xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 9b1c2ecf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86 
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89 
90 struct kvm_caps kvm_caps __read_mostly = {
91 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94 
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96 
97 #define emul_to_vcpu(ctxt) \
98 	((struct kvm_vcpu *)(ctxt)->vcpu)
99 
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110 
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112 
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114 
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116 
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119 
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133 
134 #define KVM_X86_OP(func)					     \
135 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
136 				*(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142 
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145 
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149 
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155 
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159 
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168 
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171 
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175 
176 static bool __read_mostly force_emulation_prefix = false;
177 module_param(force_emulation_prefix, bool, S_IRUGO);
178 
179 int __read_mostly pi_inject_timer = -1;
180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
181 
182 /* Enable/disable PMU virtualization */
183 bool __read_mostly enable_pmu = true;
184 EXPORT_SYMBOL_GPL(enable_pmu);
185 module_param(enable_pmu, bool, 0444);
186 
187 bool __read_mostly eager_page_split = true;
188 module_param(eager_page_split, bool, 0644);
189 
190 /*
191  * Restoring the host value for MSRs that are only consumed when running in
192  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
193  * returns to userspace, i.e. the kernel can run with the guest's value.
194  */
195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
196 
197 struct kvm_user_return_msrs {
198 	struct user_return_notifier urn;
199 	bool registered;
200 	struct kvm_user_return_msr_values {
201 		u64 host;
202 		u64 curr;
203 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
204 };
205 
206 u32 __read_mostly kvm_nr_uret_msrs;
207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
210 
211 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
212 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
213 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
214 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
215 
216 u64 __read_mostly host_efer;
217 EXPORT_SYMBOL_GPL(host_efer);
218 
219 bool __read_mostly allow_smaller_maxphyaddr = 0;
220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
221 
222 bool __read_mostly enable_apicv = true;
223 EXPORT_SYMBOL_GPL(enable_apicv);
224 
225 u64 __read_mostly host_xss;
226 EXPORT_SYMBOL_GPL(host_xss);
227 
228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
229 	KVM_GENERIC_VM_STATS(),
230 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
231 	STATS_DESC_COUNTER(VM, mmu_pte_write),
232 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
233 	STATS_DESC_COUNTER(VM, mmu_flooded),
234 	STATS_DESC_COUNTER(VM, mmu_recycled),
235 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
236 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
237 	STATS_DESC_ICOUNTER(VM, pages_4k),
238 	STATS_DESC_ICOUNTER(VM, pages_2m),
239 	STATS_DESC_ICOUNTER(VM, pages_1g),
240 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
241 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
242 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
243 };
244 
245 const struct kvm_stats_header kvm_vm_stats_header = {
246 	.name_size = KVM_STATS_NAME_SIZE,
247 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
248 	.id_offset = sizeof(struct kvm_stats_header),
249 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
250 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
251 		       sizeof(kvm_vm_stats_desc),
252 };
253 
254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
255 	KVM_GENERIC_VCPU_STATS(),
256 	STATS_DESC_COUNTER(VCPU, pf_taken),
257 	STATS_DESC_COUNTER(VCPU, pf_fixed),
258 	STATS_DESC_COUNTER(VCPU, pf_emulate),
259 	STATS_DESC_COUNTER(VCPU, pf_spurious),
260 	STATS_DESC_COUNTER(VCPU, pf_fast),
261 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
262 	STATS_DESC_COUNTER(VCPU, pf_guest),
263 	STATS_DESC_COUNTER(VCPU, tlb_flush),
264 	STATS_DESC_COUNTER(VCPU, invlpg),
265 	STATS_DESC_COUNTER(VCPU, exits),
266 	STATS_DESC_COUNTER(VCPU, io_exits),
267 	STATS_DESC_COUNTER(VCPU, mmio_exits),
268 	STATS_DESC_COUNTER(VCPU, signal_exits),
269 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
270 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
271 	STATS_DESC_COUNTER(VCPU, l1d_flush),
272 	STATS_DESC_COUNTER(VCPU, halt_exits),
273 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
274 	STATS_DESC_COUNTER(VCPU, irq_exits),
275 	STATS_DESC_COUNTER(VCPU, host_state_reload),
276 	STATS_DESC_COUNTER(VCPU, fpu_reload),
277 	STATS_DESC_COUNTER(VCPU, insn_emulation),
278 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
279 	STATS_DESC_COUNTER(VCPU, hypercalls),
280 	STATS_DESC_COUNTER(VCPU, irq_injections),
281 	STATS_DESC_COUNTER(VCPU, nmi_injections),
282 	STATS_DESC_COUNTER(VCPU, req_event),
283 	STATS_DESC_COUNTER(VCPU, nested_run),
284 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
285 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
286 	STATS_DESC_COUNTER(VCPU, preemption_reported),
287 	STATS_DESC_COUNTER(VCPU, preemption_other),
288 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
289 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
290 };
291 
292 const struct kvm_stats_header kvm_vcpu_stats_header = {
293 	.name_size = KVM_STATS_NAME_SIZE,
294 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
295 	.id_offset = sizeof(struct kvm_stats_header),
296 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
297 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
298 		       sizeof(kvm_vcpu_stats_desc),
299 };
300 
301 u64 __read_mostly host_xcr0;
302 
303 static struct kmem_cache *x86_emulator_cache;
304 
305 /*
306  * When called, it means the previous get/set msr reached an invalid msr.
307  * Return true if we want to ignore/silent this failed msr access.
308  */
309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
310 {
311 	const char *op = write ? "wrmsr" : "rdmsr";
312 
313 	if (ignore_msrs) {
314 		if (report_ignored_msrs)
315 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
316 				      op, msr, data);
317 		/* Mask the error */
318 		return true;
319 	} else {
320 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
321 				      op, msr, data);
322 		return false;
323 	}
324 }
325 
326 static struct kmem_cache *kvm_alloc_emulator_cache(void)
327 {
328 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
329 	unsigned int size = sizeof(struct x86_emulate_ctxt);
330 
331 	return kmem_cache_create_usercopy("x86_emulator", size,
332 					  __alignof__(struct x86_emulate_ctxt),
333 					  SLAB_ACCOUNT, useroffset,
334 					  size - useroffset, NULL);
335 }
336 
337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
338 
339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
340 {
341 	int i;
342 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
343 		vcpu->arch.apf.gfns[i] = ~0;
344 }
345 
346 static void kvm_on_user_return(struct user_return_notifier *urn)
347 {
348 	unsigned slot;
349 	struct kvm_user_return_msrs *msrs
350 		= container_of(urn, struct kvm_user_return_msrs, urn);
351 	struct kvm_user_return_msr_values *values;
352 	unsigned long flags;
353 
354 	/*
355 	 * Disabling irqs at this point since the following code could be
356 	 * interrupted and executed through kvm_arch_hardware_disable()
357 	 */
358 	local_irq_save(flags);
359 	if (msrs->registered) {
360 		msrs->registered = false;
361 		user_return_notifier_unregister(urn);
362 	}
363 	local_irq_restore(flags);
364 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
365 		values = &msrs->values[slot];
366 		if (values->host != values->curr) {
367 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
368 			values->curr = values->host;
369 		}
370 	}
371 }
372 
373 static int kvm_probe_user_return_msr(u32 msr)
374 {
375 	u64 val;
376 	int ret;
377 
378 	preempt_disable();
379 	ret = rdmsrl_safe(msr, &val);
380 	if (ret)
381 		goto out;
382 	ret = wrmsrl_safe(msr, val);
383 out:
384 	preempt_enable();
385 	return ret;
386 }
387 
388 int kvm_add_user_return_msr(u32 msr)
389 {
390 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
391 
392 	if (kvm_probe_user_return_msr(msr))
393 		return -1;
394 
395 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
396 	return kvm_nr_uret_msrs++;
397 }
398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
399 
400 int kvm_find_user_return_msr(u32 msr)
401 {
402 	int i;
403 
404 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
405 		if (kvm_uret_msrs_list[i] == msr)
406 			return i;
407 	}
408 	return -1;
409 }
410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
411 
412 static void kvm_user_return_msr_cpu_online(void)
413 {
414 	unsigned int cpu = smp_processor_id();
415 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
416 	u64 value;
417 	int i;
418 
419 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
420 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
421 		msrs->values[i].host = value;
422 		msrs->values[i].curr = value;
423 	}
424 }
425 
426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
427 {
428 	unsigned int cpu = smp_processor_id();
429 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 	int err;
431 
432 	value = (value & mask) | (msrs->values[slot].host & ~mask);
433 	if (value == msrs->values[slot].curr)
434 		return 0;
435 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
436 	if (err)
437 		return 1;
438 
439 	msrs->values[slot].curr = value;
440 	if (!msrs->registered) {
441 		msrs->urn.on_user_return = kvm_on_user_return;
442 		user_return_notifier_register(&msrs->urn);
443 		msrs->registered = true;
444 	}
445 	return 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
448 
449 static void drop_user_return_notifiers(void)
450 {
451 	unsigned int cpu = smp_processor_id();
452 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
453 
454 	if (msrs->registered)
455 		kvm_on_user_return(&msrs->urn);
456 }
457 
458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
459 {
460 	return vcpu->arch.apic_base;
461 }
462 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
463 
464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
465 {
466 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
467 }
468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
469 
470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
471 {
472 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
473 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
474 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
475 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
476 
477 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
478 		return 1;
479 	if (!msr_info->host_initiated) {
480 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
481 			return 1;
482 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
483 			return 1;
484 	}
485 
486 	kvm_lapic_set_base(vcpu, msr_info->data);
487 	kvm_recalculate_apic_map(vcpu->kvm);
488 	return 0;
489 }
490 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
491 
492 /*
493  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
494  *
495  * Hardware virtualization extension instructions may fault if a reboot turns
496  * off virtualization while processes are running.  Usually after catching the
497  * fault we just panic; during reboot instead the instruction is ignored.
498  */
499 noinstr void kvm_spurious_fault(void)
500 {
501 	/* Fault while not rebooting.  We want the trace. */
502 	BUG_ON(!kvm_rebooting);
503 }
504 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
505 
506 #define EXCPT_BENIGN		0
507 #define EXCPT_CONTRIBUTORY	1
508 #define EXCPT_PF		2
509 
510 static int exception_class(int vector)
511 {
512 	switch (vector) {
513 	case PF_VECTOR:
514 		return EXCPT_PF;
515 	case DE_VECTOR:
516 	case TS_VECTOR:
517 	case NP_VECTOR:
518 	case SS_VECTOR:
519 	case GP_VECTOR:
520 		return EXCPT_CONTRIBUTORY;
521 	default:
522 		break;
523 	}
524 	return EXCPT_BENIGN;
525 }
526 
527 #define EXCPT_FAULT		0
528 #define EXCPT_TRAP		1
529 #define EXCPT_ABORT		2
530 #define EXCPT_INTERRUPT		3
531 
532 static int exception_type(int vector)
533 {
534 	unsigned int mask;
535 
536 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
537 		return EXCPT_INTERRUPT;
538 
539 	mask = 1 << vector;
540 
541 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
542 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
543 		return EXCPT_TRAP;
544 
545 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
546 		return EXCPT_ABORT;
547 
548 	/* Reserved exceptions will result in fault */
549 	return EXCPT_FAULT;
550 }
551 
552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
553 {
554 	unsigned nr = vcpu->arch.exception.nr;
555 	bool has_payload = vcpu->arch.exception.has_payload;
556 	unsigned long payload = vcpu->arch.exception.payload;
557 
558 	if (!has_payload)
559 		return;
560 
561 	switch (nr) {
562 	case DB_VECTOR:
563 		/*
564 		 * "Certain debug exceptions may clear bit 0-3.  The
565 		 * remaining contents of the DR6 register are never
566 		 * cleared by the processor".
567 		 */
568 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
569 		/*
570 		 * In order to reflect the #DB exception payload in guest
571 		 * dr6, three components need to be considered: active low
572 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
573 		 * DR6_BS and DR6_BT)
574 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
575 		 * In the target guest dr6:
576 		 * FIXED_1 bits should always be set.
577 		 * Active low bits should be cleared if 1-setting in payload.
578 		 * Active high bits should be set if 1-setting in payload.
579 		 *
580 		 * Note, the payload is compatible with the pending debug
581 		 * exceptions/exit qualification under VMX, that active_low bits
582 		 * are active high in payload.
583 		 * So they need to be flipped for DR6.
584 		 */
585 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
586 		vcpu->arch.dr6 |= payload;
587 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
588 
589 		/*
590 		 * The #DB payload is defined as compatible with the 'pending
591 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
592 		 * defined in the 'pending debug exceptions' field (enabled
593 		 * breakpoint), it is reserved and must be zero in DR6.
594 		 */
595 		vcpu->arch.dr6 &= ~BIT(12);
596 		break;
597 	case PF_VECTOR:
598 		vcpu->arch.cr2 = payload;
599 		break;
600 	}
601 
602 	vcpu->arch.exception.has_payload = false;
603 	vcpu->arch.exception.payload = 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
606 
607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
608 		unsigned nr, bool has_error, u32 error_code,
609 	        bool has_payload, unsigned long payload, bool reinject)
610 {
611 	u32 prev_nr;
612 	int class1, class2;
613 
614 	kvm_make_request(KVM_REQ_EVENT, vcpu);
615 
616 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
617 	queue:
618 		if (reinject) {
619 			/*
620 			 * On vmentry, vcpu->arch.exception.pending is only
621 			 * true if an event injection was blocked by
622 			 * nested_run_pending.  In that case, however,
623 			 * vcpu_enter_guest requests an immediate exit,
624 			 * and the guest shouldn't proceed far enough to
625 			 * need reinjection.
626 			 */
627 			WARN_ON_ONCE(vcpu->arch.exception.pending);
628 			vcpu->arch.exception.injected = true;
629 			if (WARN_ON_ONCE(has_payload)) {
630 				/*
631 				 * A reinjected event has already
632 				 * delivered its payload.
633 				 */
634 				has_payload = false;
635 				payload = 0;
636 			}
637 		} else {
638 			vcpu->arch.exception.pending = true;
639 			vcpu->arch.exception.injected = false;
640 		}
641 		vcpu->arch.exception.has_error_code = has_error;
642 		vcpu->arch.exception.nr = nr;
643 		vcpu->arch.exception.error_code = error_code;
644 		vcpu->arch.exception.has_payload = has_payload;
645 		vcpu->arch.exception.payload = payload;
646 		if (!is_guest_mode(vcpu))
647 			kvm_deliver_exception_payload(vcpu);
648 		return;
649 	}
650 
651 	/* to check exception */
652 	prev_nr = vcpu->arch.exception.nr;
653 	if (prev_nr == DF_VECTOR) {
654 		/* triple fault -> shutdown */
655 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
656 		return;
657 	}
658 	class1 = exception_class(prev_nr);
659 	class2 = exception_class(nr);
660 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
661 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
662 		/*
663 		 * Generate double fault per SDM Table 5-5.  Set
664 		 * exception.pending = true so that the double fault
665 		 * can trigger a nested vmexit.
666 		 */
667 		vcpu->arch.exception.pending = true;
668 		vcpu->arch.exception.injected = false;
669 		vcpu->arch.exception.has_error_code = true;
670 		vcpu->arch.exception.nr = DF_VECTOR;
671 		vcpu->arch.exception.error_code = 0;
672 		vcpu->arch.exception.has_payload = false;
673 		vcpu->arch.exception.payload = 0;
674 	} else
675 		/* replace previous exception with a new one in a hope
676 		   that instruction re-execution will regenerate lost
677 		   exception */
678 		goto queue;
679 }
680 
681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
682 {
683 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
684 }
685 EXPORT_SYMBOL_GPL(kvm_queue_exception);
686 
687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
688 {
689 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
690 }
691 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
692 
693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
694 			   unsigned long payload)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
699 
700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
701 				    u32 error_code, unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, true, error_code,
704 			       true, payload, false);
705 }
706 
707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
708 {
709 	if (err)
710 		kvm_inject_gp(vcpu, 0);
711 	else
712 		return kvm_skip_emulated_instruction(vcpu);
713 
714 	return 1;
715 }
716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
717 
718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
719 {
720 	if (err) {
721 		kvm_inject_gp(vcpu, 0);
722 		return 1;
723 	}
724 
725 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
726 				       EMULTYPE_COMPLETE_USER_EXIT);
727 }
728 
729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
730 {
731 	++vcpu->stat.pf_guest;
732 	vcpu->arch.exception.nested_apf =
733 		is_guest_mode(vcpu) && fault->async_page_fault;
734 	if (vcpu->arch.exception.nested_apf) {
735 		vcpu->arch.apf.nested_apf_token = fault->address;
736 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
737 	} else {
738 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
739 					fault->address);
740 	}
741 }
742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
743 
744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
746 				    struct x86_exception *fault)
747 {
748 	struct kvm_mmu *fault_mmu;
749 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
750 
751 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
752 					       vcpu->arch.walk_mmu;
753 
754 	/*
755 	 * Invalidate the TLB entry for the faulting address, if it exists,
756 	 * else the access will fault indefinitely (and to emulate hardware).
757 	 */
758 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
759 	    !(fault->error_code & PFERR_RSVD_MASK))
760 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
761 				       fault_mmu->root.hpa);
762 
763 	/*
764 	 * A workaround for KVM's bad exception handling.  If KVM injected an
765 	 * exception into L2, and L2 encountered a #PF while vectoring the
766 	 * injected exception, manually check to see if L1 wants to intercept
767 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
768 	 * In all other cases, defer the check to nested_ops->check_events(),
769 	 * which will correctly handle priority (this does not).  Note, other
770 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
771 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
772 	 * shadow paging.
773 	 *
774 	 * TODO: Rewrite exception handling to track injected and pending
775 	 *       (VM-Exit) exceptions separately.
776 	 */
777 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
778 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
779 		return true;
780 
781 	fault_mmu->inject_page_fault(vcpu, fault);
782 	return false;
783 }
784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
785 
786 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
787 {
788 	atomic_inc(&vcpu->arch.nmi_queued);
789 	kvm_make_request(KVM_REQ_NMI, vcpu);
790 }
791 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
792 
793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
794 {
795 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
796 }
797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
798 
799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
800 {
801 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
802 }
803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
804 
805 /*
806  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
807  * a #GP and return false.
808  */
809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
810 {
811 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
812 		return true;
813 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
814 	return false;
815 }
816 EXPORT_SYMBOL_GPL(kvm_require_cpl);
817 
818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
819 {
820 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
821 		return true;
822 
823 	kvm_queue_exception(vcpu, UD_VECTOR);
824 	return false;
825 }
826 EXPORT_SYMBOL_GPL(kvm_require_dr);
827 
828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
829 {
830 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
831 }
832 
833 /*
834  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
835  */
836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
837 {
838 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
839 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
840 	gpa_t real_gpa;
841 	int i;
842 	int ret;
843 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
844 
845 	/*
846 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
847 	 * to an L1 GPA.
848 	 */
849 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
850 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
851 	if (real_gpa == INVALID_GPA)
852 		return 0;
853 
854 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
855 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
856 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
857 	if (ret < 0)
858 		return 0;
859 
860 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
861 		if ((pdpte[i] & PT_PRESENT_MASK) &&
862 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
863 			return 0;
864 		}
865 	}
866 
867 	/*
868 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
869 	 * Shadow page roots need to be reconstructed instead.
870 	 */
871 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
872 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
873 
874 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
875 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
876 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
877 	vcpu->arch.pdptrs_from_userspace = false;
878 
879 	return 1;
880 }
881 EXPORT_SYMBOL_GPL(load_pdptrs);
882 
883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
884 {
885 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
886 		kvm_clear_async_pf_completion_queue(vcpu);
887 		kvm_async_pf_hash_reset(vcpu);
888 
889 		/*
890 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
891 		 * perspective.
892 		 */
893 		if (!(cr0 & X86_CR0_PG))
894 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
895 	}
896 
897 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
898 		kvm_mmu_reset_context(vcpu);
899 
900 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
901 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
902 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
903 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
904 }
905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
906 
907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
908 {
909 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
910 
911 	cr0 |= X86_CR0_ET;
912 
913 #ifdef CONFIG_X86_64
914 	if (cr0 & 0xffffffff00000000UL)
915 		return 1;
916 #endif
917 
918 	cr0 &= ~CR0_RESERVED_BITS;
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return 1;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return 1;
925 
926 #ifdef CONFIG_X86_64
927 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
928 	    (cr0 & X86_CR0_PG)) {
929 		int cs_db, cs_l;
930 
931 		if (!is_pae(vcpu))
932 			return 1;
933 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
934 		if (cs_l)
935 			return 1;
936 	}
937 #endif
938 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
939 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
940 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
941 		return 1;
942 
943 	if (!(cr0 & X86_CR0_PG) &&
944 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
945 		return 1;
946 
947 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
948 
949 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_cr0);
954 
955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
956 {
957 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
958 }
959 EXPORT_SYMBOL_GPL(kvm_lmsw);
960 
961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
962 {
963 	if (vcpu->arch.guest_state_protected)
964 		return;
965 
966 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
967 
968 		if (vcpu->arch.xcr0 != host_xcr0)
969 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
970 
971 		if (vcpu->arch.xsaves_enabled &&
972 		    vcpu->arch.ia32_xss != host_xss)
973 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
974 	}
975 
976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
977 	if (static_cpu_has(X86_FEATURE_PKU) &&
978 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
979 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
980 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
981 		write_pkru(vcpu->arch.pkru);
982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
983 }
984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
985 
986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
987 {
988 	if (vcpu->arch.guest_state_protected)
989 		return;
990 
991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
992 	if (static_cpu_has(X86_FEATURE_PKU) &&
993 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
995 		vcpu->arch.pkru = rdpkru();
996 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
997 			write_pkru(vcpu->arch.host_pkru);
998 	}
999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1000 
1001 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1002 
1003 		if (vcpu->arch.xcr0 != host_xcr0)
1004 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1005 
1006 		if (vcpu->arch.xsaves_enabled &&
1007 		    vcpu->arch.ia32_xss != host_xss)
1008 			wrmsrl(MSR_IA32_XSS, host_xss);
1009 	}
1010 
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1013 
1014 #ifdef CONFIG_X86_64
1015 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1016 {
1017 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1018 }
1019 #endif
1020 
1021 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1022 {
1023 	u64 xcr0 = xcr;
1024 	u64 old_xcr0 = vcpu->arch.xcr0;
1025 	u64 valid_bits;
1026 
1027 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1028 	if (index != XCR_XFEATURE_ENABLED_MASK)
1029 		return 1;
1030 	if (!(xcr0 & XFEATURE_MASK_FP))
1031 		return 1;
1032 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1033 		return 1;
1034 
1035 	/*
1036 	 * Do not allow the guest to set bits that we do not support
1037 	 * saving.  However, xcr0 bit 0 is always set, even if the
1038 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1039 	 */
1040 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1041 	if (xcr0 & ~valid_bits)
1042 		return 1;
1043 
1044 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1045 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1046 		return 1;
1047 
1048 	if (xcr0 & XFEATURE_MASK_AVX512) {
1049 		if (!(xcr0 & XFEATURE_MASK_YMM))
1050 			return 1;
1051 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1052 			return 1;
1053 	}
1054 
1055 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1056 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1057 		return 1;
1058 
1059 	vcpu->arch.xcr0 = xcr0;
1060 
1061 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1062 		kvm_update_cpuid_runtime(vcpu);
1063 	return 0;
1064 }
1065 
1066 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1067 {
1068 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1069 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1070 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1071 		kvm_inject_gp(vcpu, 0);
1072 		return 1;
1073 	}
1074 
1075 	return kvm_skip_emulated_instruction(vcpu);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1078 
1079 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1080 {
1081 	if (cr4 & cr4_reserved_bits)
1082 		return false;
1083 
1084 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1085 		return false;
1086 
1087 	return true;
1088 }
1089 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1090 
1091 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1092 {
1093 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1094 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1095 }
1096 
1097 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1098 {
1099 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1100 		kvm_mmu_reset_context(vcpu);
1101 
1102 	/*
1103 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1104 	 * according to the SDM; however, stale prev_roots could be reused
1105 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1106 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1107 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1108 	 * so fall through.
1109 	 */
1110 	if (!tdp_enabled &&
1111 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1112 		kvm_mmu_unload(vcpu);
1113 
1114 	/*
1115 	 * The TLB has to be flushed for all PCIDs if any of the following
1116 	 * (architecturally required) changes happen:
1117 	 * - CR4.PCIDE is changed from 1 to 0
1118 	 * - CR4.PGE is toggled
1119 	 *
1120 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1121 	 */
1122 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1123 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1124 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1125 
1126 	/*
1127 	 * The TLB has to be flushed for the current PCID if any of the
1128 	 * following (architecturally required) changes happen:
1129 	 * - CR4.SMEP is changed from 0 to 1
1130 	 * - CR4.PAE is toggled
1131 	 */
1132 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1133 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1134 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1135 
1136 }
1137 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1138 
1139 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1140 {
1141 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1142 
1143 	if (!kvm_is_valid_cr4(vcpu, cr4))
1144 		return 1;
1145 
1146 	if (is_long_mode(vcpu)) {
1147 		if (!(cr4 & X86_CR4_PAE))
1148 			return 1;
1149 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1150 			return 1;
1151 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1152 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1153 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1154 		return 1;
1155 
1156 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1157 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1158 			return 1;
1159 
1160 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1161 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1162 			return 1;
1163 	}
1164 
1165 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1166 
1167 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1168 
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1172 
1173 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1174 {
1175 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1176 	unsigned long roots_to_free = 0;
1177 	int i;
1178 
1179 	/*
1180 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1181 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1182 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1183 	 * the invalidation, but the guest's TLB entries need to be flushed as
1184 	 * the CPU may have cached entries in its TLB for the target PCID.
1185 	 */
1186 	if (unlikely(tdp_enabled)) {
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1188 		return;
1189 	}
1190 
1191 	/*
1192 	 * If neither the current CR3 nor any of the prev_roots use the given
1193 	 * PCID, then nothing needs to be done here because a resync will
1194 	 * happen anyway before switching to any other CR3.
1195 	 */
1196 	if (kvm_get_active_pcid(vcpu) == pcid) {
1197 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1198 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1199 	}
1200 
1201 	/*
1202 	 * If PCID is disabled, there is no need to free prev_roots even if the
1203 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1204 	 * with PCIDE=0.
1205 	 */
1206 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1207 		return;
1208 
1209 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1210 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1211 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1212 
1213 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1214 }
1215 
1216 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1217 {
1218 	bool skip_tlb_flush = false;
1219 	unsigned long pcid = 0;
1220 #ifdef CONFIG_X86_64
1221 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1222 
1223 	if (pcid_enabled) {
1224 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1225 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1226 		pcid = cr3 & X86_CR3_PCID_MASK;
1227 	}
1228 #endif
1229 
1230 	/* PDPTRs are always reloaded for PAE paging. */
1231 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1232 		goto handle_tlb_flush;
1233 
1234 	/*
1235 	 * Do not condition the GPA check on long mode, this helper is used to
1236 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1237 	 * the current vCPU mode is accurate.
1238 	 */
1239 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1240 		return 1;
1241 
1242 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1243 		return 1;
1244 
1245 	if (cr3 != kvm_read_cr3(vcpu))
1246 		kvm_mmu_new_pgd(vcpu, cr3);
1247 
1248 	vcpu->arch.cr3 = cr3;
1249 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1250 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1251 
1252 handle_tlb_flush:
1253 	/*
1254 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1255 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1256 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1257 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1258 	 * i.e. only PCID=0 can be relevant.
1259 	 */
1260 	if (!skip_tlb_flush)
1261 		kvm_invalidate_pcid(vcpu, pcid);
1262 
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1266 
1267 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1268 {
1269 	if (cr8 & CR8_RESERVED_BITS)
1270 		return 1;
1271 	if (lapic_in_kernel(vcpu))
1272 		kvm_lapic_set_tpr(vcpu, cr8);
1273 	else
1274 		vcpu->arch.cr8 = cr8;
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1278 
1279 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1280 {
1281 	if (lapic_in_kernel(vcpu))
1282 		return kvm_lapic_get_cr8(vcpu);
1283 	else
1284 		return vcpu->arch.cr8;
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1287 
1288 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1289 {
1290 	int i;
1291 
1292 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1293 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1294 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1295 	}
1296 }
1297 
1298 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1299 {
1300 	unsigned long dr7;
1301 
1302 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1303 		dr7 = vcpu->arch.guest_debug_dr7;
1304 	else
1305 		dr7 = vcpu->arch.dr7;
1306 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1307 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1308 	if (dr7 & DR7_BP_EN_MASK)
1309 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1312 
1313 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1314 {
1315 	u64 fixed = DR6_FIXED_1;
1316 
1317 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1318 		fixed |= DR6_RTM;
1319 
1320 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1321 		fixed |= DR6_BUS_LOCK;
1322 	return fixed;
1323 }
1324 
1325 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1326 {
1327 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1328 
1329 	switch (dr) {
1330 	case 0 ... 3:
1331 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1332 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1333 			vcpu->arch.eff_db[dr] = val;
1334 		break;
1335 	case 4:
1336 	case 6:
1337 		if (!kvm_dr6_valid(val))
1338 			return 1; /* #GP */
1339 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1340 		break;
1341 	case 5:
1342 	default: /* 7 */
1343 		if (!kvm_dr7_valid(val))
1344 			return 1; /* #GP */
1345 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1346 		kvm_update_dr7(vcpu);
1347 		break;
1348 	}
1349 
1350 	return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(kvm_set_dr);
1353 
1354 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1355 {
1356 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1357 
1358 	switch (dr) {
1359 	case 0 ... 3:
1360 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1361 		break;
1362 	case 4:
1363 	case 6:
1364 		*val = vcpu->arch.dr6;
1365 		break;
1366 	case 5:
1367 	default: /* 7 */
1368 		*val = vcpu->arch.dr7;
1369 		break;
1370 	}
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_get_dr);
1373 
1374 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1375 {
1376 	u32 ecx = kvm_rcx_read(vcpu);
1377 	u64 data;
1378 
1379 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1380 		kvm_inject_gp(vcpu, 0);
1381 		return 1;
1382 	}
1383 
1384 	kvm_rax_write(vcpu, (u32)data);
1385 	kvm_rdx_write(vcpu, data >> 32);
1386 	return kvm_skip_emulated_instruction(vcpu);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1389 
1390 /*
1391  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1392  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1393  *
1394  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1395  * extract the supported MSRs from the related const lists.
1396  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1397  * capabilities of the host cpu. This capabilities test skips MSRs that are
1398  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1399  * may depend on host virtualization features rather than host cpu features.
1400  */
1401 
1402 static const u32 msrs_to_save_all[] = {
1403 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1404 	MSR_STAR,
1405 #ifdef CONFIG_X86_64
1406 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1407 #endif
1408 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1409 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1410 	MSR_IA32_SPEC_CTRL,
1411 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1412 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1413 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1414 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1415 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1416 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1417 	MSR_IA32_UMWAIT_CONTROL,
1418 
1419 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1420 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1421 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1422 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1423 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1424 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1425 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1426 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1427 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1428 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1429 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1430 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1431 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1432 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1433 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1434 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1435 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1436 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1437 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1438 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1439 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1440 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1441 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1442 
1443 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1444 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1445 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1446 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1447 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1448 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1449 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1450 };
1451 
1452 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1453 static unsigned num_msrs_to_save;
1454 
1455 static const u32 emulated_msrs_all[] = {
1456 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1457 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1458 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1459 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1460 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1461 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1462 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1463 	HV_X64_MSR_RESET,
1464 	HV_X64_MSR_VP_INDEX,
1465 	HV_X64_MSR_VP_RUNTIME,
1466 	HV_X64_MSR_SCONTROL,
1467 	HV_X64_MSR_STIMER0_CONFIG,
1468 	HV_X64_MSR_VP_ASSIST_PAGE,
1469 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1470 	HV_X64_MSR_TSC_EMULATION_STATUS,
1471 	HV_X64_MSR_SYNDBG_OPTIONS,
1472 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1473 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1474 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1475 
1476 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1477 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1478 
1479 	MSR_IA32_TSC_ADJUST,
1480 	MSR_IA32_TSC_DEADLINE,
1481 	MSR_IA32_ARCH_CAPABILITIES,
1482 	MSR_IA32_PERF_CAPABILITIES,
1483 	MSR_IA32_MISC_ENABLE,
1484 	MSR_IA32_MCG_STATUS,
1485 	MSR_IA32_MCG_CTL,
1486 	MSR_IA32_MCG_EXT_CTL,
1487 	MSR_IA32_SMBASE,
1488 	MSR_SMI_COUNT,
1489 	MSR_PLATFORM_INFO,
1490 	MSR_MISC_FEATURES_ENABLES,
1491 	MSR_AMD64_VIRT_SPEC_CTRL,
1492 	MSR_AMD64_TSC_RATIO,
1493 	MSR_IA32_POWER_CTL,
1494 	MSR_IA32_UCODE_REV,
1495 
1496 	/*
1497 	 * The following list leaves out MSRs whose values are determined
1498 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1499 	 * We always support the "true" VMX control MSRs, even if the host
1500 	 * processor does not, so I am putting these registers here rather
1501 	 * than in msrs_to_save_all.
1502 	 */
1503 	MSR_IA32_VMX_BASIC,
1504 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1505 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1506 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1507 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1508 	MSR_IA32_VMX_MISC,
1509 	MSR_IA32_VMX_CR0_FIXED0,
1510 	MSR_IA32_VMX_CR4_FIXED0,
1511 	MSR_IA32_VMX_VMCS_ENUM,
1512 	MSR_IA32_VMX_PROCBASED_CTLS2,
1513 	MSR_IA32_VMX_EPT_VPID_CAP,
1514 	MSR_IA32_VMX_VMFUNC,
1515 
1516 	MSR_K7_HWCR,
1517 	MSR_KVM_POLL_CONTROL,
1518 };
1519 
1520 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1521 static unsigned num_emulated_msrs;
1522 
1523 /*
1524  * List of msr numbers which are used to expose MSR-based features that
1525  * can be used by a hypervisor to validate requested CPU features.
1526  */
1527 static const u32 msr_based_features_all[] = {
1528 	MSR_IA32_VMX_BASIC,
1529 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1530 	MSR_IA32_VMX_PINBASED_CTLS,
1531 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1532 	MSR_IA32_VMX_PROCBASED_CTLS,
1533 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1534 	MSR_IA32_VMX_EXIT_CTLS,
1535 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1536 	MSR_IA32_VMX_ENTRY_CTLS,
1537 	MSR_IA32_VMX_MISC,
1538 	MSR_IA32_VMX_CR0_FIXED0,
1539 	MSR_IA32_VMX_CR0_FIXED1,
1540 	MSR_IA32_VMX_CR4_FIXED0,
1541 	MSR_IA32_VMX_CR4_FIXED1,
1542 	MSR_IA32_VMX_VMCS_ENUM,
1543 	MSR_IA32_VMX_PROCBASED_CTLS2,
1544 	MSR_IA32_VMX_EPT_VPID_CAP,
1545 	MSR_IA32_VMX_VMFUNC,
1546 
1547 	MSR_F10H_DECFG,
1548 	MSR_IA32_UCODE_REV,
1549 	MSR_IA32_ARCH_CAPABILITIES,
1550 	MSR_IA32_PERF_CAPABILITIES,
1551 };
1552 
1553 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1554 static unsigned int num_msr_based_features;
1555 
1556 /*
1557  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1558  * does not yet virtualize. These include:
1559  *   10 - MISC_PACKAGE_CTRLS
1560  *   11 - ENERGY_FILTERING_CTL
1561  *   12 - DOITM
1562  *   18 - FB_CLEAR_CTRL
1563  *   21 - XAPIC_DISABLE_STATUS
1564  *   23 - OVERCLOCKING_STATUS
1565  */
1566 
1567 #define KVM_SUPPORTED_ARCH_CAP \
1568 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1569 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1570 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1571 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1572 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1573 
1574 static u64 kvm_get_arch_capabilities(void)
1575 {
1576 	u64 data = 0;
1577 
1578 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1579 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1580 		data &= KVM_SUPPORTED_ARCH_CAP;
1581 	}
1582 
1583 	/*
1584 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1585 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1586 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1587 	 * L1 guests, so it need not worry about its own (L2) guests.
1588 	 */
1589 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1590 
1591 	/*
1592 	 * If we're doing cache flushes (either "always" or "cond")
1593 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1594 	 * If an outer hypervisor is doing the cache flush for us
1595 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1596 	 * capability to the guest too, and if EPT is disabled we're not
1597 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1598 	 * require a nested hypervisor to do a flush of its own.
1599 	 */
1600 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1601 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1602 
1603 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1604 		data |= ARCH_CAP_RDCL_NO;
1605 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1606 		data |= ARCH_CAP_SSB_NO;
1607 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1608 		data |= ARCH_CAP_MDS_NO;
1609 
1610 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1611 		/*
1612 		 * If RTM=0 because the kernel has disabled TSX, the host might
1613 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1614 		 * and therefore knows that there cannot be TAA) but keep
1615 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1616 		 * and we want to allow migrating those guests to tsx=off hosts.
1617 		 */
1618 		data &= ~ARCH_CAP_TAA_NO;
1619 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1620 		data |= ARCH_CAP_TAA_NO;
1621 	} else {
1622 		/*
1623 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1624 		 * host so the guest can choose between disabling TSX or
1625 		 * using VERW to clear CPU buffers.
1626 		 */
1627 	}
1628 
1629 	return data;
1630 }
1631 
1632 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1633 {
1634 	switch (msr->index) {
1635 	case MSR_IA32_ARCH_CAPABILITIES:
1636 		msr->data = kvm_get_arch_capabilities();
1637 		break;
1638 	case MSR_IA32_UCODE_REV:
1639 		rdmsrl_safe(msr->index, &msr->data);
1640 		break;
1641 	default:
1642 		return static_call(kvm_x86_get_msr_feature)(msr);
1643 	}
1644 	return 0;
1645 }
1646 
1647 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1648 {
1649 	struct kvm_msr_entry msr;
1650 	int r;
1651 
1652 	msr.index = index;
1653 	r = kvm_get_msr_feature(&msr);
1654 
1655 	if (r == KVM_MSR_RET_INVALID) {
1656 		/* Unconditionally clear the output for simplicity */
1657 		*data = 0;
1658 		if (kvm_msr_ignored_check(index, 0, false))
1659 			r = 0;
1660 	}
1661 
1662 	if (r)
1663 		return r;
1664 
1665 	*data = msr.data;
1666 
1667 	return 0;
1668 }
1669 
1670 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1671 {
1672 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1673 		return false;
1674 
1675 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1676 		return false;
1677 
1678 	if (efer & (EFER_LME | EFER_LMA) &&
1679 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1680 		return false;
1681 
1682 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1683 		return false;
1684 
1685 	return true;
1686 
1687 }
1688 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690 	if (efer & efer_reserved_bits)
1691 		return false;
1692 
1693 	return __kvm_valid_efer(vcpu, efer);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1696 
1697 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1698 {
1699 	u64 old_efer = vcpu->arch.efer;
1700 	u64 efer = msr_info->data;
1701 	int r;
1702 
1703 	if (efer & efer_reserved_bits)
1704 		return 1;
1705 
1706 	if (!msr_info->host_initiated) {
1707 		if (!__kvm_valid_efer(vcpu, efer))
1708 			return 1;
1709 
1710 		if (is_paging(vcpu) &&
1711 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1712 			return 1;
1713 	}
1714 
1715 	efer &= ~EFER_LMA;
1716 	efer |= vcpu->arch.efer & EFER_LMA;
1717 
1718 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1719 	if (r) {
1720 		WARN_ON(r > 0);
1721 		return r;
1722 	}
1723 
1724 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1725 		kvm_mmu_reset_context(vcpu);
1726 
1727 	return 0;
1728 }
1729 
1730 void kvm_enable_efer_bits(u64 mask)
1731 {
1732        efer_reserved_bits &= ~mask;
1733 }
1734 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1735 
1736 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1737 {
1738 	struct kvm_x86_msr_filter *msr_filter;
1739 	struct msr_bitmap_range *ranges;
1740 	struct kvm *kvm = vcpu->kvm;
1741 	bool allowed;
1742 	int idx;
1743 	u32 i;
1744 
1745 	/* x2APIC MSRs do not support filtering. */
1746 	if (index >= 0x800 && index <= 0x8ff)
1747 		return true;
1748 
1749 	idx = srcu_read_lock(&kvm->srcu);
1750 
1751 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1752 	if (!msr_filter) {
1753 		allowed = true;
1754 		goto out;
1755 	}
1756 
1757 	allowed = msr_filter->default_allow;
1758 	ranges = msr_filter->ranges;
1759 
1760 	for (i = 0; i < msr_filter->count; i++) {
1761 		u32 start = ranges[i].base;
1762 		u32 end = start + ranges[i].nmsrs;
1763 		u32 flags = ranges[i].flags;
1764 		unsigned long *bitmap = ranges[i].bitmap;
1765 
1766 		if ((index >= start) && (index < end) && (flags & type)) {
1767 			allowed = !!test_bit(index - start, bitmap);
1768 			break;
1769 		}
1770 	}
1771 
1772 out:
1773 	srcu_read_unlock(&kvm->srcu, idx);
1774 
1775 	return allowed;
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1778 
1779 /*
1780  * Write @data into the MSR specified by @index.  Select MSR specific fault
1781  * checks are bypassed if @host_initiated is %true.
1782  * Returns 0 on success, non-0 otherwise.
1783  * Assumes vcpu_load() was already called.
1784  */
1785 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1786 			 bool host_initiated)
1787 {
1788 	struct msr_data msr;
1789 
1790 	switch (index) {
1791 	case MSR_FS_BASE:
1792 	case MSR_GS_BASE:
1793 	case MSR_KERNEL_GS_BASE:
1794 	case MSR_CSTAR:
1795 	case MSR_LSTAR:
1796 		if (is_noncanonical_address(data, vcpu))
1797 			return 1;
1798 		break;
1799 	case MSR_IA32_SYSENTER_EIP:
1800 	case MSR_IA32_SYSENTER_ESP:
1801 		/*
1802 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1803 		 * non-canonical address is written on Intel but not on
1804 		 * AMD (which ignores the top 32-bits, because it does
1805 		 * not implement 64-bit SYSENTER).
1806 		 *
1807 		 * 64-bit code should hence be able to write a non-canonical
1808 		 * value on AMD.  Making the address canonical ensures that
1809 		 * vmentry does not fail on Intel after writing a non-canonical
1810 		 * value, and that something deterministic happens if the guest
1811 		 * invokes 64-bit SYSENTER.
1812 		 */
1813 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1814 		break;
1815 	case MSR_TSC_AUX:
1816 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1817 			return 1;
1818 
1819 		if (!host_initiated &&
1820 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1821 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1822 			return 1;
1823 
1824 		/*
1825 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1826 		 * incomplete and conflicting architectural behavior.  Current
1827 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1828 		 * reserved and always read as zeros.  Enforce Intel's reserved
1829 		 * bits check if and only if the guest CPU is Intel, and clear
1830 		 * the bits in all other cases.  This ensures cross-vendor
1831 		 * migration will provide consistent behavior for the guest.
1832 		 */
1833 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1834 			return 1;
1835 
1836 		data = (u32)data;
1837 		break;
1838 	}
1839 
1840 	msr.data = data;
1841 	msr.index = index;
1842 	msr.host_initiated = host_initiated;
1843 
1844 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1845 }
1846 
1847 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1848 				     u32 index, u64 data, bool host_initiated)
1849 {
1850 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1851 
1852 	if (ret == KVM_MSR_RET_INVALID)
1853 		if (kvm_msr_ignored_check(index, data, true))
1854 			ret = 0;
1855 
1856 	return ret;
1857 }
1858 
1859 /*
1860  * Read the MSR specified by @index into @data.  Select MSR specific fault
1861  * checks are bypassed if @host_initiated is %true.
1862  * Returns 0 on success, non-0 otherwise.
1863  * Assumes vcpu_load() was already called.
