		int i;
6546 
6547 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6548 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6549 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6550 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6551 	}
6552 
6553 	/*
6554 	 * If the guest has used debug registers, at least dr7
6555 	 * will be disabled while returning to the host.
6556 	 * If we don't have active breakpoints in the host, we don't
6557 	 * care about the messed up debug address registers. But if
6558 	 * we have some of them active, restore the old state.
6559 	 */
6560 	if (hw_breakpoint_active())
6561 		hw_breakpoint_restore();
6562 
6563 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6564 
6565 	vcpu->mode = OUTSIDE_GUEST_MODE;
6566 	smp_wmb();
6567 
6568 	/* Interrupt is enabled by handle_external_intr() */
6569 	kvm_x86_ops->handle_external_intr(vcpu);
6570 
6571 	++vcpu->stat.exits;
6572 
6573 	/*
6574 	 * We must have an instruction between local_irq_enable() and
6575 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6576 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6577 	 * But we need to prevent reordering, hence this barrier():
6578 	 */
6579 	barrier();
6580 
6581 	kvm_guest_exit();
6582 
6583 	preempt_enable();
6584 
6585 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6586 
6587 	/*
6588 	 * Profile KVM exit RIPs:
6589 	 */
6590 	if (unlikely(prof_on == KVM_PROFILING)) {
6591 		unsigned long rip = kvm_rip_read(vcpu);
6592 		profile_hit(KVM_PROFILING, (void *)rip);
6593 	}
6594 
6595 	if (unlikely(vcpu->arch.tsc_always_catchup))
6596 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6597 
6598 	if (vcpu->arch.apic_attention)
6599 		kvm_lapic_sync_from_vapic(vcpu);
6600 
6601 	r = kvm_x86_ops->handle_exit(vcpu);
6602 	return r;
6603 
6604 cancel_injection:
6605 	kvm_x86_ops->cancel_injection(vcpu);
6606 	if (unlikely(vcpu->arch.apic_attention))
6607 		kvm_lapic_sync_from_vapic(vcpu);
6608 out:
6609 	return r;
6610 }
6611 
6612 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6613 {
6614 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6615 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6616 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6617 		kvm_vcpu_block(vcpu);
6618 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6619 
6620 		if (kvm_x86_ops->post_block)
6621 			kvm_x86_ops->post_block(vcpu);
6622 
6623 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6624 			return 1;
6625 	}
6626 
6627 	kvm_apic_accept_events(vcpu);
6628 	switch(vcpu->arch.mp_state) {
6629 	case KVM_MP_STATE_HALTED:
6630 		vcpu->arch.pv.pv_unhalted = false;
6631 		vcpu->arch.mp_state =
6632 			KVM_MP_STATE_RUNNABLE;
6633 	case KVM_MP_STATE_RUNNABLE:
6634 		vcpu->arch.apf.halted = false;
6635 		break;
6636 	case KVM_MP_STATE_INIT_RECEIVED:
6637 		break;
6638 	default:
6639 		return -EINTR;
6640 		break;
6641 	}
6642 	return 1;
6643 }
6644 
6645 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6646 {
6647 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6648 		!vcpu->arch.apf.halted);
6649 }
6650 
6651 static int vcpu_run(struct kvm_vcpu *vcpu)
6652 {
6653 	int r;
6654 	struct kvm *kvm = vcpu->kvm;
6655 
6656 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6657 
6658 	for (;;) {
6659 		if (kvm_vcpu_running(vcpu)) {
6660 			r = vcpu_enter_guest(vcpu);
6661 		} else {
6662 			r = vcpu_block(kvm, vcpu);
6663 		}
6664 
6665 		if (r <= 0)
6666 			break;
6667 
6668 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6669 		if (kvm_cpu_has_pending_timer(vcpu))
6670 			kvm_inject_pending_timer_irqs(vcpu);
6671 
6672 		if (dm_request_for_irq_injection(vcpu) &&
6673 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6674 			r = 0;
6675 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6676 			++vcpu->stat.request_irq_exits;
6677 			break;
6678 		}
6679 
6680 		kvm_check_async_pf_completion(vcpu);
6681 
6682 		if (signal_pending(current)) {
6683 			r = -EINTR;
6684 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6685 			++vcpu->stat.signal_exits;
6686 			break;
6687 		}
6688 		if (need_resched()) {
6689 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6690 			cond_resched();
6691 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6692 		}
6693 	}
6694 
6695 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6696 
6697 	return r;
6698 }
6699 
6700 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6701 {
6702 	int r;
6703 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6704 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6705 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6706 	if (r != EMULATE_DONE)
6707 		return 0;
6708 	return 1;
6709 }
6710 
6711 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6712 {
6713 	BUG_ON(!vcpu->arch.pio.count);
6714 
6715 	return complete_emulated_io(vcpu);
6716 }
6717 
6718 /*
6719  * Implements the following, as a state machine:
6720  *
6721  * read:
6722  *   for each fragment
6723  *     for each mmio piece in the fragment
6724  *       write gpa, len
6725  *       exit
6726  *       copy data
6727  *   execute insn
6728  *
6729  * write:
6730  *   for each fragment
6731  *     for each mmio piece in the fragment
6732  *       write gpa, len
6733  *       copy data
6734  *       exit
6735  */
6736 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6737 {
6738 	struct kvm_run *run = vcpu->run;
6739 	struct kvm_mmio_fragment *frag;
6740 	unsigned len;
6741 
6742 	BUG_ON(!vcpu->mmio_needed);
6743 
6744 	/* Complete previous fragment */
6745 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6746 	len = min(8u, frag->len);
6747 	if (!vcpu->mmio_is_write)
6748 		memcpy(frag->data, run->mmio.data, len);
6749 
6750 	if (frag->len <= 8) {
6751 		/* Switch to the next fragment. */
6752 		frag++;
6753 		vcpu->mmio_cur_fragment++;
6754 	} else {
6755 		/* Go forward to the next mmio piece. */
6756 		frag->data += len;
6757 		frag->gpa += len;
6758 		frag->len -= len;
6759 	}
6760 
6761 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6762 		vcpu->mmio_needed = 0;
6763 
6764 		/* FIXME: return into emulator if single-stepping.  */
6765 		if (vcpu->mmio_is_write)
6766 			return 1;
6767 		vcpu->mmio_read_completed = 1;
6768 		return complete_emulated_io(vcpu);
6769 	}
6770 
6771 	run->exit_reason = KVM_EXIT_MMIO;
6772 	run->mmio.phys_addr = frag->gpa;
6773 	if (vcpu->mmio_is_write)
6774 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6775 	run->mmio.len = min(8u, frag->len);
6776 	run->mmio.is_write = vcpu->mmio_is_write;
6777 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6778 	return 0;
6779 }
6780 
6781 
6782 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6783 {
6784 	struct fpu *fpu = &current->thread.fpu;
6785 	int r;
6786 	sigset_t sigsaved;
6787 
6788 	fpu__activate_curr(fpu);
6789 
6790 	if (vcpu->sigset_active)
6791 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6792 
