xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 95e9fd10)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64 
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 
69 #define emul_to_vcpu(ctxt) \
70 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71 
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82 
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88 
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91 
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94 
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99 
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103 
104 #define KVM_NR_SHARED_MSRS 16
105 
106 struct kvm_shared_msrs_global {
107 	int nr;
108 	u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110 
111 struct kvm_shared_msrs {
112 	struct user_return_notifier urn;
113 	bool registered;
114 	struct kvm_shared_msr_values {
115 		u64 host;
116 		u64 curr;
117 	} values[KVM_NR_SHARED_MSRS];
118 };
119 
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122 
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
125 	{ "pf_guest", VCPU_STAT(pf_guest) },
126 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
127 	{ "invlpg", VCPU_STAT(invlpg) },
128 	{ "exits", VCPU_STAT(exits) },
129 	{ "io_exits", VCPU_STAT(io_exits) },
130 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
131 	{ "signal_exits", VCPU_STAT(signal_exits) },
132 	{ "irq_window", VCPU_STAT(irq_window_exits) },
133 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
134 	{ "halt_exits", VCPU_STAT(halt_exits) },
135 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 	{ "hypercalls", VCPU_STAT(hypercalls) },
137 	{ "request_irq", VCPU_STAT(request_irq_exits) },
138 	{ "irq_exits", VCPU_STAT(irq_exits) },
139 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
140 	{ "efer_reload", VCPU_STAT(efer_reload) },
141 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
142 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
143 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 	{ "irq_injections", VCPU_STAT(irq_injections) },
145 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
146 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
151 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
152 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
154 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 	{ "largepages", VM_STAT(lpages) },
156 	{ NULL }
157 };
158 
159 u64 __read_mostly host_xcr0;
160 
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162 
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165 	int i;
166 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 		vcpu->arch.apf.gfns[i] = ~0;
168 }
169 
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172 	unsigned slot;
173 	struct kvm_shared_msrs *locals
174 		= container_of(urn, struct kvm_shared_msrs, urn);
175 	struct kvm_shared_msr_values *values;
176 
177 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 		values = &locals->values[slot];
179 		if (values->host != values->curr) {
180 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 			values->curr = values->host;
182 		}
183 	}
184 	locals->registered = false;
185 	user_return_notifier_unregister(urn);
186 }
187 
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190 	struct kvm_shared_msrs *smsr;
191 	u64 value;
192 
193 	smsr = &__get_cpu_var(shared_msrs);
194 	/* only read, and nobody should modify it at this time,
195 	 * so don't need lock */
196 	if (slot >= shared_msrs_global.nr) {
197 		printk(KERN_ERR "kvm: invalid MSR slot!");
198 		return;
199 	}
200 	rdmsrl_safe(msr, &value);
201 	smsr->values[slot].host = value;
202 	smsr->values[slot].curr = value;
203 }
204 
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207 	if (slot >= shared_msrs_global.nr)
208 		shared_msrs_global.nr = slot + 1;
209 	shared_msrs_global.msrs[slot] = msr;
210 	/* we need ensured the shared_msr_global have been updated */
211 	smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214 
215 static void kvm_shared_msr_cpu_online(void)
216 {
217 	unsigned i;
218 
219 	for (i = 0; i < shared_msrs_global.nr; ++i)
220 		shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222 
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226 
227 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
228 		return;
229 	smsr->values[slot].curr = value;
230 	wrmsrl(shared_msrs_global.msrs[slot], value);
231 	if (!smsr->registered) {
232 		smsr->urn.on_user_return = kvm_on_user_return;
233 		user_return_notifier_register(&smsr->urn);
234 		smsr->registered = true;
235 	}
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238 
239 static void drop_user_return_notifiers(void *ignore)
240 {
241 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242 
243 	if (smsr->registered)
244 		kvm_on_user_return(&smsr->urn);
245 }
246 
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249 	if (irqchip_in_kernel(vcpu->kvm))
250 		return vcpu->arch.apic_base;
251 	else
252 		return vcpu->arch.apic_base;
253 }
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
255 
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
257 {
258 	/* TODO: reserve bits check */
259 	if (irqchip_in_kernel(vcpu->kvm))
260 		kvm_lapic_set_base(vcpu, data);
261 	else
262 		vcpu->arch.apic_base = data;
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265 
266 #define EXCPT_BENIGN		0
267 #define EXCPT_CONTRIBUTORY	1
268 #define EXCPT_PF		2
269 
270 static int exception_class(int vector)
271 {
272 	switch (vector) {
273 	case PF_VECTOR:
274 		return EXCPT_PF;
275 	case DE_VECTOR:
276 	case TS_VECTOR:
277 	case NP_VECTOR:
278 	case SS_VECTOR:
279 	case GP_VECTOR:
280 		return EXCPT_CONTRIBUTORY;
281 	default:
282 		break;
283 	}
284 	return EXCPT_BENIGN;
285 }
286 
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 		unsigned nr, bool has_error, u32 error_code,
289 		bool reinject)
290 {
291 	u32 prev_nr;
292 	int class1, class2;
293 
294 	kvm_make_request(KVM_REQ_EVENT, vcpu);
295 
296 	if (!vcpu->arch.exception.pending) {
297 	queue:
298 		vcpu->arch.exception.pending = true;
299 		vcpu->arch.exception.has_error_code = has_error;
300 		vcpu->arch.exception.nr = nr;
301 		vcpu->arch.exception.error_code = error_code;
302 		vcpu->arch.exception.reinject = reinject;
303 		return;
304 	}
305 
306 	/* to check exception */
307 	prev_nr = vcpu->arch.exception.nr;
308 	if (prev_nr == DF_VECTOR) {
309 		/* triple fault -> shutdown */
310 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 		return;
312 	}
313 	class1 = exception_class(prev_nr);
314 	class2 = exception_class(nr);
315 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 		/* generate double fault per SDM Table 5-5 */
318 		vcpu->arch.exception.pending = true;
319 		vcpu->arch.exception.has_error_code = true;
320 		vcpu->arch.exception.nr = DF_VECTOR;
321 		vcpu->arch.exception.error_code = 0;
322 	} else
323 		/* replace previous exception with a new one in a hope
324 		   that instruction re-execution will regenerate lost
325 		   exception */
326 		goto queue;
327 }
328 
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 	kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334 
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 	kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340 
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 	if (err)
344 		kvm_inject_gp(vcpu, 0);
345 	else
346 		kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349 
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 	++vcpu->stat.pf_guest;
353 	vcpu->arch.cr2 = fault->address;
354 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357 
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 	else
363 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365 
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 	atomic_inc(&vcpu->arch.nmi_queued);
369 	kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372 
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378 
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384 
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 		return true;
393 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 	return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397 
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 			    gfn_t ngfn, void *data, int offset, int len,
405 			    u32 access)
406 {
407 	gfn_t real_gfn;
408 	gpa_t ngpa;
409 
410 	ngpa     = gfn_to_gpa(ngfn);
411 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 	if (real_gfn == UNMAPPED_GVA)
413 		return -EFAULT;
414 
415 	real_gfn = gpa_to_gfn(real_gfn);
416 
417 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420 
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 			       void *data, int offset, int len, u32 access)
423 {
424 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 				       data, offset, len, access);
426 }
427 
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 	int i;
436 	int ret;
437 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438 
439 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 				      offset * sizeof(u64), sizeof(pdpte),
441 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
442 	if (ret < 0) {
443 		ret = 0;
444 		goto out;
445 	}
446 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 		if (is_present_gpte(pdpte[i]) &&
448 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 			ret = 0;
450 			goto out;
451 		}
452 	}
453 	ret = 1;
454 
455 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 	__set_bit(VCPU_EXREG_PDPTR,
457 		  (unsigned long *)&vcpu->arch.regs_avail);
458 	__set_bit(VCPU_EXREG_PDPTR,
459 		  (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465 
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 	bool changed = true;
470 	int offset;
471 	gfn_t gfn;
472 	int r;
473 
474 	if (is_long_mode(vcpu) || !is_pae(vcpu))
475 		return false;
476 
477 	if (!test_bit(VCPU_EXREG_PDPTR,
478 		      (unsigned long *)&vcpu->arch.regs_avail))
479 		return true;
480 
481 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
485 	if (r < 0)
486 		goto out;
487 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489 
490 	return changed;
491 }
492 
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 				    X86_CR0_CD | X86_CR0_NW;
498 
499 	cr0 |= X86_CR0_ET;
500 
501 #ifdef CONFIG_X86_64
502 	if (cr0 & 0xffffffff00000000UL)
503 		return 1;
504 #endif
505 
506 	cr0 &= ~CR0_RESERVED_BITS;
507 
508 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 		return 1;
510 
511 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 		return 1;
513 
514 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 		if ((vcpu->arch.efer & EFER_LME)) {
517 			int cs_db, cs_l;
518 
519 			if (!is_pae(vcpu))
520 				return 1;
521 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 			if (cs_l)
523 				return 1;
524 		} else
525 #endif
526 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 						 kvm_read_cr3(vcpu)))
528 			return 1;
529 	}
530 
531 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 		return 1;
533 
534 	kvm_x86_ops->set_cr0(vcpu, cr0);
535 
536 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 		kvm_clear_async_pf_completion_queue(vcpu);
538 		kvm_async_pf_hash_reset(vcpu);
539 	}
540 
541 	if ((cr0 ^ old_cr0) & update_bits)
542 		kvm_mmu_reset_context(vcpu);
543 	return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546 
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552 
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 	u64 xcr0;
556 
557 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558 	if (index != XCR_XFEATURE_ENABLED_MASK)
559 		return 1;
560 	xcr0 = xcr;
561 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 		return 1;
563 	if (!(xcr0 & XSTATE_FP))
564 		return 1;
565 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 		return 1;
567 	if (xcr0 & ~host_xcr0)
568 		return 1;
569 	vcpu->arch.xcr0 = xcr0;
570 	vcpu->guest_xcr0_loaded = 0;
571 	return 0;
572 }
573 
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 	if (__kvm_set_xcr(vcpu, index, xcr)) {
577 		kvm_inject_gp(vcpu, 0);
578 		return 1;
579 	}
580 	return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583 
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 				   X86_CR4_PAE | X86_CR4_SMEP;
589 	if (cr4 & CR4_RESERVED_BITS)
590 		return 1;
591 
592 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 		return 1;
594 
595 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 		return 1;
597 
598 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 		return 1;
600 
601 	if (is_long_mode(vcpu)) {
602 		if (!(cr4 & X86_CR4_PAE))
603 			return 1;
604 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 		   && ((cr4 ^ old_cr4) & pdptr_bits)
606 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 				   kvm_read_cr3(vcpu)))
608 		return 1;
609 
610 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 		if (!guest_cpuid_has_pcid(vcpu))
612 			return 1;
613 
614 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 			return 1;
617 	}
618 
619 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 		return 1;
621 
622 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 		kvm_mmu_reset_context(vcpu);
625 
626 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 		kvm_update_cpuid(vcpu);
628 
629 	return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632 
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 		kvm_mmu_sync_roots(vcpu);
637 		kvm_mmu_flush_tlb(vcpu);
638 		return 0;
639 	}
640 
641 	if (is_long_mode(vcpu)) {
642 		if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
643 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 				return 1;
645 		} else
646 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 				return 1;
648 	} else {
649 		if (is_pae(vcpu)) {
650 			if (cr3 & CR3_PAE_RESERVED_BITS)
651 				return 1;
652 			if (is_paging(vcpu) &&
653 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 				return 1;
655 		}
656 		/*
657 		 * We don't check reserved bits in nonpae mode, because
658 		 * this isn't enforced, and VMware depends on this.
659 		 */
660 	}
661 
662 	/*
663 	 * Does the new cr3 value map to physical memory? (Note, we
664 	 * catch an invalid cr3 even in real-mode, because it would
665 	 * cause trouble later on when we turn on paging anyway.)
666 	 *
667 	 * A real CPU would silently accept an invalid cr3 and would
668 	 * attempt to use it - with largely undefined (and often hard
669 	 * to debug) behavior on the guest side.
670 	 */
671 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 		return 1;
673 	vcpu->arch.cr3 = cr3;
674 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 	vcpu->arch.mmu.new_cr3(vcpu);
676 	return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679 
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 	if (cr8 & CR8_RESERVED_BITS)
683 		return 1;
684 	if (irqchip_in_kernel(vcpu->kvm))
685 		kvm_lapic_set_tpr(vcpu, cr8);
686 	else
687 		vcpu->arch.cr8 = cr8;
688 	return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691 
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 	if (irqchip_in_kernel(vcpu->kvm))
695 		return kvm_lapic_get_cr8(vcpu);
696 	else
697 		return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700 
701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
702 {
703 	switch (dr) {
704 	case 0 ... 3:
705 		vcpu->arch.db[dr] = val;
706 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
707 			vcpu->arch.eff_db[dr] = val;
708 		break;
709 	case 4:
710 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711 			return 1; /* #UD */
712 		/* fall through */
713 	case 6:
714 		if (val & 0xffffffff00000000ULL)
715 			return -1; /* #GP */
716 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
717 		break;
718 	case 5:
719 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
720 			return 1; /* #UD */
721 		/* fall through */
722 	default: /* 7 */
723 		if (val & 0xffffffff00000000ULL)
724 			return -1; /* #GP */
725 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
726 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
727 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
728 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
729 		}
730 		break;
731 	}
732 
733 	return 0;
734 }
735 
736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 	int res;
739 
740 	res = __kvm_set_dr(vcpu, dr, val);
741 	if (res > 0)
742 		kvm_queue_exception(vcpu, UD_VECTOR);
743 	else if (res < 0)
744 		kvm_inject_gp(vcpu, 0);
745 
746 	return res;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_dr);
749 
750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 {
752 	switch (dr) {
753 	case 0 ... 3:
754 		*val = vcpu->arch.db[dr];
755 		break;
756 	case 4:
757 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
758 			return 1;
759 		/* fall through */
760 	case 6:
761 		*val = vcpu->arch.dr6;
762 		break;
763 	case 5:
764 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765 			return 1;
766 		/* fall through */
767 	default: /* 7 */
768 		*val = vcpu->arch.dr7;
769 		break;
770 	}
771 
772 	return 0;
773 }
774 
775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
776 {
777 	if (_kvm_get_dr(vcpu, dr, val)) {
778 		kvm_queue_exception(vcpu, UD_VECTOR);
779 		return 1;
780 	}
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_get_dr);
784 
785 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
786 {
787 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
788 	u64 data;
789 	int err;
790 
791 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
792 	if (err)
793 		return err;
794 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
795 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
796 	return err;
797 }
798 EXPORT_SYMBOL_GPL(kvm_rdpmc);
799 
800 /*
801  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
802  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
803  *
804  * This list is modified at module load time to reflect the
805  * capabilities of the host cpu. This capabilities test skips MSRs that are
806  * kvm-specific. Those are put in the beginning of the list.
807  */
808 
809 #define KVM_SAVE_MSRS_BEGIN	10
810 static u32 msrs_to_save[] = {
811 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
812 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
813 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
814 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
815 	MSR_KVM_PV_EOI_EN,
816 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
817 	MSR_STAR,
818 #ifdef CONFIG_X86_64
819 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
820 #endif
821 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
822 };
823 
824 static unsigned num_msrs_to_save;
825 
826 static u32 emulated_msrs[] = {
827 	MSR_IA32_TSCDEADLINE,
828 	MSR_IA32_MISC_ENABLE,
829 	MSR_IA32_MCG_STATUS,
830 	MSR_IA32_MCG_CTL,
831 };
832 
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835 	u64 old_efer = vcpu->arch.efer;
836 
837 	if (efer & efer_reserved_bits)
838 		return 1;
839 
840 	if (is_paging(vcpu)
841 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 		return 1;
843 
844 	if (efer & EFER_FFXSR) {
845 		struct kvm_cpuid_entry2 *feat;
846 
847 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 			return 1;
850 	}
851 
852 	if (efer & EFER_SVME) {
853 		struct kvm_cpuid_entry2 *feat;
854 
855 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 			return 1;
858 	}
859 
860 	efer &= ~EFER_LMA;
861 	efer |= vcpu->arch.efer & EFER_LMA;
862 
863 	kvm_x86_ops->set_efer(vcpu, efer);
864 
865 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866 
867 	/* Update reserved bits */
868 	if ((efer ^ old_efer) & EFER_NX)
869 		kvm_mmu_reset_context(vcpu);
870 
871 	return 0;
872 }
873 
874 void kvm_enable_efer_bits(u64 mask)
875 {
876        efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879 
880 
881 /*
882  * Writes msr value into into the appropriate "register".
883  * Returns 0 on success, non-0 otherwise.
884  * Assumes vcpu_load() was already called.
885  */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890 
891 /*
892  * Adapt set_msr() to msr_io()'s calling convention
893  */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896 	return kvm_set_msr(vcpu, index, *data);
897 }
898 
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901 	int version;
902 	int r;
903 	struct pvclock_wall_clock wc;
904 	struct timespec boot;
905 
906 	if (!wall_clock)
907 		return;
908 
909 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 	if (r)
911 		return;
912 
913 	if (version & 1)
914 		++version;  /* first time write, random junk */
915 
916 	++version;
917 
918 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919 
920 	/*
921 	 * The guest calculates current wall clock time by adding
922 	 * system time (updated by kvm_guest_time_update below) to the
923 	 * wall clock specified here.  guest system time equals host
924 	 * system time for us, thus we must fill in host boot time here.
925 	 */
926 	getboottime(&boot);
927 
928 	if (kvm->arch.kvmclock_offset) {
929 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
930 		boot = timespec_sub(boot, ts);
931 	}
932 	wc.sec = boot.tv_sec;
933 	wc.nsec = boot.tv_nsec;
934 	wc.version = version;
935 
936 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
937 
938 	version++;
939 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
940 }
941 
942 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
943 {
944 	uint32_t quotient, remainder;
945 
946 	/* Don't try to replace with do_div(), this one calculates
947 	 * "(dividend << 32) / divisor" */
948 	__asm__ ( "divl %4"
949 		  : "=a" (quotient), "=d" (remainder)
950 		  : "0" (0), "1" (dividend), "r" (divisor) );
951 	return quotient;
952 }
953 
954 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
955 			       s8 *pshift, u32 *pmultiplier)
956 {
957 	uint64_t scaled64;
958 	int32_t  shift = 0;
959 	uint64_t tps64;
960 	uint32_t tps32;
961 
962 	tps64 = base_khz * 1000LL;
963 	scaled64 = scaled_khz * 1000LL;
964 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
965 		tps64 >>= 1;
966 		shift--;
967 	}
968 
969 	tps32 = (uint32_t)tps64;
970 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
971 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
972 			scaled64 >>= 1;
973 		else
974 			tps32 <<= 1;
975 		shift++;
976 	}
977 
978 	*pshift = shift;
979 	*pmultiplier = div_frac(scaled64, tps32);
980 
981 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
982 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
983 }
984 
985 static inline u64 get_kernel_ns(void)
986 {
987 	struct timespec ts;
988 
989 	WARN_ON(preemptible());
990 	ktime_get_ts(&ts);
991 	monotonic_to_bootbased(&ts);
992 	return timespec_to_ns(&ts);
993 }
994 
995 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
996 unsigned long max_tsc_khz;
997 
998 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
999 {
1000 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1001 				   vcpu->arch.virtual_tsc_shift);
1002 }
1003 
1004 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1005 {
1006 	u64 v = (u64)khz * (1000000 + ppm);
1007 	do_div(v, 1000000);
1008 	return v;
1009 }
1010 
1011 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1012 {
1013 	u32 thresh_lo, thresh_hi;
1014 	int use_scaling = 0;
1015 
1016 	/* Compute a scale to convert nanoseconds in TSC cycles */
1017 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1018 			   &vcpu->arch.virtual_tsc_shift,
1019 			   &vcpu->arch.virtual_tsc_mult);
1020 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1021 
1022 	/*
1023 	 * Compute the variation in TSC rate which is acceptable
1024 	 * within the range of tolerance and decide if the
1025 	 * rate being applied is within that bounds of the hardware
1026 	 * rate.  If so, no scaling or compensation need be done.
1027 	 */
1028 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1029 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1030 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1031 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1032 		use_scaling = 1;
1033 	}
1034 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1035 }
1036 
1037 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1038 {
1039 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1040 				      vcpu->arch.virtual_tsc_mult,
1041 				      vcpu->arch.virtual_tsc_shift);
1042 	tsc += vcpu->arch.this_tsc_write;
1043 	return tsc;
1044 }
1045 
1046 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1047 {
1048 	struct kvm *kvm = vcpu->kvm;
1049 	u64 offset, ns, elapsed;
1050 	unsigned long flags;
1051 	s64 usdiff;
1052 
1053 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1054 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1055 	ns = get_kernel_ns();
1056 	elapsed = ns - kvm->arch.last_tsc_nsec;
1057 
1058 	/* n.b - signed multiplication and division required */
1059 	usdiff = data - kvm->arch.last_tsc_write;
1060 #ifdef CONFIG_X86_64
1061 	usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1062 #else
1063 	/* do_div() only does unsigned */
1064 	asm("idivl %2; xor %%edx, %%edx"
1065 	    : "=A"(usdiff)
1066 	    : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1067 #endif
1068 	do_div(elapsed, 1000);
1069 	usdiff -= elapsed;
1070 	if (usdiff < 0)
1071 		usdiff = -usdiff;
1072 
1073 	/*
1074 	 * Special case: TSC write with a small delta (1 second) of virtual
1075 	 * cycle time against real time is interpreted as an attempt to
1076 	 * synchronize the CPU.
1077          *
1078 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1079 	 * TSC, we add elapsed time in this computation.  We could let the
1080 	 * compensation code attempt to catch up if we fall behind, but
1081 	 * it's better to try to match offsets from the beginning.
1082          */
1083 	if (usdiff < USEC_PER_SEC &&
1084 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1085 		if (!check_tsc_unstable()) {
1086 			offset = kvm->arch.cur_tsc_offset;
1087 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1088 		} else {
1089 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1090 			data += delta;
1091 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1092 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1093 		}
1094 	} else {
1095 		/*
1096 		 * We split periods of matched TSC writes into generations.
1097 		 * For each generation, we track the original measured
1098 		 * nanosecond time, offset, and write, so if TSCs are in
1099 		 * sync, we can match exact offset, and if not, we can match
1100 		 * exact software computaion in compute_guest_tsc()
1101 		 *
1102 		 * These values are tracked in kvm->arch.cur_xxx variables.
