1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 101 static u32 tsc_tolerance_ppm = 250; 102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 103 104 #define KVM_NR_SHARED_MSRS 16 105 106 struct kvm_shared_msrs_global { 107 int nr; 108 u32 msrs[KVM_NR_SHARED_MSRS]; 109 }; 110 111 struct kvm_shared_msrs { 112 struct user_return_notifier urn; 113 bool registered; 114 struct kvm_shared_msr_values { 115 u64 host; 116 u64 curr; 117 } values[KVM_NR_SHARED_MSRS]; 118 }; 119 120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 122 123 struct kvm_stats_debugfs_item debugfs_entries[] = { 124 { "pf_fixed", VCPU_STAT(pf_fixed) }, 125 { "pf_guest", VCPU_STAT(pf_guest) }, 126 { "tlb_flush", VCPU_STAT(tlb_flush) }, 127 { "invlpg", VCPU_STAT(invlpg) }, 128 { "exits", VCPU_STAT(exits) }, 129 { "io_exits", VCPU_STAT(io_exits) }, 130 { "mmio_exits", VCPU_STAT(mmio_exits) }, 131 { "signal_exits", VCPU_STAT(signal_exits) }, 132 { "irq_window", VCPU_STAT(irq_window_exits) }, 133 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 134 { "halt_exits", VCPU_STAT(halt_exits) }, 135 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 136 { "hypercalls", VCPU_STAT(hypercalls) }, 137 { "request_irq", VCPU_STAT(request_irq_exits) }, 138 { "irq_exits", VCPU_STAT(irq_exits) }, 139 { "host_state_reload", VCPU_STAT(host_state_reload) }, 140 { "efer_reload", VCPU_STAT(efer_reload) }, 141 { "fpu_reload", VCPU_STAT(fpu_reload) }, 142 { "insn_emulation", VCPU_STAT(insn_emulation) }, 143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 144 { "irq_injections", VCPU_STAT(irq_injections) }, 145 { "nmi_injections", VCPU_STAT(nmi_injections) }, 146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 147 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 150 { "mmu_flooded", VM_STAT(mmu_flooded) }, 151 { "mmu_recycled", VM_STAT(mmu_recycled) }, 152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 153 { "mmu_unsync", VM_STAT(mmu_unsync) }, 154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 155 { "largepages", VM_STAT(lpages) }, 156 { NULL } 157 }; 158 159 u64 __read_mostly host_xcr0; 160 161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 162 163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 167 vcpu->arch.apf.gfns[i] = ~0; 168 } 169 170 static void kvm_on_user_return(struct user_return_notifier *urn) 171 { 172 unsigned slot; 173 struct kvm_shared_msrs *locals 174 = container_of(urn, struct kvm_shared_msrs, urn); 175 struct kvm_shared_msr_values *values; 176 177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 178 values = &locals->values[slot]; 179 if (values->host != values->curr) { 180 wrmsrl(shared_msrs_global.msrs[slot], values->host); 181 values->curr = values->host; 182 } 183 } 184 locals->registered = false; 185 user_return_notifier_unregister(urn); 186 } 187 188 static void shared_msr_update(unsigned slot, u32 msr) 189 { 190 struct kvm_shared_msrs *smsr; 191 u64 value; 192 193 smsr = &__get_cpu_var(shared_msrs); 194 /* only read, and nobody should modify it at this time, 195 * so don't need lock */ 196 if (slot >= shared_msrs_global.nr) { 197 printk(KERN_ERR "kvm: invalid MSR slot!"); 198 return; 199 } 200 rdmsrl_safe(msr, &value); 201 smsr->values[slot].host = value; 202 smsr->values[slot].curr = value; 203 } 204 205 void kvm_define_shared_msr(unsigned slot, u32 msr) 206 { 207 if (slot >= shared_msrs_global.nr) 208 shared_msrs_global.nr = slot + 1; 209 shared_msrs_global.msrs[slot] = msr; 210 /* we need ensured the shared_msr_global have been updated */ 211 smp_wmb(); 212 } 213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 214 215 static void kvm_shared_msr_cpu_online(void) 216 { 217 unsigned i; 218 219 for (i = 0; i < shared_msrs_global.nr; ++i) 220 shared_msr_update(i, shared_msrs_global.msrs[i]); 221 } 222 223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 224 { 225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 226 227 if (((value ^ smsr->values[slot].curr) & mask) == 0) 228 return; 229 smsr->values[slot].curr = value; 230 wrmsrl(shared_msrs_global.msrs[slot], value); 231 if (!smsr->registered) { 232 smsr->urn.on_user_return = kvm_on_user_return; 233 user_return_notifier_register(&smsr->urn); 234 smsr->registered = true; 235 } 236 } 237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 238 239 static void drop_user_return_notifiers(void *ignore) 240 { 241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 242 243 if (smsr->registered) 244 kvm_on_user_return(&smsr->urn); 245 } 246 247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 248 { 249 if (irqchip_in_kernel(vcpu->kvm)) 250 return vcpu->arch.apic_base; 251 else 252 return vcpu->arch.apic_base; 253 } 254 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 255 256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 257 { 258 /* TODO: reserve bits check */ 259 if (irqchip_in_kernel(vcpu->kvm)) 260 kvm_lapic_set_base(vcpu, data); 261 else 262 vcpu->arch.apic_base = data; 263 } 264 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 265 266 #define EXCPT_BENIGN 0 267 #define EXCPT_CONTRIBUTORY 1 268 #define EXCPT_PF 2 269 270 static int exception_class(int vector) 271 { 272 switch (vector) { 273 case PF_VECTOR: 274 return EXCPT_PF; 275 case DE_VECTOR: 276 case TS_VECTOR: 277 case NP_VECTOR: 278 case SS_VECTOR: 279 case GP_VECTOR: 280 return EXCPT_CONTRIBUTORY; 281 default: 282 break; 283 } 284 return EXCPT_BENIGN; 285 } 286 287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 288 unsigned nr, bool has_error, u32 error_code, 289 bool reinject) 290 { 291 u32 prev_nr; 292 int class1, class2; 293 294 kvm_make_request(KVM_REQ_EVENT, vcpu); 295 296 if (!vcpu->arch.exception.pending) { 297 queue: 298 vcpu->arch.exception.pending = true; 299 vcpu->arch.exception.has_error_code = has_error; 300 vcpu->arch.exception.nr = nr; 301 vcpu->arch.exception.error_code = error_code; 302 vcpu->arch.exception.reinject = reinject; 303 return; 304 } 305 306 /* to check exception */ 307 prev_nr = vcpu->arch.exception.nr; 308 if (prev_nr == DF_VECTOR) { 309 /* triple fault -> shutdown */ 310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 311 return; 312 } 313 class1 = exception_class(prev_nr); 314 class2 = exception_class(nr); 315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 317 /* generate double fault per SDM Table 5-5 */ 318 vcpu->arch.exception.pending = true; 319 vcpu->arch.exception.has_error_code = true; 320 vcpu->arch.exception.nr = DF_VECTOR; 321 vcpu->arch.exception.error_code = 0; 322 } else 323 /* replace previous exception with a new one in a hope 324 that instruction re-execution will regenerate lost 325 exception */ 326 goto queue; 327 } 328 329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, false); 332 } 333 EXPORT_SYMBOL_GPL(kvm_queue_exception); 334 335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 336 { 337 kvm_multiple_exception(vcpu, nr, false, 0, true); 338 } 339 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 340 341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 342 { 343 if (err) 344 kvm_inject_gp(vcpu, 0); 345 else 346 kvm_x86_ops->skip_emulated_instruction(vcpu); 347 } 348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 349 350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 351 { 352 ++vcpu->stat.pf_guest; 353 vcpu->arch.cr2 = fault->address; 354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 355 } 356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 357 358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 362 else 363 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 364 } 365 366 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 367 { 368 atomic_inc(&vcpu->arch.nmi_queued); 369 kvm_make_request(KVM_REQ_NMI, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 372 373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, false); 376 } 377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 378 379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 380 { 381 kvm_multiple_exception(vcpu, nr, true, error_code, true); 382 } 383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 384 385 /* 386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 387 * a #GP and return false. 388 */ 389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 390 { 391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 392 return true; 393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 394 return false; 395 } 396 EXPORT_SYMBOL_GPL(kvm_require_cpl); 397 398 /* 399 * This function will be used to read from the physical memory of the currently 400 * running guest. The difference to kvm_read_guest_page is that this function 401 * can read from guest physical or from the guest's guest physical memory. 402 */ 403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 404 gfn_t ngfn, void *data, int offset, int len, 405 u32 access) 406 { 407 gfn_t real_gfn; 408 gpa_t ngpa; 409 410 ngpa = gfn_to_gpa(ngfn); 411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 412 if (real_gfn == UNMAPPED_GVA) 413 return -EFAULT; 414 415 real_gfn = gpa_to_gfn(real_gfn); 416 417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 418 } 419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 420 421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 422 void *data, int offset, int len, u32 access) 423 { 424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 425 data, offset, len, access); 426 } 427 428 /* 429 * Load the pae pdptrs. Return true is they are all valid. 430 */ 431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 432 { 433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 435 int i; 436 int ret; 437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 438 439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 440 offset * sizeof(u64), sizeof(pdpte), 441 PFERR_USER_MASK|PFERR_WRITE_MASK); 442 if (ret < 0) { 443 ret = 0; 444 goto out; 445 } 446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 447 if (is_present_gpte(pdpte[i]) && 448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 449 ret = 0; 450 goto out; 451 } 452 } 453 ret = 1; 454 455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 456 __set_bit(VCPU_EXREG_PDPTR, 457 (unsigned long *)&vcpu->arch.regs_avail); 458 __set_bit(VCPU_EXREG_PDPTR, 459 (unsigned long *)&vcpu->arch.regs_dirty); 460 out: 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(load_pdptrs); 465 466 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 467 { 468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 469 bool changed = true; 470 int offset; 471 gfn_t gfn; 472 int r; 473 474 if (is_long_mode(vcpu) || !is_pae(vcpu)) 475 return false; 476 477 if (!test_bit(VCPU_EXREG_PDPTR, 478 (unsigned long *)&vcpu->arch.regs_avail)) 479 return true; 480 481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 484 PFERR_USER_MASK | PFERR_WRITE_MASK); 485 if (r < 0) 486 goto out; 487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 488 out: 489 490 return changed; 491 } 492 493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 494 { 495 unsigned long old_cr0 = kvm_read_cr0(vcpu); 496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 497 X86_CR0_CD | X86_CR0_NW; 498 499 cr0 |= X86_CR0_ET; 500 501 #ifdef CONFIG_X86_64 502 if (cr0 & 0xffffffff00000000UL) 503 return 1; 504 #endif 505 506 cr0 &= ~CR0_RESERVED_BITS; 507 508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 509 return 1; 510 511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 512 return 1; 513 514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 515 #ifdef CONFIG_X86_64 516 if ((vcpu->arch.efer & EFER_LME)) { 517 int cs_db, cs_l; 518 519 if (!is_pae(vcpu)) 520 return 1; 521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 522 if (cs_l) 523 return 1; 524 } else 525 #endif 526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 527 kvm_read_cr3(vcpu))) 528 return 1; 529 } 530 531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 532 return 1; 533 534 kvm_x86_ops->set_cr0(vcpu, cr0); 535 536 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 537 kvm_clear_async_pf_completion_queue(vcpu); 538 kvm_async_pf_hash_reset(vcpu); 539 } 540 541 if ((cr0 ^ old_cr0) & update_bits) 542 kvm_mmu_reset_context(vcpu); 543 return 0; 544 } 545 EXPORT_SYMBOL_GPL(kvm_set_cr0); 546 547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 548 { 549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 550 } 551 EXPORT_SYMBOL_GPL(kvm_lmsw); 552 553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 554 { 555 u64 xcr0; 556 557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 558 if (index != XCR_XFEATURE_ENABLED_MASK) 559 return 1; 560 xcr0 = xcr; 561 if (kvm_x86_ops->get_cpl(vcpu) != 0) 562 return 1; 563 if (!(xcr0 & XSTATE_FP)) 564 return 1; 565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 566 return 1; 567 if (xcr0 & ~host_xcr0) 568 return 1; 569 vcpu->arch.xcr0 = xcr0; 570 vcpu->guest_xcr0_loaded = 0; 571 return 0; 572 } 573 574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 575 { 576 if (__kvm_set_xcr(vcpu, index, xcr)) { 577 kvm_inject_gp(vcpu, 0); 578 return 1; 579 } 580 return 0; 581 } 582 EXPORT_SYMBOL_GPL(kvm_set_xcr); 583 584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 585 { 586 unsigned long old_cr4 = kvm_read_cr4(vcpu); 587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 588 X86_CR4_PAE | X86_CR4_SMEP; 589 if (cr4 & CR4_RESERVED_BITS) 590 return 1; 591 592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 593 return 1; 594 595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 596 return 1; 597 598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 599 return 1; 600 601 if (is_long_mode(vcpu)) { 602 if (!(cr4 & X86_CR4_PAE)) 603 return 1; 604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 605 && ((cr4 ^ old_cr4) & pdptr_bits) 606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 607 kvm_read_cr3(vcpu))) 608 return 1; 609 610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 611 if (!guest_cpuid_has_pcid(vcpu)) 612 return 1; 613 614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 616 return 1; 617 } 618 619 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 620 return 1; 621 622 if (((cr4 ^ old_cr4) & pdptr_bits) || 623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 624 kvm_mmu_reset_context(vcpu); 625 626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 627 kvm_update_cpuid(vcpu); 628 629 return 0; 630 } 631 EXPORT_SYMBOL_GPL(kvm_set_cr4); 632 633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 634 { 635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 636 kvm_mmu_sync_roots(vcpu); 637 kvm_mmu_flush_tlb(vcpu); 638 return 0; 639 } 640 641 if (is_long_mode(vcpu)) { 642 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) { 643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 644 return 1; 645 } else 646 if (cr3 & CR3_L_MODE_RESERVED_BITS) 647 return 1; 648 } else { 649 if (is_pae(vcpu)) { 650 if (cr3 & CR3_PAE_RESERVED_BITS) 651 return 1; 652 if (is_paging(vcpu) && 653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 654 return 1; 655 } 656 /* 657 * We don't check reserved bits in nonpae mode, because 658 * this isn't enforced, and VMware depends on this. 659 */ 660 } 661 662 /* 663 * Does the new cr3 value map to physical memory? (Note, we 664 * catch an invalid cr3 even in real-mode, because it would 665 * cause trouble later on when we turn on paging anyway.) 666 * 667 * A real CPU would silently accept an invalid cr3 and would 668 * attempt to use it - with largely undefined (and often hard 669 * to debug) behavior on the guest side. 670 */ 671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 672 return 1; 673 vcpu->arch.cr3 = cr3; 674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 675 vcpu->arch.mmu.new_cr3(vcpu); 676 return 0; 677 } 678 EXPORT_SYMBOL_GPL(kvm_set_cr3); 679 680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 681 { 682 if (cr8 & CR8_RESERVED_BITS) 683 return 1; 684 if (irqchip_in_kernel(vcpu->kvm)) 685 kvm_lapic_set_tpr(vcpu, cr8); 686 else 687 vcpu->arch.cr8 = cr8; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(kvm_set_cr8); 691 692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 693 { 694 if (irqchip_in_kernel(vcpu->kvm)) 695 return kvm_lapic_get_cr8(vcpu); 696 else 697 return vcpu->arch.cr8; 698 } 699 EXPORT_SYMBOL_GPL(kvm_get_cr8); 700 701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 702 { 703 switch (dr) { 704 case 0 ... 