6793 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6794 		kvm_vcpu_block(vcpu);
6795 		kvm_apic_accept_events(vcpu);
6796 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6797 		r = -EAGAIN;
6798 		goto out;
6799 	}
6800 
6801 	/* re-sync apic's tpr */
6802 	if (!lapic_in_kernel(vcpu)) {
6803 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6804 			r = -EINVAL;
6805 			goto out;
6806 		}
6807 	}
6808 
6809 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6810 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6811 		vcpu->arch.complete_userspace_io = NULL;
6812 		r = cui(vcpu);
6813 		if (r <= 0)
6814 			goto out;
6815 	} else
6816 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6817 
6818 	r = vcpu_run(vcpu);
6819 
6820 out:
6821 	post_kvm_run_save(vcpu);
6822 	if (vcpu->sigset_active)
6823 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6824 
6825 	return r;
6826 }
6827 
6828 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6829 {
6830 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6831 		/*
6832 		 * We are here if userspace calls get_regs() in the middle of
6833 		 * instruction emulation. Registers state needs to be copied
6834 		 * back from emulation context to vcpu. Userspace shouldn't do
6835 		 * that usually, but some bad designed PV devices (vmware
6836 		 * backdoor interface) need this to work
6837 		 */
6838 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6839 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6840 	}
6841 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6842 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6843 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6844 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6845 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6846 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6847 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6848 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6849 #ifdef CONFIG_X86_64
6850 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6851 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6852 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6853 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6854 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6855 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6856 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6857 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6858 #endif
6859 
6860 	regs->rip = kvm_rip_read(vcpu);
6861 	regs->rflags = kvm_get_rflags(vcpu);
6862 
6863 	return 0;
6864 }
6865 
6866 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6867 {
6868 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6869 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6870 
6871 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6872 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6873 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6874 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6875 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6876 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6877 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6878 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6879 #ifdef CONFIG_X86_64
6880 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6881 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6882 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6883 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6884 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6885 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6886 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6887 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6888 #endif
6889 
6890 	kvm_rip_write(vcpu, regs->rip);
6891 	kvm_set_rflags(vcpu, regs->rflags);
6892 
6893 	vcpu->arch.exception.pending = false;
6894 
6895 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6896 
6897 	return 0;
6898 }
6899 
6900 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6901 {
6902 	struct kvm_segment cs;
6903 
6904 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6905 	*db = cs.db;
6906 	*l = cs.l;
6907 }
6908 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6909 
6910 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6911 				  struct kvm_sregs *sregs)
6912 {
6913 	struct desc_ptr dt;
6914 
6915 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6916 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6917 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6918 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6919 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6920 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6921 
6922 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6923 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6924 
6925 	kvm_x86_ops->get_idt(vcpu, &dt);
6926 	sregs->idt.limit = dt.size;
6927 	sregs->idt.base = dt.address;
6928 	kvm_x86_ops->get_gdt(vcpu, &dt);
6929 	sregs->gdt.limit = dt.size;
6930 	sregs->gdt.base = dt.address;
6931 
6932 	sregs->cr0 = kvm_read_cr0(vcpu);
6933 	sregs->cr2 = vcpu->arch.cr2;
6934 	sregs->cr3 = kvm_read_cr3(vcpu);
6935 	sregs->cr4 = kvm_read_cr4(vcpu);
6936 	sregs->cr8 = kvm_get_cr8(vcpu);
6937 	sregs->efer = vcpu->arch.efer;
6938 	sregs->apic_base = kvm_get_apic_base(vcpu);
6939 
6940 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6941 
6942 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6943 		set_bit(vcpu->arch.interrupt.nr,
6944 			(unsigned long *)sregs->interrupt_bitmap);
6945 
6946 	return 0;
6947 }
6948 
6949 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6950 				    struct kvm_mp_state *mp_state)
6951 {
6952 	kvm_apic_accept_events(vcpu);
6953 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6954 					vcpu->arch.pv.pv_unhalted)
6955 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6956 	else
6957 		mp_state->mp_state = vcpu->arch.mp_state;
6958 
6959 	return 0;
6960 }
6961 
6962 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6963 				    struct kvm_mp_state *mp_state)
6964 {
6965 	if (!kvm_vcpu_has_lapic(vcpu) &&
6966 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6967 		return -EINVAL;
6968 
6969 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6970 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6971 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6972 	} else
6973 		vcpu->arch.mp_state = mp_state->mp_state;
6974 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6975 	return 0;
6976 }
6977 
6978 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6979 		    int reason, bool has_error_code, u32 error_code)
6980 {
6981 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6982 	int ret;
6983 
6984 	init_emulate_ctxt(vcpu);
6985 
6986 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6987 				   has_error_code, error_code);
6988 
6989 	if (ret)
6990 		return EMULATE_FAIL;
6991 
6992 	kvm_rip_write(vcpu, ctxt->eip);
