xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 97da55fc)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101 
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105 
106 #define KVM_NR_SHARED_MSRS 16
107 
108 struct kvm_shared_msrs_global {
109 	int nr;
110 	u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112 
113 struct kvm_shared_msrs {
114 	struct user_return_notifier urn;
115 	bool registered;
116 	struct kvm_shared_msr_values {
117 		u64 host;
118 		u64 curr;
119 	} values[KVM_NR_SHARED_MSRS];
120 };
121 
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124 
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
127 	{ "pf_guest", VCPU_STAT(pf_guest) },
128 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
129 	{ "invlpg", VCPU_STAT(invlpg) },
130 	{ "exits", VCPU_STAT(exits) },
131 	{ "io_exits", VCPU_STAT(io_exits) },
132 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
133 	{ "signal_exits", VCPU_STAT(signal_exits) },
134 	{ "irq_window", VCPU_STAT(irq_window_exits) },
135 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
136 	{ "halt_exits", VCPU_STAT(halt_exits) },
137 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 	{ "hypercalls", VCPU_STAT(hypercalls) },
139 	{ "request_irq", VCPU_STAT(request_irq_exits) },
140 	{ "irq_exits", VCPU_STAT(irq_exits) },
141 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
142 	{ "efer_reload", VCPU_STAT(efer_reload) },
143 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
144 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
145 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 	{ "irq_injections", VCPU_STAT(irq_injections) },
147 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
148 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
153 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
154 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
156 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 	{ "largepages", VM_STAT(lpages) },
158 	{ NULL }
159 };
160 
161 u64 __read_mostly host_xcr0;
162 
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164 
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166 
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169 	int i;
170 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171 		vcpu->arch.apf.gfns[i] = ~0;
172 }
173 
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176 	unsigned slot;
177 	struct kvm_shared_msrs *locals
178 		= container_of(urn, struct kvm_shared_msrs, urn);
179 	struct kvm_shared_msr_values *values;
180 
181 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182 		values = &locals->values[slot];
183 		if (values->host != values->curr) {
184 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
185 			values->curr = values->host;
186 		}
187 	}
188 	locals->registered = false;
189 	user_return_notifier_unregister(urn);
190 }
191 
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194 	u64 value;
195 	unsigned int cpu = smp_processor_id();
196 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
197 
198 	/* only read, and nobody should modify it at this time,
199 	 * so don't need lock */
200 	if (slot >= shared_msrs_global.nr) {
201 		printk(KERN_ERR "kvm: invalid MSR slot!");
202 		return;
203 	}
204 	rdmsrl_safe(msr, &value);
205 	smsr->values[slot].host = value;
206 	smsr->values[slot].curr = value;
207 }
208 
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211 	if (slot >= shared_msrs_global.nr)
212 		shared_msrs_global.nr = slot + 1;
213 	shared_msrs_global.msrs[slot] = msr;
214 	/* we need ensured the shared_msr_global have been updated */
215 	smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218 
219 static void kvm_shared_msr_cpu_online(void)
220 {
221 	unsigned i;
222 
223 	for (i = 0; i < shared_msrs_global.nr; ++i)
224 		shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226 
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229 	unsigned int cpu = smp_processor_id();
230 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
231 
232 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
233 		return;
234 	smsr->values[slot].curr = value;
235 	wrmsrl(shared_msrs_global.msrs[slot], value);
236 	if (!smsr->registered) {
237 		smsr->urn.on_user_return = kvm_on_user_return;
238 		user_return_notifier_register(&smsr->urn);
239 		smsr->registered = true;
240 	}
241 }
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
243 
244 static void drop_user_return_notifiers(void *ignore)
245 {
246 	unsigned int cpu = smp_processor_id();
247 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
248 
249 	if (smsr->registered)
250 		kvm_on_user_return(&smsr->urn);
251 }
252 
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255 	return vcpu->arch.apic_base;
256 }
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
258 
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
260 {
261 	/* TODO: reserve bits check */
262 	kvm_lapic_set_base(vcpu, data);
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265 
266 #define EXCPT_BENIGN		0
267 #define EXCPT_CONTRIBUTORY	1
268 #define EXCPT_PF		2
269 
270 static int exception_class(int vector)
271 {
272 	switch (vector) {
273 	case PF_VECTOR:
274 		return EXCPT_PF;
275 	case DE_VECTOR:
276 	case TS_VECTOR:
277 	case NP_VECTOR:
278 	case SS_VECTOR:
279 	case GP_VECTOR:
280 		return EXCPT_CONTRIBUTORY;
281 	default:
282 		break;
283 	}
284 	return EXCPT_BENIGN;
285 }
286 
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 		unsigned nr, bool has_error, u32 error_code,
289 		bool reinject)
290 {
291 	u32 prev_nr;
292 	int class1, class2;
293 
294 	kvm_make_request(KVM_REQ_EVENT, vcpu);
295 
296 	if (!vcpu->arch.exception.pending) {
297 	queue:
298 		vcpu->arch.exception.pending = true;
299 		vcpu->arch.exception.has_error_code = has_error;
300 		vcpu->arch.exception.nr = nr;
301 		vcpu->arch.exception.error_code = error_code;
302 		vcpu->arch.exception.reinject = reinject;
303 		return;
304 	}
305 
306 	/* to check exception */
307 	prev_nr = vcpu->arch.exception.nr;
308 	if (prev_nr == DF_VECTOR) {
309 		/* triple fault -> shutdown */
310 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 		return;
312 	}
313 	class1 = exception_class(prev_nr);
314 	class2 = exception_class(nr);
315 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 		/* generate double fault per SDM Table 5-5 */
318 		vcpu->arch.exception.pending = true;
319 		vcpu->arch.exception.has_error_code = true;
320 		vcpu->arch.exception.nr = DF_VECTOR;
321 		vcpu->arch.exception.error_code = 0;
322 	} else
323 		/* replace previous exception with a new one in a hope
324 		   that instruction re-execution will regenerate lost
325 		   exception */
326 		goto queue;
327 }
328 
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 	kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334 
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 	kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340 
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 	if (err)
344 		kvm_inject_gp(vcpu, 0);
345 	else
346 		kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349 
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 	++vcpu->stat.pf_guest;
353 	vcpu->arch.cr2 = fault->address;
354 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357 
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 	else
363 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365 
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 	atomic_inc(&vcpu->arch.nmi_queued);
369 	kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372 
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378 
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384 
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 		return true;
393 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 	return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397 
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 			    gfn_t ngfn, void *data, int offset, int len,
405 			    u32 access)
406 {
407 	gfn_t real_gfn;
408 	gpa_t ngpa;
409 
410 	ngpa     = gfn_to_gpa(ngfn);
411 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 	if (real_gfn == UNMAPPED_GVA)
413 		return -EFAULT;
414 
415 	real_gfn = gpa_to_gfn(real_gfn);
416 
417 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420 
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 			       void *data, int offset, int len, u32 access)
423 {
424 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 				       data, offset, len, access);
426 }
427 
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 	int i;
436 	int ret;
437 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438 
439 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 				      offset * sizeof(u64), sizeof(pdpte),
441 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
442 	if (ret < 0) {
443 		ret = 0;
444 		goto out;
445 	}
446 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 		if (is_present_gpte(pdpte[i]) &&
448 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 			ret = 0;
450 			goto out;
451 		}
452 	}
453 	ret = 1;
454 
455 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 	__set_bit(VCPU_EXREG_PDPTR,
457 		  (unsigned long *)&vcpu->arch.regs_avail);
458 	__set_bit(VCPU_EXREG_PDPTR,
459 		  (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465 
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 	bool changed = true;
470 	int offset;
471 	gfn_t gfn;
472 	int r;
473 
474 	if (is_long_mode(vcpu) || !is_pae(vcpu))
475 		return false;
476 
477 	if (!test_bit(VCPU_EXREG_PDPTR,
478 		      (unsigned long *)&vcpu->arch.regs_avail))
479 		return true;
480 
481 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
485 	if (r < 0)
486 		goto out;
487 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489 
490 	return changed;
491 }
492 
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 				    X86_CR0_CD | X86_CR0_NW;
498 
499 	cr0 |= X86_CR0_ET;
500 
501 #ifdef CONFIG_X86_64
502 	if (cr0 & 0xffffffff00000000UL)
503 		return 1;
504 #endif
505 
506 	cr0 &= ~CR0_RESERVED_BITS;
507 
508 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 		return 1;
510 
511 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 		return 1;
513 
514 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 		if ((vcpu->arch.efer & EFER_LME)) {
517 			int cs_db, cs_l;
518 
519 			if (!is_pae(vcpu))
520 				return 1;
521 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 			if (cs_l)
523 				return 1;
524 		} else
525 #endif
526 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 						 kvm_read_cr3(vcpu)))
528 			return 1;
529 	}
530 
531 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 		return 1;
533 
534 	kvm_x86_ops->set_cr0(vcpu, cr0);
535 
536 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 		kvm_clear_async_pf_completion_queue(vcpu);
538 		kvm_async_pf_hash_reset(vcpu);
539 	}
540 
541 	if ((cr0 ^ old_cr0) & update_bits)
542 		kvm_mmu_reset_context(vcpu);
543 	return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546 
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552 
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 	u64 xcr0;
556 
557 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558 	if (index != XCR_XFEATURE_ENABLED_MASK)
559 		return 1;
560 	xcr0 = xcr;
561 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 		return 1;
563 	if (!(xcr0 & XSTATE_FP))
564 		return 1;
565 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 		return 1;
567 	if (xcr0 & ~host_xcr0)
568 		return 1;
569 	vcpu->arch.xcr0 = xcr0;
570 	vcpu->guest_xcr0_loaded = 0;
571 	return 0;
572 }
573 
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 	if (__kvm_set_xcr(vcpu, index, xcr)) {
577 		kvm_inject_gp(vcpu, 0);
578 		return 1;
579 	}
580 	return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583 
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 				   X86_CR4_PAE | X86_CR4_SMEP;
589 	if (cr4 & CR4_RESERVED_BITS)
590 		return 1;
591 
592 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 		return 1;
594 
595 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 		return 1;
597 
598 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 		return 1;
600 
601 	if (is_long_mode(vcpu)) {
602 		if (!(cr4 & X86_CR4_PAE))
603 			return 1;
604 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 		   && ((cr4 ^ old_cr4) & pdptr_bits)
606 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 				   kvm_read_cr3(vcpu)))
608 		return 1;
609 
610 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 		if (!guest_cpuid_has_pcid(vcpu))
612 			return 1;
613 
614 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 			return 1;
617 	}
618 
619 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 		return 1;
621 
622 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 		kvm_mmu_reset_context(vcpu);
625 
626 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 		kvm_update_cpuid(vcpu);
628 
629 	return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632 
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 		kvm_mmu_sync_roots(vcpu);
637 		kvm_mmu_flush_tlb(vcpu);
638 		return 0;
639 	}
640 
641 	if (is_long_mode(vcpu)) {
642 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 				return 1;
645 		} else
646 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 				return 1;
648 	} else {
649 		if (is_pae(vcpu)) {
650 			if (cr3 & CR3_PAE_RESERVED_BITS)
651 				return 1;
652 			if (is_paging(vcpu) &&
653 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 				return 1;
655 		}
656 		/*
657 		 * We don't check reserved bits in nonpae mode, because
658 		 * this isn't enforced, and VMware depends on this.
659 		 */
660 	}
661 
662 	/*
663 	 * Does the new cr3 value map to physical memory? (Note, we
664 	 * catch an invalid cr3 even in real-mode, because it would
665 	 * cause trouble later on when we turn on paging anyway.)
666 	 *
667 	 * A real CPU would silently accept an invalid cr3 and would
668 	 * attempt to use it - with largely undefined (and often hard
669 	 * to debug) behavior on the guest side.
670 	 */
671 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 		return 1;
673 	vcpu->arch.cr3 = cr3;
674 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 	vcpu->arch.mmu.new_cr3(vcpu);
676 	return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679 
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 	if (cr8 & CR8_RESERVED_BITS)
683 		return 1;
684 	if (irqchip_in_kernel(vcpu->kvm))
685 		kvm_lapic_set_tpr(vcpu, cr8);
686 	else
687 		vcpu->arch.cr8 = cr8;
688 	return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691 
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 	if (irqchip_in_kernel(vcpu->kvm))
695 		return kvm_lapic_get_cr8(vcpu);
696 	else
697 		return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700 
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
702 {
703 	unsigned long dr7;
704 
705 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706 		dr7 = vcpu->arch.guest_debug_dr7;
707 	else
708 		dr7 = vcpu->arch.dr7;
709 	kvm_x86_ops->set_dr7(vcpu, dr7);
710 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
711 }
712 
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
714 {
715 	switch (dr) {
716 	case 0 ... 3:
717 		vcpu->arch.db[dr] = val;
718 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719 			vcpu->arch.eff_db[dr] = val;
720 		break;
721 	case 4:
722 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723 			return 1; /* #UD */
724 		/* fall through */
725 	case 6:
726 		if (val & 0xffffffff00000000ULL)
727 			return -1; /* #GP */
728 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
729 		break;
730 	case 5:
731 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732 			return 1; /* #UD */
733 		/* fall through */
734 	default: /* 7 */
735 		if (val & 0xffffffff00000000ULL)
736 			return -1; /* #GP */
737 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738 		kvm_update_dr7(vcpu);
739 		break;
740 	}
741 
742 	return 0;
743 }
744 
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
746 {
747 	int res;
748 
749 	res = __kvm_set_dr(vcpu, dr, val);
750 	if (res > 0)
751 		kvm_queue_exception(vcpu, UD_VECTOR);
752 	else if (res < 0)
753 		kvm_inject_gp(vcpu, 0);
754 
755 	return res;
756 }
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
758 
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 {
761 	switch (dr) {
762 	case 0 ... 3:
763 		*val = vcpu->arch.db[dr];
764 		break;
765 	case 4:
766 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
767 			return 1;
768 		/* fall through */
769 	case 6:
770 		*val = vcpu->arch.dr6;
771 		break;
772 	case 5:
773 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774 			return 1;
775 		/* fall through */
776 	default: /* 7 */
777 		*val = vcpu->arch.dr7;
778 		break;
779 	}
780 
781 	return 0;
782 }
783 
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
785 {
786 	if (_kvm_get_dr(vcpu, dr, val)) {
787 		kvm_queue_exception(vcpu, UD_VECTOR);
788 		return 1;
789 	}
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
793 
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
795 {
796 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
797 	u64 data;
798 	int err;
799 
800 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
801 	if (err)
802 		return err;
803 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
805 	return err;
806 }
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
808 
809 /*
810  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
812  *
813  * This list is modified at module load time to reflect the
814  * capabilities of the host cpu. This capabilities test skips MSRs that are
815  * kvm-specific. Those are put in the beginning of the list.
816  */
817 
818 #define KVM_SAVE_MSRS_BEGIN	10
819 static u32 msrs_to_save[] = {
820 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
824 	MSR_KVM_PV_EOI_EN,
825 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
826 	MSR_STAR,
827 #ifdef CONFIG_X86_64
828 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
829 #endif
830 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
831 };
832 
833 static unsigned num_msrs_to_save;
834 
835 static const u32 emulated_msrs[] = {
836 	MSR_IA32_TSC_ADJUST,
837 	MSR_IA32_TSCDEADLINE,
838 	MSR_IA32_MISC_ENABLE,
839 	MSR_IA32_MCG_STATUS,
840 	MSR_IA32_MCG_CTL,
841 };
842 
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
844 {
845 	u64 old_efer = vcpu->arch.efer;
846 
847 	if (efer & efer_reserved_bits)
848 		return 1;
849 
850 	if (is_paging(vcpu)
851 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
852 		return 1;
853 
854 	if (efer & EFER_FFXSR) {
855 		struct kvm_cpuid_entry2 *feat;
856 
857 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
859 			return 1;
860 	}
861 
862 	if (efer & EFER_SVME) {
863 		struct kvm_cpuid_entry2 *feat;
864 
865 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
867 			return 1;
868 	}
869 
870 	efer &= ~EFER_LMA;
871 	efer |= vcpu->arch.efer & EFER_LMA;
872 
873 	kvm_x86_ops->set_efer(vcpu, efer);
874 
875 	/* Update reserved bits */
876 	if ((efer ^ old_efer) & EFER_NX)
877 		kvm_mmu_reset_context(vcpu);
878 
879 	return 0;
880 }
881 
882 void kvm_enable_efer_bits(u64 mask)
883 {
884        efer_reserved_bits &= ~mask;
885 }
886 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
887 
888 
889 /*
890  * Writes msr value into into the appropriate "register".
891  * Returns 0 on success, non-0 otherwise.
892  * Assumes vcpu_load() was already called.
893  */
894 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
895 {
896 	return kvm_x86_ops->set_msr(vcpu, msr);
897 }
898 
899 /*
900  * Adapt set_msr() to msr_io()'s calling convention
901  */
902 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
903 {
904 	struct msr_data msr;
905 
906 	msr.data = *data;
907 	msr.index = index;
908 	msr.host_initiated = true;
909 	return kvm_set_msr(vcpu, &msr);
910 }
911 
912 #ifdef CONFIG_X86_64
913 struct pvclock_gtod_data {
914 	seqcount_t	seq;
915 
916 	struct { /* extract of a clocksource struct */
917 		int vclock_mode;
918 		cycle_t	cycle_last;
919 		cycle_t	mask;
920 		u32	mult;
921 		u32	shift;
922 	} clock;
923 
924 	/* open coded 'struct timespec' */
925 	u64		monotonic_time_snsec;
926 	time_t		monotonic_time_sec;
927 };
928 
929 static struct pvclock_gtod_data pvclock_gtod_data;
930 
931 static void update_pvclock_gtod(struct timekeeper *tk)
932 {
933 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
934 
935 	write_seqcount_begin(&vdata->seq);
936 
937 	/* copy pvclock gtod data */
938 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
939 	vdata->clock.cycle_last		= tk->clock->cycle_last;
940 	vdata->clock.mask		= tk->clock->mask;
941 	vdata->clock.mult		= tk->mult;
942 	vdata->clock.shift		= tk->shift;
943 
944 	vdata->monotonic_time_sec	= tk->xtime_sec
945 					+ tk->wall_to_monotonic.tv_sec;
946 	vdata->monotonic_time_snsec	= tk->xtime_nsec
947 					+ (tk->wall_to_monotonic.tv_nsec
948 						<< tk->shift);
949 	while (vdata->monotonic_time_snsec >=
950 					(((u64)NSEC_PER_SEC) << tk->shift)) {
951 		vdata->monotonic_time_snsec -=
952 					((u64)NSEC_PER_SEC) << tk->shift;
953 		vdata->monotonic_time_sec++;
954 	}
955 
956 	write_seqcount_end(&vdata->seq);
957 }
958 #endif
959 
960 
961 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
962 {
963 	int version;
964 	int r;
965 	struct pvclock_wall_clock wc;
966 	struct timespec boot;
967 
968 	if (!wall_clock)
969 		return;
970 
971 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
972 	if (r)
973 		return;
974 
975 	if (version & 1)
976 		++version;  /* first time write, random junk */
977 
978 	++version;
979 
980 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
981 
982 	/*
983 	 * The guest calculates current wall clock time by adding
984 	 * system time (updated by kvm_guest_time_update below) to the
985 	 * wall clock specified here.  guest system time equals host
986 	 * system time for us, thus we must fill in host boot time here.
987 	 */
988 	getboottime(&boot);
989 
990 	if (kvm->arch.kvmclock_offset) {
991 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
992 		boot = timespec_sub(boot, ts);
993 	}
994 	wc.sec = boot.tv_sec;
995 	wc.nsec = boot.tv_nsec;
996 	wc.version = version;
997 
998 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
999 
1000 	version++;
1001 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1002 }
1003 
1004 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1005 {
1006 	uint32_t quotient, remainder;
1007 
1008 	/* Don't try to replace with do_div(), this one calculates
1009 	 * "(dividend << 32) / divisor" */
1010 	__asm__ ( "divl %4"
1011 		  : "=a" (quotient), "=d" (remainder)
1012 		  : "0" (0), "1" (dividend), "r" (divisor) );
1013 	return quotient;
1014 }
1015 
1016 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1017 			       s8 *pshift, u32 *pmultiplier)
1018 {
1019 	uint64_t scaled64;
1020 	int32_t  shift = 0;
1021 	uint64_t tps64;
1022 	uint32_t tps32;
1023 
1024 	tps64 = base_khz * 1000LL;
1025 	scaled64 = scaled_khz * 1000LL;
1026 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1027 		tps64 >>= 1;
1028 		shift--;
1029 	}
1030 
1031 	tps32 = (uint32_t)tps64;
1032 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1033 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1034 			scaled64 >>= 1;
1035 		else
1036 			tps32 <<= 1;
1037 		shift++;
1038 	}
1039 
1040 	*pshift = shift;
1041 	*pmultiplier = div_frac(scaled64, tps32);
1042 
1043 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1044 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1045 }
1046 
1047 static inline u64 get_kernel_ns(void)
1048 {
1049 	struct timespec ts;
1050 
1051 	WARN_ON(preemptible());
1052 	ktime_get_ts(&ts);
1053 	monotonic_to_bootbased(&ts);
1054 	return timespec_to_ns(&ts);
1055 }
1056 
1057 #ifdef CONFIG_X86_64
1058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1059 #endif
1060 
1061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1062 unsigned long max_tsc_khz;
1063 
1064 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1065 {
1066 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1067 				   vcpu->arch.virtual_tsc_shift);
1068 }
1069 
1070 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1071 {
1072 	u64 v = (u64)khz * (1000000 + ppm);
1073 	do_div(v, 1000000);
1074 	return v;
1075 }
1076 
1077 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1078 {
1079 	u32 thresh_lo, thresh_hi;
1080 	int use_scaling = 0;
1081 
1082 	/* Compute a scale to convert nanoseconds in TSC cycles */
1083 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1084 			   &vcpu->arch.virtual_tsc_shift,
1085 			   &vcpu->arch.virtual_tsc_mult);
1086 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1087 
1088 	/*
1089 	 * Compute the variation in TSC rate which is acceptable
1090 	 * within the range of tolerance and decide if the
1091 	 * rate being applied is within that bounds of the hardware
1092 	 * rate.  If so, no scaling or compensation need be done.
1093 	 */
1094 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1095 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1096 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1097 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1098 		use_scaling = 1;
1099 	}
1100 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1101 }
1102 
1103 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1104 {
1105 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1106 				      vcpu->arch.virtual_tsc_mult,
1107 				      vcpu->arch.virtual_tsc_shift);
1108 	tsc += vcpu->arch.this_tsc_write;
1109 	return tsc;
1110 }
1111 
1112 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1113 {
1114 #ifdef CONFIG_X86_64
1115 	bool vcpus_matched;
1116 	bool do_request = false;
1117 	struct kvm_arch *ka = &vcpu->kvm->arch;
1118 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1119 
1120 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1121 			 atomic_read(&vcpu->kvm->online_vcpus));
1122 
1123 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1124 		if (!ka->use_master_clock)
1125 			do_request = 1;
1126 
1127 	if (!vcpus_matched && ka->use_master_clock)
1128 			do_request = 1;
1129 
1130 	if (do_request)
1131 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1132 
1133 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1134 			    atomic_read(&vcpu->kvm->online_vcpus),
1135 		            ka->use_master_clock, gtod->clock.vclock_mode);
1136 #endif
1137 }
1138 
1139 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1140 {
1141 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1142 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1143 }
1144 
1145 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1146 {
1147 	struct kvm *kvm = vcpu->kvm;
1148 	u64 offset, ns, elapsed;
1149 	unsigned long flags;
1150 	s64 usdiff;
1151 	bool matched;
1152 	u64 data = msr->data;
1153 
1154 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1155 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1156 	ns = get_kernel_ns();
1157 	elapsed = ns - kvm->arch.last_tsc_nsec;
1158 
1159 	/* n.b - signed multiplication and division required */
1160 	usdiff = data - kvm->arch.last_tsc_write;
1161 #ifdef CONFIG_X86_64
1162 	usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1163 #else
1164 	/* do_div() only does unsigned */
1165 	asm("idivl %2; xor %%edx, %%edx"
1166 	    : "=A"(usdiff)
1167 	    : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1168 #endif
1169 	do_div(elapsed, 1000);
1170 	usdiff -= elapsed;
1171 	if (usdiff < 0)
1172 		usdiff = -usdiff;
1173 
1174 	/*
1175 	 * Special case: TSC write with a small delta (1 second) of virtual
1176 	 * cycle time against real time is interpreted as an attempt to
1177 	 * synchronize the CPU.
1178          *
1179 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1180 	 * TSC, we add elapsed time in this computation.  We could let the
1181 	 * compensation code attempt to catch up if we fall behind, but
1182 	 * it's better to try to match offsets from the beginning.