3: 705 vcpu->arch.db[dr] = val; 706 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 707 vcpu->arch.eff_db[dr] = val; 708 break; 709 case 4: 710 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 711 return 1; /* #UD */ 712 /* fall through */ 713 case 6: 714 if (val & 0xffffffff00000000ULL) 715 return -1; /* #GP */ 716 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 717 break; 718 case 5: 719 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 720 return 1; /* #UD */ 721 /* fall through */ 722 default: /* 7 */ 723 if (val & 0xffffffff00000000ULL) 724 return -1; /* #GP */ 725 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 726 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 727 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); 728 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); 729 } 730 break; 731 } 732 733 return 0; 734 } 735 736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 737 { 738 int res; 739 740 res = __kvm_set_dr(vcpu, dr, val); 741 if (res > 0) 742 kvm_queue_exception(vcpu, UD_VECTOR); 743 else if (res < 0) 744 kvm_inject_gp(vcpu, 0); 745 746 return res; 747 } 748 EXPORT_SYMBOL_GPL(kvm_set_dr); 749 750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 751 { 752 switch (dr) { 753 case 0 ... 3: 754 *val = vcpu->arch.db[dr]; 755 break; 756 case 4: 757 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 758 return 1; 759 /* fall through */ 760 case 6: 761 *val = vcpu->arch.dr6; 762 break; 763 case 5: 764 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 765 return 1; 766 /* fall through */ 767 default: /* 7 */ 768 *val = vcpu->arch.dr7; 769 break; 770 } 771 772 return 0; 773 } 774 775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 776 { 777 if (_kvm_get_dr(vcpu, dr, val)) { 778 kvm_queue_exception(vcpu, UD_VECTOR); 779 return 1; 780 } 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(kvm_get_dr); 784 785 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 786 { 787 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 788 u64 data; 789 int err; 790 791 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 792 if (err) 793 return err; 794 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 795 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 796 return err; 797 } 798 EXPORT_SYMBOL_GPL(kvm_rdpmc); 799 800 /* 801 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 802 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 803 * 804 * This list is modified at module load time to reflect the 805 * capabilities of the host cpu. This capabilities test skips MSRs that are 806 * kvm-specific. Those are put in the beginning of the list. 807 */ 808 809 #define KVM_SAVE_MSRS_BEGIN 10 810 static u32 msrs_to_save[] = { 811 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 812 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 813 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 814 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 815 MSR_KVM_PV_EOI_EN, 816 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 817 MSR_STAR, 818 #ifdef CONFIG_X86_64 819 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 820 #endif 821 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 822 }; 823 824 static unsigned num_msrs_to_save; 825 826 static u32 emulated_msrs[] = { 827 MSR_IA32_TSCDEADLINE, 828 MSR_IA32_MISC_ENABLE, 829 MSR_IA32_MCG_STATUS, 830 MSR_IA32_MCG_CTL, 831 }; 832 833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 834 { 835 u64 old_efer = vcpu->arch.efer; 836 837 if (efer & efer_reserved_bits) 838 return 1; 839 840 if (is_paging(vcpu) 841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 842 return 1; 843 844 if (efer & EFER_FFXSR) { 845 struct kvm_cpuid_entry2 *feat; 846 847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 849 return 1; 850 } 851 852 if (efer & EFER_SVME) { 853 struct kvm_cpuid_entry2 *feat; 854 855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 857 return 1; 858 } 859 860 efer &= ~EFER_LMA; 861 efer |= vcpu->arch.efer & EFER_LMA; 862 863 kvm_x86_ops->set_efer(vcpu, efer); 864 865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 866 867 /* Update reserved bits */ 868 if ((efer ^ old_efer) & EFER_NX) 869 kvm_mmu_reset_context(vcpu); 870 871 return 0; 872 } 873 874 void kvm_enable_efer_bits(u64 mask) 875 { 876 efer_reserved_bits &= ~mask; 877 } 878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 879 880 881 /* 882 * Writes msr value into into the appropriate "register". 883 * Returns 0 on success, non-0 otherwise. 884 * Assumes vcpu_load() was already called. 885 */ 886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 887 { 888 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 889 } 890 891 /* 892 * Adapt set_msr() to msr_io()'s calling convention 893 */ 894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 895 { 896 return kvm_set_msr(vcpu, index, *data); 897 } 898 899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 900 { 901 int version; 902 int r; 903 struct pvclock_wall_clock wc; 904 struct timespec boot; 905 906 if (!wall_clock) 907 return; 908 909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 910 if (r) 911 return; 912 913 if (version & 1) 914 ++version; /* first time write, random junk */ 915 916 ++version; 917 918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 919 920 /* 921 * The guest calculates current wall clock time by adding 922 * system time (updated by kvm_guest_time_update below) to the 923 * wall clock specified here. guest system time equals host 924 * system time for us, thus we must fill in host boot time here. 925 */ 926 getboottime(&boot); 927 928 if (kvm->arch.kvmclock_offset) { 929 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 930 boot = timespec_sub(boot, ts); 931 } 932 wc.sec = boot.tv_sec; 933 wc.nsec = boot.tv_nsec; 934 wc.version = version; 935 936 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 937 938 version++; 939 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 940 } 941 942 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 943 { 944 uint32_t quotient, remainder; 945 946 /* Don't try to replace with do_div(), this one calculates 947 * "(dividend << 32) / divisor" */ 948 __asm__ ( "divl %4" 949 : "=a" (quotient), "=d" (remainder) 950 : "0" (0), "1" (dividend), "r" (divisor) ); 951 return quotient; 952 } 953 954 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 955 s8 *pshift, u32 *pmultiplier) 956 { 957 uint64_t scaled64; 958 int32_t shift = 0; 959 uint64_t tps64; 960 uint32_t tps32; 961 962 tps64 = base_khz * 1000LL; 963 scaled64 = scaled_khz * 1000LL; 964 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 965 tps64 >>= 1; 966 shift--; 967 } 968 969 tps32 = (uint32_t)tps64; 970 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 971 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 972 scaled64 >>= 1; 973 else 974 tps32 <<= 1; 975 shift++; 976 } 977 978 *pshift = shift; 979 *pmultiplier = div_frac(scaled64, tps32); 980 981 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 982 __func__, base_khz, scaled_khz, shift, *pmultiplier); 983 } 984 985 static inline u64 get_kernel_ns(void) 986 { 987 struct timespec ts; 988 989 WARN_ON(preemptible()); 990 ktime_get_ts(&ts); 991 monotonic_to_bootbased(&ts); 992 return timespec_to_ns(&ts); 993 } 994 995 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 996 unsigned long max_tsc_khz; 997 998 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 999 { 1000 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1001 vcpu->arch.virtual_tsc_shift); 1002 } 1003 1004 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1005 { 1006 u64 v = (u64)khz * (1000000 + ppm); 1007 do_div(v, 1000000); 1008 return v; 1009 } 1010 1011 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1012 { 1013 u32 thresh_lo, thresh_hi; 1014 int use_scaling = 0; 1015 1016 /* Compute a scale to convert nanoseconds in TSC cycles */ 1017 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1018 &vcpu->arch.virtual_tsc_shift, 1019 &vcpu->arch.virtual_tsc_mult); 1020 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1021 1022 /* 1023 * Compute the variation in TSC rate which is acceptable 1024 * within the range of tolerance and decide if the 1025 * rate being applied is within that bounds of the hardware 1026 * rate. If so, no scaling or compensation need be done. 1027 */ 1028 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1029 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1030 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1031 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1032 use_scaling = 1; 1033 } 1034 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1035 } 1036 1037 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1038 { 1039 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1040 vcpu->arch.virtual_tsc_mult, 1041 vcpu->arch.virtual_tsc_shift); 1042 tsc += vcpu->arch.this_tsc_write; 1043 return tsc; 1044 } 1045 1046 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1047 { 1048 struct kvm *kvm = vcpu->kvm; 1049 u64 offset, ns, elapsed; 1050 unsigned long flags; 1051 s64 usdiff; 1052 1053 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1054 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1055 ns = get_kernel_ns(); 1056 elapsed = ns - kvm->arch.last_tsc_nsec; 1057 1058 /* n.b - signed multiplication and division required */ 1059 usdiff = data - kvm->arch.last_tsc_write; 1060 #ifdef CONFIG_X86_64 1061 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1062 #else 1063 /* do_div() only does unsigned */ 1064 asm("idivl %2; xor %%edx, %%edx" 1065 : "=A"(usdiff) 1066 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1067 #endif 1068 do_div(elapsed, 1000); 1069 usdiff -= elapsed; 1070 if (usdiff < 0) 1071 usdiff = -usdiff; 1072 1073 /* 1074 * Special case: TSC write with a small delta (1 second) of virtual 1075 * cycle time against real time is interpreted as an attempt to 1076 * synchronize the CPU. 1077 * 1078 * For a reliable TSC, we can match TSC offsets, and for an unstable 1079 * TSC, we add elapsed time in this computation. We could let the 1080 * compensation code attempt to catch up if we fall behind, but 1081 * it's better to try to match offsets from the beginning. 1082 */ 1083 if (usdiff < USEC_PER_SEC && 1084 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1085 if (!check_tsc_unstable()) { 1086 offset = kvm->arch.cur_tsc_offset; 1087 pr_debug("kvm: matched tsc offset for %llu\n", data); 1088 } else { 1089 u64 delta = nsec_to_cycles(vcpu, elapsed); 1090 data += delta; 1091 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1092 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1093 } 1094 } else { 1095 /* 1096 * We split periods of matched TSC writes into generations. 1097 * For each generation, we track the original measured 1098 * nanosecond time, offset, and write, so if TSCs are in 1099 * sync, we can match exact offset, and if not, we can match 1100 * exact software computaion in compute_guest_tsc() 1101 * 1102 * These values are tracked in kvm->arch.cur_xxx variables. 1103 */ 1104 kvm->arch.cur_tsc_generation++; 1105 kvm->arch.cur_tsc_nsec = ns; 1106 kvm->arch.cur_tsc_write = data; 1107 kvm->arch.cur_tsc_offset = offset; 1108 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1109 kvm->arch.cur_tsc_generation, data); 1110 } 1111 1112 /* 1113 * We also track th most recent recorded KHZ, write and time to 1114 * allow the matching interval to be extended at each write. 1115 */ 1116 kvm->arch.last_tsc_nsec = ns; 1117 kvm->arch.last_tsc_write = data; 1118 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1119 1120 /* Reset of TSC must disable overshoot protection below */ 1121 vcpu->arch.hv_clock.tsc_timestamp = 0; 1122 vcpu->arch.last_guest_tsc = data; 1123 1124 /* Keep track of which generation this VCPU has synchronized to */ 1125 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1126 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1127 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1128 1129 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1130 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1131 } 1132 1133 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1134 1135 static int kvm_guest_time_update(struct kvm_vcpu *v) 1136 { 1137 unsigned long flags; 1138 struct kvm_vcpu_arch *vcpu = &v->arch; 1139 void *shared_kaddr; 1140 unsigned long this_tsc_khz; 1141 s64 kernel_ns, max_kernel_ns; 1142 u64 tsc_timestamp; 1143 1144 /* Keep irq disabled to prevent changes to the clock */ 1145 local_irq_save(flags); 1146 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1147 kernel_ns = get_kernel_ns(); 1148 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1149 if (unlikely(this_tsc_khz == 0)) { 1150 local_irq_restore(flags); 1151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1152 return 1; 1153 } 1154 1155 /* 1156 * We may have to catch up the TSC to match elapsed wall clock 1157 * time for two reasons, even if kvmclock is used. 1158 * 1) CPU could have been running below the maximum TSC rate 1159 * 2) Broken TSC compensation resets the base at each VCPU 1160 * entry to avoid unknown leaps of TSC even when running 1161 * again on the same CPU. This may cause apparent elapsed 1162 * time to disappear, and the guest to stand still or run 1163 * very slowly. 1164 */ 1165 if (vcpu->tsc_catchup) { 1166 u64 tsc = compute_guest_tsc(v, kernel_ns); 1167 if (tsc > tsc_timestamp) { 1168 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1169 tsc_timestamp = tsc; 1170 } 1171 } 1172 1173 local_irq_restore(flags); 1174 1175 if (!vcpu->time_page) 1176 return 0; 1177 1178 /* 1179 * Time as measured by the TSC may go backwards when resetting the base 1180 * tsc_timestamp. The reason for this is that the TSC resolution is 1181 * higher than the resolution of the other clock scales. Thus, many 1182 * possible measurments of the TSC correspond to one measurement of any 1183 * other clock, and so a spread of values is possible. This is not a 1184 * problem for the computation of the nanosecond clock; with TSC rates 1185 * around 1GHZ, there can only be a few cycles which correspond to one 1186 * nanosecond value, and any path through this code will inevitably 1187 * take longer than that. However, with the kernel_ns value itself, 1188 * the precision may be much lower, down to HZ granularity. If the 1189 * first sampling of TSC against kernel_ns ends in the low part of the 1190 * range, and the second in the high end of the range, we can get: 1191 * 1192 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1193 * 1194 * As the sampling errors potentially range in the thousands of cycles, 1195 * it is possible such a time value has already been observed by the 1196 * guest. To protect against this, we must compute the system time as 1197 * observed by the guest and ensure the new system time is greater. 