6993 	kvm_set_rflags(vcpu, ctxt->eflags);
6994 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6995 	return EMULATE_DONE;
6996 }
6997 EXPORT_SYMBOL_GPL(kvm_task_switch);
6998 
6999 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7000 				  struct kvm_sregs *sregs)
7001 {
7002 	struct msr_data apic_base_msr;
7003 	int mmu_reset_needed = 0;
7004 	int pending_vec, max_bits, idx;
7005 	struct desc_ptr dt;
7006 
7007 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7008 		return -EINVAL;
7009 
7010 	dt.size = sregs->idt.limit;
7011 	dt.address = sregs->idt.base;
7012 	kvm_x86_ops->set_idt(vcpu, &dt);
7013 	dt.size = sregs->gdt.limit;
7014 	dt.address = sregs->gdt.base;
7015 	kvm_x86_ops->set_gdt(vcpu, &dt);
7016 
7017 	vcpu->arch.cr2 = sregs->cr2;
7018 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7019 	vcpu->arch.cr3 = sregs->cr3;
7020 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7021 
7022 	kvm_set_cr8(vcpu, sregs->cr8);
7023 
7024 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7025 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7026 	apic_base_msr.data = sregs->apic_base;
7027 	apic_base_msr.host_initiated = true;
7028 	kvm_set_apic_base(vcpu, &apic_base_msr);
7029 
7030 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7031 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7032 	vcpu->arch.cr0 = sregs->cr0;
7033 
7034 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7035 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7036 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7037 		kvm_update_cpuid(vcpu);
7038 
7039 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7040 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7041 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7042 		mmu_reset_needed = 1;
7043 	}
7044 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7045 
7046 	if (mmu_reset_needed)
7047 		kvm_mmu_reset_context(vcpu);
7048 
7049 	max_bits = KVM_NR_INTERRUPTS;
7050 	pending_vec = find_first_bit(
7051 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7052 	if (pending_vec < max_bits) {
7053 		kvm_queue_interrupt(vcpu, pending_vec, false);
7054 		pr_debug("Set back pending irq %d\n", pending_vec);
7055 	}
7056 
7057 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7058 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7059 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7060 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7061 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7062 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7063 
7064 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7065 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7066 
7067 	update_cr8_intercept(vcpu);
7068 
7069 	/* Older userspace won't unhalt the vcpu on reset. */
7070 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7071 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7072 	    !is_protmode(vcpu))
7073 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7074 
7075 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7076 
7077 	return 0;
7078 }
7079 
7080 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7081 					struct kvm_guest_debug *dbg)
7082 {
7083 	unsigned long rflags;
7084 	int i, r;
7085 
7086 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7087 		r = -EBUSY;
7088 		if (vcpu->arch.exception.pending)
7089 			goto out;
7090 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7091 			kvm_queue_exception(vcpu, DB_VECTOR);
7092 		else
7093 			kvm_queue_exception(vcpu, BP_VECTOR);
7094 	}
7095 
7096 	/*
7097 	 * Read rflags as long as potentially injected trace flags are still
7098 	 * filtered out.
7099 	 */
7100 	rflags = kvm_get_rflags(vcpu);
7101 
7102 	vcpu->guest_debug = dbg->control;
7103 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7104 		vcpu->guest_debug = 0;
7105 
7106 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7107 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7108 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7109 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7110 	} else {
7111 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7112 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7113 	}
7114 	kvm_update_dr7(vcpu);
7115 
7116 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7117 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7118 			get_segment_base(vcpu, VCPU_SREG_CS);
7119 
7120 	/*
7121 	 * Trigger an rflags update that will inject or remove the trace
7122 	 * flags.
7123 	 */
7124 	kvm_set_rflags(vcpu, rflags);
7125 
7126 	kvm_x86_ops->update_bp_intercept(vcpu);
7127 
7128 	r = 0;
7129 
7130 out:
7131 
7132 	return r;
7133 }
7134 
7135 /*
7136  * Translate a guest virtual address to a guest physical address.
7137  */
7138 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7139 				    struct kvm_translation *tr)
7140 {
7141 	unsigned long vaddr = tr->linear_address;
7142 	gpa_t gpa;
7143 	int idx;
7144 
7145 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7146 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7147 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7148 	tr->physical_address = gpa;
7149 	tr->valid = gpa != UNMAPPED_GVA;
7150 	tr->writeable = 1;
7151 	tr->usermode = 0;
7152 
7153 	return 0;
7154 }
7155 
7156 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7157 {
7158 	struct fxregs_state *fxsave =
7159 			&vcpu->arch.guest_fpu.state.fxsave;
7160 
7161 	memcpy(fpu->fpr, fxsave->st_space, 128);
7162 	fpu->fcw = fxsave->cwd;
7163 	fpu->fsw = fxsave->swd;
7164 	fpu->ftwx = fxsave->twd;
7165 	fpu->last_opcode = fxsave->fop;
7166 	fpu->last_ip = fxsave->rip;
7167 	fpu->last_dp = fxsave->rdp;
7168 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7169 
7170 	return 0;
7171 }
7172 
7173 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7174 {
7175 	struct fxregs_state *fxsave =
7176 			&vcpu->arch.guest_fpu.state.fxsave;
7177 
7178 	memcpy(fxsave->st_space, fpu->fpr, 128);
7179 	fxsave->cwd = fpu->fcw;
7180 	fxsave->swd = fpu->fsw;
7181 	fxsave->twd = fpu->ftwx;
7182 	fxsave->fop = fpu->last_opcode;
7183 	fxsave->rip = fpu->last_ip;
7184 	fxsave->rdp = fpu->last_dp;
7185 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7186 
7187 	return 0;
7188 }
7189 
7190 static void fx_init(struct kvm_vcpu *vcpu)
7191 {
7192 	fpstate_init(&vcpu->arch.guest_fpu.state);
7193 	if (cpu_has_xsaves)
7194 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7195 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7196 
7197 	/*
7198 	 * Ensure guest xcr0 is valid for loading
7199 	 */
7200 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7201 
7202 	vcpu->arch.cr0 |= X86_CR0_ET;
7203 }
7204 
7205 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7206 {
7207 	if (vcpu->guest_fpu_loaded)
7208 		return;
7209 
7210 	/*
7211 	 * Restore all possible states in the guest,
7212 	 * and assume host would use all available bits.
7213 	 * Guest xcr0 would be loaded later.
