1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 92 93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 94 95 #define emul_to_vcpu(ctxt) \ 96 ((struct kvm_vcpu *)(ctxt)->vcpu) 97 98 /* EFER defaults: 99 * - enable syscall per default because its emulated by KVM 100 * - enable LME and LMA per default on 64 bit KVM 101 */ 102 #ifdef CONFIG_X86_64 103 static 104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 105 #else 106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 107 #endif 108 109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 110 111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 112 113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 114 115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 116 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 117 118 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 119 static void process_nmi(struct kvm_vcpu *vcpu); 120 static void process_smi(struct kvm_vcpu *vcpu); 121 static void enter_smm(struct kvm_vcpu *vcpu); 122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 123 static void store_regs(struct kvm_vcpu *vcpu); 124 static int sync_regs(struct kvm_vcpu *vcpu); 125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 126 127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 130 struct kvm_x86_ops kvm_x86_ops __read_mostly; 131 132 #define KVM_X86_OP(func) \ 133 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 134 *(((struct kvm_x86_ops *)0)->func)); 135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 137 #include <asm/kvm-x86-ops.h> 138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 140 141 static bool __read_mostly ignore_msrs = 0; 142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 143 144 bool __read_mostly report_ignored_msrs = true; 145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 146 EXPORT_SYMBOL_GPL(report_ignored_msrs); 147 148 unsigned int min_timer_period_us = 200; 149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 150 151 static bool __read_mostly kvmclock_periodic_sync = true; 152 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 153 154 bool __read_mostly kvm_has_tsc_control; 155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 156 u32 __read_mostly kvm_max_guest_tsc_khz; 157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 158 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 160 u64 __read_mostly kvm_max_tsc_scaling_ratio; 161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 162 u64 __read_mostly kvm_default_tsc_scaling_ratio; 163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 164 bool __read_mostly kvm_has_bus_lock_exit; 165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 166 167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 168 static u32 __read_mostly tsc_tolerance_ppm = 250; 169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 170 171 /* 172 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 173 * adaptive tuning starting from default advancement of 1000ns. '0' disables 174 * advancement entirely. Any other value is used as-is and disables adaptive 175 * tuning, i.e. allows privileged userspace to set an exact advancement time. 176 */ 177 static int __read_mostly lapic_timer_advance_ns = -1; 178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 179 180 static bool __read_mostly vector_hashing = true; 181 module_param(vector_hashing, bool, S_IRUGO); 182 183 bool __read_mostly enable_vmware_backdoor = false; 184 module_param(enable_vmware_backdoor, bool, S_IRUGO); 185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 186 187 static bool __read_mostly force_emulation_prefix = false; 188 module_param(force_emulation_prefix, bool, S_IRUGO); 189 190 int __read_mostly pi_inject_timer = -1; 191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 192 193 /* Enable/disable PMU virtualization */ 194 bool __read_mostly enable_pmu = true; 195 EXPORT_SYMBOL_GPL(enable_pmu); 196 module_param(enable_pmu, bool, 0444); 197 198 bool __read_mostly eager_page_split = true; 199 module_param(eager_page_split, bool, 0644); 200 201 /* 202 * Restoring the host value for MSRs that are only consumed when running in 203 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 204 * returns to userspace, i.e. the kernel can run with the guest's value. 205 */ 206 #define KVM_MAX_NR_USER_RETURN_MSRS 16 207 208 struct kvm_user_return_msrs { 209 struct user_return_notifier urn; 210 bool registered; 211 struct kvm_user_return_msr_values { 212 u64 host; 213 u64 curr; 214 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 215 }; 216 217 u32 __read_mostly kvm_nr_uret_msrs; 218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 220 static struct kvm_user_return_msrs __percpu *user_return_msrs; 221 222 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 223 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 224 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 225 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 226 227 u64 __read_mostly host_efer; 228 EXPORT_SYMBOL_GPL(host_efer); 229 230 bool __read_mostly allow_smaller_maxphyaddr = 0; 231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 232 233 bool __read_mostly enable_apicv = true; 234 EXPORT_SYMBOL_GPL(enable_apicv); 235 236 u64 __read_mostly host_xss; 237 EXPORT_SYMBOL_GPL(host_xss); 238 u64 __read_mostly supported_xss; 239 EXPORT_SYMBOL_GPL(supported_xss); 240 241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 242 KVM_GENERIC_VM_STATS(), 243 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 244 STATS_DESC_COUNTER(VM, mmu_pte_write), 245 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 246 STATS_DESC_COUNTER(VM, mmu_flooded), 247 STATS_DESC_COUNTER(VM, mmu_recycled), 248 STATS_DESC_COUNTER(VM, mmu_cache_miss), 249 STATS_DESC_ICOUNTER(VM, mmu_unsync), 250 STATS_DESC_ICOUNTER(VM, pages_4k), 251 STATS_DESC_ICOUNTER(VM, pages_2m), 252 STATS_DESC_ICOUNTER(VM, pages_1g), 253 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 254 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 255 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 256 }; 257 258 const struct kvm_stats_header kvm_vm_stats_header = { 259 .name_size = KVM_STATS_NAME_SIZE, 260 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 261 .id_offset = sizeof(struct kvm_stats_header), 262 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 263 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 264 sizeof(kvm_vm_stats_desc), 265 }; 266 267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 268 KVM_GENERIC_VCPU_STATS(), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_guest), 271 STATS_DESC_COUNTER(VCPU, tlb_flush), 272 STATS_DESC_COUNTER(VCPU, invlpg), 273 STATS_DESC_COUNTER(VCPU, exits), 274 STATS_DESC_COUNTER(VCPU, io_exits), 275 STATS_DESC_COUNTER(VCPU, mmio_exits), 276 STATS_DESC_COUNTER(VCPU, signal_exits), 277 STATS_DESC_COUNTER(VCPU, irq_window_exits), 278 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 279 STATS_DESC_COUNTER(VCPU, l1d_flush), 280 STATS_DESC_COUNTER(VCPU, halt_exits), 281 STATS_DESC_COUNTER(VCPU, request_irq_exits), 282 STATS_DESC_COUNTER(VCPU, irq_exits), 283 STATS_DESC_COUNTER(VCPU, host_state_reload), 284 STATS_DESC_COUNTER(VCPU, fpu_reload), 285 STATS_DESC_COUNTER(VCPU, insn_emulation), 286 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 287 STATS_DESC_COUNTER(VCPU, hypercalls), 288 STATS_DESC_COUNTER(VCPU, irq_injections), 289 STATS_DESC_COUNTER(VCPU, nmi_injections), 290 STATS_DESC_COUNTER(VCPU, req_event), 291 STATS_DESC_COUNTER(VCPU, nested_run), 292 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 293 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 294 STATS_DESC_ICOUNTER(VCPU, guest_mode) 295 }; 296 297 const struct kvm_stats_header kvm_vcpu_stats_header = { 298 .name_size = KVM_STATS_NAME_SIZE, 299 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 300 .id_offset = sizeof(struct kvm_stats_header), 301 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 302 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 303 sizeof(kvm_vcpu_stats_desc), 304 }; 305 306 u64 __read_mostly host_xcr0; 307 u64 __read_mostly supported_xcr0; 308 EXPORT_SYMBOL_GPL(supported_xcr0); 309 310 static struct kmem_cache *x86_emulator_cache; 311 312 /* 313 * When called, it means the previous get/set msr reached an invalid msr. 314 * Return true if we want to ignore/silent this failed msr access. 315 */ 316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 317 { 318 const char *op = write ? "wrmsr" : "rdmsr"; 319 320 if (ignore_msrs) { 321 if (report_ignored_msrs) 322 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 323 op, msr, data); 324 /* Mask the error */ 325 return true; 326 } else { 327 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 return false; 330 } 331 } 332 333 static struct kmem_cache *kvm_alloc_emulator_cache(void) 334 { 335 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 336 unsigned int size = sizeof(struct x86_emulate_ctxt); 337 338 return kmem_cache_create_usercopy("x86_emulator", size, 339 __alignof__(struct x86_emulate_ctxt), 340 SLAB_ACCOUNT, useroffset, 341 size - useroffset, NULL); 342 } 343 344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 345 346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 347 { 348 int i; 349 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 350 vcpu->arch.apf.gfns[i] = ~0; 351 } 352 353 static void kvm_on_user_return(struct user_return_notifier *urn) 354 { 355 unsigned slot; 356 struct kvm_user_return_msrs *msrs 357 = container_of(urn, struct kvm_user_return_msrs, urn); 358 struct kvm_user_return_msr_values *values; 359 unsigned long flags; 360 361 /* 362 * Disabling irqs at this point since the following code could be 363 * interrupted and executed through kvm_arch_hardware_disable() 364 */ 365 local_irq_save(flags); 366 if (msrs->registered) { 367 msrs->registered = false; 368 user_return_notifier_unregister(urn); 369 } 370 local_irq_restore(flags); 371 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 372 values = &msrs->values[slot]; 373 if (values->host != values->curr) { 374 wrmsrl(kvm_uret_msrs_list[slot], values->host); 375 values->curr = values->host; 376 } 377 } 378 } 379 380 static int kvm_probe_user_return_msr(u32 msr) 381 { 382 u64 val; 383 int ret; 384 385 preempt_disable(); 386 ret = rdmsrl_safe(msr, &val); 387 if (ret) 388 goto out; 389 ret = wrmsrl_safe(msr, val); 390 out: 391 preempt_enable(); 392 return ret; 393 } 394 395 int kvm_add_user_return_msr(u32 msr) 396 { 397 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 398 399 if (kvm_probe_user_return_msr(msr)) 400 return -1; 401 402 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 403 return kvm_nr_uret_msrs++; 404 } 405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 406 407 int kvm_find_user_return_msr(u32 msr) 408 { 409 int i; 410 411 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 412 if (kvm_uret_msrs_list[i] == msr) 413 return i; 414 } 415 return -1; 416 } 417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 418 419 static void kvm_user_return_msr_cpu_online(void) 420 { 421 unsigned int cpu = smp_processor_id(); 422 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 423 u64 value; 424 int i; 425 426 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 427 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 428 msrs->values[i].host = value; 429 msrs->values[i].curr = value; 430 } 431 } 432 433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 434 { 435 unsigned int cpu = smp_processor_id(); 436 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 437 int err; 438 439 value = (value & mask) | (msrs->values[slot].host & ~mask); 440 if (value == msrs->values[slot].curr) 441 return 0; 442 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 443 if (err) 444 return 1; 445 446 msrs->values[slot].curr = value; 447 if (!msrs->registered) { 448 msrs->urn.on_user_return = kvm_on_user_return; 449 user_return_notifier_register(&msrs->urn); 450 msrs->registered = true; 451 } 452 return 0; 453 } 454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 455 456 static void drop_user_return_notifiers(void) 457 { 458 unsigned int cpu = smp_processor_id(); 459 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 460 461 if (msrs->registered) 462 kvm_on_user_return(&msrs->urn); 463 } 464 465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 466 { 467 return vcpu->arch.apic_base; 468 } 469 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 470 471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 472 { 473 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 474 } 475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 476 477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 478 { 479 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 480 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 481 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 482 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 483 484 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 485 return 1; 486 if (!msr_info->host_initiated) { 487 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 488 return 1; 489 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 490 return 1; 491 } 492 493 kvm_lapic_set_base(vcpu, msr_info->data); 494 kvm_recalculate_apic_map(vcpu->kvm); 495 return 0; 496 } 497 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 498 499 /* 500 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 501 * 502 * Hardware virtualization extension instructions may fault if a reboot turns 503 * off virtualization while processes are running. Usually after catching the 504 * fault we just panic; during reboot instead the instruction is ignored. 505 */ 506 noinstr void kvm_spurious_fault(void) 507 { 508 /* Fault while not rebooting. We want the trace. */ 509 BUG_ON(!kvm_rebooting); 510 } 511 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 512 513 #define EXCPT_BENIGN 0 514 #define EXCPT_CONTRIBUTORY 1 515 #define EXCPT_PF 2 516 517 static int exception_class(int vector) 518 { 519 switch (vector) { 520 case PF_VECTOR: 521 return EXCPT_PF; 522 case DE_VECTOR: 523 case TS_VECTOR: 524 case NP_VECTOR: 525 case SS_VECTOR: 526 case GP_VECTOR: 527 return EXCPT_CONTRIBUTORY; 528 default: 529 break; 530 } 531 return EXCPT_BENIGN; 532 } 533 534 #define EXCPT_FAULT 0 535 #define EXCPT_TRAP 1 536 #define EXCPT_ABORT 2 537 #define EXCPT_INTERRUPT 3 538 539 static int exception_type(int vector) 540 { 541 unsigned int mask; 542 543 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 544 return EXCPT_INTERRUPT; 545 546 mask = 1 << vector; 547 548 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 549 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 550 return EXCPT_TRAP; 551 552 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 553 return EXCPT_ABORT; 554 555 /* Reserved exceptions will result in fault */ 556 return EXCPT_FAULT; 557 } 558 559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 560 { 561 unsigned nr = vcpu->arch.exception.nr; 562 bool has_payload = vcpu->arch.exception.has_payload; 563 unsigned long payload = vcpu->arch.exception.payload; 564 565 if (!has_payload) 566 return; 567 568 switch (nr) { 569 case DB_VECTOR: 570 /* 571 * "Certain debug exceptions may clear bit 0-3. The 572 * remaining contents of the DR6 register are never 573 * cleared by the processor". 574 */ 575 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 576 /* 577 * In order to reflect the #DB exception payload in guest 578 * dr6, three components need to be considered: active low 579 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 580 * DR6_BS and DR6_BT) 581 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 582 * In the target guest dr6: 583 * FIXED_1 bits should always be set. 584 * Active low bits should be cleared if 1-setting in payload. 585 * Active high bits should be set if 1-setting in payload. 586 * 587 * Note, the payload is compatible with the pending debug 588 * exceptions/exit qualification under VMX, that active_low bits 589 * are active high in payload. 590 * So they need to be flipped for DR6. 591 */ 592 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 593 vcpu->arch.dr6 |= payload; 594 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 595 596 /* 597 * The #DB payload is defined as compatible with the 'pending 598 * debug exceptions' field under VMX, not DR6. While bit 12 is 599 * defined in the 'pending debug exceptions' field (enabled 600 * breakpoint), it is reserved and must be zero in DR6. 601 */ 602 vcpu->arch.dr6 &= ~BIT(12); 603 break; 604 case PF_VECTOR: 605 vcpu->arch.cr2 = payload; 606 break; 607 } 608 609 vcpu->arch.exception.has_payload = false; 610 vcpu->arch.exception.payload = 0; 611 } 612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 613 614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 615 unsigned nr, bool has_error, u32 error_code, 616 bool has_payload, unsigned long payload, bool reinject) 617 { 618 u32 prev_nr; 619 int class1, class2; 620 621 kvm_make_request(KVM_REQ_EVENT, vcpu); 622 623 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 624 queue: 625 if (reinject) { 626 /* 627 * On vmentry, vcpu->arch.exception.pending is only 628 * true if an event injection was blocked by 629 * nested_run_pending. In that case, however, 630 * vcpu_enter_guest requests an immediate exit, 631 * and the guest shouldn't proceed far enough to 632 * need reinjection. 633 */ 634 WARN_ON_ONCE(vcpu->arch.exception.pending); 635 vcpu->arch.exception.injected = true; 636 if (WARN_ON_ONCE(has_payload)) { 637 /* 638 * A reinjected event has already 639 * delivered its payload. 640 */ 641 has_payload = false; 642 payload = 0; 643 } 644 } else { 645 vcpu->arch.exception.pending = true; 646 vcpu->arch.exception.injected = false; 647 } 648 vcpu->arch.exception.has_error_code = has_error; 649 vcpu->arch.exception.nr = nr; 650 vcpu->arch.exception.error_code = error_code; 651 vcpu->arch.exception.has_payload = has_payload; 652 vcpu->arch.exception.payload = payload; 653 if (!is_guest_mode(vcpu)) 654 kvm_deliver_exception_payload(vcpu); 655 return; 656 } 657 658 /* to check exception */ 659 prev_nr = vcpu->arch.exception.nr; 660 if (prev_nr == DF_VECTOR) { 661 /* triple fault -> shutdown */ 662 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 663 return; 664 } 665 class1 = exception_class(prev_nr); 666 class2 = exception_class(nr); 667 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 668 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 669 /* 670 * Generate double fault per SDM Table 5-5. Set 671 * exception.pending = true so that the double fault 672 * can trigger a nested vmexit. 673 */ 674 vcpu->arch.exception.pending = true; 675 vcpu->arch.exception.injected = false; 676 vcpu->arch.exception.has_error_code = true; 677 vcpu->arch.exception.nr = DF_VECTOR; 678 vcpu->arch.exception.error_code = 0; 679 vcpu->arch.exception.has_payload = false; 680 vcpu->arch.exception.payload = 0; 681 } else 682 /* replace previous exception with a new one in a hope 683 that instruction re-execution will regenerate lost 684 exception */ 685 goto queue; 686 } 687 688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 689 { 690 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 691 } 692 EXPORT_SYMBOL_GPL(kvm_queue_exception); 693 694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 695 { 696 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 697 } 698 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 699 700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 701 unsigned long payload) 702 { 703 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 704 } 705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 706 707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 708 u32 error_code, unsigned long payload) 709 { 710 kvm_multiple_exception(vcpu, nr, true, error_code, 711 true, payload, false); 712 } 713 714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 715 { 716 if (err) 717 kvm_inject_gp(vcpu, 0); 718 else 719 return kvm_skip_emulated_instruction(vcpu); 720 721 return 1; 722 } 723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 724 725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 726 { 727 if (err) { 728 kvm_inject_gp(vcpu, 0); 729 return 1; 730 } 731 732 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 733 EMULTYPE_COMPLETE_USER_EXIT); 734 } 735 736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 737 { 738 ++vcpu->stat.pf_guest; 739 vcpu->arch.exception.nested_apf = 740 is_guest_mode(vcpu) && fault->async_page_fault; 741 if (vcpu->arch.exception.nested_apf) { 742 vcpu->arch.apf.nested_apf_token = fault->address; 743 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 744 } else { 745 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 746 fault->address); 747 } 748 } 749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 750 751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 752 struct x86_exception *fault) 753 { 754 struct kvm_mmu *fault_mmu; 755 WARN_ON_ONCE(fault->vector != PF_VECTOR); 756 757 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 758 vcpu->arch.walk_mmu; 759 760 /* 761 * Invalidate the TLB entry for the faulting address, if it exists, 762 * else the access will fault indefinitely (and to emulate hardware). 763 */ 764 if ((fault->error_code & PFERR_PRESENT_MASK) && 765 !(fault->error_code & PFERR_RSVD_MASK)) 766 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 767 fault_mmu->root.hpa); 768 769 fault_mmu->inject_page_fault(vcpu, fault); 770 return fault->nested_page_fault; 771 } 772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 773 774 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 775 { 776 atomic_inc(&vcpu->arch.nmi_queued); 777 kvm_make_request(KVM_REQ_NMI, vcpu); 778 } 779 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 780 781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 782 { 783 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 784 } 785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 786 787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 788 { 789 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 790 } 791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 792 793 /* 794 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 795 * a #GP and return false. 796 */ 797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 798 { 799 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 800 return true; 801 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 802 return false; 803 } 804 EXPORT_SYMBOL_GPL(kvm_require_cpl); 805 806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 807 { 808 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 809 return true; 810 811 kvm_queue_exception(vcpu, UD_VECTOR); 812 return false; 813 } 814 EXPORT_SYMBOL_GPL(kvm_require_dr); 815 816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 817 { 818 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 819 } 820 821 /* 822 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 823 */ 824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 825 { 826 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 827 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 828 gpa_t real_gpa; 829 int i; 830 int ret; 831 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 832 833 /* 834 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 835 * to an L1 GPA. 836 */ 837 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 838 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 839 if (real_gpa == UNMAPPED_GVA) 840 return 0; 841 842 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 843 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 844 cr3 & GENMASK(11, 5), sizeof(pdpte)); 845 if (ret < 0) 846 return 0; 847 848 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 849 if ((pdpte[i] & PT_PRESENT_MASK) && 850 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 851 return 0; 852 } 853 } 854 855 /* 856 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 857 * Shadow page roots need to be reconstructed instead. 858 */ 859 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 860 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 861 862 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 863 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 864 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 865 vcpu->arch.pdptrs_from_userspace = false; 866 867 return 1; 868 } 869 EXPORT_SYMBOL_GPL(load_pdptrs); 870 871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 872 { 873 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 874 kvm_clear_async_pf_completion_queue(vcpu); 875 kvm_async_pf_hash_reset(vcpu); 876 877 /* 878 * Clearing CR0.PG is defined to flush the TLB from the guest's 879 * perspective. 880 */ 881 if (!(cr0 & X86_CR0_PG)) 882 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 883 } 884 885 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 886 kvm_mmu_reset_context(vcpu); 887 888 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 889 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 890 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 891 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 892 } 893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 894 895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 896 { 897 unsigned long old_cr0 = kvm_read_cr0(vcpu); 898 899 cr0 |= X86_CR0_ET; 900 901 #ifdef CONFIG_X86_64 902 if (cr0 & 0xffffffff00000000UL) 903 return 1; 904 #endif 905 906 cr0 &= ~CR0_RESERVED_BITS; 907 908 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 909 return 1; 910 911 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 912 return 1; 913 914 #ifdef CONFIG_X86_64 915 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 916 (cr0 & X86_CR0_PG)) { 917 int cs_db, cs_l; 918 919 if (!is_pae(vcpu)) 920 return 1; 921 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 922 if (cs_l) 923 return 1; 924 } 925 #endif 926 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 927 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 928 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 929 return 1; 930 931 if (!(cr0 & X86_CR0_PG) && 932 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 933 return 1; 934 935 static_call(kvm_x86_set_cr0)(vcpu, cr0); 936 937 kvm_post_set_cr0(vcpu, old_cr0, cr0); 938 939 return 0; 940 } 941 EXPORT_SYMBOL_GPL(kvm_set_cr0); 942 943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 944 { 945 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 946 } 947 EXPORT_SYMBOL_GPL(kvm_lmsw); 948 949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 950 { 951 if (vcpu->arch.guest_state_protected) 952 return; 953 954 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 955 956 if (vcpu->arch.xcr0 != host_xcr0) 957 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 958 959 if (vcpu->arch.xsaves_enabled && 960 vcpu->arch.ia32_xss != host_xss) 961 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 962 } 963 964 if (static_cpu_has(X86_FEATURE_PKU) && 965 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 966 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 967 vcpu->arch.pkru != vcpu->arch.host_pkru) 968 write_pkru(vcpu->arch.pkru); 969 } 970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 971 972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 973 { 974 if (vcpu->arch.guest_state_protected) 975 return; 976 977 if (static_cpu_has(X86_FEATURE_PKU) && 978 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 979 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 980 vcpu->arch.pkru = rdpkru(); 981 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 982 write_pkru(vcpu->arch.host_pkru); 983 } 984 985 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 986 987 if (vcpu->arch.xcr0 != host_xcr0) 988 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 989 990 if (vcpu->arch.xsaves_enabled && 991 vcpu->arch.ia32_xss != host_xss) 992 wrmsrl(MSR_IA32_XSS, host_xss); 993 } 994 995 } 996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 997 998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 999 { 1000 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 1001 } 1002 1003 #ifdef CONFIG_X86_64 1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1005 { 1006 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 1007 } 1008 #endif 1009 1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1011 { 1012 u64 xcr0 = xcr; 1013 u64 old_xcr0 = vcpu->arch.xcr0; 1014 u64 valid_bits; 1015 1016 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1017 if (index != XCR_XFEATURE_ENABLED_MASK) 1018 return 1; 1019 if (!(xcr0 & XFEATURE_MASK_FP)) 1020 return 1; 1021 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1022 return 1; 1023 1024 /* 1025 * Do not allow the guest to set bits that we do not support 1026 * saving. However, xcr0 bit 0 is always set, even if the 1027 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1028 */ 1029 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1030 if (xcr0 & ~valid_bits) 1031 return 1; 1032 1033 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1034 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1035 return 1; 1036 1037 if (xcr0 & XFEATURE_MASK_AVX512) { 1038 if (!(xcr0 & XFEATURE_MASK_YMM)) 1039 return 1; 1040 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1041 return 1; 1042 } 1043 1044 if ((xcr0 & XFEATURE_MASK_XTILE) && 1045 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1046 return 1; 1047 1048 vcpu->arch.xcr0 = xcr0; 1049 1050 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1051 kvm_update_cpuid_runtime(vcpu); 1052 return 0; 1053 } 1054 1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1056 { 1057 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1058 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1059 kvm_inject_gp(vcpu, 0); 1060 return 1; 1061 } 1062 1063 return kvm_skip_emulated_instruction(vcpu); 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1066 1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1068 { 1069 if (cr4 & cr4_reserved_bits) 1070 return false; 1071 1072 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1073 return false; 1074 1075 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1076 } 1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1078 1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1080 { 1081 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1082 kvm_mmu_reset_context(vcpu); 1083 1084 /* 1085 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1086 * according to the SDM; however, stale prev_roots could be reused 1087 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1088 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1089 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1090 * so fall through. 1091 */ 1092 if (!tdp_enabled && 1093 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1094 kvm_mmu_unload(vcpu); 1095 1096 /* 1097 * The TLB has to be flushed for all PCIDs if any of the following 1098 * (architecturally required) changes happen: 1099 * - CR4.PCIDE is changed from 1 to 0 1100 * - CR4.PGE is toggled 1101 * 1102 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1103 */ 1104 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1105 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1106 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1107 1108 /* 1109 * The TLB has to be flushed for the current PCID if any of the 1110 * following (architecturally required) changes happen: 1111 * - CR4.SMEP is changed from 0 to 1 1112 * - CR4.PAE is toggled 1113 */ 1114 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1115 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1116 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1117 1118 } 1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1120 1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1122 { 1123 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1124 1125 if (!kvm_is_valid_cr4(vcpu, cr4)) 1126 return 1; 1127 1128 if (is_long_mode(vcpu)) { 1129 if (!(cr4 & X86_CR4_PAE)) 1130 return 1; 1131 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1132 return 1; 1133 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1134 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1135 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1136 return 1; 1137 1138 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1139 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1140 return 1; 1141 1142 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1143 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1144 return 1; 1145 } 1146 1147 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1148 1149 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1150 1151 return 0; 1152 } 1153 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1154 1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1156 { 1157 struct kvm_mmu *mmu = vcpu->arch.mmu; 1158 unsigned long roots_to_free = 0; 1159 int i; 1160 1161 /* 1162 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1163 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1164 * also via the emulator. KVM's TDP page tables are not in the scope of 1165 * the invalidation, but the guest's TLB entries need to be flushed as 1166 * the CPU may have cached entries in its TLB for the target PCID. 1167 */ 1168 if (unlikely(tdp_enabled)) { 1169 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1170 return; 1171 } 1172 1173 /* 1174 * If neither the current CR3 nor any of the prev_roots use the given 1175 * PCID, then nothing needs to be done here because a resync will 1176 * happen anyway before switching to any other CR3. 1177 */ 1178 if (kvm_get_active_pcid(vcpu) == pcid) { 1179 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1180 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1181 } 1182 1183 /* 1184 * If PCID is disabled, there is no need to free prev_roots even if the 1185 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1186 * with PCIDE=0. 1187 */ 1188 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1189 return; 1190 1191 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1192 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1193 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1194 1195 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1196 } 1197 1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1199 { 1200 bool skip_tlb_flush = false; 1201 unsigned long pcid = 0; 1202 #ifdef CONFIG_X86_64 1203 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1204 1205 if (pcid_enabled) { 1206 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1207 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1208 pcid = cr3 & X86_CR3_PCID_MASK; 1209 } 1210 #endif 1211 1212 /* PDPTRs are always reloaded for PAE paging. */ 1213 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1214 goto handle_tlb_flush; 1215 1216 /* 1217 * Do not condition the GPA check on long mode, this helper is used to 1218 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1219 * the current vCPU mode is accurate. 1220 */ 1221 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1222 return 1; 1223 1224 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1225 return 1; 1226 1227 if (cr3 != kvm_read_cr3(vcpu)) 1228 kvm_mmu_new_pgd(vcpu, cr3); 1229 1230 vcpu->arch.cr3 = cr3; 1231 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1232 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1233 1234 handle_tlb_flush: 1235 /* 1236 * A load of CR3 that flushes the TLB flushes only the current PCID, 1237 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1238 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1239 * and it's impossible to use a non-zero PCID when PCID is disabled, 1240 * i.e. only PCID=0 can be relevant. 1241 */ 1242 if (!skip_tlb_flush) 1243 kvm_invalidate_pcid(vcpu, pcid); 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1248 1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1250 { 1251 if (cr8 & CR8_RESERVED_BITS) 1252 return 1; 1253 if (lapic_in_kernel(vcpu)) 1254 kvm_lapic_set_tpr(vcpu, cr8); 1255 else 1256 vcpu->arch.cr8 = cr8; 1257 return 0; 1258 } 1259 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1260 1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1262 { 1263 if (lapic_in_kernel(vcpu)) 1264 return kvm_lapic_get_cr8(vcpu); 1265 else 1266 return vcpu->arch.cr8; 1267 } 1268 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1269 1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1271 { 1272 int i; 1273 1274 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1275 for (i = 0; i < KVM_NR_DB_REGS; i++) 1276 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1277 } 1278 } 1279 1280 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1281 { 1282 unsigned long dr7; 1283 1284 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1285 dr7 = vcpu->arch.guest_debug_dr7; 1286 else 1287 dr7 = vcpu->arch.dr7; 1288 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1289 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1290 if (dr7 & DR7_BP_EN_MASK) 1291 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1292 } 1293 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1294 1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1296 { 1297 u64 fixed = DR6_FIXED_1; 1298 1299 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1300 fixed |= DR6_RTM; 1301 1302 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1303 fixed |= DR6_BUS_LOCK; 1304 return fixed; 1305 } 1306 1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1308 { 1309 size_t size = ARRAY_SIZE(vcpu->arch.db); 1310 1311 switch (dr) { 1312 case 0 ... 3: 1313 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1314 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1315 vcpu->arch.eff_db[dr] = val; 1316 break; 1317 case 4: 1318 case 6: 1319 if (!kvm_dr6_valid(val)) 1320 return 1; /* #GP */ 1321 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1322 break; 1323 case 5: 1324 default: /* 7 */ 1325 if (!kvm_dr7_valid(val)) 1326 return 1; /* #GP */ 1327 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1328 kvm_update_dr7(vcpu); 1329 break; 1330 } 1331 1332 return 0; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_set_dr); 1335 1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1337 { 1338 size_t size = ARRAY_SIZE(vcpu->arch.db); 1339 1340 switch (dr) { 1341 case 0 ... 3: 1342 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1343 break; 1344 case 4: 1345 case 6: 1346 *val = vcpu->arch.dr6; 1347 break; 1348 case 5: 1349 default: /* 7 */ 1350 *val = vcpu->arch.dr7; 1351 break; 1352 } 1353 } 1354 EXPORT_SYMBOL_GPL(kvm_get_dr); 1355 1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1357 { 1358 u32 ecx = kvm_rcx_read(vcpu); 1359 u64 data; 1360 1361 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1362 kvm_inject_gp(vcpu, 0); 1363 return 1; 1364 } 1365 1366 kvm_rax_write(vcpu, (u32)data); 1367 kvm_rdx_write(vcpu, data >> 32); 1368 return kvm_skip_emulated_instruction(vcpu); 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1371 1372 /* 1373 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1374 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1375 * 1376 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1377 * extract the supported MSRs from the related const lists. 1378 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1379 * capabilities of the host cpu. This capabilities test skips MSRs that are 1380 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1381 * may depend on host virtualization features rather than host cpu features. 1382 */ 1383 1384 static const u32 msrs_to_save_all[] = { 1385 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1386 MSR_STAR, 1387 #ifdef CONFIG_X86_64 1388 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1389 #endif 1390 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1391 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1392 MSR_IA32_SPEC_CTRL, 1393 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1394 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1395 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1396 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1397 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1398 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1399 MSR_IA32_UMWAIT_CONTROL, 1400 1401 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1402 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1403 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1404 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1405 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1406 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1407 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1408 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1409 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1410 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1411 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1412 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1413 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1414 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1415 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1416 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1417 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1418 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1419 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1420 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1421 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1422 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1423 1424 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1425 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1426 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1427 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1428 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1429 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1430 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1431 }; 1432 1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1434 static unsigned num_msrs_to_save; 1435 1436 static const u32 emulated_msrs_all[] = { 1437 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1438 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1439 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1440 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1441 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1442 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1443 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1444 HV_X64_MSR_RESET, 1445 HV_X64_MSR_VP_INDEX, 1446 HV_X64_MSR_VP_RUNTIME, 1447 HV_X64_MSR_SCONTROL, 1448 HV_X64_MSR_STIMER0_CONFIG, 1449 HV_X64_MSR_VP_ASSIST_PAGE, 1450 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1451 HV_X64_MSR_TSC_EMULATION_STATUS, 1452 HV_X64_MSR_SYNDBG_OPTIONS, 1453 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1454 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1455 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1456 1457 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1458 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1459 1460 MSR_IA32_TSC_ADJUST, 1461 MSR_IA32_TSC_DEADLINE, 1462 MSR_IA32_ARCH_CAPABILITIES, 1463 MSR_IA32_PERF_CAPABILITIES, 1464 MSR_IA32_MISC_ENABLE, 1465 MSR_IA32_MCG_STATUS, 1466 MSR_IA32_MCG_CTL, 1467 MSR_IA32_MCG_EXT_CTL, 1468 MSR_IA32_SMBASE, 1469 MSR_SMI_COUNT, 1470 MSR_PLATFORM_INFO, 1471 MSR_MISC_FEATURES_ENABLES, 1472 MSR_AMD64_VIRT_SPEC_CTRL, 1473 MSR_AMD64_TSC_RATIO, 1474 MSR_IA32_POWER_CTL, 1475 MSR_IA32_UCODE_REV, 1476 1477 /* 1478 * The following list leaves out MSRs whose values are determined 1479 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1480 * We always support the "true" VMX control MSRs, even if the host 1481 * processor does not, so I am putting these registers here rather 1482 * than in msrs_to_save_all. 1483 */ 1484 MSR_IA32_VMX_BASIC, 1485 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1486 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1487 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1488 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1489 MSR_IA32_VMX_MISC, 1490 MSR_IA32_VMX_CR0_FIXED0, 1491 MSR_IA32_VMX_CR4_FIXED0, 1492 MSR_IA32_VMX_VMCS_ENUM, 1493 MSR_IA32_VMX_PROCBASED_CTLS2, 1494 MSR_IA32_VMX_EPT_VPID_CAP, 1495 MSR_IA32_VMX_VMFUNC, 1496 1497 MSR_K7_HWCR, 1498 MSR_KVM_POLL_CONTROL, 1499 }; 1500 1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1502 static unsigned num_emulated_msrs; 1503 1504 /* 1505 * List of msr numbers which are used to expose MSR-based features that 1506 * can be used by a hypervisor to validate requested CPU features. 1507 */ 1508 static const u32 msr_based_features_all[] = { 1509 MSR_IA32_VMX_BASIC, 1510 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1511 MSR_IA32_VMX_PINBASED_CTLS, 1512 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1513 MSR_IA32_VMX_PROCBASED_CTLS, 1514 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1515 MSR_IA32_VMX_EXIT_CTLS, 1516 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1517 MSR_IA32_VMX_ENTRY_CTLS, 1518 MSR_IA32_VMX_MISC, 1519 MSR_IA32_VMX_CR0_FIXED0, 1520 MSR_IA32_VMX_CR0_FIXED1, 1521 MSR_IA32_VMX_CR4_FIXED0, 1522 MSR_IA32_VMX_CR4_FIXED1, 1523 MSR_IA32_VMX_VMCS_ENUM, 1524 MSR_IA32_VMX_PROCBASED_CTLS2, 1525 MSR_IA32_VMX_EPT_VPID_CAP, 1526 MSR_IA32_VMX_VMFUNC, 1527 1528 MSR_F10H_DECFG, 1529 MSR_IA32_UCODE_REV, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 }; 1533 1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1535 static unsigned int num_msr_based_features; 1536 1537 static u64 kvm_get_arch_capabilities(void) 1538 { 1539 u64 data = 0; 1540 1541 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1542 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1543 1544 /* 1545 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1546 * the nested hypervisor runs with NX huge pages. If it is not, 1547 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1548 * L1 guests, so it need not worry about its own (L2) guests. 1549 */ 1550 data |= ARCH_CAP_PSCHANGE_MC_NO; 1551 1552 /* 1553 * If we're doing cache flushes (either "always" or "cond") 1554 * we will do one whenever the guest does a vmlaunch/vmresume. 1555 * If an outer hypervisor is doing the cache flush for us 1556 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1557 * capability to the guest too, and if EPT is disabled we're not 1558 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1559 * require a nested hypervisor to do a flush of its own. 1560 */ 1561 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1562 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1563 1564 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1565 data |= ARCH_CAP_RDCL_NO; 1566 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1567 data |= ARCH_CAP_SSB_NO; 1568 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1569 data |= ARCH_CAP_MDS_NO; 1570 1571 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1572 /* 1573 * If RTM=0 because the kernel has disabled TSX, the host might 1574 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1575 * and therefore knows that there cannot be TAA) but keep 1576 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1577 * and we want to allow migrating those guests to tsx=off hosts. 1578 */ 1579 data &= ~ARCH_CAP_TAA_NO; 1580 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1581 data |= ARCH_CAP_TAA_NO; 1582 } else { 1583 /* 1584 * Nothing to do here; we emulate TSX_CTRL if present on the 1585 * host so the guest can choose between disabling TSX or 1586 * using VERW to clear CPU buffers. 