1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 bool kvm_has_tsc_control; 98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 99 u32 kvm_max_guest_tsc_khz; 100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 101 102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 103 static u32 tsc_tolerance_ppm = 250; 104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 105 106 #define KVM_NR_SHARED_MSRS 16 107 108 struct kvm_shared_msrs_global { 109 int nr; 110 u32 msrs[KVM_NR_SHARED_MSRS]; 111 }; 112 113 struct kvm_shared_msrs { 114 struct user_return_notifier urn; 115 bool registered; 116 struct kvm_shared_msr_values { 117 u64 host; 118 u64 curr; 119 } values[KVM_NR_SHARED_MSRS]; 120 }; 121 122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 123 static struct kvm_shared_msrs __percpu *shared_msrs; 124 125 struct kvm_stats_debugfs_item debugfs_entries[] = { 126 { "pf_fixed", VCPU_STAT(pf_fixed) }, 127 { "pf_guest", VCPU_STAT(pf_guest) }, 128 { "tlb_flush", VCPU_STAT(tlb_flush) }, 129 { "invlpg", VCPU_STAT(invlpg) }, 130 { "exits", VCPU_STAT(exits) }, 131 { "io_exits", VCPU_STAT(io_exits) }, 132 { "mmio_exits", VCPU_STAT(mmio_exits) }, 133 { "signal_exits", VCPU_STAT(signal_exits) }, 134 { "irq_window", VCPU_STAT(irq_window_exits) }, 135 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 136 { "halt_exits", VCPU_STAT(halt_exits) }, 137 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 138 { "hypercalls", VCPU_STAT(hypercalls) }, 139 { "request_irq", VCPU_STAT(request_irq_exits) }, 140 { "irq_exits", VCPU_STAT(irq_exits) }, 141 { "host_state_reload", VCPU_STAT(host_state_reload) }, 142 { "efer_reload", VCPU_STAT(efer_reload) }, 143 { "fpu_reload", VCPU_STAT(fpu_reload) }, 144 { "insn_emulation", VCPU_STAT(insn_emulation) }, 145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 146 { "irq_injections", VCPU_STAT(irq_injections) }, 147 { "nmi_injections", VCPU_STAT(nmi_injections) }, 148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 149 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 152 { "mmu_flooded", VM_STAT(mmu_flooded) }, 153 { "mmu_recycled", VM_STAT(mmu_recycled) }, 154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 155 { "mmu_unsync", VM_STAT(mmu_unsync) }, 156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 157 { "largepages", VM_STAT(lpages) }, 158 { NULL } 159 }; 160 161 u64 __read_mostly host_xcr0; 162 163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 164 165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu); 166 167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 168 { 169 int i; 170 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 171 vcpu->arch.apf.gfns[i] = ~0; 172 } 173 174 static void kvm_on_user_return(struct user_return_notifier *urn) 175 { 176 unsigned slot; 177 struct kvm_shared_msrs *locals 178 = container_of(urn, struct kvm_shared_msrs, urn); 179 struct kvm_shared_msr_values *values; 180 181 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 182 values = &locals->values[slot]; 183 if (values->host != values->curr) { 184 wrmsrl(shared_msrs_global.msrs[slot], values->host); 185 values->curr = values->host; 186 } 187 } 188 locals->registered = false; 189 user_return_notifier_unregister(urn); 190 } 191 192 static void shared_msr_update(unsigned slot, u32 msr) 193 { 194 u64 value; 195 unsigned int cpu = smp_processor_id(); 196 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 197 198 /* only read, and nobody should modify it at this time, 199 * so don't need lock */ 200 if (slot >= shared_msrs_global.nr) { 201 printk(KERN_ERR "kvm: invalid MSR slot!"); 202 return; 203 } 204 rdmsrl_safe(msr, &value); 205 smsr->values[slot].host = value; 206 smsr->values[slot].curr = value; 207 } 208 209 void kvm_define_shared_msr(unsigned slot, u32 msr) 210 { 211 if (slot >= shared_msrs_global.nr) 212 shared_msrs_global.nr = slot + 1; 213 shared_msrs_global.msrs[slot] = msr; 214 /* we need ensured the shared_msr_global have been updated */ 215 smp_wmb(); 216 } 217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 218 219 static void kvm_shared_msr_cpu_online(void) 220 { 221 unsigned i; 222 223 for (i = 0; i < shared_msrs_global.nr; ++i) 224 shared_msr_update(i, shared_msrs_global.msrs[i]); 225 } 226 227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 228 { 229 unsigned int cpu = smp_processor_id(); 230 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 231 232 if (((value ^ smsr->values[slot].curr) & mask) == 0) 233 return; 234 smsr->values[slot].curr = value; 235 wrmsrl(shared_msrs_global.msrs[slot], value); 236 if (!smsr->registered) { 237 smsr->urn.on_user_return = kvm_on_user_return; 238 user_return_notifier_register(&smsr->urn); 239 smsr->registered = true; 240 } 241 } 242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 243 244 static void drop_user_return_notifiers(void *ignore) 245 { 246 unsigned int cpu = smp_processor_id(); 247 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 248 249 if (smsr->registered) 250 kvm_on_user_return(&smsr->urn); 251 } 252 253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 254 { 255 return vcpu->arch.apic_base; 256 } 257 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 258 259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 260 { 261 /* TODO: reserve bits check */ 262 kvm_lapic_set_base(vcpu, data); 263 } 264 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 265 266 #define EXCPT_BENIGN 0 267 #define EXCPT_CONTRIBUTORY 1 268 #define EXCPT_PF 2 269 270 static int exception_class(int vector) 271 { 272 switch (vector) { 273 case PF_VECTOR: 274 return EXCPT_PF; 275 case DE_VECTOR: 276 case TS_VECTOR: 277 case NP_VECTOR: 278 case SS_VECTOR: 279 case GP_VECTOR: 280 return EXCPT_CONTRIBUTORY; 281 default: 282 break; 283 } 284 return EXCPT_BENIGN; 285 } 286 287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 288 unsigned nr, bool has_error, u32 error_code, 289 bool reinject) 290 { 291 u32 prev_nr; 292 int class1, class2; 293 294 kvm_make_request(KVM_REQ_EVENT, vcpu); 295 296 if (!vcpu->arch.exception.pending) { 297 queue: 298 vcpu->arch.exception.pending = true; 299 vcpu->arch.exception.has_error_code = has_error; 300 vcpu->arch.exception.nr = nr; 301 vcpu->arch.exception.error_code = error_code; 302 vcpu->arch.exception.reinject = reinject; 303 return; 304 } 305 306 /* to check exception */ 307 prev_nr = vcpu->arch.exception.nr; 308 if (prev_nr == DF_VECTOR) { 309 /* triple fault -> shutdown */ 310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 311 return; 312 } 313 class1 = exception_class(prev_nr); 314 class2 = exception_class(nr); 315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 317 /* generate double fault per SDM Table 5-5 */ 318 vcpu->arch.exception.pending = true; 319 vcpu->arch.exception.has_error_code = true; 320 vcpu->arch.exception.nr = DF_VECTOR; 321 vcpu->arch.exception.error_code = 0; 322 } else 323 /* replace previous exception with a new one in a hope 324 that instruction re-execution will regenerate lost 325 exception */ 326 goto queue; 327 } 328 329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, false); 332 } 333 EXPORT_SYMBOL_GPL(kvm_queue_exception); 334 335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 336 { 337 kvm_multiple_exception(vcpu, nr, false, 0, true); 338 } 339 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 340 341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 342 { 343 if (err) 344 kvm_inject_gp(vcpu, 0); 345 else 346 kvm_x86_ops->skip_emulated_instruction(vcpu); 347 } 348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 349 350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 351 { 352 ++vcpu->stat.pf_guest; 353 vcpu->arch.cr2 = fault->address; 354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 355 } 356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 357 358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 362 else 363 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 364 } 365 366 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 367 { 368 atomic_inc(&vcpu->arch.nmi_queued); 369 kvm_make_request(KVM_REQ_NMI, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 372 373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, false); 376 } 377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 378 379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 380 { 381 kvm_multiple_exception(vcpu, nr, true, error_code, true); 382 } 383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 384 385 /* 386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 387 * a #GP and return false. 388 */ 389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 390 { 391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 392 return true; 393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 394 return false; 395 } 396 EXPORT_SYMBOL_GPL(kvm_require_cpl); 397 398 /* 399 * This function will be used to read from the physical memory of the currently 400 * running guest. The difference to kvm_read_guest_page is that this function 401 * can read from guest physical or from the guest's guest physical memory. 402 */ 403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 404 gfn_t ngfn, void *data, int offset, int len, 405 u32 access) 406 { 407 gfn_t real_gfn; 408 gpa_t ngpa; 409 410 ngpa = gfn_to_gpa(ngfn); 411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 412 if (real_gfn == UNMAPPED_GVA) 413 return -EFAULT; 414 415 real_gfn = gpa_to_gfn(real_gfn); 416 417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 418 } 419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 420 421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 422 void *data, int offset, int len, u32 access) 423 { 424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 425 data, offset, len, access); 426 } 427 428 /* 429 * Load the pae pdptrs. Return true is they are all valid. 430 */ 431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 432 { 433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 435 int i; 436 int ret; 437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 438 439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 440 offset * sizeof(u64), sizeof(pdpte), 441 PFERR_USER_MASK|PFERR_WRITE_MASK); 442 if (ret < 0) { 443 ret = 0; 444 goto out; 445 } 446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 447 if (is_present_gpte(pdpte[i]) && 448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 449 ret = 0; 450 goto out; 451 } 452 } 453 ret = 1; 454 455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 456 __set_bit(VCPU_EXREG_PDPTR, 457 (unsigned long *)&vcpu->arch.regs_avail); 458 __set_bit(VCPU_EXREG_PDPTR, 459 (unsigned long *)&vcpu->arch.regs_dirty); 460 out: 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(load_pdptrs); 465 466 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 467 { 468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 469 bool changed = true; 470 int offset; 471 gfn_t gfn; 472 int r; 473 474 if (is_long_mode(vcpu) || !is_pae(vcpu)) 475 return false; 476 477 if (!test_bit(VCPU_EXREG_PDPTR, 478 (unsigned long *)&vcpu->arch.regs_avail)) 479 return true; 480 481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 484 PFERR_USER_MASK | PFERR_WRITE_MASK); 485 if (r < 0) 486 goto out; 487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 488 out: 489 490 return changed; 491 } 492 493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 494 { 495 unsigned long old_cr0 = kvm_read_cr0(vcpu); 496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 497 X86_CR0_CD | X86_CR0_NW; 498 499 cr0 |= X86_CR0_ET; 500 501 #ifdef CONFIG_X86_64 502 if (cr0 & 0xffffffff00000000UL) 503 return 1; 504 #endif 505 506 cr0 &= ~CR0_RESERVED_BITS; 507 508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 509 return 1; 510 511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 512 return 1; 513 514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 515 #ifdef CONFIG_X86_64 516 if ((vcpu->arch.efer & EFER_LME)) { 517 int cs_db, cs_l; 518 519 if (!is_pae(vcpu)) 520 return 1; 521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 522 if (cs_l) 523 return 1; 524 } else 525 #endif 526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 527 kvm_read_cr3(vcpu))) 528 return 1; 529 } 530 531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 532 return 1; 533 534 kvm_x86_ops->set_cr0(vcpu, cr0); 535 536 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 537 kvm_clear_async_pf_completion_queue(vcpu); 538 kvm_async_pf_hash_reset(vcpu); 539 } 540 541 if ((cr0 ^ old_cr0) & update_bits) 542 kvm_mmu_reset_context(vcpu); 543 return 0; 544 } 545 EXPORT_SYMBOL_GPL(kvm_set_cr0); 546 547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 548 { 549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 550 } 551 EXPORT_SYMBOL_GPL(kvm_lmsw); 552 553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 554 { 555 u64 xcr0; 556 557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 558 if (index != XCR_XFEATURE_ENABLED_MASK) 559 return 1; 560 xcr0 = xcr; 561 if (kvm_x86_ops->get_cpl(vcpu) != 0) 562 return 1; 563 if (!(xcr0 & XSTATE_FP)) 564 return 1; 565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 566 return 1; 567 if (xcr0 & ~host_xcr0) 568 return 1; 569 vcpu->arch.xcr0 = xcr0; 570 vcpu->guest_xcr0_loaded = 0; 571 return 0; 572 } 573 574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 575 { 576 if (__kvm_set_xcr(vcpu, index, xcr)) { 577 kvm_inject_gp(vcpu, 0); 578 return 1; 579 } 580 return 0; 581 } 582 EXPORT_SYMBOL_GPL(kvm_set_xcr); 583 584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 585 { 586 unsigned long old_cr4 = kvm_read_cr4(vcpu); 587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 588 X86_CR4_PAE | X86_CR4_SMEP; 589 if (cr4 & CR4_RESERVED_BITS) 590 return 1; 591 592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 593 return 1; 594 595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 596 return 1; 597 598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 599 return 1; 600 601 if (is_long_mode(vcpu)) { 602 if (!(cr4 & X86_CR4_PAE)) 603 return 1; 604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 605 && ((cr4 ^ old_cr4) & pdptr_bits) 606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 607 kvm_read_cr3(vcpu))) 608 return 1; 609 610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 611 if (!guest_cpuid_has_pcid(vcpu)) 612 return 1; 613 614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 616 return 1; 617 } 618 619 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 620 return 1; 621 622 if (((cr4 ^ old_cr4) & pdptr_bits) || 623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 624 kvm_mmu_reset_context(vcpu); 625 626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 627 kvm_update_cpuid(vcpu); 628 629 return 0; 630 } 631 EXPORT_SYMBOL_GPL(kvm_set_cr4); 632 633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 634 { 635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 636 kvm_mmu_sync_roots(vcpu); 637 kvm_mmu_flush_tlb(vcpu); 638 return 0; 639 } 640 641 if (is_long_mode(vcpu)) { 642 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 644 return 1; 645 } else 646 if (cr3 & CR3_L_MODE_RESERVED_BITS) 647 return 1; 648 } else { 649 if (is_pae(vcpu)) { 650 if (cr3 & CR3_PAE_RESERVED_BITS) 651 return 1; 652 if (is_paging(vcpu) && 653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 654 return 1; 655 } 656 /* 657 * We don't check reserved bits in nonpae mode, because 658 * this isn't enforced, and VMware depends on this. 659 */ 660 } 661 662 /* 663 * Does the new cr3 value map to physical memory? (Note, we 664 * catch an invalid cr3 even in real-mode, because it would 665 * cause trouble later on when we turn on paging anyway.) 666 * 667 * A real CPU would silently accept an invalid cr3 and would 668 * attempt to use it - with largely undefined (and often hard 669 * to debug) behavior on the guest side. 670 */ 671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 672 return 1; 673 vcpu->arch.cr3 = cr3; 674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 675 vcpu->arch.mmu.new_cr3(vcpu); 676 return 0; 677 } 678 EXPORT_SYMBOL_GPL(kvm_set_cr3); 679 680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 681 { 682 if (cr8 & CR8_RESERVED_BITS) 683 return 1; 684 if (irqchip_in_kernel(vcpu->kvm)) 685 kvm_lapic_set_tpr(vcpu, cr8); 686 else 687 vcpu->arch.cr8 = cr8; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(kvm_set_cr8); 691 692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 693 { 694 if (irqchip_in_kernel(vcpu->kvm)) 695 return kvm_lapic_get_cr8(vcpu); 696 else 697 return vcpu->arch.cr8; 698 } 699 EXPORT_SYMBOL_GPL(kvm_get_cr8); 700 701 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 702 { 703 unsigned long dr7; 704 705 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 706 dr7 = vcpu->arch.guest_debug_dr7; 707 else 708 dr7 = vcpu->arch.dr7; 709 kvm_x86_ops->set_dr7(vcpu, dr7); 710 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 711 } 712 713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 714 { 715 switch (dr) { 716 case 0 ... 3: 717 vcpu->arch.db[dr] = val; 718 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 719 vcpu->arch.eff_db[dr] = val; 720 break; 721 case 4: 722 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 723 return 1; /* #UD */ 724 /* fall through */ 725 case 6: 726 if (val & 0xffffffff00000000ULL) 727 return -1; /* #GP */ 728 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 729 break; 730 case 5: 731 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 732 return 1; /* #UD */ 733 /* fall through */ 734 default: /* 7 */ 735 if (val & 0xffffffff00000000ULL) 736 return -1; /* #GP */ 737 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 738 kvm_update_dr7(vcpu); 739 break; 740 } 741 742 return 0; 743 } 744 745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 746 { 747 int res; 748 749 res = __kvm_set_dr(vcpu, dr, val); 750 if (res > 0) 751 kvm_queue_exception(vcpu, UD_VECTOR); 752 else if (res < 0) 753 kvm_inject_gp(vcpu, 0); 754 755 return res; 756 } 757 EXPORT_SYMBOL_GPL(kvm_set_dr); 758 759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 760 { 761 switch (dr) { 762 case 0 ... 3: 763 *val = vcpu->arch.db[dr]; 764 break; 765 case 4: 766 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 767 return 1; 768 /* fall through */ 769 case 6: 770 *val = vcpu->arch.dr6; 771 break; 772 case 5: 773 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 774 return 1; 775 /* fall through */ 776 default: /* 7 */ 777 *val = vcpu->arch.dr7; 778 break; 779 } 780 781 return 0; 782 } 783 784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 785 { 786 if (_kvm_get_dr(vcpu, dr, val)) { 787 kvm_queue_exception(vcpu, UD_VECTOR); 788 return 1; 789 } 790 return 0; 791 } 792 EXPORT_SYMBOL_GPL(kvm_get_dr); 793 794 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 795 { 796 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 797 u64 data; 798 int err; 799 800 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 801 if (err) 802 return err; 803 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 804 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 805 return err; 806 } 807 EXPORT_SYMBOL_GPL(kvm_rdpmc); 808 809 /* 810 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 811 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 812 * 813 * This list is modified at module load time to reflect the 814 * capabilities of the host cpu. This capabilities test skips MSRs that are 815 * kvm-specific. Those are put in the beginning of the list. 816 */ 817 818 #define KVM_SAVE_MSRS_BEGIN 10 819 static u32 msrs_to_save[] = { 820 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 821 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 822 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 823 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 824 MSR_KVM_PV_EOI_EN, 825 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 826 MSR_STAR, 827 #ifdef CONFIG_X86_64 828 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 829 #endif 830 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 831 }; 832 833 static unsigned num_msrs_to_save; 834 835 static const u32 emulated_msrs[] = { 836 MSR_IA32_TSC_ADJUST, 837 MSR_IA32_TSCDEADLINE, 838 MSR_IA32_MISC_ENABLE, 839 MSR_IA32_MCG_STATUS, 840 MSR_IA32_MCG_CTL, 841 }; 842 843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 844 { 845 u64 old_efer = vcpu->arch.efer; 846 847 if (efer & efer_reserved_bits) 848 return 1; 849 850 if (is_paging(vcpu) 851 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 852 return 1; 853 854 if (efer & EFER_FFXSR) { 855 struct kvm_cpuid_entry2 *feat; 856 857 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 858 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 859 return 1; 860 } 861 862 if (efer & EFER_SVME) { 863 struct kvm_cpuid_entry2 *feat; 864 865 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 866 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 867 return 1; 868 } 869 870 efer &= ~EFER_LMA; 871 efer |= vcpu->arch.efer & EFER_LMA; 872 873 kvm_x86_ops->set_efer(vcpu, efer); 874 875 /* Update reserved bits */ 876 if ((efer ^ old_efer) & EFER_NX) 877 kvm_mmu_reset_context(vcpu); 878 879 return 0; 880 } 881 882 void kvm_enable_efer_bits(u64 mask) 883 { 884 efer_reserved_bits &= ~mask; 885 } 886 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 887 888 889 /* 890 * Writes msr value into into the appropriate "register". 891 * Returns 0 on success, non-0 otherwise. 892 * Assumes vcpu_load() was already called. 