7214 	 */
7215 	kvm_put_guest_xcr0(vcpu);
7216 	vcpu->guest_fpu_loaded = 1;
7217 	__kernel_fpu_begin();
7218 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7219 	trace_kvm_fpu(1);
7220 }
7221 
7222 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7223 {
7224 	kvm_put_guest_xcr0(vcpu);
7225 
7226 	if (!vcpu->guest_fpu_loaded) {
7227 		vcpu->fpu_counter = 0;
7228 		return;
7229 	}
7230 
7231 	vcpu->guest_fpu_loaded = 0;
7232 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7233 	__kernel_fpu_end();
7234 	++vcpu->stat.fpu_reload;
7235 	/*
7236 	 * If using eager FPU mode, or if the guest is a frequent user
7237 	 * of the FPU, just leave the FPU active for next time.
7238 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7239 	 * the FPU in bursts will revert to loading it on demand.
7240 	 */
7241 	if (!vcpu->arch.eager_fpu) {
7242 		if (++vcpu->fpu_counter < 5)
7243 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7244 	}
7245 	trace_kvm_fpu(0);
7246 }
7247 
7248 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7249 {
7250 	kvmclock_reset(vcpu);
7251 
7252 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7253 	kvm_x86_ops->vcpu_free(vcpu);
7254 }
7255 
7256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7257 						unsigned int id)
7258 {
7259 	struct kvm_vcpu *vcpu;
7260 
7261 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7262 		printk_once(KERN_WARNING
7263 		"kvm: SMP vm created on host with unstable TSC; "
7264 		"guest TSC will not be reliable\n");
7265 
7266 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7267 
7268 	return vcpu;
7269 }
7270 
7271 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7272 {
7273 	int r;
7274 
7275 	kvm_vcpu_mtrr_init(vcpu);
7276 	r = vcpu_load(vcpu);
7277 	if (r)
7278 		return r;
7279 	kvm_vcpu_reset(vcpu, false);
7280 	kvm_mmu_setup(vcpu);
7281 	vcpu_put(vcpu);
7282 	return r;
7283 }
7284 
7285 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7286 {
7287 	struct msr_data msr;
7288 	struct kvm *kvm = vcpu->kvm;
7289 
7290 	if (vcpu_load(vcpu))
7291 		return;
7292 	msr.data = 0x0;
7293 	msr.index = MSR_IA32_TSC;
7294 	msr.host_initiated = true;
7295 	kvm_write_tsc(vcpu, &msr);
7296 	vcpu_put(vcpu);
7297 
7298 	if (!kvmclock_periodic_sync)
7299 		return;
7300 
7301 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7302 					KVMCLOCK_SYNC_PERIOD);
7303 }
7304 
7305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7306 {
7307 	int r;
7308 	vcpu->arch.apf.msr_val = 0;
7309 
7310 	r = vcpu_load(vcpu);
7311 	BUG_ON(r);
7312 	kvm_mmu_unload(vcpu);
7313 	vcpu_put(vcpu);
7314 
7315 	kvm_x86_ops->vcpu_free(vcpu);
7316 }
7317 
7318 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7319 {
7320 	vcpu->arch.hflags = 0;
7321 
7322 	atomic_set(&vcpu->arch.nmi_queued, 0);
7323 	vcpu->arch.nmi_pending = 0;
7324 	vcpu->arch.nmi_injected = false;
7325 	kvm_clear_interrupt_queue(vcpu);
7326 	kvm_clear_exception_queue(vcpu);
7327 
7328 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7329 	kvm_update_dr0123(vcpu);
7330 	vcpu->arch.dr6 = DR6_INIT;
7331 	kvm_update_dr6(vcpu);
7332 	vcpu->arch.dr7 = DR7_FIXED_1;
7333 	kvm_update_dr7(vcpu);
7334 
7335 	vcpu->arch.cr2 = 0;
7336 
7337 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7338 	vcpu->arch.apf.msr_val = 0;
7339 	vcpu->arch.st.msr_val = 0;
7340 
7341 	kvmclock_reset(vcpu);
7342 
7343 	kvm_clear_async_pf_completion_queue(vcpu);
7344 	kvm_async_pf_hash_reset(vcpu);
7345 	vcpu->arch.apf.halted = false;
7346 
7347 	if (!init_event) {
7348 		kvm_pmu_reset(vcpu);
7349 		vcpu->arch.smbase = 0x30000;
7350 	}
7351 
7352 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7353 	vcpu->arch.regs_avail = ~0;
7354 	vcpu->arch.regs_dirty = ~0;
7355 
7356 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7357 }
7358 
7359 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7360 {
7361 	struct kvm_segment cs;
7362 
7363 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7364 	cs.selector = vector << 8;
7365 	cs.base = vector << 12;
7366 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7367 	kvm_rip_write(vcpu, 0);
7368 }
7369 
7370 int kvm_arch_hardware_enable(void)
7371 {
7372 	struct kvm *kvm;
7373 	struct kvm_vcpu *vcpu;
7374 	int i;
7375 	int ret;
7376 	u64 local_tsc;
7377 	u64 max_tsc = 0;
7378 	bool stable, backwards_tsc = false;
7379 
7380 	kvm_shared_msr_cpu_online();
7381 	ret = kvm_x86_ops->hardware_enable();
7382 	if (ret != 0)
7383 		return ret;
7384 
7385 	local_tsc = rdtsc();
7386 	stable = !check_tsc_unstable();
7387 	list_for_each_entry(kvm, &vm_list, vm_list) {
7388 		kvm_for_each_vcpu(i, vcpu, kvm) {
7389 			if (!stable && vcpu->cpu == smp_processor_id())
7390 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7391 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7392 				backwards_tsc = true;
7393 				if (vcpu->arch.last_host_tsc > max_tsc)
7394 					max_tsc = vcpu->arch.last_host_tsc;
7395 			}
7396 		}
7397 	}
7398 
7399 	/*
7400 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7401 	 * platforms that reset TSC during suspend or hibernate actions, but
7402 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7403 	 * detect that condition here, which happens early in CPU bringup,
7404 	 * before any KVM threads can be running.  Unfortunately, we can't
7405 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7406 	 * enough into CPU bringup that we know how much real time has actually
7407 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7408 	 * variables that haven't been updated yet.
