1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, S_IRUGO); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, S_IRUGO); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1512 HV_X64_MSR_RESET, 1513 HV_X64_MSR_VP_INDEX, 1514 HV_X64_MSR_VP_RUNTIME, 1515 HV_X64_MSR_SCONTROL, 1516 HV_X64_MSR_STIMER0_CONFIG, 1517 HV_X64_MSR_VP_ASSIST_PAGE, 1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1520 HV_X64_MSR_SYNDBG_OPTIONS, 1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1524 1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1527 1528 MSR_IA32_TSC_ADJUST, 1529 MSR_IA32_TSC_DEADLINE, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 MSR_IA32_MISC_ENABLE, 1533 MSR_IA32_MCG_STATUS, 1534 MSR_IA32_MCG_CTL, 1535 MSR_IA32_MCG_EXT_CTL, 1536 MSR_IA32_SMBASE, 1537 MSR_SMI_COUNT, 1538 MSR_PLATFORM_INFO, 1539 MSR_MISC_FEATURES_ENABLES, 1540 MSR_AMD64_VIRT_SPEC_CTRL, 1541 MSR_AMD64_TSC_RATIO, 1542 MSR_IA32_POWER_CTL, 1543 MSR_IA32_UCODE_REV, 1544 1545 /* 1546 * KVM always supports the "true" VMX control MSRs, even if the host 1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1548 * doesn't strictly require them to exist in the host (ignoring that 1549 * KVM would refuse to load in the first place if the core set of MSRs 1550 * aren't supported). 1551 */ 1552 MSR_IA32_VMX_BASIC, 1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1557 MSR_IA32_VMX_MISC, 1558 MSR_IA32_VMX_CR0_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED0, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_K7_HWCR, 1566 MSR_KVM_POLL_CONTROL, 1567 }; 1568 1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1570 static unsigned num_emulated_msrs; 1571 1572 /* 1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1575 * feature MSRs, but are handled separately to allow expedited lookups. 1576 */ 1577 static const u32 msr_based_features_all_except_vmx[] = { 1578 MSR_AMD64_DE_CFG, 1579 MSR_IA32_UCODE_REV, 1580 MSR_IA32_ARCH_CAPABILITIES, 1581 MSR_IA32_PERF_CAPABILITIES, 1582 }; 1583 1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1586 static unsigned int num_msr_based_features; 1587 1588 /* 1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1590 * patch, are immutable once the vCPU model is defined. 1591 */ 1592 static bool kvm_is_immutable_feature_msr(u32 msr) 1593 { 1594 int i; 1595 1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1597 return true; 1598 1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1600 if (msr == msr_based_features_all_except_vmx[i]) 1601 return msr != MSR_IA32_UCODE_REV; 1602 } 1603 1604 return false; 1605 } 1606 1607 /* 1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1609 * does not yet virtualize. These include: 1610 * 10 - MISC_PACKAGE_CTRLS 1611 * 11 - ENERGY_FILTERING_CTL 1612 * 12 - DOITM 1613 * 18 - FB_CLEAR_CTRL 1614 * 21 - XAPIC_DISABLE_STATUS 1615 * 23 - OVERCLOCKING_STATUS 1616 */ 1617 1618 #define KVM_SUPPORTED_ARCH_CAP \ 1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) 1624 1625 static u64 kvm_get_arch_capabilities(void) 1626 { 1627 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1628 1629 /* 1630 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1631 * the nested hypervisor runs with NX huge pages. If it is not, 1632 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1633 * L1 guests, so it need not worry about its own (L2) guests. 1634 */ 1635 data |= ARCH_CAP_PSCHANGE_MC_NO; 1636 1637 /* 1638 * If we're doing cache flushes (either "always" or "cond") 1639 * we will do one whenever the guest does a vmlaunch/vmresume. 1640 * If an outer hypervisor is doing the cache flush for us 1641 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1642 * capability to the guest too, and if EPT is disabled we're not 1643 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1644 * require a nested hypervisor to do a flush of its own. 1645 */ 1646 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1647 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1648 1649 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1650 data |= ARCH_CAP_RDCL_NO; 1651 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1652 data |= ARCH_CAP_SSB_NO; 1653 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1654 data |= ARCH_CAP_MDS_NO; 1655 1656 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1657 /* 1658 * If RTM=0 because the kernel has disabled TSX, the host might 1659 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1660 * and therefore knows that there cannot be TAA) but keep 1661 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1662 * and we want to allow migrating those guests to tsx=off hosts. 1663 */ 1664 data &= ~ARCH_CAP_TAA_NO; 1665 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1666 data |= ARCH_CAP_TAA_NO; 1667 } else { 1668 /* 1669 * Nothing to do here; we emulate TSX_CTRL if present on the 1670 * host so the guest can choose between disabling TSX or 1671 * using VERW to clear CPU buffers. 1672 */ 1673 } 1674 1675 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1676 data |= ARCH_CAP_GDS_NO; 1677 1678 return data; 1679 } 1680 1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1682 { 1683 switch (msr->index) { 1684 case MSR_IA32_ARCH_CAPABILITIES: 1685 msr->data = kvm_get_arch_capabilities(); 1686 break; 1687 case MSR_IA32_PERF_CAPABILITIES: 1688 msr->data = kvm_caps.supported_perf_cap; 1689 break; 1690 case MSR_IA32_UCODE_REV: 1691 rdmsrl_safe(msr->index, &msr->data); 1692 break; 1693 default: 1694 return static_call(kvm_x86_get_msr_feature)(msr); 1695 } 1696 return 0; 1697 } 1698 1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1700 { 1701 struct kvm_msr_entry msr; 1702 int r; 1703 1704 msr.index = index; 1705 r = kvm_get_msr_feature(&msr); 1706 1707 if (r == KVM_MSR_RET_INVALID) { 1708 /* Unconditionally clear the output for simplicity */ 1709 *data = 0; 1710 if (kvm_msr_ignored_check(index, 0, false)) 1711 r = 0; 1712 } 1713 1714 if (r) 1715 return r; 1716 1717 *data = msr.data; 1718 1719 return 0; 1720 } 1721 1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1723 { 1724 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1725 return false; 1726 1727 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1728 return false; 1729 1730 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1731 return false; 1732 1733 if (efer & (EFER_LME | EFER_LMA) && 1734 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1735 return false; 1736 1737 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1738 return false; 1739 1740 return true; 1741 1742 } 1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1744 { 1745 if (efer & efer_reserved_bits) 1746 return false; 1747 1748 return __kvm_valid_efer(vcpu, efer); 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1751 1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1753 { 1754 u64 old_efer = vcpu->arch.efer; 1755 u64 efer = msr_info->data; 1756 int r; 1757 1758 if (efer & efer_reserved_bits) 1759 return 1; 1760 1761 if (!msr_info->host_initiated) { 1762 if (!__kvm_valid_efer(vcpu, efer)) 1763 return 1; 1764 1765 if (is_paging(vcpu) && 1766 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1767 return 1; 1768 } 1769 1770 efer &= ~EFER_LMA; 1771 efer |= vcpu->arch.efer & EFER_LMA; 1772 1773 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1774 if (r) { 1775 WARN_ON(r > 0); 1776 return r; 1777 } 1778 1779 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1780 kvm_mmu_reset_context(vcpu); 1781 1782 return 0; 1783 } 1784 1785 void kvm_enable_efer_bits(u64 mask) 1786 { 1787 efer_reserved_bits &= ~mask; 1788 } 1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1790 1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1792 { 1793 struct kvm_x86_msr_filter *msr_filter; 1794 struct msr_bitmap_range *ranges; 1795 struct kvm *kvm = vcpu->kvm; 1796 bool allowed; 1797 int idx; 1798 u32 i; 1799 1800 /* x2APIC MSRs do not support filtering. */ 1801 if (index >= 0x800 && index <= 0x8ff) 1802 return true; 1803 1804 idx = srcu_read_lock(&kvm->srcu); 1805 1806 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1807 if (!msr_filter) { 1808 allowed = true; 1809 goto out; 1810 } 1811 1812 allowed = msr_filter->default_allow; 1813 ranges = msr_filter->ranges; 1814 1815 for (i = 0; i < msr_filter->count; i++) { 1816 u32 start = ranges[i].base; 1817 u32 end = start + ranges[i].nmsrs; 1818 u32 flags = ranges[i].flags; 1819 unsigned long *bitmap = ranges[i].bitmap; 1820 1821 if ((index >= start) && (index < end) && (flags & type)) { 1822 allowed = test_bit(index - start, bitmap); 1823 break; 1824 } 1825 } 1826 1827 out: 1828 srcu_read_unlock(&kvm->srcu, idx); 1829 1830 return allowed; 1831 } 1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1833 1834 /* 1835 * Write @data into the MSR specified by @index. Select MSR specific fault 1836 * checks are bypassed if @host_initiated is %true. 1837 * Returns 0 on success, non-0 otherwise. 1838 * Assumes vcpu_load() was already called. 1839 */ 1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1841 bool host_initiated) 1842 { 1843 struct msr_data msr; 1844 1845 switch (index) { 1846 case MSR_FS_BASE: 1847 case MSR_GS_BASE: 1848 case MSR_KERNEL_GS_BASE: 1849 case MSR_CSTAR: 1850 case MSR_LSTAR: 1851 if (is_noncanonical_address(data, vcpu)) 1852 return 1; 1853 break; 1854 case MSR_IA32_SYSENTER_EIP: 1855 case MSR_IA32_SYSENTER_ESP: 1856 /* 1857 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1858 * non-canonical address is written on Intel but not on 1859 * AMD (which ignores the top 32-bits, because it does 1860 * not implement 64-bit SYSENTER). 1861 * 1862 * 64-bit code should hence be able to write a non-canonical 1863 * value on AMD. Making the address canonical ensures that 1864 * vmentry does not fail on Intel after writing a non-canonical 1865 * value, and that something deterministic happens if the guest 1866 * invokes 64-bit SYSENTER. 1867 */ 1868 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1869 break; 1870 case MSR_TSC_AUX: 1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1872 return 1; 1873 1874 if (!host_initiated && 1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1877 return 1; 1878 1879 /* 1880 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1881 * incomplete and conflicting architectural behavior. Current 1882 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1883 * reserved and always read as zeros. Enforce Intel's reserved 1884 * bits check if and only if the guest CPU is Intel, and clear 1885 * the bits in all other cases. This ensures cross-vendor 1886 * migration will provide consistent behavior for the guest. 1887 */ 1888 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1889 return 1; 1890 1891 data = (u32)data; 1892 break; 1893 } 1894 1895 msr.data = data; 1896 msr.index = index; 1897 msr.host_initiated = host_initiated; 1898 1899 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1900 } 1901 1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1903 u32 index, u64 data, bool host_initiated) 1904 { 1905 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1906 1907 if (ret == KVM_MSR_RET_INVALID) 1908 if (kvm_msr_ignored_check(index, data, true)) 1909 ret = 0; 1910 1911 return ret; 1912 } 1913 1914 /* 1915 * Read the MSR specified by @index into @data. Select MSR specific fault 1916 * checks are bypassed if @host_initiated is %true. 1917 * Returns 0 on success, non-0 otherwise. 1918 * Assumes vcpu_load() was already called. 1919 */ 1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1921 bool host_initiated) 1922 { 1923 struct msr_data msr; 1924 int ret; 1925 1926 switch (index) { 1927 case MSR_TSC_AUX: 1928 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1929 return 1; 1930 1931 if (!host_initiated && 1932 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1934 return 1; 1935 break; 1936 } 1937 1938 msr.index = index; 1939 msr.host_initiated = host_initiated; 1940 1941 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1942 if (!ret) 1943 *data = msr.data; 1944 return ret; 1945 } 1946 1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1948 u32 index, u64 *data, bool host_initiated) 1949 { 1950 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1951 1952 if (ret == KVM_MSR_RET_INVALID) { 1953 /* Unconditionally clear *data for simplicity */ 1954 *data = 0; 1955 if (kvm_msr_ignored_check(index, 0, false)) 1956 ret = 0; 1957 } 1958 1959 return ret; 1960 } 1961 1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1963 { 1964 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1965 return KVM_MSR_RET_FILTERED; 1966 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1967 } 1968 1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1970 { 1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1972 return KVM_MSR_RET_FILTERED; 1973 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1974 } 1975 1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1977 { 1978 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1979 } 1980 EXPORT_SYMBOL_GPL(kvm_get_msr); 1981 1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1983 { 1984 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_set_msr); 1987 1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1989 { 1990 if (!vcpu->run->msr.error) { 1991 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1992 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1993 } 1994 } 1995 1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1997 { 1998 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1999 } 2000 2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2002 { 2003 complete_userspace_rdmsr(vcpu); 2004 return complete_emulated_msr_access(vcpu); 2005 } 2006 2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2008 { 2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2010 } 2011 2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2013 { 2014 complete_userspace_rdmsr(vcpu); 2015 return complete_fast_msr_access(vcpu); 2016 } 2017 2018 static u64 kvm_msr_reason(int r) 2019 { 2020 switch (r) { 2021 case KVM_MSR_RET_INVALID: 2022 return KVM_MSR_EXIT_REASON_UNKNOWN; 2023 case KVM_MSR_RET_FILTERED: 2024 return KVM_MSR_EXIT_REASON_FILTER; 2025 default: 2026 return KVM_MSR_EXIT_REASON_INVAL; 2027 } 2028 } 2029 2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2031 u32 exit_reason, u64 data, 2032 int (*completion)(struct kvm_vcpu *vcpu), 2033 int r) 2034 { 2035 u64 msr_reason = kvm_msr_reason(r); 2036 2037 /* Check if the user wanted to know about this MSR fault */ 2038 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2039 return 0; 2040 2041 vcpu->run->exit_reason = exit_reason; 2042 vcpu->run->msr.error = 0; 2043 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2044 vcpu->run->msr.reason = msr_reason; 2045 vcpu->run->msr.index = index; 2046 vcpu->run->msr.data = data; 2047 vcpu->arch.complete_userspace_io = completion; 2048 2049 return 1; 2050 } 2051 2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2053 { 2054 u32 ecx = kvm_rcx_read(vcpu); 2055 u64 data; 2056 int r; 2057 2058 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2059 2060 if (!r) { 2061 trace_kvm_msr_read(ecx, data); 2062 2063 kvm_rax_write(vcpu, data & -1u); 2064 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2065 } else { 2066 /* MSR read failed? See if we should ask user space */ 2067 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2068 complete_fast_rdmsr, r)) 2069 return 0; 2070 trace_kvm_msr_read_ex(ecx); 2071 } 2072 2073 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2076 2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2078 { 2079 u32 ecx = kvm_rcx_read(vcpu); 2080 u64 data = kvm_read_edx_eax(vcpu); 2081 int r; 2082 2083 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2084 2085 if (!r) { 2086 trace_kvm_msr_write(ecx, data); 2087 } else { 2088 /* MSR write failed? See if we should ask user space */ 2089 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2090 complete_fast_msr_access, r)) 2091 return 0; 2092 /* Signal all other negative errors to userspace */ 2093 if (r < 0) 2094 return r; 2095 trace_kvm_msr_write_ex(ecx, data); 2096 } 2097 2098 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2101 2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2103 { 2104 return kvm_skip_emulated_instruction(vcpu); 2105 } 2106 2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2108 { 2109 /* Treat an INVD instruction as a NOP and just skip it. */ 2110 return kvm_emulate_as_nop(vcpu); 2111 } 2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2113 2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2115 { 2116 kvm_queue_exception(vcpu, UD_VECTOR); 2117 return 1; 2118 } 2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2120 2121 2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2123 { 2124 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2125 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2126 return kvm_handle_invalid_op(vcpu); 2127 2128 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2129 return kvm_emulate_as_nop(vcpu); 2130 } 2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2132 { 2133 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2134 } 2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2136 2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2138 { 2139 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2140 } 2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2142 2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2144 { 2145 xfer_to_guest_mode_prepare(); 2146 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2147 xfer_to_guest_mode_work_pending(); 2148 } 2149 2150 /* 2151 * The fast path for frequent and performance sensitive wrmsr emulation, 2152 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2153 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2154 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2155 * other cases which must be called after interrupts are enabled on the host. 2156 */ 2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2158 { 2159 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2160 return 1; 2161 2162 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2163 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2164 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2165 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2166 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2167 2168 return 1; 2169 } 2170 2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2172 { 2173 if (!kvm_can_use_hv_timer(vcpu)) 2174 return 1; 2175 2176 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2177 return 0; 2178 } 2179 2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2181 { 2182 u32 msr = kvm_rcx_read(vcpu); 2183 u64 data; 2184 fastpath_t ret = EXIT_FASTPATH_NONE; 2185 2186 kvm_vcpu_srcu_read_lock(vcpu); 2187 2188 switch (msr) { 2189 case APIC_BASE_MSR + (APIC_ICR >> 4): 2190 data = kvm_read_edx_eax(vcpu); 2191 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2192 kvm_skip_emulated_instruction(vcpu); 2193 ret = EXIT_FASTPATH_EXIT_HANDLED; 2194 } 2195 break; 2196 case MSR_IA32_TSC_DEADLINE: 2197 data = kvm_read_edx_eax(vcpu); 2198 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2199 kvm_skip_emulated_instruction(vcpu); 2200 ret = EXIT_FASTPATH_REENTER_GUEST; 2201 } 2202 break; 2203 default: 2204 break; 2205 } 2206 2207 if (ret != EXIT_FASTPATH_NONE) 2208 trace_kvm_msr_write(msr, data); 2209 2210 kvm_vcpu_srcu_read_unlock(vcpu); 2211 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2215 2216 /* 2217 * Adapt set_msr() to msr_io()'s calling convention 2218 */ 2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2220 { 2221 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2222 } 2223 2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2225 { 2226 u64 val; 2227 2228 /* 2229 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2230 * not support modifying the guest vCPU model on the fly, e.g. changing 2231 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2232 * writes of the same value, e.g. to allow userspace to blindly stuff 2233 * all MSRs when emulating RESET. 2234 */ 2235 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2236 if (do_get_msr(vcpu, index, &val) || *data != val) 2237 return -EINVAL; 2238 2239 return 0; 2240 } 2241 2242 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2243 } 2244 2245 #ifdef CONFIG_X86_64 2246 struct pvclock_clock { 2247 int vclock_mode; 2248 u64 cycle_last; 2249 u64 mask; 2250 u32 mult; 2251 u32 shift; 2252 u64 base_cycles; 2253 u64 offset; 2254 }; 2255 2256 struct pvclock_gtod_data { 2257 seqcount_t seq; 2258 2259 struct pvclock_clock clock; /* extract of a clocksource struct */ 2260 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2261 2262 ktime_t offs_boot; 2263 u64 wall_time_sec; 2264 }; 2265 2266 static struct pvclock_gtod_data pvclock_gtod_data; 2267 2268 static void update_pvclock_gtod(struct timekeeper *tk) 2269 { 2270 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2271 2272 write_seqcount_begin(&vdata->seq); 2273 2274 /* copy pvclock gtod data */ 2275 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2276 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2277 vdata->clock.mask = tk->tkr_mono.mask; 2278 vdata->clock.mult = tk->tkr_mono.mult; 2279 vdata->clock.shift = tk->tkr_mono.shift; 2280 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2281 vdata->clock.offset = tk->tkr_mono.base; 2282 2283 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2284 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2285 vdata->raw_clock.mask = tk->tkr_raw.mask; 2286 vdata->raw_clock.mult = tk->tkr_raw.mult; 2287 vdata->raw_clock.shift = tk->tkr_raw.shift; 2288 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2289 vdata->raw_clock.offset = tk->tkr_raw.base; 2290 2291 vdata->wall_time_sec = tk->xtime_sec; 2292 2293 vdata->offs_boot = tk->offs_boot; 2294 2295 write_seqcount_end(&vdata->seq); 2296 } 2297 2298 static s64 get_kvmclock_base_ns(void) 2299 { 2300 /* Count up from boot time, but with the frequency of the raw clock. */ 2301 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2302 } 2303 #else 2304 static s64 get_kvmclock_base_ns(void) 2305 { 2306 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2307 return ktime_get_boottime_ns(); 2308 } 2309 #endif 2310 2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2312 { 2313 int version; 2314 int r; 2315 struct pvclock_wall_clock wc; 2316 u32 wc_sec_hi; 2317 u64 wall_nsec; 2318 2319 if (!wall_clock) 2320 return; 2321 2322 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2323 if (r) 2324 return; 2325 2326 if (version & 1) 2327 ++version; /* first time write, random junk */ 2328 2329 ++version; 2330 2331 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2332 return; 2333 2334 /* 2335 * The guest calculates current wall clock time by adding 2336 * system time (updated by kvm_guest_time_update below) to the 2337 * wall clock specified here. We do the reverse here. 2338 */ 2339 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2340 2341 wc.nsec = do_div(wall_nsec, 1000000000); 2342 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2343 wc.version = version; 2344 2345 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2346 2347 if (sec_hi_ofs) { 2348 wc_sec_hi = wall_nsec >> 32; 2349 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2350 &wc_sec_hi, sizeof(wc_sec_hi)); 2351 } 2352 2353 version++; 2354 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2355 } 2356 2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2358 bool old_msr, bool host_initiated) 2359 { 2360 struct kvm_arch *ka = &vcpu->kvm->arch; 2361 2362 if (vcpu->vcpu_id == 0 && !host_initiated) { 2363 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2364 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2365 2366 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2367 } 2368 2369 vcpu->arch.time = system_time; 2370 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2371 2372 /* we verify if the enable bit is set... */ 2373 if (system_time & 1) 2374 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2375 sizeof(struct pvclock_vcpu_time_info)); 2376 else 2377 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2378 2379 return; 2380 } 2381 2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2383 { 2384 do_shl32_div32(dividend, divisor); 2385 return dividend; 2386 } 2387 2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2389 s8 *pshift, u32 *pmultiplier) 2390 { 2391 uint64_t scaled64; 2392 int32_t shift = 0; 2393 uint64_t tps64; 2394 uint32_t tps32; 2395 2396 tps64 = base_hz; 2397 scaled64 = scaled_hz; 2398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2399 tps64 >>= 1; 2400 shift--; 2401 } 2402 2403 tps32 = (uint32_t)tps64; 2404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2406 scaled64 >>= 1; 2407 else 2408 tps32 <<= 1; 2409 shift++; 2410 } 2411 2412 *pshift = shift; 2413 *pmultiplier = div_frac(scaled64, tps32); 2414 } 2415 2416 #ifdef CONFIG_X86_64 2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2418 #endif 2419 2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2421 static unsigned long max_tsc_khz; 2422 2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2424 { 2425 u64 v = (u64)khz * (1000000 + ppm); 2426 do_div(v, 1000000); 2427 return v; 2428 } 2429 2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2431 2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2433 { 2434 u64 ratio; 2435 2436 /* Guest TSC same frequency as host TSC? */ 2437 if (!scale) { 2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2439 return 0; 2440 } 2441 2442 /* TSC scaling supported? */ 2443 if (!kvm_caps.has_tsc_control) { 2444 if (user_tsc_khz > tsc_khz) { 2445 vcpu->arch.tsc_catchup = 1; 2446 vcpu->arch.tsc_always_catchup = 1; 2447 return 0; 2448 } else { 2449 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2450 return -1; 2451 } 2452 } 2453 2454 /* TSC scaling required - calculate ratio */ 2455 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2456 user_tsc_khz, tsc_khz); 2457 2458 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2459 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2460 user_tsc_khz); 2461 return -1; 2462 } 2463 2464 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2465 return 0; 2466 } 2467 2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2469 { 2470 u32 thresh_lo, thresh_hi; 2471 int use_scaling = 0; 2472 2473 /* tsc_khz can be zero if TSC calibration fails */ 2474 if (user_tsc_khz == 0) { 2475 /* set tsc_scaling_ratio to a safe value */ 2476 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2477 return -1; 2478 } 2479 2480 /* Compute a scale to convert nanoseconds in TSC cycles */ 2481 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2482 &vcpu->arch.virtual_tsc_shift, 2483 &vcpu->arch.virtual_tsc_mult); 2484 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2485 2486 /* 2487 * Compute the variation in TSC rate which is acceptable 2488 * within the range of tolerance and decide if the 2489 * rate being applied is within that bounds of the hardware 2490 * rate. If so, no scaling or compensation need be done. 2491 */ 2492 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2493 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2494 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2495 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2496 user_tsc_khz, thresh_lo, thresh_hi); 2497 use_scaling = 1; 2498 } 2499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2500 } 2501 2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2503 { 2504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2505 vcpu->arch.virtual_tsc_mult, 2506 vcpu->arch.virtual_tsc_shift); 2507 tsc += vcpu->arch.this_tsc_write; 2508 return tsc; 2509 } 2510 2511 #ifdef CONFIG_X86_64 2512 static inline int gtod_is_based_on_tsc(int mode) 2513 { 2514 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2515 } 2516 #endif 2517 2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2519 { 2520 #ifdef CONFIG_X86_64 2521 bool vcpus_matched; 2522 struct kvm_arch *ka = &vcpu->kvm->arch; 2523 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2524 2525 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2526 atomic_read(&vcpu->kvm->online_vcpus)); 2527 2528 /* 2529 * Once the masterclock is enabled, always perform request in 2530 * order to update it. 2531 * 2532 * In order to enable masterclock, the host clocksource must be TSC 2533 * and the vcpus need to have matched TSCs. When that happens, 2534 * perform request to enable masterclock. 2535 */ 2536 if (ka->use_master_clock || 2537 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2539 2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2541 atomic_read(&vcpu->kvm->online_vcpus), 2542 ka->use_master_clock, gtod->clock.vclock_mode); 2543 #endif 2544 } 2545 2546 /* 2547 * Multiply tsc by a fixed point number represented by ratio. 2548 * 2549 * The most significant 64-N bits (mult) of ratio represent the 2550 * integral part of the fixed point number; the remaining N bits 2551 * (frac) represent the fractional part, ie. ratio represents a fixed 2552 * point number (mult + frac * 2^(-N)). 2553 * 2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2555 */ 2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2557 { 2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2559 } 2560 2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2562 { 2563 u64 _tsc = tsc; 2564 2565 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2566 _tsc = __scale_tsc(ratio, tsc); 2567 2568 return _tsc; 2569 } 2570 2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2572 { 2573 u64 tsc; 2574 2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2576 2577 return target_tsc - tsc; 2578 } 2579 2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2581 { 2582 return vcpu->arch.l1_tsc_offset + 2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2584 } 2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2586 2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2588 { 2589 u64 nested_offset; 2590 2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2592 nested_offset = l1_offset; 2593 else 2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2595 kvm_caps.tsc_scaling_ratio_frac_bits); 2596 2597 nested_offset += l2_offset; 2598 return nested_offset; 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2601 2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2603 { 2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2606 kvm_caps.tsc_scaling_ratio_frac_bits); 2607 2608 return l1_multiplier; 2609 } 2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2611 2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2613 { 2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2615 vcpu->arch.l1_tsc_offset, 2616 l1_offset); 2617 2618 vcpu->arch.l1_tsc_offset = l1_offset; 2619 2620 /* 2621 * If we are here because L1 chose not to trap WRMSR to TSC then 2622 * according to the spec this should set L1's TSC (as opposed to 2623 * setting L1's offset for L2). 2624 */ 2625 if (is_guest_mode(vcpu)) 2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2627 l1_offset, 2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2630 else 2631 vcpu->arch.tsc_offset = l1_offset; 2632 2633 static_call(kvm_x86_write_tsc_offset)(vcpu); 2634 } 2635 2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2637 { 2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2639 2640 /* Userspace is changing the multiplier while L2 is active */ 2641 if (is_guest_mode(vcpu)) 2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2643 l1_multiplier, 2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2645 else 2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2647 2648 if (kvm_caps.has_tsc_control) 2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2650 } 2651 2652 static inline bool kvm_check_tsc_unstable(void) 2653 { 2654 #ifdef CONFIG_X86_64 2655 /* 2656 * TSC is marked unstable when we're running on Hyper-V, 2657 * 'TSC page' clocksource is good. 2658 */ 2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2660 return false; 2661 #endif 2662 return check_tsc_unstable(); 2663 } 2664 2665 /* 2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2668 * participates in. 2669 */ 2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2671 u64 ns, bool matched) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 2675 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2676 2677 /* 2678 * We also track th most recent recorded KHZ, write and time to 2679 * allow the matching interval to be extended at each write. 2680 */ 2681 kvm->arch.last_tsc_nsec = ns; 2682 kvm->arch.last_tsc_write = tsc; 2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2684 kvm->arch.last_tsc_offset = offset; 2685 2686 vcpu->arch.last_guest_tsc = tsc; 2687 2688 kvm_vcpu_write_tsc_offset(vcpu, offset); 2689 2690 if (!matched) { 2691 /* 2692 * We split periods of matched TSC writes into generations. 2693 * For each generation, we track the original measured 2694 * nanosecond time, offset, and write, so if TSCs are in 2695 * sync, we can match exact offset, and if not, we can match 2696 * exact software computation in compute_guest_tsc() 2697 * 2698 * These values are tracked in kvm->arch.cur_xxx variables. 2699 */ 2700 kvm->arch.cur_tsc_generation++; 2701 kvm->arch.cur_tsc_nsec = ns; 2702 kvm->arch.cur_tsc_write = tsc; 2703 kvm->arch.cur_tsc_offset = offset; 2704 kvm->arch.nr_vcpus_matched_tsc = 0; 2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2706 kvm->arch.nr_vcpus_matched_tsc++; 2707 } 2708 2709 /* Keep track of which generation this VCPU has synchronized to */ 2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2713 2714 kvm_track_tsc_matching(vcpu); 2715 } 2716 2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2718 { 2719 struct kvm *kvm = vcpu->kvm; 2720 u64 offset, ns, elapsed; 2721 unsigned long flags; 2722 bool matched = false; 2723 bool synchronizing = false; 2724 2725 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2726 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2727 ns = get_kvmclock_base_ns(); 2728 elapsed = ns - kvm->arch.last_tsc_nsec; 2729 2730 if (vcpu->arch.virtual_tsc_khz) { 2731 if (data == 0) { 2732 /* 2733 * detection of vcpu initialization -- need to sync 2734 * with other vCPUs. This particularly helps to keep 2735 * kvm_clock stable after CPU hotplug 2736 */ 2737 synchronizing = true; 2738 } else { 2739 u64 tsc_exp = kvm->arch.last_tsc_write + 2740 nsec_to_cycles(vcpu, elapsed); 2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2742 /* 2743 * Special case: TSC write with a small delta (1 second) 2744 * of virtual cycle time against real time is 2745 * interpreted as an attempt to synchronize the CPU. 2746 */ 2747 synchronizing = data < tsc_exp + tsc_hz && 2748 data + tsc_hz > tsc_exp; 2749 } 2750 } 2751 2752 /* 2753 * For a reliable TSC, we can match TSC offsets, and for an unstable 2754 * TSC, we add elapsed time in this computation. We could let the 2755 * compensation code attempt to catch up if we fall behind, but 2756 * it's better to try to match offsets from the beginning. 2757 */ 2758 if (synchronizing && 2759 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2760 if (!kvm_check_tsc_unstable()) { 2761 offset = kvm->arch.cur_tsc_offset; 2762 } else { 2763 u64 delta = nsec_to_cycles(vcpu, elapsed); 2764 data += delta; 2765 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2766 } 2767 matched = true; 2768 } 2769 2770 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2771 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2772 } 2773 2774 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2775 s64 adjustment) 2776 { 2777 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2778 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2779 } 2780 2781 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2782 { 2783 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2784 WARN_ON(adjustment < 0); 2785 adjustment = kvm_scale_tsc((u64) adjustment, 2786 vcpu->arch.l1_tsc_scaling_ratio); 2787 adjust_tsc_offset_guest(vcpu, adjustment); 2788 } 2789 2790 #ifdef CONFIG_X86_64 2791 2792 static u64 read_tsc(void) 2793 { 2794 u64 ret = (u64)rdtsc_ordered(); 2795 u64 last = pvclock_gtod_data.clock.cycle_last; 2796 2797 if (likely(ret >= last)) 2798 return ret; 2799 2800 /* 2801 * GCC likes to generate cmov here, but this branch is extremely 2802 * predictable (it's just a function of time and the likely is 2803 * very likely) and there's a data dependence, so force GCC 2804 * to generate a branch instead. I don't barrier() because 2805 * we don't actually need a barrier, and if this function 2806 * ever gets inlined it will generate worse code. 2807 */ 2808 asm volatile (""); 2809 return last; 2810 } 2811 2812 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2813 int *mode) 2814 { 2815 u64 tsc_pg_val; 2816 long v; 2817 2818 switch (clock->vclock_mode) { 2819 case VDSO_CLOCKMODE_HVCLOCK: 2820 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2821 tsc_timestamp, &tsc_pg_val)) { 2822 /* TSC page valid */ 2823 *mode = VDSO_CLOCKMODE_HVCLOCK; 2824 v = (tsc_pg_val - clock->cycle_last) & 2825 clock->mask; 2826 } else { 2827 /* TSC page invalid */ 2828 *mode = VDSO_CLOCKMODE_NONE; 2829 } 2830 break; 2831 case VDSO_CLOCKMODE_TSC: 2832 *mode = VDSO_CLOCKMODE_TSC; 2833 *tsc_timestamp = read_tsc(); 2834 v = (*tsc_timestamp - clock->cycle_last) & 2835 clock->mask; 2836 break; 2837 default: 2838 *mode = VDSO_CLOCKMODE_NONE; 2839 } 2840 2841 if (*mode == VDSO_CLOCKMODE_NONE) 2842 *tsc_timestamp = v = 0; 2843 2844 return v * clock->mult; 2845 } 2846 2847 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2848 { 2849 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2850 unsigned long seq; 2851 int mode; 2852 u64 ns; 2853 2854 do { 2855 seq = read_seqcount_begin(>od->seq); 2856 ns = gtod->raw_clock.base_cycles; 2857 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2858 ns >>= gtod->raw_clock.shift; 2859 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2860 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2861 *t = ns; 2862 2863 return mode; 2864 } 2865 2866 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2867 { 2868 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2869 unsigned long seq; 2870 int mode; 2871 u64 ns; 2872 2873 do { 2874 seq = read_seqcount_begin(>od->seq); 2875 ts->tv_sec = gtod->wall_time_sec; 2876 ns = gtod->clock.base_cycles; 2877 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2878 ns >>= gtod->clock.shift; 2879 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2880 2881 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2882 ts->tv_nsec = ns; 2883 2884 return mode; 2885 } 2886 2887 /* returns true if host is using TSC based clocksource */ 2888 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2889 { 2890 /* checked again under seqlock below */ 2891 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2892 return false; 2893 2894 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2895 tsc_timestamp)); 2896 } 2897 2898 /* returns true if host is using TSC based clocksource */ 2899 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2900 u64 *tsc_timestamp) 2901 { 2902 /* checked again under seqlock below */ 2903 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2904 return false; 2905 2906 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2907 } 2908 #endif 2909 2910 /* 2911 * 2912 * Assuming a stable TSC across physical CPUS, and a stable TSC 2913 * across virtual CPUs, the following condition is possible. 2914 * Each numbered line represents an event visible to both 2915 * CPUs at the next numbered event. 2916 * 2917 * "timespecX" represents host monotonic time. "tscX" represents 2918 * RDTSC value. 2919 * 2920 * VCPU0 on CPU0 | VCPU1 on CPU1 2921 * 2922 * 1. read timespec0,tsc0 2923 * 2. | timespec1 = timespec0 + N 2924 * | tsc1 = tsc0 + M 2925 * 3. transition to guest | transition to guest 2926 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2927 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2928 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2929 * 2930 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2931 * 2932 * - ret0 < ret1 2933 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2934 * ... 2935 * - 0 < N - M => M < N 2936 * 2937 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2938 * always the case (the difference between two distinct xtime instances 2939 * might be smaller then the difference between corresponding TSC reads, 2940 * when updating guest vcpus pvclock areas). 2941 * 2942 * To avoid that problem, do not allow visibility of distinct 2943 * system_timestamp/tsc_timestamp values simultaneously: use a master 2944 * copy of host monotonic time values. Update that master copy 2945 * in lockstep. 2946 * 2947 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2948 * 2949 */ 2950 2951 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2952 { 2953 #ifdef CONFIG_X86_64 2954 struct kvm_arch *ka = &kvm->arch; 2955 int vclock_mode; 2956 bool host_tsc_clocksource, vcpus_matched; 2957 2958 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2959 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2960 atomic_read(&kvm->online_vcpus)); 2961 2962 /* 2963 * If the host uses TSC clock, then passthrough TSC as stable 2964 * to the guest. 2965 */ 2966 host_tsc_clocksource = kvm_get_time_and_clockread( 2967 &ka->master_kernel_ns, 2968 &ka->master_cycle_now); 2969 2970 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2971 && !ka->backwards_tsc_observed 2972 && !ka->boot_vcpu_runs_old_kvmclock; 2973 2974 if (ka->use_master_clock) 2975 atomic_set(&kvm_guest_has_master_clock, 1); 2976 2977 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2978 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2979 vcpus_matched); 2980 #endif 2981 } 2982 2983 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2984 { 2985 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2986 } 2987 2988 static void __kvm_start_pvclock_update(struct kvm *kvm) 2989 { 2990 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2991 write_seqcount_begin(&kvm->arch.pvclock_sc); 2992 } 2993 2994 static void kvm_start_pvclock_update(struct kvm *kvm) 2995 { 2996 kvm_make_mclock_inprogress_request(kvm); 2997 2998 /* no guest entries from this point */ 2999 __kvm_start_pvclock_update(kvm); 3000 } 3001 3002 static void kvm_end_pvclock_update(struct kvm *kvm) 3003 { 3004 struct kvm_arch *ka = &kvm->arch; 3005 struct kvm_vcpu *vcpu; 3006 unsigned long i; 3007 3008 write_seqcount_end(&ka->pvclock_sc); 3009 raw_spin_unlock_irq(&ka->tsc_write_lock); 3010 kvm_for_each_vcpu(i, vcpu, kvm) 3011 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3012 3013 /* guest entries allowed */ 3014 kvm_for_each_vcpu(i, vcpu, kvm) 3015 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3016 } 3017 3018 static void kvm_update_masterclock(struct kvm *kvm) 3019 { 3020 kvm_hv_request_tsc_page_update(kvm); 3021 kvm_start_pvclock_update(kvm); 3022 pvclock_update_vm_gtod_copy(kvm); 3023 kvm_end_pvclock_update(kvm); 3024 } 3025 3026 /* 3027 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3028 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3029 * can change during boot even if the TSC is constant, as it's possible for KVM 3030 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3031 * notification when calibration completes, but practically speaking calibration 3032 * will complete before userspace is alive enough to create VMs. 3033 */ 3034 static unsigned long get_cpu_tsc_khz(void) 3035 { 3036 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3037 return tsc_khz; 3038 else 3039 return __this_cpu_read(cpu_tsc_khz); 3040 } 3041 3042 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3043 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3044 { 3045 struct kvm_arch *ka = &kvm->arch; 3046 struct pvclock_vcpu_time_info hv_clock; 3047 3048 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3049 get_cpu(); 3050 3051 data->flags = 0; 3052 if (ka->use_master_clock && 3053 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3054 #ifdef CONFIG_X86_64 3055 struct timespec64 ts; 3056 3057 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3058 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3059 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3060 } else 3061 #endif 3062 data->host_tsc = rdtsc(); 3063 3064 data->flags |= KVM_CLOCK_TSC_STABLE; 3065 hv_clock.tsc_timestamp = ka->master_cycle_now; 3066 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3067 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3068 &hv_clock.tsc_shift, 3069 &hv_clock.tsc_to_system_mul); 3070 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3071 } else { 3072 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3073 } 3074 3075 put_cpu(); 3076 } 3077 3078 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3079 { 3080 struct kvm_arch *ka = &kvm->arch; 3081 unsigned seq; 3082 3083 do { 3084 seq = read_seqcount_begin(&ka->pvclock_sc); 3085 __get_kvmclock(kvm, data); 3086 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3087 } 3088 3089 u64 get_kvmclock_ns(struct kvm *kvm) 3090 { 3091 struct kvm_clock_data data; 3092 3093 get_kvmclock(kvm, &data); 3094 return data.clock; 3095 } 3096 3097 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3098 struct gfn_to_pfn_cache *gpc, 3099 unsigned int offset) 3100 { 3101 struct kvm_vcpu_arch *vcpu = &v->arch; 3102 struct pvclock_vcpu_time_info *guest_hv_clock; 3103 unsigned long flags; 3104 3105 read_lock_irqsave(&gpc->lock, flags); 3106 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3107 read_unlock_irqrestore(&gpc->lock, flags); 3108 3109 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3110 return; 3111 3112 read_lock_irqsave(&gpc->lock, flags); 3113 } 3114 3115 guest_hv_clock = (void *)(gpc->khva + offset); 3116 3117 /* 3118 * This VCPU is paused, but it's legal for a guest to read another 3119 * VCPU's kvmclock, so we really have to follow the specification where 3120 * it says that version is odd if data is being modified, and even after 3121 * it is consistent. 