1103 		 */
1104 		kvm->arch.cur_tsc_generation++;
1105 		kvm->arch.cur_tsc_nsec = ns;
1106 		kvm->arch.cur_tsc_write = data;
1107 		kvm->arch.cur_tsc_offset = offset;
1108 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1109 			 kvm->arch.cur_tsc_generation, data);
1110 	}
1111 
1112 	/*
1113 	 * We also track th most recent recorded KHZ, write and time to
1114 	 * allow the matching interval to be extended at each write.
1115 	 */
1116 	kvm->arch.last_tsc_nsec = ns;
1117 	kvm->arch.last_tsc_write = data;
1118 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1119 
1120 	/* Reset of TSC must disable overshoot protection below */
1121 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1122 	vcpu->arch.last_guest_tsc = data;
1123 
1124 	/* Keep track of which generation this VCPU has synchronized to */
1125 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1126 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1127 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1128 
1129 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1130 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1131 }
1132 
1133 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1134 
1135 static int kvm_guest_time_update(struct kvm_vcpu *v)
1136 {
1137 	unsigned long flags;
1138 	struct kvm_vcpu_arch *vcpu = &v->arch;
1139 	void *shared_kaddr;
1140 	unsigned long this_tsc_khz;
1141 	s64 kernel_ns, max_kernel_ns;
1142 	u64 tsc_timestamp;
1143 
1144 	/* Keep irq disabled to prevent changes to the clock */
1145 	local_irq_save(flags);
1146 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1147 	kernel_ns = get_kernel_ns();
1148 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1149 	if (unlikely(this_tsc_khz == 0)) {
1150 		local_irq_restore(flags);
1151 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1152 		return 1;
1153 	}
1154 
1155 	/*
1156 	 * We may have to catch up the TSC to match elapsed wall clock
1157 	 * time for two reasons, even if kvmclock is used.
1158 	 *   1) CPU could have been running below the maximum TSC rate
1159 	 *   2) Broken TSC compensation resets the base at each VCPU
1160 	 *      entry to avoid unknown leaps of TSC even when running
1161 	 *      again on the same CPU.  This may cause apparent elapsed
1162 	 *      time to disappear, and the guest to stand still or run
1163 	 *	very slowly.
1164 	 */
1165 	if (vcpu->tsc_catchup) {
1166 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1167 		if (tsc > tsc_timestamp) {
1168 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1169 			tsc_timestamp = tsc;
1170 		}
1171 	}
1172 
1173 	local_irq_restore(flags);
1174 
1175 	if (!vcpu->time_page)
1176 		return 0;
1177 
1178 	/*
1179 	 * Time as measured by the TSC may go backwards when resetting the base
1180 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1181 	 * higher than the resolution of the other clock scales.  Thus, many
1182 	 * possible measurments of the TSC correspond to one measurement of any
1183 	 * other clock, and so a spread of values is possible.  This is not a
1184 	 * problem for the computation of the nanosecond clock; with TSC rates
1185 	 * around 1GHZ, there can only be a few cycles which correspond to one
1186 	 * nanosecond value, and any path through this code will inevitably
1187 	 * take longer than that.  However, with the kernel_ns value itself,
1188 	 * the precision may be much lower, down to HZ granularity.  If the
1189 	 * first sampling of TSC against kernel_ns ends in the low part of the
1190 	 * range, and the second in the high end of the range, we can get:
1191 	 *
1192 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1193 	 *
1194 	 * As the sampling errors potentially range in the thousands of cycles,
1195 	 * it is possible such a time value has already been observed by the
1196 	 * guest.  To protect against this, we must compute the system time as
1197 	 * observed by the guest and ensure the new system time is greater.
1198 	 */
1199 	max_kernel_ns = 0;
1200 	if (vcpu->hv_clock.tsc_timestamp) {
1201 		max_kernel_ns = vcpu->last_guest_tsc -
1202 				vcpu->hv_clock.tsc_timestamp;
1203 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1204 				    vcpu->hv_clock.tsc_to_system_mul,
1205 				    vcpu->hv_clock.tsc_shift);
1206 		max_kernel_ns += vcpu->last_kernel_ns;
1207 	}
1208 
1209 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1210 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1211 				   &vcpu->hv_clock.tsc_shift,
1212 				   &vcpu->hv_clock.tsc_to_system_mul);
1213 		vcpu->hw_tsc_khz = this_tsc_khz;
1214 	}
1215 
1216 	if (max_kernel_ns > kernel_ns)
1217 		kernel_ns = max_kernel_ns;
1218 
1219 	/* With all the info we got, fill in the values */
1220 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1221 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1222 	vcpu->last_kernel_ns = kernel_ns;
1223 	vcpu->last_guest_tsc = tsc_timestamp;
1224 	vcpu->hv_clock.flags = 0;
1225 
1226 	/*
1227 	 * The interface expects us to write an even number signaling that the
1228 	 * update is finished. Since the guest won't see the intermediate
1229 	 * state, we just increase by 2 at the end.
1230 	 */
1231 	vcpu->hv_clock.version += 2;
1232 
1233 	shared_kaddr = kmap_atomic(vcpu->time_page);
1234 
1235 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1236 	       sizeof(vcpu->hv_clock));
1237 
1238 	kunmap_atomic(shared_kaddr);
1239 
1240 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1241 	return 0;
1242 }
1243 
1244 static bool msr_mtrr_valid(unsigned msr)
1245 {
1246 	switch (msr) {
1247 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1248 	case MSR_MTRRfix64K_00000:
1249 	case MSR_MTRRfix16K_80000:
1250 	case MSR_MTRRfix16K_A0000:
1251 	case MSR_MTRRfix4K_C0000:
1252 	case MSR_MTRRfix4K_C8000:
1253 	case MSR_MTRRfix4K_D0000:
1254 	case MSR_MTRRfix4K_D8000:
1255 	case MSR_MTRRfix4K_E0000:
1256 	case MSR_MTRRfix4K_E8000:
1257 	case MSR_MTRRfix4K_F0000:
1258 	case MSR_MTRRfix4K_F8000:
1259 	case MSR_MTRRdefType:
1260 	case MSR_IA32_CR_PAT:
1261 		return true;
1262 	case 0x2f8:
1263 		return true;
1264 	}
1265 	return false;
1266 }
1267 
1268 static bool valid_pat_type(unsigned t)
1269 {
1270 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1271 }
1272 
1273 static bool valid_mtrr_type(unsigned t)
1274 {
1275 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1276 }
1277 
1278 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1279 {
1280 	int i;
1281 
1282 	if (!msr_mtrr_valid(msr))
1283 		return false;
1284 
1285 	if (msr == MSR_IA32_CR_PAT) {
1286 		for (i = 0; i < 8; i++)
1287 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1288 				return false;
1289 		return true;
1290 	} else if (msr == MSR_MTRRdefType) {
1291 		if (data & ~0xcff)
1292 			return false;
1293 		return valid_mtrr_type(data & 0xff);
1294 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1295 		for (i = 0; i < 8 ; i++)
1296 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1297 				return false;
1298 		return true;
1299 	}
1300 
1301 	/* variable MTRRs */
1302 	return valid_mtrr_type(data & 0xff);
1303 }
1304 
1305 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1306 {
1307 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1308 
1309 	if (!mtrr_valid(vcpu, msr, data))
1310 		return 1;
1311 
1312 	if (msr == MSR_MTRRdefType) {
1313 		vcpu->arch.mtrr_state.def_type = data;
1314 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1315 	} else if (msr == MSR_MTRRfix64K_00000)
1316 		p[0] = data;
1317 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1318 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1319 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1320 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1321 	else if (msr == MSR_IA32_CR_PAT)
1322 		vcpu->arch.pat = data;
1323 	else {	/* Variable MTRRs */
1324 		int idx, is_mtrr_mask;
1325 		u64 *pt;
1326 
1327 		idx = (msr - 0x200) / 2;
1328 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1329 		if (!is_mtrr_mask)
1330 			pt =
1331 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1332 		else
1333 			pt =
1334 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1335 		*pt = data;
1336 	}
1337 
1338 	kvm_mmu_reset_context(vcpu);
1339 	return 0;
1340 }
1341 
1342 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1343 {
1344 	u64 mcg_cap = vcpu->arch.mcg_cap;
1345 	unsigned bank_num = mcg_cap & 0xff;
1346 
1347 	switch (msr) {
1348 	case MSR_IA32_MCG_STATUS:
1349 		vcpu->arch.mcg_status = data;
1350 		break;
1351 	case MSR_IA32_MCG_CTL:
1352 		if (!(mcg_cap & MCG_CTL_P))
1353 			return 1;
1354 		if (data != 0 && data != ~(u64)0)
1355 			return -1;
1356 		vcpu->arch.mcg_ctl = data;
1357 		break;
1358 	default:
1359 		if (msr >= MSR_IA32_MC0_CTL &&
1360 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1361 			u32 offset = msr - MSR_IA32_MC0_CTL;
1362 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1363 			 * some Linux kernels though clear bit 10 in bank 4 to
1364 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1365 			 * this to avoid an uncatched #GP in the guest
1366 			 */
1367 			if ((offset & 0x3) == 0 &&
1368 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1369 				return -1;
1370 			vcpu->arch.mce_banks[offset] = data;
1371 			break;
1372 		}
1373 		return 1;
1374 	}
1375 	return 0;
1376 }
1377 
1378 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1379 {
1380 	struct kvm *kvm = vcpu->kvm;
1381 	int lm = is_long_mode(vcpu);
1382 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1383 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1384 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1385 		: kvm->arch.xen_hvm_config.blob_size_32;
1386 	u32 page_num = data & ~PAGE_MASK;
1387 	u64 page_addr = data & PAGE_MASK;
1388 	u8 *page;
1389 	int r;
1390 
1391 	r = -E2BIG;
1392 	if (page_num >= blob_size)
1393 		goto out;
1394 	r = -ENOMEM;
1395 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1396 	if (IS_ERR(page)) {
1397 		r = PTR_ERR(page);
1398 		goto out;
1399 	}
1400 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1401 		goto out_free;
1402 	r = 0;
1403 out_free:
1404 	kfree(page);
1405 out:
1406 	return r;
1407 }
1408 
1409 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1410 {
1411 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1412 }
1413 
1414 static bool kvm_hv_msr_partition_wide(u32 msr)
1415 {
1416 	bool r = false;
1417 	switch (msr) {
1418 	case HV_X64_MSR_GUEST_OS_ID:
1419 	case HV_X64_MSR_HYPERCALL:
1420 		r = true;
1421 		break;
1422 	}
1423 
1424 	return r;
1425 }
1426 
1427 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1428 {
1429 	struct kvm *kvm = vcpu->kvm;
1430 
1431 	switch (msr) {
1432 	case HV_X64_MSR_GUEST_OS_ID:
1433 		kvm->arch.hv_guest_os_id = data;
1434 		/* setting guest os id to zero disables hypercall page */
1435 		if (!kvm->arch.hv_guest_os_id)
1436 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1437 		break;
1438 	case HV_X64_MSR_HYPERCALL: {
1439 		u64 gfn;
1440 		unsigned long addr;
1441 		u8 instructions[4];
1442 
1443 		/* if guest os id is not set hypercall should remain disabled */
1444 		if (!kvm->arch.hv_guest_os_id)
1445 			break;
1446 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1447 			kvm->arch.hv_hypercall = data;
1448 			break;
1449 		}
1450 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1451 		addr = gfn_to_hva(kvm, gfn);
1452 		if (kvm_is_error_hva(addr))
1453 			return 1;
1454 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1455 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1456 		if (__copy_to_user((void __user *)addr, instructions, 4))
1457 			return 1;
1458 		kvm->arch.hv_hypercall = data;
1459 		break;
1460 	}
1461 	default:
1462 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1463 			    "data 0x%llx\n", msr, data);
1464 		return 1;
1465 	}
1466 	return 0;
1467 }
1468 
1469 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1470 {
1471 	switch (msr) {
1472 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1473 		unsigned long addr;
1474 
1475 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1476 			vcpu->arch.hv_vapic = data;
1477 			break;
1478 		}
1479 		addr = gfn_to_hva(vcpu->kvm, data >>
1480 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1481 		if (kvm_is_error_hva(addr))
1482 			return 1;
1483 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1484 			return 1;
1485 		vcpu->arch.hv_vapic = data;
1486 		break;
1487 	}
1488 	case HV_X64_MSR_EOI:
1489 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1490 	case HV_X64_MSR_ICR:
1491 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1492 	case HV_X64_MSR_TPR:
1493 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1494 	default:
1495 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1496 			    "data 0x%llx\n", msr, data);
1497 		return 1;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1504 {
1505 	gpa_t gpa = data & ~0x3f;
1506 
1507 	/* Bits 2:5 are resrved, Should be zero */
1508 	if (data & 0x3c)
1509 		return 1;
1510 
1511 	vcpu->arch.apf.msr_val = data;
1512 
1513 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1514 		kvm_clear_async_pf_completion_queue(vcpu);
1515 		kvm_async_pf_hash_reset(vcpu);
1516 		return 0;
1517 	}
1518 
1519 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1520 		return 1;
1521 
1522 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1523 	kvm_async_pf_wakeup_all(vcpu);
1524 	return 0;
1525 }
1526 
1527 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1528 {
1529 	if (vcpu->arch.time_page) {
1530 		kvm_release_page_dirty(vcpu->arch.time_page);
1531 		vcpu->arch.time_page = NULL;
1532 	}
1533 }
1534 
1535 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1536 {
1537 	u64 delta;
1538 
1539 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1540 		return;
1541 
1542 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1543 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1544 	vcpu->arch.st.accum_steal = delta;
1545 }
1546 
1547 static void record_steal_time(struct kvm_vcpu *vcpu)
1548 {
1549 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1550 		return;
1551 
1552 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1553 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1554 		return;
1555 
1556 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1557 	vcpu->arch.st.steal.version += 2;
1558 	vcpu->arch.st.accum_steal = 0;
1559 
1560 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1561 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1562 }
1563 
1564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1565 {
1566 	bool pr = false;
1567 
1568 	switch (msr) {
1569 	case MSR_EFER:
1570 		return set_efer(vcpu, data);
1571 	case MSR_K7_HWCR:
1572 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1573 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1574 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1575 		if (data != 0) {
1576 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1577 				    data);
1578 			return 1;
1579 		}
1580 		break;
1581 	case MSR_FAM10H_MMIO_CONF_BASE:
1582 		if (data != 0) {
1583 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1584 				    "0x%llx\n", data);
1585 			return 1;
1586 		}
1587 		break;
1588 	case MSR_AMD64_NB_CFG:
1589 		break;
1590 	case MSR_IA32_DEBUGCTLMSR:
1591 		if (!data) {
1592 			/* We support the non-activated case already */
1593 			break;
1594 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1595 			/* Values other than LBR and BTF are vendor-specific,
1596 			   thus reserved and should throw a #GP */
1597 			return 1;
1598 		}
1599 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1600 			    __func__, data);
1601 		break;
1602 	case MSR_IA32_UCODE_REV:
1603 	case MSR_IA32_UCODE_WRITE:
1604 	case MSR_VM_HSAVE_PA:
1605 	case MSR_AMD64_PATCH_LOADER:
1606 		break;
1607 	case 0x200 ... 0x2ff:
1608 		return set_msr_mtrr(vcpu, msr, data);
1609 	case MSR_IA32_APICBASE:
1610 		kvm_set_apic_base(vcpu, data);
1611 		break;
1612 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1613 		return kvm_x2apic_msr_write(vcpu, msr, data);
1614 	case MSR_IA32_TSCDEADLINE:
1615 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1616 		break;
1617 	case MSR_IA32_MISC_ENABLE:
1618 		vcpu->arch.ia32_misc_enable_msr = data;
1619 		break;
1620 	case MSR_KVM_WALL_CLOCK_NEW:
1621 	case MSR_KVM_WALL_CLOCK:
1622 		vcpu->kvm->arch.wall_clock = data;
1623 		kvm_write_wall_clock(vcpu->kvm, data);
1624 		break;
1625 	case MSR_KVM_SYSTEM_TIME_NEW:
1626 	case MSR_KVM_SYSTEM_TIME: {
1627 		kvmclock_reset(vcpu);
1628 
1629 		vcpu->arch.time = data;
1630 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1631 
1632 		/* we verify if the enable bit is set... */
1633 		if (!(data & 1))
1634 			break;
1635 
1636 		/* ...but clean it before doing the actual write */
1637 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1638 
1639 		vcpu->arch.time_page =
1640 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1641 
1642 		if (is_error_page(vcpu->arch.time_page)) {
1643 			kvm_release_page_clean(vcpu->arch.time_page);
1644 			vcpu->arch.time_page = NULL;
1645 		}
1646 		break;
1647 	}
1648 	case MSR_KVM_ASYNC_PF_EN:
1649 		if (kvm_pv_enable_async_pf(vcpu, data))
1650 			return 1;
1651 		break;
1652 	case MSR_KVM_STEAL_TIME:
1653 
1654 		if (unlikely(!sched_info_on()))
1655 			return 1;
1656 
1657 		if (data & KVM_STEAL_RESERVED_MASK)
1658 			return 1;
1659 
1660 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1661 							data & KVM_STEAL_VALID_BITS))
1662 			return 1;
1663 
1664 		vcpu->arch.st.msr_val = data;
1665 
1666 		if (!(data & KVM_MSR_ENABLED))
1667 			break;
1668 
1669 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1670 
1671 		preempt_disable();
1672 		accumulate_steal_time(vcpu);
1673 		preempt_enable();
1674 
1675 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1676 
1677 		break;
1678 	case MSR_KVM_PV_EOI_EN:
1679 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
1680 			return 1;
1681 		break;
1682 
1683 	case MSR_IA32_MCG_CTL:
1684 	case MSR_IA32_MCG_STATUS:
1685 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1686 		return set_msr_mce(vcpu, msr, data);
1687 
1688 	/* Performance counters are not protected by a CPUID bit,
1689 	 * so we should check all of them in the generic path for the sake of
1690 	 * cross vendor migration.
1691 	 * Writing a zero into the event select MSRs disables them,
1692 	 * which we perfectly emulate ;-). Any other value should be at least
1693 	 * reported, some guests depend on them.
1694 	 */
1695 	case MSR_K7_EVNTSEL0:
1696 	case MSR_K7_EVNTSEL1:
1697 	case MSR_K7_EVNTSEL2:
1698 	case MSR_K7_EVNTSEL3:
1699 		if (data != 0)
1700 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1701 				    "0x%x data 0x%llx\n", msr, data);
1702 		break;
1703 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1704 	 * so we ignore writes to make it happy.
1705 	 */
1706 	case MSR_K7_PERFCTR0:
1707 	case MSR_K7_PERFCTR1:
1708 	case MSR_K7_PERFCTR2:
1709 	case MSR_K7_PERFCTR3:
1710 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711 			    "0x%x data 0x%llx\n", msr, data);
1712 		break;
1713 	case MSR_P6_PERFCTR0:
1714 	case MSR_P6_PERFCTR1:
1715 		pr = true;
1716 	case MSR_P6_EVNTSEL0:
1717 	case MSR_P6_EVNTSEL1:
1718 		if (kvm_pmu_msr(vcpu, msr))
1719 			return kvm_pmu_set_msr(vcpu, msr, data);
1720 
1721 		if (pr || data != 0)
1722 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1723 				    "0x%x data 0x%llx\n", msr, data);
1724 		break;
1725 	case MSR_K7_CLK_CTL:
1726 		/*
1727 		 * Ignore all writes to this no longer documented MSR.
1728 		 * Writes are only relevant for old K7 processors,
1729 		 * all pre-dating SVM, but a recommended workaround from
1730 		 * AMD for these chips. It is possible to speicify the
1731 		 * affected processor models on the command line, hence
1732 		 * the need to ignore the workaround.
1733 		 */
1734 		break;
1735 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1736 		if (kvm_hv_msr_partition_wide(msr)) {
1737 			int r;
1738 			mutex_lock(&vcpu->kvm->lock);
1739 			r = set_msr_hyperv_pw(vcpu, msr, data);
1740 			mutex_unlock(&vcpu->kvm->lock);
1741 			return r;
1742 		} else
1743 			return set_msr_hyperv(vcpu, msr, data);
1744 		break;
1745 	case MSR_IA32_BBL_CR_CTL3:
1746 		/* Drop writes to this legacy MSR -- see rdmsr
1747 		 * counterpart for further detail.
1748 		 */
1749 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1750 		break;
1751 	case MSR_AMD64_OSVW_ID_LENGTH:
1752 		if (!guest_cpuid_has_osvw(vcpu))
1753 			return 1;
1754 		vcpu->arch.osvw.length = data;
1755 		break;
1756 	case MSR_AMD64_OSVW_STATUS:
1757 		if (!guest_cpuid_has_osvw(vcpu))
1758 			return 1;
1759 		vcpu->arch.osvw.status = data;
1760 		break;
1761 	default:
1762 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1763 			return xen_hvm_config(vcpu, data);
1764 		if (kvm_pmu_msr(vcpu, msr))
1765 			return kvm_pmu_set_msr(vcpu, msr, data);
1766 		if (!ignore_msrs) {
1767 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1768 				    msr, data);
1769 			return 1;
1770 		} else {
1771 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1772 				    msr, data);
1773 			break;
1774 		}
1775 	}
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1779 
1780 
1781 /*
1782  * Reads an msr value (of 'msr_index') into 'pdata'.
1783  * Returns 0 on success, non-0 otherwise.
1784  * Assumes vcpu_load() was already called.