1864  */
1865 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1866 		  bool host_initiated)
1867 {
1868 	struct msr_data msr;
1869 	int ret;
1870 
1871 	switch (index) {
1872 	case MSR_TSC_AUX:
1873 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 			return 1;
1875 
1876 		if (!host_initiated &&
1877 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1878 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1879 			return 1;
1880 		break;
1881 	}
1882 
1883 	msr.index = index;
1884 	msr.host_initiated = host_initiated;
1885 
1886 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1887 	if (!ret)
1888 		*data = msr.data;
1889 	return ret;
1890 }
1891 
1892 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1893 				     u32 index, u64 *data, bool host_initiated)
1894 {
1895 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1896 
1897 	if (ret == KVM_MSR_RET_INVALID) {
1898 		/* Unconditionally clear *data for simplicity */
1899 		*data = 0;
1900 		if (kvm_msr_ignored_check(index, 0, false))
1901 			ret = 0;
1902 	}
1903 
1904 	return ret;
1905 }
1906 
1907 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1908 {
1909 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1910 		return KVM_MSR_RET_FILTERED;
1911 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1912 }
1913 
1914 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1915 {
1916 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1917 		return KVM_MSR_RET_FILTERED;
1918 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1919 }
1920 
1921 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1922 {
1923 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_get_msr);
1926 
1927 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1928 {
1929 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_set_msr);
1932 
1933 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1934 {
1935 	if (!vcpu->run->msr.error) {
1936 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1937 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1938 	}
1939 }
1940 
1941 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1942 {
1943 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1944 }
1945 
1946 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1947 {
1948 	complete_userspace_rdmsr(vcpu);
1949 	return complete_emulated_msr_access(vcpu);
1950 }
1951 
1952 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1953 {
1954 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1955 }
1956 
1957 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1958 {
1959 	complete_userspace_rdmsr(vcpu);
1960 	return complete_fast_msr_access(vcpu);
1961 }
1962 
1963 static u64 kvm_msr_reason(int r)
1964 {
1965 	switch (r) {
1966 	case KVM_MSR_RET_INVALID:
1967 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1968 	case KVM_MSR_RET_FILTERED:
1969 		return KVM_MSR_EXIT_REASON_FILTER;
1970 	default:
1971 		return KVM_MSR_EXIT_REASON_INVAL;
1972 	}
1973 }
1974 
1975 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1976 			      u32 exit_reason, u64 data,
1977 			      int (*completion)(struct kvm_vcpu *vcpu),
1978 			      int r)
1979 {
1980 	u64 msr_reason = kvm_msr_reason(r);
1981 
1982 	/* Check if the user wanted to know about this MSR fault */
1983 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1984 		return 0;
1985 
1986 	vcpu->run->exit_reason = exit_reason;
1987 	vcpu->run->msr.error = 0;
1988 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1989 	vcpu->run->msr.reason = msr_reason;
1990 	vcpu->run->msr.index = index;
1991 	vcpu->run->msr.data = data;
1992 	vcpu->arch.complete_userspace_io = completion;
1993 
1994 	return 1;
1995 }
1996 
1997 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1998 {
1999 	u32 ecx = kvm_rcx_read(vcpu);
2000 	u64 data;
2001 	int r;
2002 
2003 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2004 
2005 	if (!r) {
2006 		trace_kvm_msr_read(ecx, data);
2007 
2008 		kvm_rax_write(vcpu, data & -1u);
2009 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2010 	} else {
2011 		/* MSR read failed? See if we should ask user space */
2012 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2013 				       complete_fast_rdmsr, r))
2014 			return 0;
2015 		trace_kvm_msr_read_ex(ecx);
2016 	}
2017 
2018 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2021 
2022 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2023 {
2024 	u32 ecx = kvm_rcx_read(vcpu);
2025 	u64 data = kvm_read_edx_eax(vcpu);
2026 	int r;
2027 
2028 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2029 
2030 	if (!r) {
2031 		trace_kvm_msr_write(ecx, data);
2032 	} else {
2033 		/* MSR write failed? See if we should ask user space */
2034 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2035 				       complete_fast_msr_access, r))
2036 			return 0;
2037 		/* Signal all other negative errors to userspace */
2038 		if (r < 0)
2039 			return r;
2040 		trace_kvm_msr_write_ex(ecx, data);
2041 	}
2042 
2043 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2046 
2047 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2048 {
2049 	return kvm_skip_emulated_instruction(vcpu);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2052 
2053 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2054 {
2055 	/* Treat an INVD instruction as a NOP and just skip it. */
2056 	return kvm_emulate_as_nop(vcpu);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2059 
2060 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2061 {
2062 	kvm_queue_exception(vcpu, UD_VECTOR);
2063 	return 1;
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2066 
2067 
2068 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2069 {
2070 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2071 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2072 		return kvm_handle_invalid_op(vcpu);
2073 
2074 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2075 	return kvm_emulate_as_nop(vcpu);
2076 }
2077 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2078 {
2079 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2082 
2083 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2084 {
2085 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2086 }
2087 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2088 
2089 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2090 {
2091 	xfer_to_guest_mode_prepare();
2092 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2093 		xfer_to_guest_mode_work_pending();
2094 }
2095 
2096 /*
2097  * The fast path for frequent and performance sensitive wrmsr emulation,
2098  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2099  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2100  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2101  * other cases which must be called after interrupts are enabled on the host.
2102  */
2103 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2104 {
2105 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2106 		return 1;
2107 
2108 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2109 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2110 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2111 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2112 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2113 
2114 	return 1;
2115 }
2116 
2117 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2118 {
2119 	if (!kvm_can_use_hv_timer(vcpu))
2120 		return 1;
2121 
2122 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2123 	return 0;
2124 }
2125 
2126 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2127 {
2128 	u32 msr = kvm_rcx_read(vcpu);
2129 	u64 data;
2130 	fastpath_t ret = EXIT_FASTPATH_NONE;
2131 
2132 	switch (msr) {
2133 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2134 		data = kvm_read_edx_eax(vcpu);
2135 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2136 			kvm_skip_emulated_instruction(vcpu);
2137 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2138 		}
2139 		break;
2140 	case MSR_IA32_TSC_DEADLINE:
2141 		data = kvm_read_edx_eax(vcpu);
2142 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2143 			kvm_skip_emulated_instruction(vcpu);
2144 			ret = EXIT_FASTPATH_REENTER_GUEST;
2145 		}
2146 		break;
2147 	default:
2148 		break;
2149 	}
2150 
2151 	if (ret != EXIT_FASTPATH_NONE)
2152 		trace_kvm_msr_write(msr, data);
2153 
2154 	return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2157 
2158 /*
2159  * Adapt set_msr() to msr_io()'s calling convention
2160  */
2161 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2162 {
2163 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2164 }
2165 
2166 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2167 {
2168 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2169 }
2170 
2171 #ifdef CONFIG_X86_64
2172 struct pvclock_clock {
2173 	int vclock_mode;
2174 	u64 cycle_last;
2175 	u64 mask;
2176 	u32 mult;
2177 	u32 shift;
2178 	u64 base_cycles;
2179 	u64 offset;
2180 };
2181 
2182 struct pvclock_gtod_data {
2183 	seqcount_t	seq;
2184 
2185 	struct pvclock_clock clock; /* extract of a clocksource struct */
2186 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2187 
2188 	ktime_t		offs_boot;
2189 	u64		wall_time_sec;
2190 };
2191 
2192 static struct pvclock_gtod_data pvclock_gtod_data;
2193 
2194 static void update_pvclock_gtod(struct timekeeper *tk)
2195 {
2196 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2197 
2198 	write_seqcount_begin(&vdata->seq);
2199 
2200 	/* copy pvclock gtod data */
2201 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2202 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2203 	vdata->clock.mask		= tk->tkr_mono.mask;
2204 	vdata->clock.mult		= tk->tkr_mono.mult;
2205 	vdata->clock.shift		= tk->tkr_mono.shift;
2206 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2207 	vdata->clock.offset		= tk->tkr_mono.base;
2208 
2209 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2210 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2211 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2212 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2213 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2214 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2215 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2216 
2217 	vdata->wall_time_sec            = tk->xtime_sec;
2218 
2219 	vdata->offs_boot		= tk->offs_boot;
2220 
2221 	write_seqcount_end(&vdata->seq);
2222 }
2223 
2224 static s64 get_kvmclock_base_ns(void)
2225 {
2226 	/* Count up from boot time, but with the frequency of the raw clock.  */
2227 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2228 }
2229 #else
2230 static s64 get_kvmclock_base_ns(void)
2231 {
2232 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2233 	return ktime_get_boottime_ns();
2234 }
2235 #endif
2236 
2237 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2238 {
2239 	int version;
2240 	int r;
2241 	struct pvclock_wall_clock wc;
2242 	u32 wc_sec_hi;
2243 	u64 wall_nsec;
2244 
2245 	if (!wall_clock)
2246 		return;
2247 
2248 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2249 	if (r)
2250 		return;
2251 
2252 	if (version & 1)
2253 		++version;  /* first time write, random junk */
2254 
2255 	++version;
2256 
2257 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2258 		return;
2259 
2260 	/*
2261 	 * The guest calculates current wall clock time by adding
2262 	 * system time (updated by kvm_guest_time_update below) to the
2263 	 * wall clock specified here.  We do the reverse here.
2264 	 */
2265 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2266 
2267 	wc.nsec = do_div(wall_nsec, 1000000000);
2268 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2269 	wc.version = version;
2270 
2271 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2272 
2273 	if (sec_hi_ofs) {
2274 		wc_sec_hi = wall_nsec >> 32;
2275 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2276 				&wc_sec_hi, sizeof(wc_sec_hi));
2277 	}
2278 
2279 	version++;
2280 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2281 }
2282 
2283 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2284 				  bool old_msr, bool host_initiated)
2285 {
2286 	struct kvm_arch *ka = &vcpu->kvm->arch;
2287 
2288 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2289 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2290 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2291 
2292 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2293 	}
2294 
2295 	vcpu->arch.time = system_time;
2296 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2297 
2298 	/* we verify if the enable bit is set... */
2299 	if (system_time & 1) {
2300 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2301 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2302 					  sizeof(struct pvclock_vcpu_time_info));
2303 	} else {
2304 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2305 	}
2306 
2307 	return;
2308 }
2309 
2310 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2311 {
2312 	do_shl32_div32(dividend, divisor);
2313 	return dividend;
2314 }
2315 
2316 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2317 			       s8 *pshift, u32 *pmultiplier)
2318 {
2319 	uint64_t scaled64;
2320 	int32_t  shift = 0;
2321 	uint64_t tps64;
2322 	uint32_t tps32;
2323 
2324 	tps64 = base_hz;
2325 	scaled64 = scaled_hz;
2326 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2327 		tps64 >>= 1;
2328 		shift--;
2329 	}
2330 
2331 	tps32 = (uint32_t)tps64;
2332 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2333 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2334 			scaled64 >>= 1;
2335 		else
2336 			tps32 <<= 1;
2337 		shift++;
2338 	}
2339 
2340 	*pshift = shift;
2341 	*pmultiplier = div_frac(scaled64, tps32);
2342 }
2343 
2344 #ifdef CONFIG_X86_64
2345 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2346 #endif
2347 
2348 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2349 static unsigned long max_tsc_khz;
2350 
2351 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2352 {
2353 	u64 v = (u64)khz * (1000000 + ppm);
2354 	do_div(v, 1000000);
2355 	return v;
2356 }
2357 
2358 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2359 
2360 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2361 {
2362 	u64 ratio;
2363 
2364 	/* Guest TSC same frequency as host TSC? */
2365 	if (!scale) {
2366 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2367 		return 0;
2368 	}
2369 
2370 	/* TSC scaling supported? */
2371 	if (!kvm_caps.has_tsc_control) {
2372 		if (user_tsc_khz > tsc_khz) {
2373 			vcpu->arch.tsc_catchup = 1;
2374 			vcpu->arch.tsc_always_catchup = 1;
2375 			return 0;
2376 		} else {
2377 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2378 			return -1;
2379 		}
2380 	}
2381 
2382 	/* TSC scaling required  - calculate ratio */
2383 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2384 				user_tsc_khz, tsc_khz);
2385 
2386 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2387 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2388 			            user_tsc_khz);
2389 		return -1;
2390 	}
2391 
2392 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2393 	return 0;
2394 }
2395 
2396 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2397 {
2398 	u32 thresh_lo, thresh_hi;
2399 	int use_scaling = 0;
2400 
2401 	/* tsc_khz can be zero if TSC calibration fails */
2402 	if (user_tsc_khz == 0) {
2403 		/* set tsc_scaling_ratio to a safe value */
2404 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2405 		return -1;
2406 	}
2407 
2408 	/* Compute a scale to convert nanoseconds in TSC cycles */
2409 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2410 			   &vcpu->arch.virtual_tsc_shift,
2411 			   &vcpu->arch.virtual_tsc_mult);
2412 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2413 
2414 	/*
2415 	 * Compute the variation in TSC rate which is acceptable
2416 	 * within the range of tolerance and decide if the
2417 	 * rate being applied is within that bounds of the hardware
2418 	 * rate.  If so, no scaling or compensation need be done.
2419 	 */
2420 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2421 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2422 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2423 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2424 		use_scaling = 1;
2425 	}
2426 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2427 }
2428 
2429 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2430 {
2431 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2432 				      vcpu->arch.virtual_tsc_mult,
2433 				      vcpu->arch.virtual_tsc_shift);
2434 	tsc += vcpu->arch.this_tsc_write;
2435 	return tsc;
2436 }
2437 
2438 #ifdef CONFIG_X86_64
2439 static inline int gtod_is_based_on_tsc(int mode)
2440 {
2441 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2442 }
2443 #endif
2444 
2445 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2446 {
2447 #ifdef CONFIG_X86_64
2448 	bool vcpus_matched;
2449 	struct kvm_arch *ka = &vcpu->kvm->arch;
2450 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2451 
2452 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2453 			 atomic_read(&vcpu->kvm->online_vcpus));
2454 
2455 	/*
2456 	 * Once the masterclock is enabled, always perform request in
2457 	 * order to update it.
2458 	 *
2459 	 * In order to enable masterclock, the host clocksource must be TSC
2460 	 * and the vcpus need to have matched TSCs.  When that happens,
2461 	 * perform request to enable masterclock.
2462 	 */
2463 	if (ka->use_master_clock ||
2464 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2465 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2466 
2467 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2468 			    atomic_read(&vcpu->kvm->online_vcpus),
2469 		            ka->use_master_clock, gtod->clock.vclock_mode);
2470 #endif
2471 }
2472 
2473 /*
2474  * Multiply tsc by a fixed point number represented by ratio.
2475  *
2476  * The most significant 64-N bits (mult) of ratio represent the
2477  * integral part of the fixed point number; the remaining N bits
2478  * (frac) represent the fractional part, ie. ratio represents a fixed
2479  * point number (mult + frac * 2^(-N)).
2480  *
2481  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2482  */
2483 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2484 {
2485 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2486 }
2487 
2488 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2489 {
2490 	u64 _tsc = tsc;
2491 
2492 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2493 		_tsc = __scale_tsc(ratio, tsc);
2494 
2495 	return _tsc;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2498 
2499 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2500 {
2501 	u64 tsc;
2502 
2503 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2504 
2505 	return target_tsc - tsc;
2506 }
2507 
2508 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2509 {
2510 	return vcpu->arch.l1_tsc_offset +
2511 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2512 }
2513 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2514 
2515 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2516 {
2517 	u64 nested_offset;
2518 
2519 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2520 		nested_offset = l1_offset;
2521 	else
2522 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2523 						kvm_caps.tsc_scaling_ratio_frac_bits);
2524 
2525 	nested_offset += l2_offset;
2526 	return nested_offset;
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2529 
2530 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2531 {
2532 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2533 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2534 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2535 
2536 	return l1_multiplier;
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2539 
2540 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2541 {
2542 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2543 				   vcpu->arch.l1_tsc_offset,
2544 				   l1_offset);
2545 
2546 	vcpu->arch.l1_tsc_offset = l1_offset;
2547 
2548 	/*
2549 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2550 	 * according to the spec this should set L1's TSC (as opposed to
2551 	 * setting L1's offset for L2).
2552 	 */
2553 	if (is_guest_mode(vcpu))
2554 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2555 			l1_offset,
2556 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2557 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2558 	else
2559 		vcpu->arch.tsc_offset = l1_offset;
2560 
2561 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2562 }
2563 
2564 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2565 {
2566 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2567 
2568 	/* Userspace is changing the multiplier while L2 is active */
2569 	if (is_guest_mode(vcpu))
2570 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2571 			l1_multiplier,
2572 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2573 	else
2574 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2575 
2576 	if (kvm_caps.has_tsc_control)
2577 		static_call(kvm_x86_write_tsc_multiplier)(
2578 			vcpu, vcpu->arch.tsc_scaling_ratio);
2579 }
2580 
2581 static inline bool kvm_check_tsc_unstable(void)
2582 {
2583 #ifdef CONFIG_X86_64
2584 	/*
2585 	 * TSC is marked unstable when we're running on Hyper-V,
2586 	 * 'TSC page' clocksource is good.
2587 	 */
2588 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2589 		return false;
2590 #endif
2591 	return check_tsc_unstable();
2592 }
2593 
2594 /*
2595  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2596  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2597  * participates in.
2598  */
2599 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2600 				  u64 ns, bool matched)
2601 {
2602 	struct kvm *kvm = vcpu->kvm;
2603 
2604 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2605 
2606 	/*
2607 	 * We also track th most recent recorded KHZ, write and time to
2608 	 * allow the matching interval to be extended at each write.
2609 	 */
2610 	kvm->arch.last_tsc_nsec = ns;
2611 	kvm->arch.last_tsc_write = tsc;
2612 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2613 	kvm->arch.last_tsc_offset = offset;
2614 
2615 	vcpu->arch.last_guest_tsc = tsc;
2616 
2617 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2618 
2619 	if (!matched) {
2620 		/*
2621 		 * We split periods of matched TSC writes into generations.
2622 		 * For each generation, we track the original measured
2623 		 * nanosecond time, offset, and write, so if TSCs are in
2624 		 * sync, we can match exact offset, and if not, we can match
2625 		 * exact software computation in compute_guest_tsc()
2626 		 *
2627 		 * These values are tracked in kvm->arch.cur_xxx variables.
2628 		 */
2629 		kvm->arch.cur_tsc_generation++;
2630 		kvm->arch.cur_tsc_nsec = ns;
2631 		kvm->arch.cur_tsc_write = tsc;
2632 		kvm->arch.cur_tsc_offset = offset;
2633 		kvm->arch.nr_vcpus_matched_tsc = 0;
2634 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2635 		kvm->arch.nr_vcpus_matched_tsc++;
2636 	}
2637 
2638 	/* Keep track of which generation this VCPU has synchronized to */
2639 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2640 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2641 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2642 
2643 	kvm_track_tsc_matching(vcpu);
2644 }
2645 
2646 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2647 {
2648 	struct kvm *kvm = vcpu->kvm;
2649 	u64 offset, ns, elapsed;
2650 	unsigned long flags;
2651 	bool matched = false;
2652 	bool synchronizing = false;
2653 
2654 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2655 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2656 	ns = get_kvmclock_base_ns();
2657 	elapsed = ns - kvm->arch.last_tsc_nsec;
2658 
2659 	if (vcpu->arch.virtual_tsc_khz) {
2660 		if (data == 0) {
2661 			/*
2662 			 * detection of vcpu initialization -- need to sync
2663 			 * with other vCPUs. This particularly helps to keep
2664 			 * kvm_clock stable after CPU hotplug
2665 			 */
2666 			synchronizing = true;
2667 		} else {
2668 			u64 tsc_exp = kvm->arch.last_tsc_write +
2669 						nsec_to_cycles(vcpu, elapsed);
2670 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2671 			/*
2672 			 * Special case: TSC write with a small delta (1 second)
2673 			 * of virtual cycle time against real time is
2674 			 * interpreted as an attempt to synchronize the CPU.
2675 			 */
2676 			synchronizing = data < tsc_exp + tsc_hz &&
2677 					data + tsc_hz > tsc_exp;
2678 		}
2679 	}
2680 
2681 	/*
2682 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2683 	 * TSC, we add elapsed time in this computation.  We could let the
2684 	 * compensation code attempt to catch up if we fall behind, but
2685 	 * it's better to try to match offsets from the beginning.
2686          */
2687 	if (synchronizing &&
2688 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2689 		if (!kvm_check_tsc_unstable()) {
2690 			offset = kvm->arch.cur_tsc_offset;
2691 		} else {
2692 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2693 			data += delta;
2694 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2695 		}
2696 		matched = true;
2697 	}
2698 
2699 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2700 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2701 }
2702 
2703 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2704 					   s64 adjustment)
2705 {
2706 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2707 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2708 }
2709 
2710 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2711 {
2712 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2713 		WARN_ON(adjustment < 0);
2714 	adjustment = kvm_scale_tsc((u64) adjustment,
2715 				   vcpu->arch.l1_tsc_scaling_ratio);
2716 	adjust_tsc_offset_guest(vcpu, adjustment);
2717 }
2718 
2719 #ifdef CONFIG_X86_64
2720 
2721 static u64 read_tsc(void)
2722 {
2723 	u64 ret = (u64)rdtsc_ordered();
2724 	u64 last = pvclock_gtod_data.clock.cycle_last;
2725 
2726 	if (likely(ret >= last))
2727 		return ret;
2728 
2729 	/*
2730 	 * GCC likes to generate cmov here, but this branch is extremely
2731 	 * predictable (it's just a function of time and the likely is
2732 	 * very likely) and there's a data dependence, so force GCC
2733 	 * to generate a branch instead.  I don't barrier() because
2734 	 * we don't actually need a barrier, and if this function
2735 	 * ever gets inlined it will generate worse code.
2736 	 */
2737 	asm volatile ("");
2738 	return last;
2739 }
2740 
2741 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2742 			  int *mode)
2743 {
2744 	long v;
2745 	u64 tsc_pg_val;
2746 
2747 	switch (clock->vclock_mode) {
2748 	case VDSO_CLOCKMODE_HVCLOCK:
2749 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2750 						  tsc_timestamp);
2751 		if (tsc_pg_val != U64_MAX) {
2752 			/* TSC page valid */
2753 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2754 			v = (tsc_pg_val - clock->cycle_last) &
2755 				clock->mask;
2756 		} else {
2757 			/* TSC page invalid */
2758 			*mode = VDSO_CLOCKMODE_NONE;
2759 		}
2760 		break;
2761 	case VDSO_CLOCKMODE_TSC:
2762 		*mode = VDSO_CLOCKMODE_TSC;
2763 		*tsc_timestamp = read_tsc();
2764 		v = (*tsc_timestamp - clock->cycle_last) &
2765 			clock->mask;
2766 		break;
2767 	default:
2768 		*mode = VDSO_CLOCKMODE_NONE;
2769 	}
2770 
2771 	if (*mode == VDSO_CLOCKMODE_NONE)
2772 		*tsc_timestamp = v = 0;
2773 
2774 	return v * clock->mult;
2775 }
2776 
2777 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2778 {
2779 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2780 	unsigned long seq;
2781 	int mode;
2782 	u64 ns;
2783 
2784 	do {
2785 		seq = read_seqcount_begin(&gtod->seq);
2786 		ns = gtod->raw_clock.base_cycles;
2787 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2788 		ns >>= gtod->raw_clock.shift;
2789 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2790 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2791 	*t = ns;
2792 
2793 	return mode;
2794 }
2795 
2796 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2797 {
2798 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2799 	unsigned long seq;
2800 	int mode;
2801 	u64 ns;
2802 
2803 	do {
2804 		seq = read_seqcount_begin(&gtod->seq);
2805 		ts->tv_sec = gtod->wall_time_sec;
2806 		ns = gtod->clock.base_cycles;
2807 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2808 		ns >>= gtod->clock.shift;
2809 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2810 
2811 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2812 	ts->tv_nsec = ns;
2813 
2814 	return mode;
2815 }
2816 
2817 /* returns true if host is using TSC based clocksource */
2818 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2819 {
2820 	/* checked again under seqlock below */
2821 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2822 		return false;
2823 
2824 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2825 						      tsc_timestamp));
2826 }
2827 
2828 /* returns true if host is using TSC based clocksource */
2829 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2830 					   u64 *tsc_timestamp)
2831 {
2832 	/* checked again under seqlock below */
2833 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2834 		return false;
2835 
2836 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2837 }
2838 #endif
2839 
2840 /*
2841  *
2842  * Assuming a stable TSC across physical CPUS, and a stable TSC
2843  * across virtual CPUs, the following condition is possible.
2844  * Each numbered line represents an event visible to both
2845  * CPUs at the next numbered event.
2846  *
2847  * "timespecX" represents host monotonic time. "tscX" represents
2848  * RDTSC value.
2849  *
2850  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2851  *
2852  * 1.  read timespec0,tsc0
2853  * 2.					| timespec1 = timespec0 + N
2854  * 					| tsc1 = tsc0 + M
2855  * 3. transition to guest		| transition to guest
2856  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2857  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2858  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2859  *
2860  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2861  *
2862  * 	- ret0 < ret1
2863  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2864  *		...
2865  *	- 0 < N - M => M < N
2866  *
2867  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2868  * always the case (the difference between two distinct xtime instances
2869  * might be smaller then the difference between corresponding TSC reads,
2870  * when updating guest vcpus pvclock areas).
2871  *
2872  * To avoid that problem, do not allow visibility of distinct
2873  * system_timestamp/tsc_timestamp values simultaneously: use a master
2874  * copy of host monotonic time values. Update that master copy
2875  * in lockstep.
2876  *
2877  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2878  *
2879  */
2880 
2881 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2882 {
2883 #ifdef CONFIG_X86_64
2884 	struct kvm_arch *ka = &kvm->arch;
2885 	int vclock_mode;
2886 	bool host_tsc_clocksource, vcpus_matched;
2887 
2888 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2889 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2890 			atomic_read(&kvm->online_vcpus));
2891 
2892 	/*
2893 	 * If the host uses TSC clock, then passthrough TSC as stable
2894 	 * to the guest.
2895 	 */
2896 	host_tsc_clocksource = kvm_get_time_and_clockread(
2897 					&ka->master_kernel_ns,
2898 					&ka->master_cycle_now);
2899 
2900 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2901 				&& !ka->backwards_tsc_observed
2902 				&& !ka->boot_vcpu_runs_old_kvmclock;
2903 
2904 	if (ka->use_master_clock)
2905 		atomic_set(&kvm_guest_has_master_clock, 1);
2906 
2907 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2908 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2909 					vcpus_matched);
2910 #endif
2911 }
2912 
2913 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2914 {
2915 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2916 }
2917 
2918 static void __kvm_start_pvclock_update(struct kvm *kvm)
2919 {
2920 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2921 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2922 }
2923 
2924 static void kvm_start_pvclock_update(struct kvm *kvm)
2925 {
2926 	kvm_make_mclock_inprogress_request(kvm);
2927 
2928 	/* no guest entries from this point */
2929 	__kvm_start_pvclock_update(kvm);
2930 }
2931 
2932 static void kvm_end_pvclock_update(struct kvm *kvm)
2933 {
2934 	struct kvm_arch *ka = &kvm->arch;
2935 	struct kvm_vcpu *vcpu;
2936 	unsigned long i;
2937 
2938 	write_seqcount_end(&ka->pvclock_sc);
2939 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2940 	kvm_for_each_vcpu(i, vcpu, kvm)
2941 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2942 
2943 	/* guest entries allowed */
2944 	kvm_for_each_vcpu(i, vcpu, kvm)
2945 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2946 }
2947 
2948 static void kvm_update_masterclock(struct kvm *kvm)
2949 {
2950 	kvm_hv_request_tsc_page_update(kvm);
2951 	kvm_start_pvclock_update(kvm);
2952 	pvclock_update_vm_gtod_copy(kvm);
2953 	kvm_end_pvclock_update(kvm);
2954 }
2955 
2956 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2957 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2958 {
2959 	struct kvm_arch *ka = &kvm->arch;
2960 	struct pvclock_vcpu_time_info hv_clock;
2961 
2962 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2963 	get_cpu();
2964 
2965 	data->flags = 0;
2966 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2967 #ifdef CONFIG_X86_64
2968 		struct timespec64 ts;
2969 
2970 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2971 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2972 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2973 		} else
2974 #endif
2975 		data->host_tsc = rdtsc();
2976 
2977 		data->flags |= KVM_CLOCK_TSC_STABLE;
2978 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2979 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2980 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2981 				   &hv_clock.tsc_shift,
2982 				   &hv_clock.tsc_to_system_mul);
2983 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2984 	} else {
2985 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2986 	}
2987 
2988 	put_cpu();
2989 }
2990 
2991 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2992 {
2993 	struct kvm_arch *ka = &kvm->arch;
2994 	unsigned seq;
2995 
2996 	do {
2997 		seq = read_seqcount_begin(&ka->pvclock_sc);
2998 		__get_kvmclock(kvm, data);
2999 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3000 }
3001 
3002 u64 get_kvmclock_ns(struct kvm *kvm)
3003 {
3004 	struct kvm_clock_data data;
3005 
3006 	get_kvmclock(kvm, &data);
3007 	return data.clock;
3008 }
3009 
3010 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3011 				    struct gfn_to_pfn_cache *gpc,
3012 				    unsigned int offset)
3013 {
3014 	struct kvm_vcpu_arch *vcpu = &v->arch;
3015 	struct pvclock_vcpu_time_info *guest_hv_clock;
3016 	unsigned long flags;
3017 
3018 	read_lock_irqsave(&gpc->lock, flags);
3019 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3020 					   offset + sizeof(*guest_hv_clock))) {
3021 		read_unlock_irqrestore(&gpc->lock, flags);
3022 
3023 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3024 						 offset + sizeof(*guest_hv_clock)))
3025 			return;
3026 
3027 		read_lock_irqsave(&gpc->lock, flags);
3028 	}
3029 
3030 	guest_hv_clock = (void *)(gpc->khva + offset);
3031 
3032 	/*
3033 	 * This VCPU is paused, but it's legal for a guest to read another
3034 	 * VCPU's kvmclock, so we really have to follow the specification where
3035 	 * it says that version is odd if data is being modified, and even after
3036 	 * it is consistent.
3037 	 */
3038 
3039 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3040 	smp_wmb();
3041 
3042 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3043 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3044 
3045 	if (vcpu->pvclock_set_guest_stopped_request) {
3046 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3047 		vcpu->pvclock_set_guest_stopped_request = false;
3048 	}
3049 
3050 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3051 	smp_wmb();
3052 
3053 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3054 
3055 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3056 	read_unlock_irqrestore(&gpc->lock, flags);
3057 
3058 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3059 }
3060 
3061 static int kvm_guest_time_update(struct kvm_vcpu *v)
3062 {
3063 	unsigned long flags, tgt_tsc_khz;
3064 	unsigned seq;
3065 	struct kvm_vcpu_arch *vcpu = &v->arch;
3066 	struct kvm_arch *ka = &v->kvm->arch;
3067 	s64 kernel_ns;
3068 	u64 tsc_timestamp, host_tsc;
3069 	u8 pvclock_flags;
3070 	bool use_master_clock;
3071 
3072 	kernel_ns = 0;
3073 	host_tsc = 0;
3074 
3075 	/*
3076 	 * If the host uses TSC clock, then passthrough TSC as stable
3077 	 * to the guest.
3078 	 */
3079 	do {
3080 		seq = read_seqcount_begin(&ka->pvclock_sc);
3081 		use_master_clock = ka->use_master_clock;
3082 		if (use_master_clock) {
3083 			host_tsc = ka->master_cycle_now;
3084 			kernel_ns = ka->master_kernel_ns;
3085 		}
3086 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3087 
3088 	/* Keep irq disabled to prevent changes to the clock */
3089 	local_irq_save(flags);
3090 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3091 	if (unlikely(tgt_tsc_khz == 0)) {
3092 		local_irq_restore(flags);
3093 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3094 		return 1;
3095 	}
3096 	if (!use_master_clock) {
3097 		host_tsc = rdtsc();
3098 		kernel_ns = get_kvmclock_base_ns();
3099 	}
3100 
3101 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3102 
3103 	/*
3104 	 * We may have to catch up the TSC to match elapsed wall clock
3105 	 * time for two reasons, even if kvmclock is used.
3106 	 *   1) CPU could have been running below the maximum TSC rate
3107 	 *   2) Broken TSC compensation resets the base at each VCPU
3108 	 *      entry to avoid unknown leaps of TSC even when running
3109 	 *      again on the same CPU.  This may cause apparent elapsed
3110 	 *      time to disappear, and the guest to stand still or run
3111 	 *	very slowly.
3112 	 */
3113 	if (vcpu->tsc_catchup) {
3114 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3115 		if (tsc > tsc_timestamp) {
3116 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3117 			tsc_timestamp = tsc;
3118 		}
3119 	}
3120 
3121 	local_irq_restore(flags);
3122 
3123 	/* With all the info we got, fill in the values */
3124 
3125 	if (kvm_caps.has_tsc_control)
3126 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3127 					    v->arch.l1_tsc_scaling_ratio);
3128 
3129 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3130 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3131 				   &vcpu->hv_clock.tsc_shift,
3132 				   &vcpu->hv_clock.tsc_to_system_mul);
3133 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3134 	}
3135 
3136 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3137 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3138 	vcpu->last_guest_tsc = tsc_timestamp;
3139 
3140 	/* If the host uses TSC clocksource, then it is stable */
3141 	pvclock_flags = 0;
3142 	if (use_master_clock)
3143 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3144 
3145 	vcpu->hv_clock.flags = pvclock_flags;
3146 
3147 	if (vcpu->pv_time.active)
3148 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3149 	if (vcpu->xen.vcpu_info_cache.active)
3150 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3151 					offsetof(struct compat_vcpu_info, time));
3152 	if (vcpu->xen.vcpu_time_info_cache.active)
3153 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3154 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3155 	return 0;
3156 }
3157 
3158 /*
3159  * kvmclock updates which are isolated to a given vcpu, such as
3160  * vcpu->cpu migration, should not allow system_timestamp from
3161  * the rest of the vcpus to remain static. Otherwise ntp frequency
3162  * correction applies to one vcpu's system_timestamp but not
3163  * the others.
3164  *
3165  * So in those cases, request a kvmclock update for all vcpus.
3166  * We need to rate-limit these requests though, as they can
3167  * considerably slow guests that have a large number of vcpus.
3168  * The time for a remote vcpu to update its kvmclock is bound
3169  * by the delay we use to rate-limit the updates.
3170  */
3171 
3172 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3173 
3174 static void kvmclock_update_fn(struct work_struct *work)
3175 {
3176 	unsigned long i;
3177 	struct delayed_work *dwork = to_delayed_work(work);
3178 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3179 					   kvmclock_update_work);
3180 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3181 	struct kvm_vcpu *vcpu;
3182 
3183 	kvm_for_each_vcpu(i, vcpu, kvm) {
3184 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3185 		kvm_vcpu_kick(vcpu);
3186 	}
3187 }
3188 
3189 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3190 {
3191 	struct kvm *kvm = v->kvm;
3192 
3193 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3194 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3195 					KVMCLOCK_UPDATE_DELAY);
3196 }
3197 
3198 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3199 
3200 static void kvmclock_sync_fn(struct work_struct *work)
3201 {
3202 	struct delayed_work *dwork = to_delayed_work(work);
3203 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3204 					   kvmclock_sync_work);
3205 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3206 
3207 	if (!kvmclock_periodic_sync)
3208 		return;
3209 
3210 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3211 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3212 					KVMCLOCK_SYNC_PERIOD);
3213 }
3214 
3215 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3216 static bool is_mci_control_msr(u32 msr)
3217 {
3218 	return (msr & 3) == 0;
3219 }
3220 static bool is_mci_status_msr(u32 msr)
3221 {
3222 	return (msr & 3) == 1;
3223 }
3224 
3225 /*
3226  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3227  */
3228 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3229 {
3230 	/* McStatusWrEn enabled? */
3231 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3232 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3233 
3234 	return false;
3235 }
3236 
3237 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3238 {
3239 	u64 mcg_cap = vcpu->arch.mcg_cap;
3240 	unsigned bank_num = mcg_cap & 0xff;
3241 	u32 msr = msr_info->index;
3242 	u64 data = msr_info->data;
3243 	u32 offset, last_msr;
3244 
3245 	switch (msr) {
3246 	case MSR_IA32_MCG_STATUS:
3247 		vcpu->arch.mcg_status = data;
3248 		break;
3249 	case MSR_IA32_MCG_CTL:
3250 		if (!(mcg_cap & MCG_CTL_P) &&
3251 		    (data || !msr_info->host_initiated))
3252 			return 1;
3253 		if (data != 0 && data != ~(u64)0)
3254 			return 1;
3255 		vcpu->arch.mcg_ctl = data;
3256 		break;
3257 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3258 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3259 		if (msr > last_msr)
3260 			return 1;
3261 
3262 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3263 			return 1;
3264 		/* An attempt to write a 1 to a reserved bit raises #GP */
3265 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3266 			return 1;
3267 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3268 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3269 		vcpu->arch.mci_ctl2_banks[offset] = data;
3270 		break;
3271 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3272 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3273 		if (msr > last_msr)
3274 			return 1;
3275 
3276 		/*
3277 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3278 		 * values are architecturally undefined.  But, some Linux
3279 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3280 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3281 		 * other bits in order to avoid an uncaught #GP in the guest.
3282 		 *
3283 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3284 		 * single-bit ECC data errors.
3285 		 */
3286 		if (is_mci_control_msr(msr) &&
3287 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3288 			return 1;
3289 
3290 		/*
3291 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3292 		 * AMD-based CPUs allow non-zero values, but if and only if
3293 		 * HWCR[McStatusWrEn] is set.
3294 		 */
3295 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3296 		    data != 0 && !can_set_mci_status(vcpu))
3297 			return 1;
3298 
3299 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3300 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3301 		vcpu->arch.mce_banks[offset] = data;
3302 		break;
3303 	default:
3304 		return 1;
3305 	}
3306 	return 0;
3307 }
3308 
3309 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3310 {
3311 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3312 
3313 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3314 }
3315 
3316 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3317 {
3318 	gpa_t gpa = data & ~0x3f;
3319 
3320 	/* Bits 4:5 are reserved, Should be zero */
3321 	if (data & 0x30)
3322 		return 1;
3323 
3324 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3325 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3326 		return 1;
3327 
3328 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3329 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3330 		return 1;
3331 
3332 	if (!lapic_in_kernel(vcpu))
3333 		return data ? 1 : 0;
3334 
3335 	vcpu->arch.apf.msr_en_val = data;
3336 
3337 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3338 		kvm_clear_async_pf_completion_queue(vcpu);
3339 		kvm_async_pf_hash_reset(vcpu);
3340 		return 0;
3341 	}
3342 
3343 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3344 					sizeof(u64)))
3345 		return 1;
3346 
3347 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3348 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3349 
3350 	kvm_async_pf_wakeup_all(vcpu);
3351 
3352 	return 0;
3353 }
3354 
3355 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3356 {
3357 	/* Bits 8-63 are reserved */
3358 	if (data >> 8)
3359 		return 1;
3360 
3361 	if (!lapic_in_kernel(vcpu))
3362 		return 1;
3363 
3364 	vcpu->arch.apf.msr_int_val = data;
3365 
3366 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3367 
3368 	return 0;
3369 }
3370 
3371 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3372 {
3373 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3374 	vcpu->arch.time = 0;
3375 }
3376 
3377 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3378 {
3379 	++vcpu->stat.tlb_flush;
3380 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3381 }
3382 
3383 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3384 {
3385 	++vcpu->stat.tlb_flush;
3386 
3387 	if (!tdp_enabled) {
3388 		/*
3389 		 * A TLB flush on behalf of the guest is equivalent to
3390 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3391 		 * a forced sync of the shadow page tables.  Ensure all the
3392 		 * roots are synced and the guest TLB in hardware is clean.
3393 		 */
3394 		kvm_mmu_sync_roots(vcpu);
3395 		kvm_mmu_sync_prev_roots(vcpu);
3396 	}
3397 
3398 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3399 }
3400 
3401 
3402 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3403 {
3404 	++vcpu->stat.tlb_flush;
3405 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3406 }
3407 
3408 /*
3409  * Service "local" TLB flush requests, which are specific to the current MMU
3410  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3411  * TLB flushes that are targeted at an MMU context also need to be serviced
3412  * prior before nested VM-Enter/VM-Exit.
3413  */
3414 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3415 {
3416 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3417 		kvm_vcpu_flush_tlb_current(vcpu);
3418 
3419 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3420 		kvm_vcpu_flush_tlb_guest(vcpu);
3421 }
3422 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3423 
3424 static void record_steal_time(struct kvm_vcpu *vcpu)
3425 {
3426 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3427 	struct kvm_steal_time __user *st;
3428 	struct kvm_memslots *slots;
3429 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3430 	u64 steal;
3431 	u32 version;
3432 
3433 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3434 		kvm_xen_runstate_set_running(vcpu);
3435 		return;
3436 	}
3437 
3438 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3439 		return;
3440 
3441 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3442 		return;
3443 
3444 	slots = kvm_memslots(vcpu->kvm);
3445 
3446 	if (unlikely(slots->generation != ghc->generation ||
3447 		     gpa != ghc->gpa ||
3448 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3449 		/* We rely on the fact that it fits in a single page. */
3450 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3451 
3452 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3453 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3454 			return;
3455 	}
3456 
3457 	st = (struct kvm_steal_time __user *)ghc->hva;
3458 	/*
3459 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3460 	 * expensive IPIs.
3461 	 */
3462 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3463 		u8 st_preempted = 0;
3464 		int err = -EFAULT;
3465 
3466 		if (!user_access_begin(st, sizeof(*st)))
3467 			return;
3468 
3469 		asm volatile("1: xchgb %0, %2\n"
3470 			     "xor %1, %1\n"
3471 			     "2:\n"
3472 			     _ASM_EXTABLE_UA(1b, 2b)
3473 			     : "+q" (st_preempted),
3474 			       "+&r" (err),
3475 			       "+m" (st->preempted));
3476 		if (err)
3477 			goto out;
3478 
3479 		user_access_end();
3480 
3481 		vcpu->arch.st.preempted = 0;
3482 
3483 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3484 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3485 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3486 			kvm_vcpu_flush_tlb_guest(vcpu);
3487 
3488 		if (!user_access_begin(st, sizeof(*st)))
3489 			goto dirty;
3490 	} else {
3491 		if (!user_access_begin(st, sizeof(*st)))
3492 			return;
3493 
3494 		unsafe_put_user(0, &st->preempted, out);
3495 		vcpu->arch.st.preempted = 0;
3496 	}
3497 
3498 	unsafe_get_user(version, &st->version, out);
3499 	if (version & 1)
3500 		version += 1;  /* first time write, random junk */
3501 
3502 	version += 1;
3503 	unsafe_put_user(version, &st->version, out);
3504 
3505 	smp_wmb();
3506 
3507 	unsafe_get_user(steal, &st->steal, out);
3508 	steal += current->sched_info.run_delay -
3509 		vcpu->arch.st.last_steal;
3510 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3511 	unsafe_put_user(steal, &st->steal, out);
3512 
3513 	version += 1;
3514 	unsafe_put_user(version, &st->version, out);
3515 
3516  out:
3517 	user_access_end();
3518  dirty:
3519 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3520 }
3521 
3522 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3523 {
3524 	bool pr = false;
3525 	u32 msr = msr_info->index;
3526 	u64 data = msr_info->data;
3527 
3528 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3529 		return kvm_xen_write_hypercall_page(vcpu, data);
3530 
3531 	switch (msr) {
3532 	case MSR_AMD64_NB_CFG:
3533 	case MSR_IA32_UCODE_WRITE:
3534 	case MSR_VM_HSAVE_PA:
3535 	case MSR_AMD64_PATCH_LOADER:
3536 	case MSR_AMD64_BU_CFG2:
3537 	case MSR_AMD64_DC_CFG:
3538 	case MSR_F15H_EX_CFG:
3539 		break;
3540 
3541 	case MSR_IA32_UCODE_REV:
3542 		if (msr_info->host_initiated)
3543 			vcpu->arch.microcode_version = data;
3544 		break;
3545 	case MSR_IA32_ARCH_CAPABILITIES:
3546 		if (!msr_info->host_initiated)
3547 			return 1;
3548 		vcpu->arch.arch_capabilities = data;
3549 		break;
3550 	case MSR_IA32_PERF_CAPABILITIES: {
3551 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3552 
3553 		if (!msr_info->host_initiated)
3554 			return 1;
3555 		if (kvm_get_msr_feature(&msr_ent))
3556 			return 1;
3557 		if (data & ~msr_ent.data)
3558 			return 1;
3559 
3560 		vcpu->arch.perf_capabilities = data;
3561 		kvm_pmu_refresh(vcpu);
3562 		return 0;
3563 	}
3564 	case MSR_EFER:
3565 		return set_efer(vcpu, msr_info);
3566 	case MSR_K7_HWCR:
3567 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3568 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3569 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3570 
3571 		/* Handle McStatusWrEn */
3572 		if (data == BIT_ULL(18)) {
3573 			vcpu->arch.msr_hwcr = data;
3574 		} else if (data != 0) {
3575 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3576 				    data);
3577 			return 1;
3578 		}
3579 		break;
3580 	case MSR_FAM10H_MMIO_CONF_BASE:
3581 		if (data != 0) {
3582 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3583 				    "0x%llx\n", data);
3584 			return 1;
3585 		}
3586 		break;
3587 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3588 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3589 		return kvm_mtrr_set_msr(vcpu, msr, data);
3590 	case MSR_IA32_APICBASE:
3591 		return kvm_set_apic_base(vcpu, msr_info);
3592 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3593 		return kvm_x2apic_msr_write(vcpu, msr, data);
3594 	case MSR_IA32_TSC_DEADLINE:
3595 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3596 		break;
3597 	case MSR_IA32_TSC_ADJUST:
3598 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3599 			if (!msr_info->host_initiated) {
3600 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3601 				adjust_tsc_offset_guest(vcpu, adj);
3602 				/* Before back to guest, tsc_timestamp must be adjusted
3603 				 * as well, otherwise guest's percpu pvclock time could jump.