3122 */ 3123 3124 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3125 smp_wmb(); 3126 3127 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3128 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3129 3130 if (vcpu->pvclock_set_guest_stopped_request) { 3131 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3132 vcpu->pvclock_set_guest_stopped_request = false; 3133 } 3134 3135 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3136 smp_wmb(); 3137 3138 guest_hv_clock->version = ++vcpu->hv_clock.version; 3139 3140 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3141 read_unlock_irqrestore(&gpc->lock, flags); 3142 3143 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3144 } 3145 3146 static int kvm_guest_time_update(struct kvm_vcpu *v) 3147 { 3148 unsigned long flags, tgt_tsc_khz; 3149 unsigned seq; 3150 struct kvm_vcpu_arch *vcpu = &v->arch; 3151 struct kvm_arch *ka = &v->kvm->arch; 3152 s64 kernel_ns; 3153 u64 tsc_timestamp, host_tsc; 3154 u8 pvclock_flags; 3155 bool use_master_clock; 3156 3157 kernel_ns = 0; 3158 host_tsc = 0; 3159 3160 /* 3161 * If the host uses TSC clock, then passthrough TSC as stable 3162 * to the guest. 3163 */ 3164 do { 3165 seq = read_seqcount_begin(&ka->pvclock_sc); 3166 use_master_clock = ka->use_master_clock; 3167 if (use_master_clock) { 3168 host_tsc = ka->master_cycle_now; 3169 kernel_ns = ka->master_kernel_ns; 3170 } 3171 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3172 3173 /* Keep irq disabled to prevent changes to the clock */ 3174 local_irq_save(flags); 3175 tgt_tsc_khz = get_cpu_tsc_khz(); 3176 if (unlikely(tgt_tsc_khz == 0)) { 3177 local_irq_restore(flags); 3178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3179 return 1; 3180 } 3181 if (!use_master_clock) { 3182 host_tsc = rdtsc(); 3183 kernel_ns = get_kvmclock_base_ns(); 3184 } 3185 3186 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3187 3188 /* 3189 * We may have to catch up the TSC to match elapsed wall clock 3190 * time for two reasons, even if kvmclock is used. 3191 * 1) CPU could have been running below the maximum TSC rate 3192 * 2) Broken TSC compensation resets the base at each VCPU 3193 * entry to avoid unknown leaps of TSC even when running 3194 * again on the same CPU. This may cause apparent elapsed 3195 * time to disappear, and the guest to stand still or run 3196 * very slowly. 3197 */ 3198 if (vcpu->tsc_catchup) { 3199 u64 tsc = compute_guest_tsc(v, kernel_ns); 3200 if (tsc > tsc_timestamp) { 3201 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3202 tsc_timestamp = tsc; 3203 } 3204 } 3205 3206 local_irq_restore(flags); 3207 3208 /* With all the info we got, fill in the values */ 3209 3210 if (kvm_caps.has_tsc_control) 3211 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3212 v->arch.l1_tsc_scaling_ratio); 3213 3214 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3215 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3216 &vcpu->hv_clock.tsc_shift, 3217 &vcpu->hv_clock.tsc_to_system_mul); 3218 vcpu->hw_tsc_khz = tgt_tsc_khz; 3219 kvm_xen_update_tsc_info(v); 3220 } 3221 3222 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3223 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3224 vcpu->last_guest_tsc = tsc_timestamp; 3225 3226 /* If the host uses TSC clocksource, then it is stable */ 3227 pvclock_flags = 0; 3228 if (use_master_clock) 3229 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3230 3231 vcpu->hv_clock.flags = pvclock_flags; 3232 3233 if (vcpu->pv_time.active) 3234 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3235 if (vcpu->xen.vcpu_info_cache.active) 3236 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3237 offsetof(struct compat_vcpu_info, time)); 3238 if (vcpu->xen.vcpu_time_info_cache.active) 3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3240 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3241 return 0; 3242 } 3243 3244 /* 3245 * kvmclock updates which are isolated to a given vcpu, such as 3246 * vcpu->cpu migration, should not allow system_timestamp from 3247 * the rest of the vcpus to remain static. Otherwise ntp frequency 3248 * correction applies to one vcpu's system_timestamp but not 3249 * the others. 3250 * 3251 * So in those cases, request a kvmclock update for all vcpus. 3252 * We need to rate-limit these requests though, as they can 3253 * considerably slow guests that have a large number of vcpus. 3254 * The time for a remote vcpu to update its kvmclock is bound 3255 * by the delay we use to rate-limit the updates. 3256 */ 3257 3258 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3259 3260 static void kvmclock_update_fn(struct work_struct *work) 3261 { 3262 unsigned long i; 3263 struct delayed_work *dwork = to_delayed_work(work); 3264 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3265 kvmclock_update_work); 3266 struct kvm *kvm = container_of(ka, struct kvm, arch); 3267 struct kvm_vcpu *vcpu; 3268 3269 kvm_for_each_vcpu(i, vcpu, kvm) { 3270 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3271 kvm_vcpu_kick(vcpu); 3272 } 3273 } 3274 3275 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3276 { 3277 struct kvm *kvm = v->kvm; 3278 3279 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3280 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3281 KVMCLOCK_UPDATE_DELAY); 3282 } 3283 3284 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3285 3286 static void kvmclock_sync_fn(struct work_struct *work) 3287 { 3288 struct delayed_work *dwork = to_delayed_work(work); 3289 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3290 kvmclock_sync_work); 3291 struct kvm *kvm = container_of(ka, struct kvm, arch); 3292 3293 if (!kvmclock_periodic_sync) 3294 return; 3295 3296 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3297 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3298 KVMCLOCK_SYNC_PERIOD); 3299 } 3300 3301 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3302 static bool is_mci_control_msr(u32 msr) 3303 { 3304 return (msr & 3) == 0; 3305 } 3306 static bool is_mci_status_msr(u32 msr) 3307 { 3308 return (msr & 3) == 1; 3309 } 3310 3311 /* 3312 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3313 */ 3314 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3315 { 3316 /* McStatusWrEn enabled? */ 3317 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3318 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3319 3320 return false; 3321 } 3322 3323 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3324 { 3325 u64 mcg_cap = vcpu->arch.mcg_cap; 3326 unsigned bank_num = mcg_cap & 0xff; 3327 u32 msr = msr_info->index; 3328 u64 data = msr_info->data; 3329 u32 offset, last_msr; 3330 3331 switch (msr) { 3332 case MSR_IA32_MCG_STATUS: 3333 vcpu->arch.mcg_status = data; 3334 break; 3335 case MSR_IA32_MCG_CTL: 3336 if (!(mcg_cap & MCG_CTL_P) && 3337 (data || !msr_info->host_initiated)) 3338 return 1; 3339 if (data != 0 && data != ~(u64)0) 3340 return 1; 3341 vcpu->arch.mcg_ctl = data; 3342 break; 3343 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3344 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3345 if (msr > last_msr) 3346 return 1; 3347 3348 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3349 return 1; 3350 /* An attempt to write a 1 to a reserved bit raises #GP */ 3351 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3352 return 1; 3353 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3354 last_msr + 1 - MSR_IA32_MC0_CTL2); 3355 vcpu->arch.mci_ctl2_banks[offset] = data; 3356 break; 3357 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3358 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3359 if (msr > last_msr) 3360 return 1; 3361 3362 /* 3363 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3364 * values are architecturally undefined. But, some Linux 3365 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3366 * issue on AMD K8s, allow bit 10 to be clear when setting all 3367 * other bits in order to avoid an uncaught #GP in the guest. 3368 * 3369 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3370 * single-bit ECC data errors. 3371 */ 3372 if (is_mci_control_msr(msr) && 3373 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3374 return 1; 3375 3376 /* 3377 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3378 * AMD-based CPUs allow non-zero values, but if and only if 3379 * HWCR[McStatusWrEn] is set. 3380 */ 3381 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3382 data != 0 && !can_set_mci_status(vcpu)) 3383 return 1; 3384 3385 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3386 last_msr + 1 - MSR_IA32_MC0_CTL); 3387 vcpu->arch.mce_banks[offset] = data; 3388 break; 3389 default: 3390 return 1; 3391 } 3392 return 0; 3393 } 3394 3395 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3396 { 3397 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3398 3399 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3400 } 3401 3402 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3403 { 3404 gpa_t gpa = data & ~0x3f; 3405 3406 /* Bits 4:5 are reserved, Should be zero */ 3407 if (data & 0x30) 3408 return 1; 3409 3410 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3411 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3412 return 1; 3413 3414 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3415 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3416 return 1; 3417 3418 if (!lapic_in_kernel(vcpu)) 3419 return data ? 1 : 0; 3420 3421 vcpu->arch.apf.msr_en_val = data; 3422 3423 if (!kvm_pv_async_pf_enabled(vcpu)) { 3424 kvm_clear_async_pf_completion_queue(vcpu); 3425 kvm_async_pf_hash_reset(vcpu); 3426 return 0; 3427 } 3428 3429 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3430 sizeof(u64))) 3431 return 1; 3432 3433 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3434 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3435 3436 kvm_async_pf_wakeup_all(vcpu); 3437 3438 return 0; 3439 } 3440 3441 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3442 { 3443 /* Bits 8-63 are reserved */ 3444 if (data >> 8) 3445 return 1; 3446 3447 if (!lapic_in_kernel(vcpu)) 3448 return 1; 3449 3450 vcpu->arch.apf.msr_int_val = data; 3451 3452 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3453 3454 return 0; 3455 } 3456 3457 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3458 { 3459 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3460 vcpu->arch.time = 0; 3461 } 3462 3463 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3464 { 3465 ++vcpu->stat.tlb_flush; 3466 static_call(kvm_x86_flush_tlb_all)(vcpu); 3467 3468 /* Flushing all ASIDs flushes the current ASID... */ 3469 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3470 } 3471 3472 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3473 { 3474 ++vcpu->stat.tlb_flush; 3475 3476 if (!tdp_enabled) { 3477 /* 3478 * A TLB flush on behalf of the guest is equivalent to 3479 * INVPCID(all), toggling CR4.PGE, etc., which requires 3480 * a forced sync of the shadow page tables. Ensure all the 3481 * roots are synced and the guest TLB in hardware is clean. 3482 */ 3483 kvm_mmu_sync_roots(vcpu); 3484 kvm_mmu_sync_prev_roots(vcpu); 3485 } 3486 3487 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3488 3489 /* 3490 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3491 * grained flushing. 3492 */ 3493 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3494 } 3495 3496 3497 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3498 { 3499 ++vcpu->stat.tlb_flush; 3500 static_call(kvm_x86_flush_tlb_current)(vcpu); 3501 } 3502 3503 /* 3504 * Service "local" TLB flush requests, which are specific to the current MMU 3505 * context. In addition to the generic event handling in vcpu_enter_guest(), 3506 * TLB flushes that are targeted at an MMU context also need to be serviced 3507 * prior before nested VM-Enter/VM-Exit. 3508 */ 3509 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3510 { 3511 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3512 kvm_vcpu_flush_tlb_current(vcpu); 3513 3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3515 kvm_vcpu_flush_tlb_guest(vcpu); 3516 } 3517 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3518 3519 static void record_steal_time(struct kvm_vcpu *vcpu) 3520 { 3521 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3522 struct kvm_steal_time __user *st; 3523 struct kvm_memslots *slots; 3524 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3525 u64 steal; 3526 u32 version; 3527 3528 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3529 kvm_xen_runstate_set_running(vcpu); 3530 return; 3531 } 3532 3533 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3534 return; 3535 3536 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3537 return; 3538 3539 slots = kvm_memslots(vcpu->kvm); 3540 3541 if (unlikely(slots->generation != ghc->generation || 3542 gpa != ghc->gpa || 3543 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3544 /* We rely on the fact that it fits in a single page. */ 3545 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3546 3547 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3548 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3549 return; 3550 } 3551 3552 st = (struct kvm_steal_time __user *)ghc->hva; 3553 /* 3554 * Doing a TLB flush here, on the guest's behalf, can avoid 3555 * expensive IPIs. 3556 */ 3557 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3558 u8 st_preempted = 0; 3559 int err = -EFAULT; 3560 3561 if (!user_access_begin(st, sizeof(*st))) 3562 return; 3563 3564 asm volatile("1: xchgb %0, %2\n" 3565 "xor %1, %1\n" 3566 "2:\n" 3567 _ASM_EXTABLE_UA(1b, 2b) 3568 : "+q" (st_preempted), 3569 "+&r" (err), 3570 "+m" (st->preempted)); 3571 if (err) 3572 goto out; 3573 3574 user_access_end(); 3575 3576 vcpu->arch.st.preempted = 0; 3577 3578 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3579 st_preempted & KVM_VCPU_FLUSH_TLB); 3580 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3581 kvm_vcpu_flush_tlb_guest(vcpu); 3582 3583 if (!user_access_begin(st, sizeof(*st))) 3584 goto dirty; 3585 } else { 3586 if (!user_access_begin(st, sizeof(*st))) 3587 return; 3588 3589 unsafe_put_user(0, &st->preempted, out); 3590 vcpu->arch.st.preempted = 0; 3591 } 3592 3593 unsafe_get_user(version, &st->version, out); 3594 if (version & 1) 3595 version += 1; /* first time write, random junk */ 3596 3597 version += 1; 3598 unsafe_put_user(version, &st->version, out); 3599 3600 smp_wmb(); 3601 3602 unsafe_get_user(steal, &st->steal, out); 3603 steal += current->sched_info.run_delay - 3604 vcpu->arch.st.last_steal; 3605 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3606 unsafe_put_user(steal, &st->steal, out); 3607 3608 version += 1; 3609 unsafe_put_user(version, &st->version, out); 3610 3611 out: 3612 user_access_end(); 3613 dirty: 3614 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3615 } 3616 3617 static bool kvm_is_msr_to_save(u32 msr_index) 3618 { 3619 unsigned int i; 3620 3621 for (i = 0; i < num_msrs_to_save; i++) { 3622 if (msrs_to_save[i] == msr_index) 3623 return true; 3624 } 3625 3626 return false; 3627 } 3628 3629 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3630 { 3631 u32 msr = msr_info->index; 3632 u64 data = msr_info->data; 3633 3634 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3635 return kvm_xen_write_hypercall_page(vcpu, data); 3636 3637 switch (msr) { 3638 case MSR_AMD64_NB_CFG: 3639 case MSR_IA32_UCODE_WRITE: 3640 case MSR_VM_HSAVE_PA: 3641 case MSR_AMD64_PATCH_LOADER: 3642 case MSR_AMD64_BU_CFG2: 3643 case MSR_AMD64_DC_CFG: 3644 case MSR_AMD64_TW_CFG: 3645 case MSR_F15H_EX_CFG: 3646 break; 3647 3648 case MSR_IA32_UCODE_REV: 3649 if (msr_info->host_initiated) 3650 vcpu->arch.microcode_version = data; 3651 break; 3652 case MSR_IA32_ARCH_CAPABILITIES: 3653 if (!msr_info->host_initiated) 3654 return 1; 3655 vcpu->arch.arch_capabilities = data; 3656 break; 3657 case MSR_IA32_PERF_CAPABILITIES: 3658 if (!msr_info->host_initiated) 3659 return 1; 3660 if (data & ~kvm_caps.supported_perf_cap) 3661 return 1; 3662 3663 /* 3664 * Note, this is not just a performance optimization! KVM 3665 * disallows changing feature MSRs after the vCPU has run; PMU 3666 * refresh will bug the VM if called after the vCPU has run. 3667 */ 3668 if (vcpu->arch.perf_capabilities == data) 3669 break; 3670 3671 vcpu->arch.perf_capabilities = data; 3672 kvm_pmu_refresh(vcpu); 3673 break; 3674 case MSR_IA32_PRED_CMD: 3675 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3676 return 1; 3677 3678 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3679 return 1; 3680 if (!data) 3681 break; 3682 3683 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3684 break; 3685 case MSR_IA32_FLUSH_CMD: 3686 if (!msr_info->host_initiated && 3687 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3688 return 1; 3689 3690 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3691 return 1; 3692 if (!data) 3693 break; 3694 3695 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3696 break; 3697 case MSR_EFER: 3698 return set_efer(vcpu, msr_info); 3699 case MSR_K7_HWCR: 3700 data &= ~(u64)0x40; /* ignore flush filter disable */ 3701 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3702 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3703 3704 /* Handle McStatusWrEn */ 3705 if (data == BIT_ULL(18)) { 3706 vcpu->arch.msr_hwcr = data; 3707 } else if (data != 0) { 3708 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3709 return 1; 3710 } 3711 break; 3712 case MSR_FAM10H_MMIO_CONF_BASE: 3713 if (data != 0) { 3714 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3715 return 1; 3716 } 3717 break; 3718 case MSR_IA32_CR_PAT: 3719 if (!kvm_pat_valid(data)) 3720 return 1; 3721 3722 vcpu->arch.pat = data; 3723 break; 3724 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3725 case MSR_MTRRdefType: 3726 return kvm_mtrr_set_msr(vcpu, msr, data); 3727 case MSR_IA32_APICBASE: 3728 return kvm_set_apic_base(vcpu, msr_info); 3729 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3730 return kvm_x2apic_msr_write(vcpu, msr, data); 3731 case MSR_IA32_TSC_DEADLINE: 3732 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3733 break; 3734 case MSR_IA32_TSC_ADJUST: 3735 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3736 if (!msr_info->host_initiated) { 3737 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3738 adjust_tsc_offset_guest(vcpu, adj); 3739 /* Before back to guest, tsc_timestamp must be adjusted 3740 * as well, otherwise guest's percpu pvclock time could jump. 3741 */ 3742 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3743 } 3744 vcpu->arch.ia32_tsc_adjust_msr = data; 3745 } 3746 break; 3747 case MSR_IA32_MISC_ENABLE: { 3748 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3749 3750 if (!msr_info->host_initiated) { 3751 /* RO bits */ 3752 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3753 return 1; 3754 3755 /* R bits, i.e. writes are ignored, but don't fault. */ 3756 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3757 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3758 } 3759 3760 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3761 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3762 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3763 return 1; 3764 vcpu->arch.ia32_misc_enable_msr = data; 3765 kvm_update_cpuid_runtime(vcpu); 3766 } else { 3767 vcpu->arch.ia32_misc_enable_msr = data; 3768 } 3769 break; 3770 } 3771 case MSR_IA32_SMBASE: 3772 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3773 return 1; 3774 vcpu->arch.smbase = data; 3775 break; 3776 case MSR_IA32_POWER_CTL: 3777 vcpu->arch.msr_ia32_power_ctl = data; 3778 break; 3779 case MSR_IA32_TSC: 3780 if (msr_info->host_initiated) { 3781 kvm_synchronize_tsc(vcpu, data); 3782 } else { 3783 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3784 adjust_tsc_offset_guest(vcpu, adj); 3785 vcpu->arch.ia32_tsc_adjust_msr += adj; 3786 } 3787 break; 3788 case MSR_IA32_XSS: 3789 if (!msr_info->host_initiated && 3790 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3791 return 1; 3792 /* 3793 * KVM supports exposing PT to the guest, but does not support 3794 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3795 * XSAVES/XRSTORS to save/restore PT MSRs. 3796 */ 3797 if (data & ~kvm_caps.supported_xss) 3798 return 1; 3799 vcpu->arch.ia32_xss = data; 3800 kvm_update_cpuid_runtime(vcpu); 3801 break; 3802 case MSR_SMI_COUNT: 3803 if (!msr_info->host_initiated) 3804 return 1; 3805 vcpu->arch.smi_count = data; 3806 break; 3807 case MSR_KVM_WALL_CLOCK_NEW: 3808 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3809 return 1; 3810 3811 vcpu->kvm->arch.wall_clock = data; 3812 kvm_write_wall_clock(vcpu->kvm, data, 0); 3813 break; 3814 case MSR_KVM_WALL_CLOCK: 3815 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3816 return 1; 3817 3818 vcpu->kvm->arch.wall_clock = data; 3819 kvm_write_wall_clock(vcpu->kvm, data, 0); 3820 break; 3821 case MSR_KVM_SYSTEM_TIME_NEW: 3822 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3823 return 1; 3824 3825 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3826 break; 3827 case MSR_KVM_SYSTEM_TIME: 3828 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3829 return 1; 3830 3831 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3832 break; 3833 case MSR_KVM_ASYNC_PF_EN: 3834 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3835 return 1; 3836 3837 if (kvm_pv_enable_async_pf(vcpu, data)) 3838 return 1; 3839 break; 3840 case MSR_KVM_ASYNC_PF_INT: 3841 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3842 return 1; 3843 3844 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3845 return 1; 3846 break; 3847 case MSR_KVM_ASYNC_PF_ACK: 3848 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3849 return 1; 3850 if (data & 0x1) { 3851 vcpu->arch.apf.pageready_pending = false; 3852 kvm_check_async_pf_completion(vcpu); 3853 } 3854 break; 3855 case MSR_KVM_STEAL_TIME: 3856 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3857 return 1; 3858 3859 if (unlikely(!sched_info_on())) 3860 return 1; 3861 3862 if (data & KVM_STEAL_RESERVED_MASK) 3863 return 1; 3864 3865 vcpu->arch.st.msr_val = data; 3866 3867 if (!(data & KVM_MSR_ENABLED)) 3868 break; 3869 3870 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3871 3872 break; 3873 case MSR_KVM_PV_EOI_EN: 3874 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3875 return 1; 3876 3877 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3878 return 1; 3879 break; 3880 3881 case MSR_KVM_POLL_CONTROL: 3882 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3883 return 1; 3884 3885 /* only enable bit supported */ 3886 if (data & (-1ULL << 1)) 3887 return 1; 3888 3889 vcpu->arch.msr_kvm_poll_control = data; 3890 break; 3891 3892 case MSR_IA32_MCG_CTL: 3893 case MSR_IA32_MCG_STATUS: 3894 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3895 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3896 return set_msr_mce(vcpu, msr_info); 3897 3898 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3899 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3900 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3901 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3902 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3903 return kvm_pmu_set_msr(vcpu, msr_info); 3904 3905 if (data) 3906 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3907 break; 3908 case MSR_K7_CLK_CTL: 3909 /* 3910 * Ignore all writes to this no longer documented MSR. 3911 * Writes are only relevant for old K7 processors, 3912 * all pre-dating SVM, but a recommended workaround from 3913 * AMD for these chips. It is possible to specify the 3914 * affected processor models on the command line, hence 3915 * the need to ignore the workaround. 3916 */ 3917 break; 3918 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3919 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3920 case HV_X64_MSR_SYNDBG_OPTIONS: 3921 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3922 case HV_X64_MSR_CRASH_CTL: 3923 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3924 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3925 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3926 case HV_X64_MSR_TSC_EMULATION_STATUS: 3927 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3928 return kvm_hv_set_msr_common(vcpu, msr, data, 3929 msr_info->host_initiated); 3930 case MSR_IA32_BBL_CR_CTL3: 3931 /* Drop writes to this legacy MSR -- see rdmsr 3932 * counterpart for further detail. 3933 */ 3934 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3935 break; 3936 case MSR_AMD64_OSVW_ID_LENGTH: 3937 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3938 return 1; 3939 vcpu->arch.osvw.length = data; 3940 break; 3941 case MSR_AMD64_OSVW_STATUS: 3942 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3943 return 1; 3944 vcpu->arch.osvw.status = data; 3945 break; 3946 case MSR_PLATFORM_INFO: 3947 if (!msr_info->host_initiated || 3948 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3949 cpuid_fault_enabled(vcpu))) 3950 return 1; 3951 vcpu->arch.msr_platform_info = data; 3952 break; 3953 case MSR_MISC_FEATURES_ENABLES: 3954 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3955 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3956 !supports_cpuid_fault(vcpu))) 3957 return 1; 3958 vcpu->arch.msr_misc_features_enables = data; 3959 break; 3960 #ifdef CONFIG_X86_64 3961 case MSR_IA32_XFD: 3962 if (!msr_info->host_initiated && 3963 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3964 return 1; 3965 3966 if (data & ~kvm_guest_supported_xfd(vcpu)) 3967 return 1; 3968 3969 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3970 break; 3971 case MSR_IA32_XFD_ERR: 3972 if (!msr_info->host_initiated && 3973 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3974 return 1; 3975 3976 if (data & ~kvm_guest_supported_xfd(vcpu)) 3977 return 1; 3978 3979 vcpu->arch.guest_fpu.xfd_err = data; 3980 break; 3981 #endif 3982 default: 3983 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3984 return kvm_pmu_set_msr(vcpu, msr_info); 3985 3986 /* 3987 * Userspace is allowed to write '0' to MSRs that KVM reports 3988 * as to-be-saved, even if an MSRs isn't fully supported. 3989 */ 3990 if (msr_info->host_initiated && !data && 3991 kvm_is_msr_to_save(msr)) 3992 break; 3993 3994 return KVM_MSR_RET_INVALID; 3995 } 3996 return 0; 3997 } 3998 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3999 4000 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4001 { 4002 u64 data; 4003 u64 mcg_cap = vcpu->arch.mcg_cap; 4004 unsigned bank_num = mcg_cap & 0xff; 4005 u32 offset, last_msr; 4006 4007 switch (msr) { 4008 case MSR_IA32_P5_MC_ADDR: 4009 case MSR_IA32_P5_MC_TYPE: 4010 data = 0; 4011 break; 4012 case MSR_IA32_MCG_CAP: 4013 data = vcpu->arch.mcg_cap; 4014 break; 4015 case MSR_IA32_MCG_CTL: 4016 if (!(mcg_cap & MCG_CTL_P) && !host) 4017 return 1; 4018 data = vcpu->arch.mcg_ctl; 4019 break; 4020 case MSR_IA32_MCG_STATUS: 4021 data = vcpu->arch.mcg_status; 4022 break; 4023 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4024 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4025 if (msr > last_msr) 4026 return 1; 4027 4028 if (!(mcg_cap & MCG_CMCI_P) && !host) 4029 return 1; 4030 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4031 last_msr + 1 - MSR_IA32_MC0_CTL2); 4032 data = vcpu->arch.mci_ctl2_banks[offset]; 4033 break; 4034 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4035 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4036 if (msr > last_msr) 4037 return 1; 4038 4039 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4040 last_msr + 1 - MSR_IA32_MC0_CTL); 4041 data = vcpu->arch.mce_banks[offset]; 4042 break; 4043 default: 4044 return 1; 4045 } 4046 *pdata = data; 4047 return 0; 4048 } 4049 4050 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4051 { 4052 switch (msr_info->index) { 4053 case MSR_IA32_PLATFORM_ID: 4054 case MSR_IA32_EBL_CR_POWERON: 4055 case MSR_IA32_LASTBRANCHFROMIP: 4056 case MSR_IA32_LASTBRANCHTOIP: 4057 case MSR_IA32_LASTINTFROMIP: 4058 case MSR_IA32_LASTINTTOIP: 4059 case MSR_AMD64_SYSCFG: 4060 case MSR_K8_TSEG_ADDR: 4061 case MSR_K8_TSEG_MASK: 4062 case MSR_VM_HSAVE_PA: 4063 case MSR_K8_INT_PENDING_MSG: 4064 case MSR_AMD64_NB_CFG: 4065 case MSR_FAM10H_MMIO_CONF_BASE: 4066 case MSR_AMD64_BU_CFG2: 4067 case MSR_IA32_PERF_CTL: 4068 case MSR_AMD64_DC_CFG: 4069 case MSR_AMD64_TW_CFG: 4070 case MSR_F15H_EX_CFG: 4071 /* 4072 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4073 * limit) MSRs. Just return 0, as we do not want to expose the host 4074 * data here. Do not conditionalize this on CPUID, as KVM does not do 4075 * so for existing CPU-specific MSRs. 4076 */ 4077 case MSR_RAPL_POWER_UNIT: 4078 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4079 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4080 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4081 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4082 msr_info->data = 0; 4083 break; 4084 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4085 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4086 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4087 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4088 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4089 return kvm_pmu_get_msr(vcpu, msr_info); 4090 msr_info->data = 0; 4091 break; 4092 case MSR_IA32_UCODE_REV: 4093 msr_info->data = vcpu->arch.microcode_version; 4094 break; 4095 case MSR_IA32_ARCH_CAPABILITIES: 4096 if (!msr_info->host_initiated && 4097 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4098 return 1; 4099 msr_info->data = vcpu->arch.arch_capabilities; 4100 break; 4101 case MSR_IA32_PERF_CAPABILITIES: 4102 if (!msr_info->host_initiated && 4103 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4104 return 1; 4105 msr_info->data = vcpu->arch.perf_capabilities; 4106 break; 4107 case MSR_IA32_POWER_CTL: 4108 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4109 break; 4110 case MSR_IA32_TSC: { 4111 /* 4112 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4113 * even when not intercepted. AMD manual doesn't explicitly 4114 * state this but appears to behave the same. 4115 * 4116 * On userspace reads and writes, however, we unconditionally 4117 * return L1's TSC value to ensure backwards-compatible 4118 * behavior for migration. 4119 */ 4120 u64 offset, ratio; 4121 4122 if (msr_info->host_initiated) { 4123 offset = vcpu->arch.l1_tsc_offset; 4124 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4125 } else { 4126 offset = vcpu->arch.tsc_offset; 4127 ratio = vcpu->arch.tsc_scaling_ratio; 4128 } 4129 4130 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4131 break; 4132 } 4133 case MSR_IA32_CR_PAT: 4134 msr_info->data = vcpu->arch.pat; 4135 break; 4136 case MSR_MTRRcap: 4137 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4138 case MSR_MTRRdefType: 4139 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4140 case 0xcd: /* fsb frequency */ 4141 msr_info->data = 3; 4142 break; 4143 /* 4144 * MSR_EBC_FREQUENCY_ID 4145 * Conservative value valid for even the basic CPU models. 4146 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4147 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4148 * and 266MHz for model 3, or 4. Set Core Clock 4149 * Frequency to System Bus Frequency Ratio to 1 (bits 4150 * 31:24) even though these are only valid for CPU 4151 * models > 2, however guests may end up dividing or 4152 * multiplying by zero otherwise. 4153 */ 4154 case MSR_EBC_FREQUENCY_ID: 4155 msr_info->data = 1 << 24; 4156 break; 4157 case MSR_IA32_APICBASE: 4158 msr_info->data = kvm_get_apic_base(vcpu); 4159 break; 4160 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4161 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4162 case MSR_IA32_TSC_DEADLINE: 4163 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4164 break; 4165 case MSR_IA32_TSC_ADJUST: 4166 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4167 break; 4168 case MSR_IA32_MISC_ENABLE: 4169 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4170 break; 4171 case MSR_IA32_SMBASE: 4172 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4173 return 1; 4174 msr_info->data = vcpu->arch.smbase; 4175 break; 4176 case MSR_SMI_COUNT: 4177 msr_info->data = vcpu->arch.smi_count; 4178 break; 4179 case MSR_IA32_PERF_STATUS: 4180 /* TSC increment by tick */ 4181 msr_info->data = 1000ULL; 4182 /* CPU multiplier */ 4183 msr_info->data |= (((uint64_t)4ULL) << 40); 4184 break; 4185 case MSR_EFER: 4186 msr_info->data = vcpu->arch.efer; 4187 break; 4188 case MSR_KVM_WALL_CLOCK: 4189 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4190 return 1; 4191 4192 msr_info->data = vcpu->kvm->arch.wall_clock; 4193 break; 4194 case MSR_KVM_WALL_CLOCK_NEW: 4195 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4196 return 1; 4197 4198 msr_info->data = vcpu->kvm->arch.wall_clock; 4199 break; 4200 case MSR_KVM_SYSTEM_TIME: 4201 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4202 return 1; 4203 4204 msr_info->data = vcpu->arch.time; 4205 break; 4206 case MSR_KVM_SYSTEM_TIME_NEW: 4207 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4208 return 1; 4209 4210 msr_info->data = vcpu->arch.time; 4211 break; 4212 case MSR_KVM_ASYNC_PF_EN: 4213 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4214 return 1; 4215 4216 msr_info->data = vcpu->arch.apf.msr_en_val; 4217 break; 4218 case MSR_KVM_ASYNC_PF_INT: 4219 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4220 return 1; 4221 4222 msr_info->data = vcpu->arch.apf.msr_int_val; 4223 break; 4224 case MSR_KVM_ASYNC_PF_ACK: 4225 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4226 return 1; 4227 4228 msr_info->data = 0; 4229 break; 4230 case MSR_KVM_STEAL_TIME: 4231 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4232 return 1; 4233 4234 msr_info->data = vcpu->arch.st.msr_val; 4235 break; 4236 case MSR_KVM_PV_EOI_EN: 4237 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4238 return 1; 4239 4240 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4241 break; 4242 case MSR_KVM_POLL_CONTROL: 4243 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4244 return 1; 4245 4246 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4247 break; 4248 case MSR_IA32_P5_MC_ADDR: 4249 case MSR_IA32_P5_MC_TYPE: 4250 case MSR_IA32_MCG_CAP: 4251 case MSR_IA32_MCG_CTL: 4252 case MSR_IA32_MCG_STATUS: 4253 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4254 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4255 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4256 msr_info->host_initiated); 4257 case MSR_IA32_XSS: 4258 if (!msr_info->host_initiated && 4259 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4260 return 1; 4261 msr_info->data = vcpu->arch.ia32_xss; 4262 break; 4263 case MSR_K7_CLK_CTL: 4264 /* 4265 * Provide expected ramp-up count for K7. All other 4266 * are set to zero, indicating minimum divisors for 4267 * every field. 4268 * 4269 * This prevents guest kernels on AMD host with CPU 4270 * type 6, model 8 and higher from exploding due to 4271 * the rdmsr failing. 4272 */ 4273 msr_info->data = 0x20000000; 4274 break; 4275 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4276 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4277 case HV_X64_MSR_SYNDBG_OPTIONS: 4278 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4279 case HV_X64_MSR_CRASH_CTL: 4280 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4281 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4282 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4283 case HV_X64_MSR_TSC_EMULATION_STATUS: 4284 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4285 return kvm_hv_get_msr_common(vcpu, 4286 msr_info->index, &msr_info->data, 4287 msr_info->host_initiated); 4288 case MSR_IA32_BBL_CR_CTL3: 4289 /* This legacy MSR exists but isn't fully documented in current 4290 * silicon. It is however accessed by winxp in very narrow 4291 * scenarios where it sets bit #19, itself documented as 4292 * a "reserved" bit. Best effort attempt to source coherent 4293 * read data here should the balance of the register be 4294 * interpreted by the guest: 4295 * 4296 * L2 cache control register 3: 64GB range, 256KB size, 4297 * enabled, latency 0x1, configured 4298 */ 4299 msr_info->data = 0xbe702111; 4300 break; 4301 case MSR_AMD64_OSVW_ID_LENGTH: 4302 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4303 return 1; 4304 msr_info->data = vcpu->arch.osvw.length; 4305 break; 4306 case MSR_AMD64_OSVW_STATUS: 4307 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4308 return 1; 4309 msr_info->data = vcpu->arch.osvw.status; 4310 break; 4311 case MSR_PLATFORM_INFO: 4312 if (!msr_info->host_initiated && 4313 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4314 return 1; 4315 msr_info->data = vcpu->arch.msr_platform_info; 4316 break; 4317 case MSR_MISC_FEATURES_ENABLES: 4318 msr_info->data = vcpu->arch.msr_misc_features_enables; 4319 break; 4320 case MSR_K7_HWCR: 4321 msr_info->data = vcpu->arch.msr_hwcr; 4322 break; 4323 #ifdef CONFIG_X86_64 4324 case MSR_IA32_XFD: 4325 if (!msr_info->host_initiated && 4326 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4327 return 1; 4328 4329 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4330 break; 4331 case MSR_IA32_XFD_ERR: 4332 if (!msr_info->host_initiated && 4333 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4334 return 1; 4335 4336 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4337 break; 4338 #endif 4339 default: 4340 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4341 return kvm_pmu_get_msr(vcpu, msr_info); 4342 4343 /* 4344 * Userspace is allowed to read MSRs that KVM reports as 4345 * to-be-saved, even if an MSR isn't fully supported. 4346 */ 4347 if (msr_info->host_initiated && 4348 kvm_is_msr_to_save(msr_info->index)) { 4349 msr_info->data = 0; 4350 break; 4351 } 4352 4353 return KVM_MSR_RET_INVALID; 4354 } 4355 return 0; 4356 } 4357 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4358 4359 /* 4360 * Read or write a bunch of msrs. All parameters are kernel addresses. 4361 * 4362 * @return number of msrs set successfully. 4363 */ 4364 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4365 struct kvm_msr_entry *entries, 4366 int (*do_msr)(struct kvm_vcpu *vcpu, 4367 unsigned index, u64 *data)) 4368 { 4369 int i; 4370 4371 for (i = 0; i < msrs->nmsrs; ++i) 4372 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4373 break; 4374 4375 return i; 4376 } 4377 4378 /* 4379 * Read or write a bunch of msrs. Parameters are user addresses. 4380 * 4381 * @return number of msrs set successfully. 4382 */ 4383 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4384 int (*do_msr)(struct kvm_vcpu *vcpu, 4385 unsigned index, u64 *data), 4386 int writeback) 4387 { 4388 struct kvm_msrs msrs; 4389 struct kvm_msr_entry *entries; 4390 unsigned size; 4391 int r; 4392 4393 r = -EFAULT; 4394 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4395 goto out; 4396 4397 r = -E2BIG; 4398 if (msrs.nmsrs >= MAX_IO_MSRS) 4399 goto out; 4400 4401 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4402 entries = memdup_user(user_msrs->entries, size); 4403 if (IS_ERR(entries)) { 4404 r = PTR_ERR(entries); 4405 goto out; 4406 } 4407 4408 r = __msr_io(vcpu, &msrs, entries, do_msr); 4409 4410 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4411 r = -EFAULT; 4412 4413 kfree(entries); 4414 out: 4415 return r; 4416 } 4417 4418 static inline bool kvm_can_mwait_in_guest(void) 4419 { 4420 return boot_cpu_has(X86_FEATURE_MWAIT) && 4421 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4422 boot_cpu_has(X86_FEATURE_ARAT); 4423 } 4424 4425 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4426 struct kvm_cpuid2 __user *cpuid_arg) 4427 { 4428 struct kvm_cpuid2 cpuid; 4429 int r; 4430 4431 r = -EFAULT; 4432 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4433 return r; 4434 4435 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4436 if (r) 4437 return r; 4438 4439 r = -EFAULT; 4440 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4441 return r; 4442 4443 return 0; 4444 } 4445 4446 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4447 { 4448 int r = 0; 4449 4450 switch (ext) { 4451 case KVM_CAP_IRQCHIP: 4452 case KVM_CAP_HLT: 4453 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4454 case KVM_CAP_SET_TSS_ADDR: 4455 case KVM_CAP_EXT_CPUID: 4456 case KVM_CAP_EXT_EMUL_CPUID: 4457 case KVM_CAP_CLOCKSOURCE: 4458 case KVM_CAP_PIT: 4459 case KVM_CAP_NOP_IO_DELAY: 4460 case KVM_CAP_MP_STATE: 4461 case KVM_CAP_SYNC_MMU: 4462 case KVM_CAP_USER_NMI: 4463 case KVM_CAP_REINJECT_CONTROL: 4464 case KVM_CAP_IRQ_INJECT_STATUS: 4465 case KVM_CAP_IOEVENTFD: 4466 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4467 case KVM_CAP_PIT2: 4468 case KVM_CAP_PIT_STATE2: 4469 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4470 case KVM_CAP_VCPU_EVENTS: 4471 case KVM_CAP_HYPERV: 4472 case KVM_CAP_HYPERV_VAPIC: 4473 case KVM_CAP_HYPERV_SPIN: 4474 case KVM_CAP_HYPERV_SYNIC: 4475 case KVM_CAP_HYPERV_SYNIC2: 4476 case KVM_CAP_HYPERV_VP_INDEX: 4477 case KVM_CAP_HYPERV_EVENTFD: 4478 case KVM_CAP_HYPERV_TLBFLUSH: 4479 case KVM_CAP_HYPERV_SEND_IPI: 4480 case KVM_CAP_HYPERV_CPUID: 4481 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4482 case KVM_CAP_SYS_HYPERV_CPUID: 4483 case KVM_CAP_PCI_SEGMENT: 4484 case KVM_CAP_DEBUGREGS: 4485 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4486 case KVM_CAP_XSAVE: 4487 case KVM_CAP_ASYNC_PF: 4488 case KVM_CAP_ASYNC_PF_INT: 4489 case KVM_CAP_GET_TSC_KHZ: 4490 case KVM_CAP_KVMCLOCK_CTRL: 4491 case KVM_CAP_READONLY_MEM: 4492 case KVM_CAP_HYPERV_TIME: 4493 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4494 case KVM_CAP_TSC_DEADLINE_TIMER: 4495 case KVM_CAP_DISABLE_QUIRKS: 4496 case KVM_CAP_SET_BOOT_CPU_ID: 4497 case KVM_CAP_SPLIT_IRQCHIP: 4498 case KVM_CAP_IMMEDIATE_EXIT: 4499 case KVM_CAP_PMU_EVENT_FILTER: 4500 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4501 case KVM_CAP_GET_MSR_FEATURES: 4502 case KVM_CAP_MSR_PLATFORM_INFO: 4503 case KVM_CAP_EXCEPTION_PAYLOAD: 4504 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4505 case KVM_CAP_SET_GUEST_DEBUG: 4506 case KVM_CAP_LAST_CPU: 4507 case KVM_CAP_X86_USER_SPACE_MSR: 4508 case KVM_CAP_X86_MSR_FILTER: 4509 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4510 #ifdef CONFIG_X86_SGX_KVM 4511 case KVM_CAP_SGX_ATTRIBUTE: 4512 #endif 4513 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4514 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4515 case KVM_CAP_SREGS2: 4516 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4517 case KVM_CAP_VCPU_ATTRIBUTES: 4518 case KVM_CAP_SYS_ATTRIBUTES: 4519 case KVM_CAP_VAPIC: 4520 case KVM_CAP_ENABLE_CAP: 4521 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4522 case KVM_CAP_IRQFD_RESAMPLE: 4523 r = 1; 4524 break; 4525 case KVM_CAP_EXIT_HYPERCALL: 4526 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4527 break; 4528 case KVM_CAP_SET_GUEST_DEBUG2: 4529 return KVM_GUESTDBG_VALID_MASK; 4530 #ifdef CONFIG_KVM_XEN 4531 case KVM_CAP_XEN_HVM: 4532 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4533 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4534 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4535 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4536 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4537 if (sched_info_on()) 4538 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4539 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4540 break; 4541 #endif 4542 case KVM_CAP_SYNC_REGS: 4543 r = KVM_SYNC_X86_VALID_FIELDS; 4544 break; 4545 case KVM_CAP_ADJUST_CLOCK: 4546 r = KVM_CLOCK_VALID_FLAGS; 4547 break; 4548 case KVM_CAP_X86_DISABLE_EXITS: 4549 r = KVM_X86_DISABLE_EXITS_PAUSE; 4550 4551 if (!mitigate_smt_rsb) { 4552 r |= KVM_X86_DISABLE_EXITS_HLT | 4553 KVM_X86_DISABLE_EXITS_CSTATE; 4554 4555 if (kvm_can_mwait_in_guest()) 4556 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4557 } 4558 break; 4559 case KVM_CAP_X86_SMM: 4560 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4561 break; 4562 4563 /* SMBASE is usually relocated above 1M on modern chipsets, 4564 * and SMM handlers might indeed rely on 4G segment limits, 4565 * so do not report SMM to be available if real mode is 4566 * emulated via vm86 mode. Still, do not go to great lengths 4567 * to avoid userspace's usage of the feature, because it is a 4568 * fringe case that is not enabled except via specific settings 4569 * of the module parameters. 