893 */ 894 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 895 { 896 return kvm_x86_ops->set_msr(vcpu, msr); 897 } 898 899 /* 900 * Adapt set_msr() to msr_io()'s calling convention 901 */ 902 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 903 { 904 struct msr_data msr; 905 906 msr.data = *data; 907 msr.index = index; 908 msr.host_initiated = true; 909 return kvm_set_msr(vcpu, &msr); 910 } 911 912 #ifdef CONFIG_X86_64 913 struct pvclock_gtod_data { 914 seqcount_t seq; 915 916 struct { /* extract of a clocksource struct */ 917 int vclock_mode; 918 cycle_t cycle_last; 919 cycle_t mask; 920 u32 mult; 921 u32 shift; 922 } clock; 923 924 /* open coded 'struct timespec' */ 925 u64 monotonic_time_snsec; 926 time_t monotonic_time_sec; 927 }; 928 929 static struct pvclock_gtod_data pvclock_gtod_data; 930 931 static void update_pvclock_gtod(struct timekeeper *tk) 932 { 933 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 934 935 write_seqcount_begin(&vdata->seq); 936 937 /* copy pvclock gtod data */ 938 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 939 vdata->clock.cycle_last = tk->clock->cycle_last; 940 vdata->clock.mask = tk->clock->mask; 941 vdata->clock.mult = tk->mult; 942 vdata->clock.shift = tk->shift; 943 944 vdata->monotonic_time_sec = tk->xtime_sec 945 + tk->wall_to_monotonic.tv_sec; 946 vdata->monotonic_time_snsec = tk->xtime_nsec 947 + (tk->wall_to_monotonic.tv_nsec 948 << tk->shift); 949 while (vdata->monotonic_time_snsec >= 950 (((u64)NSEC_PER_SEC) << tk->shift)) { 951 vdata->monotonic_time_snsec -= 952 ((u64)NSEC_PER_SEC) << tk->shift; 953 vdata->monotonic_time_sec++; 954 } 955 956 write_seqcount_end(&vdata->seq); 957 } 958 #endif 959 960 961 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 962 { 963 int version; 964 int r; 965 struct pvclock_wall_clock wc; 966 struct timespec boot; 967 968 if (!wall_clock) 969 return; 970 971 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 972 if (r) 973 return; 974 975 if (version & 1) 976 ++version; /* first time write, random junk */ 977 978 ++version; 979 980 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 981 982 /* 983 * The guest calculates current wall clock time by adding 984 * system time (updated by kvm_guest_time_update below) to the 985 * wall clock specified here. guest system time equals host 986 * system time for us, thus we must fill in host boot time here. 987 */ 988 getboottime(&boot); 989 990 if (kvm->arch.kvmclock_offset) { 991 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 992 boot = timespec_sub(boot, ts); 993 } 994 wc.sec = boot.tv_sec; 995 wc.nsec = boot.tv_nsec; 996 wc.version = version; 997 998 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 999 1000 version++; 1001 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1002 } 1003 1004 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1005 { 1006 uint32_t quotient, remainder; 1007 1008 /* Don't try to replace with do_div(), this one calculates 1009 * "(dividend << 32) / divisor" */ 1010 __asm__ ( "divl %4" 1011 : "=a" (quotient), "=d" (remainder) 1012 : "0" (0), "1" (dividend), "r" (divisor) ); 1013 return quotient; 1014 } 1015 1016 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1017 s8 *pshift, u32 *pmultiplier) 1018 { 1019 uint64_t scaled64; 1020 int32_t shift = 0; 1021 uint64_t tps64; 1022 uint32_t tps32; 1023 1024 tps64 = base_khz * 1000LL; 1025 scaled64 = scaled_khz * 1000LL; 1026 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1027 tps64 >>= 1; 1028 shift--; 1029 } 1030 1031 tps32 = (uint32_t)tps64; 1032 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1033 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1034 scaled64 >>= 1; 1035 else 1036 tps32 <<= 1; 1037 shift++; 1038 } 1039 1040 *pshift = shift; 1041 *pmultiplier = div_frac(scaled64, tps32); 1042 1043 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1044 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1045 } 1046 1047 static inline u64 get_kernel_ns(void) 1048 { 1049 struct timespec ts; 1050 1051 WARN_ON(preemptible()); 1052 ktime_get_ts(&ts); 1053 monotonic_to_bootbased(&ts); 1054 return timespec_to_ns(&ts); 1055 } 1056 1057 #ifdef CONFIG_X86_64 1058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1059 #endif 1060 1061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1062 unsigned long max_tsc_khz; 1063 1064 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1065 { 1066 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1067 vcpu->arch.virtual_tsc_shift); 1068 } 1069 1070 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1071 { 1072 u64 v = (u64)khz * (1000000 + ppm); 1073 do_div(v, 1000000); 1074 return v; 1075 } 1076 1077 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1078 { 1079 u32 thresh_lo, thresh_hi; 1080 int use_scaling = 0; 1081 1082 /* Compute a scale to convert nanoseconds in TSC cycles */ 1083 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1084 &vcpu->arch.virtual_tsc_shift, 1085 &vcpu->arch.virtual_tsc_mult); 1086 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1087 1088 /* 1089 * Compute the variation in TSC rate which is acceptable 1090 * within the range of tolerance and decide if the 1091 * rate being applied is within that bounds of the hardware 1092 * rate. If so, no scaling or compensation need be done. 1093 */ 1094 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1095 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1096 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1097 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1098 use_scaling = 1; 1099 } 1100 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1101 } 1102 1103 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1104 { 1105 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1106 vcpu->arch.virtual_tsc_mult, 1107 vcpu->arch.virtual_tsc_shift); 1108 tsc += vcpu->arch.this_tsc_write; 1109 return tsc; 1110 } 1111 1112 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1113 { 1114 #ifdef CONFIG_X86_64 1115 bool vcpus_matched; 1116 bool do_request = false; 1117 struct kvm_arch *ka = &vcpu->kvm->arch; 1118 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1119 1120 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1121 atomic_read(&vcpu->kvm->online_vcpus)); 1122 1123 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1124 if (!ka->use_master_clock) 1125 do_request = 1; 1126 1127 if (!vcpus_matched && ka->use_master_clock) 1128 do_request = 1; 1129 1130 if (do_request) 1131 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1132 1133 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1134 atomic_read(&vcpu->kvm->online_vcpus), 1135 ka->use_master_clock, gtod->clock.vclock_mode); 1136 #endif 1137 } 1138 1139 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1140 { 1141 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1142 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1143 } 1144 1145 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1146 { 1147 struct kvm *kvm = vcpu->kvm; 1148 u64 offset, ns, elapsed; 1149 unsigned long flags; 1150 s64 usdiff; 1151 bool matched; 1152 u64 data = msr->data; 1153 1154 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1155 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1156 ns = get_kernel_ns(); 1157 elapsed = ns - kvm->arch.last_tsc_nsec; 1158 1159 /* n.b - signed multiplication and division required */ 1160 usdiff = data - kvm->arch.last_tsc_write; 1161 #ifdef CONFIG_X86_64 1162 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1163 #else 1164 /* do_div() only does unsigned */ 1165 asm("idivl %2; xor %%edx, %%edx" 1166 : "=A"(usdiff) 1167 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1168 #endif 1169 do_div(elapsed, 1000); 1170 usdiff -= elapsed; 1171 if (usdiff < 0) 1172 usdiff = -usdiff; 1173 1174 /* 1175 * Special case: TSC write with a small delta (1 second) of virtual 1176 * cycle time against real time is interpreted as an attempt to 1177 * synchronize the CPU. 1178 * 1179 * For a reliable TSC, we can match TSC offsets, and for an unstable 1180 * TSC, we add elapsed time in this computation. We could let the 1181 * compensation code attempt to catch up if we fall behind, but 1182 * it's better to try to match offsets from the beginning. 1183 */ 1184 if (usdiff < USEC_PER_SEC && 1185 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1186 if (!check_tsc_unstable()) { 1187 offset = kvm->arch.cur_tsc_offset; 1188 pr_debug("kvm: matched tsc offset for %llu\n", data); 1189 } else { 1190 u64 delta = nsec_to_cycles(vcpu, elapsed); 1191 data += delta; 1192 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1193 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1194 } 1195 matched = true; 1196 } else { 1197 /* 1198 * We split periods of matched TSC writes into generations. 1199 * For each generation, we track the original measured 1200 * nanosecond time, offset, and write, so if TSCs are in 1201 * sync, we can match exact offset, and if not, we can match 1202 * exact software computation in compute_guest_tsc() 1203 * 1204 * These values are tracked in kvm->arch.cur_xxx variables. 1205 */ 1206 kvm->arch.cur_tsc_generation++; 1207 kvm->arch.cur_tsc_nsec = ns; 1208 kvm->arch.cur_tsc_write = data; 1209 kvm->arch.cur_tsc_offset = offset; 1210 matched = false; 1211 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1212 kvm->arch.cur_tsc_generation, data); 1213 } 1214 1215 /* 1216 * We also track th most recent recorded KHZ, write and time to 1217 * allow the matching interval to be extended at each write. 1218 */ 1219 kvm->arch.last_tsc_nsec = ns; 1220 kvm->arch.last_tsc_write = data; 1221 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1222 1223 /* Reset of TSC must disable overshoot protection below */ 1224 vcpu->arch.hv_clock.tsc_timestamp = 0; 1225 vcpu->arch.last_guest_tsc = data; 1226 1227 /* Keep track of which generation this VCPU has synchronized to */ 1228 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1229 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1230 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1231 1232 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1233 update_ia32_tsc_adjust_msr(vcpu, offset); 1234 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1235 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1236 1237 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1238 if (matched) 1239 kvm->arch.nr_vcpus_matched_tsc++; 1240 else 1241 kvm->arch.nr_vcpus_matched_tsc = 0; 1242 1243 kvm_track_tsc_matching(vcpu); 1244 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1245 } 1246 1247 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1248 1249 #ifdef CONFIG_X86_64 1250 1251 static cycle_t read_tsc(void) 1252 { 1253 cycle_t ret; 1254 u64 last; 1255 1256 /* 1257 * Empirically, a fence (of type that depends on the CPU) 1258 * before rdtsc is enough to ensure that rdtsc is ordered 1259 * with respect to loads. The various CPU manuals are unclear 1260 * as to whether rdtsc can be reordered with later loads, 1261 * but no one has ever seen it happen. 1262 */ 1263 rdtsc_barrier(); 1264 ret = (cycle_t)vget_cycles(); 1265 1266 last = pvclock_gtod_data.clock.cycle_last; 1267 1268 if (likely(ret >= last)) 1269 return ret; 1270 1271 /* 1272 * GCC likes to generate cmov here, but this branch is extremely 1273 * predictable (it's just a funciton of time and the likely is 1274 * very likely) and there's a data dependence, so force GCC 1275 * to generate a branch instead. I don't barrier() because 1276 * we don't actually need a barrier, and if this function 1277 * ever gets inlined it will generate worse code. 1278 */ 1279 asm volatile (""); 1280 return last; 1281 } 1282 1283 static inline u64 vgettsc(cycle_t *cycle_now) 1284 { 1285 long v; 1286 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1287 1288 *cycle_now = read_tsc(); 1289 1290 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1291 return v * gtod->clock.mult; 1292 } 1293 1294 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1295 { 1296 unsigned long seq; 1297 u64 ns; 1298 int mode; 1299 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1300 1301 ts->tv_nsec = 0; 1302 do { 1303 seq = read_seqcount_begin(>od->seq); 1304 mode = gtod->clock.vclock_mode; 1305 ts->tv_sec = gtod->monotonic_time_sec; 1306 ns = gtod->monotonic_time_snsec; 1307 ns += vgettsc(cycle_now); 1308 ns >>= gtod->clock.shift; 1309 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1310 timespec_add_ns(ts, ns); 1311 1312 return mode; 1313 } 1314 1315 /* returns true if host is using tsc clocksource */ 1316 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1317 { 1318 struct timespec ts; 1319 1320 /* checked again under seqlock below */ 1321 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1322 return false; 1323 1324 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1325 return false; 1326 1327 monotonic_to_bootbased(&ts); 1328 *kernel_ns = timespec_to_ns(&ts); 1329 1330 return true; 1331 } 1332 #endif 1333 1334 /* 1335 * 1336 * Assuming a stable TSC across physical CPUS, and a stable TSC 1337 * across virtual CPUs, the following condition is possible. 1338 * Each numbered line represents an event visible to both 1339 * CPUs at the next numbered event. 1340 * 1341 * "timespecX" represents host monotonic time. "tscX" represents 1342 * RDTSC value. 1343 * 1344 * VCPU0 on CPU0 | VCPU1 on CPU1 1345 * 1346 * 1. read timespec0,tsc0 1347 * 2. | timespec1 = timespec0 + N 1348 * | tsc1 = tsc0 + M 1349 * 3. transition to guest | transition to guest 1350 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1351 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1352 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1353 * 1354 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1355 * 1356 * - ret0 < ret1 1357 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1358 * ... 1359 * - 0 < N - M => M < N 1360 * 1361 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1362 * always the case (the difference between two distinct xtime instances 1363 * might be smaller then the difference between corresponding TSC reads, 1364 * when updating guest vcpus pvclock areas). 1365 * 1366 * To avoid that problem, do not allow visibility of distinct 1367 * system_timestamp/tsc_timestamp values simultaneously: use a master 1368 * copy of host monotonic time values. Update that master copy 1369 * in lockstep. 1370 * 1371 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1372 * 1373 */ 1374 1375 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1376 { 1377 #ifdef CONFIG_X86_64 1378 struct kvm_arch *ka = &kvm->arch; 1379 int vclock_mode; 1380 bool host_tsc_clocksource, vcpus_matched; 1381 1382 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1383 atomic_read(&kvm->online_vcpus)); 1384 1385 /* 1386 * If the host uses TSC clock, then passthrough TSC as stable 1387 * to the guest. 1388 */ 1389 host_tsc_clocksource = kvm_get_time_and_clockread( 1390 &ka->master_kernel_ns, 1391 &ka->master_cycle_now); 1392 1393 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1394 1395 if (ka->use_master_clock) 1396 atomic_set(&kvm_guest_has_master_clock, 1); 1397 1398 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1399 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1400 vcpus_matched); 1401 #endif 1402 } 1403 1404 static int kvm_guest_time_update(struct kvm_vcpu *v) 1405 { 1406 unsigned long flags, this_tsc_khz; 1407 struct kvm_vcpu_arch *vcpu = &v->arch; 1408 struct kvm_arch *ka = &v->kvm->arch; 1409 void *shared_kaddr; 1410 s64 kernel_ns, max_kernel_ns; 1411 u64 tsc_timestamp, host_tsc; 1412 struct pvclock_vcpu_time_info *guest_hv_clock; 1413 u8 pvclock_flags; 1414 bool use_master_clock; 1415 1416 kernel_ns = 0; 1417 host_tsc = 0; 1418 1419 /* Keep irq disabled to prevent changes to the clock */ 1420 local_irq_save(flags); 1421 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1422 if (unlikely(this_tsc_khz == 0)) { 1423 local_irq_restore(flags); 1424 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1425 return 1; 1426 } 1427 1428 /* 1429 * If the host uses TSC clock, then passthrough TSC as stable 1430 * to the guest. 1431 */ 1432 spin_lock(&ka->pvclock_gtod_sync_lock); 1433 use_master_clock = ka->use_master_clock; 1434 if (use_master_clock) { 1435 host_tsc = ka->master_cycle_now; 1436 kernel_ns = ka->master_kernel_ns; 1437 } 1438 spin_unlock(&ka->pvclock_gtod_sync_lock); 1439 if (!use_master_clock) { 1440 host_tsc = native_read_tsc(); 1441 kernel_ns = get_kernel_ns(); 1442 } 1443 1444 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1445 1446 /* 1447 * We may have to catch up the TSC to match elapsed wall clock 1448 * time for two reasons, even if kvmclock is used. 1449 * 1) CPU could have been running below the maximum TSC rate 1450 * 2) Broken TSC compensation resets the base at each VCPU 1451 * entry to avoid unknown leaps of TSC even when running 1452 * again on the same CPU. This may cause apparent elapsed 1453 * time to disappear, and the guest to stand still or run 1454 * very slowly. 1455 */ 1456 if (vcpu->tsc_catchup) { 1457 u64 tsc = compute_guest_tsc(v, kernel_ns); 1458 if (tsc > tsc_timestamp) { 1459 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1460 tsc_timestamp = tsc; 1461 } 1462 } 1463 1464 local_irq_restore(flags); 1465 1466 if (!vcpu->time_page) 1467 return 0; 1468 1469 /* 1470 * Time as measured by the TSC may go backwards when resetting the base 1471 * tsc_timestamp. The reason for this is that the TSC resolution is 1472 * higher than the resolution of the other clock scales. Thus, many 1473 * possible measurments of the TSC correspond to one measurement of any 1474 * other clock, and so a spread of values is possible. This is not a 1475 * problem for the computation of the nanosecond clock; with TSC rates 1476 * around 1GHZ, there can only be a few cycles which correspond to one 1477 * nanosecond value, and any path through this code will inevitably 1478 * take longer than that. However, with the kernel_ns value itself, 1479 * the precision may be much lower, down to HZ granularity. If the 1480 * first sampling of TSC against kernel_ns ends in the low part of the 1481 * range, and the second in the high end of the range, we can get: 1482 * 1483 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1484 * 1485 * As the sampling errors potentially range in the thousands of cycles, 1486 * it is possible such a time value has already been observed by the 1487 * guest. To protect against this, we must compute the system time as 1488 * observed by the guest and ensure the new system time is greater. 1489 */ 1490 max_kernel_ns = 0; 1491 if (vcpu->hv_clock.tsc_timestamp) { 1492 max_kernel_ns = vcpu->last_guest_tsc - 1493 vcpu->hv_clock.tsc_timestamp; 1494 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1495 vcpu->hv_clock.tsc_to_system_mul, 1496 vcpu->hv_clock.tsc_shift); 1497 max_kernel_ns += vcpu->last_kernel_ns; 1498 } 1499 1500 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1501 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1502 &vcpu->hv_clock.tsc_shift, 1503 &vcpu->hv_clock.tsc_to_system_mul); 1504 vcpu->hw_tsc_khz = this_tsc_khz; 1505 } 1506 1507 /* with a master <monotonic time, tsc value> tuple, 1508 * pvclock clock reads always increase at the (scaled) rate 1509 * of guest TSC - no need to deal with sampling errors. 1510 */ 1511 if (!use_master_clock) { 1512 if (max_kernel_ns > kernel_ns) 1513 kernel_ns = max_kernel_ns; 1514 } 1515 /* With all the info we got, fill in the values */ 1516 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1517 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1518 vcpu->last_kernel_ns = kernel_ns; 1519 vcpu->last_guest_tsc = tsc_timestamp; 1520 1521 /* 1522 * The interface expects us to write an even number signaling that the 1523 * update is finished. Since the guest won't see the intermediate 1524 * state, we just increase by 2 at the end. 1525 */ 1526 vcpu->hv_clock.version += 2; 1527 1528 shared_kaddr = kmap_atomic(vcpu->time_page); 1529 1530 guest_hv_clock = shared_kaddr + vcpu->time_offset; 1531 1532 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1533 pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 1534 1535 if (vcpu->pvclock_set_guest_stopped_request) { 1536 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1537 vcpu->pvclock_set_guest_stopped_request = false; 1538 } 1539 1540 /* If the host uses TSC clocksource, then it is stable */ 1541 if (use_master_clock) 1542 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1543 1544 vcpu->hv_clock.flags = pvclock_flags; 1545 1546 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1547 sizeof(vcpu->hv_clock)); 1548 1549 kunmap_atomic(shared_kaddr); 1550 1551 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1552 return 0; 1553 } 1554 1555 static bool msr_mtrr_valid(unsigned msr) 1556 { 1557 switch (msr) { 1558 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1559 case MSR_MTRRfix64K_00000: 1560 case MSR_MTRRfix16K_80000: 1561 case MSR_MTRRfix16K_A0000: 1562 case MSR_MTRRfix4K_C0000: 1563 case MSR_MTRRfix4K_C8000: 1564 case MSR_MTRRfix4K_D0000: 1565 case MSR_MTRRfix4K_D8000: 1566 case MSR_MTRRfix4K_E0000: 1567 case MSR_MTRRfix4K_E8000: 1568 case MSR_MTRRfix4K_F0000: 1569 case MSR_MTRRfix4K_F8000: 1570 case MSR_MTRRdefType: 1571 case MSR_IA32_CR_PAT: 1572 return true; 1573 case 0x2f8: 1574 return true; 1575 } 1576 return false; 1577 } 1578 1579 static bool valid_pat_type(unsigned t) 1580 { 1581 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1582 } 1583 1584 static bool valid_mtrr_type(unsigned t) 1585 { 1586 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1587 } 1588 1589 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1590 { 1591 int i; 1592 1593 if (!msr_mtrr_valid(msr)) 1594 return false; 1595 1596 if (msr == MSR_IA32_CR_PAT) { 1597 for (i = 0; i < 8; i++) 1598 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1599 return false; 1600 return true; 1601 } else if (msr == MSR_MTRRdefType) { 1602 if (data & ~0xcff) 1603 return false; 1604 return valid_mtrr_type(data & 0xff); 1605 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1606 for (i = 0; i < 8 ; i++) 1607 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1608 return false; 1609 return true; 1610 } 1611 1612 /* variable MTRRs */ 1613 return valid_mtrr_type(data & 0xff); 1614 } 1615 1616 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1617 { 1618 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1619 1620 if (!mtrr_valid(vcpu, msr, data)) 1621 return 1; 1622 1623 if (msr == MSR_MTRRdefType) { 1624 vcpu->arch.mtrr_state.def_type = data; 1625 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1626 } else if (msr == MSR_MTRRfix64K_00000) 1627 p[0] = data; 1628 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1629 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1630 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1631 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1632 else if (msr == MSR_IA32_CR_PAT) 1633 vcpu->arch.pat = data; 1634 else { /* Variable MTRRs */ 1635 int idx, is_mtrr_mask; 1636 u64 *pt; 1637 1638 idx = (msr - 0x200) / 2; 1639 is_mtrr_mask = msr - 0x200 - 2 * idx; 1640 if (!is_mtrr_mask) 1641 pt = 1642 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1643 else 1644 pt = 1645 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1646 *pt = data; 1647 } 1648 1649 kvm_mmu_reset_context(vcpu); 1650 return 0; 1651 } 1652 1653 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1654 { 1655 u64 mcg_cap = vcpu->arch.mcg_cap; 1656 unsigned bank_num = mcg_cap & 0xff; 1657 1658 switch (msr) { 1659 case MSR_IA32_MCG_STATUS: 1660 vcpu->arch.mcg_status = data; 1661 break; 1662 case MSR_IA32_MCG_CTL: 1663 if (!(mcg_cap & MCG_CTL_P)) 1664 return 1; 1665 if (data != 0 && data != ~(u64)0) 1666 return -1; 1667 vcpu->arch.mcg_ctl = data; 1668 break; 1669 default: 1670 if (msr >= MSR_IA32_MC0_CTL && 1671 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1672 u32 offset = msr - MSR_IA32_MC0_CTL; 1673 /* only 0 or all 1s can be written to IA32_MCi_CTL 1674 * some Linux kernels though clear bit 10 in bank 4 to 1675 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1676 * this to avoid an uncatched #GP in the guest 1677 */ 1678 if ((offset & 0x3) == 0 && 1679 data != 0 && (data | (1 << 10)) != ~(u64)0) 1680 return -1; 1681 vcpu->arch.mce_banks[offset] = data; 1682 break; 1683 } 1684 return 1; 1685 } 1686 return 0; 1687 } 1688 1689 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1690 { 1691 struct kvm *kvm = vcpu->kvm; 1692 int lm = is_long_mode(vcpu); 1693 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1694 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1695 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1696 : kvm->arch.xen_hvm_config.blob_size_32; 1697 u32 page_num = data & ~PAGE_MASK; 1698 u64 page_addr = data & PAGE_MASK; 1699 u8 *page; 1700 int r; 1701 1702 r = -E2BIG; 1703 if (page_num >= blob_size) 1704 goto out; 1705 r = -ENOMEM; 1706 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1707 if (IS_ERR(page)) { 1708 r = PTR_ERR(page); 1709 goto out; 1710 } 1711 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1712 goto out_free; 1713 r = 0; 1714 out_free: 1715 kfree(page); 1716 out: 1717 return r; 1718 } 1719 1720 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1721 { 1722 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1723 } 1724 1725 static bool kvm_hv_msr_partition_wide(u32 msr) 1726 { 1727 bool r = false; 1728 switch (msr) { 1729 case HV_X64_MSR_GUEST_OS_ID: 1730 case HV_X64_MSR_HYPERCALL: 1731 r = true; 1732 break; 1733 } 1734 1735 return r; 1736 } 1737 1738 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1739 { 1740 struct kvm *kvm = vcpu->kvm; 1741 1742 switch (msr) { 1743 case HV_X64_MSR_GUEST_OS_ID: 1744 kvm->arch.hv_guest_os_id = data; 1745 /* setting guest os id to zero disables hypercall page */ 1746 if (!kvm->arch.hv_guest_os_id) 1747 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1748 break; 1749 case HV_X64_MSR_HYPERCALL: { 1750 u64 gfn; 1751 unsigned long addr; 1752 u8 instructions[4]; 1753 1754 /* if guest os id is not set hypercall should remain disabled */ 1755 if (!kvm->arch.hv_guest_os_id) 1756 break; 1757 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1758 kvm->arch.hv_hypercall = data; 1759 break; 1760 } 1761 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1762 addr = gfn_to_hva(kvm, gfn); 1763 if (kvm_is_error_hva(addr)) 1764 return 1; 1765 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1766 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1767 if (__copy_to_user((void __user *)addr, instructions, 4)) 1768 return 1; 1769 kvm->arch.hv_hypercall = data; 1770 break; 1771 } 1772 default: 1773 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1774 "data 0x%llx\n", msr, data); 1775 return 1; 1776 } 1777 return 0; 1778 } 1779 1780 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1781 { 1782 switch (msr) { 1783 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1784 unsigned long addr; 1785 1786 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1787 vcpu->arch.hv_vapic = data; 1788 break; 1789 } 1790 addr = gfn_to_hva(vcpu->kvm, data >> 1791 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1792 if (kvm_is_error_hva(addr)) 1793 return 1; 1794 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1795 return 1; 1796 vcpu->arch.hv_vapic = data; 1797 break; 1798 } 1799 case HV_X64_MSR_EOI: 1800 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1801 case HV_X64_MSR_ICR: 1802 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1803 case HV_X64_MSR_TPR: 1804 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1805 default: 1806 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1807 "data 0x%llx\n", msr, data); 1808 return 1; 1809 } 1810 1811 return 0; 1812 } 1813 1814 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1815 { 1816 gpa_t gpa = data & ~0x3f; 1817 1818 /* Bits 2:5 are reserved, Should be zero */ 1819 if (data & 0x3c) 1820 return 1; 1821 1822 vcpu->arch.apf.msr_val = data; 1823 1824 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1825 kvm_clear_async_pf_completion_queue(vcpu); 1826 kvm_async_pf_hash_reset(vcpu); 1827 return 0; 1828 } 1829 1830 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1831 return 1; 1832 1833 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1834 kvm_async_pf_wakeup_all(vcpu); 1835 return 0; 1836 } 1837 1838 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1839 { 1840 if (vcpu->arch.time_page) { 1841 kvm_release_page_dirty(vcpu->arch.time_page); 1842 vcpu->arch.time_page = NULL; 1843 } 1844 } 1845 1846 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1847 { 1848 u64 delta; 1849 1850 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1851 return; 1852 1853 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1854 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1855 vcpu->arch.st.accum_steal = delta; 1856 } 1857 1858 static void record_steal_time(struct kvm_vcpu *vcpu) 1859 { 1860 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1861 return; 1862 1863 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1864 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1865 return; 1866 1867 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1868 vcpu->arch.st.steal.version += 2; 1869 vcpu->arch.st.accum_steal = 0; 1870 1871 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1872 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1873 } 1874 1875 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1876 { 1877 bool pr = false; 1878 u32 msr = msr_info->index; 1879 u64 data = msr_info->data; 1880 1881 switch (msr) { 1882 case MSR_AMD64_NB_CFG: 1883 case MSR_IA32_UCODE_REV: 1884 case MSR_IA32_UCODE_WRITE: 1885 case MSR_VM_HSAVE_PA: 1886 case MSR_AMD64_PATCH_LOADER: 1887 case MSR_AMD64_BU_CFG2: 1888 break; 1889 1890 case MSR_EFER: 1891 return set_efer(vcpu, data); 1892 case MSR_K7_HWCR: 1893 data &= ~(u64)0x40; /* ignore flush filter disable */ 1894 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1895 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1896 if (data != 0) { 1897 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1898 data); 1899 return 1; 1900 } 1901 break; 1902 case MSR_FAM10H_MMIO_CONF_BASE: 1903 if (data != 0) { 1904 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1905 "0x%llx\n", data); 1906 return 1; 1907 } 1908 break; 1909 case MSR_IA32_DEBUGCTLMSR: 1910 if (!data) { 1911 /* We support the non-activated case already */ 1912 break; 1913 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1914 /* Values other than LBR and BTF are vendor-specific, 1915 thus reserved and should throw a #GP */ 1916 return 1; 1917 } 1918 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1919 __func__, data); 1920 break; 1921 case 0x200 ... 