1198 */ 1199 max_kernel_ns = 0; 1200 if (vcpu->hv_clock.tsc_timestamp) { 1201 max_kernel_ns = vcpu->last_guest_tsc - 1202 vcpu->hv_clock.tsc_timestamp; 1203 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1204 vcpu->hv_clock.tsc_to_system_mul, 1205 vcpu->hv_clock.tsc_shift); 1206 max_kernel_ns += vcpu->last_kernel_ns; 1207 } 1208 1209 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1210 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1211 &vcpu->hv_clock.tsc_shift, 1212 &vcpu->hv_clock.tsc_to_system_mul); 1213 vcpu->hw_tsc_khz = this_tsc_khz; 1214 } 1215 1216 if (max_kernel_ns > kernel_ns) 1217 kernel_ns = max_kernel_ns; 1218 1219 /* With all the info we got, fill in the values */ 1220 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1221 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1222 vcpu->last_kernel_ns = kernel_ns; 1223 vcpu->last_guest_tsc = tsc_timestamp; 1224 vcpu->hv_clock.flags = 0; 1225 1226 /* 1227 * The interface expects us to write an even number signaling that the 1228 * update is finished. Since the guest won't see the intermediate 1229 * state, we just increase by 2 at the end. 1230 */ 1231 vcpu->hv_clock.version += 2; 1232 1233 shared_kaddr = kmap_atomic(vcpu->time_page); 1234 1235 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1236 sizeof(vcpu->hv_clock)); 1237 1238 kunmap_atomic(shared_kaddr); 1239 1240 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1241 return 0; 1242 } 1243 1244 static bool msr_mtrr_valid(unsigned msr) 1245 { 1246 switch (msr) { 1247 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1248 case MSR_MTRRfix64K_00000: 1249 case MSR_MTRRfix16K_80000: 1250 case MSR_MTRRfix16K_A0000: 1251 case MSR_MTRRfix4K_C0000: 1252 case MSR_MTRRfix4K_C8000: 1253 case MSR_MTRRfix4K_D0000: 1254 case MSR_MTRRfix4K_D8000: 1255 case MSR_MTRRfix4K_E0000: 1256 case MSR_MTRRfix4K_E8000: 1257 case MSR_MTRRfix4K_F0000: 1258 case MSR_MTRRfix4K_F8000: 1259 case MSR_MTRRdefType: 1260 case MSR_IA32_CR_PAT: 1261 return true; 1262 case 0x2f8: 1263 return true; 1264 } 1265 return false; 1266 } 1267 1268 static bool valid_pat_type(unsigned t) 1269 { 1270 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1271 } 1272 1273 static bool valid_mtrr_type(unsigned t) 1274 { 1275 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1276 } 1277 1278 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1279 { 1280 int i; 1281 1282 if (!msr_mtrr_valid(msr)) 1283 return false; 1284 1285 if (msr == MSR_IA32_CR_PAT) { 1286 for (i = 0; i < 8; i++) 1287 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1288 return false; 1289 return true; 1290 } else if (msr == MSR_MTRRdefType) { 1291 if (data & ~0xcff) 1292 return false; 1293 return valid_mtrr_type(data & 0xff); 1294 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1295 for (i = 0; i < 8 ; i++) 1296 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1297 return false; 1298 return true; 1299 } 1300 1301 /* variable MTRRs */ 1302 return valid_mtrr_type(data & 0xff); 1303 } 1304 1305 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1306 { 1307 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1308 1309 if (!mtrr_valid(vcpu, msr, data)) 1310 return 1; 1311 1312 if (msr == MSR_MTRRdefType) { 1313 vcpu->arch.mtrr_state.def_type = data; 1314 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1315 } else if (msr == MSR_MTRRfix64K_00000) 1316 p[0] = data; 1317 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1318 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1319 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1320 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1321 else if (msr == MSR_IA32_CR_PAT) 1322 vcpu->arch.pat = data; 1323 else { /* Variable MTRRs */ 1324 int idx, is_mtrr_mask; 1325 u64 *pt; 1326 1327 idx = (msr - 0x200) / 2; 1328 is_mtrr_mask = msr - 0x200 - 2 * idx; 1329 if (!is_mtrr_mask) 1330 pt = 1331 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1332 else 1333 pt = 1334 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1335 *pt = data; 1336 } 1337 1338 kvm_mmu_reset_context(vcpu); 1339 return 0; 1340 } 1341 1342 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1343 { 1344 u64 mcg_cap = vcpu->arch.mcg_cap; 1345 unsigned bank_num = mcg_cap & 0xff; 1346 1347 switch (msr) { 1348 case MSR_IA32_MCG_STATUS: 1349 vcpu->arch.mcg_status = data; 1350 break; 1351 case MSR_IA32_MCG_CTL: 1352 if (!(mcg_cap & MCG_CTL_P)) 1353 return 1; 1354 if (data != 0 && data != ~(u64)0) 1355 return -1; 1356 vcpu->arch.mcg_ctl = data; 1357 break; 1358 default: 1359 if (msr >= MSR_IA32_MC0_CTL && 1360 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1361 u32 offset = msr - MSR_IA32_MC0_CTL; 1362 /* only 0 or all 1s can be written to IA32_MCi_CTL 1363 * some Linux kernels though clear bit 10 in bank 4 to 1364 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1365 * this to avoid an uncatched #GP in the guest 1366 */ 1367 if ((offset & 0x3) == 0 && 1368 data != 0 && (data | (1 << 10)) != ~(u64)0) 1369 return -1; 1370 vcpu->arch.mce_banks[offset] = data; 1371 break; 1372 } 1373 return 1; 1374 } 1375 return 0; 1376 } 1377 1378 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1379 { 1380 struct kvm *kvm = vcpu->kvm; 1381 int lm = is_long_mode(vcpu); 1382 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1383 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1384 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1385 : kvm->arch.xen_hvm_config.blob_size_32; 1386 u32 page_num = data & ~PAGE_MASK; 1387 u64 page_addr = data & PAGE_MASK; 1388 u8 *page; 1389 int r; 1390 1391 r = -E2BIG; 1392 if (page_num >= blob_size) 1393 goto out; 1394 r = -ENOMEM; 1395 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1396 if (IS_ERR(page)) { 1397 r = PTR_ERR(page); 1398 goto out; 1399 } 1400 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1401 goto out_free; 1402 r = 0; 1403 out_free: 1404 kfree(page); 1405 out: 1406 return r; 1407 } 1408 1409 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1410 { 1411 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1412 } 1413 1414 static bool kvm_hv_msr_partition_wide(u32 msr) 1415 { 1416 bool r = false; 1417 switch (msr) { 1418 case HV_X64_MSR_GUEST_OS_ID: 1419 case HV_X64_MSR_HYPERCALL: 1420 r = true; 1421 break; 1422 } 1423 1424 return r; 1425 } 1426 1427 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1428 { 1429 struct kvm *kvm = vcpu->kvm; 1430 1431 switch (msr) { 1432 case HV_X64_MSR_GUEST_OS_ID: 1433 kvm->arch.hv_guest_os_id = data; 1434 /* setting guest os id to zero disables hypercall page */ 1435 if (!kvm->arch.hv_guest_os_id) 1436 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1437 break; 1438 case HV_X64_MSR_HYPERCALL: { 1439 u64 gfn; 1440 unsigned long addr; 1441 u8 instructions[4]; 1442 1443 /* if guest os id is not set hypercall should remain disabled */ 1444 if (!kvm->arch.hv_guest_os_id) 1445 break; 1446 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1447 kvm->arch.hv_hypercall = data; 1448 break; 1449 } 1450 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1451 addr = gfn_to_hva(kvm, gfn); 1452 if (kvm_is_error_hva(addr)) 1453 return 1; 1454 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1455 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1456 if (__copy_to_user((void __user *)addr, instructions, 4)) 1457 return 1; 1458 kvm->arch.hv_hypercall = data; 1459 break; 1460 } 1461 default: 1462 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1463 "data 0x%llx\n", msr, data); 1464 return 1; 1465 } 1466 return 0; 1467 } 1468 1469 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1470 { 1471 switch (msr) { 1472 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1473 unsigned long addr; 1474 1475 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1476 vcpu->arch.hv_vapic = data; 1477 break; 1478 } 1479 addr = gfn_to_hva(vcpu->kvm, data >> 1480 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1481 if (kvm_is_error_hva(addr)) 1482 return 1; 1483 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1484 return 1; 1485 vcpu->arch.hv_vapic = data; 1486 break; 1487 } 1488 case HV_X64_MSR_EOI: 1489 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1490 case HV_X64_MSR_ICR: 1491 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1492 case HV_X64_MSR_TPR: 1493 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1494 default: 1495 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1496 "data 0x%llx\n", msr, data); 1497 return 1; 1498 } 1499 1500 return 0; 1501 } 1502 1503 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1504 { 1505 gpa_t gpa = data & ~0x3f; 1506 1507 /* Bits 2:5 are resrved, Should be zero */ 1508 if (data & 0x3c) 1509 return 1; 1510 1511 vcpu->arch.apf.msr_val = data; 1512 1513 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1514 kvm_clear_async_pf_completion_queue(vcpu); 1515 kvm_async_pf_hash_reset(vcpu); 1516 return 0; 1517 } 1518 1519 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1520 return 1; 1521 1522 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1523 kvm_async_pf_wakeup_all(vcpu); 1524 return 0; 1525 } 1526 1527 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1528 { 1529 if (vcpu->arch.time_page) { 1530 kvm_release_page_dirty(vcpu->arch.time_page); 1531 vcpu->arch.time_page = NULL; 1532 } 1533 } 1534 1535 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1536 { 1537 u64 delta; 1538 1539 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1540 return; 1541 1542 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1543 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1544 vcpu->arch.st.accum_steal = delta; 1545 } 1546 1547 static void record_steal_time(struct kvm_vcpu *vcpu) 1548 { 1549 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1550 return; 1551 1552 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1553 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1554 return; 1555 1556 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1557 vcpu->arch.st.steal.version += 2; 1558 vcpu->arch.st.accum_steal = 0; 1559 1560 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1561 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1562 } 1563 1564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1565 { 1566 bool pr = false; 1567 1568 switch (msr) { 1569 case MSR_EFER: 1570 return set_efer(vcpu, data); 1571 case MSR_K7_HWCR: 1572 data &= ~(u64)0x40; /* ignore flush filter disable */ 1573 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1574 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1575 if (data != 0) { 1576 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1577 data); 1578 return 1; 1579 } 1580 break; 1581 case MSR_FAM10H_MMIO_CONF_BASE: 1582 if (data != 0) { 1583 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1584 "0x%llx\n", data); 1585 return 1; 1586 } 1587 break; 1588 case MSR_AMD64_NB_CFG: 1589 break; 1590 case MSR_IA32_DEBUGCTLMSR: 1591 if (!data) { 1592 /* We support the non-activated case already */ 1593 break; 1594 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1595 /* Values other than LBR and BTF are vendor-specific, 1596 thus reserved and should throw a #GP */ 1597 return 1; 1598 } 1599 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1600 __func__, data); 1601 break; 1602 case MSR_IA32_UCODE_REV: 1603 case MSR_IA32_UCODE_WRITE: 1604 case MSR_VM_HSAVE_PA: 1605 case MSR_AMD64_PATCH_LOADER: 1606 break; 1607 case 0x200 ... 0x2ff: 1608 return set_msr_mtrr(vcpu, msr, data); 1609 case MSR_IA32_APICBASE: 1610 kvm_set_apic_base(vcpu, data); 1611 break; 1612 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1613 return kvm_x2apic_msr_write(vcpu, msr, data); 1614 case MSR_IA32_TSCDEADLINE: 1615 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1616 break; 1617 case MSR_IA32_MISC_ENABLE: 1618 vcpu->arch.ia32_misc_enable_msr = data; 1619 break; 1620 case MSR_KVM_WALL_CLOCK_NEW: 1621 case MSR_KVM_WALL_CLOCK: 1622 vcpu->kvm->arch.wall_clock = data; 1623 kvm_write_wall_clock(vcpu->kvm, data); 1624 break; 1625 case MSR_KVM_SYSTEM_TIME_NEW: 1626 case MSR_KVM_SYSTEM_TIME: { 1627 kvmclock_reset(vcpu); 1628 1629 vcpu->arch.time = data; 1630 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1631 1632 /* we verify if the enable bit is set... */ 1633 if (!(data & 1)) 1634 break; 1635 1636 /* ...but clean it before doing the actual write */ 1637 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1638 1639 vcpu->arch.time_page = 1640 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1641 1642 if (is_error_page(vcpu->arch.time_page)) { 1643 kvm_release_page_clean(vcpu->arch.time_page); 1644 vcpu->arch.time_page = NULL; 1645 } 1646 break; 1647 } 1648 case MSR_KVM_ASYNC_PF_EN: 1649 if (kvm_pv_enable_async_pf(vcpu, data)) 1650 return 1; 1651 break; 1652 case MSR_KVM_STEAL_TIME: 1653 1654 if (unlikely(!sched_info_on())) 1655 return 1; 1656 1657 if (data & KVM_STEAL_RESERVED_MASK) 1658 return 1; 1659 1660 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1661 data & KVM_STEAL_VALID_BITS)) 1662 return 1; 1663 1664 vcpu->arch.st.msr_val = data; 1665 1666 if (!(data & KVM_MSR_ENABLED)) 1667 break; 1668 1669 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1670 1671 preempt_disable(); 1672 accumulate_steal_time(vcpu); 1673 preempt_enable(); 1674 1675 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1676 1677 break; 1678 case MSR_KVM_PV_EOI_EN: 1679 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 1680 return 1; 1681 break; 1682 1683 case MSR_IA32_MCG_CTL: 1684 case MSR_IA32_MCG_STATUS: 1685 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1686 return set_msr_mce(vcpu, msr, data); 1687 1688 /* Performance counters are not protected by a CPUID bit, 1689 * so we should check all of them in the generic path for the sake of 1690 * cross vendor migration. 1691 * Writing a zero into the event select MSRs disables them, 1692 * which we perfectly emulate ;-). Any other value should be at least 1693 * reported, some guests depend on them. 1694 */ 1695 case MSR_K7_EVNTSEL0: 1696 case MSR_K7_EVNTSEL1: 1697 case MSR_K7_EVNTSEL2: 1698 case MSR_K7_EVNTSEL3: 1699 if (data != 0) 1700 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1701 "0x%x data 0x%llx\n", msr, data); 1702 break; 1703 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1704 * so we ignore writes to make it happy. 1705 */ 1706 case MSR_K7_PERFCTR0: 1707 case MSR_K7_PERFCTR1: 1708 case MSR_K7_PERFCTR2: 1709 case MSR_K7_PERFCTR3: 1710 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1711 "0x%x data 0x%llx\n", msr, data); 1712 break; 1713 case MSR_P6_PERFCTR0: 1714 case MSR_P6_PERFCTR1: 1715 pr = true; 1716 case MSR_P6_EVNTSEL0: 1717 case MSR_P6_EVNTSEL1: 1718 if (kvm_pmu_msr(vcpu, msr)) 1719 return kvm_pmu_set_msr(vcpu, msr, data); 1720 1721 if (pr || data != 0) 1722 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 1723 "0x%x data 0x%llx\n", msr, data); 1724 break; 1725 case MSR_K7_CLK_CTL: 1726 /* 1727 * Ignore all writes to this no longer documented MSR. 1728 * Writes are only relevant for old K7 processors, 1729 * all pre-dating SVM, but a recommended workaround from 1730 * AMD for these chips. It is possible to speicify the 1731 * affected processor models on the command line, hence 1732 * the need to ignore the workaround. 1733 */ 1734 break; 1735 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1736 if (kvm_hv_msr_partition_wide(msr)) { 1737 int r; 1738 mutex_lock(&vcpu->kvm->lock); 1739 r = set_msr_hyperv_pw(vcpu, msr, data); 1740 mutex_unlock(&vcpu->kvm->lock); 1741 return r; 1742 } else 1743 return set_msr_hyperv(vcpu, msr, data); 1744 break; 1745 case MSR_IA32_BBL_CR_CTL3: 1746 /* Drop writes to this legacy MSR -- see rdmsr 1747 * counterpart for further detail. 1748 */ 1749 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1750 break; 1751 case MSR_AMD64_OSVW_ID_LENGTH: 1752 if (!guest_cpuid_has_osvw(vcpu)) 1753 return 1; 1754 vcpu->arch.osvw.length = data; 1755 break; 1756 case MSR_AMD64_OSVW_STATUS: 1757 if (!guest_cpuid_has_osvw(vcpu)) 1758 return 1; 1759 vcpu->arch.osvw.status = data; 1760 break; 1761 default: 1762 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1763 return xen_hvm_config(vcpu, data); 1764 if (kvm_pmu_msr(vcpu, msr)) 1765 return kvm_pmu_set_msr(vcpu, msr, data); 1766 if (!ignore_msrs) { 1767 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1768 msr, data); 1769 return 1; 1770 } else { 1771 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1772 msr, data); 1773 break; 1774 } 1775 } 1776 return 0; 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1779 1780 1781 /* 1782 * Reads an msr value (of 'msr_index') into 'pdata'. 1783 * Returns 0 on success, non-0 otherwise. 1784 * Assumes vcpu_load() was already called. 1785 */ 1786 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1787 { 1788 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1789 } 1790 1791 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1792 { 1793 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1794 1795 if (!msr_mtrr_valid(msr)) 1796 return 1; 1797 1798 if (msr == MSR_MTRRdefType) 1799 *pdata = vcpu->arch.mtrr_state.def_type + 1800 (vcpu->arch.mtrr_state.enabled << 10); 1801 else if (msr == MSR_MTRRfix64K_00000) 1802 *pdata = p[0]; 1803 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1804 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1805 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1806 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1807 else if (msr == MSR_IA32_CR_PAT) 1808 *pdata = vcpu->arch.pat; 1809 else { /* Variable MTRRs */ 1810 int idx, is_mtrr_mask; 1811 u64 *pt; 1812 1813 idx = (msr - 0x200) / 2; 1814 is_mtrr_mask = msr - 0x200 - 2 * idx; 1815 if (!is_mtrr_mask) 1816 pt = 1817 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1818 else 1819 pt = 1820 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1821 *pdata = *pt; 1822 } 1823 1824 return 0; 1825 } 1826 1827 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1828 { 1829 u64 data; 1830 u64 mcg_cap = vcpu->arch.mcg_cap; 1831 unsigned bank_num = mcg_cap & 0xff; 1832 1833 switch (msr) { 1834 case MSR_IA32_P5_MC_ADDR: 1835 case MSR_IA32_P5_MC_TYPE: 1836 data = 0; 1837 break; 1838 case MSR_IA32_MCG_CAP: 1839 data = vcpu->arch.mcg_cap; 1840 break; 1841 case MSR_IA32_MCG_CTL: 1842 if (!