1587 */ 1588 } 1589 1590 return data; 1591 } 1592 1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1594 { 1595 switch (msr->index) { 1596 case MSR_IA32_ARCH_CAPABILITIES: 1597 msr->data = kvm_get_arch_capabilities(); 1598 break; 1599 case MSR_IA32_UCODE_REV: 1600 rdmsrl_safe(msr->index, &msr->data); 1601 break; 1602 default: 1603 return static_call(kvm_x86_get_msr_feature)(msr); 1604 } 1605 return 0; 1606 } 1607 1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1609 { 1610 struct kvm_msr_entry msr; 1611 int r; 1612 1613 msr.index = index; 1614 r = kvm_get_msr_feature(&msr); 1615 1616 if (r == KVM_MSR_RET_INVALID) { 1617 /* Unconditionally clear the output for simplicity */ 1618 *data = 0; 1619 if (kvm_msr_ignored_check(index, 0, false)) 1620 r = 0; 1621 } 1622 1623 if (r) 1624 return r; 1625 1626 *data = msr.data; 1627 1628 return 0; 1629 } 1630 1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1632 { 1633 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1634 return false; 1635 1636 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1637 return false; 1638 1639 if (efer & (EFER_LME | EFER_LMA) && 1640 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1641 return false; 1642 1643 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1644 return false; 1645 1646 return true; 1647 1648 } 1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1650 { 1651 if (efer & efer_reserved_bits) 1652 return false; 1653 1654 return __kvm_valid_efer(vcpu, efer); 1655 } 1656 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1657 1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1659 { 1660 u64 old_efer = vcpu->arch.efer; 1661 u64 efer = msr_info->data; 1662 int r; 1663 1664 if (efer & efer_reserved_bits) 1665 return 1; 1666 1667 if (!msr_info->host_initiated) { 1668 if (!__kvm_valid_efer(vcpu, efer)) 1669 return 1; 1670 1671 if (is_paging(vcpu) && 1672 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1673 return 1; 1674 } 1675 1676 efer &= ~EFER_LMA; 1677 efer |= vcpu->arch.efer & EFER_LMA; 1678 1679 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1680 if (r) { 1681 WARN_ON(r > 0); 1682 return r; 1683 } 1684 1685 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1686 kvm_mmu_reset_context(vcpu); 1687 1688 return 0; 1689 } 1690 1691 void kvm_enable_efer_bits(u64 mask) 1692 { 1693 efer_reserved_bits &= ~mask; 1694 } 1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1696 1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1698 { 1699 struct kvm_x86_msr_filter *msr_filter; 1700 struct msr_bitmap_range *ranges; 1701 struct kvm *kvm = vcpu->kvm; 1702 bool allowed; 1703 int idx; 1704 u32 i; 1705 1706 /* x2APIC MSRs do not support filtering. */ 1707 if (index >= 0x800 && index <= 0x8ff) 1708 return true; 1709 1710 idx = srcu_read_lock(&kvm->srcu); 1711 1712 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1713 if (!msr_filter) { 1714 allowed = true; 1715 goto out; 1716 } 1717 1718 allowed = msr_filter->default_allow; 1719 ranges = msr_filter->ranges; 1720 1721 for (i = 0; i < msr_filter->count; i++) { 1722 u32 start = ranges[i].base; 1723 u32 end = start + ranges[i].nmsrs; 1724 u32 flags = ranges[i].flags; 1725 unsigned long *bitmap = ranges[i].bitmap; 1726 1727 if ((index >= start) && (index < end) && (flags & type)) { 1728 allowed = !!test_bit(index - start, bitmap); 1729 break; 1730 } 1731 } 1732 1733 out: 1734 srcu_read_unlock(&kvm->srcu, idx); 1735 1736 return allowed; 1737 } 1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1739 1740 /* 1741 * Write @data into the MSR specified by @index. Select MSR specific fault 1742 * checks are bypassed if @host_initiated is %true. 1743 * Returns 0 on success, non-0 otherwise. 1744 * Assumes vcpu_load() was already called. 1745 */ 1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1747 bool host_initiated) 1748 { 1749 struct msr_data msr; 1750 1751 switch (index) { 1752 case MSR_FS_BASE: 1753 case MSR_GS_BASE: 1754 case MSR_KERNEL_GS_BASE: 1755 case MSR_CSTAR: 1756 case MSR_LSTAR: 1757 if (is_noncanonical_address(data, vcpu)) 1758 return 1; 1759 break; 1760 case MSR_IA32_SYSENTER_EIP: 1761 case MSR_IA32_SYSENTER_ESP: 1762 /* 1763 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1764 * non-canonical address is written on Intel but not on 1765 * AMD (which ignores the top 32-bits, because it does 1766 * not implement 64-bit SYSENTER). 1767 * 1768 * 64-bit code should hence be able to write a non-canonical 1769 * value on AMD. Making the address canonical ensures that 1770 * vmentry does not fail on Intel after writing a non-canonical 1771 * value, and that something deterministic happens if the guest 1772 * invokes 64-bit SYSENTER. 1773 */ 1774 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1775 break; 1776 case MSR_TSC_AUX: 1777 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1778 return 1; 1779 1780 if (!host_initiated && 1781 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1782 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1783 return 1; 1784 1785 /* 1786 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1787 * incomplete and conflicting architectural behavior. Current 1788 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1789 * reserved and always read as zeros. Enforce Intel's reserved 1790 * bits check if and only if the guest CPU is Intel, and clear 1791 * the bits in all other cases. This ensures cross-vendor 1792 * migration will provide consistent behavior for the guest. 1793 */ 1794 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1795 return 1; 1796 1797 data = (u32)data; 1798 break; 1799 } 1800 1801 msr.data = data; 1802 msr.index = index; 1803 msr.host_initiated = host_initiated; 1804 1805 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1806 } 1807 1808 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1809 u32 index, u64 data, bool host_initiated) 1810 { 1811 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1812 1813 if (ret == KVM_MSR_RET_INVALID) 1814 if (kvm_msr_ignored_check(index, data, true)) 1815 ret = 0; 1816 1817 return ret; 1818 } 1819 1820 /* 1821 * Read the MSR specified by @index into @data. Select MSR specific fault 1822 * checks are bypassed if @host_initiated is %true. 1823 * Returns 0 on success, non-0 otherwise. 1824 * Assumes vcpu_load() was already called. 1825 */ 1826 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1827 bool host_initiated) 1828 { 1829 struct msr_data msr; 1830 int ret; 1831 1832 switch (index) { 1833 case MSR_TSC_AUX: 1834 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1835 return 1; 1836 1837 if (!host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1840 return 1; 1841 break; 1842 } 1843 1844 msr.index = index; 1845 msr.host_initiated = host_initiated; 1846 1847 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1848 if (!ret) 1849 *data = msr.data; 1850 return ret; 1851 } 1852 1853 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1854 u32 index, u64 *data, bool host_initiated) 1855 { 1856 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1857 1858 if (ret == KVM_MSR_RET_INVALID) { 1859 /* Unconditionally clear *data for simplicity */ 1860 *data = 0; 1861 if (kvm_msr_ignored_check(index, 0, false)) 1862 ret = 0; 1863 } 1864 1865 return ret; 1866 } 1867 1868 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1869 { 1870 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1871 return KVM_MSR_RET_FILTERED; 1872 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1873 } 1874 1875 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1876 { 1877 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1878 return KVM_MSR_RET_FILTERED; 1879 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1880 } 1881 1882 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1883 { 1884 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1885 } 1886 EXPORT_SYMBOL_GPL(kvm_get_msr); 1887 1888 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1889 { 1890 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1891 } 1892 EXPORT_SYMBOL_GPL(kvm_set_msr); 1893 1894 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1895 { 1896 if (!vcpu->run->msr.error) { 1897 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1898 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1899 } 1900 } 1901 1902 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1903 { 1904 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1905 } 1906 1907 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1908 { 1909 complete_userspace_rdmsr(vcpu); 1910 return complete_emulated_msr_access(vcpu); 1911 } 1912 1913 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1914 { 1915 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1916 } 1917 1918 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1919 { 1920 complete_userspace_rdmsr(vcpu); 1921 return complete_fast_msr_access(vcpu); 1922 } 1923 1924 static u64 kvm_msr_reason(int r) 1925 { 1926 switch (r) { 1927 case KVM_MSR_RET_INVALID: 1928 return KVM_MSR_EXIT_REASON_UNKNOWN; 1929 case KVM_MSR_RET_FILTERED: 1930 return KVM_MSR_EXIT_REASON_FILTER; 1931 default: 1932 return KVM_MSR_EXIT_REASON_INVAL; 1933 } 1934 } 1935 1936 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1937 u32 exit_reason, u64 data, 1938 int (*completion)(struct kvm_vcpu *vcpu), 1939 int r) 1940 { 1941 u64 msr_reason = kvm_msr_reason(r); 1942 1943 /* Check if the user wanted to know about this MSR fault */ 1944 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1945 return 0; 1946 1947 vcpu->run->exit_reason = exit_reason; 1948 vcpu->run->msr.error = 0; 1949 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1950 vcpu->run->msr.reason = msr_reason; 1951 vcpu->run->msr.index = index; 1952 vcpu->run->msr.data = data; 1953 vcpu->arch.complete_userspace_io = completion; 1954 1955 return 1; 1956 } 1957 1958 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1959 { 1960 u32 ecx = kvm_rcx_read(vcpu); 1961 u64 data; 1962 int r; 1963 1964 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 1965 1966 if (!r) { 1967 trace_kvm_msr_read(ecx, data); 1968 1969 kvm_rax_write(vcpu, data & -1u); 1970 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1971 } else { 1972 /* MSR read failed? See if we should ask user space */ 1973 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 1974 complete_fast_rdmsr, r)) 1975 return 0; 1976 trace_kvm_msr_read_ex(ecx); 1977 } 1978 1979 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1980 } 1981 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1982 1983 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1984 { 1985 u32 ecx = kvm_rcx_read(vcpu); 1986 u64 data = kvm_read_edx_eax(vcpu); 1987 int r; 1988 1989 r = kvm_set_msr_with_filter(vcpu, ecx, data); 1990 1991 if (!r) { 1992 trace_kvm_msr_write(ecx, data); 1993 } else { 1994 /* MSR write failed? See if we should ask user space */ 1995 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 1996 complete_fast_msr_access, r)) 1997 return 0; 1998 /* Signal all other negative errors to userspace */ 1999 if (r < 0) 2000 return r; 2001 trace_kvm_msr_write_ex(ecx, data); 2002 } 2003 2004 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2005 } 2006 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2007 2008 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2009 { 2010 return kvm_skip_emulated_instruction(vcpu); 2011 } 2012 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2013 2014 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2015 { 2016 /* Treat an INVD instruction as a NOP and just skip it. */ 2017 return kvm_emulate_as_nop(vcpu); 2018 } 2019 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2020 2021 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2022 { 2023 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 2024 return kvm_emulate_as_nop(vcpu); 2025 } 2026 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2027 2028 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2029 { 2030 kvm_queue_exception(vcpu, UD_VECTOR); 2031 return 1; 2032 } 2033 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2034 2035 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2036 { 2037 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 2038 return kvm_emulate_as_nop(vcpu); 2039 } 2040 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2041 2042 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2043 { 2044 xfer_to_guest_mode_prepare(); 2045 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2046 xfer_to_guest_mode_work_pending(); 2047 } 2048 2049 /* 2050 * The fast path for frequent and performance sensitive wrmsr emulation, 2051 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2052 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2053 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2054 * other cases which must be called after interrupts are enabled on the host. 2055 */ 2056 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2057 { 2058 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2059 return 1; 2060 2061 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2062 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2063 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2064 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2065 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2066 2067 return 1; 2068 } 2069 2070 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2071 { 2072 if (!kvm_can_use_hv_timer(vcpu)) 2073 return 1; 2074 2075 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2076 return 0; 2077 } 2078 2079 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2080 { 2081 u32 msr = kvm_rcx_read(vcpu); 2082 u64 data; 2083 fastpath_t ret = EXIT_FASTPATH_NONE; 2084 2085 switch (msr) { 2086 case APIC_BASE_MSR + (APIC_ICR >> 4): 2087 data = kvm_read_edx_eax(vcpu); 2088 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2089 kvm_skip_emulated_instruction(vcpu); 2090 ret = EXIT_FASTPATH_EXIT_HANDLED; 2091 } 2092 break; 2093 case MSR_IA32_TSC_DEADLINE: 2094 data = kvm_read_edx_eax(vcpu); 2095 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2096 kvm_skip_emulated_instruction(vcpu); 2097 ret = EXIT_FASTPATH_REENTER_GUEST; 2098 } 2099 break; 2100 default: 2101 break; 2102 } 2103 2104 if (ret != EXIT_FASTPATH_NONE) 2105 trace_kvm_msr_write(msr, data); 2106 2107 return ret; 2108 } 2109 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2110 2111 /* 2112 * Adapt set_msr() to msr_io()'s calling convention 2113 */ 2114 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2115 { 2116 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2117 } 2118 2119 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2120 { 2121 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2122 } 2123 2124 #ifdef CONFIG_X86_64 2125 struct pvclock_clock { 2126 int vclock_mode; 2127 u64 cycle_last; 2128 u64 mask; 2129 u32 mult; 2130 u32 shift; 2131 u64 base_cycles; 2132 u64 offset; 2133 }; 2134 2135 struct pvclock_gtod_data { 2136 seqcount_t seq; 2137 2138 struct pvclock_clock clock; /* extract of a clocksource struct */ 2139 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2140 2141 ktime_t offs_boot; 2142 u64 wall_time_sec; 2143 }; 2144 2145 static struct pvclock_gtod_data pvclock_gtod_data; 2146 2147 static void update_pvclock_gtod(struct timekeeper *tk) 2148 { 2149 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2150 2151 write_seqcount_begin(&vdata->seq); 2152 2153 /* copy pvclock gtod data */ 2154 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2155 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2156 vdata->clock.mask = tk->tkr_mono.mask; 2157 vdata->clock.mult = tk->tkr_mono.mult; 2158 vdata->clock.shift = tk->tkr_mono.shift; 2159 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2160 vdata->clock.offset = tk->tkr_mono.base; 2161 2162 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2163 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2164 vdata->raw_clock.mask = tk->tkr_raw.mask; 2165 vdata->raw_clock.mult = tk->tkr_raw.mult; 2166 vdata->raw_clock.shift = tk->tkr_raw.shift; 2167 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2168 vdata->raw_clock.offset = tk->tkr_raw.base; 2169 2170 vdata->wall_time_sec = tk->xtime_sec; 2171 2172 vdata->offs_boot = tk->offs_boot; 2173 2174 write_seqcount_end(&vdata->seq); 2175 } 2176 2177 static s64 get_kvmclock_base_ns(void) 2178 { 2179 /* Count up from boot time, but with the frequency of the raw clock. */ 2180 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2181 } 2182 #else 2183 static s64 get_kvmclock_base_ns(void) 2184 { 2185 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2186 return ktime_get_boottime_ns(); 2187 } 2188 #endif 2189 2190 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2191 { 2192 int version; 2193 int r; 2194 struct pvclock_wall_clock wc; 2195 u32 wc_sec_hi; 2196 u64 wall_nsec; 2197 2198 if (!wall_clock) 2199 return; 2200 2201 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2202 if (r) 2203 return; 2204 2205 if (version & 1) 2206 ++version; /* first time write, random junk */ 2207 2208 ++version; 2209 2210 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2211 return; 2212 2213 /* 2214 * The guest calculates current wall clock time by adding 2215 * system time (updated by kvm_guest_time_update below) to the 2216 * wall clock specified here. We do the reverse here. 2217 */ 2218 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2219 2220 wc.nsec = do_div(wall_nsec, 1000000000); 2221 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2222 wc.version = version; 2223 2224 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2225 2226 if (sec_hi_ofs) { 2227 wc_sec_hi = wall_nsec >> 32; 2228 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2229 &wc_sec_hi, sizeof(wc_sec_hi)); 2230 } 2231 2232 version++; 2233 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2234 } 2235 2236 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2237 bool old_msr, bool host_initiated) 2238 { 2239 struct kvm_arch *ka = &vcpu->kvm->arch; 2240 2241 if (vcpu->vcpu_id == 0 && !host_initiated) { 2242 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2243 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2244 2245 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2246 } 2247 2248 vcpu->arch.time = system_time; 2249 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2250 2251 /* we verify if the enable bit is set... */ 2252 vcpu->arch.pv_time_enabled = false; 2253 if (!(system_time & 1)) 2254 return; 2255 2256 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2257 &vcpu->arch.pv_time, system_time & ~1ULL, 2258 sizeof(struct pvclock_vcpu_time_info))) 2259 vcpu->arch.pv_time_enabled = true; 2260 2261 return; 2262 } 2263 2264 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2265 { 2266 do_shl32_div32(dividend, divisor); 2267 return dividend; 2268 } 2269 2270 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2271 s8 *pshift, u32 *pmultiplier) 2272 { 2273 uint64_t scaled64; 2274 int32_t shift = 0; 2275 uint64_t tps64; 2276 uint32_t tps32; 2277 2278 tps64 = base_hz; 2279 scaled64 = scaled_hz; 2280 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2281 tps64 >>= 1; 2282 shift--; 2283 } 2284 2285 tps32 = (uint32_t)tps64; 2286 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2287 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2288 scaled64 >>= 1; 2289 else 2290 tps32 <<= 1; 2291 shift++; 2292 } 2293 2294 *pshift = shift; 2295 *pmultiplier = div_frac(scaled64, tps32); 2296 } 2297 2298 #ifdef CONFIG_X86_64 2299 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2300 #endif 2301 2302 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2303 static unsigned long max_tsc_khz; 2304 2305 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2306 { 2307 u64 v = (u64)khz * (1000000 + ppm); 2308 do_div(v, 1000000); 2309 return v; 2310 } 2311 2312 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2313 2314 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2315 { 2316 u64 ratio; 2317 2318 /* Guest TSC same frequency as host TSC? */ 2319 if (!scale) { 2320 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2321 return 0; 2322 } 2323 2324 /* TSC scaling supported? */ 2325 if (!kvm_has_tsc_control) { 2326 if (user_tsc_khz > tsc_khz) { 2327 vcpu->arch.tsc_catchup = 1; 2328 vcpu->arch.tsc_always_catchup = 1; 2329 return 0; 2330 } else { 2331 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2332 return -1; 2333 } 2334 } 2335 2336 /* TSC scaling required - calculate ratio */ 2337 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2338 user_tsc_khz, tsc_khz); 2339 2340 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2341 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2342 user_tsc_khz); 2343 return -1; 2344 } 2345 2346 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2347 return 0; 2348 } 2349 2350 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2351 { 2352 u32 thresh_lo, thresh_hi; 2353 int use_scaling = 0; 2354 2355 /* tsc_khz can be zero if TSC calibration fails */ 2356 if (user_tsc_khz == 0) { 2357 /* set tsc_scaling_ratio to a safe value */ 2358 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2359 return -1; 2360 } 2361 2362 /* Compute a scale to convert nanoseconds in TSC cycles */ 2363 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2364 &vcpu->arch.virtual_tsc_shift, 2365 &vcpu->arch.virtual_tsc_mult); 2366 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2367 2368 /* 2369 * Compute the variation in TSC rate which is acceptable 2370 * within the range of tolerance and decide if the 2371 * rate being applied is within that bounds of the hardware 2372 * rate. If so, no scaling or compensation need be done. 2373 */ 2374 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2375 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2376 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2377 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2378 use_scaling = 1; 2379 } 2380 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2381 } 2382 2383 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2384 { 2385 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2386 vcpu->arch.virtual_tsc_mult, 2387 vcpu->arch.virtual_tsc_shift); 2388 tsc += vcpu->arch.this_tsc_write; 2389 return tsc; 2390 } 2391 2392 #ifdef CONFIG_X86_64 2393 static inline int gtod_is_based_on_tsc(int mode) 2394 { 2395 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2396 } 2397 #endif 2398 2399 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2400 { 2401 #ifdef CONFIG_X86_64 2402 bool vcpus_matched; 2403 struct kvm_arch *ka = &vcpu->kvm->arch; 2404 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2405 2406 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2407 atomic_read(&vcpu->kvm->online_vcpus)); 2408 2409 /* 2410 * Once the masterclock is enabled, always perform request in 2411 * order to update it. 2412 * 2413 * In order to enable masterclock, the host clocksource must be TSC 2414 * and the vcpus need to have matched TSCs. When that happens, 2415 * perform request to enable masterclock. 2416 */ 2417 if (ka->use_master_clock || 2418 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2419 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2420 2421 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2422 atomic_read(&vcpu->kvm->online_vcpus), 2423 ka->use_master_clock, gtod->clock.vclock_mode); 2424 #endif 2425 } 2426 2427 /* 2428 * Multiply tsc by a fixed point number represented by ratio. 2429 * 2430 * The most significant 64-N bits (mult) of ratio represent the 2431 * integral part of the fixed point number; the remaining N bits 2432 * (frac) represent the fractional part, ie. ratio represents a fixed 2433 * point number (mult + frac * 2^(-N)). 2434 * 2435 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2436 */ 2437 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2438 { 2439 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2440 } 2441 2442 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2443 { 2444 u64 _tsc = tsc; 2445 2446 if (ratio != kvm_default_tsc_scaling_ratio) 2447 _tsc = __scale_tsc(ratio, tsc); 2448 2449 return _tsc; 2450 } 2451 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2452 2453 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2454 { 2455 u64 tsc; 2456 2457 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2458 2459 return target_tsc - tsc; 2460 } 2461 2462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2463 { 2464 return vcpu->arch.l1_tsc_offset + 2465 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2466 } 2467 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2468 2469 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2470 { 2471 u64 nested_offset; 2472 2473 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2474 nested_offset = l1_offset; 2475 else 2476 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2477 kvm_tsc_scaling_ratio_frac_bits); 2478 2479 nested_offset += l2_offset; 2480 return nested_offset; 2481 } 2482 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2483 2484 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2485 { 2486 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2487 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2488 kvm_tsc_scaling_ratio_frac_bits); 2489 2490 return l1_multiplier; 2491 } 2492 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2493 2494 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2495 { 2496 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2497 vcpu->arch.l1_tsc_offset, 2498 l1_offset); 2499 2500 vcpu->arch.l1_tsc_offset = l1_offset; 2501 2502 /* 2503 * If we are here because L1 chose not to trap WRMSR to TSC then 2504 * according to the spec this should set L1's TSC (as opposed to 2505 * setting L1's offset for L2). 2506 */ 2507 if (is_guest_mode(vcpu)) 2508 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2509 l1_offset, 2510 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2511 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2512 else 2513 vcpu->arch.tsc_offset = l1_offset; 2514 2515 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2516 } 2517 2518 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2519 { 2520 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2521 2522 /* Userspace is changing the multiplier while L2 is active */ 2523 if (is_guest_mode(vcpu)) 2524 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2525 l1_multiplier, 2526 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2527 else 2528 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2529 2530 if (kvm_has_tsc_control) 2531 static_call(kvm_x86_write_tsc_multiplier)( 2532 vcpu, vcpu->arch.tsc_scaling_ratio); 2533 } 2534 2535 static inline bool kvm_check_tsc_unstable(void) 2536 { 2537 #ifdef CONFIG_X86_64 2538 /* 2539 * TSC is marked unstable when we're running on Hyper-V, 2540 * 'TSC page' clocksource is good. 2541 */ 2542 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2543 return false; 2544 #endif 2545 return check_tsc_unstable(); 2546 } 2547 2548 /* 2549 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2550 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2551 * participates in. 2552 */ 2553 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2554 u64 ns, bool matched) 2555 { 2556 struct kvm *kvm = vcpu->kvm; 2557 2558 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2559 2560 /* 2561 * We also track th most recent recorded KHZ, write and time to 2562 * allow the matching interval to be extended at each write. 2563 */ 2564 kvm->arch.last_tsc_nsec = ns; 2565 kvm->arch.last_tsc_write = tsc; 2566 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2567 kvm->arch.last_tsc_offset = offset; 2568 2569 vcpu->arch.last_guest_tsc = tsc; 2570 2571 kvm_vcpu_write_tsc_offset(vcpu, offset); 2572 2573 if (!matched) { 2574 /* 2575 * We split periods of matched TSC writes into generations. 2576 * For each generation, we track the original measured 2577 * nanosecond time, offset, and write, so if TSCs are in 2578 * sync, we can match exact offset, and if not, we can match 2579 * exact software computation in compute_guest_tsc() 2580 * 2581 * These values are tracked in kvm->arch.cur_xxx variables. 2582 */ 2583 kvm->arch.cur_tsc_generation++; 2584 kvm->arch.cur_tsc_nsec = ns; 2585 kvm->arch.cur_tsc_write = tsc; 2586 kvm->arch.cur_tsc_offset = offset; 2587 kvm->arch.nr_vcpus_matched_tsc = 0; 2588 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2589 kvm->arch.nr_vcpus_matched_tsc++; 2590 } 2591 2592 /* Keep track of which generation this VCPU has synchronized to */ 2593 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2594 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2595 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2596 2597 kvm_track_tsc_matching(vcpu); 2598 } 2599 2600 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2601 { 2602 struct kvm *kvm = vcpu->kvm; 2603 u64 offset, ns, elapsed; 2604 unsigned long flags; 2605 bool matched = false; 2606 bool synchronizing = false; 2607 2608 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2609 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2610 ns = get_kvmclock_base_ns(); 2611 elapsed = ns - kvm->arch.last_tsc_nsec; 2612 2613 if (vcpu->arch.virtual_tsc_khz) { 2614 if (data == 0) { 2615 /* 2616 * detection of vcpu initialization -- need to sync 2617 * with other vCPUs. This particularly helps to keep 2618 * kvm_clock stable after CPU hotplug 2619 */ 2620 synchronizing = true; 2621 } else { 2622 u64 tsc_exp = kvm->arch.last_tsc_write + 2623 nsec_to_cycles(vcpu, elapsed); 2624 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2625 /* 2626 * Special case: TSC write with a small delta (1 second) 2627 * of virtual cycle time against real time is 2628 * interpreted as an attempt to synchronize the CPU. 2629 */ 2630 synchronizing = data < tsc_exp + tsc_hz && 2631 data + tsc_hz > tsc_exp; 2632 } 2633 } 2634 2635 /* 2636 * For a reliable TSC, we can match TSC offsets, and for an unstable 2637 * TSC, we add elapsed time in this computation. We could let the 2638 * compensation code attempt to catch up if we fall behind, but 2639 * it's better to try to match offsets from the beginning. 2640 */ 2641 if (synchronizing && 2642 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2643 if (!kvm_check_tsc_unstable()) { 2644 offset = kvm->arch.cur_tsc_offset; 2645 } else { 2646 u64 delta = nsec_to_cycles(vcpu, elapsed); 2647 data += delta; 2648 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2649 } 2650 matched = true; 2651 } 2652 2653 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2654 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2655 } 2656 2657 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2658 s64 adjustment) 2659 { 2660 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2661 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2662 } 2663 2664 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2665 { 2666 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2667 WARN_ON(adjustment < 0); 2668 adjustment = kvm_scale_tsc((u64) adjustment, 2669 vcpu->arch.l1_tsc_scaling_ratio); 2670 adjust_tsc_offset_guest(vcpu, adjustment); 2671 } 2672 2673 #ifdef CONFIG_X86_64 2674 2675 static u64 read_tsc(void) 2676 { 2677 u64 ret = (u64)rdtsc_ordered(); 2678 u64 last = pvclock_gtod_data.clock.cycle_last; 2679 2680 if (likely(ret >= last)) 2681 return ret; 2682 2683 /* 2684 * GCC likes to generate cmov here, but this branch is extremely 2685 * predictable (it's just a function of time and the likely is 2686 * very likely) and there's a data dependence, so force GCC 2687 * to generate a branch instead. I don't barrier() because 2688 * we don't actually need a barrier, and if this function 2689 * ever gets inlined it will generate worse code. 2690 */ 2691 asm volatile (""); 2692 return last; 2693 } 2694 2695 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2696 int *mode) 2697 { 2698 long v; 2699 u64 tsc_pg_val; 2700 2701 switch (clock->vclock_mode) { 2702 case VDSO_CLOCKMODE_HVCLOCK: 2703 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2704 tsc_timestamp); 2705 if (tsc_pg_val != U64_MAX) { 2706 /* TSC page valid */ 2707 *mode = VDSO_CLOCKMODE_HVCLOCK; 2708 v = (tsc_pg_val - clock->cycle_last) & 2709 clock->mask; 2710 } else { 2711 /* TSC page invalid */ 2712 *mode = VDSO_CLOCKMODE_NONE; 2713 } 2714 break; 2715 case VDSO_CLOCKMODE_TSC: 2716 *mode = VDSO_CLOCKMODE_TSC; 2717 *tsc_timestamp = read_tsc(); 2718 v = (*tsc_timestamp - clock->cycle_last) & 2719 clock->mask; 2720 break; 2721 default: 2722 *mode = VDSO_CLOCKMODE_NONE; 2723 } 2724 2725 if (*mode == VDSO_CLOCKMODE_NONE) 2726 *tsc_timestamp = v = 0; 2727 2728 return v * clock->mult; 2729 } 2730 2731 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2732 { 2733 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2734 unsigned long seq; 2735 int mode; 2736 u64 ns; 2737 2738 do { 2739 seq = read_seqcount_begin(>od->seq); 2740 ns = gtod->raw_clock.base_cycles; 2741 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2742 ns >>= gtod->raw_clock.shift; 2743 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2744 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2745 *t = ns; 2746 2747 return mode; 2748 } 2749 2750 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2751 { 2752 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2753 unsigned long seq; 2754 int mode; 2755 u64 ns; 2756 2757 do { 2758 seq = read_seqcount_begin(>od->seq); 2759 ts->tv_sec = gtod->wall_time_sec; 2760 ns = gtod->clock.base_cycles; 2761 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2762 ns >>= gtod->clock.shift; 2763 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2764 2765 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2766 ts->tv_nsec = ns; 2767 2768 return mode; 2769 } 2770 2771 /* returns true if host is using TSC based clocksource */ 2772 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2773 { 2774 /* checked again under seqlock below */ 2775 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2776 return false; 2777 2778 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2779 tsc_timestamp)); 2780 } 2781 2782 /* returns true if host is using TSC based clocksource */ 2783 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2784 u64 *tsc_timestamp) 2785 { 2786 /* checked again under seqlock below */ 2787 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2788 return false; 2789 2790 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2791 } 2792 #endif 2793 2794 /* 2795 * 2796 * Assuming a stable TSC across physical CPUS, and a stable TSC 2797 * across virtual CPUs, the following condition is possible. 2798 * Each numbered line represents an event visible to both 2799 * CPUs at the next numbered event. 2800 * 2801 * "timespecX" represents host monotonic time. "tscX" represents 2802 * RDTSC value. 2803 * 2804 * VCPU0 on CPU0 | VCPU1 on CPU1 2805 * 2806 * 1. read timespec0,tsc0 2807 * 2. | timespec1 = timespec0 + N 2808 * | tsc1 = tsc0 + M 2809 * 3. transition to guest | transition to guest 2810 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2811 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2812 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2813 * 2814 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2815 * 2816 * - ret0 < ret1 2817 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2818 * ... 2819 * - 0 < N - M => M < N 2820 * 2821 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2822 * always the case (the difference between two distinct xtime instances 2823 * might be smaller then the difference between corresponding TSC reads, 2824 * when updating guest vcpus pvclock areas). 2825 * 2826 * To avoid that problem, do not allow visibility of distinct 2827 * system_timestamp/tsc_timestamp values simultaneously: use a master 2828 * copy of host monotonic time values. Update that master copy 2829 * in lockstep. 2830 * 2831 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2832 * 2833 */ 2834 2835 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2836 { 2837 #ifdef CONFIG_X86_64 2838 struct kvm_arch *ka = &kvm->arch; 2839 int vclock_mode; 2840 bool host_tsc_clocksource, vcpus_matched; 2841 2842 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2843 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2844 atomic_read(&kvm->online_vcpus)); 2845 2846 /* 2847 * If the host uses TSC clock, then passthrough TSC as stable 2848 * to the guest. 2849 */ 2850 host_tsc_clocksource = kvm_get_time_and_clockread( 2851 &ka->master_kernel_ns, 2852 &ka->master_cycle_now); 2853 2854 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2855 && !ka->backwards_tsc_observed 2856 && !ka->boot_vcpu_runs_old_kvmclock; 2857 2858 if (ka->use_master_clock) 2859 atomic_set(&kvm_guest_has_master_clock, 1); 2860 2861 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2862 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2863 vcpus_matched); 2864 #endif 2865 } 2866 2867 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2868 { 2869 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2870 } 2871 2872 static void __kvm_start_pvclock_update(struct kvm *kvm) 2873 { 2874 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2875 write_seqcount_begin(&kvm->arch.pvclock_sc); 2876 } 2877 2878 static void kvm_start_pvclock_update(struct kvm *kvm) 2879 { 2880 kvm_make_mclock_inprogress_request(kvm); 2881 2882 /* no guest entries from this point */ 2883 __kvm_start_pvclock_update(kvm); 2884 } 2885 2886 static void kvm_end_pvclock_update(struct kvm *kvm) 2887 { 2888 struct kvm_arch *ka = &kvm->arch; 2889 struct kvm_vcpu *vcpu; 2890 unsigned long i; 2891 2892 write_seqcount_end(&ka->pvclock_sc); 2893 raw_spin_unlock_irq(&ka->tsc_write_lock); 2894 kvm_for_each_vcpu(i, vcpu, kvm) 2895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2896 2897 /* guest entries allowed */ 2898 kvm_for_each_vcpu(i, vcpu, kvm) 2899 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2900 } 2901 2902 static void kvm_update_masterclock(struct kvm *kvm) 2903 { 2904 kvm_hv_invalidate_tsc_page(kvm); 2905 kvm_start_pvclock_update(kvm); 2906 pvclock_update_vm_gtod_copy(kvm); 2907 kvm_end_pvclock_update(kvm); 2908 } 2909 2910 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2911 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2912 { 2913 struct kvm_arch *ka = &kvm->arch; 2914 struct pvclock_vcpu_time_info hv_clock; 2915 2916 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2917 get_cpu(); 2918 2919 data->flags = 0; 2920 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2921 #ifdef CONFIG_X86_64 2922 struct timespec64 ts; 2923 2924 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2925 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2926 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2927 } else 2928 #endif 2929 data->host_tsc = rdtsc(); 2930 2931 data->flags |= KVM_CLOCK_TSC_STABLE; 2932 hv_clock.tsc_timestamp = ka->master_cycle_now; 2933 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2934 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2935 &hv_clock.tsc_shift, 2936 &hv_clock.tsc_to_system_mul); 2937 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2938 } else { 2939 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2940 } 2941 2942 put_cpu(); 2943 } 2944 2945 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2946 { 2947 struct kvm_arch *ka = &kvm->arch; 2948 unsigned seq; 2949 2950 do { 2951 seq = read_seqcount_begin(&ka->pvclock_sc); 2952 __get_kvmclock(kvm, data); 2953 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2954 } 2955 2956 u64 get_kvmclock_ns(struct kvm *kvm) 2957 { 2958 struct kvm_clock_data data; 2959 2960 get_kvmclock(kvm, &data); 2961 return data.clock; 2962 } 2963 2964 static void kvm_setup_pvclock_page(struct kvm_vcpu *v, 2965 struct gfn_to_hva_cache *cache, 2966 unsigned int offset) 2967 { 2968 struct kvm_vcpu_arch *vcpu = &v->arch; 2969 struct pvclock_vcpu_time_info guest_hv_clock; 2970 2971 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache, 2972 &guest_hv_clock, offset, sizeof(guest_hv_clock)))) 2973 return; 2974 2975 /* This VCPU is paused, but it's legal for a guest to read another 2976 * VCPU's kvmclock, so we really have to follow the specification where 2977 * it says that version is odd if data is being modified, and even after 2978 * it is consistent. 2979 * 2980 * Version field updates must be kept separate. This is because 2981 * kvm_write_guest_cached might use a "rep movs" instruction, and 2982 * writes within a string instruction are weakly ordered. So there 2983 * are three writes overall. 2984 * 2985 * As a small optimization, only write the version field in the first 2986 * and third write. The vcpu->pv_time cache is still valid, because the 2987 * version field is the first in the struct. 2988 */ 2989 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2990 2991 if (guest_hv_clock.version & 1) 2992 ++guest_hv_clock.version; /* first time write, random junk */ 2993 2994 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2995 kvm_write_guest_offset_cached(v->kvm, cache, 2996 &vcpu->hv_clock, offset, 2997 sizeof(vcpu->hv_clock.version)); 2998 2999 smp_wmb(); 3000 3001 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3002 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 3003 3004 if (vcpu->pvclock_set_guest_stopped_request) { 3005 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3006 vcpu->pvclock_set_guest_stopped_request = false; 3007 } 3008 3009 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3010 3011 kvm_write_guest_offset_cached(v->kvm, cache, 3012 &vcpu->hv_clock, offset, 3013 sizeof(vcpu->hv_clock)); 3014 3015 smp_wmb(); 3016 3017 vcpu->hv_clock.version++; 3018 kvm_write_guest_offset_cached(v->kvm, cache, 3019 &vcpu->hv_clock, offset, 3020 sizeof(vcpu->hv_clock.version)); 3021 } 3022 3023 static int kvm_guest_time_update(struct kvm_vcpu *v) 3024 { 3025 unsigned long flags, tgt_tsc_khz; 3026 unsigned seq; 3027 struct kvm_vcpu_arch *vcpu = &v->arch; 3028 struct kvm_arch *ka = &v->kvm->arch; 3029 s64 kernel_ns; 3030 u64 tsc_timestamp, host_tsc; 3031 u8 pvclock_flags; 3032 bool use_master_clock; 3033 3034 kernel_ns = 0; 3035 host_tsc = 0; 3036 3037 /* 3038 * If the host uses TSC clock, then passthrough TSC as stable 3039 * to the guest. 3040 */ 3041 do { 3042 seq = read_seqcount_begin(&ka->pvclock_sc); 3043 use_master_clock = ka->use_master_clock; 3044 if (use_master_clock) { 3045 host_tsc = ka->master_cycle_now; 3046 kernel_ns = ka->master_kernel_ns; 3047 } 3048 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3049 3050 /* Keep irq disabled to prevent changes to the clock */ 3051 local_irq_save(flags); 3052 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3053 if (unlikely(tgt_tsc_khz == 0)) { 3054 local_irq_restore(flags); 3055 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3056 return 1; 3057 } 3058 if (!use_master_clock) { 3059 host_tsc = rdtsc(); 3060 kernel_ns = get_kvmclock_base_ns(); 3061 } 3062 3063 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3064 3065 /* 3066 * We may have to catch up the TSC to match elapsed wall clock 3067 * time for two reasons, even if kvmclock is used. 3068 * 1) CPU could have been running below the maximum TSC rate 3069 * 2) Broken TSC compensation resets the base at each VCPU 3070 * entry to avoid unknown leaps of TSC even when running 3071 * again on the same CPU. This may cause apparent elapsed 3072 * time to disappear, and the guest to stand still or run 3073 * very slowly. 3074 */ 3075 if (vcpu->tsc_catchup) { 3076 u64 tsc = compute_guest_tsc(v, kernel_ns); 3077 if (tsc > tsc_timestamp) { 3078 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3079 tsc_timestamp = tsc; 3080 } 3081 } 3082 3083 local_irq_restore(flags); 3084 3085 /* With all the info we got, fill in the values */ 3086 3087 if (kvm_has_tsc_control) 3088 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3089 v->arch.l1_tsc_scaling_ratio); 3090 3091 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3092 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3093 &vcpu->hv_clock.tsc_shift, 3094 &vcpu->hv_clock.tsc_to_system_mul); 3095 vcpu->hw_tsc_khz = tgt_tsc_khz; 3096 } 3097 3098 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3099 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3100 vcpu->last_guest_tsc = tsc_timestamp; 3101 3102 /* If the host uses TSC clocksource, then it is stable */ 3103 pvclock_flags = 0; 3104 if (use_master_clock) 3105 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3106 3107 vcpu->hv_clock.flags = pvclock_flags; 3108 3109 if (vcpu->pv_time_enabled) 3110 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0); 3111 if (vcpu->xen.vcpu_info_set) 3112 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache, 3113 offsetof(struct compat_vcpu_info, time)); 3114 if (vcpu->xen.vcpu_time_info_set) 3115 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0); 3116 if (!v->vcpu_idx) 3117 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3118 return 0; 3119 } 3120 3121 /* 3122 * kvmclock updates which are isolated to a given vcpu, such as 3123 * vcpu->cpu migration, should not allow system_timestamp from 3124 * the rest of the vcpus to remain static. Otherwise ntp frequency 3125 * correction applies to one vcpu's system_timestamp but not 3126 * the others. 3127 * 3128 * So in those cases, request a kvmclock update for all vcpus. 3129 * We need to rate-limit these requests though, as they can 3130 * considerably slow guests that have a large number of vcpus. 3131 * The time for a remote vcpu to update its kvmclock is bound 3132 * by the delay we use to rate-limit the updates. 3133 */ 3134 3135 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3136 3137 static void kvmclock_update_fn(struct work_struct *work) 3138 { 3139 unsigned long i; 3140 struct delayed_work *dwork = to_delayed_work(work); 3141 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3142 kvmclock_update_work); 3143 struct kvm *kvm = container_of(ka, struct kvm, arch); 3144 struct kvm_vcpu *vcpu; 3145 3146 kvm_for_each_vcpu(i, vcpu, kvm) { 3147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3148 kvm_vcpu_kick(vcpu); 3149 } 3150 } 3151 3152 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3153 { 3154 struct kvm *kvm = v->kvm; 3155 3156 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3157 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3158 KVMCLOCK_UPDATE_DELAY); 3159 } 3160 3161 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3162 3163 static void kvmclock_sync_fn(struct work_struct *work) 3164 { 3165 struct delayed_work *dwork = to_delayed_work(work); 3166 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3167 kvmclock_sync_work); 3168 struct kvm *kvm = container_of(ka, struct kvm, arch); 3169 3170 if (!kvmclock_periodic_sync) 3171 return; 3172 3173 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3174 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3175 KVMCLOCK_SYNC_PERIOD); 3176 } 3177 3178 /* 3179 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3180 */ 3181 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3182 { 3183 /* McStatusWrEn enabled? */ 3184 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3185 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3186 3187 return false; 3188 } 3189 3190 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3191 { 3192 u64 mcg_cap = vcpu->arch.mcg_cap; 3193 unsigned bank_num = mcg_cap & 0xff; 3194 u32 msr = msr_info->index; 3195 u64 data = msr_info->data; 3196 3197 switch (msr) { 3198 case MSR_IA32_MCG_STATUS: 3199 vcpu->arch.mcg_status = data; 3200 break; 3201 case MSR_IA32_MCG_CTL: 3202 if (!