3604 				 */
3605 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3606 			}
3607 			vcpu->arch.ia32_tsc_adjust_msr = data;
3608 		}
3609 		break;
3610 	case MSR_IA32_MISC_ENABLE: {
3611 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3612 
3613 		if (!msr_info->host_initiated) {
3614 			/* RO bits */
3615 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3616 				return 1;
3617 
3618 			/* R bits, i.e. writes are ignored, but don't fault. */
3619 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3620 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3621 		}
3622 
3623 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3624 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3625 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3626 				return 1;
3627 			vcpu->arch.ia32_misc_enable_msr = data;
3628 			kvm_update_cpuid_runtime(vcpu);
3629 		} else {
3630 			vcpu->arch.ia32_misc_enable_msr = data;
3631 		}
3632 		break;
3633 	}
3634 	case MSR_IA32_SMBASE:
3635 		if (!msr_info->host_initiated)
3636 			return 1;
3637 		vcpu->arch.smbase = data;
3638 		break;
3639 	case MSR_IA32_POWER_CTL:
3640 		vcpu->arch.msr_ia32_power_ctl = data;
3641 		break;
3642 	case MSR_IA32_TSC:
3643 		if (msr_info->host_initiated) {
3644 			kvm_synchronize_tsc(vcpu, data);
3645 		} else {
3646 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3647 			adjust_tsc_offset_guest(vcpu, adj);
3648 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3649 		}
3650 		break;
3651 	case MSR_IA32_XSS:
3652 		if (!msr_info->host_initiated &&
3653 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3654 			return 1;
3655 		/*
3656 		 * KVM supports exposing PT to the guest, but does not support
3657 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3658 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3659 		 */
3660 		if (data & ~kvm_caps.supported_xss)
3661 			return 1;
3662 		vcpu->arch.ia32_xss = data;
3663 		kvm_update_cpuid_runtime(vcpu);
3664 		break;
3665 	case MSR_SMI_COUNT:
3666 		if (!msr_info->host_initiated)
3667 			return 1;
3668 		vcpu->arch.smi_count = data;
3669 		break;
3670 	case MSR_KVM_WALL_CLOCK_NEW:
3671 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3672 			return 1;
3673 
3674 		vcpu->kvm->arch.wall_clock = data;
3675 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3676 		break;
3677 	case MSR_KVM_WALL_CLOCK:
3678 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3679 			return 1;
3680 
3681 		vcpu->kvm->arch.wall_clock = data;
3682 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3683 		break;
3684 	case MSR_KVM_SYSTEM_TIME_NEW:
3685 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3686 			return 1;
3687 
3688 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3689 		break;
3690 	case MSR_KVM_SYSTEM_TIME:
3691 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3692 			return 1;
3693 
3694 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3695 		break;
3696 	case MSR_KVM_ASYNC_PF_EN:
3697 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3698 			return 1;
3699 
3700 		if (kvm_pv_enable_async_pf(vcpu, data))
3701 			return 1;
3702 		break;
3703 	case MSR_KVM_ASYNC_PF_INT:
3704 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3705 			return 1;
3706 
3707 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3708 			return 1;
3709 		break;
3710 	case MSR_KVM_ASYNC_PF_ACK:
3711 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3712 			return 1;
3713 		if (data & 0x1) {
3714 			vcpu->arch.apf.pageready_pending = false;
3715 			kvm_check_async_pf_completion(vcpu);
3716 		}
3717 		break;
3718 	case MSR_KVM_STEAL_TIME:
3719 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3720 			return 1;
3721 
3722 		if (unlikely(!sched_info_on()))
3723 			return 1;
3724 
3725 		if (data & KVM_STEAL_RESERVED_MASK)
3726 			return 1;
3727 
3728 		vcpu->arch.st.msr_val = data;
3729 
3730 		if (!(data & KVM_MSR_ENABLED))
3731 			break;
3732 
3733 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3734 
3735 		break;
3736 	case MSR_KVM_PV_EOI_EN:
3737 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3738 			return 1;
3739 
3740 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3741 			return 1;
3742 		break;
3743 
3744 	case MSR_KVM_POLL_CONTROL:
3745 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3746 			return 1;
3747 
3748 		/* only enable bit supported */
3749 		if (data & (-1ULL << 1))
3750 			return 1;
3751 
3752 		vcpu->arch.msr_kvm_poll_control = data;
3753 		break;
3754 
3755 	case MSR_IA32_MCG_CTL:
3756 	case MSR_IA32_MCG_STATUS:
3757 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3758 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3759 		return set_msr_mce(vcpu, msr_info);
3760 
3761 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3762 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3763 		pr = true;
3764 		fallthrough;
3765 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3766 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3767 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3768 			return kvm_pmu_set_msr(vcpu, msr_info);
3769 
3770 		if (pr || data != 0)
3771 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3772 				    "0x%x data 0x%llx\n", msr, data);
3773 		break;
3774 	case MSR_K7_CLK_CTL:
3775 		/*
3776 		 * Ignore all writes to this no longer documented MSR.
3777 		 * Writes are only relevant for old K7 processors,
3778 		 * all pre-dating SVM, but a recommended workaround from
3779 		 * AMD for these chips. It is possible to specify the
3780 		 * affected processor models on the command line, hence
3781 		 * the need to ignore the workaround.
3782 		 */
3783 		break;
3784 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3785 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3786 	case HV_X64_MSR_SYNDBG_OPTIONS:
3787 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3788 	case HV_X64_MSR_CRASH_CTL:
3789 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3790 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3791 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3792 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3793 		return kvm_hv_set_msr_common(vcpu, msr, data,
3794 					     msr_info->host_initiated);
3795 	case MSR_IA32_BBL_CR_CTL3:
3796 		/* Drop writes to this legacy MSR -- see rdmsr
3797 		 * counterpart for further detail.
3798 		 */
3799 		if (report_ignored_msrs)
3800 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3801 				msr, data);
3802 		break;
3803 	case MSR_AMD64_OSVW_ID_LENGTH:
3804 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3805 			return 1;
3806 		vcpu->arch.osvw.length = data;
3807 		break;
3808 	case MSR_AMD64_OSVW_STATUS:
3809 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3810 			return 1;
3811 		vcpu->arch.osvw.status = data;
3812 		break;
3813 	case MSR_PLATFORM_INFO:
3814 		if (!msr_info->host_initiated ||
3815 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3816 		     cpuid_fault_enabled(vcpu)))
3817 			return 1;
3818 		vcpu->arch.msr_platform_info = data;
3819 		break;
3820 	case MSR_MISC_FEATURES_ENABLES:
3821 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3822 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3823 		     !supports_cpuid_fault(vcpu)))
3824 			return 1;
3825 		vcpu->arch.msr_misc_features_enables = data;
3826 		break;
3827 #ifdef CONFIG_X86_64
3828 	case MSR_IA32_XFD:
3829 		if (!msr_info->host_initiated &&
3830 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3831 			return 1;
3832 
3833 		if (data & ~kvm_guest_supported_xfd(vcpu))
3834 			return 1;
3835 
3836 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3837 		break;
3838 	case MSR_IA32_XFD_ERR:
3839 		if (!msr_info->host_initiated &&
3840 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3841 			return 1;
3842 
3843 		if (data & ~kvm_guest_supported_xfd(vcpu))
3844 			return 1;
3845 
3846 		vcpu->arch.guest_fpu.xfd_err = data;
3847 		break;
3848 #endif
3849 	case MSR_IA32_PEBS_ENABLE:
3850 	case MSR_IA32_DS_AREA:
3851 	case MSR_PEBS_DATA_CFG:
3852 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3853 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3854 			return kvm_pmu_set_msr(vcpu, msr_info);
3855 		/*
3856 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3857 		 * as to-be-saved, even if an MSRs isn't fully supported.
3858 		 */
3859 		return !msr_info->host_initiated || data;
3860 	default:
3861 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3862 			return kvm_pmu_set_msr(vcpu, msr_info);
3863 		return KVM_MSR_RET_INVALID;
3864 	}
3865 	return 0;
3866 }
3867 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3868 
3869 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3870 {
3871 	u64 data;
3872 	u64 mcg_cap = vcpu->arch.mcg_cap;
3873 	unsigned bank_num = mcg_cap & 0xff;
3874 	u32 offset, last_msr;
3875 
3876 	switch (msr) {
3877 	case MSR_IA32_P5_MC_ADDR:
3878 	case MSR_IA32_P5_MC_TYPE:
3879 		data = 0;
3880 		break;
3881 	case MSR_IA32_MCG_CAP:
3882 		data = vcpu->arch.mcg_cap;
3883 		break;
3884 	case MSR_IA32_MCG_CTL:
3885 		if (!(mcg_cap & MCG_CTL_P) && !host)
3886 			return 1;
3887 		data = vcpu->arch.mcg_ctl;
3888 		break;
3889 	case MSR_IA32_MCG_STATUS:
3890 		data = vcpu->arch.mcg_status;
3891 		break;
3892 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3893 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3894 		if (msr > last_msr)
3895 			return 1;
3896 
3897 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3898 			return 1;
3899 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3900 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3901 		data = vcpu->arch.mci_ctl2_banks[offset];
3902 		break;
3903 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3904 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3905 		if (msr > last_msr)
3906 			return 1;
3907 
3908 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3909 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3910 		data = vcpu->arch.mce_banks[offset];
3911 		break;
3912 	default:
3913 		return 1;
3914 	}
3915 	*pdata = data;
3916 	return 0;
3917 }
3918 
3919 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3920 {
3921 	switch (msr_info->index) {
3922 	case MSR_IA32_PLATFORM_ID:
3923 	case MSR_IA32_EBL_CR_POWERON:
3924 	case MSR_IA32_LASTBRANCHFROMIP:
3925 	case MSR_IA32_LASTBRANCHTOIP:
3926 	case MSR_IA32_LASTINTFROMIP:
3927 	case MSR_IA32_LASTINTTOIP:
3928 	case MSR_AMD64_SYSCFG:
3929 	case MSR_K8_TSEG_ADDR:
3930 	case MSR_K8_TSEG_MASK:
3931 	case MSR_VM_HSAVE_PA:
3932 	case MSR_K8_INT_PENDING_MSG:
3933 	case MSR_AMD64_NB_CFG:
3934 	case MSR_FAM10H_MMIO_CONF_BASE:
3935 	case MSR_AMD64_BU_CFG2:
3936 	case MSR_IA32_PERF_CTL:
3937 	case MSR_AMD64_DC_CFG:
3938 	case MSR_F15H_EX_CFG:
3939 	/*
3940 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3941 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3942 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3943 	 * so for existing CPU-specific MSRs.
3944 	 */
3945 	case MSR_RAPL_POWER_UNIT:
3946 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3947 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3948 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3949 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3950 		msr_info->data = 0;
3951 		break;
3952 	case MSR_IA32_PEBS_ENABLE:
3953 	case MSR_IA32_DS_AREA:
3954 	case MSR_PEBS_DATA_CFG:
3955 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3956 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3957 			return kvm_pmu_get_msr(vcpu, msr_info);
3958 		/*
3959 		 * Userspace is allowed to read MSRs that KVM reports as
3960 		 * to-be-saved, even if an MSR isn't fully supported.
3961 		 */
3962 		if (!msr_info->host_initiated)
3963 			return 1;
3964 		msr_info->data = 0;
3965 		break;
3966 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3967 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3968 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3969 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3970 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3971 			return kvm_pmu_get_msr(vcpu, msr_info);
3972 		msr_info->data = 0;
3973 		break;
3974 	case MSR_IA32_UCODE_REV:
3975 		msr_info->data = vcpu->arch.microcode_version;
3976 		break;
3977 	case MSR_IA32_ARCH_CAPABILITIES:
3978 		if (!msr_info->host_initiated &&
3979 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3980 			return 1;
3981 		msr_info->data = vcpu->arch.arch_capabilities;
3982 		break;
3983 	case MSR_IA32_PERF_CAPABILITIES:
3984 		if (!msr_info->host_initiated &&
3985 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3986 			return 1;
3987 		msr_info->data = vcpu->arch.perf_capabilities;
3988 		break;
3989 	case MSR_IA32_POWER_CTL:
3990 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3991 		break;
3992 	case MSR_IA32_TSC: {
3993 		/*
3994 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3995 		 * even when not intercepted. AMD manual doesn't explicitly
3996 		 * state this but appears to behave the same.
3997 		 *
3998 		 * On userspace reads and writes, however, we unconditionally
3999 		 * return L1's TSC value to ensure backwards-compatible
4000 		 * behavior for migration.
4001 		 */
4002 		u64 offset, ratio;
4003 
4004 		if (msr_info->host_initiated) {
4005 			offset = vcpu->arch.l1_tsc_offset;
4006 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4007 		} else {
4008 			offset = vcpu->arch.tsc_offset;
4009 			ratio = vcpu->arch.tsc_scaling_ratio;
4010 		}
4011 
4012 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4013 		break;
4014 	}
4015 	case MSR_MTRRcap:
4016 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4017 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4018 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4019 	case 0xcd: /* fsb frequency */
4020 		msr_info->data = 3;
4021 		break;
4022 		/*
4023 		 * MSR_EBC_FREQUENCY_ID
4024 		 * Conservative value valid for even the basic CPU models.
4025 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4026 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4027 		 * and 266MHz for model 3, or 4. Set Core Clock
4028 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4029 		 * 31:24) even though these are only valid for CPU
4030 		 * models > 2, however guests may end up dividing or
4031 		 * multiplying by zero otherwise.
4032 		 */
4033 	case MSR_EBC_FREQUENCY_ID:
4034 		msr_info->data = 1 << 24;
4035 		break;
4036 	case MSR_IA32_APICBASE:
4037 		msr_info->data = kvm_get_apic_base(vcpu);
4038 		break;
4039 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4040 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4041 	case MSR_IA32_TSC_DEADLINE:
4042 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4043 		break;
4044 	case MSR_IA32_TSC_ADJUST:
4045 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4046 		break;
4047 	case MSR_IA32_MISC_ENABLE:
4048 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4049 		break;
4050 	case MSR_IA32_SMBASE:
4051 		if (!msr_info->host_initiated)
4052 			return 1;
4053 		msr_info->data = vcpu->arch.smbase;
4054 		break;
4055 	case MSR_SMI_COUNT:
4056 		msr_info->data = vcpu->arch.smi_count;
4057 		break;
4058 	case MSR_IA32_PERF_STATUS:
4059 		/* TSC increment by tick */
4060 		msr_info->data = 1000ULL;
4061 		/* CPU multiplier */
4062 		msr_info->data |= (((uint64_t)4ULL) << 40);
4063 		break;
4064 	case MSR_EFER:
4065 		msr_info->data = vcpu->arch.efer;
4066 		break;
4067 	case MSR_KVM_WALL_CLOCK:
4068 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4069 			return 1;
4070 
4071 		msr_info->data = vcpu->kvm->arch.wall_clock;
4072 		break;
4073 	case MSR_KVM_WALL_CLOCK_NEW:
4074 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4075 			return 1;
4076 
4077 		msr_info->data = vcpu->kvm->arch.wall_clock;
4078 		break;
4079 	case MSR_KVM_SYSTEM_TIME:
4080 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4081 			return 1;
4082 
4083 		msr_info->data = vcpu->arch.time;
4084 		break;
4085 	case MSR_KVM_SYSTEM_TIME_NEW:
4086 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4087 			return 1;
4088 
4089 		msr_info->data = vcpu->arch.time;
4090 		break;
4091 	case MSR_KVM_ASYNC_PF_EN:
4092 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4093 			return 1;
4094 
4095 		msr_info->data = vcpu->arch.apf.msr_en_val;
4096 		break;
4097 	case MSR_KVM_ASYNC_PF_INT:
4098 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4099 			return 1;
4100 
4101 		msr_info->data = vcpu->arch.apf.msr_int_val;
4102 		break;
4103 	case MSR_KVM_ASYNC_PF_ACK:
4104 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4105 			return 1;
4106 
4107 		msr_info->data = 0;
4108 		break;
4109 	case MSR_KVM_STEAL_TIME:
4110 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4111 			return 1;
4112 
4113 		msr_info->data = vcpu->arch.st.msr_val;
4114 		break;
4115 	case MSR_KVM_PV_EOI_EN:
4116 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4117 			return 1;
4118 
4119 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4120 		break;
4121 	case MSR_KVM_POLL_CONTROL:
4122 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4123 			return 1;
4124 
4125 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4126 		break;
4127 	case MSR_IA32_P5_MC_ADDR:
4128 	case MSR_IA32_P5_MC_TYPE:
4129 	case MSR_IA32_MCG_CAP:
4130 	case MSR_IA32_MCG_CTL:
4131 	case MSR_IA32_MCG_STATUS:
4132 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4133 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4134 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4135 				   msr_info->host_initiated);
4136 	case MSR_IA32_XSS:
4137 		if (!msr_info->host_initiated &&
4138 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4139 			return 1;
4140 		msr_info->data = vcpu->arch.ia32_xss;
4141 		break;
4142 	case MSR_K7_CLK_CTL:
4143 		/*
4144 		 * Provide expected ramp-up count for K7. All other
4145 		 * are set to zero, indicating minimum divisors for
4146 		 * every field.
4147 		 *
4148 		 * This prevents guest kernels on AMD host with CPU
4149 		 * type 6, model 8 and higher from exploding due to
4150 		 * the rdmsr failing.
4151 		 */
4152 		msr_info->data = 0x20000000;
4153 		break;
4154 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4155 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4156 	case HV_X64_MSR_SYNDBG_OPTIONS:
4157 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4158 	case HV_X64_MSR_CRASH_CTL:
4159 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4160 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4161 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4162 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4163 		return kvm_hv_get_msr_common(vcpu,
4164 					     msr_info->index, &msr_info->data,
4165 					     msr_info->host_initiated);
4166 	case MSR_IA32_BBL_CR_CTL3:
4167 		/* This legacy MSR exists but isn't fully documented in current
4168 		 * silicon.  It is however accessed by winxp in very narrow
4169 		 * scenarios where it sets bit #19, itself documented as
4170 		 * a "reserved" bit.  Best effort attempt to source coherent
4171 		 * read data here should the balance of the register be
4172 		 * interpreted by the guest:
4173 		 *
4174 		 * L2 cache control register 3: 64GB range, 256KB size,
4175 		 * enabled, latency 0x1, configured
4176 		 */
4177 		msr_info->data = 0xbe702111;
4178 		break;
4179 	case MSR_AMD64_OSVW_ID_LENGTH:
4180 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4181 			return 1;
4182 		msr_info->data = vcpu->arch.osvw.length;
4183 		break;
4184 	case MSR_AMD64_OSVW_STATUS:
4185 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4186 			return 1;
4187 		msr_info->data = vcpu->arch.osvw.status;
4188 		break;
4189 	case MSR_PLATFORM_INFO:
4190 		if (!msr_info->host_initiated &&
4191 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4192 			return 1;
4193 		msr_info->data = vcpu->arch.msr_platform_info;
4194 		break;
4195 	case MSR_MISC_FEATURES_ENABLES:
4196 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4197 		break;
4198 	case MSR_K7_HWCR:
4199 		msr_info->data = vcpu->arch.msr_hwcr;
4200 		break;
4201 #ifdef CONFIG_X86_64
4202 	case MSR_IA32_XFD:
4203 		if (!msr_info->host_initiated &&
4204 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4205 			return 1;
4206 
4207 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4208 		break;
4209 	case MSR_IA32_XFD_ERR:
4210 		if (!msr_info->host_initiated &&
4211 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4212 			return 1;
4213 
4214 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4215 		break;
4216 #endif
4217 	default:
4218 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4219 			return kvm_pmu_get_msr(vcpu, msr_info);
4220 		return KVM_MSR_RET_INVALID;
4221 	}
4222 	return 0;
4223 }
4224 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4225 
4226 /*
4227  * Read or write a bunch of msrs. All parameters are kernel addresses.
4228  *
4229  * @return number of msrs set successfully.
4230  */
4231 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4232 		    struct kvm_msr_entry *entries,
4233 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4234 				  unsigned index, u64 *data))
4235 {
4236 	int i;
4237 
4238 	for (i = 0; i < msrs->nmsrs; ++i)
4239 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4240 			break;
4241 
4242 	return i;
4243 }
4244 
4245 /*
4246  * Read or write a bunch of msrs. Parameters are user addresses.
4247  *
4248  * @return number of msrs set successfully.
4249  */
4250 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4251 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4252 				unsigned index, u64 *data),
4253 		  int writeback)
4254 {
4255 	struct kvm_msrs msrs;
4256 	struct kvm_msr_entry *entries;
4257 	int r, n;
4258 	unsigned size;
4259 
4260 	r = -EFAULT;
4261 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4262 		goto out;
4263 
4264 	r = -E2BIG;
4265 	if (msrs.nmsrs >= MAX_IO_MSRS)
4266 		goto out;
4267 
4268 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4269 	entries = memdup_user(user_msrs->entries, size);
4270 	if (IS_ERR(entries)) {
4271 		r = PTR_ERR(entries);
4272 		goto out;
4273 	}
4274 
4275 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4276 	if (r < 0)
4277 		goto out_free;
4278 
4279 	r = -EFAULT;
4280 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4281 		goto out_free;
4282 
4283 	r = n;
4284 
4285 out_free:
4286 	kfree(entries);
4287 out:
4288 	return r;
4289 }
4290 
4291 static inline bool kvm_can_mwait_in_guest(void)
4292 {
4293 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4294 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4295 		boot_cpu_has(X86_FEATURE_ARAT);
4296 }
4297 
4298 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4299 					    struct kvm_cpuid2 __user *cpuid_arg)
4300 {
4301 	struct kvm_cpuid2 cpuid;
4302 	int r;
4303 
4304 	r = -EFAULT;
4305 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4306 		return r;
4307 
4308 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4309 	if (r)
4310 		return r;
4311 
4312 	r = -EFAULT;
4313 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4314 		return r;
4315 
4316 	return 0;
4317 }
4318 
4319 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4320 {
4321 	int r = 0;
4322 
4323 	switch (ext) {
4324 	case KVM_CAP_IRQCHIP:
4325 	case KVM_CAP_HLT:
4326 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4327 	case KVM_CAP_SET_TSS_ADDR:
4328 	case KVM_CAP_EXT_CPUID:
4329 	case KVM_CAP_EXT_EMUL_CPUID:
4330 	case KVM_CAP_CLOCKSOURCE:
4331 	case KVM_CAP_PIT:
4332 	case KVM_CAP_NOP_IO_DELAY:
4333 	case KVM_CAP_MP_STATE:
4334 	case KVM_CAP_SYNC_MMU:
4335 	case KVM_CAP_USER_NMI:
4336 	case KVM_CAP_REINJECT_CONTROL:
4337 	case KVM_CAP_IRQ_INJECT_STATUS:
4338 	case KVM_CAP_IOEVENTFD:
4339 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4340 	case KVM_CAP_PIT2:
4341 	case KVM_CAP_PIT_STATE2:
4342 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4343 	case KVM_CAP_VCPU_EVENTS:
4344 	case KVM_CAP_HYPERV:
4345 	case KVM_CAP_HYPERV_VAPIC:
4346 	case KVM_CAP_HYPERV_SPIN:
4347 	case KVM_CAP_HYPERV_SYNIC:
4348 	case KVM_CAP_HYPERV_SYNIC2:
4349 	case KVM_CAP_HYPERV_VP_INDEX:
4350 	case KVM_CAP_HYPERV_EVENTFD:
4351 	case KVM_CAP_HYPERV_TLBFLUSH:
4352 	case KVM_CAP_HYPERV_SEND_IPI:
4353 	case KVM_CAP_HYPERV_CPUID:
4354 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4355 	case KVM_CAP_SYS_HYPERV_CPUID:
4356 	case KVM_CAP_PCI_SEGMENT:
4357 	case KVM_CAP_DEBUGREGS:
4358 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4359 	case KVM_CAP_XSAVE:
4360 	case KVM_CAP_ASYNC_PF:
4361 	case KVM_CAP_ASYNC_PF_INT:
4362 	case KVM_CAP_GET_TSC_KHZ:
4363 	case KVM_CAP_KVMCLOCK_CTRL:
4364 	case KVM_CAP_READONLY_MEM:
4365 	case KVM_CAP_HYPERV_TIME:
4366 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4367 	case KVM_CAP_TSC_DEADLINE_TIMER:
4368 	case KVM_CAP_DISABLE_QUIRKS:
4369 	case KVM_CAP_SET_BOOT_CPU_ID:
4370  	case KVM_CAP_SPLIT_IRQCHIP:
4371 	case KVM_CAP_IMMEDIATE_EXIT:
4372 	case KVM_CAP_PMU_EVENT_FILTER:
4373 	case KVM_CAP_GET_MSR_FEATURES:
4374 	case KVM_CAP_MSR_PLATFORM_INFO:
4375 	case KVM_CAP_EXCEPTION_PAYLOAD:
4376 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4377 	case KVM_CAP_SET_GUEST_DEBUG:
4378 	case KVM_CAP_LAST_CPU:
4379 	case KVM_CAP_X86_USER_SPACE_MSR:
4380 	case KVM_CAP_X86_MSR_FILTER:
4381 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4382 #ifdef CONFIG_X86_SGX_KVM
4383 	case KVM_CAP_SGX_ATTRIBUTE:
4384 #endif
4385 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4386 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4387 	case KVM_CAP_SREGS2:
4388 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4389 	case KVM_CAP_VCPU_ATTRIBUTES:
4390 	case KVM_CAP_SYS_ATTRIBUTES:
4391 	case KVM_CAP_VAPIC:
4392 	case KVM_CAP_ENABLE_CAP:
4393 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4394 		r = 1;
4395 		break;
4396 	case KVM_CAP_EXIT_HYPERCALL:
4397 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4398 		break;
4399 	case KVM_CAP_SET_GUEST_DEBUG2:
4400 		return KVM_GUESTDBG_VALID_MASK;
4401 #ifdef CONFIG_KVM_XEN
4402 	case KVM_CAP_XEN_HVM:
4403 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4404 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4405 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4406 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4407 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4408 		if (sched_info_on())
4409 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4410 		break;
4411 #endif
4412 	case KVM_CAP_SYNC_REGS:
4413 		r = KVM_SYNC_X86_VALID_FIELDS;
4414 		break;
4415 	case KVM_CAP_ADJUST_CLOCK:
4416 		r = KVM_CLOCK_VALID_FLAGS;
4417 		break;
4418 	case KVM_CAP_X86_DISABLE_EXITS:
4419 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4420 		      KVM_X86_DISABLE_EXITS_CSTATE;
4421 		if(kvm_can_mwait_in_guest())
4422 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4423 		break;
4424 	case KVM_CAP_X86_SMM:
4425 		/* SMBASE is usually relocated above 1M on modern chipsets,
4426 		 * and SMM handlers might indeed rely on 4G segment limits,
4427 		 * so do not report SMM to be available if real mode is
4428 		 * emulated via vm86 mode.  Still, do not go to great lengths
4429 		 * to avoid userspace's usage of the feature, because it is a
4430 		 * fringe case that is not enabled except via specific settings
4431 		 * of the module parameters.
4432 		 */
4433 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4434 		break;
4435 	case KVM_CAP_NR_VCPUS:
4436 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4437 		break;
4438 	case KVM_CAP_MAX_VCPUS:
4439 		r = KVM_MAX_VCPUS;
4440 		break;
4441 	case KVM_CAP_MAX_VCPU_ID:
4442 		r = KVM_MAX_VCPU_IDS;
4443 		break;
4444 	case KVM_CAP_PV_MMU:	/* obsolete */
4445 		r = 0;
4446 		break;
4447 	case KVM_CAP_MCE:
4448 		r = KVM_MAX_MCE_BANKS;
4449 		break;
4450 	case KVM_CAP_XCRS:
4451 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4452 		break;
4453 	case KVM_CAP_TSC_CONTROL:
4454 	case KVM_CAP_VM_TSC_CONTROL:
4455 		r = kvm_caps.has_tsc_control;
4456 		break;
4457 	case KVM_CAP_X2APIC_API:
4458 		r = KVM_X2APIC_API_VALID_FLAGS;
4459 		break;
4460 	case KVM_CAP_NESTED_STATE:
4461 		r = kvm_x86_ops.nested_ops->get_state ?
4462 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4463 		break;
4464 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4465 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4466 		break;
4467 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4468 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4469 		break;
4470 	case KVM_CAP_SMALLER_MAXPHYADDR:
4471 		r = (int) allow_smaller_maxphyaddr;
4472 		break;
4473 	case KVM_CAP_STEAL_TIME:
4474 		r = sched_info_on();
4475 		break;
4476 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4477 		if (kvm_caps.has_bus_lock_exit)
4478 			r = KVM_BUS_LOCK_DETECTION_OFF |
4479 			    KVM_BUS_LOCK_DETECTION_EXIT;
4480 		else
4481 			r = 0;
4482 		break;
4483 	case KVM_CAP_XSAVE2: {
4484 		u64 guest_perm = xstate_get_guest_group_perm();
4485 
4486 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4487 		if (r < sizeof(struct kvm_xsave))
4488 			r = sizeof(struct kvm_xsave);
4489 		break;
4490 	}
4491 	case KVM_CAP_PMU_CAPABILITY:
4492 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4493 		break;
4494 	case KVM_CAP_DISABLE_QUIRKS2:
4495 		r = KVM_X86_VALID_QUIRKS;
4496 		break;
4497 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4498 		r = kvm_caps.has_notify_vmexit;
4499 		break;
4500 	default:
4501 		break;
4502 	}
4503 	return r;
4504 }
4505 
4506 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4507 {
4508 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4509 
4510 	if ((u64)(unsigned long)uaddr != attr->addr)
4511 		return ERR_PTR_USR(-EFAULT);
4512 	return uaddr;
4513 }
4514 
4515 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4516 {
4517 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4518 
4519 	if (attr->group)
4520 		return -ENXIO;
4521 
4522 	if (IS_ERR(uaddr))
4523 		return PTR_ERR(uaddr);
4524 
4525 	switch (attr->attr) {
4526 	case KVM_X86_XCOMP_GUEST_SUPP:
4527 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4528 			return -EFAULT;
4529 		return 0;
4530 	default:
4531 		return -ENXIO;
4532 		break;
4533 	}
4534 }
4535 
4536 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4537 {
4538 	if (attr->group)
4539 		return -ENXIO;
4540 
4541 	switch (attr->attr) {
4542 	case KVM_X86_XCOMP_GUEST_SUPP:
4543 		return 0;
4544 	default:
4545 		return -ENXIO;
4546 	}
4547 }
4548 
4549 long kvm_arch_dev_ioctl(struct file *filp,
4550 			unsigned int ioctl, unsigned long arg)
4551 {
4552 	void __user *argp = (void __user *)arg;
4553 	long r;
4554 
4555 	switch (ioctl) {
4556 	case KVM_GET_MSR_INDEX_LIST: {
4557 		struct kvm_msr_list __user *user_msr_list = argp;
4558 		struct kvm_msr_list msr_list;
4559 		unsigned n;
4560 
4561 		r = -EFAULT;
4562 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4563 			goto out;
4564 		n = msr_list.nmsrs;
4565 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4566 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4567 			goto out;
4568 		r = -E2BIG;
4569 		if (n < msr_list.nmsrs)
4570 			goto out;
4571 		r = -EFAULT;
4572 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4573 				 num_msrs_to_save * sizeof(u32)))
4574 			goto out;
4575 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4576 				 &emulated_msrs,
4577 				 num_emulated_msrs * sizeof(u32)))
4578 			goto out;
4579 		r = 0;
4580 		break;
4581 	}
4582 	case KVM_GET_SUPPORTED_CPUID:
4583 	case KVM_GET_EMULATED_CPUID: {
4584 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4585 		struct kvm_cpuid2 cpuid;
4586 
4587 		r = -EFAULT;
4588 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4589 			goto out;
4590 
4591 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4592 					    ioctl);
4593 		if (r)
4594 			goto out;
4595 
4596 		r = -EFAULT;
4597 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4598 			goto out;
4599 		r = 0;
4600 		break;
4601 	}
4602 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4603 		r = -EFAULT;
4604 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4605 				 sizeof(kvm_caps.supported_mce_cap)))
4606 			goto out;
4607 		r = 0;
4608 		break;
4609 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4610 		struct kvm_msr_list __user *user_msr_list = argp;
4611 		struct kvm_msr_list msr_list;
4612 		unsigned int n;
4613 
4614 		r = -EFAULT;
4615 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4616 			goto out;
4617 		n = msr_list.nmsrs;
4618 		msr_list.nmsrs = num_msr_based_features;
4619 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4620 			goto out;
4621 		r = -E2BIG;
4622 		if (n < msr_list.nmsrs)
4623 			goto out;
4624 		r = -EFAULT;
4625 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4626 				 num_msr_based_features * sizeof(u32)))
4627 			goto out;
4628 		r = 0;
4629 		break;
4630 	}
4631 	case KVM_GET_MSRS:
4632 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4633 		break;
4634 	case KVM_GET_SUPPORTED_HV_CPUID:
4635 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4636 		break;
4637 	case KVM_GET_DEVICE_ATTR: {
4638 		struct kvm_device_attr attr;
4639 		r = -EFAULT;
4640 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4641 			break;
4642 		r = kvm_x86_dev_get_attr(&attr);
4643 		break;
4644 	}
4645 	case KVM_HAS_DEVICE_ATTR: {
4646 		struct kvm_device_attr attr;
4647 		r = -EFAULT;
4648 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4649 			break;
4650 		r = kvm_x86_dev_has_attr(&attr);
4651 		break;
4652 	}
4653 	default:
4654 		r = -EINVAL;
4655 		break;
4656 	}
4657 out:
4658 	return r;
4659 }
4660 
4661 static void wbinvd_ipi(void *garbage)
4662 {
4663 	wbinvd();
4664 }
4665 
4666 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4667 {
4668 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4669 }
4670 
4671 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4672 {
4673 	/* Address WBINVD may be executed by guest */
4674 	if (need_emulate_wbinvd(vcpu)) {
4675 		if (static_call(kvm_x86_has_wbinvd_exit)())
4676 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4677 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4678 			smp_call_function_single(vcpu->cpu,
4679 					wbinvd_ipi, NULL, 1);
4680 	}
4681 
4682 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4683 
4684 	/* Save host pkru register if supported */
4685 	vcpu->arch.host_pkru = read_pkru();
4686 
4687 	/* Apply any externally detected TSC adjustments (due to suspend) */
4688 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4689 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4690 		vcpu->arch.tsc_offset_adjustment = 0;
4691 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4692 	}
4693 
4694 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4695 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4696 				rdtsc() - vcpu->arch.last_host_tsc;
4697 		if (tsc_delta < 0)
4698 			mark_tsc_unstable("KVM discovered backwards TSC");
4699 
4700 		if (kvm_check_tsc_unstable()) {
4701 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4702 						vcpu->arch.last_guest_tsc);
4703 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4704 			vcpu->arch.tsc_catchup = 1;
4705 		}
4706 
4707 		if (kvm_lapic_hv_timer_in_use(vcpu))
4708 			kvm_lapic_restart_hv_timer(vcpu);
4709 
4710 		/*
4711 		 * On a host with synchronized TSC, there is no need to update
4712 		 * kvmclock on vcpu->cpu migration
4713 		 */
4714 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4715 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4716 		if (vcpu->cpu != cpu)
4717 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4718 		vcpu->cpu = cpu;
4719 	}
4720 
4721 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4722 }
4723 
4724 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4725 {
4726 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4727 	struct kvm_steal_time __user *st;
4728 	struct kvm_memslots *slots;
4729 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4730 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4731 
4732 	/*
4733 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4734 	 * an instruction boundary and will not trigger guest emulation of any
4735 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4736 	 * when this is true, for example allowing the vCPU to be marked
4737 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4738 	 */
4739 	if (!vcpu->arch.at_instruction_boundary) {
4740 		vcpu->stat.preemption_other++;
4741 		return;
4742 	}
4743 
4744 	vcpu->stat.preemption_reported++;
4745 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4746 		return;
4747 
4748 	if (vcpu->arch.st.preempted)
4749 		return;
4750 
4751 	/* This happens on process exit */
4752 	if (unlikely(current->mm != vcpu->kvm->mm))
4753 		return;
4754 
4755 	slots = kvm_memslots(vcpu->kvm);
4756 
4757 	if (unlikely(slots->generation != ghc->generation ||
4758 		     gpa != ghc->gpa ||
4759 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4760 		return;
4761 
4762 	st = (struct kvm_steal_time __user *)ghc->hva;
4763 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4764 
4765 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4766 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4767 
4768 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4769 }
4770 
4771 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4772 {
4773 	int idx;
4774 
4775 	if (vcpu->preempted) {
4776 		if (!vcpu->arch.guest_state_protected)
4777 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4778 
4779 		/*
4780 		 * Take the srcu lock as memslots will be accessed to check the gfn
4781 		 * cache generation against the memslots generation.
4782 		 */
4783 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4784 		if (kvm_xen_msr_enabled(vcpu->kvm))
4785 			kvm_xen_runstate_set_preempted(vcpu);
4786 		else
4787 			kvm_steal_time_set_preempted(vcpu);
4788 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4789 	}
4790 
4791 	static_call(kvm_x86_vcpu_put)(vcpu);
4792 	vcpu->arch.last_host_tsc = rdtsc();
4793 }
4794 
4795 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4796 				    struct kvm_lapic_state *s)
4797 {
4798 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4799 
4800 	return kvm_apic_get_state(vcpu, s);
4801 }
4802 
4803 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4804 				    struct kvm_lapic_state *s)
4805 {
4806 	int r;
4807 
4808 	r = kvm_apic_set_state(vcpu, s);
4809 	if (r)
4810 		return r;
4811 	update_cr8_intercept(vcpu);
4812 
4813 	return 0;
4814 }
4815 
4816 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4817 {
4818 	/*
4819 	 * We can accept userspace's request for interrupt injection
4820 	 * as long as we have a place to store the interrupt number.
4821 	 * The actual injection will happen when the CPU is able to
4822 	 * deliver the interrupt.
4823 	 */
4824 	if (kvm_cpu_has_extint(vcpu))
4825 		return false;
4826 
4827 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4828 	return (!lapic_in_kernel(vcpu) ||
4829 		kvm_apic_accept_pic_intr(vcpu));
4830 }
4831 
4832 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4833 {
4834 	/*
4835 	 * Do not cause an interrupt window exit if an exception
4836 	 * is pending or an event needs reinjection; userspace
4837 	 * might want to inject the interrupt manually using KVM_SET_REGS
4838 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4839 	 * instruction boundary and with no events half-injected.
4840 	 */
4841 	return (kvm_arch_interrupt_allowed(vcpu) &&
4842 		kvm_cpu_accept_dm_intr(vcpu) &&
4843 		!kvm_event_needs_reinjection(vcpu) &&
4844 		!vcpu->arch.exception.pending);
4845 }
4846 
4847 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4848 				    struct kvm_interrupt *irq)
4849 {
4850 	if (irq->irq >= KVM_NR_INTERRUPTS)
4851 		return -EINVAL;
4852 
4853 	if (!irqchip_in_kernel(vcpu->kvm)) {
4854 		kvm_queue_interrupt(vcpu, irq->irq, false);
4855 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4856 		return 0;
4857 	}
4858 
4859 	/*
4860 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4861 	 * fail for in-kernel 8259.
4862 	 */
4863 	if (pic_in_kernel(vcpu->kvm))
4864 		return -ENXIO;
4865 
4866 	if (vcpu->arch.pending_external_vector != -1)
4867 		return -EEXIST;
4868 
4869 	vcpu->arch.pending_external_vector = irq->irq;
4870 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4871 	return 0;
4872 }
4873 
4874 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4875 {
4876 	kvm_inject_nmi(vcpu);
4877 
4878 	return 0;
4879 }
4880 
4881 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4882 {
4883 	kvm_make_request(KVM_REQ_SMI, vcpu);
4884 
4885 	return 0;
4886 }
4887 
4888 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4889 					   struct kvm_tpr_access_ctl *tac)
4890 {
4891 	if (tac->flags)
4892 		return -EINVAL;
4893 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4894 	return 0;
4895 }
4896 
4897 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4898 					u64 mcg_cap)
4899 {
4900 	int r;
4901 	unsigned bank_num = mcg_cap & 0xff, bank;
4902 
4903 	r = -EINVAL;
4904 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4905 		goto out;
4906 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4907 		goto out;
4908 	r = 0;
4909 	vcpu->arch.mcg_cap = mcg_cap;
4910 	/* Init IA32_MCG_CTL to all 1s */
4911 	if (mcg_cap & MCG_CTL_P)
4912 		vcpu->arch.mcg_ctl = ~(u64)0;
4913 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4914 	for (bank = 0; bank < bank_num; bank++) {
4915 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4916 		if (mcg_cap & MCG_CMCI_P)
4917 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4918 	}
4919 
4920 	kvm_apic_after_set_mcg_cap(vcpu);
4921 
4922 	static_call(kvm_x86_setup_mce)(vcpu);
4923 out:
4924 	return r;
4925 }
4926 
4927 /*
4928  * Validate this is an UCNA (uncorrectable no action) error by checking the
4929  * MCG_STATUS and MCi_STATUS registers:
4930  * - none of the bits for Machine Check Exceptions are set
4931  * - both the VAL (valid) and UC (uncorrectable) bits are set
4932  * MCI_STATUS_PCC - Processor Context Corrupted
4933  * MCI_STATUS_S - Signaled as a Machine Check Exception
4934  * MCI_STATUS_AR - Software recoverable Action Required
4935  */
4936 static bool is_ucna(struct kvm_x86_mce *mce)
4937 {
4938 	return	!mce->mcg_status &&
4939 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4940 		(mce->status & MCI_STATUS_VAL) &&
4941 		(mce->status & MCI_STATUS_UC);
4942 }
4943 
4944 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4945 {
4946 	u64 mcg_cap = vcpu->arch.mcg_cap;
4947 
4948 	banks[1] = mce->status;
4949 	banks[2] = mce->addr;
4950 	banks[3] = mce->misc;
4951 	vcpu->arch.mcg_status = mce->mcg_status;
4952 
4953 	if (!(mcg_cap & MCG_CMCI_P) ||
4954 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4955 		return 0;
4956 
4957 	if (lapic_in_kernel(vcpu))
4958 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4959 
4960 	return 0;
4961 }
4962 
4963 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4964 				      struct kvm_x86_mce *mce)
4965 {
4966 	u64 mcg_cap = vcpu->arch.mcg_cap;
4967 	unsigned bank_num = mcg_cap & 0xff;
4968 	u64 *banks = vcpu->arch.mce_banks;
4969 
4970 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4971 		return -EINVAL;
4972 
4973 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4974 
4975 	if (is_ucna(mce))
4976 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4977 
4978 	/*
4979 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4980 	 * reporting is disabled
4981 	 */
4982 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4983 	    vcpu->arch.mcg_ctl != ~(u64)0)
4984 		return 0;
4985 	/*
4986 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4987 	 * reporting is disabled for the bank
4988 	 */
4989 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4990 		return 0;
4991 	if (mce->status & MCI_STATUS_UC) {
4992 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4993 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4994 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4995 			return 0;
4996 		}
4997 		if (banks[1] & MCI_STATUS_VAL)
4998 			mce->status |= MCI_STATUS_OVER;
4999 		banks[2] = mce->addr;
5000 		banks[3] = mce->misc;
5001 		vcpu->arch.mcg_status = mce->mcg_status;
5002 		banks[1] = mce->status;
5003 		kvm_queue_exception(vcpu, MC_VECTOR);
5004 	} else if (!(banks[1] & MCI_STATUS_VAL)
5005 		   || !(banks[1] & MCI_STATUS_UC)) {
5006 		if (banks[1] & MCI_STATUS_VAL)
5007 			mce->status |= MCI_STATUS_OVER;
5008 		banks[2] = mce->addr;
5009 		banks[3] = mce->misc;
5010 		banks[1] = mce->status;
5011 	} else
5012 		banks[1] |= MCI_STATUS_OVER;
5013 	return 0;
5014 }
5015 
5016 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5017 					       struct kvm_vcpu_events *events)
5018 {
5019 	process_nmi(vcpu);
5020 
5021 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5022 		process_smi(vcpu);
5023 
5024 	/*
5025 	 * In guest mode, payload delivery should be deferred,
5026 	 * so that the L1 hypervisor can intercept #PF before
5027 	 * CR2 is modified (or intercept #DB before DR6 is
5028 	 * modified under nVMX). Unless the per-VM capability,
5029 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
5030 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
5031 	 * opportunistically defer the exception payload, deliver it if the
5032 	 * capability hasn't been requested before processing a
5033 	 * KVM_GET_VCPU_EVENTS.
5034 	 */
5035 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5036 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
5037 		kvm_deliver_exception_payload(vcpu);
5038 
5039 	/*
5040 	 * The API doesn't provide the instruction length for software
5041 	 * exceptions, so don't report them. As long as the guest RIP
5042 	 * isn't advanced, we should expect to encounter the exception
5043 	 * again.