(mcg_cap & MCG_CTL_P)) 1843 return 1; 1844 data = vcpu->arch.mcg_ctl; 1845 break; 1846 case MSR_IA32_MCG_STATUS: 1847 data = vcpu->arch.mcg_status; 1848 break; 1849 default: 1850 if (msr >= MSR_IA32_MC0_CTL && 1851 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1852 u32 offset = msr - MSR_IA32_MC0_CTL; 1853 data = vcpu->arch.mce_banks[offset]; 1854 break; 1855 } 1856 return 1; 1857 } 1858 *pdata = data; 1859 return 0; 1860 } 1861 1862 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1863 { 1864 u64 data = 0; 1865 struct kvm *kvm = vcpu->kvm; 1866 1867 switch (msr) { 1868 case HV_X64_MSR_GUEST_OS_ID: 1869 data = kvm->arch.hv_guest_os_id; 1870 break; 1871 case HV_X64_MSR_HYPERCALL: 1872 data = kvm->arch.hv_hypercall; 1873 break; 1874 default: 1875 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1876 return 1; 1877 } 1878 1879 *pdata = data; 1880 return 0; 1881 } 1882 1883 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1884 { 1885 u64 data = 0; 1886 1887 switch (msr) { 1888 case HV_X64_MSR_VP_INDEX: { 1889 int r; 1890 struct kvm_vcpu *v; 1891 kvm_for_each_vcpu(r, v, vcpu->kvm) 1892 if (v == vcpu) 1893 data = r; 1894 break; 1895 } 1896 case HV_X64_MSR_EOI: 1897 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1898 case HV_X64_MSR_ICR: 1899 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1900 case HV_X64_MSR_TPR: 1901 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1902 case HV_X64_MSR_APIC_ASSIST_PAGE: 1903 data = vcpu->arch.hv_vapic; 1904 break; 1905 default: 1906 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1907 return 1; 1908 } 1909 *pdata = data; 1910 return 0; 1911 } 1912 1913 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1914 { 1915 u64 data; 1916 1917 switch (msr) { 1918 case MSR_IA32_PLATFORM_ID: 1919 case MSR_IA32_EBL_CR_POWERON: 1920 case MSR_IA32_DEBUGCTLMSR: 1921 case MSR_IA32_LASTBRANCHFROMIP: 1922 case MSR_IA32_LASTBRANCHTOIP: 1923 case MSR_IA32_LASTINTFROMIP: 1924 case MSR_IA32_LASTINTTOIP: 1925 case MSR_K8_SYSCFG: 1926 case MSR_K7_HWCR: 1927 case MSR_VM_HSAVE_PA: 1928 case MSR_K7_EVNTSEL0: 1929 case MSR_K7_PERFCTR0: 1930 case MSR_K8_INT_PENDING_MSG: 1931 case MSR_AMD64_NB_CFG: 1932 case MSR_FAM10H_MMIO_CONF_BASE: 1933 data = 0; 1934 break; 1935 case MSR_P6_PERFCTR0: 1936 case MSR_P6_PERFCTR1: 1937 case MSR_P6_EVNTSEL0: 1938 case MSR_P6_EVNTSEL1: 1939 if (kvm_pmu_msr(vcpu, msr)) 1940 return kvm_pmu_get_msr(vcpu, msr, pdata); 1941 data = 0; 1942 break; 1943 case MSR_IA32_UCODE_REV: 1944 data = 0x100000000ULL; 1945 break; 1946 case MSR_MTRRcap: 1947 data = 0x500 | KVM_NR_VAR_MTRR; 1948 break; 1949 case 0x200 ... 0x2ff: 1950 return get_msr_mtrr(vcpu, msr, pdata); 1951 case 0xcd: /* fsb frequency */ 1952 data = 3; 1953 break; 1954 /* 1955 * MSR_EBC_FREQUENCY_ID 1956 * Conservative value valid for even the basic CPU models. 1957 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1958 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1959 * and 266MHz for model 3, or 4. Set Core Clock 1960 * Frequency to System Bus Frequency Ratio to 1 (bits 1961 * 31:24) even though these are only valid for CPU 1962 * models > 2, however guests may end up dividing or 1963 * multiplying by zero otherwise. 1964 */ 1965 case MSR_EBC_FREQUENCY_ID: 1966 data = 1 << 24; 1967 break; 1968 case MSR_IA32_APICBASE: 1969 data = kvm_get_apic_base(vcpu); 1970 break; 1971 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1972 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1973 break; 1974 case MSR_IA32_TSCDEADLINE: 1975 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1976 break; 1977 case MSR_IA32_MISC_ENABLE: 1978 data = vcpu->arch.ia32_misc_enable_msr; 1979 break; 1980 case MSR_IA32_PERF_STATUS: 1981 /* TSC increment by tick */ 1982 data = 1000ULL; 1983 /* CPU multiplier */ 1984 data |= (((uint64_t)4ULL) << 40); 1985 break; 1986 case MSR_EFER: 1987 data = vcpu->arch.efer; 1988 break; 1989 case MSR_KVM_WALL_CLOCK: 1990 case MSR_KVM_WALL_CLOCK_NEW: 1991 data = vcpu->kvm->arch.wall_clock; 1992 break; 1993 case MSR_KVM_SYSTEM_TIME: 1994 case MSR_KVM_SYSTEM_TIME_NEW: 1995 data = vcpu->arch.time; 1996 break; 1997 case MSR_KVM_ASYNC_PF_EN: 1998 data = vcpu->arch.apf.msr_val; 1999 break; 2000 case MSR_KVM_STEAL_TIME: 2001 data = vcpu->arch.st.msr_val; 2002 break; 2003 case MSR_KVM_PV_EOI_EN: 2004 data = vcpu->arch.pv_eoi.msr_val; 2005 break; 2006 case MSR_IA32_P5_MC_ADDR: 2007 case MSR_IA32_P5_MC_TYPE: 2008 case MSR_IA32_MCG_CAP: 2009 case MSR_IA32_MCG_CTL: 2010 case MSR_IA32_MCG_STATUS: 2011 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2012 return get_msr_mce(vcpu, msr, pdata); 2013 case MSR_K7_CLK_CTL: 2014 /* 2015 * Provide expected ramp-up count for K7. All other 2016 * are set to zero, indicating minimum divisors for 2017 * every field. 2018 * 2019 * This prevents guest kernels on AMD host with CPU 2020 * type 6, model 8 and higher from exploding due to 2021 * the rdmsr failing. 2022 */ 2023 data = 0x20000000; 2024 break; 2025 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2026 if (kvm_hv_msr_partition_wide(msr)) { 2027 int r; 2028 mutex_lock(&vcpu->kvm->lock); 2029 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2030 mutex_unlock(&vcpu->kvm->lock); 2031 return r; 2032 } else 2033 return get_msr_hyperv(vcpu, msr, pdata); 2034 break; 2035 case MSR_IA32_BBL_CR_CTL3: 2036 /* This legacy MSR exists but isn't fully documented in current 2037 * silicon. It is however accessed by winxp in very narrow 2038 * scenarios where it sets bit #19, itself documented as 2039 * a "reserved" bit. Best effort attempt to source coherent 2040 * read data here should the balance of the register be 2041 * interpreted by the guest: 2042 * 2043 * L2 cache control register 3: 64GB range, 256KB size, 2044 * enabled, latency 0x1, configured 2045 */ 2046 data = 0xbe702111; 2047 break; 2048 case MSR_AMD64_OSVW_ID_LENGTH: 2049 if (!guest_cpuid_has_osvw(vcpu)) 2050 return 1; 2051 data = vcpu->arch.osvw.length; 2052 break; 2053 case MSR_AMD64_OSVW_STATUS: 2054 if (!guest_cpuid_has_osvw(vcpu)) 2055 return 1; 2056 data = vcpu->arch.osvw.status; 2057 break; 2058 default: 2059 if (kvm_pmu_msr(vcpu, msr)) 2060 return kvm_pmu_get_msr(vcpu, msr, pdata); 2061 if (!ignore_msrs) { 2062 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2063 return 1; 2064 } else { 2065 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2066 data = 0; 2067 } 2068 break; 2069 } 2070 *pdata = data; 2071 return 0; 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2074 2075 /* 2076 * Read or write a bunch of msrs. All parameters are kernel addresses. 2077 * 2078 * @return number of msrs set successfully. 2079 */ 2080 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2081 struct kvm_msr_entry *entries, 2082 int (*do_msr)(struct kvm_vcpu *vcpu, 2083 unsigned index, u64 *data)) 2084 { 2085 int i, idx; 2086 2087 idx = srcu_read_lock(&vcpu->kvm->srcu); 2088 for (i = 0; i < msrs->nmsrs; ++i) 2089 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2090 break; 2091 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2092 2093 return i; 2094 } 2095 2096 /* 2097 * Read or write a bunch of msrs. Parameters are user addresses. 2098 * 2099 * @return number of msrs set successfully. 2100 */ 2101 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2102 int (*do_msr)(struct kvm_vcpu *vcpu, 2103 unsigned index, u64 *data), 2104 int writeback) 2105 { 2106 struct kvm_msrs msrs; 2107 struct kvm_msr_entry *entries; 2108 int r, n; 2109 unsigned size; 2110 2111 r = -EFAULT; 2112 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2113 goto out; 2114 2115 r = -E2BIG; 2116 if (msrs.nmsrs >= MAX_IO_MSRS) 2117 goto out; 2118 2119 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2120 entries = memdup_user(user_msrs->entries, size); 2121 if (IS_ERR(entries)) { 2122 r = PTR_ERR(entries); 2123 goto out; 2124 } 2125 2126 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2127 if (r < 0) 2128 goto out_free; 2129 2130 r = -EFAULT; 2131 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2132 goto out_free; 2133 2134 r = n; 2135 2136 out_free: 2137 kfree(entries); 2138 out: 2139 return r; 2140 } 2141 2142 int kvm_dev_ioctl_check_extension(long ext) 2143 { 2144 int r; 2145 2146 switch (ext) { 2147 case KVM_CAP_IRQCHIP: 2148 case KVM_CAP_HLT: 2149 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2150 case KVM_CAP_SET_TSS_ADDR: 2151 case KVM_CAP_EXT_CPUID: 2152 case KVM_CAP_CLOCKSOURCE: 2153 case KVM_CAP_PIT: 2154 case KVM_CAP_NOP_IO_DELAY: 2155 case KVM_CAP_MP_STATE: 2156 case KVM_CAP_SYNC_MMU: 2157 case KVM_CAP_USER_NMI: 2158 case KVM_CAP_REINJECT_CONTROL: 2159 case KVM_CAP_IRQ_INJECT_STATUS: 2160 case KVM_CAP_ASSIGN_DEV_IRQ: 2161 case KVM_CAP_IRQFD: 2162 case KVM_CAP_IOEVENTFD: 2163 case KVM_CAP_PIT2: 2164 case KVM_CAP_PIT_STATE2: 2165 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2166 case KVM_CAP_XEN_HVM: 2167 case KVM_CAP_ADJUST_CLOCK: 2168 case KVM_CAP_VCPU_EVENTS: 2169 case KVM_CAP_HYPERV: 2170 case KVM_CAP_HYPERV_VAPIC: 2171 case KVM_CAP_HYPERV_SPIN: 2172 case KVM_CAP_PCI_SEGMENT: 2173 case KVM_CAP_DEBUGREGS: 2174 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2175 case KVM_CAP_XSAVE: 2176 case KVM_CAP_ASYNC_PF: 2177 case KVM_CAP_GET_TSC_KHZ: 2178 case KVM_CAP_PCI_2_3: 2179 case KVM_CAP_KVMCLOCK_CTRL: 2180 r = 1; 2181 break; 2182 case KVM_CAP_COALESCED_MMIO: 2183 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2184 break; 2185 case KVM_CAP_VAPIC: 2186 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2187 break; 2188 case KVM_CAP_NR_VCPUS: 2189 r = KVM_SOFT_MAX_VCPUS; 2190 break; 2191 case KVM_CAP_MAX_VCPUS: 2192 r = KVM_MAX_VCPUS; 2193 break; 2194 case KVM_CAP_NR_MEMSLOTS: 2195 r = KVM_MEMORY_SLOTS; 2196 break; 2197 case KVM_CAP_PV_MMU: /* obsolete */ 2198 r = 0; 2199 break; 2200 case KVM_CAP_IOMMU: 2201 r = iommu_present(&pci_bus_type); 2202 break; 2203 case KVM_CAP_MCE: 2204 r = KVM_MAX_MCE_BANKS; 2205 break; 2206 case KVM_CAP_XCRS: 2207 r = cpu_has_xsave; 2208 break; 2209 case KVM_CAP_TSC_CONTROL: 2210 r = kvm_has_tsc_control; 2211 break; 2212 case KVM_CAP_TSC_DEADLINE_TIMER: 2213 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2214 break; 2215 default: 2216 r = 0; 2217 break; 2218 } 2219 return r; 2220 2221 } 2222 2223 long kvm_arch_dev_ioctl(struct file *filp, 2224 unsigned int ioctl, unsigned long arg) 2225 { 2226 void __user *argp = (void __user *)arg; 2227 long r; 2228 2229 switch (ioctl) { 2230 case KVM_GET_MSR_INDEX_LIST: { 2231 struct kvm_msr_list __user *user_msr_list = argp; 2232 struct kvm_msr_list msr_list; 2233 unsigned n; 2234 2235 r = -EFAULT; 2236 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2237 goto out; 2238 n = msr_list.nmsrs; 2239 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2240 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2241 goto out; 2242 r = -E2BIG; 2243 if (n < msr_list.nmsrs) 2244 goto out; 2245 r = -EFAULT; 2246 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2247 num_msrs_to_save * sizeof(u32))) 2248 goto out; 2249 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2250 &emulated_msrs, 2251 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2252 goto out; 2253 r = 0; 2254 break; 2255 } 2256 case KVM_GET_SUPPORTED_CPUID: { 2257 struct kvm_cpuid2 __user *cpuid_arg = argp; 2258 struct kvm_cpuid2 cpuid; 2259 2260 r = -EFAULT; 2261 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2262 goto out; 2263 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2264 cpuid_arg->entries); 2265 if (r) 2266 goto out; 2267 2268 r = -EFAULT; 2269 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2270 goto out; 2271 r = 0; 2272 break; 2273 } 2274 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2275 u64 mce_cap; 2276 2277 mce_cap = KVM_MCE_CAP_SUPPORTED; 2278 r = -EFAULT; 2279 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2280 goto out; 2281 r = 0; 2282 break; 2283 } 2284 default: 2285 r = -EINVAL; 2286 } 2287 out: 2288 return r; 2289 } 2290 2291 static void wbinvd_ipi(void *garbage) 2292 { 2293 wbinvd(); 2294 } 2295 2296 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2297 { 2298 return vcpu->kvm->arch.iommu_domain && 2299 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2300 } 2301 2302 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2303 { 2304 /* Address WBINVD may be executed by guest */ 2305 if (need_emulate_wbinvd(vcpu)) { 2306 if (kvm_x86_ops->has_wbinvd_exit()) 2307 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2308 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2309 smp_call_function_single(vcpu->cpu, 2310 wbinvd_ipi, NULL, 1); 2311 } 2312 2313 kvm_x86_ops->vcpu_load(vcpu, cpu); 2314 2315 /* Apply any externally detected TSC adjustments (due to suspend) */ 2316 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2317 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2318 vcpu->arch.tsc_offset_adjustment = 0; 2319 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2320 } 2321 2322 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2323 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2324 native_read_tsc() - vcpu->arch.last_host_tsc; 2325 if (tsc_delta < 0) 2326 mark_tsc_unstable("KVM discovered backwards TSC"); 2327 if (check_tsc_unstable()) { 2328 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2329 vcpu->arch.last_guest_tsc); 2330 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2331 vcpu->arch.tsc_catchup = 1; 2332 } 2333 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2334 if (vcpu->cpu != cpu) 2335 kvm_migrate_timers(vcpu); 2336 vcpu->cpu = cpu; 2337 } 2338 2339 accumulate_steal_time(vcpu); 2340 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2341 } 2342 2343 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2344 { 2345 kvm_x86_ops->vcpu_put(vcpu); 2346 kvm_put_guest_fpu(vcpu); 2347 vcpu->arch.last_host_tsc = native_read_tsc(); 2348 } 2349 2350 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2351 struct kvm_lapic_state *s) 2352 { 2353 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2354 2355 return 0; 2356 } 2357 2358 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2359 struct kvm_lapic_state *s) 2360 { 2361 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); 2362 kvm_apic_post_state_restore(vcpu); 2363 update_cr8_intercept(vcpu); 2364 2365 return 0; 2366 } 2367 2368 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2369 struct kvm_interrupt *irq) 2370 { 2371 if (irq->irq < 0 || irq->irq >= 256) 2372 return -EINVAL; 2373 if (irqchip_in_kernel(vcpu->kvm)) 2374 return -ENXIO; 2375 2376 kvm_queue_interrupt(vcpu, irq->irq, false); 2377 kvm_make_request(KVM_REQ_EVENT, vcpu); 2378 2379 return 0; 2380 } 2381 2382 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2383 { 2384 kvm_inject_nmi(vcpu); 2385 2386 return 0; 2387 } 2388 2389 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2390 struct kvm_tpr_access_ctl *tac) 2391 { 2392 if (tac->flags) 2393 return -EINVAL; 2394 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2395 return 0; 2396 } 2397 2398 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2399 u64 mcg_cap) 2400 { 2401 int r; 2402 unsigned bank_num = mcg_cap & 0xff, bank; 2403 2404 r = -EINVAL; 2405 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2406 goto out; 2407 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2408 goto out; 2409 r = 0; 2410 vcpu->arch.mcg_cap = mcg_cap; 2411 /* Init IA32_MCG_CTL to all 1s */ 2412 if (mcg_cap & MCG_CTL_P) 2413 vcpu->arch.mcg_ctl = ~(u64)0; 2414 /* Init IA32_MCi_CTL to all 1s */ 2415 for (bank = 0; bank < bank_num; bank++) 2416 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2417 out: 2418 return r; 2419 } 2420 2421 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2422 struct kvm_x86_mce *mce) 2423 { 2424 u64 mcg_cap = vcpu->arch.mcg_cap; 2425 unsigned bank_num = mcg_cap & 0xff; 2426 u64 *banks = vcpu->arch.mce_banks; 2427 2428 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2429 return -EINVAL; 2430 /* 2431 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2432 * reporting is disabled 2433 */ 2434 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2435 vcpu->arch.mcg_ctl != ~(u64)0) 2436 return 0; 2437 banks += 4 * mce->bank; 2438 /* 2439 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2440 * reporting is disabled for the bank 2441 */ 2442 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2443 return 0; 2444 if (mce->status & MCI_STATUS_UC) { 2445 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2446 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2447 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2448 return 0; 2449 } 2450 if (banks[1] & MCI_STATUS_VAL) 2451 mce->status |= MCI_STATUS_OVER; 2452 banks[2] = mce->addr; 2453 banks[3] = mce->misc; 2454 vcpu->arch.mcg_status = mce->mcg_status; 2455 banks[1] = mce->status; 2456 kvm_queue_exception(vcpu, MC_VECTOR); 2457 } else if (!