1785  */
1786 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1787 {
1788 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1789 }
1790 
1791 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1792 {
1793 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1794 
1795 	if (!msr_mtrr_valid(msr))
1796 		return 1;
1797 
1798 	if (msr == MSR_MTRRdefType)
1799 		*pdata = vcpu->arch.mtrr_state.def_type +
1800 			 (vcpu->arch.mtrr_state.enabled << 10);
1801 	else if (msr == MSR_MTRRfix64K_00000)
1802 		*pdata = p[0];
1803 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1804 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1805 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1806 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1807 	else if (msr == MSR_IA32_CR_PAT)
1808 		*pdata = vcpu->arch.pat;
1809 	else {	/* Variable MTRRs */
1810 		int idx, is_mtrr_mask;
1811 		u64 *pt;
1812 
1813 		idx = (msr - 0x200) / 2;
1814 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1815 		if (!is_mtrr_mask)
1816 			pt =
1817 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1818 		else
1819 			pt =
1820 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1821 		*pdata = *pt;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1828 {
1829 	u64 data;
1830 	u64 mcg_cap = vcpu->arch.mcg_cap;
1831 	unsigned bank_num = mcg_cap & 0xff;
1832 
1833 	switch (msr) {
1834 	case MSR_IA32_P5_MC_ADDR:
1835 	case MSR_IA32_P5_MC_TYPE:
1836 		data = 0;
1837 		break;
1838 	case MSR_IA32_MCG_CAP:
1839 		data = vcpu->arch.mcg_cap;
1840 		break;
1841 	case MSR_IA32_MCG_CTL:
1842 		if (!(mcg_cap & MCG_CTL_P))
1843 			return 1;
1844 		data = vcpu->arch.mcg_ctl;
1845 		break;
1846 	case MSR_IA32_MCG_STATUS:
1847 		data = vcpu->arch.mcg_status;
1848 		break;
1849 	default:
1850 		if (msr >= MSR_IA32_MC0_CTL &&
1851 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1852 			u32 offset = msr - MSR_IA32_MC0_CTL;
1853 			data = vcpu->arch.mce_banks[offset];
1854 			break;
1855 		}
1856 		return 1;
1857 	}
1858 	*pdata = data;
1859 	return 0;
1860 }
1861 
1862 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1863 {
1864 	u64 data = 0;
1865 	struct kvm *kvm = vcpu->kvm;
1866 
1867 	switch (msr) {
1868 	case HV_X64_MSR_GUEST_OS_ID:
1869 		data = kvm->arch.hv_guest_os_id;
1870 		break;
1871 	case HV_X64_MSR_HYPERCALL:
1872 		data = kvm->arch.hv_hypercall;
1873 		break;
1874 	default:
1875 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1876 		return 1;
1877 	}
1878 
1879 	*pdata = data;
1880 	return 0;
1881 }
1882 
1883 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1884 {
1885 	u64 data = 0;
1886 
1887 	switch (msr) {
1888 	case HV_X64_MSR_VP_INDEX: {
1889 		int r;
1890 		struct kvm_vcpu *v;
1891 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1892 			if (v == vcpu)
1893 				data = r;
1894 		break;
1895 	}
1896 	case HV_X64_MSR_EOI:
1897 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1898 	case HV_X64_MSR_ICR:
1899 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1900 	case HV_X64_MSR_TPR:
1901 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1902 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1903 		data = vcpu->arch.hv_vapic;
1904 		break;
1905 	default:
1906 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1907 		return 1;
1908 	}
1909 	*pdata = data;
1910 	return 0;
1911 }
1912 
1913 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1914 {
1915 	u64 data;
1916 
1917 	switch (msr) {
1918 	case MSR_IA32_PLATFORM_ID:
1919 	case MSR_IA32_EBL_CR_POWERON:
1920 	case MSR_IA32_DEBUGCTLMSR:
1921 	case MSR_IA32_LASTBRANCHFROMIP:
1922 	case MSR_IA32_LASTBRANCHTOIP:
1923 	case MSR_IA32_LASTINTFROMIP:
1924 	case MSR_IA32_LASTINTTOIP:
1925 	case MSR_K8_SYSCFG:
1926 	case MSR_K7_HWCR:
1927 	case MSR_VM_HSAVE_PA:
1928 	case MSR_K7_EVNTSEL0:
1929 	case MSR_K7_PERFCTR0:
1930 	case MSR_K8_INT_PENDING_MSG:
1931 	case MSR_AMD64_NB_CFG:
1932 	case MSR_FAM10H_MMIO_CONF_BASE:
1933 		data = 0;
1934 		break;
1935 	case MSR_P6_PERFCTR0:
1936 	case MSR_P6_PERFCTR1:
1937 	case MSR_P6_EVNTSEL0:
1938 	case MSR_P6_EVNTSEL1:
1939 		if (kvm_pmu_msr(vcpu, msr))
1940 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1941 		data = 0;
1942 		break;
1943 	case MSR_IA32_UCODE_REV:
1944 		data = 0x100000000ULL;
1945 		break;
1946 	case MSR_MTRRcap:
1947 		data = 0x500 | KVM_NR_VAR_MTRR;
1948 		break;
1949 	case 0x200 ... 0x2ff:
1950 		return get_msr_mtrr(vcpu, msr, pdata);
1951 	case 0xcd: /* fsb frequency */
1952 		data = 3;
1953 		break;
1954 		/*
1955 		 * MSR_EBC_FREQUENCY_ID
1956 		 * Conservative value valid for even the basic CPU models.
1957 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1958 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1959 		 * and 266MHz for model 3, or 4. Set Core Clock
1960 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1961 		 * 31:24) even though these are only valid for CPU
1962 		 * models > 2, however guests may end up dividing or
1963 		 * multiplying by zero otherwise.
1964 		 */
1965 	case MSR_EBC_FREQUENCY_ID:
1966 		data = 1 << 24;
1967 		break;
1968 	case MSR_IA32_APICBASE:
1969 		data = kvm_get_apic_base(vcpu);
1970 		break;
1971 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1972 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1973 		break;
1974 	case MSR_IA32_TSCDEADLINE:
1975 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1976 		break;
1977 	case MSR_IA32_MISC_ENABLE:
1978 		data = vcpu->arch.ia32_misc_enable_msr;
1979 		break;
1980 	case MSR_IA32_PERF_STATUS:
1981 		/* TSC increment by tick */
1982 		data = 1000ULL;
1983 		/* CPU multiplier */
1984 		data |= (((uint64_t)4ULL) << 40);
1985 		break;
1986 	case MSR_EFER:
1987 		data = vcpu->arch.efer;
1988 		break;
1989 	case MSR_KVM_WALL_CLOCK:
1990 	case MSR_KVM_WALL_CLOCK_NEW:
1991 		data = vcpu->kvm->arch.wall_clock;
1992 		break;
1993 	case MSR_KVM_SYSTEM_TIME:
1994 	case MSR_KVM_SYSTEM_TIME_NEW:
1995 		data = vcpu->arch.time;
1996 		break;
1997 	case MSR_KVM_ASYNC_PF_EN:
1998 		data = vcpu->arch.apf.msr_val;
1999 		break;
2000 	case MSR_KVM_STEAL_TIME:
2001 		data = vcpu->arch.st.msr_val;
2002 		break;
2003 	case MSR_KVM_PV_EOI_EN:
2004 		data = vcpu->arch.pv_eoi.msr_val;
2005 		break;
2006 	case MSR_IA32_P5_MC_ADDR:
2007 	case MSR_IA32_P5_MC_TYPE:
2008 	case MSR_IA32_MCG_CAP:
2009 	case MSR_IA32_MCG_CTL:
2010 	case MSR_IA32_MCG_STATUS:
2011 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2012 		return get_msr_mce(vcpu, msr, pdata);
2013 	case MSR_K7_CLK_CTL:
2014 		/*
2015 		 * Provide expected ramp-up count for K7. All other
2016 		 * are set to zero, indicating minimum divisors for
2017 		 * every field.
2018 		 *
2019 		 * This prevents guest kernels on AMD host with CPU
2020 		 * type 6, model 8 and higher from exploding due to
2021 		 * the rdmsr failing.
2022 		 */
2023 		data = 0x20000000;
2024 		break;
2025 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2026 		if (kvm_hv_msr_partition_wide(msr)) {
2027 			int r;
2028 			mutex_lock(&vcpu->kvm->lock);
2029 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2030 			mutex_unlock(&vcpu->kvm->lock);
2031 			return r;
2032 		} else
2033 			return get_msr_hyperv(vcpu, msr, pdata);
2034 		break;
2035 	case MSR_IA32_BBL_CR_CTL3:
2036 		/* This legacy MSR exists but isn't fully documented in current
2037 		 * silicon.  It is however accessed by winxp in very narrow
2038 		 * scenarios where it sets bit #19, itself documented as
2039 		 * a "reserved" bit.  Best effort attempt to source coherent
2040 		 * read data here should the balance of the register be
2041 		 * interpreted by the guest:
2042 		 *
2043 		 * L2 cache control register 3: 64GB range, 256KB size,
2044 		 * enabled, latency 0x1, configured
2045 		 */
2046 		data = 0xbe702111;
2047 		break;
2048 	case MSR_AMD64_OSVW_ID_LENGTH:
2049 		if (!guest_cpuid_has_osvw(vcpu))
2050 			return 1;
2051 		data = vcpu->arch.osvw.length;
2052 		break;
2053 	case MSR_AMD64_OSVW_STATUS:
2054 		if (!guest_cpuid_has_osvw(vcpu))
2055 			return 1;
2056 		data = vcpu->arch.osvw.status;
2057 		break;
2058 	default:
2059 		if (kvm_pmu_msr(vcpu, msr))
2060 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2061 		if (!ignore_msrs) {
2062 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2063 			return 1;
2064 		} else {
2065 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2066 			data = 0;
2067 		}
2068 		break;
2069 	}
2070 	*pdata = data;
2071 	return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2074 
2075 /*
2076  * Read or write a bunch of msrs. All parameters are kernel addresses.
2077  *
2078  * @return number of msrs set successfully.
2079  */
2080 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2081 		    struct kvm_msr_entry *entries,
2082 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2083 				  unsigned index, u64 *data))
2084 {
2085 	int i, idx;
2086 
2087 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2088 	for (i = 0; i < msrs->nmsrs; ++i)
2089 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2090 			break;
2091 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2092 
2093 	return i;
2094 }
2095 
2096 /*
2097  * Read or write a bunch of msrs. Parameters are user addresses.
2098  *
2099  * @return number of msrs set successfully.
2100  */
2101 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2102 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2103 				unsigned index, u64 *data),
2104 		  int writeback)
2105 {
2106 	struct kvm_msrs msrs;
2107 	struct kvm_msr_entry *entries;
2108 	int r, n;
2109 	unsigned size;
2110 
2111 	r = -EFAULT;
2112 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2113 		goto out;
2114 
2115 	r = -E2BIG;
2116 	if (msrs.nmsrs >= MAX_IO_MSRS)
2117 		goto out;
2118 
2119 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2120 	entries = memdup_user(user_msrs->entries, size);
2121 	if (IS_ERR(entries)) {
2122 		r = PTR_ERR(entries);
2123 		goto out;
2124 	}
2125 
2126 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2127 	if (r < 0)
2128 		goto out_free;
2129 
2130 	r = -EFAULT;
2131 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2132 		goto out_free;
2133 
2134 	r = n;
2135 
2136 out_free:
2137 	kfree(entries);
2138 out:
2139 	return r;
2140 }
2141 
2142 int kvm_dev_ioctl_check_extension(long ext)
2143 {
2144 	int r;
2145 
2146 	switch (ext) {
2147 	case KVM_CAP_IRQCHIP:
2148 	case KVM_CAP_HLT:
2149 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2150 	case KVM_CAP_SET_TSS_ADDR:
2151 	case KVM_CAP_EXT_CPUID:
2152 	case KVM_CAP_CLOCKSOURCE:
2153 	case KVM_CAP_PIT:
2154 	case KVM_CAP_NOP_IO_DELAY:
2155 	case KVM_CAP_MP_STATE:
2156 	case KVM_CAP_SYNC_MMU:
2157 	case KVM_CAP_USER_NMI:
2158 	case KVM_CAP_REINJECT_CONTROL:
2159 	case KVM_CAP_IRQ_INJECT_STATUS:
2160 	case KVM_CAP_ASSIGN_DEV_IRQ:
2161 	case KVM_CAP_IRQFD:
2162 	case KVM_CAP_IOEVENTFD:
2163 	case KVM_CAP_PIT2:
2164 	case KVM_CAP_PIT_STATE2:
2165 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2166 	case KVM_CAP_XEN_HVM:
2167 	case KVM_CAP_ADJUST_CLOCK:
2168 	case KVM_CAP_VCPU_EVENTS:
2169 	case KVM_CAP_HYPERV:
2170 	case KVM_CAP_HYPERV_VAPIC:
2171 	case KVM_CAP_HYPERV_SPIN:
2172 	case KVM_CAP_PCI_SEGMENT:
2173 	case KVM_CAP_DEBUGREGS:
2174 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2175 	case KVM_CAP_XSAVE:
2176 	case KVM_CAP_ASYNC_PF:
2177 	case KVM_CAP_GET_TSC_KHZ:
2178 	case KVM_CAP_PCI_2_3:
2179 	case KVM_CAP_KVMCLOCK_CTRL:
2180 		r = 1;
2181 		break;
2182 	case KVM_CAP_COALESCED_MMIO:
2183 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2184 		break;
2185 	case KVM_CAP_VAPIC:
2186 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2187 		break;
2188 	case KVM_CAP_NR_VCPUS:
2189 		r = KVM_SOFT_MAX_VCPUS;
2190 		break;
2191 	case KVM_CAP_MAX_VCPUS:
2192 		r = KVM_MAX_VCPUS;
2193 		break;
2194 	case KVM_CAP_NR_MEMSLOTS:
2195 		r = KVM_MEMORY_SLOTS;
2196 		break;
2197 	case KVM_CAP_PV_MMU:	/* obsolete */
2198 		r = 0;
2199 		break;
2200 	case KVM_CAP_IOMMU:
2201 		r = iommu_present(&pci_bus_type);
2202 		break;
2203 	case KVM_CAP_MCE:
2204 		r = KVM_MAX_MCE_BANKS;
2205 		break;
2206 	case KVM_CAP_XCRS:
2207 		r = cpu_has_xsave;
2208 		break;
2209 	case KVM_CAP_TSC_CONTROL:
2210 		r = kvm_has_tsc_control;
2211 		break;
2212 	case KVM_CAP_TSC_DEADLINE_TIMER:
2213 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2214 		break;
2215 	default:
2216 		r = 0;
2217 		break;
2218 	}
2219 	return r;
2220 
2221 }
2222 
2223 long kvm_arch_dev_ioctl(struct file *filp,
2224 			unsigned int ioctl, unsigned long arg)
2225 {
2226 	void __user *argp = (void __user *)arg;
2227 	long r;
2228 
2229 	switch (ioctl) {
2230 	case KVM_GET_MSR_INDEX_LIST: {
2231 		struct kvm_msr_list __user *user_msr_list = argp;
2232 		struct kvm_msr_list msr_list;
2233 		unsigned n;
2234 
2235 		r = -EFAULT;
2236 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2237 			goto out;
2238 		n = msr_list.nmsrs;
2239 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2240 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2241 			goto out;
2242 		r = -E2BIG;
2243 		if (n < msr_list.nmsrs)
2244 			goto out;
2245 		r = -EFAULT;
2246 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2247 				 num_msrs_to_save * sizeof(u32)))
2248 			goto out;
2249 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2250 				 &emulated_msrs,
2251 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2252 			goto out;
2253 		r = 0;
2254 		break;
2255 	}
2256 	case KVM_GET_SUPPORTED_CPUID: {
2257 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2258 		struct kvm_cpuid2 cpuid;
2259 
2260 		r = -EFAULT;
2261 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2262 			goto out;
2263 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2264 						      cpuid_arg->entries);
2265 		if (r)
2266 			goto out;
2267 
2268 		r = -EFAULT;
2269 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2270 			goto out;
2271 		r = 0;
2272 		break;
2273 	}
2274 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2275 		u64 mce_cap;
2276 
2277 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2278 		r = -EFAULT;
2279 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2280 			goto out;
2281 		r = 0;
2282 		break;
2283 	}
2284 	default:
2285 		r = -EINVAL;
2286 	}
2287 out:
2288 	return r;
2289 }
2290 
2291 static void wbinvd_ipi(void *garbage)
2292 {
2293 	wbinvd();
2294 }
2295 
2296 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2297 {
2298 	return vcpu->kvm->arch.iommu_domain &&
2299 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2300 }
2301 
2302 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2303 {
2304 	/* Address WBINVD may be executed by guest */
2305 	if (need_emulate_wbinvd(vcpu)) {
2306 		if (kvm_x86_ops->has_wbinvd_exit())
2307 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2308 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2309 			smp_call_function_single(vcpu->cpu,
2310 					wbinvd_ipi, NULL, 1);
2311 	}
2312 
2313 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2314 
2315 	/* Apply any externally detected TSC adjustments (due to suspend) */
2316 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2317 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2318 		vcpu->arch.tsc_offset_adjustment = 0;
2319 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2320 	}
2321 
2322 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2323 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2324 				native_read_tsc() - vcpu->arch.last_host_tsc;
2325 		if (tsc_delta < 0)
2326 			mark_tsc_unstable("KVM discovered backwards TSC");
2327 		if (check_tsc_unstable()) {
2328 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2329 						vcpu->arch.last_guest_tsc);
2330 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2331 			vcpu->arch.tsc_catchup = 1;
2332 		}
2333 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2334 		if (vcpu->cpu != cpu)
2335 			kvm_migrate_timers(vcpu);
2336 		vcpu->cpu = cpu;
2337 	}
2338 
2339 	accumulate_steal_time(vcpu);
2340 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2341 }
2342 
2343 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2344 {
2345 	kvm_x86_ops->vcpu_put(vcpu);
2346 	kvm_put_guest_fpu(vcpu);
2347 	vcpu->arch.last_host_tsc = native_read_tsc();
2348 }
2349 
2350 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2351 				    struct kvm_lapic_state *s)
2352 {
2353 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2354 
2355 	return 0;
2356 }
2357 
2358 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2359 				    struct kvm_lapic_state *s)
2360 {
2361 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2362 	kvm_apic_post_state_restore(vcpu);
2363 	update_cr8_intercept(vcpu);
2364 
2365 	return 0;
2366 }
2367 
2368 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2369 				    struct kvm_interrupt *irq)
2370 {
2371 	if (irq->irq < 0 || irq->irq >= 256)
2372 		return -EINVAL;
2373 	if (irqchip_in_kernel(vcpu->kvm))
2374 		return -ENXIO;
2375 
2376 	kvm_queue_interrupt(vcpu, irq->irq, false);
2377 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2378 
2379 	return 0;
2380 }
2381 
2382 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2383 {
2384 	kvm_inject_nmi(vcpu);
2385 
2386 	return 0;
2387 }
2388 
2389 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2390 					   struct kvm_tpr_access_ctl *tac)
2391 {
2392 	if (tac->flags)
2393 		return -EINVAL;
2394 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2395 	return 0;
2396 }
2397 
2398 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2399 					u64 mcg_cap)
2400 {
2401 	int r;
2402 	unsigned bank_num = mcg_cap & 0xff, bank;
2403 
2404 	r = -EINVAL;
2405 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2406 		goto out;
2407 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2408 		goto out;
2409 	r = 0;
2410 	vcpu->arch.mcg_cap = mcg_cap;
2411 	/* Init IA32_MCG_CTL to all 1s */
2412 	if (mcg_cap & MCG_CTL_P)
2413 		vcpu->arch.mcg_ctl = ~(u64)0;
2414 	/* Init IA32_MCi_CTL to all 1s */
2415 	for (bank = 0; bank < bank_num; bank++)
2416 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2417 out:
2418 	return r;
2419 }
2420 
2421 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2422 				      struct kvm_x86_mce *mce)
2423 {
2424 	u64 mcg_cap = vcpu->arch.mcg_cap;
2425 	unsigned bank_num = mcg_cap & 0xff;
2426 	u64 *banks = vcpu->arch.mce_banks;
2427 
2428 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2429 		return -EINVAL;
2430 	/*
2431 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2432 	 * reporting is disabled
2433 	 */
2434 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2435 	    vcpu->arch.mcg_ctl != ~(u64)0)
2436 		return 0;
2437 	banks += 4 * mce->bank;
2438 	/*
2439 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2440 	 * reporting is disabled for the bank
2441 	 */
2442 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2443 		return 0;
2444 	if (mce->status & MCI_STATUS_UC) {
2445 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2446 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2447 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2448 			return 0;
2449 		}
2450 		if (banks[1] & MCI_STATUS_VAL)
2451 			mce->status |= MCI_STATUS_OVER;
2452 		banks[2] = mce->addr;
2453 		banks[3] = mce->misc;
2454 		vcpu->arch.mcg_status = mce->mcg_status;
2455 		banks[1] = mce->status;
2456 		kvm_queue_exception(vcpu, MC_VECTOR);
2457 	} else if (!(banks[1] & MCI_STATUS_VAL)
2458 		   || !(banks[1] & MCI_STATUS_UC)) {
2459 		if (banks[1] & MCI_STATUS_VAL)
2460 			mce->status |= MCI_STATUS_OVER;
2461 		banks[2] = mce->addr;
2462 		banks[3] = mce->misc;
2463 		banks[1] = mce->status;
2464 	} else
2465 		banks[1] |= MCI_STATUS_OVER;
2466 	return 0;
2467 }
2468 
2469 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2470 					       struct kvm_vcpu_events *events)
2471 {
2472 	process_nmi(vcpu);
2473 	events->exception.injected =
2474 		vcpu->arch.exception.pending &&
2475 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2476 	events->exception.nr = vcpu->arch.exception.nr;
2477 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2478 	events->exception.pad = 0;
2479 	events->exception.error_code = vcpu->arch.exception.error_code;
2480 
2481 	events->interrupt.injected =
2482 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2483 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2484 	events->interrupt.soft = 0;
2485 	events->interrupt.shadow =
2486 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2487 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2488 
2489 	events->nmi.injected = vcpu->arch.nmi_injected;
2490 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2491 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2492 	events->nmi.pad = 0;
2493 
2494 	events->sipi_vector = vcpu->arch.sipi_vector;
2495 
2496 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2497 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2498 			 | KVM_VCPUEVENT_VALID_SHADOW);
2499 	memset(&events->reserved, 0, sizeof(events->reserved));
2500 }
2501 
2502 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2503 					      struct kvm_vcpu_events *events)
2504 {
2505 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2506 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2507 			      | KVM_VCPUEVENT_VALID_SHADOW))
2508 		return -EINVAL;
2509 
2510 	process_nmi(vcpu);
2511 	vcpu->arch.exception.pending = events->exception.injected;
2512 	vcpu->arch.exception.nr = events->exception.nr;
2513 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2514 	vcpu->arch.exception.error_code = events->exception.error_code;
2515 
2516 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2517 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2518 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2519 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2520 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2521 						  events->interrupt.shadow);
2522 
2523 	vcpu->arch.nmi_injected = events->nmi.injected;
2524 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2525 		vcpu->arch.nmi_pending = events->nmi.pending;
2526 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2527 
2528 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2529 		vcpu->arch.sipi_vector = events->sipi_vector;
2530 
2531 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2532 
2533 	return 0;
2534 }
2535 
2536 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2537 					     struct kvm_debugregs *dbgregs)
2538 {
2539 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2540 	dbgregs->dr6 = vcpu->arch.dr6;
2541 	dbgregs->dr7 = vcpu->arch.dr7;
2542 	dbgregs->flags = 0;
2543 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2544 }
2545 
2546 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2547 					    struct kvm_debugregs *dbgregs)
2548 {
2549 	if (dbgregs->flags)
2550 		return -EINVAL;
2551 
2552 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2553 	vcpu->arch.dr6 = dbgregs->dr6;
2554 	vcpu->arch.dr7 = dbgregs->dr7;
2555 
2556 	return 0;
2557 }
2558 
2559 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2560 					 struct kvm_xsave *guest_xsave)
2561 {
2562 	if (cpu_has_xsave)
2563 		memcpy(guest_xsave->region,
2564 			&vcpu->arch.guest_fpu.state->xsave,
2565 			xstate_size);
2566 	else {
2567 		memcpy(guest_xsave->region,
2568 			&vcpu->arch.guest_fpu.state->fxsave,
2569 			sizeof(struct i387_fxsave_struct));
2570 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2571 			XSTATE_FPSSE;
2572 	}
2573 }
2574 
2575 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2576 					struct kvm_xsave *guest_xsave)
2577 {
2578 	u64 xstate_bv =
2579 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2580 
2581 	if (cpu_has_xsave)
2582 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2583 			guest_xsave->region, xstate_size);
2584 	else {
2585 		if (xstate_bv & ~XSTATE_FPSSE)
2586 			return -EINVAL;
2587 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2588 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2589 	}
2590 	return 0;
2591 }
2592 
2593 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2594 					struct kvm_xcrs *guest_xcrs)
2595 {
2596 	if (!cpu_has_xsave) {
2597 		guest_xcrs->nr_xcrs = 0;
2598 		return;
2599 	}
2600 
2601 	guest_xcrs->nr_xcrs = 1;
2602 	guest_xcrs->flags = 0;
2603 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2604 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2605 }
2606 
2607 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2608 				       struct kvm_xcrs *guest_xcrs)
2609 {
2610 	int i, r = 0;
2611 
2612 	if (!cpu_has_xsave)
2613 		return -EINVAL;
2614 
2615 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2616 		return -EINVAL;
2617 
2618 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2619 		/* Only support XCR0 currently */
2620 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2621 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2622 				guest_xcrs->xcrs[0].value);
2623 			break;
2624 		}
2625 	if (r)
2626 		r = -EINVAL;
2627 	return r;
2628 }
2629 
2630 /*
2631  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2632  * stopped by the hypervisor.  This function will be called from the host only.