(mcg_cap & MCG_CTL_P) && 3203 (data || !msr_info->host_initiated)) 3204 return 1; 3205 if (data != 0 && data != ~(u64)0) 3206 return 1; 3207 vcpu->arch.mcg_ctl = data; 3208 break; 3209 default: 3210 if (msr >= MSR_IA32_MC0_CTL && 3211 msr < MSR_IA32_MCx_CTL(bank_num)) { 3212 u32 offset = array_index_nospec( 3213 msr - MSR_IA32_MC0_CTL, 3214 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3215 3216 /* only 0 or all 1s can be written to IA32_MCi_CTL 3217 * some Linux kernels though clear bit 10 in bank 4 to 3218 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3219 * this to avoid an uncatched #GP in the guest 3220 */ 3221 if ((offset & 0x3) == 0 && 3222 data != 0 && (data | (1 << 10)) != ~(u64)0) 3223 return -1; 3224 3225 /* MCi_STATUS */ 3226 if (!msr_info->host_initiated && 3227 (offset & 0x3) == 1 && data != 0) { 3228 if (!can_set_mci_status(vcpu)) 3229 return -1; 3230 } 3231 3232 vcpu->arch.mce_banks[offset] = data; 3233 break; 3234 } 3235 return 1; 3236 } 3237 return 0; 3238 } 3239 3240 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3241 { 3242 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3243 3244 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3245 } 3246 3247 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3248 { 3249 gpa_t gpa = data & ~0x3f; 3250 3251 /* Bits 4:5 are reserved, Should be zero */ 3252 if (data & 0x30) 3253 return 1; 3254 3255 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3256 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3257 return 1; 3258 3259 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3260 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3261 return 1; 3262 3263 if (!lapic_in_kernel(vcpu)) 3264 return data ? 1 : 0; 3265 3266 vcpu->arch.apf.msr_en_val = data; 3267 3268 if (!kvm_pv_async_pf_enabled(vcpu)) { 3269 kvm_clear_async_pf_completion_queue(vcpu); 3270 kvm_async_pf_hash_reset(vcpu); 3271 return 0; 3272 } 3273 3274 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3275 sizeof(u64))) 3276 return 1; 3277 3278 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3279 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3280 3281 kvm_async_pf_wakeup_all(vcpu); 3282 3283 return 0; 3284 } 3285 3286 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3287 { 3288 /* Bits 8-63 are reserved */ 3289 if (data >> 8) 3290 return 1; 3291 3292 if (!lapic_in_kernel(vcpu)) 3293 return 1; 3294 3295 vcpu->arch.apf.msr_int_val = data; 3296 3297 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3298 3299 return 0; 3300 } 3301 3302 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3303 { 3304 vcpu->arch.pv_time_enabled = false; 3305 vcpu->arch.time = 0; 3306 } 3307 3308 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3309 { 3310 ++vcpu->stat.tlb_flush; 3311 static_call(kvm_x86_flush_tlb_all)(vcpu); 3312 } 3313 3314 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3315 { 3316 ++vcpu->stat.tlb_flush; 3317 3318 if (!tdp_enabled) { 3319 /* 3320 * A TLB flush on behalf of the guest is equivalent to 3321 * INVPCID(all), toggling CR4.PGE, etc., which requires 3322 * a forced sync of the shadow page tables. Ensure all the 3323 * roots are synced and the guest TLB in hardware is clean. 3324 */ 3325 kvm_mmu_sync_roots(vcpu); 3326 kvm_mmu_sync_prev_roots(vcpu); 3327 } 3328 3329 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3330 } 3331 3332 3333 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3334 { 3335 ++vcpu->stat.tlb_flush; 3336 static_call(kvm_x86_flush_tlb_current)(vcpu); 3337 } 3338 3339 /* 3340 * Service "local" TLB flush requests, which are specific to the current MMU 3341 * context. In addition to the generic event handling in vcpu_enter_guest(), 3342 * TLB flushes that are targeted at an MMU context also need to be serviced 3343 * prior before nested VM-Enter/VM-Exit. 3344 */ 3345 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3346 { 3347 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3348 kvm_vcpu_flush_tlb_current(vcpu); 3349 3350 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3351 kvm_vcpu_flush_tlb_guest(vcpu); 3352 } 3353 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3354 3355 static void record_steal_time(struct kvm_vcpu *vcpu) 3356 { 3357 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3358 struct kvm_steal_time __user *st; 3359 struct kvm_memslots *slots; 3360 u64 steal; 3361 u32 version; 3362 3363 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3364 kvm_xen_runstate_set_running(vcpu); 3365 return; 3366 } 3367 3368 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3369 return; 3370 3371 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3372 return; 3373 3374 slots = kvm_memslots(vcpu->kvm); 3375 3376 if (unlikely(slots->generation != ghc->generation || 3377 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3378 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3379 3380 /* We rely on the fact that it fits in a single page. */ 3381 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3382 3383 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3384 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3385 return; 3386 } 3387 3388 st = (struct kvm_steal_time __user *)ghc->hva; 3389 /* 3390 * Doing a TLB flush here, on the guest's behalf, can avoid 3391 * expensive IPIs. 3392 */ 3393 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3394 u8 st_preempted = 0; 3395 int err = -EFAULT; 3396 3397 if (!user_access_begin(st, sizeof(*st))) 3398 return; 3399 3400 asm volatile("1: xchgb %0, %2\n" 3401 "xor %1, %1\n" 3402 "2:\n" 3403 _ASM_EXTABLE_UA(1b, 2b) 3404 : "+q" (st_preempted), 3405 "+&r" (err), 3406 "+m" (st->preempted)); 3407 if (err) 3408 goto out; 3409 3410 user_access_end(); 3411 3412 vcpu->arch.st.preempted = 0; 3413 3414 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3415 st_preempted & KVM_VCPU_FLUSH_TLB); 3416 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3417 kvm_vcpu_flush_tlb_guest(vcpu); 3418 3419 if (!user_access_begin(st, sizeof(*st))) 3420 goto dirty; 3421 } else { 3422 if (!user_access_begin(st, sizeof(*st))) 3423 return; 3424 3425 unsafe_put_user(0, &st->preempted, out); 3426 vcpu->arch.st.preempted = 0; 3427 } 3428 3429 unsafe_get_user(version, &st->version, out); 3430 if (version & 1) 3431 version += 1; /* first time write, random junk */ 3432 3433 version += 1; 3434 unsafe_put_user(version, &st->version, out); 3435 3436 smp_wmb(); 3437 3438 unsafe_get_user(steal, &st->steal, out); 3439 steal += current->sched_info.run_delay - 3440 vcpu->arch.st.last_steal; 3441 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3442 unsafe_put_user(steal, &st->steal, out); 3443 3444 version += 1; 3445 unsafe_put_user(version, &st->version, out); 3446 3447 out: 3448 user_access_end(); 3449 dirty: 3450 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3451 } 3452 3453 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3454 { 3455 bool pr = false; 3456 u32 msr = msr_info->index; 3457 u64 data = msr_info->data; 3458 3459 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3460 return kvm_xen_write_hypercall_page(vcpu, data); 3461 3462 switch (msr) { 3463 case MSR_AMD64_NB_CFG: 3464 case MSR_IA32_UCODE_WRITE: 3465 case MSR_VM_HSAVE_PA: 3466 case MSR_AMD64_PATCH_LOADER: 3467 case MSR_AMD64_BU_CFG2: 3468 case MSR_AMD64_DC_CFG: 3469 case MSR_F15H_EX_CFG: 3470 break; 3471 3472 case MSR_IA32_UCODE_REV: 3473 if (msr_info->host_initiated) 3474 vcpu->arch.microcode_version = data; 3475 break; 3476 case MSR_IA32_ARCH_CAPABILITIES: 3477 if (!msr_info->host_initiated) 3478 return 1; 3479 vcpu->arch.arch_capabilities = data; 3480 break; 3481 case MSR_IA32_PERF_CAPABILITIES: { 3482 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3483 3484 if (!msr_info->host_initiated) 3485 return 1; 3486 if (kvm_get_msr_feature(&msr_ent)) 3487 return 1; 3488 if (data & ~msr_ent.data) 3489 return 1; 3490 3491 vcpu->arch.perf_capabilities = data; 3492 3493 return 0; 3494 } 3495 case MSR_EFER: 3496 return set_efer(vcpu, msr_info); 3497 case MSR_K7_HWCR: 3498 data &= ~(u64)0x40; /* ignore flush filter disable */ 3499 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3500 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3501 3502 /* Handle McStatusWrEn */ 3503 if (data == BIT_ULL(18)) { 3504 vcpu->arch.msr_hwcr = data; 3505 } else if (data != 0) { 3506 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3507 data); 3508 return 1; 3509 } 3510 break; 3511 case MSR_FAM10H_MMIO_CONF_BASE: 3512 if (data != 0) { 3513 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3514 "0x%llx\n", data); 3515 return 1; 3516 } 3517 break; 3518 case 0x200 ... 0x2ff: 3519 return kvm_mtrr_set_msr(vcpu, msr, data); 3520 case MSR_IA32_APICBASE: 3521 return kvm_set_apic_base(vcpu, msr_info); 3522 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3523 return kvm_x2apic_msr_write(vcpu, msr, data); 3524 case MSR_IA32_TSC_DEADLINE: 3525 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3526 break; 3527 case MSR_IA32_TSC_ADJUST: 3528 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3529 if (!msr_info->host_initiated) { 3530 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3531 adjust_tsc_offset_guest(vcpu, adj); 3532 /* Before back to guest, tsc_timestamp must be adjusted 3533 * as well, otherwise guest's percpu pvclock time could jump. 3534 */ 3535 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3536 } 3537 vcpu->arch.ia32_tsc_adjust_msr = data; 3538 } 3539 break; 3540 case MSR_IA32_MISC_ENABLE: 3541 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3542 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3543 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3544 return 1; 3545 vcpu->arch.ia32_misc_enable_msr = data; 3546 kvm_update_cpuid_runtime(vcpu); 3547 } else { 3548 vcpu->arch.ia32_misc_enable_msr = data; 3549 } 3550 break; 3551 case MSR_IA32_SMBASE: 3552 if (!msr_info->host_initiated) 3553 return 1; 3554 vcpu->arch.smbase = data; 3555 break; 3556 case MSR_IA32_POWER_CTL: 3557 vcpu->arch.msr_ia32_power_ctl = data; 3558 break; 3559 case MSR_IA32_TSC: 3560 if (msr_info->host_initiated) { 3561 kvm_synchronize_tsc(vcpu, data); 3562 } else { 3563 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3564 adjust_tsc_offset_guest(vcpu, adj); 3565 vcpu->arch.ia32_tsc_adjust_msr += adj; 3566 } 3567 break; 3568 case MSR_IA32_XSS: 3569 if (!msr_info->host_initiated && 3570 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3571 return 1; 3572 /* 3573 * KVM supports exposing PT to the guest, but does not support 3574 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3575 * XSAVES/XRSTORS to save/restore PT MSRs. 3576 */ 3577 if (data & ~supported_xss) 3578 return 1; 3579 vcpu->arch.ia32_xss = data; 3580 kvm_update_cpuid_runtime(vcpu); 3581 break; 3582 case MSR_SMI_COUNT: 3583 if (!msr_info->host_initiated) 3584 return 1; 3585 vcpu->arch.smi_count = data; 3586 break; 3587 case MSR_KVM_WALL_CLOCK_NEW: 3588 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3589 return 1; 3590 3591 vcpu->kvm->arch.wall_clock = data; 3592 kvm_write_wall_clock(vcpu->kvm, data, 0); 3593 break; 3594 case MSR_KVM_WALL_CLOCK: 3595 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3596 return 1; 3597 3598 vcpu->kvm->arch.wall_clock = data; 3599 kvm_write_wall_clock(vcpu->kvm, data, 0); 3600 break; 3601 case MSR_KVM_SYSTEM_TIME_NEW: 3602 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3603 return 1; 3604 3605 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3606 break; 3607 case MSR_KVM_SYSTEM_TIME: 3608 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3609 return 1; 3610 3611 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3612 break; 3613 case MSR_KVM_ASYNC_PF_EN: 3614 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3615 return 1; 3616 3617 if (kvm_pv_enable_async_pf(vcpu, data)) 3618 return 1; 3619 break; 3620 case MSR_KVM_ASYNC_PF_INT: 3621 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3622 return 1; 3623 3624 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3625 return 1; 3626 break; 3627 case MSR_KVM_ASYNC_PF_ACK: 3628 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3629 return 1; 3630 if (data & 0x1) { 3631 vcpu->arch.apf.pageready_pending = false; 3632 kvm_check_async_pf_completion(vcpu); 3633 } 3634 break; 3635 case MSR_KVM_STEAL_TIME: 3636 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3637 return 1; 3638 3639 if (unlikely(!sched_info_on())) 3640 return 1; 3641 3642 if (data & KVM_STEAL_RESERVED_MASK) 3643 return 1; 3644 3645 vcpu->arch.st.msr_val = data; 3646 3647 if (!(data & KVM_MSR_ENABLED)) 3648 break; 3649 3650 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3651 3652 break; 3653 case MSR_KVM_PV_EOI_EN: 3654 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3655 return 1; 3656 3657 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3658 return 1; 3659 break; 3660 3661 case MSR_KVM_POLL_CONTROL: 3662 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3663 return 1; 3664 3665 /* only enable bit supported */ 3666 if (data & (-1ULL << 1)) 3667 return 1; 3668 3669 vcpu->arch.msr_kvm_poll_control = data; 3670 break; 3671 3672 case MSR_IA32_MCG_CTL: 3673 case MSR_IA32_MCG_STATUS: 3674 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3675 return set_msr_mce(vcpu, msr_info); 3676 3677 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3678 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3679 pr = true; 3680 fallthrough; 3681 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3682 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3683 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3684 return kvm_pmu_set_msr(vcpu, msr_info); 3685 3686 if (pr || data != 0) 3687 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3688 "0x%x data 0x%llx\n", msr, data); 3689 break; 3690 case MSR_K7_CLK_CTL: 3691 /* 3692 * Ignore all writes to this no longer documented MSR. 3693 * Writes are only relevant for old K7 processors, 3694 * all pre-dating SVM, but a recommended workaround from 3695 * AMD for these chips. It is possible to specify the 3696 * affected processor models on the command line, hence 3697 * the need to ignore the workaround. 3698 */ 3699 break; 3700 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3701 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3702 case HV_X64_MSR_SYNDBG_OPTIONS: 3703 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3704 case HV_X64_MSR_CRASH_CTL: 3705 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3706 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3707 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3708 case HV_X64_MSR_TSC_EMULATION_STATUS: 3709 return kvm_hv_set_msr_common(vcpu, msr, data, 3710 msr_info->host_initiated); 3711 case MSR_IA32_BBL_CR_CTL3: 3712 /* Drop writes to this legacy MSR -- see rdmsr 3713 * counterpart for further detail. 3714 */ 3715 if (report_ignored_msrs) 3716 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3717 msr, data); 3718 break; 3719 case MSR_AMD64_OSVW_ID_LENGTH: 3720 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3721 return 1; 3722 vcpu->arch.osvw.length = data; 3723 break; 3724 case MSR_AMD64_OSVW_STATUS: 3725 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3726 return 1; 3727 vcpu->arch.osvw.status = data; 3728 break; 3729 case MSR_PLATFORM_INFO: 3730 if (!msr_info->host_initiated || 3731 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3732 cpuid_fault_enabled(vcpu))) 3733 return 1; 3734 vcpu->arch.msr_platform_info = data; 3735 break; 3736 case MSR_MISC_FEATURES_ENABLES: 3737 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3738 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3739 !supports_cpuid_fault(vcpu))) 3740 return 1; 3741 vcpu->arch.msr_misc_features_enables = data; 3742 break; 3743 #ifdef CONFIG_X86_64 3744 case MSR_IA32_XFD: 3745 if (!msr_info->host_initiated && 3746 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3747 return 1; 3748 3749 if (data & ~kvm_guest_supported_xfd(vcpu)) 3750 return 1; 3751 3752 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3753 break; 3754 case MSR_IA32_XFD_ERR: 3755 if (!msr_info->host_initiated && 3756 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3757 return 1; 3758 3759 if (data & ~kvm_guest_supported_xfd(vcpu)) 3760 return 1; 3761 3762 vcpu->arch.guest_fpu.xfd_err = data; 3763 break; 3764 #endif 3765 default: 3766 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3767 return kvm_pmu_set_msr(vcpu, msr_info); 3768 return KVM_MSR_RET_INVALID; 3769 } 3770 return 0; 3771 } 3772 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3773 3774 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3775 { 3776 u64 data; 3777 u64 mcg_cap = vcpu->arch.mcg_cap; 3778 unsigned bank_num = mcg_cap & 0xff; 3779 3780 switch (msr) { 3781 case MSR_IA32_P5_MC_ADDR: 3782 case MSR_IA32_P5_MC_TYPE: 3783 data = 0; 3784 break; 3785 case MSR_IA32_MCG_CAP: 3786 data = vcpu->arch.mcg_cap; 3787 break; 3788 case MSR_IA32_MCG_CTL: 3789 if (!(mcg_cap & MCG_CTL_P) && !host) 3790 return 1; 3791 data = vcpu->arch.mcg_ctl; 3792 break; 3793 case MSR_IA32_MCG_STATUS: 3794 data = vcpu->arch.mcg_status; 3795 break; 3796 default: 3797 if (msr >= MSR_IA32_MC0_CTL && 3798 msr < MSR_IA32_MCx_CTL(bank_num)) { 3799 u32 offset = array_index_nospec( 3800 msr - MSR_IA32_MC0_CTL, 3801 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3802 3803 data = vcpu->arch.mce_banks[offset]; 3804 break; 3805 } 3806 return 1; 3807 } 3808 *pdata = data; 3809 return 0; 3810 } 3811 3812 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3813 { 3814 switch (msr_info->index) { 3815 case MSR_IA32_PLATFORM_ID: 3816 case MSR_IA32_EBL_CR_POWERON: 3817 case MSR_IA32_LASTBRANCHFROMIP: 3818 case MSR_IA32_LASTBRANCHTOIP: 3819 case MSR_IA32_LASTINTFROMIP: 3820 case MSR_IA32_LASTINTTOIP: 3821 case MSR_AMD64_SYSCFG: 3822 case MSR_K8_TSEG_ADDR: 3823 case MSR_K8_TSEG_MASK: 3824 case MSR_VM_HSAVE_PA: 3825 case MSR_K8_INT_PENDING_MSG: 3826 case MSR_AMD64_NB_CFG: 3827 case MSR_FAM10H_MMIO_CONF_BASE: 3828 case MSR_AMD64_BU_CFG2: 3829 case MSR_IA32_PERF_CTL: 3830 case MSR_AMD64_DC_CFG: 3831 case MSR_F15H_EX_CFG: 3832 /* 3833 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3834 * limit) MSRs. Just return 0, as we do not want to expose the host 3835 * data here. Do not conditionalize this on CPUID, as KVM does not do 3836 * so for existing CPU-specific MSRs. 3837 */ 3838 case MSR_RAPL_POWER_UNIT: 3839 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3840 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3841 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3842 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3843 msr_info->data = 0; 3844 break; 3845 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3846 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3847 return kvm_pmu_get_msr(vcpu, msr_info); 3848 if (!msr_info->host_initiated) 3849 return 1; 3850 msr_info->data = 0; 3851 break; 3852 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3853 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3854 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3855 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3856 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3857 return kvm_pmu_get_msr(vcpu, msr_info); 3858 msr_info->data = 0; 3859 break; 3860 case MSR_IA32_UCODE_REV: 3861 msr_info->data = vcpu->arch.microcode_version; 3862 break; 3863 case MSR_IA32_ARCH_CAPABILITIES: 3864 if (!msr_info->host_initiated && 3865 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3866 return 1; 3867 msr_info->data = vcpu->arch.arch_capabilities; 3868 break; 3869 case MSR_IA32_PERF_CAPABILITIES: 3870 if (!msr_info->host_initiated && 3871 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3872 return 1; 3873 msr_info->data = vcpu->arch.perf_capabilities; 3874 break; 3875 case MSR_IA32_POWER_CTL: 3876 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3877 break; 3878 case MSR_IA32_TSC: { 3879 /* 3880 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3881 * even when not intercepted. AMD manual doesn't explicitly 3882 * state this but appears to behave the same. 3883 * 3884 * On userspace reads and writes, however, we unconditionally 3885 * return L1's TSC value to ensure backwards-compatible 3886 * behavior for migration. 3887 */ 3888 u64 offset, ratio; 3889 3890 if (msr_info->host_initiated) { 3891 offset = vcpu->arch.l1_tsc_offset; 3892 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3893 } else { 3894 offset = vcpu->arch.tsc_offset; 3895 ratio = vcpu->arch.tsc_scaling_ratio; 3896 } 3897 3898 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 3899 break; 3900 } 3901 case MSR_MTRRcap: 3902 case 0x200 ... 0x2ff: 3903 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3904 case 0xcd: /* fsb frequency */ 3905 msr_info->data = 3; 3906 break; 3907 /* 3908 * MSR_EBC_FREQUENCY_ID 3909 * Conservative value valid for even the basic CPU models. 3910 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3911 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3912 * and 266MHz for model 3, or 4. Set Core Clock 3913 * Frequency to System Bus Frequency Ratio to 1 (bits 3914 * 31:24) even though these are only valid for CPU 3915 * models > 2, however guests may end up dividing or 3916 * multiplying by zero otherwise. 3917 */ 3918 case MSR_EBC_FREQUENCY_ID: 3919 msr_info->data = 1 << 24; 3920 break; 3921 case MSR_IA32_APICBASE: 3922 msr_info->data = kvm_get_apic_base(vcpu); 3923 break; 3924 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3925 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3926 case MSR_IA32_TSC_DEADLINE: 3927 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3928 break; 3929 case MSR_IA32_TSC_ADJUST: 3930 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3931 break; 3932 case MSR_IA32_MISC_ENABLE: 3933 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3934 break; 3935 case MSR_IA32_SMBASE: 3936 if (!msr_info->host_initiated) 3937 return 1; 3938 msr_info->data = vcpu->arch.smbase; 3939 break; 3940 case MSR_SMI_COUNT: 3941 msr_info->data = vcpu->arch.smi_count; 3942 break; 3943 case MSR_IA32_PERF_STATUS: 3944 /* TSC increment by tick */ 3945 msr_info->data = 1000ULL; 3946 /* CPU multiplier */ 3947 msr_info->data |= (((uint64_t)4ULL) << 40); 3948 break; 3949 case MSR_EFER: 3950 msr_info->data = vcpu->arch.efer; 3951 break; 3952 case MSR_KVM_WALL_CLOCK: 3953 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3954 return 1; 3955 3956 msr_info->data = vcpu->kvm->arch.wall_clock; 3957 break; 3958 case MSR_KVM_WALL_CLOCK_NEW: 3959 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3960 return 1; 3961 3962 msr_info->data = vcpu->kvm->arch.wall_clock; 3963 break; 3964 case MSR_KVM_SYSTEM_TIME: 3965 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3966 return 1; 3967 3968 msr_info->data = vcpu->arch.time; 3969 break; 3970 case MSR_KVM_SYSTEM_TIME_NEW: 3971 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3972 return 1; 3973 3974 msr_info->data = vcpu->arch.time; 3975 break; 3976 case MSR_KVM_ASYNC_PF_EN: 3977 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3978 return 1; 3979 3980 msr_info->data = vcpu->arch.apf.msr_en_val; 3981 break; 3982 case MSR_KVM_ASYNC_PF_INT: 3983 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3984 return 1; 3985 3986 msr_info->data = vcpu->arch.apf.msr_int_val; 3987 break; 3988 case MSR_KVM_ASYNC_PF_ACK: 3989 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3990 return 1; 3991 3992 msr_info->data = 0; 3993 break; 3994 case MSR_KVM_STEAL_TIME: 3995 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3996 return 1; 3997 3998 msr_info->data = vcpu->arch.st.msr_val; 3999 break; 4000 case MSR_KVM_PV_EOI_EN: 4001 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4002 return 1; 4003 4004 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4005 break; 4006 case MSR_KVM_POLL_CONTROL: 4007 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4008 return 1; 4009 4010 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4011 break; 4012 case MSR_IA32_P5_MC_ADDR: 4013 case MSR_IA32_P5_MC_TYPE: 4014 case MSR_IA32_MCG_CAP: 4015 case MSR_IA32_MCG_CTL: 4016 case MSR_IA32_MCG_STATUS: 4017 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4018 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4019 msr_info->host_initiated); 4020 case MSR_IA32_XSS: 4021 if (!msr_info->host_initiated && 4022 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4023 return 1; 4024 msr_info->data = vcpu->arch.ia32_xss; 4025 break; 4026 case MSR_K7_CLK_CTL: 4027 /* 4028 * Provide expected ramp-up count for K7. All other 4029 * are set to zero, indicating minimum divisors for 4030 * every field. 4031 * 4032 * This prevents guest kernels on AMD host with CPU 4033 * type 6, model 8 and higher from exploding due to 4034 * the rdmsr failing. 4035 */ 4036 msr_info->data = 0x20000000; 4037 break; 4038 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4039 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4040 case HV_X64_MSR_SYNDBG_OPTIONS: 4041 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4042 case HV_X64_MSR_CRASH_CTL: 4043 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4044 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4045 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4046 case HV_X64_MSR_TSC_EMULATION_STATUS: 4047 return kvm_hv_get_msr_common(vcpu, 4048 msr_info->index, &msr_info->data, 4049 msr_info->host_initiated); 4050 case MSR_IA32_BBL_CR_CTL3: 4051 /* This legacy MSR exists but isn't fully documented in current 4052 * silicon. It is however accessed by winxp in very narrow 4053 * scenarios where it sets bit #19, itself documented as 4054 * a "reserved" bit. Best effort attempt to source coherent 4055 * read data here should the balance of the register be 4056 * interpreted by the guest: 4057 * 4058 * L2 cache control register 3: 64GB range, 256KB size, 4059 * enabled, latency 0x1, configured 4060 */ 4061 msr_info->data = 0xbe702111; 4062 break; 4063 case MSR_AMD64_OSVW_ID_LENGTH: 4064 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4065 return 1; 4066 msr_info->data = vcpu->arch.osvw.length; 4067 break; 4068 case MSR_AMD64_OSVW_STATUS: 4069 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4070 return 1; 4071 msr_info->data = vcpu->arch.osvw.status; 4072 break; 4073 case MSR_PLATFORM_INFO: 4074 if (!msr_info->host_initiated && 4075 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4076 return 1; 4077 msr_info->data = vcpu->arch.msr_platform_info; 4078 break; 4079 case MSR_MISC_FEATURES_ENABLES: 4080 msr_info->data = vcpu->arch.msr_misc_features_enables; 4081 break; 4082 case MSR_K7_HWCR: 4083 msr_info->data = vcpu->arch.msr_hwcr; 4084 break; 4085 #ifdef CONFIG_X86_64 4086 case MSR_IA32_XFD: 4087 if (!msr_info->host_initiated && 4088 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4089 return 1; 4090 4091 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4092 break; 4093 case MSR_IA32_XFD_ERR: 4094 if (!msr_info->host_initiated && 4095 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4096 return 1; 4097 4098 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4099 break; 4100 #endif 4101 default: 4102 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4103 return kvm_pmu_get_msr(vcpu, msr_info); 4104 return KVM_MSR_RET_INVALID; 4105 } 4106 return 0; 4107 } 4108 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4109 4110 /* 4111 * Read or write a bunch of msrs. All parameters are kernel addresses. 4112 * 4113 * @return number of msrs set successfully. 4114 */ 4115 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4116 struct kvm_msr_entry *entries, 4117 int (*do_msr)(struct kvm_vcpu *vcpu, 4118 unsigned index, u64 *data)) 4119 { 4120 int i; 4121 4122 for (i = 0; i < msrs->nmsrs; ++i) 4123 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4124 break; 4125 4126 return i; 4127 } 4128 4129 /* 4130 * Read or write a bunch of msrs. Parameters are user addresses. 4131 * 4132 * @return number of msrs set successfully. 4133 */ 4134 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4135 int (*do_msr)(struct kvm_vcpu *vcpu, 4136 unsigned index, u64 *data), 4137 int writeback) 4138 { 4139 struct kvm_msrs msrs; 4140 struct kvm_msr_entry *entries; 4141 int r, n; 4142 unsigned size; 4143 4144 r = -EFAULT; 4145 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4146 goto out; 4147 4148 r = -E2BIG; 4149 if (msrs.nmsrs >= MAX_IO_MSRS) 4150 goto out; 4151 4152 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4153 entries = memdup_user(user_msrs->entries, size); 4154 if (IS_ERR(entries)) { 4155 r = PTR_ERR(entries); 4156 goto out; 4157 } 4158 4159 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4160 if (r < 0) 4161 goto out_free; 4162 4163 r = -EFAULT; 4164 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4165 goto out_free; 4166 4167 r = n; 4168 4169 out_free: 4170 kfree(entries); 4171 out: 4172 return r; 4173 } 4174 4175 static inline bool kvm_can_mwait_in_guest(void) 4176 { 4177 return boot_cpu_has(X86_FEATURE_MWAIT) && 4178 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4179 boot_cpu_has(X86_FEATURE_ARAT); 4180 } 4181 4182 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4183 struct kvm_cpuid2 __user *cpuid_arg) 4184 { 4185 struct kvm_cpuid2 cpuid; 4186 int r; 4187 4188 r = -EFAULT; 4189 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4190 return r; 4191 4192 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4193 if (r) 4194 return r; 4195 4196 r = -EFAULT; 4197 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4198 return r; 4199 4200 return 0; 4201 } 4202 4203 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4204 { 4205 int r = 0; 4206 4207 switch (ext) { 4208 case KVM_CAP_IRQCHIP: 4209 case KVM_CAP_HLT: 4210 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4211 case KVM_CAP_SET_TSS_ADDR: 4212 case KVM_CAP_EXT_CPUID: 4213 case KVM_CAP_EXT_EMUL_CPUID: 4214 case KVM_CAP_CLOCKSOURCE: 4215 case KVM_CAP_PIT: 4216 case KVM_CAP_NOP_IO_DELAY: 4217 case KVM_CAP_MP_STATE: 4218 case KVM_CAP_SYNC_MMU: 4219 case KVM_CAP_USER_NMI: 4220 case KVM_CAP_REINJECT_CONTROL: 4221 case KVM_CAP_IRQ_INJECT_STATUS: 4222 case KVM_CAP_IOEVENTFD: 4223 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4224 case KVM_CAP_PIT2: 4225 case KVM_CAP_PIT_STATE2: 4226 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4227 case KVM_CAP_VCPU_EVENTS: 4228 case KVM_CAP_HYPERV: 4229 case KVM_CAP_HYPERV_VAPIC: 4230 case KVM_CAP_HYPERV_SPIN: 4231 case KVM_CAP_HYPERV_SYNIC: 4232 case KVM_CAP_HYPERV_SYNIC2: 4233 case KVM_CAP_HYPERV_VP_INDEX: 4234 case KVM_CAP_HYPERV_EVENTFD: 4235 case KVM_CAP_HYPERV_TLBFLUSH: 4236 case KVM_CAP_HYPERV_SEND_IPI: 4237 case KVM_CAP_HYPERV_CPUID: 4238 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4239 case KVM_CAP_SYS_HYPERV_CPUID: 4240 case KVM_CAP_PCI_SEGMENT: 4241 case KVM_CAP_DEBUGREGS: 4242 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4243 case KVM_CAP_XSAVE: 4244 case KVM_CAP_ASYNC_PF: 4245 case KVM_CAP_ASYNC_PF_INT: 4246 case KVM_CAP_GET_TSC_KHZ: 4247 case KVM_CAP_KVMCLOCK_CTRL: 4248 case KVM_CAP_READONLY_MEM: 4249 case KVM_CAP_HYPERV_TIME: 4250 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4251 case KVM_CAP_TSC_DEADLINE_TIMER: 4252 case KVM_CAP_DISABLE_QUIRKS: 4253 case KVM_CAP_SET_BOOT_CPU_ID: 4254 case KVM_CAP_SPLIT_IRQCHIP: 4255 case KVM_CAP_IMMEDIATE_EXIT: 4256 case KVM_CAP_PMU_EVENT_FILTER: 4257 case KVM_CAP_GET_MSR_FEATURES: 4258 case KVM_CAP_MSR_PLATFORM_INFO: 4259 case KVM_CAP_EXCEPTION_PAYLOAD: 4260 case KVM_CAP_SET_GUEST_DEBUG: 4261 case KVM_CAP_LAST_CPU: 4262 case KVM_CAP_X86_USER_SPACE_MSR: 4263 case KVM_CAP_X86_MSR_FILTER: 4264 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4265 #ifdef CONFIG_X86_SGX_KVM 4266 case KVM_CAP_SGX_ATTRIBUTE: 4267 #endif 4268 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4269 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4270 case KVM_CAP_SREGS2: 4271 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4272 case KVM_CAP_VCPU_ATTRIBUTES: 4273 case KVM_CAP_SYS_ATTRIBUTES: 4274 case KVM_CAP_VAPIC: 4275 case KVM_CAP_ENABLE_CAP: 4276 r = 1; 4277 break; 4278 case KVM_CAP_EXIT_HYPERCALL: 4279 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4280 break; 4281 case KVM_CAP_SET_GUEST_DEBUG2: 4282 return KVM_GUESTDBG_VALID_MASK; 4283 #ifdef CONFIG_KVM_XEN 4284 case KVM_CAP_XEN_HVM: 4285 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4286 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4287 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4288 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL; 4289 if (sched_info_on()) 4290 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4291 break; 4292 #endif 4293 case KVM_CAP_SYNC_REGS: 4294 r = KVM_SYNC_X86_VALID_FIELDS; 4295 break; 4296 case KVM_CAP_ADJUST_CLOCK: 4297 r = KVM_CLOCK_VALID_FLAGS; 4298 break; 4299 case KVM_CAP_X86_DISABLE_EXITS: 4300 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4301 KVM_X86_DISABLE_EXITS_CSTATE; 4302 if(kvm_can_mwait_in_guest()) 4303 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4304 break; 4305 case KVM_CAP_X86_SMM: 4306 /* SMBASE is usually relocated above 1M on modern chipsets, 4307 * and SMM handlers might indeed rely on 4G segment limits, 4308 * so do not report SMM to be available if real mode is 4309 * emulated via vm86 mode. Still, do not go to great lengths 4310 * to avoid userspace's usage of the feature, because it is a 4311 * fringe case that is not enabled except via specific settings 4312 * of the module parameters. 4313 */ 4314 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4315 break; 4316 case KVM_CAP_NR_VCPUS: 4317 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4318 break; 4319 case KVM_CAP_MAX_VCPUS: 4320 r = KVM_MAX_VCPUS; 4321 break; 4322 case KVM_CAP_MAX_VCPU_ID: 4323 r = KVM_MAX_VCPU_IDS; 4324 break; 4325 case KVM_CAP_PV_MMU: /* obsolete */ 4326 r = 0; 4327 break; 4328 case KVM_CAP_MCE: 4329 r = KVM_MAX_MCE_BANKS; 4330 break; 4331 case KVM_CAP_XCRS: 4332 r = boot_cpu_has(X86_FEATURE_XSAVE); 4333 break; 4334 case KVM_CAP_TSC_CONTROL: 4335 r = kvm_has_tsc_control; 4336 break; 4337 case KVM_CAP_X2APIC_API: 4338 r = KVM_X2APIC_API_VALID_FLAGS; 4339 break; 4340 case KVM_CAP_NESTED_STATE: 4341 r = kvm_x86_ops.nested_ops->get_state ? 4342 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4343 break; 4344 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4345 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4346 break; 4347 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4348 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4349 break; 4350 case KVM_CAP_SMALLER_MAXPHYADDR: 4351 r = (int) allow_smaller_maxphyaddr; 4352 break; 4353 case KVM_CAP_STEAL_TIME: 4354 r = sched_info_on(); 4355 break; 4356 case KVM_CAP_X86_BUS_LOCK_EXIT: 4357 if (kvm_has_bus_lock_exit) 4358 r = KVM_BUS_LOCK_DETECTION_OFF | 4359 KVM_BUS_LOCK_DETECTION_EXIT; 4360 else 4361 r = 0; 4362 break; 4363 case KVM_CAP_XSAVE2: { 4364 u64 guest_perm = xstate_get_guest_group_perm(); 4365 4366 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4367 if (r < sizeof(struct kvm_xsave)) 4368 r = sizeof(struct kvm_xsave); 4369 break; 4370 case KVM_CAP_PMU_CAPABILITY: 4371 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4372 break; 4373 } 4374 case KVM_CAP_DISABLE_QUIRKS2: 4375 r = KVM_X86_VALID_QUIRKS; 4376 break; 4377 default: 4378 break; 4379 } 4380 return r; 4381 } 4382 4383 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4384 { 4385 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4386 4387 if ((u64)(unsigned long)uaddr != attr->addr) 4388 return ERR_PTR_USR(-EFAULT); 4389 return uaddr; 4390 } 4391 4392 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4393 { 4394 u64 __user *uaddr = kvm_get_attr_addr(attr); 4395 4396 if (attr->group) 4397 return -ENXIO; 4398 4399 if (IS_ERR(uaddr)) 4400 return PTR_ERR(uaddr); 4401 4402 switch (attr->attr) { 4403 case KVM_X86_XCOMP_GUEST_SUPP: 4404 if (put_user(supported_xcr0, uaddr)) 4405 return -EFAULT; 4406 return 0; 4407 default: 4408 return -ENXIO; 4409 break; 4410 } 4411 } 4412 4413 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4414 { 4415 if (attr->group) 4416 return -ENXIO; 4417 4418 switch (attr->attr) { 4419 case KVM_X86_XCOMP_GUEST_SUPP: 4420 return 0; 4421 default: 4422 return -ENXIO; 4423 } 4424 } 4425 4426 long kvm_arch_dev_ioctl(struct file *filp, 4427 unsigned int ioctl, unsigned long arg) 4428 { 4429 void __user *argp = (void __user *)arg; 4430 long r; 4431 4432 switch (ioctl) { 4433 case KVM_GET_MSR_INDEX_LIST: { 4434 struct kvm_msr_list __user *user_msr_list = argp; 4435 struct kvm_msr_list msr_list; 4436 unsigned n; 4437 4438 r = -EFAULT; 4439 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4440 goto out; 4441 n = msr_list.nmsrs; 4442 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4443 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4444 goto out; 4445 r = -E2BIG; 4446 if (n < msr_list.nmsrs) 4447 goto out; 4448 r = -EFAULT; 4449 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4450 num_msrs_to_save * sizeof(u32))) 4451 goto out; 4452 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4453 &emulated_msrs, 4454 num_emulated_msrs * sizeof(u32))) 4455 goto out; 4456 r = 0; 4457 break; 4458 } 4459 case KVM_GET_SUPPORTED_CPUID: 4460 case KVM_GET_EMULATED_CPUID: { 4461 struct kvm_cpuid2 __user *cpuid_arg = argp; 4462 struct kvm_cpuid2 cpuid; 4463 4464 r = -EFAULT; 4465 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4466 goto out; 4467 4468 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4469 ioctl); 4470 if (r) 4471 goto out; 4472 4473 r = -EFAULT; 4474 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4475 goto out; 4476 r = 0; 4477 break; 4478 } 4479 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4480 r = -EFAULT; 4481 if (copy_to_user(argp, &kvm_mce_cap_supported, 4482 sizeof(kvm_mce_cap_supported))) 4483 goto out; 4484 r = 0; 4485 break; 4486 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4487 struct kvm_msr_list __user *user_msr_list = argp; 4488 struct kvm_msr_list msr_list; 4489 unsigned int n; 4490 4491 r = -EFAULT; 4492 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4493 goto out; 4494 n = msr_list.nmsrs; 4495 msr_list.nmsrs = num_msr_based_features; 4496 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4497 goto out; 4498 r = -E2BIG; 4499 if (n < msr_list.nmsrs) 4500 goto out; 4501 r = -EFAULT; 4502 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4503 num_msr_based_features * sizeof(u32))) 4504 goto out; 4505 r = 0; 4506 break; 4507 } 4508 case KVM_GET_MSRS: 4509 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4510 break; 4511 case KVM_GET_SUPPORTED_HV_CPUID: 4512 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4513 break; 4514 case KVM_GET_DEVICE_ATTR: { 4515 struct kvm_device_attr attr; 4516 r = -EFAULT; 4517 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4518 break; 4519 r = kvm_x86_dev_get_attr(&attr); 4520 break; 4521 } 4522 case KVM_HAS_DEVICE_ATTR: { 4523 struct kvm_device_attr attr; 4524 r = -EFAULT; 4525 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4526 break; 4527 r = kvm_x86_dev_has_attr(&attr); 4528 break; 4529 } 4530 default: 4531 r = -EINVAL; 4532 break; 4533 } 4534 out: 4535 return r; 4536 } 4537 4538 static void wbinvd_ipi(void *garbage) 4539 { 4540 wbinvd(); 4541 } 4542 4543 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4544 { 4545 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4546 } 4547 4548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4549 { 4550 /* Address WBINVD may be executed by guest */ 4551 if (need_emulate_wbinvd(vcpu)) { 4552 if (static_call(kvm_x86_has_wbinvd_exit)()) 4553 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4554 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4555 smp_call_function_single(vcpu->cpu, 4556 wbinvd_ipi, NULL, 1); 4557 } 4558 4559 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4560 4561 /* Save host pkru register if supported */ 4562 vcpu->arch.host_pkru = read_pkru(); 4563 4564 /* Apply any externally detected TSC adjustments (due to suspend) */ 4565 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4566 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4567 vcpu->arch.tsc_offset_adjustment = 0; 4568 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4569 } 4570 4571 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4572 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4573 rdtsc() - vcpu->arch.last_host_tsc; 4574 if (tsc_delta < 0) 4575 mark_tsc_unstable("KVM discovered backwards TSC"); 4576 4577 if (kvm_check_tsc_unstable()) { 4578 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4579 vcpu->arch.last_guest_tsc); 4580 kvm_vcpu_write_tsc_offset(vcpu, offset); 4581 vcpu->arch.tsc_catchup = 1; 4582 } 4583 4584 if (kvm_lapic_hv_timer_in_use(vcpu)) 4585 kvm_lapic_restart_hv_timer(vcpu); 4586 4587 /* 4588 * On a host with synchronized TSC, there is no need to update 4589 * kvmclock on vcpu->cpu migration 4590 */ 4591 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4592 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4593 if (vcpu->cpu != cpu) 4594 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4595 vcpu->cpu = cpu; 4596 } 4597 4598 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4599 } 4600 4601 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4602 { 4603 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4604 struct kvm_steal_time __user *st; 4605 struct kvm_memslots *slots; 4606 static const u8 preempted = KVM_VCPU_PREEMPTED; 4607 4608 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4609 return; 4610 4611 if (vcpu->arch.st.preempted) 4612 return; 4613 4614 /* This happens on process exit */ 4615 if (unlikely(current->mm != vcpu->kvm->mm)) 4616 return; 4617 4618 slots = kvm_memslots(vcpu->kvm); 4619 4620 if (unlikely(slots->generation != ghc->generation || 4621 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4622 return; 4623 4624 st = (struct kvm_steal_time __user *)ghc->hva; 4625 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4626 4627 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4628 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4629 4630 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4631 } 4632 4633 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4634 { 4635 int idx; 4636 4637 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4638 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4639 4640 /* 4641 * Take the srcu lock as memslots will be accessed to check the gfn 4642 * cache generation against the memslots generation. 4643 */ 4644 idx = srcu_read_lock(&vcpu->kvm->srcu); 4645 if (kvm_xen_msr_enabled(vcpu->kvm)) 4646 kvm_xen_runstate_set_preempted(vcpu); 4647 else 4648 kvm_steal_time_set_preempted(vcpu); 4649 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4650 4651 static_call(kvm_x86_vcpu_put)(vcpu); 4652 vcpu->arch.last_host_tsc = rdtsc(); 4653 } 4654 4655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4656 struct kvm_lapic_state *s) 4657 { 4658 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4659 4660 return kvm_apic_get_state(vcpu, s); 4661 } 4662 4663 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4664 struct kvm_lapic_state *s) 4665 { 4666 int r; 4667 4668 r = kvm_apic_set_state(vcpu, s); 4669 if (r) 4670 return r; 4671 update_cr8_intercept(vcpu); 4672 4673 return 0; 4674 } 4675 4676 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4677 { 4678 /* 4679 * We can accept userspace's request for interrupt injection 4680 * as long as we have a place to store the interrupt number. 4681 * The actual injection will happen when the CPU is able to 4682 * deliver the interrupt. 4683 */ 4684 if (kvm_cpu_has_extint(vcpu)) 4685 return false; 4686 4687 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4688 return (!lapic_in_kernel(vcpu) || 4689 kvm_apic_accept_pic_intr(vcpu)); 4690 } 4691 4692 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4693 { 4694 /* 4695 * Do not cause an interrupt window exit if an exception 4696 * is pending or an event needs reinjection; userspace 4697 * might want to inject the interrupt manually using KVM_SET_REGS 4698 * or KVM_SET_SREGS. For that to work, we must be at an 4699 * instruction boundary and with no events half-injected. 4700 */ 4701 return (kvm_arch_interrupt_allowed(vcpu) && 4702 kvm_cpu_accept_dm_intr(vcpu) && 4703 !kvm_event_needs_reinjection(vcpu) && 4704 !vcpu->arch.exception.pending); 4705 } 4706 4707 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4708 struct kvm_interrupt *irq) 4709 { 4710 if (irq->irq >= KVM_NR_INTERRUPTS) 4711 return -EINVAL; 4712 4713 if (!irqchip_in_kernel(vcpu->kvm)) { 4714 kvm_queue_interrupt(vcpu, irq->irq, false); 4715 kvm_make_request(KVM_REQ_EVENT, vcpu); 4716 return 0; 4717 } 4718 4719 /* 4720 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4721 * fail for in-kernel 8259. 4722 */ 4723 if (pic_in_kernel(vcpu->kvm)) 4724 return -ENXIO; 4725 4726 if (vcpu->arch.pending_external_vector != -1) 4727 return -EEXIST; 4728 4729 vcpu->arch.pending_external_vector = irq->irq; 4730 kvm_make_request(KVM_REQ_EVENT, vcpu); 4731 return 0; 4732 } 4733 4734 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4735 { 4736 kvm_inject_nmi(vcpu); 4737 4738 return 0; 4739 } 4740 4741 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4742 { 4743 kvm_make_request(KVM_REQ_SMI, vcpu); 4744 4745 return 0; 4746 } 4747 4748 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4749 struct kvm_tpr_access_ctl *tac) 4750 { 4751 if (tac->flags) 4752 return -EINVAL; 4753 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4754 return 0; 4755 } 4756 4757 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4758 u64 mcg_cap) 4759 { 4760 int r; 4761 unsigned bank_num = mcg_cap & 0xff, bank; 4762 4763 r = -EINVAL; 4764 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4765 goto out; 4766 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4767 goto out; 4768 r = 0; 4769 vcpu->arch.mcg_cap = mcg_cap; 4770 /* Init IA32_MCG_CTL to all 1s */ 4771 if (mcg_cap & MCG_CTL_P) 4772 vcpu->arch.mcg_ctl = ~(u64)0; 4773 /* Init IA32_MCi_CTL to all 1s */ 4774 for (bank = 0; bank < bank_num; bank++) 4775 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4776 4777 static_call(kvm_x86_setup_mce)(vcpu); 4778 out: 4779 return r; 4780 } 4781 4782 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4783 struct kvm_x86_mce *mce) 4784 { 4785 u64 mcg_cap = vcpu->arch.mcg_cap; 4786 unsigned bank_num = mcg_cap & 0xff; 4787 u64 *banks = vcpu->arch.mce_banks; 4788 4789 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4790 return -EINVAL; 4791 /* 4792 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4793 * reporting is disabled 4794 */ 4795 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4796 vcpu->arch.mcg_ctl != ~(u64)0) 4797 return 0; 4798 banks += 4 * mce->bank; 4799 /* 4800 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4801 * reporting is disabled for the bank 4802 */ 4803 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4804 return 0; 4805 if (mce->status & MCI_STATUS_UC) { 4806 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4807 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4808 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4809 return 0; 4810 } 4811 if (banks[1] & MCI_STATUS_VAL) 4812 mce->status |= MCI_STATUS_OVER; 4813 banks[2] = mce->addr; 4814 banks[3] = mce->misc; 4815 vcpu->arch.mcg_status = mce->mcg_status; 4816 banks[1] = mce->status; 4817 kvm_queue_exception(vcpu, MC_VECTOR); 4818 } else if (!(banks[1] & MCI_STATUS_VAL) 4819 || !(banks[1] & MCI_STATUS_UC)) { 4820 if (banks[1] & MCI_STATUS_VAL) 4821 mce->status |= MCI_STATUS_OVER; 4822 banks[2] = mce->addr; 4823 banks[3] = mce->misc; 4824 banks[1] = mce->status; 4825 } else 4826 banks[1] |= MCI_STATUS_OVER; 4827 return 0; 4828 } 4829 4830 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4831 struct kvm_vcpu_events *events) 4832 { 4833 process_nmi(vcpu); 4834 4835 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4836 process_smi(vcpu); 4837 4838 /* 4839 * In guest mode, payload delivery should be deferred, 4840 * so that the L1 hypervisor can intercept #PF before 4841 * CR2 is modified (or intercept #DB before DR6 is 4842 * modified under nVMX). Unless the per-VM capability, 4843 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4844 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4845 * opportunistically defer the exception payload, deliver it if the 4846 * capability hasn't been requested before processing a 4847 * KVM_GET_VCPU_EVENTS. 