7409 	 *
7410 	 * So we simply find the maximum observed TSC above, then record the
7411 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7412 	 * the adjustment will be applied.  Note that we accumulate
7413 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7414 	 * gets a chance to run again.  In the event that no KVM threads get a
7415 	 * chance to run, we will miss the entire elapsed period, as we'll have
7416 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7417 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7418 	 * uniform across all VCPUs (not to mention the scenario is extremely
7419 	 * unlikely). It is possible that a second hibernate recovery happens
7420 	 * much faster than a first, causing the observed TSC here to be
7421 	 * smaller; this would require additional padding adjustment, which is
7422 	 * why we set last_host_tsc to the local tsc observed here.
7423 	 *
7424 	 * N.B. - this code below runs only on platforms with reliable TSC,
7425 	 * as that is the only way backwards_tsc is set above.  Also note
7426 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7427 	 * have the same delta_cyc adjustment applied if backwards_tsc
7428 	 * is detected.  Note further, this adjustment is only done once,
7429 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7430 	 * called multiple times (one for each physical CPU bringup).
7431 	 *
7432 	 * Platforms with unreliable TSCs don't have to deal with this, they
7433 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7434 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7435 	 * guarantee that they stay in perfect synchronization.
7436 	 */
7437 	if (backwards_tsc) {
7438 		u64 delta_cyc = max_tsc - local_tsc;
7439 		backwards_tsc_observed = true;
7440 		list_for_each_entry(kvm, &vm_list, vm_list) {
7441 			kvm_for_each_vcpu(i, vcpu, kvm) {
7442 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7443 				vcpu->arch.last_host_tsc = local_tsc;
7444 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7445 			}
7446 
7447 			/*
7448 			 * We have to disable TSC offset matching.. if you were
7449 			 * booting a VM while issuing an S4 host suspend....
7450 			 * you may have some problem.  Solving this issue is
7451 			 * left as an exercise to the reader.
7452 			 */
7453 			kvm->arch.last_tsc_nsec = 0;
7454 			kvm->arch.last_tsc_write = 0;
7455 		}
7456 
7457 	}
7458 	return 0;
7459 }
7460 
7461 void kvm_arch_hardware_disable(void)
7462 {
7463 	kvm_x86_ops->hardware_disable();
7464 	drop_user_return_notifiers();
7465 }
7466 
7467 int kvm_arch_hardware_setup(void)
7468 {
7469 	int r;
7470 
7471 	r = kvm_x86_ops->hardware_setup();
7472 	if (r != 0)
7473 		return r;
7474 
7475 	if (kvm_has_tsc_control) {
7476 		/*
7477 		 * Make sure the user can only configure tsc_khz values that
7478 		 * fit into a signed integer.
7479 		 * A min value is not calculated needed because it will always
7480 		 * be 1 on all machines.
7481 		 */
7482 		u64 max = min(0x7fffffffULL,
7483 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7484 		kvm_max_guest_tsc_khz = max;
7485 
7486 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7487 	}
7488 
7489 	kvm_init_msr_list();
7490 	return 0;
7491 }
7492 
7493 void kvm_arch_hardware_unsetup(void)
7494 {
7495 	kvm_x86_ops->hardware_unsetup();
7496 }
7497 
7498 void kvm_arch_check_processor_compat(void *rtn)
7499 {
7500 	kvm_x86_ops->check_processor_compatibility(rtn);
7501 }
7502 
7503 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7504 {
7505 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7506 }
7507 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7508 
7509 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7510 {
7511 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7512 }
7513 
7514 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7515 {
7516 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7517 }
7518 
7519 struct static_key kvm_no_apic_vcpu __read_mostly;
7520 
7521 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7522 {
7523 	struct page *page;
7524 	struct kvm *kvm;
7525 	int r;
7526 
7527 	BUG_ON(vcpu->kvm == NULL);
7528 	kvm = vcpu->kvm;
7529 
7530 	vcpu->arch.pv.pv_unhalted = false;
7531 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7532 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7533 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7534 	else
7535 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7536 
7537 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7538 	if (!page) {
7539 		r = -ENOMEM;
7540 		goto fail;
7541 	}
7542 	vcpu->arch.pio_data = page_address(page);
7543 
7544 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7545 
7546 	r = kvm_mmu_create(vcpu);
7547 	if (r < 0)
7548 		goto fail_free_pio_data;
7549 
7550 	if (irqchip_in_kernel(kvm)) {
7551 		r = kvm_create_lapic(vcpu);
7552 		if (r < 0)
7553 			goto fail_mmu_destroy;
7554 	} else
7555 		static_key_slow_inc(&kvm_no_apic_vcpu);
7556 
7557 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7558 				       GFP_KERNEL);
7559 	if (!vcpu->arch.mce_banks) {
7560 		r = -ENOMEM;
7561 		goto fail_free_lapic;
7562 	}
7563 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7564 
7565 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7566 		r = -ENOMEM;
7567 		goto fail_free_mce_banks;
7568 	}
7569 
7570 	fx_init(vcpu);
7571 
7572 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7573 	vcpu->arch.pv_time_enabled = false;
7574 
7575 	vcpu->arch.guest_supported_xcr0 = 0;
7576 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7577 
7578 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7579 
7580 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7581 
7582 	kvm_async_pf_hash_reset(vcpu);
7583 	kvm_pmu_init(vcpu);
7584 
7585 	vcpu->arch.pending_external_vector = -1;
7586 
7587 	return 0;
7588 
7589 fail_free_mce_banks:
7590 	kfree(vcpu->arch.mce_banks);
7591 fail_free_lapic:
7592 	kvm_free_lapic(vcpu);
7593 fail_mmu_destroy:
7594 	kvm_mmu_destroy(vcpu);
7595 fail_free_pio_data:
7596 	free_page((unsigned long)vcpu->arch.pio_data);
7597 fail:
7598 	return r;
7599 }
7600 
7601 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7602 {
7603 	int idx;
7604 
7605 	kvm_pmu_destroy(vcpu);
7606 	kfree(vcpu->arch.mce_banks);
7607 	kvm_free_lapic(vcpu);
7608 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7609 	kvm_mmu_destroy(vcpu);
7610 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7611 	free_page((unsigned long)vcpu->arch.pio_data);
7612 	if (!lapic_in_kernel(vcpu))
7613 		static_key_slow_dec(&kvm_no_apic_vcpu);
7614 }
7615 
7616 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7617 {
7618 	kvm_x86_ops->sched_in(vcpu, cpu);
7619 }
7620 
7621 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7622 {
7623 	if (type)
7624 		return -EINVAL;
7625 
7626 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7627 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7628 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7629 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7630 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7631 
7632 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7633 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7634 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7635 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7636 		&kvm->arch.irq_sources_bitmap);
7637 
7638 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7639 	mutex_init(&kvm->arch.apic_map_lock);
7640 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7641 
7642 	pvclock_update_vm_gtod_copy(kvm);
7643 
7644 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7645 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7646 
7647 	return 0;
7648 }
7649 
7650 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7651 {
7652 	int r;
7653 	r = vcpu_load(vcpu);
7654 	BUG_ON(r);
7655 	kvm_mmu_unload(vcpu);
7656 	vcpu_put(vcpu);
7657 }
7658 
7659 static void kvm_free_vcpus(struct kvm *kvm)
7660 {
7661 	unsigned int i;
7662 	struct kvm_vcpu *vcpu;
7663 
7664 	/*
7665 	 * Unpin any mmu pages first.