2633  * EINVAL is returned when the host attempts to set the flag for a guest that
2634  * does not support pv clocks.
2635  */
2636 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2637 {
2638 	struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
2639 	if (!vcpu->arch.time_page)
2640 		return -EINVAL;
2641 	src->flags |= PVCLOCK_GUEST_STOPPED;
2642 	mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT);
2643 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2644 	return 0;
2645 }
2646 
2647 long kvm_arch_vcpu_ioctl(struct file *filp,
2648 			 unsigned int ioctl, unsigned long arg)
2649 {
2650 	struct kvm_vcpu *vcpu = filp->private_data;
2651 	void __user *argp = (void __user *)arg;
2652 	int r;
2653 	union {
2654 		struct kvm_lapic_state *lapic;
2655 		struct kvm_xsave *xsave;
2656 		struct kvm_xcrs *xcrs;
2657 		void *buffer;
2658 	} u;
2659 
2660 	u.buffer = NULL;
2661 	switch (ioctl) {
2662 	case KVM_GET_LAPIC: {
2663 		r = -EINVAL;
2664 		if (!vcpu->arch.apic)
2665 			goto out;
2666 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2667 
2668 		r = -ENOMEM;
2669 		if (!u.lapic)
2670 			goto out;
2671 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2672 		if (r)
2673 			goto out;
2674 		r = -EFAULT;
2675 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2676 			goto out;
2677 		r = 0;
2678 		break;
2679 	}
2680 	case KVM_SET_LAPIC: {
2681 		r = -EINVAL;
2682 		if (!vcpu->arch.apic)
2683 			goto out;
2684 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
2685 		if (IS_ERR(u.lapic)) {
2686 			r = PTR_ERR(u.lapic);
2687 			goto out;
2688 		}
2689 
2690 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2691 		if (r)
2692 			goto out;
2693 		r = 0;
2694 		break;
2695 	}
2696 	case KVM_INTERRUPT: {
2697 		struct kvm_interrupt irq;
2698 
2699 		r = -EFAULT;
2700 		if (copy_from_user(&irq, argp, sizeof irq))
2701 			goto out;
2702 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2703 		if (r)
2704 			goto out;
2705 		r = 0;
2706 		break;
2707 	}
2708 	case KVM_NMI: {
2709 		r = kvm_vcpu_ioctl_nmi(vcpu);
2710 		if (r)
2711 			goto out;
2712 		r = 0;
2713 		break;
2714 	}
2715 	case KVM_SET_CPUID: {
2716 		struct kvm_cpuid __user *cpuid_arg = argp;
2717 		struct kvm_cpuid cpuid;
2718 
2719 		r = -EFAULT;
2720 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2721 			goto out;
2722 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2723 		if (r)
2724 			goto out;
2725 		break;
2726 	}
2727 	case KVM_SET_CPUID2: {
2728 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2729 		struct kvm_cpuid2 cpuid;
2730 
2731 		r = -EFAULT;
2732 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2733 			goto out;
2734 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2735 					      cpuid_arg->entries);
2736 		if (r)
2737 			goto out;
2738 		break;
2739 	}
2740 	case KVM_GET_CPUID2: {
2741 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2742 		struct kvm_cpuid2 cpuid;
2743 
2744 		r = -EFAULT;
2745 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2746 			goto out;
2747 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2748 					      cpuid_arg->entries);
2749 		if (r)
2750 			goto out;
2751 		r = -EFAULT;
2752 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2753 			goto out;
2754 		r = 0;
2755 		break;
2756 	}
2757 	case KVM_GET_MSRS:
2758 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2759 		break;
2760 	case KVM_SET_MSRS:
2761 		r = msr_io(vcpu, argp, do_set_msr, 0);
2762 		break;
2763 	case KVM_TPR_ACCESS_REPORTING: {
2764 		struct kvm_tpr_access_ctl tac;
2765 
2766 		r = -EFAULT;
2767 		if (copy_from_user(&tac, argp, sizeof tac))
2768 			goto out;
2769 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2770 		if (r)
2771 			goto out;
2772 		r = -EFAULT;
2773 		if (copy_to_user(argp, &tac, sizeof tac))
2774 			goto out;
2775 		r = 0;
2776 		break;
2777 	};
2778 	case KVM_SET_VAPIC_ADDR: {
2779 		struct kvm_vapic_addr va;
2780 
2781 		r = -EINVAL;
2782 		if (!irqchip_in_kernel(vcpu->kvm))
2783 			goto out;
2784 		r = -EFAULT;
2785 		if (copy_from_user(&va, argp, sizeof va))
2786 			goto out;
2787 		r = 0;
2788 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2789 		break;
2790 	}
2791 	case KVM_X86_SETUP_MCE: {
2792 		u64 mcg_cap;
2793 
2794 		r = -EFAULT;
2795 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2796 			goto out;
2797 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2798 		break;
2799 	}
2800 	case KVM_X86_SET_MCE: {
2801 		struct kvm_x86_mce mce;
2802 
2803 		r = -EFAULT;
2804 		if (copy_from_user(&mce, argp, sizeof mce))
2805 			goto out;
2806 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2807 		break;
2808 	}
2809 	case KVM_GET_VCPU_EVENTS: {
2810 		struct kvm_vcpu_events events;
2811 
2812 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2813 
2814 		r = -EFAULT;
2815 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2816 			break;
2817 		r = 0;
2818 		break;
2819 	}
2820 	case KVM_SET_VCPU_EVENTS: {
2821 		struct kvm_vcpu_events events;
2822 
2823 		r = -EFAULT;
2824 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2825 			break;
2826 
2827 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2828 		break;
2829 	}
2830 	case KVM_GET_DEBUGREGS: {
2831 		struct kvm_debugregs dbgregs;
2832 
2833 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2834 
2835 		r = -EFAULT;
2836 		if (copy_to_user(argp, &dbgregs,
2837 				 sizeof(struct kvm_debugregs)))
2838 			break;
2839 		r = 0;
2840 		break;
2841 	}
2842 	case KVM_SET_DEBUGREGS: {
2843 		struct kvm_debugregs dbgregs;
2844 
2845 		r = -EFAULT;
2846 		if (copy_from_user(&dbgregs, argp,
2847 				   sizeof(struct kvm_debugregs)))
2848 			break;
2849 
2850 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2851 		break;
2852 	}
2853 	case KVM_GET_XSAVE: {
2854 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2855 		r = -ENOMEM;
2856 		if (!u.xsave)
2857 			break;
2858 
2859 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2860 
2861 		r = -EFAULT;
2862 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2863 			break;
2864 		r = 0;
2865 		break;
2866 	}
2867 	case KVM_SET_XSAVE: {
2868 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
2869 		if (IS_ERR(u.xsave)) {
2870 			r = PTR_ERR(u.xsave);
2871 			goto out;
2872 		}
2873 
2874 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2875 		break;
2876 	}
2877 	case KVM_GET_XCRS: {
2878 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2879 		r = -ENOMEM;
2880 		if (!u.xcrs)
2881 			break;
2882 
2883 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2884 
2885 		r = -EFAULT;
2886 		if (copy_to_user(argp, u.xcrs,
2887 				 sizeof(struct kvm_xcrs)))
2888 			break;
2889 		r = 0;
2890 		break;
2891 	}
2892 	case KVM_SET_XCRS: {
2893 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2894 		if (IS_ERR(u.xcrs)) {
2895 			r = PTR_ERR(u.xcrs);
2896 			goto out;
2897 		}
2898 
2899 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2900 		break;
2901 	}
2902 	case KVM_SET_TSC_KHZ: {
2903 		u32 user_tsc_khz;
2904 
2905 		r = -EINVAL;
2906 		user_tsc_khz = (u32)arg;
2907 
2908 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2909 			goto out;
2910 
2911 		if (user_tsc_khz == 0)
2912 			user_tsc_khz = tsc_khz;
2913 
2914 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
2915 
2916 		r = 0;
2917 		goto out;
2918 	}
2919 	case KVM_GET_TSC_KHZ: {
2920 		r = vcpu->arch.virtual_tsc_khz;
2921 		goto out;
2922 	}
2923 	case KVM_KVMCLOCK_CTRL: {
2924 		r = kvm_set_guest_paused(vcpu);
2925 		goto out;
2926 	}
2927 	default:
2928 		r = -EINVAL;
2929 	}
2930 out:
2931 	kfree(u.buffer);
2932 	return r;
2933 }
2934 
2935 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2936 {
2937 	return VM_FAULT_SIGBUS;
2938 }
2939 
2940 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2941 {
2942 	int ret;
2943 
2944 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2945 		return -1;
2946 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2947 	return ret;
2948 }
2949 
2950 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2951 					      u64 ident_addr)
2952 {
2953 	kvm->arch.ept_identity_map_addr = ident_addr;
2954 	return 0;
2955 }
2956 
2957 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2958 					  u32 kvm_nr_mmu_pages)
2959 {
2960 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2961 		return -EINVAL;
2962 
2963 	mutex_lock(&kvm->slots_lock);
2964 	spin_lock(&kvm->mmu_lock);
2965 
2966 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2967 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2968 
2969 	spin_unlock(&kvm->mmu_lock);
2970 	mutex_unlock(&kvm->slots_lock);
2971 	return 0;
2972 }
2973 
2974 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2975 {
2976 	return kvm->arch.n_max_mmu_pages;
2977 }
2978 
2979 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2980 {
2981 	int r;
2982 
2983 	r = 0;
2984 	switch (chip->chip_id) {
2985 	case KVM_IRQCHIP_PIC_MASTER:
2986 		memcpy(&chip->chip.pic,
2987 			&pic_irqchip(kvm)->pics[0],
2988 			sizeof(struct kvm_pic_state));
2989 		break;
2990 	case KVM_IRQCHIP_PIC_SLAVE:
2991 		memcpy(&chip->chip.pic,
2992 			&pic_irqchip(kvm)->pics[1],
2993 			sizeof(struct kvm_pic_state));
2994 		break;
2995 	case KVM_IRQCHIP_IOAPIC:
2996 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2997 		break;
2998 	default:
2999 		r = -EINVAL;
3000 		break;
3001 	}
3002 	return r;
3003 }
3004 
3005 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3006 {
3007 	int r;
3008 
3009 	r = 0;
3010 	switch (chip->chip_id) {
3011 	case KVM_IRQCHIP_PIC_MASTER:
3012 		spin_lock(&pic_irqchip(kvm)->lock);
3013 		memcpy(&pic_irqchip(kvm)->pics[0],
3014 			&chip->chip.pic,
3015 			sizeof(struct kvm_pic_state));
3016 		spin_unlock(&pic_irqchip(kvm)->lock);
3017 		break;
3018 	case KVM_IRQCHIP_PIC_SLAVE:
3019 		spin_lock(&pic_irqchip(kvm)->lock);
3020 		memcpy(&pic_irqchip(kvm)->pics[1],
3021 			&chip->chip.pic,
3022 			sizeof(struct kvm_pic_state));
3023 		spin_unlock(&pic_irqchip(kvm)->lock);
3024 		break;
3025 	case KVM_IRQCHIP_IOAPIC:
3026 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3027 		break;
3028 	default:
3029 		r = -EINVAL;
3030 		break;
3031 	}
3032 	kvm_pic_update_irq(pic_irqchip(kvm));
3033 	return r;
3034 }
3035 
3036 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3037 {
3038 	int r = 0;
3039 
3040 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3041 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3042 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3043 	return r;
3044 }
3045 
3046 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3047 {
3048 	int r = 0;
3049 
3050 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3051 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3052 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3053 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3054 	return r;
3055 }
3056 
3057 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3058 {
3059 	int r = 0;
3060 
3061 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3062 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3063 		sizeof(ps->channels));
3064 	ps->flags = kvm->arch.vpit->pit_state.flags;
3065 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3066 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3067 	return r;
3068 }
3069 
3070 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3071 {
3072 	int r = 0, start = 0;
3073 	u32 prev_legacy, cur_legacy;
3074 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3075 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3076 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3077 	if (!prev_legacy && cur_legacy)
3078 		start = 1;
3079 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3080 	       sizeof(kvm->arch.vpit->pit_state.channels));
3081 	kvm->arch.vpit->pit_state.flags = ps->flags;
3082 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3083 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3084 	return r;
3085 }
3086 
3087 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3088 				 struct kvm_reinject_control *control)
3089 {
3090 	if (!kvm->arch.vpit)
3091 		return -ENXIO;
3092 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3093 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3094 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3095 	return 0;
3096 }
3097 
3098 /**
3099  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3100  * @kvm: kvm instance
3101  * @log: slot id and address to which we copy the log
3102  *
3103  * We need to keep it in mind that VCPU threads can write to the bitmap
3104  * concurrently.  So, to avoid losing data, we keep the following order for
3105  * each bit:
3106  *
3107  *   1. Take a snapshot of the bit and clear it if needed.
3108  *   2. Write protect the corresponding page.
3109  *   3. Flush TLB's if needed.
3110  *   4. Copy the snapshot to the userspace.
3111  *
3112  * Between 2 and 3, the guest may write to the page using the remaining TLB
3113  * entry.  This is not a problem because the page will be reported dirty at
3114  * step 4 using the snapshot taken before and step 3 ensures that successive
3115  * writes will be logged for the next call.
3116  */
3117 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3118 {
3119 	int r;
3120 	struct kvm_memory_slot *memslot;
3121 	unsigned long n, i;
3122 	unsigned long *dirty_bitmap;
3123 	unsigned long *dirty_bitmap_buffer;
3124 	bool is_dirty = false;
3125 
3126 	mutex_lock(&kvm->slots_lock);
3127 
3128 	r = -EINVAL;
3129 	if (log->slot >= KVM_MEMORY_SLOTS)
3130 		goto out;
3131 
3132 	memslot = id_to_memslot(kvm->memslots, log->slot);
3133 
3134 	dirty_bitmap = memslot->dirty_bitmap;
3135 	r = -ENOENT;
3136 	if (!dirty_bitmap)
3137 		goto out;
3138 
3139 	n = kvm_dirty_bitmap_bytes(memslot);
3140 
3141 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3142 	memset(dirty_bitmap_buffer, 0, n);
3143 
3144 	spin_lock(&kvm->mmu_lock);
3145 
3146 	for (i = 0; i < n / sizeof(long); i++) {
3147 		unsigned long mask;
3148 		gfn_t offset;
3149 
3150 		if (!dirty_bitmap[i])
3151 			continue;
3152 
3153 		is_dirty = true;
3154 
3155 		mask = xchg(&dirty_bitmap[i], 0);
3156 		dirty_bitmap_buffer[i] = mask;
3157 
3158 		offset = i * BITS_PER_LONG;
3159 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3160 	}
3161 	if (is_dirty)
3162 		kvm_flush_remote_tlbs(kvm);
3163 
3164 	spin_unlock(&kvm->mmu_lock);
3165 
3166 	r = -EFAULT;
3167 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3168 		goto out;
3169 
3170 	r = 0;
3171 out:
3172 	mutex_unlock(&kvm->slots_lock);
3173 	return r;
3174 }
3175 
3176 long kvm_arch_vm_ioctl(struct file *filp,
3177 		       unsigned int ioctl, unsigned long arg)
3178 {
3179 	struct kvm *kvm = filp->private_data;
3180 	void __user *argp = (void __user *)arg;
3181 	int r = -ENOTTY;
3182 	/*
3183 	 * This union makes it completely explicit to gcc-3.x
3184 	 * that these two variables' stack usage should be
3185 	 * combined, not added together.