5044 	 */
5045 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
5046 		events->exception.injected = 0;
5047 		events->exception.pending = 0;
5048 	} else {
5049 		events->exception.injected = vcpu->arch.exception.injected;
5050 		events->exception.pending = vcpu->arch.exception.pending;
5051 		/*
5052 		 * For ABI compatibility, deliberately conflate
5053 		 * pending and injected exceptions when
5054 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5055 		 */
5056 		if (!vcpu->kvm->arch.exception_payload_enabled)
5057 			events->exception.injected |=
5058 				vcpu->arch.exception.pending;
5059 	}
5060 	events->exception.nr = vcpu->arch.exception.nr;
5061 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
5062 	events->exception.error_code = vcpu->arch.exception.error_code;
5063 	events->exception_has_payload = vcpu->arch.exception.has_payload;
5064 	events->exception_payload = vcpu->arch.exception.payload;
5065 
5066 	events->interrupt.injected =
5067 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5068 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5069 	events->interrupt.soft = 0;
5070 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5071 
5072 	events->nmi.injected = vcpu->arch.nmi_injected;
5073 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5074 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5075 	events->nmi.pad = 0;
5076 
5077 	events->sipi_vector = 0; /* never valid when reporting to user space */
5078 
5079 	events->smi.smm = is_smm(vcpu);
5080 	events->smi.pending = vcpu->arch.smi_pending;
5081 	events->smi.smm_inside_nmi =
5082 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5083 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5084 
5085 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5086 			 | KVM_VCPUEVENT_VALID_SHADOW
5087 			 | KVM_VCPUEVENT_VALID_SMM);
5088 	if (vcpu->kvm->arch.exception_payload_enabled)
5089 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5090 	if (vcpu->kvm->arch.triple_fault_event) {
5091 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5092 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5093 	}
5094 
5095 	memset(&events->reserved, 0, sizeof(events->reserved));
5096 }
5097 
5098 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5099 
5100 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5101 					      struct kvm_vcpu_events *events)
5102 {
5103 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5104 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5105 			      | KVM_VCPUEVENT_VALID_SHADOW
5106 			      | KVM_VCPUEVENT_VALID_SMM
5107 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5108 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5109 		return -EINVAL;
5110 
5111 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5112 		if (!vcpu->kvm->arch.exception_payload_enabled)
5113 			return -EINVAL;
5114 		if (events->exception.pending)
5115 			events->exception.injected = 0;
5116 		else
5117 			events->exception_has_payload = 0;
5118 	} else {
5119 		events->exception.pending = 0;
5120 		events->exception_has_payload = 0;
5121 	}
5122 
5123 	if ((events->exception.injected || events->exception.pending) &&
5124 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5125 		return -EINVAL;
5126 
5127 	/* INITs are latched while in SMM */
5128 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5129 	    (events->smi.smm || events->smi.pending) &&
5130 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5131 		return -EINVAL;
5132 
5133 	process_nmi(vcpu);
5134 	vcpu->arch.exception.injected = events->exception.injected;
5135 	vcpu->arch.exception.pending = events->exception.pending;
5136 	vcpu->arch.exception.nr = events->exception.nr;
5137 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5138 	vcpu->arch.exception.error_code = events->exception.error_code;
5139 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5140 	vcpu->arch.exception.payload = events->exception_payload;
5141 
5142 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5143 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5144 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5145 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5146 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5147 						events->interrupt.shadow);
5148 
5149 	vcpu->arch.nmi_injected = events->nmi.injected;
5150 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5151 		vcpu->arch.nmi_pending = events->nmi.pending;
5152 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5153 
5154 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5155 	    lapic_in_kernel(vcpu))
5156 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5157 
5158 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5159 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5160 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5161 			kvm_smm_changed(vcpu, events->smi.smm);
5162 		}
5163 
5164 		vcpu->arch.smi_pending = events->smi.pending;
5165 
5166 		if (events->smi.smm) {
5167 			if (events->smi.smm_inside_nmi)
5168 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5169 			else
5170 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5171 		}
5172 
5173 		if (lapic_in_kernel(vcpu)) {
5174 			if (events->smi.latched_init)
5175 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5176 			else
5177 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5178 		}
5179 	}
5180 
5181 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5182 		if (!vcpu->kvm->arch.triple_fault_event)
5183 			return -EINVAL;
5184 		if (events->triple_fault.pending)
5185 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5186 		else
5187 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5188 	}
5189 
5190 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5191 
5192 	return 0;
5193 }
5194 
5195 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5196 					     struct kvm_debugregs *dbgregs)
5197 {
5198 	unsigned long val;
5199 
5200 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5201 	kvm_get_dr(vcpu, 6, &val);
5202 	dbgregs->dr6 = val;
5203 	dbgregs->dr7 = vcpu->arch.dr7;
5204 	dbgregs->flags = 0;
5205 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5206 }
5207 
5208 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5209 					    struct kvm_debugregs *dbgregs)
5210 {
5211 	if (dbgregs->flags)
5212 		return -EINVAL;
5213 
5214 	if (!kvm_dr6_valid(dbgregs->dr6))
5215 		return -EINVAL;
5216 	if (!kvm_dr7_valid(dbgregs->dr7))
5217 		return -EINVAL;
5218 
5219 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5220 	kvm_update_dr0123(vcpu);
5221 	vcpu->arch.dr6 = dbgregs->dr6;
5222 	vcpu->arch.dr7 = dbgregs->dr7;
5223 	kvm_update_dr7(vcpu);
5224 
5225 	return 0;
5226 }
5227 
5228 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5229 					 struct kvm_xsave *guest_xsave)
5230 {
5231 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5232 		return;
5233 
5234 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5235 				       guest_xsave->region,
5236 				       sizeof(guest_xsave->region),
5237 				       vcpu->arch.pkru);
5238 }
5239 
5240 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5241 					  u8 *state, unsigned int size)
5242 {
5243 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5244 		return;
5245 
5246 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5247 				       state, size, vcpu->arch.pkru);
5248 }
5249 
5250 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5251 					struct kvm_xsave *guest_xsave)
5252 {
5253 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5254 		return 0;
5255 
5256 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5257 					      guest_xsave->region,
5258 					      kvm_caps.supported_xcr0,
5259 					      &vcpu->arch.pkru);
5260 }
5261 
5262 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5263 					struct kvm_xcrs *guest_xcrs)
5264 {
5265 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5266 		guest_xcrs->nr_xcrs = 0;
5267 		return;
5268 	}
5269 
5270 	guest_xcrs->nr_xcrs = 1;
5271 	guest_xcrs->flags = 0;
5272 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5273 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5274 }
5275 
5276 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5277 				       struct kvm_xcrs *guest_xcrs)
5278 {
5279 	int i, r = 0;
5280 
5281 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5282 		return -EINVAL;
5283 
5284 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5285 		return -EINVAL;
5286 
5287 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5288 		/* Only support XCR0 currently */
5289 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5290 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5291 				guest_xcrs->xcrs[i].value);
5292 			break;
5293 		}
5294 	if (r)
5295 		r = -EINVAL;
5296 	return r;
5297 }
5298 
5299 /*
5300  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5301  * stopped by the hypervisor.  This function will be called from the host only.
5302  * EINVAL is returned when the host attempts to set the flag for a guest that
5303  * does not support pv clocks.
5304  */
5305 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5306 {
5307 	if (!vcpu->arch.pv_time.active)
5308 		return -EINVAL;
5309 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5310 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5311 	return 0;
5312 }
5313 
5314 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5315 				 struct kvm_device_attr *attr)
5316 {
5317 	int r;
5318 
5319 	switch (attr->attr) {
5320 	case KVM_VCPU_TSC_OFFSET:
5321 		r = 0;
5322 		break;
5323 	default:
5324 		r = -ENXIO;
5325 	}
5326 
5327 	return r;
5328 }
5329 
5330 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5331 				 struct kvm_device_attr *attr)
5332 {
5333 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5334 	int r;
5335 
5336 	if (IS_ERR(uaddr))
5337 		return PTR_ERR(uaddr);
5338 
5339 	switch (attr->attr) {
5340 	case KVM_VCPU_TSC_OFFSET:
5341 		r = -EFAULT;
5342 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5343 			break;
5344 		r = 0;
5345 		break;
5346 	default:
5347 		r = -ENXIO;
5348 	}
5349 
5350 	return r;
5351 }
5352 
5353 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5354 				 struct kvm_device_attr *attr)
5355 {
5356 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5357 	struct kvm *kvm = vcpu->kvm;
5358 	int r;
5359 
5360 	if (IS_ERR(uaddr))
5361 		return PTR_ERR(uaddr);
5362 
5363 	switch (attr->attr) {
5364 	case KVM_VCPU_TSC_OFFSET: {
5365 		u64 offset, tsc, ns;
5366 		unsigned long flags;
5367 		bool matched;
5368 
5369 		r = -EFAULT;
5370 		if (get_user(offset, uaddr))
5371 			break;
5372 
5373 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5374 
5375 		matched = (vcpu->arch.virtual_tsc_khz &&
5376 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5377 			   kvm->arch.last_tsc_offset == offset);
5378 
5379 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5380 		ns = get_kvmclock_base_ns();
5381 
5382 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5383 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5384 
5385 		r = 0;
5386 		break;
5387 	}
5388 	default:
5389 		r = -ENXIO;
5390 	}
5391 
5392 	return r;
5393 }
5394 
5395 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5396 				      unsigned int ioctl,
5397 				      void __user *argp)
5398 {
5399 	struct kvm_device_attr attr;
5400 	int r;
5401 
5402 	if (copy_from_user(&attr, argp, sizeof(attr)))
5403 		return -EFAULT;
5404 
5405 	if (attr.group != KVM_VCPU_TSC_CTRL)
5406 		return -ENXIO;
5407 
5408 	switch (ioctl) {
5409 	case KVM_HAS_DEVICE_ATTR:
5410 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5411 		break;
5412 	case KVM_GET_DEVICE_ATTR:
5413 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5414 		break;
5415 	case KVM_SET_DEVICE_ATTR:
5416 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5417 		break;
5418 	}
5419 
5420 	return r;
5421 }
5422 
5423 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5424 				     struct kvm_enable_cap *cap)
5425 {
5426 	int r;
5427 	uint16_t vmcs_version;
5428 	void __user *user_ptr;
5429 
5430 	if (cap->flags)
5431 		return -EINVAL;
5432 
5433 	switch (cap->cap) {
5434 	case KVM_CAP_HYPERV_SYNIC2:
5435 		if (cap->args[0])
5436 			return -EINVAL;
5437 		fallthrough;
5438 
5439 	case KVM_CAP_HYPERV_SYNIC:
5440 		if (!irqchip_in_kernel(vcpu->kvm))
5441 			return -EINVAL;
5442 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5443 					     KVM_CAP_HYPERV_SYNIC2);
5444 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5445 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5446 			return -ENOTTY;
5447 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5448 		if (!r) {
5449 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5450 			if (copy_to_user(user_ptr, &vmcs_version,
5451 					 sizeof(vmcs_version)))
5452 				r = -EFAULT;
5453 		}
5454 		return r;
5455 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5456 		if (!kvm_x86_ops.enable_direct_tlbflush)
5457 			return -ENOTTY;
5458 
5459 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5460 
5461 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5462 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5463 
5464 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5465 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5466 		if (vcpu->arch.pv_cpuid.enforce)
5467 			kvm_update_pv_runtime(vcpu);
5468 
5469 		return 0;
5470 	default:
5471 		return -EINVAL;
5472 	}
5473 }
5474 
5475 long kvm_arch_vcpu_ioctl(struct file *filp,
5476 			 unsigned int ioctl, unsigned long arg)
5477 {
5478 	struct kvm_vcpu *vcpu = filp->private_data;
5479 	void __user *argp = (void __user *)arg;
5480 	int r;
5481 	union {
5482 		struct kvm_sregs2 *sregs2;
5483 		struct kvm_lapic_state *lapic;
5484 		struct kvm_xsave *xsave;
5485 		struct kvm_xcrs *xcrs;
5486 		void *buffer;
5487 	} u;
5488 
5489 	vcpu_load(vcpu);
5490 
5491 	u.buffer = NULL;
5492 	switch (ioctl) {
5493 	case KVM_GET_LAPIC: {
5494 		r = -EINVAL;
5495 		if (!lapic_in_kernel(vcpu))
5496 			goto out;
5497 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5498 				GFP_KERNEL_ACCOUNT);
5499 
5500 		r = -ENOMEM;
5501 		if (!u.lapic)
5502 			goto out;
5503 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5504 		if (r)
5505 			goto out;
5506 		r = -EFAULT;
5507 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5508 			goto out;
5509 		r = 0;
5510 		break;
5511 	}
5512 	case KVM_SET_LAPIC: {
5513 		r = -EINVAL;
5514 		if (!lapic_in_kernel(vcpu))
5515 			goto out;
5516 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5517 		if (IS_ERR(u.lapic)) {
5518 			r = PTR_ERR(u.lapic);
5519 			goto out_nofree;
5520 		}
5521 
5522 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5523 		break;
5524 	}
5525 	case KVM_INTERRUPT: {
5526 		struct kvm_interrupt irq;
5527 
5528 		r = -EFAULT;
5529 		if (copy_from_user(&irq, argp, sizeof(irq)))
5530 			goto out;
5531 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5532 		break;
5533 	}
5534 	case KVM_NMI: {
5535 		r = kvm_vcpu_ioctl_nmi(vcpu);
5536 		break;
5537 	}
5538 	case KVM_SMI: {
5539 		r = kvm_vcpu_ioctl_smi(vcpu);
5540 		break;
5541 	}
5542 	case KVM_SET_CPUID: {
5543 		struct kvm_cpuid __user *cpuid_arg = argp;
5544 		struct kvm_cpuid cpuid;
5545 
5546 		r = -EFAULT;
5547 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5548 			goto out;
5549 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5550 		break;
5551 	}
5552 	case KVM_SET_CPUID2: {
5553 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5554 		struct kvm_cpuid2 cpuid;
5555 
5556 		r = -EFAULT;
5557 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5558 			goto out;
5559 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5560 					      cpuid_arg->entries);
5561 		break;
5562 	}
5563 	case KVM_GET_CPUID2: {
5564 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5565 		struct kvm_cpuid2 cpuid;
5566 
5567 		r = -EFAULT;
5568 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5569 			goto out;
5570 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5571 					      cpuid_arg->entries);
5572 		if (r)
5573 			goto out;
5574 		r = -EFAULT;
5575 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5576 			goto out;
5577 		r = 0;
5578 		break;
5579 	}
5580 	case KVM_GET_MSRS: {
5581 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5582 		r = msr_io(vcpu, argp, do_get_msr, 1);
5583 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5584 		break;
5585 	}
5586 	case KVM_SET_MSRS: {
5587 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5588 		r = msr_io(vcpu, argp, do_set_msr, 0);
5589 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5590 		break;
5591 	}
5592 	case KVM_TPR_ACCESS_REPORTING: {
5593 		struct kvm_tpr_access_ctl tac;
5594 
5595 		r = -EFAULT;
5596 		if (copy_from_user(&tac, argp, sizeof(tac)))
5597 			goto out;
5598 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5599 		if (r)
5600 			goto out;
5601 		r = -EFAULT;
5602 		if (copy_to_user(argp, &tac, sizeof(tac)))
5603 			goto out;
5604 		r = 0;
5605 		break;
5606 	};
5607 	case KVM_SET_VAPIC_ADDR: {
5608 		struct kvm_vapic_addr va;
5609 		int idx;
5610 
5611 		r = -EINVAL;
5612 		if (!lapic_in_kernel(vcpu))
5613 			goto out;
5614 		r = -EFAULT;
5615 		if (copy_from_user(&va, argp, sizeof(va)))
5616 			goto out;
5617 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5618 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5619 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5620 		break;
5621 	}
5622 	case KVM_X86_SETUP_MCE: {
5623 		u64 mcg_cap;
5624 
5625 		r = -EFAULT;
5626 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5627 			goto out;
5628 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5629 		break;
5630 	}
5631 	case KVM_X86_SET_MCE: {
5632 		struct kvm_x86_mce mce;
5633 
5634 		r = -EFAULT;
5635 		if (copy_from_user(&mce, argp, sizeof(mce)))
5636 			goto out;
5637 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5638 		break;
5639 	}
5640 	case KVM_GET_VCPU_EVENTS: {
5641 		struct kvm_vcpu_events events;
5642 
5643 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5644 
5645 		r = -EFAULT;
5646 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5647 			break;
5648 		r = 0;
5649 		break;
5650 	}
5651 	case KVM_SET_VCPU_EVENTS: {
5652 		struct kvm_vcpu_events events;
5653 
5654 		r = -EFAULT;
5655 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5656 			break;
5657 
5658 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5659 		break;
5660 	}
5661 	case KVM_GET_DEBUGREGS: {
5662 		struct kvm_debugregs dbgregs;
5663 
5664 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5665 
5666 		r = -EFAULT;
5667 		if (copy_to_user(argp, &dbgregs,
5668 				 sizeof(struct kvm_debugregs)))
5669 			break;
5670 		r = 0;
5671 		break;
5672 	}
5673 	case KVM_SET_DEBUGREGS: {
5674 		struct kvm_debugregs dbgregs;
5675 
5676 		r = -EFAULT;
5677 		if (copy_from_user(&dbgregs, argp,
5678 				   sizeof(struct kvm_debugregs)))
5679 			break;
5680 
5681 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5682 		break;
5683 	}
5684 	case KVM_GET_XSAVE: {
5685 		r = -EINVAL;
5686 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5687 			break;
5688 
5689 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5690 		r = -ENOMEM;
5691 		if (!u.xsave)
5692 			break;
5693 
5694 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5695 
5696 		r = -EFAULT;
5697 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5698 			break;
5699 		r = 0;
5700 		break;
5701 	}
5702 	case KVM_SET_XSAVE: {
5703 		int size = vcpu->arch.guest_fpu.uabi_size;
5704 
5705 		u.xsave = memdup_user(argp, size);
5706 		if (IS_ERR(u.xsave)) {
5707 			r = PTR_ERR(u.xsave);
5708 			goto out_nofree;
5709 		}
5710 
5711 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5712 		break;
5713 	}
5714 
5715 	case KVM_GET_XSAVE2: {
5716 		int size = vcpu->arch.guest_fpu.uabi_size;
5717 
5718 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5719 		r = -ENOMEM;
5720 		if (!u.xsave)
5721 			break;
5722 
5723 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5724 
5725 		r = -EFAULT;
5726 		if (copy_to_user(argp, u.xsave, size))
5727 			break;
5728 
5729 		r = 0;
5730 		break;
5731 	}
5732 
5733 	case KVM_GET_XCRS: {
5734 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5735 		r = -ENOMEM;
5736 		if (!u.xcrs)
5737 			break;
5738 
5739 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5740 
5741 		r = -EFAULT;
5742 		if (copy_to_user(argp, u.xcrs,
5743 				 sizeof(struct kvm_xcrs)))
5744 			break;
5745 		r = 0;
5746 		break;
5747 	}
5748 	case KVM_SET_XCRS: {
5749 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5750 		if (IS_ERR(u.xcrs)) {
5751 			r = PTR_ERR(u.xcrs);
5752 			goto out_nofree;
5753 		}
5754 
5755 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5756 		break;
5757 	}
5758 	case KVM_SET_TSC_KHZ: {
5759 		u32 user_tsc_khz;
5760 
5761 		r = -EINVAL;
5762 		user_tsc_khz = (u32)arg;
5763 
5764 		if (kvm_caps.has_tsc_control &&
5765 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5766 			goto out;
5767 
5768 		if (user_tsc_khz == 0)
5769 			user_tsc_khz = tsc_khz;
5770 
5771 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5772 			r = 0;
5773 
5774 		goto out;
5775 	}
5776 	case KVM_GET_TSC_KHZ: {
5777 		r = vcpu->arch.virtual_tsc_khz;
5778 		goto out;
5779 	}
5780 	case KVM_KVMCLOCK_CTRL: {
5781 		r = kvm_set_guest_paused(vcpu);
5782 		goto out;
5783 	}
5784 	case KVM_ENABLE_CAP: {
5785 		struct kvm_enable_cap cap;
5786 
5787 		r = -EFAULT;
5788 		if (copy_from_user(&cap, argp, sizeof(cap)))
5789 			goto out;
5790 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5791 		break;
5792 	}
5793 	case KVM_GET_NESTED_STATE: {
5794 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5795 		u32 user_data_size;
5796 
5797 		r = -EINVAL;
5798 		if (!kvm_x86_ops.nested_ops->get_state)
5799 			break;
5800 
5801 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5802 		r = -EFAULT;
5803 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5804 			break;
5805 
5806 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5807 						     user_data_size);
5808 		if (r < 0)
5809 			break;
5810 
5811 		if (r > user_data_size) {
5812 			if (put_user(r, &user_kvm_nested_state->size))
5813 				r = -EFAULT;
5814 			else
5815 				r = -E2BIG;
5816 			break;
5817 		}
5818 
5819 		r = 0;
5820 		break;
5821 	}
5822 	case KVM_SET_NESTED_STATE: {
5823 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5824 		struct kvm_nested_state kvm_state;
5825 		int idx;
5826 
5827 		r = -EINVAL;
5828 		if (!kvm_x86_ops.nested_ops->set_state)
5829 			break;
5830 
5831 		r = -EFAULT;
5832 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5833 			break;
5834 
5835 		r = -EINVAL;
5836 		if (kvm_state.size < sizeof(kvm_state))
5837 			break;
5838 
5839 		if (kvm_state.flags &
5840 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5841 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5842 		      | KVM_STATE_NESTED_GIF_SET))
5843 			break;
5844 
5845 		/* nested_run_pending implies guest_mode.  */
5846 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5847 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5848 			break;
5849 
5850 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5851 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5852 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5853 		break;
5854 	}
5855 	case KVM_GET_SUPPORTED_HV_CPUID:
5856 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5857 		break;
5858 #ifdef CONFIG_KVM_XEN
5859 	case KVM_XEN_VCPU_GET_ATTR: {
5860 		struct kvm_xen_vcpu_attr xva;
5861 
5862 		r = -EFAULT;
5863 		if (copy_from_user(&xva, argp, sizeof(xva)))
5864 			goto out;
5865 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5866 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5867 			r = -EFAULT;
5868 		break;
5869 	}
5870 	case KVM_XEN_VCPU_SET_ATTR: {
5871 		struct kvm_xen_vcpu_attr xva;
5872 
5873 		r = -EFAULT;
5874 		if (copy_from_user(&xva, argp, sizeof(xva)))
5875 			goto out;
5876 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5877 		break;
5878 	}
5879 #endif
5880 	case KVM_GET_SREGS2: {
5881 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5882 		r = -ENOMEM;
5883 		if (!u.sregs2)
5884 			goto out;
5885 		__get_sregs2(vcpu, u.sregs2);
5886 		r = -EFAULT;
5887 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5888 			goto out;
5889 		r = 0;
5890 		break;
5891 	}
5892 	case KVM_SET_SREGS2: {
5893 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5894 		if (IS_ERR(u.sregs2)) {
5895 			r = PTR_ERR(u.sregs2);
5896 			u.sregs2 = NULL;
5897 			goto out;
5898 		}
5899 		r = __set_sregs2(vcpu, u.sregs2);
5900 		break;
5901 	}
5902 	case KVM_HAS_DEVICE_ATTR:
5903 	case KVM_GET_DEVICE_ATTR:
5904 	case KVM_SET_DEVICE_ATTR:
5905 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5906 		break;
5907 	default:
5908 		r = -EINVAL;
5909 	}
5910 out:
5911 	kfree(u.buffer);
5912 out_nofree:
5913 	vcpu_put(vcpu);
5914 	return r;
5915 }
5916 
5917 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5918 {
5919 	return VM_FAULT_SIGBUS;
5920 }
5921 
5922 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5923 {
5924 	int ret;
5925 
5926 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5927 		return -EINVAL;
5928 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5929 	return ret;
5930 }
5931 
5932 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5933 					      u64 ident_addr)
5934 {
5935 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5936 }
5937 
5938 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5939 					 unsigned long kvm_nr_mmu_pages)
5940 {
5941 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5942 		return -EINVAL;
5943 
5944 	mutex_lock(&kvm->slots_lock);
5945 
5946 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5947 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5948 
5949 	mutex_unlock(&kvm->slots_lock);
5950 	return 0;
5951 }
5952 
5953 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5954 {
5955 	return kvm->arch.n_max_mmu_pages;
5956 }
5957 
5958 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5959 {
5960 	struct kvm_pic *pic = kvm->arch.vpic;
5961 	int r;
5962 
5963 	r = 0;
5964 	switch (chip->chip_id) {
5965 	case KVM_IRQCHIP_PIC_MASTER:
5966 		memcpy(&chip->chip.pic, &pic->pics[0],
5967 			sizeof(struct kvm_pic_state));
5968 		break;
5969 	case KVM_IRQCHIP_PIC_SLAVE:
5970 		memcpy(&chip->chip.pic, &pic->pics[1],
5971 			sizeof(struct kvm_pic_state));
5972 		break;
5973 	case KVM_IRQCHIP_IOAPIC:
5974 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5975 		break;
5976 	default:
5977 		r = -EINVAL;
5978 		break;
5979 	}
5980 	return r;
5981 }
5982 
5983 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5984 {
5985 	struct kvm_pic *pic = kvm->arch.vpic;
5986 	int r;
5987 
5988 	r = 0;
5989 	switch (chip->chip_id) {
5990 	case KVM_IRQCHIP_PIC_MASTER:
5991 		spin_lock(&pic->lock);
5992 		memcpy(&pic->pics[0], &chip->chip.pic,
5993 			sizeof(struct kvm_pic_state));
5994 		spin_unlock(&pic->lock);
5995 		break;
5996 	case KVM_IRQCHIP_PIC_SLAVE:
5997 		spin_lock(&pic->lock);
5998 		memcpy(&pic->pics[1], &chip->chip.pic,
5999 			sizeof(struct kvm_pic_state));
6000 		spin_unlock(&pic->lock);
6001 		break;
6002 	case KVM_IRQCHIP_IOAPIC:
6003 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6004 		break;
6005 	default:
6006 		r = -EINVAL;
6007 		break;
6008 	}
6009 	kvm_pic_update_irq(pic);
6010 	return r;
6011 }
6012 
6013 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6014 {
6015 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6016 
6017 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6018 
6019 	mutex_lock(&kps->lock);
6020 	memcpy(ps, &kps->channels, sizeof(*ps));
6021 	mutex_unlock(&kps->lock);
6022 	return 0;
6023 }
6024 
6025 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6026 {
6027 	int i;
6028 	struct kvm_pit *pit = kvm->arch.vpit;
6029 
6030 	mutex_lock(&pit->pit_state.lock);
6031 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6032 	for (i = 0; i < 3; i++)
6033 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6034 	mutex_unlock(&pit->pit_state.lock);
6035 	return 0;
6036 }
6037 
6038 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6039 {
6040 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6041 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6042 		sizeof(ps->channels));
6043 	ps->flags = kvm->arch.vpit->pit_state.flags;
6044 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6045 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6046 	return 0;
6047 }
6048 
6049 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6050 {
6051 	int start = 0;
6052 	int i;
6053 	u32 prev_legacy, cur_legacy;
6054 	struct kvm_pit *pit = kvm->arch.vpit;
6055 
6056 	mutex_lock(&pit->pit_state.lock);
6057 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6058 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6059 	if (!prev_legacy && cur_legacy)
6060 		start = 1;
6061 	memcpy(&pit->pit_state.channels, &ps->channels,
6062 	       sizeof(pit->pit_state.channels));
6063 	pit->pit_state.flags = ps->flags;
6064 	for (i = 0; i < 3; i++)
6065 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6066 				   start && i == 0);
6067 	mutex_unlock(&pit->pit_state.lock);
6068 	return 0;
6069 }
6070 
6071 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6072 				 struct kvm_reinject_control *control)
6073 {
6074 	struct kvm_pit *pit = kvm->arch.vpit;
6075 
6076 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6077 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6078 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6079 	 */
6080 	mutex_lock(&pit->pit_state.lock);
6081 	kvm_pit_set_reinject(pit, control->pit_reinject);
6082 	mutex_unlock(&pit->pit_state.lock);
6083 
6084 	return 0;
6085 }
6086 
6087 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6088 {
6089 
6090 	/*
6091 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6092 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6093 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6094 	 * VM-Exit.
6095 	 */
6096 	struct kvm_vcpu *vcpu;
6097 	unsigned long i;
6098 
6099 	kvm_for_each_vcpu(i, vcpu, kvm)
6100 		kvm_vcpu_kick(vcpu);
6101 }
6102 
6103 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6104 			bool line_status)
6105 {
6106 	if (!irqchip_in_kernel(kvm))
6107 		return -ENXIO;
6108 
6109 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6110 					irq_event->irq, irq_event->level,
6111 					line_status);
6112 	return 0;
6113 }
6114 
6115 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6116 			    struct kvm_enable_cap *cap)
6117 {
6118 	int r;
6119 
6120 	if (cap->flags)
6121 		return -EINVAL;
6122 
6123 	switch (cap->cap) {
6124 	case KVM_CAP_DISABLE_QUIRKS2:
6125 		r = -EINVAL;
6126 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6127 			break;
6128 		fallthrough;
6129 	case KVM_CAP_DISABLE_QUIRKS:
6130 		kvm->arch.disabled_quirks = cap->args[0];
6131 		r = 0;
6132 		break;
6133 	case KVM_CAP_SPLIT_IRQCHIP: {
6134 		mutex_lock(&kvm->lock);
6135 		r = -EINVAL;
6136 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6137 			goto split_irqchip_unlock;
6138 		r = -EEXIST;
6139 		if (irqchip_in_kernel(kvm))
6140 			goto split_irqchip_unlock;
6141 		if (kvm->created_vcpus)
6142 			goto split_irqchip_unlock;
6143 		r = kvm_setup_empty_irq_routing(kvm);
6144 		if (r)
6145 			goto split_irqchip_unlock;
6146 		/* Pairs with irqchip_in_kernel. */
6147 		smp_wmb();
6148 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6149 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6150 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6151 		r = 0;
6152 split_irqchip_unlock:
6153 		mutex_unlock(&kvm->lock);
6154 		break;
6155 	}
6156 	case KVM_CAP_X2APIC_API:
6157 		r = -EINVAL;
6158 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6159 			break;
6160 
6161 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6162 			kvm->arch.x2apic_format = true;
6163 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6164 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6165 
6166 		r = 0;
6167 		break;
6168 	case KVM_CAP_X86_DISABLE_EXITS:
6169 		r = -EINVAL;
6170 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6171 			break;
6172 
6173 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6174 			kvm_can_mwait_in_guest())
6175 			kvm->arch.mwait_in_guest = true;
6176 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6177 			kvm->arch.hlt_in_guest = true;
6178 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6179 			kvm->arch.pause_in_guest = true;
6180 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6181 			kvm->arch.cstate_in_guest = true;
6182 		r = 0;
6183 		break;
6184 	case KVM_CAP_MSR_PLATFORM_INFO:
6185 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6186 		r = 0;
6187 		break;
6188 	case KVM_CAP_EXCEPTION_PAYLOAD:
6189 		kvm->arch.exception_payload_enabled = cap->args[0];
6190 		r = 0;
6191 		break;
6192 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6193 		kvm->arch.triple_fault_event = cap->args[0];
6194 		r = 0;
6195 		break;
6196 	case KVM_CAP_X86_USER_SPACE_MSR:
6197 		r = -EINVAL;
6198 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6199 				     KVM_MSR_EXIT_REASON_UNKNOWN |
6200 				     KVM_MSR_EXIT_REASON_FILTER))
6201 			break;
6202 		kvm->arch.user_space_msr_mask = cap->args[0];
6203 		r = 0;
6204 		break;
6205 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6206 		r = -EINVAL;
6207 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6208 			break;
6209 
6210 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6211 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6212 			break;
6213 
6214 		if (kvm_caps.has_bus_lock_exit &&
6215 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6216 			kvm->arch.bus_lock_detection_enabled = true;
6217 		r = 0;
6218 		break;
6219 #ifdef CONFIG_X86_SGX_KVM
6220 	case KVM_CAP_SGX_ATTRIBUTE: {
6221 		unsigned long allowed_attributes = 0;
6222 
6223 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6224 		if (r)
6225 			break;
6226 
6227 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6228 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6229 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6230 			kvm->arch.sgx_provisioning_allowed = true;
6231 		else
6232 			r = -EINVAL;
6233 		break;
6234 	}
6235 #endif
6236 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6237 		r = -EINVAL;
6238 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6239 			break;
6240 
6241 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6242 		break;
6243 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6244 		r = -EINVAL;
6245 		if (!kvm_x86_ops.vm_move_enc_context_from)
6246 			break;
6247 
6248 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6249 		break;
6250 	case KVM_CAP_EXIT_HYPERCALL:
6251 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6252 			r = -EINVAL;
6253 			break;
6254 		}
6255 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6256 		r = 0;
6257 		break;
6258 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6259 		r = -EINVAL;
6260 		if (cap->args[0] & ~1)
6261 			break;
6262 		kvm->arch.exit_on_emulation_error = cap->args[0];
6263 		r = 0;
6264 		break;
6265 	case KVM_CAP_PMU_CAPABILITY:
6266 		r = -EINVAL;
6267 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6268 			break;
6269 
6270 		mutex_lock(&kvm->lock);
6271 		if (!kvm->created_vcpus) {
6272 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6273 			r = 0;
6274 		}
6275 		mutex_unlock(&kvm->lock);
6276 		break;
6277 	case KVM_CAP_MAX_VCPU_ID:
6278 		r = -EINVAL;
6279 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6280 			break;
6281 
6282 		mutex_lock(&kvm->lock);
6283 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6284 			r = 0;
6285 		} else if (!kvm->arch.max_vcpu_ids) {
6286 			kvm->arch.max_vcpu_ids = cap->args[0];
6287 			r = 0;
6288 		}
6289 		mutex_unlock(&kvm->lock);
6290 		break;
6291 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6292 		r = -EINVAL;
6293 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6294 			break;
6295 		if (!kvm_caps.has_notify_vmexit)
6296 			break;
6297 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6298 			break;
6299 		mutex_lock(&kvm->lock);
6300 		if (!kvm->created_vcpus) {
6301 			kvm->arch.notify_window = cap->args[0] >> 32;
6302 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6303 			r = 0;
6304 		}
6305 		mutex_unlock(&kvm->lock);
6306 		break;
6307 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6308 		r = -EINVAL;
6309 
6310 		/*
6311 		 * Since the risk of disabling NX hugepages is a guest crashing
6312 		 * the system, ensure the userspace process has permission to
6313 		 * reboot the system.
6314 		 *
6315 		 * Note that unlike the reboot() syscall, the process must have
6316 		 * this capability in the root namespace because exposing
6317 		 * /dev/kvm into a container does not limit the scope of the
6318 		 * iTLB multihit bug to that container. In other words,
6319 		 * this must use capable(), not ns_capable().
6320 		 */
6321 		if (!capable(CAP_SYS_BOOT)) {
6322 			r = -EPERM;
6323 			break;
6324 		}
6325 
6326 		if (cap->args[0])
6327 			break;
6328 
6329 		mutex_lock(&kvm->lock);
6330 		if (!kvm->created_vcpus) {
6331 			kvm->arch.disable_nx_huge_pages = true;
6332 			r = 0;
6333 		}
6334 		mutex_unlock(&kvm->lock);
6335 		break;
6336 	default:
6337 		r = -EINVAL;
6338 		break;
6339 	}
6340 	return r;
6341 }
6342 
6343 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6344 {
6345 	struct kvm_x86_msr_filter *msr_filter;
6346 
6347 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6348 	if (!msr_filter)
6349 		return NULL;
6350 
6351 	msr_filter->default_allow = default_allow;
6352 	return msr_filter;
6353 }
6354 
6355 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6356 {
6357 	u32 i;
6358 
6359 	if (!msr_filter)
6360 		return;
6361 
6362 	for (i = 0; i < msr_filter->count; i++)
6363 		kfree(msr_filter->ranges[i].bitmap);
6364 
6365 	kfree(msr_filter);
6366 }
6367 
6368 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6369 			      struct kvm_msr_filter_range *user_range)
6370 {
6371 	unsigned long *bitmap = NULL;
6372 	size_t bitmap_size;
6373 
6374 	if (!user_range->nmsrs)
6375 		return 0;
6376 
6377 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6378 		return -EINVAL;
6379 
6380 	if (!user_range->flags)
6381 		return -EINVAL;
6382 
6383 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6384 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6385 		return -EINVAL;
6386 
6387 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6388 	if (IS_ERR(bitmap))
6389 		return PTR_ERR(bitmap);
6390 
6391 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6392 		.flags = user_range->flags,
6393 		.base = user_range->base,
6394 		.nmsrs = user_range->nmsrs,
6395 		.bitmap = bitmap,
6396 	};
6397 
6398 	msr_filter->count++;
6399 	return 0;
6400 }
6401 
6402 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6403 {
6404 	struct kvm_msr_filter __user *user_msr_filter = argp;
6405 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6406 	struct kvm_msr_filter filter;
6407 	bool default_allow;
6408 	bool empty = true;
6409 	int r = 0;
6410 	u32 i;
6411 
6412 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6413 		return -EFAULT;
6414 
6415 	if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6416 		return -EINVAL;
6417 
6418 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6419 		empty &= !filter.ranges[i].nmsrs;
6420 
6421 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6422 	if (empty && !default_allow)
6423 		return -EINVAL;
6424 
6425 	new_filter = kvm_alloc_msr_filter(default_allow);
6426 	if (!new_filter)
6427 		return -ENOMEM;
6428 
6429 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6430 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6431 		if (r) {
6432 			kvm_free_msr_filter(new_filter);
6433 			return r;
6434 		}
6435 	}
6436 
6437 	mutex_lock(&kvm->lock);
6438 
6439 	/* The per-VM filter is protected by kvm->lock... */
6440 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6441 
6442 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6443 	synchronize_srcu(&kvm->srcu);
6444 
6445 	kvm_free_msr_filter(old_filter);
6446 
6447 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6448 	mutex_unlock(&kvm->lock);
6449 
6450 	return 0;
6451 }
6452 
6453 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6454 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6455 {
6456 	struct kvm_vcpu *vcpu;
6457 	unsigned long i;
6458 	int ret = 0;
6459 
6460 	mutex_lock(&kvm->lock);
6461 	kvm_for_each_vcpu(i, vcpu, kvm) {
6462 		if (!vcpu->arch.pv_time.active)
6463 			continue;
6464 
6465 		ret = kvm_set_guest_paused(vcpu);
6466 		if (ret) {
6467 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6468 				vcpu->vcpu_id, ret);
6469 			break;
6470 		}
6471 	}
6472 	mutex_unlock(&kvm->lock);
6473 
6474 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6475 }
6476 
6477 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6478 {
6479 	switch (state) {
6480 	case PM_HIBERNATION_PREPARE:
6481 	case PM_SUSPEND_PREPARE:
6482 		return kvm_arch_suspend_notifier(kvm);
6483 	}
6484 
6485 	return NOTIFY_DONE;
6486 }
6487 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6488 
6489 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6490 {
6491 	struct kvm_clock_data data = { 0 };
6492 
6493 	get_kvmclock(kvm, &data);
6494 	if (copy_to_user(argp, &data, sizeof(data)))
6495 		return -EFAULT;
6496 
6497 	return 0;
6498 }
6499 
6500 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6501 {
6502 	struct kvm_arch *ka = &kvm->arch;
6503 	struct kvm_clock_data data;
6504 	u64 now_raw_ns;
6505 
6506 	if (copy_from_user(&data, argp, sizeof(data)))
6507 		return -EFAULT;
6508 
6509 	/*
6510 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6511 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6512 	 */
6513 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6514 		return -EINVAL;
6515 
6516 	kvm_hv_request_tsc_page_update(kvm);
6517 	kvm_start_pvclock_update(kvm);
6518 	pvclock_update_vm_gtod_copy(kvm);
6519 
6520 	/*
6521 	 * This pairs with kvm_guest_time_update(): when masterclock is
6522 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6523 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6524 	 * is slightly ahead) here we risk going negative on unsigned
6525 	 * 'system_time' when 'data.clock' is very small.
6526 	 */
6527 	if (data.flags & KVM_CLOCK_REALTIME) {
6528 		u64 now_real_ns = ktime_get_real_ns();
6529 
6530 		/*
6531 		 * Avoid stepping the kvmclock backwards.
6532 		 */
6533 		if (now_real_ns > data.realtime)
6534 			data.clock += now_real_ns - data.realtime;
6535 	}
6536 
6537 	if (ka->use_master_clock)
6538 		now_raw_ns = ka->master_kernel_ns;
6539 	else
6540 		now_raw_ns = get_kvmclock_base_ns();
6541 	ka->kvmclock_offset = data.clock - now_raw_ns;
6542 	kvm_end_pvclock_update(kvm);
6543 	return 0;
6544 }
6545 
6546 long kvm_arch_vm_ioctl(struct file *filp,
6547 		       unsigned int ioctl, unsigned long arg)
6548 {
6549 	struct kvm *kvm = filp->private_data;
6550 	void __user *argp = (void __user *)arg;
6551 	int r = -ENOTTY;
6552 	/*
6553 	 * This union makes it completely explicit to gcc-3.x
6554 	 * that these two variables' stack usage should be
6555 	 * combined, not added together.