4570 */ 4571 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4572 break; 4573 case KVM_CAP_NR_VCPUS: 4574 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4575 break; 4576 case KVM_CAP_MAX_VCPUS: 4577 r = KVM_MAX_VCPUS; 4578 break; 4579 case KVM_CAP_MAX_VCPU_ID: 4580 r = KVM_MAX_VCPU_IDS; 4581 break; 4582 case KVM_CAP_PV_MMU: /* obsolete */ 4583 r = 0; 4584 break; 4585 case KVM_CAP_MCE: 4586 r = KVM_MAX_MCE_BANKS; 4587 break; 4588 case KVM_CAP_XCRS: 4589 r = boot_cpu_has(X86_FEATURE_XSAVE); 4590 break; 4591 case KVM_CAP_TSC_CONTROL: 4592 case KVM_CAP_VM_TSC_CONTROL: 4593 r = kvm_caps.has_tsc_control; 4594 break; 4595 case KVM_CAP_X2APIC_API: 4596 r = KVM_X2APIC_API_VALID_FLAGS; 4597 break; 4598 case KVM_CAP_NESTED_STATE: 4599 r = kvm_x86_ops.nested_ops->get_state ? 4600 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4601 break; 4602 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4603 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4604 break; 4605 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4606 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4607 break; 4608 case KVM_CAP_SMALLER_MAXPHYADDR: 4609 r = (int) allow_smaller_maxphyaddr; 4610 break; 4611 case KVM_CAP_STEAL_TIME: 4612 r = sched_info_on(); 4613 break; 4614 case KVM_CAP_X86_BUS_LOCK_EXIT: 4615 if (kvm_caps.has_bus_lock_exit) 4616 r = KVM_BUS_LOCK_DETECTION_OFF | 4617 KVM_BUS_LOCK_DETECTION_EXIT; 4618 else 4619 r = 0; 4620 break; 4621 case KVM_CAP_XSAVE2: { 4622 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4623 if (r < sizeof(struct kvm_xsave)) 4624 r = sizeof(struct kvm_xsave); 4625 break; 4626 } 4627 case KVM_CAP_PMU_CAPABILITY: 4628 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4629 break; 4630 case KVM_CAP_DISABLE_QUIRKS2: 4631 r = KVM_X86_VALID_QUIRKS; 4632 break; 4633 case KVM_CAP_X86_NOTIFY_VMEXIT: 4634 r = kvm_caps.has_notify_vmexit; 4635 break; 4636 default: 4637 break; 4638 } 4639 return r; 4640 } 4641 4642 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4643 { 4644 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4645 4646 if ((u64)(unsigned long)uaddr != attr->addr) 4647 return ERR_PTR_USR(-EFAULT); 4648 return uaddr; 4649 } 4650 4651 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4652 { 4653 u64 __user *uaddr = kvm_get_attr_addr(attr); 4654 4655 if (attr->group) 4656 return -ENXIO; 4657 4658 if (IS_ERR(uaddr)) 4659 return PTR_ERR(uaddr); 4660 4661 switch (attr->attr) { 4662 case KVM_X86_XCOMP_GUEST_SUPP: 4663 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4664 return -EFAULT; 4665 return 0; 4666 default: 4667 return -ENXIO; 4668 } 4669 } 4670 4671 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4672 { 4673 if (attr->group) 4674 return -ENXIO; 4675 4676 switch (attr->attr) { 4677 case KVM_X86_XCOMP_GUEST_SUPP: 4678 return 0; 4679 default: 4680 return -ENXIO; 4681 } 4682 } 4683 4684 long kvm_arch_dev_ioctl(struct file *filp, 4685 unsigned int ioctl, unsigned long arg) 4686 { 4687 void __user *argp = (void __user *)arg; 4688 long r; 4689 4690 switch (ioctl) { 4691 case KVM_GET_MSR_INDEX_LIST: { 4692 struct kvm_msr_list __user *user_msr_list = argp; 4693 struct kvm_msr_list msr_list; 4694 unsigned n; 4695 4696 r = -EFAULT; 4697 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4698 goto out; 4699 n = msr_list.nmsrs; 4700 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4701 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4702 goto out; 4703 r = -E2BIG; 4704 if (n < msr_list.nmsrs) 4705 goto out; 4706 r = -EFAULT; 4707 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4708 num_msrs_to_save * sizeof(u32))) 4709 goto out; 4710 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4711 &emulated_msrs, 4712 num_emulated_msrs * sizeof(u32))) 4713 goto out; 4714 r = 0; 4715 break; 4716 } 4717 case KVM_GET_SUPPORTED_CPUID: 4718 case KVM_GET_EMULATED_CPUID: { 4719 struct kvm_cpuid2 __user *cpuid_arg = argp; 4720 struct kvm_cpuid2 cpuid; 4721 4722 r = -EFAULT; 4723 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4724 goto out; 4725 4726 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4727 ioctl); 4728 if (r) 4729 goto out; 4730 4731 r = -EFAULT; 4732 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4733 goto out; 4734 r = 0; 4735 break; 4736 } 4737 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4738 r = -EFAULT; 4739 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4740 sizeof(kvm_caps.supported_mce_cap))) 4741 goto out; 4742 r = 0; 4743 break; 4744 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4745 struct kvm_msr_list __user *user_msr_list = argp; 4746 struct kvm_msr_list msr_list; 4747 unsigned int n; 4748 4749 r = -EFAULT; 4750 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4751 goto out; 4752 n = msr_list.nmsrs; 4753 msr_list.nmsrs = num_msr_based_features; 4754 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4755 goto out; 4756 r = -E2BIG; 4757 if (n < msr_list.nmsrs) 4758 goto out; 4759 r = -EFAULT; 4760 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4761 num_msr_based_features * sizeof(u32))) 4762 goto out; 4763 r = 0; 4764 break; 4765 } 4766 case KVM_GET_MSRS: 4767 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4768 break; 4769 case KVM_GET_SUPPORTED_HV_CPUID: 4770 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4771 break; 4772 case KVM_GET_DEVICE_ATTR: { 4773 struct kvm_device_attr attr; 4774 r = -EFAULT; 4775 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4776 break; 4777 r = kvm_x86_dev_get_attr(&attr); 4778 break; 4779 } 4780 case KVM_HAS_DEVICE_ATTR: { 4781 struct kvm_device_attr attr; 4782 r = -EFAULT; 4783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4784 break; 4785 r = kvm_x86_dev_has_attr(&attr); 4786 break; 4787 } 4788 default: 4789 r = -EINVAL; 4790 break; 4791 } 4792 out: 4793 return r; 4794 } 4795 4796 static void wbinvd_ipi(void *garbage) 4797 { 4798 wbinvd(); 4799 } 4800 4801 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4802 { 4803 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4804 } 4805 4806 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4807 { 4808 /* Address WBINVD may be executed by guest */ 4809 if (need_emulate_wbinvd(vcpu)) { 4810 if (static_call(kvm_x86_has_wbinvd_exit)()) 4811 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4812 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4813 smp_call_function_single(vcpu->cpu, 4814 wbinvd_ipi, NULL, 1); 4815 } 4816 4817 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4818 4819 /* Save host pkru register if supported */ 4820 vcpu->arch.host_pkru = read_pkru(); 4821 4822 /* Apply any externally detected TSC adjustments (due to suspend) */ 4823 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4824 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4825 vcpu->arch.tsc_offset_adjustment = 0; 4826 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4827 } 4828 4829 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4830 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4831 rdtsc() - vcpu->arch.last_host_tsc; 4832 if (tsc_delta < 0) 4833 mark_tsc_unstable("KVM discovered backwards TSC"); 4834 4835 if (kvm_check_tsc_unstable()) { 4836 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4837 vcpu->arch.last_guest_tsc); 4838 kvm_vcpu_write_tsc_offset(vcpu, offset); 4839 vcpu->arch.tsc_catchup = 1; 4840 } 4841 4842 if (kvm_lapic_hv_timer_in_use(vcpu)) 4843 kvm_lapic_restart_hv_timer(vcpu); 4844 4845 /* 4846 * On a host with synchronized TSC, there is no need to update 4847 * kvmclock on vcpu->cpu migration 4848 */ 4849 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4850 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4851 if (vcpu->cpu != cpu) 4852 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4853 vcpu->cpu = cpu; 4854 } 4855 4856 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4857 } 4858 4859 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4860 { 4861 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4862 struct kvm_steal_time __user *st; 4863 struct kvm_memslots *slots; 4864 static const u8 preempted = KVM_VCPU_PREEMPTED; 4865 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4866 4867 /* 4868 * The vCPU can be marked preempted if and only if the VM-Exit was on 4869 * an instruction boundary and will not trigger guest emulation of any 4870 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4871 * when this is true, for example allowing the vCPU to be marked 4872 * preempted if and only if the VM-Exit was due to a host interrupt. 4873 */ 4874 if (!vcpu->arch.at_instruction_boundary) { 4875 vcpu->stat.preemption_other++; 4876 return; 4877 } 4878 4879 vcpu->stat.preemption_reported++; 4880 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4881 return; 4882 4883 if (vcpu->arch.st.preempted) 4884 return; 4885 4886 /* This happens on process exit */ 4887 if (unlikely(current->mm != vcpu->kvm->mm)) 4888 return; 4889 4890 slots = kvm_memslots(vcpu->kvm); 4891 4892 if (unlikely(slots->generation != ghc->generation || 4893 gpa != ghc->gpa || 4894 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4895 return; 4896 4897 st = (struct kvm_steal_time __user *)ghc->hva; 4898 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4899 4900 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4901 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4902 4903 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4904 } 4905 4906 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4907 { 4908 int idx; 4909 4910 if (vcpu->preempted) { 4911 if (!vcpu->arch.guest_state_protected) 4912 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4913 4914 /* 4915 * Take the srcu lock as memslots will be accessed to check the gfn 4916 * cache generation against the memslots generation. 4917 */ 4918 idx = srcu_read_lock(&vcpu->kvm->srcu); 4919 if (kvm_xen_msr_enabled(vcpu->kvm)) 4920 kvm_xen_runstate_set_preempted(vcpu); 4921 else 4922 kvm_steal_time_set_preempted(vcpu); 4923 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4924 } 4925 4926 static_call(kvm_x86_vcpu_put)(vcpu); 4927 vcpu->arch.last_host_tsc = rdtsc(); 4928 } 4929 4930 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4931 struct kvm_lapic_state *s) 4932 { 4933 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4934 4935 return kvm_apic_get_state(vcpu, s); 4936 } 4937 4938 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4939 struct kvm_lapic_state *s) 4940 { 4941 int r; 4942 4943 r = kvm_apic_set_state(vcpu, s); 4944 if (r) 4945 return r; 4946 update_cr8_intercept(vcpu); 4947 4948 return 0; 4949 } 4950 4951 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4952 { 4953 /* 4954 * We can accept userspace's request for interrupt injection 4955 * as long as we have a place to store the interrupt number. 4956 * The actual injection will happen when the CPU is able to 4957 * deliver the interrupt. 4958 */ 4959 if (kvm_cpu_has_extint(vcpu)) 4960 return false; 4961 4962 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4963 return (!lapic_in_kernel(vcpu) || 4964 kvm_apic_accept_pic_intr(vcpu)); 4965 } 4966 4967 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4968 { 4969 /* 4970 * Do not cause an interrupt window exit if an exception 4971 * is pending or an event needs reinjection; userspace 4972 * might want to inject the interrupt manually using KVM_SET_REGS 4973 * or KVM_SET_SREGS. For that to work, we must be at an 4974 * instruction boundary and with no events half-injected. 4975 */ 4976 return (kvm_arch_interrupt_allowed(vcpu) && 4977 kvm_cpu_accept_dm_intr(vcpu) && 4978 !kvm_event_needs_reinjection(vcpu) && 4979 !kvm_is_exception_pending(vcpu)); 4980 } 4981 4982 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4983 struct kvm_interrupt *irq) 4984 { 4985 if (irq->irq >= KVM_NR_INTERRUPTS) 4986 return -EINVAL; 4987 4988 if (!irqchip_in_kernel(vcpu->kvm)) { 4989 kvm_queue_interrupt(vcpu, irq->irq, false); 4990 kvm_make_request(KVM_REQ_EVENT, vcpu); 4991 return 0; 4992 } 4993 4994 /* 4995 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4996 * fail for in-kernel 8259. 4997 */ 4998 if (pic_in_kernel(vcpu->kvm)) 4999 return -ENXIO; 5000 5001 if (vcpu->arch.pending_external_vector != -1) 5002 return -EEXIST; 5003 5004 vcpu->arch.pending_external_vector = irq->irq; 5005 kvm_make_request(KVM_REQ_EVENT, vcpu); 5006 return 0; 5007 } 5008 5009 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5010 { 5011 kvm_inject_nmi(vcpu); 5012 5013 return 0; 5014 } 5015 5016 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5017 struct kvm_tpr_access_ctl *tac) 5018 { 5019 if (tac->flags) 5020 return -EINVAL; 5021 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5022 return 0; 5023 } 5024 5025 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5026 u64 mcg_cap) 5027 { 5028 int r; 5029 unsigned bank_num = mcg_cap & 0xff, bank; 5030 5031 r = -EINVAL; 5032 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5033 goto out; 5034 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5035 goto out; 5036 r = 0; 5037 vcpu->arch.mcg_cap = mcg_cap; 5038 /* Init IA32_MCG_CTL to all 1s */ 5039 if (mcg_cap & MCG_CTL_P) 5040 vcpu->arch.mcg_ctl = ~(u64)0; 5041 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5042 for (bank = 0; bank < bank_num; bank++) { 5043 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5044 if (mcg_cap & MCG_CMCI_P) 5045 vcpu->arch.mci_ctl2_banks[bank] = 0; 5046 } 5047 5048 kvm_apic_after_set_mcg_cap(vcpu); 5049 5050 static_call(kvm_x86_setup_mce)(vcpu); 5051 out: 5052 return r; 5053 } 5054 5055 /* 5056 * Validate this is an UCNA (uncorrectable no action) error by checking the 5057 * MCG_STATUS and MCi_STATUS registers: 5058 * - none of the bits for Machine Check Exceptions are set 5059 * - both the VAL (valid) and UC (uncorrectable) bits are set 5060 * MCI_STATUS_PCC - Processor Context Corrupted 5061 * MCI_STATUS_S - Signaled as a Machine Check Exception 5062 * MCI_STATUS_AR - Software recoverable Action Required 5063 */ 5064 static bool is_ucna(struct kvm_x86_mce *mce) 5065 { 5066 return !mce->mcg_status && 5067 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5068 (mce->status & MCI_STATUS_VAL) && 5069 (mce->status & MCI_STATUS_UC); 5070 } 5071 5072 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5073 { 5074 u64 mcg_cap = vcpu->arch.mcg_cap; 5075 5076 banks[1] = mce->status; 5077 banks[2] = mce->addr; 5078 banks[3] = mce->misc; 5079 vcpu->arch.mcg_status = mce->mcg_status; 5080 5081 if (!(mcg_cap & MCG_CMCI_P) || 5082 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5083 return 0; 5084 5085 if (lapic_in_kernel(vcpu)) 5086 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5087 5088 return 0; 5089 } 5090 5091 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5092 struct kvm_x86_mce *mce) 5093 { 5094 u64 mcg_cap = vcpu->arch.mcg_cap; 5095 unsigned bank_num = mcg_cap & 0xff; 5096 u64 *banks = vcpu->arch.mce_banks; 5097 5098 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5099 return -EINVAL; 5100 5101 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5102 5103 if (is_ucna(mce)) 5104 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5105 5106 /* 5107 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5108 * reporting is disabled 5109 */ 5110 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5111 vcpu->arch.mcg_ctl != ~(u64)0) 5112 return 0; 5113 /* 5114 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5115 * reporting is disabled for the bank 5116 */ 5117 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5118 return 0; 5119 if (mce->status & MCI_STATUS_UC) { 5120 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5121 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5122 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5123 return 0; 5124 } 5125 if (banks[1] & MCI_STATUS_VAL) 5126 mce->status |= MCI_STATUS_OVER; 5127 banks[2] = mce->addr; 5128 banks[3] = mce->misc; 5129 vcpu->arch.mcg_status = mce->mcg_status; 5130 banks[1] = mce->status; 5131 kvm_queue_exception(vcpu, MC_VECTOR); 5132 } else if (!(banks[1] & MCI_STATUS_VAL) 5133 || !(banks[1] & MCI_STATUS_UC)) { 5134 if (banks[1] & MCI_STATUS_VAL) 5135 mce->status |= MCI_STATUS_OVER; 5136 banks[2] = mce->addr; 5137 banks[3] = mce->misc; 5138 banks[1] = mce->status; 5139 } else 5140 banks[1] |= MCI_STATUS_OVER; 5141 return 0; 5142 } 5143 5144 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5145 struct kvm_vcpu_events *events) 5146 { 5147 struct kvm_queued_exception *ex; 5148 5149 process_nmi(vcpu); 5150 5151 #ifdef CONFIG_KVM_SMM 5152 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5153 process_smi(vcpu); 5154 #endif 5155 5156 /* 5157 * KVM's ABI only allows for one exception to be migrated. Luckily, 5158 * the only time there can be two queued exceptions is if there's a 5159 * non-exiting _injected_ exception, and a pending exiting exception. 5160 * In that case, ignore the VM-Exiting exception as it's an extension 5161 * of the injected exception. 5162 */ 5163 if (vcpu->arch.exception_vmexit.pending && 5164 !vcpu->arch.exception.pending && 5165 !vcpu->arch.exception.injected) 5166 ex = &vcpu->arch.exception_vmexit; 5167 else 5168 ex = &vcpu->arch.exception; 5169 5170 /* 5171 * In guest mode, payload delivery should be deferred if the exception 5172 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5173 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5174 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5175 * propagate the payload and so it cannot be safely deferred. Deliver 5176 * the payload if the capability hasn't been requested. 5177 */ 5178 if (!vcpu->kvm->arch.exception_payload_enabled && 5179 ex->pending && ex->has_payload) 5180 kvm_deliver_exception_payload(vcpu, ex); 5181 5182 memset(events, 0, sizeof(*events)); 5183 5184 /* 5185 * The API doesn't provide the instruction length for software 5186 * exceptions, so don't report them. As long as the guest RIP 5187 * isn't advanced, we should expect to encounter the exception 5188 * again. 5189 */ 5190 if (!kvm_exception_is_soft(ex->vector)) { 5191 events->exception.injected = ex->injected; 5192 events->exception.pending = ex->pending; 5193 /* 5194 * For ABI compatibility, deliberately conflate 5195 * pending and injected exceptions when 5196 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5197 */ 5198 if (!vcpu->kvm->arch.exception_payload_enabled) 5199 events->exception.injected |= ex->pending; 5200 } 5201 events->exception.nr = ex->vector; 5202 events->exception.has_error_code = ex->has_error_code; 5203 events->exception.error_code = ex->error_code; 5204 events->exception_has_payload = ex->has_payload; 5205 events->exception_payload = ex->payload; 5206 5207 events->interrupt.injected = 5208 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5209 events->interrupt.nr = vcpu->arch.interrupt.nr; 5210 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5211 5212 events->nmi.injected = vcpu->arch.nmi_injected; 5213 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5214 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5215 5216 /* events->sipi_vector is never valid when reporting to user space */ 5217 5218 #ifdef CONFIG_KVM_SMM 5219 events->smi.smm = is_smm(vcpu); 5220 events->smi.pending = vcpu->arch.smi_pending; 5221 events->smi.smm_inside_nmi = 5222 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5223 #endif 5224 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5225 5226 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5227 | KVM_VCPUEVENT_VALID_SHADOW 5228 | KVM_VCPUEVENT_VALID_SMM); 5229 if (vcpu->kvm->arch.exception_payload_enabled) 5230 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5231 if (vcpu->kvm->arch.triple_fault_event) { 5232 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5233 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5234 } 5235 } 5236 5237 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5238 struct kvm_vcpu_events *events) 5239 { 5240 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5241 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5242 | KVM_VCPUEVENT_VALID_SHADOW 5243 | KVM_VCPUEVENT_VALID_SMM 5244 | KVM_VCPUEVENT_VALID_PAYLOAD 5245 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5246 return -EINVAL; 5247 5248 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5249 if (!vcpu->kvm->arch.exception_payload_enabled) 5250 return -EINVAL; 5251 if (events->exception.pending) 5252 events->exception.injected = 0; 5253 else 5254 events->exception_has_payload = 0; 5255 } else { 5256 events->exception.pending = 0; 5257 events->exception_has_payload = 0; 5258 } 5259 5260 if ((events->exception.injected || events->exception.pending) && 5261 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5262 return -EINVAL; 5263 5264 /* INITs are latched while in SMM */ 5265 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5266 (events->smi.smm || events->smi.pending) && 5267 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5268 return -EINVAL; 5269 5270 process_nmi(vcpu); 5271 5272 /* 5273 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5274 * morph the exception to a VM-Exit if appropriate. Do this only for 5275 * pending exceptions, already-injected exceptions are not subject to 5276 * intercpetion. Note, userspace that conflates pending and injected 5277 * is hosed, and will incorrectly convert an injected exception into a 5278 * pending exception, which in turn may cause a spurious VM-Exit. 5279 */ 5280 vcpu->arch.exception_from_userspace = events->exception.pending; 5281 5282 vcpu->arch.exception_vmexit.pending = false; 5283 5284 vcpu->arch.exception.injected = events->exception.injected; 5285 vcpu->arch.exception.pending = events->exception.pending; 5286 vcpu->arch.exception.vector = events->exception.nr; 5287 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5288 vcpu->arch.exception.error_code = events->exception.error_code; 5289 vcpu->arch.exception.has_payload = events->exception_has_payload; 5290 vcpu->arch.exception.payload = events->exception_payload; 5291 5292 vcpu->arch.interrupt.injected = events->interrupt.injected; 5293 vcpu->arch.interrupt.nr = events->interrupt.nr; 5294 vcpu->arch.interrupt.soft = events->interrupt.soft; 5295 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5296 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5297 events->interrupt.shadow); 5298 5299 vcpu->arch.nmi_injected = events->nmi.injected; 5300 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5301 vcpu->arch.nmi_pending = 0; 5302 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5303 kvm_make_request(KVM_REQ_NMI, vcpu); 5304 } 5305 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5306 5307 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5308 lapic_in_kernel(vcpu)) 5309 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5310 5311 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5312 #ifdef CONFIG_KVM_SMM 5313 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5314 kvm_leave_nested(vcpu); 5315 kvm_smm_changed(vcpu, events->smi.smm); 5316 } 5317 5318 vcpu->arch.smi_pending = events->smi.pending; 5319 5320 if (events->smi.smm) { 5321 if (events->smi.smm_inside_nmi) 5322 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5323 else 5324 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5325 } 5326 5327 #else 5328 if (events->smi.smm || events->smi.pending || 5329 events->smi.smm_inside_nmi) 5330 return -EINVAL; 5331 #endif 5332 5333 if (lapic_in_kernel(vcpu)) { 5334 if (events->smi.latched_init) 5335 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5336 else 5337 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5338 } 5339 } 5340 5341 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5342 if (!vcpu->kvm->arch.triple_fault_event) 5343 return -EINVAL; 5344 if (events->triple_fault.pending) 5345 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5346 else 5347 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5348 } 5349 5350 kvm_make_request(KVM_REQ_EVENT, vcpu); 5351 5352 return 0; 5353 } 5354 5355 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5356 struct kvm_debugregs *dbgregs) 5357 { 5358 unsigned long val; 5359 5360 memset(dbgregs, 0, sizeof(*dbgregs)); 5361 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5362 kvm_get_dr(vcpu, 6, &val); 5363 dbgregs->dr6 = val; 5364 dbgregs->dr7 = vcpu->arch.dr7; 5365 } 5366 5367 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5368 struct kvm_debugregs *dbgregs) 5369 { 5370 if (dbgregs->flags) 5371 return -EINVAL; 5372 5373 if (!kvm_dr6_valid(dbgregs->dr6)) 5374 return -EINVAL; 5375 if (!kvm_dr7_valid(dbgregs->dr7)) 5376 return -EINVAL; 5377 5378 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5379 kvm_update_dr0123(vcpu); 5380 vcpu->arch.dr6 = dbgregs->dr6; 5381 vcpu->arch.dr7 = dbgregs->dr7; 5382 kvm_update_dr7(vcpu); 5383 5384 return 0; 5385 } 5386 5387 5388 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5389 u8 *state, unsigned int size) 5390 { 5391 /* 5392 * Only copy state for features that are enabled for the guest. The 5393 * state itself isn't problematic, but setting bits in the header for 5394 * features that are supported in *this* host but not exposed to the 5395 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5396 * compatible host without the features that are NOT exposed to the 5397 * guest. 5398 * 5399 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5400 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5401 * supported by the host. 5402 */ 5403 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5404 XFEATURE_MASK_FPSSE; 5405 5406 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5407 return; 5408 5409 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5410 supported_xcr0, vcpu->arch.pkru); 5411 } 5412 5413 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5414 struct kvm_xsave *guest_xsave) 5415 { 5416 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5417 sizeof(guest_xsave->region)); 5418 } 5419 5420 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5421 struct kvm_xsave *guest_xsave) 5422 { 5423 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5424 return 0; 5425 5426 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5427 guest_xsave->region, 5428 kvm_caps.supported_xcr0, 5429 &vcpu->arch.pkru); 5430 } 5431 5432 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5433 struct kvm_xcrs *guest_xcrs) 5434 { 5435 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5436 guest_xcrs->nr_xcrs = 0; 5437 return; 5438 } 5439 5440 guest_xcrs->nr_xcrs = 1; 5441 guest_xcrs->flags = 0; 5442 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5443 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5444 } 5445 5446 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5447 struct kvm_xcrs *guest_xcrs) 5448 { 5449 int i, r = 0; 5450 5451 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5452 return -EINVAL; 5453 5454 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5455 return -EINVAL; 5456 5457 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5458 /* Only support XCR0 currently */ 5459 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5460 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5461 guest_xcrs->xcrs[i].value); 5462 break; 5463 } 5464 if (r) 5465 r = -EINVAL; 5466 return r; 5467 } 5468 5469 /* 5470 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5471 * stopped by the hypervisor. This function will be called from the host only. 5472 * EINVAL is returned when the host attempts to set the flag for a guest that 5473 * does not support pv clocks. 5474 */ 5475 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5476 { 5477 if (!vcpu->arch.pv_time.active) 5478 return -EINVAL; 5479 vcpu->arch.pvclock_set_guest_stopped_request = true; 5480 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5481 return 0; 5482 } 5483 5484 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5485 struct kvm_device_attr *attr) 5486 { 5487 int r; 5488 5489 switch (attr->attr) { 5490 case KVM_VCPU_TSC_OFFSET: 5491 r = 0; 5492 break; 5493 default: 5494 r = -ENXIO; 5495 } 5496 5497 return r; 5498 } 5499 5500 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5501 struct kvm_device_attr *attr) 5502 { 5503 u64 __user *uaddr = kvm_get_attr_addr(attr); 5504 int r; 5505 5506 if (IS_ERR(uaddr)) 5507 return PTR_ERR(uaddr); 5508 5509 switch (attr->attr) { 5510 case KVM_VCPU_TSC_OFFSET: 5511 r = -EFAULT; 5512 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5513 break; 5514 r = 0; 5515 break; 5516 default: 5517 r = -ENXIO; 5518 } 5519 5520 return r; 5521 } 5522 5523 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5524 struct kvm_device_attr *attr) 5525 { 5526 u64 __user *uaddr = kvm_get_attr_addr(attr); 5527 struct kvm *kvm = vcpu->kvm; 5528 int r; 5529 5530 if (IS_ERR(uaddr)) 5531 return PTR_ERR(uaddr); 5532 5533 switch (attr->attr) { 5534 case KVM_VCPU_TSC_OFFSET: { 5535 u64 offset, tsc, ns; 5536 unsigned long flags; 5537 bool matched; 5538 5539 r = -EFAULT; 5540 if (get_user(offset, uaddr)) 5541 break; 5542 5543 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5544 5545 matched = (vcpu->arch.virtual_tsc_khz && 5546 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5547 kvm->arch.last_tsc_offset == offset); 5548 5549 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5550 ns = get_kvmclock_base_ns(); 5551 5552 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5553 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5554 5555 r = 0; 5556 break; 5557 } 5558 default: 5559 r = -ENXIO; 5560 } 5561 5562 return r; 5563 } 5564 5565 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5566 unsigned int ioctl, 5567 void __user *argp) 5568 { 5569 struct kvm_device_attr attr; 5570 int r; 5571 5572 if (copy_from_user(&attr, argp, sizeof(attr))) 5573 return -EFAULT; 5574 5575 if (attr.group != KVM_VCPU_TSC_CTRL) 5576 return -ENXIO; 5577 5578 switch (ioctl) { 5579 case KVM_HAS_DEVICE_ATTR: 5580 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5581 break; 5582 case KVM_GET_DEVICE_ATTR: 5583 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5584 break; 5585 case KVM_SET_DEVICE_ATTR: 5586 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5587 break; 5588 } 5589 5590 return r; 5591 } 5592 5593 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5594 struct kvm_enable_cap *cap) 5595 { 5596 int r; 5597 uint16_t vmcs_version; 5598 void __user *user_ptr; 5599 5600 if (cap->flags) 5601 return -EINVAL; 5602 5603 switch (cap->cap) { 5604 case KVM_CAP_HYPERV_SYNIC2: 5605 if (cap->args[0]) 5606 return -EINVAL; 5607 fallthrough; 5608 5609 case KVM_CAP_HYPERV_SYNIC: 5610 if (!irqchip_in_kernel(vcpu->kvm)) 5611 return -EINVAL; 5612 return kvm_hv_activate_synic(vcpu, cap->cap == 5613 KVM_CAP_HYPERV_SYNIC2); 5614 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5615 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5616 return -ENOTTY; 5617 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5618 if (!r) { 5619 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5620 if (copy_to_user(user_ptr, &vmcs_version, 5621 sizeof(vmcs_version))) 5622 r = -EFAULT; 5623 } 5624 return r; 5625 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5626 if (!kvm_x86_ops.enable_l2_tlb_flush) 5627 return -ENOTTY; 5628 5629 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5630 5631 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5632 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5633 5634 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5635 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5636 if (vcpu->arch.pv_cpuid.enforce) 5637 kvm_update_pv_runtime(vcpu); 5638 5639 return 0; 5640 default: 5641 return -EINVAL; 5642 } 5643 } 5644 5645 long kvm_arch_vcpu_ioctl(struct file *filp, 5646 unsigned int ioctl, unsigned long arg) 5647 { 5648 struct kvm_vcpu *vcpu = filp->private_data; 5649 void __user *argp = (void __user *)arg; 5650 int r; 5651 union { 5652 struct kvm_sregs2 *sregs2; 5653 struct kvm_lapic_state *lapic; 5654 struct kvm_xsave *xsave; 5655 struct kvm_xcrs *xcrs; 5656 void *buffer; 5657 } u; 5658 5659 vcpu_load(vcpu); 5660 5661 u.buffer = NULL; 5662 switch (ioctl) { 5663 case KVM_GET_LAPIC: { 5664 r = -EINVAL; 5665 if (!lapic_in_kernel(vcpu)) 5666 goto out; 5667 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5668 GFP_KERNEL_ACCOUNT); 5669 5670 r = -ENOMEM; 5671 if (!u.lapic) 5672 goto out; 5673 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5674 if (r) 5675 goto out; 5676 r = -EFAULT; 5677 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5678 goto out; 5679 r = 0; 5680 break; 5681 } 5682 case KVM_SET_LAPIC: { 5683 r = -EINVAL; 5684 if (!lapic_in_kernel(vcpu)) 5685 goto out; 5686 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5687 if (IS_ERR(u.lapic)) { 5688 r = PTR_ERR(u.lapic); 5689 goto out_nofree; 5690 } 5691 5692 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5693 break; 5694 } 5695 case KVM_INTERRUPT: { 5696 struct kvm_interrupt irq; 5697 5698 r = -EFAULT; 5699 if (copy_from_user(&irq, argp, sizeof(irq))) 5700 goto out; 5701 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5702 break; 5703 } 5704 case KVM_NMI: { 5705 r = kvm_vcpu_ioctl_nmi(vcpu); 5706 break; 5707 } 5708 case KVM_SMI: { 5709 r = kvm_inject_smi(vcpu); 5710 break; 5711 } 5712 case KVM_SET_CPUID: { 5713 struct kvm_cpuid __user *cpuid_arg = argp; 5714 struct kvm_cpuid cpuid; 5715 5716 r = -EFAULT; 5717 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5718 goto out; 5719 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5720 break; 5721 } 5722 case KVM_SET_CPUID2: { 5723 struct kvm_cpuid2 __user *cpuid_arg = argp; 5724 struct kvm_cpuid2 cpuid; 5725 5726 r = -EFAULT; 5727 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5728 goto out; 5729 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5730 cpuid_arg->entries); 5731 break; 5732 } 5733 case KVM_GET_CPUID2: { 5734 struct kvm_cpuid2 __user *cpuid_arg = argp; 5735 struct kvm_cpuid2 cpuid; 5736 5737 r = -EFAULT; 5738 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5739 goto out; 5740 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5741 cpuid_arg->entries); 5742 if (r) 5743 goto out; 5744 r = -EFAULT; 5745 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5746 goto out; 5747 r = 0; 5748 break; 5749 } 5750 case KVM_GET_MSRS: { 5751 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5752 r = msr_io(vcpu, argp, do_get_msr, 1); 5753 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5754 break; 5755 } 5756 case KVM_SET_MSRS: { 5757 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5758 r = msr_io(vcpu, argp, do_set_msr, 0); 5759 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5760 break; 5761 } 5762 case KVM_TPR_ACCESS_REPORTING: { 5763 struct kvm_tpr_access_ctl tac; 5764 5765 r = -EFAULT; 5766 if (copy_from_user(&tac, argp, sizeof(tac))) 5767 goto out; 5768 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5769 if (r) 5770 goto out; 5771 r = -EFAULT; 5772 if (copy_to_user(argp, &tac, sizeof(tac))) 5773 goto out; 5774 r = 0; 5775 break; 5776 }; 5777 case KVM_SET_VAPIC_ADDR: { 5778 struct kvm_vapic_addr va; 5779 int idx; 5780 5781 r = -EINVAL; 5782 if (!lapic_in_kernel(vcpu)) 5783 goto out; 5784 r = -EFAULT; 5785 if (copy_from_user(&va, argp, sizeof(va))) 5786 goto out; 5787 idx = srcu_read_lock(&vcpu->kvm->srcu); 5788 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5789 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5790 break; 5791 } 5792 case KVM_X86_SETUP_MCE: { 5793 u64 mcg_cap; 5794 5795 r = -EFAULT; 5796 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5797 goto out; 5798 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5799 break; 5800 } 5801 case KVM_X86_SET_MCE: { 5802 struct kvm_x86_mce mce; 5803 5804 r = -EFAULT; 5805 if (copy_from_user(&mce, argp, sizeof(mce))) 5806 goto out; 5807 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5808 break; 5809 } 5810 case KVM_GET_VCPU_EVENTS: { 5811 struct kvm_vcpu_events events; 5812 5813 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5814 5815 r = -EFAULT; 5816 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5817 break; 5818 r = 0; 5819 break; 5820 } 5821 case KVM_SET_VCPU_EVENTS: { 5822 struct kvm_vcpu_events events; 5823 5824 r = -EFAULT; 5825 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5826 break; 5827 5828 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5829 break; 5830 } 5831 case KVM_GET_DEBUGREGS: { 5832 struct kvm_debugregs dbgregs; 5833 5834 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5835 5836 r = -EFAULT; 5837 if (copy_to_user(argp, &dbgregs, 5838 sizeof(struct kvm_debugregs))) 5839 break; 5840 r = 0; 5841 break; 5842 } 5843 case KVM_SET_DEBUGREGS: { 5844 struct kvm_debugregs dbgregs; 5845 5846 r = -EFAULT; 5847 if (copy_from_user(&dbgregs, argp, 5848 sizeof(struct kvm_debugregs))) 5849 break; 5850 5851 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5852 break; 5853 } 5854 case KVM_GET_XSAVE: { 5855 r = -EINVAL; 5856 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5857 break; 5858 5859 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5860 r = -ENOMEM; 5861 if (!u.xsave) 5862 break; 5863 5864 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5865 5866 r = -EFAULT; 5867 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5868 break; 5869 r = 0; 5870 break; 5871 } 5872 case KVM_SET_XSAVE: { 5873 int size = vcpu->arch.guest_fpu.uabi_size; 5874 5875 u.xsave = memdup_user(argp, size); 5876 if (IS_ERR(u.xsave)) { 5877 r = PTR_ERR(u.xsave); 5878 goto out_nofree; 5879 } 5880 5881 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5882 break; 5883 } 5884 5885 case KVM_GET_XSAVE2: { 5886 int size = vcpu->arch.guest_fpu.uabi_size; 5887 5888 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5889 r = -ENOMEM; 5890 if (!u.xsave) 5891 break; 5892 5893 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5894 5895 r = -EFAULT; 5896 if (copy_to_user(argp, u.xsave, size)) 5897 break; 5898 5899 r = 0; 5900 break; 5901 } 5902 5903 case KVM_GET_XCRS: { 5904 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5905 r = -ENOMEM; 5906 if (!u.xcrs) 5907 break; 5908 5909 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5910 5911 r = -EFAULT; 5912 if (copy_to_user(argp, u.xcrs, 5913 sizeof(struct kvm_xcrs))) 5914 break; 5915 r = 0; 5916 break; 5917 } 5918 case KVM_SET_XCRS: { 5919 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5920 if (IS_ERR(u.xcrs)) { 5921 r = PTR_ERR(u.xcrs); 5922 goto out_nofree; 5923 } 5924 5925 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5926 break; 5927 } 5928 case KVM_SET_TSC_KHZ: { 5929 u32 user_tsc_khz; 5930 5931 r = -EINVAL; 5932 user_tsc_khz = (u32)arg; 5933 5934 if (kvm_caps.has_tsc_control && 5935 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5936 goto out; 5937 5938 if (user_tsc_khz == 0) 5939 user_tsc_khz = tsc_khz; 5940 5941 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5942 r = 0; 5943 5944 goto out; 5945 } 5946 case KVM_GET_TSC_KHZ: { 5947 r = vcpu->arch.virtual_tsc_khz; 5948 goto out; 5949 } 5950 case KVM_KVMCLOCK_CTRL: { 5951 r = kvm_set_guest_paused(vcpu); 5952 goto out; 5953 } 5954 case KVM_ENABLE_CAP: { 5955 struct kvm_enable_cap cap; 5956 5957 r = -EFAULT; 5958 if (copy_from_user(&cap, argp, sizeof(cap))) 5959 goto out; 5960 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5961 break; 5962 } 5963 case KVM_GET_NESTED_STATE: { 5964 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5965 u32 user_data_size; 5966 5967 r = -EINVAL; 5968 if (!kvm_x86_ops.nested_ops->get_state) 5969 break; 5970 5971 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5972 r = -EFAULT; 5973 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5974 break; 5975 5976 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5977 user_data_size); 5978 if (r < 0) 5979 break; 5980 5981 if (r > user_data_size) { 5982 if (put_user(r, &user_kvm_nested_state->size)) 5983 r = -EFAULT; 5984 else 5985 r = -E2BIG; 5986 break; 5987 } 5988 5989 r = 0; 5990 break; 5991 } 5992 case KVM_SET_NESTED_STATE: { 5993 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5994 struct kvm_nested_state kvm_state; 5995 int idx; 5996 5997 r = -EINVAL; 5998 if (!kvm_x86_ops.nested_ops->set_state) 5999 break; 6000 6001 r = -EFAULT; 6002 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6003 break; 6004 6005 r = -EINVAL; 6006 if (kvm_state.size < sizeof(kvm_state)) 6007 break; 6008 6009 if (kvm_state.flags & 6010 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6011 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6012 | KVM_STATE_NESTED_GIF_SET)) 6013 break; 6014 6015 /* nested_run_pending implies guest_mode. */ 6016 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6017 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6018 break; 6019 6020 idx = srcu_read_lock(&vcpu->kvm->srcu); 6021 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6022 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6023 break; 6024 } 6025 case KVM_GET_SUPPORTED_HV_CPUID: 6026 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6027 break; 6028 #ifdef CONFIG_KVM_XEN 6029 case KVM_XEN_VCPU_GET_ATTR: { 6030 struct kvm_xen_vcpu_attr xva; 6031 6032 r = -EFAULT; 6033 if (copy_from_user(&xva, argp, sizeof(xva))) 6034 goto out; 6035 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6036 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6037 r = -EFAULT; 6038 break; 6039 } 6040 case KVM_XEN_VCPU_SET_ATTR: { 6041 struct kvm_xen_vcpu_attr xva; 6042 6043 r = -EFAULT; 6044 if (copy_from_user(&xva, argp, sizeof(xva))) 6045 goto out; 6046 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6047 break; 6048 } 6049 #endif 6050 case KVM_GET_SREGS2: { 6051 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6052 r = -ENOMEM; 6053 if (!u.sregs2) 6054 goto out; 6055 __get_sregs2(vcpu, u.sregs2); 6056 r = -EFAULT; 6057 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6058 goto out; 6059 r = 0; 6060 break; 6061 } 6062 case KVM_SET_SREGS2: { 6063 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6064 if (IS_ERR(u.sregs2)) { 6065 r = PTR_ERR(u.sregs2); 6066 u.sregs2 = NULL; 6067 goto out; 6068 } 6069 r = __set_sregs2(vcpu, u.sregs2); 6070 break; 6071 } 6072 case KVM_HAS_DEVICE_ATTR: 6073 case KVM_GET_DEVICE_ATTR: 6074 case KVM_SET_DEVICE_ATTR: 6075 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6076 break; 6077 default: 6078 r = -EINVAL; 6079 } 6080 out: 6081 kfree(u.buffer); 6082 out_nofree: 6083 vcpu_put(vcpu); 6084 return r; 6085 } 6086 6087 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6088 { 6089 return VM_FAULT_SIGBUS; 6090 } 6091 6092 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6093 { 6094 int ret; 6095 6096 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6097 return -EINVAL; 6098 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6099 return ret; 6100 } 6101 6102 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6103 u64 ident_addr) 6104 { 6105 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6106 } 6107 6108 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6109 unsigned long kvm_nr_mmu_pages) 6110 { 6111 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6112 return -EINVAL; 6113 6114 mutex_lock(&kvm->slots_lock); 6115 6116 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6117 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6118 6119 mutex_unlock(&kvm->slots_lock); 6120 return 0; 6121 } 6122 6123 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6124 { 6125 struct kvm_pic *pic = kvm->arch.vpic; 6126 int r; 6127 6128 r = 0; 6129 switch (chip->chip_id) { 6130 case KVM_IRQCHIP_PIC_MASTER: 6131 memcpy(&chip->chip.pic, &pic->pics[0], 6132 sizeof(struct kvm_pic_state)); 6133 break; 6134 case KVM_IRQCHIP_PIC_SLAVE: 6135 memcpy(&chip->chip.pic, &pic->pics[1], 6136 sizeof(struct kvm_pic_state)); 6137 break; 6138 case KVM_IRQCHIP_IOAPIC: 6139 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6140 break; 6141 default: 6142 r = -EINVAL; 6143 break; 6144 } 6145 return r; 6146 } 6147 6148 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6149 { 6150 struct kvm_pic *pic = kvm->arch.vpic; 6151 int r; 6152 6153 r = 0; 6154 switch (chip->chip_id) { 6155 case KVM_IRQCHIP_PIC_MASTER: 6156 spin_lock(&pic->lock); 6157 memcpy(&pic->pics[0], &chip->chip.pic, 6158 sizeof(struct kvm_pic_state)); 6159 spin_unlock(&pic->lock); 6160 break; 6161 case KVM_IRQCHIP_PIC_SLAVE: 6162 spin_lock(&pic->lock); 6163 memcpy(&pic->pics[1], &chip->chip.pic, 6164 sizeof(struct kvm_pic_state)); 6165 spin_unlock(&pic->lock); 6166 break; 6167 case KVM_IRQCHIP_IOAPIC: 6168 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6169 break; 6170 default: 6171 r = -EINVAL; 6172 break; 6173 } 6174 kvm_pic_update_irq(pic); 6175 return r; 6176 } 6177 6178 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6179 { 6180 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6181 6182 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6183 6184 mutex_lock(&kps->lock); 6185 memcpy(ps, &kps->channels, sizeof(*ps)); 6186 mutex_unlock(&kps->lock); 6187 return 0; 6188 } 6189 6190 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6191 { 6192 int i; 6193 struct kvm_pit *pit = kvm->arch.vpit; 6194 6195 mutex_lock(&pit->pit_state.lock); 