4848 */ 4849 if (!vcpu->kvm->arch.exception_payload_enabled && 4850 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4851 kvm_deliver_exception_payload(vcpu); 4852 4853 /* 4854 * The API doesn't provide the instruction length for software 4855 * exceptions, so don't report them. As long as the guest RIP 4856 * isn't advanced, we should expect to encounter the exception 4857 * again. 4858 */ 4859 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4860 events->exception.injected = 0; 4861 events->exception.pending = 0; 4862 } else { 4863 events->exception.injected = vcpu->arch.exception.injected; 4864 events->exception.pending = vcpu->arch.exception.pending; 4865 /* 4866 * For ABI compatibility, deliberately conflate 4867 * pending and injected exceptions when 4868 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4869 */ 4870 if (!vcpu->kvm->arch.exception_payload_enabled) 4871 events->exception.injected |= 4872 vcpu->arch.exception.pending; 4873 } 4874 events->exception.nr = vcpu->arch.exception.nr; 4875 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4876 events->exception.error_code = vcpu->arch.exception.error_code; 4877 events->exception_has_payload = vcpu->arch.exception.has_payload; 4878 events->exception_payload = vcpu->arch.exception.payload; 4879 4880 events->interrupt.injected = 4881 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4882 events->interrupt.nr = vcpu->arch.interrupt.nr; 4883 events->interrupt.soft = 0; 4884 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4885 4886 events->nmi.injected = vcpu->arch.nmi_injected; 4887 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4888 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4889 events->nmi.pad = 0; 4890 4891 events->sipi_vector = 0; /* never valid when reporting to user space */ 4892 4893 events->smi.smm = is_smm(vcpu); 4894 events->smi.pending = vcpu->arch.smi_pending; 4895 events->smi.smm_inside_nmi = 4896 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4897 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4898 4899 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4900 | KVM_VCPUEVENT_VALID_SHADOW 4901 | KVM_VCPUEVENT_VALID_SMM); 4902 if (vcpu->kvm->arch.exception_payload_enabled) 4903 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4904 4905 memset(&events->reserved, 0, sizeof(events->reserved)); 4906 } 4907 4908 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4909 4910 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4911 struct kvm_vcpu_events *events) 4912 { 4913 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4914 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4915 | KVM_VCPUEVENT_VALID_SHADOW 4916 | KVM_VCPUEVENT_VALID_SMM 4917 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4918 return -EINVAL; 4919 4920 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4921 if (!vcpu->kvm->arch.exception_payload_enabled) 4922 return -EINVAL; 4923 if (events->exception.pending) 4924 events->exception.injected = 0; 4925 else 4926 events->exception_has_payload = 0; 4927 } else { 4928 events->exception.pending = 0; 4929 events->exception_has_payload = 0; 4930 } 4931 4932 if ((events->exception.injected || events->exception.pending) && 4933 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4934 return -EINVAL; 4935 4936 /* INITs are latched while in SMM */ 4937 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4938 (events->smi.smm || events->smi.pending) && 4939 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4940 return -EINVAL; 4941 4942 process_nmi(vcpu); 4943 vcpu->arch.exception.injected = events->exception.injected; 4944 vcpu->arch.exception.pending = events->exception.pending; 4945 vcpu->arch.exception.nr = events->exception.nr; 4946 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4947 vcpu->arch.exception.error_code = events->exception.error_code; 4948 vcpu->arch.exception.has_payload = events->exception_has_payload; 4949 vcpu->arch.exception.payload = events->exception_payload; 4950 4951 vcpu->arch.interrupt.injected = events->interrupt.injected; 4952 vcpu->arch.interrupt.nr = events->interrupt.nr; 4953 vcpu->arch.interrupt.soft = events->interrupt.soft; 4954 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4955 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4956 events->interrupt.shadow); 4957 4958 vcpu->arch.nmi_injected = events->nmi.injected; 4959 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4960 vcpu->arch.nmi_pending = events->nmi.pending; 4961 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4962 4963 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4964 lapic_in_kernel(vcpu)) 4965 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4966 4967 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4968 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4969 kvm_x86_ops.nested_ops->leave_nested(vcpu); 4970 kvm_smm_changed(vcpu, events->smi.smm); 4971 } 4972 4973 vcpu->arch.smi_pending = events->smi.pending; 4974 4975 if (events->smi.smm) { 4976 if (events->smi.smm_inside_nmi) 4977 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4978 else 4979 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4980 } 4981 4982 if (lapic_in_kernel(vcpu)) { 4983 if (events->smi.latched_init) 4984 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4985 else 4986 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4987 } 4988 } 4989 4990 kvm_make_request(KVM_REQ_EVENT, vcpu); 4991 4992 return 0; 4993 } 4994 4995 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4996 struct kvm_debugregs *dbgregs) 4997 { 4998 unsigned long val; 4999 5000 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5001 kvm_get_dr(vcpu, 6, &val); 5002 dbgregs->dr6 = val; 5003 dbgregs->dr7 = vcpu->arch.dr7; 5004 dbgregs->flags = 0; 5005 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5006 } 5007 5008 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5009 struct kvm_debugregs *dbgregs) 5010 { 5011 if (dbgregs->flags) 5012 return -EINVAL; 5013 5014 if (!kvm_dr6_valid(dbgregs->dr6)) 5015 return -EINVAL; 5016 if (!kvm_dr7_valid(dbgregs->dr7)) 5017 return -EINVAL; 5018 5019 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5020 kvm_update_dr0123(vcpu); 5021 vcpu->arch.dr6 = dbgregs->dr6; 5022 vcpu->arch.dr7 = dbgregs->dr7; 5023 kvm_update_dr7(vcpu); 5024 5025 return 0; 5026 } 5027 5028 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5029 struct kvm_xsave *guest_xsave) 5030 { 5031 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5032 return; 5033 5034 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5035 guest_xsave->region, 5036 sizeof(guest_xsave->region), 5037 vcpu->arch.pkru); 5038 } 5039 5040 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5041 u8 *state, unsigned int size) 5042 { 5043 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5044 return; 5045 5046 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5047 state, size, vcpu->arch.pkru); 5048 } 5049 5050 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5051 struct kvm_xsave *guest_xsave) 5052 { 5053 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5054 return 0; 5055 5056 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5057 guest_xsave->region, 5058 supported_xcr0, &vcpu->arch.pkru); 5059 } 5060 5061 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5062 struct kvm_xcrs *guest_xcrs) 5063 { 5064 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5065 guest_xcrs->nr_xcrs = 0; 5066 return; 5067 } 5068 5069 guest_xcrs->nr_xcrs = 1; 5070 guest_xcrs->flags = 0; 5071 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5072 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5073 } 5074 5075 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5076 struct kvm_xcrs *guest_xcrs) 5077 { 5078 int i, r = 0; 5079 5080 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5081 return -EINVAL; 5082 5083 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5084 return -EINVAL; 5085 5086 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5087 /* Only support XCR0 currently */ 5088 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5089 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5090 guest_xcrs->xcrs[i].value); 5091 break; 5092 } 5093 if (r) 5094 r = -EINVAL; 5095 return r; 5096 } 5097 5098 /* 5099 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5100 * stopped by the hypervisor. This function will be called from the host only. 5101 * EINVAL is returned when the host attempts to set the flag for a guest that 5102 * does not support pv clocks. 5103 */ 5104 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5105 { 5106 if (!vcpu->arch.pv_time_enabled) 5107 return -EINVAL; 5108 vcpu->arch.pvclock_set_guest_stopped_request = true; 5109 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5110 return 0; 5111 } 5112 5113 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5114 struct kvm_device_attr *attr) 5115 { 5116 int r; 5117 5118 switch (attr->attr) { 5119 case KVM_VCPU_TSC_OFFSET: 5120 r = 0; 5121 break; 5122 default: 5123 r = -ENXIO; 5124 } 5125 5126 return r; 5127 } 5128 5129 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5130 struct kvm_device_attr *attr) 5131 { 5132 u64 __user *uaddr = kvm_get_attr_addr(attr); 5133 int r; 5134 5135 if (IS_ERR(uaddr)) 5136 return PTR_ERR(uaddr); 5137 5138 switch (attr->attr) { 5139 case KVM_VCPU_TSC_OFFSET: 5140 r = -EFAULT; 5141 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5142 break; 5143 r = 0; 5144 break; 5145 default: 5146 r = -ENXIO; 5147 } 5148 5149 return r; 5150 } 5151 5152 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5153 struct kvm_device_attr *attr) 5154 { 5155 u64 __user *uaddr = kvm_get_attr_addr(attr); 5156 struct kvm *kvm = vcpu->kvm; 5157 int r; 5158 5159 if (IS_ERR(uaddr)) 5160 return PTR_ERR(uaddr); 5161 5162 switch (attr->attr) { 5163 case KVM_VCPU_TSC_OFFSET: { 5164 u64 offset, tsc, ns; 5165 unsigned long flags; 5166 bool matched; 5167 5168 r = -EFAULT; 5169 if (get_user(offset, uaddr)) 5170 break; 5171 5172 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5173 5174 matched = (vcpu->arch.virtual_tsc_khz && 5175 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5176 kvm->arch.last_tsc_offset == offset); 5177 5178 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5179 ns = get_kvmclock_base_ns(); 5180 5181 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5182 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5183 5184 r = 0; 5185 break; 5186 } 5187 default: 5188 r = -ENXIO; 5189 } 5190 5191 return r; 5192 } 5193 5194 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5195 unsigned int ioctl, 5196 void __user *argp) 5197 { 5198 struct kvm_device_attr attr; 5199 int r; 5200 5201 if (copy_from_user(&attr, argp, sizeof(attr))) 5202 return -EFAULT; 5203 5204 if (attr.group != KVM_VCPU_TSC_CTRL) 5205 return -ENXIO; 5206 5207 switch (ioctl) { 5208 case KVM_HAS_DEVICE_ATTR: 5209 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5210 break; 5211 case KVM_GET_DEVICE_ATTR: 5212 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5213 break; 5214 case KVM_SET_DEVICE_ATTR: 5215 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5216 break; 5217 } 5218 5219 return r; 5220 } 5221 5222 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5223 struct kvm_enable_cap *cap) 5224 { 5225 int r; 5226 uint16_t vmcs_version; 5227 void __user *user_ptr; 5228 5229 if (cap->flags) 5230 return -EINVAL; 5231 5232 switch (cap->cap) { 5233 case KVM_CAP_HYPERV_SYNIC2: 5234 if (cap->args[0]) 5235 return -EINVAL; 5236 fallthrough; 5237 5238 case KVM_CAP_HYPERV_SYNIC: 5239 if (!irqchip_in_kernel(vcpu->kvm)) 5240 return -EINVAL; 5241 return kvm_hv_activate_synic(vcpu, cap->cap == 5242 KVM_CAP_HYPERV_SYNIC2); 5243 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5244 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5245 return -ENOTTY; 5246 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5247 if (!r) { 5248 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5249 if (copy_to_user(user_ptr, &vmcs_version, 5250 sizeof(vmcs_version))) 5251 r = -EFAULT; 5252 } 5253 return r; 5254 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5255 if (!kvm_x86_ops.enable_direct_tlbflush) 5256 return -ENOTTY; 5257 5258 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5259 5260 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5261 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5262 5263 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5264 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5265 if (vcpu->arch.pv_cpuid.enforce) 5266 kvm_update_pv_runtime(vcpu); 5267 5268 return 0; 5269 default: 5270 return -EINVAL; 5271 } 5272 } 5273 5274 long kvm_arch_vcpu_ioctl(struct file *filp, 5275 unsigned int ioctl, unsigned long arg) 5276 { 5277 struct kvm_vcpu *vcpu = filp->private_data; 5278 void __user *argp = (void __user *)arg; 5279 int r; 5280 union { 5281 struct kvm_sregs2 *sregs2; 5282 struct kvm_lapic_state *lapic; 5283 struct kvm_xsave *xsave; 5284 struct kvm_xcrs *xcrs; 5285 void *buffer; 5286 } u; 5287 5288 vcpu_load(vcpu); 5289 5290 u.buffer = NULL; 5291 switch (ioctl) { 5292 case KVM_GET_LAPIC: { 5293 r = -EINVAL; 5294 if (!lapic_in_kernel(vcpu)) 5295 goto out; 5296 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5297 GFP_KERNEL_ACCOUNT); 5298 5299 r = -ENOMEM; 5300 if (!u.lapic) 5301 goto out; 5302 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5303 if (r) 5304 goto out; 5305 r = -EFAULT; 5306 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5307 goto out; 5308 r = 0; 5309 break; 5310 } 5311 case KVM_SET_LAPIC: { 5312 r = -EINVAL; 5313 if (!lapic_in_kernel(vcpu)) 5314 goto out; 5315 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5316 if (IS_ERR(u.lapic)) { 5317 r = PTR_ERR(u.lapic); 5318 goto out_nofree; 5319 } 5320 5321 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5322 break; 5323 } 5324 case KVM_INTERRUPT: { 5325 struct kvm_interrupt irq; 5326 5327 r = -EFAULT; 5328 if (copy_from_user(&irq, argp, sizeof(irq))) 5329 goto out; 5330 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5331 break; 5332 } 5333 case KVM_NMI: { 5334 r = kvm_vcpu_ioctl_nmi(vcpu); 5335 break; 5336 } 5337 case KVM_SMI: { 5338 r = kvm_vcpu_ioctl_smi(vcpu); 5339 break; 5340 } 5341 case KVM_SET_CPUID: { 5342 struct kvm_cpuid __user *cpuid_arg = argp; 5343 struct kvm_cpuid cpuid; 5344 5345 r = -EFAULT; 5346 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5347 goto out; 5348 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5349 break; 5350 } 5351 case KVM_SET_CPUID2: { 5352 struct kvm_cpuid2 __user *cpuid_arg = argp; 5353 struct kvm_cpuid2 cpuid; 5354 5355 r = -EFAULT; 5356 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5357 goto out; 5358 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5359 cpuid_arg->entries); 5360 break; 5361 } 5362 case KVM_GET_CPUID2: { 5363 struct kvm_cpuid2 __user *cpuid_arg = argp; 5364 struct kvm_cpuid2 cpuid; 5365 5366 r = -EFAULT; 5367 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5368 goto out; 5369 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5370 cpuid_arg->entries); 5371 if (r) 5372 goto out; 5373 r = -EFAULT; 5374 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5375 goto out; 5376 r = 0; 5377 break; 5378 } 5379 case KVM_GET_MSRS: { 5380 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5381 r = msr_io(vcpu, argp, do_get_msr, 1); 5382 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5383 break; 5384 } 5385 case KVM_SET_MSRS: { 5386 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5387 r = msr_io(vcpu, argp, do_set_msr, 0); 5388 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5389 break; 5390 } 5391 case KVM_TPR_ACCESS_REPORTING: { 5392 struct kvm_tpr_access_ctl tac; 5393 5394 r = -EFAULT; 5395 if (copy_from_user(&tac, argp, sizeof(tac))) 5396 goto out; 5397 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5398 if (r) 5399 goto out; 5400 r = -EFAULT; 5401 if (copy_to_user(argp, &tac, sizeof(tac))) 5402 goto out; 5403 r = 0; 5404 break; 5405 }; 5406 case KVM_SET_VAPIC_ADDR: { 5407 struct kvm_vapic_addr va; 5408 int idx; 5409 5410 r = -EINVAL; 5411 if (!lapic_in_kernel(vcpu)) 5412 goto out; 5413 r = -EFAULT; 5414 if (copy_from_user(&va, argp, sizeof(va))) 5415 goto out; 5416 idx = srcu_read_lock(&vcpu->kvm->srcu); 5417 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5418 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5419 break; 5420 } 5421 case KVM_X86_SETUP_MCE: { 5422 u64 mcg_cap; 5423 5424 r = -EFAULT; 5425 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5426 goto out; 5427 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5428 break; 5429 } 5430 case KVM_X86_SET_MCE: { 5431 struct kvm_x86_mce mce; 5432 5433 r = -EFAULT; 5434 if (copy_from_user(&mce, argp, sizeof(mce))) 5435 goto out; 5436 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5437 break; 5438 } 5439 case KVM_GET_VCPU_EVENTS: { 5440 struct kvm_vcpu_events events; 5441 5442 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5443 5444 r = -EFAULT; 5445 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5446 break; 5447 r = 0; 5448 break; 5449 } 5450 case KVM_SET_VCPU_EVENTS: { 5451 struct kvm_vcpu_events events; 5452 5453 r = -EFAULT; 5454 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5455 break; 5456 5457 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5458 break; 5459 } 5460 case KVM_GET_DEBUGREGS: { 5461 struct kvm_debugregs dbgregs; 5462 5463 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5464 5465 r = -EFAULT; 5466 if (copy_to_user(argp, &dbgregs, 5467 sizeof(struct kvm_debugregs))) 5468 break; 5469 r = 0; 5470 break; 5471 } 5472 case KVM_SET_DEBUGREGS: { 5473 struct kvm_debugregs dbgregs; 5474 5475 r = -EFAULT; 5476 if (copy_from_user(&dbgregs, argp, 5477 sizeof(struct kvm_debugregs))) 5478 break; 5479 5480 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5481 break; 5482 } 5483 case KVM_GET_XSAVE: { 5484 r = -EINVAL; 5485 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5486 break; 5487 5488 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5489 r = -ENOMEM; 5490 if (!u.xsave) 5491 break; 5492 5493 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5494 5495 r = -EFAULT; 5496 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5497 break; 5498 r = 0; 5499 break; 5500 } 5501 case KVM_SET_XSAVE: { 5502 int size = vcpu->arch.guest_fpu.uabi_size; 5503 5504 u.xsave = memdup_user(argp, size); 5505 if (IS_ERR(u.xsave)) { 5506 r = PTR_ERR(u.xsave); 5507 goto out_nofree; 5508 } 5509 5510 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5511 break; 5512 } 5513 5514 case KVM_GET_XSAVE2: { 5515 int size = vcpu->arch.guest_fpu.uabi_size; 5516 5517 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5518 r = -ENOMEM; 5519 if (!u.xsave) 5520 break; 5521 5522 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5523 5524 r = -EFAULT; 5525 if (copy_to_user(argp, u.xsave, size)) 5526 break; 5527 5528 r = 0; 5529 break; 5530 } 5531 5532 case KVM_GET_XCRS: { 5533 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5534 r = -ENOMEM; 5535 if (!u.xcrs) 5536 break; 5537 5538 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5539 5540 r = -EFAULT; 5541 if (copy_to_user(argp, u.xcrs, 5542 sizeof(struct kvm_xcrs))) 5543 break; 5544 r = 0; 5545 break; 5546 } 5547 case KVM_SET_XCRS: { 5548 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5549 if (IS_ERR(u.xcrs)) { 5550 r = PTR_ERR(u.xcrs); 5551 goto out_nofree; 5552 } 5553 5554 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5555 break; 5556 } 5557 case KVM_SET_TSC_KHZ: { 5558 u32 user_tsc_khz; 5559 5560 r = -EINVAL; 5561 user_tsc_khz = (u32)arg; 5562 5563 if (kvm_has_tsc_control && 5564 user_tsc_khz >= kvm_max_guest_tsc_khz) 5565 goto out; 5566 5567 if (user_tsc_khz == 0) 5568 user_tsc_khz = tsc_khz; 5569 5570 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5571 r = 0; 5572 5573 goto out; 5574 } 5575 case KVM_GET_TSC_KHZ: { 5576 r = vcpu->arch.virtual_tsc_khz; 5577 goto out; 5578 } 5579 case KVM_KVMCLOCK_CTRL: { 5580 r = kvm_set_guest_paused(vcpu); 5581 goto out; 5582 } 5583 case KVM_ENABLE_CAP: { 5584 struct kvm_enable_cap cap; 5585 5586 r = -EFAULT; 5587 if (copy_from_user(&cap, argp, sizeof(cap))) 5588 goto out; 5589 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5590 break; 5591 } 5592 case KVM_GET_NESTED_STATE: { 5593 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5594 u32 user_data_size; 5595 5596 r = -EINVAL; 5597 if (!kvm_x86_ops.nested_ops->get_state) 5598 break; 5599 5600 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5601 r = -EFAULT; 5602 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5603 break; 5604 5605 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5606 user_data_size); 5607 if (r < 0) 5608 break; 5609 5610 if (r > user_data_size) { 5611 if (put_user(r, &user_kvm_nested_state->size)) 5612 r = -EFAULT; 5613 else 5614 r = -E2BIG; 5615 break; 5616 } 5617 5618 r = 0; 5619 break; 5620 } 5621 case KVM_SET_NESTED_STATE: { 5622 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5623 struct kvm_nested_state kvm_state; 5624 int idx; 5625 5626 r = -EINVAL; 5627 if (!kvm_x86_ops.nested_ops->set_state) 5628 break; 5629 5630 r = -EFAULT; 5631 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5632 break; 5633 5634 r = -EINVAL; 5635 if (kvm_state.size < sizeof(kvm_state)) 5636 break; 5637 5638 if (kvm_state.flags & 5639 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5640 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5641 | KVM_STATE_NESTED_GIF_SET)) 5642 break; 5643 5644 /* nested_run_pending implies guest_mode. */ 5645 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5646 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5647 break; 5648 5649 idx = srcu_read_lock(&vcpu->kvm->srcu); 5650 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5651 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5652 break; 5653 } 5654 case KVM_GET_SUPPORTED_HV_CPUID: 5655 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5656 break; 5657 #ifdef CONFIG_KVM_XEN 5658 case KVM_XEN_VCPU_GET_ATTR: { 5659 struct kvm_xen_vcpu_attr xva; 5660 5661 r = -EFAULT; 5662 if (copy_from_user(&xva, argp, sizeof(xva))) 5663 goto out; 5664 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5665 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5666 r = -EFAULT; 5667 break; 5668 } 5669 case KVM_XEN_VCPU_SET_ATTR: { 5670 struct kvm_xen_vcpu_attr xva; 5671 5672 r = -EFAULT; 5673 if (copy_from_user(&xva, argp, sizeof(xva))) 5674 goto out; 5675 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5676 break; 5677 } 5678 #endif 5679 case KVM_GET_SREGS2: { 5680 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5681 r = -ENOMEM; 5682 if (!u.sregs2) 5683 goto out; 5684 __get_sregs2(vcpu, u.sregs2); 5685 r = -EFAULT; 5686 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5687 goto out; 5688 r = 0; 5689 break; 5690 } 5691 case KVM_SET_SREGS2: { 5692 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5693 if (IS_ERR(u.sregs2)) { 5694 r = PTR_ERR(u.sregs2); 5695 u.sregs2 = NULL; 5696 goto out; 5697 } 5698 r = __set_sregs2(vcpu, u.sregs2); 5699 break; 5700 } 5701 case KVM_HAS_DEVICE_ATTR: 5702 case KVM_GET_DEVICE_ATTR: 5703 case KVM_SET_DEVICE_ATTR: 5704 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5705 break; 5706 default: 5707 r = -EINVAL; 5708 } 5709 out: 5710 kfree(u.buffer); 5711 out_nofree: 5712 vcpu_put(vcpu); 5713 return r; 5714 } 5715 5716 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5717 { 5718 return VM_FAULT_SIGBUS; 5719 } 5720 5721 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5722 { 5723 int ret; 5724 5725 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5726 return -EINVAL; 5727 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5728 return ret; 5729 } 5730 5731 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5732 u64 ident_addr) 5733 { 5734 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5735 } 5736 5737 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5738 unsigned long kvm_nr_mmu_pages) 5739 { 5740 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5741 return -EINVAL; 5742 5743 mutex_lock(&kvm->slots_lock); 5744 5745 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5746 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5747 5748 mutex_unlock(&kvm->slots_lock); 5749 return 0; 5750 } 5751 5752 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5753 { 5754 return kvm->arch.n_max_mmu_pages; 5755 } 5756 5757 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5758 { 5759 struct kvm_pic *pic = kvm->arch.vpic; 5760 int r; 5761 5762 r = 0; 5763 switch (chip->chip_id) { 5764 case KVM_IRQCHIP_PIC_MASTER: 5765 memcpy(&chip->chip.pic, &pic->pics[0], 5766 sizeof(struct kvm_pic_state)); 5767 break; 5768 case KVM_IRQCHIP_PIC_SLAVE: 5769 memcpy(&chip->chip.pic, &pic->pics[1], 5770 sizeof(struct kvm_pic_state)); 5771 break; 5772 case KVM_IRQCHIP_IOAPIC: 5773 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5774 break; 5775 default: 5776 r = -EINVAL; 5777 break; 5778 } 5779 return r; 5780 } 5781 5782 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5783 { 5784 struct kvm_pic *pic = kvm->arch.vpic; 5785 int r; 5786 5787 r = 0; 5788 switch (chip->chip_id) { 5789 case KVM_IRQCHIP_PIC_MASTER: 5790 spin_lock(&pic->lock); 5791 memcpy(&pic->pics[0], &chip->chip.pic, 5792 sizeof(struct kvm_pic_state)); 5793 spin_unlock(&pic->lock); 5794 break; 5795 case KVM_IRQCHIP_PIC_SLAVE: 5796 spin_lock(&pic->lock); 5797 memcpy(&pic->pics[1], &chip->chip.pic, 5798 sizeof(struct kvm_pic_state)); 5799 spin_unlock(&pic->lock); 5800 break; 5801 case KVM_IRQCHIP_IOAPIC: 5802 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5803 break; 5804 default: 5805 r = -EINVAL; 5806 break; 5807 } 5808 kvm_pic_update_irq(pic); 5809 return r; 5810 } 5811 5812 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5813 { 5814 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5815 5816 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5817 5818 mutex_lock(&kps->lock); 5819 memcpy(ps, &kps->channels, sizeof(*ps)); 5820 mutex_unlock(&kps->lock); 5821 return 0; 5822 } 5823 5824 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5825 { 5826 int i; 5827 struct kvm_pit *pit = kvm->arch.vpit; 5828 5829 mutex_lock(&pit->pit_state.lock); 5830 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5831 for (i = 0; i < 3; i++) 5832 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5833 mutex_unlock(&pit->pit_state.lock); 5834 return 0; 5835 } 5836 5837 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5838 { 5839 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5840 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5841 sizeof(ps->channels)); 5842 ps->flags = kvm->arch.vpit->pit_state.flags; 5843 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5844 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5845 return 0; 5846 } 5847 5848 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5849 { 5850 int start = 0; 5851 int i; 5852 u32 prev_legacy, cur_legacy; 5853 struct kvm_pit *pit = kvm->arch.vpit; 5854 5855 mutex_lock(&pit->pit_state.lock); 5856 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5857 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5858 if (!prev_legacy && cur_legacy) 5859 start = 1; 5860 memcpy(&pit->pit_state.channels, &ps->channels, 5861 sizeof(pit->pit_state.channels)); 5862 pit->pit_state.flags = ps->flags; 5863 for (i = 0; i < 3; i++) 5864 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5865 start && i == 0); 5866 mutex_unlock(&pit->pit_state.lock); 5867 return 0; 5868 } 5869 5870 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5871 struct kvm_reinject_control *control) 5872 { 5873 struct kvm_pit *pit = kvm->arch.vpit; 5874 5875 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5876 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5877 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5878 */ 5879 mutex_lock(&pit->pit_state.lock); 5880 kvm_pit_set_reinject(pit, control->pit_reinject); 5881 mutex_unlock(&pit->pit_state.lock); 5882 5883 return 0; 5884 } 5885 5886 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5887 { 5888 5889 /* 5890 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5891 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5892 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5893 * VM-Exit. 5894 */ 5895 struct kvm_vcpu *vcpu; 5896 unsigned long i; 5897 5898 kvm_for_each_vcpu(i, vcpu, kvm) 5899 kvm_vcpu_kick(vcpu); 5900 } 5901 5902 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5903 bool line_status) 5904 { 5905 if (!irqchip_in_kernel(kvm)) 5906 return -ENXIO; 5907 5908 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5909 irq_event->irq, irq_event->level, 5910 line_status); 5911 return 0; 5912 } 5913 5914 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5915 struct kvm_enable_cap *cap) 5916 { 5917 int r; 5918 5919 if (cap->flags) 5920 return -EINVAL; 5921 5922 switch (cap->cap) { 5923 case KVM_CAP_DISABLE_QUIRKS2: 5924 r = -EINVAL; 5925 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 5926 break; 5927 fallthrough; 5928 case KVM_CAP_DISABLE_QUIRKS: 5929 kvm->arch.disabled_quirks = cap->args[0]; 5930 r = 0; 5931 break; 5932 case KVM_CAP_SPLIT_IRQCHIP: { 5933 mutex_lock(&kvm->lock); 5934 r = -EINVAL; 5935 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5936 goto split_irqchip_unlock; 5937 r = -EEXIST; 5938 if (irqchip_in_kernel(kvm)) 5939 goto split_irqchip_unlock; 5940 if (kvm->created_vcpus) 5941 goto split_irqchip_unlock; 5942 r = kvm_setup_empty_irq_routing(kvm); 5943 if (r) 5944 goto split_irqchip_unlock; 5945 /* Pairs with irqchip_in_kernel. */ 5946 smp_wmb(); 5947 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5948 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5949 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 5950 r = 0; 5951 split_irqchip_unlock: 5952 mutex_unlock(&kvm->lock); 5953 break; 5954 } 5955 case KVM_CAP_X2APIC_API: 5956 r = -EINVAL; 5957 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5958 break; 5959 5960 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5961 kvm->arch.x2apic_format = true; 5962 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5963 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5964 5965 r = 0; 5966 break; 5967 case KVM_CAP_X86_DISABLE_EXITS: 5968 r = -EINVAL; 5969 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5970 break; 5971 5972 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5973 kvm_can_mwait_in_guest()) 5974 kvm->arch.mwait_in_guest = true; 5975 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5976 kvm->arch.hlt_in_guest = true; 5977 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5978 kvm->arch.pause_in_guest = true; 5979 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5980 kvm->arch.cstate_in_guest = true; 5981 r = 0; 5982 break; 5983 case KVM_CAP_MSR_PLATFORM_INFO: 5984 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5985 r = 0; 5986 break; 5987 case KVM_CAP_EXCEPTION_PAYLOAD: 5988 kvm->arch.exception_payload_enabled = cap->args[0]; 5989 r = 0; 5990 break; 5991 case KVM_CAP_X86_USER_SPACE_MSR: 5992 kvm->arch.user_space_msr_mask = cap->args[0]; 5993 r = 0; 5994 break; 5995 case KVM_CAP_X86_BUS_LOCK_EXIT: 5996 r = -EINVAL; 5997 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 5998 break; 5999 6000 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6001 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6002 break; 6003 6004 if (kvm_has_bus_lock_exit && 6005 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6006 kvm->arch.bus_lock_detection_enabled = true; 6007 r = 0; 6008 break; 6009 #ifdef CONFIG_X86_SGX_KVM 6010 case KVM_CAP_SGX_ATTRIBUTE: { 6011 unsigned long allowed_attributes = 0; 6012 6013 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6014 if (r) 6015 break; 6016 6017 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6018 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6019 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6020 kvm->arch.sgx_provisioning_allowed = true; 6021 else 6022 r = -EINVAL; 6023 break; 6024 } 6025 #endif 6026 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6027 r = -EINVAL; 6028 if (!kvm_x86_ops.vm_copy_enc_context_from) 6029 break; 6030 6031 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6032 break; 6033 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6034 r = -EINVAL; 6035 if (!kvm_x86_ops.vm_move_enc_context_from) 6036 break; 6037 6038 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6039 break; 6040 case KVM_CAP_EXIT_HYPERCALL: 6041 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6042 r = -EINVAL; 6043 break; 6044 } 6045 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6046 r = 0; 6047 break; 6048 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6049 r = -EINVAL; 6050 if (cap->args[0] & ~1) 6051 break; 6052 kvm->arch.exit_on_emulation_error = cap->args[0]; 6053 r = 0; 6054 break; 6055 case KVM_CAP_PMU_CAPABILITY: 6056 r = -EINVAL; 6057 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6058 break; 6059 6060 mutex_lock(&kvm->lock); 6061 if (!kvm->created_vcpus) { 6062 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6063 r = 0; 6064 } 6065 mutex_unlock(&kvm->lock); 6066 break; 6067 default: 6068 r = -EINVAL; 6069 break; 6070 } 6071 return r; 6072 } 6073 6074 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6075 { 6076 struct kvm_x86_msr_filter *msr_filter; 6077 6078 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6079 if (!msr_filter) 6080 return NULL; 6081 6082 msr_filter->default_allow = default_allow; 6083 return msr_filter; 6084 } 6085 6086 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6087 { 6088 u32 i; 6089 6090 if (!msr_filter) 6091 return; 6092 6093 for (i = 0; i < msr_filter->count; i++) 6094 kfree(msr_filter->ranges[i].bitmap); 6095 6096 kfree(msr_filter); 6097 } 6098 6099 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6100 struct kvm_msr_filter_range *user_range) 6101 { 6102 unsigned long *bitmap = NULL; 6103 size_t bitmap_size; 6104 6105 if (!user_range->nmsrs) 6106 return 0; 6107 6108 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6109 return -EINVAL; 6110 6111 if (!user_range->flags) 6112 return -EINVAL; 6113 6114 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6115 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6116 return -EINVAL; 6117 6118 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6119 if (IS_ERR(bitmap)) 6120 return PTR_ERR(bitmap); 6121 6122 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6123 .flags = user_range->flags, 6124 .base = user_range->base, 6125 .nmsrs = user_range->nmsrs, 6126 .bitmap = bitmap, 6127 }; 6128 6129 msr_filter->count++; 6130 return 0; 6131 } 6132 6133 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6134 { 6135 struct kvm_msr_filter __user *user_msr_filter = argp; 6136 struct kvm_x86_msr_filter *new_filter, *old_filter; 6137 struct kvm_msr_filter filter; 6138 bool default_allow; 6139 bool empty = true; 6140 int r = 0; 6141 u32 i; 6142 6143 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6144 return -EFAULT; 6145 6146 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6147 empty &= !filter.ranges[i].nmsrs; 6148 6149 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6150 if (empty && !default_allow) 6151 return -EINVAL; 6152 6153 new_filter = kvm_alloc_msr_filter(default_allow); 6154 if (!new_filter) 6155 return -ENOMEM; 6156 6157 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6158 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6159 if (r) { 6160 kvm_free_msr_filter(new_filter); 6161 return r; 6162 } 6163 } 6164 6165 mutex_lock(&kvm->lock); 6166 6167 /* The per-VM filter is protected by kvm->lock... */ 6168 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6169 6170 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6171 synchronize_srcu(&kvm->srcu); 6172 6173 kvm_free_msr_filter(old_filter); 6174 6175 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6176 mutex_unlock(&kvm->lock); 6177 6178 return 0; 6179 } 6180 6181 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6182 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6183 { 6184 struct kvm_vcpu *vcpu; 6185 unsigned long i; 6186 int ret = 0; 6187 6188 mutex_lock(&kvm->lock); 6189 kvm_for_each_vcpu(i, vcpu, kvm) { 6190 if (!vcpu->arch.pv_time_enabled) 6191 continue; 6192 6193 ret = kvm_set_guest_paused(vcpu); 6194 if (ret) { 6195 kvm_err("Failed to pause guest VCPU%d: %d\n", 6196 vcpu->vcpu_id, ret); 6197 break; 6198 } 6199 } 6200 mutex_unlock(&kvm->lock); 6201 6202 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6203 } 6204 6205 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6206 { 6207 switch (state) { 6208 case PM_HIBERNATION_PREPARE: 6209 case PM_SUSPEND_PREPARE: 6210 return kvm_arch_suspend_notifier(kvm); 6211 } 6212 6213 return NOTIFY_DONE; 6214 } 6215 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6216 6217 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6218 { 6219 struct kvm_clock_data data = { 0 }; 6220 6221 get_kvmclock(kvm, &data); 6222 if (copy_to_user(argp, &data, sizeof(data))) 6223 return -EFAULT; 6224 6225 return 0; 6226 } 6227 6228 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6229 { 6230 struct kvm_arch *ka = &kvm->arch; 6231 struct kvm_clock_data data; 6232 u64 now_raw_ns; 6233 6234 if (copy_from_user(&data, argp, sizeof(data))) 6235 return -EFAULT; 6236 6237 /* 6238 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6239 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6240 */ 6241 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6242 return -EINVAL; 6243 6244 kvm_hv_invalidate_tsc_page(kvm); 6245 kvm_start_pvclock_update(kvm); 6246 pvclock_update_vm_gtod_copy(kvm); 6247 6248 /* 6249 * This pairs with kvm_guest_time_update(): when masterclock is 6250 * in use, we use master_kernel_ns + kvmclock_offset to set 6251 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6252 * is slightly ahead) here we risk going negative on unsigned 6253 * 'system_time' when 'data.clock' is very small. 6254 */ 6255 if (data.flags & KVM_CLOCK_REALTIME) { 6256 u64 now_real_ns = ktime_get_real_ns(); 6257 6258 /* 6259 * Avoid stepping the kvmclock backwards. 6260 */ 6261 if (now_real_ns > data.realtime) 6262 data.clock += now_real_ns - data.realtime; 6263 } 6264 6265 if (ka->use_master_clock) 6266 now_raw_ns = ka->master_kernel_ns; 6267 else 6268 now_raw_ns = get_kvmclock_base_ns(); 6269 ka->kvmclock_offset = data.clock - now_raw_ns; 6270 kvm_end_pvclock_update(kvm); 6271 return 0; 6272 } 6273 6274 long kvm_arch_vm_ioctl(struct file *filp, 6275 unsigned int ioctl, unsigned long arg) 6276 { 6277 struct kvm *kvm = filp->private_data; 6278 void __user *argp = (void __user *)arg; 6279 int r = -ENOTTY; 6280 /* 6281 * This union makes it completely explicit to gcc-3.x 6282 * that these two variables' stack usage should be 6283 * combined, not added together. 6284 */ 6285 union { 6286 struct kvm_pit_state ps; 6287 struct kvm_pit_state2 ps2; 6288 struct kvm_pit_config pit_config; 6289 } u; 6290 6291 switch (ioctl) { 6292 case KVM_SET_TSS_ADDR: 6293 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6294 break; 6295 case KVM_SET_IDENTITY_MAP_ADDR: { 6296 u64 ident_addr; 6297 6298 mutex_lock(&kvm->lock); 6299 r = -EINVAL; 6300 if (kvm->created_vcpus) 6301 goto set_identity_unlock; 6302 r = -EFAULT; 6303 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6304 goto set_identity_unlock; 6305 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6306 set_identity_unlock: 6307 mutex_unlock(&kvm->lock); 6308 break; 6309 } 6310 case KVM_SET_NR_MMU_PAGES: 6311 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6312 break; 6313 case KVM_GET_NR_MMU_PAGES: 6314 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6315 break; 6316 case KVM_CREATE_IRQCHIP: { 6317 mutex_lock(&kvm->lock); 6318 6319 r = -EEXIST; 6320 if (irqchip_in_kernel(kvm)) 6321 goto create_irqchip_unlock; 6322 6323 r = -EINVAL; 6324 if (kvm->created_vcpus) 6325 goto create_irqchip_unlock; 6326 6327 r = kvm_pic_init(kvm); 6328 if (r) 6329 goto create_irqchip_unlock; 6330 6331 r = kvm_ioapic_init(kvm); 6332 if (r) { 6333 kvm_pic_destroy(kvm); 6334 goto create_irqchip_unlock; 6335 } 6336 6337 r = kvm_setup_default_irq_routing(kvm); 6338 if (r) { 6339 kvm_ioapic_destroy(kvm); 6340 kvm_pic_destroy(kvm); 6341 goto create_irqchip_unlock; 6342 } 6343 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6344 smp_wmb(); 6345 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6346 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6347 create_irqchip_unlock: 6348 mutex_unlock(&kvm->lock); 6349 break; 6350 } 6351 case KVM_CREATE_PIT: 6352 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6353 goto create_pit; 6354 case KVM_CREATE_PIT2: 6355 r = -EFAULT; 6356 if (copy_from_user(&u.pit_config, argp, 6357 sizeof(struct kvm_pit_config))) 6358 goto out; 6359 create_pit: 6360 mutex_lock(&kvm->lock); 6361 r = -EEXIST; 6362 if (kvm->arch.vpit) 6363 goto create_pit_unlock; 6364 r = -ENOMEM; 6365 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6366 if (kvm->arch.vpit) 6367 r = 0; 6368 create_pit_unlock: 6369 mutex_unlock(&kvm->lock); 6370 break; 6371 case KVM_GET_IRQCHIP: { 6372 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6373 struct kvm_irqchip *chip; 6374 6375 chip = memdup_user(argp, sizeof(*chip)); 6376 if (IS_ERR(chip)) { 6377 r = PTR_ERR(chip); 6378 goto out; 6379 } 6380 6381 r = -ENXIO; 6382 if (!irqchip_kernel(kvm)) 6383 goto get_irqchip_out; 6384 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6385 if (r) 6386 goto get_irqchip_out; 6387 r = -EFAULT; 6388 if (copy_to_user(argp, chip, sizeof(*chip))) 6389 goto get_irqchip_out; 6390 r = 0; 6391 get_irqchip_out: 6392 kfree(chip); 6393 break; 6394 } 6395 case KVM_SET_IRQCHIP: { 6396 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6397 struct kvm_irqchip *chip; 6398 6399 chip = memdup_user(argp, sizeof(*chip)); 6400 if (IS_ERR(chip)) { 6401 r = PTR_ERR(chip); 6402 goto out; 6403 } 6404 6405 r = -ENXIO; 6406 if (!irqchip_kernel(kvm)) 6407 goto set_irqchip_out; 6408 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6409 set_irqchip_out: 6410 kfree(chip); 6411 break; 6412 } 6413 case KVM_GET_PIT: { 6414 r = -EFAULT; 6415 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6416 goto out; 6417 r = -ENXIO; 6418 if (!kvm->arch.vpit) 6419 goto out; 6420 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6421 if (r) 6422 goto out; 6423 r = -EFAULT; 6424 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6425 goto out; 6426 r = 0; 6427 break; 6428 } 6429 case KVM_SET_PIT: { 6430 r = -EFAULT; 6431 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6432 goto out; 6433 mutex_lock(&kvm->lock); 6434 r = -ENXIO; 6435 if (!kvm->arch.vpit) 6436 goto set_pit_out; 6437 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6438 set_pit_out: 6439 mutex_unlock(&kvm->lock); 6440 break; 6441 } 6442 case KVM_GET_PIT2: { 6443 r = -ENXIO; 6444 if (!kvm->arch.vpit) 6445 goto out; 6446 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6447 if (r) 6448 goto out; 6449 r = -EFAULT; 6450 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6451 goto out; 6452 r = 0; 6453 break; 6454 } 6455 case KVM_SET_PIT2: { 6456 r = -EFAULT; 6457 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6458 goto out; 6459 mutex_lock(&kvm->lock); 6460 r = -ENXIO; 6461 if (!kvm->arch.vpit) 6462 goto set_pit2_out; 6463 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6464 set_pit2_out: 6465 mutex_unlock(&kvm->lock); 6466 break; 6467 } 6468 case KVM_REINJECT_CONTROL: { 6469 struct kvm_reinject_control control; 6470 r = -EFAULT; 6471 if (copy_from_user(&control, argp, sizeof(control))) 6472 goto out; 6473 r = -ENXIO; 6474 if (!kvm->arch.vpit) 6475 goto out; 6476 r = kvm_vm_ioctl_reinject(kvm, &control); 6477 break; 6478 } 6479 case KVM_SET_BOOT_CPU_ID: 6480 r = 0; 6481 mutex_lock(&kvm->lock); 6482 if (kvm->created_vcpus) 6483 r = -EBUSY; 6484 else 6485 kvm->arch.bsp_vcpu_id = arg; 6486 mutex_unlock(&kvm->lock); 6487 break; 6488 #ifdef CONFIG_KVM_XEN 6489 case KVM_XEN_HVM_CONFIG: { 6490 struct kvm_xen_hvm_config xhc; 6491 r = -EFAULT; 6492 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6493 goto out; 6494 r = kvm_xen_hvm_config(kvm, &xhc); 6495 break; 6496 } 6497 case KVM_XEN_HVM_GET_ATTR: { 6498 struct kvm_xen_hvm_attr xha; 6499 6500 r = -EFAULT; 6501 if (copy_from_user(&xha, argp, sizeof(xha))) 6502 goto out; 6503 r = kvm_xen_hvm_get_attr(kvm, &xha); 6504 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6505 r = -EFAULT; 6506 break; 6507 } 6508 case KVM_XEN_HVM_SET_ATTR: { 6509 struct kvm_xen_hvm_attr xha; 6510 6511 r = -EFAULT; 6512 if (copy_from_user(&xha, argp, sizeof(xha))) 6513 goto out; 6514 r = kvm_xen_hvm_set_attr(kvm, &xha); 6515 break; 6516 } 6517 #endif 6518 case KVM_SET_CLOCK: 6519 r = kvm_vm_ioctl_set_clock(kvm, argp); 6520 break; 6521 case KVM_GET_CLOCK: 6522 r = kvm_vm_ioctl_get_clock(kvm, argp); 6523 break; 6524 case KVM_MEMORY_ENCRYPT_OP: { 6525 r = -ENOTTY; 6526 if (!kvm_x86_ops.mem_enc_ioctl) 6527 goto out; 6528 6529 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6530 break; 6531 } 6532 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6533 struct kvm_enc_region region; 6534 6535 r = -EFAULT; 6536 if (copy_from_user(®ion, argp, sizeof(region))) 6537 goto out; 6538 6539 r = -ENOTTY; 6540 if (!kvm_x86_ops.mem_enc_register_region) 6541 goto out; 6542 6543 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6544 break; 6545 } 6546 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6547 struct kvm_enc_region region; 6548 6549 r = -EFAULT; 6550 if (copy_from_user(®ion, argp, sizeof(region))) 6551 goto out; 6552 6553 r = -ENOTTY; 6554 if (!kvm_x86_ops.mem_enc_unregister_region) 6555 goto out; 6556 6557 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6558 break; 6559 } 6560 case KVM_HYPERV_EVENTFD: { 6561 struct kvm_hyperv_eventfd hvevfd; 6562 6563 r = -EFAULT; 6564 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6565 goto out; 6566 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6567 break; 6568 } 6569 case KVM_SET_PMU_EVENT_FILTER: 6570 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6571 break; 6572 case KVM_X86_SET_MSR_FILTER: 6573 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6574 break; 6575 default: 6576 r = -ENOTTY; 6577 } 6578 out: 6579 return r; 6580 } 6581 6582 static void kvm_init_msr_list(void) 6583 { 6584 struct x86_pmu_capability x86_pmu; 6585 u32 dummy[2]; 6586 unsigned i; 6587 6588 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6589 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6590 6591 perf_get_x86_pmu_capability(&x86_pmu); 6592 6593 num_msrs_to_save = 0; 6594 num_emulated_msrs = 0; 6595 num_msr_based_features = 0; 6596 6597 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6598 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6599 continue; 6600 6601 /* 6602 * Even MSRs that are valid in the host may not be exposed 6603 * to the guests in some cases. 