(banks[1] & MCI_STATUS_VAL) 2458 || !(banks[1] & MCI_STATUS_UC)) { 2459 if (banks[1] & MCI_STATUS_VAL) 2460 mce->status |= MCI_STATUS_OVER; 2461 banks[2] = mce->addr; 2462 banks[3] = mce->misc; 2463 banks[1] = mce->status; 2464 } else 2465 banks[1] |= MCI_STATUS_OVER; 2466 return 0; 2467 } 2468 2469 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2470 struct kvm_vcpu_events *events) 2471 { 2472 process_nmi(vcpu); 2473 events->exception.injected = 2474 vcpu->arch.exception.pending && 2475 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2476 events->exception.nr = vcpu->arch.exception.nr; 2477 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2478 events->exception.pad = 0; 2479 events->exception.error_code = vcpu->arch.exception.error_code; 2480 2481 events->interrupt.injected = 2482 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2483 events->interrupt.nr = vcpu->arch.interrupt.nr; 2484 events->interrupt.soft = 0; 2485 events->interrupt.shadow = 2486 kvm_x86_ops->get_interrupt_shadow(vcpu, 2487 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2488 2489 events->nmi.injected = vcpu->arch.nmi_injected; 2490 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2491 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2492 events->nmi.pad = 0; 2493 2494 events->sipi_vector = vcpu->arch.sipi_vector; 2495 2496 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2497 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2498 | KVM_VCPUEVENT_VALID_SHADOW); 2499 memset(&events->reserved, 0, sizeof(events->reserved)); 2500 } 2501 2502 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2503 struct kvm_vcpu_events *events) 2504 { 2505 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2506 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2507 | KVM_VCPUEVENT_VALID_SHADOW)) 2508 return -EINVAL; 2509 2510 process_nmi(vcpu); 2511 vcpu->arch.exception.pending = events->exception.injected; 2512 vcpu->arch.exception.nr = events->exception.nr; 2513 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2514 vcpu->arch.exception.error_code = events->exception.error_code; 2515 2516 vcpu->arch.interrupt.pending = events->interrupt.injected; 2517 vcpu->arch.interrupt.nr = events->interrupt.nr; 2518 vcpu->arch.interrupt.soft = events->interrupt.soft; 2519 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2520 kvm_x86_ops->set_interrupt_shadow(vcpu, 2521 events->interrupt.shadow); 2522 2523 vcpu->arch.nmi_injected = events->nmi.injected; 2524 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2525 vcpu->arch.nmi_pending = events->nmi.pending; 2526 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2527 2528 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2529 vcpu->arch.sipi_vector = events->sipi_vector; 2530 2531 kvm_make_request(KVM_REQ_EVENT, vcpu); 2532 2533 return 0; 2534 } 2535 2536 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2537 struct kvm_debugregs *dbgregs) 2538 { 2539 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2540 dbgregs->dr6 = vcpu->arch.dr6; 2541 dbgregs->dr7 = vcpu->arch.dr7; 2542 dbgregs->flags = 0; 2543 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2544 } 2545 2546 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2547 struct kvm_debugregs *dbgregs) 2548 { 2549 if (dbgregs->flags) 2550 return -EINVAL; 2551 2552 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2553 vcpu->arch.dr6 = dbgregs->dr6; 2554 vcpu->arch.dr7 = dbgregs->dr7; 2555 2556 return 0; 2557 } 2558 2559 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2560 struct kvm_xsave *guest_xsave) 2561 { 2562 if (cpu_has_xsave) 2563 memcpy(guest_xsave->region, 2564 &vcpu->arch.guest_fpu.state->xsave, 2565 xstate_size); 2566 else { 2567 memcpy(guest_xsave->region, 2568 &vcpu->arch.guest_fpu.state->fxsave, 2569 sizeof(struct i387_fxsave_struct)); 2570 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2571 XSTATE_FPSSE; 2572 } 2573 } 2574 2575 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2576 struct kvm_xsave *guest_xsave) 2577 { 2578 u64 xstate_bv = 2579 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2580 2581 if (cpu_has_xsave) 2582 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2583 guest_xsave->region, xstate_size); 2584 else { 2585 if (xstate_bv & ~XSTATE_FPSSE) 2586 return -EINVAL; 2587 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2588 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2589 } 2590 return 0; 2591 } 2592 2593 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2594 struct kvm_xcrs *guest_xcrs) 2595 { 2596 if (!cpu_has_xsave) { 2597 guest_xcrs->nr_xcrs = 0; 2598 return; 2599 } 2600 2601 guest_xcrs->nr_xcrs = 1; 2602 guest_xcrs->flags = 0; 2603 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2604 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2605 } 2606 2607 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2608 struct kvm_xcrs *guest_xcrs) 2609 { 2610 int i, r = 0; 2611 2612 if (!cpu_has_xsave) 2613 return -EINVAL; 2614 2615 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2616 return -EINVAL; 2617 2618 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2619 /* Only support XCR0 currently */ 2620 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2621 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2622 guest_xcrs->xcrs[0].value); 2623 break; 2624 } 2625 if (r) 2626 r = -EINVAL; 2627 return r; 2628 } 2629 2630 /* 2631 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2632 * stopped by the hypervisor. This function will be called from the host only. 2633 * EINVAL is returned when the host attempts to set the flag for a guest that 2634 * does not support pv clocks. 2635 */ 2636 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2637 { 2638 struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock; 2639 if (!vcpu->arch.time_page) 2640 return -EINVAL; 2641 src->flags |= PVCLOCK_GUEST_STOPPED; 2642 mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT); 2643 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2644 return 0; 2645 } 2646 2647 long kvm_arch_vcpu_ioctl(struct file *filp, 2648 unsigned int ioctl, unsigned long arg) 2649 { 2650 struct kvm_vcpu *vcpu = filp->private_data; 2651 void __user *argp = (void __user *)arg; 2652 int r; 2653 union { 2654 struct kvm_lapic_state *lapic; 2655 struct kvm_xsave *xsave; 2656 struct kvm_xcrs *xcrs; 2657 void *buffer; 2658 } u; 2659 2660 u.buffer = NULL; 2661 switch (ioctl) { 2662 case KVM_GET_LAPIC: { 2663 r = -EINVAL; 2664 if (!vcpu->arch.apic) 2665 goto out; 2666 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2667 2668 r = -ENOMEM; 2669 if (!u.lapic) 2670 goto out; 2671 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2672 if (r) 2673 goto out; 2674 r = -EFAULT; 2675 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2676 goto out; 2677 r = 0; 2678 break; 2679 } 2680 case KVM_SET_LAPIC: { 2681 r = -EINVAL; 2682 if (!vcpu->arch.apic) 2683 goto out; 2684 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2685 if (IS_ERR(u.lapic)) { 2686 r = PTR_ERR(u.lapic); 2687 goto out; 2688 } 2689 2690 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2691 if (r) 2692 goto out; 2693 r = 0; 2694 break; 2695 } 2696 case KVM_INTERRUPT: { 2697 struct kvm_interrupt irq; 2698 2699 r = -EFAULT; 2700 if (copy_from_user(&irq, argp, sizeof irq)) 2701 goto out; 2702 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2703 if (r) 2704 goto out; 2705 r = 0; 2706 break; 2707 } 2708 case KVM_NMI: { 2709 r = kvm_vcpu_ioctl_nmi(vcpu); 2710 if (r) 2711 goto out; 2712 r = 0; 2713 break; 2714 } 2715 case KVM_SET_CPUID: { 2716 struct kvm_cpuid __user *cpuid_arg = argp; 2717 struct kvm_cpuid cpuid; 2718 2719 r = -EFAULT; 2720 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2721 goto out; 2722 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2723 if (r) 2724 goto out; 2725 break; 2726 } 2727 case KVM_SET_CPUID2: { 2728 struct kvm_cpuid2 __user *cpuid_arg = argp; 2729 struct kvm_cpuid2 cpuid; 2730 2731 r = -EFAULT; 2732 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2733 goto out; 2734 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2735 cpuid_arg->entries); 2736 if (r) 2737 goto out; 2738 break; 2739 } 2740 case KVM_GET_CPUID2: { 2741 struct kvm_cpuid2 __user *cpuid_arg = argp; 2742 struct kvm_cpuid2 cpuid; 2743 2744 r = -EFAULT; 2745 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2746 goto out; 2747 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2748 cpuid_arg->entries); 2749 if (r) 2750 goto out; 2751 r = -EFAULT; 2752 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2753 goto out; 2754 r = 0; 2755 break; 2756 } 2757 case KVM_GET_MSRS: 2758 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2759 break; 2760 case KVM_SET_MSRS: 2761 r = msr_io(vcpu, argp, do_set_msr, 0); 2762 break; 2763 case KVM_TPR_ACCESS_REPORTING: { 2764 struct kvm_tpr_access_ctl tac; 2765 2766 r = -EFAULT; 2767 if (copy_from_user(&tac, argp, sizeof tac)) 2768 goto out; 2769 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2770 if (r) 2771 goto out; 2772 r = -EFAULT; 2773 if (copy_to_user(argp, &tac, sizeof tac)) 2774 goto out; 2775 r = 0; 2776 break; 2777 }; 2778 case KVM_SET_VAPIC_ADDR: { 2779 struct kvm_vapic_addr va; 2780 2781 r = -EINVAL; 2782 if (!irqchip_in_kernel(vcpu->kvm)) 2783 goto out; 2784 r = -EFAULT; 2785 if (copy_from_user(&va, argp, sizeof va)) 2786 goto out; 2787 r = 0; 2788 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2789 break; 2790 } 2791 case KVM_X86_SETUP_MCE: { 2792 u64 mcg_cap; 2793 2794 r = -EFAULT; 2795 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2796 goto out; 2797 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2798 break; 2799 } 2800 case KVM_X86_SET_MCE: { 2801 struct kvm_x86_mce mce; 2802 2803 r = -EFAULT; 2804 if (copy_from_user(&mce, argp, sizeof mce)) 2805 goto out; 2806 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2807 break; 2808 } 2809 case KVM_GET_VCPU_EVENTS: { 2810 struct kvm_vcpu_events events; 2811 2812 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2813 2814 r = -EFAULT; 2815 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2816 break; 2817 r = 0; 2818 break; 2819 } 2820 case KVM_SET_VCPU_EVENTS: { 2821 struct kvm_vcpu_events events; 2822 2823 r = -EFAULT; 2824 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2825 break; 2826 2827 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2828 break; 2829 } 2830 case KVM_GET_DEBUGREGS: { 2831 struct kvm_debugregs dbgregs; 2832 2833 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2834 2835 r = -EFAULT; 2836 if (copy_to_user(argp, &dbgregs, 2837 sizeof(struct kvm_debugregs))) 2838 break; 2839 r = 0; 2840 break; 2841 } 2842 case KVM_SET_DEBUGREGS: { 2843 struct kvm_debugregs dbgregs; 2844 2845 r = -EFAULT; 2846 if (copy_from_user(&dbgregs, argp, 2847 sizeof(struct kvm_debugregs))) 2848 break; 2849 2850 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2851 break; 2852 } 2853 case KVM_GET_XSAVE: { 2854 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2855 r = -ENOMEM; 2856 if (!u.xsave) 2857 break; 2858 2859 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2860 2861 r = -EFAULT; 2862 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2863 break; 2864 r = 0; 2865 break; 2866 } 2867 case KVM_SET_XSAVE: { 2868 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2869 if (IS_ERR(u.xsave)) { 2870 r = PTR_ERR(u.xsave); 2871 goto out; 2872 } 2873 2874 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2875 break; 2876 } 2877 case KVM_GET_XCRS: { 2878 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2879 r = -ENOMEM; 2880 if (!u.xcrs) 2881 break; 2882 2883 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2884 2885 r = -EFAULT; 2886 if (copy_to_user(argp, u.xcrs, 2887 sizeof(struct kvm_xcrs))) 2888 break; 2889 r = 0; 2890 break; 2891 } 2892 case KVM_SET_XCRS: { 2893 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2894 if (IS_ERR(u.xcrs)) { 2895 r = PTR_ERR(u.xcrs); 2896 goto out; 2897 } 2898 2899 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2900 break; 2901 } 2902 case KVM_SET_TSC_KHZ: { 2903 u32 user_tsc_khz; 2904 2905 r = -EINVAL; 2906 user_tsc_khz = (u32)arg; 2907 2908 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2909 goto out; 2910 2911 if (user_tsc_khz == 0) 2912 user_tsc_khz = tsc_khz; 2913 2914 kvm_set_tsc_khz(vcpu, user_tsc_khz); 2915 2916 r = 0; 2917 goto out; 2918 } 2919 case KVM_GET_TSC_KHZ: { 2920 r = vcpu->arch.virtual_tsc_khz; 2921 goto out; 2922 } 2923 case KVM_KVMCLOCK_CTRL: { 2924 r = kvm_set_guest_paused(vcpu); 2925 goto out; 2926 } 2927 default: 2928 r = -EINVAL; 2929 } 2930 out: 2931 kfree(u.buffer); 2932 return r; 2933 } 2934 2935 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2936 { 2937 return VM_FAULT_SIGBUS; 2938 } 2939 2940 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2941 { 2942 int ret; 2943 2944 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2945 return -1; 2946 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2947 return ret; 2948 } 2949 2950 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2951 u64 ident_addr) 2952 { 2953 kvm->arch.ept_identity_map_addr = ident_addr; 2954 return 0; 2955 } 2956 2957 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2958 u32 kvm_nr_mmu_pages) 2959 { 2960 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2961 return -EINVAL; 2962 2963 mutex_lock(&kvm->slots_lock); 2964 spin_lock(&kvm->mmu_lock); 2965 2966 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2967 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2968 2969 spin_unlock(&kvm->mmu_lock); 2970 mutex_unlock(&kvm->slots_lock); 2971 return 0; 2972 } 2973 2974 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2975 { 2976 return kvm->arch.n_max_mmu_pages; 2977 } 2978 2979 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2980 { 2981 int r; 2982 2983 r = 0; 2984 switch (chip->chip_id) { 2985 case KVM_IRQCHIP_PIC_MASTER: 2986 memcpy(&chip->chip.pic, 2987 &pic_irqchip(kvm)->pics[0], 2988 sizeof(struct kvm_pic_state)); 2989 break; 2990 case KVM_IRQCHIP_PIC_SLAVE: 2991 memcpy(&chip->chip.pic, 2992 &pic_irqchip(kvm)->pics[1], 2993 sizeof(struct kvm_pic_state)); 2994 break; 2995 case KVM_IRQCHIP_IOAPIC: 2996 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 2997 break; 2998 default: 2999 r = -EINVAL; 3000 break; 3001 } 3002 return r; 3003 } 3004 3005 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3006 { 3007 int r; 3008 3009 r = 0; 3010 switch (chip->chip_id) { 3011 case KVM_IRQCHIP_PIC_MASTER: 3012 spin_lock(&pic_irqchip(kvm)->lock); 3013 memcpy(&pic_irqchip(kvm)->pics[0], 3014 &chip->chip.pic, 3015 sizeof(struct kvm_pic_state)); 3016 spin_unlock(&pic_irqchip(kvm)->lock); 3017 break; 3018 case KVM_IRQCHIP_PIC_SLAVE: 3019 spin_lock(&pic_irqchip(kvm)->lock); 3020 memcpy(&pic_irqchip(kvm)->pics[1], 3021 &chip->chip.pic, 3022 sizeof(struct kvm_pic_state)); 3023 spin_unlock(&pic_irqchip(kvm)->lock); 3024 break; 3025 case KVM_IRQCHIP_IOAPIC: 3026 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3027 break; 3028 default: 3029 r = -EINVAL; 3030 break; 3031 } 3032 kvm_pic_update_irq(pic_irqchip(kvm)); 3033 return r; 3034 } 3035 3036 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3037 { 3038 int r = 0; 3039 3040 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3041 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3042 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3043 return r; 3044 } 3045 3046 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3047 { 3048 int r = 0; 3049 3050 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3051 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3052 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3053 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3054 return r; 3055 } 3056 3057 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3058 { 3059 int r = 0; 3060 3061 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3062 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3063 sizeof(ps->channels)); 3064 ps->flags = kvm->arch.vpit->pit_state.flags; 3065 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3066 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3067 return r; 3068 } 3069 3070 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3071 { 3072 int r = 0, start = 0; 3073 u32 prev_legacy, cur_legacy; 3074 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3075 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3076 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3077 if (!prev_legacy && cur_legacy) 3078 start = 1; 3079 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3080 sizeof(kvm->arch.vpit->pit_state.channels)); 3081 kvm->arch.vpit->pit_state.flags = ps->flags; 3082 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3083 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3084 return r; 3085 } 3086 3087 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3088 struct kvm_reinject_control *control) 3089 { 3090 if (!kvm->arch.vpit) 3091 return -ENXIO; 3092 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3093 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; 3094 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3095 return 0; 3096 } 3097 3098 /** 3099 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3100 * @kvm: kvm instance 3101 * @log: slot id and address to which we copy the log 3102 * 3103 * We need to keep it in mind that VCPU threads can write to the bitmap 3104 * concurrently. So, to avoid losing data, we keep the following order for 3105 * each bit: 3106 * 3107 * 1. Take a snapshot of the bit and clear it if needed. 