1183          */
1184 	if (usdiff < USEC_PER_SEC &&
1185 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1186 		if (!check_tsc_unstable()) {
1187 			offset = kvm->arch.cur_tsc_offset;
1188 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1189 		} else {
1190 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1191 			data += delta;
1192 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1194 		}
1195 		matched = true;
1196 	} else {
1197 		/*
1198 		 * We split periods of matched TSC writes into generations.
1199 		 * For each generation, we track the original measured
1200 		 * nanosecond time, offset, and write, so if TSCs are in
1201 		 * sync, we can match exact offset, and if not, we can match
1202 		 * exact software computation in compute_guest_tsc()
1203 		 *
1204 		 * These values are tracked in kvm->arch.cur_xxx variables.
1205 		 */
1206 		kvm->arch.cur_tsc_generation++;
1207 		kvm->arch.cur_tsc_nsec = ns;
1208 		kvm->arch.cur_tsc_write = data;
1209 		kvm->arch.cur_tsc_offset = offset;
1210 		matched = false;
1211 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1212 			 kvm->arch.cur_tsc_generation, data);
1213 	}
1214 
1215 	/*
1216 	 * We also track th most recent recorded KHZ, write and time to
1217 	 * allow the matching interval to be extended at each write.
1218 	 */
1219 	kvm->arch.last_tsc_nsec = ns;
1220 	kvm->arch.last_tsc_write = data;
1221 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1222 
1223 	/* Reset of TSC must disable overshoot protection below */
1224 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1225 	vcpu->arch.last_guest_tsc = data;
1226 
1227 	/* Keep track of which generation this VCPU has synchronized to */
1228 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1229 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1230 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1231 
1232 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1233 		update_ia32_tsc_adjust_msr(vcpu, offset);
1234 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1235 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1236 
1237 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1238 	if (matched)
1239 		kvm->arch.nr_vcpus_matched_tsc++;
1240 	else
1241 		kvm->arch.nr_vcpus_matched_tsc = 0;
1242 
1243 	kvm_track_tsc_matching(vcpu);
1244 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1245 }
1246 
1247 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1248 
1249 #ifdef CONFIG_X86_64
1250 
1251 static cycle_t read_tsc(void)
1252 {
1253 	cycle_t ret;
1254 	u64 last;
1255 
1256 	/*
1257 	 * Empirically, a fence (of type that depends on the CPU)
1258 	 * before rdtsc is enough to ensure that rdtsc is ordered
1259 	 * with respect to loads.  The various CPU manuals are unclear
1260 	 * as to whether rdtsc can be reordered with later loads,
1261 	 * but no one has ever seen it happen.
1262 	 */
1263 	rdtsc_barrier();
1264 	ret = (cycle_t)vget_cycles();
1265 
1266 	last = pvclock_gtod_data.clock.cycle_last;
1267 
1268 	if (likely(ret >= last))
1269 		return ret;
1270 
1271 	/*
1272 	 * GCC likes to generate cmov here, but this branch is extremely
1273 	 * predictable (it's just a funciton of time and the likely is
1274 	 * very likely) and there's a data dependence, so force GCC
1275 	 * to generate a branch instead.  I don't barrier() because
1276 	 * we don't actually need a barrier, and if this function
1277 	 * ever gets inlined it will generate worse code.
1278 	 */
1279 	asm volatile ("");
1280 	return last;
1281 }
1282 
1283 static inline u64 vgettsc(cycle_t *cycle_now)
1284 {
1285 	long v;
1286 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287 
1288 	*cycle_now = read_tsc();
1289 
1290 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1291 	return v * gtod->clock.mult;
1292 }
1293 
1294 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1295 {
1296 	unsigned long seq;
1297 	u64 ns;
1298 	int mode;
1299 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1300 
1301 	ts->tv_nsec = 0;
1302 	do {
1303 		seq = read_seqcount_begin(&gtod->seq);
1304 		mode = gtod->clock.vclock_mode;
1305 		ts->tv_sec = gtod->monotonic_time_sec;
1306 		ns = gtod->monotonic_time_snsec;
1307 		ns += vgettsc(cycle_now);
1308 		ns >>= gtod->clock.shift;
1309 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1310 	timespec_add_ns(ts, ns);
1311 
1312 	return mode;
1313 }
1314 
1315 /* returns true if host is using tsc clocksource */
1316 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1317 {
1318 	struct timespec ts;
1319 
1320 	/* checked again under seqlock below */
1321 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1322 		return false;
1323 
1324 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1325 		return false;
1326 
1327 	monotonic_to_bootbased(&ts);
1328 	*kernel_ns = timespec_to_ns(&ts);
1329 
1330 	return true;
1331 }
1332 #endif
1333 
1334 /*
1335  *
1336  * Assuming a stable TSC across physical CPUS, and a stable TSC
1337  * across virtual CPUs, the following condition is possible.
1338  * Each numbered line represents an event visible to both
1339  * CPUs at the next numbered event.
1340  *
1341  * "timespecX" represents host monotonic time. "tscX" represents
1342  * RDTSC value.
1343  *
1344  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1345  *
1346  * 1.  read timespec0,tsc0
1347  * 2.					| timespec1 = timespec0 + N
1348  * 					| tsc1 = tsc0 + M
1349  * 3. transition to guest		| transition to guest
1350  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1351  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1352  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1353  *
1354  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1355  *
1356  * 	- ret0 < ret1
1357  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1358  *		...
1359  *	- 0 < N - M => M < N
1360  *
1361  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1362  * always the case (the difference between two distinct xtime instances
1363  * might be smaller then the difference between corresponding TSC reads,
1364  * when updating guest vcpus pvclock areas).
1365  *
1366  * To avoid that problem, do not allow visibility of distinct
1367  * system_timestamp/tsc_timestamp values simultaneously: use a master
1368  * copy of host monotonic time values. Update that master copy
1369  * in lockstep.
1370  *
1371  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1372  *
1373  */
1374 
1375 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1376 {
1377 #ifdef CONFIG_X86_64
1378 	struct kvm_arch *ka = &kvm->arch;
1379 	int vclock_mode;
1380 	bool host_tsc_clocksource, vcpus_matched;
1381 
1382 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1383 			atomic_read(&kvm->online_vcpus));
1384 
1385 	/*
1386 	 * If the host uses TSC clock, then passthrough TSC as stable
1387 	 * to the guest.
1388 	 */
1389 	host_tsc_clocksource = kvm_get_time_and_clockread(
1390 					&ka->master_kernel_ns,
1391 					&ka->master_cycle_now);
1392 
1393 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1394 
1395 	if (ka->use_master_clock)
1396 		atomic_set(&kvm_guest_has_master_clock, 1);
1397 
1398 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1399 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1400 					vcpus_matched);
1401 #endif
1402 }
1403 
1404 static int kvm_guest_time_update(struct kvm_vcpu *v)
1405 {
1406 	unsigned long flags, this_tsc_khz;
1407 	struct kvm_vcpu_arch *vcpu = &v->arch;
1408 	struct kvm_arch *ka = &v->kvm->arch;
1409 	void *shared_kaddr;
1410 	s64 kernel_ns, max_kernel_ns;
1411 	u64 tsc_timestamp, host_tsc;
1412 	struct pvclock_vcpu_time_info *guest_hv_clock;
1413 	u8 pvclock_flags;
1414 	bool use_master_clock;
1415 
1416 	kernel_ns = 0;
1417 	host_tsc = 0;
1418 
1419 	/* Keep irq disabled to prevent changes to the clock */
1420 	local_irq_save(flags);
1421 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1422 	if (unlikely(this_tsc_khz == 0)) {
1423 		local_irq_restore(flags);
1424 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1425 		return 1;
1426 	}
1427 
1428 	/*
1429 	 * If the host uses TSC clock, then passthrough TSC as stable
1430 	 * to the guest.
1431 	 */
1432 	spin_lock(&ka->pvclock_gtod_sync_lock);
1433 	use_master_clock = ka->use_master_clock;
1434 	if (use_master_clock) {
1435 		host_tsc = ka->master_cycle_now;
1436 		kernel_ns = ka->master_kernel_ns;
1437 	}
1438 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1439 	if (!use_master_clock) {
1440 		host_tsc = native_read_tsc();
1441 		kernel_ns = get_kernel_ns();
1442 	}
1443 
1444 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1445 
1446 	/*
1447 	 * We may have to catch up the TSC to match elapsed wall clock
1448 	 * time for two reasons, even if kvmclock is used.
1449 	 *   1) CPU could have been running below the maximum TSC rate
1450 	 *   2) Broken TSC compensation resets the base at each VCPU
1451 	 *      entry to avoid unknown leaps of TSC even when running
1452 	 *      again on the same CPU.  This may cause apparent elapsed
1453 	 *      time to disappear, and the guest to stand still or run
1454 	 *	very slowly.
1455 	 */
1456 	if (vcpu->tsc_catchup) {
1457 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1458 		if (tsc > tsc_timestamp) {
1459 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1460 			tsc_timestamp = tsc;
1461 		}
1462 	}
1463 
1464 	local_irq_restore(flags);
1465 
1466 	if (!vcpu->time_page)
1467 		return 0;
1468 
1469 	/*
1470 	 * Time as measured by the TSC may go backwards when resetting the base
1471 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1472 	 * higher than the resolution of the other clock scales.  Thus, many
1473 	 * possible measurments of the TSC correspond to one measurement of any
1474 	 * other clock, and so a spread of values is possible.  This is not a
1475 	 * problem for the computation of the nanosecond clock; with TSC rates
1476 	 * around 1GHZ, there can only be a few cycles which correspond to one
1477 	 * nanosecond value, and any path through this code will inevitably
1478 	 * take longer than that.  However, with the kernel_ns value itself,
1479 	 * the precision may be much lower, down to HZ granularity.  If the
1480 	 * first sampling of TSC against kernel_ns ends in the low part of the
1481 	 * range, and the second in the high end of the range, we can get:
1482 	 *
1483 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1484 	 *
1485 	 * As the sampling errors potentially range in the thousands of cycles,
1486 	 * it is possible such a time value has already been observed by the
1487 	 * guest.  To protect against this, we must compute the system time as
1488 	 * observed by the guest and ensure the new system time is greater.
1489 	 */
1490 	max_kernel_ns = 0;
1491 	if (vcpu->hv_clock.tsc_timestamp) {
1492 		max_kernel_ns = vcpu->last_guest_tsc -
1493 				vcpu->hv_clock.tsc_timestamp;
1494 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1495 				    vcpu->hv_clock.tsc_to_system_mul,
1496 				    vcpu->hv_clock.tsc_shift);
1497 		max_kernel_ns += vcpu->last_kernel_ns;
1498 	}
1499 
1500 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1501 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1502 				   &vcpu->hv_clock.tsc_shift,
1503 				   &vcpu->hv_clock.tsc_to_system_mul);
1504 		vcpu->hw_tsc_khz = this_tsc_khz;
1505 	}
1506 
1507 	/* with a master <monotonic time, tsc value> tuple,
1508 	 * pvclock clock reads always increase at the (scaled) rate
1509 	 * of guest TSC - no need to deal with sampling errors.
1510 	 */
1511 	if (!use_master_clock) {
1512 		if (max_kernel_ns > kernel_ns)
1513 			kernel_ns = max_kernel_ns;
1514 	}
1515 	/* With all the info we got, fill in the values */
1516 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1517 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1518 	vcpu->last_kernel_ns = kernel_ns;
1519 	vcpu->last_guest_tsc = tsc_timestamp;
1520 
1521 	/*
1522 	 * The interface expects us to write an even number signaling that the
1523 	 * update is finished. Since the guest won't see the intermediate
1524 	 * state, we just increase by 2 at the end.
1525 	 */
1526 	vcpu->hv_clock.version += 2;
1527 
1528 	shared_kaddr = kmap_atomic(vcpu->time_page);
1529 
1530 	guest_hv_clock = shared_kaddr + vcpu->time_offset;
1531 
1532 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1533 	pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1534 
1535 	if (vcpu->pvclock_set_guest_stopped_request) {
1536 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1537 		vcpu->pvclock_set_guest_stopped_request = false;
1538 	}
1539 
1540 	/* If the host uses TSC clocksource, then it is stable */
1541 	if (use_master_clock)
1542 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1543 
1544 	vcpu->hv_clock.flags = pvclock_flags;
1545 
1546 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1547 	       sizeof(vcpu->hv_clock));
1548 
1549 	kunmap_atomic(shared_kaddr);
1550 
1551 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1552 	return 0;
1553 }
1554 
1555 static bool msr_mtrr_valid(unsigned msr)
1556 {
1557 	switch (msr) {
1558 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1559 	case MSR_MTRRfix64K_00000:
1560 	case MSR_MTRRfix16K_80000:
1561 	case MSR_MTRRfix16K_A0000:
1562 	case MSR_MTRRfix4K_C0000:
1563 	case MSR_MTRRfix4K_C8000:
1564 	case MSR_MTRRfix4K_D0000:
1565 	case MSR_MTRRfix4K_D8000:
1566 	case MSR_MTRRfix4K_E0000:
1567 	case MSR_MTRRfix4K_E8000:
1568 	case MSR_MTRRfix4K_F0000:
1569 	case MSR_MTRRfix4K_F8000:
1570 	case MSR_MTRRdefType:
1571 	case MSR_IA32_CR_PAT:
1572 		return true;
1573 	case 0x2f8:
1574 		return true;
1575 	}
1576 	return false;
1577 }
1578 
1579 static bool valid_pat_type(unsigned t)
1580 {
1581 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1582 }
1583 
1584 static bool valid_mtrr_type(unsigned t)
1585 {
1586 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1587 }
1588 
1589 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1590 {
1591 	int i;
1592 
1593 	if (!msr_mtrr_valid(msr))
1594 		return false;
1595 
1596 	if (msr == MSR_IA32_CR_PAT) {
1597 		for (i = 0; i < 8; i++)
1598 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1599 				return false;
1600 		return true;
1601 	} else if (msr == MSR_MTRRdefType) {
1602 		if (data & ~0xcff)
1603 			return false;
1604 		return valid_mtrr_type(data & 0xff);
1605 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1606 		for (i = 0; i < 8 ; i++)
1607 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1608 				return false;
1609 		return true;
1610 	}
1611 
1612 	/* variable MTRRs */
1613 	return valid_mtrr_type(data & 0xff);
1614 }
1615 
1616 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1617 {
1618 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1619 
1620 	if (!mtrr_valid(vcpu, msr, data))
1621 		return 1;
1622 
1623 	if (msr == MSR_MTRRdefType) {
1624 		vcpu->arch.mtrr_state.def_type = data;
1625 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1626 	} else if (msr == MSR_MTRRfix64K_00000)
1627 		p[0] = data;
1628 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1629 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1630 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1631 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1632 	else if (msr == MSR_IA32_CR_PAT)
1633 		vcpu->arch.pat = data;
1634 	else {	/* Variable MTRRs */
1635 		int idx, is_mtrr_mask;
1636 		u64 *pt;
1637 
1638 		idx = (msr - 0x200) / 2;
1639 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1640 		if (!is_mtrr_mask)
1641 			pt =
1642 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1643 		else
1644 			pt =
1645 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1646 		*pt = data;
1647 	}
1648 
1649 	kvm_mmu_reset_context(vcpu);
1650 	return 0;
1651 }
1652 
1653 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1654 {
1655 	u64 mcg_cap = vcpu->arch.mcg_cap;
1656 	unsigned bank_num = mcg_cap & 0xff;
1657 
1658 	switch (msr) {
1659 	case MSR_IA32_MCG_STATUS:
1660 		vcpu->arch.mcg_status = data;
1661 		break;
1662 	case MSR_IA32_MCG_CTL:
1663 		if (!(mcg_cap & MCG_CTL_P))
1664 			return 1;
1665 		if (data != 0 && data != ~(u64)0)
1666 			return -1;
1667 		vcpu->arch.mcg_ctl = data;
1668 		break;
1669 	default:
1670 		if (msr >= MSR_IA32_MC0_CTL &&
1671 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1672 			u32 offset = msr - MSR_IA32_MC0_CTL;
1673 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1674 			 * some Linux kernels though clear bit 10 in bank 4 to
1675 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1676 			 * this to avoid an uncatched #GP in the guest
1677 			 */
1678 			if ((offset & 0x3) == 0 &&
1679 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1680 				return -1;
1681 			vcpu->arch.mce_banks[offset] = data;
1682 			break;
1683 		}
1684 		return 1;
1685 	}
1686 	return 0;
1687 }
1688 
1689 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1690 {
1691 	struct kvm *kvm = vcpu->kvm;
1692 	int lm = is_long_mode(vcpu);
1693 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1694 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1695 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1696 		: kvm->arch.xen_hvm_config.blob_size_32;
1697 	u32 page_num = data & ~PAGE_MASK;
1698 	u64 page_addr = data & PAGE_MASK;
1699 	u8 *page;
1700 	int r;
1701 
1702 	r = -E2BIG;
1703 	if (page_num >= blob_size)
1704 		goto out;
1705 	r = -ENOMEM;
1706 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1707 	if (IS_ERR(page)) {
1708 		r = PTR_ERR(page);
1709 		goto out;
1710 	}
1711 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1712 		goto out_free;
1713 	r = 0;
1714 out_free:
1715 	kfree(page);
1716 out:
1717 	return r;
1718 }
1719 
1720 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1721 {
1722 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1723 }
1724 
1725 static bool kvm_hv_msr_partition_wide(u32 msr)
1726 {
1727 	bool r = false;
1728 	switch (msr) {
1729 	case HV_X64_MSR_GUEST_OS_ID:
1730 	case HV_X64_MSR_HYPERCALL:
1731 		r = true;
1732 		break;
1733 	}
1734 
1735 	return r;
1736 }
1737 
1738 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1739 {
1740 	struct kvm *kvm = vcpu->kvm;
1741 
1742 	switch (msr) {
1743 	case HV_X64_MSR_GUEST_OS_ID:
1744 		kvm->arch.hv_guest_os_id = data;
1745 		/* setting guest os id to zero disables hypercall page */
1746 		if (!kvm->arch.hv_guest_os_id)
1747 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1748 		break;
1749 	case HV_X64_MSR_HYPERCALL: {
1750 		u64 gfn;
1751 		unsigned long addr;
1752 		u8 instructions[4];
1753 
1754 		/* if guest os id is not set hypercall should remain disabled */
1755 		if (!kvm->arch.hv_guest_os_id)
1756 			break;
1757 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1758 			kvm->arch.hv_hypercall = data;
1759 			break;
1760 		}
1761 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1762 		addr = gfn_to_hva(kvm, gfn);
1763 		if (kvm_is_error_hva(addr))
1764 			return 1;
1765 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1766 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1767 		if (__copy_to_user((void __user *)addr, instructions, 4))
1768 			return 1;
1769 		kvm->arch.hv_hypercall = data;
1770 		break;
1771 	}
1772 	default:
1773 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1774 			    "data 0x%llx\n", msr, data);
1775 		return 1;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1781 {
1782 	switch (msr) {
1783 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1784 		unsigned long addr;
1785 
1786 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1787 			vcpu->arch.hv_vapic = data;
1788 			break;
1789 		}
1790 		addr = gfn_to_hva(vcpu->kvm, data >>
1791 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1792 		if (kvm_is_error_hva(addr))
1793 			return 1;
1794 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1795 			return 1;
1796 		vcpu->arch.hv_vapic = data;
1797 		break;
1798 	}
1799 	case HV_X64_MSR_EOI:
1800 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1801 	case HV_X64_MSR_ICR:
1802 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1803 	case HV_X64_MSR_TPR:
1804 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1805 	default:
1806 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1807 			    "data 0x%llx\n", msr, data);
1808 		return 1;
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1815 {
1816 	gpa_t gpa = data & ~0x3f;
1817 
1818 	/* Bits 2:5 are reserved, Should be zero */
1819 	if (data & 0x3c)
1820 		return 1;
1821 
1822 	vcpu->arch.apf.msr_val = data;
1823 
1824 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1825 		kvm_clear_async_pf_completion_queue(vcpu);
1826 		kvm_async_pf_hash_reset(vcpu);
1827 		return 0;
1828 	}
1829 
1830 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1831 		return 1;
1832 
1833 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1834 	kvm_async_pf_wakeup_all(vcpu);
1835 	return 0;
1836 }
1837 
1838 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1839 {
1840 	if (vcpu->arch.time_page) {
1841 		kvm_release_page_dirty(vcpu->arch.time_page);
1842 		vcpu->arch.time_page = NULL;
1843 	}
1844 }
1845 
1846 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1847 {
1848 	u64 delta;
1849 
1850 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1851 		return;
1852 
1853 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1854 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1855 	vcpu->arch.st.accum_steal = delta;
1856 }
1857 
1858 static void record_steal_time(struct kvm_vcpu *vcpu)
1859 {
1860 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1861 		return;
1862 
1863 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1864 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1865 		return;
1866 
1867 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1868 	vcpu->arch.st.steal.version += 2;
1869 	vcpu->arch.st.accum_steal = 0;
1870 
1871 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1872 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1873 }
1874 
1875 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1876 {
1877 	bool pr = false;
1878 	u32 msr = msr_info->index;
1879 	u64 data = msr_info->data;
1880 
1881 	switch (msr) {
1882 	case MSR_AMD64_NB_CFG:
1883 	case MSR_IA32_UCODE_REV:
1884 	case MSR_IA32_UCODE_WRITE:
1885 	case MSR_VM_HSAVE_PA:
1886 	case MSR_AMD64_PATCH_LOADER:
1887 	case MSR_AMD64_BU_CFG2:
1888 		break;
1889 
1890 	case MSR_EFER:
1891 		return set_efer(vcpu, data);
1892 	case MSR_K7_HWCR:
1893 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1894 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1895 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1896 		if (data != 0) {
1897 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1898 				    data);
1899 			return 1;
1900 		}
1901 		break;
1902 	case MSR_FAM10H_MMIO_CONF_BASE:
1903 		if (data != 0) {
1904 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1905 				    "0x%llx\n", data);
1906 			return 1;
1907 		}
1908 		break;
1909 	case MSR_IA32_DEBUGCTLMSR:
1910 		if (!data) {
1911 			/* We support the non-activated case already */
1912 			break;
1913 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1914 			/* Values other than LBR and BTF are vendor-specific,
1915 			   thus reserved and should throw a #GP */
1916 			return 1;
1917 		}
1918 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1919 			    __func__, data);
1920 		break;
1921 	case 0x200 ... 0x2ff:
1922 		return set_msr_mtrr(vcpu, msr, data);
1923 	case MSR_IA32_APICBASE:
1924 		kvm_set_apic_base(vcpu, data);
1925 		break;
1926 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1927 		return kvm_x2apic_msr_write(vcpu, msr, data);
1928 	case MSR_IA32_TSCDEADLINE:
1929 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1930 		break;
1931 	case MSR_IA32_TSC_ADJUST:
1932 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
1933 			if (!msr_info->host_initiated) {
1934 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1935 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1936 			}
1937 			vcpu->arch.ia32_tsc_adjust_msr = data;
1938 		}
1939 		break;
1940 	case MSR_IA32_MISC_ENABLE:
1941 		vcpu->arch.ia32_misc_enable_msr = data;
1942 		break;
1943 	case MSR_KVM_WALL_CLOCK_NEW:
1944 	case MSR_KVM_WALL_CLOCK:
1945 		vcpu->kvm->arch.wall_clock = data;
1946 		kvm_write_wall_clock(vcpu->kvm, data);
1947 		break;
1948 	case MSR_KVM_SYSTEM_TIME_NEW:
1949 	case MSR_KVM_SYSTEM_TIME: {
1950 		kvmclock_reset(vcpu);
1951 
1952 		vcpu->arch.time = data;
1953 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1954 
1955 		/* we verify if the enable bit is set... */
1956 		if (!(data & 1))
1957 			break;
1958 
1959 		/* ...but clean it before doing the actual write */
1960 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1961 
1962 		vcpu->arch.time_page =
1963 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1964 
1965 		if (is_error_page(vcpu->arch.time_page))
1966 			vcpu->arch.time_page = NULL;
1967 
1968 		break;
1969 	}
1970 	case MSR_KVM_ASYNC_PF_EN:
1971 		if (kvm_pv_enable_async_pf(vcpu, data))
1972 			return 1;
1973 		break;
1974 	case MSR_KVM_STEAL_TIME:
1975 
1976 		if (unlikely(!sched_info_on()))
1977 			return 1;
1978 
1979 		if (data & KVM_STEAL_RESERVED_MASK)
1980 			return 1;
1981 
1982 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1983 							data & KVM_STEAL_VALID_BITS))
1984 			return 1;
1985 
1986 		vcpu->arch.st.msr_val = data;
1987 
1988 		if (!(data & KVM_MSR_ENABLED))
1989 			break;
1990 
1991 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1992 
1993 		preempt_disable();
1994 		accumulate_steal_time(vcpu);
1995 		preempt_enable();
1996 
1997 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1998 
1999 		break;
2000 	case MSR_KVM_PV_EOI_EN:
2001 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2002 			return 1;
2003 		break;
2004 
2005 	case MSR_IA32_MCG_CTL:
2006 	case MSR_IA32_MCG_STATUS:
2007 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2008 		return set_msr_mce(vcpu, msr, data);
2009 
2010 	/* Performance counters are not protected by a CPUID bit,
2011 	 * so we should check all of them in the generic path for the sake of
2012 	 * cross vendor migration.