6196 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6197 for (i = 0; i < 3; i++) 6198 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6199 mutex_unlock(&pit->pit_state.lock); 6200 return 0; 6201 } 6202 6203 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6204 { 6205 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6206 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6207 sizeof(ps->channels)); 6208 ps->flags = kvm->arch.vpit->pit_state.flags; 6209 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6210 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6211 return 0; 6212 } 6213 6214 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6215 { 6216 int start = 0; 6217 int i; 6218 u32 prev_legacy, cur_legacy; 6219 struct kvm_pit *pit = kvm->arch.vpit; 6220 6221 mutex_lock(&pit->pit_state.lock); 6222 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6223 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6224 if (!prev_legacy && cur_legacy) 6225 start = 1; 6226 memcpy(&pit->pit_state.channels, &ps->channels, 6227 sizeof(pit->pit_state.channels)); 6228 pit->pit_state.flags = ps->flags; 6229 for (i = 0; i < 3; i++) 6230 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6231 start && i == 0); 6232 mutex_unlock(&pit->pit_state.lock); 6233 return 0; 6234 } 6235 6236 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6237 struct kvm_reinject_control *control) 6238 { 6239 struct kvm_pit *pit = kvm->arch.vpit; 6240 6241 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6242 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6243 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6244 */ 6245 mutex_lock(&pit->pit_state.lock); 6246 kvm_pit_set_reinject(pit, control->pit_reinject); 6247 mutex_unlock(&pit->pit_state.lock); 6248 6249 return 0; 6250 } 6251 6252 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6253 { 6254 6255 /* 6256 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6257 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6258 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6259 * VM-Exit. 6260 */ 6261 struct kvm_vcpu *vcpu; 6262 unsigned long i; 6263 6264 kvm_for_each_vcpu(i, vcpu, kvm) 6265 kvm_vcpu_kick(vcpu); 6266 } 6267 6268 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6269 bool line_status) 6270 { 6271 if (!irqchip_in_kernel(kvm)) 6272 return -ENXIO; 6273 6274 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6275 irq_event->irq, irq_event->level, 6276 line_status); 6277 return 0; 6278 } 6279 6280 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6281 struct kvm_enable_cap *cap) 6282 { 6283 int r; 6284 6285 if (cap->flags) 6286 return -EINVAL; 6287 6288 switch (cap->cap) { 6289 case KVM_CAP_DISABLE_QUIRKS2: 6290 r = -EINVAL; 6291 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6292 break; 6293 fallthrough; 6294 case KVM_CAP_DISABLE_QUIRKS: 6295 kvm->arch.disabled_quirks = cap->args[0]; 6296 r = 0; 6297 break; 6298 case KVM_CAP_SPLIT_IRQCHIP: { 6299 mutex_lock(&kvm->lock); 6300 r = -EINVAL; 6301 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6302 goto split_irqchip_unlock; 6303 r = -EEXIST; 6304 if (irqchip_in_kernel(kvm)) 6305 goto split_irqchip_unlock; 6306 if (kvm->created_vcpus) 6307 goto split_irqchip_unlock; 6308 r = kvm_setup_empty_irq_routing(kvm); 6309 if (r) 6310 goto split_irqchip_unlock; 6311 /* Pairs with irqchip_in_kernel. */ 6312 smp_wmb(); 6313 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6314 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6315 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6316 r = 0; 6317 split_irqchip_unlock: 6318 mutex_unlock(&kvm->lock); 6319 break; 6320 } 6321 case KVM_CAP_X2APIC_API: 6322 r = -EINVAL; 6323 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6324 break; 6325 6326 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6327 kvm->arch.x2apic_format = true; 6328 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6329 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6330 6331 r = 0; 6332 break; 6333 case KVM_CAP_X86_DISABLE_EXITS: 6334 r = -EINVAL; 6335 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6336 break; 6337 6338 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6339 kvm->arch.pause_in_guest = true; 6340 6341 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6342 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6343 6344 if (!mitigate_smt_rsb) { 6345 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6346 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6347 pr_warn_once(SMT_RSB_MSG); 6348 6349 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6350 kvm_can_mwait_in_guest()) 6351 kvm->arch.mwait_in_guest = true; 6352 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6353 kvm->arch.hlt_in_guest = true; 6354 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6355 kvm->arch.cstate_in_guest = true; 6356 } 6357 6358 r = 0; 6359 break; 6360 case KVM_CAP_MSR_PLATFORM_INFO: 6361 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6362 r = 0; 6363 break; 6364 case KVM_CAP_EXCEPTION_PAYLOAD: 6365 kvm->arch.exception_payload_enabled = cap->args[0]; 6366 r = 0; 6367 break; 6368 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6369 kvm->arch.triple_fault_event = cap->args[0]; 6370 r = 0; 6371 break; 6372 case KVM_CAP_X86_USER_SPACE_MSR: 6373 r = -EINVAL; 6374 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6375 break; 6376 kvm->arch.user_space_msr_mask = cap->args[0]; 6377 r = 0; 6378 break; 6379 case KVM_CAP_X86_BUS_LOCK_EXIT: 6380 r = -EINVAL; 6381 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6382 break; 6383 6384 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6385 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6386 break; 6387 6388 if (kvm_caps.has_bus_lock_exit && 6389 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6390 kvm->arch.bus_lock_detection_enabled = true; 6391 r = 0; 6392 break; 6393 #ifdef CONFIG_X86_SGX_KVM 6394 case KVM_CAP_SGX_ATTRIBUTE: { 6395 unsigned long allowed_attributes = 0; 6396 6397 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6398 if (r) 6399 break; 6400 6401 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6402 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6403 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6404 kvm->arch.sgx_provisioning_allowed = true; 6405 else 6406 r = -EINVAL; 6407 break; 6408 } 6409 #endif 6410 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6411 r = -EINVAL; 6412 if (!kvm_x86_ops.vm_copy_enc_context_from) 6413 break; 6414 6415 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6416 break; 6417 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6418 r = -EINVAL; 6419 if (!kvm_x86_ops.vm_move_enc_context_from) 6420 break; 6421 6422 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6423 break; 6424 case KVM_CAP_EXIT_HYPERCALL: 6425 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6426 r = -EINVAL; 6427 break; 6428 } 6429 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6430 r = 0; 6431 break; 6432 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6433 r = -EINVAL; 6434 if (cap->args[0] & ~1) 6435 break; 6436 kvm->arch.exit_on_emulation_error = cap->args[0]; 6437 r = 0; 6438 break; 6439 case KVM_CAP_PMU_CAPABILITY: 6440 r = -EINVAL; 6441 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6442 break; 6443 6444 mutex_lock(&kvm->lock); 6445 if (!kvm->created_vcpus) { 6446 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6447 r = 0; 6448 } 6449 mutex_unlock(&kvm->lock); 6450 break; 6451 case KVM_CAP_MAX_VCPU_ID: 6452 r = -EINVAL; 6453 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6454 break; 6455 6456 mutex_lock(&kvm->lock); 6457 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6458 r = 0; 6459 } else if (!kvm->arch.max_vcpu_ids) { 6460 kvm->arch.max_vcpu_ids = cap->args[0]; 6461 r = 0; 6462 } 6463 mutex_unlock(&kvm->lock); 6464 break; 6465 case KVM_CAP_X86_NOTIFY_VMEXIT: 6466 r = -EINVAL; 6467 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6468 break; 6469 if (!kvm_caps.has_notify_vmexit) 6470 break; 6471 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6472 break; 6473 mutex_lock(&kvm->lock); 6474 if (!kvm->created_vcpus) { 6475 kvm->arch.notify_window = cap->args[0] >> 32; 6476 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6477 r = 0; 6478 } 6479 mutex_unlock(&kvm->lock); 6480 break; 6481 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6482 r = -EINVAL; 6483 6484 /* 6485 * Since the risk of disabling NX hugepages is a guest crashing 6486 * the system, ensure the userspace process has permission to 6487 * reboot the system. 6488 * 6489 * Note that unlike the reboot() syscall, the process must have 6490 * this capability in the root namespace because exposing 6491 * /dev/kvm into a container does not limit the scope of the 6492 * iTLB multihit bug to that container. In other words, 6493 * this must use capable(), not ns_capable(). 6494 */ 6495 if (!capable(CAP_SYS_BOOT)) { 6496 r = -EPERM; 6497 break; 6498 } 6499 6500 if (cap->args[0]) 6501 break; 6502 6503 mutex_lock(&kvm->lock); 6504 if (!kvm->created_vcpus) { 6505 kvm->arch.disable_nx_huge_pages = true; 6506 r = 0; 6507 } 6508 mutex_unlock(&kvm->lock); 6509 break; 6510 default: 6511 r = -EINVAL; 6512 break; 6513 } 6514 return r; 6515 } 6516 6517 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6518 { 6519 struct kvm_x86_msr_filter *msr_filter; 6520 6521 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6522 if (!msr_filter) 6523 return NULL; 6524 6525 msr_filter->default_allow = default_allow; 6526 return msr_filter; 6527 } 6528 6529 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6530 { 6531 u32 i; 6532 6533 if (!msr_filter) 6534 return; 6535 6536 for (i = 0; i < msr_filter->count; i++) 6537 kfree(msr_filter->ranges[i].bitmap); 6538 6539 kfree(msr_filter); 6540 } 6541 6542 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6543 struct kvm_msr_filter_range *user_range) 6544 { 6545 unsigned long *bitmap; 6546 size_t bitmap_size; 6547 6548 if (!user_range->nmsrs) 6549 return 0; 6550 6551 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6552 return -EINVAL; 6553 6554 if (!user_range->flags) 6555 return -EINVAL; 6556 6557 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6558 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6559 return -EINVAL; 6560 6561 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6562 if (IS_ERR(bitmap)) 6563 return PTR_ERR(bitmap); 6564 6565 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6566 .flags = user_range->flags, 6567 .base = user_range->base, 6568 .nmsrs = user_range->nmsrs, 6569 .bitmap = bitmap, 6570 }; 6571 6572 msr_filter->count++; 6573 return 0; 6574 } 6575 6576 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6577 struct kvm_msr_filter *filter) 6578 { 6579 struct kvm_x86_msr_filter *new_filter, *old_filter; 6580 bool default_allow; 6581 bool empty = true; 6582 int r; 6583 u32 i; 6584 6585 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6586 return -EINVAL; 6587 6588 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6589 empty &= !filter->ranges[i].nmsrs; 6590 6591 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6592 if (empty && !default_allow) 6593 return -EINVAL; 6594 6595 new_filter = kvm_alloc_msr_filter(default_allow); 6596 if (!new_filter) 6597 return -ENOMEM; 6598 6599 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6600 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6601 if (r) { 6602 kvm_free_msr_filter(new_filter); 6603 return r; 6604 } 6605 } 6606 6607 mutex_lock(&kvm->lock); 6608 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6609 mutex_is_locked(&kvm->lock)); 6610 mutex_unlock(&kvm->lock); 6611 synchronize_srcu(&kvm->srcu); 6612 6613 kvm_free_msr_filter(old_filter); 6614 6615 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6616 6617 return 0; 6618 } 6619 6620 #ifdef CONFIG_KVM_COMPAT 6621 /* for KVM_X86_SET_MSR_FILTER */ 6622 struct kvm_msr_filter_range_compat { 6623 __u32 flags; 6624 __u32 nmsrs; 6625 __u32 base; 6626 __u32 bitmap; 6627 }; 6628 6629 struct kvm_msr_filter_compat { 6630 __u32 flags; 6631 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6632 }; 6633 6634 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6635 6636 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6637 unsigned long arg) 6638 { 6639 void __user *argp = (void __user *)arg; 6640 struct kvm *kvm = filp->private_data; 6641 long r = -ENOTTY; 6642 6643 switch (ioctl) { 6644 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6645 struct kvm_msr_filter __user *user_msr_filter = argp; 6646 struct kvm_msr_filter_compat filter_compat; 6647 struct kvm_msr_filter filter; 6648 int i; 6649 6650 if (copy_from_user(&filter_compat, user_msr_filter, 6651 sizeof(filter_compat))) 6652 return -EFAULT; 6653 6654 filter.flags = filter_compat.flags; 6655 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6656 struct kvm_msr_filter_range_compat *cr; 6657 6658 cr = &filter_compat.ranges[i]; 6659 filter.ranges[i] = (struct kvm_msr_filter_range) { 6660 .flags = cr->flags, 6661 .nmsrs = cr->nmsrs, 6662 .base = cr->base, 6663 .bitmap = (__u8 *)(ulong)cr->bitmap, 6664 }; 6665 } 6666 6667 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6668 break; 6669 } 6670 } 6671 6672 return r; 6673 } 6674 #endif 6675 6676 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6677 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6678 { 6679 struct kvm_vcpu *vcpu; 6680 unsigned long i; 6681 int ret = 0; 6682 6683 mutex_lock(&kvm->lock); 6684 kvm_for_each_vcpu(i, vcpu, kvm) { 6685 if (!vcpu->arch.pv_time.active) 6686 continue; 6687 6688 ret = kvm_set_guest_paused(vcpu); 6689 if (ret) { 6690 kvm_err("Failed to pause guest VCPU%d: %d\n", 6691 vcpu->vcpu_id, ret); 6692 break; 6693 } 6694 } 6695 mutex_unlock(&kvm->lock); 6696 6697 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6698 } 6699 6700 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6701 { 6702 switch (state) { 6703 case PM_HIBERNATION_PREPARE: 6704 case PM_SUSPEND_PREPARE: 6705 return kvm_arch_suspend_notifier(kvm); 6706 } 6707 6708 return NOTIFY_DONE; 6709 } 6710 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6711 6712 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6713 { 6714 struct kvm_clock_data data = { 0 }; 6715 6716 get_kvmclock(kvm, &data); 6717 if (copy_to_user(argp, &data, sizeof(data))) 6718 return -EFAULT; 6719 6720 return 0; 6721 } 6722 6723 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6724 { 6725 struct kvm_arch *ka = &kvm->arch; 6726 struct kvm_clock_data data; 6727 u64 now_raw_ns; 6728 6729 if (copy_from_user(&data, argp, sizeof(data))) 6730 return -EFAULT; 6731 6732 /* 6733 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6734 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6735 */ 6736 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6737 return -EINVAL; 6738 6739 kvm_hv_request_tsc_page_update(kvm); 6740 kvm_start_pvclock_update(kvm); 6741 pvclock_update_vm_gtod_copy(kvm); 6742 6743 /* 6744 * This pairs with kvm_guest_time_update(): when masterclock is 6745 * in use, we use master_kernel_ns + kvmclock_offset to set 6746 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6747 * is slightly ahead) here we risk going negative on unsigned 6748 * 'system_time' when 'data.clock' is very small. 6749 */ 6750 if (data.flags & KVM_CLOCK_REALTIME) { 6751 u64 now_real_ns = ktime_get_real_ns(); 6752 6753 /* 6754 * Avoid stepping the kvmclock backwards. 6755 */ 6756 if (now_real_ns > data.realtime) 6757 data.clock += now_real_ns - data.realtime; 6758 } 6759 6760 if (ka->use_master_clock) 6761 now_raw_ns = ka->master_kernel_ns; 6762 else 6763 now_raw_ns = get_kvmclock_base_ns(); 6764 ka->kvmclock_offset = data.clock - now_raw_ns; 6765 kvm_end_pvclock_update(kvm); 6766 return 0; 6767 } 6768 6769 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6770 { 6771 struct kvm *kvm = filp->private_data; 6772 void __user *argp = (void __user *)arg; 6773 int r = -ENOTTY; 6774 /* 6775 * This union makes it completely explicit to gcc-3.x 6776 * that these two variables' stack usage should be 6777 * combined, not added together. 6778 */ 6779 union { 6780 struct kvm_pit_state ps; 6781 struct kvm_pit_state2 ps2; 6782 struct kvm_pit_config pit_config; 6783 } u; 6784 6785 switch (ioctl) { 6786 case KVM_SET_TSS_ADDR: 6787 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6788 break; 6789 case KVM_SET_IDENTITY_MAP_ADDR: { 6790 u64 ident_addr; 6791 6792 mutex_lock(&kvm->lock); 6793 r = -EINVAL; 6794 if (kvm->created_vcpus) 6795 goto set_identity_unlock; 6796 r = -EFAULT; 6797 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6798 goto set_identity_unlock; 6799 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6800 set_identity_unlock: 6801 mutex_unlock(&kvm->lock); 6802 break; 6803 } 6804 case KVM_SET_NR_MMU_PAGES: 6805 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6806 break; 6807 case KVM_CREATE_IRQCHIP: { 6808 mutex_lock(&kvm->lock); 6809 6810 r = -EEXIST; 6811 if (irqchip_in_kernel(kvm)) 6812 goto create_irqchip_unlock; 6813 6814 r = -EINVAL; 6815 if (kvm->created_vcpus) 6816 goto create_irqchip_unlock; 6817 6818 r = kvm_pic_init(kvm); 6819 if (r) 6820 goto create_irqchip_unlock; 6821 6822 r = kvm_ioapic_init(kvm); 6823 if (r) { 6824 kvm_pic_destroy(kvm); 6825 goto create_irqchip_unlock; 6826 } 6827 6828 r = kvm_setup_default_irq_routing(kvm); 6829 if (r) { 6830 kvm_ioapic_destroy(kvm); 6831 kvm_pic_destroy(kvm); 6832 goto create_irqchip_unlock; 6833 } 6834 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6835 smp_wmb(); 6836 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6837 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6838 create_irqchip_unlock: 6839 mutex_unlock(&kvm->lock); 6840 break; 6841 } 6842 case KVM_CREATE_PIT: 6843 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6844 goto create_pit; 6845 case KVM_CREATE_PIT2: 6846 r = -EFAULT; 6847 if (copy_from_user(&u.pit_config, argp, 6848 sizeof(struct kvm_pit_config))) 6849 goto out; 6850 create_pit: 6851 mutex_lock(&kvm->lock); 6852 r = -EEXIST; 6853 if (kvm->arch.vpit) 6854 goto create_pit_unlock; 6855 r = -ENOMEM; 6856 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6857 if (kvm->arch.vpit) 6858 r = 0; 6859 create_pit_unlock: 6860 mutex_unlock(&kvm->lock); 6861 break; 6862 case KVM_GET_IRQCHIP: { 6863 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6864 struct kvm_irqchip *chip; 6865 6866 chip = memdup_user(argp, sizeof(*chip)); 6867 if (IS_ERR(chip)) { 6868 r = PTR_ERR(chip); 6869 goto out; 6870 } 6871 6872 r = -ENXIO; 6873 if (!irqchip_kernel(kvm)) 6874 goto get_irqchip_out; 6875 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6876 if (r) 6877 goto get_irqchip_out; 6878 r = -EFAULT; 6879 if (copy_to_user(argp, chip, sizeof(*chip))) 6880 goto get_irqchip_out; 6881 r = 0; 6882 get_irqchip_out: 6883 kfree(chip); 6884 break; 6885 } 6886 case KVM_SET_IRQCHIP: { 6887 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6888 struct kvm_irqchip *chip; 6889 6890 chip = memdup_user(argp, sizeof(*chip)); 6891 if (IS_ERR(chip)) { 6892 r = PTR_ERR(chip); 6893 goto out; 6894 } 6895 6896 r = -ENXIO; 6897 if (!irqchip_kernel(kvm)) 6898 goto set_irqchip_out; 6899 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6900 set_irqchip_out: 6901 kfree(chip); 6902 break; 6903 } 6904 case KVM_GET_PIT: { 6905 r = -EFAULT; 6906 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6907 goto out; 6908 r = -ENXIO; 6909 if (!kvm->arch.vpit) 6910 goto out; 6911 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6912 if (r) 6913 goto out; 6914 r = -EFAULT; 6915 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6916 goto out; 6917 r = 0; 6918 break; 6919 } 6920 case KVM_SET_PIT: { 6921 r = -EFAULT; 6922 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6923 goto out; 6924 mutex_lock(&kvm->lock); 6925 r = -ENXIO; 6926 if (!kvm->arch.vpit) 6927 goto set_pit_out; 6928 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6929 set_pit_out: 6930 mutex_unlock(&kvm->lock); 6931 break; 6932 } 6933 case KVM_GET_PIT2: { 6934 r = -ENXIO; 6935 if (!kvm->arch.vpit) 6936 goto out; 6937 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6938 if (r) 6939 goto out; 6940 r = -EFAULT; 6941 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6942 goto out; 6943 r = 0; 6944 break; 6945 } 6946 case KVM_SET_PIT2: { 6947 r = -EFAULT; 6948 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6949 goto out; 6950 mutex_lock(&kvm->lock); 6951 r = -ENXIO; 6952 if (!kvm->arch.vpit) 6953 goto set_pit2_out; 6954 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6955 set_pit2_out: 6956 mutex_unlock(&kvm->lock); 6957 break; 6958 } 6959 case KVM_REINJECT_CONTROL: { 6960 struct kvm_reinject_control control; 6961 r = -EFAULT; 6962 if (copy_from_user(&control, argp, sizeof(control))) 6963 goto out; 6964 r = -ENXIO; 6965 if (!kvm->arch.vpit) 6966 goto out; 6967 r = kvm_vm_ioctl_reinject(kvm, &control); 6968 break; 6969 } 6970 case KVM_SET_BOOT_CPU_ID: 6971 r = 0; 6972 mutex_lock(&kvm->lock); 6973 if (kvm->created_vcpus) 6974 r = -EBUSY; 6975 else 6976 kvm->arch.bsp_vcpu_id = arg; 6977 mutex_unlock(&kvm->lock); 6978 break; 6979 #ifdef CONFIG_KVM_XEN 6980 case KVM_XEN_HVM_CONFIG: { 6981 struct kvm_xen_hvm_config xhc; 6982 r = -EFAULT; 6983 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6984 goto out; 6985 r = kvm_xen_hvm_config(kvm, &xhc); 6986 break; 6987 } 6988 case KVM_XEN_HVM_GET_ATTR: { 6989 struct kvm_xen_hvm_attr xha; 6990 6991 r = -EFAULT; 6992 if (copy_from_user(&xha, argp, sizeof(xha))) 6993 goto out; 6994 r = kvm_xen_hvm_get_attr(kvm, &xha); 6995 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6996 r = -EFAULT; 6997 break; 6998 } 6999 case KVM_XEN_HVM_SET_ATTR: { 7000 struct kvm_xen_hvm_attr xha; 7001 7002 r = -EFAULT; 7003 if (copy_from_user(&xha, argp, sizeof(xha))) 7004 goto out; 7005 r = kvm_xen_hvm_set_attr(kvm, &xha); 7006 break; 7007 } 7008 case KVM_XEN_HVM_EVTCHN_SEND: { 7009 struct kvm_irq_routing_xen_evtchn uxe; 7010 7011 r = -EFAULT; 7012 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7013 goto out; 7014 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7015 break; 7016 } 7017 #endif 7018 case KVM_SET_CLOCK: 7019 r = kvm_vm_ioctl_set_clock(kvm, argp); 7020 break; 7021 case KVM_GET_CLOCK: 7022 r = kvm_vm_ioctl_get_clock(kvm, argp); 7023 break; 7024 case KVM_SET_TSC_KHZ: { 7025 u32 user_tsc_khz; 7026 7027 r = -EINVAL; 7028 user_tsc_khz = (u32)arg; 7029 7030 if (kvm_caps.has_tsc_control && 7031 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7032 goto out; 7033 7034 if (user_tsc_khz == 0) 7035 user_tsc_khz = tsc_khz; 7036 7037 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7038 r = 0; 7039 7040 goto out; 7041 } 7042 case KVM_GET_TSC_KHZ: { 7043 r = READ_ONCE(kvm->arch.default_tsc_khz); 7044 goto out; 7045 } 7046 case KVM_MEMORY_ENCRYPT_OP: { 7047 r = -ENOTTY; 7048 if (!kvm_x86_ops.mem_enc_ioctl) 7049 goto out; 7050 7051 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7052 break; 7053 } 7054 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7055 struct kvm_enc_region region; 7056 7057 r = -EFAULT; 7058 if (copy_from_user(®ion, argp, sizeof(region))) 7059 goto out; 7060 7061 r = -ENOTTY; 7062 if (!kvm_x86_ops.mem_enc_register_region) 7063 goto out; 7064 7065 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7066 break; 7067 } 7068 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7069 struct kvm_enc_region region; 7070 7071 r = -EFAULT; 7072 if (copy_from_user(®ion, argp, sizeof(region))) 7073 goto out; 7074 7075 r = -ENOTTY; 7076 if (!kvm_x86_ops.mem_enc_unregister_region) 7077 goto out; 7078 7079 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7080 break; 7081 } 7082 case KVM_HYPERV_EVENTFD: { 7083 struct kvm_hyperv_eventfd hvevfd; 7084 7085 r = -EFAULT; 7086 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7087 goto out; 7088 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7089 break; 7090 } 7091 case KVM_SET_PMU_EVENT_FILTER: 7092 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7093 break; 7094 case KVM_X86_SET_MSR_FILTER: { 7095 struct kvm_msr_filter __user *user_msr_filter = argp; 7096 struct kvm_msr_filter filter; 7097 7098 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7099 return -EFAULT; 7100 7101 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7102 break; 7103 } 7104 default: 7105 r = -ENOTTY; 7106 } 7107 out: 7108 return r; 7109 } 7110 7111 static void kvm_probe_feature_msr(u32 msr_index) 7112 { 7113 struct kvm_msr_entry msr = { 7114 .index = msr_index, 7115 }; 7116 7117 if (kvm_get_msr_feature(&msr)) 7118 return; 7119 7120 msr_based_features[num_msr_based_features++] = msr_index; 7121 } 7122 7123 static void kvm_probe_msr_to_save(u32 msr_index) 7124 { 7125 u32 dummy[2]; 7126 7127 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7128 return; 7129 7130 /* 7131 * Even MSRs that are valid in the host may not be exposed to guests in 7132 * some cases. 7133 */ 7134 switch (msr_index) { 7135 case MSR_IA32_BNDCFGS: 7136 if (!kvm_mpx_supported()) 7137 return; 7138 break; 7139 case MSR_TSC_AUX: 7140 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7141 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7142 return; 7143 break; 7144 case MSR_IA32_UMWAIT_CONTROL: 7145 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7146 return; 7147 break; 7148 case MSR_IA32_RTIT_CTL: 7149 case MSR_IA32_RTIT_STATUS: 7150 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7151 return; 7152 break; 7153 case MSR_IA32_RTIT_CR3_MATCH: 7154 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7155 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7156 return; 7157 break; 7158 case MSR_IA32_RTIT_OUTPUT_BASE: 7159 case MSR_IA32_RTIT_OUTPUT_MASK: 7160 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7161 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7162 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7163 return; 7164 break; 7165 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7166 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7167 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7168 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7169 return; 7170 break; 7171 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7172 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7173 kvm_pmu_cap.num_counters_gp) 7174 return; 7175 break; 7176 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7177 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7178 kvm_pmu_cap.num_counters_gp) 7179 return; 7180 break; 7181 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7182 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7183 kvm_pmu_cap.num_counters_fixed) 7184 return; 7185 break; 7186 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7187 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7188 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7189 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7190 return; 7191 break; 7192 case MSR_IA32_XFD: 7193 case MSR_IA32_XFD_ERR: 7194 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7195 return; 7196 break; 7197 case MSR_IA32_TSX_CTRL: 7198 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7199 return; 7200 break; 7201 default: 7202 break; 7203 } 7204 7205 msrs_to_save[num_msrs_to_save++] = msr_index; 7206 } 7207 7208 static void kvm_init_msr_lists(void) 7209 { 7210 unsigned i; 7211 7212 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7213 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7214 7215 num_msrs_to_save = 0; 7216 num_emulated_msrs = 0; 7217 num_msr_based_features = 0; 7218 7219 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7220 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7221 7222 if (enable_pmu) { 7223 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7224 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7225 } 7226 7227 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7228 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7229 continue; 7230 7231 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7232 } 7233 7234 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7235 kvm_probe_feature_msr(i); 7236 7237 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7238 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7239 } 7240 7241 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7242 const void *v) 7243 { 7244 int handled = 0; 7245 int n; 7246 7247 do { 7248 n = min(len, 8); 7249 if (!(lapic_in_kernel(vcpu) && 7250 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7251 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7252 break; 7253 handled += n; 7254 addr += n; 7255 len -= n; 7256 v += n; 7257 } while (len); 7258 7259 return handled; 7260 } 7261 7262 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7263 { 7264 int handled = 0; 7265 int n; 7266 7267 do { 7268 n = min(len, 8); 7269 if (!(lapic_in_kernel(vcpu) && 7270 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7271 addr, n, v)) 7272 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7273 break; 7274 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7275 handled += n; 7276 addr += n; 7277 len -= n; 7278 v += n; 7279 } while (len); 7280 7281 return handled; 7282 } 7283 7284 void kvm_set_segment(struct kvm_vcpu *vcpu, 7285 struct kvm_segment *var, int seg) 7286 { 7287 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7288 } 7289 7290 void kvm_get_segment(struct kvm_vcpu *vcpu, 7291 struct kvm_segment *var, int seg) 7292 { 7293 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7294 } 7295 7296 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7297 struct x86_exception *exception) 7298 { 7299 struct kvm_mmu *mmu = vcpu->arch.mmu; 7300 gpa_t t_gpa; 7301 7302 BUG_ON(!mmu_is_nested(vcpu)); 7303 7304 /* NPT walks are always user-walks */ 7305 access |= PFERR_USER_MASK; 7306 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7307 7308 return t_gpa; 7309 } 7310 7311 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7312 struct x86_exception *exception) 7313 { 7314 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7315 7316 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7317 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7318 } 7319 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7320 7321 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7322 struct x86_exception *exception) 7323 { 7324 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7325 7326 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7327 access |= PFERR_WRITE_MASK; 7328 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7329 } 7330 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7331 7332 /* uses this to access any guest's mapped memory without checking CPL */ 7333 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7334 struct x86_exception *exception) 7335 { 7336 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7337 7338 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7339 } 7340 7341 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7342 struct kvm_vcpu *vcpu, u64 access, 7343 struct x86_exception *exception) 7344 { 7345 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7346 void *data = val; 7347 int r = X86EMUL_CONTINUE; 7348 7349 while (bytes) { 7350 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7351 unsigned offset = addr & (PAGE_SIZE-1); 7352 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7353 int ret; 7354 7355 if (gpa == INVALID_GPA) 7356 return X86EMUL_PROPAGATE_FAULT; 7357 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7358 offset, toread); 7359 if (ret < 0) { 7360 r = X86EMUL_IO_NEEDED; 7361 goto out; 7362 } 7363 7364 bytes -= toread; 7365 data += toread; 7366 addr += toread; 7367 } 7368 out: 7369 return r; 7370 } 7371 7372 /* used for instruction fetching */ 7373 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7374 gva_t addr, void *val, unsigned int bytes, 7375 struct x86_exception *exception) 7376 { 7377 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7378 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7379 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7380 unsigned offset; 7381 int ret; 7382 7383 /* Inline kvm_read_guest_virt_helper for speed. */ 7384 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7385 exception); 7386 if (unlikely(gpa == INVALID_GPA)) 7387 return X86EMUL_PROPAGATE_FAULT; 7388 7389 offset = addr & (PAGE_SIZE-1); 7390 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7391 bytes = (unsigned)PAGE_SIZE - offset; 7392 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7393 offset, bytes); 7394 if (unlikely(ret < 0)) 7395 return X86EMUL_IO_NEEDED; 7396 7397 return X86EMUL_CONTINUE; 7398 } 7399 7400 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7401 gva_t addr, void *val, unsigned int bytes, 7402 struct x86_exception *exception) 7403 { 7404 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7405 7406 /* 7407 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7408 * is returned, but our callers are not ready for that and they blindly 7409 * call kvm_inject_page_fault. Ensure that they at least do not leak 7410 * uninitialized kernel stack memory into cr2 and error code. 7411 */ 7412 memset(exception, 0, sizeof(*exception)); 7413 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7414 exception); 7415 } 7416 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7417 7418 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7419 gva_t addr, void *val, unsigned int bytes, 7420 struct x86_exception *exception, bool system) 7421 { 7422 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7423 u64 access = 0; 7424 7425 if (system) 7426 access |= PFERR_IMPLICIT_ACCESS; 7427 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7428 access |= PFERR_USER_MASK; 7429 7430 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7431 } 7432 7433 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7434 struct kvm_vcpu *vcpu, u64 access, 7435 struct x86_exception *exception) 7436 { 7437 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7438 void *data = val; 7439 int r = X86EMUL_CONTINUE; 7440 7441 while (bytes) { 7442 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7443 unsigned offset = addr & (PAGE_SIZE-1); 7444 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7445 int ret; 7446 7447 if (gpa == INVALID_GPA) 7448 return X86EMUL_PROPAGATE_FAULT; 7449 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7450 if (ret < 0) { 7451 r = X86EMUL_IO_NEEDED; 7452 goto out; 7453 } 7454 7455 bytes -= towrite; 7456 data += towrite; 7457 addr += towrite; 7458 } 7459 out: 7460 return r; 7461 } 7462 7463 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7464 unsigned int bytes, struct x86_exception *exception, 7465 bool system) 7466 { 7467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7468 u64 access = PFERR_WRITE_MASK; 7469 7470 if (system) 7471 access |= PFERR_IMPLICIT_ACCESS; 7472 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7473 access |= PFERR_USER_MASK; 7474 7475 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7476 access, exception); 7477 } 7478 7479 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7480 unsigned int bytes, struct x86_exception *exception) 7481 { 7482 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7483 vcpu->arch.l1tf_flush_l1d = true; 7484 7485 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7486 PFERR_WRITE_MASK, exception); 7487 } 7488 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7489 7490 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7491 void *insn, int insn_len) 7492 { 7493 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7494 insn, insn_len); 7495 } 7496 7497 int handle_ud(struct kvm_vcpu *vcpu) 7498 { 7499 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7500 int fep_flags = READ_ONCE(force_emulation_prefix); 7501 int emul_type = EMULTYPE_TRAP_UD; 7502 char sig[5]; /* ud2; .ascii "kvm" */ 7503 struct x86_exception e; 7504 7505 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7506 return 1; 7507 7508 if (fep_flags && 7509 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7510 sig, sizeof(sig), &e) == 0 && 7511 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7512 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7513 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7514 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7515 emul_type = EMULTYPE_TRAP_UD_FORCED; 7516 } 7517 7518 return kvm_emulate_instruction(vcpu, emul_type); 7519 } 7520 EXPORT_SYMBOL_GPL(handle_ud); 7521 7522 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7523 gpa_t gpa, bool write) 7524 { 7525 /* For APIC access vmexit */ 7526 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7527 return 1; 7528 7529 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7530 trace_vcpu_match_mmio(gva, gpa, write, true); 7531 return 1; 7532 } 7533 7534 return 0; 7535 } 7536 7537 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7538 gpa_t *gpa, struct x86_exception *exception, 7539 bool write) 7540 { 7541 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7542 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7543 | (write ? PFERR_WRITE_MASK : 0); 7544 7545 /* 7546 * currently PKRU is only applied to ept enabled guest so 7547 * there is no pkey in EPT page table for L1 guest or EPT 7548 * shadow page table for L2 guest. 7549 */ 7550 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7551 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7552 vcpu->arch.mmio_access, 0, access))) { 7553 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7554 (gva & (PAGE_SIZE - 1)); 7555 trace_vcpu_match_mmio(gva, *gpa, write, false); 7556 return 1; 7557 } 7558 7559 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7560 7561 if (*gpa == INVALID_GPA) 7562 return -1; 7563 7564 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7565 } 7566 7567 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7568 const void *val, int bytes) 7569 { 7570 int ret; 7571 7572 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7573 if (ret < 0) 7574 return 0; 7575 kvm_page_track_write(vcpu, gpa, val, bytes); 7576 return 1; 7577 } 7578 7579 struct read_write_emulator_ops { 7580 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7581 int bytes); 7582 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7583 void *val, int bytes); 7584 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7585 int bytes, void *val); 7586 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7587 void *val, int bytes); 7588 bool write; 7589 }; 7590 7591 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7592 { 7593 if (vcpu->mmio_read_completed) { 7594 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7595 vcpu->mmio_fragments[0].gpa, val); 7596 vcpu->mmio_read_completed = 0; 7597 return 1; 7598 } 7599 7600 return 0; 7601 } 7602 7603 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7604 void *val, int bytes) 7605 { 7606 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7607 } 7608 7609 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7610 void *val, int bytes) 7611 { 7612 return emulator_write_phys(vcpu, gpa, val, bytes); 7613 } 7614 7615 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7616 { 7617 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7618 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7619 } 7620 7621 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7622 void *val, int bytes) 7623 { 7624 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7625 return X86EMUL_IO_NEEDED; 7626 } 7627 7628 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7629 void *val, int bytes) 7630 { 7631 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7632 7633 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7634 return X86EMUL_CONTINUE; 7635 } 7636 7637 static const struct read_write_emulator_ops read_emultor = { 7638 .read_write_prepare = read_prepare, 7639 .read_write_emulate = read_emulate, 7640 .read_write_mmio = vcpu_mmio_read, 7641 .read_write_exit_mmio = read_exit_mmio, 7642 }; 7643 7644 static const struct read_write_emulator_ops write_emultor = { 7645 .read_write_emulate = write_emulate, 7646 .read_write_mmio = write_mmio, 7647 .read_write_exit_mmio = write_exit_mmio, 7648 .write = true, 7649 }; 7650 7651 static int emulator_read_write_onepage(unsigned long addr, void *val, 7652 unsigned int bytes, 7653 struct x86_exception *exception, 7654 struct kvm_vcpu *vcpu, 7655 const struct read_write_emulator_ops *ops) 7656 { 7657 gpa_t gpa; 7658 int handled, ret; 7659 bool write = ops->write; 7660 struct kvm_mmio_fragment *frag; 7661 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7662 7663 /* 7664 * If the exit was due to a NPF we may already have a GPA. 7665 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7666 * Note, this cannot be used on string operations since string 7667 * operation using rep will only have the initial GPA from the NPF 7668 * occurred. 7669 */ 7670 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7671 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7672 gpa = ctxt->gpa_val; 7673 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7674 } else { 7675 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7676 if (ret < 0) 7677 return X86EMUL_PROPAGATE_FAULT; 7678 } 7679 7680 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7681 return X86EMUL_CONTINUE; 7682 7683 /* 7684 * Is this MMIO handled locally? 7685 */ 7686 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7687 if (handled == bytes) 7688 return X86EMUL_CONTINUE; 7689 7690 gpa += handled; 7691 bytes -= handled; 7692 val += handled; 7693 7694 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7695 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7696 frag->gpa = gpa; 7697 frag->data = val; 7698 frag->len = bytes; 7699 return X86EMUL_CONTINUE; 7700 } 7701 7702 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7703 unsigned long addr, 7704 void *val, unsigned int bytes, 7705 struct x86_exception *exception, 7706 const struct read_write_emulator_ops *ops) 7707 { 7708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7709 gpa_t gpa; 7710 int rc; 7711 7712 if (ops->read_write_prepare && 7713 ops->read_write_prepare(vcpu, val, bytes)) 7714 return X86EMUL_CONTINUE; 7715 7716 vcpu->mmio_nr_fragments = 0; 7717 7718 /* Crossing a page boundary? */ 7719 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7720 int now; 7721 7722 now = -addr & ~PAGE_MASK; 7723 rc = emulator_read_write_onepage(addr, val, now, exception, 7724 vcpu, ops); 7725 7726 if (rc != X86EMUL_CONTINUE) 7727 return rc; 7728 addr += now; 7729 if (ctxt->mode != X86EMUL_MODE_PROT64) 7730 addr = (u32)addr; 7731 val += now; 7732 bytes -= now; 7733 } 7734 7735 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7736 vcpu, ops); 7737 if (rc != X86EMUL_CONTINUE) 7738 return rc; 7739 7740 if (!vcpu->mmio_nr_fragments) 7741 return rc; 7742 7743 gpa = vcpu->mmio_fragments[0].gpa; 7744 7745 vcpu->mmio_needed = 1; 7746 vcpu->mmio_cur_fragment = 0; 7747 7748 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7749 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7750 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7751 vcpu->run->mmio.phys_addr = gpa; 7752 7753 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7754 } 7755 7756 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7757 unsigned long addr, 7758 void *val, 7759 unsigned int bytes, 7760 struct x86_exception *exception) 7761 { 7762 return emulator_read_write(ctxt, addr, val, bytes, 7763 exception, &read_emultor); 7764 } 7765 7766 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7767 unsigned long addr, 7768 const void *val, 7769 unsigned int bytes, 7770 struct x86_exception *exception) 7771 { 7772 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7773 exception, &write_emultor); 7774 } 7775 7776 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7777 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7778 7779 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7780 unsigned long addr, 7781 const void *old, 7782 const void *new, 7783 unsigned int bytes, 7784 struct x86_exception *exception) 7785 { 7786 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7787 u64 page_line_mask; 7788 unsigned long hva; 7789 gpa_t gpa; 7790 int r; 7791 7792 /* guests cmpxchg8b have to be emulated atomically */ 7793 if (bytes > 8 || (bytes & (bytes - 1))) 7794 goto emul_write; 7795 7796 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7797 7798 if (gpa == INVALID_GPA || 7799 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7800 goto emul_write; 7801 7802 /* 7803 * Emulate the atomic as a straight write to avoid #AC if SLD is 7804 * enabled in the host and the access splits a cache line. 7805 */ 7806 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7807 page_line_mask = ~(cache_line_size() - 1); 7808 else 7809 page_line_mask = PAGE_MASK; 7810 7811 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7812 goto emul_write; 7813 7814 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7815 if (kvm_is_error_hva(hva)) 7816 goto emul_write; 7817 7818 hva += offset_in_page(gpa); 7819 7820 switch (bytes) { 7821 case 1: 7822 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7823 break; 7824 case 2: 7825 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7826 break; 7827 case 4: 7828 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7829 break; 7830 case 8: 7831 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7832 break; 7833 default: 7834 BUG(); 7835 } 7836 7837 if (r < 0) 7838 return X86EMUL_UNHANDLEABLE; 7839 if (r) 7840 return X86EMUL_CMPXCHG_FAILED; 7841 7842 kvm_page_track_write(vcpu, gpa, new, bytes); 7843 7844 return X86EMUL_CONTINUE; 7845 7846 emul_write: 7847 pr_warn_once("emulating exchange as write\n"); 7848 7849 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7850 } 7851 7852 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7853 unsigned short port, void *data, 7854 unsigned int count, bool in) 7855 { 7856 unsigned i; 7857 int r; 7858 7859 WARN_ON_ONCE(vcpu->arch.pio.count); 7860 for (i = 0; i < count; i++) { 7861 if (in) 7862 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7863 else 7864 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7865 7866 if (r) { 7867 if (i == 0) 7868 goto userspace_io; 7869 7870 /* 7871 * Userspace must have unregistered the device while PIO 7872 * was running. Drop writes / read as 0. 