3108 * 2. Write protect the corresponding page. 3109 * 3. Flush TLB's if needed. 3110 * 4. Copy the snapshot to the userspace. 3111 * 3112 * Between 2 and 3, the guest may write to the page using the remaining TLB 3113 * entry. This is not a problem because the page will be reported dirty at 3114 * step 4 using the snapshot taken before and step 3 ensures that successive 3115 * writes will be logged for the next call. 3116 */ 3117 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3118 { 3119 int r; 3120 struct kvm_memory_slot *memslot; 3121 unsigned long n, i; 3122 unsigned long *dirty_bitmap; 3123 unsigned long *dirty_bitmap_buffer; 3124 bool is_dirty = false; 3125 3126 mutex_lock(&kvm->slots_lock); 3127 3128 r = -EINVAL; 3129 if (log->slot >= KVM_MEMORY_SLOTS) 3130 goto out; 3131 3132 memslot = id_to_memslot(kvm->memslots, log->slot); 3133 3134 dirty_bitmap = memslot->dirty_bitmap; 3135 r = -ENOENT; 3136 if (!dirty_bitmap) 3137 goto out; 3138 3139 n = kvm_dirty_bitmap_bytes(memslot); 3140 3141 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3142 memset(dirty_bitmap_buffer, 0, n); 3143 3144 spin_lock(&kvm->mmu_lock); 3145 3146 for (i = 0; i < n / sizeof(long); i++) { 3147 unsigned long mask; 3148 gfn_t offset; 3149 3150 if (!dirty_bitmap[i]) 3151 continue; 3152 3153 is_dirty = true; 3154 3155 mask = xchg(&dirty_bitmap[i], 0); 3156 dirty_bitmap_buffer[i] = mask; 3157 3158 offset = i * BITS_PER_LONG; 3159 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3160 } 3161 if (is_dirty) 3162 kvm_flush_remote_tlbs(kvm); 3163 3164 spin_unlock(&kvm->mmu_lock); 3165 3166 r = -EFAULT; 3167 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3168 goto out; 3169 3170 r = 0; 3171 out: 3172 mutex_unlock(&kvm->slots_lock); 3173 return r; 3174 } 3175 3176 long kvm_arch_vm_ioctl(struct file *filp, 3177 unsigned int ioctl, unsigned long arg) 3178 { 3179 struct kvm *kvm = filp->private_data; 3180 void __user *argp = (void __user *)arg; 3181 int r = -ENOTTY; 3182 /* 3183 * This union makes it completely explicit to gcc-3.x 3184 * that these two variables' stack usage should be 3185 * combined, not added together. 3186 */ 3187 union { 3188 struct kvm_pit_state ps; 3189 struct kvm_pit_state2 ps2; 3190 struct kvm_pit_config pit_config; 3191 } u; 3192 3193 switch (ioctl) { 3194 case KVM_SET_TSS_ADDR: 3195 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3196 if (r < 0) 3197 goto out; 3198 break; 3199 case KVM_SET_IDENTITY_MAP_ADDR: { 3200 u64 ident_addr; 3201 3202 r = -EFAULT; 3203 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3204 goto out; 3205 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3206 if (r < 0) 3207 goto out; 3208 break; 3209 } 3210 case KVM_SET_NR_MMU_PAGES: 3211 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3212 if (r) 3213 goto out; 3214 break; 3215 case KVM_GET_NR_MMU_PAGES: 3216 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3217 break; 3218 case KVM_CREATE_IRQCHIP: { 3219 struct kvm_pic *vpic; 3220 3221 mutex_lock(&kvm->lock); 3222 r = -EEXIST; 3223 if (kvm->arch.vpic) 3224 goto create_irqchip_unlock; 3225 r = -EINVAL; 3226 if (atomic_read(&kvm->online_vcpus)) 3227 goto create_irqchip_unlock; 3228 r = -ENOMEM; 3229 vpic = kvm_create_pic(kvm); 3230 if (vpic) { 3231 r = kvm_ioapic_init(kvm); 3232 if (r) { 3233 mutex_lock(&kvm->slots_lock); 3234 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3235 &vpic->dev_master); 3236 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3237 &vpic->dev_slave); 3238 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3239 &vpic->dev_eclr); 3240 mutex_unlock(&kvm->slots_lock); 3241 kfree(vpic); 3242 goto create_irqchip_unlock; 3243 } 3244 } else 3245 goto create_irqchip_unlock; 3246 smp_wmb(); 3247 kvm->arch.vpic = vpic; 3248 smp_wmb(); 3249 r = kvm_setup_default_irq_routing(kvm); 3250 if (r) { 3251 mutex_lock(&kvm->slots_lock); 3252 mutex_lock(&kvm->irq_lock); 3253 kvm_ioapic_destroy(kvm); 3254 kvm_destroy_pic(kvm); 3255 mutex_unlock(&kvm->irq_lock); 3256 mutex_unlock(&kvm->slots_lock); 3257 } 3258 create_irqchip_unlock: 3259 mutex_unlock(&kvm->lock); 3260 break; 3261 } 3262 case KVM_CREATE_PIT: 3263 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3264 goto create_pit; 3265 case KVM_CREATE_PIT2: 3266 r = -EFAULT; 3267 if (copy_from_user(&u.pit_config, argp, 3268 sizeof(struct kvm_pit_config))) 3269 goto out; 3270 create_pit: 3271 mutex_lock(&kvm->slots_lock); 3272 r = -EEXIST; 3273 if (kvm->arch.vpit) 3274 goto create_pit_unlock; 3275 r = -ENOMEM; 3276 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3277 if (kvm->arch.vpit) 3278 r = 0; 3279 create_pit_unlock: 3280 mutex_unlock(&kvm->slots_lock); 3281 break; 3282 case KVM_IRQ_LINE_STATUS: 3283 case KVM_IRQ_LINE: { 3284 struct kvm_irq_level irq_event; 3285 3286 r = -EFAULT; 3287 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 3288 goto out; 3289 r = -ENXIO; 3290 if (irqchip_in_kernel(kvm)) { 3291 __s32 status; 3292 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3293 irq_event.irq, irq_event.level); 3294 if (ioctl == KVM_IRQ_LINE_STATUS) { 3295 r = -EFAULT; 3296 irq_event.status = status; 3297 if (copy_to_user(argp, &irq_event, 3298 sizeof irq_event)) 3299 goto out; 3300 } 3301 r = 0; 3302 } 3303 break; 3304 } 3305 case KVM_GET_IRQCHIP: { 3306 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3307 struct kvm_irqchip *chip; 3308 3309 chip = memdup_user(argp, sizeof(*chip)); 3310 if (IS_ERR(chip)) { 3311 r = PTR_ERR(chip); 3312 goto out; 3313 } 3314 3315 r = -ENXIO; 3316 if (!irqchip_in_kernel(kvm)) 3317 goto get_irqchip_out; 3318 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3319 if (r) 3320 goto get_irqchip_out; 3321 r = -EFAULT; 3322 if (copy_to_user(argp, chip, sizeof *chip)) 3323 goto get_irqchip_out; 3324 r = 0; 3325 get_irqchip_out: 3326 kfree(chip); 3327 if (r) 3328 goto out; 3329 break; 3330 } 3331 case KVM_SET_IRQCHIP: { 3332 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3333 struct kvm_irqchip *chip; 3334 3335 chip = memdup_user(argp, sizeof(*chip)); 3336 if (IS_ERR(chip)) { 3337 r = PTR_ERR(chip); 3338 goto out; 3339 } 3340 3341 r = -ENXIO; 3342 if (!irqchip_in_kernel(kvm)) 3343 goto set_irqchip_out; 3344 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3345 if (r) 3346 goto set_irqchip_out; 3347 r = 0; 3348 set_irqchip_out: 3349 kfree(chip); 3350 if (r) 3351 goto out; 3352 break; 3353 } 3354 case KVM_GET_PIT: { 3355 r = -EFAULT; 3356 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3357 goto out; 3358 r = -ENXIO; 3359 if (!kvm->arch.vpit) 3360 goto out; 3361 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3362 if (r) 3363 goto out; 3364 r = -EFAULT; 3365 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3366 goto out; 3367 r = 0; 3368 break; 3369 } 3370 case KVM_SET_PIT: { 3371 r = -EFAULT; 3372 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3373 goto out; 3374 r = -ENXIO; 3375 if (!kvm->arch.vpit) 3376 goto out; 3377 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3378 if (r) 3379 goto out; 3380 r = 0; 3381 break; 3382 } 3383 case KVM_GET_PIT2: { 3384 r = -ENXIO; 3385 if (!kvm->arch.vpit) 3386 goto out; 3387 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3388 if (r) 3389 goto out; 3390 r = -EFAULT; 3391 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3392 goto out; 3393 r = 0; 3394 break; 3395 } 3396 case KVM_SET_PIT2: { 3397 r = -EFAULT; 3398 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3399 goto out; 3400 r = -ENXIO; 3401 if (!kvm->arch.vpit) 3402 goto out; 3403 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3404 if (r) 3405 goto out; 3406 r = 0; 3407 break; 3408 } 3409 case KVM_REINJECT_CONTROL: { 3410 struct kvm_reinject_control control; 3411 r = -EFAULT; 3412 if (copy_from_user(&control, argp, sizeof(control))) 3413 goto out; 3414 r = kvm_vm_ioctl_reinject(kvm, &control); 3415 if (r) 3416 goto out; 3417 r = 0; 3418 break; 3419 } 3420 case KVM_XEN_HVM_CONFIG: { 3421 r = -EFAULT; 3422 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3423 sizeof(struct kvm_xen_hvm_config))) 3424 goto out; 3425 r = -EINVAL; 3426 if (kvm->arch.xen_hvm_config.flags) 3427 goto out; 3428 r = 0; 3429 break; 3430 } 3431 case KVM_SET_CLOCK: { 3432 struct kvm_clock_data user_ns; 3433 u64 now_ns; 3434 s64 delta; 3435 3436 r = -EFAULT; 3437 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3438 goto out; 3439 3440 r = -EINVAL; 3441 if (user_ns.flags) 3442 goto out; 3443 3444 r = 0; 3445 local_irq_disable(); 3446 now_ns = get_kernel_ns(); 3447 delta = user_ns.clock - now_ns; 3448 local_irq_enable(); 3449 kvm->arch.kvmclock_offset = delta; 3450 break; 3451 } 3452 case KVM_GET_CLOCK: { 3453 struct kvm_clock_data user_ns; 3454 u64 now_ns; 3455 3456 local_irq_disable(); 3457 now_ns = get_kernel_ns(); 3458 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3459 local_irq_enable(); 3460 user_ns.flags = 0; 3461 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3462 3463 r = -EFAULT; 3464 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3465 goto out; 3466 r = 0; 3467 break; 3468 } 3469 3470 default: 3471 ; 3472 } 3473 out: 3474 return r; 3475 } 3476 3477 static void kvm_init_msr_list(void) 3478 { 3479 u32 dummy[2]; 3480 unsigned i, j; 3481 3482 /* skip the first msrs in the list. KVM-specific */ 3483 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3484 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3485 continue; 3486 if (j < i) 3487 msrs_to_save[j] = msrs_to_save[i]; 3488 j++; 3489 } 3490 num_msrs_to_save = j; 3491 } 3492 3493 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3494 const void *v) 3495 { 3496 int handled = 0; 3497 int n; 3498 3499 do { 3500 n = min(len, 8); 3501 if (!(vcpu->arch.apic && 3502 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3503 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3504 break; 3505 handled += n; 3506 addr += n; 3507 len -= n; 3508 v += n; 3509 } while (len); 3510 3511 return handled; 3512 } 3513 3514 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3515 { 3516 int handled = 0; 3517 int n; 3518 3519 do { 3520 n = min(len, 8); 3521 if (!(vcpu->arch.apic && 3522 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3523 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3524 break; 3525 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3526 handled += n; 3527 addr += n; 3528 len -= n; 3529 v += n; 3530 } while (len); 3531 3532 return handled; 3533 } 3534 3535 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3536 struct kvm_segment *var, int seg) 3537 { 3538 kvm_x86_ops->set_segment(vcpu, var, seg); 3539 } 3540 3541 void kvm_get_segment(struct kvm_vcpu *vcpu, 3542 struct kvm_segment *var, int seg) 3543 { 3544 kvm_x86_ops->get_segment(vcpu, var, seg); 3545 } 3546 3547 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3548 { 3549 gpa_t t_gpa; 3550 struct x86_exception exception; 3551 3552 BUG_ON(!mmu_is_nested(vcpu)); 3553 3554 /* NPT walks are always user-walks */ 3555 access |= PFERR_USER_MASK; 3556 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3557 3558 return t_gpa; 3559 } 3560 3561 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3562 struct x86_exception *exception) 3563 { 3564 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3565 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3566 } 3567 3568 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3569 struct x86_exception *exception) 3570 { 3571 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3572 access |= PFERR_FETCH_MASK; 3573 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3574 } 3575 3576 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3577 struct x86_exception *exception) 3578 { 3579 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3580 access |= PFERR_WRITE_MASK; 3581 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3582 } 3583 3584 /* uses this to access any guest's mapped memory without checking CPL */ 3585 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3586 struct x86_exception *exception) 3587 { 3588 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3589 } 3590 3591 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3592 struct kvm_vcpu *vcpu, u32 access, 3593 struct x86_exception *exception) 3594 { 3595 void *data = val; 3596 int r = X86EMUL_CONTINUE; 3597 3598 while (bytes) { 3599 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3600 exception); 3601 unsigned offset = addr & (PAGE_SIZE-1); 3602 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3603 int ret; 3604 3605 if (gpa == UNMAPPED_GVA) 3606 return X86EMUL_PROPAGATE_FAULT; 3607 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3608 if (ret < 0) { 3609 r = X86EMUL_IO_NEEDED; 3610 goto out; 3611 } 3612 3613 bytes -= toread; 3614 data += toread; 3615 addr += toread; 3616 } 3617 out: 3618 return r; 3619 } 3620 3621 /* used for instruction fetching */ 3622 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3623 gva_t addr, void *val, unsigned int bytes, 3624 struct x86_exception *exception) 3625 { 3626 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3627 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3628 3629 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3630 access | PFERR_FETCH_MASK, 3631 exception); 3632 } 3633 3634 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3635 gva_t addr, void *val, unsigned int bytes, 3636 struct x86_exception *exception) 3637 { 3638 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3639 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3640 3641 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3642 exception); 3643 } 3644 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3645 3646 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3647 gva_t addr, void *val, unsigned int bytes, 3648 struct x86_exception *exception) 3649 { 3650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3651 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3652 } 3653 3654 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3655 gva_t addr, void *val, 3656 unsigned int bytes, 3657 struct x86_exception *exception) 3658 { 3659 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3660 void *data = val; 3661 int r = X86EMUL_CONTINUE; 3662 3663 while (bytes) { 3664 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3665 PFERR_WRITE_MASK, 3666 exception); 3667 unsigned offset = addr & (PAGE_SIZE-1); 3668 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3669 int ret; 3670 3671 if (gpa == UNMAPPED_GVA) 3672 return X86EMUL_PROPAGATE_FAULT; 3673 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3674 if (ret < 0) { 3675 r = X86EMUL_IO_NEEDED; 3676 goto out; 3677 } 3678 3679 bytes -= towrite; 3680 data += towrite; 3681 addr += towrite; 3682 } 3683 out: 3684 return r; 3685 } 3686 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3687 3688 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3689 