2013 	 * Writing a zero into the event select MSRs disables them,
2014 	 * which we perfectly emulate ;-). Any other value should be at least
2015 	 * reported, some guests depend on them.
2016 	 */
2017 	case MSR_K7_EVNTSEL0:
2018 	case MSR_K7_EVNTSEL1:
2019 	case MSR_K7_EVNTSEL2:
2020 	case MSR_K7_EVNTSEL3:
2021 		if (data != 0)
2022 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2023 				    "0x%x data 0x%llx\n", msr, data);
2024 		break;
2025 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2026 	 * so we ignore writes to make it happy.
2027 	 */
2028 	case MSR_K7_PERFCTR0:
2029 	case MSR_K7_PERFCTR1:
2030 	case MSR_K7_PERFCTR2:
2031 	case MSR_K7_PERFCTR3:
2032 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2033 			    "0x%x data 0x%llx\n", msr, data);
2034 		break;
2035 	case MSR_P6_PERFCTR0:
2036 	case MSR_P6_PERFCTR1:
2037 		pr = true;
2038 	case MSR_P6_EVNTSEL0:
2039 	case MSR_P6_EVNTSEL1:
2040 		if (kvm_pmu_msr(vcpu, msr))
2041 			return kvm_pmu_set_msr(vcpu, msr, data);
2042 
2043 		if (pr || data != 0)
2044 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2045 				    "0x%x data 0x%llx\n", msr, data);
2046 		break;
2047 	case MSR_K7_CLK_CTL:
2048 		/*
2049 		 * Ignore all writes to this no longer documented MSR.
2050 		 * Writes are only relevant for old K7 processors,
2051 		 * all pre-dating SVM, but a recommended workaround from
2052 		 * AMD for these chips. It is possible to specify the
2053 		 * affected processor models on the command line, hence
2054 		 * the need to ignore the workaround.
2055 		 */
2056 		break;
2057 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2058 		if (kvm_hv_msr_partition_wide(msr)) {
2059 			int r;
2060 			mutex_lock(&vcpu->kvm->lock);
2061 			r = set_msr_hyperv_pw(vcpu, msr, data);
2062 			mutex_unlock(&vcpu->kvm->lock);
2063 			return r;
2064 		} else
2065 			return set_msr_hyperv(vcpu, msr, data);
2066 		break;
2067 	case MSR_IA32_BBL_CR_CTL3:
2068 		/* Drop writes to this legacy MSR -- see rdmsr
2069 		 * counterpart for further detail.
2070 		 */
2071 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2072 		break;
2073 	case MSR_AMD64_OSVW_ID_LENGTH:
2074 		if (!guest_cpuid_has_osvw(vcpu))
2075 			return 1;
2076 		vcpu->arch.osvw.length = data;
2077 		break;
2078 	case MSR_AMD64_OSVW_STATUS:
2079 		if (!guest_cpuid_has_osvw(vcpu))
2080 			return 1;
2081 		vcpu->arch.osvw.status = data;
2082 		break;
2083 	default:
2084 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2085 			return xen_hvm_config(vcpu, data);
2086 		if (kvm_pmu_msr(vcpu, msr))
2087 			return kvm_pmu_set_msr(vcpu, msr, data);
2088 		if (!ignore_msrs) {
2089 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2090 				    msr, data);
2091 			return 1;
2092 		} else {
2093 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2094 				    msr, data);
2095 			break;
2096 		}
2097 	}
2098 	return 0;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2101 
2102 
2103 /*
2104  * Reads an msr value (of 'msr_index') into 'pdata'.
2105  * Returns 0 on success, non-0 otherwise.
2106  * Assumes vcpu_load() was already called.
2107  */
2108 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2109 {
2110 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2111 }
2112 
2113 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2114 {
2115 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2116 
2117 	if (!msr_mtrr_valid(msr))
2118 		return 1;
2119 
2120 	if (msr == MSR_MTRRdefType)
2121 		*pdata = vcpu->arch.mtrr_state.def_type +
2122 			 (vcpu->arch.mtrr_state.enabled << 10);
2123 	else if (msr == MSR_MTRRfix64K_00000)
2124 		*pdata = p[0];
2125 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2126 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2127 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2128 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2129 	else if (msr == MSR_IA32_CR_PAT)
2130 		*pdata = vcpu->arch.pat;
2131 	else {	/* Variable MTRRs */
2132 		int idx, is_mtrr_mask;
2133 		u64 *pt;
2134 
2135 		idx = (msr - 0x200) / 2;
2136 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2137 		if (!is_mtrr_mask)
2138 			pt =
2139 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2140 		else
2141 			pt =
2142 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2143 		*pdata = *pt;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2150 {
2151 	u64 data;
2152 	u64 mcg_cap = vcpu->arch.mcg_cap;
2153 	unsigned bank_num = mcg_cap & 0xff;
2154 
2155 	switch (msr) {
2156 	case MSR_IA32_P5_MC_ADDR:
2157 	case MSR_IA32_P5_MC_TYPE:
2158 		data = 0;
2159 		break;
2160 	case MSR_IA32_MCG_CAP:
2161 		data = vcpu->arch.mcg_cap;
2162 		break;
2163 	case MSR_IA32_MCG_CTL:
2164 		if (!(mcg_cap & MCG_CTL_P))
2165 			return 1;
2166 		data = vcpu->arch.mcg_ctl;
2167 		break;
2168 	case MSR_IA32_MCG_STATUS:
2169 		data = vcpu->arch.mcg_status;
2170 		break;
2171 	default:
2172 		if (msr >= MSR_IA32_MC0_CTL &&
2173 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2174 			u32 offset = msr - MSR_IA32_MC0_CTL;
2175 			data = vcpu->arch.mce_banks[offset];
2176 			break;
2177 		}
2178 		return 1;
2179 	}
2180 	*pdata = data;
2181 	return 0;
2182 }
2183 
2184 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2185 {
2186 	u64 data = 0;
2187 	struct kvm *kvm = vcpu->kvm;
2188 
2189 	switch (msr) {
2190 	case HV_X64_MSR_GUEST_OS_ID:
2191 		data = kvm->arch.hv_guest_os_id;
2192 		break;
2193 	case HV_X64_MSR_HYPERCALL:
2194 		data = kvm->arch.hv_hypercall;
2195 		break;
2196 	default:
2197 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2198 		return 1;
2199 	}
2200 
2201 	*pdata = data;
2202 	return 0;
2203 }
2204 
2205 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2206 {
2207 	u64 data = 0;
2208 
2209 	switch (msr) {
2210 	case HV_X64_MSR_VP_INDEX: {
2211 		int r;
2212 		struct kvm_vcpu *v;
2213 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2214 			if (v == vcpu)
2215 				data = r;
2216 		break;
2217 	}
2218 	case HV_X64_MSR_EOI:
2219 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2220 	case HV_X64_MSR_ICR:
2221 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2222 	case HV_X64_MSR_TPR:
2223 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2224 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2225 		data = vcpu->arch.hv_vapic;
2226 		break;
2227 	default:
2228 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2229 		return 1;
2230 	}
2231 	*pdata = data;
2232 	return 0;
2233 }
2234 
2235 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2236 {
2237 	u64 data;
2238 
2239 	switch (msr) {
2240 	case MSR_IA32_PLATFORM_ID:
2241 	case MSR_IA32_EBL_CR_POWERON:
2242 	case MSR_IA32_DEBUGCTLMSR:
2243 	case MSR_IA32_LASTBRANCHFROMIP:
2244 	case MSR_IA32_LASTBRANCHTOIP:
2245 	case MSR_IA32_LASTINTFROMIP:
2246 	case MSR_IA32_LASTINTTOIP:
2247 	case MSR_K8_SYSCFG:
2248 	case MSR_K7_HWCR:
2249 	case MSR_VM_HSAVE_PA:
2250 	case MSR_K7_EVNTSEL0:
2251 	case MSR_K7_PERFCTR0:
2252 	case MSR_K8_INT_PENDING_MSG:
2253 	case MSR_AMD64_NB_CFG:
2254 	case MSR_FAM10H_MMIO_CONF_BASE:
2255 	case MSR_AMD64_BU_CFG2:
2256 		data = 0;
2257 		break;
2258 	case MSR_P6_PERFCTR0:
2259 	case MSR_P6_PERFCTR1:
2260 	case MSR_P6_EVNTSEL0:
2261 	case MSR_P6_EVNTSEL1:
2262 		if (kvm_pmu_msr(vcpu, msr))
2263 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2264 		data = 0;
2265 		break;
2266 	case MSR_IA32_UCODE_REV:
2267 		data = 0x100000000ULL;
2268 		break;
2269 	case MSR_MTRRcap:
2270 		data = 0x500 | KVM_NR_VAR_MTRR;
2271 		break;
2272 	case 0x200 ... 0x2ff:
2273 		return get_msr_mtrr(vcpu, msr, pdata);
2274 	case 0xcd: /* fsb frequency */
2275 		data = 3;
2276 		break;
2277 		/*
2278 		 * MSR_EBC_FREQUENCY_ID
2279 		 * Conservative value valid for even the basic CPU models.
2280 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282 		 * and 266MHz for model 3, or 4. Set Core Clock
2283 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2284 		 * 31:24) even though these are only valid for CPU
2285 		 * models > 2, however guests may end up dividing or
2286 		 * multiplying by zero otherwise.
2287 		 */
2288 	case MSR_EBC_FREQUENCY_ID:
2289 		data = 1 << 24;
2290 		break;
2291 	case MSR_IA32_APICBASE:
2292 		data = kvm_get_apic_base(vcpu);
2293 		break;
2294 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2295 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2296 		break;
2297 	case MSR_IA32_TSCDEADLINE:
2298 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2299 		break;
2300 	case MSR_IA32_TSC_ADJUST:
2301 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2302 		break;
2303 	case MSR_IA32_MISC_ENABLE:
2304 		data = vcpu->arch.ia32_misc_enable_msr;
2305 		break;
2306 	case MSR_IA32_PERF_STATUS:
2307 		/* TSC increment by tick */
2308 		data = 1000ULL;
2309 		/* CPU multiplier */
2310 		data |= (((uint64_t)4ULL) << 40);
2311 		break;
2312 	case MSR_EFER:
2313 		data = vcpu->arch.efer;
2314 		break;
2315 	case MSR_KVM_WALL_CLOCK:
2316 	case MSR_KVM_WALL_CLOCK_NEW:
2317 		data = vcpu->kvm->arch.wall_clock;
2318 		break;
2319 	case MSR_KVM_SYSTEM_TIME:
2320 	case MSR_KVM_SYSTEM_TIME_NEW:
2321 		data = vcpu->arch.time;
2322 		break;
2323 	case MSR_KVM_ASYNC_PF_EN:
2324 		data = vcpu->arch.apf.msr_val;
2325 		break;
2326 	case MSR_KVM_STEAL_TIME:
2327 		data = vcpu->arch.st.msr_val;
2328 		break;
2329 	case MSR_KVM_PV_EOI_EN:
2330 		data = vcpu->arch.pv_eoi.msr_val;
2331 		break;
2332 	case MSR_IA32_P5_MC_ADDR:
2333 	case MSR_IA32_P5_MC_TYPE:
2334 	case MSR_IA32_MCG_CAP:
2335 	case MSR_IA32_MCG_CTL:
2336 	case MSR_IA32_MCG_STATUS:
2337 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2338 		return get_msr_mce(vcpu, msr, pdata);
2339 	case MSR_K7_CLK_CTL:
2340 		/*
2341 		 * Provide expected ramp-up count for K7. All other
2342 		 * are set to zero, indicating minimum divisors for
2343 		 * every field.
2344 		 *
2345 		 * This prevents guest kernels on AMD host with CPU
2346 		 * type 6, model 8 and higher from exploding due to
2347 		 * the rdmsr failing.
2348 		 */
2349 		data = 0x20000000;
2350 		break;
2351 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2352 		if (kvm_hv_msr_partition_wide(msr)) {
2353 			int r;
2354 			mutex_lock(&vcpu->kvm->lock);
2355 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2356 			mutex_unlock(&vcpu->kvm->lock);
2357 			return r;
2358 		} else
2359 			return get_msr_hyperv(vcpu, msr, pdata);
2360 		break;
2361 	case MSR_IA32_BBL_CR_CTL3:
2362 		/* This legacy MSR exists but isn't fully documented in current
2363 		 * silicon.  It is however accessed by winxp in very narrow
2364 		 * scenarios where it sets bit #19, itself documented as
2365 		 * a "reserved" bit.  Best effort attempt to source coherent
2366 		 * read data here should the balance of the register be
2367 		 * interpreted by the guest:
2368 		 *
2369 		 * L2 cache control register 3: 64GB range, 256KB size,
2370 		 * enabled, latency 0x1, configured
2371 		 */
2372 		data = 0xbe702111;
2373 		break;
2374 	case MSR_AMD64_OSVW_ID_LENGTH:
2375 		if (!guest_cpuid_has_osvw(vcpu))
2376 			return 1;
2377 		data = vcpu->arch.osvw.length;
2378 		break;
2379 	case MSR_AMD64_OSVW_STATUS:
2380 		if (!guest_cpuid_has_osvw(vcpu))
2381 			return 1;
2382 		data = vcpu->arch.osvw.status;
2383 		break;
2384 	default:
2385 		if (kvm_pmu_msr(vcpu, msr))
2386 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2387 		if (!ignore_msrs) {
2388 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2389 			return 1;
2390 		} else {
2391 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2392 			data = 0;
2393 		}
2394 		break;
2395 	}
2396 	*pdata = data;
2397 	return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2400 
2401 /*
2402  * Read or write a bunch of msrs. All parameters are kernel addresses.
2403  *
2404  * @return number of msrs set successfully.
2405  */
2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2407 		    struct kvm_msr_entry *entries,
2408 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2409 				  unsigned index, u64 *data))
2410 {
2411 	int i, idx;
2412 
2413 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2414 	for (i = 0; i < msrs->nmsrs; ++i)
2415 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2416 			break;
2417 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2418 
2419 	return i;
2420 }
2421 
2422 /*
2423  * Read or write a bunch of msrs. Parameters are user addresses.
2424  *
2425  * @return number of msrs set successfully.
2426  */
2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2428 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2429 				unsigned index, u64 *data),
2430 		  int writeback)
2431 {
2432 	struct kvm_msrs msrs;
2433 	struct kvm_msr_entry *entries;
2434 	int r, n;
2435 	unsigned size;
2436 
2437 	r = -EFAULT;
2438 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2439 		goto out;
2440 
2441 	r = -E2BIG;
2442 	if (msrs.nmsrs >= MAX_IO_MSRS)
2443 		goto out;
2444 
2445 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2446 	entries = memdup_user(user_msrs->entries, size);
2447 	if (IS_ERR(entries)) {
2448 		r = PTR_ERR(entries);
2449 		goto out;
2450 	}
2451 
2452 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2453 	if (r < 0)
2454 		goto out_free;
2455 
2456 	r = -EFAULT;
2457 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2458 		goto out_free;
2459 
2460 	r = n;
2461 
2462 out_free:
2463 	kfree(entries);
2464 out:
2465 	return r;
2466 }
2467 
2468 int kvm_dev_ioctl_check_extension(long ext)
2469 {
2470 	int r;
2471 
2472 	switch (ext) {
2473 	case KVM_CAP_IRQCHIP:
2474 	case KVM_CAP_HLT:
2475 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2476 	case KVM_CAP_SET_TSS_ADDR:
2477 	case KVM_CAP_EXT_CPUID:
2478 	case KVM_CAP_CLOCKSOURCE:
2479 	case KVM_CAP_PIT:
2480 	case KVM_CAP_NOP_IO_DELAY:
2481 	case KVM_CAP_MP_STATE:
2482 	case KVM_CAP_SYNC_MMU:
2483 	case KVM_CAP_USER_NMI:
2484 	case KVM_CAP_REINJECT_CONTROL:
2485 	case KVM_CAP_IRQ_INJECT_STATUS:
2486 	case KVM_CAP_ASSIGN_DEV_IRQ:
2487 	case KVM_CAP_IRQFD:
2488 	case KVM_CAP_IOEVENTFD:
2489 	case KVM_CAP_PIT2:
2490 	case KVM_CAP_PIT_STATE2:
2491 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2492 	case KVM_CAP_XEN_HVM:
2493 	case KVM_CAP_ADJUST_CLOCK:
2494 	case KVM_CAP_VCPU_EVENTS:
2495 	case KVM_CAP_HYPERV:
2496 	case KVM_CAP_HYPERV_VAPIC:
2497 	case KVM_CAP_HYPERV_SPIN:
2498 	case KVM_CAP_PCI_SEGMENT:
2499 	case KVM_CAP_DEBUGREGS:
2500 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2501 	case KVM_CAP_XSAVE:
2502 	case KVM_CAP_ASYNC_PF:
2503 	case KVM_CAP_GET_TSC_KHZ:
2504 	case KVM_CAP_PCI_2_3:
2505 	case KVM_CAP_KVMCLOCK_CTRL:
2506 	case KVM_CAP_READONLY_MEM:
2507 	case KVM_CAP_IRQFD_RESAMPLE:
2508 		r = 1;
2509 		break;
2510 	case KVM_CAP_COALESCED_MMIO:
2511 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2512 		break;
2513 	case KVM_CAP_VAPIC:
2514 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2515 		break;
2516 	case KVM_CAP_NR_VCPUS:
2517 		r = KVM_SOFT_MAX_VCPUS;
2518 		break;
2519 	case KVM_CAP_MAX_VCPUS:
2520 		r = KVM_MAX_VCPUS;
2521 		break;
2522 	case KVM_CAP_NR_MEMSLOTS:
2523 		r = KVM_USER_MEM_SLOTS;
2524 		break;
2525 	case KVM_CAP_PV_MMU:	/* obsolete */
2526 		r = 0;
2527 		break;
2528 	case KVM_CAP_IOMMU:
2529 		r = iommu_present(&pci_bus_type);
2530 		break;
2531 	case KVM_CAP_MCE:
2532 		r = KVM_MAX_MCE_BANKS;
2533 		break;
2534 	case KVM_CAP_XCRS:
2535 		r = cpu_has_xsave;
2536 		break;
2537 	case KVM_CAP_TSC_CONTROL:
2538 		r = kvm_has_tsc_control;
2539 		break;
2540 	case KVM_CAP_TSC_DEADLINE_TIMER:
2541 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2542 		break;
2543 	default:
2544 		r = 0;
2545 		break;
2546 	}
2547 	return r;
2548 
2549 }
2550 
2551 long kvm_arch_dev_ioctl(struct file *filp,
2552 			unsigned int ioctl, unsigned long arg)
2553 {
2554 	void __user *argp = (void __user *)arg;
2555 	long r;
2556 
2557 	switch (ioctl) {
2558 	case KVM_GET_MSR_INDEX_LIST: {
2559 		struct kvm_msr_list __user *user_msr_list = argp;
2560 		struct kvm_msr_list msr_list;
2561 		unsigned n;
2562 
2563 		r = -EFAULT;
2564 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2565 			goto out;
2566 		n = msr_list.nmsrs;
2567 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2568 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2569 			goto out;
2570 		r = -E2BIG;
2571 		if (n < msr_list.nmsrs)
2572 			goto out;
2573 		r = -EFAULT;
2574 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2575 				 num_msrs_to_save * sizeof(u32)))
2576 			goto out;
2577 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2578 				 &emulated_msrs,
2579 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2580 			goto out;
2581 		r = 0;
2582 		break;
2583 	}
2584 	case KVM_GET_SUPPORTED_CPUID: {
2585 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2586 		struct kvm_cpuid2 cpuid;
2587 
2588 		r = -EFAULT;
2589 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2590 			goto out;
2591 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2592 						      cpuid_arg->entries);
2593 		if (r)
2594 			goto out;
2595 
2596 		r = -EFAULT;
2597 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2598 			goto out;
2599 		r = 0;
2600 		break;
2601 	}
2602 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2603 		u64 mce_cap;
2604 
2605 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2606 		r = -EFAULT;
2607 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2608 			goto out;
2609 		r = 0;
2610 		break;
2611 	}
2612 	default:
2613 		r = -EINVAL;
2614 	}
2615 out:
2616 	return r;
2617 }
2618 
2619 static void wbinvd_ipi(void *garbage)
2620 {
2621 	wbinvd();
2622 }
2623 
2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2625 {
2626 	return vcpu->kvm->arch.iommu_domain &&
2627 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2628 }
2629 
2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2631 {
2632 	/* Address WBINVD may be executed by guest */
2633 	if (need_emulate_wbinvd(vcpu)) {
2634 		if (kvm_x86_ops->has_wbinvd_exit())
2635 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2636 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2637 			smp_call_function_single(vcpu->cpu,
2638 					wbinvd_ipi, NULL, 1);
2639 	}
2640 
2641 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2642 
2643 	/* Apply any externally detected TSC adjustments (due to suspend) */
2644 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2645 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2646 		vcpu->arch.tsc_offset_adjustment = 0;
2647 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2648 	}
2649 
2650 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2651 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2652 				native_read_tsc() - vcpu->arch.last_host_tsc;
2653 		if (tsc_delta < 0)
2654 			mark_tsc_unstable("KVM discovered backwards TSC");
2655 		if (check_tsc_unstable()) {
2656 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2657 						vcpu->arch.last_guest_tsc);
2658 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2659 			vcpu->arch.tsc_catchup = 1;
2660 		}
2661 		/*
2662 		 * On a host with synchronized TSC, there is no need to update
2663 		 * kvmclock on vcpu->cpu migration
2664 		 */
2665 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2666 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2667 		if (vcpu->cpu != cpu)
2668 			kvm_migrate_timers(vcpu);
2669 		vcpu->cpu = cpu;
2670 	}
2671 
2672 	accumulate_steal_time(vcpu);
2673 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2674 }
2675 
2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2677 {
2678 	kvm_x86_ops->vcpu_put(vcpu);
2679 	kvm_put_guest_fpu(vcpu);
2680 	vcpu->arch.last_host_tsc = native_read_tsc();
2681 }
2682 
2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2684 				    struct kvm_lapic_state *s)
2685 {
2686 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2687 
2688 	return 0;
2689 }
2690 
2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2692 				    struct kvm_lapic_state *s)
2693 {
2694 	kvm_apic_post_state_restore(vcpu, s);
2695 	update_cr8_intercept(vcpu);
2696 
2697 	return 0;
2698 }
2699 
2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2701 				    struct kvm_interrupt *irq)
2702 {
2703 	if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2704 		return -EINVAL;
2705 	if (irqchip_in_kernel(vcpu->kvm))
2706 		return -ENXIO;
2707 
2708 	kvm_queue_interrupt(vcpu, irq->irq, false);
2709 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2710 
2711 	return 0;
2712 }
2713 
2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2715 {
2716 	kvm_inject_nmi(vcpu);
2717 
2718 	return 0;
2719 }
2720 
2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2722 					   struct kvm_tpr_access_ctl *tac)
2723 {
2724 	if (tac->flags)
2725 		return -EINVAL;
2726 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2727 	return 0;
2728 }
2729 
2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2731 					u64 mcg_cap)
2732 {
2733 	int r;
2734 	unsigned bank_num = mcg_cap & 0xff, bank;
2735 
2736 	r = -EINVAL;
2737 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2738 		goto out;
2739 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2740 		goto out;
2741 	r = 0;
2742 	vcpu->arch.mcg_cap = mcg_cap;
2743 	/* Init IA32_MCG_CTL to all 1s */
2744 	if (mcg_cap & MCG_CTL_P)
2745 		vcpu->arch.mcg_ctl = ~(u64)0;
2746 	/* Init IA32_MCi_CTL to all 1s */
2747 	for (bank = 0; bank < bank_num; bank++)
2748 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2749 out:
2750 	return r;
2751 }
2752 
2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2754 				      struct kvm_x86_mce *mce)
2755 {
2756 	u64 mcg_cap = vcpu->arch.mcg_cap;
2757 	unsigned bank_num = mcg_cap & 0xff;
2758 	u64 *banks = vcpu->arch.mce_banks;
2759 
2760 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2761 		return -EINVAL;
2762 	/*
2763 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764 	 * reporting is disabled
2765 	 */
2766 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2767 	    vcpu->arch.mcg_ctl != ~(u64)0)
2768 		return 0;
2769 	banks += 4 * mce->bank;
2770 	/*
2771 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772 	 * reporting is disabled for the bank
2773 	 */
2774 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2775 		return 0;
2776 	if (mce->status & MCI_STATUS_UC) {
2777 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2778 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2779 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2780 			return 0;
2781 		}
2782 		if (banks[1] & MCI_STATUS_VAL)
2783 			mce->status |= MCI_STATUS_OVER;
2784 		banks[2] = mce->addr;
2785 		banks[3] = mce->misc;
2786 		vcpu->arch.mcg_status = mce->mcg_status;
2787 		banks[1] = mce->status;
2788 		kvm_queue_exception(vcpu, MC_VECTOR);
2789 	} else if (!(banks[1] & MCI_STATUS_VAL)
2790 		   || !(banks[1] & MCI_STATUS_UC)) {
2791 		if (banks[1] & MCI_STATUS_VAL)
2792 			mce->status |= MCI_STATUS_OVER;
2793 		banks[2] = mce->addr;
2794 		banks[3] = mce->misc;
2795 		banks[1] = mce->status;
2796 	} else
2797 		banks[1] |= MCI_STATUS_OVER;
2798 	return 0;
2799 }
2800 
2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2802 					       struct kvm_vcpu_events *events)
2803 {
2804 	process_nmi(vcpu);
2805 	events->exception.injected =
2806 		vcpu->arch.exception.pending &&
2807 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2808 	events->exception.nr = vcpu->arch.exception.nr;
2809 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2810 	events->exception.pad = 0;
2811 	events->exception.error_code = vcpu->arch.exception.error_code;
2812 
2813 	events->interrupt.injected =
2814 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2815 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2816 	events->interrupt.soft = 0;
2817 	events->interrupt.shadow =
2818 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2819 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2820 
2821 	events->nmi.injected = vcpu->arch.nmi_injected;
2822 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2823 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2824 	events->nmi.pad = 0;
2825 
2826 	events->sipi_vector = vcpu->arch.sipi_vector;
2827 
2828 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2829 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830 			 | KVM_VCPUEVENT_VALID_SHADOW);
2831 	memset(&events->reserved, 0, sizeof(events->reserved));
2832 }
2833 
2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2835 					      struct kvm_vcpu_events *events)
2836 {
2837 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839 			      | KVM_VCPUEVENT_VALID_SHADOW))
2840 		return -EINVAL;
2841 
2842 	process_nmi(vcpu);
2843 	vcpu->arch.exception.pending = events->exception.injected;
2844 	vcpu->arch.exception.nr = events->exception.nr;
2845 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2846 	vcpu->arch.exception.error_code = events->exception.error_code;
2847 
2848 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2849 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2850 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2851 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2852 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2853 						  events->interrupt.shadow);
2854 
2855 	vcpu->arch.nmi_injected = events->nmi.injected;
2856 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2857 		vcpu->arch.nmi_pending = events->nmi.pending;
2858 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2859 
2860 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2861 		vcpu->arch.sipi_vector = events->sipi_vector;
2862 
2863 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2864 
2865 	return 0;
2866 }
2867 
2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2869 					     struct kvm_debugregs *dbgregs)
2870 {
2871 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2872 	dbgregs->dr6 = vcpu->arch.dr6;
2873 	dbgregs->dr7 = vcpu->arch.dr7;
2874 	dbgregs->flags = 0;
2875 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2876 }
2877 
2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2879 					    struct kvm_debugregs *dbgregs)
2880 {
2881 	if (dbgregs->flags)
2882 		return -EINVAL;
2883 
2884 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2885 	vcpu->arch.dr6 = dbgregs->dr6;
2886 	vcpu->arch.dr7 = dbgregs->dr7;
2887 
2888 	return 0;
2889 }
2890 
2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2892 					 struct kvm_xsave *guest_xsave)
2893 {
2894 	if (cpu_has_xsave)
2895 		memcpy(guest_xsave->region,
2896 			&vcpu->arch.guest_fpu.state->xsave,
2897 			xstate_size);
2898 	else {
2899 		memcpy(guest_xsave->region,
2900 			&vcpu->arch.guest_fpu.state->fxsave,
2901 			sizeof(struct i387_fxsave_struct));
2902 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2903 			XSTATE_FPSSE;
2904 	}
2905 }
2906 
2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2908 					struct kvm_xsave *guest_xsave)
2909 {
2910 	u64 xstate_bv =
2911 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2912 
2913 	if (cpu_has_xsave)
2914 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2915 			guest_xsave->region, xstate_size);
2916 	else {
2917 		if (xstate_bv & ~XSTATE_FPSSE)
2918 			return -EINVAL;
2919 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2920 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2921 	}
2922 	return 0;
2923 }
2924 
2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2926 					struct kvm_xcrs *guest_xcrs)
2927 {
2928 	if (!cpu_has_xsave) {
2929 		guest_xcrs->nr_xcrs = 0;
2930 		return;
2931 	}
2932 
2933 	guest_xcrs->nr_xcrs = 1;
2934 	guest_xcrs->flags = 0;
2935 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2936 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2937 }
2938 
2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2940 				       struct kvm_xcrs *guest_xcrs)
2941 {
2942 	int i, r = 0;
2943 
2944 	if (!cpu_has_xsave)
2945 		return -EINVAL;
2946 
2947 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2948 		return -EINVAL;
2949 
2950 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2951 		/* Only support XCR0 currently */
2952 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2953 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2954 				guest_xcrs->xcrs[0].value);
2955 			break;
2956 		}
2957 	if (r)
2958 		r = -EINVAL;
2959 	return r;
2960 }
2961 
2962 /*
2963  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964  * stopped by the hypervisor.  This function will be called from the host only.