0x2ff: 1922 return set_msr_mtrr(vcpu, msr, data); 1923 case MSR_IA32_APICBASE: 1924 kvm_set_apic_base(vcpu, data); 1925 break; 1926 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1927 return kvm_x2apic_msr_write(vcpu, msr, data); 1928 case MSR_IA32_TSCDEADLINE: 1929 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1930 break; 1931 case MSR_IA32_TSC_ADJUST: 1932 if (guest_cpuid_has_tsc_adjust(vcpu)) { 1933 if (!msr_info->host_initiated) { 1934 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 1935 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 1936 } 1937 vcpu->arch.ia32_tsc_adjust_msr = data; 1938 } 1939 break; 1940 case MSR_IA32_MISC_ENABLE: 1941 vcpu->arch.ia32_misc_enable_msr = data; 1942 break; 1943 case MSR_KVM_WALL_CLOCK_NEW: 1944 case MSR_KVM_WALL_CLOCK: 1945 vcpu->kvm->arch.wall_clock = data; 1946 kvm_write_wall_clock(vcpu->kvm, data); 1947 break; 1948 case MSR_KVM_SYSTEM_TIME_NEW: 1949 case MSR_KVM_SYSTEM_TIME: { 1950 kvmclock_reset(vcpu); 1951 1952 vcpu->arch.time = data; 1953 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1954 1955 /* we verify if the enable bit is set... */ 1956 if (!(data & 1)) 1957 break; 1958 1959 /* ...but clean it before doing the actual write */ 1960 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1961 1962 vcpu->arch.time_page = 1963 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1964 1965 if (is_error_page(vcpu->arch.time_page)) 1966 vcpu->arch.time_page = NULL; 1967 1968 break; 1969 } 1970 case MSR_KVM_ASYNC_PF_EN: 1971 if (kvm_pv_enable_async_pf(vcpu, data)) 1972 return 1; 1973 break; 1974 case MSR_KVM_STEAL_TIME: 1975 1976 if (unlikely(!sched_info_on())) 1977 return 1; 1978 1979 if (data & KVM_STEAL_RESERVED_MASK) 1980 return 1; 1981 1982 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1983 data & KVM_STEAL_VALID_BITS)) 1984 return 1; 1985 1986 vcpu->arch.st.msr_val = data; 1987 1988 if (!(data & KVM_MSR_ENABLED)) 1989 break; 1990 1991 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1992 1993 preempt_disable(); 1994 accumulate_steal_time(vcpu); 1995 preempt_enable(); 1996 1997 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1998 1999 break; 2000 case MSR_KVM_PV_EOI_EN: 2001 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2002 return 1; 2003 break; 2004 2005 case MSR_IA32_MCG_CTL: 2006 case MSR_IA32_MCG_STATUS: 2007 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2008 return set_msr_mce(vcpu, msr, data); 2009 2010 /* Performance counters are not protected by a CPUID bit, 2011 * so we should check all of them in the generic path for the sake of 2012 * cross vendor migration. 2013 * Writing a zero into the event select MSRs disables them, 2014 * which we perfectly emulate ;-). Any other value should be at least 2015 * reported, some guests depend on them. 2016 */ 2017 case MSR_K7_EVNTSEL0: 2018 case MSR_K7_EVNTSEL1: 2019 case MSR_K7_EVNTSEL2: 2020 case MSR_K7_EVNTSEL3: 2021 if (data != 0) 2022 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2023 "0x%x data 0x%llx\n", msr, data); 2024 break; 2025 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2026 * so we ignore writes to make it happy. 2027 */ 2028 case MSR_K7_PERFCTR0: 2029 case MSR_K7_PERFCTR1: 2030 case MSR_K7_PERFCTR2: 2031 case MSR_K7_PERFCTR3: 2032 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2033 "0x%x data 0x%llx\n", msr, data); 2034 break; 2035 case MSR_P6_PERFCTR0: 2036 case MSR_P6_PERFCTR1: 2037 pr = true; 2038 case MSR_P6_EVNTSEL0: 2039 case MSR_P6_EVNTSEL1: 2040 if (kvm_pmu_msr(vcpu, msr)) 2041 return kvm_pmu_set_msr(vcpu, msr, data); 2042 2043 if (pr || data != 0) 2044 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2045 "0x%x data 0x%llx\n", msr, data); 2046 break; 2047 case MSR_K7_CLK_CTL: 2048 /* 2049 * Ignore all writes to this no longer documented MSR. 2050 * Writes are only relevant for old K7 processors, 2051 * all pre-dating SVM, but a recommended workaround from 2052 * AMD for these chips. It is possible to specify the 2053 * affected processor models on the command line, hence 2054 * the need to ignore the workaround. 2055 */ 2056 break; 2057 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2058 if (kvm_hv_msr_partition_wide(msr)) { 2059 int r; 2060 mutex_lock(&vcpu->kvm->lock); 2061 r = set_msr_hyperv_pw(vcpu, msr, data); 2062 mutex_unlock(&vcpu->kvm->lock); 2063 return r; 2064 } else 2065 return set_msr_hyperv(vcpu, msr, data); 2066 break; 2067 case MSR_IA32_BBL_CR_CTL3: 2068 /* Drop writes to this legacy MSR -- see rdmsr 2069 * counterpart for further detail. 2070 */ 2071 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2072 break; 2073 case MSR_AMD64_OSVW_ID_LENGTH: 2074 if (!guest_cpuid_has_osvw(vcpu)) 2075 return 1; 2076 vcpu->arch.osvw.length = data; 2077 break; 2078 case MSR_AMD64_OSVW_STATUS: 2079 if (!guest_cpuid_has_osvw(vcpu)) 2080 return 1; 2081 vcpu->arch.osvw.status = data; 2082 break; 2083 default: 2084 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2085 return xen_hvm_config(vcpu, data); 2086 if (kvm_pmu_msr(vcpu, msr)) 2087 return kvm_pmu_set_msr(vcpu, msr, data); 2088 if (!ignore_msrs) { 2089 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2090 msr, data); 2091 return 1; 2092 } else { 2093 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2094 msr, data); 2095 break; 2096 } 2097 } 2098 return 0; 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2101 2102 2103 /* 2104 * Reads an msr value (of 'msr_index') into 'pdata'. 2105 * Returns 0 on success, non-0 otherwise. 2106 * Assumes vcpu_load() was already called. 2107 */ 2108 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2109 { 2110 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2111 } 2112 2113 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2114 { 2115 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2116 2117 if (!msr_mtrr_valid(msr)) 2118 return 1; 2119 2120 if (msr == MSR_MTRRdefType) 2121 *pdata = vcpu->arch.mtrr_state.def_type + 2122 (vcpu->arch.mtrr_state.enabled << 10); 2123 else if (msr == MSR_MTRRfix64K_00000) 2124 *pdata = p[0]; 2125 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2126 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2127 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2128 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2129 else if (msr == MSR_IA32_CR_PAT) 2130 *pdata = vcpu->arch.pat; 2131 else { /* Variable MTRRs */ 2132 int idx, is_mtrr_mask; 2133 u64 *pt; 2134 2135 idx = (msr - 0x200) / 2; 2136 is_mtrr_mask = msr - 0x200 - 2 * idx; 2137 if (!is_mtrr_mask) 2138 pt = 2139 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2140 else 2141 pt = 2142 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2143 *pdata = *pt; 2144 } 2145 2146 return 0; 2147 } 2148 2149 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2150 { 2151 u64 data; 2152 u64 mcg_cap = vcpu->arch.mcg_cap; 2153 unsigned bank_num = mcg_cap & 0xff; 2154 2155 switch (msr) { 2156 case MSR_IA32_P5_MC_ADDR: 2157 case MSR_IA32_P5_MC_TYPE: 2158 data = 0; 2159 break; 2160 case MSR_IA32_MCG_CAP: 2161 data = vcpu->arch.mcg_cap; 2162 break; 2163 case MSR_IA32_MCG_CTL: 2164 if (!(mcg_cap & MCG_CTL_P)) 2165 return 1; 2166 data = vcpu->arch.mcg_ctl; 2167 break; 2168 case MSR_IA32_MCG_STATUS: 2169 data = vcpu->arch.mcg_status; 2170 break; 2171 default: 2172 if (msr >= MSR_IA32_MC0_CTL && 2173 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2174 u32 offset = msr - MSR_IA32_MC0_CTL; 2175 data = vcpu->arch.mce_banks[offset]; 2176 break; 2177 } 2178 return 1; 2179 } 2180 *pdata = data; 2181 return 0; 2182 } 2183 2184 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2185 { 2186 u64 data = 0; 2187 struct kvm *kvm = vcpu->kvm; 2188 2189 switch (msr) { 2190 case HV_X64_MSR_GUEST_OS_ID: 2191 data = kvm->arch.hv_guest_os_id; 2192 break; 2193 case HV_X64_MSR_HYPERCALL: 2194 data = kvm->arch.hv_hypercall; 2195 break; 2196 default: 2197 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2198 return 1; 2199 } 2200 2201 *pdata = data; 2202 return 0; 2203 } 2204 2205 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2206 { 2207 u64 data = 0; 2208 2209 switch (msr) { 2210 case HV_X64_MSR_VP_INDEX: { 2211 int r; 2212 struct kvm_vcpu *v; 2213 kvm_for_each_vcpu(r, v, vcpu->kvm) 2214 if (v == vcpu) 2215 data = r; 2216 break; 2217 } 2218 case HV_X64_MSR_EOI: 2219 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2220 case HV_X64_MSR_ICR: 2221 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2222 case HV_X64_MSR_TPR: 2223 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2224 case HV_X64_MSR_APIC_ASSIST_PAGE: 2225 data = vcpu->arch.hv_vapic; 2226 break; 2227 default: 2228 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2229 return 1; 2230 } 2231 *pdata = data; 2232 return 0; 2233 } 2234 2235 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2236 { 2237 u64 data; 2238 2239 switch (msr) { 2240 case MSR_IA32_PLATFORM_ID: 2241 case MSR_IA32_EBL_CR_POWERON: 2242 case MSR_IA32_DEBUGCTLMSR: 2243 case MSR_IA32_LASTBRANCHFROMIP: 2244 case MSR_IA32_LASTBRANCHTOIP: 2245 case MSR_IA32_LASTINTFROMIP: 2246 case MSR_IA32_LASTINTTOIP: 2247 case MSR_K8_SYSCFG: 2248 case MSR_K7_HWCR: 2249 case MSR_VM_HSAVE_PA: 2250 case MSR_K7_EVNTSEL0: 2251 case MSR_K7_PERFCTR0: 2252 case MSR_K8_INT_PENDING_MSG: 2253 case MSR_AMD64_NB_CFG: 2254 case MSR_FAM10H_MMIO_CONF_BASE: 2255 case MSR_AMD64_BU_CFG2: 2256 data = 0; 2257 break; 2258 case MSR_P6_PERFCTR0: 2259 case MSR_P6_PERFCTR1: 2260 case MSR_P6_EVNTSEL0: 2261 case MSR_P6_EVNTSEL1: 2262 if (kvm_pmu_msr(vcpu, msr)) 2263 return kvm_pmu_get_msr(vcpu, msr, pdata); 2264 data = 0; 2265 break; 2266 case MSR_IA32_UCODE_REV: 2267 data = 0x100000000ULL; 2268 break; 2269 case MSR_MTRRcap: 2270 data = 0x500 | KVM_NR_VAR_MTRR; 2271 break; 2272 case 0x200 ... 0x2ff: 2273 return get_msr_mtrr(vcpu, msr, pdata); 2274 case 0xcd: /* fsb frequency */ 2275 data = 3; 2276 break; 2277 /* 2278 * MSR_EBC_FREQUENCY_ID 2279 * Conservative value valid for even the basic CPU models. 2280 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2281 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2282 * and 266MHz for model 3, or 4. Set Core Clock 2283 * Frequency to System Bus Frequency Ratio to 1 (bits 2284 * 31:24) even though these are only valid for CPU 2285 * models > 2, however guests may end up dividing or 2286 * multiplying by zero otherwise. 2287 */ 2288 case MSR_EBC_FREQUENCY_ID: 2289 data = 1 << 24; 2290 break; 2291 case MSR_IA32_APICBASE: 2292 data = kvm_get_apic_base(vcpu); 2293 break; 2294 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2295 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2296 break; 2297 case MSR_IA32_TSCDEADLINE: 2298 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2299 break; 2300 case MSR_IA32_TSC_ADJUST: 2301 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2302 break; 2303 case MSR_IA32_MISC_ENABLE: 2304 data = vcpu->arch.ia32_misc_enable_msr; 2305 break; 2306 case MSR_IA32_PERF_STATUS: 2307 /* TSC increment by tick */ 2308 data = 1000ULL; 2309 /* CPU multiplier */ 2310 data |= (((uint64_t)4ULL) << 40); 2311 break; 2312 case MSR_EFER: 2313 data = vcpu->arch.efer; 2314 break; 2315 case MSR_KVM_WALL_CLOCK: 2316 case MSR_KVM_WALL_CLOCK_NEW: 2317 data = vcpu->kvm->arch.wall_clock; 2318 break; 2319 case MSR_KVM_SYSTEM_TIME: 2320 case MSR_KVM_SYSTEM_TIME_NEW: 2321 data = vcpu->arch.time; 2322 break; 2323 case MSR_KVM_ASYNC_PF_EN: 2324 data = vcpu->arch.apf.msr_val; 2325 break; 2326 case MSR_KVM_STEAL_TIME: 2327 data = vcpu->arch.st.msr_val; 2328 break; 2329 case MSR_KVM_PV_EOI_EN: 2330 data = vcpu->arch.pv_eoi.msr_val; 2331 break; 2332 case MSR_IA32_P5_MC_ADDR: 2333 case MSR_IA32_P5_MC_TYPE: 2334 case MSR_IA32_MCG_CAP: 2335 case MSR_IA32_MCG_CTL: 2336 case MSR_IA32_MCG_STATUS: 2337 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2338 return get_msr_mce(vcpu, msr, pdata); 2339 case MSR_K7_CLK_CTL: 2340 /* 2341 * Provide expected ramp-up count for K7. All other 2342 * are set to zero, indicating minimum divisors for 2343 * every field. 2344 * 2345 * This prevents guest kernels on AMD host with CPU 2346 * type 6, model 8 and higher from exploding due to 2347 * the rdmsr failing. 2348 */ 2349 data = 0x20000000; 2350 break; 2351 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2352 if (kvm_hv_msr_partition_wide(msr)) { 2353 int r; 2354 mutex_lock(&vcpu->kvm->lock); 2355 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2356 mutex_unlock(&vcpu->kvm->lock); 2357 return r; 2358 } else 2359 return get_msr_hyperv(vcpu, msr, pdata); 2360 break; 2361 case MSR_IA32_BBL_CR_CTL3: 2362 /* This legacy MSR exists but isn't fully documented in current 2363 * silicon. It is however accessed by winxp in very narrow 2364 * scenarios where it sets bit #19, itself documented as 2365 * a "reserved" bit. Best effort attempt to source coherent 2366 * read data here should the balance of the register be 2367 * interpreted by the guest: 2368 * 2369 * L2 cache control register 3: 64GB range, 256KB size, 2370 * enabled, latency 0x1, configured 2371 */ 2372 data = 0xbe702111; 2373 break; 2374 case MSR_AMD64_OSVW_ID_LENGTH: 2375 if (!guest_cpuid_has_osvw(vcpu)) 2376 return 1; 2377 data = vcpu->arch.osvw.length; 2378 break; 2379 case MSR_AMD64_OSVW_STATUS: 2380 if (!guest_cpuid_has_osvw(vcpu)) 2381 return 1; 2382 data = vcpu->arch.osvw.status; 2383 break; 2384 default: 2385 if (kvm_pmu_msr(vcpu, msr)) 2386 return kvm_pmu_get_msr(vcpu, msr, pdata); 2387 if (!ignore_msrs) { 2388 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2389 return 1; 2390 } else { 2391 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2392 data = 0; 2393 } 2394 break; 2395 } 2396 *pdata = data; 2397 return 0; 2398 } 2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2400 2401 /* 2402 * Read or write a bunch of msrs. All parameters are kernel addresses. 2403 * 2404 * @return number of msrs set successfully. 2405 */ 2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2407 struct kvm_msr_entry *entries, 2408 int (*do_msr)(struct kvm_vcpu *vcpu, 2409 unsigned index, u64 *data)) 2410 { 2411 int i, idx; 2412 2413 idx = srcu_read_lock(&vcpu->kvm->srcu); 2414 for (i = 0; i < msrs->nmsrs; ++i) 2415 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2416 break; 2417 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2418 2419 return i; 2420 } 2421 2422 /* 2423 * Read or write a bunch of msrs. Parameters are user addresses. 2424 * 2425 * @return number of msrs set successfully. 2426 */ 2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2428 int (*do_msr)(struct kvm_vcpu *vcpu, 2429 unsigned index, u64 *data), 2430 int writeback) 2431 { 2432 struct kvm_msrs msrs; 2433 struct kvm_msr_entry *entries; 2434 int r, n; 2435 unsigned size; 2436 2437 r = -EFAULT; 2438 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2439 goto out; 2440 2441 r = -E2BIG; 2442 if (msrs.nmsrs >= MAX_IO_MSRS) 2443 goto out; 2444 2445 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2446 entries = memdup_user(user_msrs->entries, size); 2447 if (IS_ERR(entries)) { 2448 r = PTR_ERR(entries); 2449 goto out; 2450 } 2451 2452 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2453 if (r < 0) 2454 goto out_free; 2455 2456 r = -EFAULT; 2457 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2458 goto out_free; 2459 2460 r = n; 2461 2462 out_free: 2463 kfree(entries); 2464 out: 2465 return r; 2466 } 2467 2468 int kvm_dev_ioctl_check_extension(long ext) 2469 { 2470 int r; 2471 2472 switch (ext) { 2473 case KVM_CAP_IRQCHIP: 2474 case KVM_CAP_HLT: 2475 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2476 case KVM_CAP_SET_TSS_ADDR: 2477 case KVM_CAP_EXT_CPUID: 2478 case KVM_CAP_CLOCKSOURCE: 2479 case KVM_CAP_PIT: 2480 case KVM_CAP_NOP_IO_DELAY: 2481 case KVM_CAP_MP_STATE: 2482 case KVM_CAP_SYNC_MMU: 2483 case KVM_CAP_USER_NMI: 2484 case KVM_CAP_REINJECT_CONTROL: 2485 case KVM_CAP_IRQ_INJECT_STATUS: 2486 case KVM_CAP_ASSIGN_DEV_IRQ: 2487 case KVM_CAP_IRQFD: 2488 case KVM_CAP_IOEVENTFD: 2489 case KVM_CAP_PIT2: 2490 case KVM_CAP_PIT_STATE2: 2491 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2492 case KVM_CAP_XEN_HVM: 2493 case KVM_CAP_ADJUST_CLOCK: 2494 case KVM_CAP_VCPU_EVENTS: 2495 case KVM_CAP_HYPERV: 2496 case KVM_CAP_HYPERV_VAPIC: 2497 case KVM_CAP_HYPERV_SPIN: 2498 case KVM_CAP_PCI_SEGMENT: 2499 case KVM_CAP_DEBUGREGS: 2500 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2501 case KVM_CAP_XSAVE: 2502 case KVM_CAP_ASYNC_PF: 2503 case KVM_CAP_GET_TSC_KHZ: 2504 case KVM_CAP_PCI_2_3: 2505 case KVM_CAP_KVMCLOCK_CTRL: 2506 case KVM_CAP_READONLY_MEM: 2507 case KVM_CAP_IRQFD_RESAMPLE: 2508 r = 1; 2509 break; 2510 case KVM_CAP_COALESCED_MMIO: 2511 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2512 break; 2513 case KVM_CAP_VAPIC: 2514 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2515 break; 2516 case KVM_CAP_NR_VCPUS: 2517 r = KVM_SOFT_MAX_VCPUS; 2518 break; 2519 case KVM_CAP_MAX_VCPUS: 2520 r = KVM_MAX_VCPUS; 2521 break; 2522 case KVM_CAP_NR_MEMSLOTS: 2523 r = KVM_USER_MEM_SLOTS; 2524 break; 2525 case KVM_CAP_PV_MMU: /* obsolete */ 2526 r = 0; 2527 break; 2528 case KVM_CAP_IOMMU: 2529 r = iommu_present(&pci_bus_type); 2530 break; 2531 case KVM_CAP_MCE: 2532 r = KVM_MAX_MCE_BANKS; 2533 break; 2534 case KVM_CAP_XCRS: 2535 r = cpu_has_xsave; 2536 break; 2537 case KVM_CAP_TSC_CONTROL: 2538 r = kvm_has_tsc_control; 2539 break; 2540 case KVM_CAP_TSC_DEADLINE_TIMER: 2541 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2542 break; 2543 default: 2544 r = 0; 2545 break; 2546 } 2547 return r; 2548 2549 } 2550 2551 long kvm_arch_dev_ioctl(struct file *filp, 2552 unsigned int ioctl, unsigned long arg) 2553 { 2554 void __user *argp = (void __user *)arg; 2555 long r; 2556 2557 switch (ioctl) { 2558 case KVM_GET_MSR_INDEX_LIST: { 2559 struct kvm_msr_list __user *user_msr_list = argp; 2560 struct kvm_msr_list msr_list; 2561 unsigned n; 2562 2563 r = -EFAULT; 2564 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2565 goto out; 2566 n = msr_list.nmsrs; 2567 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2568 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2569 goto out; 2570 r = -E2BIG; 2571 if (n < msr_list.nmsrs) 2572 goto out; 2573 r = -EFAULT; 2574 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2575 num_msrs_to_save * sizeof(u32))) 2576 goto out; 2577 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2578 &emulated_msrs, 2579 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2580 goto out; 2581 r = 0; 2582 break; 2583 } 2584 case KVM_GET_SUPPORTED_CPUID: { 2585 struct kvm_cpuid2 __user *cpuid_arg = argp; 2586 struct kvm_cpuid2 cpuid; 2587 2588 r = -EFAULT; 2589 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2590 goto out; 2591 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2592 cpuid_arg->entries); 2593 if (r) 2594 goto out; 2595 2596 r = -EFAULT; 2597 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2598 goto out; 2599 r = 0; 2600 break; 2601 } 2602 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2603 u64 mce_cap; 2604 2605 mce_cap = KVM_MCE_CAP_SUPPORTED; 2606 r = -EFAULT; 2607 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2608 goto out; 2609 r = 0; 2610 break; 2611 } 2612 default: 2613 r = -EINVAL; 2614 } 2615 out: 2616 return r; 2617 } 2618 2619 static void wbinvd_ipi(void *garbage) 2620 { 2621 wbinvd(); 2622 } 2623 2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2625 { 2626 return vcpu->kvm->arch.iommu_domain && 2627 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2628 } 2629 2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2631 { 2632 /* Address WBINVD may be executed by guest */ 2633 if (need_emulate_wbinvd(vcpu)) { 2634 if (kvm_x86_ops->has_wbinvd_exit()) 2635 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2636 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2637 smp_call_function_single(vcpu->cpu, 2638 wbinvd_ipi, NULL, 1); 2639 } 2640 2641 kvm_x86_ops->vcpu_load(vcpu, cpu); 2642 2643 /* Apply any externally detected TSC adjustments (due to suspend) */ 2644 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2645 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2646 vcpu->arch.tsc_offset_adjustment = 0; 2647 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2648 } 2649 2650 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2651 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2652 native_read_tsc() - vcpu->arch.last_host_tsc; 2653 if (tsc_delta < 0) 2654 mark_tsc_unstable("KVM discovered backwards TSC"); 2655 if (check_tsc_unstable()) { 2656 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2657 vcpu->arch.last_guest_tsc); 2658 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2659 vcpu->arch.tsc_catchup = 1; 2660 } 2661 /* 2662 * On a host with synchronized TSC, there is no need to update 2663 * kvmclock on vcpu->cpu migration 2664 */ 2665 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2666 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2667 if (vcpu->cpu != cpu) 2668 kvm_migrate_timers(vcpu); 2669 vcpu->cpu = cpu; 2670 } 2671 2672 accumulate_steal_time(vcpu); 2673 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2674 } 2675 2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2677 { 2678 kvm_x86_ops->vcpu_put(vcpu); 2679 kvm_put_guest_fpu(vcpu); 2680 vcpu->arch.last_host_tsc = native_read_tsc(); 2681 } 2682 2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2684 struct kvm_lapic_state *s) 2685 { 2686 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2687 2688 return 0; 2689 } 2690 2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2692 struct kvm_lapic_state *s) 2693 { 2694 kvm_apic_post_state_restore(vcpu, s); 2695 update_cr8_intercept(vcpu); 2696 2697 return 0; 2698 } 2699 2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2701 struct kvm_interrupt *irq) 2702 { 2703 if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS) 2704 return -EINVAL; 2705 if (irqchip_in_kernel(vcpu->kvm)) 2706 return -ENXIO; 2707 2708 kvm_queue_interrupt(vcpu, irq->irq, false); 2709 kvm_make_request(KVM_REQ_EVENT, vcpu); 2710 2711 return 0; 2712 } 2713 2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2715 { 2716 kvm_inject_nmi(vcpu); 2717 2718 return 0; 2719 } 2720 2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2722 struct kvm_tpr_access_ctl *tac) 2723 { 2724 if (tac->flags) 2725 return -EINVAL; 2726 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2727 return 0; 2728 } 2729 2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2731 u64 mcg_cap) 2732 { 2733 int r; 2734 unsigned bank_num = mcg_cap & 0xff, bank; 2735 2736 r = -EINVAL; 2737 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2738 goto out; 2739 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2740 goto out; 2741 r = 0; 2742 vcpu->arch.mcg_cap = mcg_cap; 2743 /* Init IA32_MCG_CTL to all 1s */ 2744 if (mcg_cap & MCG_CTL_P) 2745 vcpu->arch.mcg_ctl = ~(u64)0; 2746 /* Init IA32_MCi_CTL to all 1s */ 2747 for (bank = 0; bank < bank_num; bank++) 2748 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2749 out: 2750 return r; 2751 } 2752 2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2754 struct kvm_x86_mce *mce) 2755 { 2756 u64 mcg_cap = vcpu->arch.mcg_cap; 2757 unsigned bank_num = mcg_cap & 0xff; 2758 u64 *banks = vcpu->arch.mce_banks; 2759 2760 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2761 return -EINVAL; 2762 /* 2763 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2764 * reporting is disabled 2765 */ 2766 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2767 vcpu->arch.mcg_ctl != ~(u64)0) 2768 return 0; 2769 banks += 4 * mce->bank; 2770 /* 2771 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2772 * reporting is disabled for the bank 2773 */ 2774 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2775 return 0; 2776 if (mce->status & MCI_STATUS_UC) { 2777 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2778 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2779 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2780 return 0; 2781 } 2782 if (banks[1] & MCI_STATUS_VAL) 2783 mce->status |= MCI_STATUS_OVER; 2784 banks[2] = mce->addr; 2785 banks[3] = mce->misc; 2786 vcpu->arch.mcg_status = mce->mcg_status; 2787 banks[1] = mce->status; 2788 kvm_queue_exception(vcpu, MC_VECTOR); 2789 } else if (!