3186 	 */
3187 	union {
3188 		struct kvm_pit_state ps;
3189 		struct kvm_pit_state2 ps2;
3190 		struct kvm_pit_config pit_config;
3191 	} u;
3192 
3193 	switch (ioctl) {
3194 	case KVM_SET_TSS_ADDR:
3195 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3196 		if (r < 0)
3197 			goto out;
3198 		break;
3199 	case KVM_SET_IDENTITY_MAP_ADDR: {
3200 		u64 ident_addr;
3201 
3202 		r = -EFAULT;
3203 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3204 			goto out;
3205 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3206 		if (r < 0)
3207 			goto out;
3208 		break;
3209 	}
3210 	case KVM_SET_NR_MMU_PAGES:
3211 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3212 		if (r)
3213 			goto out;
3214 		break;
3215 	case KVM_GET_NR_MMU_PAGES:
3216 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3217 		break;
3218 	case KVM_CREATE_IRQCHIP: {
3219 		struct kvm_pic *vpic;
3220 
3221 		mutex_lock(&kvm->lock);
3222 		r = -EEXIST;
3223 		if (kvm->arch.vpic)
3224 			goto create_irqchip_unlock;
3225 		r = -EINVAL;
3226 		if (atomic_read(&kvm->online_vcpus))
3227 			goto create_irqchip_unlock;
3228 		r = -ENOMEM;
3229 		vpic = kvm_create_pic(kvm);
3230 		if (vpic) {
3231 			r = kvm_ioapic_init(kvm);
3232 			if (r) {
3233 				mutex_lock(&kvm->slots_lock);
3234 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3235 							  &vpic->dev_master);
3236 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3237 							  &vpic->dev_slave);
3238 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3239 							  &vpic->dev_eclr);
3240 				mutex_unlock(&kvm->slots_lock);
3241 				kfree(vpic);
3242 				goto create_irqchip_unlock;
3243 			}
3244 		} else
3245 			goto create_irqchip_unlock;
3246 		smp_wmb();
3247 		kvm->arch.vpic = vpic;
3248 		smp_wmb();
3249 		r = kvm_setup_default_irq_routing(kvm);
3250 		if (r) {
3251 			mutex_lock(&kvm->slots_lock);
3252 			mutex_lock(&kvm->irq_lock);
3253 			kvm_ioapic_destroy(kvm);
3254 			kvm_destroy_pic(kvm);
3255 			mutex_unlock(&kvm->irq_lock);
3256 			mutex_unlock(&kvm->slots_lock);
3257 		}
3258 	create_irqchip_unlock:
3259 		mutex_unlock(&kvm->lock);
3260 		break;
3261 	}
3262 	case KVM_CREATE_PIT:
3263 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3264 		goto create_pit;
3265 	case KVM_CREATE_PIT2:
3266 		r = -EFAULT;
3267 		if (copy_from_user(&u.pit_config, argp,
3268 				   sizeof(struct kvm_pit_config)))
3269 			goto out;
3270 	create_pit:
3271 		mutex_lock(&kvm->slots_lock);
3272 		r = -EEXIST;
3273 		if (kvm->arch.vpit)
3274 			goto create_pit_unlock;
3275 		r = -ENOMEM;
3276 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3277 		if (kvm->arch.vpit)
3278 			r = 0;
3279 	create_pit_unlock:
3280 		mutex_unlock(&kvm->slots_lock);
3281 		break;
3282 	case KVM_IRQ_LINE_STATUS:
3283 	case KVM_IRQ_LINE: {
3284 		struct kvm_irq_level irq_event;
3285 
3286 		r = -EFAULT;
3287 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3288 			goto out;
3289 		r = -ENXIO;
3290 		if (irqchip_in_kernel(kvm)) {
3291 			__s32 status;
3292 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3293 					irq_event.irq, irq_event.level);
3294 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3295 				r = -EFAULT;
3296 				irq_event.status = status;
3297 				if (copy_to_user(argp, &irq_event,
3298 							sizeof irq_event))
3299 					goto out;
3300 			}
3301 			r = 0;
3302 		}
3303 		break;
3304 	}
3305 	case KVM_GET_IRQCHIP: {
3306 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3307 		struct kvm_irqchip *chip;
3308 
3309 		chip = memdup_user(argp, sizeof(*chip));
3310 		if (IS_ERR(chip)) {
3311 			r = PTR_ERR(chip);
3312 			goto out;
3313 		}
3314 
3315 		r = -ENXIO;
3316 		if (!irqchip_in_kernel(kvm))
3317 			goto get_irqchip_out;
3318 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3319 		if (r)
3320 			goto get_irqchip_out;
3321 		r = -EFAULT;
3322 		if (copy_to_user(argp, chip, sizeof *chip))
3323 			goto get_irqchip_out;
3324 		r = 0;
3325 	get_irqchip_out:
3326 		kfree(chip);
3327 		if (r)
3328 			goto out;
3329 		break;
3330 	}
3331 	case KVM_SET_IRQCHIP: {
3332 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3333 		struct kvm_irqchip *chip;
3334 
3335 		chip = memdup_user(argp, sizeof(*chip));
3336 		if (IS_ERR(chip)) {
3337 			r = PTR_ERR(chip);
3338 			goto out;
3339 		}
3340 
3341 		r = -ENXIO;
3342 		if (!irqchip_in_kernel(kvm))
3343 			goto set_irqchip_out;
3344 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3345 		if (r)
3346 			goto set_irqchip_out;
3347 		r = 0;
3348 	set_irqchip_out:
3349 		kfree(chip);
3350 		if (r)
3351 			goto out;
3352 		break;
3353 	}
3354 	case KVM_GET_PIT: {
3355 		r = -EFAULT;
3356 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3357 			goto out;
3358 		r = -ENXIO;
3359 		if (!kvm->arch.vpit)
3360 			goto out;
3361 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3362 		if (r)
3363 			goto out;
3364 		r = -EFAULT;
3365 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3366 			goto out;
3367 		r = 0;
3368 		break;
3369 	}
3370 	case KVM_SET_PIT: {
3371 		r = -EFAULT;
3372 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3373 			goto out;
3374 		r = -ENXIO;
3375 		if (!kvm->arch.vpit)
3376 			goto out;
3377 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3378 		if (r)
3379 			goto out;
3380 		r = 0;
3381 		break;
3382 	}
3383 	case KVM_GET_PIT2: {
3384 		r = -ENXIO;
3385 		if (!kvm->arch.vpit)
3386 			goto out;
3387 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3388 		if (r)
3389 			goto out;
3390 		r = -EFAULT;
3391 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3392 			goto out;
3393 		r = 0;
3394 		break;
3395 	}
3396 	case KVM_SET_PIT2: {
3397 		r = -EFAULT;
3398 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3399 			goto out;
3400 		r = -ENXIO;
3401 		if (!kvm->arch.vpit)
3402 			goto out;
3403 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3404 		if (r)
3405 			goto out;
3406 		r = 0;
3407 		break;
3408 	}
3409 	case KVM_REINJECT_CONTROL: {
3410 		struct kvm_reinject_control control;
3411 		r =  -EFAULT;
3412 		if (copy_from_user(&control, argp, sizeof(control)))
3413 			goto out;
3414 		r = kvm_vm_ioctl_reinject(kvm, &control);
3415 		if (r)
3416 			goto out;
3417 		r = 0;
3418 		break;
3419 	}
3420 	case KVM_XEN_HVM_CONFIG: {
3421 		r = -EFAULT;
3422 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3423 				   sizeof(struct kvm_xen_hvm_config)))
3424 			goto out;
3425 		r = -EINVAL;
3426 		if (kvm->arch.xen_hvm_config.flags)
3427 			goto out;
3428 		r = 0;
3429 		break;
3430 	}
3431 	case KVM_SET_CLOCK: {
3432 		struct kvm_clock_data user_ns;
3433 		u64 now_ns;
3434 		s64 delta;
3435 
3436 		r = -EFAULT;
3437 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3438 			goto out;
3439 
3440 		r = -EINVAL;
3441 		if (user_ns.flags)
3442 			goto out;
3443 
3444 		r = 0;
3445 		local_irq_disable();
3446 		now_ns = get_kernel_ns();
3447 		delta = user_ns.clock - now_ns;
3448 		local_irq_enable();
3449 		kvm->arch.kvmclock_offset = delta;
3450 		break;
3451 	}
3452 	case KVM_GET_CLOCK: {
3453 		struct kvm_clock_data user_ns;
3454 		u64 now_ns;
3455 
3456 		local_irq_disable();
3457 		now_ns = get_kernel_ns();
3458 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3459 		local_irq_enable();
3460 		user_ns.flags = 0;
3461 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3462 
3463 		r = -EFAULT;
3464 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3465 			goto out;
3466 		r = 0;
3467 		break;
3468 	}
3469 
3470 	default:
3471 		;
3472 	}
3473 out:
3474 	return r;
3475 }
3476 
3477 static void kvm_init_msr_list(void)
3478 {
3479 	u32 dummy[2];
3480 	unsigned i, j;
3481 
3482 	/* skip the first msrs in the list. KVM-specific */
3483 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3484 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3485 			continue;
3486 		if (j < i)
3487 			msrs_to_save[j] = msrs_to_save[i];
3488 		j++;
3489 	}
3490 	num_msrs_to_save = j;
3491 }
3492 
3493 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3494 			   const void *v)
3495 {
3496 	int handled = 0;
3497 	int n;
3498 
3499 	do {
3500 		n = min(len, 8);
3501 		if (!(vcpu->arch.apic &&
3502 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3503 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3504 			break;
3505 		handled += n;
3506 		addr += n;
3507 		len -= n;
3508 		v += n;
3509 	} while (len);
3510 
3511 	return handled;
3512 }
3513 
3514 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3515 {
3516 	int handled = 0;
3517 	int n;
3518 
3519 	do {
3520 		n = min(len, 8);
3521 		if (!(vcpu->arch.apic &&
3522 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3523 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3524 			break;
3525 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3526 		handled += n;
3527 		addr += n;
3528 		len -= n;
3529 		v += n;
3530 	} while (len);
3531 
3532 	return handled;
3533 }
3534 
3535 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3536 			struct kvm_segment *var, int seg)
3537 {
3538 	kvm_x86_ops->set_segment(vcpu, var, seg);
3539 }
3540 
3541 void kvm_get_segment(struct kvm_vcpu *vcpu,
3542 		     struct kvm_segment *var, int seg)
3543 {
3544 	kvm_x86_ops->get_segment(vcpu, var, seg);
3545 }
3546 
3547 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3548 {
3549 	gpa_t t_gpa;
3550 	struct x86_exception exception;
3551 
3552 	BUG_ON(!mmu_is_nested(vcpu));
3553 
3554 	/* NPT walks are always user-walks */
3555 	access |= PFERR_USER_MASK;
3556 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3557 
3558 	return t_gpa;
3559 }
3560 
3561 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3562 			      struct x86_exception *exception)
3563 {
3564 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3565 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3566 }
3567 
3568  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3569 				struct x86_exception *exception)
3570 {
3571 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3572 	access |= PFERR_FETCH_MASK;
3573 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3574 }
3575 
3576 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3577 			       struct x86_exception *exception)
3578 {
3579 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3580 	access |= PFERR_WRITE_MASK;
3581 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3582 }
3583 
3584 /* uses this to access any guest's mapped memory without checking CPL */
3585 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3586 				struct x86_exception *exception)
3587 {
3588 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3589 }
3590 
3591 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3592 				      struct kvm_vcpu *vcpu, u32 access,
3593 				      struct x86_exception *exception)
3594 {
3595 	void *data = val;
3596 	int r = X86EMUL_CONTINUE;
3597 
3598 	while (bytes) {
3599 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3600 							    exception);
3601 		unsigned offset = addr & (PAGE_SIZE-1);
3602 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3603 		int ret;
3604 
3605 		if (gpa == UNMAPPED_GVA)
3606 			return X86EMUL_PROPAGATE_FAULT;
3607 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3608 		if (ret < 0) {
3609 			r = X86EMUL_IO_NEEDED;
3610 			goto out;
3611 		}
3612 
3613 		bytes -= toread;
3614 		data += toread;
3615 		addr += toread;
3616 	}
3617 out:
3618 	return r;
3619 }
3620 
3621 /* used for instruction fetching */
3622 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3623 				gva_t addr, void *val, unsigned int bytes,
3624 				struct x86_exception *exception)
3625 {
3626 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3627 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3628 
3629 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3630 					  access | PFERR_FETCH_MASK,
3631 					  exception);
3632 }
3633 
3634 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3635 			       gva_t addr, void *val, unsigned int bytes,
3636 			       struct x86_exception *exception)
3637 {
3638 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3639 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3640 
3641 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3642 					  exception);
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3645 
3646 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3647 				      gva_t addr, void *val, unsigned int bytes,
3648 				      struct x86_exception *exception)
3649 {
3650 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3651 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3652 }
3653 
3654 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3655 				       gva_t addr, void *val,
3656 				       unsigned int bytes,
3657 				       struct x86_exception *exception)
3658 {
3659 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3660 	void *data = val;
3661 	int r = X86EMUL_CONTINUE;
3662 
3663 	while (bytes) {
3664 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3665 							     PFERR_WRITE_MASK,
3666 							     exception);
3667 		unsigned offset = addr & (PAGE_SIZE-1);
3668 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3669 		int ret;
3670 
3671 		if (gpa == UNMAPPED_GVA)
3672 			return X86EMUL_PROPAGATE_FAULT;
3673 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3674 		if (ret < 0) {
3675 			r = X86EMUL_IO_NEEDED;
3676 			goto out;
3677 		}
3678 
3679 		bytes -= towrite;
3680 		data += towrite;
3681 		addr += towrite;
3682 	}
3683 out:
3684 	return r;
3685 }
3686 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3687 
3688 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3689 				gpa_t *gpa, struct x86_exception *exception,
3690 				bool write)
3691 {
3692 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3693 
3694 	if (vcpu_match_mmio_gva(vcpu, gva) &&
3695 		  check_write_user_access(vcpu, write, access,
3696 		  vcpu->arch.access)) {
3697 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3698 					(gva & (PAGE_SIZE - 1));
3699 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3700 		return 1;
3701 	}
3702 
3703 	if (write)
3704 		access |= PFERR_WRITE_MASK;
3705 
3706 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3707 
3708 	if (*gpa == UNMAPPED_GVA)
3709 		return -1;
3710 
3711 	/* For APIC access vmexit */
3712 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3713 		return 1;
3714 
3715 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3716 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3717 		return 1;
3718 	}
3719 
3720 	return 0;
3721 }
3722 
3723 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3724 			const void *val, int bytes)
3725 {
3726 	int ret;
3727 
3728 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3729 	if (ret < 0)
3730 		return 0;
3731 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3732 	return 1;
3733 }
3734 
3735 struct read_write_emulator_ops {
3736 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3737 				  int bytes);
3738 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3739 				  void *val, int bytes);
3740 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3741 			       int bytes, void *val);
3742 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3743 				    void *val, int bytes);
3744 	bool write;
3745 };
3746 
3747 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3748 {
3749 	if (vcpu->mmio_read_completed) {
3750 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3751 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3752 		vcpu->mmio_read_completed = 0;
3753 		return 1;
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3760 			void *val, int bytes)
3761 {
3762 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3763 }
3764 
3765 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3766 			 void *val, int bytes)
3767 {
3768 	return emulator_write_phys(vcpu, gpa, val, bytes);
3769 }
3770 
3771 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3772 {
3773 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3774 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
3775 }
3776 
3777 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3778 			  void *val, int bytes)
3779 {
3780 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3781 	return X86EMUL_IO_NEEDED;
3782 }
3783 
3784 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3785 			   void *val, int bytes)
3786 {
3787 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3788 
3789 	memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3790 	return X86EMUL_CONTINUE;
3791 }
3792 
3793 static struct read_write_emulator_ops read_emultor = {
3794 	.read_write_prepare = read_prepare,
3795 	.read_write_emulate = read_emulate,
3796 	.read_write_mmio = vcpu_mmio_read,
3797 	.read_write_exit_mmio = read_exit_mmio,
3798 };
3799 
3800 static struct read_write_emulator_ops write_emultor = {
3801 	.read_write_emulate = write_emulate,
3802 	.read_write_mmio = write_mmio,
3803 	.read_write_exit_mmio = write_exit_mmio,
3804 	.write = true,
3805 };
3806 
3807 static int emulator_read_write_onepage(unsigned long addr, void *val,
3808 				       unsigned int bytes,
3809 				       struct x86_exception *exception,
3810 				       struct kvm_vcpu *vcpu,
3811 				       struct read_write_emulator_ops *ops)
3812 {
3813 	gpa_t gpa;
3814 	int handled, ret;
3815 	bool write = ops->write;
3816 	struct kvm_mmio_fragment *frag;
3817 
3818 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3819 
3820 	if (ret < 0)
3821 		return X86EMUL_PROPAGATE_FAULT;
3822 
3823 	/* For APIC access vmexit */
3824 	if (ret)
3825 		goto mmio;
3826 
3827 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3828 		return X86EMUL_CONTINUE;
3829 
3830 mmio:
3831 	/*
3832 	 * Is this MMIO handled locally?
3833 	 */
3834 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3835 	if (handled == bytes)
3836 		return X86EMUL_CONTINUE;
3837 
3838 	gpa += handled;
3839 	bytes -= handled;
3840 	val += handled;
3841 
3842 	while (bytes) {
3843 		unsigned now = min(bytes, 8U);
3844 
3845 		frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3846 		frag->gpa = gpa;
3847 		frag->data = val;
3848 		frag->len = now;
3849 
3850 		gpa += now;
3851 		val += now;
3852 		bytes -= now;
3853 	}
3854 	return X86EMUL_CONTINUE;
3855 }
3856 
3857 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3858 			void *val, unsigned int bytes,
3859 			struct x86_exception *exception,
3860 			struct read_write_emulator_ops *ops)
3861 {
3862 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3863 	gpa_t gpa;
3864 	int rc;
3865 
3866 	if (ops->read_write_prepare &&
3867 		  ops->read_write_prepare(vcpu, val, bytes))
3868 		return X86EMUL_CONTINUE;
3869 
3870 	vcpu->mmio_nr_fragments = 0;
3871 
3872 	/* Crossing a page boundary? */
3873 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3874 		int now;
3875 
3876 		now = -addr & ~PAGE_MASK;
3877 		rc = emulator_read_write_onepage(addr, val, now, exception,
3878 						 vcpu, ops);
3879 
3880 		if (rc != X86EMUL_CONTINUE)
3881 			return rc;
3882 		addr += now;
3883 		val += now;
3884 		bytes -= now;
3885 	}
3886 
3887 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
3888 					 vcpu, ops);
3889 	if (rc != X86EMUL_CONTINUE)
3890 		return rc;
3891 
3892 	if (!vcpu->mmio_nr_fragments)
3893 		return rc;
3894 
3895 	gpa = vcpu->mmio_fragments[0].gpa;
3896 
3897 	vcpu->mmio_needed = 1;
3898 	vcpu->mmio_cur_fragment = 0;
3899 
3900 	vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3901 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3902 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3903 	vcpu->run->mmio.phys_addr = gpa;
3904 
3905 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3906 }
3907 
3908 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3909 				  unsigned long addr,
3910 				  void *val,
3911 				  unsigned int bytes,
3912 				  struct x86_exception *exception)
3913 {
3914 	return emulator_read_write(ctxt, addr, val, bytes,
3915 				   exception, &read_emultor);
3916 }
3917 
3918 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3919 			    unsigned long addr,
3920 			    const void *val,
3921 			    unsigned int bytes,
3922 			    struct x86_exception *exception)
3923 {
3924 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
3925 				   exception, &write_emultor);
3926 }
3927 
3928 #define CMPXCHG_TYPE(t, ptr, old, new) \
3929 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3930 
3931 #ifdef CONFIG_X86_64
3932 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3933 #else
3934 #  define CMPXCHG64(ptr, old, new) \
3935 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3936 #endif
3937 
3938 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3939 				     unsigned long addr,
3940 				     const void *old,
3941 				     const void *new,
3942 				     unsigned int bytes,
3943 				     struct x86_exception *exception)
3944 {
3945 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3946 	gpa_t gpa;
3947 	struct page *page;
3948 	char *kaddr;
3949 	bool exchanged;
3950 
3951 	/* guests cmpxchg8b have to be emulated atomically */
3952 	if (bytes > 8 || (bytes & (bytes - 1)))
3953 		goto emul_write;
3954 
3955 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3956 
3957 	if (gpa == UNMAPPED_GVA ||
3958 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3959 		goto emul_write;
3960 
3961 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3962 		goto emul_write;
3963 
3964 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3965 	if (is_error_page(page)) {
3966 		kvm_release_page_clean(page);
3967 		goto emul_write;
3968 	}
3969 
3970 	kaddr = kmap_atomic(page);
3971 	kaddr += offset_in_page(gpa);
3972 	switch (bytes) {
3973 	case 1:
3974 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3975 		break;
3976 	case 2:
3977 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3978 		break;
3979 	case 4:
3980 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3981 		break;
3982 	case 8:
3983 		exchanged = CMPXCHG64(kaddr, old, new);
3984 		break;
3985 	default:
3986 		BUG();
3987 	}
3988 	kunmap_atomic(kaddr);
3989 	kvm_release_page_dirty(page);
3990 
3991 	if (!exchanged)
3992 		return X86EMUL_CMPXCHG_FAILED;
3993 
3994 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3995 
3996 	return X86EMUL_CONTINUE;
3997 
3998 emul_write:
3999 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4000 
4001 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4002 }
4003 
4004 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4005 {
4006 	/* TODO: String I/O for in kernel device */
4007 	int r;
4008 
4009 	if (vcpu->arch.pio.in)
4010 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4011 				    vcpu->arch.pio.size, pd);
4012 	else
4013 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4014 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4015 				     pd);
4016 	return r;
4017 }
4018 
4019 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4020 			       unsigned short port, void *val,
4021 			       unsigned int count, bool in)
4022 {
4023 	trace_kvm_pio(!in, port, size, count);
4024 
4025 	vcpu->arch.pio.port = port;
4026 	vcpu->arch.pio.in = in;
4027 	vcpu->arch.pio.count  = count;
4028 	vcpu->arch.pio.size = size;
4029 
4030 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4031 		vcpu->arch.pio.count = 0;
4032 		return 1;
4033 	}
4034 
4035 	vcpu->run->exit_reason = KVM_EXIT_IO;
4036 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4037 	vcpu->run->io.size = size;
4038 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4039 	vcpu->run->io.count = count;
4040 	vcpu->run->io.port = port;
4041 
4042 	return 0;
4043 }
4044 
4045 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4046 				    int size, unsigned short port, void *val,
4047 				    unsigned int count)
4048 {
4049 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4050 	int ret;
4051 
4052 	if (vcpu->arch.pio.count)
4053 		goto data_avail;
4054 
4055 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4056 	if (ret) {
4057 data_avail:
4058 		memcpy(val, vcpu->arch.pio_data, size * count);
4059 		vcpu->arch.pio.count = 0;
4060 		return 1;
4061 	}
4062 
4063 	return 0;
4064 }
4065 
4066 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4067 				     int size, unsigned short port,
4068 				     const void *val, unsigned int count)
4069 {
4070 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4071 
4072 	memcpy(vcpu->arch.pio_data, val, size * count);
4073 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4074 }
4075 
4076 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4077 {
4078 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4079 }
4080 
4081 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4082 {
4083 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4084 }
4085 
4086 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4087 {
4088 	if (!need_emulate_wbinvd(vcpu))
4089 		return X86EMUL_CONTINUE;
4090 
4091 	if (kvm_x86_ops->has_wbinvd_exit()) {
4092 		int cpu = get_cpu();
4093 
4094 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4095 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4096 				wbinvd_ipi, NULL, 1);
4097 		put_cpu();
4098 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4099 	} else
4100 		wbinvd();
4101 	return X86EMUL_CONTINUE;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4104 
4105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4106 {
4107 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4108 }
4109 
4110 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4111 {
4112 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4113 }
4114 
4115 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4116 {
4117 
4118 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4119 }
4120 
4121 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4122 {
4123 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4124 }
4125 
4126 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4127 {
4128 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4129 	unsigned long value;
4130 
4131 	switch (cr) {
4132 	case 0:
4133 		value = kvm_read_cr0(vcpu);
4134 		break;
4135 	case 2:
4136 		value = vcpu->arch.cr2;
4137 		break;
4138 	case 3:
4139 		value = kvm_read_cr3(vcpu);
4140 		break;
4141 	case 4:
4142 		value = kvm_read_cr4(vcpu);
4143 		break;
4144 	case 8:
4145 		value = kvm_get_cr8(vcpu);
4146 		break;
4147 	default:
4148 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4149 		return 0;
4150 	}
4151 
4152 	return value;
4153 }
4154 
4155 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4156 {
4157 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4158 	int res = 0;
4159 
4160 	switch (cr) {
4161 	case 0:
4162 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4163 		break;
4164 	case 2:
4165 		vcpu->arch.cr2 = val;
4166 		break;
4167 	case 3:
4168 		res = kvm_set_cr3(vcpu, val);
4169 		break;
4170 	case 4:
4171 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4172 		break;
4173 	case 8:
4174 		res = kvm_set_cr8(vcpu, val);
4175 		break;
4176 	default:
4177 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4178 		res = -1;
4179 	}
4180 
4181 	return res;
4182 }
4183 
4184 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4185 {
4186 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4187 }
4188 
4189 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4190 {
4191 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4192 }
4193 
4194 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4195 {
4196 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4197 }
4198 
4199 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4200 {
4201 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4202 }
4203 
4204 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4205 {
4206 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4207 }
4208 
4209 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4210 {
4211 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4212 }
4213 
4214 static unsigned long emulator_get_cached_segment_base(
4215 	struct x86_emulate_ctxt *ctxt, int seg)
4216 {
4217 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4218 }
4219 
4220 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4221 				 struct desc_struct *desc, u32 *base3,
4222 				 int seg)
4223 {
4224 	struct kvm_segment var;
4225 
4226 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4227 	*selector = var.selector;
4228 
4229 	if (var.unusable)
4230 		return false;
4231 
4232 	if (var.g)
4233 		var.limit >>= 12;
4234 	set_desc_limit(desc, var.limit);
4235 	set_desc_base(desc, (unsigned long)var.base);
4236 #ifdef CONFIG_X86_64
4237 	if (base3)
4238 		*base3 = var.base >> 32;
4239 #endif
4240 	desc->type = var.type;
4241 	desc->s = var.s;
4242 	desc->dpl = var.dpl;
4243 	desc->p = var.present;
4244 	desc->avl = var.avl;
4245 	desc->l = var.l;
4246 	desc->d = var.db;
4247 	desc->g = var.g;
4248 
4249 	return true;
4250 }
4251 
4252 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4253 				 struct desc_struct *desc, u32 base3,
4254 				 int seg)
4255 {
4256 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4257 	struct kvm_segment var;
4258 
4259 	var.selector = selector;
4260 	var.base = get_desc_base(desc);
4261 #ifdef CONFIG_X86_64
4262 	var.base |= ((u64)base3) << 32;
4263 #endif
4264 	var.limit = get_desc_limit(desc);
4265 	if (desc->g)
4266 		var.limit = (var.limit << 12) | 0xfff;
4267 	var.type = desc->type;
4268 	var.present = desc->p;
4269 	var.dpl = desc->dpl;
4270 	var.db = desc->d;
4271 	var.s = desc->s;
4272 	var.l = desc->l;
4273 	var.g = desc->g;
4274 	var.avl = desc->avl;
4275 	var.present = desc->p;
4276 	var.unusable = !var.present;
4277 	var.padding = 0;
4278 
4279 	kvm_set_segment(vcpu, &var, seg);
4280 	return;
4281 }
4282 
4283 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4284 			    u32 msr_index, u64 *pdata)
4285 {
4286 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4287 }
4288 
4289 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4290 			    u32 msr_index, u64 data)
4291 {
4292 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4293 }
4294 
4295 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4296 			     u32 pmc, u64 *pdata)
4297 {
4298 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4299 }
4300 
4301 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4302 {
4303 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4304 }
4305 
4306 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4307 {
4308 	preempt_disable();
4309 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4310 	/*
4311 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4312 	 * so it may be clear at this point.