7666 	 */
7667 	kvm_for_each_vcpu(i, vcpu, kvm) {
7668 		kvm_clear_async_pf_completion_queue(vcpu);
7669 		kvm_unload_vcpu_mmu(vcpu);
7670 	}
7671 	kvm_for_each_vcpu(i, vcpu, kvm)
7672 		kvm_arch_vcpu_free(vcpu);
7673 
7674 	mutex_lock(&kvm->lock);
7675 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7676 		kvm->vcpus[i] = NULL;
7677 
7678 	atomic_set(&kvm->online_vcpus, 0);
7679 	mutex_unlock(&kvm->lock);
7680 }
7681 
7682 void kvm_arch_sync_events(struct kvm *kvm)
7683 {
7684 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7685 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7686 	kvm_free_all_assigned_devices(kvm);
7687 	kvm_free_pit(kvm);
7688 }
7689 
7690 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7691 {
7692 	int i, r;
7693 	unsigned long hva;
7694 	struct kvm_memslots *slots = kvm_memslots(kvm);
7695 	struct kvm_memory_slot *slot, old;
7696 
7697 	/* Called with kvm->slots_lock held.  */
7698 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7699 		return -EINVAL;
7700 
7701 	slot = id_to_memslot(slots, id);
7702 	if (size) {
7703 		if (WARN_ON(slot->npages))
7704 			return -EEXIST;
7705 
7706 		/*
7707 		 * MAP_SHARED to prevent internal slot pages from being moved
7708 		 * by fork()/COW.
7709 		 */
7710 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7711 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7712 		if (IS_ERR((void *)hva))
7713 			return PTR_ERR((void *)hva);
7714 	} else {
7715 		if (!slot->npages)
7716 			return 0;
7717 
7718 		hva = 0;
7719 	}
7720 
7721 	old = *slot;
7722 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7723 		struct kvm_userspace_memory_region m;
7724 
7725 		m.slot = id | (i << 16);
7726 		m.flags = 0;
7727 		m.guest_phys_addr = gpa;
7728 		m.userspace_addr = hva;
7729 		m.memory_size = size;
7730 		r = __kvm_set_memory_region(kvm, &m);
7731 		if (r < 0)
7732 			return r;
7733 	}
7734 
7735 	if (!size) {
7736 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7737 		WARN_ON(r < 0);
7738 	}
7739 
7740 	return 0;
7741 }
7742 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7743 
7744 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7745 {
7746 	int r;
7747 
7748 	mutex_lock(&kvm->slots_lock);
7749 	r = __x86_set_memory_region(kvm, id, gpa, size);
7750 	mutex_unlock(&kvm->slots_lock);
7751 
7752 	return r;
7753 }
7754 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7755 
7756 void kvm_arch_destroy_vm(struct kvm *kvm)
7757 {
7758 	if (current->mm == kvm->mm) {
7759 		/*
7760 		 * Free memory regions allocated on behalf of userspace,
7761 		 * unless the the memory map has changed due to process exit
7762 		 * or fd copying.
7763 		 */
7764 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7765 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7766 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7767 	}
7768 	kvm_iommu_unmap_guest(kvm);
7769 	kfree(kvm->arch.vpic);
7770 	kfree(kvm->arch.vioapic);
7771 	kvm_free_vcpus(kvm);
7772 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7773 }
7774 
7775 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7776 			   struct kvm_memory_slot *dont)
7777 {
7778 	int i;
7779 
7780 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7781 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7782 			kvfree(free->arch.rmap[i]);
7783 			free->arch.rmap[i] = NULL;
7784 		}
7785 		if (i == 0)
7786 			continue;
7787 
7788 		if (!dont || free->arch.lpage_info[i - 1] !=
7789 			     dont->arch.lpage_info[i - 1]) {
7790 			kvfree(free->arch.lpage_info[i - 1]);
7791 			free->arch.lpage_info[i - 1] = NULL;
7792 		}
7793 	}
7794 }
7795 
7796 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7797 			    unsigned long npages)
7798 {
7799 	int i;
7800 
7801 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7802 		unsigned long ugfn;
7803 		int lpages;
7804 		int level = i + 1;
7805 
7806 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7807 				      slot->base_gfn, level) + 1;
7808 
7809 		slot->arch.rmap[i] =
7810 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7811 		if (!slot->arch.rmap[i])
7812 			goto out_free;
7813 		if (i == 0)
7814 			continue;
7815 
7816 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7817 					sizeof(*slot->arch.lpage_info[i - 1]));
7818 		if (!slot->arch.lpage_info[i - 1])
7819 			goto out_free;
7820 
7821 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7822 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7823 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7824 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7825 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7826 		/*
7827 		 * If the gfn and userspace address are not aligned wrt each
7828 		 * other, or if explicitly asked to, disable large page
7829 		 * support for this slot
7830 		 */
7831 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7832 		    !kvm_largepages_enabled()) {
7833 			unsigned long j;
7834 
7835 			for (j = 0; j < lpages; ++j)
7836 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7837 		}
7838 	}
7839 
7840 	return 0;
7841 
7842 out_free:
7843 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7844 		kvfree(slot->arch.rmap[i]);
7845 		slot->arch.rmap[i] = NULL;
7846 		if (i == 0)
7847 			continue;
7848 
7849 		kvfree(slot->arch.lpage_info[i - 1]);
7850 		slot->arch.lpage_info[i - 1] = NULL;
7851 	}
7852 	return -ENOMEM;
7853 }
7854 
7855 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7856 {
7857 	/*
7858 	 * memslots->generation has been incremented.