6604 */ 6605 switch (msrs_to_save_all[i]) { 6606 case MSR_IA32_BNDCFGS: 6607 if (!kvm_mpx_supported()) 6608 continue; 6609 break; 6610 case MSR_TSC_AUX: 6611 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6612 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6613 continue; 6614 break; 6615 case MSR_IA32_UMWAIT_CONTROL: 6616 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6617 continue; 6618 break; 6619 case MSR_IA32_RTIT_CTL: 6620 case MSR_IA32_RTIT_STATUS: 6621 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6622 continue; 6623 break; 6624 case MSR_IA32_RTIT_CR3_MATCH: 6625 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6626 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6627 continue; 6628 break; 6629 case MSR_IA32_RTIT_OUTPUT_BASE: 6630 case MSR_IA32_RTIT_OUTPUT_MASK: 6631 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6632 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6633 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6634 continue; 6635 break; 6636 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6637 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6638 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6639 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6640 continue; 6641 break; 6642 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6643 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6644 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6645 continue; 6646 break; 6647 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6648 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6649 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6650 continue; 6651 break; 6652 case MSR_IA32_XFD: 6653 case MSR_IA32_XFD_ERR: 6654 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6655 continue; 6656 break; 6657 default: 6658 break; 6659 } 6660 6661 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6662 } 6663 6664 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6665 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6666 continue; 6667 6668 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6669 } 6670 6671 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6672 struct kvm_msr_entry msr; 6673 6674 msr.index = msr_based_features_all[i]; 6675 if (kvm_get_msr_feature(&msr)) 6676 continue; 6677 6678 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6679 } 6680 } 6681 6682 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6683 const void *v) 6684 { 6685 int handled = 0; 6686 int n; 6687 6688 do { 6689 n = min(len, 8); 6690 if (!(lapic_in_kernel(vcpu) && 6691 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6692 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6693 break; 6694 handled += n; 6695 addr += n; 6696 len -= n; 6697 v += n; 6698 } while (len); 6699 6700 return handled; 6701 } 6702 6703 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6704 { 6705 int handled = 0; 6706 int n; 6707 6708 do { 6709 n = min(len, 8); 6710 if (!(lapic_in_kernel(vcpu) && 6711 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6712 addr, n, v)) 6713 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6714 break; 6715 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6716 handled += n; 6717 addr += n; 6718 len -= n; 6719 v += n; 6720 } while (len); 6721 6722 return handled; 6723 } 6724 6725 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6726 struct kvm_segment *var, int seg) 6727 { 6728 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6729 } 6730 6731 void kvm_get_segment(struct kvm_vcpu *vcpu, 6732 struct kvm_segment *var, int seg) 6733 { 6734 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6735 } 6736 6737 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 6738 struct x86_exception *exception) 6739 { 6740 struct kvm_mmu *mmu = vcpu->arch.mmu; 6741 gpa_t t_gpa; 6742 6743 BUG_ON(!mmu_is_nested(vcpu)); 6744 6745 /* NPT walks are always user-walks */ 6746 access |= PFERR_USER_MASK; 6747 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6748 6749 return t_gpa; 6750 } 6751 6752 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6753 struct x86_exception *exception) 6754 { 6755 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6756 6757 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6758 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6759 } 6760 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6761 6762 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6763 struct x86_exception *exception) 6764 { 6765 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6766 6767 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6768 access |= PFERR_FETCH_MASK; 6769 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6770 } 6771 6772 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6773 struct x86_exception *exception) 6774 { 6775 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6776 6777 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6778 access |= PFERR_WRITE_MASK; 6779 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6780 } 6781 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6782 6783 /* uses this to access any guest's mapped memory without checking CPL */ 6784 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6785 struct x86_exception *exception) 6786 { 6787 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6788 6789 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6790 } 6791 6792 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6793 struct kvm_vcpu *vcpu, u64 access, 6794 struct x86_exception *exception) 6795 { 6796 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6797 void *data = val; 6798 int r = X86EMUL_CONTINUE; 6799 6800 while (bytes) { 6801 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6802 unsigned offset = addr & (PAGE_SIZE-1); 6803 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6804 int ret; 6805 6806 if (gpa == UNMAPPED_GVA) 6807 return X86EMUL_PROPAGATE_FAULT; 6808 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6809 offset, toread); 6810 if (ret < 0) { 6811 r = X86EMUL_IO_NEEDED; 6812 goto out; 6813 } 6814 6815 bytes -= toread; 6816 data += toread; 6817 addr += toread; 6818 } 6819 out: 6820 return r; 6821 } 6822 6823 /* used for instruction fetching */ 6824 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6825 gva_t addr, void *val, unsigned int bytes, 6826 struct x86_exception *exception) 6827 { 6828 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6829 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6830 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6831 unsigned offset; 6832 int ret; 6833 6834 /* Inline kvm_read_guest_virt_helper for speed. */ 6835 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6836 exception); 6837 if (unlikely(gpa == UNMAPPED_GVA)) 6838 return X86EMUL_PROPAGATE_FAULT; 6839 6840 offset = addr & (PAGE_SIZE-1); 6841 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6842 bytes = (unsigned)PAGE_SIZE - offset; 6843 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6844 offset, bytes); 6845 if (unlikely(ret < 0)) 6846 return X86EMUL_IO_NEEDED; 6847 6848 return X86EMUL_CONTINUE; 6849 } 6850 6851 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6852 gva_t addr, void *val, unsigned int bytes, 6853 struct x86_exception *exception) 6854 { 6855 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6856 6857 /* 6858 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6859 * is returned, but our callers are not ready for that and they blindly 6860 * call kvm_inject_page_fault. Ensure that they at least do not leak 6861 * uninitialized kernel stack memory into cr2 and error code. 6862 */ 6863 memset(exception, 0, sizeof(*exception)); 6864 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6865 exception); 6866 } 6867 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6868 6869 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6870 gva_t addr, void *val, unsigned int bytes, 6871 struct x86_exception *exception, bool system) 6872 { 6873 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6874 u64 access = 0; 6875 6876 if (system) 6877 access |= PFERR_IMPLICIT_ACCESS; 6878 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6879 access |= PFERR_USER_MASK; 6880 6881 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6882 } 6883 6884 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6885 unsigned long addr, void *val, unsigned int bytes) 6886 { 6887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6888 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6889 6890 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6891 } 6892 6893 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6894 struct kvm_vcpu *vcpu, u64 access, 6895 struct x86_exception *exception) 6896 { 6897 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6898 void *data = val; 6899 int r = X86EMUL_CONTINUE; 6900 6901 while (bytes) { 6902 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6903 unsigned offset = addr & (PAGE_SIZE-1); 6904 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6905 int ret; 6906 6907 if (gpa == UNMAPPED_GVA) 6908 return X86EMUL_PROPAGATE_FAULT; 6909 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6910 if (ret < 0) { 6911 r = X86EMUL_IO_NEEDED; 6912 goto out; 6913 } 6914 6915 bytes -= towrite; 6916 data += towrite; 6917 addr += towrite; 6918 } 6919 out: 6920 return r; 6921 } 6922 6923 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6924 unsigned int bytes, struct x86_exception *exception, 6925 bool system) 6926 { 6927 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6928 u64 access = PFERR_WRITE_MASK; 6929 6930 if (system) 6931 access |= PFERR_IMPLICIT_ACCESS; 6932 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6933 access |= PFERR_USER_MASK; 6934 6935 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6936 access, exception); 6937 } 6938 6939 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6940 unsigned int bytes, struct x86_exception *exception) 6941 { 6942 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6943 vcpu->arch.l1tf_flush_l1d = true; 6944 6945 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6946 PFERR_WRITE_MASK, exception); 6947 } 6948 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6949 6950 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 6951 void *insn, int insn_len) 6952 { 6953 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 6954 insn, insn_len); 6955 } 6956 6957 int handle_ud(struct kvm_vcpu *vcpu) 6958 { 6959 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6960 int emul_type = EMULTYPE_TRAP_UD; 6961 char sig[5]; /* ud2; .ascii "kvm" */ 6962 struct x86_exception e; 6963 6964 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 6965 return 1; 6966 6967 if (force_emulation_prefix && 6968 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6969 sig, sizeof(sig), &e) == 0 && 6970 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6971 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6972 emul_type = EMULTYPE_TRAP_UD_FORCED; 6973 } 6974 6975 return kvm_emulate_instruction(vcpu, emul_type); 6976 } 6977 EXPORT_SYMBOL_GPL(handle_ud); 6978 6979 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6980 gpa_t gpa, bool write) 6981 { 6982 /* For APIC access vmexit */ 6983 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6984 return 1; 6985 6986 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6987 trace_vcpu_match_mmio(gva, gpa, write, true); 6988 return 1; 6989 } 6990 6991 return 0; 6992 } 6993 6994 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6995 gpa_t *gpa, struct x86_exception *exception, 6996 bool write) 6997 { 6998 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6999 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7000 | (write ? PFERR_WRITE_MASK : 0); 7001 7002 /* 7003 * currently PKRU is only applied to ept enabled guest so 7004 * there is no pkey in EPT page table for L1 guest or EPT 7005 * shadow page table for L2 guest. 7006 */ 7007 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7008 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7009 vcpu->arch.mmio_access, 0, access))) { 7010 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7011 (gva & (PAGE_SIZE - 1)); 7012 trace_vcpu_match_mmio(gva, *gpa, write, false); 7013 return 1; 7014 } 7015 7016 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7017 7018 if (*gpa == UNMAPPED_GVA) 7019 return -1; 7020 7021 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7022 } 7023 7024 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7025 const void *val, int bytes) 7026 { 7027 int ret; 7028 7029 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7030 if (ret < 0) 7031 return 0; 7032 kvm_page_track_write(vcpu, gpa, val, bytes); 7033 return 1; 7034 } 7035 7036 struct read_write_emulator_ops { 7037 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7038 int bytes); 7039 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7040 void *val, int bytes); 7041 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7042 int bytes, void *val); 7043 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7044 void *val, int bytes); 7045 bool write; 7046 }; 7047 7048 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7049 { 7050 if (vcpu->mmio_read_completed) { 7051 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7052 vcpu->mmio_fragments[0].gpa, val); 7053 vcpu->mmio_read_completed = 0; 7054 return 1; 7055 } 7056 7057 return 0; 7058 } 7059 7060 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7061 void *val, int bytes) 7062 { 7063 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7064 } 7065 7066 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7067 void *val, int bytes) 7068 { 7069 return emulator_write_phys(vcpu, gpa, val, bytes); 7070 } 7071 7072 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7073 { 7074 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7075 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7076 } 7077 7078 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7079 void *val, int bytes) 7080 { 7081 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7082 return X86EMUL_IO_NEEDED; 7083 } 7084 7085 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7086 void *val, int bytes) 7087 { 7088 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7089 7090 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7091 return X86EMUL_CONTINUE; 7092 } 7093 7094 static const struct read_write_emulator_ops read_emultor = { 7095 .read_write_prepare = read_prepare, 7096 .read_write_emulate = read_emulate, 7097 .read_write_mmio = vcpu_mmio_read, 7098 .read_write_exit_mmio = read_exit_mmio, 7099 }; 7100 7101 static const struct read_write_emulator_ops write_emultor = { 7102 .read_write_emulate = write_emulate, 7103 .read_write_mmio = write_mmio, 7104 .read_write_exit_mmio = write_exit_mmio, 7105 .write = true, 7106 }; 7107 7108 static int emulator_read_write_onepage(unsigned long addr, void *val, 7109 unsigned int bytes, 7110 struct x86_exception *exception, 7111 struct kvm_vcpu *vcpu, 7112 const struct read_write_emulator_ops *ops) 7113 { 7114 gpa_t gpa; 7115 int handled, ret; 7116 bool write = ops->write; 7117 struct kvm_mmio_fragment *frag; 7118 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7119 7120 /* 7121 * If the exit was due to a NPF we may already have a GPA. 7122 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7123 * Note, this cannot be used on string operations since string 7124 * operation using rep will only have the initial GPA from the NPF 7125 * occurred. 7126 */ 7127 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7128 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7129 gpa = ctxt->gpa_val; 7130 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7131 } else { 7132 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7133 if (ret < 0) 7134 return X86EMUL_PROPAGATE_FAULT; 7135 } 7136 7137 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7138 return X86EMUL_CONTINUE; 7139 7140 /* 7141 * Is this MMIO handled locally? 7142 */ 7143 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7144 if (handled == bytes) 7145 return X86EMUL_CONTINUE; 7146 7147 gpa += handled; 7148 bytes -= handled; 7149 val += handled; 7150 7151 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7152 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7153 frag->gpa = gpa; 7154 frag->data = val; 7155 frag->len = bytes; 7156 return X86EMUL_CONTINUE; 7157 } 7158 7159 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7160 unsigned long addr, 7161 void *val, unsigned int bytes, 7162 struct x86_exception *exception, 7163 const struct read_write_emulator_ops *ops) 7164 { 7165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7166 gpa_t gpa; 7167 int rc; 7168 7169 if (ops->read_write_prepare && 7170 ops->read_write_prepare(vcpu, val, bytes)) 7171 return X86EMUL_CONTINUE; 7172 7173 vcpu->mmio_nr_fragments = 0; 7174 7175 /* Crossing a page boundary? */ 7176 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7177 int now; 7178 7179 now = -addr & ~PAGE_MASK; 7180 rc = emulator_read_write_onepage(addr, val, now, exception, 7181 vcpu, ops); 7182 7183 if (rc != X86EMUL_CONTINUE) 7184 return rc; 7185 addr += now; 7186 if (ctxt->mode != X86EMUL_MODE_PROT64) 7187 addr = (u32)addr; 7188 val += now; 7189 bytes -= now; 7190 } 7191 7192 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7193 vcpu, ops); 7194 if (rc != X86EMUL_CONTINUE) 7195 return rc; 7196 7197 if (!vcpu->mmio_nr_fragments) 7198 return rc; 7199 7200 gpa = vcpu->mmio_fragments[0].gpa; 7201 7202 vcpu->mmio_needed = 1; 7203 vcpu->mmio_cur_fragment = 0; 7204 7205 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7206 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7207 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7208 vcpu->run->mmio.phys_addr = gpa; 7209 7210 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7211 } 7212 7213 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7214 unsigned long addr, 7215 void *val, 7216 unsigned int bytes, 7217 struct x86_exception *exception) 7218 { 7219 return emulator_read_write(ctxt, addr, val, bytes, 7220 exception, &read_emultor); 7221 } 7222 7223 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7224 unsigned long addr, 7225 const void *val, 7226 unsigned int bytes, 7227 struct x86_exception *exception) 7228 { 7229 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7230 exception, &write_emultor); 7231 } 7232 7233 #define CMPXCHG_TYPE(t, ptr, old, new) \ 7234 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 7235 7236 #ifdef CONFIG_X86_64 7237 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 7238 #else 7239 # define CMPXCHG64(ptr, old, new) \ 7240 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 7241 #endif 7242 7243 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7244 unsigned long addr, 7245 const void *old, 7246 const void *new, 7247 unsigned int bytes, 7248 struct x86_exception *exception) 7249 { 7250 struct kvm_host_map map; 7251 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7252 u64 page_line_mask; 7253 gpa_t gpa; 7254 char *kaddr; 7255 bool exchanged; 7256 7257 /* guests cmpxchg8b have to be emulated atomically */ 7258 if (bytes > 8 || (bytes & (bytes - 1))) 7259 goto emul_write; 7260 7261 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7262 7263 if (gpa == UNMAPPED_GVA || 7264 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7265 goto emul_write; 7266 7267 /* 7268 * Emulate the atomic as a straight write to avoid #AC if SLD is 7269 * enabled in the host and the access splits a cache line. 7270 */ 7271 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7272 page_line_mask = ~(cache_line_size() - 1); 7273 else 7274 page_line_mask = PAGE_MASK; 7275 7276 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7277 goto emul_write; 7278 7279 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 7280 goto emul_write; 7281 7282 kaddr = map.hva + offset_in_page(gpa); 7283 7284 switch (bytes) { 7285 case 1: 7286 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 7287 break; 7288 case 2: 7289 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 7290 break; 7291 case 4: 7292 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 7293 break; 7294 case 8: 7295 exchanged = CMPXCHG64(kaddr, old, new); 7296 break; 7297 default: 7298 BUG(); 7299 } 7300 7301 kvm_vcpu_unmap(vcpu, &map, true); 7302 7303 if (!exchanged) 7304 return X86EMUL_CMPXCHG_FAILED; 7305 7306 kvm_page_track_write(vcpu, gpa, new, bytes); 7307 7308 return X86EMUL_CONTINUE; 7309 7310 emul_write: 7311 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7312 7313 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7314 } 7315 7316 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7317 { 7318 int r = 0, i; 7319 7320 for (i = 0; i < vcpu->arch.pio.count; i++) { 7321 if (vcpu->arch.pio.in) 7322 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7323 vcpu->arch.pio.size, pd); 7324 else 7325 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7326 vcpu->arch.pio.port, vcpu->arch.pio.size, 7327 pd); 7328 if (r) 7329 break; 7330 pd += vcpu->arch.pio.size; 7331 } 7332 return r; 7333 } 7334 7335 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7336 unsigned short port, 7337 unsigned int count, bool in) 7338 { 7339 vcpu->arch.pio.port = port; 7340 vcpu->arch.pio.in = in; 7341 vcpu->arch.pio.count = count; 7342 vcpu->arch.pio.size = size; 7343 7344 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7345 return 1; 7346 7347 vcpu->run->exit_reason = KVM_EXIT_IO; 7348 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7349 vcpu->run->io.size = size; 7350 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7351 vcpu->run->io.count = count; 7352 vcpu->run->io.port = port; 7353 7354 return 0; 7355 } 7356 7357 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7358 unsigned short port, unsigned int count) 7359 { 7360 WARN_ON(vcpu->arch.pio.count); 7361 memset(vcpu->arch.pio_data, 0, size * count); 7362 return emulator_pio_in_out(vcpu, size, port, count, true); 7363 } 7364 7365 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7366 { 7367 int size = vcpu->arch.pio.size; 7368 unsigned count = vcpu->arch.pio.count; 7369 memcpy(val, vcpu->arch.pio_data, size * count); 7370 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7371 vcpu->arch.pio.count = 0; 7372 } 7373 7374 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7375 unsigned short port, void *val, unsigned int count) 7376 { 7377 if (vcpu->arch.pio.count) { 7378 /* 7379 * Complete a previous iteration that required userspace I/O. 7380 * Note, @count isn't guaranteed to match pio.count as userspace 7381 * can modify ECX before rerunning the vCPU. Ignore any such 7382 * shenanigans as KVM doesn't support modifying the rep count, 7383 * and the emulator ensures @count doesn't overflow the buffer. 7384 */ 7385 } else { 7386 int r = __emulator_pio_in(vcpu, size, port, count); 7387 if (!r) 7388 return r; 7389 7390 /* Results already available, fall through. */ 7391 } 7392 7393 complete_emulator_pio_in(vcpu, val); 7394 return 1; 7395 } 7396 7397 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7398 int size, unsigned short port, void *val, 7399 unsigned int count) 7400 { 7401 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7402 7403 } 7404 7405 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7406 unsigned short port, const void *val, 7407 unsigned int count) 7408 { 7409 int ret; 7410 7411 memcpy(vcpu->arch.pio_data, val, size * count); 7412 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7413 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7414 if (ret) 7415 vcpu->arch.pio.count = 0; 7416 7417 return ret; 7418 } 7419 7420 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7421 int size, unsigned short port, 7422 const void *val, unsigned int count) 7423 { 7424 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7425 } 7426 7427 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7428 { 7429 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7430 } 7431 7432 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7433 { 7434 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7435 } 7436 7437 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7438 { 7439 if (!need_emulate_wbinvd(vcpu)) 7440 return X86EMUL_CONTINUE; 7441 7442 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7443 int cpu = get_cpu(); 7444 7445 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7446 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7447 wbinvd_ipi, NULL, 1); 7448 put_cpu(); 7449 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7450 } else 7451 wbinvd(); 7452 return X86EMUL_CONTINUE; 7453 } 7454 7455 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7456 { 7457 kvm_emulate_wbinvd_noskip(vcpu); 7458 return kvm_skip_emulated_instruction(vcpu); 7459 } 7460 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7461 7462 7463 7464 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7465 { 7466 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7467 } 7468 7469 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7470 unsigned long *dest) 7471 { 7472 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7473 } 7474 7475 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7476 unsigned long value) 7477 { 7478 7479 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7480 } 7481 7482 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7483 { 7484 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7485 } 7486 7487 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7488 { 7489 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7490 unsigned long value; 7491 7492 switch (cr) { 7493 case 0: 7494 value = kvm_read_cr0(vcpu); 7495 break; 7496 case 2: 7497 value = vcpu->arch.cr2; 7498 break; 7499 case 3: 7500 value = kvm_read_cr3(vcpu); 7501 break; 7502 case 4: 7503 value = kvm_read_cr4(vcpu); 7504 break; 7505 case 8: 7506 value = kvm_get_cr8(vcpu); 7507 break; 7508 default: 7509 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7510 return 0; 7511 } 7512 7513 return value; 7514 } 7515 7516 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7517 { 7518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7519 int res = 0; 7520 7521 switch (cr) { 7522 case 0: 7523 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7524 break; 7525 case 2: 7526 vcpu->arch.cr2 = val; 7527 break; 7528 case 3: 7529 res = kvm_set_cr3(vcpu, val); 7530 break; 7531 case 4: 7532 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7533 break; 7534 case 8: 7535 res = kvm_set_cr8(vcpu, val); 7536 break; 7537 default: 7538 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7539 res = -1; 7540 } 7541 7542 return res; 7543 } 7544 7545 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7546 { 7547 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7548 } 7549 7550 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7551 { 7552 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7553 } 7554 7555 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7556 { 7557 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7558 } 7559 7560 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7561 { 7562 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7563 } 7564 7565 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7566 { 7567 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7568 } 7569 7570 static unsigned long emulator_get_cached_segment_base( 7571 struct x86_emulate_ctxt *ctxt, int seg) 7572 { 7573 return get_segment_base(emul_to_vcpu(ctxt), seg); 7574 } 7575 7576 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7577 struct desc_struct *desc, u32 *base3, 7578 int seg) 7579 { 7580 struct kvm_segment var; 7581 7582 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7583 *selector = var.selector; 7584 7585 if (var.unusable) { 7586 memset(desc, 0, sizeof(*desc)); 7587 if (base3) 7588 *base3 = 0; 7589 return false; 7590 } 7591 7592 if (var.g) 7593 var.limit >>= 12; 7594 set_desc_limit(desc, var.limit); 7595 set_desc_base(desc, (unsigned long)var.base); 7596 #ifdef CONFIG_X86_64 7597 if (base3) 7598 *base3 = var.base >> 32; 7599 #endif 7600 desc->type = var.type; 7601 desc->s = var.s; 7602 desc->dpl = var.dpl; 7603 desc->p = var.present; 7604 desc->avl = var.avl; 7605 desc->l = var.l; 7606 desc->d = var.db; 7607 desc->g = var.g; 7608 7609 return true; 7610 } 7611 7612 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7613 struct desc_struct *desc, u32 base3, 7614 int seg) 7615 { 7616 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7617 struct kvm_segment var; 7618 7619 var.selector = selector; 7620 var.base = get_desc_base(desc); 7621 #ifdef CONFIG_X86_64 7622 var.base |= ((u64)base3) << 32; 7623 #endif 7624 var.limit = get_desc_limit(desc); 7625 if (desc->g) 7626 var.limit = (var.limit << 12) | 0xfff; 7627 var.type = desc->type; 7628 var.dpl = desc->dpl; 7629 var.db = desc->d; 7630 var.s = desc->s; 7631 var.l = desc->l; 7632 var.g = desc->g; 7633 var.avl = desc->avl; 7634 var.present = desc->p; 7635 var.unusable = !var.present; 7636 var.padding = 0; 7637 7638 kvm_set_segment(vcpu, &var, seg); 7639 return; 7640 } 7641 7642 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7643 u32 msr_index, u64 *pdata) 7644 { 7645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7646 int r; 7647 7648 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7649 7650 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7651 complete_emulated_rdmsr, r)) { 7652 /* Bounce to user space */ 7653 return X86EMUL_IO_NEEDED; 7654 } 7655 7656 return r; 7657 } 7658 7659 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7660 u32 msr_index, u64 data) 7661 { 7662 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7663 int r; 7664 7665 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7666 7667 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7668 complete_emulated_msr_access, r)) { 7669 /* Bounce to user space */ 7670 return X86EMUL_IO_NEEDED; 7671 } 7672 7673 return r; 7674 } 7675 7676 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7677 u32 msr_index, u64 *pdata) 7678 { 7679 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7680 } 7681 7682 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7683 u32 msr_index, u64 data) 7684 { 7685 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7686 } 7687 7688 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7689 { 7690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7691 7692 return vcpu->arch.smbase; 7693 } 7694 7695 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7696 { 7697 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7698 7699 vcpu->arch.smbase = smbase; 7700 } 7701 7702 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7703 u32 pmc) 7704 { 7705 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7706 return 0; 7707 return -EINVAL; 7708 } 7709 7710 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7711 u32 pmc, u64 *pdata) 7712 { 7713 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7714 } 7715 7716 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7717 { 7718 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7719 } 7720 7721 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7722 struct x86_instruction_info *info, 7723 enum x86_intercept_stage stage) 7724 { 7725 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7726 &ctxt->exception); 7727 } 7728 7729 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7730 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7731 bool exact_only) 7732 { 7733 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7734 } 7735 7736 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7737 { 7738 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7739 } 7740 7741 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7742 { 7743 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7744 } 7745 7746 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7747 { 7748 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7749 } 7750 7751 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 7752 { 7753 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 7754 } 7755 7756 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7757 { 7758 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7759 } 7760 7761 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7762 { 7763 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7764 } 7765 7766 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7767 { 7768 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7769 } 7770 7771 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7772 { 7773 return emul_to_vcpu(ctxt)->arch.hflags; 7774 } 7775 7776 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7777 { 7778 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7779 7780 kvm_smm_changed(vcpu, false); 7781 } 7782 7783 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7784 const char *smstate) 7785 { 7786 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7787 } 7788 7789 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7790 { 7791 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7792 } 7793 7794 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7795 { 7796 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7797 } 7798 7799 static const struct x86_emulate_ops emulate_ops = { 7800 .read_gpr = emulator_read_gpr, 7801 .write_gpr = emulator_write_gpr, 7802 .read_std = emulator_read_std, 7803 .write_std = emulator_write_std, 7804 .read_phys = kvm_read_guest_phys_system, 7805 .fetch = kvm_fetch_guest_virt, 7806 .read_emulated = emulator_read_emulated, 7807 .write_emulated = emulator_write_emulated, 7808 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7809 .invlpg = emulator_invlpg, 7810 .pio_in_emulated = emulator_pio_in_emulated, 7811 .pio_out_emulated = emulator_pio_out_emulated, 7812 .get_segment = emulator_get_segment, 7813 .set_segment = emulator_set_segment, 7814 .get_cached_segment_base = emulator_get_cached_segment_base, 7815 .get_gdt = emulator_get_gdt, 7816 .get_idt = emulator_get_idt, 7817 .set_gdt = emulator_set_gdt, 7818 .set_idt = emulator_set_idt, 7819 .get_cr = emulator_get_cr, 7820 .set_cr = emulator_set_cr, 7821 .cpl = emulator_get_cpl, 7822 .get_dr = emulator_get_dr, 7823 .set_dr = emulator_set_dr, 7824 .get_smbase = emulator_get_smbase, 7825 .set_smbase = emulator_set_smbase, 7826 .set_msr_with_filter = emulator_set_msr_with_filter, 7827 .get_msr_with_filter = emulator_get_msr_with_filter, 7828 .set_msr = emulator_set_msr, 7829 .get_msr = emulator_get_msr, 7830 .check_pmc = emulator_check_pmc, 7831 .read_pmc = emulator_read_pmc, 7832 .halt = emulator_halt, 7833 .wbinvd = emulator_wbinvd, 7834 .fix_hypercall = emulator_fix_hypercall, 7835 .intercept = emulator_intercept, 7836 .get_cpuid = emulator_get_cpuid, 7837 .guest_has_long_mode = emulator_guest_has_long_mode, 7838 .guest_has_movbe = emulator_guest_has_movbe, 7839 .guest_has_fxsr = emulator_guest_has_fxsr, 7840 .guest_has_rdpid = emulator_guest_has_rdpid, 7841 .set_nmi_mask = emulator_set_nmi_mask, 7842 .get_hflags = emulator_get_hflags, 7843 .exiting_smm = emulator_exiting_smm, 7844 .leave_smm = emulator_leave_smm, 7845 .triple_fault = emulator_triple_fault, 7846 .set_xcr = emulator_set_xcr, 7847 }; 7848 7849 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7850 { 7851 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7852 /* 7853 * an sti; sti; sequence only disable interrupts for the first 7854 * instruction. So, if the last instruction, be it emulated or 7855 * not, left the system with the INT_STI flag enabled, it 7856 * means that the last instruction is an sti. We should not 7857 * leave the flag on in this case. The same goes for mov ss 7858 */ 7859 if (int_shadow & mask) 7860 mask = 0; 7861 if (unlikely(int_shadow || mask)) { 7862 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7863 if (!mask) 7864 kvm_make_request(KVM_REQ_EVENT, vcpu); 7865 } 7866 } 7867 7868 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7869 { 7870 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7871 if (ctxt->exception.vector == PF_VECTOR) 7872 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7873 7874 if (ctxt->exception.error_code_valid) 7875 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7876 ctxt->exception.error_code); 7877 else 7878 kvm_queue_exception(vcpu, ctxt->exception.vector); 7879 return false; 7880 } 7881 7882 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7883 { 7884 struct x86_emulate_ctxt *ctxt; 7885 7886 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7887 if (!ctxt) { 7888 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7889 return NULL; 7890 } 7891 7892 ctxt->vcpu = vcpu; 7893 ctxt->ops = &emulate_ops; 7894 vcpu->arch.emulate_ctxt = ctxt; 7895 7896 return ctxt; 7897 } 7898 7899 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7900 { 7901 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7902 int cs_db, cs_l; 7903 7904 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7905 7906 ctxt->gpa_available = false; 7907 ctxt->eflags = kvm_get_rflags(vcpu); 7908 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7909 7910 ctxt->eip = kvm_rip_read(vcpu); 7911 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7912 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7913 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7914 cs_db ? X86EMUL_MODE_PROT32 : 7915 X86EMUL_MODE_PROT16; 7916 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7917 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7918 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7919 7920 ctxt->interruptibility = 0; 7921 ctxt->have_exception = false; 7922 ctxt->exception.vector = -1; 7923 ctxt->perm_ok = false; 7924 7925 init_decode_cache(ctxt); 7926 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7927 } 7928 7929 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7930 { 7931 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7932 int ret; 7933 7934 init_emulate_ctxt(vcpu); 7935 7936 ctxt->op_bytes = 2; 7937 ctxt->ad_bytes = 2; 7938 ctxt->_eip = ctxt->eip + inc_eip; 7939 ret = emulate_int_real(ctxt, irq); 7940 7941 if (ret != X86EMUL_CONTINUE) { 7942 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7943 } else { 7944 ctxt->eip = ctxt->_eip; 7945 kvm_rip_write(vcpu, ctxt->eip); 7946 kvm_set_rflags(vcpu, ctxt->eflags); 7947 } 7948 } 7949 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7950 7951 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7952 u8 ndata, u8 *insn_bytes, u8 insn_size) 7953 { 7954 struct kvm_run *run = vcpu->run; 7955 u64 info[5]; 7956 u8 info_start; 7957 7958 /* 7959 * Zero the whole array used to retrieve the exit info, as casting to 7960 * u32 for select entries will leave some chunks uninitialized. 7961 */ 7962 memset(&info, 0, sizeof(info)); 7963 7964 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 7965 &info[2], (u32 *)&info[3], 7966 (u32 *)&info[4]); 7967 7968 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7969 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 7970 7971 /* 7972 * There's currently space for 13 entries, but 5 are used for the exit 7973 * reason and info. Restrict to 4 to reduce the maintenance burden 7974 * when expanding kvm_run.emulation_failure in the future. 7975 */ 7976 if (WARN_ON_ONCE(ndata > 4)) 7977 ndata = 4; 7978 7979 /* Always include the flags as a 'data' entry. */ 7980 info_start = 1; 7981 run->emulation_failure.flags = 0; 7982 7983 if (insn_size) { 7984 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 7985 sizeof(run->emulation_failure.insn_bytes) != 16)); 7986 info_start += 2; 7987 run->emulation_failure.flags |= 7988 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 7989 run->emulation_failure.insn_size = insn_size; 7990 memset(run->emulation_failure.insn_bytes, 0x90, 7991 sizeof(run->emulation_failure.insn_bytes)); 7992 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 7993 } 7994 7995 memcpy(&run->internal.data[info_start], info, sizeof(info)); 7996 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 7997 ndata * sizeof(data[0])); 7998 7999 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8000 } 8001 8002 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8003 { 8004 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8005 8006 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8007 ctxt->fetch.end - ctxt->fetch.data); 8008 } 8009 8010 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8011 u8 ndata) 8012 { 8013 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8014 } 8015 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8016 8017 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8018 { 8019 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8020 } 8021 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8022 8023 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8024 { 8025 struct kvm *kvm = vcpu->kvm; 8026 8027 ++vcpu->stat.insn_emulation_fail; 8028 trace_kvm_emulate_insn_failed(vcpu); 8029 8030 if (emulation_type & EMULTYPE_VMWARE_GP) { 8031 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8032 return 1; 8033 } 8034 8035 if (kvm->arch.exit_on_emulation_error || 8036 (emulation_type & EMULTYPE_SKIP)) { 8037 prepare_emulation_ctxt_failure_exit(vcpu); 8038 return 0; 8039 } 8040 8041 kvm_queue_exception(vcpu, UD_VECTOR); 8042 8043 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8044 prepare_emulation_ctxt_failure_exit(vcpu); 8045 return 0; 8046 } 8047 8048 return 1; 8049 } 8050 8051 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8052 bool write_fault_to_shadow_pgtable, 8053 int emulation_type) 8054 { 8055 gpa_t gpa = cr2_or_gpa; 8056 kvm_pfn_t pfn; 8057 8058 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8059 return false; 8060 8061 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8062 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8063 return false; 8064 8065 if (!vcpu->arch.mmu->direct_map) { 8066 /* 8067 * Write permission should be allowed since only 8068 * write access need to be emulated. 8069 */ 8070 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8071 8072 /* 8073 * If the mapping is invalid in guest, let cpu retry 8074 * it to generate fault. 8075 */ 8076 if (gpa == UNMAPPED_GVA) 8077 return true; 8078 } 8079 8080 /* 8081 * Do not retry the unhandleable instruction if it faults on the 8082 * readonly host memory, otherwise it will goto a infinite loop: 8083 * retry instruction -> write #PF -> emulation fail -> retry 8084 * instruction -> ... 8085 */ 8086 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8087 8088 /* 8089 * If the instruction failed on the error pfn, it can not be fixed, 8090 * report the error to userspace. 8091 */ 8092 if (is_error_noslot_pfn(pfn)) 8093 return false; 8094 8095 kvm_release_pfn_clean(pfn); 8096 8097 /* The instructions are well-emulated on direct mmu. */ 8098 if (vcpu->arch.mmu->direct_map) { 8099 unsigned int indirect_shadow_pages; 8100 8101 write_lock(&vcpu->kvm->mmu_lock); 8102 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8103 write_unlock(&vcpu->kvm->mmu_lock); 8104 8105 if (indirect_shadow_pages) 8106 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8107 8108 return true; 8109 } 8110 8111 /* 8112 * if emulation was due to access to shadowed page table 8113 * and it failed try to unshadow page and re-enter the 8114 * guest to let CPU execute the instruction. 8115 */ 8116 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8117 8118 /* 8119 * If the access faults on its page table, it can not 8120 * be fixed by unprotecting shadow page and it should 8121 * be reported to userspace. 8122 */ 8123 return !write_fault_to_shadow_pgtable; 8124 } 8125 8126 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8127 gpa_t cr2_or_gpa, int emulation_type) 8128 { 8129 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8130 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8131 8132 last_retry_eip = vcpu->arch.last_retry_eip; 8133 last_retry_addr = vcpu->arch.last_retry_addr; 8134 8135 /* 8136 * If the emulation is caused by #PF and it is non-page_table 8137 * writing instruction, it means the VM-EXIT is caused by shadow 8138 * page protected, we can zap the shadow page and retry this 8139 * instruction directly. 8140 * 8141 * Note: if the guest uses a non-page-table modifying instruction 8142 * on the PDE that points to the instruction, then we will unmap 8143 * the instruction and go to an infinite loop. So, we cache the 8144 * last retried eip and the last fault address, if we meet the eip 8145 * and the address again, we can break out of the potential infinite 8146 * loop. 8147 */ 8148 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8149 8150 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8151 return false; 8152 8153 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8154 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8155 return false; 8156 8157 if (x86_page_table_writing_insn(ctxt)) 8158 return false; 8159 8160 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8161 return false; 8162 8163 vcpu->arch.last_retry_eip = ctxt->eip; 8164 vcpu->arch.last_retry_addr = cr2_or_gpa; 8165 8166 if (!vcpu->arch.mmu->direct_map) 8167 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8168 8169 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8170 8171 return true; 8172 } 8173 8174 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8175 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8176 8177 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8178 { 8179 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8180 8181 if (entering_smm) { 8182 vcpu->arch.hflags |= HF_SMM_MASK; 8183 } else { 8184 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8185 8186 /* Process a latched INIT or SMI, if any. */ 8187 kvm_make_request(KVM_REQ_EVENT, vcpu); 8188 8189 /* 8190 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8191 * on SMM exit we still need to reload them from 8192 * guest memory 8193 */ 8194 vcpu->arch.pdptrs_from_userspace = false; 8195 } 8196 8197 kvm_mmu_reset_context(vcpu); 8198 } 8199 8200 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8201 unsigned long *db) 8202 { 8203 u32 dr6 = 0; 8204 int i; 8205 u32 enable, rwlen; 8206 8207 enable = dr7; 8208 rwlen = dr7 >> 16; 8209 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8210 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8211 dr6 |= (1 << i); 8212 return dr6; 8213 } 8214 8215 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8216 { 8217 struct kvm_run *kvm_run = vcpu->run; 8218 8219 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8220 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8221 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8222 kvm_run->debug.arch.exception = DB_VECTOR; 8223 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8224 return 0; 8225 } 8226 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8227 return 1; 8228 } 8229 8230 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8231 { 8232 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8233 int r; 8234 8235 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8236 if (unlikely(!r)) 8237 return 0; 8238 8239 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8240 8241 /* 8242 * rflags is the old, "raw" value of the flags. The new value has 8243 * not been saved yet. 8244 * 8245 * This is correct even for TF set by the guest, because "the 8246 * processor will not generate this exception after the instruction 8247 * that sets the TF flag". 8248 */ 8249 if (unlikely(rflags & X86_EFLAGS_TF)) 8250 r = kvm_vcpu_do_singlestep(vcpu); 8251 return r; 8252 } 8253 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8254 8255 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 8256 { 8257 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8258 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8259 struct kvm_run *kvm_run = vcpu->run; 8260 unsigned long eip = kvm_get_linear_rip(vcpu); 8261 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8262 vcpu->arch.guest_debug_dr7, 8263 vcpu->arch.eff_db); 8264 8265 if (dr6 != 0) { 8266 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8267 kvm_run->debug.arch.pc = eip; 8268 kvm_run->debug.arch.exception = DB_VECTOR; 8269 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8270 *r = 0; 8271 return true; 8272 } 8273 } 8274 8275 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8276 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8277 unsigned long eip = kvm_get_linear_rip(vcpu); 8278 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8279 vcpu->arch.dr7, 8280 vcpu->arch.db); 8281 8282 if (dr6 != 0) { 8283 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8284 *r = 1; 8285 return true; 8286 } 8287 } 8288 8289 return false; 8290 } 8291 8292 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8293 { 8294 switch (ctxt->opcode_len) { 8295 case 1: 8296 switch (ctxt->b) { 8297 case 0xe4: /* IN */ 8298 case 0xe5: 8299 case 0xec: 8300 case 0xed: 8301 case 0xe6: /* OUT */ 8302 case 0xe7: 8303 case 0xee: 8304 case 0xef: 8305 case 0x6c: /* INS */ 8306 case 0x6d: 8307 case 0x6e: /* OUTS */ 8308 case 0x6f: 8309 return true; 8310 } 8311 break; 8312 case 2: 8313 switch (ctxt->b) { 8314 case 0x33: /* RDPMC */ 8315 return true; 8316 } 8317 break; 8318 } 8319 8320 return false; 8321 } 8322 8323 /* 8324 * Decode to be emulated instruction. Return EMULATION_OK if success. 