(banks[1] & MCI_STATUS_VAL) 2790 || !(banks[1] & MCI_STATUS_UC)) { 2791 if (banks[1] & MCI_STATUS_VAL) 2792 mce->status |= MCI_STATUS_OVER; 2793 banks[2] = mce->addr; 2794 banks[3] = mce->misc; 2795 banks[1] = mce->status; 2796 } else 2797 banks[1] |= MCI_STATUS_OVER; 2798 return 0; 2799 } 2800 2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2802 struct kvm_vcpu_events *events) 2803 { 2804 process_nmi(vcpu); 2805 events->exception.injected = 2806 vcpu->arch.exception.pending && 2807 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2808 events->exception.nr = vcpu->arch.exception.nr; 2809 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2810 events->exception.pad = 0; 2811 events->exception.error_code = vcpu->arch.exception.error_code; 2812 2813 events->interrupt.injected = 2814 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2815 events->interrupt.nr = vcpu->arch.interrupt.nr; 2816 events->interrupt.soft = 0; 2817 events->interrupt.shadow = 2818 kvm_x86_ops->get_interrupt_shadow(vcpu, 2819 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2820 2821 events->nmi.injected = vcpu->arch.nmi_injected; 2822 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2823 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2824 events->nmi.pad = 0; 2825 2826 events->sipi_vector = vcpu->arch.sipi_vector; 2827 2828 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2829 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2830 | KVM_VCPUEVENT_VALID_SHADOW); 2831 memset(&events->reserved, 0, sizeof(events->reserved)); 2832 } 2833 2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2835 struct kvm_vcpu_events *events) 2836 { 2837 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2838 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2839 | KVM_VCPUEVENT_VALID_SHADOW)) 2840 return -EINVAL; 2841 2842 process_nmi(vcpu); 2843 vcpu->arch.exception.pending = events->exception.injected; 2844 vcpu->arch.exception.nr = events->exception.nr; 2845 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2846 vcpu->arch.exception.error_code = events->exception.error_code; 2847 2848 vcpu->arch.interrupt.pending = events->interrupt.injected; 2849 vcpu->arch.interrupt.nr = events->interrupt.nr; 2850 vcpu->arch.interrupt.soft = events->interrupt.soft; 2851 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2852 kvm_x86_ops->set_interrupt_shadow(vcpu, 2853 events->interrupt.shadow); 2854 2855 vcpu->arch.nmi_injected = events->nmi.injected; 2856 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2857 vcpu->arch.nmi_pending = events->nmi.pending; 2858 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2859 2860 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2861 vcpu->arch.sipi_vector = events->sipi_vector; 2862 2863 kvm_make_request(KVM_REQ_EVENT, vcpu); 2864 2865 return 0; 2866 } 2867 2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2869 struct kvm_debugregs *dbgregs) 2870 { 2871 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2872 dbgregs->dr6 = vcpu->arch.dr6; 2873 dbgregs->dr7 = vcpu->arch.dr7; 2874 dbgregs->flags = 0; 2875 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2876 } 2877 2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2879 struct kvm_debugregs *dbgregs) 2880 { 2881 if (dbgregs->flags) 2882 return -EINVAL; 2883 2884 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2885 vcpu->arch.dr6 = dbgregs->dr6; 2886 vcpu->arch.dr7 = dbgregs->dr7; 2887 2888 return 0; 2889 } 2890 2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2892 struct kvm_xsave *guest_xsave) 2893 { 2894 if (cpu_has_xsave) 2895 memcpy(guest_xsave->region, 2896 &vcpu->arch.guest_fpu.state->xsave, 2897 xstate_size); 2898 else { 2899 memcpy(guest_xsave->region, 2900 &vcpu->arch.guest_fpu.state->fxsave, 2901 sizeof(struct i387_fxsave_struct)); 2902 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2903 XSTATE_FPSSE; 2904 } 2905 } 2906 2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2908 struct kvm_xsave *guest_xsave) 2909 { 2910 u64 xstate_bv = 2911 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2912 2913 if (cpu_has_xsave) 2914 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2915 guest_xsave->region, xstate_size); 2916 else { 2917 if (xstate_bv & ~XSTATE_FPSSE) 2918 return -EINVAL; 2919 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2920 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2921 } 2922 return 0; 2923 } 2924 2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2926 struct kvm_xcrs *guest_xcrs) 2927 { 2928 if (!cpu_has_xsave) { 2929 guest_xcrs->nr_xcrs = 0; 2930 return; 2931 } 2932 2933 guest_xcrs->nr_xcrs = 1; 2934 guest_xcrs->flags = 0; 2935 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2936 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2937 } 2938 2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2940 struct kvm_xcrs *guest_xcrs) 2941 { 2942 int i, r = 0; 2943 2944 if (!cpu_has_xsave) 2945 return -EINVAL; 2946 2947 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2948 return -EINVAL; 2949 2950 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2951 /* Only support XCR0 currently */ 2952 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2953 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2954 guest_xcrs->xcrs[0].value); 2955 break; 2956 } 2957 if (r) 2958 r = -EINVAL; 2959 return r; 2960 } 2961 2962 /* 2963 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2964 * stopped by the hypervisor. This function will be called from the host only. 2965 * EINVAL is returned when the host attempts to set the flag for a guest that 2966 * does not support pv clocks. 2967 */ 2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2969 { 2970 if (!vcpu->arch.time_page) 2971 return -EINVAL; 2972 vcpu->arch.pvclock_set_guest_stopped_request = true; 2973 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2974 return 0; 2975 } 2976 2977 long kvm_arch_vcpu_ioctl(struct file *filp, 2978 unsigned int ioctl, unsigned long arg) 2979 { 2980 struct kvm_vcpu *vcpu = filp->private_data; 2981 void __user *argp = (void __user *)arg; 2982 int r; 2983 union { 2984 struct kvm_lapic_state *lapic; 2985 struct kvm_xsave *xsave; 2986 struct kvm_xcrs *xcrs; 2987 void *buffer; 2988 } u; 2989 2990 u.buffer = NULL; 2991 switch (ioctl) { 2992 case KVM_GET_LAPIC: { 2993 r = -EINVAL; 2994 if (!vcpu->arch.apic) 2995 goto out; 2996 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2997 2998 r = -ENOMEM; 2999 if (!u.lapic) 3000 goto out; 3001 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3002 if (r) 3003 goto out; 3004 r = -EFAULT; 3005 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3006 goto out; 3007 r = 0; 3008 break; 3009 } 3010 case KVM_SET_LAPIC: { 3011 r = -EINVAL; 3012 if (!vcpu->arch.apic) 3013 goto out; 3014 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3015 if (IS_ERR(u.lapic)) 3016 return PTR_ERR(u.lapic); 3017 3018 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3019 break; 3020 } 3021 case KVM_INTERRUPT: { 3022 struct kvm_interrupt irq; 3023 3024 r = -EFAULT; 3025 if (copy_from_user(&irq, argp, sizeof irq)) 3026 goto out; 3027 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3028 break; 3029 } 3030 case KVM_NMI: { 3031 r = kvm_vcpu_ioctl_nmi(vcpu); 3032 break; 3033 } 3034 case KVM_SET_CPUID: { 3035 struct kvm_cpuid __user *cpuid_arg = argp; 3036 struct kvm_cpuid cpuid; 3037 3038 r = -EFAULT; 3039 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3040 goto out; 3041 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3042 break; 3043 } 3044 case KVM_SET_CPUID2: { 3045 struct kvm_cpuid2 __user *cpuid_arg = argp; 3046 struct kvm_cpuid2 cpuid; 3047 3048 r = -EFAULT; 3049 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3050 goto out; 3051 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3052 cpuid_arg->entries); 3053 break; 3054 } 3055 case KVM_GET_CPUID2: { 3056 struct kvm_cpuid2 __user *cpuid_arg = argp; 3057 struct kvm_cpuid2 cpuid; 3058 3059 r = -EFAULT; 3060 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3061 goto out; 3062 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3063 cpuid_arg->entries); 3064 if (r) 3065 goto out; 3066 r = -EFAULT; 3067 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3068 goto out; 3069 r = 0; 3070 break; 3071 } 3072 case KVM_GET_MSRS: 3073 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3074 break; 3075 case KVM_SET_MSRS: 3076 r = msr_io(vcpu, argp, do_set_msr, 0); 3077 break; 3078 case KVM_TPR_ACCESS_REPORTING: { 3079 struct kvm_tpr_access_ctl tac; 3080 3081 r = -EFAULT; 3082 if (copy_from_user(&tac, argp, sizeof tac)) 3083 goto out; 3084 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3085 if (r) 3086 goto out; 3087 r = -EFAULT; 3088 if (copy_to_user(argp, &tac, sizeof tac)) 3089 goto out; 3090 r = 0; 3091 break; 3092 }; 3093 case KVM_SET_VAPIC_ADDR: { 3094 struct kvm_vapic_addr va; 3095 3096 r = -EINVAL; 3097 if (!irqchip_in_kernel(vcpu->kvm)) 3098 goto out; 3099 r = -EFAULT; 3100 if (copy_from_user(&va, argp, sizeof va)) 3101 goto out; 3102 r = 0; 3103 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3104 break; 3105 } 3106 case KVM_X86_SETUP_MCE: { 3107 u64 mcg_cap; 3108 3109 r = -EFAULT; 3110 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3111 goto out; 3112 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3113 break; 3114 } 3115 case KVM_X86_SET_MCE: { 3116 struct kvm_x86_mce mce; 3117 3118 r = -EFAULT; 3119 if (copy_from_user(&mce, argp, sizeof mce)) 3120 goto out; 3121 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3122 break; 3123 } 3124 case KVM_GET_VCPU_EVENTS: { 3125 struct kvm_vcpu_events events; 3126 3127 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3128 3129 r = -EFAULT; 3130 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3131 break; 3132 r = 0; 3133 break; 3134 } 3135 case KVM_SET_VCPU_EVENTS: { 3136 struct kvm_vcpu_events events; 3137 3138 r = -EFAULT; 3139 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3140 break; 3141 3142 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3143 break; 3144 } 3145 case KVM_GET_DEBUGREGS: { 3146 struct kvm_debugregs dbgregs; 3147 3148 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3149 3150 r = -EFAULT; 3151 if (copy_to_user(argp, &dbgregs, 3152 sizeof(struct kvm_debugregs))) 3153 break; 3154 r = 0; 3155 break; 3156 } 3157 case KVM_SET_DEBUGREGS: { 3158 struct kvm_debugregs dbgregs; 3159 3160 r = -EFAULT; 3161 if (copy_from_user(&dbgregs, argp, 3162 sizeof(struct kvm_debugregs))) 3163 break; 3164 3165 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3166 break; 3167 } 3168 case KVM_GET_XSAVE: { 3169 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3170 r = -ENOMEM; 3171 if (!u.xsave) 3172 break; 3173 3174 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3175 3176 r = -EFAULT; 3177 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3178 break; 3179 r = 0; 3180 break; 3181 } 3182 case KVM_SET_XSAVE: { 3183 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3184 if (IS_ERR(u.xsave)) 3185 return PTR_ERR(u.xsave); 3186 3187 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3188 break; 3189 } 3190 case KVM_GET_XCRS: { 3191 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3192 r = -ENOMEM; 3193 if (!u.xcrs) 3194 break; 3195 3196 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3197 3198 r = -EFAULT; 3199 if (copy_to_user(argp, u.xcrs, 3200 sizeof(struct kvm_xcrs))) 3201 break; 3202 r = 0; 3203 break; 3204 } 3205 case KVM_SET_XCRS: { 3206 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3207 if (IS_ERR(u.xcrs)) 3208 return PTR_ERR(u.xcrs); 3209 3210 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3211 break; 3212 } 3213 case KVM_SET_TSC_KHZ: { 3214 u32 user_tsc_khz; 3215 3216 r = -EINVAL; 3217 user_tsc_khz = (u32)arg; 3218 3219 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3220 goto out; 3221 3222 if (user_tsc_khz == 0) 3223 user_tsc_khz = tsc_khz; 3224 3225 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3226 3227 r = 0; 3228 goto out; 3229 } 3230 case KVM_GET_TSC_KHZ: { 3231 r = vcpu->arch.virtual_tsc_khz; 3232 goto out; 3233 } 3234 case KVM_KVMCLOCK_CTRL: { 3235 r = kvm_set_guest_paused(vcpu); 3236 goto out; 3237 } 3238 default: 3239 r = -EINVAL; 3240 } 3241 out: 3242 kfree(u.buffer); 3243 return r; 3244 } 3245 3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3247 { 3248 return VM_FAULT_SIGBUS; 3249 } 3250 3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3252 { 3253 int ret; 3254 3255 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3256 return -EINVAL; 3257 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3258 return ret; 3259 } 3260 3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3262 u64 ident_addr) 3263 { 3264 kvm->arch.ept_identity_map_addr = ident_addr; 3265 return 0; 3266 } 3267 3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3269 u32 kvm_nr_mmu_pages) 3270 { 3271 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3272 return -EINVAL; 3273 3274 mutex_lock(&kvm->slots_lock); 3275 3276 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3277 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3278 3279 mutex_unlock(&kvm->slots_lock); 3280 return 0; 3281 } 3282 3283 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3284 { 3285 return kvm->arch.n_max_mmu_pages; 3286 } 3287 3288 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3289 { 3290 int r; 3291 3292 r = 0; 3293 switch (chip->chip_id) { 3294 case KVM_IRQCHIP_PIC_MASTER: 3295 memcpy(&chip->chip.pic, 3296 &pic_irqchip(kvm)->pics[0], 3297 sizeof(struct kvm_pic_state)); 3298 break; 3299 case KVM_IRQCHIP_PIC_SLAVE: 3300 memcpy(&chip->chip.pic, 3301 &pic_irqchip(kvm)->pics[1], 3302 sizeof(struct kvm_pic_state)); 3303 break; 3304 case KVM_IRQCHIP_IOAPIC: 3305 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3306 break; 3307 default: 3308 r = -EINVAL; 3309 break; 3310 } 3311 return r; 3312 } 3313 3314 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3315 { 3316 int r; 3317 3318 r = 0; 3319 switch (chip->chip_id) { 3320 case KVM_IRQCHIP_PIC_MASTER: 3321 spin_lock(&pic_irqchip(kvm)->lock); 3322 memcpy(&pic_irqchip(kvm)->pics[0], 3323 &chip->chip.pic, 3324 sizeof(struct kvm_pic_state)); 3325 spin_unlock(&pic_irqchip(kvm)->lock); 3326 break; 3327 case KVM_IRQCHIP_PIC_SLAVE: 3328 spin_lock(&pic_irqchip(kvm)->lock); 3329 memcpy(&pic_irqchip(kvm)->pics[1], 3330 &chip->chip.pic, 3331 sizeof(struct kvm_pic_state)); 3332 spin_unlock(&pic_irqchip(kvm)->lock); 3333 break; 3334 case KVM_IRQCHIP_IOAPIC: 3335 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3336 break; 3337 default: 3338 r = -EINVAL; 3339 break; 3340 } 3341 kvm_pic_update_irq(pic_irqchip(kvm)); 3342 return r; 3343 } 3344 3345 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3346 { 3347 int r = 0; 3348 3349 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3350 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3351 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3352 return r; 3353 } 3354 3355 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3356 { 3357 int r = 0; 3358 3359 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3360 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3361 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3362 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3363 return r; 3364 } 3365 3366 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3367 { 3368 int r = 0; 3369 3370 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3371 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3372 sizeof(ps->channels)); 3373 ps->flags = kvm->arch.vpit->pit_state.flags; 3374 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3375 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3376 return r; 3377 } 3378 3379 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3380 { 3381 int r = 0, start = 0; 3382 u32 prev_legacy, cur_legacy; 3383 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3384 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3385 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3386 if (!prev_legacy && cur_legacy) 3387 start = 1; 3388 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3389 sizeof(kvm->arch.vpit->pit_state.channels)); 3390 kvm->arch.vpit->pit_state.flags = ps->flags; 3391 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3392 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3393 return r; 3394 } 3395 3396 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3397 struct kvm_reinject_control *control) 3398 { 3399 if (!kvm->arch.vpit) 3400 return -ENXIO; 3401 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3402 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3403 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3404 return 0; 3405 } 3406 3407 /** 3408 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3409 * @kvm: kvm instance 3410 * @log: slot id and address to which we copy the log 3411 * 3412 * We need to keep it in mind that VCPU threads can write to the bitmap 3413 * concurrently. So, to avoid losing data, we keep the following order for 3414 * each bit: 3415 * 3416 * 1. Take a snapshot of the bit and clear it if needed. 3417 * 2. Write protect the corresponding page. 3418 * 3. Flush TLB's if needed. 3419 * 4. Copy the snapshot to the userspace. 3420 * 3421 * Between 2 and 3, the guest may write to the page using the remaining TLB 3422 * entry. This is not a problem because the page will be reported dirty at 3423 * step 4 using the snapshot taken before and step 3 ensures that successive 3424 * writes will be logged for the next call. 3425 */ 3426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3427 { 3428 int r; 3429 struct kvm_memory_slot *memslot; 3430 unsigned long n, i; 3431 unsigned long *dirty_bitmap; 3432 unsigned long *dirty_bitmap_buffer; 3433 bool is_dirty = false; 3434 3435 mutex_lock(&kvm->slots_lock); 3436 3437 r = -EINVAL; 3438 if (log->slot >= KVM_USER_MEM_SLOTS) 3439 goto out; 3440 3441 memslot = id_to_memslot(kvm->memslots, log->slot); 3442 3443 dirty_bitmap = memslot->dirty_bitmap; 3444 r = -ENOENT; 3445 if (!dirty_bitmap) 3446 goto out; 3447 3448 n = kvm_dirty_bitmap_bytes(memslot); 3449 3450 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3451 memset(dirty_bitmap_buffer, 0, n); 3452 3453 spin_lock(&kvm->mmu_lock); 3454 3455 for (i = 0; i < n / sizeof(long); i++) { 3456 unsigned long mask; 3457 gfn_t offset; 3458 3459 if (!dirty_bitmap[i]) 3460 continue; 3461 3462 is_dirty = true; 3463 3464 mask = xchg(&dirty_bitmap[i], 0); 3465 dirty_bitmap_buffer[i] = mask; 3466 3467 offset = i * BITS_PER_LONG; 3468 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3469 } 3470 if (is_dirty) 3471 kvm_flush_remote_tlbs(kvm); 3472 3473 spin_unlock(&kvm->mmu_lock); 3474 3475 r = -EFAULT; 3476 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3477 goto out; 3478 3479 r = 0; 3480 out: 3481 mutex_unlock(&kvm->slots_lock); 3482 return r; 3483 } 3484 3485 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event) 3486 { 3487 if (!irqchip_in_kernel(kvm)) 3488 return -ENXIO; 3489 3490 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3491 irq_event->irq, irq_event->level); 3492 return 0; 3493 } 3494 3495 long kvm_arch_vm_ioctl(struct file *filp, 3496 unsigned int ioctl, unsigned long arg) 3497 { 3498 struct kvm *kvm = filp->private_data; 3499 void __user *argp = (void __user *)arg; 3500 int r = -ENOTTY; 3501 /* 3502 * This union makes it completely explicit to gcc-3.x 3503 * that these two variables' stack usage should be 3504 * combined, not added together. 3505 */ 3506 union { 3507 struct kvm_pit_state ps; 3508 struct kvm_pit_state2 ps2; 3509 struct kvm_pit_config pit_config; 3510 } u; 3511 3512 switch (ioctl) { 3513 case KVM_SET_TSS_ADDR: 3514 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3515 break; 3516 case KVM_SET_IDENTITY_MAP_ADDR: { 3517 u64 ident_addr; 3518 3519 r = -EFAULT; 3520 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3521 goto out; 3522 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3523 break; 3524 } 3525 case KVM_SET_NR_MMU_PAGES: 3526 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3527 break; 3528 case KVM_GET_NR_MMU_PAGES: 3529 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3530 break; 3531 case KVM_CREATE_IRQCHIP: { 3532 struct kvm_pic *vpic; 3533 3534 mutex_lock(&kvm->lock); 3535 r = -EEXIST; 3536 if (kvm->arch.vpic) 3537 goto create_irqchip_unlock; 3538 r = -EINVAL; 3539 if (atomic_read(&kvm->online_vcpus)) 3540 goto create_irqchip_unlock; 3541 r = -ENOMEM; 3542 vpic = kvm_create_pic(kvm); 3543 if (vpic) { 3544 r = kvm_ioapic_init(kvm); 3545 if (r) { 3546 mutex_lock(&kvm->slots_lock); 3547 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3548 &vpic->dev_master); 3549 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3550 &vpic->dev_slave); 3551 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3552 &vpic->dev_eclr); 3553 mutex_unlock(&kvm->slots_lock); 3554 kfree(vpic); 3555 goto create_irqchip_unlock; 3556 } 3557 } else 3558 goto create_irqchip_unlock; 3559 smp_wmb(); 3560 kvm->arch.vpic = vpic; 3561 smp_wmb(); 3562 r = kvm_setup_default_irq_routing(kvm); 3563 if (r) { 3564 mutex_lock(&kvm->slots_lock); 3565 mutex_lock(&kvm->irq_lock); 3566 kvm_ioapic_destroy(kvm); 3567 kvm_destroy_pic(kvm); 3568 mutex_unlock(&kvm->irq_lock); 3569 mutex_unlock(&kvm->slots_lock); 3570 } 3571 create_irqchip_unlock: 3572 mutex_unlock(&kvm->lock); 3573 break; 3574 } 3575 case KVM_CREATE_PIT: 3576 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3577 goto create_pit; 3578 case KVM_CREATE_PIT2: 3579 r = -EFAULT; 3580 if (copy_from_user(&u.pit_config, argp, 3581 sizeof(struct kvm_pit_config))) 3582 goto out; 3583 create_pit: 3584 mutex_lock(&kvm->slots_lock); 3585 r = -EEXIST; 3586 if (kvm->arch.vpit) 3587 goto create_pit_unlock; 3588 r = -ENOMEM; 3589 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3590 if (kvm->arch.vpit) 3591 r = 0; 3592 create_pit_unlock: 3593 mutex_unlock(&kvm->slots_lock); 3594 break; 3595 case KVM_GET_IRQCHIP: { 3596 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3597 struct kvm_irqchip *chip; 3598 3599 chip = memdup_user(argp, sizeof(*chip)); 3600 if (IS_ERR(chip)) { 3601 r = PTR_ERR(chip); 3602 goto out; 3603 } 3604 3605 r = -ENXIO; 3606 if (!irqchip_in_kernel(kvm)) 3607 goto get_irqchip_out; 3608 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3609 if (r) 3610 goto get_irqchip_out; 3611 r = -EFAULT; 3612 if (copy_to_user(argp, chip, sizeof *chip)) 3613 goto get_irqchip_out; 3614 r = 0; 3615 get_irqchip_out: 3616 kfree(chip); 3617 break; 3618 } 3619 case KVM_SET_IRQCHIP: { 3620 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3621 struct kvm_irqchip *chip; 3622 3623 chip = memdup_user(argp, sizeof(*chip)); 3624 if (IS_ERR(chip)) { 3625 r = PTR_ERR(chip); 3626 goto out; 3627 } 3628 3629 r = -ENXIO; 3630 if (!irqchip_in_kernel(kvm)) 3631 goto set_irqchip_out; 3632 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3633 if (r) 3634 goto set_irqchip_out; 3635 r = 0; 3636 set_irqchip_out: 3637 kfree(chip); 3638 break; 3639 } 3640 case KVM_GET_PIT: { 3641 r = -EFAULT; 3642 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3643 goto out; 3644 r = -ENXIO; 3645 if (!kvm->arch.vpit) 3646 goto out; 3647 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3648 if (r) 3649 goto out; 3650 r = -EFAULT; 3651 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3652 goto out; 3653 r = 0; 3654 break; 3655 } 3656 case KVM_SET_PIT: { 3657 r = -EFAULT; 3658 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3659 goto out; 3660 r = -ENXIO; 3661 if (!kvm->arch.vpit) 3662 goto out; 3663 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3664 break; 3665 } 3666 case KVM_GET_PIT2: { 3667 r = -ENXIO; 3668 if (!kvm->arch.vpit) 3669 goto out; 3670 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3671 if (r) 3672 goto out; 3673 r = -EFAULT; 3674 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3675 goto out; 3676 r = 0; 3677 break; 3678 } 3679 case KVM_SET_PIT2: { 3680 r = -EFAULT; 3681 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3682 goto out; 3683 r = -ENXIO; 3684 if (!kvm->arch.vpit) 3685 goto out; 3686 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3687 break; 3688 } 3689 case KVM_REINJECT_CONTROL: { 3690 struct kvm_reinject_control control; 3691 r = -EFAULT; 3692 if (copy_from_user(&control, argp, sizeof(control))) 3693 goto out; 3694 r = kvm_vm_ioctl_reinject(kvm, &control); 3695 break; 3696 } 3697 case KVM_XEN_HVM_CONFIG: { 3698 r = -EFAULT; 3699 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3700 sizeof(struct kvm_xen_hvm_config))) 3701 goto out; 3702 r = -EINVAL; 3703 if (kvm->arch.xen_hvm_config.flags) 3704 goto out; 3705 r = 0; 3706 break; 3707 } 3708 case KVM_SET_CLOCK: { 3709 struct kvm_clock_data user_ns; 3710 u64 now_ns; 3711 s64 delta; 3712 3713 r = -EFAULT; 3714 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3715 goto out; 3716 3717 r = -EINVAL; 3718 if (user_ns.flags) 3719 goto out; 3720 3721 r = 0; 3722 local_irq_disable(); 3723 now_ns = get_kernel_ns(); 3724 delta = user_ns.clock - now_ns; 3725 local_irq_enable(); 3726 kvm->arch.kvmclock_offset = delta; 3727 break; 3728 } 3729 case KVM_GET_CLOCK: { 3730 struct kvm_clock_data user_ns; 3731 u64 now_ns; 3732 3733 local_irq_disable(); 3734 now_ns = get_kernel_ns(); 3735 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3736 local_irq_enable(); 3737 user_ns.flags = 0; 3738 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3739 3740 r = -EFAULT; 3741 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3742 goto out; 3743 r = 0; 3744 break; 3745 } 3746 3747 default: 3748 ; 3749 } 3750 out: 3751 return r; 3752 } 3753 3754 static void kvm_init_msr_list(void) 3755 { 3756 u32 dummy[2]; 3757 unsigned i, j; 3758 3759 /* skip the first msrs in the list. KVM-specific */ 3760 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3761 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3762 continue; 3763 if (j < i) 3764 msrs_to_save[j] = msrs_to_save[i]; 3765 j++; 3766 } 3767 num_msrs_to_save = j; 3768 } 3769 3770 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3771 const void *v) 3772 { 3773 int handled = 0; 3774 int n; 3775 3776 do { 3777 n = min(len, 8); 3778 if (!