2965  * EINVAL is returned when the host attempts to set the flag for a guest that
2966  * does not support pv clocks.
2967  */
2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2969 {
2970 	if (!vcpu->arch.time_page)
2971 		return -EINVAL;
2972 	vcpu->arch.pvclock_set_guest_stopped_request = true;
2973 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974 	return 0;
2975 }
2976 
2977 long kvm_arch_vcpu_ioctl(struct file *filp,
2978 			 unsigned int ioctl, unsigned long arg)
2979 {
2980 	struct kvm_vcpu *vcpu = filp->private_data;
2981 	void __user *argp = (void __user *)arg;
2982 	int r;
2983 	union {
2984 		struct kvm_lapic_state *lapic;
2985 		struct kvm_xsave *xsave;
2986 		struct kvm_xcrs *xcrs;
2987 		void *buffer;
2988 	} u;
2989 
2990 	u.buffer = NULL;
2991 	switch (ioctl) {
2992 	case KVM_GET_LAPIC: {
2993 		r = -EINVAL;
2994 		if (!vcpu->arch.apic)
2995 			goto out;
2996 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2997 
2998 		r = -ENOMEM;
2999 		if (!u.lapic)
3000 			goto out;
3001 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3002 		if (r)
3003 			goto out;
3004 		r = -EFAULT;
3005 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3006 			goto out;
3007 		r = 0;
3008 		break;
3009 	}
3010 	case KVM_SET_LAPIC: {
3011 		r = -EINVAL;
3012 		if (!vcpu->arch.apic)
3013 			goto out;
3014 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3015 		if (IS_ERR(u.lapic))
3016 			return PTR_ERR(u.lapic);
3017 
3018 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3019 		break;
3020 	}
3021 	case KVM_INTERRUPT: {
3022 		struct kvm_interrupt irq;
3023 
3024 		r = -EFAULT;
3025 		if (copy_from_user(&irq, argp, sizeof irq))
3026 			goto out;
3027 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3028 		break;
3029 	}
3030 	case KVM_NMI: {
3031 		r = kvm_vcpu_ioctl_nmi(vcpu);
3032 		break;
3033 	}
3034 	case KVM_SET_CPUID: {
3035 		struct kvm_cpuid __user *cpuid_arg = argp;
3036 		struct kvm_cpuid cpuid;
3037 
3038 		r = -EFAULT;
3039 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3040 			goto out;
3041 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3042 		break;
3043 	}
3044 	case KVM_SET_CPUID2: {
3045 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3046 		struct kvm_cpuid2 cpuid;
3047 
3048 		r = -EFAULT;
3049 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050 			goto out;
3051 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3052 					      cpuid_arg->entries);
3053 		break;
3054 	}
3055 	case KVM_GET_CPUID2: {
3056 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3057 		struct kvm_cpuid2 cpuid;
3058 
3059 		r = -EFAULT;
3060 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3061 			goto out;
3062 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3063 					      cpuid_arg->entries);
3064 		if (r)
3065 			goto out;
3066 		r = -EFAULT;
3067 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3068 			goto out;
3069 		r = 0;
3070 		break;
3071 	}
3072 	case KVM_GET_MSRS:
3073 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3074 		break;
3075 	case KVM_SET_MSRS:
3076 		r = msr_io(vcpu, argp, do_set_msr, 0);
3077 		break;
3078 	case KVM_TPR_ACCESS_REPORTING: {
3079 		struct kvm_tpr_access_ctl tac;
3080 
3081 		r = -EFAULT;
3082 		if (copy_from_user(&tac, argp, sizeof tac))
3083 			goto out;
3084 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3085 		if (r)
3086 			goto out;
3087 		r = -EFAULT;
3088 		if (copy_to_user(argp, &tac, sizeof tac))
3089 			goto out;
3090 		r = 0;
3091 		break;
3092 	};
3093 	case KVM_SET_VAPIC_ADDR: {
3094 		struct kvm_vapic_addr va;
3095 
3096 		r = -EINVAL;
3097 		if (!irqchip_in_kernel(vcpu->kvm))
3098 			goto out;
3099 		r = -EFAULT;
3100 		if (copy_from_user(&va, argp, sizeof va))
3101 			goto out;
3102 		r = 0;
3103 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3104 		break;
3105 	}
3106 	case KVM_X86_SETUP_MCE: {
3107 		u64 mcg_cap;
3108 
3109 		r = -EFAULT;
3110 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3111 			goto out;
3112 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3113 		break;
3114 	}
3115 	case KVM_X86_SET_MCE: {
3116 		struct kvm_x86_mce mce;
3117 
3118 		r = -EFAULT;
3119 		if (copy_from_user(&mce, argp, sizeof mce))
3120 			goto out;
3121 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3122 		break;
3123 	}
3124 	case KVM_GET_VCPU_EVENTS: {
3125 		struct kvm_vcpu_events events;
3126 
3127 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3128 
3129 		r = -EFAULT;
3130 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3131 			break;
3132 		r = 0;
3133 		break;
3134 	}
3135 	case KVM_SET_VCPU_EVENTS: {
3136 		struct kvm_vcpu_events events;
3137 
3138 		r = -EFAULT;
3139 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3140 			break;
3141 
3142 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3143 		break;
3144 	}
3145 	case KVM_GET_DEBUGREGS: {
3146 		struct kvm_debugregs dbgregs;
3147 
3148 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3149 
3150 		r = -EFAULT;
3151 		if (copy_to_user(argp, &dbgregs,
3152 				 sizeof(struct kvm_debugregs)))
3153 			break;
3154 		r = 0;
3155 		break;
3156 	}
3157 	case KVM_SET_DEBUGREGS: {
3158 		struct kvm_debugregs dbgregs;
3159 
3160 		r = -EFAULT;
3161 		if (copy_from_user(&dbgregs, argp,
3162 				   sizeof(struct kvm_debugregs)))
3163 			break;
3164 
3165 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3166 		break;
3167 	}
3168 	case KVM_GET_XSAVE: {
3169 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3170 		r = -ENOMEM;
3171 		if (!u.xsave)
3172 			break;
3173 
3174 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3175 
3176 		r = -EFAULT;
3177 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3178 			break;
3179 		r = 0;
3180 		break;
3181 	}
3182 	case KVM_SET_XSAVE: {
3183 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3184 		if (IS_ERR(u.xsave))
3185 			return PTR_ERR(u.xsave);
3186 
3187 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3188 		break;
3189 	}
3190 	case KVM_GET_XCRS: {
3191 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3192 		r = -ENOMEM;
3193 		if (!u.xcrs)
3194 			break;
3195 
3196 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3197 
3198 		r = -EFAULT;
3199 		if (copy_to_user(argp, u.xcrs,
3200 				 sizeof(struct kvm_xcrs)))
3201 			break;
3202 		r = 0;
3203 		break;
3204 	}
3205 	case KVM_SET_XCRS: {
3206 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3207 		if (IS_ERR(u.xcrs))
3208 			return PTR_ERR(u.xcrs);
3209 
3210 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3211 		break;
3212 	}
3213 	case KVM_SET_TSC_KHZ: {
3214 		u32 user_tsc_khz;
3215 
3216 		r = -EINVAL;
3217 		user_tsc_khz = (u32)arg;
3218 
3219 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3220 			goto out;
3221 
3222 		if (user_tsc_khz == 0)
3223 			user_tsc_khz = tsc_khz;
3224 
3225 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3226 
3227 		r = 0;
3228 		goto out;
3229 	}
3230 	case KVM_GET_TSC_KHZ: {
3231 		r = vcpu->arch.virtual_tsc_khz;
3232 		goto out;
3233 	}
3234 	case KVM_KVMCLOCK_CTRL: {
3235 		r = kvm_set_guest_paused(vcpu);
3236 		goto out;
3237 	}
3238 	default:
3239 		r = -EINVAL;
3240 	}
3241 out:
3242 	kfree(u.buffer);
3243 	return r;
3244 }
3245 
3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3247 {
3248 	return VM_FAULT_SIGBUS;
3249 }
3250 
3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3252 {
3253 	int ret;
3254 
3255 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3256 		return -EINVAL;
3257 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3258 	return ret;
3259 }
3260 
3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3262 					      u64 ident_addr)
3263 {
3264 	kvm->arch.ept_identity_map_addr = ident_addr;
3265 	return 0;
3266 }
3267 
3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3269 					  u32 kvm_nr_mmu_pages)
3270 {
3271 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3272 		return -EINVAL;
3273 
3274 	mutex_lock(&kvm->slots_lock);
3275 
3276 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3277 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3278 
3279 	mutex_unlock(&kvm->slots_lock);
3280 	return 0;
3281 }
3282 
3283 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3284 {
3285 	return kvm->arch.n_max_mmu_pages;
3286 }
3287 
3288 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3289 {
3290 	int r;
3291 
3292 	r = 0;
3293 	switch (chip->chip_id) {
3294 	case KVM_IRQCHIP_PIC_MASTER:
3295 		memcpy(&chip->chip.pic,
3296 			&pic_irqchip(kvm)->pics[0],
3297 			sizeof(struct kvm_pic_state));
3298 		break;
3299 	case KVM_IRQCHIP_PIC_SLAVE:
3300 		memcpy(&chip->chip.pic,
3301 			&pic_irqchip(kvm)->pics[1],
3302 			sizeof(struct kvm_pic_state));
3303 		break;
3304 	case KVM_IRQCHIP_IOAPIC:
3305 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3306 		break;
3307 	default:
3308 		r = -EINVAL;
3309 		break;
3310 	}
3311 	return r;
3312 }
3313 
3314 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3315 {
3316 	int r;
3317 
3318 	r = 0;
3319 	switch (chip->chip_id) {
3320 	case KVM_IRQCHIP_PIC_MASTER:
3321 		spin_lock(&pic_irqchip(kvm)->lock);
3322 		memcpy(&pic_irqchip(kvm)->pics[0],
3323 			&chip->chip.pic,
3324 			sizeof(struct kvm_pic_state));
3325 		spin_unlock(&pic_irqchip(kvm)->lock);
3326 		break;
3327 	case KVM_IRQCHIP_PIC_SLAVE:
3328 		spin_lock(&pic_irqchip(kvm)->lock);
3329 		memcpy(&pic_irqchip(kvm)->pics[1],
3330 			&chip->chip.pic,
3331 			sizeof(struct kvm_pic_state));
3332 		spin_unlock(&pic_irqchip(kvm)->lock);
3333 		break;
3334 	case KVM_IRQCHIP_IOAPIC:
3335 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3336 		break;
3337 	default:
3338 		r = -EINVAL;
3339 		break;
3340 	}
3341 	kvm_pic_update_irq(pic_irqchip(kvm));
3342 	return r;
3343 }
3344 
3345 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3346 {
3347 	int r = 0;
3348 
3349 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3350 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3351 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3352 	return r;
3353 }
3354 
3355 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3356 {
3357 	int r = 0;
3358 
3359 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3360 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3361 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3362 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3363 	return r;
3364 }
3365 
3366 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3367 {
3368 	int r = 0;
3369 
3370 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3371 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3372 		sizeof(ps->channels));
3373 	ps->flags = kvm->arch.vpit->pit_state.flags;
3374 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3375 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3376 	return r;
3377 }
3378 
3379 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3380 {
3381 	int r = 0, start = 0;
3382 	u32 prev_legacy, cur_legacy;
3383 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3384 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3385 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3386 	if (!prev_legacy && cur_legacy)
3387 		start = 1;
3388 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3389 	       sizeof(kvm->arch.vpit->pit_state.channels));
3390 	kvm->arch.vpit->pit_state.flags = ps->flags;
3391 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3392 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3393 	return r;
3394 }
3395 
3396 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3397 				 struct kvm_reinject_control *control)
3398 {
3399 	if (!kvm->arch.vpit)
3400 		return -ENXIO;
3401 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3402 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3403 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3404 	return 0;
3405 }
3406 
3407 /**
3408  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3409  * @kvm: kvm instance
3410  * @log: slot id and address to which we copy the log
3411  *
3412  * We need to keep it in mind that VCPU threads can write to the bitmap
3413  * concurrently.  So, to avoid losing data, we keep the following order for
3414  * each bit:
3415  *
3416  *   1. Take a snapshot of the bit and clear it if needed.
3417  *   2. Write protect the corresponding page.
3418  *   3. Flush TLB's if needed.
3419  *   4. Copy the snapshot to the userspace.
3420  *
3421  * Between 2 and 3, the guest may write to the page using the remaining TLB
3422  * entry.  This is not a problem because the page will be reported dirty at
3423  * step 4 using the snapshot taken before and step 3 ensures that successive
3424  * writes will be logged for the next call.
3425  */
3426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3427 {
3428 	int r;
3429 	struct kvm_memory_slot *memslot;
3430 	unsigned long n, i;
3431 	unsigned long *dirty_bitmap;
3432 	unsigned long *dirty_bitmap_buffer;
3433 	bool is_dirty = false;
3434 
3435 	mutex_lock(&kvm->slots_lock);
3436 
3437 	r = -EINVAL;
3438 	if (log->slot >= KVM_USER_MEM_SLOTS)
3439 		goto out;
3440 
3441 	memslot = id_to_memslot(kvm->memslots, log->slot);
3442 
3443 	dirty_bitmap = memslot->dirty_bitmap;
3444 	r = -ENOENT;
3445 	if (!dirty_bitmap)
3446 		goto out;
3447 
3448 	n = kvm_dirty_bitmap_bytes(memslot);
3449 
3450 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3451 	memset(dirty_bitmap_buffer, 0, n);
3452 
3453 	spin_lock(&kvm->mmu_lock);
3454 
3455 	for (i = 0; i < n / sizeof(long); i++) {
3456 		unsigned long mask;
3457 		gfn_t offset;
3458 
3459 		if (!dirty_bitmap[i])
3460 			continue;
3461 
3462 		is_dirty = true;
3463 
3464 		mask = xchg(&dirty_bitmap[i], 0);
3465 		dirty_bitmap_buffer[i] = mask;
3466 
3467 		offset = i * BITS_PER_LONG;
3468 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3469 	}
3470 	if (is_dirty)
3471 		kvm_flush_remote_tlbs(kvm);
3472 
3473 	spin_unlock(&kvm->mmu_lock);
3474 
3475 	r = -EFAULT;
3476 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3477 		goto out;
3478 
3479 	r = 0;
3480 out:
3481 	mutex_unlock(&kvm->slots_lock);
3482 	return r;
3483 }
3484 
3485 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3486 {
3487 	if (!irqchip_in_kernel(kvm))
3488 		return -ENXIO;
3489 
3490 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3491 					irq_event->irq, irq_event->level);
3492 	return 0;
3493 }
3494 
3495 long kvm_arch_vm_ioctl(struct file *filp,
3496 		       unsigned int ioctl, unsigned long arg)
3497 {
3498 	struct kvm *kvm = filp->private_data;
3499 	void __user *argp = (void __user *)arg;
3500 	int r = -ENOTTY;
3501 	/*
3502 	 * This union makes it completely explicit to gcc-3.x
3503 	 * that these two variables' stack usage should be
3504 	 * combined, not added together.