7859 	 * mmio generation may have reached its maximum value.
7860 	 */
7861 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7862 }
7863 
7864 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7865 				struct kvm_memory_slot *memslot,
7866 				const struct kvm_userspace_memory_region *mem,
7867 				enum kvm_mr_change change)
7868 {
7869 	return 0;
7870 }
7871 
7872 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7873 				     struct kvm_memory_slot *new)
7874 {
7875 	/* Still write protect RO slot */
7876 	if (new->flags & KVM_MEM_READONLY) {
7877 		kvm_mmu_slot_remove_write_access(kvm, new);
7878 		return;
7879 	}
7880 
7881 	/*
7882 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7883 	 *
7884 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7885 	 *
7886 	 *  - KVM_MR_CREATE with dirty logging is disabled
7887 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7888 	 *
7889 	 * The reason is, in case of PML, we need to set D-bit for any slots
7890 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7891 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7892 	 * guarantees leaving PML enabled during guest's lifetime won't have
7893 	 * any additonal overhead from PML when guest is running with dirty
7894 	 * logging disabled for memory slots.
7895 	 *
7896 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7897 	 * to dirty logging mode.
7898 	 *
7899 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7900 	 *
7901 	 * In case of write protect:
7902 	 *
7903 	 * Write protect all pages for dirty logging.
7904 	 *
7905 	 * All the sptes including the large sptes which point to this
7906 	 * slot are set to readonly. We can not create any new large
7907 	 * spte on this slot until the end of the logging.
7908 	 *
7909 	 * See the comments in fast_page_fault().
7910 	 */
7911 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7912 		if (kvm_x86_ops->slot_enable_log_dirty)
7913 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7914 		else
7915 			kvm_mmu_slot_remove_write_access(kvm, new);
7916 	} else {
7917 		if (kvm_x86_ops->slot_disable_log_dirty)
7918 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7919 	}
7920 }
7921 
7922 void kvm_arch_commit_memory_region(struct kvm *kvm,
7923 				const struct kvm_userspace_memory_region *mem,
7924 				const struct kvm_memory_slot *old,
7925 				const struct kvm_memory_slot *new,
7926 				enum kvm_mr_change change)
7927 {
7928 	int nr_mmu_pages = 0;
7929 
7930 	if (!kvm->arch.n_requested_mmu_pages)
7931 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7932 
7933 	if (nr_mmu_pages)
7934 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7935 
7936 	/*
7937 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7938 	 * sptes have to be split.  If live migration is successful, the guest
7939 	 * in the source machine will be destroyed and large sptes will be
7940 	 * created in the destination. However, if the guest continues to run
7941 	 * in the source machine (for example if live migration fails), small
7942 	 * sptes will remain around and cause bad performance.
7943 	 *
7944 	 * Scan sptes if dirty logging has been stopped, dropping those
7945 	 * which can be collapsed into a single large-page spte.  Later
7946 	 * page faults will create the large-page sptes.
7947 	 */
7948 	if ((change != KVM_MR_DELETE) &&
7949 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7950 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7951 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7952 
7953 	/*
7954 	 * Set up write protection and/or dirty logging for the new slot.
7955 	 *
7956 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7957 	 * been zapped so no dirty logging staff is needed for old slot. For
7958 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7959 	 * new and it's also covered when dealing with the new slot.
7960 	 *
7961 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
7962 	 */
7963 	if (change != KVM_MR_DELETE)
7964 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7965 }
7966 
7967 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7968 {
7969 	kvm_mmu_invalidate_zap_all_pages(kvm);
7970 }
7971 
7972 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7973 				   struct kvm_memory_slot *slot)
7974 {
7975 	kvm_mmu_invalidate_zap_all_pages(kvm);
7976 }
7977 
7978 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7979 {
7980 	if (!list_empty_careful(&vcpu->async_pf.done))
7981 		return true;
7982 
7983 	if (kvm_apic_has_events(vcpu))
7984 		return true;
7985 
7986 	if (vcpu->arch.pv.pv_unhalted)
7987 		return true;
7988 
7989 	if (atomic_read(&vcpu->arch.nmi_queued))
7990 		return true;
7991 
7992 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7993 		return true;
7994 
7995 	if (kvm_arch_interrupt_allowed(vcpu) &&
7996 	    kvm_cpu_has_interrupt(vcpu))
7997 		return true;
7998 
7999 	return false;
8000 }
8001 
8002 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8003 {
8004 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8005 		kvm_x86_ops->check_nested_events(vcpu, false);
8006 
8007 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8008 }
8009 
8010 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8011 {
8012 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8013 }
8014 
8015 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8016 {
8017 	return kvm_x86_ops->interrupt_allowed(vcpu);
8018 }
8019 
8020 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8021 {
8022 	if (is_64_bit_mode(vcpu))
8023 		return kvm_rip_read(vcpu);
8024 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8025 		     kvm_rip_read(vcpu));
8026 }
8027 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8028 
8029 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8030 {
8031 	return kvm_get_linear_rip(vcpu) == linear_rip;
8032 }
8033 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8034 
8035 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8036 {
8037 	unsigned long rflags;
8038 
8039 	rflags = kvm_x86_ops->get_rflags(vcpu);
8040 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8041 		rflags &= ~X86_EFLAGS_TF;
8042 	return rflags;
8043 }
8044 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8045 
8046 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8047 {
8048 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8049 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8050 		rflags |= X86_EFLAGS_TF;
8051 	kvm_x86_ops->set_rflags(vcpu, rflags);
8052 }
8053 
8054 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8055 {
8056 	__kvm_set_rflags(vcpu, rflags);
8057 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8058 }
8059 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8060 
8061 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8062 {
8063 	int r;
8064 
8065 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8066 	      work->wakeup_all)