8325 */ 8326 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8327 void *insn, int insn_len) 8328 { 8329 int r = EMULATION_OK; 8330 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8331 8332 init_emulate_ctxt(vcpu); 8333 8334 /* 8335 * We will reenter on the same instruction since we do not set 8336 * complete_userspace_io. This does not handle watchpoints yet, 8337 * those would be handled in the emulate_ops. 8338 */ 8339 if (!(emulation_type & EMULTYPE_SKIP) && 8340 kvm_vcpu_check_breakpoint(vcpu, &r)) 8341 return r; 8342 8343 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8344 8345 trace_kvm_emulate_insn_start(vcpu); 8346 ++vcpu->stat.insn_emulation; 8347 8348 return r; 8349 } 8350 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8351 8352 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8353 int emulation_type, void *insn, int insn_len) 8354 { 8355 int r; 8356 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8357 bool writeback = true; 8358 bool write_fault_to_spt; 8359 8360 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8361 return 1; 8362 8363 vcpu->arch.l1tf_flush_l1d = true; 8364 8365 /* 8366 * Clear write_fault_to_shadow_pgtable here to ensure it is 8367 * never reused. 8368 */ 8369 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8370 vcpu->arch.write_fault_to_shadow_pgtable = false; 8371 8372 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8373 kvm_clear_exception_queue(vcpu); 8374 8375 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8376 insn, insn_len); 8377 if (r != EMULATION_OK) { 8378 if ((emulation_type & EMULTYPE_TRAP_UD) || 8379 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8380 kvm_queue_exception(vcpu, UD_VECTOR); 8381 return 1; 8382 } 8383 if (reexecute_instruction(vcpu, cr2_or_gpa, 8384 write_fault_to_spt, 8385 emulation_type)) 8386 return 1; 8387 if (ctxt->have_exception) { 8388 /* 8389 * #UD should result in just EMULATION_FAILED, and trap-like 8390 * exception should not be encountered during decode. 8391 */ 8392 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8393 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8394 inject_emulated_exception(vcpu); 8395 return 1; 8396 } 8397 return handle_emulation_failure(vcpu, emulation_type); 8398 } 8399 } 8400 8401 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8402 !is_vmware_backdoor_opcode(ctxt)) { 8403 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8404 return 1; 8405 } 8406 8407 /* 8408 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8409 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8410 * The caller is responsible for updating interruptibility state and 8411 * injecting single-step #DBs. 8412 */ 8413 if (emulation_type & EMULTYPE_SKIP) { 8414 if (ctxt->mode != X86EMUL_MODE_PROT64) 8415 ctxt->eip = (u32)ctxt->_eip; 8416 else 8417 ctxt->eip = ctxt->_eip; 8418 8419 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8420 r = 1; 8421 goto writeback; 8422 } 8423 8424 kvm_rip_write(vcpu, ctxt->eip); 8425 if (ctxt->eflags & X86_EFLAGS_RF) 8426 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8427 return 1; 8428 } 8429 8430 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8431 return 1; 8432 8433 /* this is needed for vmware backdoor interface to work since it 8434 changes registers values during IO operation */ 8435 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8436 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8437 emulator_invalidate_register_cache(ctxt); 8438 } 8439 8440 restart: 8441 if (emulation_type & EMULTYPE_PF) { 8442 /* Save the faulting GPA (cr2) in the address field */ 8443 ctxt->exception.address = cr2_or_gpa; 8444 8445 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8446 if (vcpu->arch.mmu->direct_map) { 8447 ctxt->gpa_available = true; 8448 ctxt->gpa_val = cr2_or_gpa; 8449 } 8450 } else { 8451 /* Sanitize the address out of an abundance of paranoia. */ 8452 ctxt->exception.address = 0; 8453 } 8454 8455 r = x86_emulate_insn(ctxt); 8456 8457 if (r == EMULATION_INTERCEPTED) 8458 return 1; 8459 8460 if (r == EMULATION_FAILED) { 8461 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8462 emulation_type)) 8463 return 1; 8464 8465 return handle_emulation_failure(vcpu, emulation_type); 8466 } 8467 8468 if (ctxt->have_exception) { 8469 r = 1; 8470 if (inject_emulated_exception(vcpu)) 8471 return r; 8472 } else if (vcpu->arch.pio.count) { 8473 if (!vcpu->arch.pio.in) { 8474 /* FIXME: return into emulator if single-stepping. */ 8475 vcpu->arch.pio.count = 0; 8476 } else { 8477 writeback = false; 8478 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8479 } 8480 r = 0; 8481 } else if (vcpu->mmio_needed) { 8482 ++vcpu->stat.mmio_exits; 8483 8484 if (!vcpu->mmio_is_write) 8485 writeback = false; 8486 r = 0; 8487 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8488 } else if (vcpu->arch.complete_userspace_io) { 8489 writeback = false; 8490 r = 0; 8491 } else if (r == EMULATION_RESTART) 8492 goto restart; 8493 else 8494 r = 1; 8495 8496 writeback: 8497 if (writeback) { 8498 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8499 toggle_interruptibility(vcpu, ctxt->interruptibility); 8500 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8501 if (!ctxt->have_exception || 8502 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8503 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8504 if (ctxt->is_branch) 8505 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8506 kvm_rip_write(vcpu, ctxt->eip); 8507 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8508 r = kvm_vcpu_do_singlestep(vcpu); 8509 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8510 __kvm_set_rflags(vcpu, ctxt->eflags); 8511 } 8512 8513 /* 8514 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8515 * do nothing, and it will be requested again as soon as 8516 * the shadow expires. But we still need to check here, 8517 * because POPF has no interrupt shadow. 8518 */ 8519 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8520 kvm_make_request(KVM_REQ_EVENT, vcpu); 8521 } else 8522 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8523 8524 return r; 8525 } 8526 8527 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8528 { 8529 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8530 } 8531 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8532 8533 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8534 void *insn, int insn_len) 8535 { 8536 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8537 } 8538 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8539 8540 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8541 { 8542 vcpu->arch.pio.count = 0; 8543 return 1; 8544 } 8545 8546 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8547 { 8548 vcpu->arch.pio.count = 0; 8549 8550 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8551 return 1; 8552 8553 return kvm_skip_emulated_instruction(vcpu); 8554 } 8555 8556 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8557 unsigned short port) 8558 { 8559 unsigned long val = kvm_rax_read(vcpu); 8560 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8561 8562 if (ret) 8563 return ret; 8564 8565 /* 8566 * Workaround userspace that relies on old KVM behavior of %rip being 8567 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8568 */ 8569 if (port == 0x7e && 8570 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8571 vcpu->arch.complete_userspace_io = 8572 complete_fast_pio_out_port_0x7e; 8573 kvm_skip_emulated_instruction(vcpu); 8574 } else { 8575 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8576 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8577 } 8578 return 0; 8579 } 8580 8581 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8582 { 8583 unsigned long val; 8584 8585 /* We should only ever be called with arch.pio.count equal to 1 */ 8586 BUG_ON(vcpu->arch.pio.count != 1); 8587 8588 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8589 vcpu->arch.pio.count = 0; 8590 return 1; 8591 } 8592 8593 /* For size less than 4 we merge, else we zero extend */ 8594 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8595 8596 /* 8597 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8598 * the copy and tracing 8599 */ 8600 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8601 kvm_rax_write(vcpu, val); 8602 8603 return kvm_skip_emulated_instruction(vcpu); 8604 } 8605 8606 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8607 unsigned short port) 8608 { 8609 unsigned long val; 8610 int ret; 8611 8612 /* For size less than 4 we merge, else we zero extend */ 8613 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8614 8615 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8616 if (ret) { 8617 kvm_rax_write(vcpu, val); 8618 return ret; 8619 } 8620 8621 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8622 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8623 8624 return 0; 8625 } 8626 8627 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8628 { 8629 int ret; 8630 8631 if (in) 8632 ret = kvm_fast_pio_in(vcpu, size, port); 8633 else 8634 ret = kvm_fast_pio_out(vcpu, size, port); 8635 return ret && kvm_skip_emulated_instruction(vcpu); 8636 } 8637 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8638 8639 static int kvmclock_cpu_down_prep(unsigned int cpu) 8640 { 8641 __this_cpu_write(cpu_tsc_khz, 0); 8642 return 0; 8643 } 8644 8645 static void tsc_khz_changed(void *data) 8646 { 8647 struct cpufreq_freqs *freq = data; 8648 unsigned long khz = 0; 8649 8650 if (data) 8651 khz = freq->new; 8652 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8653 khz = cpufreq_quick_get(raw_smp_processor_id()); 8654 if (!khz) 8655 khz = tsc_khz; 8656 __this_cpu_write(cpu_tsc_khz, khz); 8657 } 8658 8659 #ifdef CONFIG_X86_64 8660 static void kvm_hyperv_tsc_notifier(void) 8661 { 8662 struct kvm *kvm; 8663 int cpu; 8664 8665 mutex_lock(&kvm_lock); 8666 list_for_each_entry(kvm, &vm_list, vm_list) 8667 kvm_make_mclock_inprogress_request(kvm); 8668 8669 /* no guest entries from this point */ 8670 hyperv_stop_tsc_emulation(); 8671 8672 /* TSC frequency always matches when on Hyper-V */ 8673 for_each_present_cpu(cpu) 8674 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8675 kvm_max_guest_tsc_khz = tsc_khz; 8676 8677 list_for_each_entry(kvm, &vm_list, vm_list) { 8678 __kvm_start_pvclock_update(kvm); 8679 pvclock_update_vm_gtod_copy(kvm); 8680 kvm_end_pvclock_update(kvm); 8681 } 8682 8683 mutex_unlock(&kvm_lock); 8684 } 8685 #endif 8686 8687 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8688 { 8689 struct kvm *kvm; 8690 struct kvm_vcpu *vcpu; 8691 int send_ipi = 0; 8692 unsigned long i; 8693 8694 /* 8695 * We allow guests to temporarily run on slowing clocks, 8696 * provided we notify them after, or to run on accelerating 8697 * clocks, provided we notify them before. Thus time never 8698 * goes backwards. 8699 * 8700 * However, we have a problem. We can't atomically update 8701 * the frequency of a given CPU from this function; it is 8702 * merely a notifier, which can be called from any CPU. 8703 * Changing the TSC frequency at arbitrary points in time 8704 * requires a recomputation of local variables related to 8705 * the TSC for each VCPU. We must flag these local variables 8706 * to be updated and be sure the update takes place with the 8707 * new frequency before any guests proceed. 8708 * 8709 * Unfortunately, the combination of hotplug CPU and frequency 8710 * change creates an intractable locking scenario; the order 8711 * of when these callouts happen is undefined with respect to 8712 * CPU hotplug, and they can race with each other. As such, 8713 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8714 * undefined; you can actually have a CPU frequency change take 8715 * place in between the computation of X and the setting of the 8716 * variable. To protect against this problem, all updates of 8717 * the per_cpu tsc_khz variable are done in an interrupt 8718 * protected IPI, and all callers wishing to update the value 8719 * must wait for a synchronous IPI to complete (which is trivial 8720 * if the caller is on the CPU already). This establishes the 8721 * necessary total order on variable updates. 8722 * 8723 * Note that because a guest time update may take place 8724 * anytime after the setting of the VCPU's request bit, the 8725 * correct TSC value must be set before the request. However, 8726 * to ensure the update actually makes it to any guest which 8727 * starts running in hardware virtualization between the set 8728 * and the acquisition of the spinlock, we must also ping the 8729 * CPU after setting the request bit. 8730 * 8731 */ 8732 8733 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8734 8735 mutex_lock(&kvm_lock); 8736 list_for_each_entry(kvm, &vm_list, vm_list) { 8737 kvm_for_each_vcpu(i, vcpu, kvm) { 8738 if (vcpu->cpu != cpu) 8739 continue; 8740 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8741 if (vcpu->cpu != raw_smp_processor_id()) 8742 send_ipi = 1; 8743 } 8744 } 8745 mutex_unlock(&kvm_lock); 8746 8747 if (freq->old < freq->new && send_ipi) { 8748 /* 8749 * We upscale the frequency. Must make the guest 8750 * doesn't see old kvmclock values while running with 8751 * the new frequency, otherwise we risk the guest sees 8752 * time go backwards. 8753 * 8754 * In case we update the frequency for another cpu 8755 * (which might be in guest context) send an interrupt 8756 * to kick the cpu out of guest context. Next time 8757 * guest context is entered kvmclock will be updated, 8758 * so the guest will not see stale values. 8759 */ 8760 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8761 } 8762 } 8763 8764 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8765 void *data) 8766 { 8767 struct cpufreq_freqs *freq = data; 8768 int cpu; 8769 8770 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8771 return 0; 8772 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8773 return 0; 8774 8775 for_each_cpu(cpu, freq->policy->cpus) 8776 __kvmclock_cpufreq_notifier(freq, cpu); 8777 8778 return 0; 8779 } 8780 8781 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8782 .notifier_call = kvmclock_cpufreq_notifier 8783 }; 8784 8785 static int kvmclock_cpu_online(unsigned int cpu) 8786 { 8787 tsc_khz_changed(NULL); 8788 return 0; 8789 } 8790 8791 static void kvm_timer_init(void) 8792 { 8793 max_tsc_khz = tsc_khz; 8794 8795 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8796 #ifdef CONFIG_CPU_FREQ 8797 struct cpufreq_policy *policy; 8798 int cpu; 8799 8800 cpu = get_cpu(); 8801 policy = cpufreq_cpu_get(cpu); 8802 if (policy) { 8803 if (policy->cpuinfo.max_freq) 8804 max_tsc_khz = policy->cpuinfo.max_freq; 8805 cpufreq_cpu_put(policy); 8806 } 8807 put_cpu(); 8808 #endif 8809 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8810 CPUFREQ_TRANSITION_NOTIFIER); 8811 } 8812 8813 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8814 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8815 } 8816 8817 #ifdef CONFIG_X86_64 8818 static void pvclock_gtod_update_fn(struct work_struct *work) 8819 { 8820 struct kvm *kvm; 8821 struct kvm_vcpu *vcpu; 8822 unsigned long i; 8823 8824 mutex_lock(&kvm_lock); 8825 list_for_each_entry(kvm, &vm_list, vm_list) 8826 kvm_for_each_vcpu(i, vcpu, kvm) 8827 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8828 atomic_set(&kvm_guest_has_master_clock, 0); 8829 mutex_unlock(&kvm_lock); 8830 } 8831 8832 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8833 8834 /* 8835 * Indirection to move queue_work() out of the tk_core.seq write held 8836 * region to prevent possible deadlocks against time accessors which 8837 * are invoked with work related locks held. 8838 */ 8839 static void pvclock_irq_work_fn(struct irq_work *w) 8840 { 8841 queue_work(system_long_wq, &pvclock_gtod_work); 8842 } 8843 8844 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8845 8846 /* 8847 * Notification about pvclock gtod data update. 8848 */ 8849 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8850 void *priv) 8851 { 8852 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8853 struct timekeeper *tk = priv; 8854 8855 update_pvclock_gtod(tk); 8856 8857 /* 8858 * Disable master clock if host does not trust, or does not use, 8859 * TSC based clocksource. Delegate queue_work() to irq_work as 8860 * this is invoked with tk_core.seq write held. 8861 */ 8862 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8863 atomic_read(&kvm_guest_has_master_clock) != 0) 8864 irq_work_queue(&pvclock_irq_work); 8865 return 0; 8866 } 8867 8868 static struct notifier_block pvclock_gtod_notifier = { 8869 .notifier_call = pvclock_gtod_notify, 8870 }; 8871 #endif 8872 8873 int kvm_arch_init(void *opaque) 8874 { 8875 struct kvm_x86_init_ops *ops = opaque; 8876 int r; 8877 8878 if (kvm_x86_ops.hardware_enable) { 8879 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8880 r = -EEXIST; 8881 goto out; 8882 } 8883 8884 if (!ops->cpu_has_kvm_support()) { 8885 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8886 ops->runtime_ops->name); 8887 r = -EOPNOTSUPP; 8888 goto out; 8889 } 8890 if (ops->disabled_by_bios()) { 8891 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8892 ops->runtime_ops->name); 8893 r = -EOPNOTSUPP; 8894 goto out; 8895 } 8896 8897 /* 8898 * KVM explicitly assumes that the guest has an FPU and 8899 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8900 * vCPU's FPU state as a fxregs_state struct. 8901 */ 8902 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8903 printk(KERN_ERR "kvm: inadequate fpu\n"); 8904 r = -EOPNOTSUPP; 8905 goto out; 8906 } 8907 8908 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8909 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 8910 r = -EOPNOTSUPP; 8911 goto out; 8912 } 8913 8914 r = -ENOMEM; 8915 8916 x86_emulator_cache = kvm_alloc_emulator_cache(); 8917 if (!x86_emulator_cache) { 8918 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8919 goto out; 8920 } 8921 8922 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8923 if (!user_return_msrs) { 8924 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8925 goto out_free_x86_emulator_cache; 8926 } 8927 kvm_nr_uret_msrs = 0; 8928 8929 r = kvm_mmu_module_init(); 8930 if (r) 8931 goto out_free_percpu; 8932 8933 kvm_timer_init(); 8934 8935 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8936 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8937 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8938 } 8939 8940 if (pi_inject_timer == -1) 8941 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 8942 #ifdef CONFIG_X86_64 8943 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8944 8945 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8946 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8947 #endif 8948 8949 return 0; 8950 8951 out_free_percpu: 8952 free_percpu(user_return_msrs); 8953 out_free_x86_emulator_cache: 8954 kmem_cache_destroy(x86_emulator_cache); 8955 out: 8956 return r; 8957 } 8958 8959 void kvm_arch_exit(void) 8960 { 8961 #ifdef CONFIG_X86_64 8962 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8963 clear_hv_tscchange_cb(); 8964 #endif 8965 kvm_lapic_exit(); 8966 8967 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8968 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8969 CPUFREQ_TRANSITION_NOTIFIER); 8970 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8971 #ifdef CONFIG_X86_64 8972 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8973 irq_work_sync(&pvclock_irq_work); 8974 cancel_work_sync(&pvclock_gtod_work); 8975 #endif 8976 kvm_x86_ops.hardware_enable = NULL; 8977 kvm_mmu_module_exit(); 8978 free_percpu(user_return_msrs); 8979 kmem_cache_destroy(x86_emulator_cache); 8980 #ifdef CONFIG_KVM_XEN 8981 static_key_deferred_flush(&kvm_xen_enabled); 8982 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 8983 #endif 8984 } 8985 8986 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 8987 { 8988 /* 8989 * The vCPU has halted, e.g. executed HLT. Update the run state if the 8990 * local APIC is in-kernel, the run loop will detect the non-runnable 8991 * state and halt the vCPU. Exit to userspace if the local APIC is 8992 * managed by userspace, in which case userspace is responsible for 8993 * handling wake events. 8994 */ 8995 ++vcpu->stat.halt_exits; 8996 if (lapic_in_kernel(vcpu)) { 8997 vcpu->arch.mp_state = state; 8998 return 1; 8999 } else { 9000 vcpu->run->exit_reason = reason; 9001 return 0; 9002 } 9003 } 9004 9005 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9006 { 9007 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9008 } 9009 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9010 9011 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9012 { 9013 int ret = kvm_skip_emulated_instruction(vcpu); 9014 /* 9015 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9016 * KVM_EXIT_DEBUG here. 9017 */ 9018 return kvm_emulate_halt_noskip(vcpu) && ret; 9019 } 9020 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9021 9022 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9023 { 9024 int ret = kvm_skip_emulated_instruction(vcpu); 9025 9026 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9027 KVM_EXIT_AP_RESET_HOLD) && ret; 9028 } 9029 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9030 9031 #ifdef CONFIG_X86_64 9032 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9033 unsigned long clock_type) 9034 { 9035 struct kvm_clock_pairing clock_pairing; 9036 struct timespec64 ts; 9037 u64 cycle; 9038 int ret; 9039 9040 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9041 return -KVM_EOPNOTSUPP; 9042 9043 /* 9044 * When tsc is in permanent catchup mode guests won't be able to use 9045 * pvclock_read_retry loop to get consistent view of pvclock 9046 */ 9047 if (vcpu->arch.tsc_always_catchup) 9048 return -KVM_EOPNOTSUPP; 9049 9050 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9051 return -KVM_EOPNOTSUPP; 9052 9053 clock_pairing.sec = ts.tv_sec; 9054 clock_pairing.nsec = ts.tv_nsec; 9055 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9056 clock_pairing.flags = 0; 9057 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9058 9059 ret = 0; 9060 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9061 sizeof(struct kvm_clock_pairing))) 9062 ret = -KVM_EFAULT; 9063 9064 return ret; 9065 } 9066 #endif 9067 9068 /* 9069 * kvm_pv_kick_cpu_op: Kick a vcpu. 9070 * 9071 * @apicid - apicid of vcpu to be kicked. 9072 */ 9073 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9074 { 9075 struct kvm_lapic_irq lapic_irq; 9076 9077 lapic_irq.shorthand = APIC_DEST_NOSHORT; 9078 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 9079 lapic_irq.level = 0; 9080 lapic_irq.dest_id = apicid; 9081 lapic_irq.msi_redir_hint = false; 9082 9083 lapic_irq.delivery_mode = APIC_DM_REMRD; 9084 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9085 } 9086 9087 bool kvm_apicv_activated(struct kvm *kvm) 9088 { 9089 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9090 } 9091 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9092 9093 9094 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9095 enum kvm_apicv_inhibit reason, bool set) 9096 { 9097 if (set) 9098 __set_bit(reason, inhibits); 9099 else 9100 __clear_bit(reason, inhibits); 9101 9102 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9103 } 9104 9105 static void kvm_apicv_init(struct kvm *kvm) 9106 { 9107 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9108 9109 init_rwsem(&kvm->arch.apicv_update_lock); 9110 9111 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9112 9113 if (!enable_apicv) 9114 set_or_clear_apicv_inhibit(inhibits, 9115 APICV_INHIBIT_REASON_ABSENT, true); 9116 } 9117 9118 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9119 { 9120 struct kvm_vcpu *target = NULL; 9121 struct kvm_apic_map *map; 9122 9123 vcpu->stat.directed_yield_attempted++; 9124 9125 if (single_task_running()) 9126 goto no_yield; 9127 9128 rcu_read_lock(); 9129 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9130 9131 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9132 target = map->phys_map[dest_id]->vcpu; 9133 9134 rcu_read_unlock(); 9135 9136 if (!target || !READ_ONCE(target->ready)) 9137 goto no_yield; 9138 9139 /* Ignore requests to yield to self */ 9140 if (vcpu == target) 9141 goto no_yield; 9142 9143 if (kvm_vcpu_yield_to(target) <= 0) 9144 goto no_yield; 9145 9146 vcpu->stat.directed_yield_successful++; 9147 9148 no_yield: 9149 return; 9150 } 9151 9152 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9153 { 9154 u64 ret = vcpu->run->hypercall.ret; 9155 9156 if (!is_64_bit_mode(vcpu)) 9157 ret = (u32)ret; 9158 kvm_rax_write(vcpu, ret); 9159 ++vcpu->stat.hypercalls; 9160 return kvm_skip_emulated_instruction(vcpu); 9161 } 9162 9163 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9164 { 9165 unsigned long nr, a0, a1, a2, a3, ret; 9166 int op_64_bit; 9167 9168 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9169 return kvm_xen_hypercall(vcpu); 9170 9171 if (kvm_hv_hypercall_enabled(vcpu)) 9172 return kvm_hv_hypercall(vcpu); 9173 9174 nr = kvm_rax_read(vcpu); 9175 a0 = kvm_rbx_read(vcpu); 9176 a1 = kvm_rcx_read(vcpu); 9177 a2 = kvm_rdx_read(vcpu); 9178 a3 = kvm_rsi_read(vcpu); 9179 9180 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9181 9182 op_64_bit = is_64_bit_hypercall(vcpu); 9183 if (!op_64_bit) { 9184 nr &= 0xFFFFFFFF; 9185 a0 &= 0xFFFFFFFF; 9186 a1 &= 0xFFFFFFFF; 9187 a2 &= 0xFFFFFFFF; 9188 a3 &= 0xFFFFFFFF; 9189 } 9190 9191 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9192 ret = -KVM_EPERM; 9193 goto out; 9194 } 9195 9196 ret = -KVM_ENOSYS; 9197 9198 switch (nr) { 9199 case KVM_HC_VAPIC_POLL_IRQ: 9200 ret = 0; 9201 break; 9202 case KVM_HC_KICK_CPU: 9203 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9204 break; 9205 9206 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9207 kvm_sched_yield(vcpu, a1); 9208 ret = 0; 9209 break; 9210 #ifdef CONFIG_X86_64 9211 case KVM_HC_CLOCK_PAIRING: 9212 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9213 break; 9214 #endif 9215 case KVM_HC_SEND_IPI: 9216 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9217 break; 9218 9219 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9220 break; 9221 case KVM_HC_SCHED_YIELD: 9222 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9223 break; 9224 9225 kvm_sched_yield(vcpu, a0); 9226 ret = 0; 9227 break; 9228 case KVM_HC_MAP_GPA_RANGE: { 9229 u64 gpa = a0, npages = a1, attrs = a2; 9230 9231 ret = -KVM_ENOSYS; 9232 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9233 break; 9234 9235 if (!PAGE_ALIGNED(gpa) || !npages || 9236 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9237 ret = -KVM_EINVAL; 9238 break; 9239 } 9240 9241 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9242 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9243 vcpu->run->hypercall.args[0] = gpa; 9244 vcpu->run->hypercall.args[1] = npages; 9245 vcpu->run->hypercall.args[2] = attrs; 9246 vcpu->run->hypercall.longmode = op_64_bit; 9247 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9248 return 0; 9249 } 9250 default: 9251 ret = -KVM_ENOSYS; 9252 break; 9253 } 9254 out: 9255 if (!op_64_bit) 9256 ret = (u32)ret; 9257 kvm_rax_write(vcpu, ret); 9258 9259 ++vcpu->stat.hypercalls; 9260 return kvm_skip_emulated_instruction(vcpu); 9261 } 9262 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9263 9264 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9265 { 9266 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9267 char instruction[3]; 9268 unsigned long rip = kvm_rip_read(vcpu); 9269 9270 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9271 9272 return emulator_write_emulated(ctxt, rip, instruction, 3, 9273 &ctxt->exception); 9274 } 9275 9276 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9277 { 9278 return vcpu->run->request_interrupt_window && 9279 likely(!pic_in_kernel(vcpu->kvm)); 9280 } 9281 9282 /* Called within kvm->srcu read side. */ 9283 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9284 { 9285 struct kvm_run *kvm_run = vcpu->run; 9286 9287 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9288 kvm_run->cr8 = kvm_get_cr8(vcpu); 9289 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9290 9291 kvm_run->ready_for_interrupt_injection = 9292 pic_in_kernel(vcpu->kvm) || 9293 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9294 9295 if (is_smm(vcpu)) 9296 kvm_run->flags |= KVM_RUN_X86_SMM; 9297 } 9298 9299 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9300 { 9301 int max_irr, tpr; 9302 9303 if (!kvm_x86_ops.update_cr8_intercept) 9304 return; 9305 9306 if (!lapic_in_kernel(vcpu)) 9307 return; 9308 9309 if (vcpu->arch.apicv_active) 9310 return; 9311 9312 if (!vcpu->arch.apic->vapic_addr) 9313 max_irr = kvm_lapic_find_highest_irr(vcpu); 9314 else 9315 max_irr = -1; 9316 9317 if (max_irr != -1) 9318 max_irr >>= 4; 9319 9320 tpr = kvm_lapic_get_cr8(vcpu); 9321 9322 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9323 } 9324 9325 9326 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9327 { 9328 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9329 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9330 return 1; 9331 } 9332 9333 return kvm_x86_ops.nested_ops->check_events(vcpu); 9334 } 9335 9336 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9337 { 9338 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9339 vcpu->arch.exception.error_code = false; 9340 static_call(kvm_x86_queue_exception)(vcpu); 9341 } 9342 9343 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9344 { 9345 int r; 9346 bool can_inject = true; 9347 9348 /* try to reinject previous events if any */ 9349 9350 if (vcpu->arch.exception.injected) { 9351 kvm_inject_exception(vcpu); 9352 can_inject = false; 9353 } 9354 /* 9355 * Do not inject an NMI or interrupt if there is a pending 9356 * exception. Exceptions and interrupts are recognized at 9357 * instruction boundaries, i.e. the start of an instruction. 9358 * Trap-like exceptions, e.g. #DB, have higher priority than 9359 * NMIs and interrupts, i.e. traps are recognized before an 9360 * NMI/interrupt that's pending on the same instruction. 9361 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9362 * priority, but are only generated (pended) during instruction 9363 * execution, i.e. a pending fault-like exception means the 9364 * fault occurred on the *previous* instruction and must be 9365 * serviced prior to recognizing any new events in order to 9366 * fully complete the previous instruction. 9367 */ 9368 else if (!vcpu->arch.exception.pending) { 9369 if (vcpu->arch.nmi_injected) { 9370 static_call(kvm_x86_inject_nmi)(vcpu); 9371 can_inject = false; 9372 } else if (vcpu->arch.interrupt.injected) { 9373 static_call(kvm_x86_inject_irq)(vcpu); 9374 can_inject = false; 9375 } 9376 } 9377 9378 WARN_ON_ONCE(vcpu->arch.exception.injected && 9379 vcpu->arch.exception.pending); 9380 9381 /* 9382 * Call check_nested_events() even if we reinjected a previous event 9383 * in order for caller to determine if it should require immediate-exit 9384 * from L2 to L1 due to pending L1 events which require exit 9385 * from L2 to L1. 9386 */ 9387 if (is_guest_mode(vcpu)) { 9388 r = kvm_check_nested_events(vcpu); 9389 if (r < 0) 9390 goto out; 9391 } 9392 9393 /* try to inject new event if pending */ 9394 if (vcpu->arch.exception.pending) { 9395 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9396 vcpu->arch.exception.has_error_code, 9397 vcpu->arch.exception.error_code); 9398 9399 vcpu->arch.exception.pending = false; 9400 vcpu->arch.exception.injected = true; 9401 9402 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9403 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9404 X86_EFLAGS_RF); 9405 9406 if (vcpu->arch.exception.nr == DB_VECTOR) { 9407 kvm_deliver_exception_payload(vcpu); 9408 if (vcpu->arch.dr7 & DR7_GD) { 9409 vcpu->arch.dr7 &= ~DR7_GD; 9410 kvm_update_dr7(vcpu); 9411 } 9412 } 9413 9414 kvm_inject_exception(vcpu); 9415 can_inject = false; 9416 } 9417 9418 /* Don't inject interrupts if the user asked to avoid doing so */ 9419 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9420 return 0; 9421 9422 /* 9423 * Finally, inject interrupt events. If an event cannot be injected 9424 * due to architectural conditions (e.g. IF=0) a window-open exit 9425 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9426 * and can architecturally be injected, but we cannot do it right now: 9427 * an interrupt could have arrived just now and we have to inject it 9428 * as a vmexit, or there could already an event in the queue, which is 9429 * indicated by can_inject. In that case we request an immediate exit 9430 * in order to make progress and get back here for another iteration. 9431 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9432 */ 9433 if (vcpu->arch.smi_pending) { 9434 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9435 if (r < 0) 9436 goto out; 9437 if (r) { 9438 vcpu->arch.smi_pending = false; 9439 ++vcpu->arch.smi_count; 9440 enter_smm(vcpu); 9441 can_inject = false; 9442 } else 9443 static_call(kvm_x86_enable_smi_window)(vcpu); 9444 } 9445 9446 if (vcpu->arch.nmi_pending) { 9447 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9448 if (r < 0) 9449 goto out; 9450 if (r) { 9451 --vcpu->arch.nmi_pending; 9452 vcpu->arch.nmi_injected = true; 9453 static_call(kvm_x86_inject_nmi)(vcpu); 9454 can_inject = false; 9455 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9456 } 9457 if (vcpu->arch.nmi_pending) 9458 static_call(kvm_x86_enable_nmi_window)(vcpu); 9459 } 9460 9461 if (kvm_cpu_has_injectable_intr(vcpu)) { 9462 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9463 if (r < 0) 9464 goto out; 9465 if (r) { 9466 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9467 static_call(kvm_x86_inject_irq)(vcpu); 9468 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9469 } 9470 if (kvm_cpu_has_injectable_intr(vcpu)) 9471 static_call(kvm_x86_enable_irq_window)(vcpu); 9472 } 9473 9474 if (is_guest_mode(vcpu) && 9475 kvm_x86_ops.nested_ops->hv_timer_pending && 9476 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9477 *req_immediate_exit = true; 9478 9479 WARN_ON(vcpu->arch.exception.pending); 9480 return 0; 9481 9482 out: 9483 if (r == -EBUSY) { 9484 *req_immediate_exit = true; 9485 r = 0; 9486 } 9487 return r; 9488 } 9489 9490 static void process_nmi(struct kvm_vcpu *vcpu) 9491 { 9492 unsigned limit = 2; 9493 9494 /* 9495 * x86 is limited to one NMI running, and one NMI pending after it. 9496 * If an NMI is already in progress, limit further NMIs to just one. 9497 * Otherwise, allow two (and we'll inject the first one immediately). 9498 */ 9499 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9500 limit = 1; 9501 9502 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9503 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9504 kvm_make_request(KVM_REQ_EVENT, vcpu); 9505 } 9506 9507 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9508 { 9509 u32 flags = 0; 9510 flags |= seg->g << 23; 9511 flags |= seg->db << 22; 9512 flags |= seg->l << 21; 9513 flags |= seg->avl << 20; 9514 flags |= seg->present << 15; 9515 flags |= seg->dpl << 13; 9516 flags |= seg->s << 12; 9517 flags |= seg->type << 8; 9518 return flags; 9519 } 9520 9521 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9522 { 9523 struct kvm_segment seg; 9524 int offset; 9525 9526 kvm_get_segment(vcpu, &seg, n); 9527 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9528 9529 if (n < 3) 9530 offset = 0x7f84 + n * 12; 9531 else 9532 offset = 0x7f2c + (n - 3) * 12; 9533 9534 put_smstate(u32, buf, offset + 8, seg.base); 9535 put_smstate(u32, buf, offset + 4, seg.limit); 9536 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9537 } 9538 9539 #ifdef CONFIG_X86_64 9540 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9541 { 9542 struct kvm_segment seg; 9543 int offset; 9544 u16 flags; 9545 9546 kvm_get_segment(vcpu, &seg, n); 9547 offset = 0x7e00 + n * 16; 9548 9549 flags = enter_smm_get_segment_flags(&seg) >> 8; 9550 put_smstate(u16, buf, offset, seg.selector); 9551 put_smstate(u16, buf, offset + 2, flags); 9552 put_smstate(u32, buf, offset + 4, seg.limit); 9553 put_smstate(u64, buf, offset + 8, seg.base); 9554 } 9555 #endif 9556 9557 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9558 { 9559 struct desc_ptr dt; 9560 struct kvm_segment seg; 9561 unsigned long val; 9562 int i; 9563 9564 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9565 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9566 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9567 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9568 9569 for (i = 0; i < 8; i++) 9570 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9571 9572 kvm_get_dr(vcpu, 6, &val); 9573 put_smstate(u32, buf, 0x7fcc, (u32)val); 9574 kvm_get_dr(vcpu, 7, &val); 9575 put_smstate(u32, buf, 0x7fc8, (u32)val); 9576 9577 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9578 put_smstate(u32, buf, 0x7fc4, seg.selector); 9579 put_smstate(u32, buf, 0x7f64, seg.base); 9580 put_smstate(u32, buf, 0x7f60, seg.limit); 9581 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9582 9583 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9584 put_smstate(u32, buf, 0x7fc0, seg.selector); 9585 put_smstate(u32, buf, 0x7f80, seg.base); 9586 put_smstate(u32, buf, 0x7f7c, seg.limit); 9587 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9588 9589 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9590 put_smstate(u32, buf, 0x7f74, dt.address); 9591 put_smstate(u32, buf, 0x7f70, dt.size); 9592 9593 static_call(kvm_x86_get_idt)(vcpu, &dt); 9594 put_smstate(u32, buf, 0x7f58, dt.address); 9595 put_smstate(u32, buf, 0x7f54, dt.size); 9596 9597 for (i = 0; i < 6; i++) 9598 enter_smm_save_seg_32(vcpu, buf, i); 9599 9600 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9601 9602 /* revision id */ 9603 put_smstate(u32, buf, 0x7efc, 0x00020000); 9604 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9605 } 9606 9607 #ifdef CONFIG_X86_64 9608 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9609 { 9610 struct desc_ptr dt; 9611 struct kvm_segment seg; 9612 unsigned long val; 9613 int i; 9614 9615 for (i = 0; i < 16; i++) 9616 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9617 9618 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9619 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9620 9621 kvm_get_dr(vcpu, 6, &val); 9622 put_smstate(u64, buf, 0x7f68, val); 9623 kvm_get_dr(vcpu, 7, &val); 9624 put_smstate(u64, buf, 0x7f60, val); 9625 9626 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9627 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9628 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9629 9630 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9631 9632 /* revision id */ 9633 put_smstate(u32, buf, 0x7efc, 0x00020064); 9634 9635 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9636 9637 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9638 put_smstate(u16, buf, 0x7e90, seg.selector); 9639 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9640 put_smstate(u32, buf, 0x7e94, seg.limit); 9641 put_smstate(u64, buf, 0x7e98, seg.base); 9642 9643 static_call(kvm_x86_get_idt)(vcpu, &dt); 9644 put_smstate(u32, buf, 0x7e84, dt.size); 9645 put_smstate(u64, buf, 0x7e88, dt.address); 9646 9647 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9648 put_smstate(u16, buf, 0x7e70, seg.selector); 9649 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9650 put_smstate(u32, buf, 0x7e74, seg.limit); 9651 put_smstate(u64, buf, 0x7e78, seg.base); 9652 9653 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9654 put_smstate(u32, buf, 0x7e64, dt.size); 9655 put_smstate(u64, buf, 0x7e68, dt.address); 9656 9657 for (i = 0; i < 6; i++) 9658 enter_smm_save_seg_64(vcpu, buf, i); 9659 } 9660 #endif 9661 9662 static void enter_smm(struct kvm_vcpu *vcpu) 9663 { 9664 struct kvm_segment cs, ds; 9665 struct desc_ptr dt; 9666 unsigned long cr0; 9667 char buf[512]; 9668 9669 memset(buf, 0, 512); 9670 #ifdef CONFIG_X86_64 9671 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9672 enter_smm_save_state_64(vcpu, buf); 9673 else 9674 #endif 9675 enter_smm_save_state_32(vcpu, buf); 9676 9677 /* 9678 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9679 * state (e.g. leave guest mode) after we've saved the state into the 9680 * SMM state-save area. 9681 */ 9682 static_call(kvm_x86_enter_smm)(vcpu, buf); 9683 9684 kvm_smm_changed(vcpu, true); 9685 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9686 9687 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9688 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9689 else 9690 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9691 9692 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9693 kvm_rip_write(vcpu, 0x8000); 9694 9695 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9696 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9697 vcpu->arch.cr0 = cr0; 9698 9699 static_call(kvm_x86_set_cr4)(vcpu, 0); 9700 9701 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9702 dt.address = dt.size = 0; 9703 static_call(kvm_x86_set_idt)(vcpu, &dt); 9704 9705 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9706 9707 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9708 cs.base = vcpu->arch.smbase; 9709 9710 ds.selector = 0; 9711 ds.base = 0; 9712 9713 cs.limit = ds.limit = 0xffffffff; 9714 cs.type = ds.type = 0x3; 9715 cs.dpl = ds.dpl = 0; 9716 cs.db = ds.db = 0; 9717 cs.s = ds.s = 1; 9718 cs.l = ds.l = 0; 9719 cs.g = ds.g = 1; 9720 cs.avl = ds.avl = 0; 9721 cs.present = ds.present = 1; 9722 cs.unusable = ds.unusable = 0; 9723 cs.padding = ds.padding = 0; 9724 9725 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9726 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9727 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9728 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9729 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9730 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9731 9732 #ifdef CONFIG_X86_64 9733 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9734 static_call(kvm_x86_set_efer)(vcpu, 0); 9735 #endif 9736 9737 kvm_update_cpuid_runtime(vcpu); 9738 kvm_mmu_reset_context(vcpu); 9739 } 9740 9741 static void process_smi(struct kvm_vcpu *vcpu) 9742 { 9743 vcpu->arch.smi_pending = true; 9744 kvm_make_request(KVM_REQ_EVENT, vcpu); 9745 } 9746 9747 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9748 unsigned long *vcpu_bitmap) 9749 { 9750 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9751 } 9752 9753 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9754 { 9755 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9756 } 9757 9758 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9759 { 9760 bool activate; 9761 9762 if (!lapic_in_kernel(vcpu)) 9763 return; 9764 9765 down_read(&vcpu->kvm->arch.apicv_update_lock); 9766 9767 activate = kvm_apicv_activated(vcpu->kvm); 9768 if (vcpu->arch.apicv_active == activate) 9769 goto out; 9770 9771 vcpu->arch.apicv_active = activate; 9772 kvm_apic_update_apicv(vcpu); 9773 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9774 9775 /* 9776 * When APICv gets disabled, we may still have injected interrupts 9777 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9778 * still active when the interrupt got accepted. Make sure 9779 * inject_pending_event() is called to check for that. 9780 */ 9781 if (!vcpu->arch.apicv_active) 9782 kvm_make_request(KVM_REQ_EVENT, vcpu); 9783 9784 out: 9785 up_read(&vcpu->kvm->arch.apicv_update_lock); 9786 } 9787 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9788 9789 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9790 enum kvm_apicv_inhibit reason, bool set) 9791 { 9792 unsigned long old, new; 9793 9794 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9795 9796 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 9797 return; 9798 9799 old = new = kvm->arch.apicv_inhibit_reasons; 9800 9801 set_or_clear_apicv_inhibit(&new, reason, set); 9802 9803 if (!!old != !!new) { 9804 /* 9805 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9806 * false positives in the sanity check WARN in svm_vcpu_run(). 9807 * This task will wait for all vCPUs to ack the kick IRQ before 9808 * updating apicv_inhibit_reasons, and all other vCPUs will 9809 * block on acquiring apicv_update_lock so that vCPUs can't 9810 * redo svm_vcpu_run() without seeing the new inhibit state. 9811 * 9812 * Note, holding apicv_update_lock and taking it in the read 9813 * side (handling the request) also prevents other vCPUs from 9814 * servicing the request with a stale apicv_inhibit_reasons. 9815 */ 9816 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9817 kvm->arch.apicv_inhibit_reasons = new; 9818 if (new) { 9819 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9820 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9821 } 9822 } else { 9823 kvm->arch.apicv_inhibit_reasons = new; 9824 } 9825 } 9826 9827 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9828 enum kvm_apicv_inhibit reason, bool set) 9829 { 9830 if (!enable_apicv) 9831 return; 9832 9833 down_write(&kvm->arch.apicv_update_lock); 9834 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 9835 up_write(&kvm->arch.apicv_update_lock); 9836 } 9837 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 9838 9839 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9840 { 9841 if (!kvm_apic_present(vcpu)) 9842 return; 9843 9844 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9845 9846 if (irqchip_split(vcpu->kvm)) 9847 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9848 else { 9849 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9850 if (ioapic_in_kernel(vcpu->kvm)) 9851 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9852 } 9853 9854 if (is_guest_mode(vcpu)) 9855 vcpu->arch.load_eoi_exitmap_pending = true; 9856 else 9857 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9858 } 9859 9860 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9861 { 9862 u64 eoi_exit_bitmap[4]; 9863 9864 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9865 return; 9866 9867 if (to_hv_vcpu(vcpu)) { 9868 bitmap_or((ulong *)eoi_exit_bitmap, 9869 vcpu->arch.ioapic_handled_vectors, 9870 to_hv_synic(vcpu)->vec_bitmap, 256); 9871 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9872 return; 9873 } 9874 9875 static_call_cond(kvm_x86_load_eoi_exitmap)( 9876 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9877 } 9878 9879 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9880 unsigned long start, unsigned long end) 9881 { 9882 unsigned long apic_address; 9883 9884 /* 9885 * The physical address of apic access page is stored in the VMCS. 9886 * Update it when it becomes invalid. 