(vcpu->arch.apic && 3779 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3780 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3781 break; 3782 handled += n; 3783 addr += n; 3784 len -= n; 3785 v += n; 3786 } while (len); 3787 3788 return handled; 3789 } 3790 3791 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3792 { 3793 int handled = 0; 3794 int n; 3795 3796 do { 3797 n = min(len, 8); 3798 if (!(vcpu->arch.apic && 3799 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3800 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3801 break; 3802 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3803 handled += n; 3804 addr += n; 3805 len -= n; 3806 v += n; 3807 } while (len); 3808 3809 return handled; 3810 } 3811 3812 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3813 struct kvm_segment *var, int seg) 3814 { 3815 kvm_x86_ops->set_segment(vcpu, var, seg); 3816 } 3817 3818 void kvm_get_segment(struct kvm_vcpu *vcpu, 3819 struct kvm_segment *var, int seg) 3820 { 3821 kvm_x86_ops->get_segment(vcpu, var, seg); 3822 } 3823 3824 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3825 { 3826 gpa_t t_gpa; 3827 struct x86_exception exception; 3828 3829 BUG_ON(!mmu_is_nested(vcpu)); 3830 3831 /* NPT walks are always user-walks */ 3832 access |= PFERR_USER_MASK; 3833 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3834 3835 return t_gpa; 3836 } 3837 3838 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3839 struct x86_exception *exception) 3840 { 3841 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3842 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3843 } 3844 3845 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3846 struct x86_exception *exception) 3847 { 3848 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3849 access |= PFERR_FETCH_MASK; 3850 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3851 } 3852 3853 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3854 struct x86_exception *exception) 3855 { 3856 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3857 access |= PFERR_WRITE_MASK; 3858 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3859 } 3860 3861 /* uses this to access any guest's mapped memory without checking CPL */ 3862 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3863 struct x86_exception *exception) 3864 { 3865 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3866 } 3867 3868 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3869 struct kvm_vcpu *vcpu, u32 access, 3870 struct x86_exception *exception) 3871 { 3872 void *data = val; 3873 int r = X86EMUL_CONTINUE; 3874 3875 while (bytes) { 3876 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3877 exception); 3878 unsigned offset = addr & (PAGE_SIZE-1); 3879 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3880 int ret; 3881 3882 if (gpa == UNMAPPED_GVA) 3883 return X86EMUL_PROPAGATE_FAULT; 3884 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3885 if (ret < 0) { 3886 r = X86EMUL_IO_NEEDED; 3887 goto out; 3888 } 3889 3890 bytes -= toread; 3891 data += toread; 3892 addr += toread; 3893 } 3894 out: 3895 return r; 3896 } 3897 3898 /* used for instruction fetching */ 3899 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3900 gva_t addr, void *val, unsigned int bytes, 3901 struct x86_exception *exception) 3902 { 3903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3904 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3905 3906 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3907 access | PFERR_FETCH_MASK, 3908 exception); 3909 } 3910 3911 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3912 gva_t addr, void *val, unsigned int bytes, 3913 struct x86_exception *exception) 3914 { 3915 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3916 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3917 3918 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3919 exception); 3920 } 3921 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3922 3923 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3924 gva_t addr, void *val, unsigned int bytes, 3925 struct x86_exception *exception) 3926 { 3927 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3928 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3929 } 3930 3931 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3932 gva_t addr, void *val, 3933 unsigned int bytes, 3934 struct x86_exception *exception) 3935 { 3936 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3937 void *data = val; 3938 int r = X86EMUL_CONTINUE; 3939 3940 while (bytes) { 3941 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3942 PFERR_WRITE_MASK, 3943 exception); 3944 unsigned offset = addr & (PAGE_SIZE-1); 3945 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3946 int ret; 3947 3948 if (gpa == UNMAPPED_GVA) 3949 return X86EMUL_PROPAGATE_FAULT; 3950 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3951 if (ret < 0) { 3952 r = X86EMUL_IO_NEEDED; 3953 goto out; 3954 } 3955 3956 bytes -= towrite; 3957 data += towrite; 3958 addr += towrite; 3959 } 3960 out: 3961 return r; 3962 } 3963 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3964 3965 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3966 gpa_t *gpa, struct x86_exception *exception, 3967 bool write) 3968 { 3969 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 3970 | (write ? PFERR_WRITE_MASK : 0); 3971 3972 if (vcpu_match_mmio_gva(vcpu, gva) 3973 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 3974 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3975 (gva & (PAGE_SIZE - 1)); 3976 trace_vcpu_match_mmio(gva, *gpa, write, false); 3977 return 1; 3978 } 3979 3980 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3981 3982 if (*gpa == UNMAPPED_GVA) 3983 return -1; 3984 3985 /* For APIC access vmexit */ 3986 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3987 return 1; 3988 3989 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3990 trace_vcpu_match_mmio(gva, *gpa, write, true); 3991 return 1; 3992 } 3993 3994 return 0; 3995 } 3996 3997 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3998 const void *val, int bytes) 3999 { 4000 int ret; 4001 4002 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4003 if (ret < 0) 4004 return 0; 4005 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4006 return 1; 4007 } 4008 4009 struct read_write_emulator_ops { 4010 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4011 int bytes); 4012 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4013 void *val, int bytes); 4014 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4015 int bytes, void *val); 4016 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4017 void *val, int bytes); 4018 bool write; 4019 }; 4020 4021 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4022 { 4023 if (vcpu->mmio_read_completed) { 4024 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4025 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4026 vcpu->mmio_read_completed = 0; 4027 return 1; 4028 } 4029 4030 return 0; 4031 } 4032 4033 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4034 void *val, int bytes) 4035 { 4036 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4037 } 4038 4039 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4040 void *val, int bytes) 4041 { 4042 return emulator_write_phys(vcpu, gpa, val, bytes); 4043 } 4044 4045 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4046 { 4047 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4048 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4049 } 4050 4051 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4052 void *val, int bytes) 4053 { 4054 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4055 return X86EMUL_IO_NEEDED; 4056 } 4057 4058 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4059 void *val, int bytes) 4060 { 4061 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4062 4063 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4064 return X86EMUL_CONTINUE; 4065 } 4066 4067 static const struct read_write_emulator_ops read_emultor = { 4068 .read_write_prepare = read_prepare, 4069 .read_write_emulate = read_emulate, 4070 .read_write_mmio = vcpu_mmio_read, 4071 .read_write_exit_mmio = read_exit_mmio, 4072 }; 4073 4074 static const struct read_write_emulator_ops write_emultor = { 4075 .read_write_emulate = write_emulate, 4076 .read_write_mmio = write_mmio, 4077 .read_write_exit_mmio = write_exit_mmio, 4078 .write = true, 4079 }; 4080 4081 static int emulator_read_write_onepage(unsigned long addr, void *val, 4082 unsigned int bytes, 4083 struct x86_exception *exception, 4084 struct kvm_vcpu *vcpu, 4085 const struct read_write_emulator_ops *ops) 4086 { 4087 gpa_t gpa; 4088 int handled, ret; 4089 bool write = ops->write; 4090 struct kvm_mmio_fragment *frag; 4091 4092 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4093 4094 if (ret < 0) 4095 return X86EMUL_PROPAGATE_FAULT; 4096 4097 /* For APIC access vmexit */ 4098 if (ret) 4099 goto mmio; 4100 4101 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4102 return X86EMUL_CONTINUE; 4103 4104 mmio: 4105 /* 4106 * Is this MMIO handled locally? 4107 */ 4108 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4109 if (handled == bytes) 4110 return X86EMUL_CONTINUE; 4111 4112 gpa += handled; 4113 bytes -= handled; 4114 val += handled; 4115 4116 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4117 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4118 frag->gpa = gpa; 4119 frag->data = val; 4120 frag->len = bytes; 4121 return X86EMUL_CONTINUE; 4122 } 4123 4124 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4125 void *val, unsigned int bytes, 4126 struct x86_exception *exception, 4127 const struct read_write_emulator_ops *ops) 4128 { 4129 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4130 gpa_t gpa; 4131 int rc; 4132 4133 if (ops->read_write_prepare && 4134 ops->read_write_prepare(vcpu, val, bytes)) 4135 return X86EMUL_CONTINUE; 4136 4137 vcpu->mmio_nr_fragments = 0; 4138 4139 /* Crossing a page boundary? */ 4140 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4141 int now; 4142 4143 now = -addr & ~PAGE_MASK; 4144 rc = emulator_read_write_onepage(addr, val, now, exception, 4145 vcpu, ops); 4146 4147 if (rc != X86EMUL_CONTINUE) 4148 return rc; 4149 addr += now; 4150 val += now; 4151 bytes -= now; 4152 } 4153 4154 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4155 vcpu, ops); 4156 if (rc != X86EMUL_CONTINUE) 4157 return rc; 4158 4159 if (!vcpu->mmio_nr_fragments) 4160 return rc; 4161 4162 gpa = vcpu->mmio_fragments[0].gpa; 4163 4164 vcpu->mmio_needed = 1; 4165 vcpu->mmio_cur_fragment = 0; 4166 4167 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4168 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4169 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4170 vcpu->run->mmio.phys_addr = gpa; 4171 4172 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4173 } 4174 4175 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4176 unsigned long addr, 4177 void *val, 4178 unsigned int bytes, 4179 struct x86_exception *exception) 4180 { 4181 return emulator_read_write(ctxt, addr, val, bytes, 4182 exception, &read_emultor); 4183 } 4184 4185 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4186 unsigned long addr, 4187 const void *val, 4188 unsigned int bytes, 4189 struct x86_exception *exception) 4190 { 4191 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4192 exception, &write_emultor); 4193 } 4194 4195 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4196 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4197 4198 #ifdef CONFIG_X86_64 4199 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4200 #else 4201 # define CMPXCHG64(ptr, old, new) \ 4202 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4203 #endif 4204 4205 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4206 unsigned long addr, 4207 const void *old, 4208 const void *new, 4209 unsigned int bytes, 4210 struct x86_exception *exception) 4211 { 4212 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4213 gpa_t gpa; 4214 struct page *page; 4215 char *kaddr; 4216 bool exchanged; 4217 4218 /* guests cmpxchg8b have to be emulated atomically */ 4219 if (bytes > 8 || (bytes & (bytes - 1))) 4220 goto emul_write; 4221 4222 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4223 4224 if (gpa == UNMAPPED_GVA || 4225 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4226 goto emul_write; 4227 4228 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4229 goto emul_write; 4230 4231 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4232 if (is_error_page(page)) 4233 goto emul_write; 4234 4235 kaddr = kmap_atomic(page); 4236 kaddr += offset_in_page(gpa); 4237 switch (bytes) { 4238 case 1: 4239 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4240 break; 4241 case 2: 4242 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4243 break; 4244 case 4: 4245 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4246 break; 4247 case 8: 4248 exchanged = CMPXCHG64(kaddr, old, new); 4249 break; 4250 default: 4251 BUG(); 4252 } 4253 kunmap_atomic(kaddr); 4254 kvm_release_page_dirty(page); 4255 4256 if (!exchanged) 4257 return X86EMUL_CMPXCHG_FAILED; 4258 4259 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4260 4261 return X86EMUL_CONTINUE; 4262 4263 emul_write: 4264 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4265 4266 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4267 } 4268 4269 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4270 { 4271 /* TODO: String I/O for in kernel device */ 4272 int r; 4273 4274 if (vcpu->arch.pio.in) 4275 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4276 vcpu->arch.pio.size, pd); 4277 else 4278 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4279 vcpu->arch.pio.port, vcpu->arch.pio.size, 4280 pd); 4281 return r; 4282 } 4283 4284 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4285 unsigned short port, void *val, 4286 unsigned int count, bool in) 4287 { 4288 trace_kvm_pio(!in, port, size, count); 4289 4290 vcpu->arch.pio.port = port; 4291 vcpu->arch.pio.in = in; 4292 vcpu->arch.pio.count = count; 4293 vcpu->arch.pio.size = size; 4294 4295 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4296 vcpu->arch.pio.count = 0; 4297 return 1; 4298 } 4299 4300 vcpu->run->exit_reason = KVM_EXIT_IO; 4301 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4302 vcpu->run->io.size = size; 4303 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4304 vcpu->run->io.count = count; 4305 vcpu->run->io.port = port; 4306 4307 return 0; 4308 } 4309 4310 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4311 int size, unsigned short port, void *val, 4312 unsigned int count) 4313 { 4314 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4315 int ret; 4316 4317 if (vcpu->arch.pio.count) 4318 goto data_avail; 4319 4320 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4321 if (ret) { 4322 data_avail: 4323 memcpy(val, vcpu->arch.pio_data, size * count); 4324 vcpu->arch.pio.count = 0; 4325 return 1; 4326 } 4327 4328 return 0; 4329 } 4330 4331 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4332 int size, unsigned short port, 4333 const void *val, unsigned int count) 4334 { 4335 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4336 4337 memcpy(vcpu->arch.pio_data, val, size * count); 4338 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4339 } 4340 4341 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4342 { 4343 return kvm_x86_ops->get_segment_base(vcpu, seg); 4344 } 4345 4346 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4347 { 4348 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4349 } 4350 4351 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4352 { 4353 if (!need_emulate_wbinvd(vcpu)) 4354 return X86EMUL_CONTINUE; 4355 4356 if (kvm_x86_ops->has_wbinvd_exit()) { 4357 int cpu = get_cpu(); 4358 4359 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4360 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4361 wbinvd_ipi, NULL, 1); 4362 put_cpu(); 4363 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4364 } else 4365 wbinvd(); 4366 return X86EMUL_CONTINUE; 4367 } 4368 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4369 4370 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4371 { 4372 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4373 } 4374 4375 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4376 { 4377 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4378 } 4379 4380 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4381 { 4382 4383 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4384 } 4385 4386 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4387 { 4388 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4389 } 4390 4391 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4392 { 4393 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4394 unsigned long value; 4395 4396 switch (cr) { 4397 case 0: 4398 value = kvm_read_cr0(vcpu); 4399 break; 4400 case 2: 4401 value = vcpu->arch.cr2; 4402 break; 4403 case 3: 4404 value = kvm_read_cr3(vcpu); 4405 break; 4406 case 4: 4407 value = kvm_read_cr4(vcpu); 4408 break; 4409 case 8: 4410 value = kvm_get_cr8(vcpu); 4411 break; 4412 default: 4413 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4414 return 0; 4415 } 4416 4417 return value; 4418 } 4419 4420 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4421 { 4422 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4423 int res = 0; 4424 4425 switch (cr) { 4426 case 0: 4427 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4428 break; 4429 case 2: 4430 vcpu->arch.cr2 = val; 4431 break; 4432 case 3: 4433 res = kvm_set_cr3(vcpu, val); 4434 break; 4435 case 4: 4436 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4437 break; 4438 case 8: 4439 res = kvm_set_cr8(vcpu, val); 4440 break; 4441 default: 4442 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4443 res = -1; 4444 } 4445 4446 return res; 4447 } 4448 4449 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4450 { 4451 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4452 } 4453 4454 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4455 { 4456 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4457 } 4458 4459 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4460 { 4461 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4462 } 4463 4464 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4465 { 4466 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4467 } 4468 4469 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4470 { 4471 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4472 } 4473 4474 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4475 { 4476 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4477 } 4478 4479 static unsigned long emulator_get_cached_segment_base( 4480 struct x86_emulate_ctxt *ctxt, int seg) 4481 { 4482 return get_segment_base(emul_to_vcpu(ctxt), seg); 4483 } 4484 4485 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4486 struct desc_struct *desc, u32 *base3, 4487 int seg) 4488 { 4489 struct kvm_segment var; 4490 4491 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4492 *selector = var.selector; 4493 4494 if (var.unusable) { 4495 memset(desc, 0, sizeof(*desc)); 4496 return false; 4497 } 4498 4499 if (var.g) 4500 var.limit >>= 12; 4501 set_desc_limit(desc, var.limit); 4502 set_desc_base(desc, (unsigned long)var.base); 4503 #ifdef CONFIG_X86_64 4504 if (base3) 4505 *base3 = var.base >> 32; 4506 #endif 4507 desc->type = var.type; 4508 desc->s = var.s; 4509 desc->dpl = var.dpl; 4510 desc->p = var.present; 4511 desc->avl = var.avl; 4512 desc->l = var.l; 4513 desc->d = var.db; 4514 desc->g = var.g; 4515 4516 return true; 4517 } 4518 4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4520 struct desc_struct *desc, u32 base3, 4521 int seg) 4522 { 4523 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4524 struct kvm_segment var; 4525 4526 var.selector = selector; 4527 var.base = get_desc_base(desc); 4528 #ifdef CONFIG_X86_64 4529 var.base |= ((u64)base3) << 32; 4530 #endif 4531 var.limit = get_desc_limit(desc); 4532 if (desc->g) 4533 var.limit = (var.limit << 12) | 0xfff; 4534 var.type = desc->type; 4535 var.present = desc->p; 4536 var.dpl = desc->dpl; 4537 var.db = desc->d; 4538 var.s = desc->s; 4539 var.l = desc->l; 4540 var.g = desc->g; 4541 var.avl = desc->avl; 4542 var.present = desc->p; 4543 var.unusable = !var.present; 4544 var.padding = 0; 4545 4546 kvm_set_segment(vcpu, &var, seg); 4547 return; 4548 } 4549 4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4551 u32 msr_index, u64 *pdata) 4552 { 4553 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4554 } 4555 4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4557 u32 msr_index, u64 data) 4558 { 4559 struct msr_data msr; 4560 4561 msr.data = data; 4562 msr.index = msr_index; 4563 msr.host_initiated = false; 4564 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4565 } 4566 4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4568 u32 pmc, u64 *pdata) 4569 { 4570 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4571 } 4572 4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4574 { 4575 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4576 } 4577 4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4579 { 4580 preempt_disable(); 4581 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4582 /* 4583 * CR0.TS may reference the host fpu state, not the guest fpu state, 4584 * so it may be clear at this point. 4585 */ 4586 clts(); 4587 } 4588 4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4590 { 4591 preempt_enable(); 4592 } 4593 4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4595 struct x86_instruction_info *info, 4596 enum x86_intercept_stage stage) 4597 { 4598 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4599 } 4600 4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4602 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4603 { 4604 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4605 } 4606 4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4608 { 4609 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4610 } 4611 4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4613 { 4614 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4615 } 4616 4617 static const struct x86_emulate_ops emulate_ops = { 4618 .read_gpr = emulator_read_gpr, 4619 .write_gpr = emulator_write_gpr, 4620 .read_std = kvm_read_guest_virt_system, 4621 .write_std = kvm_write_guest_virt_system, 4622 .fetch = kvm_fetch_guest_virt, 4623 .read_emulated = emulator_read_emulated, 4624 .write_emulated = emulator_write_emulated, 4625 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4626 .invlpg = emulator_invlpg, 4627 .pio_in_emulated = emulator_pio_in_emulated, 4628 .pio_out_emulated = emulator_pio_out_emulated, 4629 .get_segment = emulator_get_segment, 4630 .set_segment = emulator_set_segment, 4631 .get_cached_segment_base = emulator_get_cached_segment_base, 4632 .get_gdt = emulator_get_gdt, 4633 .get_idt = emulator_get_idt, 4634 .set_gdt = emulator_set_gdt, 4635 .set_idt = emulator_set_idt, 4636 .get_cr = emulator_get_cr, 4637 .set_cr = emulator_set_cr, 4638 .set_rflags = emulator_set_rflags, 4639 .cpl = emulator_get_cpl, 4640 .get_dr = emulator_get_dr, 4641 .set_dr = emulator_set_dr, 4642 .set_msr = emulator_set_msr, 4643 .get_msr = emulator_get_msr, 4644 .read_pmc = emulator_read_pmc, 4645 .halt = emulator_halt, 4646 .wbinvd = emulator_wbinvd, 4647 .fix_hypercall = emulator_fix_hypercall, 4648 .get_fpu = emulator_get_fpu, 4649 .put_fpu = emulator_put_fpu, 4650 .intercept = emulator_intercept, 4651 .get_cpuid = emulator_get_cpuid, 4652 }; 4653 4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4655 { 4656 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4657 /* 4658 * an sti; sti; sequence only disable interrupts for the first 4659 * instruction. So, if the last instruction, be it emulated or 4660 * not, left the system with the INT_STI flag enabled, it 4661 * means that the last instruction is an sti. We should not 4662 * leave the flag on in this case. The same goes for mov ss 4663 */ 4664 if (!