6556 	 */
6557 	union {
6558 		struct kvm_pit_state ps;
6559 		struct kvm_pit_state2 ps2;
6560 		struct kvm_pit_config pit_config;
6561 	} u;
6562 
6563 	switch (ioctl) {
6564 	case KVM_SET_TSS_ADDR:
6565 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6566 		break;
6567 	case KVM_SET_IDENTITY_MAP_ADDR: {
6568 		u64 ident_addr;
6569 
6570 		mutex_lock(&kvm->lock);
6571 		r = -EINVAL;
6572 		if (kvm->created_vcpus)
6573 			goto set_identity_unlock;
6574 		r = -EFAULT;
6575 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6576 			goto set_identity_unlock;
6577 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6578 set_identity_unlock:
6579 		mutex_unlock(&kvm->lock);
6580 		break;
6581 	}
6582 	case KVM_SET_NR_MMU_PAGES:
6583 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6584 		break;
6585 	case KVM_GET_NR_MMU_PAGES:
6586 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6587 		break;
6588 	case KVM_CREATE_IRQCHIP: {
6589 		mutex_lock(&kvm->lock);
6590 
6591 		r = -EEXIST;
6592 		if (irqchip_in_kernel(kvm))
6593 			goto create_irqchip_unlock;
6594 
6595 		r = -EINVAL;
6596 		if (kvm->created_vcpus)
6597 			goto create_irqchip_unlock;
6598 
6599 		r = kvm_pic_init(kvm);
6600 		if (r)
6601 			goto create_irqchip_unlock;
6602 
6603 		r = kvm_ioapic_init(kvm);
6604 		if (r) {
6605 			kvm_pic_destroy(kvm);
6606 			goto create_irqchip_unlock;
6607 		}
6608 
6609 		r = kvm_setup_default_irq_routing(kvm);
6610 		if (r) {
6611 			kvm_ioapic_destroy(kvm);
6612 			kvm_pic_destroy(kvm);
6613 			goto create_irqchip_unlock;
6614 		}
6615 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6616 		smp_wmb();
6617 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6618 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6619 	create_irqchip_unlock:
6620 		mutex_unlock(&kvm->lock);
6621 		break;
6622 	}
6623 	case KVM_CREATE_PIT:
6624 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6625 		goto create_pit;
6626 	case KVM_CREATE_PIT2:
6627 		r = -EFAULT;
6628 		if (copy_from_user(&u.pit_config, argp,
6629 				   sizeof(struct kvm_pit_config)))
6630 			goto out;
6631 	create_pit:
6632 		mutex_lock(&kvm->lock);
6633 		r = -EEXIST;
6634 		if (kvm->arch.vpit)
6635 			goto create_pit_unlock;
6636 		r = -ENOMEM;
6637 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6638 		if (kvm->arch.vpit)
6639 			r = 0;
6640 	create_pit_unlock:
6641 		mutex_unlock(&kvm->lock);
6642 		break;
6643 	case KVM_GET_IRQCHIP: {
6644 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6645 		struct kvm_irqchip *chip;
6646 
6647 		chip = memdup_user(argp, sizeof(*chip));
6648 		if (IS_ERR(chip)) {
6649 			r = PTR_ERR(chip);
6650 			goto out;
6651 		}
6652 
6653 		r = -ENXIO;
6654 		if (!irqchip_kernel(kvm))
6655 			goto get_irqchip_out;
6656 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6657 		if (r)
6658 			goto get_irqchip_out;
6659 		r = -EFAULT;
6660 		if (copy_to_user(argp, chip, sizeof(*chip)))
6661 			goto get_irqchip_out;
6662 		r = 0;
6663 	get_irqchip_out:
6664 		kfree(chip);
6665 		break;
6666 	}
6667 	case KVM_SET_IRQCHIP: {
6668 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6669 		struct kvm_irqchip *chip;
6670 
6671 		chip = memdup_user(argp, sizeof(*chip));
6672 		if (IS_ERR(chip)) {
6673 			r = PTR_ERR(chip);
6674 			goto out;
6675 		}
6676 
6677 		r = -ENXIO;
6678 		if (!irqchip_kernel(kvm))
6679 			goto set_irqchip_out;
6680 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6681 	set_irqchip_out:
6682 		kfree(chip);
6683 		break;
6684 	}
6685 	case KVM_GET_PIT: {
6686 		r = -EFAULT;
6687 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6688 			goto out;
6689 		r = -ENXIO;
6690 		if (!kvm->arch.vpit)
6691 			goto out;
6692 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6693 		if (r)
6694 			goto out;
6695 		r = -EFAULT;
6696 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6697 			goto out;
6698 		r = 0;
6699 		break;
6700 	}
6701 	case KVM_SET_PIT: {
6702 		r = -EFAULT;
6703 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6704 			goto out;
6705 		mutex_lock(&kvm->lock);
6706 		r = -ENXIO;
6707 		if (!kvm->arch.vpit)
6708 			goto set_pit_out;
6709 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6710 set_pit_out:
6711 		mutex_unlock(&kvm->lock);
6712 		break;
6713 	}
6714 	case KVM_GET_PIT2: {
6715 		r = -ENXIO;
6716 		if (!kvm->arch.vpit)
6717 			goto out;
6718 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6719 		if (r)
6720 			goto out;
6721 		r = -EFAULT;
6722 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6723 			goto out;
6724 		r = 0;
6725 		break;
6726 	}
6727 	case KVM_SET_PIT2: {
6728 		r = -EFAULT;
6729 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6730 			goto out;
6731 		mutex_lock(&kvm->lock);
6732 		r = -ENXIO;
6733 		if (!kvm->arch.vpit)
6734 			goto set_pit2_out;
6735 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6736 set_pit2_out:
6737 		mutex_unlock(&kvm->lock);
6738 		break;
6739 	}
6740 	case KVM_REINJECT_CONTROL: {
6741 		struct kvm_reinject_control control;
6742 		r =  -EFAULT;
6743 		if (copy_from_user(&control, argp, sizeof(control)))
6744 			goto out;
6745 		r = -ENXIO;
6746 		if (!kvm->arch.vpit)
6747 			goto out;
6748 		r = kvm_vm_ioctl_reinject(kvm, &control);
6749 		break;
6750 	}
6751 	case KVM_SET_BOOT_CPU_ID:
6752 		r = 0;
6753 		mutex_lock(&kvm->lock);
6754 		if (kvm->created_vcpus)
6755 			r = -EBUSY;
6756 		else
6757 			kvm->arch.bsp_vcpu_id = arg;
6758 		mutex_unlock(&kvm->lock);
6759 		break;
6760 #ifdef CONFIG_KVM_XEN
6761 	case KVM_XEN_HVM_CONFIG: {
6762 		struct kvm_xen_hvm_config xhc;
6763 		r = -EFAULT;
6764 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6765 			goto out;
6766 		r = kvm_xen_hvm_config(kvm, &xhc);
6767 		break;
6768 	}
6769 	case KVM_XEN_HVM_GET_ATTR: {
6770 		struct kvm_xen_hvm_attr xha;
6771 
6772 		r = -EFAULT;
6773 		if (copy_from_user(&xha, argp, sizeof(xha)))
6774 			goto out;
6775 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6776 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6777 			r = -EFAULT;
6778 		break;
6779 	}
6780 	case KVM_XEN_HVM_SET_ATTR: {
6781 		struct kvm_xen_hvm_attr xha;
6782 
6783 		r = -EFAULT;
6784 		if (copy_from_user(&xha, argp, sizeof(xha)))
6785 			goto out;
6786 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6787 		break;
6788 	}
6789 	case KVM_XEN_HVM_EVTCHN_SEND: {
6790 		struct kvm_irq_routing_xen_evtchn uxe;
6791 
6792 		r = -EFAULT;
6793 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6794 			goto out;
6795 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6796 		break;
6797 	}
6798 #endif
6799 	case KVM_SET_CLOCK:
6800 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6801 		break;
6802 	case KVM_GET_CLOCK:
6803 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6804 		break;
6805 	case KVM_SET_TSC_KHZ: {
6806 		u32 user_tsc_khz;
6807 
6808 		r = -EINVAL;
6809 		user_tsc_khz = (u32)arg;
6810 
6811 		if (kvm_caps.has_tsc_control &&
6812 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6813 			goto out;
6814 
6815 		if (user_tsc_khz == 0)
6816 			user_tsc_khz = tsc_khz;
6817 
6818 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6819 		r = 0;
6820 
6821 		goto out;
6822 	}
6823 	case KVM_GET_TSC_KHZ: {
6824 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6825 		goto out;
6826 	}
6827 	case KVM_MEMORY_ENCRYPT_OP: {
6828 		r = -ENOTTY;
6829 		if (!kvm_x86_ops.mem_enc_ioctl)
6830 			goto out;
6831 
6832 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6833 		break;
6834 	}
6835 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6836 		struct kvm_enc_region region;
6837 
6838 		r = -EFAULT;
6839 		if (copy_from_user(&region, argp, sizeof(region)))
6840 			goto out;
6841 
6842 		r = -ENOTTY;
6843 		if (!kvm_x86_ops.mem_enc_register_region)
6844 			goto out;
6845 
6846 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6847 		break;
6848 	}
6849 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6850 		struct kvm_enc_region region;
6851 
6852 		r = -EFAULT;
6853 		if (copy_from_user(&region, argp, sizeof(region)))
6854 			goto out;
6855 
6856 		r = -ENOTTY;
6857 		if (!kvm_x86_ops.mem_enc_unregister_region)
6858 			goto out;
6859 
6860 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6861 		break;
6862 	}
6863 	case KVM_HYPERV_EVENTFD: {
6864 		struct kvm_hyperv_eventfd hvevfd;
6865 
6866 		r = -EFAULT;
6867 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6868 			goto out;
6869 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6870 		break;
6871 	}
6872 	case KVM_SET_PMU_EVENT_FILTER:
6873 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6874 		break;
6875 	case KVM_X86_SET_MSR_FILTER:
6876 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6877 		break;
6878 	default:
6879 		r = -ENOTTY;
6880 	}
6881 out:
6882 	return r;
6883 }
6884 
6885 static void kvm_init_msr_list(void)
6886 {
6887 	u32 dummy[2];
6888 	unsigned i;
6889 
6890 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6891 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6892 
6893 	num_msrs_to_save = 0;
6894 	num_emulated_msrs = 0;
6895 	num_msr_based_features = 0;
6896 
6897 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6898 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6899 			continue;
6900 
6901 		/*
6902 		 * Even MSRs that are valid in the host may not be exposed
6903 		 * to the guests in some cases.
6904 		 */
6905 		switch (msrs_to_save_all[i]) {
6906 		case MSR_IA32_BNDCFGS:
6907 			if (!kvm_mpx_supported())
6908 				continue;
6909 			break;
6910 		case MSR_TSC_AUX:
6911 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6912 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6913 				continue;
6914 			break;
6915 		case MSR_IA32_UMWAIT_CONTROL:
6916 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6917 				continue;
6918 			break;
6919 		case MSR_IA32_RTIT_CTL:
6920 		case MSR_IA32_RTIT_STATUS:
6921 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6922 				continue;
6923 			break;
6924 		case MSR_IA32_RTIT_CR3_MATCH:
6925 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6926 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6927 				continue;
6928 			break;
6929 		case MSR_IA32_RTIT_OUTPUT_BASE:
6930 		case MSR_IA32_RTIT_OUTPUT_MASK:
6931 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6932 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6933 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6934 				continue;
6935 			break;
6936 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6937 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6938 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6939 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6940 				continue;
6941 			break;
6942 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6943 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6944 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6945 				continue;
6946 			break;
6947 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6948 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6949 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6950 				continue;
6951 			break;
6952 		case MSR_IA32_XFD:
6953 		case MSR_IA32_XFD_ERR:
6954 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6955 				continue;
6956 			break;
6957 		default:
6958 			break;
6959 		}
6960 
6961 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6962 	}
6963 
6964 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6965 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6966 			continue;
6967 
6968 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6969 	}
6970 
6971 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6972 		struct kvm_msr_entry msr;
6973 
6974 		msr.index = msr_based_features_all[i];
6975 		if (kvm_get_msr_feature(&msr))
6976 			continue;
6977 
6978 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6979 	}
6980 }
6981 
6982 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6983 			   const void *v)
6984 {
6985 	int handled = 0;
6986 	int n;
6987 
6988 	do {
6989 		n = min(len, 8);
6990 		if (!(lapic_in_kernel(vcpu) &&
6991 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6992 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6993 			break;
6994 		handled += n;
6995 		addr += n;
6996 		len -= n;
6997 		v += n;
6998 	} while (len);
6999 
7000 	return handled;
7001 }
7002 
7003 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7004 {
7005 	int handled = 0;
7006 	int n;
7007 
7008 	do {
7009 		n = min(len, 8);
7010 		if (!(lapic_in_kernel(vcpu) &&
7011 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7012 					 addr, n, v))
7013 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7014 			break;
7015 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7016 		handled += n;
7017 		addr += n;
7018 		len -= n;
7019 		v += n;
7020 	} while (len);
7021 
7022 	return handled;
7023 }
7024 
7025 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7026 			struct kvm_segment *var, int seg)
7027 {
7028 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7029 }
7030 
7031 void kvm_get_segment(struct kvm_vcpu *vcpu,
7032 		     struct kvm_segment *var, int seg)
7033 {
7034 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7035 }
7036 
7037 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7038 			   struct x86_exception *exception)
7039 {
7040 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7041 	gpa_t t_gpa;
7042 
7043 	BUG_ON(!mmu_is_nested(vcpu));
7044 
7045 	/* NPT walks are always user-walks */
7046 	access |= PFERR_USER_MASK;
7047 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7048 
7049 	return t_gpa;
7050 }
7051 
7052 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7053 			      struct x86_exception *exception)
7054 {
7055 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7056 
7057 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7058 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7059 }
7060 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7061 
7062  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7063 				struct x86_exception *exception)
7064 {
7065 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7066 
7067 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7068 	access |= PFERR_FETCH_MASK;
7069 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7070 }
7071 
7072 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7073 			       struct x86_exception *exception)
7074 {
7075 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7076 
7077 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7078 	access |= PFERR_WRITE_MASK;
7079 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7080 }
7081 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7082 
7083 /* uses this to access any guest's mapped memory without checking CPL */
7084 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7085 				struct x86_exception *exception)
7086 {
7087 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7088 
7089 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7090 }
7091 
7092 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7093 				      struct kvm_vcpu *vcpu, u64 access,
7094 				      struct x86_exception *exception)
7095 {
7096 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7097 	void *data = val;
7098 	int r = X86EMUL_CONTINUE;
7099 
7100 	while (bytes) {
7101 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7102 		unsigned offset = addr & (PAGE_SIZE-1);
7103 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7104 		int ret;
7105 
7106 		if (gpa == INVALID_GPA)
7107 			return X86EMUL_PROPAGATE_FAULT;
7108 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7109 					       offset, toread);
7110 		if (ret < 0) {
7111 			r = X86EMUL_IO_NEEDED;
7112 			goto out;
7113 		}
7114 
7115 		bytes -= toread;
7116 		data += toread;
7117 		addr += toread;
7118 	}
7119 out:
7120 	return r;
7121 }
7122 
7123 /* used for instruction fetching */
7124 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7125 				gva_t addr, void *val, unsigned int bytes,
7126 				struct x86_exception *exception)
7127 {
7128 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7129 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7130 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7131 	unsigned offset;
7132 	int ret;
7133 
7134 	/* Inline kvm_read_guest_virt_helper for speed.  */
7135 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7136 				    exception);
7137 	if (unlikely(gpa == INVALID_GPA))
7138 		return X86EMUL_PROPAGATE_FAULT;
7139 
7140 	offset = addr & (PAGE_SIZE-1);
7141 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7142 		bytes = (unsigned)PAGE_SIZE - offset;
7143 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7144 				       offset, bytes);
7145 	if (unlikely(ret < 0))
7146 		return X86EMUL_IO_NEEDED;
7147 
7148 	return X86EMUL_CONTINUE;
7149 }
7150 
7151 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7152 			       gva_t addr, void *val, unsigned int bytes,
7153 			       struct x86_exception *exception)
7154 {
7155 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7156 
7157 	/*
7158 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7159 	 * is returned, but our callers are not ready for that and they blindly
7160 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7161 	 * uninitialized kernel stack memory into cr2 and error code.
7162 	 */
7163 	memset(exception, 0, sizeof(*exception));
7164 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7165 					  exception);
7166 }
7167 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7168 
7169 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7170 			     gva_t addr, void *val, unsigned int bytes,
7171 			     struct x86_exception *exception, bool system)
7172 {
7173 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7174 	u64 access = 0;
7175 
7176 	if (system)
7177 		access |= PFERR_IMPLICIT_ACCESS;
7178 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7179 		access |= PFERR_USER_MASK;
7180 
7181 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7182 }
7183 
7184 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7185 		unsigned long addr, void *val, unsigned int bytes)
7186 {
7187 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7188 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7189 
7190 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7191 }
7192 
7193 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7194 				      struct kvm_vcpu *vcpu, u64 access,
7195 				      struct x86_exception *exception)
7196 {
7197 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7198 	void *data = val;
7199 	int r = X86EMUL_CONTINUE;
7200 
7201 	while (bytes) {
7202 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7203 		unsigned offset = addr & (PAGE_SIZE-1);
7204 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7205 		int ret;
7206 
7207 		if (gpa == INVALID_GPA)
7208 			return X86EMUL_PROPAGATE_FAULT;
7209 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7210 		if (ret < 0) {
7211 			r = X86EMUL_IO_NEEDED;
7212 			goto out;
7213 		}
7214 
7215 		bytes -= towrite;
7216 		data += towrite;
7217 		addr += towrite;
7218 	}
7219 out:
7220 	return r;
7221 }
7222 
7223 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7224 			      unsigned int bytes, struct x86_exception *exception,
7225 			      bool system)
7226 {
7227 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228 	u64 access = PFERR_WRITE_MASK;
7229 
7230 	if (system)
7231 		access |= PFERR_IMPLICIT_ACCESS;
7232 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7233 		access |= PFERR_USER_MASK;
7234 
7235 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7236 					   access, exception);
7237 }
7238 
7239 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7240 				unsigned int bytes, struct x86_exception *exception)
7241 {
7242 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7243 	vcpu->arch.l1tf_flush_l1d = true;
7244 
7245 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7246 					   PFERR_WRITE_MASK, exception);
7247 }
7248 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7249 
7250 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7251 				void *insn, int insn_len)
7252 {
7253 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7254 							    insn, insn_len);
7255 }
7256 
7257 int handle_ud(struct kvm_vcpu *vcpu)
7258 {
7259 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7260 	int emul_type = EMULTYPE_TRAP_UD;
7261 	char sig[5]; /* ud2; .ascii "kvm" */
7262 	struct x86_exception e;
7263 
7264 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7265 		return 1;
7266 
7267 	if (force_emulation_prefix &&
7268 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7269 				sig, sizeof(sig), &e) == 0 &&
7270 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7271 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7272 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7273 	}
7274 
7275 	return kvm_emulate_instruction(vcpu, emul_type);
7276 }
7277 EXPORT_SYMBOL_GPL(handle_ud);
7278 
7279 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7280 			    gpa_t gpa, bool write)
7281 {
7282 	/* For APIC access vmexit */
7283 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7284 		return 1;
7285 
7286 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7287 		trace_vcpu_match_mmio(gva, gpa, write, true);
7288 		return 1;
7289 	}
7290 
7291 	return 0;
7292 }
7293 
7294 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7295 				gpa_t *gpa, struct x86_exception *exception,
7296 				bool write)
7297 {
7298 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7299 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7300 		| (write ? PFERR_WRITE_MASK : 0);
7301 
7302 	/*
7303 	 * currently PKRU is only applied to ept enabled guest so
7304 	 * there is no pkey in EPT page table for L1 guest or EPT
7305 	 * shadow page table for L2 guest.
7306 	 */
7307 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7308 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7309 			      vcpu->arch.mmio_access, 0, access))) {
7310 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7311 					(gva & (PAGE_SIZE - 1));
7312 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7313 		return 1;
7314 	}
7315 
7316 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7317 
7318 	if (*gpa == INVALID_GPA)
7319 		return -1;
7320 
7321 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7322 }
7323 
7324 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7325 			const void *val, int bytes)
7326 {
7327 	int ret;
7328 
7329 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7330 	if (ret < 0)
7331 		return 0;
7332 	kvm_page_track_write(vcpu, gpa, val, bytes);
7333 	return 1;
7334 }
7335 
7336 struct read_write_emulator_ops {
7337 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7338 				  int bytes);
7339 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7340 				  void *val, int bytes);
7341 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7342 			       int bytes, void *val);
7343 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7344 				    void *val, int bytes);
7345 	bool write;
7346 };
7347 
7348 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7349 {
7350 	if (vcpu->mmio_read_completed) {
7351 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7352 			       vcpu->mmio_fragments[0].gpa, val);
7353 		vcpu->mmio_read_completed = 0;
7354 		return 1;
7355 	}
7356 
7357 	return 0;
7358 }
7359 
7360 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7361 			void *val, int bytes)
7362 {
7363 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7364 }
7365 
7366 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7367 			 void *val, int bytes)
7368 {
7369 	return emulator_write_phys(vcpu, gpa, val, bytes);
7370 }
7371 
7372 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7373 {
7374 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7375 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7376 }
7377 
7378 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7379 			  void *val, int bytes)
7380 {
7381 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7382 	return X86EMUL_IO_NEEDED;
7383 }
7384 
7385 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7386 			   void *val, int bytes)
7387 {
7388 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7389 
7390 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7391 	return X86EMUL_CONTINUE;
7392 }
7393 
7394 static const struct read_write_emulator_ops read_emultor = {
7395 	.read_write_prepare = read_prepare,
7396 	.read_write_emulate = read_emulate,
7397 	.read_write_mmio = vcpu_mmio_read,
7398 	.read_write_exit_mmio = read_exit_mmio,
7399 };
7400 
7401 static const struct read_write_emulator_ops write_emultor = {
7402 	.read_write_emulate = write_emulate,
7403 	.read_write_mmio = write_mmio,
7404 	.read_write_exit_mmio = write_exit_mmio,
7405 	.write = true,
7406 };
7407 
7408 static int emulator_read_write_onepage(unsigned long addr, void *val,
7409 				       unsigned int bytes,
7410 				       struct x86_exception *exception,
7411 				       struct kvm_vcpu *vcpu,
7412 				       const struct read_write_emulator_ops *ops)
7413 {
7414 	gpa_t gpa;
7415 	int handled, ret;
7416 	bool write = ops->write;
7417 	struct kvm_mmio_fragment *frag;
7418 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7419 
7420 	/*
7421 	 * If the exit was due to a NPF we may already have a GPA.
7422 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7423 	 * Note, this cannot be used on string operations since string
7424 	 * operation using rep will only have the initial GPA from the NPF
7425 	 * occurred.
7426 	 */
7427 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7428 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7429 		gpa = ctxt->gpa_val;
7430 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7431 	} else {
7432 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7433 		if (ret < 0)
7434 			return X86EMUL_PROPAGATE_FAULT;
7435 	}
7436 
7437 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7438 		return X86EMUL_CONTINUE;
7439 
7440 	/*
7441 	 * Is this MMIO handled locally?
7442 	 */
7443 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7444 	if (handled == bytes)
7445 		return X86EMUL_CONTINUE;
7446 
7447 	gpa += handled;
7448 	bytes -= handled;
7449 	val += handled;
7450 
7451 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7452 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7453 	frag->gpa = gpa;
7454 	frag->data = val;
7455 	frag->len = bytes;
7456 	return X86EMUL_CONTINUE;
7457 }
7458 
7459 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7460 			unsigned long addr,
7461 			void *val, unsigned int bytes,
7462 			struct x86_exception *exception,
7463 			const struct read_write_emulator_ops *ops)
7464 {
7465 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7466 	gpa_t gpa;
7467 	int rc;
7468 
7469 	if (ops->read_write_prepare &&
7470 		  ops->read_write_prepare(vcpu, val, bytes))
7471 		return X86EMUL_CONTINUE;
7472 
7473 	vcpu->mmio_nr_fragments = 0;
7474 
7475 	/* Crossing a page boundary? */
7476 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7477 		int now;
7478 
7479 		now = -addr & ~PAGE_MASK;
7480 		rc = emulator_read_write_onepage(addr, val, now, exception,
7481 						 vcpu, ops);
7482 
7483 		if (rc != X86EMUL_CONTINUE)
7484 			return rc;
7485 		addr += now;
7486 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7487 			addr = (u32)addr;
7488 		val += now;
7489 		bytes -= now;
7490 	}
7491 
7492 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7493 					 vcpu, ops);
7494 	if (rc != X86EMUL_CONTINUE)
7495 		return rc;
7496 
7497 	if (!vcpu->mmio_nr_fragments)
7498 		return rc;
7499 
7500 	gpa = vcpu->mmio_fragments[0].gpa;
7501 
7502 	vcpu->mmio_needed = 1;
7503 	vcpu->mmio_cur_fragment = 0;
7504 
7505 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7506 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7507 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7508 	vcpu->run->mmio.phys_addr = gpa;
7509 
7510 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7511 }
7512 
7513 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7514 				  unsigned long addr,
7515 				  void *val,
7516 				  unsigned int bytes,
7517 				  struct x86_exception *exception)
7518 {
7519 	return emulator_read_write(ctxt, addr, val, bytes,
7520 				   exception, &read_emultor);
7521 }
7522 
7523 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7524 			    unsigned long addr,
7525 			    const void *val,
7526 			    unsigned int bytes,
7527 			    struct x86_exception *exception)
7528 {
7529 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7530 				   exception, &write_emultor);
7531 }
7532 
7533 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7534 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7535 
7536 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7537 				     unsigned long addr,
7538 				     const void *old,
7539 				     const void *new,
7540 				     unsigned int bytes,
7541 				     struct x86_exception *exception)
7542 {
7543 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7544 	u64 page_line_mask;
7545 	unsigned long hva;
7546 	gpa_t gpa;
7547 	int r;
7548 
7549 	/* guests cmpxchg8b have to be emulated atomically */
7550 	if (bytes > 8 || (bytes & (bytes - 1)))
7551 		goto emul_write;
7552 
7553 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7554 
7555 	if (gpa == INVALID_GPA ||
7556 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7557 		goto emul_write;
7558 
7559 	/*
7560 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7561 	 * enabled in the host and the access splits a cache line.
7562 	 */
7563 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7564 		page_line_mask = ~(cache_line_size() - 1);
7565 	else
7566 		page_line_mask = PAGE_MASK;
7567 
7568 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7569 		goto emul_write;
7570 
7571 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7572 	if (kvm_is_error_hva(hva))
7573 		goto emul_write;
7574 
7575 	hva += offset_in_page(gpa);
7576 
7577 	switch (bytes) {
7578 	case 1:
7579 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7580 		break;
7581 	case 2:
7582 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7583 		break;
7584 	case 4:
7585 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7586 		break;
7587 	case 8:
7588 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7589 		break;
7590 	default:
7591 		BUG();
7592 	}
7593 
7594 	if (r < 0)
7595 		return X86EMUL_UNHANDLEABLE;
7596 	if (r)
7597 		return X86EMUL_CMPXCHG_FAILED;
7598 
7599 	kvm_page_track_write(vcpu, gpa, new, bytes);
7600 
7601 	return X86EMUL_CONTINUE;
7602 
7603 emul_write:
7604 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7605 
7606 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7607 }
7608 
7609 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7610 			       unsigned short port, void *data,
7611 			       unsigned int count, bool in)
7612 {
7613 	unsigned i;
7614 	int r;
7615 
7616 	WARN_ON_ONCE(vcpu->arch.pio.count);
7617 	for (i = 0; i < count; i++) {
7618 		if (in)
7619 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7620 		else
7621 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7622 
7623 		if (r) {
7624 			if (i == 0)
7625 				goto userspace_io;
7626 
7627 			/*
7628 			 * Userspace must have unregistered the device while PIO
7629 			 * was running.  Drop writes / read as 0.
7630 			 */
7631 			if (in)
7632 				memset(data, 0, size * (count - i));
7633 			break;
7634 		}
7635 
7636 		data += size;
7637 	}
7638 	return 1;
7639 
7640 userspace_io:
7641 	vcpu->arch.pio.port = port;
7642 	vcpu->arch.pio.in = in;
7643 	vcpu->arch.pio.count = count;
7644 	vcpu->arch.pio.size = size;
7645 
7646 	if (in)
7647 		memset(vcpu->arch.pio_data, 0, size * count);
7648 	else
7649 		memcpy(vcpu->arch.pio_data, data, size * count);
7650 
7651 	vcpu->run->exit_reason = KVM_EXIT_IO;
7652 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7653 	vcpu->run->io.size = size;
7654 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7655 	vcpu->run->io.count = count;
7656 	vcpu->run->io.port = port;
7657 	return 0;
7658 }
7659 
7660 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7661       			   unsigned short port, void *val, unsigned int count)
7662 {
7663 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7664 	if (r)
7665 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7666 
7667 	return r;
7668 }
7669 
7670 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7671 {
7672 	int size = vcpu->arch.pio.size;
7673 	unsigned int count = vcpu->arch.pio.count;
7674 	memcpy(val, vcpu->arch.pio_data, size * count);
7675 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7676 	vcpu->arch.pio.count = 0;
7677 }
7678 
7679 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7680 				    int size, unsigned short port, void *val,
7681 				    unsigned int count)
7682 {
7683 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7684 	if (vcpu->arch.pio.count) {
7685 		/*
7686 		 * Complete a previous iteration that required userspace I/O.
7687 		 * Note, @count isn't guaranteed to match pio.count as userspace
7688 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7689 		 * shenanigans as KVM doesn't support modifying the rep count,
7690 		 * and the emulator ensures @count doesn't overflow the buffer.
7691 		 */
7692 		complete_emulator_pio_in(vcpu, val);
7693 		return 1;
7694 	}
7695 
7696 	return emulator_pio_in(vcpu, size, port, val, count);
7697 }
7698 
7699 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7700 			    unsigned short port, const void *val,
7701 			    unsigned int count)
7702 {
7703 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7704 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7705 }
7706 
7707 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7708 				     int size, unsigned short port,
7709 				     const void *val, unsigned int count)
7710 {
7711 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7712 }
7713 
7714 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7715 {
7716 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7717 }
7718 
7719 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7720 {
7721 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7722 }
7723 
7724 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7725 {
7726 	if (!need_emulate_wbinvd(vcpu))
7727 		return X86EMUL_CONTINUE;
7728 
7729 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7730 		int cpu = get_cpu();
7731 
7732 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7733 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7734 				wbinvd_ipi, NULL, 1);
7735 		put_cpu();
7736 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7737 	} else
7738 		wbinvd();
7739 	return X86EMUL_CONTINUE;
7740 }
7741 
7742 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7743 {
7744 	kvm_emulate_wbinvd_noskip(vcpu);
7745 	return kvm_skip_emulated_instruction(vcpu);
7746 }
7747 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7748 
7749 
7750 
7751 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7752 {
7753 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7754 }
7755 
7756 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7757 			    unsigned long *dest)
7758 {
7759 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7760 }
7761 
7762 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7763 			   unsigned long value)
7764 {
7765 
7766 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7767 }
7768 
7769 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7770 {
7771 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7772 }
7773 
7774 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7775 {
7776 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7777 	unsigned long value;
7778 
7779 	switch (cr) {
7780 	case 0:
7781 		value = kvm_read_cr0(vcpu);
7782 		break;
7783 	case 2:
7784 		value = vcpu->arch.cr2;
7785 		break;
7786 	case 3:
7787 		value = kvm_read_cr3(vcpu);
7788 		break;
7789 	case 4:
7790 		value = kvm_read_cr4(vcpu);
7791 		break;
7792 	case 8:
7793 		value = kvm_get_cr8(vcpu);
7794 		break;
7795 	default:
7796 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7797 		return 0;
7798 	}
7799 
7800 	return value;
7801 }
7802 
7803 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7804 {
7805 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7806 	int res = 0;
7807 
7808 	switch (cr) {
7809 	case 0:
7810 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7811 		break;
7812 	case 2:
7813 		vcpu->arch.cr2 = val;
7814 		break;
7815 	case 3:
7816 		res = kvm_set_cr3(vcpu, val);
7817 		break;
7818 	case 4:
7819 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7820 		break;
7821 	case 8:
7822 		res = kvm_set_cr8(vcpu, val);
7823 		break;
7824 	default:
7825 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7826 		res = -1;
7827 	}
7828 
7829 	return res;
7830 }
7831 
7832 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7833 {
7834 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7835 }
7836 
7837 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7838 {
7839 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7840 }
7841 
7842 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7843 {
7844 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7845 }
7846 
7847 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7848 {
7849 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7850 }
7851 
7852 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7853 {
7854 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7855 }
7856 
7857 static unsigned long emulator_get_cached_segment_base(
7858 	struct x86_emulate_ctxt *ctxt, int seg)
7859 {
7860 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7861 }
7862 
7863 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7864 				 struct desc_struct *desc, u32 *base3,
7865 				 int seg)
7866 {
7867 	struct kvm_segment var;
7868 
7869 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7870 	*selector = var.selector;
7871 
7872 	if (var.unusable) {
7873 		memset(desc, 0, sizeof(*desc));
7874 		if (base3)
7875 			*base3 = 0;
7876 		return false;
7877 	}
7878 
7879 	if (var.g)
7880 		var.limit >>= 12;
7881 	set_desc_limit(desc, var.limit);
7882 	set_desc_base(desc, (unsigned long)var.base);
7883 #ifdef CONFIG_X86_64
7884 	if (base3)
7885 		*base3 = var.base >> 32;
7886 #endif
7887 	desc->type = var.type;
7888 	desc->s = var.s;
7889 	desc->dpl = var.dpl;
7890 	desc->p = var.present;
7891 	desc->avl = var.avl;
7892 	desc->l = var.l;
7893 	desc->d = var.db;
7894 	desc->g = var.g;
7895 
7896 	return true;
7897 }
7898 
7899 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7900 				 struct desc_struct *desc, u32 base3,
7901 				 int seg)
7902 {
7903 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7904 	struct kvm_segment var;
7905 
7906 	var.selector = selector;
7907 	var.base = get_desc_base(desc);
7908 #ifdef CONFIG_X86_64
7909 	var.base |= ((u64)base3) << 32;
7910 #endif
7911 	var.limit = get_desc_limit(desc);
7912 	if (desc->g)
7913 		var.limit = (var.limit << 12) | 0xfff;
7914 	var.type = desc->type;
7915 	var.dpl = desc->dpl;
7916 	var.db = desc->d;
7917 	var.s = desc->s;
7918 	var.l = desc->l;
7919 	var.g = desc->g;
7920 	var.avl = desc->avl;
7921 	var.present = desc->p;
7922 	var.unusable = !var.present;
7923 	var.padding = 0;
7924 
7925 	kvm_set_segment(vcpu, &var, seg);
7926 	return;
7927 }
7928 
7929 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7930 					u32 msr_index, u64 *pdata)
7931 {
7932 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7933 	int r;
7934 
7935 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7936 
7937 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7938 				    complete_emulated_rdmsr, r)) {
7939 		/* Bounce to user space */
7940 		return X86EMUL_IO_NEEDED;
7941 	}
7942 
7943 	return r;
7944 }
7945 
7946 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7947 					u32 msr_index, u64 data)
7948 {
7949 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7950 	int r;
7951 
7952 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7953 
7954 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7955 				    complete_emulated_msr_access, r)) {
7956 		/* Bounce to user space */
7957 		return X86EMUL_IO_NEEDED;
7958 	}
7959 
7960 	return r;
7961 }
7962 
7963 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7964 			    u32 msr_index, u64 *pdata)
7965 {
7966 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7967 }
7968 
7969 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7970 			    u32 msr_index, u64 data)
7971 {
7972 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7973 }
7974 
7975 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7976 {
7977 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7978 
7979 	return vcpu->arch.smbase;
7980 }
7981 
7982 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7983 {
7984 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7985 
7986 	vcpu->arch.smbase = smbase;
7987 }
7988 
7989 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7990 			      u32 pmc)
7991 {
7992 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7993 		return 0;
7994 	return -EINVAL;
7995 }
7996 
7997 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7998 			     u32 pmc, u64 *pdata)
7999 {
8000 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8001 }
8002 
8003 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8004 {
8005 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8006 }
8007 
8008 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8009 			      struct x86_instruction_info *info,
8010 			      enum x86_intercept_stage stage)
8011 {
8012 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8013 					    &ctxt->exception);
8014 }
8015 
8016 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8017 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8018 			      bool exact_only)
8019 {
8020 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8021 }
8022 
8023 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8024 {
8025 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8026 }
8027 
8028 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8029 {
8030 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8031 }
8032 
8033 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8034 {
8035 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8036 }
8037 
8038 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8039 {
8040 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8041 }
8042 
8043 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8044 {
8045 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8046 }
8047 
8048 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8049 {
8050 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8051 }
8052 
8053 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8054 {
8055 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8056 }
8057 
8058 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8059 {
8060 	return emul_to_vcpu(ctxt)->arch.hflags;
8061 }
8062 
8063 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8064 {
8065 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8066 
8067 	kvm_smm_changed(vcpu, false);
8068 }
8069 
8070 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8071 				  const char *smstate)
8072 {
8073 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8074 }
8075 
8076 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8077 {
8078 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8079 }
8080 
8081 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8082 {
8083 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8084 }
8085 
8086 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8087 {
8088 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8089 
8090 	if (!kvm->vm_bugged)
8091 		kvm_vm_bugged(kvm);
8092 }
8093 
8094 static const struct x86_emulate_ops emulate_ops = {
8095 	.vm_bugged           = emulator_vm_bugged,
8096 	.read_gpr            = emulator_read_gpr,
8097 	.write_gpr           = emulator_write_gpr,
8098 	.read_std            = emulator_read_std,
8099 	.write_std           = emulator_write_std,
8100 	.read_phys           = kvm_read_guest_phys_system,
8101 	.fetch               = kvm_fetch_guest_virt,
8102 	.read_emulated       = emulator_read_emulated,
8103 	.write_emulated      = emulator_write_emulated,
8104 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8105 	.invlpg              = emulator_invlpg,
8106 	.pio_in_emulated     = emulator_pio_in_emulated,
8107 	.pio_out_emulated    = emulator_pio_out_emulated,
8108 	.get_segment         = emulator_get_segment,
8109 	.set_segment         = emulator_set_segment,
8110 	.get_cached_segment_base = emulator_get_cached_segment_base,
8111 	.get_gdt             = emulator_get_gdt,
8112 	.get_idt	     = emulator_get_idt,
8113 	.set_gdt             = emulator_set_gdt,
8114 	.set_idt	     = emulator_set_idt,
8115 	.get_cr              = emulator_get_cr,
8116 	.set_cr              = emulator_set_cr,
8117 	.cpl                 = emulator_get_cpl,
8118 	.get_dr              = emulator_get_dr,
8119 	.set_dr              = emulator_set_dr,
8120 	.get_smbase          = emulator_get_smbase,
8121 	.set_smbase          = emulator_set_smbase,
8122 	.set_msr_with_filter = emulator_set_msr_with_filter,
8123 	.get_msr_with_filter = emulator_get_msr_with_filter,
8124 	.set_msr             = emulator_set_msr,
8125 	.get_msr             = emulator_get_msr,
8126 	.check_pmc	     = emulator_check_pmc,
8127 	.read_pmc            = emulator_read_pmc,
8128 	.halt                = emulator_halt,
8129 	.wbinvd              = emulator_wbinvd,
8130 	.fix_hypercall       = emulator_fix_hypercall,
8131 	.intercept           = emulator_intercept,
8132 	.get_cpuid           = emulator_get_cpuid,
8133 	.guest_has_long_mode = emulator_guest_has_long_mode,
8134 	.guest_has_movbe     = emulator_guest_has_movbe,
8135 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8136 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8137 	.set_nmi_mask        = emulator_set_nmi_mask,
8138 	.get_hflags          = emulator_get_hflags,
8139 	.exiting_smm         = emulator_exiting_smm,
8140 	.leave_smm           = emulator_leave_smm,
8141 	.triple_fault        = emulator_triple_fault,
8142 	.set_xcr             = emulator_set_xcr,
8143 };
8144 
8145 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8146 {
8147 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8148 	/*
8149 	 * an sti; sti; sequence only disable interrupts for the first
8150 	 * instruction. So, if the last instruction, be it emulated or
8151 	 * not, left the system with the INT_STI flag enabled, it
8152 	 * means that the last instruction is an sti. We should not
8153 	 * leave the flag on in this case. The same goes for mov ss
8154 	 */
8155 	if (int_shadow & mask)
8156 		mask = 0;
8157 	if (unlikely(int_shadow || mask)) {
8158 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8159 		if (!mask)
8160 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8161 	}
8162 }
8163 
8164 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
8165 {
8166 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8167 	if (ctxt->exception.vector == PF_VECTOR)
8168 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8169 
8170 	if (ctxt->exception.error_code_valid)
8171 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8172 				      ctxt->exception.error_code);
8173 	else
8174 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8175 	return false;
8176 }
8177 
8178 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8179 {
8180 	struct x86_emulate_ctxt *ctxt;
8181 
8182 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8183 	if (!ctxt) {
8184 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8185 		return NULL;
8186 	}
8187 
8188 	ctxt->vcpu = vcpu;
8189 	ctxt->ops = &emulate_ops;
8190 	vcpu->arch.emulate_ctxt = ctxt;
8191 
8192 	return ctxt;
8193 }
8194 
8195 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8196 {
8197 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8198 	int cs_db, cs_l;
8199 
8200 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8201 
8202 	ctxt->gpa_available = false;
8203 	ctxt->eflags = kvm_get_rflags(vcpu);
8204 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8205 
8206 	ctxt->eip = kvm_rip_read(vcpu);
8207 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8208 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8209 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8210 		     cs_db				? X86EMUL_MODE_PROT32 :
8211 							  X86EMUL_MODE_PROT16;
8212 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8213 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8214 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8215 
8216 	ctxt->interruptibility = 0;
8217 	ctxt->have_exception = false;
8218 	ctxt->exception.vector = -1;
8219 	ctxt->perm_ok = false;
8220 
8221 	init_decode_cache(ctxt);
8222 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8223 }
8224 
8225 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8226 {
8227 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8228 	int ret;
8229 
8230 	init_emulate_ctxt(vcpu);
8231 
8232 	ctxt->op_bytes = 2;
8233 	ctxt->ad_bytes = 2;
8234 	ctxt->_eip = ctxt->eip + inc_eip;
8235 	ret = emulate_int_real(ctxt, irq);
8236 
8237 	if (ret != X86EMUL_CONTINUE) {
8238 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8239 	} else {
8240 		ctxt->eip = ctxt->_eip;
8241 		kvm_rip_write(vcpu, ctxt->eip);
8242 		kvm_set_rflags(vcpu, ctxt->eflags);
8243 	}
8244 }
8245 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8246 
8247 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8248 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8249 {
8250 	struct kvm_run *run = vcpu->run;
8251 	u64 info[5];
8252 	u8 info_start;
8253 
8254 	/*
8255 	 * Zero the whole array used to retrieve the exit info, as casting to
8256 	 * u32 for select entries will leave some chunks uninitialized.
8257 	 */
8258 	memset(&info, 0, sizeof(info));
8259 
8260 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8261 					   &info[2], (u32 *)&info[3],
8262 					   (u32 *)&info[4]);
8263 
8264 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8265 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8266 
8267 	/*
8268 	 * There's currently space for 13 entries, but 5 are used for the exit
8269 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8270 	 * when expanding kvm_run.emulation_failure in the future.
8271 	 */
8272 	if (WARN_ON_ONCE(ndata > 4))
8273 		ndata = 4;
8274 
8275 	/* Always include the flags as a 'data' entry. */
8276 	info_start = 1;
8277 	run->emulation_failure.flags = 0;
8278 
8279 	if (insn_size) {
8280 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8281 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8282 		info_start += 2;
8283 		run->emulation_failure.flags |=
8284 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8285 		run->emulation_failure.insn_size = insn_size;
8286 		memset(run->emulation_failure.insn_bytes, 0x90,
8287 		       sizeof(run->emulation_failure.insn_bytes));
8288 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8289 	}
8290 
8291 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8292 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8293 	       ndata * sizeof(data[0]));
8294 
8295 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8296 }
8297 
8298 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8299 {
8300 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8301 
8302 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8303 				       ctxt->fetch.end - ctxt->fetch.data);
8304 }
8305 
8306 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8307 					  u8 ndata)
8308 {
8309 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8310 }
8311 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8312 
8313 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8314 {
8315 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8316 }
8317 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8318 
8319 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8320 {
8321 	struct kvm *kvm = vcpu->kvm;
8322 
8323 	++vcpu->stat.insn_emulation_fail;
8324 	trace_kvm_emulate_insn_failed(vcpu);
8325 
8326 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8327 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8328 		return 1;
8329 	}
8330 
8331 	if (kvm->arch.exit_on_emulation_error ||
8332 	    (emulation_type & EMULTYPE_SKIP)) {
8333 		prepare_emulation_ctxt_failure_exit(vcpu);
8334 		return 0;
8335 	}
8336 
8337 	kvm_queue_exception(vcpu, UD_VECTOR);
8338 
8339 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8340 		prepare_emulation_ctxt_failure_exit(vcpu);
8341 		return 0;
8342 	}
8343 
8344 	return 1;
8345 }
8346 
8347 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8348 				  bool write_fault_to_shadow_pgtable,
8349 				  int emulation_type)
8350 {
8351 	gpa_t gpa = cr2_or_gpa;
8352 	kvm_pfn_t pfn;
8353 
8354 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8355 		return false;
8356 
8357 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8358 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8359 		return false;
8360 
8361 	if (!vcpu->arch.mmu->root_role.direct) {
8362 		/*
8363 		 * Write permission should be allowed since only
8364 		 * write access need to be emulated.
8365 		 */
8366 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8367 
8368 		/*
8369 		 * If the mapping is invalid in guest, let cpu retry
8370 		 * it to generate fault.
8371 		 */
8372 		if (gpa == INVALID_GPA)
8373 			return true;
8374 	}
8375 
8376 	/*
8377 	 * Do not retry the unhandleable instruction if it faults on the
8378 	 * readonly host memory, otherwise it will goto a infinite loop:
8379 	 * retry instruction -> write #PF -> emulation fail -> retry
8380 	 * instruction -> ...
8381 	 */
8382 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8383 
8384 	/*
8385 	 * If the instruction failed on the error pfn, it can not be fixed,
8386 	 * report the error to userspace.
8387 	 */
8388 	if (is_error_noslot_pfn(pfn))
8389 		return false;
8390 
8391 	kvm_release_pfn_clean(pfn);
8392 
8393 	/* The instructions are well-emulated on direct mmu. */
8394 	if (vcpu->arch.mmu->root_role.direct) {
8395 		unsigned int indirect_shadow_pages;
8396 
8397 		write_lock(&vcpu->kvm->mmu_lock);
8398 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8399 		write_unlock(&vcpu->kvm->mmu_lock);
8400 
8401 		if (indirect_shadow_pages)
8402 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8403 
8404 		return true;
8405 	}
8406 
8407 	/*
8408 	 * if emulation was due to access to shadowed page table
8409 	 * and it failed try to unshadow page and re-enter the
8410 	 * guest to let CPU execute the instruction.
8411 	 */
8412 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8413 
8414 	/*
8415 	 * If the access faults on its page table, it can not
8416 	 * be fixed by unprotecting shadow page and it should
8417 	 * be reported to userspace.
8418 	 */
8419 	return !write_fault_to_shadow_pgtable;
8420 }
8421 
8422 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8423 			      gpa_t cr2_or_gpa,  int emulation_type)
8424 {
8425 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8426 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8427 
8428 	last_retry_eip = vcpu->arch.last_retry_eip;
8429 	last_retry_addr = vcpu->arch.last_retry_addr;
8430 
8431 	/*
8432 	 * If the emulation is caused by #PF and it is non-page_table
8433 	 * writing instruction, it means the VM-EXIT is caused by shadow
8434 	 * page protected, we can zap the shadow page and retry this
8435 	 * instruction directly.
8436 	 *
8437 	 * Note: if the guest uses a non-page-table modifying instruction
8438 	 * on the PDE that points to the instruction, then we will unmap
8439 	 * the instruction and go to an infinite loop. So, we cache the
8440 	 * last retried eip and the last fault address, if we meet the eip
8441 	 * and the address again, we can break out of the potential infinite
8442 	 * loop.
8443 	 */
8444 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8445 
8446 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8447 		return false;
8448 
8449 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8450 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8451 		return false;
8452 
8453 	if (x86_page_table_writing_insn(ctxt))
8454 		return false;
8455 
8456 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8457 		return false;
8458 
8459 	vcpu->arch.last_retry_eip = ctxt->eip;
8460 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8461 
8462 	if (!vcpu->arch.mmu->root_role.direct)
8463 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8464 
8465 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8466 
8467 	return true;
8468 }
8469 
8470 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8471 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8472 
8473 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8474 {
8475 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8476 
8477 	if (entering_smm) {
8478 		vcpu->arch.hflags |= HF_SMM_MASK;
8479 	} else {
8480 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8481 
8482 		/* Process a latched INIT or SMI, if any.  */
8483 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8484 
8485 		/*
8486 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8487 		 * on SMM exit we still need to reload them from
8488 		 * guest memory
8489 		 */
8490 		vcpu->arch.pdptrs_from_userspace = false;
8491 	}
8492 
8493 	kvm_mmu_reset_context(vcpu);
8494 }
8495 
8496 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8497 				unsigned long *db)
8498 {
8499 	u32 dr6 = 0;
8500 	int i;
8501 	u32 enable, rwlen;
8502 
8503 	enable = dr7;
8504 	rwlen = dr7 >> 16;
8505 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8506 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8507 			dr6 |= (1 << i);
8508 	return dr6;
8509 }
8510 
8511 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8512 {
8513 	struct kvm_run *kvm_run = vcpu->run;
8514 
8515 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8516 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8517 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8518 		kvm_run->debug.arch.exception = DB_VECTOR;
8519 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8520 		return 0;
8521 	}
8522 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8523 	return 1;
8524 }
8525 
8526 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8527 {
8528 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8529 	int r;
8530 
8531 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8532 	if (unlikely(!r))
8533 		return 0;
8534 
8535 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8536 
8537 	/*
8538 	 * rflags is the old, "raw" value of the flags.  The new value has
8539 	 * not been saved yet.