9887 */ 9888 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9889 if (start <= apic_address && apic_address < end) 9890 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9891 } 9892 9893 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9894 { 9895 if (!lapic_in_kernel(vcpu)) 9896 return; 9897 9898 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 9899 } 9900 9901 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9902 { 9903 smp_send_reschedule(vcpu->cpu); 9904 } 9905 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9906 9907 /* 9908 * Called within kvm->srcu read side. 9909 * Returns 1 to let vcpu_run() continue the guest execution loop without 9910 * exiting to the userspace. Otherwise, the value will be returned to the 9911 * userspace. 9912 */ 9913 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9914 { 9915 int r; 9916 bool req_int_win = 9917 dm_request_for_irq_injection(vcpu) && 9918 kvm_cpu_accept_dm_intr(vcpu); 9919 fastpath_t exit_fastpath; 9920 9921 bool req_immediate_exit = false; 9922 9923 /* Forbid vmenter if vcpu dirty ring is soft-full */ 9924 if (unlikely(vcpu->kvm->dirty_ring_size && 9925 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 9926 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 9927 trace_kvm_dirty_ring_exit(vcpu); 9928 r = 0; 9929 goto out; 9930 } 9931 9932 if (kvm_request_pending(vcpu)) { 9933 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 9934 r = -EIO; 9935 goto out; 9936 } 9937 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 9938 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 9939 r = 0; 9940 goto out; 9941 } 9942 } 9943 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 9944 kvm_mmu_free_obsolete_roots(vcpu); 9945 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 9946 __kvm_migrate_timers(vcpu); 9947 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 9948 kvm_update_masterclock(vcpu->kvm); 9949 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 9950 kvm_gen_kvmclock_update(vcpu); 9951 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 9952 r = kvm_guest_time_update(vcpu); 9953 if (unlikely(r)) 9954 goto out; 9955 } 9956 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 9957 kvm_mmu_sync_roots(vcpu); 9958 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 9959 kvm_mmu_load_pgd(vcpu); 9960 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 9961 kvm_vcpu_flush_tlb_all(vcpu); 9962 9963 /* Flushing all ASIDs flushes the current ASID... */ 9964 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 9965 } 9966 kvm_service_local_tlb_flush_requests(vcpu); 9967 9968 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 9969 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 9970 r = 0; 9971 goto out; 9972 } 9973 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9974 if (is_guest_mode(vcpu)) { 9975 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9976 } else { 9977 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 9978 vcpu->mmio_needed = 0; 9979 r = 0; 9980 goto out; 9981 } 9982 } 9983 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 9984 /* Page is swapped out. Do synthetic halt */ 9985 vcpu->arch.apf.halted = true; 9986 r = 1; 9987 goto out; 9988 } 9989 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 9990 record_steal_time(vcpu); 9991 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 9992 process_smi(vcpu); 9993 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 9994 process_nmi(vcpu); 9995 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 9996 kvm_pmu_handle_event(vcpu); 9997 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 9998 kvm_pmu_deliver_pmi(vcpu); 9999 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10000 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10001 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10002 vcpu->arch.ioapic_handled_vectors)) { 10003 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10004 vcpu->run->eoi.vector = 10005 vcpu->arch.pending_ioapic_eoi; 10006 r = 0; 10007 goto out; 10008 } 10009 } 10010 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10011 vcpu_scan_ioapic(vcpu); 10012 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10013 vcpu_load_eoi_exitmap(vcpu); 10014 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10015 kvm_vcpu_reload_apic_access_page(vcpu); 10016 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10017 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10018 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10019 r = 0; 10020 goto out; 10021 } 10022 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10023 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10024 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10025 r = 0; 10026 goto out; 10027 } 10028 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10029 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10030 10031 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10032 vcpu->run->hyperv = hv_vcpu->exit; 10033 r = 0; 10034 goto out; 10035 } 10036 10037 /* 10038 * KVM_REQ_HV_STIMER has to be processed after 10039 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10040 * depend on the guest clock being up-to-date 10041 */ 10042 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10043 kvm_hv_process_stimers(vcpu); 10044 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10045 kvm_vcpu_update_apicv(vcpu); 10046 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10047 kvm_check_async_pf_completion(vcpu); 10048 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10049 static_call(kvm_x86_msr_filter_changed)(vcpu); 10050 10051 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10052 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10053 } 10054 10055 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10056 kvm_xen_has_interrupt(vcpu)) { 10057 ++vcpu->stat.req_event; 10058 r = kvm_apic_accept_events(vcpu); 10059 if (r < 0) { 10060 r = 0; 10061 goto out; 10062 } 10063 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10064 r = 1; 10065 goto out; 10066 } 10067 10068 r = inject_pending_event(vcpu, &req_immediate_exit); 10069 if (r < 0) { 10070 r = 0; 10071 goto out; 10072 } 10073 if (req_int_win) 10074 static_call(kvm_x86_enable_irq_window)(vcpu); 10075 10076 if (kvm_lapic_enabled(vcpu)) { 10077 update_cr8_intercept(vcpu); 10078 kvm_lapic_sync_to_vapic(vcpu); 10079 } 10080 } 10081 10082 r = kvm_mmu_reload(vcpu); 10083 if (unlikely(r)) { 10084 goto cancel_injection; 10085 } 10086 10087 preempt_disable(); 10088 10089 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10090 10091 /* 10092 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10093 * IPI are then delayed after guest entry, which ensures that they 10094 * result in virtual interrupt delivery. 10095 */ 10096 local_irq_disable(); 10097 10098 /* Store vcpu->apicv_active before vcpu->mode. */ 10099 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10100 10101 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 10102 10103 /* 10104 * 1) We should set ->mode before checking ->requests. Please see 10105 * the comment in kvm_vcpu_exiting_guest_mode(). 10106 * 10107 * 2) For APICv, we should set ->mode before checking PID.ON. This 10108 * pairs with the memory barrier implicit in pi_test_and_set_on 10109 * (see vmx_deliver_posted_interrupt). 10110 * 10111 * 3) This also orders the write to mode from any reads to the page 10112 * tables done while the VCPU is running. Please see the comment 10113 * in kvm_flush_remote_tlbs. 10114 */ 10115 smp_mb__after_srcu_read_unlock(); 10116 10117 /* 10118 * Process pending posted interrupts to handle the case where the 10119 * notification IRQ arrived in the host, or was never sent (because the 10120 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10121 * status, KVM doesn't update assigned devices when APICv is inhibited, 10122 * i.e. they can post interrupts even if APICv is temporarily disabled. 10123 */ 10124 if (kvm_lapic_enabled(vcpu)) 10125 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10126 10127 if (kvm_vcpu_exit_request(vcpu)) { 10128 vcpu->mode = OUTSIDE_GUEST_MODE; 10129 smp_wmb(); 10130 local_irq_enable(); 10131 preempt_enable(); 10132 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10133 r = 1; 10134 goto cancel_injection; 10135 } 10136 10137 if (req_immediate_exit) { 10138 kvm_make_request(KVM_REQ_EVENT, vcpu); 10139 static_call(kvm_x86_request_immediate_exit)(vcpu); 10140 } 10141 10142 fpregs_assert_state_consistent(); 10143 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10144 switch_fpu_return(); 10145 10146 if (vcpu->arch.guest_fpu.xfd_err) 10147 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10148 10149 if (unlikely(vcpu->arch.switch_db_regs)) { 10150 set_debugreg(0, 7); 10151 set_debugreg(vcpu->arch.eff_db[0], 0); 10152 set_debugreg(vcpu->arch.eff_db[1], 1); 10153 set_debugreg(vcpu->arch.eff_db[2], 2); 10154 set_debugreg(vcpu->arch.eff_db[3], 3); 10155 } else if (unlikely(hw_breakpoint_active())) { 10156 set_debugreg(0, 7); 10157 } 10158 10159 guest_timing_enter_irqoff(); 10160 10161 for (;;) { 10162 /* 10163 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10164 * update must kick and wait for all vCPUs before toggling the 10165 * per-VM state, and responsing vCPUs must wait for the update 10166 * to complete before servicing KVM_REQ_APICV_UPDATE. 10167 */ 10168 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu)); 10169 10170 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10171 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10172 break; 10173 10174 if (kvm_lapic_enabled(vcpu)) 10175 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10176 10177 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10178 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10179 break; 10180 } 10181 } 10182 10183 /* 10184 * Do this here before restoring debug registers on the host. And 10185 * since we do this before handling the vmexit, a DR access vmexit 10186 * can (a) read the correct value of the debug registers, (b) set 10187 * KVM_DEBUGREG_WONT_EXIT again. 10188 */ 10189 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10190 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10191 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10192 kvm_update_dr0123(vcpu); 10193 kvm_update_dr7(vcpu); 10194 } 10195 10196 /* 10197 * If the guest has used debug registers, at least dr7 10198 * will be disabled while returning to the host. 10199 * If we don't have active breakpoints in the host, we don't 10200 * care about the messed up debug address registers. But if 10201 * we have some of them active, restore the old state. 10202 */ 10203 if (hw_breakpoint_active()) 10204 hw_breakpoint_restore(); 10205 10206 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10207 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10208 10209 vcpu->mode = OUTSIDE_GUEST_MODE; 10210 smp_wmb(); 10211 10212 /* 10213 * Sync xfd before calling handle_exit_irqoff() which may 10214 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10215 * in #NM irqoff handler). 10216 */ 10217 if (vcpu->arch.xfd_no_write_intercept) 10218 fpu_sync_guest_vmexit_xfd_state(); 10219 10220 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10221 10222 if (vcpu->arch.guest_fpu.xfd_err) 10223 wrmsrl(MSR_IA32_XFD_ERR, 0); 10224 10225 /* 10226 * Consume any pending interrupts, including the possible source of 10227 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10228 * An instruction is required after local_irq_enable() to fully unblock 10229 * interrupts on processors that implement an interrupt shadow, the 10230 * stat.exits increment will do nicely. 10231 */ 10232 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10233 local_irq_enable(); 10234 ++vcpu->stat.exits; 10235 local_irq_disable(); 10236 kvm_after_interrupt(vcpu); 10237 10238 /* 10239 * Wait until after servicing IRQs to account guest time so that any 10240 * ticks that occurred while running the guest are properly accounted 10241 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10242 * of accounting via context tracking, but the loss of accuracy is 10243 * acceptable for all known use cases. 10244 */ 10245 guest_timing_exit_irqoff(); 10246 10247 if (lapic_in_kernel(vcpu)) { 10248 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 10249 if (delta != S64_MIN) { 10250 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 10251 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 10252 } 10253 } 10254 10255 local_irq_enable(); 10256 preempt_enable(); 10257 10258 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10259 10260 /* 10261 * Profile KVM exit RIPs: 10262 */ 10263 if (unlikely(prof_on == KVM_PROFILING)) { 10264 unsigned long rip = kvm_rip_read(vcpu); 10265 profile_hit(KVM_PROFILING, (void *)rip); 10266 } 10267 10268 if (unlikely(vcpu->arch.tsc_always_catchup)) 10269 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10270 10271 if (vcpu->arch.apic_attention) 10272 kvm_lapic_sync_from_vapic(vcpu); 10273 10274 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10275 return r; 10276 10277 cancel_injection: 10278 if (req_immediate_exit) 10279 kvm_make_request(KVM_REQ_EVENT, vcpu); 10280 static_call(kvm_x86_cancel_injection)(vcpu); 10281 if (unlikely(vcpu->arch.apic_attention)) 10282 kvm_lapic_sync_from_vapic(vcpu); 10283 out: 10284 return r; 10285 } 10286 10287 /* Called within kvm->srcu read side. */ 10288 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 10289 { 10290 bool hv_timer; 10291 10292 if (!kvm_arch_vcpu_runnable(vcpu)) { 10293 /* 10294 * Switch to the software timer before halt-polling/blocking as 10295 * the guest's timer may be a break event for the vCPU, and the 10296 * hypervisor timer runs only when the CPU is in guest mode. 10297 * Switch before halt-polling so that KVM recognizes an expired 10298 * timer before blocking. 10299 */ 10300 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10301 if (hv_timer) 10302 kvm_lapic_switch_to_sw_timer(vcpu); 10303 10304 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10305 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10306 kvm_vcpu_halt(vcpu); 10307 else 10308 kvm_vcpu_block(vcpu); 10309 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10310 10311 if (hv_timer) 10312 kvm_lapic_switch_to_hv_timer(vcpu); 10313 10314 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10315 return 1; 10316 } 10317 10318 if (kvm_apic_accept_events(vcpu) < 0) 10319 return 0; 10320 switch(vcpu->arch.mp_state) { 10321 case KVM_MP_STATE_HALTED: 10322 case KVM_MP_STATE_AP_RESET_HOLD: 10323 vcpu->arch.pv.pv_unhalted = false; 10324 vcpu->arch.mp_state = 10325 KVM_MP_STATE_RUNNABLE; 10326 fallthrough; 10327 case KVM_MP_STATE_RUNNABLE: 10328 vcpu->arch.apf.halted = false; 10329 break; 10330 case KVM_MP_STATE_INIT_RECEIVED: 10331 break; 10332 default: 10333 return -EINTR; 10334 } 10335 return 1; 10336 } 10337 10338 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10339 { 10340 if (is_guest_mode(vcpu)) 10341 kvm_check_nested_events(vcpu); 10342 10343 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10344 !vcpu->arch.apf.halted); 10345 } 10346 10347 /* Called within kvm->srcu read side. */ 10348 static int vcpu_run(struct kvm_vcpu *vcpu) 10349 { 10350 int r; 10351 struct kvm *kvm = vcpu->kvm; 10352 10353 vcpu->arch.l1tf_flush_l1d = true; 10354 10355 for (;;) { 10356 if (kvm_vcpu_running(vcpu)) { 10357 r = vcpu_enter_guest(vcpu); 10358 } else { 10359 r = vcpu_block(kvm, vcpu); 10360 } 10361 10362 if (r <= 0) 10363 break; 10364 10365 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10366 if (kvm_cpu_has_pending_timer(vcpu)) 10367 kvm_inject_pending_timer_irqs(vcpu); 10368 10369 if (dm_request_for_irq_injection(vcpu) && 10370 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10371 r = 0; 10372 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10373 ++vcpu->stat.request_irq_exits; 10374 break; 10375 } 10376 10377 if (__xfer_to_guest_mode_work_pending()) { 10378 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10379 r = xfer_to_guest_mode_handle_work(vcpu); 10380 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10381 if (r) 10382 return r; 10383 } 10384 } 10385 10386 return r; 10387 } 10388 10389 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10390 { 10391 int r; 10392 10393 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10394 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10395 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 10396 return r; 10397 } 10398 10399 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10400 { 10401 BUG_ON(!vcpu->arch.pio.count); 10402 10403 return complete_emulated_io(vcpu); 10404 } 10405 10406 /* 10407 * Implements the following, as a state machine: 10408 * 10409 * read: 10410 * for each fragment 10411 * for each mmio piece in the fragment 10412 * write gpa, len 10413 * exit 10414 * copy data 10415 * execute insn 10416 * 10417 * write: 10418 * for each fragment 10419 * for each mmio piece in the fragment 10420 * write gpa, len 10421 * copy data 10422 * exit 10423 */ 10424 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10425 { 10426 struct kvm_run *run = vcpu->run; 10427 struct kvm_mmio_fragment *frag; 10428 unsigned len; 10429 10430 BUG_ON(!vcpu->mmio_needed); 10431 10432 /* Complete previous fragment */ 10433 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10434 len = min(8u, frag->len); 10435 if (!vcpu->mmio_is_write) 10436 memcpy(frag->data, run->mmio.data, len); 10437 10438 if (frag->len <= 8) { 10439 /* Switch to the next fragment. */ 10440 frag++; 10441 vcpu->mmio_cur_fragment++; 10442 } else { 10443 /* Go forward to the next mmio piece. */ 10444 frag->data += len; 10445 frag->gpa += len; 10446 frag->len -= len; 10447 } 10448 10449 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10450 vcpu->mmio_needed = 0; 10451 10452 /* FIXME: return into emulator if single-stepping. */ 10453 if (vcpu->mmio_is_write) 10454 return 1; 10455 vcpu->mmio_read_completed = 1; 10456 return complete_emulated_io(vcpu); 10457 } 10458 10459 run->exit_reason = KVM_EXIT_MMIO; 10460 run->mmio.phys_addr = frag->gpa; 10461 if (vcpu->mmio_is_write) 10462 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10463 run->mmio.len = min(8u, frag->len); 10464 run->mmio.is_write = vcpu->mmio_is_write; 10465 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10466 return 0; 10467 } 10468 10469 /* Swap (qemu) user FPU context for the guest FPU context. */ 10470 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10471 { 10472 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10473 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10474 trace_kvm_fpu(1); 10475 } 10476 10477 /* When vcpu_run ends, restore user space FPU context. */ 10478 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10479 { 10480 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10481 ++vcpu->stat.fpu_reload; 10482 trace_kvm_fpu(0); 10483 } 10484 10485 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10486 { 10487 struct kvm_run *kvm_run = vcpu->run; 10488 struct kvm *kvm = vcpu->kvm; 10489 int r; 10490 10491 vcpu_load(vcpu); 10492 kvm_sigset_activate(vcpu); 10493 kvm_run->flags = 0; 10494 kvm_load_guest_fpu(vcpu); 10495 10496 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10497 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10498 if (kvm_run->immediate_exit) { 10499 r = -EINTR; 10500 goto out; 10501 } 10502 /* 10503 * It should be impossible for the hypervisor timer to be in 10504 * use before KVM has ever run the vCPU. 10505 */ 10506 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10507 10508 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10509 kvm_vcpu_block(vcpu); 10510 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10511 10512 if (kvm_apic_accept_events(vcpu) < 0) { 10513 r = 0; 10514 goto out; 10515 } 10516 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10517 r = -EAGAIN; 10518 if (signal_pending(current)) { 10519 r = -EINTR; 10520 kvm_run->exit_reason = KVM_EXIT_INTR; 10521 ++vcpu->stat.signal_exits; 10522 } 10523 goto out; 10524 } 10525 10526 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10527 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10528 r = -EINVAL; 10529 goto out; 10530 } 10531 10532 if (kvm_run->kvm_dirty_regs) { 10533 r = sync_regs(vcpu); 10534 if (r != 0) 10535 goto out; 10536 } 10537 10538 /* re-sync apic's tpr */ 10539 if (!lapic_in_kernel(vcpu)) { 10540 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10541 r = -EINVAL; 10542 goto out; 10543 } 10544 } 10545 10546 if (unlikely(vcpu->arch.complete_userspace_io)) { 10547 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10548 vcpu->arch.complete_userspace_io = NULL; 10549 r = cui(vcpu); 10550 if (r <= 0) 10551 goto out; 10552 } else 10553 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10554 10555 if (kvm_run->immediate_exit) { 10556 r = -EINTR; 10557 goto out; 10558 } 10559 10560 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10561 if (r <= 0) 10562 goto out; 10563 10564 r = vcpu_run(vcpu); 10565 10566 out: 10567 kvm_put_guest_fpu(vcpu); 10568 if (kvm_run->kvm_valid_regs) 10569 store_regs(vcpu); 10570 post_kvm_run_save(vcpu); 10571 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10572 10573 kvm_sigset_deactivate(vcpu); 10574 vcpu_put(vcpu); 10575 return r; 10576 } 10577 10578 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10579 { 10580 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10581 /* 10582 * We are here if userspace calls get_regs() in the middle of 10583 * instruction emulation. Registers state needs to be copied 10584 * back from emulation context to vcpu. Userspace shouldn't do 10585 * that usually, but some bad designed PV devices (vmware 10586 * backdoor interface) need this to work 10587 */ 10588 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10589 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10590 } 10591 regs->rax = kvm_rax_read(vcpu); 10592 regs->rbx = kvm_rbx_read(vcpu); 10593 regs->rcx = kvm_rcx_read(vcpu); 10594 regs->rdx = kvm_rdx_read(vcpu); 10595 regs->rsi = kvm_rsi_read(vcpu); 10596 regs->rdi = kvm_rdi_read(vcpu); 10597 regs->rsp = kvm_rsp_read(vcpu); 10598 regs->rbp = kvm_rbp_read(vcpu); 10599 #ifdef CONFIG_X86_64 10600 regs->r8 = kvm_r8_read(vcpu); 10601 regs->r9 = kvm_r9_read(vcpu); 10602 regs->r10 = kvm_r10_read(vcpu); 10603 regs->r11 = kvm_r11_read(vcpu); 10604 regs->r12 = kvm_r12_read(vcpu); 10605 regs->r13 = kvm_r13_read(vcpu); 10606 regs->r14 = kvm_r14_read(vcpu); 10607 regs->r15 = kvm_r15_read(vcpu); 10608 #endif 10609 10610 regs->rip = kvm_rip_read(vcpu); 10611 regs->rflags = kvm_get_rflags(vcpu); 10612 } 10613 10614 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10615 { 10616 vcpu_load(vcpu); 10617 __get_regs(vcpu, regs); 10618 vcpu_put(vcpu); 10619 return 0; 10620 } 10621 10622 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10623 { 10624 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10625 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10626 10627 kvm_rax_write(vcpu, regs->rax); 10628 kvm_rbx_write(vcpu, regs->rbx); 10629 kvm_rcx_write(vcpu, regs->rcx); 10630 kvm_rdx_write(vcpu, regs->rdx); 10631 kvm_rsi_write(vcpu, regs->rsi); 10632 kvm_rdi_write(vcpu, regs->rdi); 10633 kvm_rsp_write(vcpu, regs->rsp); 10634 kvm_rbp_write(vcpu, regs->rbp); 10635 #ifdef CONFIG_X86_64 10636 kvm_r8_write(vcpu, regs->r8); 10637 kvm_r9_write(vcpu, regs->r9); 10638 kvm_r10_write(vcpu, regs->r10); 10639 kvm_r11_write(vcpu, regs->r11); 10640 kvm_r12_write(vcpu, regs->r12); 10641 kvm_r13_write(vcpu, regs->r13); 10642 kvm_r14_write(vcpu, regs->r14); 10643 kvm_r15_write(vcpu, regs->r15); 10644 #endif 10645 10646 kvm_rip_write(vcpu, regs->rip); 10647 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10648 10649 vcpu->arch.exception.pending = false; 10650 10651 kvm_make_request(KVM_REQ_EVENT, vcpu); 10652 } 10653 10654 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10655 { 10656 vcpu_load(vcpu); 10657 __set_regs(vcpu, regs); 10658 vcpu_put(vcpu); 10659 return 0; 10660 } 10661 10662 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10663 { 10664 struct desc_ptr dt; 10665 10666 if (vcpu->arch.guest_state_protected) 10667 goto skip_protected_regs; 10668 10669 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10670 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10671 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10672 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10673 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10674 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10675 10676 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10677 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10678 10679 static_call(kvm_x86_get_idt)(vcpu, &dt); 10680 sregs->idt.limit = dt.size; 10681 sregs->idt.base = dt.address; 10682 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10683 sregs->gdt.limit = dt.size; 10684 sregs->gdt.base = dt.address; 10685 10686 sregs->cr2 = vcpu->arch.cr2; 10687 sregs->cr3 = kvm_read_cr3(vcpu); 10688 10689 skip_protected_regs: 10690 sregs->cr0 = kvm_read_cr0(vcpu); 10691 sregs->cr4 = kvm_read_cr4(vcpu); 10692 sregs->cr8 = kvm_get_cr8(vcpu); 10693 sregs->efer = vcpu->arch.efer; 10694 sregs->apic_base = kvm_get_apic_base(vcpu); 10695 } 10696 10697 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10698 { 10699 __get_sregs_common(vcpu, sregs); 10700 10701 if (vcpu->arch.guest_state_protected) 10702 return; 10703 10704 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10705 set_bit(vcpu->arch.interrupt.nr, 10706 (unsigned long *)sregs->interrupt_bitmap); 10707 } 10708 10709 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10710 { 10711 int i; 10712 10713 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10714 10715 if (vcpu->arch.guest_state_protected) 10716 return; 10717 10718 if (is_pae_paging(vcpu)) { 10719 for (i = 0 ; i < 4 ; i++) 10720 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10721 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10722 } 10723 } 10724 10725 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10726 struct kvm_sregs *sregs) 10727 { 10728 vcpu_load(vcpu); 10729 __get_sregs(vcpu, sregs); 10730 vcpu_put(vcpu); 10731 return 0; 10732 } 10733 10734 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10735 struct kvm_mp_state *mp_state) 10736 { 10737 int r; 10738 10739 vcpu_load(vcpu); 10740 if (kvm_mpx_supported()) 10741 kvm_load_guest_fpu(vcpu); 10742 10743 r = kvm_apic_accept_events(vcpu); 10744 if (r < 0) 10745 goto out; 10746 r = 0; 10747 10748 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10749 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10750 vcpu->arch.pv.pv_unhalted) 10751 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10752 else 10753 mp_state->mp_state = vcpu->arch.mp_state; 10754 10755 out: 10756 if (kvm_mpx_supported()) 10757 kvm_put_guest_fpu(vcpu); 10758 vcpu_put(vcpu); 10759 return r; 10760 } 10761 10762 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10763 struct kvm_mp_state *mp_state) 10764 { 10765 int ret = -EINVAL; 10766 10767 vcpu_load(vcpu); 10768 10769 if (!lapic_in_kernel(vcpu) && 10770 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10771 goto out; 10772 10773 /* 10774 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10775 * INIT state; latched init should be reported using 10776 * KVM_SET_VCPU_EVENTS, so reject it here. 10777 */ 10778 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10779 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10780 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10781 goto out; 10782 10783 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10784 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10785 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10786 } else 10787 vcpu->arch.mp_state = mp_state->mp_state; 10788 kvm_make_request(KVM_REQ_EVENT, vcpu); 10789 10790 ret = 0; 10791 out: 10792 vcpu_put(vcpu); 10793 return ret; 10794 } 10795 10796 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10797 int reason, bool has_error_code, u32 error_code) 10798 { 10799 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10800 int ret; 10801 10802 init_emulate_ctxt(vcpu); 10803 10804 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10805 has_error_code, error_code); 10806 if (ret) { 10807 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10808 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10809 vcpu->run->internal.ndata = 0; 10810 return 0; 10811 } 10812 10813 kvm_rip_write(vcpu, ctxt->eip); 10814 kvm_set_rflags(vcpu, ctxt->eflags); 10815 return 1; 10816 } 10817 EXPORT_SYMBOL_GPL(kvm_task_switch); 10818 10819 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10820 { 10821 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10822 /* 10823 * When EFER.LME and CR0.PG are set, the processor is in 10824 * 64-bit mode (though maybe in a 32-bit code segment). 10825 * CR4.PAE and EFER.LMA must be set. 10826 */ 10827 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10828 return false; 10829 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10830 return false; 10831 } else { 10832 /* 10833 * Not in 64-bit mode: EFER.LMA is clear and the code 10834 * segment cannot be 64-bit. 10835 */ 10836 if (sregs->efer & EFER_LMA || sregs->cs.l) 10837 return false; 10838 } 10839 10840 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10841 } 10842 10843 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10844 int *mmu_reset_needed, bool update_pdptrs) 10845 { 10846 struct msr_data apic_base_msr; 10847 int idx; 10848 struct desc_ptr dt; 10849 10850 if (!kvm_is_valid_sregs(vcpu, sregs)) 10851 return -EINVAL; 10852 10853 apic_base_msr.data = sregs->apic_base; 10854 apic_base_msr.host_initiated = true; 10855 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10856 return -EINVAL; 10857 10858 if (vcpu->arch.guest_state_protected) 10859 return 0; 10860 10861 dt.size = sregs->idt.limit; 10862 dt.address = sregs->idt.base; 10863 static_call(kvm_x86_set_idt)(vcpu, &dt); 10864 dt.size = sregs->gdt.limit; 10865 dt.address = sregs->gdt.base; 10866 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10867 10868 vcpu->arch.cr2 = sregs->cr2; 10869 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10870 vcpu->arch.cr3 = sregs->cr3; 10871 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10872 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10873 10874 kvm_set_cr8(vcpu, sregs->cr8); 10875 10876 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10877 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10878 10879 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10880 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10881 vcpu->arch.cr0 = sregs->cr0; 10882 10883 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10884 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10885 10886 if (update_pdptrs) { 10887 idx = srcu_read_lock(&vcpu->kvm->srcu); 10888 if (is_pae_paging(vcpu)) { 10889 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 10890 *mmu_reset_needed = 1; 10891 } 10892 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10893 } 10894 10895 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10896 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10897 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10898 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10899 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10900 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10901 10902 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10903 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10904 10905 update_cr8_intercept(vcpu); 10906 10907 /* Older userspace won't unhalt the vcpu on reset. */ 10908 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10909 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 10910 !is_protmode(vcpu)) 10911 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10912 10913 return 0; 10914 } 10915 10916 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10917 { 10918 int pending_vec, max_bits; 10919 int mmu_reset_needed = 0; 10920 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 10921 10922 if (ret) 10923 return ret; 10924 10925 if (mmu_reset_needed) 10926 kvm_mmu_reset_context(vcpu); 10927 10928 max_bits = KVM_NR_INTERRUPTS; 10929 pending_vec = find_first_bit( 10930 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 10931 10932 if (pending_vec < max_bits) { 10933 kvm_queue_interrupt(vcpu, pending_vec, false); 10934 pr_debug("Set back pending irq %d\n", pending_vec); 10935 kvm_make_request(KVM_REQ_EVENT, vcpu); 10936 } 10937 return 0; 10938 } 10939 10940 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10941 { 10942 int mmu_reset_needed = 0; 10943 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 10944 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 10945 !(sregs2->efer & EFER_LMA); 10946 int i, ret; 10947 10948 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 10949 return -EINVAL; 10950 10951 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 10952 return -EINVAL; 10953 10954 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 10955 &mmu_reset_needed, !valid_pdptrs); 10956 if (ret) 10957 return ret; 10958 10959 if (valid_pdptrs) { 10960 for (i = 0; i < 4 ; i++) 10961 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 10962 10963 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 10964 mmu_reset_needed = 1; 10965 vcpu->arch.pdptrs_from_userspace = true; 10966 } 10967 if (mmu_reset_needed) 10968 kvm_mmu_reset_context(vcpu); 10969 return 0; 10970 } 10971 10972 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 10973 struct kvm_sregs *sregs) 10974 { 10975 int ret; 10976 10977 vcpu_load(vcpu); 10978 ret = __set_sregs(vcpu, sregs); 10979 vcpu_put(vcpu); 10980 return ret; 10981 } 10982 10983 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 10984 { 10985 bool set = false; 10986 struct kvm_vcpu *vcpu; 10987 unsigned long i; 10988 10989 down_write(&kvm->arch.apicv_update_lock); 10990 10991 kvm_for_each_vcpu(i, vcpu, kvm) { 10992 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 10993 set = true; 10994 break; 10995 } 10996 } 10997 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 10998 up_write(&kvm->arch.apicv_update_lock); 10999 } 11000 11001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11002 struct kvm_guest_debug *dbg) 11003 { 11004 unsigned long rflags; 11005 int i, r; 11006 11007 if (vcpu->arch.guest_state_protected) 11008 return -EINVAL; 11009 11010 vcpu_load(vcpu); 11011 11012 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11013 r = -EBUSY; 11014 if (vcpu->arch.exception.pending) 11015 goto out; 11016 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11017 kvm_queue_exception(vcpu, DB_VECTOR); 11018 else 11019 kvm_queue_exception(vcpu, BP_VECTOR); 11020 } 11021 11022 /* 11023 * Read rflags as long as potentially injected trace flags are still 11024 * filtered out. 11025 */ 11026 rflags = kvm_get_rflags(vcpu); 11027 11028 vcpu->guest_debug = dbg->control; 11029 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11030 vcpu->guest_debug = 0; 11031 11032 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11033 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11034 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11035 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11036 } else { 11037 for (i = 0; i < KVM_NR_DB_REGS; i++) 11038 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11039 } 11040 kvm_update_dr7(vcpu); 11041 11042 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11043 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11044 11045 /* 11046 * Trigger an rflags update that will inject or remove the trace 11047 * flags. 11048 */ 11049 kvm_set_rflags(vcpu, rflags); 11050 11051 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11052 11053 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11054 11055 r = 0; 11056 11057 out: 11058 vcpu_put(vcpu); 11059 return r; 11060 } 11061 11062 /* 11063 * Translate a guest virtual address to a guest physical address. 11064 */ 11065 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11066 struct kvm_translation *tr) 11067 { 11068 unsigned long vaddr = tr->linear_address; 11069 gpa_t gpa; 11070 int idx; 11071 11072 vcpu_load(vcpu); 11073 11074 idx = srcu_read_lock(&vcpu->kvm->srcu); 11075 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11076 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11077 tr->physical_address = gpa; 11078 tr->valid = gpa != UNMAPPED_GVA; 11079 tr->writeable = 1; 11080 tr->usermode = 0; 11081 11082 vcpu_put(vcpu); 11083 return 0; 11084 } 11085 11086 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11087 { 11088 struct fxregs_state *fxsave; 11089 11090 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11091 return 0; 11092 11093 vcpu_load(vcpu); 11094 11095 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11096 memcpy(fpu->fpr, fxsave->st_space, 128); 11097 fpu->fcw = fxsave->cwd; 11098 fpu->fsw = fxsave->swd; 11099 fpu->ftwx = fxsave->twd; 11100 fpu->last_opcode = fxsave->fop; 11101 fpu->last_ip = fxsave->rip; 11102 fpu->last_dp = fxsave->rdp; 11103 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11104 11105 vcpu_put(vcpu); 11106 return 0; 11107 } 11108 11109 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11110 { 11111 struct fxregs_state *fxsave; 11112 11113 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11114 return 0; 11115 11116 vcpu_load(vcpu); 11117 11118 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11119 11120 memcpy(fxsave->st_space, fpu->fpr, 128); 11121 fxsave->cwd = fpu->fcw; 11122 fxsave->swd = fpu->fsw; 11123 fxsave->twd = fpu->ftwx; 11124 fxsave->fop = fpu->last_opcode; 11125 fxsave->rip = fpu->last_ip; 11126 fxsave->rdp = fpu->last_dp; 11127 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11128 11129 vcpu_put(vcpu); 11130 return 0; 11131 } 11132 11133 static void store_regs(struct kvm_vcpu *vcpu) 11134 { 11135 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11136 11137 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11138 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11139 11140 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11141 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11142 11143 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11144 kvm_vcpu_ioctl_x86_get_vcpu_events( 11145 vcpu, &vcpu->run->s.regs.events); 11146 } 11147 11148 static int sync_regs(struct kvm_vcpu *vcpu) 11149 { 11150 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11151 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11152 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11153 } 11154 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11155 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11156 return -EINVAL; 11157 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11158 } 11159 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11160 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11161 vcpu, &vcpu->run->s.regs.events)) 11162 return -EINVAL; 11163 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11164 } 11165 11166 return 0; 11167 } 11168 11169 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11170 { 11171 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11172 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11173 "guest TSC will not be reliable\n"); 11174 11175 return 0; 11176 } 11177 11178 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11179 { 11180 struct page *page; 11181 int r; 11182 11183 vcpu->arch.last_vmentry_cpu = -1; 11184 vcpu->arch.regs_avail = ~0; 11185 vcpu->arch.regs_dirty = ~0; 11186 11187 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11188 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11189 else 11190 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11191 11192 r = kvm_mmu_create(vcpu); 11193 if (r < 0) 11194 return r; 11195 11196 if (irqchip_in_kernel(vcpu->kvm)) { 11197 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11198 if (r < 0) 11199 goto fail_mmu_destroy; 11200 if (kvm_apicv_activated(vcpu->kvm)) 11201 vcpu->arch.apicv_active = true; 11202 } else 11203 static_branch_inc(&kvm_has_noapic_vcpu); 11204 11205 r = -ENOMEM; 11206 11207 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11208 if (!page) 11209 goto fail_free_lapic; 11210 vcpu->arch.pio_data = page_address(page); 11211 11212 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11213 GFP_KERNEL_ACCOUNT); 11214 if (!vcpu->arch.mce_banks) 11215 goto fail_free_pio_data; 11216 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11217 11218 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11219 GFP_KERNEL_ACCOUNT)) 11220 goto fail_free_mce_banks; 11221 11222 if (!alloc_emulate_ctxt(vcpu)) 11223 goto free_wbinvd_dirty_mask; 11224 11225 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11226 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11227 goto free_emulate_ctxt; 11228 } 11229 11230 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11231 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11232 11233 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11234 11235 kvm_async_pf_hash_reset(vcpu); 11236 kvm_pmu_init(vcpu); 11237 11238 vcpu->arch.pending_external_vector = -1; 11239 vcpu->arch.preempted_in_kernel = false; 11240 11241 #if IS_ENABLED(CONFIG_HYPERV) 11242 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11243 #endif 11244 11245 r = static_call(kvm_x86_vcpu_create)(vcpu); 11246 if (r) 11247 goto free_guest_fpu; 11248 11249 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11250 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11251 kvm_vcpu_mtrr_init(vcpu); 11252 vcpu_load(vcpu); 11253 kvm_set_tsc_khz(vcpu, max_tsc_khz); 11254 kvm_vcpu_reset(vcpu, false); 11255 kvm_init_mmu(vcpu); 11256 vcpu_put(vcpu); 11257 return 0; 11258 11259 free_guest_fpu: 11260 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11261 free_emulate_ctxt: 11262 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11263 free_wbinvd_dirty_mask: 11264 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11265 fail_free_mce_banks: 11266 kfree(vcpu->arch.mce_banks); 11267 fail_free_pio_data: 11268 free_page((unsigned long)vcpu->arch.pio_data); 11269 fail_free_lapic: 11270 kvm_free_lapic(vcpu); 11271 fail_mmu_destroy: 11272 kvm_mmu_destroy(vcpu); 11273 return r; 11274 } 11275 11276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11277 { 11278 struct kvm *kvm = vcpu->kvm; 11279 11280 if (mutex_lock_killable(&vcpu->mutex)) 11281 return; 11282 vcpu_load(vcpu); 11283 kvm_synchronize_tsc(vcpu, 0); 11284 vcpu_put(vcpu); 11285 11286 /* poll control enabled by default */ 11287 vcpu->arch.msr_kvm_poll_control = 1; 11288 11289 mutex_unlock(&vcpu->mutex); 11290 11291 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11292 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11293 KVMCLOCK_SYNC_PERIOD); 11294 } 11295 11296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11297 { 11298 int idx; 11299 11300 kvmclock_reset(vcpu); 11301 11302 static_call(kvm_x86_vcpu_free)(vcpu); 11303 11304 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11305 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11306 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11307 11308 kvm_hv_vcpu_uninit(vcpu); 11309 kvm_pmu_destroy(vcpu); 11310 kfree(vcpu->arch.mce_banks); 11311 kvm_free_lapic(vcpu); 11312 idx = srcu_read_lock(&vcpu->kvm->srcu); 11313 kvm_mmu_destroy(vcpu); 11314 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11315 free_page((unsigned long)vcpu->arch.pio_data); 11316 kvfree(vcpu->arch.cpuid_entries); 11317 if (!lapic_in_kernel(vcpu)) 11318 static_branch_dec(&kvm_has_noapic_vcpu); 11319 } 11320 11321 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11322 { 11323 struct kvm_cpuid_entry2 *cpuid_0x1; 11324 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11325 unsigned long new_cr0; 11326 11327 /* 11328 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11329 * to handle side effects. RESET emulation hits those flows and relies 11330 * on emulated/virtualized registers, including those that are loaded 11331 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11332 * to detect improper or missing initialization. 11333 */ 11334 WARN_ON_ONCE(!init_event && 11335 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11336 11337 kvm_lapic_reset(vcpu, init_event); 11338 11339 vcpu->arch.hflags = 0; 11340 11341 vcpu->arch.smi_pending = 0; 11342 vcpu->arch.smi_count = 0; 11343 atomic_set(&vcpu->arch.nmi_queued, 0); 11344 vcpu->arch.nmi_pending = 0; 11345 vcpu->arch.nmi_injected = false; 11346 kvm_clear_interrupt_queue(vcpu); 11347 kvm_clear_exception_queue(vcpu); 11348 11349 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11350 kvm_update_dr0123(vcpu); 11351 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11352 vcpu->arch.dr7 = DR7_FIXED_1; 11353 kvm_update_dr7(vcpu); 11354 11355 vcpu->arch.cr2 = 0; 11356 11357 kvm_make_request(KVM_REQ_EVENT, vcpu); 11358 vcpu->arch.apf.msr_en_val = 0; 11359 vcpu->arch.apf.msr_int_val = 0; 11360 vcpu->arch.st.msr_val = 0; 11361 11362 kvmclock_reset(vcpu); 11363 11364 kvm_clear_async_pf_completion_queue(vcpu); 11365 kvm_async_pf_hash_reset(vcpu); 11366 vcpu->arch.apf.halted = false; 11367 11368 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11369 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11370 11371 /* 11372 * To avoid have the INIT path from kvm_apic_has_events() that be 11373 * called with loaded FPU and does not let userspace fix the state. 11374 */ 11375 if (init_event) 11376 kvm_put_guest_fpu(vcpu); 11377 11378 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11379 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11380 11381 if (init_event) 11382 kvm_load_guest_fpu(vcpu); 11383 } 11384 11385 if (!init_event) { 11386 kvm_pmu_reset(vcpu); 11387 vcpu->arch.smbase = 0x30000; 11388 11389 vcpu->arch.msr_misc_features_enables = 0; 11390 11391 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11392 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11393 } 11394 11395 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11396 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11397 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11398 11399 /* 11400 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11401 * if no CPUID match is found. Note, it's impossible to get a match at 11402 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11403 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11404 * on RESET. But, go through the motions in case that's ever remedied. 11405 */ 11406 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11407 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11408 11409 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11410 11411 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11412 kvm_rip_write(vcpu, 0xfff0); 11413 11414 vcpu->arch.cr3 = 0; 11415 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11416 11417 /* 11418 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11419 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11420 * (or qualify) that with a footnote stating that CD/NW are preserved. 11421 */ 11422 new_cr0 = X86_CR0_ET; 11423 if (init_event) 11424 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11425 else 11426 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11427 11428 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11429 static_call(kvm_x86_set_cr4)(vcpu, 0); 11430 static_call(kvm_x86_set_efer)(vcpu, 0); 11431 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11432 11433 /* 11434 * On the standard CR0/CR4/EFER modification paths, there are several 11435 * complex conditions determining whether the MMU has to be reset and/or 11436 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11437 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11438 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11439 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11440 */ 11441 if (old_cr0 & X86_CR0_PG) { 11442 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11443 kvm_mmu_reset_context(vcpu); 11444 } 11445 11446 /* 11447 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11448 * APM states the TLBs are untouched by INIT, but it also states that 11449 * the TLBs are flushed on "External initialization of the processor." 