gpa_t *gpa, struct x86_exception *exception, 3690 bool write) 3691 { 3692 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3693 3694 if (vcpu_match_mmio_gva(vcpu, gva) && 3695 check_write_user_access(vcpu, write, access, 3696 vcpu->arch.access)) { 3697 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3698 (gva & (PAGE_SIZE - 1)); 3699 trace_vcpu_match_mmio(gva, *gpa, write, false); 3700 return 1; 3701 } 3702 3703 if (write) 3704 access |= PFERR_WRITE_MASK; 3705 3706 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3707 3708 if (*gpa == UNMAPPED_GVA) 3709 return -1; 3710 3711 /* For APIC access vmexit */ 3712 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3713 return 1; 3714 3715 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3716 trace_vcpu_match_mmio(gva, *gpa, write, true); 3717 return 1; 3718 } 3719 3720 return 0; 3721 } 3722 3723 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3724 const void *val, int bytes) 3725 { 3726 int ret; 3727 3728 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3729 if (ret < 0) 3730 return 0; 3731 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3732 return 1; 3733 } 3734 3735 struct read_write_emulator_ops { 3736 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3737 int bytes); 3738 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3739 void *val, int bytes); 3740 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3741 int bytes, void *val); 3742 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3743 void *val, int bytes); 3744 bool write; 3745 }; 3746 3747 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3748 { 3749 if (vcpu->mmio_read_completed) { 3750 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3751 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 3752 vcpu->mmio_read_completed = 0; 3753 return 1; 3754 } 3755 3756 return 0; 3757 } 3758 3759 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3760 void *val, int bytes) 3761 { 3762 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3763 } 3764 3765 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3766 void *val, int bytes) 3767 { 3768 return emulator_write_phys(vcpu, gpa, val, bytes); 3769 } 3770 3771 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3772 { 3773 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3774 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3775 } 3776 3777 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3778 void *val, int bytes) 3779 { 3780 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3781 return X86EMUL_IO_NEEDED; 3782 } 3783 3784 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3785 void *val, int bytes) 3786 { 3787 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 3788 3789 memcpy(vcpu->run->mmio.data, frag->data, frag->len); 3790 return X86EMUL_CONTINUE; 3791 } 3792 3793 static struct read_write_emulator_ops read_emultor = { 3794 .read_write_prepare = read_prepare, 3795 .read_write_emulate = read_emulate, 3796 .read_write_mmio = vcpu_mmio_read, 3797 .read_write_exit_mmio = read_exit_mmio, 3798 }; 3799 3800 static struct read_write_emulator_ops write_emultor = { 3801 .read_write_emulate = write_emulate, 3802 .read_write_mmio = write_mmio, 3803 .read_write_exit_mmio = write_exit_mmio, 3804 .write = true, 3805 }; 3806 3807 static int emulator_read_write_onepage(unsigned long addr, void *val, 3808 unsigned int bytes, 3809 struct x86_exception *exception, 3810 struct kvm_vcpu *vcpu, 3811 struct read_write_emulator_ops *ops) 3812 { 3813 gpa_t gpa; 3814 int handled, ret; 3815 bool write = ops->write; 3816 struct kvm_mmio_fragment *frag; 3817 3818 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3819 3820 if (ret < 0) 3821 return X86EMUL_PROPAGATE_FAULT; 3822 3823 /* For APIC access vmexit */ 3824 if (ret) 3825 goto mmio; 3826 3827 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3828 return X86EMUL_CONTINUE; 3829 3830 mmio: 3831 /* 3832 * Is this MMIO handled locally? 3833 */ 3834 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3835 if (handled == bytes) 3836 return X86EMUL_CONTINUE; 3837 3838 gpa += handled; 3839 bytes -= handled; 3840 val += handled; 3841 3842 while (bytes) { 3843 unsigned now = min(bytes, 8U); 3844 3845 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 3846 frag->gpa = gpa; 3847 frag->data = val; 3848 frag->len = now; 3849 3850 gpa += now; 3851 val += now; 3852 bytes -= now; 3853 } 3854 return X86EMUL_CONTINUE; 3855 } 3856 3857 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3858 void *val, unsigned int bytes, 3859 struct x86_exception *exception, 3860 struct read_write_emulator_ops *ops) 3861 { 3862 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3863 gpa_t gpa; 3864 int rc; 3865 3866 if (ops->read_write_prepare && 3867 ops->read_write_prepare(vcpu, val, bytes)) 3868 return X86EMUL_CONTINUE; 3869 3870 vcpu->mmio_nr_fragments = 0; 3871 3872 /* Crossing a page boundary? */ 3873 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3874 int now; 3875 3876 now = -addr & ~PAGE_MASK; 3877 rc = emulator_read_write_onepage(addr, val, now, exception, 3878 vcpu, ops); 3879 3880 if (rc != X86EMUL_CONTINUE) 3881 return rc; 3882 addr += now; 3883 val += now; 3884 bytes -= now; 3885 } 3886 3887 rc = emulator_read_write_onepage(addr, val, bytes, exception, 3888 vcpu, ops); 3889 if (rc != X86EMUL_CONTINUE) 3890 return rc; 3891 3892 if (!vcpu->mmio_nr_fragments) 3893 return rc; 3894 3895 gpa = vcpu->mmio_fragments[0].gpa; 3896 3897 vcpu->mmio_needed = 1; 3898 vcpu->mmio_cur_fragment = 0; 3899 3900 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len; 3901 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 3902 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3903 vcpu->run->mmio.phys_addr = gpa; 3904 3905 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3906 } 3907 3908 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3909 unsigned long addr, 3910 void *val, 3911 unsigned int bytes, 3912 struct x86_exception *exception) 3913 { 3914 return emulator_read_write(ctxt, addr, val, bytes, 3915 exception, &read_emultor); 3916 } 3917 3918 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3919 unsigned long addr, 3920 const void *val, 3921 unsigned int bytes, 3922 struct x86_exception *exception) 3923 { 3924 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3925 exception, &write_emultor); 3926 } 3927 3928 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3929 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3930 3931 #ifdef CONFIG_X86_64 3932 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3933 #else 3934 # define CMPXCHG64(ptr, old, new) \ 3935 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3936 #endif 3937 3938 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3939 unsigned long addr, 3940 const void *old, 3941 const void *new, 3942 unsigned int bytes, 3943 struct x86_exception *exception) 3944 { 3945 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3946 gpa_t gpa; 3947 struct page *page; 3948 char *kaddr; 3949 bool exchanged; 3950 3951 /* guests cmpxchg8b have to be emulated atomically */ 3952 if (bytes > 8 || (bytes & (bytes - 1))) 3953 goto emul_write; 3954 3955 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3956 3957 if (gpa == UNMAPPED_GVA || 3958 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3959 goto emul_write; 3960 3961 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3962 goto emul_write; 3963 3964 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3965 if (is_error_page(page)) { 3966 kvm_release_page_clean(page); 3967 goto emul_write; 3968 } 3969 3970 kaddr = kmap_atomic(page); 3971 kaddr += offset_in_page(gpa); 3972 switch (bytes) { 3973 case 1: 3974 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3975 break; 3976 case 2: 3977 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3978 break; 3979 case 4: 3980 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3981 break; 3982 case 8: 3983 exchanged = CMPXCHG64(kaddr, old, new); 3984 break; 3985 default: 3986 BUG(); 3987 } 3988 kunmap_atomic(kaddr); 3989 kvm_release_page_dirty(page); 3990 3991 if (!exchanged) 3992 return X86EMUL_CMPXCHG_FAILED; 3993 3994 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3995 3996 return X86EMUL_CONTINUE; 3997 3998 emul_write: 3999 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4000 4001 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4002 } 4003 4004 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4005 { 4006 /* TODO: String I/O for in kernel device */ 4007 int r; 4008 4009 if (vcpu->arch.pio.in) 4010 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4011 vcpu->arch.pio.size, pd); 4012 else 4013 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4014 vcpu->arch.pio.port, vcpu->arch.pio.size, 4015 pd); 4016 return r; 4017 } 4018 4019 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4020 unsigned short port, void *val, 4021 unsigned int count, bool in) 4022 { 4023 trace_kvm_pio(!in, port, size, count); 4024 4025 vcpu->arch.pio.port = port; 4026 vcpu->arch.pio.in = in; 4027 vcpu->arch.pio.count = count; 4028 vcpu->arch.pio.size = size; 4029 4030 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4031 vcpu->arch.pio.count = 0; 4032 return 1; 4033 } 4034 4035 vcpu->run->exit_reason = KVM_EXIT_IO; 4036 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4037 vcpu->run->io.size = size; 4038 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4039 vcpu->run->io.count = count; 4040 vcpu->run->io.port = port; 4041 4042 return 0; 4043 } 4044 4045 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4046 int size, unsigned short port, void *val, 4047 unsigned int count) 4048 { 4049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4050 int ret; 4051 4052 if (vcpu->arch.pio.count) 4053 goto data_avail; 4054 4055 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4056 if (ret) { 4057 data_avail: 4058 memcpy(val, vcpu->arch.pio_data, size * count); 4059 vcpu->arch.pio.count = 0; 4060 return 1; 4061 } 4062 4063 return 0; 4064 } 4065 4066 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4067 int size, unsigned short port, 4068 const void *val, unsigned int count) 4069 { 4070 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4071 4072 memcpy(vcpu->arch.pio_data, val, size * count); 4073 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4074 } 4075 4076 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4077 { 4078 return kvm_x86_ops->get_segment_base(vcpu, seg); 4079 } 4080 4081 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4082 { 4083 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4084 } 4085 4086 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4087 { 4088 if (!need_emulate_wbinvd(vcpu)) 4089 return X86EMUL_CONTINUE; 4090 4091 if (kvm_x86_ops->has_wbinvd_exit()) { 4092 int cpu = get_cpu(); 4093 4094 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4095 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4096 wbinvd_ipi, NULL, 1); 4097 put_cpu(); 4098 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4099 } else 4100 wbinvd(); 4101 return X86EMUL_CONTINUE; 4102 } 4103 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4104 4105 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4106 { 4107 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4108 } 4109 4110 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4111 { 4112 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4113 } 4114 4115 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4116 { 4117 4118 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4119 } 4120 4121 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4122 { 4123 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4124 } 4125 4126 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4127 { 4128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4129 unsigned long value; 4130 4131 switch (cr) { 4132 case 0: 4133 value = kvm_read_cr0(vcpu); 4134 break; 4135 case 2: 4136 value = vcpu->arch.cr2; 4137 break; 4138 case 3: 4139 value = kvm_read_cr3(vcpu); 4140 break; 4141 case 4: 4142 value = kvm_read_cr4(vcpu); 4143 break; 4144 case 8: 4145 value = kvm_get_cr8(vcpu); 4146 break; 4147 default: 4148 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4149 return 0; 4150 } 4151 4152 return value; 4153 } 4154 4155 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4156 { 4157 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4158 int res = 0; 4159 4160 switch (cr) { 4161 case 0: 4162 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4163 break; 4164 case 2: 4165 vcpu->arch.cr2 = val; 4166 break; 4167 case 3: 4168 res = kvm_set_cr3(vcpu, val); 4169 break; 4170 case 4: 4171 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4172 break; 4173 case 8: 4174 res = kvm_set_cr8(vcpu, val); 4175 break; 4176 default: 4177 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4178 res = -1; 4179 } 4180 4181 return res; 4182 } 4183 4184 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4185 { 4186 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4187 } 4188 4189 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4190 { 4191 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4192 } 4193 4194 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4195 { 4196 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4197 } 4198 4199 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4200 { 4201 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4202 } 4203 4204 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4205 { 4206 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4207 } 4208 4209 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4210 { 4211 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4212 } 4213 4214 static unsigned long emulator_get_cached_segment_base( 4215 struct x86_emulate_ctxt *ctxt, int seg) 4216 { 4217 return get_segment_base(emul_to_vcpu(ctxt), seg); 4218 } 4219 4220 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4221 struct desc_struct *desc, u32 *base3, 4222 int seg) 4223 { 4224 struct kvm_segment var; 4225 4226 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4227 *selector = var.selector; 4228 4229 if (var.unusable) 4230 return false; 4231 4232 if (var.g) 4233 var.limit >>= 12; 4234 set_desc_limit(desc, var.limit); 4235 set_desc_base(desc, (unsigned long)var.base); 4236 #ifdef CONFIG_X86_64 4237 if (base3) 4238 *base3 = var.base >> 32; 4239 #endif 4240 desc->type = var.type; 4241 desc->s = var.s; 4242 desc->dpl = var.dpl; 4243 desc->p = var.present; 4244 desc->avl = var.avl; 4245 desc->l = var.l; 4246 desc->d = var.db; 4247 desc->g = var.g; 4248 4249 return true; 4250 } 4251 4252 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4253 struct desc_struct *desc, u32 base3, 4254 int seg) 4255 { 4256 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4257 struct kvm_segment var; 4258 4259 var.selector = selector; 4260 var.base = get_desc_base(desc); 4261 #ifdef CONFIG_X86_64 4262 var.base |= ((u64)base3) << 32; 4263 #endif 4264 var.limit = get_desc_limit(desc); 4265 if (desc->g) 4266 var.limit = (var.limit << 12) | 0xfff; 4267 var.type = desc->type; 4268 var.present = desc->p; 4269 var.dpl = desc->dpl; 4270 var.db = desc->d; 4271 var.s = desc->s; 4272 var.l = desc->l; 4273 var.g = desc->g; 4274 var.avl = desc->avl; 4275 var.present = desc->p; 4276 var.unusable = !var.present; 4277 var.padding = 0; 4278 4279 kvm_set_segment(vcpu, &var, seg); 4280 return; 4281 } 4282 4283 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4284 u32 msr_index, u64 *pdata) 4285 { 4286 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4287 } 4288 4289 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4290 u32 msr_index, u64 data) 4291 { 4292 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4293 } 4294 4295 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4296 u32 pmc, u64 *pdata) 4297 { 4298 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4299 } 4300 4301 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4302 { 4303 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4304 } 4305 4306 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4307 { 4308 preempt_disable(); 4309 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4310 /* 4311 * CR0.TS may reference the host fpu state, not the guest fpu state, 4312 * so it may be clear at this point. 