8540 	 *
8541 	 * This is correct even for TF set by the guest, because "the
8542 	 * processor will not generate this exception after the instruction
8543 	 * that sets the TF flag".
8544 	 */
8545 	if (unlikely(rflags & X86_EFLAGS_TF))
8546 		r = kvm_vcpu_do_singlestep(vcpu);
8547 	return r;
8548 }
8549 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8550 
8551 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8552 {
8553 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8554 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8555 		struct kvm_run *kvm_run = vcpu->run;
8556 		unsigned long eip = kvm_get_linear_rip(vcpu);
8557 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8558 					   vcpu->arch.guest_debug_dr7,
8559 					   vcpu->arch.eff_db);
8560 
8561 		if (dr6 != 0) {
8562 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8563 			kvm_run->debug.arch.pc = eip;
8564 			kvm_run->debug.arch.exception = DB_VECTOR;
8565 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8566 			*r = 0;
8567 			return true;
8568 		}
8569 	}
8570 
8571 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8572 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8573 		unsigned long eip = kvm_get_linear_rip(vcpu);
8574 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8575 					   vcpu->arch.dr7,
8576 					   vcpu->arch.db);
8577 
8578 		if (dr6 != 0) {
8579 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8580 			*r = 1;
8581 			return true;
8582 		}
8583 	}
8584 
8585 	return false;
8586 }
8587 
8588 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8589 {
8590 	switch (ctxt->opcode_len) {
8591 	case 1:
8592 		switch (ctxt->b) {
8593 		case 0xe4:	/* IN */
8594 		case 0xe5:
8595 		case 0xec:
8596 		case 0xed:
8597 		case 0xe6:	/* OUT */
8598 		case 0xe7:
8599 		case 0xee:
8600 		case 0xef:
8601 		case 0x6c:	/* INS */
8602 		case 0x6d:
8603 		case 0x6e:	/* OUTS */
8604 		case 0x6f:
8605 			return true;
8606 		}
8607 		break;
8608 	case 2:
8609 		switch (ctxt->b) {
8610 		case 0x33:	/* RDPMC */
8611 			return true;
8612 		}
8613 		break;
8614 	}
8615 
8616 	return false;
8617 }
8618 
8619 /*
8620  * Decode an instruction for emulation.  The caller is responsible for handling
8621  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8622  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8623  * code breakpoints have higher priority and thus have already been done by
8624  * hardware.
8625  *
8626  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8627  *     response to a machine check.
8628  */
8629 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8630 				    void *insn, int insn_len)
8631 {
8632 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8633 	int r;
8634 
8635 	init_emulate_ctxt(vcpu);
8636 
8637 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8638 
8639 	trace_kvm_emulate_insn_start(vcpu);
8640 	++vcpu->stat.insn_emulation;
8641 
8642 	return r;
8643 }
8644 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8645 
8646 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8647 			    int emulation_type, void *insn, int insn_len)
8648 {
8649 	int r;
8650 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8651 	bool writeback = true;
8652 	bool write_fault_to_spt;
8653 
8654 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8655 		return 1;
8656 
8657 	vcpu->arch.l1tf_flush_l1d = true;
8658 
8659 	/*
8660 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8661 	 * never reused.
8662 	 */
8663 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8664 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8665 
8666 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8667 		kvm_clear_exception_queue(vcpu);
8668 
8669 		/*
8670 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8671 		 * are fault-like and are higher priority than any faults on
8672 		 * the code fetch itself.
8673 		 */
8674 		if (!(emulation_type & EMULTYPE_SKIP) &&
8675 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8676 			return r;
8677 
8678 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8679 						    insn, insn_len);
8680 		if (r != EMULATION_OK)  {
8681 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8682 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8683 				kvm_queue_exception(vcpu, UD_VECTOR);
8684 				return 1;
8685 			}
8686 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8687 						  write_fault_to_spt,
8688 						  emulation_type))
8689 				return 1;
8690 			if (ctxt->have_exception) {
8691 				/*
8692 				 * #UD should result in just EMULATION_FAILED, and trap-like
8693 				 * exception should not be encountered during decode.
8694 				 */
8695 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8696 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8697 				inject_emulated_exception(vcpu);
8698 				return 1;
8699 			}
8700 			return handle_emulation_failure(vcpu, emulation_type);
8701 		}
8702 	}
8703 
8704 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8705 	    !is_vmware_backdoor_opcode(ctxt)) {
8706 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8707 		return 1;
8708 	}
8709 
8710 	/*
8711 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8712 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8713 	 * The caller is responsible for updating interruptibility state and
8714 	 * injecting single-step #DBs.
8715 	 */
8716 	if (emulation_type & EMULTYPE_SKIP) {
8717 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8718 			ctxt->eip = (u32)ctxt->_eip;
8719 		else
8720 			ctxt->eip = ctxt->_eip;
8721 
8722 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8723 			r = 1;
8724 			goto writeback;
8725 		}
8726 
8727 		kvm_rip_write(vcpu, ctxt->eip);
8728 		if (ctxt->eflags & X86_EFLAGS_RF)
8729 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8730 		return 1;
8731 	}
8732 
8733 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8734 		return 1;
8735 
8736 	/* this is needed for vmware backdoor interface to work since it
8737 	   changes registers values  during IO operation */
8738 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8739 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8740 		emulator_invalidate_register_cache(ctxt);
8741 	}
8742 
8743 restart:
8744 	if (emulation_type & EMULTYPE_PF) {
8745 		/* Save the faulting GPA (cr2) in the address field */
8746 		ctxt->exception.address = cr2_or_gpa;
8747 
8748 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8749 		if (vcpu->arch.mmu->root_role.direct) {
8750 			ctxt->gpa_available = true;
8751 			ctxt->gpa_val = cr2_or_gpa;
8752 		}
8753 	} else {
8754 		/* Sanitize the address out of an abundance of paranoia. */
8755 		ctxt->exception.address = 0;
8756 	}
8757 
8758 	r = x86_emulate_insn(ctxt);
8759 
8760 	if (r == EMULATION_INTERCEPTED)
8761 		return 1;
8762 
8763 	if (r == EMULATION_FAILED) {
8764 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8765 					emulation_type))
8766 			return 1;
8767 
8768 		return handle_emulation_failure(vcpu, emulation_type);
8769 	}
8770 
8771 	if (ctxt->have_exception) {
8772 		r = 1;
8773 		if (inject_emulated_exception(vcpu))
8774 			return r;
8775 	} else if (vcpu->arch.pio.count) {
8776 		if (!vcpu->arch.pio.in) {
8777 			/* FIXME: return into emulator if single-stepping.  */
8778 			vcpu->arch.pio.count = 0;
8779 		} else {
8780 			writeback = false;
8781 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8782 		}
8783 		r = 0;
8784 	} else if (vcpu->mmio_needed) {
8785 		++vcpu->stat.mmio_exits;
8786 
8787 		if (!vcpu->mmio_is_write)
8788 			writeback = false;
8789 		r = 0;
8790 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8791 	} else if (vcpu->arch.complete_userspace_io) {
8792 		writeback = false;
8793 		r = 0;
8794 	} else if (r == EMULATION_RESTART)
8795 		goto restart;
8796 	else
8797 		r = 1;
8798 
8799 writeback:
8800 	if (writeback) {
8801 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8802 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8803 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8804 		if (!ctxt->have_exception ||
8805 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8806 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8807 			if (ctxt->is_branch)
8808 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8809 			kvm_rip_write(vcpu, ctxt->eip);
8810 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8811 				r = kvm_vcpu_do_singlestep(vcpu);
8812 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8813 			__kvm_set_rflags(vcpu, ctxt->eflags);
8814 		}
8815 
8816 		/*
8817 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8818 		 * do nothing, and it will be requested again as soon as
8819 		 * the shadow expires.  But we still need to check here,
8820 		 * because POPF has no interrupt shadow.
8821 		 */
8822 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8823 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8824 	} else
8825 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8826 
8827 	return r;
8828 }
8829 
8830 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8831 {
8832 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8833 }
8834 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8835 
8836 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8837 					void *insn, int insn_len)
8838 {
8839 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8840 }
8841 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8842 
8843 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8844 {
8845 	vcpu->arch.pio.count = 0;
8846 	return 1;
8847 }
8848 
8849 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8850 {
8851 	vcpu->arch.pio.count = 0;
8852 
8853 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8854 		return 1;
8855 
8856 	return kvm_skip_emulated_instruction(vcpu);
8857 }
8858 
8859 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8860 			    unsigned short port)
8861 {
8862 	unsigned long val = kvm_rax_read(vcpu);
8863 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8864 
8865 	if (ret)
8866 		return ret;
8867 
8868 	/*
8869 	 * Workaround userspace that relies on old KVM behavior of %rip being
8870 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8871 	 */
8872 	if (port == 0x7e &&
8873 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8874 		vcpu->arch.complete_userspace_io =
8875 			complete_fast_pio_out_port_0x7e;
8876 		kvm_skip_emulated_instruction(vcpu);
8877 	} else {
8878 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8879 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8880 	}
8881 	return 0;
8882 }
8883 
8884 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8885 {
8886 	unsigned long val;
8887 
8888 	/* We should only ever be called with arch.pio.count equal to 1 */
8889 	BUG_ON(vcpu->arch.pio.count != 1);
8890 
8891 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8892 		vcpu->arch.pio.count = 0;
8893 		return 1;
8894 	}
8895 
8896 	/* For size less than 4 we merge, else we zero extend */
8897 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8898 
8899 	complete_emulator_pio_in(vcpu, &val);
8900 	kvm_rax_write(vcpu, val);
8901 
8902 	return kvm_skip_emulated_instruction(vcpu);
8903 }
8904 
8905 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8906 			   unsigned short port)
8907 {
8908 	unsigned long val;
8909 	int ret;
8910 
8911 	/* For size less than 4 we merge, else we zero extend */
8912 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8913 
8914 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8915 	if (ret) {
8916 		kvm_rax_write(vcpu, val);
8917 		return ret;
8918 	}
8919 
8920 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8921 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8922 
8923 	return 0;
8924 }
8925 
8926 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8927 {
8928 	int ret;
8929 
8930 	if (in)
8931 		ret = kvm_fast_pio_in(vcpu, size, port);
8932 	else
8933 		ret = kvm_fast_pio_out(vcpu, size, port);
8934 	return ret && kvm_skip_emulated_instruction(vcpu);
8935 }
8936 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8937 
8938 static int kvmclock_cpu_down_prep(unsigned int cpu)
8939 {
8940 	__this_cpu_write(cpu_tsc_khz, 0);
8941 	return 0;
8942 }
8943 
8944 static void tsc_khz_changed(void *data)
8945 {
8946 	struct cpufreq_freqs *freq = data;
8947 	unsigned long khz = 0;
8948 
8949 	if (data)
8950 		khz = freq->new;
8951 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8952 		khz = cpufreq_quick_get(raw_smp_processor_id());
8953 	if (!khz)
8954 		khz = tsc_khz;
8955 	__this_cpu_write(cpu_tsc_khz, khz);
8956 }
8957 
8958 #ifdef CONFIG_X86_64
8959 static void kvm_hyperv_tsc_notifier(void)
8960 {
8961 	struct kvm *kvm;
8962 	int cpu;
8963 
8964 	mutex_lock(&kvm_lock);
8965 	list_for_each_entry(kvm, &vm_list, vm_list)
8966 		kvm_make_mclock_inprogress_request(kvm);
8967 
8968 	/* no guest entries from this point */
8969 	hyperv_stop_tsc_emulation();
8970 
8971 	/* TSC frequency always matches when on Hyper-V */
8972 	for_each_present_cpu(cpu)
8973 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8974 	kvm_caps.max_guest_tsc_khz = tsc_khz;
8975 
8976 	list_for_each_entry(kvm, &vm_list, vm_list) {
8977 		__kvm_start_pvclock_update(kvm);
8978 		pvclock_update_vm_gtod_copy(kvm);
8979 		kvm_end_pvclock_update(kvm);
8980 	}
8981 
8982 	mutex_unlock(&kvm_lock);
8983 }
8984 #endif
8985 
8986 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8987 {
8988 	struct kvm *kvm;
8989 	struct kvm_vcpu *vcpu;
8990 	int send_ipi = 0;
8991 	unsigned long i;
8992 
8993 	/*
8994 	 * We allow guests to temporarily run on slowing clocks,
8995 	 * provided we notify them after, or to run on accelerating
8996 	 * clocks, provided we notify them before.  Thus time never
8997 	 * goes backwards.
8998 	 *
8999 	 * However, we have a problem.  We can't atomically update
9000 	 * the frequency of a given CPU from this function; it is
9001 	 * merely a notifier, which can be called from any CPU.
9002 	 * Changing the TSC frequency at arbitrary points in time
9003 	 * requires a recomputation of local variables related to
9004 	 * the TSC for each VCPU.  We must flag these local variables
9005 	 * to be updated and be sure the update takes place with the
9006 	 * new frequency before any guests proceed.
9007 	 *
9008 	 * Unfortunately, the combination of hotplug CPU and frequency
9009 	 * change creates an intractable locking scenario; the order
9010 	 * of when these callouts happen is undefined with respect to
9011 	 * CPU hotplug, and they can race with each other.  As such,
9012 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9013 	 * undefined; you can actually have a CPU frequency change take
9014 	 * place in between the computation of X and the setting of the
9015 	 * variable.  To protect against this problem, all updates of
9016 	 * the per_cpu tsc_khz variable are done in an interrupt
9017 	 * protected IPI, and all callers wishing to update the value
9018 	 * must wait for a synchronous IPI to complete (which is trivial
9019 	 * if the caller is on the CPU already).  This establishes the
9020 	 * necessary total order on variable updates.
9021 	 *
9022 	 * Note that because a guest time update may take place
9023 	 * anytime after the setting of the VCPU's request bit, the
9024 	 * correct TSC value must be set before the request.  However,
9025 	 * to ensure the update actually makes it to any guest which
9026 	 * starts running in hardware virtualization between the set
9027 	 * and the acquisition of the spinlock, we must also ping the
9028 	 * CPU after setting the request bit.
9029 	 *
9030 	 */
9031 
9032 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9033 
9034 	mutex_lock(&kvm_lock);
9035 	list_for_each_entry(kvm, &vm_list, vm_list) {
9036 		kvm_for_each_vcpu(i, vcpu, kvm) {
9037 			if (vcpu->cpu != cpu)
9038 				continue;
9039 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9040 			if (vcpu->cpu != raw_smp_processor_id())
9041 				send_ipi = 1;
9042 		}
9043 	}
9044 	mutex_unlock(&kvm_lock);
9045 
9046 	if (freq->old < freq->new && send_ipi) {
9047 		/*
9048 		 * We upscale the frequency.  Must make the guest
9049 		 * doesn't see old kvmclock values while running with
9050 		 * the new frequency, otherwise we risk the guest sees
9051 		 * time go backwards.
9052 		 *
9053 		 * In case we update the frequency for another cpu
9054 		 * (which might be in guest context) send an interrupt
9055 		 * to kick the cpu out of guest context.  Next time
9056 		 * guest context is entered kvmclock will be updated,
9057 		 * so the guest will not see stale values.
9058 		 */
9059 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9060 	}
9061 }
9062 
9063 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9064 				     void *data)
9065 {
9066 	struct cpufreq_freqs *freq = data;
9067 	int cpu;
9068 
9069 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9070 		return 0;
9071 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9072 		return 0;
9073 
9074 	for_each_cpu(cpu, freq->policy->cpus)
9075 		__kvmclock_cpufreq_notifier(freq, cpu);
9076 
9077 	return 0;
9078 }
9079 
9080 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9081 	.notifier_call  = kvmclock_cpufreq_notifier
9082 };
9083 
9084 static int kvmclock_cpu_online(unsigned int cpu)
9085 {
9086 	tsc_khz_changed(NULL);
9087 	return 0;
9088 }
9089 
9090 static void kvm_timer_init(void)
9091 {
9092 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9093 		max_tsc_khz = tsc_khz;
9094 
9095 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9096 			struct cpufreq_policy *policy;
9097 			int cpu;
9098 
9099 			cpu = get_cpu();
9100 			policy = cpufreq_cpu_get(cpu);
9101 			if (policy) {
9102 				if (policy->cpuinfo.max_freq)
9103 					max_tsc_khz = policy->cpuinfo.max_freq;
9104 				cpufreq_cpu_put(policy);
9105 			}
9106 			put_cpu();
9107 		}
9108 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9109 					  CPUFREQ_TRANSITION_NOTIFIER);
9110 	}
9111 
9112 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9113 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9114 }
9115 
9116 #ifdef CONFIG_X86_64
9117 static void pvclock_gtod_update_fn(struct work_struct *work)
9118 {
9119 	struct kvm *kvm;
9120 	struct kvm_vcpu *vcpu;
9121 	unsigned long i;
9122 
9123 	mutex_lock(&kvm_lock);
9124 	list_for_each_entry(kvm, &vm_list, vm_list)
9125 		kvm_for_each_vcpu(i, vcpu, kvm)
9126 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9127 	atomic_set(&kvm_guest_has_master_clock, 0);
9128 	mutex_unlock(&kvm_lock);
9129 }
9130 
9131 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9132 
9133 /*
9134  * Indirection to move queue_work() out of the tk_core.seq write held
9135  * region to prevent possible deadlocks against time accessors which
9136  * are invoked with work related locks held.
9137  */
9138 static void pvclock_irq_work_fn(struct irq_work *w)
9139 {
9140 	queue_work(system_long_wq, &pvclock_gtod_work);
9141 }
9142 
9143 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9144 
9145 /*
9146  * Notification about pvclock gtod data update.
9147  */
9148 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9149 			       void *priv)
9150 {
9151 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9152 	struct timekeeper *tk = priv;
9153 
9154 	update_pvclock_gtod(tk);
9155 
9156 	/*
9157 	 * Disable master clock if host does not trust, or does not use,
9158 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9159 	 * this is invoked with tk_core.seq write held.
9160 	 */
9161 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9162 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9163 		irq_work_queue(&pvclock_irq_work);
9164 	return 0;
9165 }
9166 
9167 static struct notifier_block pvclock_gtod_notifier = {
9168 	.notifier_call = pvclock_gtod_notify,
9169 };
9170 #endif
9171 
9172 int kvm_arch_init(void *opaque)
9173 {
9174 	struct kvm_x86_init_ops *ops = opaque;
9175 	u64 host_pat;
9176 	int r;
9177 
9178 	if (kvm_x86_ops.hardware_enable) {
9179 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9180 		return -EEXIST;
9181 	}
9182 
9183 	if (!ops->cpu_has_kvm_support()) {
9184 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9185 				   ops->runtime_ops->name);
9186 		return -EOPNOTSUPP;
9187 	}
9188 	if (ops->disabled_by_bios()) {
9189 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9190 				   ops->runtime_ops->name);
9191 		return -EOPNOTSUPP;
9192 	}
9193 
9194 	/*
9195 	 * KVM explicitly assumes that the guest has an FPU and
9196 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9197 	 * vCPU's FPU state as a fxregs_state struct.
9198 	 */
9199 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9200 		printk(KERN_ERR "kvm: inadequate fpu\n");
9201 		return -EOPNOTSUPP;
9202 	}
9203 
9204 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9205 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9206 		return -EOPNOTSUPP;
9207 	}
9208 
9209 	/*
9210 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9211 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9212 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9213 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9214 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9215 	 */
9216 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9217 	    (host_pat & GENMASK(2, 0)) != 6) {
9218 		pr_err("kvm: host PAT[0] is not WB\n");
9219 		return -EIO;
9220 	}
9221 
9222 	x86_emulator_cache = kvm_alloc_emulator_cache();
9223 	if (!x86_emulator_cache) {
9224 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9225 		return -ENOMEM;
9226 	}
9227 
9228 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9229 	if (!user_return_msrs) {
9230 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9231 		r = -ENOMEM;
9232 		goto out_free_x86_emulator_cache;
9233 	}
9234 	kvm_nr_uret_msrs = 0;
9235 
9236 	r = kvm_mmu_vendor_module_init();
9237 	if (r)
9238 		goto out_free_percpu;
9239 
9240 	kvm_timer_init();
9241 
9242 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9243 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9244 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9245 	}
9246 
9247 	if (pi_inject_timer == -1)
9248 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9249 #ifdef CONFIG_X86_64
9250 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9251 
9252 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9253 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9254 #endif
9255 
9256 	return 0;
9257 
9258 out_free_percpu:
9259 	free_percpu(user_return_msrs);
9260 out_free_x86_emulator_cache:
9261 	kmem_cache_destroy(x86_emulator_cache);
9262 	return r;
9263 }
9264 
9265 void kvm_arch_exit(void)
9266 {
9267 #ifdef CONFIG_X86_64
9268 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9269 		clear_hv_tscchange_cb();
9270 #endif
9271 	kvm_lapic_exit();
9272 
9273 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9274 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9275 					    CPUFREQ_TRANSITION_NOTIFIER);
9276 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9277 #ifdef CONFIG_X86_64
9278 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9279 	irq_work_sync(&pvclock_irq_work);
9280 	cancel_work_sync(&pvclock_gtod_work);
9281 #endif
9282 	kvm_x86_ops.hardware_enable = NULL;
9283 	kvm_mmu_vendor_module_exit();
9284 	free_percpu(user_return_msrs);
9285 	kmem_cache_destroy(x86_emulator_cache);
9286 #ifdef CONFIG_KVM_XEN
9287 	static_key_deferred_flush(&kvm_xen_enabled);
9288 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9289 #endif
9290 }
9291 
9292 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9293 {
9294 	/*
9295 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9296 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9297 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9298 	 * managed by userspace, in which case userspace is responsible for
9299 	 * handling wake events.
9300 	 */
9301 	++vcpu->stat.halt_exits;
9302 	if (lapic_in_kernel(vcpu)) {
9303 		vcpu->arch.mp_state = state;
9304 		return 1;
9305 	} else {
9306 		vcpu->run->exit_reason = reason;
9307 		return 0;
9308 	}
9309 }
9310 
9311 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9312 {
9313 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9314 }
9315 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9316 
9317 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9318 {
9319 	int ret = kvm_skip_emulated_instruction(vcpu);
9320 	/*
9321 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9322 	 * KVM_EXIT_DEBUG here.
9323 	 */
9324 	return kvm_emulate_halt_noskip(vcpu) && ret;
9325 }
9326 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9327 
9328 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9329 {
9330 	int ret = kvm_skip_emulated_instruction(vcpu);
9331 
9332 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9333 					KVM_EXIT_AP_RESET_HOLD) && ret;
9334 }
9335 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9336 
9337 #ifdef CONFIG_X86_64
9338 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9339 			        unsigned long clock_type)
9340 {
9341 	struct kvm_clock_pairing clock_pairing;
9342 	struct timespec64 ts;
9343 	u64 cycle;
9344 	int ret;
9345 
9346 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9347 		return -KVM_EOPNOTSUPP;
9348 
9349 	/*
9350 	 * When tsc is in permanent catchup mode guests won't be able to use
9351 	 * pvclock_read_retry loop to get consistent view of pvclock
9352 	 */
9353 	if (vcpu->arch.tsc_always_catchup)
9354 		return -KVM_EOPNOTSUPP;
9355 
9356 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9357 		return -KVM_EOPNOTSUPP;
9358 
9359 	clock_pairing.sec = ts.tv_sec;
9360 	clock_pairing.nsec = ts.tv_nsec;
9361 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9362 	clock_pairing.flags = 0;
9363 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9364 
9365 	ret = 0;
9366 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9367 			    sizeof(struct kvm_clock_pairing)))
9368 		ret = -KVM_EFAULT;
9369 
9370 	return ret;
9371 }
9372 #endif
9373 
9374 /*
9375  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9376  *
9377  * @apicid - apicid of vcpu to be kicked.
9378  */
9379 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9380 {
9381 	/*
9382 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9383 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9384 	 */
9385 	struct kvm_lapic_irq lapic_irq = {
9386 		.delivery_mode = APIC_DM_REMRD,
9387 		.dest_mode = APIC_DEST_PHYSICAL,
9388 		.shorthand = APIC_DEST_NOSHORT,
9389 		.dest_id = apicid,
9390 	};
9391 
9392 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9393 }
9394 
9395 bool kvm_apicv_activated(struct kvm *kvm)
9396 {
9397 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9398 }
9399 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9400 
9401 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9402 {
9403 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9404 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9405 
9406 	return (vm_reasons | vcpu_reasons) == 0;
9407 }
9408 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9409 
9410 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9411 				       enum kvm_apicv_inhibit reason, bool set)
9412 {
9413 	if (set)
9414 		__set_bit(reason, inhibits);
9415 	else
9416 		__clear_bit(reason, inhibits);
9417 
9418 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9419 }
9420 
9421 static void kvm_apicv_init(struct kvm *kvm)
9422 {
9423 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9424 
9425 	init_rwsem(&kvm->arch.apicv_update_lock);
9426 
9427 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9428 
9429 	if (!enable_apicv)
9430 		set_or_clear_apicv_inhibit(inhibits,
9431 					   APICV_INHIBIT_REASON_DISABLE, true);
9432 }
9433 
9434 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9435 {
9436 	struct kvm_vcpu *target = NULL;
9437 	struct kvm_apic_map *map;
9438 
9439 	vcpu->stat.directed_yield_attempted++;
9440 
9441 	if (single_task_running())
9442 		goto no_yield;
9443 
9444 	rcu_read_lock();
9445 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9446 
9447 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9448 		target = map->phys_map[dest_id]->vcpu;
9449 
9450 	rcu_read_unlock();
9451 
9452 	if (!target || !READ_ONCE(target->ready))
9453 		goto no_yield;
9454 
9455 	/* Ignore requests to yield to self */
9456 	if (vcpu == target)
9457 		goto no_yield;
9458 
9459 	if (kvm_vcpu_yield_to(target) <= 0)
9460 		goto no_yield;
9461 
9462 	vcpu->stat.directed_yield_successful++;
9463 
9464 no_yield:
9465 	return;
9466 }
9467 
9468 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9469 {
9470 	u64 ret = vcpu->run->hypercall.ret;
9471 
9472 	if (!is_64_bit_mode(vcpu))
9473 		ret = (u32)ret;
9474 	kvm_rax_write(vcpu, ret);
9475 	++vcpu->stat.hypercalls;
9476 	return kvm_skip_emulated_instruction(vcpu);
9477 }
9478 
9479 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9480 {
9481 	unsigned long nr, a0, a1, a2, a3, ret;
9482 	int op_64_bit;
9483 
9484 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9485 		return kvm_xen_hypercall(vcpu);
9486 
9487 	if (kvm_hv_hypercall_enabled(vcpu))
9488 		return kvm_hv_hypercall(vcpu);
9489 
9490 	nr = kvm_rax_read(vcpu);
9491 	a0 = kvm_rbx_read(vcpu);
9492 	a1 = kvm_rcx_read(vcpu);
9493 	a2 = kvm_rdx_read(vcpu);
9494 	a3 = kvm_rsi_read(vcpu);
9495 
9496 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9497 
9498 	op_64_bit = is_64_bit_hypercall(vcpu);
9499 	if (!op_64_bit) {
9500 		nr &= 0xFFFFFFFF;
9501 		a0 &= 0xFFFFFFFF;
9502 		a1 &= 0xFFFFFFFF;
9503 		a2 &= 0xFFFFFFFF;
9504 		a3 &= 0xFFFFFFFF;
9505 	}
9506 
9507 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9508 		ret = -KVM_EPERM;
9509 		goto out;
9510 	}
9511 
9512 	ret = -KVM_ENOSYS;
9513 
9514 	switch (nr) {
9515 	case KVM_HC_VAPIC_POLL_IRQ:
9516 		ret = 0;
9517 		break;
9518 	case KVM_HC_KICK_CPU:
9519 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9520 			break;
9521 
9522 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9523 		kvm_sched_yield(vcpu, a1);
9524 		ret = 0;
9525 		break;
9526 #ifdef CONFIG_X86_64
9527 	case KVM_HC_CLOCK_PAIRING:
9528 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9529 		break;
9530 #endif
9531 	case KVM_HC_SEND_IPI:
9532 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9533 			break;
9534 
9535 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9536 		break;
9537 	case KVM_HC_SCHED_YIELD:
9538 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9539 			break;
9540 
9541 		kvm_sched_yield(vcpu, a0);
9542 		ret = 0;
9543 		break;
9544 	case KVM_HC_MAP_GPA_RANGE: {
9545 		u64 gpa = a0, npages = a1, attrs = a2;
9546 
9547 		ret = -KVM_ENOSYS;
9548 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9549 			break;
9550 
9551 		if (!PAGE_ALIGNED(gpa) || !npages ||
9552 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9553 			ret = -KVM_EINVAL;
9554 			break;
9555 		}
9556 
9557 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9558 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9559 		vcpu->run->hypercall.args[0]  = gpa;
9560 		vcpu->run->hypercall.args[1]  = npages;
9561 		vcpu->run->hypercall.args[2]  = attrs;
9562 		vcpu->run->hypercall.longmode = op_64_bit;
9563 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9564 		return 0;
9565 	}
9566 	default:
9567 		ret = -KVM_ENOSYS;
9568 		break;
9569 	}
9570 out:
9571 	if (!op_64_bit)
9572 		ret = (u32)ret;
9573 	kvm_rax_write(vcpu, ret);
9574 
9575 	++vcpu->stat.hypercalls;
9576 	return kvm_skip_emulated_instruction(vcpu);
9577 }
9578 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9579 
9580 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9581 {
9582 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9583 	char instruction[3];
9584 	unsigned long rip = kvm_rip_read(vcpu);
9585 
9586 	/*
9587 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9588 	 * the pieces.
9589 	 */
9590 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9591 		ctxt->exception.error_code_valid = false;
9592 		ctxt->exception.vector = UD_VECTOR;
9593 		ctxt->have_exception = true;
9594 		return X86EMUL_PROPAGATE_FAULT;
9595 	}
9596 
9597 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9598 
9599 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9600 		&ctxt->exception);
9601 }
9602 
9603 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9604 {
9605 	return vcpu->run->request_interrupt_window &&
9606 		likely(!pic_in_kernel(vcpu->kvm));
9607 }
9608 
9609 /* Called within kvm->srcu read side.  */
9610 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9611 {
9612 	struct kvm_run *kvm_run = vcpu->run;
9613 
9614 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9615 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9616 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9617 
9618 	kvm_run->ready_for_interrupt_injection =
9619 		pic_in_kernel(vcpu->kvm) ||
9620 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9621 
9622 	if (is_smm(vcpu))
9623 		kvm_run->flags |= KVM_RUN_X86_SMM;
9624 }
9625 
9626 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9627 {
9628 	int max_irr, tpr;
9629 
9630 	if (!kvm_x86_ops.update_cr8_intercept)
9631 		return;
9632 
9633 	if (!lapic_in_kernel(vcpu))
9634 		return;
9635 
9636 	if (vcpu->arch.apic->apicv_active)
9637 		return;
9638 
9639 	if (!vcpu->arch.apic->vapic_addr)
9640 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9641 	else
9642 		max_irr = -1;
9643 
9644 	if (max_irr != -1)
9645 		max_irr >>= 4;
9646 
9647 	tpr = kvm_lapic_get_cr8(vcpu);
9648 
9649 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9650 }
9651 
9652 
9653 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9654 {
9655 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9656 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9657 		return 1;
9658 	}
9659 
9660 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9661 }
9662 
9663 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9664 {
9665 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
9666 				vcpu->arch.exception.has_error_code,
9667 				vcpu->arch.exception.error_code,
9668 				vcpu->arch.exception.injected);
9669 
9670 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9671 		vcpu->arch.exception.error_code = false;
9672 	static_call(kvm_x86_queue_exception)(vcpu);
9673 }
9674 
9675 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9676 {
9677 	int r;
9678 	bool can_inject = true;
9679 
9680 	/* try to reinject previous events if any */
9681 
9682 	if (vcpu->arch.exception.injected) {
9683 		kvm_inject_exception(vcpu);
9684 		can_inject = false;
9685 	}
9686 	/*
9687 	 * Do not inject an NMI or interrupt if there is a pending
9688 	 * exception.  Exceptions and interrupts are recognized at
9689 	 * instruction boundaries, i.e. the start of an instruction.
9690 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9691 	 * NMIs and interrupts, i.e. traps are recognized before an
9692 	 * NMI/interrupt that's pending on the same instruction.
9693 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9694 	 * priority, but are only generated (pended) during instruction
9695 	 * execution, i.e. a pending fault-like exception means the
9696 	 * fault occurred on the *previous* instruction and must be
9697 	 * serviced prior to recognizing any new events in order to
9698 	 * fully complete the previous instruction.
9699 	 */
9700 	else if (!vcpu->arch.exception.pending) {
9701 		if (vcpu->arch.nmi_injected) {
9702 			static_call(kvm_x86_inject_nmi)(vcpu);
9703 			can_inject = false;
9704 		} else if (vcpu->arch.interrupt.injected) {
9705 			static_call(kvm_x86_inject_irq)(vcpu, true);
9706 			can_inject = false;
9707 		}
9708 	}
9709 
9710 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9711 		     vcpu->arch.exception.pending);
9712 
9713 	/*
9714 	 * Call check_nested_events() even if we reinjected a previous event
9715 	 * in order for caller to determine if it should require immediate-exit
9716 	 * from L2 to L1 due to pending L1 events which require exit
9717 	 * from L2 to L1.
9718 	 */
9719 	if (is_guest_mode(vcpu)) {
9720 		r = kvm_check_nested_events(vcpu);
9721 		if (r < 0)
9722 			goto out;
9723 	}
9724 
9725 	/* try to inject new event if pending */
9726 	if (vcpu->arch.exception.pending) {
9727 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9728 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9729 					     X86_EFLAGS_RF);
9730 
9731 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9732 			kvm_deliver_exception_payload(vcpu);
9733 			if (vcpu->arch.dr7 & DR7_GD) {
9734 				vcpu->arch.dr7 &= ~DR7_GD;
9735 				kvm_update_dr7(vcpu);
9736 			}
9737 		}
9738 
9739 		kvm_inject_exception(vcpu);
9740 
9741 		vcpu->arch.exception.pending = false;
9742 		vcpu->arch.exception.injected = true;
9743 
9744 		can_inject = false;
9745 	}
9746 
9747 	/* Don't inject interrupts if the user asked to avoid doing so */
9748 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9749 		return 0;
9750 
9751 	/*
9752 	 * Finally, inject interrupt events.  If an event cannot be injected
9753 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9754 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9755 	 * and can architecturally be injected, but we cannot do it right now:
9756 	 * an interrupt could have arrived just now and we have to inject it
9757 	 * as a vmexit, or there could already an event in the queue, which is
9758 	 * indicated by can_inject.  In that case we request an immediate exit
9759 	 * in order to make progress and get back here for another iteration.
9760 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9761 	 */
9762 	if (vcpu->arch.smi_pending) {
9763 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9764 		if (r < 0)
9765 			goto out;
9766 		if (r) {
9767 			vcpu->arch.smi_pending = false;
9768 			++vcpu->arch.smi_count;
9769 			enter_smm(vcpu);
9770 			can_inject = false;
9771 		} else
9772 			static_call(kvm_x86_enable_smi_window)(vcpu);
9773 	}
9774 
9775 	if (vcpu->arch.nmi_pending) {
9776 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9777 		if (r < 0)
9778 			goto out;
9779 		if (r) {
9780 			--vcpu->arch.nmi_pending;
9781 			vcpu->arch.nmi_injected = true;
9782 			static_call(kvm_x86_inject_nmi)(vcpu);
9783 			can_inject = false;
9784 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9785 		}
9786 		if (vcpu->arch.nmi_pending)
9787 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9788 	}
9789 
9790 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9791 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9792 		if (r < 0)
9793 			goto out;
9794 		if (r) {
9795 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9796 			static_call(kvm_x86_inject_irq)(vcpu, false);
9797 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9798 		}
9799 		if (kvm_cpu_has_injectable_intr(vcpu))
9800 			static_call(kvm_x86_enable_irq_window)(vcpu);
9801 	}
9802 
9803 	if (is_guest_mode(vcpu) &&
9804 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9805 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9806 		*req_immediate_exit = true;
9807 
9808 	WARN_ON(vcpu->arch.exception.pending);
9809 	return 0;
9810 
9811 out:
9812 	if (r == -EBUSY) {
9813 		*req_immediate_exit = true;
9814 		r = 0;
9815 	}
9816 	return r;
9817 }
9818 
9819 static void process_nmi(struct kvm_vcpu *vcpu)
9820 {
9821 	unsigned limit = 2;
9822 
9823 	/*
9824 	 * x86 is limited to one NMI running, and one NMI pending after it.
9825 	 * If an NMI is already in progress, limit further NMIs to just one.
9826 	 * Otherwise, allow two (and we'll inject the first one immediately).
9827 	 */
9828 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9829 		limit = 1;
9830 
9831 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9832 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9833 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9834 }
9835 
9836 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9837 {
9838 	u32 flags = 0;
9839 	flags |= seg->g       << 23;
9840 	flags |= seg->db      << 22;
9841 	flags |= seg->l       << 21;
9842 	flags |= seg->avl     << 20;
9843 	flags |= seg->present << 15;
9844 	flags |= seg->dpl     << 13;
9845 	flags |= seg->s       << 12;
9846 	flags |= seg->type    << 8;
9847 	return flags;
9848 }
9849 
9850 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9851 {
9852 	struct kvm_segment seg;
9853 	int offset;
9854 
9855 	kvm_get_segment(vcpu, &seg, n);
9856 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9857 
9858 	if (n < 3)
9859 		offset = 0x7f84 + n * 12;
9860 	else
9861 		offset = 0x7f2c + (n - 3) * 12;
9862 
9863 	put_smstate(u32, buf, offset + 8, seg.base);
9864 	put_smstate(u32, buf, offset + 4, seg.limit);
9865 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9866 }
9867 
9868 #ifdef CONFIG_X86_64
9869 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9870 {
9871 	struct kvm_segment seg;
9872 	int offset;
9873 	u16 flags;
9874 
9875 	kvm_get_segment(vcpu, &seg, n);
9876 	offset = 0x7e00 + n * 16;
9877 
9878 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9879 	put_smstate(u16, buf, offset, seg.selector);
9880 	put_smstate(u16, buf, offset + 2, flags);
9881 	put_smstate(u32, buf, offset + 4, seg.limit);
9882 	put_smstate(u64, buf, offset + 8, seg.base);
9883 }
9884 #endif
9885 
9886 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9887 {
9888 	struct desc_ptr dt;
9889 	struct kvm_segment seg;
9890 	unsigned long val;
9891 	int i;
9892 
9893 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9894 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9895 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9896 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9897 
9898 	for (i = 0; i < 8; i++)
9899 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9900 
9901 	kvm_get_dr(vcpu, 6, &val);
9902 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9903 	kvm_get_dr(vcpu, 7, &val);
9904 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9905 
9906 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9907 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9908 	put_smstate(u32, buf, 0x7f64, seg.base);
9909 	put_smstate(u32, buf, 0x7f60, seg.limit);
9910 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9911 
9912 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9913 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9914 	put_smstate(u32, buf, 0x7f80, seg.base);
9915 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9916 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9917 
9918 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9919 	put_smstate(u32, buf, 0x7f74, dt.address);
9920 	put_smstate(u32, buf, 0x7f70, dt.size);
9921 
9922 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9923 	put_smstate(u32, buf, 0x7f58, dt.address);
9924 	put_smstate(u32, buf, 0x7f54, dt.size);
9925 
9926 	for (i = 0; i < 6; i++)
9927 		enter_smm_save_seg_32(vcpu, buf, i);
9928 
9929 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9930 
9931 	/* revision id */
9932 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9933 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9934 }
9935 
9936 #ifdef CONFIG_X86_64
9937 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9938 {
9939 	struct desc_ptr dt;
9940 	struct kvm_segment seg;
9941 	unsigned long val;
9942 	int i;
9943 
9944 	for (i = 0; i < 16; i++)
9945 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9946 
9947 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9948 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9949 
9950 	kvm_get_dr(vcpu, 6, &val);
9951 	put_smstate(u64, buf, 0x7f68, val);
9952 	kvm_get_dr(vcpu, 7, &val);
9953 	put_smstate(u64, buf, 0x7f60, val);
9954 
9955 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9956 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9957 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9958 
9959 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9960 
9961 	/* revision id */
9962 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9963 
9964 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9965 
9966 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9967 	put_smstate(u16, buf, 0x7e90, seg.selector);
9968 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9969 	put_smstate(u32, buf, 0x7e94, seg.limit);
9970 	put_smstate(u64, buf, 0x7e98, seg.base);
9971 
9972 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9973 	put_smstate(u32, buf, 0x7e84, dt.size);
9974 	put_smstate(u64, buf, 0x7e88, dt.address);
9975 
9976 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9977 	put_smstate(u16, buf, 0x7e70, seg.selector);
9978 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9979 	put_smstate(u32, buf, 0x7e74, seg.limit);
9980 	put_smstate(u64, buf, 0x7e78, seg.base);
9981 
9982 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9983 	put_smstate(u32, buf, 0x7e64, dt.size);
9984 	put_smstate(u64, buf, 0x7e68, dt.address);
9985 
9986 	for (i = 0; i < 6; i++)
9987 		enter_smm_save_seg_64(vcpu, buf, i);
9988 }
9989 #endif
9990 
9991 static void enter_smm(struct kvm_vcpu *vcpu)
9992 {
9993 	struct kvm_segment cs, ds;
9994 	struct desc_ptr dt;
9995 	unsigned long cr0;
9996 	char buf[512];
9997 
9998 	memset(buf, 0, 512);
9999 #ifdef CONFIG_X86_64
10000 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10001 		enter_smm_save_state_64(vcpu, buf);
10002 	else
10003 #endif
10004 		enter_smm_save_state_32(vcpu, buf);
10005 
10006 	/*
10007 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10008 	 * state (e.g. leave guest mode) after we've saved the state into the
10009 	 * SMM state-save area.
10010 	 */
10011 	static_call(kvm_x86_enter_smm)(vcpu, buf);
10012 
10013 	kvm_smm_changed(vcpu, true);
10014 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10015 
10016 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10017 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10018 	else
10019 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10020 
10021 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10022 	kvm_rip_write(vcpu, 0x8000);
10023 
10024 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10025 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
10026 	vcpu->arch.cr0 = cr0;
10027 
10028 	static_call(kvm_x86_set_cr4)(vcpu, 0);
10029 
10030 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
10031 	dt.address = dt.size = 0;
10032 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10033 
10034 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10035 
10036 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10037 	cs.base = vcpu->arch.smbase;
10038 
10039 	ds.selector = 0;
10040 	ds.base = 0;
10041 
10042 	cs.limit    = ds.limit = 0xffffffff;
10043 	cs.type     = ds.type = 0x3;
10044 	cs.dpl      = ds.dpl = 0;
10045 	cs.db       = ds.db = 0;
10046 	cs.s        = ds.s = 1;
10047 	cs.l        = ds.l = 0;
10048 	cs.g        = ds.g = 1;
10049 	cs.avl      = ds.avl = 0;
10050 	cs.present  = ds.present = 1;
10051 	cs.unusable = ds.unusable = 0;
10052 	cs.padding  = ds.padding = 0;
10053 
10054 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10055 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10056 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10057 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10058 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10059 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10060 
10061 #ifdef CONFIG_X86_64
10062 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10063 		static_call(kvm_x86_set_efer)(vcpu, 0);
10064 #endif
10065 
10066 	kvm_update_cpuid_runtime(vcpu);
10067 	kvm_mmu_reset_context(vcpu);
10068 }
10069 
10070 static void process_smi(struct kvm_vcpu *vcpu)
10071 {
10072 	vcpu->arch.smi_pending = true;
10073 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10074 }
10075 
10076 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10077 				       unsigned long *vcpu_bitmap)
10078 {
10079 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10080 }
10081 
10082 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10083 {
10084 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10085 }
10086 
10087 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10088 {
10089 	struct kvm_lapic *apic = vcpu->arch.apic;
10090 	bool activate;
10091 
10092 	if (!lapic_in_kernel(vcpu))
10093 		return;
10094 
10095 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10096 	preempt_disable();
10097 
10098 	/* Do not activate APICV when APIC is disabled */
10099 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10100 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10101 
10102 	if (apic->apicv_active == activate)
10103 		goto out;
10104 
10105 	apic->apicv_active = activate;
10106 	kvm_apic_update_apicv(vcpu);
10107 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10108 
10109 	/*
10110 	 * When APICv gets disabled, we may still have injected interrupts
10111 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10112 	 * still active when the interrupt got accepted. Make sure
10113 	 * inject_pending_event() is called to check for that.
10114 	 */
10115 	if (!apic->apicv_active)
10116 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10117 
10118 out:
10119 	preempt_enable();
10120 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10123 
10124 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10125 				      enum kvm_apicv_inhibit reason, bool set)
10126 {
10127 	unsigned long old, new;
10128 
10129 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10130 
10131 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10132 		return;
10133 
10134 	old = new = kvm->arch.apicv_inhibit_reasons;
10135 
10136 	set_or_clear_apicv_inhibit(&new, reason, set);
10137 
10138 	if (!!old != !!new) {
10139 		/*
10140 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10141 		 * false positives in the sanity check WARN in svm_vcpu_run().
10142 		 * This task will wait for all vCPUs to ack the kick IRQ before
10143 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10144 		 * block on acquiring apicv_update_lock so that vCPUs can't
10145 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10146 		 *
10147 		 * Note, holding apicv_update_lock and taking it in the read
10148 		 * side (handling the request) also prevents other vCPUs from
10149 		 * servicing the request with a stale apicv_inhibit_reasons.