(int_shadow & mask)) 4665 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4666 } 4667 4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4669 { 4670 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4671 if (ctxt->exception.vector == PF_VECTOR) 4672 kvm_propagate_fault(vcpu, &ctxt->exception); 4673 else if (ctxt->exception.error_code_valid) 4674 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4675 ctxt->exception.error_code); 4676 else 4677 kvm_queue_exception(vcpu, ctxt->exception.vector); 4678 } 4679 4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4681 { 4682 memset(&ctxt->twobyte, 0, 4683 (void *)&ctxt->_regs - (void *)&ctxt->twobyte); 4684 4685 ctxt->fetch.start = 0; 4686 ctxt->fetch.end = 0; 4687 ctxt->io_read.pos = 0; 4688 ctxt->io_read.end = 0; 4689 ctxt->mem_read.pos = 0; 4690 ctxt->mem_read.end = 0; 4691 } 4692 4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4694 { 4695 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4696 int cs_db, cs_l; 4697 4698 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4699 4700 ctxt->eflags = kvm_get_rflags(vcpu); 4701 ctxt->eip = kvm_rip_read(vcpu); 4702 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4703 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4704 cs_l ? X86EMUL_MODE_PROT64 : 4705 cs_db ? X86EMUL_MODE_PROT32 : 4706 X86EMUL_MODE_PROT16; 4707 ctxt->guest_mode = is_guest_mode(vcpu); 4708 4709 init_decode_cache(ctxt); 4710 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4711 } 4712 4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4714 { 4715 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4716 int ret; 4717 4718 init_emulate_ctxt(vcpu); 4719 4720 ctxt->op_bytes = 2; 4721 ctxt->ad_bytes = 2; 4722 ctxt->_eip = ctxt->eip + inc_eip; 4723 ret = emulate_int_real(ctxt, irq); 4724 4725 if (ret != X86EMUL_CONTINUE) 4726 return EMULATE_FAIL; 4727 4728 ctxt->eip = ctxt->_eip; 4729 kvm_rip_write(vcpu, ctxt->eip); 4730 kvm_set_rflags(vcpu, ctxt->eflags); 4731 4732 if (irq == NMI_VECTOR) 4733 vcpu->arch.nmi_pending = 0; 4734 else 4735 vcpu->arch.interrupt.pending = false; 4736 4737 return EMULATE_DONE; 4738 } 4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4740 4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4742 { 4743 int r = EMULATE_DONE; 4744 4745 ++vcpu->stat.insn_emulation_fail; 4746 trace_kvm_emulate_insn_failed(vcpu); 4747 if (!is_guest_mode(vcpu)) { 4748 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4749 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4750 vcpu->run->internal.ndata = 0; 4751 r = EMULATE_FAIL; 4752 } 4753 kvm_queue_exception(vcpu, UD_VECTOR); 4754 4755 return r; 4756 } 4757 4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4759 bool write_fault_to_shadow_pgtable) 4760 { 4761 gpa_t gpa = cr2; 4762 pfn_t pfn; 4763 4764 if (!vcpu->arch.mmu.direct_map) { 4765 /* 4766 * Write permission should be allowed since only 4767 * write access need to be emulated. 4768 */ 4769 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4770 4771 /* 4772 * If the mapping is invalid in guest, let cpu retry 4773 * it to generate fault. 4774 */ 4775 if (gpa == UNMAPPED_GVA) 4776 return true; 4777 } 4778 4779 /* 4780 * Do not retry the unhandleable instruction if it faults on the 4781 * readonly host memory, otherwise it will goto a infinite loop: 4782 * retry instruction -> write #PF -> emulation fail -> retry 4783 * instruction -> ... 4784 */ 4785 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4786 4787 /* 4788 * If the instruction failed on the error pfn, it can not be fixed, 4789 * report the error to userspace. 4790 */ 4791 if (is_error_noslot_pfn(pfn)) 4792 return false; 4793 4794 kvm_release_pfn_clean(pfn); 4795 4796 /* The instructions are well-emulated on direct mmu. */ 4797 if (vcpu->arch.mmu.direct_map) { 4798 unsigned int indirect_shadow_pages; 4799 4800 spin_lock(&vcpu->kvm->mmu_lock); 4801 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 4802 spin_unlock(&vcpu->kvm->mmu_lock); 4803 4804 if (indirect_shadow_pages) 4805 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4806 4807 return true; 4808 } 4809 4810 /* 4811 * if emulation was due to access to shadowed page table 4812 * and it failed try to unshadow page and re-enter the 4813 * guest to let CPU execute the instruction. 4814 */ 4815 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4816 4817 /* 4818 * If the access faults on its page table, it can not 4819 * be fixed by unprotecting shadow page and it should 4820 * be reported to userspace. 4821 */ 4822 return !write_fault_to_shadow_pgtable; 4823 } 4824 4825 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4826 unsigned long cr2, int emulation_type) 4827 { 4828 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4829 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4830 4831 last_retry_eip = vcpu->arch.last_retry_eip; 4832 last_retry_addr = vcpu->arch.last_retry_addr; 4833 4834 /* 4835 * If the emulation is caused by #PF and it is non-page_table 4836 * writing instruction, it means the VM-EXIT is caused by shadow 4837 * page protected, we can zap the shadow page and retry this 4838 * instruction directly. 4839 * 4840 * Note: if the guest uses a non-page-table modifying instruction 4841 * on the PDE that points to the instruction, then we will unmap 4842 * the instruction and go to an infinite loop. So, we cache the 4843 * last retried eip and the last fault address, if we meet the eip 4844 * and the address again, we can break out of the potential infinite 4845 * loop. 4846 */ 4847 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4848 4849 if (!(emulation_type & EMULTYPE_RETRY)) 4850 return false; 4851 4852 if (x86_page_table_writing_insn(ctxt)) 4853 return false; 4854 4855 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4856 return false; 4857 4858 vcpu->arch.last_retry_eip = ctxt->eip; 4859 vcpu->arch.last_retry_addr = cr2; 4860 4861 if (!vcpu->arch.mmu.direct_map) 4862 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4863 4864 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4865 4866 return true; 4867 } 4868 4869 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 4870 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 4871 4872 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4873 unsigned long cr2, 4874 int emulation_type, 4875 void *insn, 4876 int insn_len) 4877 { 4878 int r; 4879 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4880 bool writeback = true; 4881 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 4882 4883 /* 4884 * Clear write_fault_to_shadow_pgtable here to ensure it is 4885 * never reused. 4886 */ 4887 vcpu->arch.write_fault_to_shadow_pgtable = false; 4888 kvm_clear_exception_queue(vcpu); 4889 4890 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4891 init_emulate_ctxt(vcpu); 4892 ctxt->interruptibility = 0; 4893 ctxt->have_exception = false; 4894 ctxt->perm_ok = false; 4895 4896 ctxt->only_vendor_specific_insn 4897 = emulation_type & EMULTYPE_TRAP_UD; 4898 4899 r = x86_decode_insn(ctxt, insn, insn_len); 4900 4901 trace_kvm_emulate_insn_start(vcpu); 4902 ++vcpu->stat.insn_emulation; 4903 if (r != EMULATION_OK) { 4904 if (emulation_type & EMULTYPE_TRAP_UD) 4905 return EMULATE_FAIL; 4906 if (reexecute_instruction(vcpu, cr2, 4907 write_fault_to_spt)) 4908 return EMULATE_DONE; 4909 if (emulation_type & EMULTYPE_SKIP) 4910 return EMULATE_FAIL; 4911 return handle_emulation_failure(vcpu); 4912 } 4913 } 4914 4915 if (emulation_type & EMULTYPE_SKIP) { 4916 kvm_rip_write(vcpu, ctxt->_eip); 4917 return EMULATE_DONE; 4918 } 4919 4920 if (retry_instruction(ctxt, cr2, emulation_type)) 4921 return EMULATE_DONE; 4922 4923 /* this is needed for vmware backdoor interface to work since it 4924 changes registers values during IO operation */ 4925 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4926 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4927 emulator_invalidate_register_cache(ctxt); 4928 } 4929 4930 restart: 4931 r = x86_emulate_insn(ctxt); 4932 4933 if (r == EMULATION_INTERCEPTED) 4934 return EMULATE_DONE; 4935 4936 if (r == EMULATION_FAILED) { 4937 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt)) 4938 return EMULATE_DONE; 4939 4940 return handle_emulation_failure(vcpu); 4941 } 4942 4943 if (ctxt->have_exception) { 4944 inject_emulated_exception(vcpu); 4945 r = EMULATE_DONE; 4946 } else if (vcpu->arch.pio.count) { 4947 if (!vcpu->arch.pio.in) 4948 vcpu->arch.pio.count = 0; 4949 else { 4950 writeback = false; 4951 vcpu->arch.complete_userspace_io = complete_emulated_pio; 4952 } 4953 r = EMULATE_DO_MMIO; 4954 } else if (vcpu->mmio_needed) { 4955 if (!vcpu->mmio_is_write) 4956 writeback = false; 4957 r = EMULATE_DO_MMIO; 4958 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 4959 } else if (r == EMULATION_RESTART) 4960 goto restart; 4961 else 4962 r = EMULATE_DONE; 4963 4964 if (writeback) { 4965 toggle_interruptibility(vcpu, ctxt->interruptibility); 4966 kvm_set_rflags(vcpu, ctxt->eflags); 4967 kvm_make_request(KVM_REQ_EVENT, vcpu); 4968 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4969 kvm_rip_write(vcpu, ctxt->eip); 4970 } else 4971 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4972 4973 return r; 4974 } 4975 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4976 4977 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4978 { 4979 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4980 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4981 size, port, &val, 1); 4982 /* do not return to emulator after return from userspace */ 4983 vcpu->arch.pio.count = 0; 4984 return ret; 4985 } 4986 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4987 4988 static void tsc_bad(void *info) 4989 { 4990 __this_cpu_write(cpu_tsc_khz, 0); 4991 } 4992 4993 static void tsc_khz_changed(void *data) 4994 { 4995 struct cpufreq_freqs *freq = data; 4996 unsigned long khz = 0; 4997 4998 if (data) 4999 khz = freq->new; 5000 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5001 khz = cpufreq_quick_get(raw_smp_processor_id()); 5002 if (!khz) 5003 khz = tsc_khz; 5004 __this_cpu_write(cpu_tsc_khz, khz); 5005 } 5006 5007 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5008 void *data) 5009 { 5010 struct cpufreq_freqs *freq = data; 5011 struct kvm *kvm; 5012 struct kvm_vcpu *vcpu; 5013 int i, send_ipi = 0; 5014 5015 /* 5016 * We allow guests to temporarily run on slowing clocks, 5017 * provided we notify them after, or to run on accelerating 5018 * clocks, provided we notify them before. Thus time never 5019 * goes backwards. 5020 * 5021 * However, we have a problem. We can't atomically update 5022 * the frequency of a given CPU from this function; it is 5023 * merely a notifier, which can be called from any CPU. 5024 * Changing the TSC frequency at arbitrary points in time 5025 * requires a recomputation of local variables related to 5026 * the TSC for each VCPU. We must flag these local variables 5027 * to be updated and be sure the update takes place with the 5028 * new frequency before any guests proceed. 5029 * 5030 * Unfortunately, the combination of hotplug CPU and frequency 5031 * change creates an intractable locking scenario; the order 5032 * of when these callouts happen is undefined with respect to 5033 * CPU hotplug, and they can race with each other. As such, 5034 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5035 * undefined; you can actually have a CPU frequency change take 5036 * place in between the computation of X and the setting of the 5037 * variable. To protect against this problem, all updates of 5038 * the per_cpu tsc_khz variable are done in an interrupt 5039 * protected IPI, and all callers wishing to update the value 5040 * must wait for a synchronous IPI to complete (which is trivial 5041 * if the caller is on the CPU already). This establishes the 5042 * necessary total order on variable updates. 5043 * 5044 * Note that because a guest time update may take place 5045 * anytime after the setting of the VCPU's request bit, the 5046 * correct TSC value must be set before the request. However, 5047 * to ensure the update actually makes it to any guest which 5048 * starts running in hardware virtualization between the set 5049 * and the acquisition of the spinlock, we must also ping the 5050 * CPU after setting the request bit. 5051 * 5052 */ 5053 5054 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5055 return 0; 5056 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5057 return 0; 5058 5059 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5060 5061 raw_spin_lock(&kvm_lock); 5062 list_for_each_entry(kvm, &vm_list, vm_list) { 5063 kvm_for_each_vcpu(i, vcpu, kvm) { 5064 if (vcpu->cpu != freq->cpu) 5065 continue; 5066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5067 if (vcpu->cpu != smp_processor_id()) 5068 send_ipi = 1; 5069 } 5070 } 5071 raw_spin_unlock(&kvm_lock); 5072 5073 if (freq->old < freq->new && send_ipi) { 5074 /* 5075 * We upscale the frequency. Must make the guest 5076 * doesn't see old kvmclock values while running with 5077 * the new frequency, otherwise we risk the guest sees 5078 * time go backwards. 5079 * 5080 * In case we update the frequency for another cpu 5081 * (which might be in guest context) send an interrupt 5082 * to kick the cpu out of guest context. Next time 5083 * guest context is entered kvmclock will be updated, 5084 * so the guest will not see stale values. 5085 */ 5086 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5087 } 5088 return 0; 5089 } 5090 5091 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5092 .notifier_call = kvmclock_cpufreq_notifier 5093 }; 5094 5095 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5096 unsigned long action, void *hcpu) 5097 { 5098 unsigned int cpu = (unsigned long)hcpu; 5099 5100 switch (action) { 5101 case CPU_ONLINE: 5102 case CPU_DOWN_FAILED: 5103 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5104 break; 5105 case CPU_DOWN_PREPARE: 5106 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5107 break; 5108 } 5109 return NOTIFY_OK; 5110 } 5111 5112 static struct notifier_block kvmclock_cpu_notifier_block = { 5113 .notifier_call = kvmclock_cpu_notifier, 5114 .priority = -INT_MAX 5115 }; 5116 5117 static void kvm_timer_init(void) 5118 { 5119 int cpu; 5120 5121 max_tsc_khz = tsc_khz; 5122 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5123 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5124 #ifdef CONFIG_CPU_FREQ 5125 struct cpufreq_policy policy; 5126 memset(&policy, 0, sizeof(policy)); 5127 cpu = get_cpu(); 5128 cpufreq_get_policy(&policy, cpu); 5129 if (policy.cpuinfo.max_freq) 5130 max_tsc_khz = policy.cpuinfo.max_freq; 5131 put_cpu(); 5132 #endif 5133 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5134 CPUFREQ_TRANSITION_NOTIFIER); 5135 } 5136 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5137 for_each_online_cpu(cpu) 5138 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5139 } 5140 5141 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5142 5143 int kvm_is_in_guest(void) 5144 { 5145 return __this_cpu_read(current_vcpu) != NULL; 5146 } 5147 5148 static int kvm_is_user_mode(void) 5149 { 5150 int user_mode = 3; 5151 5152 if (__this_cpu_read(current_vcpu)) 5153 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5154 5155 return user_mode != 0; 5156 } 5157 5158 static unsigned long kvm_get_guest_ip(void) 5159 { 5160 unsigned long ip = 0; 5161 5162 if (__this_cpu_read(current_vcpu)) 5163 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5164 5165 return ip; 5166 } 5167 5168 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5169 .is_in_guest = kvm_is_in_guest, 5170 .is_user_mode = kvm_is_user_mode, 5171 .get_guest_ip = kvm_get_guest_ip, 5172 }; 5173 5174 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5175 { 5176 __this_cpu_write(current_vcpu, vcpu); 5177 } 5178 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5179 5180 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5181 { 5182 __this_cpu_write(current_vcpu, NULL); 5183 } 5184 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5185 5186 static void kvm_set_mmio_spte_mask(void) 5187 { 5188 u64 mask; 5189 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5190 5191 /* 5192 * Set the reserved bits and the present bit of an paging-structure 5193 * entry to generate page fault with PFER.RSV = 1. 5194 */ 5195 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 5196 mask |= 1ull; 5197 5198 #ifdef CONFIG_X86_64 5199 /* 5200 * If reserved bit is not supported, clear the present bit to disable 5201 * mmio page fault. 5202 */ 5203 if (maxphyaddr == 52) 5204 mask &= ~1ull; 5205 #endif 5206 5207 kvm_mmu_set_mmio_spte_mask(mask); 5208 } 5209 5210 #ifdef CONFIG_X86_64 5211 static void pvclock_gtod_update_fn(struct work_struct *work) 5212 { 5213 struct kvm *kvm; 5214 5215 struct kvm_vcpu *vcpu; 5216 int i; 5217 5218 raw_spin_lock(&kvm_lock); 5219 list_for_each_entry(kvm, &vm_list, vm_list) 5220 kvm_for_each_vcpu(i, vcpu, kvm) 5221 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5222 atomic_set(&kvm_guest_has_master_clock, 0); 5223 raw_spin_unlock(&kvm_lock); 5224 } 5225 5226 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5227 5228 /* 5229 * Notification about pvclock gtod data update. 5230 */ 5231 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5232 void *priv) 5233 { 5234 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5235 struct timekeeper *tk = priv; 5236 5237 update_pvclock_gtod(tk); 5238 5239 /* disable master clock if host does not trust, or does not 5240 * use, TSC clocksource 5241 */ 5242 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5243 atomic_read(&kvm_guest_has_master_clock) != 0) 5244 queue_work(system_long_wq, &pvclock_gtod_work); 5245 5246 return 0; 5247 } 5248 5249 static struct notifier_block pvclock_gtod_notifier = { 5250 .notifier_call = pvclock_gtod_notify, 5251 }; 5252 #endif 5253 5254 int kvm_arch_init(void *opaque) 5255 { 5256 int r; 5257 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 5258 5259 if (kvm_x86_ops) { 5260 printk(KERN_ERR "kvm: already loaded the other module\n"); 5261 r = -EEXIST; 5262 goto out; 5263 } 5264 5265 if (!ops->cpu_has_kvm_support()) { 5266 printk(KERN_ERR "kvm: no hardware support\n"); 5267 r = -EOPNOTSUPP; 5268 goto out; 5269 } 5270 if (ops->disabled_by_bios()) { 5271 printk(KERN_ERR "kvm: disabled by bios\n"); 5272 r = -EOPNOTSUPP; 5273 goto out; 5274 } 5275 5276 r = -ENOMEM; 5277 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5278 if (!shared_msrs) { 5279 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5280 goto out; 5281 } 5282 5283 r = kvm_mmu_module_init(); 5284 if (r) 5285 goto out_free_percpu; 5286 5287 kvm_set_mmio_spte_mask(); 5288 kvm_init_msr_list(); 5289 5290 kvm_x86_ops = ops; 5291 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5292 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5293 5294 kvm_timer_init(); 5295 5296 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5297 5298 if (cpu_has_xsave) 5299 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5300 5301 kvm_lapic_init(); 5302 #ifdef CONFIG_X86_64 5303 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5304 #endif 5305 5306 return 0; 5307 5308 out_free_percpu: 5309 free_percpu(shared_msrs); 5310 out: 5311 return r; 5312 } 5313 5314 void kvm_arch_exit(void) 5315 { 5316 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5317 5318 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5319 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5320 CPUFREQ_TRANSITION_NOTIFIER); 5321 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5322 #ifdef CONFIG_X86_64 5323 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5324 #endif 5325 kvm_x86_ops = NULL; 5326 kvm_mmu_module_exit(); 5327 free_percpu(shared_msrs); 5328 } 5329 5330 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5331 { 5332 ++vcpu->stat.halt_exits; 5333 if (irqchip_in_kernel(vcpu->kvm)) { 5334 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5335 return 1; 5336 } else { 5337 vcpu->run->exit_reason = KVM_EXIT_HLT; 5338 return 0; 5339 } 5340 } 5341 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5342 5343 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5344 { 5345 u64 param, ingpa, outgpa, ret; 5346 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5347 bool fast, longmode; 5348 int cs_db, cs_l; 5349 5350 /* 5351 * hypercall generates UD from non zero cpl and real mode 5352 * per HYPER-V spec 5353 */ 5354 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5355 kvm_queue_exception(vcpu, UD_VECTOR); 5356 return 0; 5357 } 5358 5359 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5360 longmode = is_long_mode(vcpu) && cs_l == 1; 5361 5362 if (!longmode) { 5363 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5364 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5365 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5366 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5367 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5368 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5369 } 5370 #ifdef CONFIG_X86_64 5371 else { 5372 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5373 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5374 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5375 } 5376 #endif 5377 5378 code = param & 0xffff; 5379 fast = (param >> 16) & 0x1; 5380 rep_cnt = (param >> 32) & 0xfff; 5381 rep_idx = (param >> 48) & 0xfff; 5382 5383 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5384 5385 switch (code) { 5386 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5387 kvm_vcpu_on_spin(vcpu); 5388 break; 5389 default: 5390 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5391 break; 5392 } 5393 5394 ret = res | (((u64)rep_done & 0xfff) << 32); 5395 if (longmode) { 5396 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5397 } else { 5398 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5399 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5400 } 5401 5402 return 1; 5403 } 5404 5405 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5406 { 5407 unsigned long nr, a0, a1, a2, a3, ret; 5408 int r = 1; 5409 5410 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5411 return kvm_hv_hypercall(vcpu); 5412 5413 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5414 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5415 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5416 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5417 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5418 5419 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5420 5421 if (!is_long_mode(vcpu)) { 5422 nr &= 0xFFFFFFFF; 5423 a0 &= 0xFFFFFFFF; 5424 a1 &= 0xFFFFFFFF; 5425 a2 &= 0xFFFFFFFF; 5426 a3 &= 0xFFFFFFFF; 5427 } 5428 5429 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5430 ret = -KVM_EPERM; 5431 goto out; 5432 } 5433 5434 switch (nr) { 5435 case KVM_HC_VAPIC_POLL_IRQ: 5436 ret = 0; 5437 break; 5438 default: 5439 ret = -KVM_ENOSYS; 5440 break; 5441 } 5442 out: 5443 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5444 ++vcpu->stat.hypercalls; 5445 return r; 5446 } 5447 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5448 5449 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5450 { 5451 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5452 char instruction[3]; 5453 unsigned long rip = kvm_rip_read(vcpu); 5454 5455 /* 5456 * Blow out the MMU to ensure that no other VCPU has an active mapping 5457 * to ensure that the updated hypercall appears atomically across all 5458 * VCPUs. 5459 */ 5460 kvm_mmu_zap_all(vcpu->kvm); 5461 5462 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5463 5464 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5465 } 5466 5467 /* 5468 * Check if userspace requested an interrupt window, and that the 5469 * interrupt window is open. 5470 * 5471 * No need to exit to userspace if we already have an interrupt queued. 