3505 	 */
3506 	union {
3507 		struct kvm_pit_state ps;
3508 		struct kvm_pit_state2 ps2;
3509 		struct kvm_pit_config pit_config;
3510 	} u;
3511 
3512 	switch (ioctl) {
3513 	case KVM_SET_TSS_ADDR:
3514 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3515 		break;
3516 	case KVM_SET_IDENTITY_MAP_ADDR: {
3517 		u64 ident_addr;
3518 
3519 		r = -EFAULT;
3520 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3521 			goto out;
3522 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3523 		break;
3524 	}
3525 	case KVM_SET_NR_MMU_PAGES:
3526 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3527 		break;
3528 	case KVM_GET_NR_MMU_PAGES:
3529 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3530 		break;
3531 	case KVM_CREATE_IRQCHIP: {
3532 		struct kvm_pic *vpic;
3533 
3534 		mutex_lock(&kvm->lock);
3535 		r = -EEXIST;
3536 		if (kvm->arch.vpic)
3537 			goto create_irqchip_unlock;
3538 		r = -EINVAL;
3539 		if (atomic_read(&kvm->online_vcpus))
3540 			goto create_irqchip_unlock;
3541 		r = -ENOMEM;
3542 		vpic = kvm_create_pic(kvm);
3543 		if (vpic) {
3544 			r = kvm_ioapic_init(kvm);
3545 			if (r) {
3546 				mutex_lock(&kvm->slots_lock);
3547 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3548 							  &vpic->dev_master);
3549 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550 							  &vpic->dev_slave);
3551 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552 							  &vpic->dev_eclr);
3553 				mutex_unlock(&kvm->slots_lock);
3554 				kfree(vpic);
3555 				goto create_irqchip_unlock;
3556 			}
3557 		} else
3558 			goto create_irqchip_unlock;
3559 		smp_wmb();
3560 		kvm->arch.vpic = vpic;
3561 		smp_wmb();
3562 		r = kvm_setup_default_irq_routing(kvm);
3563 		if (r) {
3564 			mutex_lock(&kvm->slots_lock);
3565 			mutex_lock(&kvm->irq_lock);
3566 			kvm_ioapic_destroy(kvm);
3567 			kvm_destroy_pic(kvm);
3568 			mutex_unlock(&kvm->irq_lock);
3569 			mutex_unlock(&kvm->slots_lock);
3570 		}
3571 	create_irqchip_unlock:
3572 		mutex_unlock(&kvm->lock);
3573 		break;
3574 	}
3575 	case KVM_CREATE_PIT:
3576 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3577 		goto create_pit;
3578 	case KVM_CREATE_PIT2:
3579 		r = -EFAULT;
3580 		if (copy_from_user(&u.pit_config, argp,
3581 				   sizeof(struct kvm_pit_config)))
3582 			goto out;
3583 	create_pit:
3584 		mutex_lock(&kvm->slots_lock);
3585 		r = -EEXIST;
3586 		if (kvm->arch.vpit)
3587 			goto create_pit_unlock;
3588 		r = -ENOMEM;
3589 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3590 		if (kvm->arch.vpit)
3591 			r = 0;
3592 	create_pit_unlock:
3593 		mutex_unlock(&kvm->slots_lock);
3594 		break;
3595 	case KVM_GET_IRQCHIP: {
3596 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3597 		struct kvm_irqchip *chip;
3598 
3599 		chip = memdup_user(argp, sizeof(*chip));
3600 		if (IS_ERR(chip)) {
3601 			r = PTR_ERR(chip);
3602 			goto out;
3603 		}
3604 
3605 		r = -ENXIO;
3606 		if (!irqchip_in_kernel(kvm))
3607 			goto get_irqchip_out;
3608 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3609 		if (r)
3610 			goto get_irqchip_out;
3611 		r = -EFAULT;
3612 		if (copy_to_user(argp, chip, sizeof *chip))
3613 			goto get_irqchip_out;
3614 		r = 0;
3615 	get_irqchip_out:
3616 		kfree(chip);
3617 		break;
3618 	}
3619 	case KVM_SET_IRQCHIP: {
3620 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3621 		struct kvm_irqchip *chip;
3622 
3623 		chip = memdup_user(argp, sizeof(*chip));
3624 		if (IS_ERR(chip)) {
3625 			r = PTR_ERR(chip);
3626 			goto out;
3627 		}
3628 
3629 		r = -ENXIO;
3630 		if (!irqchip_in_kernel(kvm))
3631 			goto set_irqchip_out;
3632 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3633 		if (r)
3634 			goto set_irqchip_out;
3635 		r = 0;
3636 	set_irqchip_out:
3637 		kfree(chip);
3638 		break;
3639 	}
3640 	case KVM_GET_PIT: {
3641 		r = -EFAULT;
3642 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3643 			goto out;
3644 		r = -ENXIO;
3645 		if (!kvm->arch.vpit)
3646 			goto out;
3647 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3648 		if (r)
3649 			goto out;
3650 		r = -EFAULT;
3651 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3652 			goto out;
3653 		r = 0;
3654 		break;
3655 	}
3656 	case KVM_SET_PIT: {
3657 		r = -EFAULT;
3658 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3659 			goto out;
3660 		r = -ENXIO;
3661 		if (!kvm->arch.vpit)
3662 			goto out;
3663 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3664 		break;
3665 	}
3666 	case KVM_GET_PIT2: {
3667 		r = -ENXIO;
3668 		if (!kvm->arch.vpit)
3669 			goto out;
3670 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3671 		if (r)
3672 			goto out;
3673 		r = -EFAULT;
3674 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3675 			goto out;
3676 		r = 0;
3677 		break;
3678 	}
3679 	case KVM_SET_PIT2: {
3680 		r = -EFAULT;
3681 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3682 			goto out;
3683 		r = -ENXIO;
3684 		if (!kvm->arch.vpit)
3685 			goto out;
3686 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3687 		break;
3688 	}
3689 	case KVM_REINJECT_CONTROL: {
3690 		struct kvm_reinject_control control;
3691 		r =  -EFAULT;
3692 		if (copy_from_user(&control, argp, sizeof(control)))
3693 			goto out;
3694 		r = kvm_vm_ioctl_reinject(kvm, &control);
3695 		break;
3696 	}
3697 	case KVM_XEN_HVM_CONFIG: {
3698 		r = -EFAULT;
3699 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3700 				   sizeof(struct kvm_xen_hvm_config)))
3701 			goto out;
3702 		r = -EINVAL;
3703 		if (kvm->arch.xen_hvm_config.flags)
3704 			goto out;
3705 		r = 0;
3706 		break;
3707 	}
3708 	case KVM_SET_CLOCK: {
3709 		struct kvm_clock_data user_ns;
3710 		u64 now_ns;
3711 		s64 delta;
3712 
3713 		r = -EFAULT;
3714 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3715 			goto out;
3716 
3717 		r = -EINVAL;
3718 		if (user_ns.flags)
3719 			goto out;
3720 
3721 		r = 0;
3722 		local_irq_disable();
3723 		now_ns = get_kernel_ns();
3724 		delta = user_ns.clock - now_ns;
3725 		local_irq_enable();
3726 		kvm->arch.kvmclock_offset = delta;
3727 		break;
3728 	}
3729 	case KVM_GET_CLOCK: {
3730 		struct kvm_clock_data user_ns;
3731 		u64 now_ns;
3732 
3733 		local_irq_disable();
3734 		now_ns = get_kernel_ns();
3735 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3736 		local_irq_enable();
3737 		user_ns.flags = 0;
3738 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3739 
3740 		r = -EFAULT;
3741 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3742 			goto out;
3743 		r = 0;
3744 		break;
3745 	}
3746 
3747 	default:
3748 		;
3749 	}
3750 out:
3751 	return r;
3752 }
3753 
3754 static void kvm_init_msr_list(void)
3755 {
3756 	u32 dummy[2];
3757 	unsigned i, j;
3758 
3759 	/* skip the first msrs in the list. KVM-specific */
3760 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3761 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3762 			continue;
3763 		if (j < i)
3764 			msrs_to_save[j] = msrs_to_save[i];
3765 		j++;
3766 	}
3767 	num_msrs_to_save = j;
3768 }
3769 
3770 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3771 			   const void *v)
3772 {
3773 	int handled = 0;
3774 	int n;
3775 
3776 	do {
3777 		n = min(len, 8);
3778 		if (!(vcpu->arch.apic &&
3779 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3780 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3781 			break;
3782 		handled += n;
3783 		addr += n;
3784 		len -= n;
3785 		v += n;
3786 	} while (len);
3787 
3788 	return handled;
3789 }
3790 
3791 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3792 {
3793 	int handled = 0;
3794 	int n;
3795 
3796 	do {
3797 		n = min(len, 8);
3798 		if (!(vcpu->arch.apic &&
3799 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3800 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3801 			break;
3802 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3803 		handled += n;
3804 		addr += n;
3805 		len -= n;
3806 		v += n;
3807 	} while (len);
3808 
3809 	return handled;
3810 }
3811 
3812 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3813 			struct kvm_segment *var, int seg)
3814 {
3815 	kvm_x86_ops->set_segment(vcpu, var, seg);
3816 }
3817 
3818 void kvm_get_segment(struct kvm_vcpu *vcpu,
3819 		     struct kvm_segment *var, int seg)
3820 {
3821 	kvm_x86_ops->get_segment(vcpu, var, seg);
3822 }
3823 
3824 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3825 {
3826 	gpa_t t_gpa;
3827 	struct x86_exception exception;
3828 
3829 	BUG_ON(!mmu_is_nested(vcpu));
3830 
3831 	/* NPT walks are always user-walks */
3832 	access |= PFERR_USER_MASK;
3833 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3834 
3835 	return t_gpa;
3836 }
3837 
3838 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3839 			      struct x86_exception *exception)
3840 {
3841 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3842 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3843 }
3844 
3845  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3846 				struct x86_exception *exception)
3847 {
3848 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3849 	access |= PFERR_FETCH_MASK;
3850 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3851 }
3852 
3853 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3854 			       struct x86_exception *exception)
3855 {
3856 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3857 	access |= PFERR_WRITE_MASK;
3858 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3859 }
3860 
3861 /* uses this to access any guest's mapped memory without checking CPL */
3862 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3863 				struct x86_exception *exception)
3864 {
3865 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3866 }
3867 
3868 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3869 				      struct kvm_vcpu *vcpu, u32 access,
3870 				      struct x86_exception *exception)
3871 {
3872 	void *data = val;
3873 	int r = X86EMUL_CONTINUE;
3874 
3875 	while (bytes) {
3876 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3877 							    exception);
3878 		unsigned offset = addr & (PAGE_SIZE-1);
3879 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3880 		int ret;
3881 
3882 		if (gpa == UNMAPPED_GVA)
3883 			return X86EMUL_PROPAGATE_FAULT;
3884 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3885 		if (ret < 0) {
3886 			r = X86EMUL_IO_NEEDED;
3887 			goto out;
3888 		}
3889 
3890 		bytes -= toread;
3891 		data += toread;
3892 		addr += toread;
3893 	}
3894 out:
3895 	return r;
3896 }
3897 
3898 /* used for instruction fetching */
3899 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3900 				gva_t addr, void *val, unsigned int bytes,
3901 				struct x86_exception *exception)
3902 {
3903 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3904 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3905 
3906 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3907 					  access | PFERR_FETCH_MASK,
3908 					  exception);
3909 }
3910 
3911 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3912 			       gva_t addr, void *val, unsigned int bytes,
3913 			       struct x86_exception *exception)
3914 {
3915 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3916 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3917 
3918 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3919 					  exception);
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3922 
3923 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3924 				      gva_t addr, void *val, unsigned int bytes,
3925 				      struct x86_exception *exception)
3926 {
3927 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3928 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3929 }
3930 
3931 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3932 				       gva_t addr, void *val,
3933 				       unsigned int bytes,
3934 				       struct x86_exception *exception)
3935 {
3936 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3937 	void *data = val;
3938 	int r = X86EMUL_CONTINUE;
3939 
3940 	while (bytes) {
3941 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3942 							     PFERR_WRITE_MASK,
3943 							     exception);
3944 		unsigned offset = addr & (PAGE_SIZE-1);
3945 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3946 		int ret;
3947 
3948 		if (gpa == UNMAPPED_GVA)
3949 			return X86EMUL_PROPAGATE_FAULT;
3950 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3951 		if (ret < 0) {
3952 			r = X86EMUL_IO_NEEDED;
3953 			goto out;
3954 		}
3955 
3956 		bytes -= towrite;
3957 		data += towrite;
3958 		addr += towrite;
3959 	}
3960 out:
3961 	return r;
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3964 
3965 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3966 				gpa_t *gpa, struct x86_exception *exception,
3967 				bool write)
3968 {
3969 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3970 		| (write ? PFERR_WRITE_MASK : 0);
3971 
3972 	if (vcpu_match_mmio_gva(vcpu, gva)
3973 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3974 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3975 					(gva & (PAGE_SIZE - 1));
3976 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3977 		return 1;
3978 	}
3979 
3980 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3981 
3982 	if (*gpa == UNMAPPED_GVA)
3983 		return -1;
3984 
3985 	/* For APIC access vmexit */
3986 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3987 		return 1;
3988 
3989 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3990 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3991 		return 1;
3992 	}
3993 
3994 	return 0;
3995 }
3996 
3997 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3998 			const void *val, int bytes)
3999 {
4000 	int ret;
4001 
4002 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4003 	if (ret < 0)
4004 		return 0;
4005 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4006 	return 1;
4007 }
4008 
4009 struct read_write_emulator_ops {
4010 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4011 				  int bytes);
4012 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4013 				  void *val, int bytes);
4014 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015 			       int bytes, void *val);
4016 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017 				    void *val, int bytes);
4018 	bool write;
4019 };
4020 
4021 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4022 {
4023 	if (vcpu->mmio_read_completed) {
4024 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4025 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4026 		vcpu->mmio_read_completed = 0;
4027 		return 1;
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4034 			void *val, int bytes)
4035 {
4036 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4037 }
4038 
4039 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4040 			 void *val, int bytes)
4041 {
4042 	return emulator_write_phys(vcpu, gpa, val, bytes);
4043 }
4044 
4045 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4046 {
4047 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4048 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4049 }
4050 
4051 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4052 			  void *val, int bytes)
4053 {
4054 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4055 	return X86EMUL_IO_NEEDED;
4056 }
4057 
4058 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4059 			   void *val, int bytes)
4060 {
4061 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4062 
4063 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4064 	return X86EMUL_CONTINUE;
4065 }
4066 
4067 static const struct read_write_emulator_ops read_emultor = {
4068 	.read_write_prepare = read_prepare,
4069 	.read_write_emulate = read_emulate,
4070 	.read_write_mmio = vcpu_mmio_read,
4071 	.read_write_exit_mmio = read_exit_mmio,
4072 };
4073 
4074 static const struct read_write_emulator_ops write_emultor = {
4075 	.read_write_emulate = write_emulate,
4076 	.read_write_mmio = write_mmio,
4077 	.read_write_exit_mmio = write_exit_mmio,
4078 	.write = true,
4079 };
4080 
4081 static int emulator_read_write_onepage(unsigned long addr, void *val,
4082 				       unsigned int bytes,
4083 				       struct x86_exception *exception,
4084 				       struct kvm_vcpu *vcpu,
4085 				       const struct read_write_emulator_ops *ops)
4086 {
4087 	gpa_t gpa;
4088 	int handled, ret;
4089 	bool write = ops->write;
4090 	struct kvm_mmio_fragment *frag;
4091 
4092 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4093 
4094 	if (ret < 0)
4095 		return X86EMUL_PROPAGATE_FAULT;
4096 
4097 	/* For APIC access vmexit */
4098 	if (ret)
4099 		goto mmio;
4100 
4101 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4102 		return X86EMUL_CONTINUE;
4103 
4104 mmio:
4105 	/*
4106 	 * Is this MMIO handled locally?
4107 	 */
4108 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4109 	if (handled == bytes)
4110 		return X86EMUL_CONTINUE;
4111 
4112 	gpa += handled;
4113 	bytes -= handled;
4114 	val += handled;
4115 
4116 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4117 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4118 	frag->gpa = gpa;
4119 	frag->data = val;
4120 	frag->len = bytes;
4121 	return X86EMUL_CONTINUE;
4122 }
4123 
4124 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4125 			void *val, unsigned int bytes,
4126 			struct x86_exception *exception,
4127 			const struct read_write_emulator_ops *ops)
4128 {
4129 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4130 	gpa_t gpa;
4131 	int rc;
4132 
4133 	if (ops->read_write_prepare &&
4134 		  ops->read_write_prepare(vcpu, val, bytes))
4135 		return X86EMUL_CONTINUE;
4136 
4137 	vcpu->mmio_nr_fragments = 0;
4138 
4139 	/* Crossing a page boundary? */
4140 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4141 		int now;
4142 
4143 		now = -addr & ~PAGE_MASK;
4144 		rc = emulator_read_write_onepage(addr, val, now, exception,
4145 						 vcpu, ops);
4146 
4147 		if (rc != X86EMUL_CONTINUE)
4148 			return rc;
4149 		addr += now;
4150 		val += now;
4151 		bytes -= now;
4152 	}
4153 
4154 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4155 					 vcpu, ops);
4156 	if (rc != X86EMUL_CONTINUE)
4157 		return rc;
4158 
4159 	if (!vcpu->mmio_nr_fragments)
4160 		return rc;
4161 
4162 	gpa = vcpu->mmio_fragments[0].gpa;
4163 
4164 	vcpu->mmio_needed = 1;
4165 	vcpu->mmio_cur_fragment = 0;
4166 
4167 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4168 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4169 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4170 	vcpu->run->mmio.phys_addr = gpa;
4171 
4172 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4173 }
4174 
4175 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4176 				  unsigned long addr,
4177 				  void *val,
4178 				  unsigned int bytes,
4179 				  struct x86_exception *exception)
4180 {
4181 	return emulator_read_write(ctxt, addr, val, bytes,
4182 				   exception, &read_emultor);
4183 }
4184 
4185 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4186 			    unsigned long addr,
4187 			    const void *val,
4188 			    unsigned int bytes,
4189 			    struct x86_exception *exception)
4190 {
4191 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4192 				   exception, &write_emultor);
4193 }
4194 
4195 #define CMPXCHG_TYPE(t, ptr, old, new) \
4196 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4197 
4198 #ifdef CONFIG_X86_64
4199 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4200 #else
4201 #  define CMPXCHG64(ptr, old, new) \
4202 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4203 #endif
4204 
4205 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4206 				     unsigned long addr,
4207 				     const void *old,
4208 				     const void *new,
4209 				     unsigned int bytes,
4210 				     struct x86_exception *exception)
4211 {
4212 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4213 	gpa_t gpa;
4214 	struct page *page;
4215 	char *kaddr;
4216 	bool exchanged;
4217 
4218 	/* guests cmpxchg8b have to be emulated atomically */
4219 	if (bytes > 8 || (bytes & (bytes - 1)))
4220 		goto emul_write;
4221 
4222 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4223 
4224 	if (gpa == UNMAPPED_GVA ||
4225 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4226 		goto emul_write;
4227 
4228 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4229 		goto emul_write;
4230 
4231 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4232 	if (is_error_page(page))
4233 		goto emul_write;
4234 
4235 	kaddr = kmap_atomic(page);
4236 	kaddr += offset_in_page(gpa);
4237 	switch (bytes) {
4238 	case 1:
4239 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4240 		break;
4241 	case 2:
4242 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4243 		break;
4244 	case 4:
4245 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4246 		break;
4247 	case 8:
4248 		exchanged = CMPXCHG64(kaddr, old, new);
4249 		break;
4250 	default:
4251 		BUG();
4252 	}
4253 	kunmap_atomic(kaddr);
4254 	kvm_release_page_dirty(page);
4255 
4256 	if (!exchanged)
4257 		return X86EMUL_CMPXCHG_FAILED;
4258 
4259 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4260 
4261 	return X86EMUL_CONTINUE;
4262 
4263 emul_write:
4264 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4265 
4266 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4267 }
4268 
4269 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4270 {
4271 	/* TODO: String I/O for in kernel device */
4272 	int r;
4273 
4274 	if (vcpu->arch.pio.in)
4275 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4276 				    vcpu->arch.pio.size, pd);
4277 	else
4278 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4279 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4280 				     pd);
4281 	return r;
4282 }
4283 
4284 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4285 			       unsigned short port, void *val,
4286 			       unsigned int count, bool in)
4287 {
4288 	trace_kvm_pio(!in, port, size, count);
4289 
4290 	vcpu->arch.pio.port = port;
4291 	vcpu->arch.pio.in = in;
4292 	vcpu->arch.pio.count  = count;
4293 	vcpu->arch.pio.size = size;
4294 
4295 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4296 		vcpu->arch.pio.count = 0;
4297 		return 1;
4298 	}
4299 
4300 	vcpu->run->exit_reason = KVM_EXIT_IO;
4301 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4302 	vcpu->run->io.size = size;
4303 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4304 	vcpu->run->io.count = count;
4305 	vcpu->run->io.port = port;
4306 
4307 	return 0;
4308 }
4309 
4310 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4311 				    int size, unsigned short port, void *val,
4312 				    unsigned int count)
4313 {
4314 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4315 	int ret;
4316 
4317 	if (vcpu->arch.pio.count)
4318 		goto data_avail;
4319 
4320 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4321 	if (ret) {
4322 data_avail:
4323 		memcpy(val, vcpu->arch.pio_data, size * count);
4324 		vcpu->arch.pio.count = 0;
4325 		return 1;
4326 	}
4327 
4328 	return 0;
4329 }
4330 
4331 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4332 				     int size, unsigned short port,
4333 				     const void *val, unsigned int count)
4334 {
4335 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4336 
4337 	memcpy(vcpu->arch.pio_data, val, size * count);
4338 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4339 }
4340 
4341 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4342 {
4343 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4344 }
4345 
4346 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4347 {
4348 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4349 }
4350 
4351 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4352 {
4353 	if (!need_emulate_wbinvd(vcpu))
4354 		return X86EMUL_CONTINUE;
4355 
4356 	if (kvm_x86_ops->has_wbinvd_exit()) {
4357 		int cpu = get_cpu();
4358 
4359 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4360 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4361 				wbinvd_ipi, NULL, 1);
4362 		put_cpu();
4363 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4364 	} else
4365 		wbinvd();
4366 	return X86EMUL_CONTINUE;
4367 }
4368 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4369 
4370 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4371 {
4372 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4373 }
4374 
4375 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4376 {
4377 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4378 }
4379 
4380 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4381 {
4382 
4383 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4384 }
4385 
4386 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4387 {
4388 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4389 }
4390 
4391 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4392 {
4393 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4394 	unsigned long value;
4395 
4396 	switch (cr) {
4397 	case 0:
4398 		value = kvm_read_cr0(vcpu);
4399 		break;
4400 	case 2:
4401 		value = vcpu->arch.cr2;
4402 		break;
4403 	case 3:
4404 		value = kvm_read_cr3(vcpu);
4405 		break;
4406 	case 4:
4407 		value = kvm_read_cr4(vcpu);
4408 		break;
4409 	case 8:
4410 		value = kvm_get_cr8(vcpu);
4411 		break;
4412 	default:
4413 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4414 		return 0;
4415 	}
4416 
4417 	return value;
4418 }
4419 
4420 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4421 {
4422 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4423 	int res = 0;
4424 
4425 	switch (cr) {
4426 	case 0:
4427 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4428 		break;
4429 	case 2:
4430 		vcpu->arch.cr2 = val;
4431 		break;
4432 	case 3:
4433 		res = kvm_set_cr3(vcpu, val);
4434 		break;
4435 	case 4:
4436 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4437 		break;
4438 	case 8:
4439 		res = kvm_set_cr8(vcpu, val);
4440 		break;
4441 	default:
4442 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4443 		res = -1;
4444 	}
4445 
4446 	return res;
4447 }
4448 
4449 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4450 {
4451 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4452 }
4453 
4454 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4455 {
4456 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4457 }
4458 
4459 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4460 {
4461 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4462 }
4463 
4464 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4465 {
4466 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4467 }
4468 
4469 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4470 {
4471 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4472 }
4473 
4474 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4475 {
4476 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4477 }
4478 
4479 static unsigned long emulator_get_cached_segment_base(
4480 	struct x86_emulate_ctxt *ctxt, int seg)
4481 {
4482 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4483 }
4484 
4485 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4486 				 struct desc_struct *desc, u32 *base3,
4487 				 int seg)
4488 {
4489 	struct kvm_segment var;
4490 
4491 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4492 	*selector = var.selector;
4493 
4494 	if (var.unusable) {
4495 		memset(desc, 0, sizeof(*desc));
4496 		return false;
4497 	}
4498 
4499 	if (var.g)
4500 		var.limit >>= 12;
4501 	set_desc_limit(desc, var.limit);
4502 	set_desc_base(desc, (unsigned long)var.base);
4503 #ifdef CONFIG_X86_64
4504 	if (base3)
4505 		*base3 = var.base >> 32;
4506 #endif
4507 	desc->type = var.type;
4508 	desc->s = var.s;
4509 	desc->dpl = var.dpl;
4510 	desc->p = var.present;
4511 	desc->avl = var.avl;
4512 	desc->l = var.l;
4513 	desc->d = var.db;
4514 	desc->g = var.g;
4515 
4516 	return true;
4517 }
4518 
4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4520 				 struct desc_struct *desc, u32 base3,
4521 				 int seg)
4522 {
4523 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524 	struct kvm_segment var;
4525 
4526 	var.selector = selector;
4527 	var.base = get_desc_base(desc);
4528 #ifdef CONFIG_X86_64
4529 	var.base |= ((u64)base3) << 32;
4530 #endif
4531 	var.limit = get_desc_limit(desc);
4532 	if (desc->g)
4533 		var.limit = (var.limit << 12) | 0xfff;
4534 	var.type = desc->type;
4535 	var.present = desc->p;
4536 	var.dpl = desc->dpl;
4537 	var.db = desc->d;
4538 	var.s = desc->s;
4539 	var.l = desc->l;
4540 	var.g = desc->g;
4541 	var.avl = desc->avl;
4542 	var.present = desc->p;
4543 	var.unusable = !var.present;
4544 	var.padding = 0;
4545 
4546 	kvm_set_segment(vcpu, &var, seg);
4547 	return;
4548 }
4549 
4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4551 			    u32 msr_index, u64 *pdata)
4552 {
4553 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4554 }
4555 
4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4557 			    u32 msr_index, u64 data)
4558 {
4559 	struct msr_data msr;
4560 
4561 	msr.data = data;
4562 	msr.index = msr_index;
4563 	msr.host_initiated = false;
4564 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4565 }
4566 
4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4568 			     u32 pmc, u64 *pdata)
4569 {
4570 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4571 }
4572 
4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4574 {
4575 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4576 }
4577 
4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4579 {
4580 	preempt_disable();
4581 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4582 	/*
4583 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4584 	 * so it may be clear at this point.