8067 		return;
8068 
8069 	r = kvm_mmu_reload(vcpu);
8070 	if (unlikely(r))
8071 		return;
8072 
8073 	if (!vcpu->arch.mmu.direct_map &&
8074 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8075 		return;
8076 
8077 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8078 }
8079 
8080 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8081 {
8082 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8083 }
8084 
8085 static inline u32 kvm_async_pf_next_probe(u32 key)
8086 {
8087 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8088 }
8089 
8090 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8091 {
8092 	u32 key = kvm_async_pf_hash_fn(gfn);
8093 
8094 	while (vcpu->arch.apf.gfns[key] != ~0)
8095 		key = kvm_async_pf_next_probe(key);
8096 
8097 	vcpu->arch.apf.gfns[key] = gfn;
8098 }
8099 
8100 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8101 {
8102 	int i;
8103 	u32 key = kvm_async_pf_hash_fn(gfn);
8104 
8105 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8106 		     (vcpu->arch.apf.gfns[key] != gfn &&
8107 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8108 		key = kvm_async_pf_next_probe(key);
8109 
8110 	return key;
8111 }
8112 
8113 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8114 {
8115 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8116 }
8117 
8118 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8119 {
8120 	u32 i, j, k;
8121 
8122 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8123 	while (true) {
8124 		vcpu->arch.apf.gfns[i] = ~0;
8125 		do {
8126 			j = kvm_async_pf_next_probe(j);
8127 			if (vcpu->arch.apf.gfns[j] == ~0)
8128 				return;
8129 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8130 			/*
8131 			 * k lies cyclically in ]i,j]
8132 			 * |    i.k.j |
8133 			 * |....j i.k.| or  |.k..j i...|
8134 			 */
8135 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8136 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8137 		i = j;
8138 	}
8139 }
8140 
8141 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8142 {
8143 
8144 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8145 				      sizeof(val));
8146 }
8147 
8148 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8149 				     struct kvm_async_pf *work)
8150 {
8151 	struct x86_exception fault;
8152 
8153 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8154 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8155 
8156 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8157 	    (vcpu->arch.apf.send_user_only &&
8158 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8159 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8160 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8161 		fault.vector = PF_VECTOR;
8162 		fault.error_code_valid = true;
8163 		fault.error_code = 0;
8164 		fault.nested_page_fault = false;
8165 		fault.address = work->arch.token;
8166 		kvm_inject_page_fault(vcpu, &fault);
8167 	}
8168 }
8169 
8170 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8171 				 struct kvm_async_pf *work)
8172 {
8173 	struct x86_exception fault;
8174 
8175 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8176 	if (work->wakeup_all)
8177 		work->arch.token = ~0; /* broadcast wakeup */
8178 	else
8179 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8180 
8181 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8182 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8183 		fault.vector = PF_VECTOR;
8184 		fault.error_code_valid = true;
8185 		fault.error_code = 0;
8186 		fault.nested_page_fault = false;
8187 		fault.address = work->arch.token;
8188 		kvm_inject_page_fault(vcpu, &fault);
8189 	}
8190 	vcpu->arch.apf.halted = false;
8191 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8192 }
8193 
8194 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8195 {
8196 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8197 		return true;
8198 	else
8199 		return !kvm_event_needs_reinjection(vcpu) &&
8200 			kvm_x86_ops->interrupt_allowed(vcpu);
8201 }
8202 
8203 void kvm_arch_start_assignment(struct kvm *kvm)
8204 {
8205 	atomic_inc(&kvm->arch.assigned_device_count);
8206 }
8207 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8208 
8209 void kvm_arch_end_assignment(struct kvm *kvm)
8210 {
8211 	atomic_dec(&kvm->arch.assigned_device_count);
8212 }
8213 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8214 
8215 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8216 {
8217 	return atomic_read(&kvm->arch.assigned_device_count);
8218 }
8219 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8220 
8221 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8222 {
8223 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8224 }
8225 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8226 
8227 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8228 {
8229 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8230 }
8231 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8232 
8233 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8234 {
8235 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8236 }
8237 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8238 
8239 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8240 				      struct irq_bypass_producer *prod)
8241 {
8242 	struct kvm_kernel_irqfd *irqfd =
8243 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8244 
8245 	if (kvm_x86_ops->update_pi_irte) {
8246 		irqfd->producer = prod;
8247 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8248 				prod->irq, irqfd->gsi, 1);
8249 	}
8250 
8251 	return -EINVAL;
8252 }
8253 
8254 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8255 				      struct irq_bypass_producer *prod)
8256 {
8257 	int ret;
8258 	struct kvm_kernel_irqfd *irqfd =
8259 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8260 
8261 	if (!kvm_x86_ops->update_pi_irte) {
8262 		WARN_ON(irqfd->producer != NULL);
8263 		return;
8264 	}
8265 
8266 	WARN_ON(irqfd->producer != prod);
8267 	irqfd->producer = NULL;
8268 
8269 	/*
8270 	 * When producer of consumer is unregistered, we change back to
8271 	 * remapped mode, so we can re-use the current implementation
8272 	 * when the irq is masked/disabed or the consumer side (KVM
8273 	 * int this case doesn't want to receive the interrupts.
8274 	*/
8275 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8276 	if (ret)
8277 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8278 		       " fails: %d\n", irqfd->consumer.token, ret);
8279 }
8280 
8281 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8282 				   uint32_t guest_irq, bool set)
8283 {
8284 	if (!kvm_x86_ops->update_pi_irte)
8285 		return -EINVAL;
8286 
8287 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8288 }
8289 
8290 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8291 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8292 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8307