5472 */ 5473 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5474 { 5475 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5476 vcpu->run->request_interrupt_window && 5477 kvm_arch_interrupt_allowed(vcpu)); 5478 } 5479 5480 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5481 { 5482 struct kvm_run *kvm_run = vcpu->run; 5483 5484 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5485 kvm_run->cr8 = kvm_get_cr8(vcpu); 5486 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5487 if (irqchip_in_kernel(vcpu->kvm)) 5488 kvm_run->ready_for_interrupt_injection = 1; 5489 else 5490 kvm_run->ready_for_interrupt_injection = 5491 kvm_arch_interrupt_allowed(vcpu) && 5492 !kvm_cpu_has_interrupt(vcpu) && 5493 !kvm_event_needs_reinjection(vcpu); 5494 } 5495 5496 static int vapic_enter(struct kvm_vcpu *vcpu) 5497 { 5498 struct kvm_lapic *apic = vcpu->arch.apic; 5499 struct page *page; 5500 5501 if (!apic || !apic->vapic_addr) 5502 return 0; 5503 5504 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5505 if (is_error_page(page)) 5506 return -EFAULT; 5507 5508 vcpu->arch.apic->vapic_page = page; 5509 return 0; 5510 } 5511 5512 static void vapic_exit(struct kvm_vcpu *vcpu) 5513 { 5514 struct kvm_lapic *apic = vcpu->arch.apic; 5515 int idx; 5516 5517 if (!apic || !apic->vapic_addr) 5518 return; 5519 5520 idx = srcu_read_lock(&vcpu->kvm->srcu); 5521 kvm_release_page_dirty(apic->vapic_page); 5522 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5523 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5524 } 5525 5526 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5527 { 5528 int max_irr, tpr; 5529 5530 if (!kvm_x86_ops->update_cr8_intercept) 5531 return; 5532 5533 if (!vcpu->arch.apic) 5534 return; 5535 5536 if (!vcpu->arch.apic->vapic_addr) 5537 max_irr = kvm_lapic_find_highest_irr(vcpu); 5538 else 5539 max_irr = -1; 5540 5541 if (max_irr != -1) 5542 max_irr >>= 4; 5543 5544 tpr = kvm_lapic_get_cr8(vcpu); 5545 5546 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5547 } 5548 5549 static void inject_pending_event(struct kvm_vcpu *vcpu) 5550 { 5551 /* try to reinject previous events if any */ 5552 if (vcpu->arch.exception.pending) { 5553 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5554 vcpu->arch.exception.has_error_code, 5555 vcpu->arch.exception.error_code); 5556 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5557 vcpu->arch.exception.has_error_code, 5558 vcpu->arch.exception.error_code, 5559 vcpu->arch.exception.reinject); 5560 return; 5561 } 5562 5563 if (vcpu->arch.nmi_injected) { 5564 kvm_x86_ops->set_nmi(vcpu); 5565 return; 5566 } 5567 5568 if (vcpu->arch.interrupt.pending) { 5569 kvm_x86_ops->set_irq(vcpu); 5570 return; 5571 } 5572 5573 /* try to inject new event if pending */ 5574 if (vcpu->arch.nmi_pending) { 5575 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5576 --vcpu->arch.nmi_pending; 5577 vcpu->arch.nmi_injected = true; 5578 kvm_x86_ops->set_nmi(vcpu); 5579 } 5580 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5581 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5582 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5583 false); 5584 kvm_x86_ops->set_irq(vcpu); 5585 } 5586 } 5587 } 5588 5589 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5590 { 5591 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5592 !vcpu->guest_xcr0_loaded) { 5593 /* kvm_set_xcr() also depends on this */ 5594 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5595 vcpu->guest_xcr0_loaded = 1; 5596 } 5597 } 5598 5599 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5600 { 5601 if (vcpu->guest_xcr0_loaded) { 5602 if (vcpu->arch.xcr0 != host_xcr0) 5603 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5604 vcpu->guest_xcr0_loaded = 0; 5605 } 5606 } 5607 5608 static void process_nmi(struct kvm_vcpu *vcpu) 5609 { 5610 unsigned limit = 2; 5611 5612 /* 5613 * x86 is limited to one NMI running, and one NMI pending after it. 5614 * If an NMI is already in progress, limit further NMIs to just one. 5615 * Otherwise, allow two (and we'll inject the first one immediately). 5616 */ 5617 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5618 limit = 1; 5619 5620 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5621 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5622 kvm_make_request(KVM_REQ_EVENT, vcpu); 5623 } 5624 5625 static void kvm_gen_update_masterclock(struct kvm *kvm) 5626 { 5627 #ifdef CONFIG_X86_64 5628 int i; 5629 struct kvm_vcpu *vcpu; 5630 struct kvm_arch *ka = &kvm->arch; 5631 5632 spin_lock(&ka->pvclock_gtod_sync_lock); 5633 kvm_make_mclock_inprogress_request(kvm); 5634 /* no guest entries from this point */ 5635 pvclock_update_vm_gtod_copy(kvm); 5636 5637 kvm_for_each_vcpu(i, vcpu, kvm) 5638 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 5639 5640 /* guest entries allowed */ 5641 kvm_for_each_vcpu(i, vcpu, kvm) 5642 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 5643 5644 spin_unlock(&ka->pvclock_gtod_sync_lock); 5645 #endif 5646 } 5647 5648 static void update_eoi_exitmap(struct kvm_vcpu *vcpu) 5649 { 5650 u64 eoi_exit_bitmap[4]; 5651 5652 memset(eoi_exit_bitmap, 0, 32); 5653 5654 kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap); 5655 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5656 } 5657 5658 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5659 { 5660 int r; 5661 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5662 vcpu->run->request_interrupt_window; 5663 bool req_immediate_exit = 0; 5664 5665 if (vcpu->requests) { 5666 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5667 kvm_mmu_unload(vcpu); 5668 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5669 __kvm_migrate_timers(vcpu); 5670 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5671 kvm_gen_update_masterclock(vcpu->kvm); 5672 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5673 r = kvm_guest_time_update(vcpu); 5674 if (unlikely(r)) 5675 goto out; 5676 } 5677 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5678 kvm_mmu_sync_roots(vcpu); 5679 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5680 kvm_x86_ops->tlb_flush(vcpu); 5681 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5682 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5683 r = 0; 5684 goto out; 5685 } 5686 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5687 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5688 r = 0; 5689 goto out; 5690 } 5691 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5692 vcpu->fpu_active = 0; 5693 kvm_x86_ops->fpu_deactivate(vcpu); 5694 } 5695 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5696 /* Page is swapped out. Do synthetic halt */ 5697 vcpu->arch.apf.halted = true; 5698 r = 1; 5699 goto out; 5700 } 5701 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5702 record_steal_time(vcpu); 5703 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5704 process_nmi(vcpu); 5705 req_immediate_exit = 5706 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5707 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5708 kvm_handle_pmu_event(vcpu); 5709 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5710 kvm_deliver_pmi(vcpu); 5711 if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu)) 5712 update_eoi_exitmap(vcpu); 5713 } 5714 5715 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5716 inject_pending_event(vcpu); 5717 5718 /* enable NMI/IRQ window open exits if needed */ 5719 if (vcpu->arch.nmi_pending) 5720 kvm_x86_ops->enable_nmi_window(vcpu); 5721 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 5722 kvm_x86_ops->enable_irq_window(vcpu); 5723 5724 if (kvm_lapic_enabled(vcpu)) { 5725 /* 5726 * Update architecture specific hints for APIC 5727 * virtual interrupt delivery. 5728 */ 5729 if (kvm_x86_ops->hwapic_irr_update) 5730 kvm_x86_ops->hwapic_irr_update(vcpu, 5731 kvm_lapic_find_highest_irr(vcpu)); 5732 update_cr8_intercept(vcpu); 5733 kvm_lapic_sync_to_vapic(vcpu); 5734 } 5735 } 5736 5737 r = kvm_mmu_reload(vcpu); 5738 if (unlikely(r)) { 5739 goto cancel_injection; 5740 } 5741 5742 preempt_disable(); 5743 5744 kvm_x86_ops->prepare_guest_switch(vcpu); 5745 if (vcpu->fpu_active) 5746 kvm_load_guest_fpu(vcpu); 5747 kvm_load_guest_xcr0(vcpu); 5748 5749 vcpu->mode = IN_GUEST_MODE; 5750 5751 /* We should set ->mode before check ->requests, 5752 * see the comment in make_all_cpus_request. 5753 */ 5754 smp_mb(); 5755 5756 local_irq_disable(); 5757 5758 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5759 || need_resched() || signal_pending(current)) { 5760 vcpu->mode = OUTSIDE_GUEST_MODE; 5761 smp_wmb(); 5762 local_irq_enable(); 5763 preempt_enable(); 5764 r = 1; 5765 goto cancel_injection; 5766 } 5767 5768 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5769 5770 if (req_immediate_exit) 5771 smp_send_reschedule(vcpu->cpu); 5772 5773 kvm_guest_enter(); 5774 5775 if (unlikely(vcpu->arch.switch_db_regs)) { 5776 set_debugreg(0, 7); 5777 set_debugreg(vcpu->arch.eff_db[0], 0); 5778 set_debugreg(vcpu->arch.eff_db[1], 1); 5779 set_debugreg(vcpu->arch.eff_db[2], 2); 5780 set_debugreg(vcpu->arch.eff_db[3], 3); 5781 } 5782 5783 trace_kvm_entry(vcpu->vcpu_id); 5784 kvm_x86_ops->run(vcpu); 5785 5786 /* 5787 * If the guest has used debug registers, at least dr7 5788 * will be disabled while returning to the host. 5789 * If we don't have active breakpoints in the host, we don't 5790 * care about the messed up debug address registers. But if 5791 * we have some of them active, restore the old state. 5792 */ 5793 if (hw_breakpoint_active()) 5794 hw_breakpoint_restore(); 5795 5796 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 5797 native_read_tsc()); 5798 5799 vcpu->mode = OUTSIDE_GUEST_MODE; 5800 smp_wmb(); 5801 local_irq_enable(); 5802 5803 ++vcpu->stat.exits; 5804 5805 /* 5806 * We must have an instruction between local_irq_enable() and 5807 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5808 * the interrupt shadow. The stat.exits increment will do nicely. 5809 * But we need to prevent reordering, hence this barrier(): 5810 */ 5811 barrier(); 5812 5813 kvm_guest_exit(); 5814 5815 preempt_enable(); 5816 5817 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5818 5819 /* 5820 * Profile KVM exit RIPs: 5821 */ 5822 if (unlikely(prof_on == KVM_PROFILING)) { 5823 unsigned long rip = kvm_rip_read(vcpu); 5824 profile_hit(KVM_PROFILING, (void *)rip); 5825 } 5826 5827 if (unlikely(vcpu->arch.tsc_always_catchup)) 5828 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5829 5830 if (vcpu->arch.apic_attention) 5831 kvm_lapic_sync_from_vapic(vcpu); 5832 5833 r = kvm_x86_ops->handle_exit(vcpu); 5834 return r; 5835 5836 cancel_injection: 5837 kvm_x86_ops->cancel_injection(vcpu); 5838 if (unlikely(vcpu->arch.apic_attention)) 5839 kvm_lapic_sync_from_vapic(vcpu); 5840 out: 5841 return r; 5842 } 5843 5844 5845 static int __vcpu_run(struct kvm_vcpu *vcpu) 5846 { 5847 int r; 5848 struct kvm *kvm = vcpu->kvm; 5849 5850 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5851 pr_debug("vcpu %d received sipi with vector # %x\n", 5852 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5853 kvm_lapic_reset(vcpu); 5854 r = kvm_vcpu_reset(vcpu); 5855 if (r) 5856 return r; 5857 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5858 } 5859 5860 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5861 r = vapic_enter(vcpu); 5862 if (r) { 5863 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5864 return r; 5865 } 5866 5867 r = 1; 5868 while (r > 0) { 5869 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5870 !vcpu->arch.apf.halted) 5871 r = vcpu_enter_guest(vcpu); 5872 else { 5873 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5874 kvm_vcpu_block(vcpu); 5875 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5876 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5877 { 5878 switch(vcpu->arch.mp_state) { 5879 case KVM_MP_STATE_HALTED: 5880 vcpu->arch.mp_state = 5881 KVM_MP_STATE_RUNNABLE; 5882 case KVM_MP_STATE_RUNNABLE: 5883 vcpu->arch.apf.halted = false; 5884 break; 5885 case KVM_MP_STATE_SIPI_RECEIVED: 5886 default: 5887 r = -EINTR; 5888 break; 5889 } 5890 } 5891 } 5892 5893 if (r <= 0) 5894 break; 5895 5896 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5897 if (kvm_cpu_has_pending_timer(vcpu)) 5898 kvm_inject_pending_timer_irqs(vcpu); 5899 5900 if (dm_request_for_irq_injection(vcpu)) { 5901 r = -EINTR; 5902 vcpu->run->exit_reason = KVM_EXIT_INTR; 5903 ++vcpu->stat.request_irq_exits; 5904 } 5905 5906 kvm_check_async_pf_completion(vcpu); 5907 5908 if (signal_pending(current)) { 5909 r = -EINTR; 5910 vcpu->run->exit_reason = KVM_EXIT_INTR; 5911 ++vcpu->stat.signal_exits; 5912 } 5913 if (need_resched()) { 5914 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5915 kvm_resched(vcpu); 5916 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5917 } 5918 } 5919 5920 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5921 5922 vapic_exit(vcpu); 5923 5924 return r; 5925 } 5926 5927 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 5928 { 5929 int r; 5930 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5931 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5932 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5933 if (r != EMULATE_DONE) 5934 return 0; 5935 return 1; 5936 } 5937 5938 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 5939 { 5940 BUG_ON(!vcpu->arch.pio.count); 5941 5942 return complete_emulated_io(vcpu); 5943 } 5944 5945 /* 5946 * Implements the following, as a state machine: 5947 * 5948 * read: 5949 * for each fragment 5950 * for each mmio piece in the fragment 5951 * write gpa, len 5952 * exit 5953 * copy data 5954 * execute insn 5955 * 5956 * write: 5957 * for each fragment 5958 * for each mmio piece in the fragment 5959 * write gpa, len 5960 * copy data 5961 * exit 5962 */ 5963 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 5964 { 5965 struct kvm_run *run = vcpu->run; 5966 struct kvm_mmio_fragment *frag; 5967 unsigned len; 5968 5969 BUG_ON(!vcpu->mmio_needed); 5970 5971 /* Complete previous fragment */ 5972 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 5973 len = min(8u, frag->len); 5974 if (!vcpu->mmio_is_write) 5975 memcpy(frag->data, run->mmio.data, len); 5976 5977 if (frag->len <= 8) { 5978 /* Switch to the next fragment. */ 5979 frag++; 5980 vcpu->mmio_cur_fragment++; 5981 } else { 5982 /* Go forward to the next mmio piece. */ 5983 frag->data += len; 5984 frag->gpa += len; 5985 frag->len -= len; 5986 } 5987 5988 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5989 vcpu->mmio_needed = 0; 5990 if (vcpu->mmio_is_write) 5991 return 1; 5992 vcpu->mmio_read_completed = 1; 5993 return complete_emulated_io(vcpu); 5994 } 5995 5996 run->exit_reason = KVM_EXIT_MMIO; 5997 run->mmio.phys_addr = frag->gpa; 5998 if (vcpu->mmio_is_write) 5999 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6000 run->mmio.len = min(8u, frag->len); 6001 run->mmio.is_write = vcpu->mmio_is_write; 6002 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6003 return 0; 6004 } 6005 6006 6007 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6008 { 6009 int r; 6010 sigset_t sigsaved; 6011 6012 if (!tsk_used_math(current) && init_fpu(current)) 6013 return -ENOMEM; 6014 6015 if (vcpu->sigset_active) 6016 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6017 6018 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6019 kvm_vcpu_block(vcpu); 6020 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6021 r = -EAGAIN; 6022 goto out; 6023 } 6024 6025 /* re-sync apic's tpr */ 6026 if (!irqchip_in_kernel(vcpu->kvm)) { 6027 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6028 r = -EINVAL; 6029 goto out; 6030 } 6031 } 6032 6033 if (unlikely(vcpu->arch.complete_userspace_io)) { 6034 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6035 vcpu->arch.complete_userspace_io = NULL; 6036 r = cui(vcpu); 6037 if (r <= 0) 6038 goto out; 6039 } else 6040 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6041 6042 r = __vcpu_run(vcpu); 6043 6044 out: 6045 post_kvm_run_save(vcpu); 6046 if (vcpu->sigset_active) 6047 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6048 6049 return r; 6050 } 6051 6052 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6053 { 6054 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6055 /* 6056 * We are here if userspace calls get_regs() in the middle of 6057 * instruction emulation. Registers state needs to be copied 6058 * back from emulation context to vcpu. Userspace shouldn't do 6059 * that usually, but some bad designed PV devices (vmware 6060 * backdoor interface) need this to work 6061 */ 6062 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6063 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6064 } 6065 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6066 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6067 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6068 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6069 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6070 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6071 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6072 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6073 #ifdef CONFIG_X86_64 6074 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6075 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6076 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6077 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6078 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6079 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6080 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6081 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6082 #endif 6083 6084 regs->rip = kvm_rip_read(vcpu); 6085 regs->rflags = kvm_get_rflags(vcpu); 6086 6087 return 0; 6088 } 6089 6090 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6091 { 6092 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6093 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6094 6095 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6096 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6097 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6098 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6099 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6100 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6101 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6102 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6103 #ifdef CONFIG_X86_64 6104 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6105 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6106 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6107 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6108 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6109 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6110 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6111 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6112 #endif 6113 6114 kvm_rip_write(vcpu, regs->rip); 6115 kvm_set_rflags(vcpu, regs->rflags); 6116 6117 vcpu->arch.exception.pending = false; 6118 6119 kvm_make_request(KVM_REQ_EVENT, vcpu); 6120 6121 return 0; 6122 } 6123 6124 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6125 { 6126 struct kvm_segment cs; 6127 6128 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6129 *db = cs.db; 6130 *l = cs.l; 6131 } 6132 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6133 6134 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6135 struct kvm_sregs *sregs) 6136 { 6137 struct desc_ptr dt; 6138 6139 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6140 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6141 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6142 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6143 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6144 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6145 6146 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6147 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6148 6149 kvm_x86_ops->get_idt(vcpu, &dt); 6150 sregs->idt.limit = dt.size; 6151 sregs->idt.base = dt.address; 6152 kvm_x86_ops->get_gdt(vcpu, &dt); 6153 sregs->gdt.limit = dt.size; 6154 sregs->gdt.base = dt.address; 6155 6156 sregs->cr0 = kvm_read_cr0(vcpu); 6157 sregs->cr2 = vcpu->arch.cr2; 6158 sregs->cr3 = kvm_read_cr3(vcpu); 6159 sregs->cr4 = kvm_read_cr4(vcpu); 6160 sregs->cr8 = kvm_get_cr8(vcpu); 6161 sregs->efer = vcpu->arch.efer; 6162 sregs->apic_base = kvm_get_apic_base(vcpu); 6163 6164 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6165 6166 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6167 set_bit(vcpu->arch.interrupt.nr, 6168 (unsigned long *)sregs->interrupt_bitmap); 6169 6170 return 0; 6171 } 6172 6173 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6174 struct kvm_mp_state *mp_state) 6175 { 6176 mp_state->mp_state = vcpu->arch.mp_state; 6177 return 0; 6178 } 6179 6180 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6181 struct kvm_mp_state *mp_state) 6182 { 6183 vcpu->arch.mp_state = mp_state->mp_state; 6184 kvm_make_request(KVM_REQ_EVENT, vcpu); 6185 return 0; 6186 } 6187 6188 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6189 int reason, bool has_error_code, u32 error_code) 6190 { 6191 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6192 int ret; 6193 6194 init_emulate_ctxt(vcpu); 6195 6196 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6197 has_error_code, error_code); 6198 6199 if (ret) 6200 return EMULATE_FAIL; 6201 6202 kvm_rip_write(vcpu, ctxt->eip); 6203 kvm_set_rflags(vcpu, ctxt->eflags); 6204 kvm_make_request(KVM_REQ_EVENT, vcpu); 6205 return EMULATE_DONE; 6206 } 6207 EXPORT_SYMBOL_GPL(kvm_task_switch); 6208 6209 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6210 struct kvm_sregs *sregs) 6211 { 6212 int mmu_reset_needed = 0; 6213 int pending_vec, max_bits, idx; 6214 struct desc_ptr dt; 6215 6216 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6217 return -EINVAL; 6218 6219 dt.size = sregs->idt.limit; 6220 dt.address = sregs->idt.base; 6221 kvm_x86_ops->set_idt(vcpu, &dt); 6222 dt.size = sregs->gdt.limit; 6223 dt.address = sregs->gdt.base; 6224 kvm_x86_ops->set_gdt(vcpu, &dt); 6225 6226 vcpu->arch.cr2 = sregs->cr2; 6227 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6228 vcpu->arch.cr3 = sregs->cr3; 6229 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6230 6231 kvm_set_cr8(vcpu, sregs->cr8); 6232 6233 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6234 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6235 kvm_set_apic_base(vcpu, sregs->apic_base); 6236 6237 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6238 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6239 vcpu->arch.cr0 = sregs->cr0; 6240 6241 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6242 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6243 if (sregs->cr4 & X86_CR4_OSXSAVE) 6244 kvm_update_cpuid(vcpu); 6245 6246 idx = srcu_read_lock(&vcpu->kvm->srcu); 6247 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6248 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6249 mmu_reset_needed = 1; 6250 } 6251 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6252 6253 if (mmu_reset_needed) 6254 kvm_mmu_reset_context(vcpu); 6255 6256 max_bits = KVM_NR_INTERRUPTS; 6257 pending_vec = find_first_bit( 6258 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6259 if (pending_vec < max_bits) { 6260 kvm_queue_interrupt(vcpu, pending_vec, false); 6261 pr_debug("Set back pending irq %d\n", pending_vec); 6262 } 6263 6264 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6265 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6266 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6267 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6268 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6269 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6270 6271 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6272 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6273 6274 update_cr8_intercept(vcpu); 6275 6276 /* Older userspace won't unhalt the vcpu on reset. */ 6277 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6278 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6279 !is_protmode(vcpu)) 6280 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6281 6282 kvm_make_request(KVM_REQ_EVENT, vcpu); 6283 6284 return 0; 6285 } 6286 6287 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6288 struct kvm_guest_debug *dbg) 6289 { 6290 unsigned long rflags; 6291 int i, r; 6292 6293 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6294 r = -EBUSY; 6295 if (vcpu->arch.exception.pending) 6296 goto out; 6297 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6298 kvm_queue_exception(vcpu, DB_VECTOR); 6299 else 6300 kvm_queue_exception(vcpu, BP_VECTOR); 6301 } 6302 6303 /* 6304 * Read rflags as long as potentially injected trace flags are still 6305 * filtered out. 6306 */ 6307 rflags = kvm_get_rflags(vcpu); 6308 6309 vcpu->guest_debug = dbg->control; 6310 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6311 vcpu->guest_debug = 0; 6312 6313 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6314 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6315 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6316 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6317 } else { 6318 for (i = 0; i < KVM_NR_DB_REGS; i++) 6319 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6320 } 6321 kvm_update_dr7(vcpu); 6322 6323 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6324 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6325 get_segment_base(vcpu, VCPU_SREG_CS); 6326 6327 /* 6328 * Trigger an rflags update that will inject or remove the trace 6329 * flags. 