4585 	 */
4586 	clts();
4587 }
4588 
4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4590 {
4591 	preempt_enable();
4592 }
4593 
4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4595 			      struct x86_instruction_info *info,
4596 			      enum x86_intercept_stage stage)
4597 {
4598 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4599 }
4600 
4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4602 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4603 {
4604 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4605 }
4606 
4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4608 {
4609 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4610 }
4611 
4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4613 {
4614 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4615 }
4616 
4617 static const struct x86_emulate_ops emulate_ops = {
4618 	.read_gpr            = emulator_read_gpr,
4619 	.write_gpr           = emulator_write_gpr,
4620 	.read_std            = kvm_read_guest_virt_system,
4621 	.write_std           = kvm_write_guest_virt_system,
4622 	.fetch               = kvm_fetch_guest_virt,
4623 	.read_emulated       = emulator_read_emulated,
4624 	.write_emulated      = emulator_write_emulated,
4625 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4626 	.invlpg              = emulator_invlpg,
4627 	.pio_in_emulated     = emulator_pio_in_emulated,
4628 	.pio_out_emulated    = emulator_pio_out_emulated,
4629 	.get_segment         = emulator_get_segment,
4630 	.set_segment         = emulator_set_segment,
4631 	.get_cached_segment_base = emulator_get_cached_segment_base,
4632 	.get_gdt             = emulator_get_gdt,
4633 	.get_idt	     = emulator_get_idt,
4634 	.set_gdt             = emulator_set_gdt,
4635 	.set_idt	     = emulator_set_idt,
4636 	.get_cr              = emulator_get_cr,
4637 	.set_cr              = emulator_set_cr,
4638 	.set_rflags          = emulator_set_rflags,
4639 	.cpl                 = emulator_get_cpl,
4640 	.get_dr              = emulator_get_dr,
4641 	.set_dr              = emulator_set_dr,
4642 	.set_msr             = emulator_set_msr,
4643 	.get_msr             = emulator_get_msr,
4644 	.read_pmc            = emulator_read_pmc,
4645 	.halt                = emulator_halt,
4646 	.wbinvd              = emulator_wbinvd,
4647 	.fix_hypercall       = emulator_fix_hypercall,
4648 	.get_fpu             = emulator_get_fpu,
4649 	.put_fpu             = emulator_put_fpu,
4650 	.intercept           = emulator_intercept,
4651 	.get_cpuid           = emulator_get_cpuid,
4652 };
4653 
4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4655 {
4656 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4657 	/*
4658 	 * an sti; sti; sequence only disable interrupts for the first
4659 	 * instruction. So, if the last instruction, be it emulated or
4660 	 * not, left the system with the INT_STI flag enabled, it
4661 	 * means that the last instruction is an sti. We should not
4662 	 * leave the flag on in this case. The same goes for mov ss
4663 	 */
4664 	if (!(int_shadow & mask))
4665 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4666 }
4667 
4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4669 {
4670 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4671 	if (ctxt->exception.vector == PF_VECTOR)
4672 		kvm_propagate_fault(vcpu, &ctxt->exception);
4673 	else if (ctxt->exception.error_code_valid)
4674 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4675 				      ctxt->exception.error_code);
4676 	else
4677 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4678 }
4679 
4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4681 {
4682 	memset(&ctxt->twobyte, 0,
4683 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4684 
4685 	ctxt->fetch.start = 0;
4686 	ctxt->fetch.end = 0;
4687 	ctxt->io_read.pos = 0;
4688 	ctxt->io_read.end = 0;
4689 	ctxt->mem_read.pos = 0;
4690 	ctxt->mem_read.end = 0;
4691 }
4692 
4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4694 {
4695 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4696 	int cs_db, cs_l;
4697 
4698 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4699 
4700 	ctxt->eflags = kvm_get_rflags(vcpu);
4701 	ctxt->eip = kvm_rip_read(vcpu);
4702 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4703 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4704 		     cs_l				? X86EMUL_MODE_PROT64 :
4705 		     cs_db				? X86EMUL_MODE_PROT32 :
4706 							  X86EMUL_MODE_PROT16;
4707 	ctxt->guest_mode = is_guest_mode(vcpu);
4708 
4709 	init_decode_cache(ctxt);
4710 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4711 }
4712 
4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4714 {
4715 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716 	int ret;
4717 
4718 	init_emulate_ctxt(vcpu);
4719 
4720 	ctxt->op_bytes = 2;
4721 	ctxt->ad_bytes = 2;
4722 	ctxt->_eip = ctxt->eip + inc_eip;
4723 	ret = emulate_int_real(ctxt, irq);
4724 
4725 	if (ret != X86EMUL_CONTINUE)
4726 		return EMULATE_FAIL;
4727 
4728 	ctxt->eip = ctxt->_eip;
4729 	kvm_rip_write(vcpu, ctxt->eip);
4730 	kvm_set_rflags(vcpu, ctxt->eflags);
4731 
4732 	if (irq == NMI_VECTOR)
4733 		vcpu->arch.nmi_pending = 0;
4734 	else
4735 		vcpu->arch.interrupt.pending = false;
4736 
4737 	return EMULATE_DONE;
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4740 
4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4742 {
4743 	int r = EMULATE_DONE;
4744 
4745 	++vcpu->stat.insn_emulation_fail;
4746 	trace_kvm_emulate_insn_failed(vcpu);
4747 	if (!is_guest_mode(vcpu)) {
4748 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4749 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4750 		vcpu->run->internal.ndata = 0;
4751 		r = EMULATE_FAIL;
4752 	}
4753 	kvm_queue_exception(vcpu, UD_VECTOR);
4754 
4755 	return r;
4756 }
4757 
4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4759 				  bool write_fault_to_shadow_pgtable)
4760 {
4761 	gpa_t gpa = cr2;
4762 	pfn_t pfn;
4763 
4764 	if (!vcpu->arch.mmu.direct_map) {
4765 		/*
4766 		 * Write permission should be allowed since only
4767 		 * write access need to be emulated.
4768 		 */
4769 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4770 
4771 		/*
4772 		 * If the mapping is invalid in guest, let cpu retry
4773 		 * it to generate fault.
4774 		 */
4775 		if (gpa == UNMAPPED_GVA)
4776 			return true;
4777 	}
4778 
4779 	/*
4780 	 * Do not retry the unhandleable instruction if it faults on the
4781 	 * readonly host memory, otherwise it will goto a infinite loop:
4782 	 * retry instruction -> write #PF -> emulation fail -> retry
4783 	 * instruction -> ...
4784 	 */
4785 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4786 
4787 	/*
4788 	 * If the instruction failed on the error pfn, it can not be fixed,
4789 	 * report the error to userspace.
4790 	 */
4791 	if (is_error_noslot_pfn(pfn))
4792 		return false;
4793 
4794 	kvm_release_pfn_clean(pfn);
4795 
4796 	/* The instructions are well-emulated on direct mmu. */
4797 	if (vcpu->arch.mmu.direct_map) {
4798 		unsigned int indirect_shadow_pages;
4799 
4800 		spin_lock(&vcpu->kvm->mmu_lock);
4801 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4802 		spin_unlock(&vcpu->kvm->mmu_lock);
4803 
4804 		if (indirect_shadow_pages)
4805 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4806 
4807 		return true;
4808 	}
4809 
4810 	/*
4811 	 * if emulation was due to access to shadowed page table
4812 	 * and it failed try to unshadow page and re-enter the
4813 	 * guest to let CPU execute the instruction.
4814 	 */
4815 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4816 
4817 	/*
4818 	 * If the access faults on its page table, it can not
4819 	 * be fixed by unprotecting shadow page and it should
4820 	 * be reported to userspace.
4821 	 */
4822 	return !write_fault_to_shadow_pgtable;
4823 }
4824 
4825 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4826 			      unsigned long cr2,  int emulation_type)
4827 {
4828 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4829 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4830 
4831 	last_retry_eip = vcpu->arch.last_retry_eip;
4832 	last_retry_addr = vcpu->arch.last_retry_addr;
4833 
4834 	/*
4835 	 * If the emulation is caused by #PF and it is non-page_table
4836 	 * writing instruction, it means the VM-EXIT is caused by shadow
4837 	 * page protected, we can zap the shadow page and retry this
4838 	 * instruction directly.
4839 	 *
4840 	 * Note: if the guest uses a non-page-table modifying instruction
4841 	 * on the PDE that points to the instruction, then we will unmap
4842 	 * the instruction and go to an infinite loop. So, we cache the
4843 	 * last retried eip and the last fault address, if we meet the eip
4844 	 * and the address again, we can break out of the potential infinite
4845 	 * loop.
4846 	 */
4847 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4848 
4849 	if (!(emulation_type & EMULTYPE_RETRY))
4850 		return false;
4851 
4852 	if (x86_page_table_writing_insn(ctxt))
4853 		return false;
4854 
4855 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4856 		return false;
4857 
4858 	vcpu->arch.last_retry_eip = ctxt->eip;
4859 	vcpu->arch.last_retry_addr = cr2;
4860 
4861 	if (!vcpu->arch.mmu.direct_map)
4862 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4863 
4864 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4865 
4866 	return true;
4867 }
4868 
4869 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4870 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4871 
4872 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4873 			    unsigned long cr2,
4874 			    int emulation_type,
4875 			    void *insn,
4876 			    int insn_len)
4877 {
4878 	int r;
4879 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4880 	bool writeback = true;
4881 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4882 
4883 	/*
4884 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
4885 	 * never reused.
4886 	 */
4887 	vcpu->arch.write_fault_to_shadow_pgtable = false;
4888 	kvm_clear_exception_queue(vcpu);
4889 
4890 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4891 		init_emulate_ctxt(vcpu);
4892 		ctxt->interruptibility = 0;
4893 		ctxt->have_exception = false;
4894 		ctxt->perm_ok = false;
4895 
4896 		ctxt->only_vendor_specific_insn
4897 			= emulation_type & EMULTYPE_TRAP_UD;
4898 
4899 		r = x86_decode_insn(ctxt, insn, insn_len);
4900 
4901 		trace_kvm_emulate_insn_start(vcpu);
4902 		++vcpu->stat.insn_emulation;
4903 		if (r != EMULATION_OK)  {
4904 			if (emulation_type & EMULTYPE_TRAP_UD)
4905 				return EMULATE_FAIL;
4906 			if (reexecute_instruction(vcpu, cr2,
4907 						  write_fault_to_spt))
4908 				return EMULATE_DONE;
4909 			if (emulation_type & EMULTYPE_SKIP)
4910 				return EMULATE_FAIL;
4911 			return handle_emulation_failure(vcpu);
4912 		}
4913 	}
4914 
4915 	if (emulation_type & EMULTYPE_SKIP) {
4916 		kvm_rip_write(vcpu, ctxt->_eip);
4917 		return EMULATE_DONE;
4918 	}
4919 
4920 	if (retry_instruction(ctxt, cr2, emulation_type))
4921 		return EMULATE_DONE;
4922 
4923 	/* this is needed for vmware backdoor interface to work since it
4924 	   changes registers values  during IO operation */
4925 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4926 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4927 		emulator_invalidate_register_cache(ctxt);
4928 	}
4929 
4930 restart:
4931 	r = x86_emulate_insn(ctxt);
4932 
4933 	if (r == EMULATION_INTERCEPTED)
4934 		return EMULATE_DONE;
4935 
4936 	if (r == EMULATION_FAILED) {
4937 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt))
4938 			return EMULATE_DONE;
4939 
4940 		return handle_emulation_failure(vcpu);
4941 	}
4942 
4943 	if (ctxt->have_exception) {
4944 		inject_emulated_exception(vcpu);
4945 		r = EMULATE_DONE;
4946 	} else if (vcpu->arch.pio.count) {
4947 		if (!vcpu->arch.pio.in)
4948 			vcpu->arch.pio.count = 0;
4949 		else {
4950 			writeback = false;
4951 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
4952 		}
4953 		r = EMULATE_DO_MMIO;
4954 	} else if (vcpu->mmio_needed) {
4955 		if (!vcpu->mmio_is_write)
4956 			writeback = false;
4957 		r = EMULATE_DO_MMIO;
4958 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4959 	} else if (r == EMULATION_RESTART)
4960 		goto restart;
4961 	else
4962 		r = EMULATE_DONE;
4963 
4964 	if (writeback) {
4965 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4966 		kvm_set_rflags(vcpu, ctxt->eflags);
4967 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4968 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4969 		kvm_rip_write(vcpu, ctxt->eip);
4970 	} else
4971 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4972 
4973 	return r;
4974 }
4975 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4976 
4977 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4978 {
4979 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4980 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4981 					    size, port, &val, 1);
4982 	/* do not return to emulator after return from userspace */
4983 	vcpu->arch.pio.count = 0;
4984 	return ret;
4985 }
4986 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4987 
4988 static void tsc_bad(void *info)
4989 {
4990 	__this_cpu_write(cpu_tsc_khz, 0);
4991 }
4992 
4993 static void tsc_khz_changed(void *data)
4994 {
4995 	struct cpufreq_freqs *freq = data;
4996 	unsigned long khz = 0;
4997 
4998 	if (data)
4999 		khz = freq->new;
5000 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5001 		khz = cpufreq_quick_get(raw_smp_processor_id());
5002 	if (!khz)
5003 		khz = tsc_khz;
5004 	__this_cpu_write(cpu_tsc_khz, khz);
5005 }
5006 
5007 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5008 				     void *data)
5009 {
5010 	struct cpufreq_freqs *freq = data;
5011 	struct kvm *kvm;
5012 	struct kvm_vcpu *vcpu;
5013 	int i, send_ipi = 0;
5014 
5015 	/*
5016 	 * We allow guests to temporarily run on slowing clocks,
5017 	 * provided we notify them after, or to run on accelerating
5018 	 * clocks, provided we notify them before.  Thus time never
5019 	 * goes backwards.
5020 	 *
5021 	 * However, we have a problem.  We can't atomically update
5022 	 * the frequency of a given CPU from this function; it is
5023 	 * merely a notifier, which can be called from any CPU.
5024 	 * Changing the TSC frequency at arbitrary points in time
5025 	 * requires a recomputation of local variables related to
5026 	 * the TSC for each VCPU.  We must flag these local variables
5027 	 * to be updated and be sure the update takes place with the
5028 	 * new frequency before any guests proceed.
5029 	 *
5030 	 * Unfortunately, the combination of hotplug CPU and frequency
5031 	 * change creates an intractable locking scenario; the order
5032 	 * of when these callouts happen is undefined with respect to
5033 	 * CPU hotplug, and they can race with each other.  As such,
5034 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5035 	 * undefined; you can actually have a CPU frequency change take
5036 	 * place in between the computation of X and the setting of the
5037 	 * variable.  To protect against this problem, all updates of
5038 	 * the per_cpu tsc_khz variable are done in an interrupt
5039 	 * protected IPI, and all callers wishing to update the value
5040 	 * must wait for a synchronous IPI to complete (which is trivial
5041 	 * if the caller is on the CPU already).  This establishes the
5042 	 * necessary total order on variable updates.
5043 	 *
5044 	 * Note that because a guest time update may take place
5045 	 * anytime after the setting of the VCPU's request bit, the
5046 	 * correct TSC value must be set before the request.  However,
5047 	 * to ensure the update actually makes it to any guest which
5048 	 * starts running in hardware virtualization between the set
5049 	 * and the acquisition of the spinlock, we must also ping the
5050 	 * CPU after setting the request bit.
5051 	 *
5052 	 */
5053 
5054 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5055 		return 0;
5056 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5057 		return 0;
5058 
5059 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5060 
5061 	raw_spin_lock(&kvm_lock);
5062 	list_for_each_entry(kvm, &vm_list, vm_list) {
5063 		kvm_for_each_vcpu(i, vcpu, kvm) {
5064 			if (vcpu->cpu != freq->cpu)
5065 				continue;
5066 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5067 			if (vcpu->cpu != smp_processor_id())
5068 				send_ipi = 1;
5069 		}
5070 	}
5071 	raw_spin_unlock(&kvm_lock);
5072 
5073 	if (freq->old < freq->new && send_ipi) {
5074 		/*
5075 		 * We upscale the frequency.  Must make the guest
5076 		 * doesn't see old kvmclock values while running with
5077 		 * the new frequency, otherwise we risk the guest sees
5078 		 * time go backwards.
5079 		 *
5080 		 * In case we update the frequency for another cpu
5081 		 * (which might be in guest context) send an interrupt
5082 		 * to kick the cpu out of guest context.  Next time
5083 		 * guest context is entered kvmclock will be updated,
5084 		 * so the guest will not see stale values.
5085 		 */
5086 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5087 	}
5088 	return 0;
5089 }
5090 
5091 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5092 	.notifier_call  = kvmclock_cpufreq_notifier
5093 };
5094 
5095 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5096 					unsigned long action, void *hcpu)
5097 {
5098 	unsigned int cpu = (unsigned long)hcpu;
5099 
5100 	switch (action) {
5101 		case CPU_ONLINE:
5102 		case CPU_DOWN_FAILED:
5103 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5104 			break;
5105 		case CPU_DOWN_PREPARE:
5106 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5107 			break;
5108 	}
5109 	return NOTIFY_OK;
5110 }
5111 
5112 static struct notifier_block kvmclock_cpu_notifier_block = {
5113 	.notifier_call  = kvmclock_cpu_notifier,
5114 	.priority = -INT_MAX
5115 };
5116 
5117 static void kvm_timer_init(void)
5118 {
5119 	int cpu;
5120 
5121 	max_tsc_khz = tsc_khz;
5122 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5123 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5124 #ifdef CONFIG_CPU_FREQ
5125 		struct cpufreq_policy policy;
5126 		memset(&policy, 0, sizeof(policy));
5127 		cpu = get_cpu();
5128 		cpufreq_get_policy(&policy, cpu);
5129 		if (policy.cpuinfo.max_freq)
5130 			max_tsc_khz = policy.cpuinfo.max_freq;
5131 		put_cpu();
5132 #endif
5133 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5134 					  CPUFREQ_TRANSITION_NOTIFIER);
5135 	}
5136 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5137 	for_each_online_cpu(cpu)
5138 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5139 }
5140 
5141 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5142 
5143 int kvm_is_in_guest(void)
5144 {
5145 	return __this_cpu_read(current_vcpu) != NULL;
5146 }
5147 
5148 static int kvm_is_user_mode(void)
5149 {
5150 	int user_mode = 3;
5151 
5152 	if (__this_cpu_read(current_vcpu))
5153 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5154 
5155 	return user_mode != 0;
5156 }
5157 
5158 static unsigned long kvm_get_guest_ip(void)
5159 {
5160 	unsigned long ip = 0;
5161 
5162 	if (__this_cpu_read(current_vcpu))
5163 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5164 
5165 	return ip;
5166 }
5167 
5168 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5169 	.is_in_guest		= kvm_is_in_guest,
5170 	.is_user_mode		= kvm_is_user_mode,
5171 	.get_guest_ip		= kvm_get_guest_ip,
5172 };
5173 
5174 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5175 {
5176 	__this_cpu_write(current_vcpu, vcpu);
5177 }
5178 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5179 
5180 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5181 {
5182 	__this_cpu_write(current_vcpu, NULL);
5183 }
5184 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5185 
5186 static void kvm_set_mmio_spte_mask(void)
5187 {
5188 	u64 mask;
5189 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5190 
5191 	/*
5192 	 * Set the reserved bits and the present bit of an paging-structure
5193 	 * entry to generate page fault with PFER.RSV = 1.
5194 	 */
5195 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5196 	mask |= 1ull;
5197 
5198 #ifdef CONFIG_X86_64
5199 	/*
5200 	 * If reserved bit is not supported, clear the present bit to disable
5201 	 * mmio page fault.
5202 	 */
5203 	if (maxphyaddr == 52)
5204 		mask &= ~1ull;
5205 #endif
5206 
5207 	kvm_mmu_set_mmio_spte_mask(mask);
5208 }
5209 
5210 #ifdef CONFIG_X86_64
5211 static void pvclock_gtod_update_fn(struct work_struct *work)
5212 {
5213 	struct kvm *kvm;
5214 
5215 	struct kvm_vcpu *vcpu;
5216 	int i;
5217 
5218 	raw_spin_lock(&kvm_lock);
5219 	list_for_each_entry(kvm, &vm_list, vm_list)
5220 		kvm_for_each_vcpu(i, vcpu, kvm)
5221 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5222 	atomic_set(&kvm_guest_has_master_clock, 0);
5223 	raw_spin_unlock(&kvm_lock);
5224 }
5225 
5226 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5227 
5228 /*
5229  * Notification about pvclock gtod data update.
5230  */
5231 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5232 			       void *priv)
5233 {
5234 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5235 	struct timekeeper *tk = priv;
5236 
5237 	update_pvclock_gtod(tk);
5238 
5239 	/* disable master clock if host does not trust, or does not
5240 	 * use, TSC clocksource
5241 	 */
5242 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5243 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5244 		queue_work(system_long_wq, &pvclock_gtod_work);
5245 
5246 	return 0;
5247 }
5248 
5249 static struct notifier_block pvclock_gtod_notifier = {
5250 	.notifier_call = pvclock_gtod_notify,
5251 };
5252 #endif
5253 
5254 int kvm_arch_init(void *opaque)
5255 {
5256 	int r;
5257 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5258 
5259 	if (kvm_x86_ops) {
5260 		printk(KERN_ERR "kvm: already loaded the other module\n");
5261 		r = -EEXIST;
5262 		goto out;
5263 	}
5264 
5265 	if (!ops->cpu_has_kvm_support()) {
5266 		printk(KERN_ERR "kvm: no hardware support\n");
5267 		r = -EOPNOTSUPP;
5268 		goto out;
5269 	}
5270 	if (ops->disabled_by_bios()) {
5271 		printk(KERN_ERR "kvm: disabled by bios\n");
5272 		r = -EOPNOTSUPP;
5273 		goto out;
5274 	}
5275 
5276 	r = -ENOMEM;
5277 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5278 	if (!shared_msrs) {
5279 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5280 		goto out;
5281 	}
5282 
5283 	r = kvm_mmu_module_init();
5284 	if (r)
5285 		goto out_free_percpu;
5286 
5287 	kvm_set_mmio_spte_mask();
5288 	kvm_init_msr_list();
5289 
5290 	kvm_x86_ops = ops;
5291 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5292 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5293 
5294 	kvm_timer_init();
5295 
5296 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5297 
5298 	if (cpu_has_xsave)
5299 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5300 
5301 	kvm_lapic_init();
5302 #ifdef CONFIG_X86_64
5303 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5304 #endif
5305 
5306 	return 0;
5307 
5308 out_free_percpu:
5309 	free_percpu(shared_msrs);
5310 out:
5311 	return r;
5312 }
5313 
5314 void kvm_arch_exit(void)
5315 {
5316 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5317 
5318 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5319 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5320 					    CPUFREQ_TRANSITION_NOTIFIER);
5321 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5322 #ifdef CONFIG_X86_64
5323 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5324 #endif
5325 	kvm_x86_ops = NULL;
5326 	kvm_mmu_module_exit();
5327 	free_percpu(shared_msrs);
5328 }
5329 
5330 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5331 {
5332 	++vcpu->stat.halt_exits;
5333 	if (irqchip_in_kernel(vcpu->kvm)) {
5334 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5335 		return 1;
5336 	} else {
5337 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5338 		return 0;
5339 	}
5340 }
5341 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5342 
5343 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5344 {
5345 	u64 param, ingpa, outgpa, ret;
5346 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5347 	bool fast, longmode;
5348 	int cs_db, cs_l;
5349 
5350 	/*
5351 	 * hypercall generates UD from non zero cpl and real mode
5352 	 * per HYPER-V spec
5353 	 */
5354 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5355 		kvm_queue_exception(vcpu, UD_VECTOR);
5356 		return 0;
5357 	}
5358 
5359 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5360 	longmode = is_long_mode(vcpu) && cs_l == 1;
5361 
5362 	if (!longmode) {
5363 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5364 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5365 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5366 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5367 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5368 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5369 	}
5370 #ifdef CONFIG_X86_64
5371 	else {
5372 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5373 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5374 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5375 	}
5376 #endif
5377 
5378 	code = param & 0xffff;
5379 	fast = (param >> 16) & 0x1;
5380 	rep_cnt = (param >> 32) & 0xfff;
5381 	rep_idx = (param >> 48) & 0xfff;
5382 
5383 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5384 
5385 	switch (code) {
5386 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5387 		kvm_vcpu_on_spin(vcpu);
5388 		break;
5389 	default:
5390 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5391 		break;
5392 	}
5393 
5394 	ret = res | (((u64)rep_done & 0xfff) << 32);
5395 	if (longmode) {
5396 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5397 	} else {
5398 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5399 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5400 	}
5401 
5402 	return 1;
5403 }
5404 
5405 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5406 {
5407 	unsigned long nr, a0, a1, a2, a3, ret;
5408 	int r = 1;
5409 
5410 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5411 		return kvm_hv_hypercall(vcpu);
5412 
5413 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5414 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5415 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5416 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5417 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5418 
5419 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5420 
5421 	if (!is_long_mode(vcpu)) {
5422 		nr &= 0xFFFFFFFF;
5423 		a0 &= 0xFFFFFFFF;
5424 		a1 &= 0xFFFFFFFF;
5425 		a2 &= 0xFFFFFFFF;
5426 		a3 &= 0xFFFFFFFF;
5427 	}
5428 
5429 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5430 		ret = -KVM_EPERM;
5431 		goto out;
5432 	}
5433 
5434 	switch (nr) {
5435 	case KVM_HC_VAPIC_POLL_IRQ:
5436 		ret = 0;
5437 		break;
5438 	default:
5439 		ret = -KVM_ENOSYS;
5440 		break;
5441 	}
5442 out:
5443 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5444 	++vcpu->stat.hypercalls;
5445 	return r;
5446 }
5447 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5448 
5449 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5450 {
5451 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5452 	char instruction[3];
5453 	unsigned long rip = kvm_rip_read(vcpu);
5454 
5455 	/*
5456 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5457 	 * to ensure that the updated hypercall appears atomically across all
5458 	 * VCPUs.