4313 	 */
4314 	clts();
4315 }
4316 
4317 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4318 {
4319 	preempt_enable();
4320 }
4321 
4322 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4323 			      struct x86_instruction_info *info,
4324 			      enum x86_intercept_stage stage)
4325 {
4326 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4327 }
4328 
4329 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4330 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4331 {
4332 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4333 }
4334 
4335 static struct x86_emulate_ops emulate_ops = {
4336 	.read_std            = kvm_read_guest_virt_system,
4337 	.write_std           = kvm_write_guest_virt_system,
4338 	.fetch               = kvm_fetch_guest_virt,
4339 	.read_emulated       = emulator_read_emulated,
4340 	.write_emulated      = emulator_write_emulated,
4341 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4342 	.invlpg              = emulator_invlpg,
4343 	.pio_in_emulated     = emulator_pio_in_emulated,
4344 	.pio_out_emulated    = emulator_pio_out_emulated,
4345 	.get_segment         = emulator_get_segment,
4346 	.set_segment         = emulator_set_segment,
4347 	.get_cached_segment_base = emulator_get_cached_segment_base,
4348 	.get_gdt             = emulator_get_gdt,
4349 	.get_idt	     = emulator_get_idt,
4350 	.set_gdt             = emulator_set_gdt,
4351 	.set_idt	     = emulator_set_idt,
4352 	.get_cr              = emulator_get_cr,
4353 	.set_cr              = emulator_set_cr,
4354 	.set_rflags          = emulator_set_rflags,
4355 	.cpl                 = emulator_get_cpl,
4356 	.get_dr              = emulator_get_dr,
4357 	.set_dr              = emulator_set_dr,
4358 	.set_msr             = emulator_set_msr,
4359 	.get_msr             = emulator_get_msr,
4360 	.read_pmc            = emulator_read_pmc,
4361 	.halt                = emulator_halt,
4362 	.wbinvd              = emulator_wbinvd,
4363 	.fix_hypercall       = emulator_fix_hypercall,
4364 	.get_fpu             = emulator_get_fpu,
4365 	.put_fpu             = emulator_put_fpu,
4366 	.intercept           = emulator_intercept,
4367 	.get_cpuid           = emulator_get_cpuid,
4368 };
4369 
4370 static void cache_all_regs(struct kvm_vcpu *vcpu)
4371 {
4372 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4373 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4374 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4375 	vcpu->arch.regs_dirty = ~0;
4376 }
4377 
4378 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4379 {
4380 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4381 	/*
4382 	 * an sti; sti; sequence only disable interrupts for the first
4383 	 * instruction. So, if the last instruction, be it emulated or
4384 	 * not, left the system with the INT_STI flag enabled, it
4385 	 * means that the last instruction is an sti. We should not
4386 	 * leave the flag on in this case. The same goes for mov ss
4387 	 */
4388 	if (!(int_shadow & mask))
4389 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4390 }
4391 
4392 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4393 {
4394 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4395 	if (ctxt->exception.vector == PF_VECTOR)
4396 		kvm_propagate_fault(vcpu, &ctxt->exception);
4397 	else if (ctxt->exception.error_code_valid)
4398 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4399 				      ctxt->exception.error_code);
4400 	else
4401 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4402 }
4403 
4404 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4405 			      const unsigned long *regs)
4406 {
4407 	memset(&ctxt->twobyte, 0,
4408 	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4409 	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4410 
4411 	ctxt->fetch.start = 0;
4412 	ctxt->fetch.end = 0;
4413 	ctxt->io_read.pos = 0;
4414 	ctxt->io_read.end = 0;
4415 	ctxt->mem_read.pos = 0;
4416 	ctxt->mem_read.end = 0;
4417 }
4418 
4419 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4420 {
4421 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4422 	int cs_db, cs_l;
4423 
4424 	/*
4425 	 * TODO: fix emulate.c to use guest_read/write_register
4426 	 * instead of direct ->regs accesses, can save hundred cycles
4427 	 * on Intel for instructions that don't read/change RSP, for
4428 	 * for example.
4429 	 */
4430 	cache_all_regs(vcpu);
4431 
4432 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4433 
4434 	ctxt->eflags = kvm_get_rflags(vcpu);
4435 	ctxt->eip = kvm_rip_read(vcpu);
4436 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4437 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4438 		     cs_l				? X86EMUL_MODE_PROT64 :
4439 		     cs_db				? X86EMUL_MODE_PROT32 :
4440 							  X86EMUL_MODE_PROT16;
4441 	ctxt->guest_mode = is_guest_mode(vcpu);
4442 
4443 	init_decode_cache(ctxt, vcpu->arch.regs);
4444 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4445 }
4446 
4447 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4448 {
4449 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4450 	int ret;
4451 
4452 	init_emulate_ctxt(vcpu);
4453 
4454 	ctxt->op_bytes = 2;
4455 	ctxt->ad_bytes = 2;
4456 	ctxt->_eip = ctxt->eip + inc_eip;
4457 	ret = emulate_int_real(ctxt, irq);
4458 
4459 	if (ret != X86EMUL_CONTINUE)
4460 		return EMULATE_FAIL;
4461 
4462 	ctxt->eip = ctxt->_eip;
4463 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4464 	kvm_rip_write(vcpu, ctxt->eip);
4465 	kvm_set_rflags(vcpu, ctxt->eflags);
4466 
4467 	if (irq == NMI_VECTOR)
4468 		vcpu->arch.nmi_pending = 0;
4469 	else
4470 		vcpu->arch.interrupt.pending = false;
4471 
4472 	return EMULATE_DONE;
4473 }
4474 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4475 
4476 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4477 {
4478 	int r = EMULATE_DONE;
4479 
4480 	++vcpu->stat.insn_emulation_fail;
4481 	trace_kvm_emulate_insn_failed(vcpu);
4482 	if (!is_guest_mode(vcpu)) {
4483 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4484 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4485 		vcpu->run->internal.ndata = 0;
4486 		r = EMULATE_FAIL;
4487 	}
4488 	kvm_queue_exception(vcpu, UD_VECTOR);
4489 
4490 	return r;
4491 }
4492 
4493 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4494 {
4495 	gpa_t gpa;
4496 
4497 	if (tdp_enabled)
4498 		return false;
4499 
4500 	/*
4501 	 * if emulation was due to access to shadowed page table
4502 	 * and it failed try to unshadow page and re-entetr the
4503 	 * guest to let CPU execute the instruction.
4504 	 */
4505 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4506 		return true;
4507 
4508 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4509 
4510 	if (gpa == UNMAPPED_GVA)
4511 		return true; /* let cpu generate fault */
4512 
4513 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4514 		return true;
4515 
4516 	return false;
4517 }
4518 
4519 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4520 			      unsigned long cr2,  int emulation_type)
4521 {
4522 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4523 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4524 
4525 	last_retry_eip = vcpu->arch.last_retry_eip;
4526 	last_retry_addr = vcpu->arch.last_retry_addr;
4527 
4528 	/*
4529 	 * If the emulation is caused by #PF and it is non-page_table
4530 	 * writing instruction, it means the VM-EXIT is caused by shadow
4531 	 * page protected, we can zap the shadow page and retry this
4532 	 * instruction directly.
4533 	 *
4534 	 * Note: if the guest uses a non-page-table modifying instruction
4535 	 * on the PDE that points to the instruction, then we will unmap
4536 	 * the instruction and go to an infinite loop. So, we cache the
4537 	 * last retried eip and the last fault address, if we meet the eip
4538 	 * and the address again, we can break out of the potential infinite
4539 	 * loop.
4540 	 */
4541 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4542 
4543 	if (!(emulation_type & EMULTYPE_RETRY))
4544 		return false;
4545 
4546 	if (x86_page_table_writing_insn(ctxt))
4547 		return false;
4548 
4549 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4550 		return false;
4551 
4552 	vcpu->arch.last_retry_eip = ctxt->eip;
4553 	vcpu->arch.last_retry_addr = cr2;
4554 
4555 	if (!vcpu->arch.mmu.direct_map)
4556 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4557 
4558 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4559 
4560 	return true;
4561 }
4562 
4563 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4564 			    unsigned long cr2,
4565 			    int emulation_type,
4566 			    void *insn,
4567 			    int insn_len)
4568 {
4569 	int r;
4570 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4571 	bool writeback = true;
4572 
4573 	kvm_clear_exception_queue(vcpu);
4574 
4575 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4576 		init_emulate_ctxt(vcpu);
4577 		ctxt->interruptibility = 0;
4578 		ctxt->have_exception = false;
4579 		ctxt->perm_ok = false;
4580 
4581 		ctxt->only_vendor_specific_insn
4582 			= emulation_type & EMULTYPE_TRAP_UD;
4583 
4584 		r = x86_decode_insn(ctxt, insn, insn_len);
4585 
4586 		trace_kvm_emulate_insn_start(vcpu);
4587 		++vcpu->stat.insn_emulation;
4588 		if (r != EMULATION_OK)  {
4589 			if (emulation_type & EMULTYPE_TRAP_UD)
4590 				return EMULATE_FAIL;
4591 			if (reexecute_instruction(vcpu, cr2))
4592 				return EMULATE_DONE;
4593 			if (emulation_type & EMULTYPE_SKIP)
4594 				return EMULATE_FAIL;
4595 			return handle_emulation_failure(vcpu);
4596 		}
4597 	}
4598 
4599 	if (emulation_type & EMULTYPE_SKIP) {
4600 		kvm_rip_write(vcpu, ctxt->_eip);
4601 		return EMULATE_DONE;
4602 	}
4603 
4604 	if (retry_instruction(ctxt, cr2, emulation_type))
4605 		return EMULATE_DONE;
4606 
4607 	/* this is needed for vmware backdoor interface to work since it
4608 	   changes registers values  during IO operation */
4609 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4610 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4611 		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4612 	}
4613 
4614 restart:
4615 	r = x86_emulate_insn(ctxt);
4616 
4617 	if (r == EMULATION_INTERCEPTED)
4618 		return EMULATE_DONE;
4619 
4620 	if (r == EMULATION_FAILED) {
4621 		if (reexecute_instruction(vcpu, cr2))
4622 			return EMULATE_DONE;
4623 
4624 		return handle_emulation_failure(vcpu);
4625 	}
4626 
4627 	if (ctxt->have_exception) {
4628 		inject_emulated_exception(vcpu);
4629 		r = EMULATE_DONE;
4630 	} else if (vcpu->arch.pio.count) {
4631 		if (!vcpu->arch.pio.in)
4632 			vcpu->arch.pio.count = 0;
4633 		else
4634 			writeback = false;
4635 		r = EMULATE_DO_MMIO;
4636 	} else if (vcpu->mmio_needed) {
4637 		if (!vcpu->mmio_is_write)
4638 			writeback = false;
4639 		r = EMULATE_DO_MMIO;
4640 	} else if (r == EMULATION_RESTART)
4641 		goto restart;
4642 	else
4643 		r = EMULATE_DONE;
4644 
4645 	if (writeback) {
4646 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4647 		kvm_set_rflags(vcpu, ctxt->eflags);
4648 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4649 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4650 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4651 		kvm_rip_write(vcpu, ctxt->eip);
4652 	} else
4653 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4654 
4655 	return r;
4656 }
4657 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4658 
4659 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4660 {
4661 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4662 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4663 					    size, port, &val, 1);
4664 	/* do not return to emulator after return from userspace */
4665 	vcpu->arch.pio.count = 0;
4666 	return ret;
4667 }
4668 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4669 
4670 static void tsc_bad(void *info)
4671 {
4672 	__this_cpu_write(cpu_tsc_khz, 0);
4673 }
4674 
4675 static void tsc_khz_changed(void *data)
4676 {
4677 	struct cpufreq_freqs *freq = data;
4678 	unsigned long khz = 0;
4679 
4680 	if (data)
4681 		khz = freq->new;
4682 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4683 		khz = cpufreq_quick_get(raw_smp_processor_id());
4684 	if (!khz)
4685 		khz = tsc_khz;
4686 	__this_cpu_write(cpu_tsc_khz, khz);
4687 }
4688 
4689 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4690 				     void *data)
4691 {
4692 	struct cpufreq_freqs *freq = data;
4693 	struct kvm *kvm;
4694 	struct kvm_vcpu *vcpu;
4695 	int i, send_ipi = 0;
4696 
4697 	/*
4698 	 * We allow guests to temporarily run on slowing clocks,
4699 	 * provided we notify them after, or to run on accelerating
4700 	 * clocks, provided we notify them before.  Thus time never
4701 	 * goes backwards.
4702 	 *
4703 	 * However, we have a problem.  We can't atomically update
4704 	 * the frequency of a given CPU from this function; it is
4705 	 * merely a notifier, which can be called from any CPU.
4706 	 * Changing the TSC frequency at arbitrary points in time
4707 	 * requires a recomputation of local variables related to
4708 	 * the TSC for each VCPU.  We must flag these local variables
4709 	 * to be updated and be sure the update takes place with the
4710 	 * new frequency before any guests proceed.
4711 	 *
4712 	 * Unfortunately, the combination of hotplug CPU and frequency
4713 	 * change creates an intractable locking scenario; the order
4714 	 * of when these callouts happen is undefined with respect to
4715 	 * CPU hotplug, and they can race with each other.  As such,
4716 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4717 	 * undefined; you can actually have a CPU frequency change take
4718 	 * place in between the computation of X and the setting of the
4719 	 * variable.  To protect against this problem, all updates of
4720 	 * the per_cpu tsc_khz variable are done in an interrupt
4721 	 * protected IPI, and all callers wishing to update the value
4722 	 * must wait for a synchronous IPI to complete (which is trivial
4723 	 * if the caller is on the CPU already).  This establishes the
4724 	 * necessary total order on variable updates.
4725 	 *
4726 	 * Note that because a guest time update may take place
4727 	 * anytime after the setting of the VCPU's request bit, the
4728 	 * correct TSC value must be set before the request.  However,
4729 	 * to ensure the update actually makes it to any guest which
4730 	 * starts running in hardware virtualization between the set
4731 	 * and the acquisition of the spinlock, we must also ping the
4732 	 * CPU after setting the request bit.
4733 	 *
4734 	 */
4735 
4736 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4737 		return 0;
4738 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4739 		return 0;
4740 
4741 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4742 
4743 	raw_spin_lock(&kvm_lock);
4744 	list_for_each_entry(kvm, &vm_list, vm_list) {
4745 		kvm_for_each_vcpu(i, vcpu, kvm) {
4746 			if (vcpu->cpu != freq->cpu)
4747 				continue;
4748 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4749 			if (vcpu->cpu != smp_processor_id())
4750 				send_ipi = 1;
4751 		}
4752 	}
4753 	raw_spin_unlock(&kvm_lock);
4754 
4755 	if (freq->old < freq->new && send_ipi) {
4756 		/*
4757 		 * We upscale the frequency.  Must make the guest
4758 		 * doesn't see old kvmclock values while running with
4759 		 * the new frequency, otherwise we risk the guest sees
4760 		 * time go backwards.
4761 		 *
4762 		 * In case we update the frequency for another cpu
4763 		 * (which might be in guest context) send an interrupt
4764 		 * to kick the cpu out of guest context.  Next time
4765 		 * guest context is entered kvmclock will be updated,
4766 		 * so the guest will not see stale values.
4767 		 */
4768 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4769 	}
4770 	return 0;
4771 }
4772 
4773 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4774 	.notifier_call  = kvmclock_cpufreq_notifier
4775 };
4776 
4777 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4778 					unsigned long action, void *hcpu)
4779 {
4780 	unsigned int cpu = (unsigned long)hcpu;
4781 
4782 	switch (action) {
4783 		case CPU_ONLINE:
4784 		case CPU_DOWN_FAILED:
4785 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4786 			break;
4787 		case CPU_DOWN_PREPARE:
4788 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4789 			break;
4790 	}
4791 	return NOTIFY_OK;
4792 }
4793 
4794 static struct notifier_block kvmclock_cpu_notifier_block = {
4795 	.notifier_call  = kvmclock_cpu_notifier,
4796 	.priority = -INT_MAX
4797 };
4798 
4799 static void kvm_timer_init(void)
4800 {
4801 	int cpu;
4802 
4803 	max_tsc_khz = tsc_khz;
4804 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4805 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4806 #ifdef CONFIG_CPU_FREQ
4807 		struct cpufreq_policy policy;
4808 		memset(&policy, 0, sizeof(policy));
4809 		cpu = get_cpu();
4810 		cpufreq_get_policy(&policy, cpu);
4811 		if (policy.cpuinfo.max_freq)
4812 			max_tsc_khz = policy.cpuinfo.max_freq;
4813 		put_cpu();
4814 #endif
4815 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4816 					  CPUFREQ_TRANSITION_NOTIFIER);
4817 	}
4818 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4819 	for_each_online_cpu(cpu)
4820 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4821 }
4822 
4823 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4824 
4825 int kvm_is_in_guest(void)
4826 {
4827 	return __this_cpu_read(current_vcpu) != NULL;
4828 }
4829 
4830 static int kvm_is_user_mode(void)
4831 {
4832 	int user_mode = 3;
4833 
4834 	if (__this_cpu_read(current_vcpu))
4835 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4836 
4837 	return user_mode != 0;
4838 }
4839 
4840 static unsigned long kvm_get_guest_ip(void)
4841 {
4842 	unsigned long ip = 0;
4843 
4844 	if (__this_cpu_read(current_vcpu))
4845 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4846 
4847 	return ip;
4848 }
4849 
4850 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4851 	.is_in_guest		= kvm_is_in_guest,
4852 	.is_user_mode		= kvm_is_user_mode,
4853 	.get_guest_ip		= kvm_get_guest_ip,
4854 };
4855 
4856 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4857 {
4858 	__this_cpu_write(current_vcpu, vcpu);
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4861 
4862 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4863 {
4864 	__this_cpu_write(current_vcpu, NULL);
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4867 
4868 static void kvm_set_mmio_spte_mask(void)
4869 {
4870 	u64 mask;
4871 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
4872 
4873 	/*
4874 	 * Set the reserved bits and the present bit of an paging-structure
4875 	 * entry to generate page fault with PFER.RSV = 1.
4876 	 */
4877 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4878 	mask |= 1ull;
4879 
4880 #ifdef CONFIG_X86_64
4881 	/*
4882 	 * If reserved bit is not supported, clear the present bit to disable
4883 	 * mmio page fault.
4884 	 */
4885 	if (maxphyaddr == 52)
4886 		mask &= ~1ull;
4887 #endif
4888 
4889 	kvm_mmu_set_mmio_spte_mask(mask);
4890 }
4891 
4892 int kvm_arch_init(void *opaque)
4893 {
4894 	int r;
4895 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4896 
4897 	if (kvm_x86_ops) {
4898 		printk(KERN_ERR "kvm: already loaded the other module\n");
4899 		r = -EEXIST;
4900 		goto out;
4901 	}
4902 
4903 	if (!ops->cpu_has_kvm_support()) {
4904 		printk(KERN_ERR "kvm: no hardware support\n");
4905 		r = -EOPNOTSUPP;
4906 		goto out;
4907 	}
4908 	if (ops->disabled_by_bios()) {
4909 		printk(KERN_ERR "kvm: disabled by bios\n");
4910 		r = -EOPNOTSUPP;
4911 		goto out;
4912 	}
4913 
4914 	r = kvm_mmu_module_init();
4915 	if (r)
4916 		goto out;
4917 
4918 	kvm_set_mmio_spte_mask();
4919 	kvm_init_msr_list();
4920 
4921 	kvm_x86_ops = ops;
4922 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4923 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4924 
4925 	kvm_timer_init();
4926 
4927 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4928 
4929 	if (cpu_has_xsave)
4930 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4931 
4932 	return 0;
4933 
4934 out:
4935 	return r;
4936 }
4937 
4938 void kvm_arch_exit(void)
4939 {
4940 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4941 
4942 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4943 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4944 					    CPUFREQ_TRANSITION_NOTIFIER);
4945 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4946 	kvm_x86_ops = NULL;
4947 	kvm_mmu_module_exit();
4948 }
4949 
4950 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4951 {
4952 	++vcpu->stat.halt_exits;
4953 	if (irqchip_in_kernel(vcpu->kvm)) {
4954 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4955 		return 1;
4956 	} else {
4957 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4958 		return 0;
4959 	}
4960 }
4961 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4962 
4963 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4964 {
4965 	u64 param, ingpa, outgpa, ret;
4966 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4967 	bool fast, longmode;
4968 	int cs_db, cs_l;
4969 
4970 	/*
4971 	 * hypercall generates UD from non zero cpl and real mode
4972 	 * per HYPER-V spec
4973 	 */
4974 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4975 		kvm_queue_exception(vcpu, UD_VECTOR);
4976 		return 0;
4977 	}
4978 
4979 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4980 	longmode = is_long_mode(vcpu) && cs_l == 1;
4981 
4982 	if (!longmode) {
4983 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4984 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4985 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4986 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4987 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4988 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4989 	}
4990 #ifdef CONFIG_X86_64
4991 	else {
4992 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4993 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4994 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4995 	}
4996 #endif
4997 
4998 	code = param & 0xffff;
4999 	fast = (param >> 16) & 0x1;
5000 	rep_cnt = (param >> 32) & 0xfff;
5001 	rep_idx = (param >> 48) & 0xfff;
5002 
5003 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5004 
5005 	switch (code) {
5006 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5007 		kvm_vcpu_on_spin(vcpu);
5008 		break;
5009 	default:
5010 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5011 		break;
5012 	}
5013 
5014 	ret = res | (((u64)rep_done & 0xfff) << 32);
5015 	if (longmode) {
5016 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5017 	} else {
5018 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5019 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5020 	}
5021 
5022 	return 1;
5023 }
5024 
5025 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5026 {
5027 	unsigned long nr, a0, a1, a2, a3, ret;
5028 	int r = 1;
5029 
5030 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5031 		return kvm_hv_hypercall(vcpu);
5032 
5033 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5034 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5035 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5036 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5037 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5038 
5039 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5040 
5041 	if (!is_long_mode(vcpu)) {
5042 		nr &= 0xFFFFFFFF;
5043 		a0 &= 0xFFFFFFFF;
5044 		a1 &= 0xFFFFFFFF;
5045 		a2 &= 0xFFFFFFFF;
5046 		a3 &= 0xFFFFFFFF;
5047 	}
5048 
5049 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5050 		ret = -KVM_EPERM;
5051 		goto out;
5052 	}
5053 
5054 	switch (nr) {
5055 	case KVM_HC_VAPIC_POLL_IRQ:
5056 		ret = 0;
5057 		break;
5058 	default:
5059 		ret = -KVM_ENOSYS;
5060 		break;
5061 	}
5062 out:
5063 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5064 	++vcpu->stat.hypercalls;
5065 	return r;
5066 }
5067 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5068 
5069 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5070 {
5071 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5072 	char instruction[3];
5073 	unsigned long rip = kvm_rip_read(vcpu);
5074 
5075 	/*
5076 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5077 	 * to ensure that the updated hypercall appears atomically across all
5078 	 * VCPUs.