10150 		 */
10151 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10152 		kvm->arch.apicv_inhibit_reasons = new;
10153 		if (new) {
10154 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10155 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10156 		}
10157 	} else {
10158 		kvm->arch.apicv_inhibit_reasons = new;
10159 	}
10160 }
10161 
10162 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10163 				    enum kvm_apicv_inhibit reason, bool set)
10164 {
10165 	if (!enable_apicv)
10166 		return;
10167 
10168 	down_write(&kvm->arch.apicv_update_lock);
10169 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10170 	up_write(&kvm->arch.apicv_update_lock);
10171 }
10172 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10173 
10174 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10175 {
10176 	if (!kvm_apic_present(vcpu))
10177 		return;
10178 
10179 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10180 
10181 	if (irqchip_split(vcpu->kvm))
10182 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10183 	else {
10184 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10185 		if (ioapic_in_kernel(vcpu->kvm))
10186 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10187 	}
10188 
10189 	if (is_guest_mode(vcpu))
10190 		vcpu->arch.load_eoi_exitmap_pending = true;
10191 	else
10192 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10193 }
10194 
10195 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10196 {
10197 	u64 eoi_exit_bitmap[4];
10198 
10199 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10200 		return;
10201 
10202 	if (to_hv_vcpu(vcpu)) {
10203 		bitmap_or((ulong *)eoi_exit_bitmap,
10204 			  vcpu->arch.ioapic_handled_vectors,
10205 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10206 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10207 		return;
10208 	}
10209 
10210 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10211 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10212 }
10213 
10214 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10215 					    unsigned long start, unsigned long end)
10216 {
10217 	unsigned long apic_address;
10218 
10219 	/*
10220 	 * The physical address of apic access page is stored in the VMCS.
10221 	 * Update it when it becomes invalid.
10222 	 */
10223 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10224 	if (start <= apic_address && apic_address < end)
10225 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10226 }
10227 
10228 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10229 {
10230 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10231 }
10232 
10233 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10234 {
10235 	if (!lapic_in_kernel(vcpu))
10236 		return;
10237 
10238 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10239 }
10240 
10241 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10242 {
10243 	smp_send_reschedule(vcpu->cpu);
10244 }
10245 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10246 
10247 /*
10248  * Called within kvm->srcu read side.
10249  * Returns 1 to let vcpu_run() continue the guest execution loop without
10250  * exiting to the userspace.  Otherwise, the value will be returned to the
10251  * userspace.
10252  */
10253 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10254 {
10255 	int r;
10256 	bool req_int_win =
10257 		dm_request_for_irq_injection(vcpu) &&
10258 		kvm_cpu_accept_dm_intr(vcpu);
10259 	fastpath_t exit_fastpath;
10260 
10261 	bool req_immediate_exit = false;
10262 
10263 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10264 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10265 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10266 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10267 		trace_kvm_dirty_ring_exit(vcpu);
10268 		r = 0;
10269 		goto out;
10270 	}
10271 
10272 	if (kvm_request_pending(vcpu)) {
10273 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10274 			r = -EIO;
10275 			goto out;
10276 		}
10277 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10278 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10279 				r = 0;
10280 				goto out;
10281 			}
10282 		}
10283 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10284 			kvm_mmu_free_obsolete_roots(vcpu);
10285 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10286 			__kvm_migrate_timers(vcpu);
10287 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10288 			kvm_update_masterclock(vcpu->kvm);
10289 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10290 			kvm_gen_kvmclock_update(vcpu);
10291 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10292 			r = kvm_guest_time_update(vcpu);
10293 			if (unlikely(r))
10294 				goto out;
10295 		}
10296 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10297 			kvm_mmu_sync_roots(vcpu);
10298 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10299 			kvm_mmu_load_pgd(vcpu);
10300 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10301 			kvm_vcpu_flush_tlb_all(vcpu);
10302 
10303 			/* Flushing all ASIDs flushes the current ASID... */
10304 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10305 		}
10306 		kvm_service_local_tlb_flush_requests(vcpu);
10307 
10308 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10309 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10310 			r = 0;
10311 			goto out;
10312 		}
10313 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10314 			if (is_guest_mode(vcpu)) {
10315 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10316 			} else {
10317 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10318 				vcpu->mmio_needed = 0;
10319 				r = 0;
10320 				goto out;
10321 			}
10322 		}
10323 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10324 			/* Page is swapped out. Do synthetic halt */
10325 			vcpu->arch.apf.halted = true;
10326 			r = 1;
10327 			goto out;
10328 		}
10329 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10330 			record_steal_time(vcpu);
10331 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10332 			process_smi(vcpu);
10333 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10334 			process_nmi(vcpu);
10335 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10336 			kvm_pmu_handle_event(vcpu);
10337 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10338 			kvm_pmu_deliver_pmi(vcpu);
10339 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10340 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10341 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10342 				     vcpu->arch.ioapic_handled_vectors)) {
10343 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10344 				vcpu->run->eoi.vector =
10345 						vcpu->arch.pending_ioapic_eoi;
10346 				r = 0;
10347 				goto out;
10348 			}
10349 		}
10350 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10351 			vcpu_scan_ioapic(vcpu);
10352 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10353 			vcpu_load_eoi_exitmap(vcpu);
10354 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10355 			kvm_vcpu_reload_apic_access_page(vcpu);
10356 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10357 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10358 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10359 			vcpu->run->system_event.ndata = 0;
10360 			r = 0;
10361 			goto out;
10362 		}
10363 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10364 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10365 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10366 			vcpu->run->system_event.ndata = 0;
10367 			r = 0;
10368 			goto out;
10369 		}
10370 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10371 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10372 
10373 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10374 			vcpu->run->hyperv = hv_vcpu->exit;
10375 			r = 0;
10376 			goto out;
10377 		}
10378 
10379 		/*
10380 		 * KVM_REQ_HV_STIMER has to be processed after
10381 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10382 		 * depend on the guest clock being up-to-date
10383 		 */
10384 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10385 			kvm_hv_process_stimers(vcpu);
10386 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10387 			kvm_vcpu_update_apicv(vcpu);
10388 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10389 			kvm_check_async_pf_completion(vcpu);
10390 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10391 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10392 
10393 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10394 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10395 	}
10396 
10397 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10398 	    kvm_xen_has_interrupt(vcpu)) {
10399 		++vcpu->stat.req_event;
10400 		r = kvm_apic_accept_events(vcpu);
10401 		if (r < 0) {
10402 			r = 0;
10403 			goto out;
10404 		}
10405 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10406 			r = 1;
10407 			goto out;
10408 		}
10409 
10410 		r = inject_pending_event(vcpu, &req_immediate_exit);
10411 		if (r < 0) {
10412 			r = 0;
10413 			goto out;
10414 		}
10415 		if (req_int_win)
10416 			static_call(kvm_x86_enable_irq_window)(vcpu);
10417 
10418 		if (kvm_lapic_enabled(vcpu)) {
10419 			update_cr8_intercept(vcpu);
10420 			kvm_lapic_sync_to_vapic(vcpu);
10421 		}
10422 	}
10423 
10424 	r = kvm_mmu_reload(vcpu);
10425 	if (unlikely(r)) {
10426 		goto cancel_injection;
10427 	}
10428 
10429 	preempt_disable();
10430 
10431 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10432 
10433 	/*
10434 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10435 	 * IPI are then delayed after guest entry, which ensures that they
10436 	 * result in virtual interrupt delivery.
10437 	 */
10438 	local_irq_disable();
10439 
10440 	/* Store vcpu->apicv_active before vcpu->mode.  */
10441 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10442 
10443 	kvm_vcpu_srcu_read_unlock(vcpu);
10444 
10445 	/*
10446 	 * 1) We should set ->mode before checking ->requests.  Please see
10447 	 * the comment in kvm_vcpu_exiting_guest_mode().
10448 	 *
10449 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10450 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10451 	 * (see vmx_deliver_posted_interrupt).
10452 	 *
10453 	 * 3) This also orders the write to mode from any reads to the page
10454 	 * tables done while the VCPU is running.  Please see the comment
10455 	 * in kvm_flush_remote_tlbs.
10456 	 */
10457 	smp_mb__after_srcu_read_unlock();
10458 
10459 	/*
10460 	 * Process pending posted interrupts to handle the case where the
10461 	 * notification IRQ arrived in the host, or was never sent (because the
10462 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10463 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10464 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10465 	 */
10466 	if (kvm_lapic_enabled(vcpu))
10467 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10468 
10469 	if (kvm_vcpu_exit_request(vcpu)) {
10470 		vcpu->mode = OUTSIDE_GUEST_MODE;
10471 		smp_wmb();
10472 		local_irq_enable();
10473 		preempt_enable();
10474 		kvm_vcpu_srcu_read_lock(vcpu);
10475 		r = 1;
10476 		goto cancel_injection;
10477 	}
10478 
10479 	if (req_immediate_exit) {
10480 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10481 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10482 	}
10483 
10484 	fpregs_assert_state_consistent();
10485 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10486 		switch_fpu_return();
10487 
10488 	if (vcpu->arch.guest_fpu.xfd_err)
10489 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10490 
10491 	if (unlikely(vcpu->arch.switch_db_regs)) {
10492 		set_debugreg(0, 7);
10493 		set_debugreg(vcpu->arch.eff_db[0], 0);
10494 		set_debugreg(vcpu->arch.eff_db[1], 1);
10495 		set_debugreg(vcpu->arch.eff_db[2], 2);
10496 		set_debugreg(vcpu->arch.eff_db[3], 3);
10497 	} else if (unlikely(hw_breakpoint_active())) {
10498 		set_debugreg(0, 7);
10499 	}
10500 
10501 	guest_timing_enter_irqoff();
10502 
10503 	for (;;) {
10504 		/*
10505 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10506 		 * update must kick and wait for all vCPUs before toggling the
10507 		 * per-VM state, and responsing vCPUs must wait for the update
10508 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10509 		 */
10510 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10511 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10512 
10513 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10514 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10515 			break;
10516 
10517 		if (kvm_lapic_enabled(vcpu))
10518 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10519 
10520 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10521 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10522 			break;
10523 		}
10524 	}
10525 
10526 	/*
10527 	 * Do this here before restoring debug registers on the host.  And
10528 	 * since we do this before handling the vmexit, a DR access vmexit
10529 	 * can (a) read the correct value of the debug registers, (b) set
10530 	 * KVM_DEBUGREG_WONT_EXIT again.
10531 	 */
10532 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10533 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10534 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10535 		kvm_update_dr0123(vcpu);
10536 		kvm_update_dr7(vcpu);
10537 	}
10538 
10539 	/*
10540 	 * If the guest has used debug registers, at least dr7
10541 	 * will be disabled while returning to the host.
10542 	 * If we don't have active breakpoints in the host, we don't
10543 	 * care about the messed up debug address registers. But if
10544 	 * we have some of them active, restore the old state.
10545 	 */
10546 	if (hw_breakpoint_active())
10547 		hw_breakpoint_restore();
10548 
10549 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10550 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10551 
10552 	vcpu->mode = OUTSIDE_GUEST_MODE;
10553 	smp_wmb();
10554 
10555 	/*
10556 	 * Sync xfd before calling handle_exit_irqoff() which may
10557 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10558 	 * in #NM irqoff handler).
10559 	 */
10560 	if (vcpu->arch.xfd_no_write_intercept)
10561 		fpu_sync_guest_vmexit_xfd_state();
10562 
10563 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10564 
10565 	if (vcpu->arch.guest_fpu.xfd_err)
10566 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10567 
10568 	/*
10569 	 * Consume any pending interrupts, including the possible source of
10570 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10571 	 * An instruction is required after local_irq_enable() to fully unblock
10572 	 * interrupts on processors that implement an interrupt shadow, the
10573 	 * stat.exits increment will do nicely.
10574 	 */
10575 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10576 	local_irq_enable();
10577 	++vcpu->stat.exits;
10578 	local_irq_disable();
10579 	kvm_after_interrupt(vcpu);
10580 
10581 	/*
10582 	 * Wait until after servicing IRQs to account guest time so that any
10583 	 * ticks that occurred while running the guest are properly accounted
10584 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10585 	 * of accounting via context tracking, but the loss of accuracy is
10586 	 * acceptable for all known use cases.
10587 	 */
10588 	guest_timing_exit_irqoff();
10589 
10590 	local_irq_enable();
10591 	preempt_enable();
10592 
10593 	kvm_vcpu_srcu_read_lock(vcpu);
10594 
10595 	/*
10596 	 * Profile KVM exit RIPs:
10597 	 */
10598 	if (unlikely(prof_on == KVM_PROFILING)) {
10599 		unsigned long rip = kvm_rip_read(vcpu);
10600 		profile_hit(KVM_PROFILING, (void *)rip);
10601 	}
10602 
10603 	if (unlikely(vcpu->arch.tsc_always_catchup))
10604 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10605 
10606 	if (vcpu->arch.apic_attention)
10607 		kvm_lapic_sync_from_vapic(vcpu);
10608 
10609 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10610 	return r;
10611 
10612 cancel_injection:
10613 	if (req_immediate_exit)
10614 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10615 	static_call(kvm_x86_cancel_injection)(vcpu);
10616 	if (unlikely(vcpu->arch.apic_attention))
10617 		kvm_lapic_sync_from_vapic(vcpu);
10618 out:
10619 	return r;
10620 }
10621 
10622 /* Called within kvm->srcu read side.  */
10623 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10624 {
10625 	bool hv_timer;
10626 
10627 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10628 		/*
10629 		 * Switch to the software timer before halt-polling/blocking as
10630 		 * the guest's timer may be a break event for the vCPU, and the
10631 		 * hypervisor timer runs only when the CPU is in guest mode.
10632 		 * Switch before halt-polling so that KVM recognizes an expired
10633 		 * timer before blocking.
10634 		 */
10635 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10636 		if (hv_timer)
10637 			kvm_lapic_switch_to_sw_timer(vcpu);
10638 
10639 		kvm_vcpu_srcu_read_unlock(vcpu);
10640 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10641 			kvm_vcpu_halt(vcpu);
10642 		else
10643 			kvm_vcpu_block(vcpu);
10644 		kvm_vcpu_srcu_read_lock(vcpu);
10645 
10646 		if (hv_timer)
10647 			kvm_lapic_switch_to_hv_timer(vcpu);
10648 
10649 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10650 			return 1;
10651 	}
10652 
10653 	if (kvm_apic_accept_events(vcpu) < 0)
10654 		return 0;
10655 	switch(vcpu->arch.mp_state) {
10656 	case KVM_MP_STATE_HALTED:
10657 	case KVM_MP_STATE_AP_RESET_HOLD:
10658 		vcpu->arch.pv.pv_unhalted = false;
10659 		vcpu->arch.mp_state =
10660 			KVM_MP_STATE_RUNNABLE;
10661 		fallthrough;
10662 	case KVM_MP_STATE_RUNNABLE:
10663 		vcpu->arch.apf.halted = false;
10664 		break;
10665 	case KVM_MP_STATE_INIT_RECEIVED:
10666 		break;
10667 	default:
10668 		WARN_ON_ONCE(1);
10669 		break;
10670 	}
10671 	return 1;
10672 }
10673 
10674 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10675 {
10676 	if (is_guest_mode(vcpu))
10677 		kvm_check_nested_events(vcpu);
10678 
10679 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10680 		!vcpu->arch.apf.halted);
10681 }
10682 
10683 /* Called within kvm->srcu read side.  */
10684 static int vcpu_run(struct kvm_vcpu *vcpu)
10685 {
10686 	int r;
10687 
10688 	vcpu->arch.l1tf_flush_l1d = true;
10689 
10690 	for (;;) {
10691 		/*
10692 		 * If another guest vCPU requests a PV TLB flush in the middle
10693 		 * of instruction emulation, the rest of the emulation could
10694 		 * use a stale page translation. Assume that any code after
10695 		 * this point can start executing an instruction.
10696 		 */
10697 		vcpu->arch.at_instruction_boundary = false;
10698 		if (kvm_vcpu_running(vcpu)) {
10699 			r = vcpu_enter_guest(vcpu);
10700 		} else {
10701 			r = vcpu_block(vcpu);
10702 		}
10703 
10704 		if (r <= 0)
10705 			break;
10706 
10707 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10708 		if (kvm_xen_has_pending_events(vcpu))
10709 			kvm_xen_inject_pending_events(vcpu);
10710 
10711 		if (kvm_cpu_has_pending_timer(vcpu))
10712 			kvm_inject_pending_timer_irqs(vcpu);
10713 
10714 		if (dm_request_for_irq_injection(vcpu) &&
10715 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10716 			r = 0;
10717 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10718 			++vcpu->stat.request_irq_exits;
10719 			break;
10720 		}
10721 
10722 		if (__xfer_to_guest_mode_work_pending()) {
10723 			kvm_vcpu_srcu_read_unlock(vcpu);
10724 			r = xfer_to_guest_mode_handle_work(vcpu);
10725 			kvm_vcpu_srcu_read_lock(vcpu);
10726 			if (r)
10727 				return r;
10728 		}
10729 	}
10730 
10731 	return r;
10732 }
10733 
10734 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10735 {
10736 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10737 }
10738 
10739 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10740 {
10741 	BUG_ON(!vcpu->arch.pio.count);
10742 
10743 	return complete_emulated_io(vcpu);
10744 }
10745 
10746 /*
10747  * Implements the following, as a state machine:
10748  *
10749  * read:
10750  *   for each fragment
10751  *     for each mmio piece in the fragment
10752  *       write gpa, len
10753  *       exit
10754  *       copy data
10755  *   execute insn
10756  *
10757  * write:
10758  *   for each fragment
10759  *     for each mmio piece in the fragment
10760  *       write gpa, len
10761  *       copy data
10762  *       exit
10763  */
10764 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10765 {
10766 	struct kvm_run *run = vcpu->run;
10767 	struct kvm_mmio_fragment *frag;
10768 	unsigned len;
10769 
10770 	BUG_ON(!vcpu->mmio_needed);
10771 
10772 	/* Complete previous fragment */
10773 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10774 	len = min(8u, frag->len);
10775 	if (!vcpu->mmio_is_write)
10776 		memcpy(frag->data, run->mmio.data, len);
10777 
10778 	if (frag->len <= 8) {
10779 		/* Switch to the next fragment. */
10780 		frag++;
10781 		vcpu->mmio_cur_fragment++;
10782 	} else {
10783 		/* Go forward to the next mmio piece. */
10784 		frag->data += len;
10785 		frag->gpa += len;
10786 		frag->len -= len;
10787 	}
10788 
10789 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10790 		vcpu->mmio_needed = 0;
10791 
10792 		/* FIXME: return into emulator if single-stepping.  */
10793 		if (vcpu->mmio_is_write)
10794 			return 1;
10795 		vcpu->mmio_read_completed = 1;
10796 		return complete_emulated_io(vcpu);
10797 	}
10798 
10799 	run->exit_reason = KVM_EXIT_MMIO;
10800 	run->mmio.phys_addr = frag->gpa;
10801 	if (vcpu->mmio_is_write)
10802 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10803 	run->mmio.len = min(8u, frag->len);
10804 	run->mmio.is_write = vcpu->mmio_is_write;
10805 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10806 	return 0;
10807 }
10808 
10809 /* Swap (qemu) user FPU context for the guest FPU context. */
10810 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10811 {
10812 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10813 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10814 	trace_kvm_fpu(1);
10815 }
10816 
10817 /* When vcpu_run ends, restore user space FPU context. */
10818 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10819 {
10820 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10821 	++vcpu->stat.fpu_reload;
10822 	trace_kvm_fpu(0);
10823 }
10824 
10825 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10826 {
10827 	struct kvm_run *kvm_run = vcpu->run;
10828 	int r;
10829 
10830 	vcpu_load(vcpu);
10831 	kvm_sigset_activate(vcpu);
10832 	kvm_run->flags = 0;
10833 	kvm_load_guest_fpu(vcpu);
10834 
10835 	kvm_vcpu_srcu_read_lock(vcpu);
10836 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10837 		if (kvm_run->immediate_exit) {
10838 			r = -EINTR;
10839 			goto out;
10840 		}
10841 		/*
10842 		 * It should be impossible for the hypervisor timer to be in
10843 		 * use before KVM has ever run the vCPU.
10844 		 */
10845 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10846 
10847 		kvm_vcpu_srcu_read_unlock(vcpu);
10848 		kvm_vcpu_block(vcpu);
10849 		kvm_vcpu_srcu_read_lock(vcpu);
10850 
10851 		if (kvm_apic_accept_events(vcpu) < 0) {
10852 			r = 0;
10853 			goto out;
10854 		}
10855 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10856 		r = -EAGAIN;
10857 		if (signal_pending(current)) {
10858 			r = -EINTR;
10859 			kvm_run->exit_reason = KVM_EXIT_INTR;
10860 			++vcpu->stat.signal_exits;
10861 		}
10862 		goto out;
10863 	}
10864 
10865 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10866 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10867 		r = -EINVAL;
10868 		goto out;
10869 	}
10870 
10871 	if (kvm_run->kvm_dirty_regs) {
10872 		r = sync_regs(vcpu);
10873 		if (r != 0)
10874 			goto out;
10875 	}
10876 
10877 	/* re-sync apic's tpr */
10878 	if (!lapic_in_kernel(vcpu)) {
10879 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10880 			r = -EINVAL;
10881 			goto out;
10882 		}
10883 	}
10884 
10885 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10886 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10887 		vcpu->arch.complete_userspace_io = NULL;
10888 		r = cui(vcpu);
10889 		if (r <= 0)
10890 			goto out;
10891 	} else {
10892 		WARN_ON_ONCE(vcpu->arch.pio.count);
10893 		WARN_ON_ONCE(vcpu->mmio_needed);
10894 	}
10895 
10896 	if (kvm_run->immediate_exit) {
10897 		r = -EINTR;
10898 		goto out;
10899 	}
10900 
10901 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10902 	if (r <= 0)
10903 		goto out;
10904 
10905 	r = vcpu_run(vcpu);
10906 
10907 out:
10908 	kvm_put_guest_fpu(vcpu);
10909 	if (kvm_run->kvm_valid_regs)
10910 		store_regs(vcpu);
10911 	post_kvm_run_save(vcpu);
10912 	kvm_vcpu_srcu_read_unlock(vcpu);
10913 
10914 	kvm_sigset_deactivate(vcpu);
10915 	vcpu_put(vcpu);
10916 	return r;
10917 }
10918 
10919 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10920 {
10921 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10922 		/*
10923 		 * We are here if userspace calls get_regs() in the middle of
10924 		 * instruction emulation. Registers state needs to be copied
10925 		 * back from emulation context to vcpu. Userspace shouldn't do
10926 		 * that usually, but some bad designed PV devices (vmware
10927 		 * backdoor interface) need this to work
10928 		 */
10929 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10930 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10931 	}
10932 	regs->rax = kvm_rax_read(vcpu);
10933 	regs->rbx = kvm_rbx_read(vcpu);
10934 	regs->rcx = kvm_rcx_read(vcpu);
10935 	regs->rdx = kvm_rdx_read(vcpu);
10936 	regs->rsi = kvm_rsi_read(vcpu);
10937 	regs->rdi = kvm_rdi_read(vcpu);
10938 	regs->rsp = kvm_rsp_read(vcpu);
10939 	regs->rbp = kvm_rbp_read(vcpu);
10940 #ifdef CONFIG_X86_64
10941 	regs->r8 = kvm_r8_read(vcpu);
10942 	regs->r9 = kvm_r9_read(vcpu);
10943 	regs->r10 = kvm_r10_read(vcpu);
10944 	regs->r11 = kvm_r11_read(vcpu);
10945 	regs->r12 = kvm_r12_read(vcpu);
10946 	regs->r13 = kvm_r13_read(vcpu);
10947 	regs->r14 = kvm_r14_read(vcpu);
10948 	regs->r15 = kvm_r15_read(vcpu);
10949 #endif
10950 
10951 	regs->rip = kvm_rip_read(vcpu);
10952 	regs->rflags = kvm_get_rflags(vcpu);
10953 }
10954 
10955 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10956 {
10957 	vcpu_load(vcpu);
10958 	__get_regs(vcpu, regs);
10959 	vcpu_put(vcpu);
10960 	return 0;
10961 }
10962 
10963 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10964 {
10965 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10966 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10967 
10968 	kvm_rax_write(vcpu, regs->rax);
10969 	kvm_rbx_write(vcpu, regs->rbx);
10970 	kvm_rcx_write(vcpu, regs->rcx);
10971 	kvm_rdx_write(vcpu, regs->rdx);
10972 	kvm_rsi_write(vcpu, regs->rsi);
10973 	kvm_rdi_write(vcpu, regs->rdi);
10974 	kvm_rsp_write(vcpu, regs->rsp);
10975 	kvm_rbp_write(vcpu, regs->rbp);
10976 #ifdef CONFIG_X86_64
10977 	kvm_r8_write(vcpu, regs->r8);
10978 	kvm_r9_write(vcpu, regs->r9);
10979 	kvm_r10_write(vcpu, regs->r10);
10980 	kvm_r11_write(vcpu, regs->r11);
10981 	kvm_r12_write(vcpu, regs->r12);
10982 	kvm_r13_write(vcpu, regs->r13);
10983 	kvm_r14_write(vcpu, regs->r14);
10984 	kvm_r15_write(vcpu, regs->r15);
10985 #endif
10986 
10987 	kvm_rip_write(vcpu, regs->rip);
10988 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10989 
10990 	vcpu->arch.exception.pending = false;
10991 
10992 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10993 }
10994 
10995 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10996 {
10997 	vcpu_load(vcpu);
10998 	__set_regs(vcpu, regs);
10999 	vcpu_put(vcpu);
11000 	return 0;
11001 }
11002 
11003 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11004 {
11005 	struct desc_ptr dt;
11006 
11007 	if (vcpu->arch.guest_state_protected)
11008 		goto skip_protected_regs;
11009 
11010 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11011 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11012 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11013 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11014 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11015 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11016 
11017 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11018 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11019 
11020 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11021 	sregs->idt.limit = dt.size;
11022 	sregs->idt.base = dt.address;
11023 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11024 	sregs->gdt.limit = dt.size;
11025 	sregs->gdt.base = dt.address;
11026 
11027 	sregs->cr2 = vcpu->arch.cr2;
11028 	sregs->cr3 = kvm_read_cr3(vcpu);
11029 
11030 skip_protected_regs:
11031 	sregs->cr0 = kvm_read_cr0(vcpu);
11032 	sregs->cr4 = kvm_read_cr4(vcpu);
11033 	sregs->cr8 = kvm_get_cr8(vcpu);
11034 	sregs->efer = vcpu->arch.efer;
11035 	sregs->apic_base = kvm_get_apic_base(vcpu);
11036 }
11037 
11038 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11039 {
11040 	__get_sregs_common(vcpu, sregs);
11041 
11042 	if (vcpu->arch.guest_state_protected)
11043 		return;
11044 
11045 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11046 		set_bit(vcpu->arch.interrupt.nr,
11047 			(unsigned long *)sregs->interrupt_bitmap);
11048 }
11049 
11050 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11051 {
11052 	int i;
11053 
11054 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11055 
11056 	if (vcpu->arch.guest_state_protected)
11057 		return;
11058 
11059 	if (is_pae_paging(vcpu)) {
11060 		for (i = 0 ; i < 4 ; i++)
11061 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11062 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11063 	}
11064 }
11065 
11066 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11067 				  struct kvm_sregs *sregs)
11068 {
11069 	vcpu_load(vcpu);
11070 	__get_sregs(vcpu, sregs);
11071 	vcpu_put(vcpu);
11072 	return 0;
11073 }
11074 
11075 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11076 				    struct kvm_mp_state *mp_state)
11077 {
11078 	int r;
11079 
11080 	vcpu_load(vcpu);
11081 	if (kvm_mpx_supported())
11082 		kvm_load_guest_fpu(vcpu);
11083 
11084 	r = kvm_apic_accept_events(vcpu);
11085 	if (r < 0)
11086 		goto out;
11087 	r = 0;
11088 
11089 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11090 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11091 	    vcpu->arch.pv.pv_unhalted)
11092 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11093 	else
11094 		mp_state->mp_state = vcpu->arch.mp_state;
11095 
11096 out:
11097 	if (kvm_mpx_supported())
11098 		kvm_put_guest_fpu(vcpu);
11099 	vcpu_put(vcpu);
11100 	return r;
11101 }
11102 
11103 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11104 				    struct kvm_mp_state *mp_state)
11105 {
11106 	int ret = -EINVAL;
11107 
11108 	vcpu_load(vcpu);
11109 
11110 	switch (mp_state->mp_state) {
11111 	case KVM_MP_STATE_UNINITIALIZED:
11112 	case KVM_MP_STATE_HALTED:
11113 	case KVM_MP_STATE_AP_RESET_HOLD:
11114 	case KVM_MP_STATE_INIT_RECEIVED:
11115 	case KVM_MP_STATE_SIPI_RECEIVED:
11116 		if (!lapic_in_kernel(vcpu))
11117 			goto out;
11118 		break;
11119 
11120 	case KVM_MP_STATE_RUNNABLE:
11121 		break;
11122 
11123 	default:
11124 		goto out;
11125 	}
11126 
11127 	/*
11128 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
11129 	 * INIT state; latched init should be reported using
11130 	 * KVM_SET_VCPU_EVENTS, so reject it here.
11131 	 */
11132 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
11133 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11134 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11135 		goto out;
11136 
11137 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11138 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11139 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11140 	} else
11141 		vcpu->arch.mp_state = mp_state->mp_state;
11142 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11143 
11144 	ret = 0;
11145 out:
11146 	vcpu_put(vcpu);
11147 	return ret;
11148 }
11149 
11150 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11151 		    int reason, bool has_error_code, u32 error_code)
11152 {
11153 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11154 	int ret;
11155 
11156 	init_emulate_ctxt(vcpu);
11157 
11158 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11159 				   has_error_code, error_code);
11160 	if (ret) {
11161 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11162 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11163 		vcpu->run->internal.ndata = 0;
11164 		return 0;
11165 	}
11166 
11167 	kvm_rip_write(vcpu, ctxt->eip);
11168 	kvm_set_rflags(vcpu, ctxt->eflags);
11169 	return 1;
11170 }
11171 EXPORT_SYMBOL_GPL(kvm_task_switch);
11172 
11173 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11174 {
11175 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11176 		/*
11177 		 * When EFER.LME and CR0.PG are set, the processor is in
11178 		 * 64-bit mode (though maybe in a 32-bit code segment).
11179 		 * CR4.PAE and EFER.LMA must be set.
11180 		 */
11181 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11182 			return false;
11183 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11184 			return false;
11185 	} else {
11186 		/*
11187 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11188 		 * segment cannot be 64-bit.
11189 		 */
11190 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11191 			return false;
11192 	}
11193 
11194 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11195 }
11196 
11197 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11198 		int *mmu_reset_needed, bool update_pdptrs)
11199 {
11200 	struct msr_data apic_base_msr;
11201 	int idx;
11202 	struct desc_ptr dt;
11203 
11204 	if (!kvm_is_valid_sregs(vcpu, sregs))
11205 		return -EINVAL;
11206 
11207 	apic_base_msr.data = sregs->apic_base;
11208 	apic_base_msr.host_initiated = true;
11209 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11210 		return -EINVAL;
11211 
11212 	if (vcpu->arch.guest_state_protected)
11213 		return 0;
11214 
11215 	dt.size = sregs->idt.limit;
11216 	dt.address = sregs->idt.base;
11217 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11218 	dt.size = sregs->gdt.limit;
11219 	dt.address = sregs->gdt.base;
11220 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11221 
11222 	vcpu->arch.cr2 = sregs->cr2;
11223 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11224 	vcpu->arch.cr3 = sregs->cr3;
11225 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11226 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11227 
11228 	kvm_set_cr8(vcpu, sregs->cr8);
11229 
11230 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11231 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11232 
11233 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11234 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11235 	vcpu->arch.cr0 = sregs->cr0;
11236 
11237 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11238 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11239 
11240 	if (update_pdptrs) {
11241 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11242 		if (is_pae_paging(vcpu)) {
11243 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11244 			*mmu_reset_needed = 1;
11245 		}
11246 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11247 	}
11248 
11249 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11250 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11251 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11252 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11253 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11254 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11255 
11256 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11257 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11258 
11259 	update_cr8_intercept(vcpu);
11260 
11261 	/* Older userspace won't unhalt the vcpu on reset. */
11262 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11263 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11264 	    !is_protmode(vcpu))
11265 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11266 
11267 	return 0;
11268 }
11269 
11270 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11271 {
11272 	int pending_vec, max_bits;
11273 	int mmu_reset_needed = 0;
11274 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11275 
11276 	if (ret)
11277 		return ret;
11278 
11279 	if (mmu_reset_needed)
11280 		kvm_mmu_reset_context(vcpu);
11281 
11282 	max_bits = KVM_NR_INTERRUPTS;
11283 	pending_vec = find_first_bit(
11284 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11285 
11286 	if (pending_vec < max_bits) {
11287 		kvm_queue_interrupt(vcpu, pending_vec, false);
11288 		pr_debug("Set back pending irq %d\n", pending_vec);
11289 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11290 	}
11291 	return 0;
11292 }
11293 
11294 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11295 {
11296 	int mmu_reset_needed = 0;
11297 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11298 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11299 		!(sregs2->efer & EFER_LMA);
11300 	int i, ret;
11301 
11302 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11303 		return -EINVAL;
11304 
11305 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11306 		return -EINVAL;
11307 
11308 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11309 				 &mmu_reset_needed, !valid_pdptrs);
11310 	if (ret)
11311 		return ret;
11312 
11313 	if (valid_pdptrs) {
11314 		for (i = 0; i < 4 ; i++)
11315 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11316 
11317 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11318 		mmu_reset_needed = 1;
11319 		vcpu->arch.pdptrs_from_userspace = true;
11320 	}
11321 	if (mmu_reset_needed)
11322 		kvm_mmu_reset_context(vcpu);
11323 	return 0;
11324 }
11325 
11326 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11327 				  struct kvm_sregs *sregs)
11328 {
11329 	int ret;
11330 
11331 	vcpu_load(vcpu);
11332 	ret = __set_sregs(vcpu, sregs);
11333 	vcpu_put(vcpu);
11334 	return ret;
11335 }
11336 
11337 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11338 {
11339 	bool set = false;
11340 	struct kvm_vcpu *vcpu;
11341 	unsigned long i;
11342 
11343 	if (!enable_apicv)
11344 		return;
11345 
11346 	down_write(&kvm->arch.apicv_update_lock);
11347 
11348 	kvm_for_each_vcpu(i, vcpu, kvm) {
11349 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11350 			set = true;
11351 			break;
11352 		}
11353 	}
11354 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11355 	up_write(&kvm->arch.apicv_update_lock);
11356 }
11357 
11358 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11359 					struct kvm_guest_debug *dbg)
11360 {
11361 	unsigned long rflags;
11362 	int i, r;
11363 
11364 	if (vcpu->arch.guest_state_protected)
11365 		return -EINVAL;
11366 
11367 	vcpu_load(vcpu);
11368 
11369 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11370 		r = -EBUSY;
11371 		if (vcpu->arch.exception.pending)
11372 			goto out;
11373 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11374 			kvm_queue_exception(vcpu, DB_VECTOR);
11375 		else
11376 			kvm_queue_exception(vcpu, BP_VECTOR);
11377 	}
11378 
11379 	/*
11380 	 * Read rflags as long as potentially injected trace flags are still
11381 	 * filtered out.
11382 	 */
11383 	rflags = kvm_get_rflags(vcpu);
11384 
11385 	vcpu->guest_debug = dbg->control;
11386 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11387 		vcpu->guest_debug = 0;
11388 
11389 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11390 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11391 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11392 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11393 	} else {
11394 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11395 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11396 	}
11397 	kvm_update_dr7(vcpu);
11398 
11399 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11400 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11401 
11402 	/*
11403 	 * Trigger an rflags update that will inject or remove the trace
11404 	 * flags.
11405 	 */
11406 	kvm_set_rflags(vcpu, rflags);
11407 
11408 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11409 
11410 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11411 
11412 	r = 0;
11413 
11414 out:
11415 	vcpu_put(vcpu);
11416 	return r;
11417 }
11418 
11419 /*
11420  * Translate a guest virtual address to a guest physical address.
11421  */
11422 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11423 				    struct kvm_translation *tr)
11424 {
11425 	unsigned long vaddr = tr->linear_address;
11426 	gpa_t gpa;
11427 	int idx;
11428 
11429 	vcpu_load(vcpu);
11430 
11431 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11432 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11433 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11434 	tr->physical_address = gpa;
11435 	tr->valid = gpa != INVALID_GPA;
11436 	tr->writeable = 1;
11437 	tr->usermode = 0;
11438 
11439 	vcpu_put(vcpu);
11440 	return 0;
11441 }
11442 
11443 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11444 {
11445 	struct fxregs_state *fxsave;
11446 
11447 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11448 		return 0;
11449 
11450 	vcpu_load(vcpu);
11451 
11452 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11453 	memcpy(fpu->fpr, fxsave->st_space, 128);
11454 	fpu->fcw = fxsave->cwd;
11455 	fpu->fsw = fxsave->swd;
11456 	fpu->ftwx = fxsave->twd;
11457 	fpu->last_opcode = fxsave->fop;
11458 	fpu->last_ip = fxsave->rip;
11459 	fpu->last_dp = fxsave->rdp;
11460 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11461 
11462 	vcpu_put(vcpu);
11463 	return 0;
11464 }
11465 
11466 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11467 {
11468 	struct fxregs_state *fxsave;
11469 
11470 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11471 		return 0;
11472 
11473 	vcpu_load(vcpu);
11474 
11475 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11476 
11477 	memcpy(fxsave->st_space, fpu->fpr, 128);
11478 	fxsave->cwd = fpu->fcw;
11479 	fxsave->swd = fpu->fsw;
11480 	fxsave->twd = fpu->ftwx;
11481 	fxsave->fop = fpu->last_opcode;
11482 	fxsave->rip = fpu->last_ip;
11483 	fxsave->rdp = fpu->last_dp;
11484 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11485 
11486 	vcpu_put(vcpu);
11487 	return 0;
11488 }
11489 
11490 static void store_regs(struct kvm_vcpu *vcpu)
11491 {
11492 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11493 
11494 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11495 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11496 
11497 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11498 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11499 
11500 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11501 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11502 				vcpu, &vcpu->run->s.regs.events);
11503 }
11504 
11505 static int sync_regs(struct kvm_vcpu *vcpu)
11506 {
11507 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11508 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11509 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11510 	}
11511 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11512 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11513 			return -EINVAL;
11514 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11515 	}
11516 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11517 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11518 				vcpu, &vcpu->run->s.regs.events))
11519 			return -EINVAL;
11520 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11521 	}
11522 
11523 	return 0;
11524 }
11525 
11526 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11527 {
11528 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11529 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11530 			     "guest TSC will not be reliable\n");
11531 
11532 	if (!kvm->arch.max_vcpu_ids)
11533 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11534 
11535 	if (id >= kvm->arch.max_vcpu_ids)
11536 		return -EINVAL;
11537 
11538 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11539 }
11540 
11541 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11542 {
11543 	struct page *page;
11544 	int r;
11545 
11546 	vcpu->arch.last_vmentry_cpu = -1;
11547 	vcpu->arch.regs_avail = ~0;
11548 	vcpu->arch.regs_dirty = ~0;
11549 
11550 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11551 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11552 	else
11553 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11554 
11555 	r = kvm_mmu_create(vcpu);
11556 	if (r < 0)
11557 		return r;
11558 
11559 	if (irqchip_in_kernel(vcpu->kvm)) {
11560 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11561 		if (r < 0)
11562 			goto fail_mmu_destroy;
11563 
11564 		/*
11565 		 * Defer evaluating inhibits until the vCPU is first run, as
11566 		 * this vCPU will not get notified of any changes until this
11567 		 * vCPU is visible to other vCPUs (marked online and added to
11568 		 * the set of vCPUs).  Opportunistically mark APICv active as
11569 		 * VMX in particularly is highly unlikely to have inhibits.
11570 		 * Ignore the current per-VM APICv state so that vCPU creation
11571 		 * is guaranteed to run with a deterministic value, the request
11572 		 * will ensure the vCPU gets the correct state before VM-Entry.
11573 		 */
11574 		if (enable_apicv) {
11575 			vcpu->arch.apic->apicv_active = true;
11576 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11577 		}
11578 	} else
11579 		static_branch_inc(&kvm_has_noapic_vcpu);
11580 
11581 	r = -ENOMEM;
11582 
11583 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11584 	if (!page)
11585 		goto fail_free_lapic;
11586 	vcpu->arch.pio_data = page_address(page);
11587 
11588 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11589 				       GFP_KERNEL_ACCOUNT);
11590 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11591 					    GFP_KERNEL_ACCOUNT);
11592 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11593 		goto fail_free_mce_banks;
11594 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11595 
11596 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11597 				GFP_KERNEL_ACCOUNT))
11598 		goto fail_free_mce_banks;
11599 
11600 	if (!alloc_emulate_ctxt(vcpu))
11601 		goto free_wbinvd_dirty_mask;
11602 
11603 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11604 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11605 		goto free_emulate_ctxt;
11606 	}
11607 
11608 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11609 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11610 
11611 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11612 
11613 	kvm_async_pf_hash_reset(vcpu);
11614 	kvm_pmu_init(vcpu);
11615 
11616 	vcpu->arch.pending_external_vector = -1;
11617 	vcpu->arch.preempted_in_kernel = false;
11618 
11619 #if IS_ENABLED(CONFIG_HYPERV)
11620 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11621 #endif
11622 
11623 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11624 	if (r)
11625 		goto free_guest_fpu;
11626 
11627 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11628 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11629 	kvm_xen_init_vcpu(vcpu);
11630 	kvm_vcpu_mtrr_init(vcpu);
11631 	vcpu_load(vcpu);
11632 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11633 	kvm_vcpu_reset(vcpu, false);
11634 	kvm_init_mmu(vcpu);
11635 	vcpu_put(vcpu);
11636 	return 0;
11637 
11638 free_guest_fpu:
11639 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11640 free_emulate_ctxt:
11641 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11642 free_wbinvd_dirty_mask:
11643 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11644 fail_free_mce_banks:
11645 	kfree(vcpu->arch.mce_banks);
11646 	kfree(vcpu->arch.mci_ctl2_banks);
11647 	free_page((unsigned long)vcpu->arch.pio_data);
11648 fail_free_lapic:
11649 	kvm_free_lapic(vcpu);
11650 fail_mmu_destroy:
11651 	kvm_mmu_destroy(vcpu);
11652 	return r;
11653 }
11654 
11655 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11656 {
11657 	struct kvm *kvm = vcpu->kvm;
11658 
11659 	if (mutex_lock_killable(&vcpu->mutex))
11660 		return;
11661 	vcpu_load(vcpu);
11662 	kvm_synchronize_tsc(vcpu, 0);
11663 	vcpu_put(vcpu);
11664 
11665 	/* poll control enabled by default */
11666 	vcpu->arch.msr_kvm_poll_control = 1;
11667 
11668 	mutex_unlock(&vcpu->mutex);
11669 
11670 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11671 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11672 						KVMCLOCK_SYNC_PERIOD);
11673 }
11674 
11675 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11676 {
11677 	int idx;
11678 
11679 	kvmclock_reset(vcpu);
11680 
11681 	static_call(kvm_x86_vcpu_free)(vcpu);
11682 
11683 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11684 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11685 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11686 
11687 	kvm_xen_destroy_vcpu(vcpu);
11688 	kvm_hv_vcpu_uninit(vcpu);
11689 	kvm_pmu_destroy(vcpu);
11690 	kfree(vcpu->arch.mce_banks);
11691 	kfree(vcpu->arch.mci_ctl2_banks);
11692 	kvm_free_lapic(vcpu);
11693 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11694 	kvm_mmu_destroy(vcpu);
11695 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11696 	free_page((unsigned long)vcpu->arch.pio_data);
11697 	kvfree(vcpu->arch.cpuid_entries);
11698 	if (!lapic_in_kernel(vcpu))
11699 		static_branch_dec(&kvm_has_noapic_vcpu);
11700 }
11701 
11702 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11703 {
11704 	struct kvm_cpuid_entry2 *cpuid_0x1;
11705 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11706 	unsigned long new_cr0;
11707 
11708 	/*
11709 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11710 	 * to handle side effects.  RESET emulation hits those flows and relies
11711 	 * on emulated/virtualized registers, including those that are loaded
11712 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11713 	 * to detect improper or missing initialization.