7873 */ 7874 if (in) 7875 memset(data, 0, size * (count - i)); 7876 break; 7877 } 7878 7879 data += size; 7880 } 7881 return 1; 7882 7883 userspace_io: 7884 vcpu->arch.pio.port = port; 7885 vcpu->arch.pio.in = in; 7886 vcpu->arch.pio.count = count; 7887 vcpu->arch.pio.size = size; 7888 7889 if (in) 7890 memset(vcpu->arch.pio_data, 0, size * count); 7891 else 7892 memcpy(vcpu->arch.pio_data, data, size * count); 7893 7894 vcpu->run->exit_reason = KVM_EXIT_IO; 7895 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7896 vcpu->run->io.size = size; 7897 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7898 vcpu->run->io.count = count; 7899 vcpu->run->io.port = port; 7900 return 0; 7901 } 7902 7903 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7904 unsigned short port, void *val, unsigned int count) 7905 { 7906 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7907 if (r) 7908 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7909 7910 return r; 7911 } 7912 7913 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7914 { 7915 int size = vcpu->arch.pio.size; 7916 unsigned int count = vcpu->arch.pio.count; 7917 memcpy(val, vcpu->arch.pio_data, size * count); 7918 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7919 vcpu->arch.pio.count = 0; 7920 } 7921 7922 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7923 int size, unsigned short port, void *val, 7924 unsigned int count) 7925 { 7926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7927 if (vcpu->arch.pio.count) { 7928 /* 7929 * Complete a previous iteration that required userspace I/O. 7930 * Note, @count isn't guaranteed to match pio.count as userspace 7931 * can modify ECX before rerunning the vCPU. Ignore any such 7932 * shenanigans as KVM doesn't support modifying the rep count, 7933 * and the emulator ensures @count doesn't overflow the buffer. 7934 */ 7935 complete_emulator_pio_in(vcpu, val); 7936 return 1; 7937 } 7938 7939 return emulator_pio_in(vcpu, size, port, val, count); 7940 } 7941 7942 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7943 unsigned short port, const void *val, 7944 unsigned int count) 7945 { 7946 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7947 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7948 } 7949 7950 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7951 int size, unsigned short port, 7952 const void *val, unsigned int count) 7953 { 7954 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7955 } 7956 7957 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7958 { 7959 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7960 } 7961 7962 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7963 { 7964 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7965 } 7966 7967 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7968 { 7969 if (!need_emulate_wbinvd(vcpu)) 7970 return X86EMUL_CONTINUE; 7971 7972 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7973 int cpu = get_cpu(); 7974 7975 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7976 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7977 wbinvd_ipi, NULL, 1); 7978 put_cpu(); 7979 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7980 } else 7981 wbinvd(); 7982 return X86EMUL_CONTINUE; 7983 } 7984 7985 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7986 { 7987 kvm_emulate_wbinvd_noskip(vcpu); 7988 return kvm_skip_emulated_instruction(vcpu); 7989 } 7990 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7991 7992 7993 7994 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7995 { 7996 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7997 } 7998 7999 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8000 unsigned long *dest) 8001 { 8002 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8003 } 8004 8005 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8006 unsigned long value) 8007 { 8008 8009 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8010 } 8011 8012 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8013 { 8014 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8015 } 8016 8017 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8018 { 8019 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8020 unsigned long value; 8021 8022 switch (cr) { 8023 case 0: 8024 value = kvm_read_cr0(vcpu); 8025 break; 8026 case 2: 8027 value = vcpu->arch.cr2; 8028 break; 8029 case 3: 8030 value = kvm_read_cr3(vcpu); 8031 break; 8032 case 4: 8033 value = kvm_read_cr4(vcpu); 8034 break; 8035 case 8: 8036 value = kvm_get_cr8(vcpu); 8037 break; 8038 default: 8039 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8040 return 0; 8041 } 8042 8043 return value; 8044 } 8045 8046 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8047 { 8048 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8049 int res = 0; 8050 8051 switch (cr) { 8052 case 0: 8053 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8054 break; 8055 case 2: 8056 vcpu->arch.cr2 = val; 8057 break; 8058 case 3: 8059 res = kvm_set_cr3(vcpu, val); 8060 break; 8061 case 4: 8062 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8063 break; 8064 case 8: 8065 res = kvm_set_cr8(vcpu, val); 8066 break; 8067 default: 8068 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8069 res = -1; 8070 } 8071 8072 return res; 8073 } 8074 8075 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8076 { 8077 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8078 } 8079 8080 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8081 { 8082 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8083 } 8084 8085 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8086 { 8087 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8088 } 8089 8090 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8091 { 8092 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8093 } 8094 8095 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8096 { 8097 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8098 } 8099 8100 static unsigned long emulator_get_cached_segment_base( 8101 struct x86_emulate_ctxt *ctxt, int seg) 8102 { 8103 return get_segment_base(emul_to_vcpu(ctxt), seg); 8104 } 8105 8106 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8107 struct desc_struct *desc, u32 *base3, 8108 int seg) 8109 { 8110 struct kvm_segment var; 8111 8112 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8113 *selector = var.selector; 8114 8115 if (var.unusable) { 8116 memset(desc, 0, sizeof(*desc)); 8117 if (base3) 8118 *base3 = 0; 8119 return false; 8120 } 8121 8122 if (var.g) 8123 var.limit >>= 12; 8124 set_desc_limit(desc, var.limit); 8125 set_desc_base(desc, (unsigned long)var.base); 8126 #ifdef CONFIG_X86_64 8127 if (base3) 8128 *base3 = var.base >> 32; 8129 #endif 8130 desc->type = var.type; 8131 desc->s = var.s; 8132 desc->dpl = var.dpl; 8133 desc->p = var.present; 8134 desc->avl = var.avl; 8135 desc->l = var.l; 8136 desc->d = var.db; 8137 desc->g = var.g; 8138 8139 return true; 8140 } 8141 8142 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8143 struct desc_struct *desc, u32 base3, 8144 int seg) 8145 { 8146 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8147 struct kvm_segment var; 8148 8149 var.selector = selector; 8150 var.base = get_desc_base(desc); 8151 #ifdef CONFIG_X86_64 8152 var.base |= ((u64)base3) << 32; 8153 #endif 8154 var.limit = get_desc_limit(desc); 8155 if (desc->g) 8156 var.limit = (var.limit << 12) | 0xfff; 8157 var.type = desc->type; 8158 var.dpl = desc->dpl; 8159 var.db = desc->d; 8160 var.s = desc->s; 8161 var.l = desc->l; 8162 var.g = desc->g; 8163 var.avl = desc->avl; 8164 var.present = desc->p; 8165 var.unusable = !var.present; 8166 var.padding = 0; 8167 8168 kvm_set_segment(vcpu, &var, seg); 8169 return; 8170 } 8171 8172 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8173 u32 msr_index, u64 *pdata) 8174 { 8175 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8176 int r; 8177 8178 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8179 if (r < 0) 8180 return X86EMUL_UNHANDLEABLE; 8181 8182 if (r) { 8183 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8184 complete_emulated_rdmsr, r)) 8185 return X86EMUL_IO_NEEDED; 8186 8187 trace_kvm_msr_read_ex(msr_index); 8188 return X86EMUL_PROPAGATE_FAULT; 8189 } 8190 8191 trace_kvm_msr_read(msr_index, *pdata); 8192 return X86EMUL_CONTINUE; 8193 } 8194 8195 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8196 u32 msr_index, u64 data) 8197 { 8198 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8199 int r; 8200 8201 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8202 if (r < 0) 8203 return X86EMUL_UNHANDLEABLE; 8204 8205 if (r) { 8206 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8207 complete_emulated_msr_access, r)) 8208 return X86EMUL_IO_NEEDED; 8209 8210 trace_kvm_msr_write_ex(msr_index, data); 8211 return X86EMUL_PROPAGATE_FAULT; 8212 } 8213 8214 trace_kvm_msr_write(msr_index, data); 8215 return X86EMUL_CONTINUE; 8216 } 8217 8218 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8219 u32 msr_index, u64 *pdata) 8220 { 8221 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8222 } 8223 8224 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8225 u32 pmc) 8226 { 8227 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8228 return 0; 8229 return -EINVAL; 8230 } 8231 8232 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8233 u32 pmc, u64 *pdata) 8234 { 8235 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8236 } 8237 8238 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8239 { 8240 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8241 } 8242 8243 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8244 struct x86_instruction_info *info, 8245 enum x86_intercept_stage stage) 8246 { 8247 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8248 &ctxt->exception); 8249 } 8250 8251 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8252 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8253 bool exact_only) 8254 { 8255 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8256 } 8257 8258 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8259 { 8260 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8261 } 8262 8263 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8264 { 8265 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8266 } 8267 8268 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8269 { 8270 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8271 } 8272 8273 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8274 { 8275 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8276 } 8277 8278 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8279 { 8280 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8281 } 8282 8283 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8284 { 8285 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8286 } 8287 8288 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8289 { 8290 return is_smm(emul_to_vcpu(ctxt)); 8291 } 8292 8293 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8294 { 8295 return is_guest_mode(emul_to_vcpu(ctxt)); 8296 } 8297 8298 #ifndef CONFIG_KVM_SMM 8299 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8300 { 8301 WARN_ON_ONCE(1); 8302 return X86EMUL_UNHANDLEABLE; 8303 } 8304 #endif 8305 8306 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8307 { 8308 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8309 } 8310 8311 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8312 { 8313 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8314 } 8315 8316 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8317 { 8318 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8319 8320 if (!kvm->vm_bugged) 8321 kvm_vm_bugged(kvm); 8322 } 8323 8324 static const struct x86_emulate_ops emulate_ops = { 8325 .vm_bugged = emulator_vm_bugged, 8326 .read_gpr = emulator_read_gpr, 8327 .write_gpr = emulator_write_gpr, 8328 .read_std = emulator_read_std, 8329 .write_std = emulator_write_std, 8330 .fetch = kvm_fetch_guest_virt, 8331 .read_emulated = emulator_read_emulated, 8332 .write_emulated = emulator_write_emulated, 8333 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8334 .invlpg = emulator_invlpg, 8335 .pio_in_emulated = emulator_pio_in_emulated, 8336 .pio_out_emulated = emulator_pio_out_emulated, 8337 .get_segment = emulator_get_segment, 8338 .set_segment = emulator_set_segment, 8339 .get_cached_segment_base = emulator_get_cached_segment_base, 8340 .get_gdt = emulator_get_gdt, 8341 .get_idt = emulator_get_idt, 8342 .set_gdt = emulator_set_gdt, 8343 .set_idt = emulator_set_idt, 8344 .get_cr = emulator_get_cr, 8345 .set_cr = emulator_set_cr, 8346 .cpl = emulator_get_cpl, 8347 .get_dr = emulator_get_dr, 8348 .set_dr = emulator_set_dr, 8349 .set_msr_with_filter = emulator_set_msr_with_filter, 8350 .get_msr_with_filter = emulator_get_msr_with_filter, 8351 .get_msr = emulator_get_msr, 8352 .check_pmc = emulator_check_pmc, 8353 .read_pmc = emulator_read_pmc, 8354 .halt = emulator_halt, 8355 .wbinvd = emulator_wbinvd, 8356 .fix_hypercall = emulator_fix_hypercall, 8357 .intercept = emulator_intercept, 8358 .get_cpuid = emulator_get_cpuid, 8359 .guest_has_movbe = emulator_guest_has_movbe, 8360 .guest_has_fxsr = emulator_guest_has_fxsr, 8361 .guest_has_rdpid = emulator_guest_has_rdpid, 8362 .set_nmi_mask = emulator_set_nmi_mask, 8363 .is_smm = emulator_is_smm, 8364 .is_guest_mode = emulator_is_guest_mode, 8365 .leave_smm = emulator_leave_smm, 8366 .triple_fault = emulator_triple_fault, 8367 .set_xcr = emulator_set_xcr, 8368 }; 8369 8370 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8371 { 8372 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8373 /* 8374 * an sti; sti; sequence only disable interrupts for the first 8375 * instruction. So, if the last instruction, be it emulated or 8376 * not, left the system with the INT_STI flag enabled, it 8377 * means that the last instruction is an sti. We should not 8378 * leave the flag on in this case. The same goes for mov ss 8379 */ 8380 if (int_shadow & mask) 8381 mask = 0; 8382 if (unlikely(int_shadow || mask)) { 8383 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8384 if (!mask) 8385 kvm_make_request(KVM_REQ_EVENT, vcpu); 8386 } 8387 } 8388 8389 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8390 { 8391 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8392 8393 if (ctxt->exception.vector == PF_VECTOR) 8394 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8395 else if (ctxt->exception.error_code_valid) 8396 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8397 ctxt->exception.error_code); 8398 else 8399 kvm_queue_exception(vcpu, ctxt->exception.vector); 8400 } 8401 8402 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8403 { 8404 struct x86_emulate_ctxt *ctxt; 8405 8406 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8407 if (!ctxt) { 8408 pr_err("failed to allocate vcpu's emulator\n"); 8409 return NULL; 8410 } 8411 8412 ctxt->vcpu = vcpu; 8413 ctxt->ops = &emulate_ops; 8414 vcpu->arch.emulate_ctxt = ctxt; 8415 8416 return ctxt; 8417 } 8418 8419 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8420 { 8421 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8422 int cs_db, cs_l; 8423 8424 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8425 8426 ctxt->gpa_available = false; 8427 ctxt->eflags = kvm_get_rflags(vcpu); 8428 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8429 8430 ctxt->eip = kvm_rip_read(vcpu); 8431 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8432 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8433 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8434 cs_db ? X86EMUL_MODE_PROT32 : 8435 X86EMUL_MODE_PROT16; 8436 ctxt->interruptibility = 0; 8437 ctxt->have_exception = false; 8438 ctxt->exception.vector = -1; 8439 ctxt->perm_ok = false; 8440 8441 init_decode_cache(ctxt); 8442 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8443 } 8444 8445 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8446 { 8447 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8448 int ret; 8449 8450 init_emulate_ctxt(vcpu); 8451 8452 ctxt->op_bytes = 2; 8453 ctxt->ad_bytes = 2; 8454 ctxt->_eip = ctxt->eip + inc_eip; 8455 ret = emulate_int_real(ctxt, irq); 8456 8457 if (ret != X86EMUL_CONTINUE) { 8458 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8459 } else { 8460 ctxt->eip = ctxt->_eip; 8461 kvm_rip_write(vcpu, ctxt->eip); 8462 kvm_set_rflags(vcpu, ctxt->eflags); 8463 } 8464 } 8465 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8466 8467 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8468 u8 ndata, u8 *insn_bytes, u8 insn_size) 8469 { 8470 struct kvm_run *run = vcpu->run; 8471 u64 info[5]; 8472 u8 info_start; 8473 8474 /* 8475 * Zero the whole array used to retrieve the exit info, as casting to 8476 * u32 for select entries will leave some chunks uninitialized. 8477 */ 8478 memset(&info, 0, sizeof(info)); 8479 8480 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8481 &info[2], (u32 *)&info[3], 8482 (u32 *)&info[4]); 8483 8484 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8485 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8486 8487 /* 8488 * There's currently space for 13 entries, but 5 are used for the exit 8489 * reason and info. Restrict to 4 to reduce the maintenance burden 8490 * when expanding kvm_run.emulation_failure in the future. 8491 */ 8492 if (WARN_ON_ONCE(ndata > 4)) 8493 ndata = 4; 8494 8495 /* Always include the flags as a 'data' entry. */ 8496 info_start = 1; 8497 run->emulation_failure.flags = 0; 8498 8499 if (insn_size) { 8500 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8501 sizeof(run->emulation_failure.insn_bytes) != 16)); 8502 info_start += 2; 8503 run->emulation_failure.flags |= 8504 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8505 run->emulation_failure.insn_size = insn_size; 8506 memset(run->emulation_failure.insn_bytes, 0x90, 8507 sizeof(run->emulation_failure.insn_bytes)); 8508 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8509 } 8510 8511 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8512 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8513 ndata * sizeof(data[0])); 8514 8515 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8516 } 8517 8518 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8519 { 8520 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8521 8522 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8523 ctxt->fetch.end - ctxt->fetch.data); 8524 } 8525 8526 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8527 u8 ndata) 8528 { 8529 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8530 } 8531 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8532 8533 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8534 { 8535 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8536 } 8537 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8538 8539 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8540 { 8541 struct kvm *kvm = vcpu->kvm; 8542 8543 ++vcpu->stat.insn_emulation_fail; 8544 trace_kvm_emulate_insn_failed(vcpu); 8545 8546 if (emulation_type & EMULTYPE_VMWARE_GP) { 8547 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8548 return 1; 8549 } 8550 8551 if (kvm->arch.exit_on_emulation_error || 8552 (emulation_type & EMULTYPE_SKIP)) { 8553 prepare_emulation_ctxt_failure_exit(vcpu); 8554 return 0; 8555 } 8556 8557 kvm_queue_exception(vcpu, UD_VECTOR); 8558 8559 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8560 prepare_emulation_ctxt_failure_exit(vcpu); 8561 return 0; 8562 } 8563 8564 return 1; 8565 } 8566 8567 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8568 int emulation_type) 8569 { 8570 gpa_t gpa = cr2_or_gpa; 8571 kvm_pfn_t pfn; 8572 8573 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8574 return false; 8575 8576 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8577 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8578 return false; 8579 8580 if (!vcpu->arch.mmu->root_role.direct) { 8581 /* 8582 * Write permission should be allowed since only 8583 * write access need to be emulated. 8584 */ 8585 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8586 8587 /* 8588 * If the mapping is invalid in guest, let cpu retry 8589 * it to generate fault. 8590 */ 8591 if (gpa == INVALID_GPA) 8592 return true; 8593 } 8594 8595 /* 8596 * Do not retry the unhandleable instruction if it faults on the 8597 * readonly host memory, otherwise it will goto a infinite loop: 8598 * retry instruction -> write #PF -> emulation fail -> retry 8599 * instruction -> ... 8600 */ 8601 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8602 8603 /* 8604 * If the instruction failed on the error pfn, it can not be fixed, 8605 * report the error to userspace. 8606 */ 8607 if (is_error_noslot_pfn(pfn)) 8608 return false; 8609 8610 kvm_release_pfn_clean(pfn); 8611 8612 /* The instructions are well-emulated on direct mmu. */ 8613 if (vcpu->arch.mmu->root_role.direct) { 8614 unsigned int indirect_shadow_pages; 8615 8616 write_lock(&vcpu->kvm->mmu_lock); 8617 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8618 write_unlock(&vcpu->kvm->mmu_lock); 8619 8620 if (indirect_shadow_pages) 8621 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8622 8623 return true; 8624 } 8625 8626 /* 8627 * if emulation was due to access to shadowed page table 8628 * and it failed try to unshadow page and re-enter the 8629 * guest to let CPU execute the instruction. 8630 */ 8631 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8632 8633 /* 8634 * If the access faults on its page table, it can not 8635 * be fixed by unprotecting shadow page and it should 8636 * be reported to userspace. 8637 */ 8638 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8639 } 8640 8641 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8642 gpa_t cr2_or_gpa, int emulation_type) 8643 { 8644 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8645 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8646 8647 last_retry_eip = vcpu->arch.last_retry_eip; 8648 last_retry_addr = vcpu->arch.last_retry_addr; 8649 8650 /* 8651 * If the emulation is caused by #PF and it is non-page_table 8652 * writing instruction, it means the VM-EXIT is caused by shadow 8653 * page protected, we can zap the shadow page and retry this 8654 * instruction directly. 8655 * 8656 * Note: if the guest uses a non-page-table modifying instruction 8657 * on the PDE that points to the instruction, then we will unmap 8658 * the instruction and go to an infinite loop. So, we cache the 8659 * last retried eip and the last fault address, if we meet the eip 8660 * and the address again, we can break out of the potential infinite 8661 * loop. 8662 */ 8663 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8664 8665 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8666 return false; 8667 8668 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8669 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8670 return false; 8671 8672 if (x86_page_table_writing_insn(ctxt)) 8673 return false; 8674 8675 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8676 return false; 8677 8678 vcpu->arch.last_retry_eip = ctxt->eip; 8679 vcpu->arch.last_retry_addr = cr2_or_gpa; 8680 8681 if (!vcpu->arch.mmu->root_role.direct) 8682 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8683 8684 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8685 8686 return true; 8687 } 8688 8689 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8690 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8691 8692 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8693 unsigned long *db) 8694 { 8695 u32 dr6 = 0; 8696 int i; 8697 u32 enable, rwlen; 8698 8699 enable = dr7; 8700 rwlen = dr7 >> 16; 8701 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8702 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8703 dr6 |= (1 << i); 8704 return dr6; 8705 } 8706 8707 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8708 { 8709 struct kvm_run *kvm_run = vcpu->run; 8710 8711 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8712 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8713 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8714 kvm_run->debug.arch.exception = DB_VECTOR; 8715 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8716 return 0; 8717 } 8718 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8719 return 1; 8720 } 8721 8722 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8723 { 8724 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8725 int r; 8726 8727 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8728 if (unlikely(!r)) 8729 return 0; 8730 8731 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8732 8733 /* 8734 * rflags is the old, "raw" value of the flags. The new value has 8735 * not been saved yet. 8736 * 8737 * This is correct even for TF set by the guest, because "the 8738 * processor will not generate this exception after the instruction 8739 * that sets the TF flag". 8740 */ 8741 if (unlikely(rflags & X86_EFLAGS_TF)) 8742 r = kvm_vcpu_do_singlestep(vcpu); 8743 return r; 8744 } 8745 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8746 8747 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8748 { 8749 u32 shadow; 8750 8751 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8752 return true; 8753 8754 /* 8755 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8756 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8757 * to avoid the relatively expensive CPUID lookup. 8758 */ 8759 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8760 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8761 guest_cpuid_is_intel(vcpu); 8762 } 8763 8764 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8765 int emulation_type, int *r) 8766 { 8767 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8768 8769 /* 8770 * Do not check for code breakpoints if hardware has already done the 8771 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8772 * the instruction has passed all exception checks, and all intercepted 8773 * exceptions that trigger emulation have lower priority than code 8774 * breakpoints, i.e. the fact that the intercepted exception occurred 8775 * means any code breakpoints have already been serviced. 8776 * 8777 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8778 * hardware has checked the RIP of the magic prefix, but not the RIP of 8779 * the instruction being emulated. The intent of forced emulation is 8780 * to behave as if KVM intercepted the instruction without an exception 8781 * and without a prefix. 8782 */ 8783 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8784 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8785 return false; 8786 8787 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8788 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8789 struct kvm_run *kvm_run = vcpu->run; 8790 unsigned long eip = kvm_get_linear_rip(vcpu); 8791 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8792 vcpu->arch.guest_debug_dr7, 8793 vcpu->arch.eff_db); 8794 8795 if (dr6 != 0) { 8796 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8797 kvm_run->debug.arch.pc = eip; 8798 kvm_run->debug.arch.exception = DB_VECTOR; 8799 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8800 *r = 0; 8801 return true; 8802 } 8803 } 8804 8805 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8806 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8807 unsigned long eip = kvm_get_linear_rip(vcpu); 8808 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8809 vcpu->arch.dr7, 8810 vcpu->arch.db); 8811 8812 if (dr6 != 0) { 8813 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8814 *r = 1; 8815 return true; 8816 } 8817 } 8818 8819 return false; 8820 } 8821 8822 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8823 { 8824 switch (ctxt->opcode_len) { 8825 case 1: 8826 switch (ctxt->b) { 8827 case 0xe4: /* IN */ 8828 case 0xe5: 8829 case 0xec: 8830 case 0xed: 8831 case 0xe6: /* OUT */ 8832 case 0xe7: 8833 case 0xee: 8834 case 0xef: 8835 case 0x6c: /* INS */ 8836 case 0x6d: 8837 case 0x6e: /* OUTS */ 8838 case 0x6f: 8839 return true; 8840 } 8841 break; 8842 case 2: 8843 switch (ctxt->b) { 8844 case 0x33: /* RDPMC */ 8845 return true; 8846 } 8847 break; 8848 } 8849 8850 return false; 8851 } 8852 8853 /* 8854 * Decode an instruction for emulation. The caller is responsible for handling 8855 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8856 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8857 * code breakpoints have higher priority and thus have already been done by 8858 * hardware. 8859 * 8860 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8861 * response to a machine check. 8862 */ 8863 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8864 void *insn, int insn_len) 8865 { 8866 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8867 int r; 8868 8869 init_emulate_ctxt(vcpu); 8870 8871 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8872 8873 trace_kvm_emulate_insn_start(vcpu); 8874 ++vcpu->stat.insn_emulation; 8875 8876 return r; 8877 } 8878 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8879 8880 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8881 int emulation_type, void *insn, int insn_len) 8882 { 8883 int r; 8884 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8885 bool writeback = true; 8886 8887 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8888 return 1; 8889 8890 vcpu->arch.l1tf_flush_l1d = true; 8891 8892 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8893 kvm_clear_exception_queue(vcpu); 8894 8895 /* 8896 * Return immediately if RIP hits a code breakpoint, such #DBs 8897 * are fault-like and are higher priority than any faults on 8898 * the code fetch itself. 8899 */ 8900 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8901 return r; 8902 8903 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8904 insn, insn_len); 8905 if (r != EMULATION_OK) { 8906 if ((emulation_type & EMULTYPE_TRAP_UD) || 8907 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8908 kvm_queue_exception(vcpu, UD_VECTOR); 8909 return 1; 8910 } 8911 if (reexecute_instruction(vcpu, cr2_or_gpa, 8912 emulation_type)) 8913 return 1; 8914 8915 if (ctxt->have_exception && 8916 !(emulation_type & EMULTYPE_SKIP)) { 8917 /* 8918 * #UD should result in just EMULATION_FAILED, and trap-like 8919 * exception should not be encountered during decode. 8920 */ 8921 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8922 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8923 inject_emulated_exception(vcpu); 8924 return 1; 8925 } 8926 return handle_emulation_failure(vcpu, emulation_type); 8927 } 8928 } 8929 8930 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8931 !is_vmware_backdoor_opcode(ctxt)) { 8932 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8933 return 1; 8934 } 8935 8936 /* 8937 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8938 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8939 * The caller is responsible for updating interruptibility state and 8940 * injecting single-step #DBs. 8941 */ 8942 if (emulation_type & EMULTYPE_SKIP) { 8943 if (ctxt->mode != X86EMUL_MODE_PROT64) 8944 ctxt->eip = (u32)ctxt->_eip; 8945 else 8946 ctxt->eip = ctxt->_eip; 8947 8948 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8949 r = 1; 8950 goto writeback; 8951 } 8952 8953 kvm_rip_write(vcpu, ctxt->eip); 8954 if (ctxt->eflags & X86_EFLAGS_RF) 8955 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8956 return 1; 8957 } 8958 8959 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8960 return 1; 8961 8962 /* this is needed for vmware backdoor interface to work since it 8963 changes registers values during IO operation */ 8964 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8965 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8966 emulator_invalidate_register_cache(ctxt); 8967 } 8968 8969 restart: 8970 if (emulation_type & EMULTYPE_PF) { 8971 /* Save the faulting GPA (cr2) in the address field */ 8972 ctxt->exception.address = cr2_or_gpa; 8973 8974 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8975 if (vcpu->arch.mmu->root_role.direct) { 8976 ctxt->gpa_available = true; 8977 ctxt->gpa_val = cr2_or_gpa; 8978 } 8979 } else { 8980 /* Sanitize the address out of an abundance of paranoia. */ 8981 ctxt->exception.address = 0; 8982 } 8983 8984 r = x86_emulate_insn(ctxt); 8985 8986 if (r == EMULATION_INTERCEPTED) 8987 return 1; 8988 8989 if (r == EMULATION_FAILED) { 8990 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8991 return 1; 8992 8993 return handle_emulation_failure(vcpu, emulation_type); 8994 } 8995 8996 if (ctxt->have_exception) { 8997 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8998 vcpu->mmio_needed = false; 8999 r = 1; 9000 inject_emulated_exception(vcpu); 9001 } else if (vcpu->arch.pio.count) { 9002 if (!vcpu->arch.pio.in) { 9003 /* FIXME: return into emulator if single-stepping. */ 9004 vcpu->arch.pio.count = 0; 9005 } else { 9006 writeback = false; 9007 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9008 } 9009 r = 0; 9010 } else if (vcpu->mmio_needed) { 9011 ++vcpu->stat.mmio_exits; 9012 9013 if (!vcpu->mmio_is_write) 9014 writeback = false; 9015 r = 0; 9016 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9017 } else if (vcpu->arch.complete_userspace_io) { 9018 writeback = false; 9019 r = 0; 9020 } else if (r == EMULATION_RESTART) 9021 goto restart; 9022 else 9023 r = 1; 9024 9025 writeback: 9026 if (writeback) { 9027 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9028 toggle_interruptibility(vcpu, ctxt->interruptibility); 9029 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9030 9031 /* 9032 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9033 * only supports code breakpoints and general detect #DB, both 9034 * of which are fault-like. 9035 */ 9036 if (!ctxt->have_exception || 9037 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9038 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9039 if (ctxt->is_branch) 9040 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9041 kvm_rip_write(vcpu, ctxt->eip); 9042 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9043 r = kvm_vcpu_do_singlestep(vcpu); 9044 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9045 __kvm_set_rflags(vcpu, ctxt->eflags); 9046 } 9047 9048 /* 9049 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9050 * do nothing, and it will be requested again as soon as 9051 * the shadow expires. But we still need to check here, 9052 * because POPF has no interrupt shadow. 9053 */ 9054 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9055 kvm_make_request(KVM_REQ_EVENT, vcpu); 9056 } else 9057 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9058 9059 return r; 9060 } 9061 9062 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9063 { 9064 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9065 } 9066 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9067 9068 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9069 void *insn, int insn_len) 9070 { 9071 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9072 } 9073 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9074 9075 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9076 { 9077 vcpu->arch.pio.count = 0; 9078 return 1; 9079 } 9080 9081 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9082 { 9083 vcpu->arch.pio.count = 0; 9084 9085 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9086 return 1; 9087 9088 return kvm_skip_emulated_instruction(vcpu); 9089 } 9090 9091 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9092 unsigned short port) 9093 { 9094 unsigned long val = kvm_rax_read(vcpu); 9095 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9096 9097 if (ret) 9098 return ret; 9099 9100 /* 9101 * Workaround userspace that relies on old KVM behavior of %rip being 9102 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9103 */ 9104 if (port == 0x7e && 9105 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9106 vcpu->arch.complete_userspace_io = 9107 complete_fast_pio_out_port_0x7e; 9108 kvm_skip_emulated_instruction(vcpu); 9109 } else { 9110 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9111 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9112 } 9113 return 0; 9114 } 9115 9116 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9117 { 9118 unsigned long val; 9119 9120 /* We should only ever be called with arch.pio.count equal to 1 */ 9121 BUG_ON(vcpu->arch.pio.count != 1); 9122 9123 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9124 vcpu->arch.pio.count = 0; 9125 return 1; 9126 } 9127 9128 /* For size less than 4 we merge, else we zero extend */ 9129 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9130 9131 complete_emulator_pio_in(vcpu, &val); 9132 kvm_rax_write(vcpu, val); 9133 9134 return kvm_skip_emulated_instruction(vcpu); 9135 } 9136 9137 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9138 unsigned short port) 9139 { 9140 unsigned long val; 9141 int ret; 9142 9143 /* For size less than 4 we merge, else we zero extend */ 9144 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9145 9146 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9147 if (ret) { 9148 kvm_rax_write(vcpu, val); 9149 return ret; 9150 } 9151 9152 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9153 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9154 9155 return 0; 9156 } 9157 9158 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9159 { 9160 int ret; 9161 9162 if (in) 9163 ret = kvm_fast_pio_in(vcpu, size, port); 9164 else 9165 ret = kvm_fast_pio_out(vcpu, size, port); 9166 return ret && kvm_skip_emulated_instruction(vcpu); 9167 } 9168 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9169 9170 static int kvmclock_cpu_down_prep(unsigned int cpu) 9171 { 9172 __this_cpu_write(cpu_tsc_khz, 0); 9173 return 0; 9174 } 9175 9176 static void tsc_khz_changed(void *data) 9177 { 9178 struct cpufreq_freqs *freq = data; 9179 unsigned long khz; 9180 9181 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9182 9183 if (data) 9184 khz = freq->new; 9185 else 9186 khz = cpufreq_quick_get(raw_smp_processor_id()); 9187 if (!khz) 9188 khz = tsc_khz; 9189 __this_cpu_write(cpu_tsc_khz, khz); 9190 } 9191 9192 #ifdef CONFIG_X86_64 9193 static void kvm_hyperv_tsc_notifier(void) 9194 { 9195 struct kvm *kvm; 9196 int cpu; 9197 9198 mutex_lock(&kvm_lock); 9199 list_for_each_entry(kvm, &vm_list, vm_list) 9200 kvm_make_mclock_inprogress_request(kvm); 9201 9202 /* no guest entries from this point */ 9203 hyperv_stop_tsc_emulation(); 9204 9205 /* TSC frequency always matches when on Hyper-V */ 9206 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9207 for_each_present_cpu(cpu) 9208 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9209 } 9210 kvm_caps.max_guest_tsc_khz = tsc_khz; 9211 9212 list_for_each_entry(kvm, &vm_list, vm_list) { 9213 __kvm_start_pvclock_update(kvm); 9214 pvclock_update_vm_gtod_copy(kvm); 9215 kvm_end_pvclock_update(kvm); 9216 } 9217 9218 mutex_unlock(&kvm_lock); 9219 } 9220 #endif 9221 9222 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9223 { 9224 struct kvm *kvm; 9225 struct kvm_vcpu *vcpu; 9226 int send_ipi = 0; 9227 unsigned long i; 9228 9229 /* 9230 * We allow guests to temporarily run on slowing clocks, 9231 * provided we notify them after, or to run on accelerating 9232 * clocks, provided we notify them before. Thus time never 9233 * goes backwards. 9234 * 9235 * However, we have a problem. We can't atomically update 9236 * the frequency of a given CPU from this function; it is 9237 * merely a notifier, which can be called from any CPU. 9238 * Changing the TSC frequency at arbitrary points in time 9239 * requires a recomputation of local variables related to 9240 * the TSC for each VCPU. We must flag these local variables 9241 * to be updated and be sure the update takes place with the 9242 * new frequency before any guests proceed. 9243 * 9244 * Unfortunately, the combination of hotplug CPU and frequency 9245 * change creates an intractable locking scenario; the order 9246 * of when these callouts happen is undefined with respect to 9247 * CPU hotplug, and they can race with each other. As such, 9248 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9249 * undefined; you can actually have a CPU frequency change take 9250 * place in between the computation of X and the setting of the 9251 * variable. To protect against this problem, all updates of 9252 * the per_cpu tsc_khz variable are done in an interrupt 9253 * protected IPI, and all callers wishing to update the value 9254 * must wait for a synchronous IPI to complete (which is trivial 9255 * if the caller is on the CPU already). This establishes the 9256 * necessary total order on variable updates. 9257 * 9258 * Note that because a guest time update may take place 9259 * anytime after the setting of the VCPU's request bit, the 9260 * correct TSC value must be set before the request. However, 9261 * to ensure the update actually makes it to any guest which 9262 * starts running in hardware virtualization between the set 9263 * and the acquisition of the spinlock, we must also ping the 9264 * CPU after setting the request bit. 9265 * 9266 */ 9267 9268 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9269 9270 mutex_lock(&kvm_lock); 9271 list_for_each_entry(kvm, &vm_list, vm_list) { 9272 kvm_for_each_vcpu(i, vcpu, kvm) { 9273 if (vcpu->cpu != cpu) 9274 continue; 9275 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9276 if (vcpu->cpu != raw_smp_processor_id()) 9277 send_ipi = 1; 9278 } 9279 } 9280 mutex_unlock(&kvm_lock); 9281 9282 if (freq->old < freq->new && send_ipi) { 9283 /* 9284 * We upscale the frequency. Must make the guest 9285 * doesn't see old kvmclock values while running with 9286 * the new frequency, otherwise we risk the guest sees 9287 * time go backwards. 9288 * 9289 * In case we update the frequency for another cpu 9290 * (which might be in guest context) send an interrupt 9291 * to kick the cpu out of guest context. Next time 9292 * guest context is entered kvmclock will be updated, 9293 * so the guest will not see stale values. 9294 */ 9295 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9296 } 9297 } 9298 9299 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9300 void *data) 9301 { 9302 struct cpufreq_freqs *freq = data; 9303 int cpu; 9304 9305 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9306 return 0; 9307 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9308 return 0; 9309 9310 for_each_cpu(cpu, freq->policy->cpus) 9311 __kvmclock_cpufreq_notifier(freq, cpu); 9312 9313 return 0; 9314 } 9315 9316 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9317 .notifier_call = kvmclock_cpufreq_notifier 9318 }; 9319 9320 static int kvmclock_cpu_online(unsigned int cpu) 9321 { 9322 tsc_khz_changed(NULL); 9323 return 0; 9324 } 9325 9326 static void kvm_timer_init(void) 9327 { 9328 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9329 max_tsc_khz = tsc_khz; 9330 9331 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9332 struct cpufreq_policy *policy; 9333 int cpu; 9334 9335 cpu = get_cpu(); 9336 policy = cpufreq_cpu_get(cpu); 9337 if (policy) { 9338 if (policy->cpuinfo.max_freq) 9339 max_tsc_khz = policy->cpuinfo.max_freq; 9340 cpufreq_cpu_put(policy); 9341 } 9342 put_cpu(); 9343 } 9344 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9345 CPUFREQ_TRANSITION_NOTIFIER); 9346 9347 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9348 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9349 } 9350 } 9351 9352 #ifdef CONFIG_X86_64 9353 static void pvclock_gtod_update_fn(struct work_struct *work) 9354 { 9355 struct kvm *kvm; 9356 struct kvm_vcpu *vcpu; 9357 unsigned long i; 9358 9359 mutex_lock(&kvm_lock); 9360 list_for_each_entry(kvm, &vm_list, vm_list) 9361 kvm_for_each_vcpu(i, vcpu, kvm) 9362 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9363 atomic_set(&kvm_guest_has_master_clock, 0); 9364 mutex_unlock(&kvm_lock); 9365 } 9366 9367 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9368 9369 /* 9370 * Indirection to move queue_work() out of the tk_core.seq write held 9371 * region to prevent possible deadlocks against time accessors which 9372 * are invoked with work related locks held. 9373 */ 9374 static void pvclock_irq_work_fn(struct irq_work *w) 9375 { 9376 queue_work(system_long_wq, &pvclock_gtod_work); 9377 } 9378 9379 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9380 9381 /* 9382 * Notification about pvclock gtod data update. 