5079 	 */
5080 	kvm_mmu_zap_all(vcpu->kvm);
5081 
5082 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5083 
5084 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5085 }
5086 
5087 /*
5088  * Check if userspace requested an interrupt window, and that the
5089  * interrupt window is open.
5090  *
5091  * No need to exit to userspace if we already have an interrupt queued.
5092  */
5093 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5094 {
5095 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5096 		vcpu->run->request_interrupt_window &&
5097 		kvm_arch_interrupt_allowed(vcpu));
5098 }
5099 
5100 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5101 {
5102 	struct kvm_run *kvm_run = vcpu->run;
5103 
5104 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5105 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5106 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5107 	if (irqchip_in_kernel(vcpu->kvm))
5108 		kvm_run->ready_for_interrupt_injection = 1;
5109 	else
5110 		kvm_run->ready_for_interrupt_injection =
5111 			kvm_arch_interrupt_allowed(vcpu) &&
5112 			!kvm_cpu_has_interrupt(vcpu) &&
5113 			!kvm_event_needs_reinjection(vcpu);
5114 }
5115 
5116 static void vapic_enter(struct kvm_vcpu *vcpu)
5117 {
5118 	struct kvm_lapic *apic = vcpu->arch.apic;
5119 	struct page *page;
5120 
5121 	if (!apic || !apic->vapic_addr)
5122 		return;
5123 
5124 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5125 
5126 	vcpu->arch.apic->vapic_page = page;
5127 }
5128 
5129 static void vapic_exit(struct kvm_vcpu *vcpu)
5130 {
5131 	struct kvm_lapic *apic = vcpu->arch.apic;
5132 	int idx;
5133 
5134 	if (!apic || !apic->vapic_addr)
5135 		return;
5136 
5137 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5138 	kvm_release_page_dirty(apic->vapic_page);
5139 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5140 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5141 }
5142 
5143 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5144 {
5145 	int max_irr, tpr;
5146 
5147 	if (!kvm_x86_ops->update_cr8_intercept)
5148 		return;
5149 
5150 	if (!vcpu->arch.apic)
5151 		return;
5152 
5153 	if (!vcpu->arch.apic->vapic_addr)
5154 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5155 	else
5156 		max_irr = -1;
5157 
5158 	if (max_irr != -1)
5159 		max_irr >>= 4;
5160 
5161 	tpr = kvm_lapic_get_cr8(vcpu);
5162 
5163 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5164 }
5165 
5166 static void inject_pending_event(struct kvm_vcpu *vcpu)
5167 {
5168 	/* try to reinject previous events if any */
5169 	if (vcpu->arch.exception.pending) {
5170 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5171 					vcpu->arch.exception.has_error_code,
5172 					vcpu->arch.exception.error_code);
5173 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5174 					  vcpu->arch.exception.has_error_code,
5175 					  vcpu->arch.exception.error_code,
5176 					  vcpu->arch.exception.reinject);
5177 		return;
5178 	}
5179 
5180 	if (vcpu->arch.nmi_injected) {
5181 		kvm_x86_ops->set_nmi(vcpu);
5182 		return;
5183 	}
5184 
5185 	if (vcpu->arch.interrupt.pending) {
5186 		kvm_x86_ops->set_irq(vcpu);
5187 		return;
5188 	}
5189 
5190 	/* try to inject new event if pending */
5191 	if (vcpu->arch.nmi_pending) {
5192 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5193 			--vcpu->arch.nmi_pending;
5194 			vcpu->arch.nmi_injected = true;
5195 			kvm_x86_ops->set_nmi(vcpu);
5196 		}
5197 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5198 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5199 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5200 					    false);
5201 			kvm_x86_ops->set_irq(vcpu);
5202 		}
5203 	}
5204 }
5205 
5206 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5207 {
5208 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5209 			!vcpu->guest_xcr0_loaded) {
5210 		/* kvm_set_xcr() also depends on this */
5211 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5212 		vcpu->guest_xcr0_loaded = 1;
5213 	}
5214 }
5215 
5216 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5217 {
5218 	if (vcpu->guest_xcr0_loaded) {
5219 		if (vcpu->arch.xcr0 != host_xcr0)
5220 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5221 		vcpu->guest_xcr0_loaded = 0;
5222 	}
5223 }
5224 
5225 static void process_nmi(struct kvm_vcpu *vcpu)
5226 {
5227 	unsigned limit = 2;
5228 
5229 	/*
5230 	 * x86 is limited to one NMI running, and one NMI pending after it.
5231 	 * If an NMI is already in progress, limit further NMIs to just one.
5232 	 * Otherwise, allow two (and we'll inject the first one immediately).
5233 	 */
5234 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5235 		limit = 1;
5236 
5237 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5238 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5239 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5240 }
5241 
5242 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5243 {
5244 	int r;
5245 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5246 		vcpu->run->request_interrupt_window;
5247 	bool req_immediate_exit = 0;
5248 
5249 	if (vcpu->requests) {
5250 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5251 			kvm_mmu_unload(vcpu);
5252 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5253 			__kvm_migrate_timers(vcpu);
5254 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5255 			r = kvm_guest_time_update(vcpu);
5256 			if (unlikely(r))
5257 				goto out;
5258 		}
5259 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5260 			kvm_mmu_sync_roots(vcpu);
5261 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5262 			kvm_x86_ops->tlb_flush(vcpu);
5263 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5264 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5265 			r = 0;
5266 			goto out;
5267 		}
5268 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5269 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5270 			r = 0;
5271 			goto out;
5272 		}
5273 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5274 			vcpu->fpu_active = 0;
5275 			kvm_x86_ops->fpu_deactivate(vcpu);
5276 		}
5277 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5278 			/* Page is swapped out. Do synthetic halt */
5279 			vcpu->arch.apf.halted = true;
5280 			r = 1;
5281 			goto out;
5282 		}
5283 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5284 			record_steal_time(vcpu);
5285 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5286 			process_nmi(vcpu);
5287 		req_immediate_exit =
5288 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5289 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5290 			kvm_handle_pmu_event(vcpu);
5291 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5292 			kvm_deliver_pmi(vcpu);
5293 	}
5294 
5295 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5296 		inject_pending_event(vcpu);
5297 
5298 		/* enable NMI/IRQ window open exits if needed */
5299 		if (vcpu->arch.nmi_pending)
5300 			kvm_x86_ops->enable_nmi_window(vcpu);
5301 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5302 			kvm_x86_ops->enable_irq_window(vcpu);
5303 
5304 		if (kvm_lapic_enabled(vcpu)) {
5305 			update_cr8_intercept(vcpu);
5306 			kvm_lapic_sync_to_vapic(vcpu);
5307 		}
5308 	}
5309 
5310 	r = kvm_mmu_reload(vcpu);
5311 	if (unlikely(r)) {
5312 		goto cancel_injection;
5313 	}
5314 
5315 	preempt_disable();
5316 
5317 	kvm_x86_ops->prepare_guest_switch(vcpu);
5318 	if (vcpu->fpu_active)
5319 		kvm_load_guest_fpu(vcpu);
5320 	kvm_load_guest_xcr0(vcpu);
5321 
5322 	vcpu->mode = IN_GUEST_MODE;
5323 
5324 	/* We should set ->mode before check ->requests,
5325 	 * see the comment in make_all_cpus_request.
5326 	 */
5327 	smp_mb();
5328 
5329 	local_irq_disable();
5330 
5331 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5332 	    || need_resched() || signal_pending(current)) {
5333 		vcpu->mode = OUTSIDE_GUEST_MODE;
5334 		smp_wmb();
5335 		local_irq_enable();
5336 		preempt_enable();
5337 		r = 1;
5338 		goto cancel_injection;
5339 	}
5340 
5341 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5342 
5343 	if (req_immediate_exit)
5344 		smp_send_reschedule(vcpu->cpu);
5345 
5346 	kvm_guest_enter();
5347 
5348 	if (unlikely(vcpu->arch.switch_db_regs)) {
5349 		set_debugreg(0, 7);
5350 		set_debugreg(vcpu->arch.eff_db[0], 0);
5351 		set_debugreg(vcpu->arch.eff_db[1], 1);
5352 		set_debugreg(vcpu->arch.eff_db[2], 2);
5353 		set_debugreg(vcpu->arch.eff_db[3], 3);
5354 	}
5355 
5356 	trace_kvm_entry(vcpu->vcpu_id);
5357 	kvm_x86_ops->run(vcpu);
5358 
5359 	/*
5360 	 * If the guest has used debug registers, at least dr7
5361 	 * will be disabled while returning to the host.
5362 	 * If we don't have active breakpoints in the host, we don't
5363 	 * care about the messed up debug address registers. But if
5364 	 * we have some of them active, restore the old state.
5365 	 */
5366 	if (hw_breakpoint_active())
5367 		hw_breakpoint_restore();
5368 
5369 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5370 
5371 	vcpu->mode = OUTSIDE_GUEST_MODE;
5372 	smp_wmb();
5373 	local_irq_enable();
5374 
5375 	++vcpu->stat.exits;
5376 
5377 	/*
5378 	 * We must have an instruction between local_irq_enable() and
5379 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5380 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5381 	 * But we need to prevent reordering, hence this barrier():
5382 	 */
5383 	barrier();
5384 
5385 	kvm_guest_exit();
5386 
5387 	preempt_enable();
5388 
5389 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5390 
5391 	/*
5392 	 * Profile KVM exit RIPs:
5393 	 */
5394 	if (unlikely(prof_on == KVM_PROFILING)) {
5395 		unsigned long rip = kvm_rip_read(vcpu);
5396 		profile_hit(KVM_PROFILING, (void *)rip);
5397 	}
5398 
5399 	if (unlikely(vcpu->arch.tsc_always_catchup))
5400 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5401 
5402 	if (vcpu->arch.apic_attention)
5403 		kvm_lapic_sync_from_vapic(vcpu);
5404 
5405 	r = kvm_x86_ops->handle_exit(vcpu);
5406 	return r;
5407 
5408 cancel_injection:
5409 	kvm_x86_ops->cancel_injection(vcpu);
5410 	if (unlikely(vcpu->arch.apic_attention))
5411 		kvm_lapic_sync_from_vapic(vcpu);
5412 out:
5413 	return r;
5414 }
5415 
5416 
5417 static int __vcpu_run(struct kvm_vcpu *vcpu)
5418 {
5419 	int r;
5420 	struct kvm *kvm = vcpu->kvm;
5421 
5422 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5423 		pr_debug("vcpu %d received sipi with vector # %x\n",
5424 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5425 		kvm_lapic_reset(vcpu);
5426 		r = kvm_arch_vcpu_reset(vcpu);
5427 		if (r)
5428 			return r;
5429 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5430 	}
5431 
5432 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5433 	vapic_enter(vcpu);
5434 
5435 	r = 1;
5436 	while (r > 0) {
5437 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5438 		    !vcpu->arch.apf.halted)
5439 			r = vcpu_enter_guest(vcpu);
5440 		else {
5441 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5442 			kvm_vcpu_block(vcpu);
5443 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5444 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5445 			{
5446 				switch(vcpu->arch.mp_state) {
5447 				case KVM_MP_STATE_HALTED:
5448 					vcpu->arch.mp_state =
5449 						KVM_MP_STATE_RUNNABLE;
5450 				case KVM_MP_STATE_RUNNABLE:
5451 					vcpu->arch.apf.halted = false;
5452 					break;
5453 				case KVM_MP_STATE_SIPI_RECEIVED:
5454 				default:
5455 					r = -EINTR;
5456 					break;
5457 				}
5458 			}
5459 		}
5460 
5461 		if (r <= 0)
5462 			break;
5463 
5464 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5465 		if (kvm_cpu_has_pending_timer(vcpu))
5466 			kvm_inject_pending_timer_irqs(vcpu);
5467 
5468 		if (dm_request_for_irq_injection(vcpu)) {
5469 			r = -EINTR;
5470 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5471 			++vcpu->stat.request_irq_exits;
5472 		}
5473 
5474 		kvm_check_async_pf_completion(vcpu);
5475 
5476 		if (signal_pending(current)) {
5477 			r = -EINTR;
5478 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5479 			++vcpu->stat.signal_exits;
5480 		}
5481 		if (need_resched()) {
5482 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5483 			kvm_resched(vcpu);
5484 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5485 		}
5486 	}
5487 
5488 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5489 
5490 	vapic_exit(vcpu);
5491 
5492 	return r;
5493 }
5494 
5495 /*
5496  * Implements the following, as a state machine:
5497  *
5498  * read:
5499  *   for each fragment
5500  *     write gpa, len
5501  *     exit
5502  *     copy data
5503  *   execute insn
5504  *
5505  * write:
5506  *   for each fragment
5507  *      write gpa, len
5508  *      copy data
5509  *      exit
5510  */
5511 static int complete_mmio(struct kvm_vcpu *vcpu)
5512 {
5513 	struct kvm_run *run = vcpu->run;
5514 	struct kvm_mmio_fragment *frag;
5515 	int r;
5516 
5517 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5518 		return 1;
5519 
5520 	if (vcpu->mmio_needed) {
5521 		/* Complete previous fragment */
5522 		frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5523 		if (!vcpu->mmio_is_write)
5524 			memcpy(frag->data, run->mmio.data, frag->len);
5525 		if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5526 			vcpu->mmio_needed = 0;
5527 			if (vcpu->mmio_is_write)
5528 				return 1;
5529 			vcpu->mmio_read_completed = 1;
5530 			goto done;
5531 		}
5532 		/* Initiate next fragment */
5533 		++frag;
5534 		run->exit_reason = KVM_EXIT_MMIO;
5535 		run->mmio.phys_addr = frag->gpa;
5536 		if (vcpu->mmio_is_write)
5537 			memcpy(run->mmio.data, frag->data, frag->len);
5538 		run->mmio.len = frag->len;
5539 		run->mmio.is_write = vcpu->mmio_is_write;
5540 		return 0;
5541 
5542 	}
5543 done:
5544 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5545 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5546 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5547 	if (r != EMULATE_DONE)
5548 		return 0;
5549 	return 1;
5550 }
5551 
5552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5553 {
5554 	int r;
5555 	sigset_t sigsaved;
5556 
5557 	if (!tsk_used_math(current) && init_fpu(current))
5558 		return -ENOMEM;
5559 
5560 	if (vcpu->sigset_active)
5561 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5562 
5563 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5564 		kvm_vcpu_block(vcpu);
5565 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5566 		r = -EAGAIN;
5567 		goto out;
5568 	}
5569 
5570 	/* re-sync apic's tpr */
5571 	if (!irqchip_in_kernel(vcpu->kvm)) {
5572 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5573 			r = -EINVAL;
5574 			goto out;
5575 		}
5576 	}
5577 
5578 	r = complete_mmio(vcpu);
5579 	if (r <= 0)
5580 		goto out;
5581 
5582 	r = __vcpu_run(vcpu);
5583 
5584 out:
5585 	post_kvm_run_save(vcpu);
5586 	if (vcpu->sigset_active)
5587 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5588 
5589 	return r;
5590 }
5591 
5592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5593 {
5594 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5595 		/*
5596 		 * We are here if userspace calls get_regs() in the middle of
5597 		 * instruction emulation. Registers state needs to be copied
5598 		 * back from emulation context to vcpu. Usrapace shouldn't do
5599 		 * that usually, but some bad designed PV devices (vmware
5600 		 * backdoor interface) need this to work
5601 		 */
5602 		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5603 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5604 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5605 	}
5606 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5607 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5608 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5609 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5610 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5611 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5612 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5613 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5614 #ifdef CONFIG_X86_64
5615 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5616 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5617 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5618 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5619 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5620 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5621 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5622 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5623 #endif
5624 
5625 	regs->rip = kvm_rip_read(vcpu);
5626 	regs->rflags = kvm_get_rflags(vcpu);
5627 
5628 	return 0;
5629 }
5630 
5631 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5632 {
5633 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5634 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5635 
5636 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5637 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5638 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5639 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5640 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5641 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5642 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5643 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5644 #ifdef CONFIG_X86_64
5645 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5646 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5647 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5648 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5649 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5650 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5651 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5652 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5653 #endif
5654 
5655 	kvm_rip_write(vcpu, regs->rip);
5656 	kvm_set_rflags(vcpu, regs->rflags);
5657 
5658 	vcpu->arch.exception.pending = false;
5659 
5660 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5661 
5662 	return 0;
5663 }
5664 
5665 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5666 {
5667 	struct kvm_segment cs;
5668 
5669 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5670 	*db = cs.db;
5671 	*l = cs.l;
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5674 
5675 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5676 				  struct kvm_sregs *sregs)
5677 {
5678 	struct desc_ptr dt;
5679 
5680 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5681 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5682 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5683 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5684 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5685 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5686 
5687 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5688 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5689 
5690 	kvm_x86_ops->get_idt(vcpu, &dt);
5691 	sregs->idt.limit = dt.size;
5692 	sregs->idt.base = dt.address;
5693 	kvm_x86_ops->get_gdt(vcpu, &dt);
5694 	sregs->gdt.limit = dt.size;
5695 	sregs->gdt.base = dt.address;
5696 
5697 	sregs->cr0 = kvm_read_cr0(vcpu);
5698 	sregs->cr2 = vcpu->arch.cr2;
5699 	sregs->cr3 = kvm_read_cr3(vcpu);
5700 	sregs->cr4 = kvm_read_cr4(vcpu);
5701 	sregs->cr8 = kvm_get_cr8(vcpu);
5702 	sregs->efer = vcpu->arch.efer;
5703 	sregs->apic_base = kvm_get_apic_base(vcpu);
5704 
5705 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5706 
5707 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5708 		set_bit(vcpu->arch.interrupt.nr,
5709 			(unsigned long *)sregs->interrupt_bitmap);
5710 
5711 	return 0;
5712 }
5713 
5714 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5715 				    struct kvm_mp_state *mp_state)
5716 {
5717 	mp_state->mp_state = vcpu->arch.mp_state;
5718 	return 0;
5719 }
5720 
5721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5722 				    struct kvm_mp_state *mp_state)
5723 {
5724 	vcpu->arch.mp_state = mp_state->mp_state;
5725 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5726 	return 0;
5727 }
5728 
5729 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5730 		    int reason, bool has_error_code, u32 error_code)
5731 {
5732 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5733 	int ret;
5734 
5735 	init_emulate_ctxt(vcpu);
5736 
5737 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5738 				   has_error_code, error_code);
5739 
5740 	if (ret)
5741 		return EMULATE_FAIL;
5742 
5743 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5744 	kvm_rip_write(vcpu, ctxt->eip);
5745 	kvm_set_rflags(vcpu, ctxt->eflags);
5746 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5747 	return EMULATE_DONE;
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_task_switch);
5750 
5751 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5752 				  struct kvm_sregs *sregs)
5753 {
5754 	int mmu_reset_needed = 0;
5755 	int pending_vec, max_bits, idx;
5756 	struct desc_ptr dt;
5757 
5758 	dt.size = sregs->idt.limit;
5759 	dt.address = sregs->idt.base;
5760 	kvm_x86_ops->set_idt(vcpu, &dt);
5761 	dt.size = sregs->gdt.limit;
5762 	dt.address = sregs->gdt.base;
5763 	kvm_x86_ops->set_gdt(vcpu, &dt);
5764 
5765 	vcpu->arch.cr2 = sregs->cr2;
5766 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5767 	vcpu->arch.cr3 = sregs->cr3;
5768 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5769 
5770 	kvm_set_cr8(vcpu, sregs->cr8);
5771 
5772 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5773 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5774 	kvm_set_apic_base(vcpu, sregs->apic_base);
5775 
5776 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5777 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5778 	vcpu->arch.cr0 = sregs->cr0;
5779 
5780 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5781 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5782 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5783 		kvm_update_cpuid(vcpu);
5784 
5785 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5786 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5787 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5788 		mmu_reset_needed = 1;
5789 	}
5790 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5791 
5792 	if (mmu_reset_needed)
5793 		kvm_mmu_reset_context(vcpu);
5794 
5795 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5796 	pending_vec = find_first_bit(
5797 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5798 	if (pending_vec < max_bits) {
5799 		kvm_queue_interrupt(vcpu, pending_vec, false);
5800 		pr_debug("Set back pending irq %d\n", pending_vec);
5801 	}
5802 
5803 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5804 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5805 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5806 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5807 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5808 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5809 
5810 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5811 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5812 
5813 	update_cr8_intercept(vcpu);
5814 
5815 	/* Older userspace won't unhalt the vcpu on reset. */
5816 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5817 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5818 	    !is_protmode(vcpu))
5819 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5820 
5821 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5822 
5823 	return 0;
5824 }
5825 
5826 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5827 					struct kvm_guest_debug *dbg)
5828 {
5829 	unsigned long rflags;
5830 	int i, r;
5831 
5832 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5833 		r = -EBUSY;
5834 		if (vcpu->arch.exception.pending)
5835 			goto out;
5836 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5837 			kvm_queue_exception(vcpu, DB_VECTOR);
5838 		else
5839 			kvm_queue_exception(vcpu, BP_VECTOR);
5840 	}
5841 
5842 	/*
5843 	 * Read rflags as long as potentially injected trace flags are still
5844 	 * filtered out.
5845 	 */
5846 	rflags = kvm_get_rflags(vcpu);
5847 
5848 	vcpu->guest_debug = dbg->control;
5849 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5850 		vcpu->guest_debug = 0;
5851 
5852 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5853 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5854 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5855 		vcpu->arch.switch_db_regs =
5856 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5857 	} else {
5858 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5859 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5860 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5861 	}
5862 
5863 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5864 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5865 			get_segment_base(vcpu, VCPU_SREG_CS);
5866 
5867 	/*
5868 	 * Trigger an rflags update that will inject or remove the trace
5869 	 * flags.