11450 * Flush the guest TLB regardless of vendor, there is no meaningful 11451 * benefit in relying on the guest to flush the TLB immediately after 11452 * INIT. A spurious TLB flush is benign and likely negligible from a 11453 * performance perspective. 11454 */ 11455 if (init_event) 11456 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11457 } 11458 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11459 11460 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11461 { 11462 struct kvm_segment cs; 11463 11464 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11465 cs.selector = vector << 8; 11466 cs.base = vector << 12; 11467 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11468 kvm_rip_write(vcpu, 0); 11469 } 11470 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11471 11472 int kvm_arch_hardware_enable(void) 11473 { 11474 struct kvm *kvm; 11475 struct kvm_vcpu *vcpu; 11476 unsigned long i; 11477 int ret; 11478 u64 local_tsc; 11479 u64 max_tsc = 0; 11480 bool stable, backwards_tsc = false; 11481 11482 kvm_user_return_msr_cpu_online(); 11483 ret = static_call(kvm_x86_hardware_enable)(); 11484 if (ret != 0) 11485 return ret; 11486 11487 local_tsc = rdtsc(); 11488 stable = !kvm_check_tsc_unstable(); 11489 list_for_each_entry(kvm, &vm_list, vm_list) { 11490 kvm_for_each_vcpu(i, vcpu, kvm) { 11491 if (!stable && vcpu->cpu == smp_processor_id()) 11492 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11493 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11494 backwards_tsc = true; 11495 if (vcpu->arch.last_host_tsc > max_tsc) 11496 max_tsc = vcpu->arch.last_host_tsc; 11497 } 11498 } 11499 } 11500 11501 /* 11502 * Sometimes, even reliable TSCs go backwards. This happens on 11503 * platforms that reset TSC during suspend or hibernate actions, but 11504 * maintain synchronization. We must compensate. Fortunately, we can 11505 * detect that condition here, which happens early in CPU bringup, 11506 * before any KVM threads can be running. Unfortunately, we can't 11507 * bring the TSCs fully up to date with real time, as we aren't yet far 11508 * enough into CPU bringup that we know how much real time has actually 11509 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11510 * variables that haven't been updated yet. 11511 * 11512 * So we simply find the maximum observed TSC above, then record the 11513 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11514 * the adjustment will be applied. Note that we accumulate 11515 * adjustments, in case multiple suspend cycles happen before some VCPU 11516 * gets a chance to run again. In the event that no KVM threads get a 11517 * chance to run, we will miss the entire elapsed period, as we'll have 11518 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11519 * loose cycle time. This isn't too big a deal, since the loss will be 11520 * uniform across all VCPUs (not to mention the scenario is extremely 11521 * unlikely). It is possible that a second hibernate recovery happens 11522 * much faster than a first, causing the observed TSC here to be 11523 * smaller; this would require additional padding adjustment, which is 11524 * why we set last_host_tsc to the local tsc observed here. 11525 * 11526 * N.B. - this code below runs only on platforms with reliable TSC, 11527 * as that is the only way backwards_tsc is set above. Also note 11528 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11529 * have the same delta_cyc adjustment applied if backwards_tsc 11530 * is detected. Note further, this adjustment is only done once, 11531 * as we reset last_host_tsc on all VCPUs to stop this from being 11532 * called multiple times (one for each physical CPU bringup). 11533 * 11534 * Platforms with unreliable TSCs don't have to deal with this, they 11535 * will be compensated by the logic in vcpu_load, which sets the TSC to 11536 * catchup mode. This will catchup all VCPUs to real time, but cannot 11537 * guarantee that they stay in perfect synchronization. 11538 */ 11539 if (backwards_tsc) { 11540 u64 delta_cyc = max_tsc - local_tsc; 11541 list_for_each_entry(kvm, &vm_list, vm_list) { 11542 kvm->arch.backwards_tsc_observed = true; 11543 kvm_for_each_vcpu(i, vcpu, kvm) { 11544 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11545 vcpu->arch.last_host_tsc = local_tsc; 11546 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11547 } 11548 11549 /* 11550 * We have to disable TSC offset matching.. if you were 11551 * booting a VM while issuing an S4 host suspend.... 11552 * you may have some problem. Solving this issue is 11553 * left as an exercise to the reader. 11554 */ 11555 kvm->arch.last_tsc_nsec = 0; 11556 kvm->arch.last_tsc_write = 0; 11557 } 11558 11559 } 11560 return 0; 11561 } 11562 11563 void kvm_arch_hardware_disable(void) 11564 { 11565 static_call(kvm_x86_hardware_disable)(); 11566 drop_user_return_notifiers(); 11567 } 11568 11569 int kvm_arch_hardware_setup(void *opaque) 11570 { 11571 struct kvm_x86_init_ops *ops = opaque; 11572 int r; 11573 11574 rdmsrl_safe(MSR_EFER, &host_efer); 11575 11576 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11577 rdmsrl(MSR_IA32_XSS, host_xss); 11578 11579 r = ops->hardware_setup(); 11580 if (r != 0) 11581 return r; 11582 11583 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11584 kvm_ops_static_call_update(); 11585 11586 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11587 11588 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11589 supported_xss = 0; 11590 11591 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11592 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11593 #undef __kvm_cpu_cap_has 11594 11595 if (kvm_has_tsc_control) { 11596 /* 11597 * Make sure the user can only configure tsc_khz values that 11598 * fit into a signed integer. 11599 * A min value is not calculated because it will always 11600 * be 1 on all machines. 11601 */ 11602 u64 max = min(0x7fffffffULL, 11603 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11604 kvm_max_guest_tsc_khz = max; 11605 } 11606 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11607 kvm_init_msr_list(); 11608 return 0; 11609 } 11610 11611 void kvm_arch_hardware_unsetup(void) 11612 { 11613 kvm_unregister_perf_callbacks(); 11614 11615 static_call(kvm_x86_hardware_unsetup)(); 11616 } 11617 11618 int kvm_arch_check_processor_compat(void *opaque) 11619 { 11620 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11621 struct kvm_x86_init_ops *ops = opaque; 11622 11623 WARN_ON(!irqs_disabled()); 11624 11625 if (__cr4_reserved_bits(cpu_has, c) != 11626 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11627 return -EIO; 11628 11629 return ops->check_processor_compatibility(); 11630 } 11631 11632 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11633 { 11634 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11635 } 11636 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11637 11638 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11639 { 11640 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11641 } 11642 11643 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11644 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11645 11646 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11647 { 11648 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11649 11650 vcpu->arch.l1tf_flush_l1d = true; 11651 if (pmu->version && unlikely(pmu->event_count)) { 11652 pmu->need_cleanup = true; 11653 kvm_make_request(KVM_REQ_PMU, vcpu); 11654 } 11655 static_call(kvm_x86_sched_in)(vcpu, cpu); 11656 } 11657 11658 void kvm_arch_free_vm(struct kvm *kvm) 11659 { 11660 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11661 __kvm_arch_free_vm(kvm); 11662 } 11663 11664 11665 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11666 { 11667 int ret; 11668 unsigned long flags; 11669 11670 if (type) 11671 return -EINVAL; 11672 11673 ret = kvm_page_track_init(kvm); 11674 if (ret) 11675 goto out; 11676 11677 ret = kvm_mmu_init_vm(kvm); 11678 if (ret) 11679 goto out_page_track; 11680 11681 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11682 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11683 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11684 11685 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11686 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11687 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11688 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11689 &kvm->arch.irq_sources_bitmap); 11690 11691 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11692 mutex_init(&kvm->arch.apic_map_lock); 11693 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11694 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11695 11696 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11697 pvclock_update_vm_gtod_copy(kvm); 11698 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11699 11700 kvm->arch.guest_can_read_msr_platform_info = true; 11701 kvm->arch.enable_pmu = enable_pmu; 11702 11703 #if IS_ENABLED(CONFIG_HYPERV) 11704 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11705 kvm->arch.hv_root_tdp = INVALID_PAGE; 11706 #endif 11707 11708 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11709 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11710 11711 kvm_apicv_init(kvm); 11712 kvm_hv_init_vm(kvm); 11713 kvm_xen_init_vm(kvm); 11714 11715 return static_call(kvm_x86_vm_init)(kvm); 11716 11717 out_page_track: 11718 kvm_page_track_cleanup(kvm); 11719 out: 11720 return ret; 11721 } 11722 11723 int kvm_arch_post_init_vm(struct kvm *kvm) 11724 { 11725 return kvm_mmu_post_init_vm(kvm); 11726 } 11727 11728 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11729 { 11730 vcpu_load(vcpu); 11731 kvm_mmu_unload(vcpu); 11732 vcpu_put(vcpu); 11733 } 11734 11735 static void kvm_free_vcpus(struct kvm *kvm) 11736 { 11737 unsigned long i; 11738 struct kvm_vcpu *vcpu; 11739 11740 /* 11741 * Unpin any mmu pages first. 11742 */ 11743 kvm_for_each_vcpu(i, vcpu, kvm) { 11744 kvm_clear_async_pf_completion_queue(vcpu); 11745 kvm_unload_vcpu_mmu(vcpu); 11746 } 11747 11748 kvm_destroy_vcpus(kvm); 11749 } 11750 11751 void kvm_arch_sync_events(struct kvm *kvm) 11752 { 11753 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11754 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11755 kvm_free_pit(kvm); 11756 } 11757 11758 /** 11759 * __x86_set_memory_region: Setup KVM internal memory slot 11760 * 11761 * @kvm: the kvm pointer to the VM. 11762 * @id: the slot ID to setup. 11763 * @gpa: the GPA to install the slot (unused when @size == 0). 11764 * @size: the size of the slot. Set to zero to uninstall a slot. 11765 * 11766 * This function helps to setup a KVM internal memory slot. Specify 11767 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11768 * slot. The return code can be one of the following: 11769 * 11770 * HVA: on success (uninstall will return a bogus HVA) 11771 * -errno: on error 11772 * 11773 * The caller should always use IS_ERR() to check the return value 11774 * before use. Note, the KVM internal memory slots are guaranteed to 11775 * remain valid and unchanged until the VM is destroyed, i.e., the 11776 * GPA->HVA translation will not change. However, the HVA is a user 11777 * address, i.e. its accessibility is not guaranteed, and must be 11778 * accessed via __copy_{to,from}_user(). 11779 */ 11780 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11781 u32 size) 11782 { 11783 int i, r; 11784 unsigned long hva, old_npages; 11785 struct kvm_memslots *slots = kvm_memslots(kvm); 11786 struct kvm_memory_slot *slot; 11787 11788 /* Called with kvm->slots_lock held. */ 11789 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11790 return ERR_PTR_USR(-EINVAL); 11791 11792 slot = id_to_memslot(slots, id); 11793 if (size) { 11794 if (slot && slot->npages) 11795 return ERR_PTR_USR(-EEXIST); 11796 11797 /* 11798 * MAP_SHARED to prevent internal slot pages from being moved 11799 * by fork()/COW. 11800 */ 11801 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11802 MAP_SHARED | MAP_ANONYMOUS, 0); 11803 if (IS_ERR((void *)hva)) 11804 return (void __user *)hva; 11805 } else { 11806 if (!slot || !slot->npages) 11807 return NULL; 11808 11809 old_npages = slot->npages; 11810 hva = slot->userspace_addr; 11811 } 11812 11813 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11814 struct kvm_userspace_memory_region m; 11815 11816 m.slot = id | (i << 16); 11817 m.flags = 0; 11818 m.guest_phys_addr = gpa; 11819 m.userspace_addr = hva; 11820 m.memory_size = size; 11821 r = __kvm_set_memory_region(kvm, &m); 11822 if (r < 0) 11823 return ERR_PTR_USR(r); 11824 } 11825 11826 if (!size) 11827 vm_munmap(hva, old_npages * PAGE_SIZE); 11828 11829 return (void __user *)hva; 11830 } 11831 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11832 11833 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11834 { 11835 kvm_mmu_pre_destroy_vm(kvm); 11836 } 11837 11838 void kvm_arch_destroy_vm(struct kvm *kvm) 11839 { 11840 if (current->mm == kvm->mm) { 11841 /* 11842 * Free memory regions allocated on behalf of userspace, 11843 * unless the the memory map has changed due to process exit 11844 * or fd copying. 11845 */ 11846 mutex_lock(&kvm->slots_lock); 11847 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11848 0, 0); 11849 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11850 0, 0); 11851 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11852 mutex_unlock(&kvm->slots_lock); 11853 } 11854 static_call_cond(kvm_x86_vm_destroy)(kvm); 11855 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11856 kvm_pic_destroy(kvm); 11857 kvm_ioapic_destroy(kvm); 11858 kvm_free_vcpus(kvm); 11859 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11860 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11861 kvm_mmu_uninit_vm(kvm); 11862 kvm_page_track_cleanup(kvm); 11863 kvm_xen_destroy_vm(kvm); 11864 kvm_hv_destroy_vm(kvm); 11865 } 11866 11867 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11868 { 11869 int i; 11870 11871 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11872 kvfree(slot->arch.rmap[i]); 11873 slot->arch.rmap[i] = NULL; 11874 } 11875 } 11876 11877 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 11878 { 11879 int i; 11880 11881 memslot_rmap_free(slot); 11882 11883 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11884 kvfree(slot->arch.lpage_info[i - 1]); 11885 slot->arch.lpage_info[i - 1] = NULL; 11886 } 11887 11888 kvm_page_track_free_memslot(slot); 11889 } 11890 11891 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 11892 { 11893 const int sz = sizeof(*slot->arch.rmap[0]); 11894 int i; 11895 11896 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11897 int level = i + 1; 11898 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11899 11900 if (slot->arch.rmap[i]) 11901 continue; 11902 11903 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 11904 if (!slot->arch.rmap[i]) { 11905 memslot_rmap_free(slot); 11906 return -ENOMEM; 11907 } 11908 } 11909 11910 return 0; 11911 } 11912 11913 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 11914 struct kvm_memory_slot *slot) 11915 { 11916 unsigned long npages = slot->npages; 11917 int i, r; 11918 11919 /* 11920 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 11921 * old arrays will be freed by __kvm_set_memory_region() if installing 11922 * the new memslot is successful. 11923 */ 11924 memset(&slot->arch, 0, sizeof(slot->arch)); 11925 11926 if (kvm_memslots_have_rmaps(kvm)) { 11927 r = memslot_rmap_alloc(slot, npages); 11928 if (r) 11929 return r; 11930 } 11931 11932 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11933 struct kvm_lpage_info *linfo; 11934 unsigned long ugfn; 11935 int lpages; 11936 int level = i + 1; 11937 11938 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11939 11940 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 11941 if (!linfo) 11942 goto out_free; 11943 11944 slot->arch.lpage_info[i - 1] = linfo; 11945 11946 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 11947 linfo[0].disallow_lpage = 1; 11948 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 11949 linfo[lpages - 1].disallow_lpage = 1; 11950 ugfn = slot->userspace_addr >> PAGE_SHIFT; 11951 /* 11952 * If the gfn and userspace address are not aligned wrt each 11953 * other, disable large page support for this slot. 11954 */ 11955 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 11956 unsigned long j; 11957 11958 for (j = 0; j < lpages; ++j) 11959 linfo[j].disallow_lpage = 1; 11960 } 11961 } 11962 11963 if (kvm_page_track_create_memslot(kvm, slot, npages)) 11964 goto out_free; 11965 11966 return 0; 11967 11968 out_free: 11969 memslot_rmap_free(slot); 11970 11971 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11972 kvfree(slot->arch.lpage_info[i - 1]); 11973 slot->arch.lpage_info[i - 1] = NULL; 11974 } 11975 return -ENOMEM; 11976 } 11977 11978 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 11979 { 11980 struct kvm_vcpu *vcpu; 11981 unsigned long i; 11982 11983 /* 11984 * memslots->generation has been incremented. 11985 * mmio generation may have reached its maximum value. 11986 */ 11987 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 11988 11989 /* Force re-initialization of steal_time cache */ 11990 kvm_for_each_vcpu(i, vcpu, kvm) 11991 kvm_vcpu_kick(vcpu); 11992 } 11993 11994 int kvm_arch_prepare_memory_region(struct kvm *kvm, 11995 const struct kvm_memory_slot *old, 11996 struct kvm_memory_slot *new, 11997 enum kvm_mr_change change) 11998 { 11999 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 12000 return kvm_alloc_memslot_metadata(kvm, new); 12001 12002 if (change == KVM_MR_FLAGS_ONLY) 12003 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12004 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12005 return -EIO; 12006 12007 return 0; 12008 } 12009 12010 12011 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12012 { 12013 struct kvm_arch *ka = &kvm->arch; 12014 12015 if (!kvm_x86_ops.cpu_dirty_log_size) 12016 return; 12017 12018 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12019 (!enable && --ka->cpu_dirty_logging_count == 0)) 12020 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12021 12022 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12023 } 12024 12025 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12026 struct kvm_memory_slot *old, 12027 const struct kvm_memory_slot *new, 12028 enum kvm_mr_change change) 12029 { 12030 u32 old_flags = old ? old->flags : 0; 12031 u32 new_flags = new ? new->flags : 0; 12032 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12033 12034 /* 12035 * Update CPU dirty logging if dirty logging is being toggled. This 12036 * applies to all operations. 12037 */ 12038 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12039 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12040 12041 /* 12042 * Nothing more to do for RO slots (which can't be dirtied and can't be 12043 * made writable) or CREATE/MOVE/DELETE of a slot. 12044 * 12045 * For a memslot with dirty logging disabled: 12046 * CREATE: No dirty mappings will already exist. 12047 * MOVE/DELETE: The old mappings will already have been cleaned up by 12048 * kvm_arch_flush_shadow_memslot() 12049 * 12050 * For a memslot with dirty logging enabled: 12051 * CREATE: No shadow pages exist, thus nothing to write-protect 12052 * and no dirty bits to clear. 12053 * MOVE/DELETE: The old mappings will already have been cleaned up by 12054 * kvm_arch_flush_shadow_memslot(). 12055 */ 12056 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12057 return; 12058 12059 /* 12060 * READONLY and non-flags changes were filtered out above, and the only 12061 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12062 * logging isn't being toggled on or off. 12063 */ 12064 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12065 return; 12066 12067 if (!log_dirty_pages) { 12068 /* 12069 * Dirty logging tracks sptes in 4k granularity, meaning that 12070 * large sptes have to be split. If live migration succeeds, 12071 * the guest in the source machine will be destroyed and large 12072 * sptes will be created in the destination. However, if the 12073 * guest continues to run in the source machine (for example if 12074 * live migration fails), small sptes will remain around and 12075 * cause bad performance. 12076 * 12077 * Scan sptes if dirty logging has been stopped, dropping those 12078 * which can be collapsed into a single large-page spte. Later 12079 * page faults will create the large-page sptes. 12080 */ 12081 kvm_mmu_zap_collapsible_sptes(kvm, new); 12082 } else { 12083 /* 12084 * Initially-all-set does not require write protecting any page, 12085 * because they're all assumed to be dirty. 12086 */ 12087 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12088 return; 12089 12090 if (READ_ONCE(eager_page_split)) 12091 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12092 12093 if (kvm_x86_ops.cpu_dirty_log_size) { 12094 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12095 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12096 } else { 12097 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12098 } 12099 } 12100 } 12101 12102 void kvm_arch_commit_memory_region(struct kvm *kvm, 12103 struct kvm_memory_slot *old, 12104 const struct kvm_memory_slot *new, 12105 enum kvm_mr_change change) 12106 { 12107 if (!kvm->arch.n_requested_mmu_pages && 12108 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12109 unsigned long nr_mmu_pages; 12110 12111 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12112 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12113 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12114 } 12115 12116 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12117 12118 /* Free the arrays associated with the old memslot. */ 12119 if (change == KVM_MR_MOVE) 12120 kvm_arch_free_memslot(kvm, old); 12121 } 12122 12123 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12124 { 12125 kvm_mmu_zap_all(kvm); 12126 } 12127 12128 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12129 struct kvm_memory_slot *slot) 12130 { 12131 kvm_page_track_flush_slot(kvm, slot); 12132 } 12133 12134 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12135 { 12136 return (is_guest_mode(vcpu) && 12137 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12138 } 12139 12140 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12141 { 12142 if (!list_empty_careful(&vcpu->async_pf.done)) 12143 return true; 12144 12145 if (kvm_apic_has_events(vcpu)) 12146 return true; 12147 12148 if (vcpu->arch.pv.pv_unhalted) 12149 return true; 12150 12151 if (vcpu->arch.exception.pending) 12152 return true; 12153 12154 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12155 (vcpu->arch.nmi_pending && 12156 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12157 return true; 12158 12159 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12160 (vcpu->arch.smi_pending && 12161 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12162 return true; 12163 12164 if (kvm_arch_interrupt_allowed(vcpu) && 12165 (kvm_cpu_has_interrupt(vcpu) || 12166 kvm_guest_apic_has_interrupt(vcpu))) 12167 return true; 12168 12169 if (kvm_hv_has_stimer_pending(vcpu)) 12170 return true; 12171 12172 if (is_guest_mode(vcpu) && 12173 kvm_x86_ops.nested_ops->hv_timer_pending && 12174 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12175 return true; 12176 12177 return false; 12178 } 12179 12180 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12181 { 12182 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12183 } 12184 12185 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12186 { 12187 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12188 return true; 12189 12190 return false; 12191 } 12192 12193 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12194 { 12195 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12196 return true; 12197 12198 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12199 kvm_test_request(KVM_REQ_SMI, vcpu) || 12200 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12201 return true; 12202 12203 return kvm_arch_dy_has_pending_interrupt(vcpu); 12204 } 12205 12206 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12207 { 12208 if (vcpu->arch.guest_state_protected) 12209 return true; 12210 12211 return vcpu->arch.preempted_in_kernel; 12212 } 12213 12214 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12215 { 12216 return kvm_rip_read(vcpu); 12217 } 12218 12219 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12220 { 12221 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12222 } 12223 12224 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12225 { 12226 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12227 } 12228 12229 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12230 { 12231 /* Can't read the RIP when guest state is protected, just return 0 */ 12232 if (vcpu->arch.guest_state_protected) 12233 return 0; 12234 12235 if (is_64_bit_mode(vcpu)) 12236 return kvm_rip_read(vcpu); 12237 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12238 kvm_rip_read(vcpu)); 12239 } 12240 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12241 12242 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12243 { 12244 return kvm_get_linear_rip(vcpu) == linear_rip; 12245 } 12246 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12247 12248 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12249 { 12250 unsigned long rflags; 12251 12252 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12253 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12254 rflags &= ~X86_EFLAGS_TF; 12255 return rflags; 12256 } 12257 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12258 12259 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12260 { 12261 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12262 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12263 rflags |= X86_EFLAGS_TF; 12264 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12265 } 12266 12267 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12268 { 12269 __kvm_set_rflags(vcpu, rflags); 12270 kvm_make_request(KVM_REQ_EVENT, vcpu); 12271 } 12272 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12273 12274 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 12275 { 12276 int r; 12277 12278 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 12279 work->wakeup_all) 12280 return; 12281 12282 r = kvm_mmu_reload(vcpu); 12283 if (unlikely(r)) 12284 return; 12285 12286 if (!vcpu->arch.mmu->direct_map && 12287 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 12288 return; 12289 12290 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 12291 } 12292 12293 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12294 { 12295 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12296 12297 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12298 } 12299 12300 static inline u32 kvm_async_pf_next_probe(u32 key) 12301 { 12302 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12303 } 12304 12305 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12306 { 12307 u32 key = kvm_async_pf_hash_fn(gfn); 12308 12309 while (vcpu->arch.apf.gfns[key] != ~0) 12310 key = kvm_async_pf_next_probe(key); 12311 12312 vcpu->arch.apf.gfns[key] = gfn; 12313 } 12314 12315 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12316 { 12317 int i; 12318 u32 key = kvm_async_pf_hash_fn(gfn); 12319 12320 for (i = 0; i < ASYNC_PF_PER_VCPU && 12321 (vcpu->arch.apf.gfns[key] != gfn && 12322 vcpu->arch.apf.gfns[key] != ~0); i++) 12323 key = kvm_async_pf_next_probe(key); 12324 12325 return key; 12326 } 12327 12328 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12329 { 12330 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12331 } 12332 12333 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12334 { 12335 u32 i, j, k; 12336 12337 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12338 12339 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12340 return; 12341 12342 while (true) { 12343 vcpu->arch.apf.gfns[i] = ~0; 12344 do { 12345 j = kvm_async_pf_next_probe(j); 12346 if (vcpu->arch.apf.gfns[j] == ~0) 12347 return; 12348 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12349 /* 12350 * k lies cyclically in ]i,j] 12351 * | i.k.j | 12352 * |....j i.k.| or |.k..j i...| 12353 */ 12354 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12355 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12356 i = j; 12357 } 12358 } 12359 12360 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12361 { 12362 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12363 12364 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12365 sizeof(reason)); 12366 } 12367 12368 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12369 { 12370 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12371 12372 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12373 &token, offset, sizeof(token)); 12374 } 12375 12376 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12377 { 12378 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12379 u32 val; 12380 12381 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12382 &val, offset, sizeof(val))) 12383 return false; 12384 12385 return !val; 12386 } 12387 12388 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12389 { 12390 12391 if (!kvm_pv_async_pf_enabled(vcpu)) 12392 return false; 12393 12394 if (vcpu->arch.apf.send_user_only && 12395 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12396 return false; 12397 12398 if (is_guest_mode(vcpu)) { 12399 /* 12400 * L1 needs to opt into the special #PF vmexits that are 12401 * used to deliver async page faults. 12402 */ 12403 return vcpu->arch.apf.delivery_as_pf_vmexit; 12404 } else { 12405 /* 12406 * Play it safe in case the guest temporarily disables paging. 12407 * The real mode IDT in particular is unlikely to have a #PF 12408 * exception setup. 12409 */ 12410 return is_paging(vcpu); 12411 } 12412 } 12413 12414 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12415 { 12416 if (unlikely(!lapic_in_kernel(vcpu) || 12417 kvm_event_needs_reinjection(vcpu) || 12418 vcpu->arch.exception.pending)) 12419 return false; 12420 12421 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12422 return false; 12423 12424 /* 12425 * If interrupts are off we cannot even use an artificial 12426 * halt state. 12427 */ 12428 return kvm_arch_interrupt_allowed(vcpu); 12429 } 12430 12431 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12432 struct kvm_async_pf *work) 12433 { 12434 struct x86_exception fault; 12435 12436 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12437 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12438 12439 if (kvm_can_deliver_async_pf(vcpu) && 12440 !apf_put_user_notpresent(vcpu)) { 12441 fault.vector = PF_VECTOR; 12442 fault.error_code_valid = true; 12443 fault.error_code = 0; 12444 fault.nested_page_fault = false; 12445 fault.address = work->arch.token; 12446 fault.async_page_fault = true; 12447 kvm_inject_page_fault(vcpu, &fault); 12448 return true; 12449 } else { 12450 /* 12451 * It is not possible to deliver a paravirtualized asynchronous 12452 * page fault, but putting the guest in an artificial halt state 12453 * can be beneficial nevertheless: if an interrupt arrives, we 12454 * can deliver it timely and perhaps the guest will schedule 12455 * another process. When the instruction that triggered a page 12456 * fault is retried, hopefully the page will be ready in the host. 12457 */ 12458 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12459 return false; 12460 } 12461 } 12462 12463 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12464 struct kvm_async_pf *work) 12465 { 12466 struct kvm_lapic_irq irq = { 12467 .delivery_mode = APIC_DM_FIXED, 12468 .vector = vcpu->arch.apf.vec 12469 }; 12470 12471 if (work->wakeup_all) 12472 work->arch.token = ~0; /* broadcast wakeup */ 12473 else 12474 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12475 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12476 12477 if ((work->wakeup_all || work->notpresent_injected) && 12478 kvm_pv_async_pf_enabled(vcpu) && 12479 !apf_put_user_ready(vcpu, work->arch.token)) { 12480 vcpu->arch.apf.pageready_pending = true; 12481 kvm_apic_set_irq(vcpu, &irq, NULL); 12482 } 12483 12484 vcpu->arch.apf.halted = false; 12485 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12486 } 12487 12488 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12489 { 12490 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12491 if (!vcpu->arch.apf.pageready_pending) 12492 kvm_vcpu_kick(vcpu); 12493 } 12494 12495 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12496 { 12497 if (!kvm_pv_async_pf_enabled(vcpu)) 12498 return true; 12499 else 12500 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12501 } 12502 12503 void kvm_arch_start_assignment(struct kvm *kvm) 12504 { 12505 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12506 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12507 } 12508 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12509 12510 void kvm_arch_end_assignment(struct kvm *kvm) 12511 { 12512 atomic_dec(&kvm->arch.assigned_device_count); 12513 } 12514 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12515 12516 bool kvm_arch_has_assigned_device(struct kvm *kvm) 12517 { 12518 return atomic_read(&kvm->arch.assigned_device_count); 12519 } 12520 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12521 12522 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12523 { 12524 atomic_inc(&kvm->arch.noncoherent_dma_count); 12525 } 12526 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12527 12528 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12529 { 12530 atomic_dec(&kvm->arch.noncoherent_dma_count); 12531 } 12532 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12533 12534 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12535 { 12536 return atomic_read(&kvm->arch.noncoherent_dma_count); 12537 } 12538 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12539 12540 bool kvm_arch_has_irq_bypass(void) 12541 { 12542 return true; 12543 } 12544 12545 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12546 struct irq_bypass_producer *prod) 12547 { 12548 struct kvm_kernel_irqfd *irqfd = 12549 container_of(cons, struct kvm_kernel_irqfd, consumer); 12550 int ret; 12551 12552 irqfd->producer = prod; 12553 kvm_arch_start_assignment(irqfd->kvm); 12554 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12555 prod->irq, irqfd->gsi, 1); 12556 12557 if (ret) 12558 kvm_arch_end_assignment(irqfd->kvm); 12559 12560 return ret; 12561 } 12562 12563 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12564 struct irq_bypass_producer *prod) 12565 { 12566 int ret; 12567 struct kvm_kernel_irqfd *irqfd = 12568 container_of(cons, struct kvm_kernel_irqfd, consumer); 12569 12570 WARN_ON(irqfd->producer != prod); 12571 irqfd->producer = NULL; 12572 12573 /* 12574 * When producer of consumer is unregistered, we change back to 12575 * remapped mode, so we can re-use the current implementation 12576 * when the irq is masked/disabled or the consumer side (KVM 12577 * int this case doesn't want to receive the interrupts. 12578 */ 12579 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12580 if (ret) 12581 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12582 " fails: %d\n", irqfd->consumer.token, ret); 12583 12584 kvm_arch_end_assignment(irqfd->kvm); 12585 } 12586 12587 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12588 uint32_t guest_irq, bool set) 12589 { 12590 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 12591 } 12592 12593 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12594 struct kvm_kernel_irq_routing_entry *new) 12595 { 12596 if (new->type != KVM_IRQ_ROUTING_MSI) 12597 return true; 12598 12599 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12600 } 12601 12602 bool kvm_vector_hashing_enabled(void) 12603 { 12604 return vector_hashing; 12605 } 12606 12607 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12608 { 12609 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12610 } 12611 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12612 12613 12614 int kvm_spec_ctrl_test_value(u64 value) 12615 { 12616 /* 12617 * test that setting IA32_SPEC_CTRL to given value 12618 * is allowed by the host processor 12619 */ 12620 12621 u64 saved_value; 12622 unsigned long flags; 12623 int ret = 0; 12624 12625 local_irq_save(flags); 12626 12627 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12628 ret = 1; 12629 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12630 ret = 1; 12631 else 12632 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12633 12634 local_irq_restore(flags); 12635 12636 return ret; 12637 } 12638 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12639 12640 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12641 { 12642 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12643 struct x86_exception fault; 12644 u64 access = error_code & 12645 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12646 12647 if (!(error_code & PFERR_PRESENT_MASK) || 12648 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12649 /* 12650 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12651 * tables probably do not match the TLB. Just proceed 12652 * with the error code that the processor gave. 12653 */ 12654 fault.vector = PF_VECTOR; 12655 fault.error_code_valid = true; 12656 fault.error_code = error_code; 12657 fault.nested_page_fault = false; 12658 fault.address = gva; 12659 } 12660 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12661 } 12662 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12663 12664 /* 12665 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12666 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12667 * indicates whether exit to userspace is needed. 12668 */ 12669 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12670 struct x86_exception *e) 12671 { 12672 if (r == X86EMUL_PROPAGATE_FAULT) { 12673 kvm_inject_emulated_page_fault(vcpu, e); 12674 return 1; 12675 } 12676 12677 /* 12678 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12679 * while handling a VMX instruction KVM could've handled the request 12680 * correctly by exiting to userspace and performing I/O but there 12681 * doesn't seem to be a real use-case behind such requests, just return 12682 * KVM_EXIT_INTERNAL_ERROR for now. 12683 */ 12684 kvm_prepare_emulation_failure_exit(vcpu); 12685 12686 return 0; 12687 } 12688 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12689 12690 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12691 { 12692 bool pcid_enabled; 12693 struct x86_exception e; 12694 struct { 12695 u64 pcid; 12696 u64 gla; 12697 } operand; 12698 int r; 12699 12700 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12701 if (r != X86EMUL_CONTINUE) 12702 return kvm_handle_memory_failure(vcpu, r, &e); 12703 12704 if (operand.pcid >> 12 != 0) { 12705 kvm_inject_gp(vcpu, 0); 12706 return 1; 12707 } 12708 12709 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12710 12711 switch (type) { 12712 case INVPCID_TYPE_INDIV_ADDR: 12713 if ((!pcid_enabled && (operand.pcid != 0)) || 12714 is_noncanonical_address(operand.gla, vcpu)) { 12715 kvm_inject_gp(vcpu, 0); 12716 return 1; 12717 } 12718 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12719 return kvm_skip_emulated_instruction(vcpu); 12720 12721 case INVPCID_TYPE_SINGLE_CTXT: 12722 if (!pcid_enabled && (operand.pcid != 0)) { 12723 kvm_inject_gp(vcpu, 0); 12724 return 1; 12725 } 12726 12727 kvm_invalidate_pcid(vcpu, operand.pcid); 12728 return kvm_skip_emulated_instruction(vcpu); 12729 12730 case INVPCID_TYPE_ALL_NON_GLOBAL: 12731 /* 12732 * Currently, KVM doesn't mark global entries in the shadow 12733 * page tables, so a non-global flush just degenerates to a 12734 * global flush. If needed, we could optimize this later by 12735 * keeping track of global entries in shadow page tables. 12736 */ 12737 12738 fallthrough; 12739 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12740 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12741 return kvm_skip_emulated_instruction(vcpu); 12742 12743 default: 12744 kvm_inject_gp(vcpu, 0); 12745 return 1; 12746 } 12747 } 12748 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12749 12750 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12751 { 12752 struct kvm_run *run = vcpu->run; 12753 struct kvm_mmio_fragment *frag; 12754 unsigned int len; 12755 12756 BUG_ON(!vcpu->mmio_needed); 12757 12758 /* Complete previous fragment */ 12759 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12760 len = min(8u, frag->len); 12761 if (!vcpu->mmio_is_write) 12762 memcpy(frag->data, run->mmio.data, len); 12763 12764 if (frag->len <= 8) { 12765 /* Switch to the next fragment. */ 12766 frag++; 12767 vcpu->mmio_cur_fragment++; 12768 } else { 12769 /* Go forward to the next mmio piece. */ 12770 frag->data += len; 12771 frag->gpa += len; 12772 frag->len -= len; 12773 } 12774 12775 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12776 vcpu->mmio_needed = 0; 12777 12778 // VMG change, at this point, we're always done 12779 // RIP has already been advanced 12780 return 1; 12781 } 12782 12783 // More MMIO is needed 12784 run->mmio.phys_addr = frag->gpa; 12785 run->mmio.len = min(8u, frag->len); 12786 run->mmio.is_write = vcpu->mmio_is_write; 12787 if (run->mmio.is_write) 12788 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12789 run->exit_reason = KVM_EXIT_MMIO; 12790 12791 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12792 12793 return 0; 12794 } 12795 12796 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12797 void *data) 12798 { 12799 int handled; 12800 struct kvm_mmio_fragment *frag; 12801 12802 if (!data) 12803 return -EINVAL; 12804 12805 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12806 if (handled == bytes) 12807 return 1; 12808 12809 bytes -= handled; 12810 gpa += handled; 12811 data += handled; 12812 12813 /*TODO: Check if need to increment number of frags */ 12814 frag = vcpu->mmio_fragments; 12815 vcpu->mmio_nr_fragments = 1; 12816 frag->len = bytes; 12817 frag->gpa = gpa; 12818 frag->data = data; 12819 12820 vcpu->mmio_needed = 1; 12821 vcpu->mmio_cur_fragment = 0; 12822 12823 vcpu->run->mmio.phys_addr = gpa; 12824 vcpu->run->mmio.len = min(8u, frag->len); 12825 vcpu->run->mmio.is_write = 1; 12826 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12827 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12828 12829 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12830 12831 return 0; 12832 } 12833 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12834 12835 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12836 void *data) 12837 { 12838 int handled; 12839 struct kvm_mmio_fragment *frag; 12840 12841 if (!data) 12842 return -EINVAL; 12843 12844 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12845 if (handled == bytes) 12846 return 1; 12847 12848 bytes -= handled; 12849 gpa += handled; 12850 data += handled; 12851 12852 /*TODO: Check if need to increment number of frags */ 12853 frag = vcpu->mmio_fragments; 12854 vcpu->mmio_nr_fragments = 1; 12855 frag->len = bytes; 12856 frag->gpa = gpa; 12857 frag->data = data; 12858 12859 vcpu->mmio_needed = 1; 12860 vcpu->mmio_cur_fragment = 0; 12861 12862 vcpu->run->mmio.phys_addr = gpa; 12863 vcpu->run->mmio.len = min(8u, frag->len); 12864 vcpu->run->mmio.is_write = 0; 12865 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12866 12867 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12868 12869 return 0; 12870 } 12871 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12872 12873 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12874 unsigned int port); 12875 12876 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 12877 { 12878 int size = vcpu->arch.pio.size; 12879 int port = vcpu->arch.pio.port; 12880 12881 vcpu->arch.pio.count = 0; 12882 if (vcpu->arch.sev_pio_count) 12883 return kvm_sev_es_outs(vcpu, size, port); 12884 return 1; 12885 } 12886 12887 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12888 unsigned int port) 12889 { 12890 for (;;) { 12891 unsigned int count = 12892 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12893 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 12894 12895 /* memcpy done already by emulator_pio_out. */ 12896 vcpu->arch.sev_pio_count -= count; 12897 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12898 if (!ret) 12899 break; 12900 12901 /* Emulation done by the kernel. */ 12902 if (!vcpu->arch.sev_pio_count) 12903 return 1; 12904 } 12905 12906 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 12907 return 0; 12908 } 12909 12910 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12911 unsigned int port); 12912 12913 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12914 { 12915 unsigned count = vcpu->arch.pio.count; 12916 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 12917 vcpu->arch.sev_pio_count -= count; 12918 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12919 } 12920 12921 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12922 { 12923 int size = vcpu->arch.pio.size; 12924 int port = vcpu->arch.pio.port; 12925 12926 advance_sev_es_emulated_ins(vcpu); 12927 if (vcpu->arch.sev_pio_count) 12928 return kvm_sev_es_ins(vcpu, size, port); 12929 return 1; 12930 } 12931 12932 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12933 unsigned int port) 12934 { 12935 for (;;) { 12936 unsigned int count = 12937 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12938 if (!__emulator_pio_in(vcpu, size, port, count)) 12939 break; 12940 12941 /* Emulation done by the kernel. */ 12942 advance_sev_es_emulated_ins(vcpu); 12943 if (!vcpu->arch.sev_pio_count) 12944 return 1; 12945 } 12946 12947 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 12948 return 0; 12949 } 12950 12951 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 12952 unsigned int port, void *data, unsigned int count, 12953 int in) 12954 { 12955 vcpu->arch.sev_pio_data = data; 12956 vcpu->arch.sev_pio_count = count; 12957 return in ? kvm_sev_es_ins(vcpu, size, port) 12958 : kvm_sev_es_outs(vcpu, size, port); 12959 } 12960 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 12961 12962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 12963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 12964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 12965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 12966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 12967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 12968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 12969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 12970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 12971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 12972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 12973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 12974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 12975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 12976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 12977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 12978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 12979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 12980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 12981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 12982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 12983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 12984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 12985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 12986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 12987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 12988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 12989