9383 */ 9384 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9385 void *priv) 9386 { 9387 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9388 struct timekeeper *tk = priv; 9389 9390 update_pvclock_gtod(tk); 9391 9392 /* 9393 * Disable master clock if host does not trust, or does not use, 9394 * TSC based clocksource. Delegate queue_work() to irq_work as 9395 * this is invoked with tk_core.seq write held. 9396 */ 9397 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9398 atomic_read(&kvm_guest_has_master_clock) != 0) 9399 irq_work_queue(&pvclock_irq_work); 9400 return 0; 9401 } 9402 9403 static struct notifier_block pvclock_gtod_notifier = { 9404 .notifier_call = pvclock_gtod_notify, 9405 }; 9406 #endif 9407 9408 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9409 { 9410 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9411 9412 #define __KVM_X86_OP(func) \ 9413 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9414 #define KVM_X86_OP(func) \ 9415 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9416 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9417 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9418 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9419 (void *)__static_call_return0); 9420 #include <asm/kvm-x86-ops.h> 9421 #undef __KVM_X86_OP 9422 9423 kvm_pmu_ops_update(ops->pmu_ops); 9424 } 9425 9426 static int kvm_x86_check_processor_compatibility(void) 9427 { 9428 int cpu = smp_processor_id(); 9429 struct cpuinfo_x86 *c = &cpu_data(cpu); 9430 9431 /* 9432 * Compatibility checks are done when loading KVM and when enabling 9433 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9434 * compatible, i.e. KVM should never perform a compatibility check on 9435 * an offline CPU. 9436 */ 9437 WARN_ON(!cpu_online(cpu)); 9438 9439 if (__cr4_reserved_bits(cpu_has, c) != 9440 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9441 return -EIO; 9442 9443 return static_call(kvm_x86_check_processor_compatibility)(); 9444 } 9445 9446 static void kvm_x86_check_cpu_compat(void *ret) 9447 { 9448 *(int *)ret = kvm_x86_check_processor_compatibility(); 9449 } 9450 9451 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9452 { 9453 u64 host_pat; 9454 int r, cpu; 9455 9456 if (kvm_x86_ops.hardware_enable) { 9457 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9458 return -EEXIST; 9459 } 9460 9461 /* 9462 * KVM explicitly assumes that the guest has an FPU and 9463 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9464 * vCPU's FPU state as a fxregs_state struct. 9465 */ 9466 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9467 pr_err("inadequate fpu\n"); 9468 return -EOPNOTSUPP; 9469 } 9470 9471 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9472 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9473 return -EOPNOTSUPP; 9474 } 9475 9476 /* 9477 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9478 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9479 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9480 * with an exception. PAT[0] is set to WB on RESET and also by the 9481 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9482 */ 9483 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9484 (host_pat & GENMASK(2, 0)) != 6) { 9485 pr_err("host PAT[0] is not WB\n"); 9486 return -EIO; 9487 } 9488 9489 x86_emulator_cache = kvm_alloc_emulator_cache(); 9490 if (!x86_emulator_cache) { 9491 pr_err("failed to allocate cache for x86 emulator\n"); 9492 return -ENOMEM; 9493 } 9494 9495 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9496 if (!user_return_msrs) { 9497 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9498 r = -ENOMEM; 9499 goto out_free_x86_emulator_cache; 9500 } 9501 kvm_nr_uret_msrs = 0; 9502 9503 r = kvm_mmu_vendor_module_init(); 9504 if (r) 9505 goto out_free_percpu; 9506 9507 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9508 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9509 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9510 } 9511 9512 rdmsrl_safe(MSR_EFER, &host_efer); 9513 9514 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9515 rdmsrl(MSR_IA32_XSS, host_xss); 9516 9517 kvm_init_pmu_capability(ops->pmu_ops); 9518 9519 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9520 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9521 9522 r = ops->hardware_setup(); 9523 if (r != 0) 9524 goto out_mmu_exit; 9525 9526 kvm_ops_update(ops); 9527 9528 for_each_online_cpu(cpu) { 9529 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9530 if (r < 0) 9531 goto out_unwind_ops; 9532 } 9533 9534 /* 9535 * Point of no return! DO NOT add error paths below this point unless 9536 * absolutely necessary, as most operations from this point forward 9537 * require unwinding. 9538 */ 9539 kvm_timer_init(); 9540 9541 if (pi_inject_timer == -1) 9542 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9543 #ifdef CONFIG_X86_64 9544 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9545 9546 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9547 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9548 #endif 9549 9550 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9551 9552 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9553 kvm_caps.supported_xss = 0; 9554 9555 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9556 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9557 #undef __kvm_cpu_cap_has 9558 9559 if (kvm_caps.has_tsc_control) { 9560 /* 9561 * Make sure the user can only configure tsc_khz values that 9562 * fit into a signed integer. 9563 * A min value is not calculated because it will always 9564 * be 1 on all machines. 9565 */ 9566 u64 max = min(0x7fffffffULL, 9567 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9568 kvm_caps.max_guest_tsc_khz = max; 9569 } 9570 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9571 kvm_init_msr_lists(); 9572 return 0; 9573 9574 out_unwind_ops: 9575 kvm_x86_ops.hardware_enable = NULL; 9576 static_call(kvm_x86_hardware_unsetup)(); 9577 out_mmu_exit: 9578 kvm_mmu_vendor_module_exit(); 9579 out_free_percpu: 9580 free_percpu(user_return_msrs); 9581 out_free_x86_emulator_cache: 9582 kmem_cache_destroy(x86_emulator_cache); 9583 return r; 9584 } 9585 9586 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9587 { 9588 int r; 9589 9590 mutex_lock(&vendor_module_lock); 9591 r = __kvm_x86_vendor_init(ops); 9592 mutex_unlock(&vendor_module_lock); 9593 9594 return r; 9595 } 9596 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9597 9598 void kvm_x86_vendor_exit(void) 9599 { 9600 kvm_unregister_perf_callbacks(); 9601 9602 #ifdef CONFIG_X86_64 9603 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9604 clear_hv_tscchange_cb(); 9605 #endif 9606 kvm_lapic_exit(); 9607 9608 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9609 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9610 CPUFREQ_TRANSITION_NOTIFIER); 9611 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9612 } 9613 #ifdef CONFIG_X86_64 9614 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9615 irq_work_sync(&pvclock_irq_work); 9616 cancel_work_sync(&pvclock_gtod_work); 9617 #endif 9618 static_call(kvm_x86_hardware_unsetup)(); 9619 kvm_mmu_vendor_module_exit(); 9620 free_percpu(user_return_msrs); 9621 kmem_cache_destroy(x86_emulator_cache); 9622 #ifdef CONFIG_KVM_XEN 9623 static_key_deferred_flush(&kvm_xen_enabled); 9624 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9625 #endif 9626 mutex_lock(&vendor_module_lock); 9627 kvm_x86_ops.hardware_enable = NULL; 9628 mutex_unlock(&vendor_module_lock); 9629 } 9630 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9631 9632 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9633 { 9634 /* 9635 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9636 * local APIC is in-kernel, the run loop will detect the non-runnable 9637 * state and halt the vCPU. Exit to userspace if the local APIC is 9638 * managed by userspace, in which case userspace is responsible for 9639 * handling wake events. 9640 */ 9641 ++vcpu->stat.halt_exits; 9642 if (lapic_in_kernel(vcpu)) { 9643 vcpu->arch.mp_state = state; 9644 return 1; 9645 } else { 9646 vcpu->run->exit_reason = reason; 9647 return 0; 9648 } 9649 } 9650 9651 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9652 { 9653 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9654 } 9655 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9656 9657 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9658 { 9659 int ret = kvm_skip_emulated_instruction(vcpu); 9660 /* 9661 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9662 * KVM_EXIT_DEBUG here. 9663 */ 9664 return kvm_emulate_halt_noskip(vcpu) && ret; 9665 } 9666 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9667 9668 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9669 { 9670 int ret = kvm_skip_emulated_instruction(vcpu); 9671 9672 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9673 KVM_EXIT_AP_RESET_HOLD) && ret; 9674 } 9675 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9676 9677 #ifdef CONFIG_X86_64 9678 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9679 unsigned long clock_type) 9680 { 9681 struct kvm_clock_pairing clock_pairing; 9682 struct timespec64 ts; 9683 u64 cycle; 9684 int ret; 9685 9686 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9687 return -KVM_EOPNOTSUPP; 9688 9689 /* 9690 * When tsc is in permanent catchup mode guests won't be able to use 9691 * pvclock_read_retry loop to get consistent view of pvclock 9692 */ 9693 if (vcpu->arch.tsc_always_catchup) 9694 return -KVM_EOPNOTSUPP; 9695 9696 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9697 return -KVM_EOPNOTSUPP; 9698 9699 clock_pairing.sec = ts.tv_sec; 9700 clock_pairing.nsec = ts.tv_nsec; 9701 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9702 clock_pairing.flags = 0; 9703 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9704 9705 ret = 0; 9706 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9707 sizeof(struct kvm_clock_pairing))) 9708 ret = -KVM_EFAULT; 9709 9710 return ret; 9711 } 9712 #endif 9713 9714 /* 9715 * kvm_pv_kick_cpu_op: Kick a vcpu. 9716 * 9717 * @apicid - apicid of vcpu to be kicked. 9718 */ 9719 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9720 { 9721 /* 9722 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9723 * common code, e.g. for tracing. Defer initialization to the compiler. 9724 */ 9725 struct kvm_lapic_irq lapic_irq = { 9726 .delivery_mode = APIC_DM_REMRD, 9727 .dest_mode = APIC_DEST_PHYSICAL, 9728 .shorthand = APIC_DEST_NOSHORT, 9729 .dest_id = apicid, 9730 }; 9731 9732 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9733 } 9734 9735 bool kvm_apicv_activated(struct kvm *kvm) 9736 { 9737 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9738 } 9739 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9740 9741 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9742 { 9743 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9744 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9745 9746 return (vm_reasons | vcpu_reasons) == 0; 9747 } 9748 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9749 9750 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9751 enum kvm_apicv_inhibit reason, bool set) 9752 { 9753 if (set) 9754 __set_bit(reason, inhibits); 9755 else 9756 __clear_bit(reason, inhibits); 9757 9758 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9759 } 9760 9761 static void kvm_apicv_init(struct kvm *kvm) 9762 { 9763 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9764 9765 init_rwsem(&kvm->arch.apicv_update_lock); 9766 9767 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9768 9769 if (!enable_apicv) 9770 set_or_clear_apicv_inhibit(inhibits, 9771 APICV_INHIBIT_REASON_DISABLE, true); 9772 } 9773 9774 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9775 { 9776 struct kvm_vcpu *target = NULL; 9777 struct kvm_apic_map *map; 9778 9779 vcpu->stat.directed_yield_attempted++; 9780 9781 if (single_task_running()) 9782 goto no_yield; 9783 9784 rcu_read_lock(); 9785 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9786 9787 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9788 target = map->phys_map[dest_id]->vcpu; 9789 9790 rcu_read_unlock(); 9791 9792 if (!target || !READ_ONCE(target->ready)) 9793 goto no_yield; 9794 9795 /* Ignore requests to yield to self */ 9796 if (vcpu == target) 9797 goto no_yield; 9798 9799 if (kvm_vcpu_yield_to(target) <= 0) 9800 goto no_yield; 9801 9802 vcpu->stat.directed_yield_successful++; 9803 9804 no_yield: 9805 return; 9806 } 9807 9808 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9809 { 9810 u64 ret = vcpu->run->hypercall.ret; 9811 9812 if (!is_64_bit_mode(vcpu)) 9813 ret = (u32)ret; 9814 kvm_rax_write(vcpu, ret); 9815 ++vcpu->stat.hypercalls; 9816 return kvm_skip_emulated_instruction(vcpu); 9817 } 9818 9819 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9820 { 9821 unsigned long nr, a0, a1, a2, a3, ret; 9822 int op_64_bit; 9823 9824 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9825 return kvm_xen_hypercall(vcpu); 9826 9827 if (kvm_hv_hypercall_enabled(vcpu)) 9828 return kvm_hv_hypercall(vcpu); 9829 9830 nr = kvm_rax_read(vcpu); 9831 a0 = kvm_rbx_read(vcpu); 9832 a1 = kvm_rcx_read(vcpu); 9833 a2 = kvm_rdx_read(vcpu); 9834 a3 = kvm_rsi_read(vcpu); 9835 9836 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9837 9838 op_64_bit = is_64_bit_hypercall(vcpu); 9839 if (!op_64_bit) { 9840 nr &= 0xFFFFFFFF; 9841 a0 &= 0xFFFFFFFF; 9842 a1 &= 0xFFFFFFFF; 9843 a2 &= 0xFFFFFFFF; 9844 a3 &= 0xFFFFFFFF; 9845 } 9846 9847 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9848 ret = -KVM_EPERM; 9849 goto out; 9850 } 9851 9852 ret = -KVM_ENOSYS; 9853 9854 switch (nr) { 9855 case KVM_HC_VAPIC_POLL_IRQ: 9856 ret = 0; 9857 break; 9858 case KVM_HC_KICK_CPU: 9859 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9860 break; 9861 9862 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9863 kvm_sched_yield(vcpu, a1); 9864 ret = 0; 9865 break; 9866 #ifdef CONFIG_X86_64 9867 case KVM_HC_CLOCK_PAIRING: 9868 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9869 break; 9870 #endif 9871 case KVM_HC_SEND_IPI: 9872 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9873 break; 9874 9875 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9876 break; 9877 case KVM_HC_SCHED_YIELD: 9878 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9879 break; 9880 9881 kvm_sched_yield(vcpu, a0); 9882 ret = 0; 9883 break; 9884 case KVM_HC_MAP_GPA_RANGE: { 9885 u64 gpa = a0, npages = a1, attrs = a2; 9886 9887 ret = -KVM_ENOSYS; 9888 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9889 break; 9890 9891 if (!PAGE_ALIGNED(gpa) || !npages || 9892 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9893 ret = -KVM_EINVAL; 9894 break; 9895 } 9896 9897 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9898 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9899 vcpu->run->hypercall.args[0] = gpa; 9900 vcpu->run->hypercall.args[1] = npages; 9901 vcpu->run->hypercall.args[2] = attrs; 9902 vcpu->run->hypercall.flags = 0; 9903 if (op_64_bit) 9904 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9905 9906 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9907 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9908 return 0; 9909 } 9910 default: 9911 ret = -KVM_ENOSYS; 9912 break; 9913 } 9914 out: 9915 if (!op_64_bit) 9916 ret = (u32)ret; 9917 kvm_rax_write(vcpu, ret); 9918 9919 ++vcpu->stat.hypercalls; 9920 return kvm_skip_emulated_instruction(vcpu); 9921 } 9922 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9923 9924 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9925 { 9926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9927 char instruction[3]; 9928 unsigned long rip = kvm_rip_read(vcpu); 9929 9930 /* 9931 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9932 * the pieces. 9933 */ 9934 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9935 ctxt->exception.error_code_valid = false; 9936 ctxt->exception.vector = UD_VECTOR; 9937 ctxt->have_exception = true; 9938 return X86EMUL_PROPAGATE_FAULT; 9939 } 9940 9941 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9942 9943 return emulator_write_emulated(ctxt, rip, instruction, 3, 9944 &ctxt->exception); 9945 } 9946 9947 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9948 { 9949 return vcpu->run->request_interrupt_window && 9950 likely(!pic_in_kernel(vcpu->kvm)); 9951 } 9952 9953 /* Called within kvm->srcu read side. */ 9954 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9955 { 9956 struct kvm_run *kvm_run = vcpu->run; 9957 9958 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9959 kvm_run->cr8 = kvm_get_cr8(vcpu); 9960 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9961 9962 kvm_run->ready_for_interrupt_injection = 9963 pic_in_kernel(vcpu->kvm) || 9964 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9965 9966 if (is_smm(vcpu)) 9967 kvm_run->flags |= KVM_RUN_X86_SMM; 9968 } 9969 9970 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9971 { 9972 int max_irr, tpr; 9973 9974 if (!kvm_x86_ops.update_cr8_intercept) 9975 return; 9976 9977 if (!lapic_in_kernel(vcpu)) 9978 return; 9979 9980 if (vcpu->arch.apic->apicv_active) 9981 return; 9982 9983 if (!vcpu->arch.apic->vapic_addr) 9984 max_irr = kvm_lapic_find_highest_irr(vcpu); 9985 else 9986 max_irr = -1; 9987 9988 if (max_irr != -1) 9989 max_irr >>= 4; 9990 9991 tpr = kvm_lapic_get_cr8(vcpu); 9992 9993 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9994 } 9995 9996 9997 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9998 { 9999 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10000 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10001 return 1; 10002 } 10003 10004 return kvm_x86_ops.nested_ops->check_events(vcpu); 10005 } 10006 10007 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10008 { 10009 /* 10010 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10011 * exceptions don't report error codes. The presence of an error code 10012 * is carried with the exception and only stripped when the exception 10013 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10014 * report an error code despite the CPU being in Real Mode. 10015 */ 10016 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10017 10018 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10019 vcpu->arch.exception.has_error_code, 10020 vcpu->arch.exception.error_code, 10021 vcpu->arch.exception.injected); 10022 10023 static_call(kvm_x86_inject_exception)(vcpu); 10024 } 10025 10026 /* 10027 * Check for any event (interrupt or exception) that is ready to be injected, 10028 * and if there is at least one event, inject the event with the highest 10029 * priority. This handles both "pending" events, i.e. events that have never 10030 * been injected into the guest, and "injected" events, i.e. events that were 10031 * injected as part of a previous VM-Enter, but weren't successfully delivered 10032 * and need to be re-injected. 10033 * 10034 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10035 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10036 * be able to inject exceptions in the "middle" of an instruction, and so must 10037 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10038 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10039 * boundaries is necessary and correct. 10040 * 10041 * For simplicity, KVM uses a single path to inject all events (except events 10042 * that are injected directly from L1 to L2) and doesn't explicitly track 10043 * instruction boundaries for asynchronous events. However, because VM-Exits 10044 * that can occur during instruction execution typically result in KVM skipping 10045 * the instruction or injecting an exception, e.g. instruction and exception 10046 * intercepts, and because pending exceptions have higher priority than pending 10047 * interrupts, KVM still honors instruction boundaries in most scenarios. 10048 * 10049 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10050 * the instruction or inject an exception, then KVM can incorrecty inject a new 10051 * asynchrounous event if the event became pending after the CPU fetched the 10052 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10053 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10054 * injected on the restarted instruction instead of being deferred until the 10055 * instruction completes. 10056 * 10057 * In practice, this virtualization hole is unlikely to be observed by the 10058 * guest, and even less likely to cause functional problems. To detect the 10059 * hole, the guest would have to trigger an event on a side effect of an early 10060 * phase of instruction execution, e.g. on the instruction fetch from memory. 10061 * And for it to be a functional problem, the guest would need to depend on the 10062 * ordering between that side effect, the instruction completing, _and_ the 10063 * delivery of the asynchronous event. 10064 */ 10065 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10066 bool *req_immediate_exit) 10067 { 10068 bool can_inject; 10069 int r; 10070 10071 /* 10072 * Process nested events first, as nested VM-Exit supercedes event 10073 * re-injection. If there's an event queued for re-injection, it will 10074 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10075 */ 10076 if (is_guest_mode(vcpu)) 10077 r = kvm_check_nested_events(vcpu); 10078 else 10079 r = 0; 10080 10081 /* 10082 * Re-inject exceptions and events *especially* if immediate entry+exit 10083 * to/from L2 is needed, as any event that has already been injected 10084 * into L2 needs to complete its lifecycle before injecting a new event. 10085 * 10086 * Don't re-inject an NMI or interrupt if there is a pending exception. 10087 * This collision arises if an exception occurred while vectoring the 10088 * injected event, KVM intercepted said exception, and KVM ultimately 10089 * determined the fault belongs to the guest and queues the exception 10090 * for injection back into the guest. 10091 * 10092 * "Injected" interrupts can also collide with pending exceptions if 10093 * userspace ignores the "ready for injection" flag and blindly queues 10094 * an interrupt. In that case, prioritizing the exception is correct, 10095 * as the exception "occurred" before the exit to userspace. Trap-like 10096 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10097 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10098 * priority, they're only generated (pended) during instruction 10099 * execution, and interrupts are recognized at instruction boundaries. 10100 * Thus a pending fault-like exception means the fault occurred on the 10101 * *previous* instruction and must be serviced prior to recognizing any 10102 * new events in order to fully complete the previous instruction. 10103 */ 10104 if (vcpu->arch.exception.injected) 10105 kvm_inject_exception(vcpu); 10106 else if (kvm_is_exception_pending(vcpu)) 10107 ; /* see above */ 10108 else if (vcpu->arch.nmi_injected) 10109 static_call(kvm_x86_inject_nmi)(vcpu); 10110 else if (vcpu->arch.interrupt.injected) 10111 static_call(kvm_x86_inject_irq)(vcpu, true); 10112 10113 /* 10114 * Exceptions that morph to VM-Exits are handled above, and pending 10115 * exceptions on top of injected exceptions that do not VM-Exit should 10116 * either morph to #DF or, sadly, override the injected exception. 10117 */ 10118 WARN_ON_ONCE(vcpu->arch.exception.injected && 10119 vcpu->arch.exception.pending); 10120 10121 /* 10122 * Bail if immediate entry+exit to/from the guest is needed to complete 10123 * nested VM-Enter or event re-injection so that a different pending 10124 * event can be serviced (or if KVM needs to exit to userspace). 10125 * 10126 * Otherwise, continue processing events even if VM-Exit occurred. The 10127 * VM-Exit will have cleared exceptions that were meant for L2, but 10128 * there may now be events that can be injected into L1. 10129 */ 10130 if (r < 0) 10131 goto out; 10132 10133 /* 10134 * A pending exception VM-Exit should either result in nested VM-Exit 10135 * or force an immediate re-entry and exit to/from L2, and exception 10136 * VM-Exits cannot be injected (flag should _never_ be set). 10137 */ 10138 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10139 vcpu->arch.exception_vmexit.pending); 10140 10141 /* 10142 * New events, other than exceptions, cannot be injected if KVM needs 10143 * to re-inject a previous event. See above comments on re-injecting 10144 * for why pending exceptions get priority. 10145 */ 10146 can_inject = !kvm_event_needs_reinjection(vcpu); 10147 10148 if (vcpu->arch.exception.pending) { 10149 /* 10150 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10151 * value pushed on the stack. Trap-like exception and all #DBs 10152 * leave RF as-is (KVM follows Intel's behavior in this regard; 10153 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10154 * 10155 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10156 * describe the behavior of General Detect #DBs, which are 10157 * fault-like. They do _not_ set RF, a la code breakpoints. 10158 */ 10159 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10160 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10161 X86_EFLAGS_RF); 10162 10163 if (vcpu->arch.exception.vector == DB_VECTOR) { 10164 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10165 if (vcpu->arch.dr7 & DR7_GD) { 10166 vcpu->arch.dr7 &= ~DR7_GD; 10167 kvm_update_dr7(vcpu); 10168 } 10169 } 10170 10171 kvm_inject_exception(vcpu); 10172 10173 vcpu->arch.exception.pending = false; 10174 vcpu->arch.exception.injected = true; 10175 10176 can_inject = false; 10177 } 10178 10179 /* Don't inject interrupts if the user asked to avoid doing so */ 10180 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10181 return 0; 10182 10183 /* 10184 * Finally, inject interrupt events. If an event cannot be injected 10185 * due to architectural conditions (e.g. IF=0) a window-open exit 10186 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10187 * and can architecturally be injected, but we cannot do it right now: 10188 * an interrupt could have arrived just now and we have to inject it 10189 * as a vmexit, or there could already an event in the queue, which is 10190 * indicated by can_inject. In that case we request an immediate exit 10191 * in order to make progress and get back here for another iteration. 10192 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10193 */ 10194 #ifdef CONFIG_KVM_SMM 10195 if (vcpu->arch.smi_pending) { 10196 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10197 if (r < 0) 10198 goto out; 10199 if (r) { 10200 vcpu->arch.smi_pending = false; 10201 ++vcpu->arch.smi_count; 10202 enter_smm(vcpu); 10203 can_inject = false; 10204 } else 10205 static_call(kvm_x86_enable_smi_window)(vcpu); 10206 } 10207 #endif 10208 10209 if (vcpu->arch.nmi_pending) { 10210 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10211 if (r < 0) 10212 goto out; 10213 if (r) { 10214 --vcpu->arch.nmi_pending; 10215 vcpu->arch.nmi_injected = true; 10216 static_call(kvm_x86_inject_nmi)(vcpu); 10217 can_inject = false; 10218 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10219 } 10220 if (vcpu->arch.nmi_pending) 10221 static_call(kvm_x86_enable_nmi_window)(vcpu); 10222 } 10223 10224 if (kvm_cpu_has_injectable_intr(vcpu)) { 10225 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10226 if (r < 0) 10227 goto out; 10228 if (r) { 10229 int irq = kvm_cpu_get_interrupt(vcpu); 10230 10231 if (!WARN_ON_ONCE(irq == -1)) { 10232 kvm_queue_interrupt(vcpu, irq, false); 10233 static_call(kvm_x86_inject_irq)(vcpu, false); 10234 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10235 } 10236 } 10237 if (kvm_cpu_has_injectable_intr(vcpu)) 10238 static_call(kvm_x86_enable_irq_window)(vcpu); 10239 } 10240 10241 if (is_guest_mode(vcpu) && 10242 kvm_x86_ops.nested_ops->has_events && 10243 kvm_x86_ops.nested_ops->has_events(vcpu)) 10244 *req_immediate_exit = true; 10245 10246 /* 10247 * KVM must never queue a new exception while injecting an event; KVM 10248 * is done emulating and should only propagate the to-be-injected event 10249 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10250 * infinite loop as KVM will bail from VM-Enter to inject the pending 10251 * exception and start the cycle all over. 10252 * 10253 * Exempt triple faults as they have special handling and won't put the 10254 * vCPU into an infinite loop. Triple fault can be queued when running 10255 * VMX without unrestricted guest, as that requires KVM to emulate Real 10256 * Mode events (see kvm_inject_realmode_interrupt()). 10257 */ 10258 WARN_ON_ONCE(vcpu->arch.exception.pending || 10259 vcpu->arch.exception_vmexit.pending); 10260 return 0; 10261 10262 out: 10263 if (r == -EBUSY) { 10264 *req_immediate_exit = true; 10265 r = 0; 10266 } 10267 return r; 10268 } 10269 10270 static void process_nmi(struct kvm_vcpu *vcpu) 10271 { 10272 unsigned int limit; 10273 10274 /* 10275 * x86 is limited to one NMI pending, but because KVM can't react to 10276 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10277 * scheduled out, KVM needs to play nice with two queued NMIs showing 10278 * up at the same time. To handle this scenario, allow two NMIs to be 10279 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10280 * waiting for a previous NMI injection to complete (which effectively 10281 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10282 * will request an NMI window to handle the second NMI. 10283 */ 10284 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10285 limit = 1; 10286 else 10287 limit = 2; 10288 10289 /* 10290 * Adjust the limit to account for pending virtual NMIs, which aren't 10291 * tracked in vcpu->arch.nmi_pending. 10292 */ 10293 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10294 limit--; 10295 10296 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10297 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10298 10299 if (vcpu->arch.nmi_pending && 10300 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10301 vcpu->arch.nmi_pending--; 10302 10303 if (vcpu->arch.nmi_pending) 10304 kvm_make_request(KVM_REQ_EVENT, vcpu); 10305 } 10306 10307 /* Return total number of NMIs pending injection to the VM */ 10308 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10309 { 10310 return vcpu->arch.nmi_pending + 10311 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10312 } 10313 10314 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10315 unsigned long *vcpu_bitmap) 10316 { 10317 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10318 } 10319 10320 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10321 { 10322 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10323 } 10324 10325 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10326 { 10327 struct kvm_lapic *apic = vcpu->arch.apic; 10328 bool activate; 10329 10330 if (!lapic_in_kernel(vcpu)) 10331 return; 10332 10333 down_read(&vcpu->kvm->arch.apicv_update_lock); 10334 preempt_disable(); 10335 10336 /* Do not activate APICV when APIC is disabled */ 10337 activate = kvm_vcpu_apicv_activated(vcpu) && 10338 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10339 10340 if (apic->apicv_active == activate) 10341 goto out; 10342 10343 apic->apicv_active = activate; 10344 kvm_apic_update_apicv(vcpu); 10345 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10346 10347 /* 10348 * When APICv gets disabled, we may still have injected interrupts 10349 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10350 * still active when the interrupt got accepted. Make sure 10351 * kvm_check_and_inject_events() is called to check for that. 10352 */ 10353 if (!apic->apicv_active) 10354 kvm_make_request(KVM_REQ_EVENT, vcpu); 10355 10356 out: 10357 preempt_enable(); 10358 up_read(&vcpu->kvm->arch.apicv_update_lock); 10359 } 10360 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10361 10362 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10363 { 10364 if (!lapic_in_kernel(vcpu)) 10365 return; 10366 10367 /* 10368 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10369 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10370 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10371 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10372 * this case so that KVM can the AVIC doorbell to inject interrupts to 10373 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10374 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10375 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10376 * access page is sticky. 10377 */ 10378 if (apic_x2apic_mode(vcpu->arch.apic) && 10379 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10380 kvm_inhibit_apic_access_page(vcpu); 10381 10382 __kvm_vcpu_update_apicv(vcpu); 10383 } 10384 10385 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10386 enum kvm_apicv_inhibit reason, bool set) 10387 { 10388 unsigned long old, new; 10389 10390 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10391 10392 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10393 return; 10394 10395 old = new = kvm->arch.apicv_inhibit_reasons; 10396 10397 set_or_clear_apicv_inhibit(&new, reason, set); 10398 10399 if (!!old != !!new) { 10400 /* 10401 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10402 * false positives in the sanity check WARN in svm_vcpu_run(). 10403 * This task will wait for all vCPUs to ack the kick IRQ before 10404 * updating apicv_inhibit_reasons, and all other vCPUs will 10405 * block on acquiring apicv_update_lock so that vCPUs can't 10406 * redo svm_vcpu_run() without seeing the new inhibit state. 10407 * 10408 * Note, holding apicv_update_lock and taking it in the read 10409 * side (handling the request) also prevents other vCPUs from 10410 * servicing the request with a stale apicv_inhibit_reasons. 10411 */ 10412 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10413 kvm->arch.apicv_inhibit_reasons = new; 10414 if (new) { 10415 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10416 int idx = srcu_read_lock(&kvm->srcu); 10417 10418 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10419 srcu_read_unlock(&kvm->srcu, idx); 10420 } 10421 } else { 10422 kvm->arch.apicv_inhibit_reasons = new; 10423 } 10424 } 10425 10426 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10427 enum kvm_apicv_inhibit reason, bool set) 10428 { 10429 if (!enable_apicv) 10430 return; 10431 10432 down_write(&kvm->arch.apicv_update_lock); 10433 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10434 up_write(&kvm->arch.apicv_update_lock); 10435 } 10436 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10437 10438 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10439 { 10440 if (!kvm_apic_present(vcpu)) 10441 return; 10442 10443 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10444 10445 if (irqchip_split(vcpu->kvm)) 10446 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10447 else { 10448 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10449 if (ioapic_in_kernel(vcpu->kvm)) 10450 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10451 } 10452 10453 if (is_guest_mode(vcpu)) 10454 vcpu->arch.load_eoi_exitmap_pending = true; 10455 else 10456 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10457 } 10458 10459 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10460 { 10461 u64 eoi_exit_bitmap[4]; 10462 10463 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10464 return; 10465 10466 if (to_hv_vcpu(vcpu)) { 10467 bitmap_or((ulong *)eoi_exit_bitmap, 10468 vcpu->arch.ioapic_handled_vectors, 10469 to_hv_synic(vcpu)->vec_bitmap, 256); 10470 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10471 return; 10472 } 10473 10474 static_call_cond(kvm_x86_load_eoi_exitmap)( 10475 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10476 } 10477 10478 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10479 { 10480 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10481 } 10482 10483 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10484 { 10485 if (!lapic_in_kernel(vcpu)) 10486 return; 10487 10488 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10489 } 10490 10491 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10492 { 10493 smp_send_reschedule(vcpu->cpu); 10494 } 10495 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10496 10497 /* 10498 * Called within kvm->srcu read side. 10499 * Returns 1 to let vcpu_run() continue the guest execution loop without 10500 * exiting to the userspace. Otherwise, the value will be returned to the 10501 * userspace. 10502 */ 10503 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10504 { 10505 int r; 10506 bool req_int_win = 10507 dm_request_for_irq_injection(vcpu) && 10508 kvm_cpu_accept_dm_intr(vcpu); 10509 fastpath_t exit_fastpath; 10510 10511 bool req_immediate_exit = false; 10512 10513 if (kvm_request_pending(vcpu)) { 10514 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10515 r = -EIO; 10516 goto out; 10517 } 10518 10519 if (kvm_dirty_ring_check_request(vcpu)) { 10520 r = 0; 10521 goto out; 10522 } 10523 10524 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10525 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10526 r = 0; 10527 goto out; 10528 } 10529 } 10530 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10531 kvm_mmu_free_obsolete_roots(vcpu); 10532 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10533 __kvm_migrate_timers(vcpu); 10534 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10535 kvm_update_masterclock(vcpu->kvm); 10536 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10537 kvm_gen_kvmclock_update(vcpu); 10538 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10539 r = kvm_guest_time_update(vcpu); 10540 if (unlikely(r)) 10541 goto out; 10542 } 10543 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10544 kvm_mmu_sync_roots(vcpu); 10545 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10546 kvm_mmu_load_pgd(vcpu); 10547 10548 /* 10549 * Note, the order matters here, as flushing "all" TLB entries 10550 * also flushes the "current" TLB entries, i.e. servicing the 10551 * flush "all" will clear any request to flush "current". 10552 */ 10553 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10554 kvm_vcpu_flush_tlb_all(vcpu); 10555 10556 kvm_service_local_tlb_flush_requests(vcpu); 10557 10558 /* 10559 * Fall back to a "full" guest flush if Hyper-V's precise 10560 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10561 * the flushes are considered "remote" and not "local" because 10562 * the requests can be initiated from other vCPUs. 10563 */ 10564 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10565 kvm_hv_vcpu_flush_tlb(vcpu)) 10566 kvm_vcpu_flush_tlb_guest(vcpu); 10567 10568 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10569 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10570 r = 0; 10571 goto out; 10572 } 10573 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10574 if (is_guest_mode(vcpu)) 10575 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10576 10577 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10578 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10579 vcpu->mmio_needed = 0; 10580 r = 0; 10581 goto out; 10582 } 10583 } 10584 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10585 /* Page is swapped out. Do synthetic halt */ 10586 vcpu->arch.apf.halted = true; 10587 r = 1; 10588 goto out; 10589 } 10590 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10591 record_steal_time(vcpu); 10592 #ifdef CONFIG_KVM_SMM 10593 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10594 process_smi(vcpu); 10595 #endif 10596 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10597 process_nmi(vcpu); 10598 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10599 kvm_pmu_handle_event(vcpu); 10600 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10601 kvm_pmu_deliver_pmi(vcpu); 10602 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10603 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10604 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10605 vcpu->arch.ioapic_handled_vectors)) { 10606 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10607 vcpu->run->eoi.vector = 10608 vcpu->arch.pending_ioapic_eoi; 10609 r = 0; 10610 goto out; 10611 } 10612 } 10613 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10614 vcpu_scan_ioapic(vcpu); 10615 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10616 vcpu_load_eoi_exitmap(vcpu); 10617 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10618 kvm_vcpu_reload_apic_access_page(vcpu); 10619 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10620 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10621 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10622 vcpu->run->system_event.ndata = 0; 10623 r = 0; 10624 goto out; 10625 } 10626 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10627 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10628 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10629 vcpu->run->system_event.ndata = 0; 10630 r = 0; 10631 goto out; 10632 } 10633 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10634 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10635 10636 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10637 vcpu->run->hyperv = hv_vcpu->exit; 10638 r = 0; 10639 goto out; 10640 } 10641 10642 /* 10643 * KVM_REQ_HV_STIMER has to be processed after 10644 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10645 * depend on the guest clock being up-to-date 10646 */ 10647 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10648 kvm_hv_process_stimers(vcpu); 10649 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10650 kvm_vcpu_update_apicv(vcpu); 10651 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10652 kvm_check_async_pf_completion(vcpu); 10653 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10654 static_call(kvm_x86_msr_filter_changed)(vcpu); 10655 10656 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10657 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10658 } 10659 10660 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10661 kvm_xen_has_interrupt(vcpu)) { 10662 ++vcpu->stat.req_event; 10663 r = kvm_apic_accept_events(vcpu); 10664 if (r < 0) { 10665 r = 0; 10666 goto out; 10667 } 10668 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10669 r = 1; 10670 goto out; 10671 } 10672 10673 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10674 if (r < 0) { 10675 r = 0; 10676 goto out; 10677 } 10678 if (req_int_win) 10679 static_call(kvm_x86_enable_irq_window)(vcpu); 10680 10681 if (kvm_lapic_enabled(vcpu)) { 10682 update_cr8_intercept(vcpu); 10683 kvm_lapic_sync_to_vapic(vcpu); 10684 } 10685 } 10686 10687 r = kvm_mmu_reload(vcpu); 10688 if (unlikely(r)) { 10689 goto cancel_injection; 10690 } 10691 10692 preempt_disable(); 10693 10694 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10695 10696 /* 10697 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10698 * IPI are then delayed after guest entry, which ensures that they 10699 * result in virtual interrupt delivery. 10700 */ 10701 local_irq_disable(); 10702 10703 /* Store vcpu->apicv_active before vcpu->mode. */ 10704 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10705 10706 kvm_vcpu_srcu_read_unlock(vcpu); 10707 10708 /* 10709 * 1) We should set ->mode before checking ->requests. Please see 10710 * the comment in kvm_vcpu_exiting_guest_mode(). 10711 * 10712 * 2) For APICv, we should set ->mode before checking PID.ON. This 10713 * pairs with the memory barrier implicit in pi_test_and_set_on 10714 * (see vmx_deliver_posted_interrupt). 10715 * 10716 * 3) This also orders the write to mode from any reads to the page 10717 * tables done while the VCPU is running. Please see the comment 10718 * in kvm_flush_remote_tlbs. 10719 */ 10720 smp_mb__after_srcu_read_unlock(); 10721 10722 /* 10723 * Process pending posted interrupts to handle the case where the 10724 * notification IRQ arrived in the host, or was never sent (because the 10725 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10726 * status, KVM doesn't update assigned devices when APICv is inhibited, 10727 * i.e. they can post interrupts even if APICv is temporarily disabled. 