5870 	 */
5871 	kvm_set_rflags(vcpu, rflags);
5872 
5873 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5874 
5875 	r = 0;
5876 
5877 out:
5878 
5879 	return r;
5880 }
5881 
5882 /*
5883  * Translate a guest virtual address to a guest physical address.
5884  */
5885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5886 				    struct kvm_translation *tr)
5887 {
5888 	unsigned long vaddr = tr->linear_address;
5889 	gpa_t gpa;
5890 	int idx;
5891 
5892 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5893 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5894 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5895 	tr->physical_address = gpa;
5896 	tr->valid = gpa != UNMAPPED_GVA;
5897 	tr->writeable = 1;
5898 	tr->usermode = 0;
5899 
5900 	return 0;
5901 }
5902 
5903 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5904 {
5905 	struct i387_fxsave_struct *fxsave =
5906 			&vcpu->arch.guest_fpu.state->fxsave;
5907 
5908 	memcpy(fpu->fpr, fxsave->st_space, 128);
5909 	fpu->fcw = fxsave->cwd;
5910 	fpu->fsw = fxsave->swd;
5911 	fpu->ftwx = fxsave->twd;
5912 	fpu->last_opcode = fxsave->fop;
5913 	fpu->last_ip = fxsave->rip;
5914 	fpu->last_dp = fxsave->rdp;
5915 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5916 
5917 	return 0;
5918 }
5919 
5920 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5921 {
5922 	struct i387_fxsave_struct *fxsave =
5923 			&vcpu->arch.guest_fpu.state->fxsave;
5924 
5925 	memcpy(fxsave->st_space, fpu->fpr, 128);
5926 	fxsave->cwd = fpu->fcw;
5927 	fxsave->swd = fpu->fsw;
5928 	fxsave->twd = fpu->ftwx;
5929 	fxsave->fop = fpu->last_opcode;
5930 	fxsave->rip = fpu->last_ip;
5931 	fxsave->rdp = fpu->last_dp;
5932 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5933 
5934 	return 0;
5935 }
5936 
5937 int fx_init(struct kvm_vcpu *vcpu)
5938 {
5939 	int err;
5940 
5941 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5942 	if (err)
5943 		return err;
5944 
5945 	fpu_finit(&vcpu->arch.guest_fpu);
5946 
5947 	/*
5948 	 * Ensure guest xcr0 is valid for loading
5949 	 */
5950 	vcpu->arch.xcr0 = XSTATE_FP;
5951 
5952 	vcpu->arch.cr0 |= X86_CR0_ET;
5953 
5954 	return 0;
5955 }
5956 EXPORT_SYMBOL_GPL(fx_init);
5957 
5958 static void fx_free(struct kvm_vcpu *vcpu)
5959 {
5960 	fpu_free(&vcpu->arch.guest_fpu);
5961 }
5962 
5963 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5964 {
5965 	if (vcpu->guest_fpu_loaded)
5966 		return;
5967 
5968 	/*
5969 	 * Restore all possible states in the guest,
5970 	 * and assume host would use all available bits.
5971 	 * Guest xcr0 would be loaded later.
5972 	 */
5973 	kvm_put_guest_xcr0(vcpu);
5974 	vcpu->guest_fpu_loaded = 1;
5975 	unlazy_fpu(current);
5976 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5977 	trace_kvm_fpu(1);
5978 }
5979 
5980 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5981 {
5982 	kvm_put_guest_xcr0(vcpu);
5983 
5984 	if (!vcpu->guest_fpu_loaded)
5985 		return;
5986 
5987 	vcpu->guest_fpu_loaded = 0;
5988 	fpu_save_init(&vcpu->arch.guest_fpu);
5989 	++vcpu->stat.fpu_reload;
5990 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5991 	trace_kvm_fpu(0);
5992 }
5993 
5994 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5995 {
5996 	kvmclock_reset(vcpu);
5997 
5998 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5999 	fx_free(vcpu);
6000 	kvm_x86_ops->vcpu_free(vcpu);
6001 }
6002 
6003 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6004 						unsigned int id)
6005 {
6006 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6007 		printk_once(KERN_WARNING
6008 		"kvm: SMP vm created on host with unstable TSC; "
6009 		"guest TSC will not be reliable\n");
6010 	return kvm_x86_ops->vcpu_create(kvm, id);
6011 }
6012 
6013 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6014 {
6015 	int r;
6016 
6017 	vcpu->arch.mtrr_state.have_fixed = 1;
6018 	vcpu_load(vcpu);
6019 	r = kvm_arch_vcpu_reset(vcpu);
6020 	if (r == 0)
6021 		r = kvm_mmu_setup(vcpu);
6022 	vcpu_put(vcpu);
6023 
6024 	return r;
6025 }
6026 
6027 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6028 {
6029 	vcpu->arch.apf.msr_val = 0;
6030 
6031 	vcpu_load(vcpu);
6032 	kvm_mmu_unload(vcpu);
6033 	vcpu_put(vcpu);
6034 
6035 	fx_free(vcpu);
6036 	kvm_x86_ops->vcpu_free(vcpu);
6037 }
6038 
6039 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6040 {
6041 	atomic_set(&vcpu->arch.nmi_queued, 0);
6042 	vcpu->arch.nmi_pending = 0;
6043 	vcpu->arch.nmi_injected = false;
6044 
6045 	vcpu->arch.switch_db_regs = 0;
6046 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6047 	vcpu->arch.dr6 = DR6_FIXED_1;
6048 	vcpu->arch.dr7 = DR7_FIXED_1;
6049 
6050 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6051 	vcpu->arch.apf.msr_val = 0;
6052 	vcpu->arch.st.msr_val = 0;
6053 
6054 	kvmclock_reset(vcpu);
6055 
6056 	kvm_clear_async_pf_completion_queue(vcpu);
6057 	kvm_async_pf_hash_reset(vcpu);
6058 	vcpu->arch.apf.halted = false;
6059 
6060 	kvm_pmu_reset(vcpu);
6061 
6062 	return kvm_x86_ops->vcpu_reset(vcpu);
6063 }
6064 
6065 int kvm_arch_hardware_enable(void *garbage)
6066 {
6067 	struct kvm *kvm;
6068 	struct kvm_vcpu *vcpu;
6069 	int i;
6070 	int ret;
6071 	u64 local_tsc;
6072 	u64 max_tsc = 0;
6073 	bool stable, backwards_tsc = false;
6074 
6075 	kvm_shared_msr_cpu_online();
6076 	ret = kvm_x86_ops->hardware_enable(garbage);
6077 	if (ret != 0)
6078 		return ret;
6079 
6080 	local_tsc = native_read_tsc();
6081 	stable = !check_tsc_unstable();
6082 	list_for_each_entry(kvm, &vm_list, vm_list) {
6083 		kvm_for_each_vcpu(i, vcpu, kvm) {
6084 			if (!stable && vcpu->cpu == smp_processor_id())
6085 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6086 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6087 				backwards_tsc = true;
6088 				if (vcpu->arch.last_host_tsc > max_tsc)
6089 					max_tsc = vcpu->arch.last_host_tsc;
6090 			}
6091 		}
6092 	}
6093 
6094 	/*
6095 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6096 	 * platforms that reset TSC during suspend or hibernate actions, but
6097 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6098 	 * detect that condition here, which happens early in CPU bringup,
6099 	 * before any KVM threads can be running.  Unfortunately, we can't
6100 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6101 	 * enough into CPU bringup that we know how much real time has actually
6102 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6103 	 * variables that haven't been updated yet.
6104 	 *
6105 	 * So we simply find the maximum observed TSC above, then record the
6106 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6107 	 * the adjustment will be applied.  Note that we accumulate
6108 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6109 	 * gets a chance to run again.  In the event that no KVM threads get a
6110 	 * chance to run, we will miss the entire elapsed period, as we'll have
6111 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6112 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6113 	 * uniform across all VCPUs (not to mention the scenario is extremely
6114 	 * unlikely). It is possible that a second hibernate recovery happens
6115 	 * much faster than a first, causing the observed TSC here to be
6116 	 * smaller; this would require additional padding adjustment, which is
6117 	 * why we set last_host_tsc to the local tsc observed here.
6118 	 *
6119 	 * N.B. - this code below runs only on platforms with reliable TSC,
6120 	 * as that is the only way backwards_tsc is set above.  Also note
6121 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6122 	 * have the same delta_cyc adjustment applied if backwards_tsc
6123 	 * is detected.  Note further, this adjustment is only done once,
6124 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6125 	 * called multiple times (one for each physical CPU bringup).
6126 	 *
6127 	 * Platforms with unnreliable TSCs don't have to deal with this, they
6128 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6129 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6130 	 * guarantee that they stay in perfect synchronization.
6131 	 */
6132 	if (backwards_tsc) {
6133 		u64 delta_cyc = max_tsc - local_tsc;
6134 		list_for_each_entry(kvm, &vm_list, vm_list) {
6135 			kvm_for_each_vcpu(i, vcpu, kvm) {
6136 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6137 				vcpu->arch.last_host_tsc = local_tsc;
6138 			}
6139 
6140 			/*
6141 			 * We have to disable TSC offset matching.. if you were
6142 			 * booting a VM while issuing an S4 host suspend....
6143 			 * you may have some problem.  Solving this issue is
6144 			 * left as an exercise to the reader.
6145 			 */
6146 			kvm->arch.last_tsc_nsec = 0;
6147 			kvm->arch.last_tsc_write = 0;
6148 		}
6149 
6150 	}
6151 	return 0;
6152 }
6153 
6154 void kvm_arch_hardware_disable(void *garbage)
6155 {
6156 	kvm_x86_ops->hardware_disable(garbage);
6157 	drop_user_return_notifiers(garbage);
6158 }
6159 
6160 int kvm_arch_hardware_setup(void)
6161 {
6162 	return kvm_x86_ops->hardware_setup();
6163 }
6164 
6165 void kvm_arch_hardware_unsetup(void)
6166 {
6167 	kvm_x86_ops->hardware_unsetup();
6168 }
6169 
6170 void kvm_arch_check_processor_compat(void *rtn)
6171 {
6172 	kvm_x86_ops->check_processor_compatibility(rtn);
6173 }
6174 
6175 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6176 {
6177 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6178 }
6179 
6180 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6181 {
6182 	struct page *page;
6183 	struct kvm *kvm;
6184 	int r;
6185 
6186 	BUG_ON(vcpu->kvm == NULL);
6187 	kvm = vcpu->kvm;
6188 
6189 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6190 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6191 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6192 	else
6193 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6194 
6195 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6196 	if (!page) {
6197 		r = -ENOMEM;
6198 		goto fail;
6199 	}
6200 	vcpu->arch.pio_data = page_address(page);
6201 
6202 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6203 
6204 	r = kvm_mmu_create(vcpu);
6205 	if (r < 0)
6206 		goto fail_free_pio_data;
6207 
6208 	if (irqchip_in_kernel(kvm)) {
6209 		r = kvm_create_lapic(vcpu);
6210 		if (r < 0)
6211 			goto fail_mmu_destroy;
6212 	}
6213 
6214 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6215 				       GFP_KERNEL);
6216 	if (!vcpu->arch.mce_banks) {
6217 		r = -ENOMEM;
6218 		goto fail_free_lapic;
6219 	}
6220 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6221 
6222 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6223 		goto fail_free_mce_banks;
6224 
6225 	kvm_async_pf_hash_reset(vcpu);
6226 	kvm_pmu_init(vcpu);
6227 
6228 	return 0;
6229 fail_free_mce_banks:
6230 	kfree(vcpu->arch.mce_banks);
6231 fail_free_lapic:
6232 	kvm_free_lapic(vcpu);
6233 fail_mmu_destroy:
6234 	kvm_mmu_destroy(vcpu);
6235 fail_free_pio_data:
6236 	free_page((unsigned long)vcpu->arch.pio_data);
6237 fail:
6238 	return r;
6239 }
6240 
6241 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6242 {
6243 	int idx;
6244 
6245 	kvm_pmu_destroy(vcpu);
6246 	kfree(vcpu->arch.mce_banks);
6247 	kvm_free_lapic(vcpu);
6248 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6249 	kvm_mmu_destroy(vcpu);
6250 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6251 	free_page((unsigned long)vcpu->arch.pio_data);
6252 }
6253 
6254 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6255 {
6256 	if (type)
6257 		return -EINVAL;
6258 
6259 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6260 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6261 
6262 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6263 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6264 
6265 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6266 
6267 	return 0;
6268 }
6269 
6270 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6271 {
6272 	vcpu_load(vcpu);
6273 	kvm_mmu_unload(vcpu);
6274 	vcpu_put(vcpu);
6275 }
6276 
6277 static void kvm_free_vcpus(struct kvm *kvm)
6278 {
6279 	unsigned int i;
6280 	struct kvm_vcpu *vcpu;
6281 
6282 	/*
6283 	 * Unpin any mmu pages first.
6284 	 */
6285 	kvm_for_each_vcpu(i, vcpu, kvm) {
6286 		kvm_clear_async_pf_completion_queue(vcpu);
6287 		kvm_unload_vcpu_mmu(vcpu);
6288 	}
6289 	kvm_for_each_vcpu(i, vcpu, kvm)
6290 		kvm_arch_vcpu_free(vcpu);
6291 
6292 	mutex_lock(&kvm->lock);
6293 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6294 		kvm->vcpus[i] = NULL;
6295 
6296 	atomic_set(&kvm->online_vcpus, 0);
6297 	mutex_unlock(&kvm->lock);
6298 }
6299 
6300 void kvm_arch_sync_events(struct kvm *kvm)
6301 {
6302 	kvm_free_all_assigned_devices(kvm);
6303 	kvm_free_pit(kvm);
6304 }
6305 
6306 void kvm_arch_destroy_vm(struct kvm *kvm)
6307 {
6308 	kvm_iommu_unmap_guest(kvm);
6309 	kfree(kvm->arch.vpic);
6310 	kfree(kvm->arch.vioapic);
6311 	kvm_free_vcpus(kvm);
6312 	if (kvm->arch.apic_access_page)
6313 		put_page(kvm->arch.apic_access_page);
6314 	if (kvm->arch.ept_identity_pagetable)
6315 		put_page(kvm->arch.ept_identity_pagetable);
6316 }
6317 
6318 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6319 			   struct kvm_memory_slot *dont)
6320 {
6321 	int i;
6322 
6323 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6324 		if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6325 			kvm_kvfree(free->arch.lpage_info[i]);
6326 			free->arch.lpage_info[i] = NULL;
6327 		}
6328 	}
6329 }
6330 
6331 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6332 {
6333 	int i;
6334 
6335 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6336 		unsigned long ugfn;
6337 		int lpages;
6338 		int level = i + 2;
6339 
6340 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6341 				      slot->base_gfn, level) + 1;
6342 
6343 		slot->arch.lpage_info[i] =
6344 			kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6345 		if (!slot->arch.lpage_info[i])
6346 			goto out_free;
6347 
6348 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6349 			slot->arch.lpage_info[i][0].write_count = 1;
6350 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6351 			slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6352 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6353 		/*
6354 		 * If the gfn and userspace address are not aligned wrt each
6355 		 * other, or if explicitly asked to, disable large page
6356 		 * support for this slot
6357 		 */
6358 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6359 		    !kvm_largepages_enabled()) {
6360 			unsigned long j;
6361 
6362 			for (j = 0; j < lpages; ++j)
6363 				slot->arch.lpage_info[i][j].write_count = 1;
6364 		}
6365 	}
6366 
6367 	return 0;
6368 
6369 out_free:
6370 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6371 		kvm_kvfree(slot->arch.lpage_info[i]);
6372 		slot->arch.lpage_info[i] = NULL;
6373 	}
6374 	return -ENOMEM;
6375 }
6376 
6377 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6378 				struct kvm_memory_slot *memslot,
6379 				struct kvm_memory_slot old,
6380 				struct kvm_userspace_memory_region *mem,
6381 				int user_alloc)
6382 {
6383 	int npages = memslot->npages;
6384 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6385 
6386 	/* Prevent internal slot pages from being moved by fork()/COW. */
6387 	if (memslot->id >= KVM_MEMORY_SLOTS)
6388 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6389 
6390 	/*To keep backward compatibility with older userspace,
6391 	 *x86 needs to hanlde !user_alloc case.
6392 	 */
6393 	if (!user_alloc) {
6394 		if (npages && !old.rmap) {
6395 			unsigned long userspace_addr;
6396 
6397 			userspace_addr = vm_mmap(NULL, 0,
6398 						 npages * PAGE_SIZE,
6399 						 PROT_READ | PROT_WRITE,
6400 						 map_flags,
6401 						 0);
6402 
6403 			if (IS_ERR((void *)userspace_addr))
6404 				return PTR_ERR((void *)userspace_addr);
6405 
6406 			memslot->userspace_addr = userspace_addr;
6407 		}
6408 	}
6409 
6410 
6411 	return 0;
6412 }
6413 
6414 void kvm_arch_commit_memory_region(struct kvm *kvm,
6415 				struct kvm_userspace_memory_region *mem,
6416 				struct kvm_memory_slot old,
6417 				int user_alloc)
6418 {
6419 
6420 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6421 
6422 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6423 		int ret;
6424 
6425 		ret = vm_munmap(old.userspace_addr,
6426 				old.npages * PAGE_SIZE);
6427 		if (ret < 0)
6428 			printk(KERN_WARNING
6429 			       "kvm_vm_ioctl_set_memory_region: "
6430 			       "failed to munmap memory\n");
6431 	}
6432 
6433 	if (!kvm->arch.n_requested_mmu_pages)
6434 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6435 
6436 	spin_lock(&kvm->mmu_lock);
6437 	if (nr_mmu_pages)
6438 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6439 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6440 	spin_unlock(&kvm->mmu_lock);
6441 }
6442 
6443 void kvm_arch_flush_shadow(struct kvm *kvm)
6444 {
6445 	kvm_mmu_zap_all(kvm);
6446 	kvm_reload_remote_mmus(kvm);
6447 }
6448 
6449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6450 {
6451 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6452 		!vcpu->arch.apf.halted)
6453 		|| !list_empty_careful(&vcpu->async_pf.done)
6454 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6455 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6456 		(kvm_arch_interrupt_allowed(vcpu) &&
6457 		 kvm_cpu_has_interrupt(vcpu));
6458 }
6459 
6460 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6461 {
6462 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6463 }
6464 
6465 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6466 {
6467 	return kvm_x86_ops->interrupt_allowed(vcpu);
6468 }
6469 
6470 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6471 {
6472 	unsigned long current_rip = kvm_rip_read(vcpu) +
6473 		get_segment_base(vcpu, VCPU_SREG_CS);
6474 
6475 	return current_rip == linear_rip;
6476 }
6477 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6478 
6479 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6480 {
6481 	unsigned long rflags;
6482 
6483 	rflags = kvm_x86_ops->get_rflags(vcpu);
6484 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6485 		rflags &= ~X86_EFLAGS_TF;
6486 	return rflags;
6487 }
6488 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6489 
6490 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6491 {
6492 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6493 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6494 		rflags |= X86_EFLAGS_TF;
6495 	kvm_x86_ops->set_rflags(vcpu, rflags);
6496 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6497 }
6498 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6499 
6500 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6501 {
6502 	int r;
6503 
6504 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6505 	      is_error_page(work->page))
6506 		return;
6507 
6508 	r = kvm_mmu_reload(vcpu);
6509 	if (unlikely(r))
6510 		return;
6511 
6512 	if (!vcpu->arch.mmu.direct_map &&
6513 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6514 		return;
6515 
6516 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6517 }
6518 
6519 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6520 {
6521 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6522 }
6523 
6524 static inline u32 kvm_async_pf_next_probe(u32 key)
6525 {
6526 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6527 }
6528 
6529 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6530 {
6531 	u32 key = kvm_async_pf_hash_fn(gfn);
6532 
6533 	while (vcpu->arch.apf.gfns[key] != ~0)
6534 		key = kvm_async_pf_next_probe(key);
6535 
6536 	vcpu->arch.apf.gfns[key] = gfn;
6537 }
6538 
6539 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6540 {
6541 	int i;
6542 	u32 key = kvm_async_pf_hash_fn(gfn);
6543 
6544 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6545 		     (vcpu->arch.apf.gfns[key] != gfn &&
6546 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6547 		key = kvm_async_pf_next_probe(key);
6548 
6549 	return key;
6550 }
6551 
6552 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6553 {
6554 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6555 }
6556 
6557 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6558 {
6559 	u32 i, j, k;
6560 
6561 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6562 	while (true) {
6563 		vcpu->arch.apf.gfns[i] = ~0;
6564 		do {
6565 			j = kvm_async_pf_next_probe(j);
6566 			if (vcpu->arch.apf.gfns[j] == ~0)
6567 				return;
6568 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6569 			/*
6570 			 * k lies cyclically in ]i,j]
6571 			 * |    i.k.j |
6572 			 * |....j i.k.| or  |.k..j i...|
6573 			 */
6574 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6575 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6576 		i = j;
6577 	}
6578 }
6579 
6580 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6581 {
6582 
6583 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6584 				      sizeof(val));
6585 }
6586 
6587 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6588 				     struct kvm_async_pf *work)
6589 {
6590 	struct x86_exception fault;
6591 
6592 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6593 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6594 
6595 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6596 	    (vcpu->arch.apf.send_user_only &&
6597 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6598 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6599 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6600 		fault.vector = PF_VECTOR;
6601 		fault.error_code_valid = true;
6602 		fault.error_code = 0;
6603 		fault.nested_page_fault = false;
6604 		fault.address = work->arch.token;
6605 		kvm_inject_page_fault(vcpu, &fault);
6606 	}
6607 }
6608 
6609 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6610 				 struct kvm_async_pf *work)
6611 {
6612 	struct x86_exception fault;
6613 
6614 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6615 	if (is_error_page(work->page))
6616 		work->arch.token = ~0; /* broadcast wakeup */
6617 	else
6618 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6619 
6620 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6621 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6622 		fault.vector = PF_VECTOR;
6623 		fault.error_code_valid = true;
6624 		fault.error_code = 0;
6625 		fault.nested_page_fault = false;
6626 		fault.address = work->arch.token;
6627 		kvm_inject_page_fault(vcpu, &fault);
6628 	}
6629 	vcpu->arch.apf.halted = false;
6630 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6631 }
6632 
6633 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6634 {
6635 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6636 		return true;
6637 	else
6638 		return !kvm_event_needs_reinjection(vcpu) &&
6639 			kvm_x86_ops->interrupt_allowed(vcpu);
6640 }
6641 
6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6654