5459 	 */
5460 	kvm_mmu_zap_all(vcpu->kvm);
5461 
5462 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5463 
5464 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5465 }
5466 
5467 /*
5468  * Check if userspace requested an interrupt window, and that the
5469  * interrupt window is open.
5470  *
5471  * No need to exit to userspace if we already have an interrupt queued.
5472  */
5473 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5474 {
5475 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5476 		vcpu->run->request_interrupt_window &&
5477 		kvm_arch_interrupt_allowed(vcpu));
5478 }
5479 
5480 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5481 {
5482 	struct kvm_run *kvm_run = vcpu->run;
5483 
5484 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5485 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5486 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5487 	if (irqchip_in_kernel(vcpu->kvm))
5488 		kvm_run->ready_for_interrupt_injection = 1;
5489 	else
5490 		kvm_run->ready_for_interrupt_injection =
5491 			kvm_arch_interrupt_allowed(vcpu) &&
5492 			!kvm_cpu_has_interrupt(vcpu) &&
5493 			!kvm_event_needs_reinjection(vcpu);
5494 }
5495 
5496 static int vapic_enter(struct kvm_vcpu *vcpu)
5497 {
5498 	struct kvm_lapic *apic = vcpu->arch.apic;
5499 	struct page *page;
5500 
5501 	if (!apic || !apic->vapic_addr)
5502 		return 0;
5503 
5504 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5505 	if (is_error_page(page))
5506 		return -EFAULT;
5507 
5508 	vcpu->arch.apic->vapic_page = page;
5509 	return 0;
5510 }
5511 
5512 static void vapic_exit(struct kvm_vcpu *vcpu)
5513 {
5514 	struct kvm_lapic *apic = vcpu->arch.apic;
5515 	int idx;
5516 
5517 	if (!apic || !apic->vapic_addr)
5518 		return;
5519 
5520 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5521 	kvm_release_page_dirty(apic->vapic_page);
5522 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5523 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5524 }
5525 
5526 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5527 {
5528 	int max_irr, tpr;
5529 
5530 	if (!kvm_x86_ops->update_cr8_intercept)
5531 		return;
5532 
5533 	if (!vcpu->arch.apic)
5534 		return;
5535 
5536 	if (!vcpu->arch.apic->vapic_addr)
5537 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5538 	else
5539 		max_irr = -1;
5540 
5541 	if (max_irr != -1)
5542 		max_irr >>= 4;
5543 
5544 	tpr = kvm_lapic_get_cr8(vcpu);
5545 
5546 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5547 }
5548 
5549 static void inject_pending_event(struct kvm_vcpu *vcpu)
5550 {
5551 	/* try to reinject previous events if any */
5552 	if (vcpu->arch.exception.pending) {
5553 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5554 					vcpu->arch.exception.has_error_code,
5555 					vcpu->arch.exception.error_code);
5556 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5557 					  vcpu->arch.exception.has_error_code,
5558 					  vcpu->arch.exception.error_code,
5559 					  vcpu->arch.exception.reinject);
5560 		return;
5561 	}
5562 
5563 	if (vcpu->arch.nmi_injected) {
5564 		kvm_x86_ops->set_nmi(vcpu);
5565 		return;
5566 	}
5567 
5568 	if (vcpu->arch.interrupt.pending) {
5569 		kvm_x86_ops->set_irq(vcpu);
5570 		return;
5571 	}
5572 
5573 	/* try to inject new event if pending */
5574 	if (vcpu->arch.nmi_pending) {
5575 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5576 			--vcpu->arch.nmi_pending;
5577 			vcpu->arch.nmi_injected = true;
5578 			kvm_x86_ops->set_nmi(vcpu);
5579 		}
5580 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5581 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5582 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5583 					    false);
5584 			kvm_x86_ops->set_irq(vcpu);
5585 		}
5586 	}
5587 }
5588 
5589 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5590 {
5591 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5592 			!vcpu->guest_xcr0_loaded) {
5593 		/* kvm_set_xcr() also depends on this */
5594 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5595 		vcpu->guest_xcr0_loaded = 1;
5596 	}
5597 }
5598 
5599 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5600 {
5601 	if (vcpu->guest_xcr0_loaded) {
5602 		if (vcpu->arch.xcr0 != host_xcr0)
5603 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5604 		vcpu->guest_xcr0_loaded = 0;
5605 	}
5606 }
5607 
5608 static void process_nmi(struct kvm_vcpu *vcpu)
5609 {
5610 	unsigned limit = 2;
5611 
5612 	/*
5613 	 * x86 is limited to one NMI running, and one NMI pending after it.
5614 	 * If an NMI is already in progress, limit further NMIs to just one.
5615 	 * Otherwise, allow two (and we'll inject the first one immediately).
5616 	 */
5617 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5618 		limit = 1;
5619 
5620 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5621 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5622 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5623 }
5624 
5625 static void kvm_gen_update_masterclock(struct kvm *kvm)
5626 {
5627 #ifdef CONFIG_X86_64
5628 	int i;
5629 	struct kvm_vcpu *vcpu;
5630 	struct kvm_arch *ka = &kvm->arch;
5631 
5632 	spin_lock(&ka->pvclock_gtod_sync_lock);
5633 	kvm_make_mclock_inprogress_request(kvm);
5634 	/* no guest entries from this point */
5635 	pvclock_update_vm_gtod_copy(kvm);
5636 
5637 	kvm_for_each_vcpu(i, vcpu, kvm)
5638 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5639 
5640 	/* guest entries allowed */
5641 	kvm_for_each_vcpu(i, vcpu, kvm)
5642 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5643 
5644 	spin_unlock(&ka->pvclock_gtod_sync_lock);
5645 #endif
5646 }
5647 
5648 static void update_eoi_exitmap(struct kvm_vcpu *vcpu)
5649 {
5650 	u64 eoi_exit_bitmap[4];
5651 
5652 	memset(eoi_exit_bitmap, 0, 32);
5653 
5654 	kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap);
5655 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5656 }
5657 
5658 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5659 {
5660 	int r;
5661 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5662 		vcpu->run->request_interrupt_window;
5663 	bool req_immediate_exit = 0;
5664 
5665 	if (vcpu->requests) {
5666 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5667 			kvm_mmu_unload(vcpu);
5668 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5669 			__kvm_migrate_timers(vcpu);
5670 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5671 			kvm_gen_update_masterclock(vcpu->kvm);
5672 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5673 			r = kvm_guest_time_update(vcpu);
5674 			if (unlikely(r))
5675 				goto out;
5676 		}
5677 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5678 			kvm_mmu_sync_roots(vcpu);
5679 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5680 			kvm_x86_ops->tlb_flush(vcpu);
5681 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5682 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5683 			r = 0;
5684 			goto out;
5685 		}
5686 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5687 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5688 			r = 0;
5689 			goto out;
5690 		}
5691 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5692 			vcpu->fpu_active = 0;
5693 			kvm_x86_ops->fpu_deactivate(vcpu);
5694 		}
5695 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5696 			/* Page is swapped out. Do synthetic halt */
5697 			vcpu->arch.apf.halted = true;
5698 			r = 1;
5699 			goto out;
5700 		}
5701 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5702 			record_steal_time(vcpu);
5703 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5704 			process_nmi(vcpu);
5705 		req_immediate_exit =
5706 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5707 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5708 			kvm_handle_pmu_event(vcpu);
5709 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5710 			kvm_deliver_pmi(vcpu);
5711 		if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu))
5712 			update_eoi_exitmap(vcpu);
5713 	}
5714 
5715 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5716 		inject_pending_event(vcpu);
5717 
5718 		/* enable NMI/IRQ window open exits if needed */
5719 		if (vcpu->arch.nmi_pending)
5720 			kvm_x86_ops->enable_nmi_window(vcpu);
5721 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5722 			kvm_x86_ops->enable_irq_window(vcpu);
5723 
5724 		if (kvm_lapic_enabled(vcpu)) {
5725 			/*
5726 			 * Update architecture specific hints for APIC
5727 			 * virtual interrupt delivery.
5728 			 */
5729 			if (kvm_x86_ops->hwapic_irr_update)
5730 				kvm_x86_ops->hwapic_irr_update(vcpu,
5731 					kvm_lapic_find_highest_irr(vcpu));
5732 			update_cr8_intercept(vcpu);
5733 			kvm_lapic_sync_to_vapic(vcpu);
5734 		}
5735 	}
5736 
5737 	r = kvm_mmu_reload(vcpu);
5738 	if (unlikely(r)) {
5739 		goto cancel_injection;
5740 	}
5741 
5742 	preempt_disable();
5743 
5744 	kvm_x86_ops->prepare_guest_switch(vcpu);
5745 	if (vcpu->fpu_active)
5746 		kvm_load_guest_fpu(vcpu);
5747 	kvm_load_guest_xcr0(vcpu);
5748 
5749 	vcpu->mode = IN_GUEST_MODE;
5750 
5751 	/* We should set ->mode before check ->requests,
5752 	 * see the comment in make_all_cpus_request.
5753 	 */
5754 	smp_mb();
5755 
5756 	local_irq_disable();
5757 
5758 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5759 	    || need_resched() || signal_pending(current)) {
5760 		vcpu->mode = OUTSIDE_GUEST_MODE;
5761 		smp_wmb();
5762 		local_irq_enable();
5763 		preempt_enable();
5764 		r = 1;
5765 		goto cancel_injection;
5766 	}
5767 
5768 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5769 
5770 	if (req_immediate_exit)
5771 		smp_send_reschedule(vcpu->cpu);
5772 
5773 	kvm_guest_enter();
5774 
5775 	if (unlikely(vcpu->arch.switch_db_regs)) {
5776 		set_debugreg(0, 7);
5777 		set_debugreg(vcpu->arch.eff_db[0], 0);
5778 		set_debugreg(vcpu->arch.eff_db[1], 1);
5779 		set_debugreg(vcpu->arch.eff_db[2], 2);
5780 		set_debugreg(vcpu->arch.eff_db[3], 3);
5781 	}
5782 
5783 	trace_kvm_entry(vcpu->vcpu_id);
5784 	kvm_x86_ops->run(vcpu);
5785 
5786 	/*
5787 	 * If the guest has used debug registers, at least dr7
5788 	 * will be disabled while returning to the host.
5789 	 * If we don't have active breakpoints in the host, we don't
5790 	 * care about the messed up debug address registers. But if
5791 	 * we have some of them active, restore the old state.
5792 	 */
5793 	if (hw_breakpoint_active())
5794 		hw_breakpoint_restore();
5795 
5796 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5797 							   native_read_tsc());
5798 
5799 	vcpu->mode = OUTSIDE_GUEST_MODE;
5800 	smp_wmb();
5801 	local_irq_enable();
5802 
5803 	++vcpu->stat.exits;
5804 
5805 	/*
5806 	 * We must have an instruction between local_irq_enable() and
5807 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5808 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5809 	 * But we need to prevent reordering, hence this barrier():
5810 	 */
5811 	barrier();
5812 
5813 	kvm_guest_exit();
5814 
5815 	preempt_enable();
5816 
5817 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5818 
5819 	/*
5820 	 * Profile KVM exit RIPs:
5821 	 */
5822 	if (unlikely(prof_on == KVM_PROFILING)) {
5823 		unsigned long rip = kvm_rip_read(vcpu);
5824 		profile_hit(KVM_PROFILING, (void *)rip);
5825 	}
5826 
5827 	if (unlikely(vcpu->arch.tsc_always_catchup))
5828 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5829 
5830 	if (vcpu->arch.apic_attention)
5831 		kvm_lapic_sync_from_vapic(vcpu);
5832 
5833 	r = kvm_x86_ops->handle_exit(vcpu);
5834 	return r;
5835 
5836 cancel_injection:
5837 	kvm_x86_ops->cancel_injection(vcpu);
5838 	if (unlikely(vcpu->arch.apic_attention))
5839 		kvm_lapic_sync_from_vapic(vcpu);
5840 out:
5841 	return r;
5842 }
5843 
5844 
5845 static int __vcpu_run(struct kvm_vcpu *vcpu)
5846 {
5847 	int r;
5848 	struct kvm *kvm = vcpu->kvm;
5849 
5850 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5851 		pr_debug("vcpu %d received sipi with vector # %x\n",
5852 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5853 		kvm_lapic_reset(vcpu);
5854 		r = kvm_vcpu_reset(vcpu);
5855 		if (r)
5856 			return r;
5857 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5858 	}
5859 
5860 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5861 	r = vapic_enter(vcpu);
5862 	if (r) {
5863 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5864 		return r;
5865 	}
5866 
5867 	r = 1;
5868 	while (r > 0) {
5869 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5870 		    !vcpu->arch.apf.halted)
5871 			r = vcpu_enter_guest(vcpu);
5872 		else {
5873 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5874 			kvm_vcpu_block(vcpu);
5875 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5876 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5877 			{
5878 				switch(vcpu->arch.mp_state) {
5879 				case KVM_MP_STATE_HALTED:
5880 					vcpu->arch.mp_state =
5881 						KVM_MP_STATE_RUNNABLE;
5882 				case KVM_MP_STATE_RUNNABLE:
5883 					vcpu->arch.apf.halted = false;
5884 					break;
5885 				case KVM_MP_STATE_SIPI_RECEIVED:
5886 				default:
5887 					r = -EINTR;
5888 					break;
5889 				}
5890 			}
5891 		}
5892 
5893 		if (r <= 0)
5894 			break;
5895 
5896 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5897 		if (kvm_cpu_has_pending_timer(vcpu))
5898 			kvm_inject_pending_timer_irqs(vcpu);
5899 
5900 		if (dm_request_for_irq_injection(vcpu)) {
5901 			r = -EINTR;
5902 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5903 			++vcpu->stat.request_irq_exits;
5904 		}
5905 
5906 		kvm_check_async_pf_completion(vcpu);
5907 
5908 		if (signal_pending(current)) {
5909 			r = -EINTR;
5910 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5911 			++vcpu->stat.signal_exits;
5912 		}
5913 		if (need_resched()) {
5914 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5915 			kvm_resched(vcpu);
5916 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5917 		}
5918 	}
5919 
5920 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5921 
5922 	vapic_exit(vcpu);
5923 
5924 	return r;
5925 }
5926 
5927 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5928 {
5929 	int r;
5930 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5931 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5932 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5933 	if (r != EMULATE_DONE)
5934 		return 0;
5935 	return 1;
5936 }
5937 
5938 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5939 {
5940 	BUG_ON(!vcpu->arch.pio.count);
5941 
5942 	return complete_emulated_io(vcpu);
5943 }
5944 
5945 /*
5946  * Implements the following, as a state machine:
5947  *
5948  * read:
5949  *   for each fragment
5950  *     for each mmio piece in the fragment
5951  *       write gpa, len
5952  *       exit
5953  *       copy data
5954  *   execute insn
5955  *
5956  * write:
5957  *   for each fragment
5958  *     for each mmio piece in the fragment
5959  *       write gpa, len
5960  *       copy data
5961  *       exit
5962  */
5963 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5964 {
5965 	struct kvm_run *run = vcpu->run;
5966 	struct kvm_mmio_fragment *frag;
5967 	unsigned len;
5968 
5969 	BUG_ON(!vcpu->mmio_needed);
5970 
5971 	/* Complete previous fragment */
5972 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5973 	len = min(8u, frag->len);
5974 	if (!vcpu->mmio_is_write)
5975 		memcpy(frag->data, run->mmio.data, len);
5976 
5977 	if (frag->len <= 8) {
5978 		/* Switch to the next fragment. */
5979 		frag++;
5980 		vcpu->mmio_cur_fragment++;
5981 	} else {
5982 		/* Go forward to the next mmio piece. */
5983 		frag->data += len;
5984 		frag->gpa += len;
5985 		frag->len -= len;
5986 	}
5987 
5988 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5989 		vcpu->mmio_needed = 0;
5990 		if (vcpu->mmio_is_write)
5991 			return 1;
5992 		vcpu->mmio_read_completed = 1;
5993 		return complete_emulated_io(vcpu);
5994 	}
5995 
5996 	run->exit_reason = KVM_EXIT_MMIO;
5997 	run->mmio.phys_addr = frag->gpa;
5998 	if (vcpu->mmio_is_write)
5999 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6000 	run->mmio.len = min(8u, frag->len);
6001 	run->mmio.is_write = vcpu->mmio_is_write;
6002 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6003 	return 0;
6004 }
6005 
6006 
6007 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6008 {
6009 	int r;
6010 	sigset_t sigsaved;
6011 
6012 	if (!tsk_used_math(current) && init_fpu(current))
6013 		return -ENOMEM;
6014 
6015 	if (vcpu->sigset_active)
6016 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6017 
6018 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6019 		kvm_vcpu_block(vcpu);
6020 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6021 		r = -EAGAIN;
6022 		goto out;
6023 	}
6024 
6025 	/* re-sync apic's tpr */
6026 	if (!irqchip_in_kernel(vcpu->kvm)) {
6027 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6028 			r = -EINVAL;
6029 			goto out;
6030 		}
6031 	}
6032 
6033 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6034 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6035 		vcpu->arch.complete_userspace_io = NULL;
6036 		r = cui(vcpu);
6037 		if (r <= 0)
6038 			goto out;
6039 	} else
6040 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6041 
6042 	r = __vcpu_run(vcpu);
6043 
6044 out:
6045 	post_kvm_run_save(vcpu);
6046 	if (vcpu->sigset_active)
6047 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6048 
6049 	return r;
6050 }
6051 
6052 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6053 {
6054 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6055 		/*
6056 		 * We are here if userspace calls get_regs() in the middle of
6057 		 * instruction emulation. Registers state needs to be copied
6058 		 * back from emulation context to vcpu. Userspace shouldn't do
6059 		 * that usually, but some bad designed PV devices (vmware
6060 		 * backdoor interface) need this to work
6061 		 */
6062 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6063 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6064 	}
6065 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6066 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6067 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6068 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6069 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6070 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6071 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6072 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6073 #ifdef CONFIG_X86_64
6074 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6075 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6076 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6077 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6078 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6079 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6080 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6081 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6082 #endif
6083 
6084 	regs->rip = kvm_rip_read(vcpu);
6085 	regs->rflags = kvm_get_rflags(vcpu);
6086 
6087 	return 0;
6088 }
6089 
6090 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6091 {
6092 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6093 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6094 
6095 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6096 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6097 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6098 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6099 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6100 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6101 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6102 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6103 #ifdef CONFIG_X86_64
6104 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6105 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6106 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6107 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6108 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6109 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6110 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6111 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6112 #endif
6113 
6114 	kvm_rip_write(vcpu, regs->rip);
6115 	kvm_set_rflags(vcpu, regs->rflags);
6116 
6117 	vcpu->arch.exception.pending = false;
6118 
6119 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6120 
6121 	return 0;
6122 }
6123 
6124 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6125 {
6126 	struct kvm_segment cs;
6127 
6128 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6129 	*db = cs.db;
6130 	*l = cs.l;
6131 }
6132 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6133 
6134 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6135 				  struct kvm_sregs *sregs)
6136 {
6137 	struct desc_ptr dt;
6138 
6139 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6140 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6141 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6142 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6143 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6144 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6145 
6146 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6147 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6148 
6149 	kvm_x86_ops->get_idt(vcpu, &dt);
6150 	sregs->idt.limit = dt.size;
6151 	sregs->idt.base = dt.address;
6152 	kvm_x86_ops->get_gdt(vcpu, &dt);
6153 	sregs->gdt.limit = dt.size;
6154 	sregs->gdt.base = dt.address;
6155 
6156 	sregs->cr0 = kvm_read_cr0(vcpu);
6157 	sregs->cr2 = vcpu->arch.cr2;
6158 	sregs->cr3 = kvm_read_cr3(vcpu);
6159 	sregs->cr4 = kvm_read_cr4(vcpu);
6160 	sregs->cr8 = kvm_get_cr8(vcpu);
6161 	sregs->efer = vcpu->arch.efer;
6162 	sregs->apic_base = kvm_get_apic_base(vcpu);
6163 
6164 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6165 
6166 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6167 		set_bit(vcpu->arch.interrupt.nr,
6168 			(unsigned long *)sregs->interrupt_bitmap);
6169 
6170 	return 0;
6171 }
6172 
6173 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6174 				    struct kvm_mp_state *mp_state)
6175 {
6176 	mp_state->mp_state = vcpu->arch.mp_state;
6177 	return 0;
6178 }
6179 
6180 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6181 				    struct kvm_mp_state *mp_state)
6182 {
6183 	vcpu->arch.mp_state = mp_state->mp_state;
6184 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6185 	return 0;
6186 }
6187 
6188 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6189 		    int reason, bool has_error_code, u32 error_code)
6190 {
6191 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6192 	int ret;
6193 
6194 	init_emulate_ctxt(vcpu);
6195 
6196 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6197 				   has_error_code, error_code);
6198 
6199 	if (ret)
6200 		return EMULATE_FAIL;
6201 
6202 	kvm_rip_write(vcpu, ctxt->eip);
6203 	kvm_set_rflags(vcpu, ctxt->eflags);
6204 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6205 	return EMULATE_DONE;
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_task_switch);
6208 
6209 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6210 				  struct kvm_sregs *sregs)
6211 {
6212 	int mmu_reset_needed = 0;
6213 	int pending_vec, max_bits, idx;
6214 	struct desc_ptr dt;
6215 
6216 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6217 		return -EINVAL;
6218 
6219 	dt.size = sregs->idt.limit;
6220 	dt.address = sregs->idt.base;
6221 	kvm_x86_ops->set_idt(vcpu, &dt);
6222 	dt.size = sregs->gdt.limit;
6223 	dt.address = sregs->gdt.base;
6224 	kvm_x86_ops->set_gdt(vcpu, &dt);
6225 
6226 	vcpu->arch.cr2 = sregs->cr2;
6227 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6228 	vcpu->arch.cr3 = sregs->cr3;
6229 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6230 
6231 	kvm_set_cr8(vcpu, sregs->cr8);
6232 
6233 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6234 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6235 	kvm_set_apic_base(vcpu, sregs->apic_base);
6236 
6237 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6238 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6239 	vcpu->arch.cr0 = sregs->cr0;
6240 
6241 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6242 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6243 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6244 		kvm_update_cpuid(vcpu);
6245 
6246 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6247 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6248 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6249 		mmu_reset_needed = 1;
6250 	}
6251 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6252 
6253 	if (mmu_reset_needed)
6254 		kvm_mmu_reset_context(vcpu);
6255 
6256 	max_bits = KVM_NR_INTERRUPTS;
6257 	pending_vec = find_first_bit(
6258 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6259 	if (pending_vec < max_bits) {
6260 		kvm_queue_interrupt(vcpu, pending_vec, false);
6261 		pr_debug("Set back pending irq %d\n", pending_vec);
6262 	}
6263 
6264 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6265 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6266 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6267 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6268 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6269 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6270 
6271 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6272 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6273 
6274 	update_cr8_intercept(vcpu);
6275 
6276 	/* Older userspace won't unhalt the vcpu on reset. */
6277 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6278 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6279 	    !is_protmode(vcpu))
6280 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6281 
6282 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6283 
6284 	return 0;
6285 }
6286 
6287 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6288 					struct kvm_guest_debug *dbg)
6289 {
6290 	unsigned long rflags;
6291 	int i, r;
6292 
6293 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6294 		r = -EBUSY;
6295 		if (vcpu->arch.exception.pending)
6296 			goto out;
6297 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6298 			kvm_queue_exception(vcpu, DB_VECTOR);
6299 		else
6300 			kvm_queue_exception(vcpu, BP_VECTOR);
6301 	}
6302 
6303 	/*
6304 	 * Read rflags as long as potentially injected trace flags are still
6305 	 * filtered out.
6306 	 */
6307 	rflags = kvm_get_rflags(vcpu);
6308 
6309 	vcpu->guest_debug = dbg->control;
6310 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6311 		vcpu->guest_debug = 0;
6312 
6313 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6314 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6315 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6316 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6317 	} else {
6318 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6319 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6320 	}
6321 	kvm_update_dr7(vcpu);
6322 
6323 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6324 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6325 			get_segment_base(vcpu, VCPU_SREG_CS);
6326 
6327 	/*
6328 	 * Trigger an rflags update that will inject or remove the trace
6329 	 * flags.
6330 	 */
6331 	kvm_set_rflags(vcpu, rflags);
6332 
6333 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6334 
6335 	r = 0;
6336 
6337 out:
6338 
6339 	return r;
6340 }
6341 
6342 /*
6343  * Translate a guest virtual address to a guest physical address.