10728 */ 10729 if (kvm_lapic_enabled(vcpu)) 10730 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10731 10732 if (kvm_vcpu_exit_request(vcpu)) { 10733 vcpu->mode = OUTSIDE_GUEST_MODE; 10734 smp_wmb(); 10735 local_irq_enable(); 10736 preempt_enable(); 10737 kvm_vcpu_srcu_read_lock(vcpu); 10738 r = 1; 10739 goto cancel_injection; 10740 } 10741 10742 if (req_immediate_exit) { 10743 kvm_make_request(KVM_REQ_EVENT, vcpu); 10744 static_call(kvm_x86_request_immediate_exit)(vcpu); 10745 } 10746 10747 fpregs_assert_state_consistent(); 10748 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10749 switch_fpu_return(); 10750 10751 if (vcpu->arch.guest_fpu.xfd_err) 10752 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10753 10754 if (unlikely(vcpu->arch.switch_db_regs)) { 10755 set_debugreg(0, 7); 10756 set_debugreg(vcpu->arch.eff_db[0], 0); 10757 set_debugreg(vcpu->arch.eff_db[1], 1); 10758 set_debugreg(vcpu->arch.eff_db[2], 2); 10759 set_debugreg(vcpu->arch.eff_db[3], 3); 10760 } else if (unlikely(hw_breakpoint_active())) { 10761 set_debugreg(0, 7); 10762 } 10763 10764 guest_timing_enter_irqoff(); 10765 10766 for (;;) { 10767 /* 10768 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10769 * update must kick and wait for all vCPUs before toggling the 10770 * per-VM state, and responsing vCPUs must wait for the update 10771 * to complete before servicing KVM_REQ_APICV_UPDATE. 10772 */ 10773 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10774 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10775 10776 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10777 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10778 break; 10779 10780 if (kvm_lapic_enabled(vcpu)) 10781 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10782 10783 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10784 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10785 break; 10786 } 10787 10788 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10789 ++vcpu->stat.exits; 10790 } 10791 10792 /* 10793 * Do this here before restoring debug registers on the host. And 10794 * since we do this before handling the vmexit, a DR access vmexit 10795 * can (a) read the correct value of the debug registers, (b) set 10796 * KVM_DEBUGREG_WONT_EXIT again. 10797 */ 10798 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10799 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10800 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10801 kvm_update_dr0123(vcpu); 10802 kvm_update_dr7(vcpu); 10803 } 10804 10805 /* 10806 * If the guest has used debug registers, at least dr7 10807 * will be disabled while returning to the host. 10808 * If we don't have active breakpoints in the host, we don't 10809 * care about the messed up debug address registers. But if 10810 * we have some of them active, restore the old state. 10811 */ 10812 if (hw_breakpoint_active()) 10813 hw_breakpoint_restore(); 10814 10815 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10816 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10817 10818 vcpu->mode = OUTSIDE_GUEST_MODE; 10819 smp_wmb(); 10820 10821 /* 10822 * Sync xfd before calling handle_exit_irqoff() which may 10823 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10824 * in #NM irqoff handler). 10825 */ 10826 if (vcpu->arch.xfd_no_write_intercept) 10827 fpu_sync_guest_vmexit_xfd_state(); 10828 10829 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10830 10831 if (vcpu->arch.guest_fpu.xfd_err) 10832 wrmsrl(MSR_IA32_XFD_ERR, 0); 10833 10834 /* 10835 * Consume any pending interrupts, including the possible source of 10836 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10837 * An instruction is required after local_irq_enable() to fully unblock 10838 * interrupts on processors that implement an interrupt shadow, the 10839 * stat.exits increment will do nicely. 10840 */ 10841 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10842 local_irq_enable(); 10843 ++vcpu->stat.exits; 10844 local_irq_disable(); 10845 kvm_after_interrupt(vcpu); 10846 10847 /* 10848 * Wait until after servicing IRQs to account guest time so that any 10849 * ticks that occurred while running the guest are properly accounted 10850 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10851 * of accounting via context tracking, but the loss of accuracy is 10852 * acceptable for all known use cases. 10853 */ 10854 guest_timing_exit_irqoff(); 10855 10856 local_irq_enable(); 10857 preempt_enable(); 10858 10859 kvm_vcpu_srcu_read_lock(vcpu); 10860 10861 /* 10862 * Profile KVM exit RIPs: 10863 */ 10864 if (unlikely(prof_on == KVM_PROFILING)) { 10865 unsigned long rip = kvm_rip_read(vcpu); 10866 profile_hit(KVM_PROFILING, (void *)rip); 10867 } 10868 10869 if (unlikely(vcpu->arch.tsc_always_catchup)) 10870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10871 10872 if (vcpu->arch.apic_attention) 10873 kvm_lapic_sync_from_vapic(vcpu); 10874 10875 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10876 return r; 10877 10878 cancel_injection: 10879 if (req_immediate_exit) 10880 kvm_make_request(KVM_REQ_EVENT, vcpu); 10881 static_call(kvm_x86_cancel_injection)(vcpu); 10882 if (unlikely(vcpu->arch.apic_attention)) 10883 kvm_lapic_sync_from_vapic(vcpu); 10884 out: 10885 return r; 10886 } 10887 10888 /* Called within kvm->srcu read side. */ 10889 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10890 { 10891 bool hv_timer; 10892 10893 if (!kvm_arch_vcpu_runnable(vcpu)) { 10894 /* 10895 * Switch to the software timer before halt-polling/blocking as 10896 * the guest's timer may be a break event for the vCPU, and the 10897 * hypervisor timer runs only when the CPU is in guest mode. 10898 * Switch before halt-polling so that KVM recognizes an expired 10899 * timer before blocking. 10900 */ 10901 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10902 if (hv_timer) 10903 kvm_lapic_switch_to_sw_timer(vcpu); 10904 10905 kvm_vcpu_srcu_read_unlock(vcpu); 10906 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10907 kvm_vcpu_halt(vcpu); 10908 else 10909 kvm_vcpu_block(vcpu); 10910 kvm_vcpu_srcu_read_lock(vcpu); 10911 10912 if (hv_timer) 10913 kvm_lapic_switch_to_hv_timer(vcpu); 10914 10915 /* 10916 * If the vCPU is not runnable, a signal or another host event 10917 * of some kind is pending; service it without changing the 10918 * vCPU's activity state. 10919 */ 10920 if (!kvm_arch_vcpu_runnable(vcpu)) 10921 return 1; 10922 } 10923 10924 /* 10925 * Evaluate nested events before exiting the halted state. This allows 10926 * the halt state to be recorded properly in the VMCS12's activity 10927 * state field (AMD does not have a similar field and a VM-Exit always 10928 * causes a spurious wakeup from HLT). 10929 */ 10930 if (is_guest_mode(vcpu)) { 10931 if (kvm_check_nested_events(vcpu) < 0) 10932 return 0; 10933 } 10934 10935 if (kvm_apic_accept_events(vcpu) < 0) 10936 return 0; 10937 switch(vcpu->arch.mp_state) { 10938 case KVM_MP_STATE_HALTED: 10939 case KVM_MP_STATE_AP_RESET_HOLD: 10940 vcpu->arch.pv.pv_unhalted = false; 10941 vcpu->arch.mp_state = 10942 KVM_MP_STATE_RUNNABLE; 10943 fallthrough; 10944 case KVM_MP_STATE_RUNNABLE: 10945 vcpu->arch.apf.halted = false; 10946 break; 10947 case KVM_MP_STATE_INIT_RECEIVED: 10948 break; 10949 default: 10950 WARN_ON_ONCE(1); 10951 break; 10952 } 10953 return 1; 10954 } 10955 10956 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10957 { 10958 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10959 !vcpu->arch.apf.halted); 10960 } 10961 10962 /* Called within kvm->srcu read side. */ 10963 static int vcpu_run(struct kvm_vcpu *vcpu) 10964 { 10965 int r; 10966 10967 vcpu->arch.l1tf_flush_l1d = true; 10968 10969 for (;;) { 10970 /* 10971 * If another guest vCPU requests a PV TLB flush in the middle 10972 * of instruction emulation, the rest of the emulation could 10973 * use a stale page translation. Assume that any code after 10974 * this point can start executing an instruction. 10975 */ 10976 vcpu->arch.at_instruction_boundary = false; 10977 if (kvm_vcpu_running(vcpu)) { 10978 r = vcpu_enter_guest(vcpu); 10979 } else { 10980 r = vcpu_block(vcpu); 10981 } 10982 10983 if (r <= 0) 10984 break; 10985 10986 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10987 if (kvm_xen_has_pending_events(vcpu)) 10988 kvm_xen_inject_pending_events(vcpu); 10989 10990 if (kvm_cpu_has_pending_timer(vcpu)) 10991 kvm_inject_pending_timer_irqs(vcpu); 10992 10993 if (dm_request_for_irq_injection(vcpu) && 10994 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10995 r = 0; 10996 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10997 ++vcpu->stat.request_irq_exits; 10998 break; 10999 } 11000 11001 if (__xfer_to_guest_mode_work_pending()) { 11002 kvm_vcpu_srcu_read_unlock(vcpu); 11003 r = xfer_to_guest_mode_handle_work(vcpu); 11004 kvm_vcpu_srcu_read_lock(vcpu); 11005 if (r) 11006 return r; 11007 } 11008 } 11009 11010 return r; 11011 } 11012 11013 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11014 { 11015 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11016 } 11017 11018 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11019 { 11020 BUG_ON(!vcpu->arch.pio.count); 11021 11022 return complete_emulated_io(vcpu); 11023 } 11024 11025 /* 11026 * Implements the following, as a state machine: 11027 * 11028 * read: 11029 * for each fragment 11030 * for each mmio piece in the fragment 11031 * write gpa, len 11032 * exit 11033 * copy data 11034 * execute insn 11035 * 11036 * write: 11037 * for each fragment 11038 * for each mmio piece in the fragment 11039 * write gpa, len 11040 * copy data 11041 * exit 11042 */ 11043 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11044 { 11045 struct kvm_run *run = vcpu->run; 11046 struct kvm_mmio_fragment *frag; 11047 unsigned len; 11048 11049 BUG_ON(!vcpu->mmio_needed); 11050 11051 /* Complete previous fragment */ 11052 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11053 len = min(8u, frag->len); 11054 if (!vcpu->mmio_is_write) 11055 memcpy(frag->data, run->mmio.data, len); 11056 11057 if (frag->len <= 8) { 11058 /* Switch to the next fragment. */ 11059 frag++; 11060 vcpu->mmio_cur_fragment++; 11061 } else { 11062 /* Go forward to the next mmio piece. */ 11063 frag->data += len; 11064 frag->gpa += len; 11065 frag->len -= len; 11066 } 11067 11068 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11069 vcpu->mmio_needed = 0; 11070 11071 /* FIXME: return into emulator if single-stepping. */ 11072 if (vcpu->mmio_is_write) 11073 return 1; 11074 vcpu->mmio_read_completed = 1; 11075 return complete_emulated_io(vcpu); 11076 } 11077 11078 run->exit_reason = KVM_EXIT_MMIO; 11079 run->mmio.phys_addr = frag->gpa; 11080 if (vcpu->mmio_is_write) 11081 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11082 run->mmio.len = min(8u, frag->len); 11083 run->mmio.is_write = vcpu->mmio_is_write; 11084 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11085 return 0; 11086 } 11087 11088 /* Swap (qemu) user FPU context for the guest FPU context. */ 11089 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11090 { 11091 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11092 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11093 trace_kvm_fpu(1); 11094 } 11095 11096 /* When vcpu_run ends, restore user space FPU context. */ 11097 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11098 { 11099 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11100 ++vcpu->stat.fpu_reload; 11101 trace_kvm_fpu(0); 11102 } 11103 11104 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11105 { 11106 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11107 struct kvm_run *kvm_run = vcpu->run; 11108 int r; 11109 11110 vcpu_load(vcpu); 11111 kvm_sigset_activate(vcpu); 11112 kvm_run->flags = 0; 11113 kvm_load_guest_fpu(vcpu); 11114 11115 kvm_vcpu_srcu_read_lock(vcpu); 11116 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11117 if (kvm_run->immediate_exit) { 11118 r = -EINTR; 11119 goto out; 11120 } 11121 11122 /* 11123 * Don't bother switching APIC timer emulation from the 11124 * hypervisor timer to the software timer, the only way for the 11125 * APIC timer to be active is if userspace stuffed vCPU state, 11126 * i.e. put the vCPU into a nonsensical state. Only an INIT 11127 * will transition the vCPU out of UNINITIALIZED (without more 11128 * state stuffing from userspace), which will reset the local 11129 * APIC and thus cancel the timer or drop the IRQ (if the timer 11130 * already expired). 11131 */ 11132 kvm_vcpu_srcu_read_unlock(vcpu); 11133 kvm_vcpu_block(vcpu); 11134 kvm_vcpu_srcu_read_lock(vcpu); 11135 11136 if (kvm_apic_accept_events(vcpu) < 0) { 11137 r = 0; 11138 goto out; 11139 } 11140 r = -EAGAIN; 11141 if (signal_pending(current)) { 11142 r = -EINTR; 11143 kvm_run->exit_reason = KVM_EXIT_INTR; 11144 ++vcpu->stat.signal_exits; 11145 } 11146 goto out; 11147 } 11148 11149 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11150 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11151 r = -EINVAL; 11152 goto out; 11153 } 11154 11155 if (kvm_run->kvm_dirty_regs) { 11156 r = sync_regs(vcpu); 11157 if (r != 0) 11158 goto out; 11159 } 11160 11161 /* re-sync apic's tpr */ 11162 if (!lapic_in_kernel(vcpu)) { 11163 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11164 r = -EINVAL; 11165 goto out; 11166 } 11167 } 11168 11169 /* 11170 * If userspace set a pending exception and L2 is active, convert it to 11171 * a pending VM-Exit if L1 wants to intercept the exception. 11172 */ 11173 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11174 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11175 ex->error_code)) { 11176 kvm_queue_exception_vmexit(vcpu, ex->vector, 11177 ex->has_error_code, ex->error_code, 11178 ex->has_payload, ex->payload); 11179 ex->injected = false; 11180 ex->pending = false; 11181 } 11182 vcpu->arch.exception_from_userspace = false; 11183 11184 if (unlikely(vcpu->arch.complete_userspace_io)) { 11185 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11186 vcpu->arch.complete_userspace_io = NULL; 11187 r = cui(vcpu); 11188 if (r <= 0) 11189 goto out; 11190 } else { 11191 WARN_ON_ONCE(vcpu->arch.pio.count); 11192 WARN_ON_ONCE(vcpu->mmio_needed); 11193 } 11194 11195 if (kvm_run->immediate_exit) { 11196 r = -EINTR; 11197 goto out; 11198 } 11199 11200 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11201 if (r <= 0) 11202 goto out; 11203 11204 r = vcpu_run(vcpu); 11205 11206 out: 11207 kvm_put_guest_fpu(vcpu); 11208 if (kvm_run->kvm_valid_regs) 11209 store_regs(vcpu); 11210 post_kvm_run_save(vcpu); 11211 kvm_vcpu_srcu_read_unlock(vcpu); 11212 11213 kvm_sigset_deactivate(vcpu); 11214 vcpu_put(vcpu); 11215 return r; 11216 } 11217 11218 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11219 { 11220 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11221 /* 11222 * We are here if userspace calls get_regs() in the middle of 11223 * instruction emulation. Registers state needs to be copied 11224 * back from emulation context to vcpu. Userspace shouldn't do 11225 * that usually, but some bad designed PV devices (vmware 11226 * backdoor interface) need this to work 11227 */ 11228 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11229 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11230 } 11231 regs->rax = kvm_rax_read(vcpu); 11232 regs->rbx = kvm_rbx_read(vcpu); 11233 regs->rcx = kvm_rcx_read(vcpu); 11234 regs->rdx = kvm_rdx_read(vcpu); 11235 regs->rsi = kvm_rsi_read(vcpu); 11236 regs->rdi = kvm_rdi_read(vcpu); 11237 regs->rsp = kvm_rsp_read(vcpu); 11238 regs->rbp = kvm_rbp_read(vcpu); 11239 #ifdef CONFIG_X86_64 11240 regs->r8 = kvm_r8_read(vcpu); 11241 regs->r9 = kvm_r9_read(vcpu); 11242 regs->r10 = kvm_r10_read(vcpu); 11243 regs->r11 = kvm_r11_read(vcpu); 11244 regs->r12 = kvm_r12_read(vcpu); 11245 regs->r13 = kvm_r13_read(vcpu); 11246 regs->r14 = kvm_r14_read(vcpu); 11247 regs->r15 = kvm_r15_read(vcpu); 11248 #endif 11249 11250 regs->rip = kvm_rip_read(vcpu); 11251 regs->rflags = kvm_get_rflags(vcpu); 11252 } 11253 11254 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11255 { 11256 vcpu_load(vcpu); 11257 __get_regs(vcpu, regs); 11258 vcpu_put(vcpu); 11259 return 0; 11260 } 11261 11262 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11263 { 11264 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11265 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11266 11267 kvm_rax_write(vcpu, regs->rax); 11268 kvm_rbx_write(vcpu, regs->rbx); 11269 kvm_rcx_write(vcpu, regs->rcx); 11270 kvm_rdx_write(vcpu, regs->rdx); 11271 kvm_rsi_write(vcpu, regs->rsi); 11272 kvm_rdi_write(vcpu, regs->rdi); 11273 kvm_rsp_write(vcpu, regs->rsp); 11274 kvm_rbp_write(vcpu, regs->rbp); 11275 #ifdef CONFIG_X86_64 11276 kvm_r8_write(vcpu, regs->r8); 11277 kvm_r9_write(vcpu, regs->r9); 11278 kvm_r10_write(vcpu, regs->r10); 11279 kvm_r11_write(vcpu, regs->r11); 11280 kvm_r12_write(vcpu, regs->r12); 11281 kvm_r13_write(vcpu, regs->r13); 11282 kvm_r14_write(vcpu, regs->r14); 11283 kvm_r15_write(vcpu, regs->r15); 11284 #endif 11285 11286 kvm_rip_write(vcpu, regs->rip); 11287 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11288 11289 vcpu->arch.exception.pending = false; 11290 vcpu->arch.exception_vmexit.pending = false; 11291 11292 kvm_make_request(KVM_REQ_EVENT, vcpu); 11293 } 11294 11295 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11296 { 11297 vcpu_load(vcpu); 11298 __set_regs(vcpu, regs); 11299 vcpu_put(vcpu); 11300 return 0; 11301 } 11302 11303 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11304 { 11305 struct desc_ptr dt; 11306 11307 if (vcpu->arch.guest_state_protected) 11308 goto skip_protected_regs; 11309 11310 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11311 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11312 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11313 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11314 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11315 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11316 11317 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11318 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11319 11320 static_call(kvm_x86_get_idt)(vcpu, &dt); 11321 sregs->idt.limit = dt.size; 11322 sregs->idt.base = dt.address; 11323 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11324 sregs->gdt.limit = dt.size; 11325 sregs->gdt.base = dt.address; 11326 11327 sregs->cr2 = vcpu->arch.cr2; 11328 sregs->cr3 = kvm_read_cr3(vcpu); 11329 11330 skip_protected_regs: 11331 sregs->cr0 = kvm_read_cr0(vcpu); 11332 sregs->cr4 = kvm_read_cr4(vcpu); 11333 sregs->cr8 = kvm_get_cr8(vcpu); 11334 sregs->efer = vcpu->arch.efer; 11335 sregs->apic_base = kvm_get_apic_base(vcpu); 11336 } 11337 11338 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11339 { 11340 __get_sregs_common(vcpu, sregs); 11341 11342 if (vcpu->arch.guest_state_protected) 11343 return; 11344 11345 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11346 set_bit(vcpu->arch.interrupt.nr, 11347 (unsigned long *)sregs->interrupt_bitmap); 11348 } 11349 11350 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11351 { 11352 int i; 11353 11354 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11355 11356 if (vcpu->arch.guest_state_protected) 11357 return; 11358 11359 if (is_pae_paging(vcpu)) { 11360 for (i = 0 ; i < 4 ; i++) 11361 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11362 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11363 } 11364 } 11365 11366 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11367 struct kvm_sregs *sregs) 11368 { 11369 vcpu_load(vcpu); 11370 __get_sregs(vcpu, sregs); 11371 vcpu_put(vcpu); 11372 return 0; 11373 } 11374 11375 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11376 struct kvm_mp_state *mp_state) 11377 { 11378 int r; 11379 11380 vcpu_load(vcpu); 11381 if (kvm_mpx_supported()) 11382 kvm_load_guest_fpu(vcpu); 11383 11384 r = kvm_apic_accept_events(vcpu); 11385 if (r < 0) 11386 goto out; 11387 r = 0; 11388 11389 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11390 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11391 vcpu->arch.pv.pv_unhalted) 11392 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11393 else 11394 mp_state->mp_state = vcpu->arch.mp_state; 11395 11396 out: 11397 if (kvm_mpx_supported()) 11398 kvm_put_guest_fpu(vcpu); 11399 vcpu_put(vcpu); 11400 return r; 11401 } 11402 11403 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11404 struct kvm_mp_state *mp_state) 11405 { 11406 int ret = -EINVAL; 11407 11408 vcpu_load(vcpu); 11409 11410 switch (mp_state->mp_state) { 11411 case KVM_MP_STATE_UNINITIALIZED: 11412 case KVM_MP_STATE_HALTED: 11413 case KVM_MP_STATE_AP_RESET_HOLD: 11414 case KVM_MP_STATE_INIT_RECEIVED: 11415 case KVM_MP_STATE_SIPI_RECEIVED: 11416 if (!lapic_in_kernel(vcpu)) 11417 goto out; 11418 break; 11419 11420 case KVM_MP_STATE_RUNNABLE: 11421 break; 11422 11423 default: 11424 goto out; 11425 } 11426 11427 /* 11428 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11429 * forcing the guest into INIT/SIPI if those events are supposed to be 11430 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11431 * if an SMI is pending as well. 11432 */ 11433 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11434 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11435 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11436 goto out; 11437 11438 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11439 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11440 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11441 } else 11442 vcpu->arch.mp_state = mp_state->mp_state; 11443 kvm_make_request(KVM_REQ_EVENT, vcpu); 11444 11445 ret = 0; 11446 out: 11447 vcpu_put(vcpu); 11448 return ret; 11449 } 11450 11451 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11452 int reason, bool has_error_code, u32 error_code) 11453 { 11454 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11455 int ret; 11456 11457 init_emulate_ctxt(vcpu); 11458 11459 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11460 has_error_code, error_code); 11461 if (ret) { 11462 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11463 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11464 vcpu->run->internal.ndata = 0; 11465 return 0; 11466 } 11467 11468 kvm_rip_write(vcpu, ctxt->eip); 11469 kvm_set_rflags(vcpu, ctxt->eflags); 11470 return 1; 11471 } 11472 EXPORT_SYMBOL_GPL(kvm_task_switch); 11473 11474 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11475 { 11476 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11477 /* 11478 * When EFER.LME and CR0.PG are set, the processor is in 11479 * 64-bit mode (though maybe in a 32-bit code segment). 11480 * CR4.PAE and EFER.LMA must be set. 11481 */ 11482 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11483 return false; 11484 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11485 return false; 11486 } else { 11487 /* 11488 * Not in 64-bit mode: EFER.LMA is clear and the code 11489 * segment cannot be 64-bit. 11490 */ 11491 if (sregs->efer & EFER_LMA || sregs->cs.l) 11492 return false; 11493 } 11494 11495 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11496 kvm_is_valid_cr0(vcpu, sregs->cr0); 11497 } 11498 11499 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11500 int *mmu_reset_needed, bool update_pdptrs) 11501 { 11502 struct msr_data apic_base_msr; 11503 int idx; 11504 struct desc_ptr dt; 11505 11506 if (!kvm_is_valid_sregs(vcpu, sregs)) 11507 return -EINVAL; 11508 11509 apic_base_msr.data = sregs->apic_base; 11510 apic_base_msr.host_initiated = true; 11511 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11512 return -EINVAL; 11513 11514 if (vcpu->arch.guest_state_protected) 11515 return 0; 11516 11517 dt.size = sregs->idt.limit; 11518 dt.address = sregs->idt.base; 11519 static_call(kvm_x86_set_idt)(vcpu, &dt); 11520 dt.size = sregs->gdt.limit; 11521 dt.address = sregs->gdt.base; 11522 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11523 11524 vcpu->arch.cr2 = sregs->cr2; 11525 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11526 vcpu->arch.cr3 = sregs->cr3; 11527 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11528 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11529 11530 kvm_set_cr8(vcpu, sregs->cr8); 11531 11532 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11533 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11534 11535 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11536 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11537 vcpu->arch.cr0 = sregs->cr0; 11538 11539 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11540 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11541 11542 if (update_pdptrs) { 11543 idx = srcu_read_lock(&vcpu->kvm->srcu); 11544 if (is_pae_paging(vcpu)) { 11545 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11546 *mmu_reset_needed = 1; 11547 } 11548 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11549 } 11550 11551 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11552 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11553 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11554 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11555 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11556 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11557 11558 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11559 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11560 11561 update_cr8_intercept(vcpu); 11562 11563 /* Older userspace won't unhalt the vcpu on reset. */ 11564 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11565 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11566 !is_protmode(vcpu)) 11567 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11568 11569 return 0; 11570 } 11571 11572 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11573 { 11574 int pending_vec, max_bits; 11575 int mmu_reset_needed = 0; 11576 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11577 11578 if (ret) 11579 return ret; 11580 11581 if (mmu_reset_needed) 11582 kvm_mmu_reset_context(vcpu); 11583 11584 max_bits = KVM_NR_INTERRUPTS; 11585 pending_vec = find_first_bit( 11586 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11587 11588 if (pending_vec < max_bits) { 11589 kvm_queue_interrupt(vcpu, pending_vec, false); 11590 pr_debug("Set back pending irq %d\n", pending_vec); 11591 kvm_make_request(KVM_REQ_EVENT, vcpu); 11592 } 11593 return 0; 11594 } 11595 11596 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11597 { 11598 int mmu_reset_needed = 0; 11599 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11600 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11601 !(sregs2->efer & EFER_LMA); 11602 int i, ret; 11603 11604 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11605 return -EINVAL; 11606 11607 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11608 return -EINVAL; 11609 11610 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11611 &mmu_reset_needed, !valid_pdptrs); 11612 if (ret) 11613 return ret; 11614 11615 if (valid_pdptrs) { 11616 for (i = 0; i < 4 ; i++) 11617 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11618 11619 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11620 mmu_reset_needed = 1; 11621 vcpu->arch.pdptrs_from_userspace = true; 11622 } 11623 if (mmu_reset_needed) 11624 kvm_mmu_reset_context(vcpu); 11625 return 0; 11626 } 11627 11628 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11629 struct kvm_sregs *sregs) 11630 { 11631 int ret; 11632 11633 vcpu_load(vcpu); 11634 ret = __set_sregs(vcpu, sregs); 11635 vcpu_put(vcpu); 11636 return ret; 11637 } 11638 11639 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11640 { 11641 bool set = false; 11642 struct kvm_vcpu *vcpu; 11643 unsigned long i; 11644 11645 if (!enable_apicv) 11646 return; 11647 11648 down_write(&kvm->arch.apicv_update_lock); 11649 11650 kvm_for_each_vcpu(i, vcpu, kvm) { 11651 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11652 set = true; 11653 break; 11654 } 11655 } 11656 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11657 up_write(&kvm->arch.apicv_update_lock); 11658 } 11659 11660 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11661 struct kvm_guest_debug *dbg) 11662 { 11663 unsigned long rflags; 11664 int i, r; 11665 11666 if (vcpu->arch.guest_state_protected) 11667 return -EINVAL; 11668 11669 vcpu_load(vcpu); 11670 11671 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11672 r = -EBUSY; 11673 if (kvm_is_exception_pending(vcpu)) 11674 goto out; 11675 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11676 kvm_queue_exception(vcpu, DB_VECTOR); 11677 else 11678 kvm_queue_exception(vcpu, BP_VECTOR); 11679 } 11680 11681 /* 11682 * Read rflags as long as potentially injected trace flags are still 11683 * filtered out. 11684 */ 11685 rflags = kvm_get_rflags(vcpu); 11686 11687 vcpu->guest_debug = dbg->control; 11688 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11689 vcpu->guest_debug = 0; 11690 11691 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11692 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11693 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11694 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11695 } else { 11696 for (i = 0; i < KVM_NR_DB_REGS; i++) 11697 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11698 } 11699 kvm_update_dr7(vcpu); 11700 11701 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11702 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11703 11704 /* 11705 * Trigger an rflags update that will inject or remove the trace 11706 * flags. 11707 */ 11708 kvm_set_rflags(vcpu, rflags); 11709 11710 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11711 11712 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11713 11714 r = 0; 11715 11716 out: 11717 vcpu_put(vcpu); 11718 return r; 11719 } 11720 11721 /* 11722 * Translate a guest virtual address to a guest physical address. 11723 */ 11724 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11725 struct kvm_translation *tr) 11726 { 11727 unsigned long vaddr = tr->linear_address; 11728 gpa_t gpa; 11729 int idx; 11730 11731 vcpu_load(vcpu); 11732 11733 idx = srcu_read_lock(&vcpu->kvm->srcu); 11734 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11735 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11736 tr->physical_address = gpa; 11737 tr->valid = gpa != INVALID_GPA; 11738 tr->writeable = 1; 11739 tr->usermode = 0; 11740 11741 vcpu_put(vcpu); 11742 return 0; 11743 } 11744 11745 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11746 { 11747 struct fxregs_state *fxsave; 11748 11749 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11750 return 0; 11751 11752 vcpu_load(vcpu); 11753 11754 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11755 memcpy(fpu->fpr, fxsave->st_space, 128); 11756 fpu->fcw = fxsave->cwd; 11757 fpu->fsw = fxsave->swd; 11758 fpu->ftwx = fxsave->twd; 11759 fpu->last_opcode = fxsave->fop; 11760 fpu->last_ip = fxsave->rip; 11761 fpu->last_dp = fxsave->rdp; 11762 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11763 11764 vcpu_put(vcpu); 11765 return 0; 11766 } 11767 11768 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11769 { 11770 struct fxregs_state *fxsave; 11771 11772 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11773 return 0; 11774 11775 vcpu_load(vcpu); 11776 11777 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11778 11779 memcpy(fxsave->st_space, fpu->fpr, 128); 11780 fxsave->cwd = fpu->fcw; 11781 fxsave->swd = fpu->fsw; 11782 fxsave->twd = fpu->ftwx; 11783 fxsave->fop = fpu->last_opcode; 11784 fxsave->rip = fpu->last_ip; 11785 fxsave->rdp = fpu->last_dp; 11786 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11787 11788 vcpu_put(vcpu); 11789 return 0; 11790 } 11791 11792 static void store_regs(struct kvm_vcpu *vcpu) 11793 { 11794 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11795 11796 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11797 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11798 11799 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11800 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11801 11802 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11803 kvm_vcpu_ioctl_x86_get_vcpu_events( 11804 vcpu, &vcpu->run->s.regs.events); 11805 } 11806 11807 static int sync_regs(struct kvm_vcpu *vcpu) 11808 { 11809 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11810 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11811 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11812 } 11813 11814 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11815 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 11816 11817 if (__set_sregs(vcpu, &sregs)) 11818 return -EINVAL; 11819 11820 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11821 } 11822 11823 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11824 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 11825 11826 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 11827 return -EINVAL; 11828 11829 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11830 } 11831 11832 return 0; 11833 } 11834 11835 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11836 { 11837 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11838 pr_warn_once("SMP vm created on host with unstable TSC; " 11839 "guest TSC will not be reliable\n"); 11840 11841 if (!kvm->arch.max_vcpu_ids) 11842 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11843 11844 if (id >= kvm->arch.max_vcpu_ids) 11845 return -EINVAL; 11846 11847 return static_call(kvm_x86_vcpu_precreate)(kvm); 11848 } 11849 11850 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11851 { 11852 struct page *page; 11853 int r; 11854 11855 vcpu->arch.last_vmentry_cpu = -1; 11856 vcpu->arch.regs_avail = ~0; 11857 vcpu->arch.regs_dirty = ~0; 11858 11859 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11860 11861 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11862 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11863 else 11864 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11865 11866 r = kvm_mmu_create(vcpu); 11867 if (r < 0) 11868 return r; 11869 11870 if (irqchip_in_kernel(vcpu->kvm)) { 11871 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11872 if (r < 0) 11873 goto fail_mmu_destroy; 11874 11875 /* 11876 * Defer evaluating inhibits until the vCPU is first run, as 11877 * this vCPU will not get notified of any changes until this 11878 * vCPU is visible to other vCPUs (marked online and added to 11879 * the set of vCPUs). Opportunistically mark APICv active as 11880 * VMX in particularly is highly unlikely to have inhibits. 11881 * Ignore the current per-VM APICv state so that vCPU creation 11882 * is guaranteed to run with a deterministic value, the request 11883 * will ensure the vCPU gets the correct state before VM-Entry. 11884 */ 11885 if (enable_apicv) { 11886 vcpu->arch.apic->apicv_active = true; 11887 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11888 } 11889 } else 11890 static_branch_inc(&kvm_has_noapic_vcpu); 11891 11892 r = -ENOMEM; 11893 11894 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11895 if (!page) 11896 goto fail_free_lapic; 11897 vcpu->arch.pio_data = page_address(page); 11898 11899 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11900 GFP_KERNEL_ACCOUNT); 11901 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11902 GFP_KERNEL_ACCOUNT); 11903 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11904 goto fail_free_mce_banks; 11905 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11906 11907 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11908 GFP_KERNEL_ACCOUNT)) 11909 goto fail_free_mce_banks; 11910 11911 if (!alloc_emulate_ctxt(vcpu)) 11912 goto free_wbinvd_dirty_mask; 11913 11914 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11915 pr_err("failed to allocate vcpu's fpu\n"); 11916 goto free_emulate_ctxt; 11917 } 11918 11919 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11920 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11921 11922 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11923 11924 kvm_async_pf_hash_reset(vcpu); 11925 11926 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11927 kvm_pmu_init(vcpu); 11928 11929 vcpu->arch.pending_external_vector = -1; 11930 vcpu->arch.preempted_in_kernel = false; 11931 11932 #if IS_ENABLED(CONFIG_HYPERV) 11933 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11934 #endif 11935 11936 r = static_call(kvm_x86_vcpu_create)(vcpu); 11937 if (r) 11938 goto free_guest_fpu; 11939 11940 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11941 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11942 kvm_xen_init_vcpu(vcpu); 11943 kvm_vcpu_mtrr_init(vcpu); 11944 vcpu_load(vcpu); 11945 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11946 kvm_vcpu_reset(vcpu, false); 11947 kvm_init_mmu(vcpu); 11948 vcpu_put(vcpu); 11949 return 0; 11950 11951 free_guest_fpu: 11952 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11953 free_emulate_ctxt: 11954 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11955 free_wbinvd_dirty_mask: 11956 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11957 fail_free_mce_banks: 11958 kfree(vcpu->arch.mce_banks); 11959 kfree(vcpu->arch.mci_ctl2_banks); 11960 free_page((unsigned long)vcpu->arch.pio_data); 11961 fail_free_lapic: 11962 kvm_free_lapic(vcpu); 11963 fail_mmu_destroy: 11964 kvm_mmu_destroy(vcpu); 11965 return r; 11966 } 11967 11968 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11969 { 11970 struct kvm *kvm = vcpu->kvm; 11971 11972 if (mutex_lock_killable(&vcpu->mutex)) 11973 return; 11974 vcpu_load(vcpu); 11975 kvm_synchronize_tsc(vcpu, 0); 11976 vcpu_put(vcpu); 11977 11978 /* poll control enabled by default */ 11979 vcpu->arch.msr_kvm_poll_control = 1; 11980 11981 mutex_unlock(&vcpu->mutex); 11982 11983 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11984 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11985 KVMCLOCK_SYNC_PERIOD); 11986 } 11987 11988 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11989 { 11990 int idx; 11991 11992 kvmclock_reset(vcpu); 11993 11994 static_call(kvm_x86_vcpu_free)(vcpu); 11995 11996 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11997 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11998 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11999 12000 kvm_xen_destroy_vcpu(vcpu); 12001 kvm_hv_vcpu_uninit(vcpu); 12002 kvm_pmu_destroy(vcpu); 12003 kfree(vcpu->arch.mce_banks); 12004 kfree(vcpu->arch.mci_ctl2_banks); 12005 kvm_free_lapic(vcpu); 12006 idx = srcu_read_lock(&vcpu->kvm->srcu); 12007 kvm_mmu_destroy(vcpu); 12008 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12009 free_page((unsigned long)vcpu->arch.pio_data); 12010 kvfree(vcpu->arch.cpuid_entries); 12011 if (!lapic_in_kernel(vcpu)) 12012 static_branch_dec(&kvm_has_noapic_vcpu); 12013 } 12014 12015 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12016 { 12017 struct kvm_cpuid_entry2 *cpuid_0x1; 12018 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12019 unsigned long new_cr0; 12020 12021 /* 12022 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12023 * to handle side effects. RESET emulation hits those flows and relies 12024 * on emulated/virtualized registers, including those that are loaded 12025 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12026 * to detect improper or missing initialization. 12027 */ 12028 WARN_ON_ONCE(!init_event && 12029 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12030 12031 /* 12032 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12033 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12034 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12035 * bits), i.e. virtualization is disabled. 12036 */ 12037 if (is_guest_mode(vcpu)) 12038 kvm_leave_nested(vcpu); 12039 12040 kvm_lapic_reset(vcpu, init_event); 12041 12042 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12043 vcpu->arch.hflags = 0; 12044 12045 vcpu->arch.smi_pending = 0; 12046 vcpu->arch.smi_count = 0; 12047 atomic_set(&vcpu->arch.nmi_queued, 0); 12048 vcpu->arch.nmi_pending = 0; 12049 vcpu->arch.nmi_injected = false; 12050 kvm_clear_interrupt_queue(vcpu); 12051 kvm_clear_exception_queue(vcpu); 12052 12053 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12054 kvm_update_dr0123(vcpu); 12055 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12056 vcpu->arch.dr7 = DR7_FIXED_1; 12057 kvm_update_dr7(vcpu); 12058 12059 vcpu->arch.cr2 = 0; 12060 12061 kvm_make_request(KVM_REQ_EVENT, vcpu); 12062 vcpu->arch.apf.msr_en_val = 0; 12063 vcpu->arch.apf.msr_int_val = 0; 12064 vcpu->arch.st.msr_val = 0; 12065 12066 kvmclock_reset(vcpu); 12067 12068 kvm_clear_async_pf_completion_queue(vcpu); 12069 kvm_async_pf_hash_reset(vcpu); 12070 vcpu->arch.apf.halted = false; 12071 12072 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12073 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12074 12075 /* 12076 * All paths that lead to INIT are required to load the guest's 12077 * FPU state (because most paths are buried in KVM_RUN). 12078 */ 12079 if (init_event) 12080 kvm_put_guest_fpu(vcpu); 12081 12082 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12083 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12084 12085 if (init_event) 12086 kvm_load_guest_fpu(vcpu); 12087 } 12088 12089 if (!init_event) { 12090 kvm_pmu_reset(vcpu); 12091 vcpu->arch.smbase = 0x30000; 12092 12093 vcpu->arch.msr_misc_features_enables = 0; 12094 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12095 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12096 12097 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12098 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12099 } 12100 12101 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12102 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12103 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12104 12105 /* 12106 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12107 * if no CPUID match is found. Note, it's impossible to get a match at 12108 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12109 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12110 * on RESET. But, go through the motions in case that's ever remedied. 12111 */ 12112 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12113 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12114 12115 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12116 12117 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12118 kvm_rip_write(vcpu, 0xfff0); 12119 12120 vcpu->arch.cr3 = 0; 12121 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12122 12123 /* 12124 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12125 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12126 * (or qualify) that with a footnote stating that CD/NW are preserved. 12127 */ 12128 new_cr0 = X86_CR0_ET; 12129 if (init_event) 12130 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12131 else 12132 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12133 12134 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12135 static_call(kvm_x86_set_cr4)(vcpu, 0); 12136 static_call(kvm_x86_set_efer)(vcpu, 0); 12137 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12138 12139 /* 12140 * On the standard CR0/CR4/EFER modification paths, there are several 12141 * complex conditions determining whether the MMU has to be reset and/or 12142 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12143 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12144 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12145 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12146 */ 12147 if (old_cr0 & X86_CR0_PG) { 12148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12149 kvm_mmu_reset_context(vcpu); 12150 } 12151 12152 /* 12153 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12154 * APM states the TLBs are untouched by INIT, but it also states that 12155 * the TLBs are flushed on "External initialization of the processor." 12156 * Flush the guest TLB regardless of vendor, there is no meaningful 12157 * benefit in relying on the guest to flush the TLB immediately after 12158 * INIT. A spurious TLB flush is benign and likely negligible from a 12159 * performance perspective. 