6330 */ 6331 kvm_set_rflags(vcpu, rflags); 6332 6333 kvm_x86_ops->update_db_bp_intercept(vcpu); 6334 6335 r = 0; 6336 6337 out: 6338 6339 return r; 6340 } 6341 6342 /* 6343 * Translate a guest virtual address to a guest physical address. 6344 */ 6345 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6346 struct kvm_translation *tr) 6347 { 6348 unsigned long vaddr = tr->linear_address; 6349 gpa_t gpa; 6350 int idx; 6351 6352 idx = srcu_read_lock(&vcpu->kvm->srcu); 6353 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6354 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6355 tr->physical_address = gpa; 6356 tr->valid = gpa != UNMAPPED_GVA; 6357 tr->writeable = 1; 6358 tr->usermode = 0; 6359 6360 return 0; 6361 } 6362 6363 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6364 { 6365 struct i387_fxsave_struct *fxsave = 6366 &vcpu->arch.guest_fpu.state->fxsave; 6367 6368 memcpy(fpu->fpr, fxsave->st_space, 128); 6369 fpu->fcw = fxsave->cwd; 6370 fpu->fsw = fxsave->swd; 6371 fpu->ftwx = fxsave->twd; 6372 fpu->last_opcode = fxsave->fop; 6373 fpu->last_ip = fxsave->rip; 6374 fpu->last_dp = fxsave->rdp; 6375 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6376 6377 return 0; 6378 } 6379 6380 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6381 { 6382 struct i387_fxsave_struct *fxsave = 6383 &vcpu->arch.guest_fpu.state->fxsave; 6384 6385 memcpy(fxsave->st_space, fpu->fpr, 128); 6386 fxsave->cwd = fpu->fcw; 6387 fxsave->swd = fpu->fsw; 6388 fxsave->twd = fpu->ftwx; 6389 fxsave->fop = fpu->last_opcode; 6390 fxsave->rip = fpu->last_ip; 6391 fxsave->rdp = fpu->last_dp; 6392 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6393 6394 return 0; 6395 } 6396 6397 int fx_init(struct kvm_vcpu *vcpu) 6398 { 6399 int err; 6400 6401 err = fpu_alloc(&vcpu->arch.guest_fpu); 6402 if (err) 6403 return err; 6404 6405 fpu_finit(&vcpu->arch.guest_fpu); 6406 6407 /* 6408 * Ensure guest xcr0 is valid for loading 6409 */ 6410 vcpu->arch.xcr0 = XSTATE_FP; 6411 6412 vcpu->arch.cr0 |= X86_CR0_ET; 6413 6414 return 0; 6415 } 6416 EXPORT_SYMBOL_GPL(fx_init); 6417 6418 static void fx_free(struct kvm_vcpu *vcpu) 6419 { 6420 fpu_free(&vcpu->arch.guest_fpu); 6421 } 6422 6423 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6424 { 6425 if (vcpu->guest_fpu_loaded) 6426 return; 6427 6428 /* 6429 * Restore all possible states in the guest, 6430 * and assume host would use all available bits. 6431 * Guest xcr0 would be loaded later. 6432 */ 6433 kvm_put_guest_xcr0(vcpu); 6434 vcpu->guest_fpu_loaded = 1; 6435 __kernel_fpu_begin(); 6436 fpu_restore_checking(&vcpu->arch.guest_fpu); 6437 trace_kvm_fpu(1); 6438 } 6439 6440 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6441 { 6442 kvm_put_guest_xcr0(vcpu); 6443 6444 if (!vcpu->guest_fpu_loaded) 6445 return; 6446 6447 vcpu->guest_fpu_loaded = 0; 6448 fpu_save_init(&vcpu->arch.guest_fpu); 6449 __kernel_fpu_end(); 6450 ++vcpu->stat.fpu_reload; 6451 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6452 trace_kvm_fpu(0); 6453 } 6454 6455 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6456 { 6457 kvmclock_reset(vcpu); 6458 6459 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6460 fx_free(vcpu); 6461 kvm_x86_ops->vcpu_free(vcpu); 6462 } 6463 6464 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6465 unsigned int id) 6466 { 6467 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6468 printk_once(KERN_WARNING 6469 "kvm: SMP vm created on host with unstable TSC; " 6470 "guest TSC will not be reliable\n"); 6471 return kvm_x86_ops->vcpu_create(kvm, id); 6472 } 6473 6474 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6475 { 6476 int r; 6477 6478 vcpu->arch.mtrr_state.have_fixed = 1; 6479 r = vcpu_load(vcpu); 6480 if (r) 6481 return r; 6482 r = kvm_vcpu_reset(vcpu); 6483 if (r == 0) 6484 r = kvm_mmu_setup(vcpu); 6485 vcpu_put(vcpu); 6486 6487 return r; 6488 } 6489 6490 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6491 { 6492 int r; 6493 struct msr_data msr; 6494 6495 r = vcpu_load(vcpu); 6496 if (r) 6497 return r; 6498 msr.data = 0x0; 6499 msr.index = MSR_IA32_TSC; 6500 msr.host_initiated = true; 6501 kvm_write_tsc(vcpu, &msr); 6502 vcpu_put(vcpu); 6503 6504 return r; 6505 } 6506 6507 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6508 { 6509 int r; 6510 vcpu->arch.apf.msr_val = 0; 6511 6512 r = vcpu_load(vcpu); 6513 BUG_ON(r); 6514 kvm_mmu_unload(vcpu); 6515 vcpu_put(vcpu); 6516 6517 fx_free(vcpu); 6518 kvm_x86_ops->vcpu_free(vcpu); 6519 } 6520 6521 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6522 { 6523 atomic_set(&vcpu->arch.nmi_queued, 0); 6524 vcpu->arch.nmi_pending = 0; 6525 vcpu->arch.nmi_injected = false; 6526 6527 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6528 vcpu->arch.dr6 = DR6_FIXED_1; 6529 vcpu->arch.dr7 = DR7_FIXED_1; 6530 kvm_update_dr7(vcpu); 6531 6532 kvm_make_request(KVM_REQ_EVENT, vcpu); 6533 vcpu->arch.apf.msr_val = 0; 6534 vcpu->arch.st.msr_val = 0; 6535 6536 kvmclock_reset(vcpu); 6537 6538 kvm_clear_async_pf_completion_queue(vcpu); 6539 kvm_async_pf_hash_reset(vcpu); 6540 vcpu->arch.apf.halted = false; 6541 6542 kvm_pmu_reset(vcpu); 6543 6544 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6545 vcpu->arch.regs_avail = ~0; 6546 vcpu->arch.regs_dirty = ~0; 6547 6548 return kvm_x86_ops->vcpu_reset(vcpu); 6549 } 6550 6551 int kvm_arch_hardware_enable(void *garbage) 6552 { 6553 struct kvm *kvm; 6554 struct kvm_vcpu *vcpu; 6555 int i; 6556 int ret; 6557 u64 local_tsc; 6558 u64 max_tsc = 0; 6559 bool stable, backwards_tsc = false; 6560 6561 kvm_shared_msr_cpu_online(); 6562 ret = kvm_x86_ops->hardware_enable(garbage); 6563 if (ret != 0) 6564 return ret; 6565 6566 local_tsc = native_read_tsc(); 6567 stable = !check_tsc_unstable(); 6568 list_for_each_entry(kvm, &vm_list, vm_list) { 6569 kvm_for_each_vcpu(i, vcpu, kvm) { 6570 if (!stable && vcpu->cpu == smp_processor_id()) 6571 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6572 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6573 backwards_tsc = true; 6574 if (vcpu->arch.last_host_tsc > max_tsc) 6575 max_tsc = vcpu->arch.last_host_tsc; 6576 } 6577 } 6578 } 6579 6580 /* 6581 * Sometimes, even reliable TSCs go backwards. This happens on 6582 * platforms that reset TSC during suspend or hibernate actions, but 6583 * maintain synchronization. We must compensate. Fortunately, we can 6584 * detect that condition here, which happens early in CPU bringup, 6585 * before any KVM threads can be running. Unfortunately, we can't 6586 * bring the TSCs fully up to date with real time, as we aren't yet far 6587 * enough into CPU bringup that we know how much real time has actually 6588 * elapsed; our helper function, get_kernel_ns() will be using boot 6589 * variables that haven't been updated yet. 6590 * 6591 * So we simply find the maximum observed TSC above, then record the 6592 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6593 * the adjustment will be applied. Note that we accumulate 6594 * adjustments, in case multiple suspend cycles happen before some VCPU 6595 * gets a chance to run again. In the event that no KVM threads get a 6596 * chance to run, we will miss the entire elapsed period, as we'll have 6597 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6598 * loose cycle time. This isn't too big a deal, since the loss will be 6599 * uniform across all VCPUs (not to mention the scenario is extremely 6600 * unlikely). It is possible that a second hibernate recovery happens 6601 * much faster than a first, causing the observed TSC here to be 6602 * smaller; this would require additional padding adjustment, which is 6603 * why we set last_host_tsc to the local tsc observed here. 6604 * 6605 * N.B. - this code below runs only on platforms with reliable TSC, 6606 * as that is the only way backwards_tsc is set above. Also note 6607 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6608 * have the same delta_cyc adjustment applied if backwards_tsc 6609 * is detected. Note further, this adjustment is only done once, 6610 * as we reset last_host_tsc on all VCPUs to stop this from being 6611 * called multiple times (one for each physical CPU bringup). 6612 * 6613 * Platforms with unreliable TSCs don't have to deal with this, they 6614 * will be compensated by the logic in vcpu_load, which sets the TSC to 6615 * catchup mode. This will catchup all VCPUs to real time, but cannot 6616 * guarantee that they stay in perfect synchronization. 6617 */ 6618 if (backwards_tsc) { 6619 u64 delta_cyc = max_tsc - local_tsc; 6620 list_for_each_entry(kvm, &vm_list, vm_list) { 6621 kvm_for_each_vcpu(i, vcpu, kvm) { 6622 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6623 vcpu->arch.last_host_tsc = local_tsc; 6624 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6625 &vcpu->requests); 6626 } 6627 6628 /* 6629 * We have to disable TSC offset matching.. if you were 6630 * booting a VM while issuing an S4 host suspend.... 6631 * you may have some problem. Solving this issue is 6632 * left as an exercise to the reader. 6633 */ 6634 kvm->arch.last_tsc_nsec = 0; 6635 kvm->arch.last_tsc_write = 0; 6636 } 6637 6638 } 6639 return 0; 6640 } 6641 6642 void kvm_arch_hardware_disable(void *garbage) 6643 { 6644 kvm_x86_ops->hardware_disable(garbage); 6645 drop_user_return_notifiers(garbage); 6646 } 6647 6648 int kvm_arch_hardware_setup(void) 6649 { 6650 return kvm_x86_ops->hardware_setup(); 6651 } 6652 6653 void kvm_arch_hardware_unsetup(void) 6654 { 6655 kvm_x86_ops->hardware_unsetup(); 6656 } 6657 6658 void kvm_arch_check_processor_compat(void *rtn) 6659 { 6660 kvm_x86_ops->check_processor_compatibility(rtn); 6661 } 6662 6663 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6664 { 6665 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6666 } 6667 6668 struct static_key kvm_no_apic_vcpu __read_mostly; 6669 6670 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6671 { 6672 struct page *page; 6673 struct kvm *kvm; 6674 int r; 6675 6676 BUG_ON(vcpu->kvm == NULL); 6677 kvm = vcpu->kvm; 6678 6679 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6680 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6681 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6682 else 6683 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6684 6685 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6686 if (!page) { 6687 r = -ENOMEM; 6688 goto fail; 6689 } 6690 vcpu->arch.pio_data = page_address(page); 6691 6692 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6693 6694 r = kvm_mmu_create(vcpu); 6695 if (r < 0) 6696 goto fail_free_pio_data; 6697 6698 if (irqchip_in_kernel(kvm)) { 6699 r = kvm_create_lapic(vcpu); 6700 if (r < 0) 6701 goto fail_mmu_destroy; 6702 } else 6703 static_key_slow_inc(&kvm_no_apic_vcpu); 6704 6705 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6706 GFP_KERNEL); 6707 if (!vcpu->arch.mce_banks) { 6708 r = -ENOMEM; 6709 goto fail_free_lapic; 6710 } 6711 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6712 6713 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6714 goto fail_free_mce_banks; 6715 6716 r = fx_init(vcpu); 6717 if (r) 6718 goto fail_free_wbinvd_dirty_mask; 6719 6720 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 6721 kvm_async_pf_hash_reset(vcpu); 6722 kvm_pmu_init(vcpu); 6723 6724 return 0; 6725 fail_free_wbinvd_dirty_mask: 6726 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6727 fail_free_mce_banks: 6728 kfree(vcpu->arch.mce_banks); 6729 fail_free_lapic: 6730 kvm_free_lapic(vcpu); 6731 fail_mmu_destroy: 6732 kvm_mmu_destroy(vcpu); 6733 fail_free_pio_data: 6734 free_page((unsigned long)vcpu->arch.pio_data); 6735 fail: 6736 return r; 6737 } 6738 6739 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6740 { 6741 int idx; 6742 6743 kvm_pmu_destroy(vcpu); 6744 kfree(vcpu->arch.mce_banks); 6745 kvm_free_lapic(vcpu); 6746 idx = srcu_read_lock(&vcpu->kvm->srcu); 6747 kvm_mmu_destroy(vcpu); 6748 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6749 free_page((unsigned long)vcpu->arch.pio_data); 6750 if (!irqchip_in_kernel(vcpu->kvm)) 6751 static_key_slow_dec(&kvm_no_apic_vcpu); 6752 } 6753 6754 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6755 { 6756 if (type) 6757 return -EINVAL; 6758 6759 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6760 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6761 6762 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6763 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6764 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 6765 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 6766 &kvm->arch.irq_sources_bitmap); 6767 6768 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6769 mutex_init(&kvm->arch.apic_map_lock); 6770 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 6771 6772 pvclock_update_vm_gtod_copy(kvm); 6773 6774 return 0; 6775 } 6776 6777 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6778 { 6779 int r; 6780 r = vcpu_load(vcpu); 6781 BUG_ON(r); 6782 kvm_mmu_unload(vcpu); 6783 vcpu_put(vcpu); 6784 } 6785 6786 static void kvm_free_vcpus(struct kvm *kvm) 6787 { 6788 unsigned int i; 6789 struct kvm_vcpu *vcpu; 6790 6791 /* 6792 * Unpin any mmu pages first. 6793 */ 6794 kvm_for_each_vcpu(i, vcpu, kvm) { 6795 kvm_clear_async_pf_completion_queue(vcpu); 6796 kvm_unload_vcpu_mmu(vcpu); 6797 } 6798 kvm_for_each_vcpu(i, vcpu, kvm) 6799 kvm_arch_vcpu_free(vcpu); 6800 6801 mutex_lock(&kvm->lock); 6802 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6803 kvm->vcpus[i] = NULL; 6804 6805 atomic_set(&kvm->online_vcpus, 0); 6806 mutex_unlock(&kvm->lock); 6807 } 6808 6809 void kvm_arch_sync_events(struct kvm *kvm) 6810 { 6811 kvm_free_all_assigned_devices(kvm); 6812 kvm_free_pit(kvm); 6813 } 6814 6815 void kvm_arch_destroy_vm(struct kvm *kvm) 6816 { 6817 kvm_iommu_unmap_guest(kvm); 6818 kfree(kvm->arch.vpic); 6819 kfree(kvm->arch.vioapic); 6820 kvm_free_vcpus(kvm); 6821 if (kvm->arch.apic_access_page) 6822 put_page(kvm->arch.apic_access_page); 6823 if (kvm->arch.ept_identity_pagetable) 6824 put_page(kvm->arch.ept_identity_pagetable); 6825 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 6826 } 6827 6828 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6829 struct kvm_memory_slot *dont) 6830 { 6831 int i; 6832 6833 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6834 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 6835 kvm_kvfree(free->arch.rmap[i]); 6836 free->arch.rmap[i] = NULL; 6837 } 6838 if (i == 0) 6839 continue; 6840 6841 if (!dont || free->arch.lpage_info[i - 1] != 6842 dont->arch.lpage_info[i - 1]) { 6843 kvm_kvfree(free->arch.lpage_info[i - 1]); 6844 free->arch.lpage_info[i - 1] = NULL; 6845 } 6846 } 6847 } 6848 6849 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6850 { 6851 int i; 6852 6853 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6854 unsigned long ugfn; 6855 int lpages; 6856 int level = i + 1; 6857 6858 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6859 slot->base_gfn, level) + 1; 6860 6861 slot->arch.rmap[i] = 6862 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 6863 if (!slot->arch.rmap[i]) 6864 goto out_free; 6865 if (i == 0) 6866 continue; 6867 6868 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 6869 sizeof(*slot->arch.lpage_info[i - 1])); 6870 if (!slot->arch.lpage_info[i - 1]) 6871 goto out_free; 6872 6873 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6874 slot->arch.lpage_info[i - 1][0].write_count = 1; 6875 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6876 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 6877 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6878 /* 6879 * If the gfn and userspace address are not aligned wrt each 6880 * other, or if explicitly asked to, disable large page 6881 * support for this slot 6882 */ 6883 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6884 !kvm_largepages_enabled()) { 6885 unsigned long j; 6886 6887 for (j = 0; j < lpages; ++j) 6888 slot->arch.lpage_info[i - 1][j].write_count = 1; 6889 } 6890 } 6891 6892 return 0; 6893 6894 out_free: 6895 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 6896 kvm_kvfree(slot->arch.rmap[i]); 6897 slot->arch.rmap[i] = NULL; 6898 if (i == 0) 6899 continue; 6900 6901 kvm_kvfree(slot->arch.lpage_info[i - 1]); 6902 slot->arch.lpage_info[i - 1] = NULL; 6903 } 6904 return -ENOMEM; 6905 } 6906 6907 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6908 struct kvm_memory_slot *memslot, 6909 struct kvm_memory_slot old, 6910 struct kvm_userspace_memory_region *mem, 6911 bool user_alloc) 6912 { 6913 int npages = memslot->npages; 6914 6915 /* 6916 * Only private memory slots need to be mapped here since 6917 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 6918 */ 6919 if ((memslot->id >= KVM_USER_MEM_SLOTS) && npages && !old.npages) { 6920 unsigned long userspace_addr; 6921 6922 /* 6923 * MAP_SHARED to prevent internal slot pages from being moved 6924 * by fork()/COW. 6925 */ 6926 userspace_addr = vm_mmap(NULL, 0, npages * PAGE_SIZE, 6927 PROT_READ | PROT_WRITE, 6928 MAP_SHARED | MAP_ANONYMOUS, 0); 6929 6930 if (IS_ERR((void *)userspace_addr)) 6931 return PTR_ERR((void *)userspace_addr); 6932 6933 memslot->userspace_addr = userspace_addr; 6934 } 6935 6936 return 0; 6937 } 6938 6939 void kvm_arch_commit_memory_region(struct kvm *kvm, 6940 struct kvm_userspace_memory_region *mem, 6941 struct kvm_memory_slot old, 6942 bool user_alloc) 6943 { 6944 6945 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6946 6947 if ((mem->slot >= KVM_USER_MEM_SLOTS) && old.npages && !npages) { 6948 int ret; 6949 6950 ret = vm_munmap(old.userspace_addr, 6951 old.npages * PAGE_SIZE); 6952 if (ret < 0) 6953 printk(KERN_WARNING 6954 "kvm_vm_ioctl_set_memory_region: " 6955 "failed to munmap memory\n"); 6956 } 6957 6958 if (!kvm->arch.n_requested_mmu_pages) 6959 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6960 6961 if (nr_mmu_pages) 6962 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6963 /* 6964 * Write protect all pages for dirty logging. 6965 * Existing largepage mappings are destroyed here and new ones will 6966 * not be created until the end of the logging. 6967 */ 6968 if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 6969 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6970 /* 6971 * If memory slot is created, or moved, we need to clear all 6972 * mmio sptes. 6973 */ 6974 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) { 6975 kvm_mmu_zap_all(kvm); 6976 kvm_reload_remote_mmus(kvm); 6977 } 6978 } 6979 6980 void kvm_arch_flush_shadow_all(struct kvm *kvm) 6981 { 6982 kvm_mmu_zap_all(kvm); 6983 kvm_reload_remote_mmus(kvm); 6984 } 6985 6986 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 6987 struct kvm_memory_slot *slot) 6988 { 6989 kvm_arch_flush_shadow_all(kvm); 6990 } 6991 6992 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6993 { 6994 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6995 !vcpu->arch.apf.halted) 6996 || !list_empty_careful(&vcpu->async_pf.done) 6997 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6998 || atomic_read(&vcpu->arch.nmi_queued) || 6999 (kvm_arch_interrupt_allowed(vcpu) && 7000 kvm_cpu_has_interrupt(vcpu)); 7001 } 7002 7003 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7004 { 7005 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7006 } 7007 7008 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7009 { 7010 return kvm_x86_ops->interrupt_allowed(vcpu); 7011 } 7012 7013 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7014 { 7015 unsigned long current_rip = kvm_rip_read(vcpu) + 7016 get_segment_base(vcpu, VCPU_SREG_CS); 7017 7018 return current_rip == linear_rip; 7019 } 7020 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7021 7022 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7023 { 7024 unsigned long rflags; 7025 7026 rflags = kvm_x86_ops->get_rflags(vcpu); 7027 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7028 rflags &= ~X86_EFLAGS_TF; 7029 return rflags; 7030 } 7031 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7032 7033 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7034 { 7035 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7036 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7037 rflags |= X86_EFLAGS_TF; 7038 kvm_x86_ops->set_rflags(vcpu, rflags); 7039 kvm_make_request(KVM_REQ_EVENT, vcpu); 7040 } 7041 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7042 7043 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7044 { 7045 int r; 7046 7047 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7048 is_error_page(work->page)) 7049 return; 7050 7051 r = kvm_mmu_reload(vcpu); 7052 if (unlikely(r)) 7053 return; 7054 7055 if (!vcpu->arch.mmu.direct_map && 7056 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7057 return; 7058 7059 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7060 } 7061 7062 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7063 { 7064 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7065 } 7066 7067 static inline u32 kvm_async_pf_next_probe(u32 key) 7068 { 7069 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7070 } 7071 7072 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7073 { 7074 u32 key = kvm_async_pf_hash_fn(gfn); 7075 7076 while (vcpu->arch.apf.gfns[key] != ~0) 7077 key = kvm_async_pf_next_probe(key); 7078 7079 vcpu->arch.apf.gfns[key] = gfn; 7080 } 7081 7082 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7083 { 7084 int i; 7085 u32 key = kvm_async_pf_hash_fn(gfn); 7086 7087 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7088 (vcpu->arch.apf.gfns[key] != gfn && 7089 vcpu->arch.apf.gfns[key] != ~0); i++) 7090 key = kvm_async_pf_next_probe(key); 7091 7092 return key; 7093 } 7094 7095 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7096 { 7097 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7098 } 7099 7100 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7101 { 7102 u32 i, j, k; 7103 7104 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7105 while (true) { 7106 vcpu->arch.apf.gfns[i] = ~0; 7107 do { 7108 j = kvm_async_pf_next_probe(j); 7109 if (vcpu->arch.apf.gfns[j] == ~0) 7110 return; 7111 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7112 /* 7113 * k lies cyclically in ]i,j] 7114 * | i.k.j | 7115 * |....j i.k.| or |.k..j i...| 7116 */ 7117 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7118 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7119 i = j; 7120 } 7121 } 7122 7123 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7124 { 7125 7126 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7127 sizeof(val)); 7128 } 7129 7130 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7131 struct kvm_async_pf *work) 7132 { 7133 struct x86_exception fault; 7134 7135 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7136 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7137 7138 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7139 (vcpu->arch.apf.send_user_only && 7140 kvm_x86_ops->get_cpl(vcpu) == 0)) 7141 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7142 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7143 fault.vector = PF_VECTOR; 7144 fault.error_code_valid = true; 7145 fault.error_code = 0; 7146 fault.nested_page_fault = false; 7147 fault.address = work->arch.token; 7148 kvm_inject_page_fault(vcpu, &fault); 7149 } 7150 } 7151 7152 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7153 struct kvm_async_pf *work) 7154 { 7155 struct x86_exception fault; 7156 7157 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7158 if (is_error_page(work->page)) 7159 work->arch.token = ~0; /* broadcast wakeup */ 7160 else 7161 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7162 7163 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7164 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7165 fault.vector = PF_VECTOR; 7166 fault.error_code_valid = true; 7167 fault.error_code = 0; 7168 fault.nested_page_fault = false; 7169 fault.address = work->arch.token; 7170 kvm_inject_page_fault(vcpu, &fault); 7171 } 7172 vcpu->arch.apf.halted = false; 7173 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7174 } 7175 7176 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7177 { 7178 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7179 return true; 7180 else 7181 return !kvm_event_needs_reinjection(vcpu) && 7182 kvm_x86_ops->interrupt_allowed(vcpu); 7183 } 7184 7185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7190 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7191 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7192 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7193 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7194 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7195 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7196 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7197