11714 	 */
11715 	WARN_ON_ONCE(!init_event &&
11716 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11717 
11718 	kvm_lapic_reset(vcpu, init_event);
11719 
11720 	vcpu->arch.hflags = 0;
11721 
11722 	vcpu->arch.smi_pending = 0;
11723 	vcpu->arch.smi_count = 0;
11724 	atomic_set(&vcpu->arch.nmi_queued, 0);
11725 	vcpu->arch.nmi_pending = 0;
11726 	vcpu->arch.nmi_injected = false;
11727 	kvm_clear_interrupt_queue(vcpu);
11728 	kvm_clear_exception_queue(vcpu);
11729 
11730 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11731 	kvm_update_dr0123(vcpu);
11732 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11733 	vcpu->arch.dr7 = DR7_FIXED_1;
11734 	kvm_update_dr7(vcpu);
11735 
11736 	vcpu->arch.cr2 = 0;
11737 
11738 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11739 	vcpu->arch.apf.msr_en_val = 0;
11740 	vcpu->arch.apf.msr_int_val = 0;
11741 	vcpu->arch.st.msr_val = 0;
11742 
11743 	kvmclock_reset(vcpu);
11744 
11745 	kvm_clear_async_pf_completion_queue(vcpu);
11746 	kvm_async_pf_hash_reset(vcpu);
11747 	vcpu->arch.apf.halted = false;
11748 
11749 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11750 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11751 
11752 		/*
11753 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11754 		 * called with loaded FPU and does not let userspace fix the state.
11755 		 */
11756 		if (init_event)
11757 			kvm_put_guest_fpu(vcpu);
11758 
11759 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11760 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11761 
11762 		if (init_event)
11763 			kvm_load_guest_fpu(vcpu);
11764 	}
11765 
11766 	if (!init_event) {
11767 		kvm_pmu_reset(vcpu);
11768 		vcpu->arch.smbase = 0x30000;
11769 
11770 		vcpu->arch.msr_misc_features_enables = 0;
11771 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11772 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11773 
11774 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11775 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11776 	}
11777 
11778 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11779 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11780 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11781 
11782 	/*
11783 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11784 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11785 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11786 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11787 	 * on RESET.  But, go through the motions in case that's ever remedied.
11788 	 */
11789 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
11790 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11791 
11792 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11793 
11794 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11795 	kvm_rip_write(vcpu, 0xfff0);
11796 
11797 	vcpu->arch.cr3 = 0;
11798 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11799 
11800 	/*
11801 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11802 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11803 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11804 	 */
11805 	new_cr0 = X86_CR0_ET;
11806 	if (init_event)
11807 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11808 	else
11809 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11810 
11811 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11812 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11813 	static_call(kvm_x86_set_efer)(vcpu, 0);
11814 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11815 
11816 	/*
11817 	 * On the standard CR0/CR4/EFER modification paths, there are several
11818 	 * complex conditions determining whether the MMU has to be reset and/or
11819 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11820 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11821 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11822 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11823 	 */
11824 	if (old_cr0 & X86_CR0_PG) {
11825 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11826 		kvm_mmu_reset_context(vcpu);
11827 	}
11828 
11829 	/*
11830 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11831 	 * APM states the TLBs are untouched by INIT, but it also states that
11832 	 * the TLBs are flushed on "External initialization of the processor."
11833 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11834 	 * benefit in relying on the guest to flush the TLB immediately after
11835 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11836 	 * performance perspective.
11837 	 */
11838 	if (init_event)
11839 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11840 }
11841 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11842 
11843 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11844 {
11845 	struct kvm_segment cs;
11846 
11847 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11848 	cs.selector = vector << 8;
11849 	cs.base = vector << 12;
11850 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11851 	kvm_rip_write(vcpu, 0);
11852 }
11853 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11854 
11855 int kvm_arch_hardware_enable(void)
11856 {
11857 	struct kvm *kvm;
11858 	struct kvm_vcpu *vcpu;
11859 	unsigned long i;
11860 	int ret;
11861 	u64 local_tsc;
11862 	u64 max_tsc = 0;
11863 	bool stable, backwards_tsc = false;
11864 
11865 	kvm_user_return_msr_cpu_online();
11866 	ret = static_call(kvm_x86_hardware_enable)();
11867 	if (ret != 0)
11868 		return ret;
11869 
11870 	local_tsc = rdtsc();
11871 	stable = !kvm_check_tsc_unstable();
11872 	list_for_each_entry(kvm, &vm_list, vm_list) {
11873 		kvm_for_each_vcpu(i, vcpu, kvm) {
11874 			if (!stable && vcpu->cpu == smp_processor_id())
11875 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11876 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11877 				backwards_tsc = true;
11878 				if (vcpu->arch.last_host_tsc > max_tsc)
11879 					max_tsc = vcpu->arch.last_host_tsc;
11880 			}
11881 		}
11882 	}
11883 
11884 	/*
11885 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11886 	 * platforms that reset TSC during suspend or hibernate actions, but
11887 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11888 	 * detect that condition here, which happens early in CPU bringup,
11889 	 * before any KVM threads can be running.  Unfortunately, we can't
11890 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11891 	 * enough into CPU bringup that we know how much real time has actually
11892 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11893 	 * variables that haven't been updated yet.
11894 	 *
11895 	 * So we simply find the maximum observed TSC above, then record the
11896 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11897 	 * the adjustment will be applied.  Note that we accumulate
11898 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11899 	 * gets a chance to run again.  In the event that no KVM threads get a
11900 	 * chance to run, we will miss the entire elapsed period, as we'll have
11901 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11902 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11903 	 * uniform across all VCPUs (not to mention the scenario is extremely
11904 	 * unlikely). It is possible that a second hibernate recovery happens
11905 	 * much faster than a first, causing the observed TSC here to be
11906 	 * smaller; this would require additional padding adjustment, which is
11907 	 * why we set last_host_tsc to the local tsc observed here.
11908 	 *
11909 	 * N.B. - this code below runs only on platforms with reliable TSC,
11910 	 * as that is the only way backwards_tsc is set above.  Also note
11911 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11912 	 * have the same delta_cyc adjustment applied if backwards_tsc
11913 	 * is detected.  Note further, this adjustment is only done once,
11914 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11915 	 * called multiple times (one for each physical CPU bringup).
11916 	 *
11917 	 * Platforms with unreliable TSCs don't have to deal with this, they
11918 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11919 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11920 	 * guarantee that they stay in perfect synchronization.
11921 	 */
11922 	if (backwards_tsc) {
11923 		u64 delta_cyc = max_tsc - local_tsc;
11924 		list_for_each_entry(kvm, &vm_list, vm_list) {
11925 			kvm->arch.backwards_tsc_observed = true;
11926 			kvm_for_each_vcpu(i, vcpu, kvm) {
11927 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11928 				vcpu->arch.last_host_tsc = local_tsc;
11929 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11930 			}
11931 
11932 			/*
11933 			 * We have to disable TSC offset matching.. if you were
11934 			 * booting a VM while issuing an S4 host suspend....
11935 			 * you may have some problem.  Solving this issue is
11936 			 * left as an exercise to the reader.
11937 			 */
11938 			kvm->arch.last_tsc_nsec = 0;
11939 			kvm->arch.last_tsc_write = 0;
11940 		}
11941 
11942 	}
11943 	return 0;
11944 }
11945 
11946 void kvm_arch_hardware_disable(void)
11947 {
11948 	static_call(kvm_x86_hardware_disable)();
11949 	drop_user_return_notifiers();
11950 }
11951 
11952 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11953 {
11954 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11955 
11956 #define __KVM_X86_OP(func) \
11957 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11958 #define KVM_X86_OP(func) \
11959 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11960 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11961 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11962 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11963 					   (void *)__static_call_return0);
11964 #include <asm/kvm-x86-ops.h>
11965 #undef __KVM_X86_OP
11966 
11967 	kvm_pmu_ops_update(ops->pmu_ops);
11968 }
11969 
11970 int kvm_arch_hardware_setup(void *opaque)
11971 {
11972 	struct kvm_x86_init_ops *ops = opaque;
11973 	int r;
11974 
11975 	rdmsrl_safe(MSR_EFER, &host_efer);
11976 
11977 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11978 		rdmsrl(MSR_IA32_XSS, host_xss);
11979 
11980 	kvm_init_pmu_capability();
11981 
11982 	r = ops->hardware_setup();
11983 	if (r != 0)
11984 		return r;
11985 
11986 	kvm_ops_update(ops);
11987 
11988 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11989 
11990 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11991 		kvm_caps.supported_xss = 0;
11992 
11993 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11994 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11995 #undef __kvm_cpu_cap_has
11996 
11997 	if (kvm_caps.has_tsc_control) {
11998 		/*
11999 		 * Make sure the user can only configure tsc_khz values that
12000 		 * fit into a signed integer.
12001 		 * A min value is not calculated because it will always
12002 		 * be 1 on all machines.
12003 		 */
12004 		u64 max = min(0x7fffffffULL,
12005 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12006 		kvm_caps.max_guest_tsc_khz = max;
12007 	}
12008 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12009 	kvm_init_msr_list();
12010 	return 0;
12011 }
12012 
12013 void kvm_arch_hardware_unsetup(void)
12014 {
12015 	kvm_unregister_perf_callbacks();
12016 
12017 	static_call(kvm_x86_hardware_unsetup)();
12018 }
12019 
12020 int kvm_arch_check_processor_compat(void *opaque)
12021 {
12022 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12023 	struct kvm_x86_init_ops *ops = opaque;
12024 
12025 	WARN_ON(!irqs_disabled());
12026 
12027 	if (__cr4_reserved_bits(cpu_has, c) !=
12028 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12029 		return -EIO;
12030 
12031 	return ops->check_processor_compatibility();
12032 }
12033 
12034 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12035 {
12036 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12037 }
12038 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12039 
12040 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12041 {
12042 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12043 }
12044 
12045 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12046 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12047 
12048 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12049 {
12050 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12051 
12052 	vcpu->arch.l1tf_flush_l1d = true;
12053 	if (pmu->version && unlikely(pmu->event_count)) {
12054 		pmu->need_cleanup = true;
12055 		kvm_make_request(KVM_REQ_PMU, vcpu);
12056 	}
12057 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12058 }
12059 
12060 void kvm_arch_free_vm(struct kvm *kvm)
12061 {
12062 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12063 	__kvm_arch_free_vm(kvm);
12064 }
12065 
12066 
12067 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12068 {
12069 	int ret;
12070 	unsigned long flags;
12071 
12072 	if (type)
12073 		return -EINVAL;
12074 
12075 	ret = kvm_page_track_init(kvm);
12076 	if (ret)
12077 		goto out;
12078 
12079 	ret = kvm_mmu_init_vm(kvm);
12080 	if (ret)
12081 		goto out_page_track;
12082 
12083 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12084 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12085 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12086 
12087 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12088 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12089 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12090 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12091 		&kvm->arch.irq_sources_bitmap);
12092 
12093 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12094 	mutex_init(&kvm->arch.apic_map_lock);
12095 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12096 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12097 
12098 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12099 	pvclock_update_vm_gtod_copy(kvm);
12100 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12101 
12102 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12103 	kvm->arch.guest_can_read_msr_platform_info = true;
12104 	kvm->arch.enable_pmu = enable_pmu;
12105 
12106 #if IS_ENABLED(CONFIG_HYPERV)
12107 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12108 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12109 #endif
12110 
12111 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12112 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12113 
12114 	kvm_apicv_init(kvm);
12115 	kvm_hv_init_vm(kvm);
12116 	kvm_xen_init_vm(kvm);
12117 
12118 	return static_call(kvm_x86_vm_init)(kvm);
12119 
12120 out_page_track:
12121 	kvm_page_track_cleanup(kvm);
12122 out:
12123 	return ret;
12124 }
12125 
12126 int kvm_arch_post_init_vm(struct kvm *kvm)
12127 {
12128 	return kvm_mmu_post_init_vm(kvm);
12129 }
12130 
12131 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12132 {
12133 	vcpu_load(vcpu);
12134 	kvm_mmu_unload(vcpu);
12135 	vcpu_put(vcpu);
12136 }
12137 
12138 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12139 {
12140 	unsigned long i;
12141 	struct kvm_vcpu *vcpu;
12142 
12143 	kvm_for_each_vcpu(i, vcpu, kvm) {
12144 		kvm_clear_async_pf_completion_queue(vcpu);
12145 		kvm_unload_vcpu_mmu(vcpu);
12146 	}
12147 }
12148 
12149 void kvm_arch_sync_events(struct kvm *kvm)
12150 {
12151 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12152 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12153 	kvm_free_pit(kvm);
12154 }
12155 
12156 /**
12157  * __x86_set_memory_region: Setup KVM internal memory slot
12158  *
12159  * @kvm: the kvm pointer to the VM.
12160  * @id: the slot ID to setup.
12161  * @gpa: the GPA to install the slot (unused when @size == 0).
12162  * @size: the size of the slot. Set to zero to uninstall a slot.
12163  *
12164  * This function helps to setup a KVM internal memory slot.  Specify
12165  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12166  * slot.  The return code can be one of the following:
12167  *
12168  *   HVA:           on success (uninstall will return a bogus HVA)
12169  *   -errno:        on error
12170  *
12171  * The caller should always use IS_ERR() to check the return value
12172  * before use.  Note, the KVM internal memory slots are guaranteed to
12173  * remain valid and unchanged until the VM is destroyed, i.e., the
12174  * GPA->HVA translation will not change.  However, the HVA is a user
12175  * address, i.e. its accessibility is not guaranteed, and must be
12176  * accessed via __copy_{to,from}_user().
12177  */
12178 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12179 				      u32 size)
12180 {
12181 	int i, r;
12182 	unsigned long hva, old_npages;
12183 	struct kvm_memslots *slots = kvm_memslots(kvm);
12184 	struct kvm_memory_slot *slot;
12185 
12186 	/* Called with kvm->slots_lock held.  */
12187 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12188 		return ERR_PTR_USR(-EINVAL);
12189 
12190 	slot = id_to_memslot(slots, id);
12191 	if (size) {
12192 		if (slot && slot->npages)
12193 			return ERR_PTR_USR(-EEXIST);
12194 
12195 		/*
12196 		 * MAP_SHARED to prevent internal slot pages from being moved
12197 		 * by fork()/COW.
12198 		 */
12199 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12200 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12201 		if (IS_ERR((void *)hva))
12202 			return (void __user *)hva;
12203 	} else {
12204 		if (!slot || !slot->npages)
12205 			return NULL;
12206 
12207 		old_npages = slot->npages;
12208 		hva = slot->userspace_addr;
12209 	}
12210 
12211 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12212 		struct kvm_userspace_memory_region m;
12213 
12214 		m.slot = id | (i << 16);
12215 		m.flags = 0;
12216 		m.guest_phys_addr = gpa;
12217 		m.userspace_addr = hva;
12218 		m.memory_size = size;
12219 		r = __kvm_set_memory_region(kvm, &m);
12220 		if (r < 0)
12221 			return ERR_PTR_USR(r);
12222 	}
12223 
12224 	if (!size)
12225 		vm_munmap(hva, old_npages * PAGE_SIZE);
12226 
12227 	return (void __user *)hva;
12228 }
12229 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12230 
12231 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12232 {
12233 	kvm_mmu_pre_destroy_vm(kvm);
12234 }
12235 
12236 void kvm_arch_destroy_vm(struct kvm *kvm)
12237 {
12238 	if (current->mm == kvm->mm) {
12239 		/*
12240 		 * Free memory regions allocated on behalf of userspace,
12241 		 * unless the memory map has changed due to process exit
12242 		 * or fd copying.
12243 		 */
12244 		mutex_lock(&kvm->slots_lock);
12245 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12246 					0, 0);
12247 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12248 					0, 0);
12249 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12250 		mutex_unlock(&kvm->slots_lock);
12251 	}
12252 	kvm_unload_vcpu_mmus(kvm);
12253 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12254 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12255 	kvm_pic_destroy(kvm);
12256 	kvm_ioapic_destroy(kvm);
12257 	kvm_destroy_vcpus(kvm);
12258 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12259 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12260 	kvm_mmu_uninit_vm(kvm);
12261 	kvm_page_track_cleanup(kvm);
12262 	kvm_xen_destroy_vm(kvm);
12263 	kvm_hv_destroy_vm(kvm);
12264 }
12265 
12266 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12267 {
12268 	int i;
12269 
12270 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12271 		kvfree(slot->arch.rmap[i]);
12272 		slot->arch.rmap[i] = NULL;
12273 	}
12274 }
12275 
12276 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12277 {
12278 	int i;
12279 
12280 	memslot_rmap_free(slot);
12281 
12282 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12283 		kvfree(slot->arch.lpage_info[i - 1]);
12284 		slot->arch.lpage_info[i - 1] = NULL;
12285 	}
12286 
12287 	kvm_page_track_free_memslot(slot);
12288 }
12289 
12290 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12291 {
12292 	const int sz = sizeof(*slot->arch.rmap[0]);
12293 	int i;
12294 
12295 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12296 		int level = i + 1;
12297 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12298 
12299 		if (slot->arch.rmap[i])
12300 			continue;
12301 
12302 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12303 		if (!slot->arch.rmap[i]) {
12304 			memslot_rmap_free(slot);
12305 			return -ENOMEM;
12306 		}
12307 	}
12308 
12309 	return 0;
12310 }
12311 
12312 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12313 				      struct kvm_memory_slot *slot)
12314 {
12315 	unsigned long npages = slot->npages;
12316 	int i, r;
12317 
12318 	/*
12319 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12320 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12321 	 * the new memslot is successful.
12322 	 */
12323 	memset(&slot->arch, 0, sizeof(slot->arch));
12324 
12325 	if (kvm_memslots_have_rmaps(kvm)) {
12326 		r = memslot_rmap_alloc(slot, npages);
12327 		if (r)
12328 			return r;
12329 	}
12330 
12331 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12332 		struct kvm_lpage_info *linfo;
12333 		unsigned long ugfn;
12334 		int lpages;
12335 		int level = i + 1;
12336 
12337 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12338 
12339 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12340 		if (!linfo)
12341 			goto out_free;
12342 
12343 		slot->arch.lpage_info[i - 1] = linfo;
12344 
12345 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12346 			linfo[0].disallow_lpage = 1;
12347 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12348 			linfo[lpages - 1].disallow_lpage = 1;
12349 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12350 		/*
12351 		 * If the gfn and userspace address are not aligned wrt each
12352 		 * other, disable large page support for this slot.
12353 		 */
12354 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12355 			unsigned long j;
12356 
12357 			for (j = 0; j < lpages; ++j)
12358 				linfo[j].disallow_lpage = 1;
12359 		}
12360 	}
12361 
12362 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12363 		goto out_free;
12364 
12365 	return 0;
12366 
12367 out_free:
12368 	memslot_rmap_free(slot);
12369 
12370 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12371 		kvfree(slot->arch.lpage_info[i - 1]);
12372 		slot->arch.lpage_info[i - 1] = NULL;
12373 	}
12374 	return -ENOMEM;
12375 }
12376 
12377 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12378 {
12379 	struct kvm_vcpu *vcpu;
12380 	unsigned long i;
12381 
12382 	/*
12383 	 * memslots->generation has been incremented.
12384 	 * mmio generation may have reached its maximum value.
12385 	 */
12386 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12387 
12388 	/* Force re-initialization of steal_time cache */
12389 	kvm_for_each_vcpu(i, vcpu, kvm)
12390 		kvm_vcpu_kick(vcpu);
12391 }
12392 
12393 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12394 				   const struct kvm_memory_slot *old,
12395 				   struct kvm_memory_slot *new,
12396 				   enum kvm_mr_change change)
12397 {
12398 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12399 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12400 			return -EINVAL;
12401 
12402 		return kvm_alloc_memslot_metadata(kvm, new);
12403 	}
12404 
12405 	if (change == KVM_MR_FLAGS_ONLY)
12406 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12407 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12408 		return -EIO;
12409 
12410 	return 0;
12411 }
12412 
12413 
12414 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12415 {
12416 	struct kvm_arch *ka = &kvm->arch;
12417 
12418 	if (!kvm_x86_ops.cpu_dirty_log_size)
12419 		return;
12420 
12421 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12422 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12423 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12424 
12425 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12426 }
12427 
12428 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12429 				     struct kvm_memory_slot *old,
12430 				     const struct kvm_memory_slot *new,
12431 				     enum kvm_mr_change change)
12432 {
12433 	u32 old_flags = old ? old->flags : 0;
12434 	u32 new_flags = new ? new->flags : 0;
12435 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12436 
12437 	/*
12438 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12439 	 * applies to all operations.
12440 	 */
12441 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12442 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12443 
12444 	/*
12445 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12446 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12447 	 *
12448 	 * For a memslot with dirty logging disabled:
12449 	 * CREATE:      No dirty mappings will already exist.
12450 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12451 	 *		kvm_arch_flush_shadow_memslot()
12452 	 *
12453 	 * For a memslot with dirty logging enabled:
12454 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12455 	 *		and no dirty bits to clear.
12456 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12457 	 *		kvm_arch_flush_shadow_memslot().
12458 	 */
12459 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12460 		return;
12461 
12462 	/*
12463 	 * READONLY and non-flags changes were filtered out above, and the only
12464 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12465 	 * logging isn't being toggled on or off.
12466 	 */
12467 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12468 		return;
12469 
12470 	if (!log_dirty_pages) {
12471 		/*
12472 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12473 		 * large sptes have to be split.  If live migration succeeds,
12474 		 * the guest in the source machine will be destroyed and large
12475 		 * sptes will be created in the destination.  However, if the
12476 		 * guest continues to run in the source machine (for example if
12477 		 * live migration fails), small sptes will remain around and
12478 		 * cause bad performance.
12479 		 *
12480 		 * Scan sptes if dirty logging has been stopped, dropping those
12481 		 * which can be collapsed into a single large-page spte.  Later
12482 		 * page faults will create the large-page sptes.
12483 		 */
12484 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12485 	} else {
12486 		/*
12487 		 * Initially-all-set does not require write protecting any page,
12488 		 * because they're all assumed to be dirty.
12489 		 */
12490 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12491 			return;
12492 
12493 		if (READ_ONCE(eager_page_split))
12494 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12495 
12496 		if (kvm_x86_ops.cpu_dirty_log_size) {
12497 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12498 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12499 		} else {
12500 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12501 		}
12502 
12503 		/*
12504 		 * Unconditionally flush the TLBs after enabling dirty logging.
12505 		 * A flush is almost always going to be necessary (see below),
12506 		 * and unconditionally flushing allows the helpers to omit
12507 		 * the subtly complex checks when removing write access.
12508 		 *
12509 		 * Do the flush outside of mmu_lock to reduce the amount of
12510 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12511 		 * safe as KVM only needs to guarantee the slot is fully
12512 		 * write-protected before returning to userspace, i.e. before
12513 		 * userspace can consume the dirty status.
12514 		 *
12515 		 * Flushing outside of mmu_lock requires KVM to be careful when
12516 		 * making decisions based on writable status of an SPTE, e.g. a
12517 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12518 		 *
12519 		 * Specifically, KVM also write-protects guest page tables to
12520 		 * monitor changes when using shadow paging, and must guarantee
12521 		 * no CPUs can write to those page before mmu_lock is dropped.
12522 		 * Because CPUs may have stale TLB entries at this point, a
12523 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12524 		 *
12525 		 * KVM also allows making SPTES writable outside of mmu_lock,
12526 		 * e.g. to allow dirty logging without taking mmu_lock.
12527 		 *
12528 		 * To handle these scenarios, KVM uses a separate software-only
12529 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12530 		 * a guest page table being write-protected (KVM clears the
12531 		 * MMU-writable flag when write-protecting for shadow paging).
12532 		 *
12533 		 * The use of MMU-writable is also the primary motivation for
12534 		 * the unconditional flush.  Because KVM must guarantee that a
12535 		 * CPU doesn't contain stale, writable TLB entries for a
12536 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12537 		 * MMU-writable SPTE regardless of whether the actual hardware
12538 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12539 		 * to flush, while unconditionally flushing allows the "remove
12540 		 * write access" helpers to ignore MMU-writable entirely.
12541 		 *
12542 		 * See is_writable_pte() for more details (the case involving
12543 		 * access-tracked SPTEs is particularly relevant).
12544 		 */
12545 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12546 	}
12547 }
12548 
12549 void kvm_arch_commit_memory_region(struct kvm *kvm,
12550 				struct kvm_memory_slot *old,
12551 				const struct kvm_memory_slot *new,
12552 				enum kvm_mr_change change)
12553 {
12554 	if (!kvm->arch.n_requested_mmu_pages &&
12555 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12556 		unsigned long nr_mmu_pages;
12557 
12558 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12559 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12560 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12561 	}
12562 
12563 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12564 
12565 	/* Free the arrays associated with the old memslot. */
12566 	if (change == KVM_MR_MOVE)
12567 		kvm_arch_free_memslot(kvm, old);
12568 }
12569 
12570 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12571 {
12572 	kvm_mmu_zap_all(kvm);
12573 }
12574 
12575 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12576 				   struct kvm_memory_slot *slot)
12577 {
12578 	kvm_page_track_flush_slot(kvm, slot);
12579 }
12580 
12581 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12582 {
12583 	return (is_guest_mode(vcpu) &&
12584 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12585 }
12586 
12587 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12588 {
12589 	if (!list_empty_careful(&vcpu->async_pf.done))
12590 		return true;
12591 
12592 	if (kvm_apic_has_events(vcpu))
12593 		return true;
12594 
12595 	if (vcpu->arch.pv.pv_unhalted)
12596 		return true;
12597 
12598 	if (vcpu->arch.exception.pending)
12599 		return true;
12600 
12601 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12602 	    (vcpu->arch.nmi_pending &&
12603 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12604 		return true;
12605 
12606 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12607 	    (vcpu->arch.smi_pending &&
12608 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12609 		return true;
12610 
12611 	if (kvm_arch_interrupt_allowed(vcpu) &&
12612 	    (kvm_cpu_has_interrupt(vcpu) ||
12613 	    kvm_guest_apic_has_interrupt(vcpu)))
12614 		return true;
12615 
12616 	if (kvm_hv_has_stimer_pending(vcpu))
12617 		return true;
12618 
12619 	if (is_guest_mode(vcpu) &&
12620 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12621 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12622 		return true;
12623 
12624 	if (kvm_xen_has_pending_events(vcpu))
12625 		return true;
12626 
12627 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12628 		return true;
12629 
12630 	return false;
12631 }
12632 
12633 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12634 {
12635 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12636 }
12637 
12638 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12639 {
12640 	if (kvm_vcpu_apicv_active(vcpu) &&
12641 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12642 		return true;
12643 
12644 	return false;
12645 }
12646 
12647 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12648 {
12649 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12650 		return true;
12651 
12652 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12653 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12654 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12655 		return true;
12656 
12657 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12658 }
12659 
12660 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12661 {
12662 	if (vcpu->arch.guest_state_protected)
12663 		return true;
12664 
12665 	return vcpu->arch.preempted_in_kernel;
12666 }
12667 
12668 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12669 {
12670 	return kvm_rip_read(vcpu);
12671 }
12672 
12673 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12674 {
12675 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12676 }
12677 
12678 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12679 {
12680 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12681 }
12682 
12683 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12684 {
12685 	/* Can't read the RIP when guest state is protected, just return 0 */
12686 	if (vcpu->arch.guest_state_protected)
12687 		return 0;
12688 
12689 	if (is_64_bit_mode(vcpu))
12690 		return kvm_rip_read(vcpu);
12691 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12692 		     kvm_rip_read(vcpu));
12693 }
12694 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12695 
12696 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12697 {
12698 	return kvm_get_linear_rip(vcpu) == linear_rip;
12699 }
12700 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12701 
12702 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12703 {
12704 	unsigned long rflags;
12705 
12706 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12707 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12708 		rflags &= ~X86_EFLAGS_TF;
12709 	return rflags;
12710 }
12711 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12712 
12713 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12714 {
12715 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12716 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12717 		rflags |= X86_EFLAGS_TF;
12718 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12719 }
12720 
12721 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12722 {
12723 	__kvm_set_rflags(vcpu, rflags);
12724 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12725 }
12726 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12727 
12728 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12729 {
12730 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12731 
12732 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12733 }
12734 
12735 static inline u32 kvm_async_pf_next_probe(u32 key)
12736 {
12737 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12738 }
12739 
12740 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12741 {
12742 	u32 key = kvm_async_pf_hash_fn(gfn);
12743 
12744 	while (vcpu->arch.apf.gfns[key] != ~0)
12745 		key = kvm_async_pf_next_probe(key);
12746 
12747 	vcpu->arch.apf.gfns[key] = gfn;
12748 }
12749 
12750 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12751 {
12752 	int i;
12753 	u32 key = kvm_async_pf_hash_fn(gfn);
12754 
12755 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12756 		     (vcpu->arch.apf.gfns[key] != gfn &&
12757 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12758 		key = kvm_async_pf_next_probe(key);
12759 
12760 	return key;
12761 }
12762 
12763 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12764 {
12765 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12766 }
12767 
12768 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12769 {
12770 	u32 i, j, k;
12771 
12772 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12773 
12774 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12775 		return;
12776 
12777 	while (true) {
12778 		vcpu->arch.apf.gfns[i] = ~0;
12779 		do {
12780 			j = kvm_async_pf_next_probe(j);
12781 			if (vcpu->arch.apf.gfns[j] == ~0)
12782 				return;
12783 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12784 			/*
12785 			 * k lies cyclically in ]i,j]
12786 			 * |    i.k.j |
12787 			 * |....j i.k.| or  |.k..j i...|
12788 			 */
12789 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12790 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12791 		i = j;
12792 	}
12793 }
12794 
12795 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12796 {
12797 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12798 
12799 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12800 				      sizeof(reason));
12801 }
12802 
12803 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12804 {
12805 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12806 
12807 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12808 					     &token, offset, sizeof(token));
12809 }
12810 
12811 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12812 {
12813 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12814 	u32 val;
12815 
12816 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12817 					 &val, offset, sizeof(val)))
12818 		return false;
12819 
12820 	return !val;
12821 }
12822 
12823 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12824 {
12825 
12826 	if (!kvm_pv_async_pf_enabled(vcpu))
12827 		return false;
12828 
12829 	if (vcpu->arch.apf.send_user_only &&
12830 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12831 		return false;
12832 
12833 	if (is_guest_mode(vcpu)) {
12834 		/*
12835 		 * L1 needs to opt into the special #PF vmexits that are
12836 		 * used to deliver async page faults.
12837 		 */
12838 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12839 	} else {
12840 		/*
12841 		 * Play it safe in case the guest temporarily disables paging.
12842 		 * The real mode IDT in particular is unlikely to have a #PF
12843 		 * exception setup.
12844 		 */
12845 		return is_paging(vcpu);
12846 	}
12847 }
12848 
12849 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12850 {
12851 	if (unlikely(!lapic_in_kernel(vcpu) ||
12852 		     kvm_event_needs_reinjection(vcpu) ||
12853 		     vcpu->arch.exception.pending))
12854 		return false;
12855 
12856 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12857 		return false;
12858 
12859 	/*
12860 	 * If interrupts are off we cannot even use an artificial
12861 	 * halt state.
12862 	 */
12863 	return kvm_arch_interrupt_allowed(vcpu);
12864 }
12865 
12866 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12867 				     struct kvm_async_pf *work)
12868 {
12869 	struct x86_exception fault;
12870 
12871 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12872 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12873 
12874 	if (kvm_can_deliver_async_pf(vcpu) &&
12875 	    !apf_put_user_notpresent(vcpu)) {
12876 		fault.vector = PF_VECTOR;
12877 		fault.error_code_valid = true;
12878 		fault.error_code = 0;
12879 		fault.nested_page_fault = false;
12880 		fault.address = work->arch.token;
12881 		fault.async_page_fault = true;
12882 		kvm_inject_page_fault(vcpu, &fault);
12883 		return true;
12884 	} else {
12885 		/*
12886 		 * It is not possible to deliver a paravirtualized asynchronous
12887 		 * page fault, but putting the guest in an artificial halt state
12888 		 * can be beneficial nevertheless: if an interrupt arrives, we
12889 		 * can deliver it timely and perhaps the guest will schedule
12890 		 * another process.  When the instruction that triggered a page
12891 		 * fault is retried, hopefully the page will be ready in the host.
12892 		 */
12893 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12894 		return false;
12895 	}
12896 }
12897 
12898 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12899 				 struct kvm_async_pf *work)
12900 {
12901 	struct kvm_lapic_irq irq = {
12902 		.delivery_mode = APIC_DM_FIXED,
12903 		.vector = vcpu->arch.apf.vec
12904 	};
12905 
12906 	if (work->wakeup_all)
12907 		work->arch.token = ~0; /* broadcast wakeup */
12908 	else
12909 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12910 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12911 
12912 	if ((work->wakeup_all || work->notpresent_injected) &&
12913 	    kvm_pv_async_pf_enabled(vcpu) &&
12914 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12915 		vcpu->arch.apf.pageready_pending = true;
12916 		kvm_apic_set_irq(vcpu, &irq, NULL);
12917 	}
12918 
12919 	vcpu->arch.apf.halted = false;
12920 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12921 }
12922 
12923 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12924 {
12925 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12926 	if (!vcpu->arch.apf.pageready_pending)
12927 		kvm_vcpu_kick(vcpu);
12928 }
12929 
12930 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12931 {
12932 	if (!kvm_pv_async_pf_enabled(vcpu))
12933 		return true;
12934 	else
12935 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12936 }
12937 
12938 void kvm_arch_start_assignment(struct kvm *kvm)
12939 {
12940 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12941 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12942 }
12943 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12944 
12945 void kvm_arch_end_assignment(struct kvm *kvm)
12946 {
12947 	atomic_dec(&kvm->arch.assigned_device_count);
12948 }
12949 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12950 
12951 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12952 {
12953 	return arch_atomic_read(&kvm->arch.assigned_device_count);
12954 }
12955 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12956 
12957 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12958 {
12959 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12960 }
12961 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12962 
12963 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12964 {
12965 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12966 }
12967 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12968 
12969 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12970 {
12971 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12972 }
12973 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12974 
12975 bool kvm_arch_has_irq_bypass(void)
12976 {
12977 	return true;
12978 }
12979 
12980 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12981 				      struct irq_bypass_producer *prod)
12982 {
12983 	struct kvm_kernel_irqfd *irqfd =
12984 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12985 	int ret;
12986 
12987 	irqfd->producer = prod;
12988 	kvm_arch_start_assignment(irqfd->kvm);
12989 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12990 					 prod->irq, irqfd->gsi, 1);
12991 
12992 	if (ret)
12993 		kvm_arch_end_assignment(irqfd->kvm);
12994 
12995 	return ret;
12996 }
12997 
12998 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12999 				      struct irq_bypass_producer *prod)
13000 {
13001 	int ret;
13002 	struct kvm_kernel_irqfd *irqfd =
13003 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13004 
13005 	WARN_ON(irqfd->producer != prod);
13006 	irqfd->producer = NULL;
13007 
13008 	/*
13009 	 * When producer of consumer is unregistered, we change back to
13010 	 * remapped mode, so we can re-use the current implementation
13011 	 * when the irq is masked/disabled or the consumer side (KVM
13012 	 * int this case doesn't want to receive the interrupts.
13013 	*/
13014 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13015 	if (ret)
13016 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13017 		       " fails: %d\n", irqfd->consumer.token, ret);
13018 
13019 	kvm_arch_end_assignment(irqfd->kvm);
13020 }
13021 
13022 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13023 				   uint32_t guest_irq, bool set)
13024 {
13025 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13026 }
13027 
13028 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13029 				  struct kvm_kernel_irq_routing_entry *new)
13030 {
13031 	if (new->type != KVM_IRQ_ROUTING_MSI)
13032 		return true;
13033 
13034 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13035 }
13036 
13037 bool kvm_vector_hashing_enabled(void)
13038 {
13039 	return vector_hashing;
13040 }
13041 
13042 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13043 {
13044 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13045 }
13046 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13047 
13048 
13049 int kvm_spec_ctrl_test_value(u64 value)
13050 {
13051 	/*
13052 	 * test that setting IA32_SPEC_CTRL to given value
13053 	 * is allowed by the host processor
13054 	 */
13055 
13056 	u64 saved_value;
13057 	unsigned long flags;
13058 	int ret = 0;
13059 
13060 	local_irq_save(flags);
13061 
13062 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13063 		ret = 1;
13064 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13065 		ret = 1;
13066 	else
13067 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13068 
13069 	local_irq_restore(flags);
13070 
13071 	return ret;
13072 }
13073 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13074 
13075 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13076 {
13077 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13078 	struct x86_exception fault;
13079 	u64 access = error_code &
13080 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13081 
13082 	if (!(error_code & PFERR_PRESENT_MASK) ||
13083 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13084 		/*
13085 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13086 		 * tables probably do not match the TLB.  Just proceed
13087 		 * with the error code that the processor gave.
13088 		 */
13089 		fault.vector = PF_VECTOR;
13090 		fault.error_code_valid = true;
13091 		fault.error_code = error_code;
13092 		fault.nested_page_fault = false;
13093 		fault.address = gva;
13094 		fault.async_page_fault = false;
13095 	}
13096 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13097 }
13098 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13099 
13100 /*
13101  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13102  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13103  * indicates whether exit to userspace is needed.
13104  */
13105 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13106 			      struct x86_exception *e)
13107 {
13108 	if (r == X86EMUL_PROPAGATE_FAULT) {
13109 		kvm_inject_emulated_page_fault(vcpu, e);
13110 		return 1;
13111 	}
13112 
13113 	/*
13114 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13115 	 * while handling a VMX instruction KVM could've handled the request
13116 	 * correctly by exiting to userspace and performing I/O but there
13117 	 * doesn't seem to be a real use-case behind such requests, just return
13118 	 * KVM_EXIT_INTERNAL_ERROR for now.
13119 	 */
13120 	kvm_prepare_emulation_failure_exit(vcpu);
13121 
13122 	return 0;
13123 }
13124 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13125 
13126 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13127 {
13128 	bool pcid_enabled;
13129 	struct x86_exception e;
13130 	struct {
13131 		u64 pcid;
13132 		u64 gla;
13133 	} operand;
13134 	int r;
13135 
13136 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13137 	if (r != X86EMUL_CONTINUE)
13138 		return kvm_handle_memory_failure(vcpu, r, &e);
13139 
13140 	if (operand.pcid >> 12 != 0) {
13141 		kvm_inject_gp(vcpu, 0);
13142 		return 1;
13143 	}
13144 
13145 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13146 
13147 	switch (type) {
13148 	case INVPCID_TYPE_INDIV_ADDR:
13149 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13150 		    is_noncanonical_address(operand.gla, vcpu)) {
13151 			kvm_inject_gp(vcpu, 0);
13152 			return 1;
13153 		}
13154 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13155 		return kvm_skip_emulated_instruction(vcpu);
13156 
13157 	case INVPCID_TYPE_SINGLE_CTXT:
13158 		if (!pcid_enabled && (operand.pcid != 0)) {
13159 			kvm_inject_gp(vcpu, 0);
13160 			return 1;
13161 		}
13162 
13163 		kvm_invalidate_pcid(vcpu, operand.pcid);
13164 		return kvm_skip_emulated_instruction(vcpu);
13165 
13166 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13167 		/*
13168 		 * Currently, KVM doesn't mark global entries in the shadow
13169 		 * page tables, so a non-global flush just degenerates to a
13170 		 * global flush. If needed, we could optimize this later by
13171 		 * keeping track of global entries in shadow page tables.
13172 		 */
13173 
13174 		fallthrough;
13175 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13176 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13177 		return kvm_skip_emulated_instruction(vcpu);
13178 
13179 	default:
13180 		kvm_inject_gp(vcpu, 0);
13181 		return 1;
13182 	}
13183 }
13184 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13185 
13186 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13187 {
13188 	struct kvm_run *run = vcpu->run;
13189 	struct kvm_mmio_fragment *frag;
13190 	unsigned int len;
13191 
13192 	BUG_ON(!vcpu->mmio_needed);
13193 
13194 	/* Complete previous fragment */
13195 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13196 	len = min(8u, frag->len);
13197 	if (!vcpu->mmio_is_write)
13198 		memcpy(frag->data, run->mmio.data, len);
13199 
13200 	if (frag->len <= 8) {
13201 		/* Switch to the next fragment. */
13202 		frag++;
13203 		vcpu->mmio_cur_fragment++;
13204 	} else {
13205 		/* Go forward to the next mmio piece. */
13206 		frag->data += len;
13207 		frag->gpa += len;
13208 		frag->len -= len;
13209 	}
13210 
13211 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13212 		vcpu->mmio_needed = 0;
13213 
13214 		// VMG change, at this point, we're always done
13215 		// RIP has already been advanced
13216 		return 1;
13217 	}
13218 
13219 	// More MMIO is needed
13220 	run->mmio.phys_addr = frag->gpa;
13221 	run->mmio.len = min(8u, frag->len);
13222 	run->mmio.is_write = vcpu->mmio_is_write;
13223 	if (run->mmio.is_write)
13224 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13225 	run->exit_reason = KVM_EXIT_MMIO;
13226 
13227 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13228 
13229 	return 0;
13230 }
13231 
13232 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13233 			  void *data)
13234 {
13235 	int handled;
13236 	struct kvm_mmio_fragment *frag;
13237 
13238 	if (!data)
13239 		return -EINVAL;
13240 
13241 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13242 	if (handled == bytes)
13243 		return 1;
13244 
13245 	bytes -= handled;
13246 	gpa += handled;
13247 	data += handled;
13248 
13249 	/*TODO: Check if need to increment number of frags */
13250 	frag = vcpu->mmio_fragments;
13251 	vcpu->mmio_nr_fragments = 1;
13252 	frag->len = bytes;
13253 	frag->gpa = gpa;
13254 	frag->data = data;
13255 
13256 	vcpu->mmio_needed = 1;
13257 	vcpu->mmio_cur_fragment = 0;
13258 
13259 	vcpu->run->mmio.phys_addr = gpa;
13260 	vcpu->run->mmio.len = min(8u, frag->len);
13261 	vcpu->run->mmio.is_write = 1;
13262 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13263 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13264 
13265 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13266 
13267 	return 0;
13268 }
13269 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13270 
13271 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13272 			 void *data)
13273 {
13274 	int handled;
13275 	struct kvm_mmio_fragment *frag;
13276 
13277 	if (!data)
13278 		return -EINVAL;
13279 
13280 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13281 	if (handled == bytes)
13282 		return 1;
13283 
13284 	bytes -= handled;
13285 	gpa += handled;
13286 	data += handled;
13287 
13288 	/*TODO: Check if need to increment number of frags */
13289 	frag = vcpu->mmio_fragments;
13290 	vcpu->mmio_nr_fragments = 1;
13291 	frag->len = bytes;
13292 	frag->gpa = gpa;
13293 	frag->data = data;
13294 
13295 	vcpu->mmio_needed = 1;
13296 	vcpu->mmio_cur_fragment = 0;
13297 
13298 	vcpu->run->mmio.phys_addr = gpa;
13299 	vcpu->run->mmio.len = min(8u, frag->len);
13300 	vcpu->run->mmio.is_write = 0;
13301 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13302 
13303 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13304 
13305 	return 0;
13306 }
13307 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13308 
13309 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13310 {
13311 	vcpu->arch.sev_pio_count -= count;
13312 	vcpu->arch.sev_pio_data += count * size;
13313 }
13314 
13315 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13316 			   unsigned int port);
13317 
13318 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13319 {
13320 	int size = vcpu->arch.pio.size;
13321 	int port = vcpu->arch.pio.port;
13322 
13323 	vcpu->arch.pio.count = 0;
13324 	if (vcpu->arch.sev_pio_count)
13325 		return kvm_sev_es_outs(vcpu, size, port);
13326 	return 1;
13327 }
13328 
13329 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13330 			   unsigned int port)
13331 {
13332 	for (;;) {
13333 		unsigned int count =
13334 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13335 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13336 
13337 		/* memcpy done already by emulator_pio_out.  */
13338 		advance_sev_es_emulated_pio(vcpu, count, size);
13339 		if (!ret)
13340 			break;
13341 
13342 		/* Emulation done by the kernel.  */
13343 		if (!vcpu->arch.sev_pio_count)
13344 			return 1;
13345 	}
13346 
13347 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13348 	return 0;
13349 }
13350 
13351 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13352 			  unsigned int port);
13353 
13354 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13355 {
13356 	unsigned count = vcpu->arch.pio.count;
13357 	int size = vcpu->arch.pio.size;
13358 	int port = vcpu->arch.pio.port;
13359 
13360 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13361 	advance_sev_es_emulated_pio(vcpu, count, size);
13362 	if (vcpu->arch.sev_pio_count)
13363 		return kvm_sev_es_ins(vcpu, size, port);
13364 	return 1;
13365 }
13366 
13367 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13368 			  unsigned int port)
13369 {
13370 	for (;;) {
13371 		unsigned int count =
13372 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13373 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13374 			break;
13375 
13376 		/* Emulation done by the kernel.  */
13377 		advance_sev_es_emulated_pio(vcpu, count, size);
13378 		if (!vcpu->arch.sev_pio_count)
13379 			return 1;
13380 	}
13381 
13382 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13383 	return 0;
13384 }
13385 
13386 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13387 			 unsigned int port, void *data,  unsigned int count,
13388 			 int in)
13389 {
13390 	vcpu->arch.sev_pio_data = data;
13391 	vcpu->arch.sev_pio_count = count;
13392 	return in ? kvm_sev_es_ins(vcpu, size, port)
13393 		  : kvm_sev_es_outs(vcpu, size, port);
13394 }
13395 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13396 
13397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13426 
13427 static int __init kvm_x86_init(void)
13428 {
13429 	kvm_mmu_x86_module_init();
13430 	return 0;
13431 }
13432 module_init(kvm_x86_init);
13433 
13434 static void __exit kvm_x86_exit(void)
13435 {
13436 	/*
13437 	 * If module_init() is implemented, module_exit() must also be
13438 	 * implemented to allow module unload.
13439 	 */
13440 }
13441 module_exit(kvm_x86_exit);
13442