12160 */ 12161 if (init_event) 12162 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12163 } 12164 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12165 12166 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12167 { 12168 struct kvm_segment cs; 12169 12170 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12171 cs.selector = vector << 8; 12172 cs.base = vector << 12; 12173 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12174 kvm_rip_write(vcpu, 0); 12175 } 12176 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12177 12178 int kvm_arch_hardware_enable(void) 12179 { 12180 struct kvm *kvm; 12181 struct kvm_vcpu *vcpu; 12182 unsigned long i; 12183 int ret; 12184 u64 local_tsc; 12185 u64 max_tsc = 0; 12186 bool stable, backwards_tsc = false; 12187 12188 kvm_user_return_msr_cpu_online(); 12189 12190 ret = kvm_x86_check_processor_compatibility(); 12191 if (ret) 12192 return ret; 12193 12194 ret = static_call(kvm_x86_hardware_enable)(); 12195 if (ret != 0) 12196 return ret; 12197 12198 local_tsc = rdtsc(); 12199 stable = !kvm_check_tsc_unstable(); 12200 list_for_each_entry(kvm, &vm_list, vm_list) { 12201 kvm_for_each_vcpu(i, vcpu, kvm) { 12202 if (!stable && vcpu->cpu == smp_processor_id()) 12203 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12204 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12205 backwards_tsc = true; 12206 if (vcpu->arch.last_host_tsc > max_tsc) 12207 max_tsc = vcpu->arch.last_host_tsc; 12208 } 12209 } 12210 } 12211 12212 /* 12213 * Sometimes, even reliable TSCs go backwards. This happens on 12214 * platforms that reset TSC during suspend or hibernate actions, but 12215 * maintain synchronization. We must compensate. Fortunately, we can 12216 * detect that condition here, which happens early in CPU bringup, 12217 * before any KVM threads can be running. Unfortunately, we can't 12218 * bring the TSCs fully up to date with real time, as we aren't yet far 12219 * enough into CPU bringup that we know how much real time has actually 12220 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12221 * variables that haven't been updated yet. 12222 * 12223 * So we simply find the maximum observed TSC above, then record the 12224 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12225 * the adjustment will be applied. Note that we accumulate 12226 * adjustments, in case multiple suspend cycles happen before some VCPU 12227 * gets a chance to run again. In the event that no KVM threads get a 12228 * chance to run, we will miss the entire elapsed period, as we'll have 12229 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12230 * loose cycle time. This isn't too big a deal, since the loss will be 12231 * uniform across all VCPUs (not to mention the scenario is extremely 12232 * unlikely). It is possible that a second hibernate recovery happens 12233 * much faster than a first, causing the observed TSC here to be 12234 * smaller; this would require additional padding adjustment, which is 12235 * why we set last_host_tsc to the local tsc observed here. 12236 * 12237 * N.B. - this code below runs only on platforms with reliable TSC, 12238 * as that is the only way backwards_tsc is set above. Also note 12239 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12240 * have the same delta_cyc adjustment applied if backwards_tsc 12241 * is detected. Note further, this adjustment is only done once, 12242 * as we reset last_host_tsc on all VCPUs to stop this from being 12243 * called multiple times (one for each physical CPU bringup). 12244 * 12245 * Platforms with unreliable TSCs don't have to deal with this, they 12246 * will be compensated by the logic in vcpu_load, which sets the TSC to 12247 * catchup mode. This will catchup all VCPUs to real time, but cannot 12248 * guarantee that they stay in perfect synchronization. 12249 */ 12250 if (backwards_tsc) { 12251 u64 delta_cyc = max_tsc - local_tsc; 12252 list_for_each_entry(kvm, &vm_list, vm_list) { 12253 kvm->arch.backwards_tsc_observed = true; 12254 kvm_for_each_vcpu(i, vcpu, kvm) { 12255 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12256 vcpu->arch.last_host_tsc = local_tsc; 12257 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12258 } 12259 12260 /* 12261 * We have to disable TSC offset matching.. if you were 12262 * booting a VM while issuing an S4 host suspend.... 12263 * you may have some problem. Solving this issue is 12264 * left as an exercise to the reader. 12265 */ 12266 kvm->arch.last_tsc_nsec = 0; 12267 kvm->arch.last_tsc_write = 0; 12268 } 12269 12270 } 12271 return 0; 12272 } 12273 12274 void kvm_arch_hardware_disable(void) 12275 { 12276 static_call(kvm_x86_hardware_disable)(); 12277 drop_user_return_notifiers(); 12278 } 12279 12280 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12281 { 12282 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12283 } 12284 12285 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12286 { 12287 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12288 } 12289 12290 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12291 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12292 12293 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12294 { 12295 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12296 12297 vcpu->arch.l1tf_flush_l1d = true; 12298 if (pmu->version && unlikely(pmu->event_count)) { 12299 pmu->need_cleanup = true; 12300 kvm_make_request(KVM_REQ_PMU, vcpu); 12301 } 12302 static_call(kvm_x86_sched_in)(vcpu, cpu); 12303 } 12304 12305 void kvm_arch_free_vm(struct kvm *kvm) 12306 { 12307 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12308 __kvm_arch_free_vm(kvm); 12309 } 12310 12311 12312 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12313 { 12314 int ret; 12315 unsigned long flags; 12316 12317 if (type) 12318 return -EINVAL; 12319 12320 ret = kvm_page_track_init(kvm); 12321 if (ret) 12322 goto out; 12323 12324 kvm_mmu_init_vm(kvm); 12325 12326 ret = static_call(kvm_x86_vm_init)(kvm); 12327 if (ret) 12328 goto out_uninit_mmu; 12329 12330 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12331 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12332 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12333 12334 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12335 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12336 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12337 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12338 &kvm->arch.irq_sources_bitmap); 12339 12340 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12341 mutex_init(&kvm->arch.apic_map_lock); 12342 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12343 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12344 12345 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12346 pvclock_update_vm_gtod_copy(kvm); 12347 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12348 12349 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12350 kvm->arch.guest_can_read_msr_platform_info = true; 12351 kvm->arch.enable_pmu = enable_pmu; 12352 12353 #if IS_ENABLED(CONFIG_HYPERV) 12354 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12355 kvm->arch.hv_root_tdp = INVALID_PAGE; 12356 #endif 12357 12358 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12359 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12360 12361 kvm_apicv_init(kvm); 12362 kvm_hv_init_vm(kvm); 12363 kvm_xen_init_vm(kvm); 12364 12365 return 0; 12366 12367 out_uninit_mmu: 12368 kvm_mmu_uninit_vm(kvm); 12369 kvm_page_track_cleanup(kvm); 12370 out: 12371 return ret; 12372 } 12373 12374 int kvm_arch_post_init_vm(struct kvm *kvm) 12375 { 12376 return kvm_mmu_post_init_vm(kvm); 12377 } 12378 12379 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12380 { 12381 vcpu_load(vcpu); 12382 kvm_mmu_unload(vcpu); 12383 vcpu_put(vcpu); 12384 } 12385 12386 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12387 { 12388 unsigned long i; 12389 struct kvm_vcpu *vcpu; 12390 12391 kvm_for_each_vcpu(i, vcpu, kvm) { 12392 kvm_clear_async_pf_completion_queue(vcpu); 12393 kvm_unload_vcpu_mmu(vcpu); 12394 } 12395 } 12396 12397 void kvm_arch_sync_events(struct kvm *kvm) 12398 { 12399 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12400 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12401 kvm_free_pit(kvm); 12402 } 12403 12404 /** 12405 * __x86_set_memory_region: Setup KVM internal memory slot 12406 * 12407 * @kvm: the kvm pointer to the VM. 12408 * @id: the slot ID to setup. 12409 * @gpa: the GPA to install the slot (unused when @size == 0). 12410 * @size: the size of the slot. Set to zero to uninstall a slot. 12411 * 12412 * This function helps to setup a KVM internal memory slot. Specify 12413 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12414 * slot. The return code can be one of the following: 12415 * 12416 * HVA: on success (uninstall will return a bogus HVA) 12417 * -errno: on error 12418 * 12419 * The caller should always use IS_ERR() to check the return value 12420 * before use. Note, the KVM internal memory slots are guaranteed to 12421 * remain valid and unchanged until the VM is destroyed, i.e., the 12422 * GPA->HVA translation will not change. However, the HVA is a user 12423 * address, i.e. its accessibility is not guaranteed, and must be 12424 * accessed via __copy_{to,from}_user(). 12425 */ 12426 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12427 u32 size) 12428 { 12429 int i, r; 12430 unsigned long hva, old_npages; 12431 struct kvm_memslots *slots = kvm_memslots(kvm); 12432 struct kvm_memory_slot *slot; 12433 12434 /* Called with kvm->slots_lock held. */ 12435 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12436 return ERR_PTR_USR(-EINVAL); 12437 12438 slot = id_to_memslot(slots, id); 12439 if (size) { 12440 if (slot && slot->npages) 12441 return ERR_PTR_USR(-EEXIST); 12442 12443 /* 12444 * MAP_SHARED to prevent internal slot pages from being moved 12445 * by fork()/COW. 12446 */ 12447 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12448 MAP_SHARED | MAP_ANONYMOUS, 0); 12449 if (IS_ERR_VALUE(hva)) 12450 return (void __user *)hva; 12451 } else { 12452 if (!slot || !slot->npages) 12453 return NULL; 12454 12455 old_npages = slot->npages; 12456 hva = slot->userspace_addr; 12457 } 12458 12459 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12460 struct kvm_userspace_memory_region m; 12461 12462 m.slot = id | (i << 16); 12463 m.flags = 0; 12464 m.guest_phys_addr = gpa; 12465 m.userspace_addr = hva; 12466 m.memory_size = size; 12467 r = __kvm_set_memory_region(kvm, &m); 12468 if (r < 0) 12469 return ERR_PTR_USR(r); 12470 } 12471 12472 if (!size) 12473 vm_munmap(hva, old_npages * PAGE_SIZE); 12474 12475 return (void __user *)hva; 12476 } 12477 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12478 12479 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12480 { 12481 kvm_mmu_pre_destroy_vm(kvm); 12482 } 12483 12484 void kvm_arch_destroy_vm(struct kvm *kvm) 12485 { 12486 if (current->mm == kvm->mm) { 12487 /* 12488 * Free memory regions allocated on behalf of userspace, 12489 * unless the memory map has changed due to process exit 12490 * or fd copying. 12491 */ 12492 mutex_lock(&kvm->slots_lock); 12493 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12494 0, 0); 12495 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12496 0, 0); 12497 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12498 mutex_unlock(&kvm->slots_lock); 12499 } 12500 kvm_unload_vcpu_mmus(kvm); 12501 static_call_cond(kvm_x86_vm_destroy)(kvm); 12502 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12503 kvm_pic_destroy(kvm); 12504 kvm_ioapic_destroy(kvm); 12505 kvm_destroy_vcpus(kvm); 12506 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12507 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12508 kvm_mmu_uninit_vm(kvm); 12509 kvm_page_track_cleanup(kvm); 12510 kvm_xen_destroy_vm(kvm); 12511 kvm_hv_destroy_vm(kvm); 12512 } 12513 12514 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12515 { 12516 int i; 12517 12518 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12519 kvfree(slot->arch.rmap[i]); 12520 slot->arch.rmap[i] = NULL; 12521 } 12522 } 12523 12524 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12525 { 12526 int i; 12527 12528 memslot_rmap_free(slot); 12529 12530 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12531 kvfree(slot->arch.lpage_info[i - 1]); 12532 slot->arch.lpage_info[i - 1] = NULL; 12533 } 12534 12535 kvm_page_track_free_memslot(slot); 12536 } 12537 12538 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12539 { 12540 const int sz = sizeof(*slot->arch.rmap[0]); 12541 int i; 12542 12543 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12544 int level = i + 1; 12545 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12546 12547 if (slot->arch.rmap[i]) 12548 continue; 12549 12550 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12551 if (!slot->arch.rmap[i]) { 12552 memslot_rmap_free(slot); 12553 return -ENOMEM; 12554 } 12555 } 12556 12557 return 0; 12558 } 12559 12560 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12561 struct kvm_memory_slot *slot) 12562 { 12563 unsigned long npages = slot->npages; 12564 int i, r; 12565 12566 /* 12567 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12568 * old arrays will be freed by __kvm_set_memory_region() if installing 12569 * the new memslot is successful. 12570 */ 12571 memset(&slot->arch, 0, sizeof(slot->arch)); 12572 12573 if (kvm_memslots_have_rmaps(kvm)) { 12574 r = memslot_rmap_alloc(slot, npages); 12575 if (r) 12576 return r; 12577 } 12578 12579 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12580 struct kvm_lpage_info *linfo; 12581 unsigned long ugfn; 12582 int lpages; 12583 int level = i + 1; 12584 12585 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12586 12587 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12588 if (!linfo) 12589 goto out_free; 12590 12591 slot->arch.lpage_info[i - 1] = linfo; 12592 12593 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12594 linfo[0].disallow_lpage = 1; 12595 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12596 linfo[lpages - 1].disallow_lpage = 1; 12597 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12598 /* 12599 * If the gfn and userspace address are not aligned wrt each 12600 * other, disable large page support for this slot. 12601 */ 12602 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12603 unsigned long j; 12604 12605 for (j = 0; j < lpages; ++j) 12606 linfo[j].disallow_lpage = 1; 12607 } 12608 } 12609 12610 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12611 goto out_free; 12612 12613 return 0; 12614 12615 out_free: 12616 memslot_rmap_free(slot); 12617 12618 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12619 kvfree(slot->arch.lpage_info[i - 1]); 12620 slot->arch.lpage_info[i - 1] = NULL; 12621 } 12622 return -ENOMEM; 12623 } 12624 12625 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12626 { 12627 struct kvm_vcpu *vcpu; 12628 unsigned long i; 12629 12630 /* 12631 * memslots->generation has been incremented. 12632 * mmio generation may have reached its maximum value. 12633 */ 12634 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12635 12636 /* Force re-initialization of steal_time cache */ 12637 kvm_for_each_vcpu(i, vcpu, kvm) 12638 kvm_vcpu_kick(vcpu); 12639 } 12640 12641 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12642 const struct kvm_memory_slot *old, 12643 struct kvm_memory_slot *new, 12644 enum kvm_mr_change change) 12645 { 12646 /* 12647 * KVM doesn't support moving memslots when there are external page 12648 * trackers attached to the VM, i.e. if KVMGT is in use. 12649 */ 12650 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12651 return -EINVAL; 12652 12653 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12654 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12655 return -EINVAL; 12656 12657 return kvm_alloc_memslot_metadata(kvm, new); 12658 } 12659 12660 if (change == KVM_MR_FLAGS_ONLY) 12661 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12662 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12663 return -EIO; 12664 12665 return 0; 12666 } 12667 12668 12669 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12670 { 12671 int nr_slots; 12672 12673 if (!kvm_x86_ops.cpu_dirty_log_size) 12674 return; 12675 12676 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12677 if ((enable && nr_slots == 1) || !nr_slots) 12678 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12679 } 12680 12681 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12682 struct kvm_memory_slot *old, 12683 const struct kvm_memory_slot *new, 12684 enum kvm_mr_change change) 12685 { 12686 u32 old_flags = old ? old->flags : 0; 12687 u32 new_flags = new ? new->flags : 0; 12688 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12689 12690 /* 12691 * Update CPU dirty logging if dirty logging is being toggled. This 12692 * applies to all operations. 12693 */ 12694 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12695 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12696 12697 /* 12698 * Nothing more to do for RO slots (which can't be dirtied and can't be 12699 * made writable) or CREATE/MOVE/DELETE of a slot. 12700 * 12701 * For a memslot with dirty logging disabled: 12702 * CREATE: No dirty mappings will already exist. 12703 * MOVE/DELETE: The old mappings will already have been cleaned up by 12704 * kvm_arch_flush_shadow_memslot() 12705 * 12706 * For a memslot with dirty logging enabled: 12707 * CREATE: No shadow pages exist, thus nothing to write-protect 12708 * and no dirty bits to clear. 12709 * MOVE/DELETE: The old mappings will already have been cleaned up by 12710 * kvm_arch_flush_shadow_memslot(). 12711 */ 12712 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12713 return; 12714 12715 /* 12716 * READONLY and non-flags changes were filtered out above, and the only 12717 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12718 * logging isn't being toggled on or off. 12719 */ 12720 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12721 return; 12722 12723 if (!log_dirty_pages) { 12724 /* 12725 * Dirty logging tracks sptes in 4k granularity, meaning that 12726 * large sptes have to be split. If live migration succeeds, 12727 * the guest in the source machine will be destroyed and large 12728 * sptes will be created in the destination. However, if the 12729 * guest continues to run in the source machine (for example if 12730 * live migration fails), small sptes will remain around and 12731 * cause bad performance. 12732 * 12733 * Scan sptes if dirty logging has been stopped, dropping those 12734 * which can be collapsed into a single large-page spte. Later 12735 * page faults will create the large-page sptes. 12736 */ 12737 kvm_mmu_zap_collapsible_sptes(kvm, new); 12738 } else { 12739 /* 12740 * Initially-all-set does not require write protecting any page, 12741 * because they're all assumed to be dirty. 12742 */ 12743 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12744 return; 12745 12746 if (READ_ONCE(eager_page_split)) 12747 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12748 12749 if (kvm_x86_ops.cpu_dirty_log_size) { 12750 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12751 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12752 } else { 12753 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12754 } 12755 12756 /* 12757 * Unconditionally flush the TLBs after enabling dirty logging. 12758 * A flush is almost always going to be necessary (see below), 12759 * and unconditionally flushing allows the helpers to omit 12760 * the subtly complex checks when removing write access. 12761 * 12762 * Do the flush outside of mmu_lock to reduce the amount of 12763 * time mmu_lock is held. Flushing after dropping mmu_lock is 12764 * safe as KVM only needs to guarantee the slot is fully 12765 * write-protected before returning to userspace, i.e. before 12766 * userspace can consume the dirty status. 12767 * 12768 * Flushing outside of mmu_lock requires KVM to be careful when 12769 * making decisions based on writable status of an SPTE, e.g. a 12770 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12771 * 12772 * Specifically, KVM also write-protects guest page tables to 12773 * monitor changes when using shadow paging, and must guarantee 12774 * no CPUs can write to those page before mmu_lock is dropped. 12775 * Because CPUs may have stale TLB entries at this point, a 12776 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12777 * 12778 * KVM also allows making SPTES writable outside of mmu_lock, 12779 * e.g. to allow dirty logging without taking mmu_lock. 12780 * 12781 * To handle these scenarios, KVM uses a separate software-only 12782 * bit (MMU-writable) to track if a SPTE is !writable due to 12783 * a guest page table being write-protected (KVM clears the 12784 * MMU-writable flag when write-protecting for shadow paging). 12785 * 12786 * The use of MMU-writable is also the primary motivation for 12787 * the unconditional flush. Because KVM must guarantee that a 12788 * CPU doesn't contain stale, writable TLB entries for a 12789 * !MMU-writable SPTE, KVM must flush if it encounters any 12790 * MMU-writable SPTE regardless of whether the actual hardware 12791 * writable bit was set. I.e. KVM is almost guaranteed to need 12792 * to flush, while unconditionally flushing allows the "remove 12793 * write access" helpers to ignore MMU-writable entirely. 12794 * 12795 * See is_writable_pte() for more details (the case involving 12796 * access-tracked SPTEs is particularly relevant). 12797 */ 12798 kvm_flush_remote_tlbs_memslot(kvm, new); 12799 } 12800 } 12801 12802 void kvm_arch_commit_memory_region(struct kvm *kvm, 12803 struct kvm_memory_slot *old, 12804 const struct kvm_memory_slot *new, 12805 enum kvm_mr_change change) 12806 { 12807 if (change == KVM_MR_DELETE) 12808 kvm_page_track_delete_slot(kvm, old); 12809 12810 if (!kvm->arch.n_requested_mmu_pages && 12811 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12812 unsigned long nr_mmu_pages; 12813 12814 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12815 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12816 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12817 } 12818 12819 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12820 12821 /* Free the arrays associated with the old memslot. */ 12822 if (change == KVM_MR_MOVE) 12823 kvm_arch_free_memslot(kvm, old); 12824 } 12825 12826 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12827 { 12828 return (is_guest_mode(vcpu) && 12829 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12830 } 12831 12832 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12833 { 12834 if (!list_empty_careful(&vcpu->async_pf.done)) 12835 return true; 12836 12837 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12838 kvm_apic_init_sipi_allowed(vcpu)) 12839 return true; 12840 12841 if (vcpu->arch.pv.pv_unhalted) 12842 return true; 12843 12844 if (kvm_is_exception_pending(vcpu)) 12845 return true; 12846 12847 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12848 (vcpu->arch.nmi_pending && 12849 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12850 return true; 12851 12852 #ifdef CONFIG_KVM_SMM 12853 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12854 (vcpu->arch.smi_pending && 12855 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12856 return true; 12857 #endif 12858 12859 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 12860 return true; 12861 12862 if (kvm_arch_interrupt_allowed(vcpu) && 12863 (kvm_cpu_has_interrupt(vcpu) || 12864 kvm_guest_apic_has_interrupt(vcpu))) 12865 return true; 12866 12867 if (kvm_hv_has_stimer_pending(vcpu)) 12868 return true; 12869 12870 if (is_guest_mode(vcpu) && 12871 kvm_x86_ops.nested_ops->has_events && 12872 kvm_x86_ops.nested_ops->has_events(vcpu)) 12873 return true; 12874 12875 if (kvm_xen_has_pending_events(vcpu)) 12876 return true; 12877 12878 return false; 12879 } 12880 12881 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12882 { 12883 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12884 } 12885 12886 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12887 { 12888 if (kvm_vcpu_apicv_active(vcpu) && 12889 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12890 return true; 12891 12892 return false; 12893 } 12894 12895 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12896 { 12897 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12898 return true; 12899 12900 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12901 #ifdef CONFIG_KVM_SMM 12902 kvm_test_request(KVM_REQ_SMI, vcpu) || 12903 #endif 12904 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12905 return true; 12906 12907 return kvm_arch_dy_has_pending_interrupt(vcpu); 12908 } 12909 12910 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12911 { 12912 if (vcpu->arch.guest_state_protected) 12913 return true; 12914 12915 return vcpu->arch.preempted_in_kernel; 12916 } 12917 12918 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12919 { 12920 return kvm_rip_read(vcpu); 12921 } 12922 12923 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12924 { 12925 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12926 } 12927 12928 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12929 { 12930 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12931 } 12932 12933 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12934 { 12935 /* Can't read the RIP when guest state is protected, just return 0 */ 12936 if (vcpu->arch.guest_state_protected) 12937 return 0; 12938 12939 if (is_64_bit_mode(vcpu)) 12940 return kvm_rip_read(vcpu); 12941 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12942 kvm_rip_read(vcpu)); 12943 } 12944 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12945 12946 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12947 { 12948 return kvm_get_linear_rip(vcpu) == linear_rip; 12949 } 12950 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12951 12952 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12953 { 12954 unsigned long rflags; 12955 12956 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12957 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12958 rflags &= ~X86_EFLAGS_TF; 12959 return rflags; 12960 } 12961 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12962 12963 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12964 { 12965 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12966 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12967 rflags |= X86_EFLAGS_TF; 12968 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12969 } 12970 12971 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12972 { 12973 __kvm_set_rflags(vcpu, rflags); 12974 kvm_make_request(KVM_REQ_EVENT, vcpu); 12975 } 12976 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12977 12978 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12979 { 12980 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12981 12982 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12983 } 12984 12985 static inline u32 kvm_async_pf_next_probe(u32 key) 12986 { 12987 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12988 } 12989 12990 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12991 { 12992 u32 key = kvm_async_pf_hash_fn(gfn); 12993 12994 while (vcpu->arch.apf.gfns[key] != ~0) 12995 key = kvm_async_pf_next_probe(key); 12996 12997 vcpu->arch.apf.gfns[key] = gfn; 12998 } 12999 13000 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13001 { 13002 int i; 13003 u32 key = kvm_async_pf_hash_fn(gfn); 13004 13005 for (i = 0; i < ASYNC_PF_PER_VCPU && 13006 (vcpu->arch.apf.gfns[key] != gfn && 13007 vcpu->arch.apf.gfns[key] != ~0); i++) 13008 key = kvm_async_pf_next_probe(key); 13009 13010 return key; 13011 } 13012 13013 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13014 { 13015 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13016 } 13017 13018 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13019 { 13020 u32 i, j, k; 13021 13022 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13023 13024 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13025 return; 13026 13027 while (true) { 13028 vcpu->arch.apf.gfns[i] = ~0; 13029 do { 13030 j = kvm_async_pf_next_probe(j); 13031 if (vcpu->arch.apf.gfns[j] == ~0) 13032 return; 13033 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13034 /* 13035 * k lies cyclically in ]i,j] 13036 * | i.k.j | 13037 * |....j i.k.| or |.k..j i...| 13038 */ 13039 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13040 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13041 i = j; 13042 } 13043 } 13044 13045 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13046 { 13047 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13048 13049 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13050 sizeof(reason)); 13051 } 13052 13053 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13054 { 13055 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13056 13057 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13058 &token, offset, sizeof(token)); 13059 } 13060 13061 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13062 { 13063 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13064 u32 val; 13065 13066 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13067 &val, offset, sizeof(val))) 13068 return false; 13069 13070 return !val; 13071 } 13072 13073 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13074 { 13075 13076 if (!kvm_pv_async_pf_enabled(vcpu)) 13077 return false; 13078 13079 if (vcpu->arch.apf.send_user_only && 13080 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13081 return false; 13082 13083 if (is_guest_mode(vcpu)) { 13084 /* 13085 * L1 needs to opt into the special #PF vmexits that are 13086 * used to deliver async page faults. 13087 */ 13088 return vcpu->arch.apf.delivery_as_pf_vmexit; 13089 } else { 13090 /* 13091 * Play it safe in case the guest temporarily disables paging. 13092 * The real mode IDT in particular is unlikely to have a #PF 13093 * exception setup. 13094 */ 13095 return is_paging(vcpu); 13096 } 13097 } 13098 13099 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13100 { 13101 if (unlikely(!lapic_in_kernel(vcpu) || 13102 kvm_event_needs_reinjection(vcpu) || 13103 kvm_is_exception_pending(vcpu))) 13104 return false; 13105 13106 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13107 return false; 13108 13109 /* 13110 * If interrupts are off we cannot even use an artificial 13111 * halt state. 13112 */ 13113 return kvm_arch_interrupt_allowed(vcpu); 13114 } 13115 13116 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13117 struct kvm_async_pf *work) 13118 { 13119 struct x86_exception fault; 13120 13121 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13122 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13123 13124 if (kvm_can_deliver_async_pf(vcpu) && 13125 !apf_put_user_notpresent(vcpu)) { 13126 fault.vector = PF_VECTOR; 13127 fault.error_code_valid = true; 13128 fault.error_code = 0; 13129 fault.nested_page_fault = false; 13130 fault.address = work->arch.token; 13131 fault.async_page_fault = true; 13132 kvm_inject_page_fault(vcpu, &fault); 13133 return true; 13134 } else { 13135 /* 13136 * It is not possible to deliver a paravirtualized asynchronous 13137 * page fault, but putting the guest in an artificial halt state 13138 * can be beneficial nevertheless: if an interrupt arrives, we 13139 * can deliver it timely and perhaps the guest will schedule 13140 * another process. When the instruction that triggered a page 13141 * fault is retried, hopefully the page will be ready in the host. 13142 */ 13143 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13144 return false; 13145 } 13146 } 13147 13148 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13149 struct kvm_async_pf *work) 13150 { 13151 struct kvm_lapic_irq irq = { 13152 .delivery_mode = APIC_DM_FIXED, 13153 .vector = vcpu->arch.apf.vec 13154 }; 13155 13156 if (work->wakeup_all) 13157 work->arch.token = ~0; /* broadcast wakeup */ 13158 else 13159 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13160 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13161 13162 if ((work->wakeup_all || work->notpresent_injected) && 13163 kvm_pv_async_pf_enabled(vcpu) && 13164 !apf_put_user_ready(vcpu, work->arch.token)) { 13165 vcpu->arch.apf.pageready_pending = true; 13166 kvm_apic_set_irq(vcpu, &irq, NULL); 13167 } 13168 13169 vcpu->arch.apf.halted = false; 13170 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13171 } 13172 13173 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13174 { 13175 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13176 if (!vcpu->arch.apf.pageready_pending) 13177 kvm_vcpu_kick(vcpu); 13178 } 13179 13180 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13181 { 13182 if (!kvm_pv_async_pf_enabled(vcpu)) 13183 return true; 13184 else 13185 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13186 } 13187 13188 void kvm_arch_start_assignment(struct kvm *kvm) 13189 { 13190 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13191 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13192 } 13193 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13194 13195 void kvm_arch_end_assignment(struct kvm *kvm) 13196 { 13197 atomic_dec(&kvm->arch.assigned_device_count); 13198 } 13199 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13200 13201 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13202 { 13203 return raw_atomic_read(&kvm->arch.assigned_device_count); 13204 } 13205 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13206 13207 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13208 { 13209 atomic_inc(&kvm->arch.noncoherent_dma_count); 13210 } 13211 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13212 13213 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13214 { 13215 atomic_dec(&kvm->arch.noncoherent_dma_count); 13216 } 13217 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13218 13219 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13220 { 13221 return atomic_read(&kvm->arch.noncoherent_dma_count); 13222 } 13223 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13224 13225 bool kvm_arch_has_irq_bypass(void) 13226 { 13227 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13228 } 13229 13230 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13231 struct irq_bypass_producer *prod) 13232 { 13233 struct kvm_kernel_irqfd *irqfd = 13234 container_of(cons, struct kvm_kernel_irqfd, consumer); 13235 int ret; 13236 13237 irqfd->producer = prod; 13238 kvm_arch_start_assignment(irqfd->kvm); 13239 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13240 prod->irq, irqfd->gsi, 1); 13241 13242 if (ret) 13243 kvm_arch_end_assignment(irqfd->kvm); 13244 13245 return ret; 13246 } 13247 13248 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13249 struct irq_bypass_producer *prod) 13250 { 13251 int ret; 13252 struct kvm_kernel_irqfd *irqfd = 13253 container_of(cons, struct kvm_kernel_irqfd, consumer); 13254 13255 WARN_ON(irqfd->producer != prod); 13256 irqfd->producer = NULL; 13257 13258 /* 13259 * When producer of consumer is unregistered, we change back to 13260 * remapped mode, so we can re-use the current implementation 13261 * when the irq is masked/disabled or the consumer side (KVM 13262 * int this case doesn't want to receive the interrupts. 13263 */ 13264 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13265 if (ret) 13266 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13267 " fails: %d\n", irqfd->consumer.token, ret); 13268 13269 kvm_arch_end_assignment(irqfd->kvm); 13270 } 13271 13272 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13273 uint32_t guest_irq, bool set) 13274 { 13275 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13276 } 13277 13278 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13279 struct kvm_kernel_irq_routing_entry *new) 13280 { 13281 if (new->type != KVM_IRQ_ROUTING_MSI) 13282 return true; 13283 13284 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13285 } 13286 13287 bool kvm_vector_hashing_enabled(void) 13288 { 13289 return vector_hashing; 13290 } 13291 13292 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13293 { 13294 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13295 } 13296 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13297 13298 13299 int kvm_spec_ctrl_test_value(u64 value) 13300 { 13301 /* 13302 * test that setting IA32_SPEC_CTRL to given value 13303 * is allowed by the host processor 13304 */ 13305 13306 u64 saved_value; 13307 unsigned long flags; 13308 int ret = 0; 13309 13310 local_irq_save(flags); 13311 13312 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13313 ret = 1; 13314 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13315 ret = 1; 13316 else 13317 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13318 13319 local_irq_restore(flags); 13320 13321 return ret; 13322 } 13323 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13324 13325 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13326 { 13327 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13328 struct x86_exception fault; 13329 u64 access = error_code & 13330 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13331 13332 if (!(error_code & PFERR_PRESENT_MASK) || 13333 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13334 /* 13335 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13336 * tables probably do not match the TLB. Just proceed 13337 * with the error code that the processor gave. 13338 */ 13339 fault.vector = PF_VECTOR; 13340 fault.error_code_valid = true; 13341 fault.error_code = error_code; 13342 fault.nested_page_fault = false; 13343 fault.address = gva; 13344 fault.async_page_fault = false; 13345 } 13346 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13347 } 13348 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13349 13350 /* 13351 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13352 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13353 * indicates whether exit to userspace is needed. 13354 */ 13355 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13356 struct x86_exception *e) 13357 { 13358 if (r == X86EMUL_PROPAGATE_FAULT) { 13359 if (KVM_BUG_ON(!e, vcpu->kvm)) 13360 return -EIO; 13361 13362 kvm_inject_emulated_page_fault(vcpu, e); 13363 return 1; 13364 } 13365 13366 /* 13367 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13368 * while handling a VMX instruction KVM could've handled the request 13369 * correctly by exiting to userspace and performing I/O but there 13370 * doesn't seem to be a real use-case behind such requests, just return 13371 * KVM_EXIT_INTERNAL_ERROR for now. 13372 */ 13373 kvm_prepare_emulation_failure_exit(vcpu); 13374 13375 return 0; 13376 } 13377 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13378 13379 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13380 { 13381 bool pcid_enabled; 13382 struct x86_exception e; 13383 struct { 13384 u64 pcid; 13385 u64 gla; 13386 } operand; 13387 int r; 13388 13389 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13390 if (r != X86EMUL_CONTINUE) 13391 return kvm_handle_memory_failure(vcpu, r, &e); 13392 13393 if (operand.pcid >> 12 != 0) { 13394 kvm_inject_gp(vcpu, 0); 13395 return 1; 13396 } 13397 13398 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13399 13400 switch (type) { 13401 case INVPCID_TYPE_INDIV_ADDR: 13402 if ((!pcid_enabled && (operand.pcid != 0)) || 13403 is_noncanonical_address(operand.gla, vcpu)) { 13404 kvm_inject_gp(vcpu, 0); 13405 return 1; 13406 } 13407 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13408 return kvm_skip_emulated_instruction(vcpu); 13409 13410 case INVPCID_TYPE_SINGLE_CTXT: 13411 if (!pcid_enabled && (operand.pcid != 0)) { 13412 kvm_inject_gp(vcpu, 0); 13413 return 1; 13414 } 13415 13416 kvm_invalidate_pcid(vcpu, operand.pcid); 13417 return kvm_skip_emulated_instruction(vcpu); 13418 13419 case INVPCID_TYPE_ALL_NON_GLOBAL: 13420 /* 13421 * Currently, KVM doesn't mark global entries in the shadow 13422 * page tables, so a non-global flush just degenerates to a 13423 * global flush. If needed, we could optimize this later by 13424 * keeping track of global entries in shadow page tables. 13425 */ 13426 13427 fallthrough; 13428 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13429 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13430 return kvm_skip_emulated_instruction(vcpu); 13431 13432 default: 13433 kvm_inject_gp(vcpu, 0); 13434 return 1; 13435 } 13436 } 13437 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13438 13439 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13440 { 13441 struct kvm_run *run = vcpu->run; 13442 struct kvm_mmio_fragment *frag; 13443 unsigned int len; 13444 13445 BUG_ON(!vcpu->mmio_needed); 13446 13447 /* Complete previous fragment */ 13448 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13449 len = min(8u, frag->len); 13450 if (!vcpu->mmio_is_write) 13451 memcpy(frag->data, run->mmio.data, len); 13452 13453 if (frag->len <= 8) { 13454 /* Switch to the next fragment. */ 13455 frag++; 13456 vcpu->mmio_cur_fragment++; 13457 } else { 13458 /* Go forward to the next mmio piece. */ 13459 frag->data += len; 13460 frag->gpa += len; 13461 frag->len -= len; 13462 } 13463 13464 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13465 vcpu->mmio_needed = 0; 13466 13467 // VMG change, at this point, we're always done 13468 // RIP has already been advanced 13469 return 1; 13470 } 13471 13472 // More MMIO is needed 13473 run->mmio.phys_addr = frag->gpa; 13474 run->mmio.len = min(8u, frag->len); 13475 run->mmio.is_write = vcpu->mmio_is_write; 13476 if (run->mmio.is_write) 13477 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13478 run->exit_reason = KVM_EXIT_MMIO; 13479 13480 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13481 13482 return 0; 13483 } 13484 13485 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13486 void *data) 13487 { 13488 int handled; 13489 struct kvm_mmio_fragment *frag; 13490 13491 if (!data) 13492 return -EINVAL; 13493 13494 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13495 if (handled == bytes) 13496 return 1; 13497 13498 bytes -= handled; 13499 gpa += handled; 13500 data += handled; 13501 13502 /*TODO: Check if need to increment number of frags */ 13503 frag = vcpu->mmio_fragments; 13504 vcpu->mmio_nr_fragments = 1; 13505 frag->len = bytes; 13506 frag->gpa = gpa; 13507 frag->data = data; 13508 13509 vcpu->mmio_needed = 1; 13510 vcpu->mmio_cur_fragment = 0; 13511 13512 vcpu->run->mmio.phys_addr = gpa; 13513 vcpu->run->mmio.len = min(8u, frag->len); 13514 vcpu->run->mmio.is_write = 1; 13515 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13516 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13517 13518 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13519 13520 return 0; 13521 } 13522 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13523 13524 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13525 void *data) 13526 { 13527 int handled; 13528 struct kvm_mmio_fragment *frag; 13529 13530 if (!data) 13531 return -EINVAL; 13532 13533 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13534 if (handled == bytes) 13535 return 1; 13536 13537 bytes -= handled; 13538 gpa += handled; 13539 data += handled; 13540 13541 /*TODO: Check if need to increment number of frags */ 13542 frag = vcpu->mmio_fragments; 13543 vcpu->mmio_nr_fragments = 1; 13544 frag->len = bytes; 13545 frag->gpa = gpa; 13546 frag->data = data; 13547 13548 vcpu->mmio_needed = 1; 13549 vcpu->mmio_cur_fragment = 0; 13550 13551 vcpu->run->mmio.phys_addr = gpa; 13552 vcpu->run->mmio.len = min(8u, frag->len); 13553 vcpu->run->mmio.is_write = 0; 13554 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13555 13556 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13557 13558 return 0; 13559 } 13560 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13561 13562 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13563 { 13564 vcpu->arch.sev_pio_count -= count; 13565 vcpu->arch.sev_pio_data += count * size; 13566 } 13567 13568 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13569 unsigned int port); 13570 13571 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13572 { 13573 int size = vcpu->arch.pio.size; 13574 int port = vcpu->arch.pio.port; 13575 13576 vcpu->arch.pio.count = 0; 13577 if (vcpu->arch.sev_pio_count) 13578 return kvm_sev_es_outs(vcpu, size, port); 13579 return 1; 13580 } 13581 13582 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13583 unsigned int port) 13584 { 13585 for (;;) { 13586 unsigned int count = 13587 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13588 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13589 13590 /* memcpy done already by emulator_pio_out. */ 13591 advance_sev_es_emulated_pio(vcpu, count, size); 13592 if (!ret) 13593 break; 13594 13595 /* Emulation done by the kernel. */ 13596 if (!vcpu->arch.sev_pio_count) 13597 return 1; 13598 } 13599 13600 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13601 return 0; 13602 } 13603 13604 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13605 unsigned int port); 13606 13607 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13608 { 13609 unsigned count = vcpu->arch.pio.count; 13610 int size = vcpu->arch.pio.size; 13611 int port = vcpu->arch.pio.port; 13612 13613 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13614 advance_sev_es_emulated_pio(vcpu, count, size); 13615 if (vcpu->arch.sev_pio_count) 13616 return kvm_sev_es_ins(vcpu, size, port); 13617 return 1; 13618 } 13619 13620 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13621 unsigned int port) 13622 { 13623 for (;;) { 13624 unsigned int count = 13625 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13626 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13627 break; 13628 13629 /* Emulation done by the kernel. */ 13630 advance_sev_es_emulated_pio(vcpu, count, size); 13631 if (!vcpu->arch.sev_pio_count) 13632 return 1; 13633 } 13634 13635 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13636 return 0; 13637 } 13638 13639 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13640 unsigned int port, void *data, unsigned int count, 13641 int in) 13642 { 13643 vcpu->arch.sev_pio_data = data; 13644 vcpu->arch.sev_pio_count = count; 13645 return in ? kvm_sev_es_ins(vcpu, size, port) 13646 : kvm_sev_es_outs(vcpu, size, port); 13647 } 13648 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13649 13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13679 13680 static int __init kvm_x86_init(void) 13681 { 13682 kvm_mmu_x86_module_init(); 13683 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13684 return 0; 13685 } 13686 module_init(kvm_x86_init); 13687 13688 static void __exit kvm_x86_exit(void) 13689 { 13690 /* 13691 * If module_init() is implemented, module_exit() must also be 13692 * implemented to allow module unload. 13693 */ 13694 } 13695 module_exit(kvm_x86_exit); 13696