6344  */
6345 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6346 				    struct kvm_translation *tr)
6347 {
6348 	unsigned long vaddr = tr->linear_address;
6349 	gpa_t gpa;
6350 	int idx;
6351 
6352 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6353 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6354 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6355 	tr->physical_address = gpa;
6356 	tr->valid = gpa != UNMAPPED_GVA;
6357 	tr->writeable = 1;
6358 	tr->usermode = 0;
6359 
6360 	return 0;
6361 }
6362 
6363 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6364 {
6365 	struct i387_fxsave_struct *fxsave =
6366 			&vcpu->arch.guest_fpu.state->fxsave;
6367 
6368 	memcpy(fpu->fpr, fxsave->st_space, 128);
6369 	fpu->fcw = fxsave->cwd;
6370 	fpu->fsw = fxsave->swd;
6371 	fpu->ftwx = fxsave->twd;
6372 	fpu->last_opcode = fxsave->fop;
6373 	fpu->last_ip = fxsave->rip;
6374 	fpu->last_dp = fxsave->rdp;
6375 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6376 
6377 	return 0;
6378 }
6379 
6380 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6381 {
6382 	struct i387_fxsave_struct *fxsave =
6383 			&vcpu->arch.guest_fpu.state->fxsave;
6384 
6385 	memcpy(fxsave->st_space, fpu->fpr, 128);
6386 	fxsave->cwd = fpu->fcw;
6387 	fxsave->swd = fpu->fsw;
6388 	fxsave->twd = fpu->ftwx;
6389 	fxsave->fop = fpu->last_opcode;
6390 	fxsave->rip = fpu->last_ip;
6391 	fxsave->rdp = fpu->last_dp;
6392 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6393 
6394 	return 0;
6395 }
6396 
6397 int fx_init(struct kvm_vcpu *vcpu)
6398 {
6399 	int err;
6400 
6401 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6402 	if (err)
6403 		return err;
6404 
6405 	fpu_finit(&vcpu->arch.guest_fpu);
6406 
6407 	/*
6408 	 * Ensure guest xcr0 is valid for loading
6409 	 */
6410 	vcpu->arch.xcr0 = XSTATE_FP;
6411 
6412 	vcpu->arch.cr0 |= X86_CR0_ET;
6413 
6414 	return 0;
6415 }
6416 EXPORT_SYMBOL_GPL(fx_init);
6417 
6418 static void fx_free(struct kvm_vcpu *vcpu)
6419 {
6420 	fpu_free(&vcpu->arch.guest_fpu);
6421 }
6422 
6423 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6424 {
6425 	if (vcpu->guest_fpu_loaded)
6426 		return;
6427 
6428 	/*
6429 	 * Restore all possible states in the guest,
6430 	 * and assume host would use all available bits.
6431 	 * Guest xcr0 would be loaded later.
6432 	 */
6433 	kvm_put_guest_xcr0(vcpu);
6434 	vcpu->guest_fpu_loaded = 1;
6435 	__kernel_fpu_begin();
6436 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6437 	trace_kvm_fpu(1);
6438 }
6439 
6440 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6441 {
6442 	kvm_put_guest_xcr0(vcpu);
6443 
6444 	if (!vcpu->guest_fpu_loaded)
6445 		return;
6446 
6447 	vcpu->guest_fpu_loaded = 0;
6448 	fpu_save_init(&vcpu->arch.guest_fpu);
6449 	__kernel_fpu_end();
6450 	++vcpu->stat.fpu_reload;
6451 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6452 	trace_kvm_fpu(0);
6453 }
6454 
6455 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6456 {
6457 	kvmclock_reset(vcpu);
6458 
6459 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6460 	fx_free(vcpu);
6461 	kvm_x86_ops->vcpu_free(vcpu);
6462 }
6463 
6464 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6465 						unsigned int id)
6466 {
6467 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6468 		printk_once(KERN_WARNING
6469 		"kvm: SMP vm created on host with unstable TSC; "
6470 		"guest TSC will not be reliable\n");
6471 	return kvm_x86_ops->vcpu_create(kvm, id);
6472 }
6473 
6474 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6475 {
6476 	int r;
6477 
6478 	vcpu->arch.mtrr_state.have_fixed = 1;
6479 	r = vcpu_load(vcpu);
6480 	if (r)
6481 		return r;
6482 	r = kvm_vcpu_reset(vcpu);
6483 	if (r == 0)
6484 		r = kvm_mmu_setup(vcpu);
6485 	vcpu_put(vcpu);
6486 
6487 	return r;
6488 }
6489 
6490 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6491 {
6492 	int r;
6493 	struct msr_data msr;
6494 
6495 	r = vcpu_load(vcpu);
6496 	if (r)
6497 		return r;
6498 	msr.data = 0x0;
6499 	msr.index = MSR_IA32_TSC;
6500 	msr.host_initiated = true;
6501 	kvm_write_tsc(vcpu, &msr);
6502 	vcpu_put(vcpu);
6503 
6504 	return r;
6505 }
6506 
6507 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6508 {
6509 	int r;
6510 	vcpu->arch.apf.msr_val = 0;
6511 
6512 	r = vcpu_load(vcpu);
6513 	BUG_ON(r);
6514 	kvm_mmu_unload(vcpu);
6515 	vcpu_put(vcpu);
6516 
6517 	fx_free(vcpu);
6518 	kvm_x86_ops->vcpu_free(vcpu);
6519 }
6520 
6521 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6522 {
6523 	atomic_set(&vcpu->arch.nmi_queued, 0);
6524 	vcpu->arch.nmi_pending = 0;
6525 	vcpu->arch.nmi_injected = false;
6526 
6527 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6528 	vcpu->arch.dr6 = DR6_FIXED_1;
6529 	vcpu->arch.dr7 = DR7_FIXED_1;
6530 	kvm_update_dr7(vcpu);
6531 
6532 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6533 	vcpu->arch.apf.msr_val = 0;
6534 	vcpu->arch.st.msr_val = 0;
6535 
6536 	kvmclock_reset(vcpu);
6537 
6538 	kvm_clear_async_pf_completion_queue(vcpu);
6539 	kvm_async_pf_hash_reset(vcpu);
6540 	vcpu->arch.apf.halted = false;
6541 
6542 	kvm_pmu_reset(vcpu);
6543 
6544 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6545 	vcpu->arch.regs_avail = ~0;
6546 	vcpu->arch.regs_dirty = ~0;
6547 
6548 	return kvm_x86_ops->vcpu_reset(vcpu);
6549 }
6550 
6551 int kvm_arch_hardware_enable(void *garbage)
6552 {
6553 	struct kvm *kvm;
6554 	struct kvm_vcpu *vcpu;
6555 	int i;
6556 	int ret;
6557 	u64 local_tsc;
6558 	u64 max_tsc = 0;
6559 	bool stable, backwards_tsc = false;
6560 
6561 	kvm_shared_msr_cpu_online();
6562 	ret = kvm_x86_ops->hardware_enable(garbage);
6563 	if (ret != 0)
6564 		return ret;
6565 
6566 	local_tsc = native_read_tsc();
6567 	stable = !check_tsc_unstable();
6568 	list_for_each_entry(kvm, &vm_list, vm_list) {
6569 		kvm_for_each_vcpu(i, vcpu, kvm) {
6570 			if (!stable && vcpu->cpu == smp_processor_id())
6571 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6572 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6573 				backwards_tsc = true;
6574 				if (vcpu->arch.last_host_tsc > max_tsc)
6575 					max_tsc = vcpu->arch.last_host_tsc;
6576 			}
6577 		}
6578 	}
6579 
6580 	/*
6581 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6582 	 * platforms that reset TSC during suspend or hibernate actions, but
6583 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6584 	 * detect that condition here, which happens early in CPU bringup,
6585 	 * before any KVM threads can be running.  Unfortunately, we can't
6586 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6587 	 * enough into CPU bringup that we know how much real time has actually
6588 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6589 	 * variables that haven't been updated yet.
6590 	 *
6591 	 * So we simply find the maximum observed TSC above, then record the
6592 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6593 	 * the adjustment will be applied.  Note that we accumulate
6594 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6595 	 * gets a chance to run again.  In the event that no KVM threads get a
6596 	 * chance to run, we will miss the entire elapsed period, as we'll have
6597 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6598 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6599 	 * uniform across all VCPUs (not to mention the scenario is extremely
6600 	 * unlikely). It is possible that a second hibernate recovery happens
6601 	 * much faster than a first, causing the observed TSC here to be
6602 	 * smaller; this would require additional padding adjustment, which is
6603 	 * why we set last_host_tsc to the local tsc observed here.
6604 	 *
6605 	 * N.B. - this code below runs only on platforms with reliable TSC,
6606 	 * as that is the only way backwards_tsc is set above.  Also note
6607 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6608 	 * have the same delta_cyc adjustment applied if backwards_tsc
6609 	 * is detected.  Note further, this adjustment is only done once,
6610 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6611 	 * called multiple times (one for each physical CPU bringup).
6612 	 *
6613 	 * Platforms with unreliable TSCs don't have to deal with this, they
6614 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6615 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6616 	 * guarantee that they stay in perfect synchronization.
6617 	 */
6618 	if (backwards_tsc) {
6619 		u64 delta_cyc = max_tsc - local_tsc;
6620 		list_for_each_entry(kvm, &vm_list, vm_list) {
6621 			kvm_for_each_vcpu(i, vcpu, kvm) {
6622 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6623 				vcpu->arch.last_host_tsc = local_tsc;
6624 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6625 					&vcpu->requests);
6626 			}
6627 
6628 			/*
6629 			 * We have to disable TSC offset matching.. if you were
6630 			 * booting a VM while issuing an S4 host suspend....
6631 			 * you may have some problem.  Solving this issue is
6632 			 * left as an exercise to the reader.
6633 			 */
6634 			kvm->arch.last_tsc_nsec = 0;
6635 			kvm->arch.last_tsc_write = 0;
6636 		}
6637 
6638 	}
6639 	return 0;
6640 }
6641 
6642 void kvm_arch_hardware_disable(void *garbage)
6643 {
6644 	kvm_x86_ops->hardware_disable(garbage);
6645 	drop_user_return_notifiers(garbage);
6646 }
6647 
6648 int kvm_arch_hardware_setup(void)
6649 {
6650 	return kvm_x86_ops->hardware_setup();
6651 }
6652 
6653 void kvm_arch_hardware_unsetup(void)
6654 {
6655 	kvm_x86_ops->hardware_unsetup();
6656 }
6657 
6658 void kvm_arch_check_processor_compat(void *rtn)
6659 {
6660 	kvm_x86_ops->check_processor_compatibility(rtn);
6661 }
6662 
6663 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6664 {
6665 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6666 }
6667 
6668 struct static_key kvm_no_apic_vcpu __read_mostly;
6669 
6670 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6671 {
6672 	struct page *page;
6673 	struct kvm *kvm;
6674 	int r;
6675 
6676 	BUG_ON(vcpu->kvm == NULL);
6677 	kvm = vcpu->kvm;
6678 
6679 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6680 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6681 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6682 	else
6683 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6684 
6685 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6686 	if (!page) {
6687 		r = -ENOMEM;
6688 		goto fail;
6689 	}
6690 	vcpu->arch.pio_data = page_address(page);
6691 
6692 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6693 
6694 	r = kvm_mmu_create(vcpu);
6695 	if (r < 0)
6696 		goto fail_free_pio_data;
6697 
6698 	if (irqchip_in_kernel(kvm)) {
6699 		r = kvm_create_lapic(vcpu);
6700 		if (r < 0)
6701 			goto fail_mmu_destroy;
6702 	} else
6703 		static_key_slow_inc(&kvm_no_apic_vcpu);
6704 
6705 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6706 				       GFP_KERNEL);
6707 	if (!vcpu->arch.mce_banks) {
6708 		r = -ENOMEM;
6709 		goto fail_free_lapic;
6710 	}
6711 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6712 
6713 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6714 		goto fail_free_mce_banks;
6715 
6716 	r = fx_init(vcpu);
6717 	if (r)
6718 		goto fail_free_wbinvd_dirty_mask;
6719 
6720 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6721 	kvm_async_pf_hash_reset(vcpu);
6722 	kvm_pmu_init(vcpu);
6723 
6724 	return 0;
6725 fail_free_wbinvd_dirty_mask:
6726 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6727 fail_free_mce_banks:
6728 	kfree(vcpu->arch.mce_banks);
6729 fail_free_lapic:
6730 	kvm_free_lapic(vcpu);
6731 fail_mmu_destroy:
6732 	kvm_mmu_destroy(vcpu);
6733 fail_free_pio_data:
6734 	free_page((unsigned long)vcpu->arch.pio_data);
6735 fail:
6736 	return r;
6737 }
6738 
6739 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6740 {
6741 	int idx;
6742 
6743 	kvm_pmu_destroy(vcpu);
6744 	kfree(vcpu->arch.mce_banks);
6745 	kvm_free_lapic(vcpu);
6746 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6747 	kvm_mmu_destroy(vcpu);
6748 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6749 	free_page((unsigned long)vcpu->arch.pio_data);
6750 	if (!irqchip_in_kernel(vcpu->kvm))
6751 		static_key_slow_dec(&kvm_no_apic_vcpu);
6752 }
6753 
6754 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6755 {
6756 	if (type)
6757 		return -EINVAL;
6758 
6759 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6760 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6761 
6762 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6763 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6764 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6765 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6766 		&kvm->arch.irq_sources_bitmap);
6767 
6768 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6769 	mutex_init(&kvm->arch.apic_map_lock);
6770 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6771 
6772 	pvclock_update_vm_gtod_copy(kvm);
6773 
6774 	return 0;
6775 }
6776 
6777 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6778 {
6779 	int r;
6780 	r = vcpu_load(vcpu);
6781 	BUG_ON(r);
6782 	kvm_mmu_unload(vcpu);
6783 	vcpu_put(vcpu);
6784 }
6785 
6786 static void kvm_free_vcpus(struct kvm *kvm)
6787 {
6788 	unsigned int i;
6789 	struct kvm_vcpu *vcpu;
6790 
6791 	/*
6792 	 * Unpin any mmu pages first.
6793 	 */
6794 	kvm_for_each_vcpu(i, vcpu, kvm) {
6795 		kvm_clear_async_pf_completion_queue(vcpu);
6796 		kvm_unload_vcpu_mmu(vcpu);
6797 	}
6798 	kvm_for_each_vcpu(i, vcpu, kvm)
6799 		kvm_arch_vcpu_free(vcpu);
6800 
6801 	mutex_lock(&kvm->lock);
6802 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6803 		kvm->vcpus[i] = NULL;
6804 
6805 	atomic_set(&kvm->online_vcpus, 0);
6806 	mutex_unlock(&kvm->lock);
6807 }
6808 
6809 void kvm_arch_sync_events(struct kvm *kvm)
6810 {
6811 	kvm_free_all_assigned_devices(kvm);
6812 	kvm_free_pit(kvm);
6813 }
6814 
6815 void kvm_arch_destroy_vm(struct kvm *kvm)
6816 {
6817 	kvm_iommu_unmap_guest(kvm);
6818 	kfree(kvm->arch.vpic);
6819 	kfree(kvm->arch.vioapic);
6820 	kvm_free_vcpus(kvm);
6821 	if (kvm->arch.apic_access_page)
6822 		put_page(kvm->arch.apic_access_page);
6823 	if (kvm->arch.ept_identity_pagetable)
6824 		put_page(kvm->arch.ept_identity_pagetable);
6825 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6826 }
6827 
6828 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6829 			   struct kvm_memory_slot *dont)
6830 {
6831 	int i;
6832 
6833 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6834 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6835 			kvm_kvfree(free->arch.rmap[i]);
6836 			free->arch.rmap[i] = NULL;
6837 		}
6838 		if (i == 0)
6839 			continue;
6840 
6841 		if (!dont || free->arch.lpage_info[i - 1] !=
6842 			     dont->arch.lpage_info[i - 1]) {
6843 			kvm_kvfree(free->arch.lpage_info[i - 1]);
6844 			free->arch.lpage_info[i - 1] = NULL;
6845 		}
6846 	}
6847 }
6848 
6849 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6850 {
6851 	int i;
6852 
6853 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6854 		unsigned long ugfn;
6855 		int lpages;
6856 		int level = i + 1;
6857 
6858 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6859 				      slot->base_gfn, level) + 1;
6860 
6861 		slot->arch.rmap[i] =
6862 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6863 		if (!slot->arch.rmap[i])
6864 			goto out_free;
6865 		if (i == 0)
6866 			continue;
6867 
6868 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6869 					sizeof(*slot->arch.lpage_info[i - 1]));
6870 		if (!slot->arch.lpage_info[i - 1])
6871 			goto out_free;
6872 
6873 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6874 			slot->arch.lpage_info[i - 1][0].write_count = 1;
6875 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6876 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6877 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6878 		/*
6879 		 * If the gfn and userspace address are not aligned wrt each
6880 		 * other, or if explicitly asked to, disable large page
6881 		 * support for this slot
6882 		 */
6883 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6884 		    !kvm_largepages_enabled()) {
6885 			unsigned long j;
6886 
6887 			for (j = 0; j < lpages; ++j)
6888 				slot->arch.lpage_info[i - 1][j].write_count = 1;
6889 		}
6890 	}
6891 
6892 	return 0;
6893 
6894 out_free:
6895 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6896 		kvm_kvfree(slot->arch.rmap[i]);
6897 		slot->arch.rmap[i] = NULL;
6898 		if (i == 0)
6899 			continue;
6900 
6901 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
6902 		slot->arch.lpage_info[i - 1] = NULL;
6903 	}
6904 	return -ENOMEM;
6905 }
6906 
6907 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6908 				struct kvm_memory_slot *memslot,
6909 				struct kvm_memory_slot old,
6910 				struct kvm_userspace_memory_region *mem,
6911 				bool user_alloc)
6912 {
6913 	int npages = memslot->npages;
6914 
6915 	/*
6916 	 * Only private memory slots need to be mapped here since
6917 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6918 	 */
6919 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && npages && !old.npages) {
6920 		unsigned long userspace_addr;
6921 
6922 		/*
6923 		 * MAP_SHARED to prevent internal slot pages from being moved
6924 		 * by fork()/COW.
6925 		 */
6926 		userspace_addr = vm_mmap(NULL, 0, npages * PAGE_SIZE,
6927 					 PROT_READ | PROT_WRITE,
6928 					 MAP_SHARED | MAP_ANONYMOUS, 0);
6929 
6930 		if (IS_ERR((void *)userspace_addr))
6931 			return PTR_ERR((void *)userspace_addr);
6932 
6933 		memslot->userspace_addr = userspace_addr;
6934 	}
6935 
6936 	return 0;
6937 }
6938 
6939 void kvm_arch_commit_memory_region(struct kvm *kvm,
6940 				struct kvm_userspace_memory_region *mem,
6941 				struct kvm_memory_slot old,
6942 				bool user_alloc)
6943 {
6944 
6945 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6946 
6947 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && old.npages && !npages) {
6948 		int ret;
6949 
6950 		ret = vm_munmap(old.userspace_addr,
6951 				old.npages * PAGE_SIZE);
6952 		if (ret < 0)
6953 			printk(KERN_WARNING
6954 			       "kvm_vm_ioctl_set_memory_region: "
6955 			       "failed to munmap memory\n");
6956 	}
6957 
6958 	if (!kvm->arch.n_requested_mmu_pages)
6959 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6960 
6961 	if (nr_mmu_pages)
6962 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6963 	/*
6964 	 * Write protect all pages for dirty logging.
6965 	 * Existing largepage mappings are destroyed here and new ones will
6966 	 * not be created until the end of the logging.
6967 	 */
6968 	if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
6969 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6970 	/*
6971 	 * If memory slot is created, or moved, we need to clear all
6972 	 * mmio sptes.
6973 	 */
6974 	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6975 		kvm_mmu_zap_all(kvm);
6976 		kvm_reload_remote_mmus(kvm);
6977 	}
6978 }
6979 
6980 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6981 {
6982 	kvm_mmu_zap_all(kvm);
6983 	kvm_reload_remote_mmus(kvm);
6984 }
6985 
6986 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6987 				   struct kvm_memory_slot *slot)
6988 {
6989 	kvm_arch_flush_shadow_all(kvm);
6990 }
6991 
6992 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6993 {
6994 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6995 		!vcpu->arch.apf.halted)
6996 		|| !list_empty_careful(&vcpu->async_pf.done)
6997 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6998 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6999 		(kvm_arch_interrupt_allowed(vcpu) &&
7000 		 kvm_cpu_has_interrupt(vcpu));
7001 }
7002 
7003 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7004 {
7005 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7006 }
7007 
7008 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7009 {
7010 	return kvm_x86_ops->interrupt_allowed(vcpu);
7011 }
7012 
7013 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7014 {
7015 	unsigned long current_rip = kvm_rip_read(vcpu) +
7016 		get_segment_base(vcpu, VCPU_SREG_CS);
7017 
7018 	return current_rip == linear_rip;
7019 }
7020 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7021 
7022 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7023 {
7024 	unsigned long rflags;
7025 
7026 	rflags = kvm_x86_ops->get_rflags(vcpu);
7027 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7028 		rflags &= ~X86_EFLAGS_TF;
7029 	return rflags;
7030 }
7031 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7032 
7033 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7034 {
7035 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7036 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7037 		rflags |= X86_EFLAGS_TF;
7038 	kvm_x86_ops->set_rflags(vcpu, rflags);
7039 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7040 }
7041 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7042 
7043 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7044 {
7045 	int r;
7046 
7047 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7048 	      is_error_page(work->page))
7049 		return;
7050 
7051 	r = kvm_mmu_reload(vcpu);
7052 	if (unlikely(r))
7053 		return;
7054 
7055 	if (!vcpu->arch.mmu.direct_map &&
7056 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7057 		return;
7058 
7059 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7060 }
7061 
7062 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7063 {
7064 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7065 }
7066 
7067 static inline u32 kvm_async_pf_next_probe(u32 key)
7068 {
7069 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7070 }
7071 
7072 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7073 {
7074 	u32 key = kvm_async_pf_hash_fn(gfn);
7075 
7076 	while (vcpu->arch.apf.gfns[key] != ~0)
7077 		key = kvm_async_pf_next_probe(key);
7078 
7079 	vcpu->arch.apf.gfns[key] = gfn;
7080 }
7081 
7082 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7083 {
7084 	int i;
7085 	u32 key = kvm_async_pf_hash_fn(gfn);
7086 
7087 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7088 		     (vcpu->arch.apf.gfns[key] != gfn &&
7089 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7090 		key = kvm_async_pf_next_probe(key);
7091 
7092 	return key;
7093 }
7094 
7095 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7096 {
7097 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7098 }
7099 
7100 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7101 {
7102 	u32 i, j, k;
7103 
7104 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7105 	while (true) {
7106 		vcpu->arch.apf.gfns[i] = ~0;
7107 		do {
7108 			j = kvm_async_pf_next_probe(j);
7109 			if (vcpu->arch.apf.gfns[j] == ~0)
7110 				return;
7111 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7112 			/*
7113 			 * k lies cyclically in ]i,j]
7114 			 * |    i.k.j |
7115 			 * |....j i.k.| or  |.k..j i...|
7116 			 */
7117 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7118 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7119 		i = j;
7120 	}
7121 }
7122 
7123 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7124 {
7125 
7126 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7127 				      sizeof(val));
7128 }
7129 
7130 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7131 				     struct kvm_async_pf *work)
7132 {
7133 	struct x86_exception fault;
7134 
7135 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7136 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7137 
7138 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7139 	    (vcpu->arch.apf.send_user_only &&
7140 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7141 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7142 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7143 		fault.vector = PF_VECTOR;
7144 		fault.error_code_valid = true;
7145 		fault.error_code = 0;
7146 		fault.nested_page_fault = false;
7147 		fault.address = work->arch.token;
7148 		kvm_inject_page_fault(vcpu, &fault);
7149 	}
7150 }
7151 
7152 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7153 				 struct kvm_async_pf *work)
7154 {
7155 	struct x86_exception fault;
7156 
7157 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7158 	if (is_error_page(work->page))
7159 		work->arch.token = ~0; /* broadcast wakeup */
7160 	else
7161 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7162 
7163 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7164 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7165 		fault.vector = PF_VECTOR;
7166 		fault.error_code_valid = true;
7167 		fault.error_code = 0;
7168 		fault.nested_page_fault = false;
7169 		fault.address = work->arch.token;
7170 		kvm_inject_page_fault(vcpu, &fault);
7171 	}
7172 	vcpu->arch.apf.halted = false;
7173 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7174 }
7175 
7176 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7177 {
7178 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7179 		return true;
7180 	else
7181 		return !kvm_event_needs_reinjection(vcpu) &&
7182 			kvm_x86_ops->interrupt_allowed(vcpu);
7183 }
7184 
7185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7190 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7191 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7192 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7193 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7194 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7195 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7196 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7197