4313 */ 4314 clts(); 4315 } 4316 4317 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4318 { 4319 preempt_enable(); 4320 } 4321 4322 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4323 struct x86_instruction_info *info, 4324 enum x86_intercept_stage stage) 4325 { 4326 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4327 } 4328 4329 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4330 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4331 { 4332 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4333 } 4334 4335 static struct x86_emulate_ops emulate_ops = { 4336 .read_std = kvm_read_guest_virt_system, 4337 .write_std = kvm_write_guest_virt_system, 4338 .fetch = kvm_fetch_guest_virt, 4339 .read_emulated = emulator_read_emulated, 4340 .write_emulated = emulator_write_emulated, 4341 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4342 .invlpg = emulator_invlpg, 4343 .pio_in_emulated = emulator_pio_in_emulated, 4344 .pio_out_emulated = emulator_pio_out_emulated, 4345 .get_segment = emulator_get_segment, 4346 .set_segment = emulator_set_segment, 4347 .get_cached_segment_base = emulator_get_cached_segment_base, 4348 .get_gdt = emulator_get_gdt, 4349 .get_idt = emulator_get_idt, 4350 .set_gdt = emulator_set_gdt, 4351 .set_idt = emulator_set_idt, 4352 .get_cr = emulator_get_cr, 4353 .set_cr = emulator_set_cr, 4354 .set_rflags = emulator_set_rflags, 4355 .cpl = emulator_get_cpl, 4356 .get_dr = emulator_get_dr, 4357 .set_dr = emulator_set_dr, 4358 .set_msr = emulator_set_msr, 4359 .get_msr = emulator_get_msr, 4360 .read_pmc = emulator_read_pmc, 4361 .halt = emulator_halt, 4362 .wbinvd = emulator_wbinvd, 4363 .fix_hypercall = emulator_fix_hypercall, 4364 .get_fpu = emulator_get_fpu, 4365 .put_fpu = emulator_put_fpu, 4366 .intercept = emulator_intercept, 4367 .get_cpuid = emulator_get_cpuid, 4368 }; 4369 4370 static void cache_all_regs(struct kvm_vcpu *vcpu) 4371 { 4372 kvm_register_read(vcpu, VCPU_REGS_RAX); 4373 kvm_register_read(vcpu, VCPU_REGS_RSP); 4374 kvm_register_read(vcpu, VCPU_REGS_RIP); 4375 vcpu->arch.regs_dirty = ~0; 4376 } 4377 4378 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4379 { 4380 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4381 /* 4382 * an sti; sti; sequence only disable interrupts for the first 4383 * instruction. So, if the last instruction, be it emulated or 4384 * not, left the system with the INT_STI flag enabled, it 4385 * means that the last instruction is an sti. We should not 4386 * leave the flag on in this case. The same goes for mov ss 4387 */ 4388 if (!(int_shadow & mask)) 4389 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4390 } 4391 4392 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4393 { 4394 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4395 if (ctxt->exception.vector == PF_VECTOR) 4396 kvm_propagate_fault(vcpu, &ctxt->exception); 4397 else if (ctxt->exception.error_code_valid) 4398 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4399 ctxt->exception.error_code); 4400 else 4401 kvm_queue_exception(vcpu, ctxt->exception.vector); 4402 } 4403 4404 static void init_decode_cache(struct x86_emulate_ctxt *ctxt, 4405 const unsigned long *regs) 4406 { 4407 memset(&ctxt->twobyte, 0, 4408 (void *)&ctxt->regs - (void *)&ctxt->twobyte); 4409 memcpy(ctxt->regs, regs, sizeof(ctxt->regs)); 4410 4411 ctxt->fetch.start = 0; 4412 ctxt->fetch.end = 0; 4413 ctxt->io_read.pos = 0; 4414 ctxt->io_read.end = 0; 4415 ctxt->mem_read.pos = 0; 4416 ctxt->mem_read.end = 0; 4417 } 4418 4419 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4420 { 4421 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4422 int cs_db, cs_l; 4423 4424 /* 4425 * TODO: fix emulate.c to use guest_read/write_register 4426 * instead of direct ->regs accesses, can save hundred cycles 4427 * on Intel for instructions that don't read/change RSP, for 4428 * for example. 4429 */ 4430 cache_all_regs(vcpu); 4431 4432 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4433 4434 ctxt->eflags = kvm_get_rflags(vcpu); 4435 ctxt->eip = kvm_rip_read(vcpu); 4436 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4437 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4438 cs_l ? X86EMUL_MODE_PROT64 : 4439 cs_db ? X86EMUL_MODE_PROT32 : 4440 X86EMUL_MODE_PROT16; 4441 ctxt->guest_mode = is_guest_mode(vcpu); 4442 4443 init_decode_cache(ctxt, vcpu->arch.regs); 4444 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4445 } 4446 4447 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4448 { 4449 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4450 int ret; 4451 4452 init_emulate_ctxt(vcpu); 4453 4454 ctxt->op_bytes = 2; 4455 ctxt->ad_bytes = 2; 4456 ctxt->_eip = ctxt->eip + inc_eip; 4457 ret = emulate_int_real(ctxt, irq); 4458 4459 if (ret != X86EMUL_CONTINUE) 4460 return EMULATE_FAIL; 4461 4462 ctxt->eip = ctxt->_eip; 4463 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4464 kvm_rip_write(vcpu, ctxt->eip); 4465 kvm_set_rflags(vcpu, ctxt->eflags); 4466 4467 if (irq == NMI_VECTOR) 4468 vcpu->arch.nmi_pending = 0; 4469 else 4470 vcpu->arch.interrupt.pending = false; 4471 4472 return EMULATE_DONE; 4473 } 4474 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4475 4476 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4477 { 4478 int r = EMULATE_DONE; 4479 4480 ++vcpu->stat.insn_emulation_fail; 4481 trace_kvm_emulate_insn_failed(vcpu); 4482 if (!is_guest_mode(vcpu)) { 4483 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4484 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4485 vcpu->run->internal.ndata = 0; 4486 r = EMULATE_FAIL; 4487 } 4488 kvm_queue_exception(vcpu, UD_VECTOR); 4489 4490 return r; 4491 } 4492 4493 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4494 { 4495 gpa_t gpa; 4496 4497 if (tdp_enabled) 4498 return false; 4499 4500 /* 4501 * if emulation was due to access to shadowed page table 4502 * and it failed try to unshadow page and re-entetr the 4503 * guest to let CPU execute the instruction. 4504 */ 4505 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4506 return true; 4507 4508 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4509 4510 if (gpa == UNMAPPED_GVA) 4511 return true; /* let cpu generate fault */ 4512 4513 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) 4514 return true; 4515 4516 return false; 4517 } 4518 4519 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4520 unsigned long cr2, int emulation_type) 4521 { 4522 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4523 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4524 4525 last_retry_eip = vcpu->arch.last_retry_eip; 4526 last_retry_addr = vcpu->arch.last_retry_addr; 4527 4528 /* 4529 * If the emulation is caused by #PF and it is non-page_table 4530 * writing instruction, it means the VM-EXIT is caused by shadow 4531 * page protected, we can zap the shadow page and retry this 4532 * instruction directly. 4533 * 4534 * Note: if the guest uses a non-page-table modifying instruction 4535 * on the PDE that points to the instruction, then we will unmap 4536 * the instruction and go to an infinite loop. So, we cache the 4537 * last retried eip and the last fault address, if we meet the eip 4538 * and the address again, we can break out of the potential infinite 4539 * loop. 4540 */ 4541 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4542 4543 if (!(emulation_type & EMULTYPE_RETRY)) 4544 return false; 4545 4546 if (x86_page_table_writing_insn(ctxt)) 4547 return false; 4548 4549 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4550 return false; 4551 4552 vcpu->arch.last_retry_eip = ctxt->eip; 4553 vcpu->arch.last_retry_addr = cr2; 4554 4555 if (!vcpu->arch.mmu.direct_map) 4556 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4557 4558 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4559 4560 return true; 4561 } 4562 4563 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4564 unsigned long cr2, 4565 int emulation_type, 4566 void *insn, 4567 int insn_len) 4568 { 4569 int r; 4570 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4571 bool writeback = true; 4572 4573 kvm_clear_exception_queue(vcpu); 4574 4575 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4576 init_emulate_ctxt(vcpu); 4577 ctxt->interruptibility = 0; 4578 ctxt->have_exception = false; 4579 ctxt->perm_ok = false; 4580 4581 ctxt->only_vendor_specific_insn 4582 = emulation_type & EMULTYPE_TRAP_UD; 4583 4584 r = x86_decode_insn(ctxt, insn, insn_len); 4585 4586 trace_kvm_emulate_insn_start(vcpu); 4587 ++vcpu->stat.insn_emulation; 4588 if (r != EMULATION_OK) { 4589 if (emulation_type & EMULTYPE_TRAP_UD) 4590 return EMULATE_FAIL; 4591 if (reexecute_instruction(vcpu, cr2)) 4592 return EMULATE_DONE; 4593 if (emulation_type & EMULTYPE_SKIP) 4594 return EMULATE_FAIL; 4595 return handle_emulation_failure(vcpu); 4596 } 4597 } 4598 4599 if (emulation_type & EMULTYPE_SKIP) { 4600 kvm_rip_write(vcpu, ctxt->_eip); 4601 return EMULATE_DONE; 4602 } 4603 4604 if (retry_instruction(ctxt, cr2, emulation_type)) 4605 return EMULATE_DONE; 4606 4607 /* this is needed for vmware backdoor interface to work since it 4608 changes registers values during IO operation */ 4609 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4610 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4611 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs); 4612 } 4613 4614 restart: 4615 r = x86_emulate_insn(ctxt); 4616 4617 if (r == EMULATION_INTERCEPTED) 4618 return EMULATE_DONE; 4619 4620 if (r == EMULATION_FAILED) { 4621 if (reexecute_instruction(vcpu, cr2)) 4622 return EMULATE_DONE; 4623 4624 return handle_emulation_failure(vcpu); 4625 } 4626 4627 if (ctxt->have_exception) { 4628 inject_emulated_exception(vcpu); 4629 r = EMULATE_DONE; 4630 } else if (vcpu->arch.pio.count) { 4631 if (!vcpu->arch.pio.in) 4632 vcpu->arch.pio.count = 0; 4633 else 4634 writeback = false; 4635 r = EMULATE_DO_MMIO; 4636 } else if (vcpu->mmio_needed) { 4637 if (!vcpu->mmio_is_write) 4638 writeback = false; 4639 r = EMULATE_DO_MMIO; 4640 } else if (r == EMULATION_RESTART) 4641 goto restart; 4642 else 4643 r = EMULATE_DONE; 4644 4645 if (writeback) { 4646 toggle_interruptibility(vcpu, ctxt->interruptibility); 4647 kvm_set_rflags(vcpu, ctxt->eflags); 4648 kvm_make_request(KVM_REQ_EVENT, vcpu); 4649 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4650 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4651 kvm_rip_write(vcpu, ctxt->eip); 4652 } else 4653 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4654 4655 return r; 4656 } 4657 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4658 4659 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4660 { 4661 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4662 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4663 size, port, &val, 1); 4664 /* do not return to emulator after return from userspace */ 4665 vcpu->arch.pio.count = 0; 4666 return ret; 4667 } 4668 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4669 4670 static void tsc_bad(void *info) 4671 { 4672 __this_cpu_write(cpu_tsc_khz, 0); 4673 } 4674 4675 static void tsc_khz_changed(void *data) 4676 { 4677 struct cpufreq_freqs *freq = data; 4678 unsigned long khz = 0; 4679 4680 if (data) 4681 khz = freq->new; 4682 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4683 khz = cpufreq_quick_get(raw_smp_processor_id()); 4684 if (!khz) 4685 khz = tsc_khz; 4686 __this_cpu_write(cpu_tsc_khz, khz); 4687 } 4688 4689 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4690 void *data) 4691 { 4692 struct cpufreq_freqs *freq = data; 4693 struct kvm *kvm; 4694 struct kvm_vcpu *vcpu; 4695 int i, send_ipi = 0; 4696 4697 /* 4698 * We allow guests to temporarily run on slowing clocks, 4699 * provided we notify them after, or to run on accelerating 4700 * clocks, provided we notify them before. Thus time never 4701 * goes backwards. 4702 * 4703 * However, we have a problem. We can't atomically update 4704 * the frequency of a given CPU from this function; it is 4705 * merely a notifier, which can be called from any CPU. 4706 * Changing the TSC frequency at arbitrary points in time 4707 * requires a recomputation of local variables related to 4708 * the TSC for each VCPU. We must flag these local variables 4709 * to be updated and be sure the update takes place with the 4710 * new frequency before any guests proceed. 4711 * 4712 * Unfortunately, the combination of hotplug CPU and frequency 4713 * change creates an intractable locking scenario; the order 4714 * of when these callouts happen is undefined with respect to 4715 * CPU hotplug, and they can race with each other. As such, 4716 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4717 * undefined; you can actually have a CPU frequency change take 4718 * place in between the computation of X and the setting of the 4719 * variable. To protect against this problem, all updates of 4720 * the per_cpu tsc_khz variable are done in an interrupt 4721 * protected IPI, and all callers wishing to update the value 4722 * must wait for a synchronous IPI to complete (which is trivial 4723 * if the caller is on the CPU already). This establishes the 4724 * necessary total order on variable updates. 4725 * 4726 * Note that because a guest time update may take place 4727 * anytime after the setting of the VCPU's request bit, the 4728 * correct TSC value must be set before the request. However, 4729 * to ensure the update actually makes it to any guest which 4730 * starts running in hardware virtualization between the set 4731 * and the acquisition of the spinlock, we must also ping the 4732 * CPU after setting the request bit. 4733 * 4734 */ 4735 4736 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4737 return 0; 4738 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4739 return 0; 4740 4741 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4742 4743 raw_spin_lock(&kvm_lock); 4744 list_for_each_entry(kvm, &vm_list, vm_list) { 4745 kvm_for_each_vcpu(i, vcpu, kvm) { 4746 if (vcpu->cpu != freq->cpu) 4747 continue; 4748 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4749 if (vcpu->cpu != smp_processor_id()) 4750 send_ipi = 1; 4751 } 4752 } 4753 raw_spin_unlock(&kvm_lock); 4754 4755 if (freq->old < freq->new && send_ipi) { 4756 /* 4757 * We upscale the frequency. Must make the guest 4758 * doesn't see old kvmclock values while running with 4759 * the new frequency, otherwise we risk the guest sees 4760 * time go backwards. 4761 * 4762 * In case we update the frequency for another cpu 4763 * (which might be in guest context) send an interrupt 4764 * to kick the cpu out of guest context. Next time 4765 * guest context is entered kvmclock will be updated, 4766 * so the guest will not see stale values. 4767 */ 4768 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4769 } 4770 return 0; 4771 } 4772 4773 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4774 .notifier_call = kvmclock_cpufreq_notifier 4775 }; 4776 4777 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4778 unsigned long action, void *hcpu) 4779 { 4780 unsigned int cpu = (unsigned long)hcpu; 4781 4782 switch (action) { 4783 case CPU_ONLINE: 4784 case CPU_DOWN_FAILED: 4785 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4786 break; 4787 case CPU_DOWN_PREPARE: 4788 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4789 break; 4790 } 4791 return NOTIFY_OK; 4792 } 4793 4794 static struct notifier_block kvmclock_cpu_notifier_block = { 4795 .notifier_call = kvmclock_cpu_notifier, 4796 .priority = -INT_MAX 4797 }; 4798 4799 static void kvm_timer_init(void) 4800 { 4801 int cpu; 4802 4803 max_tsc_khz = tsc_khz; 4804 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4805 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4806 #ifdef CONFIG_CPU_FREQ 4807 struct cpufreq_policy policy; 4808 memset(&policy, 0, sizeof(policy)); 4809 cpu = get_cpu(); 4810 cpufreq_get_policy(&policy, cpu); 4811 if (policy.cpuinfo.max_freq) 4812 max_tsc_khz = policy.cpuinfo.max_freq; 4813 put_cpu(); 4814 #endif 4815 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4816 CPUFREQ_TRANSITION_NOTIFIER); 4817 } 4818 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4819 for_each_online_cpu(cpu) 4820 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4821 } 4822 4823 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4824 4825 int kvm_is_in_guest(void) 4826 { 4827 return __this_cpu_read(current_vcpu) != NULL; 4828 } 4829 4830 static int kvm_is_user_mode(void) 4831 { 4832 int user_mode = 3; 4833 4834 if (__this_cpu_read(current_vcpu)) 4835 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4836 4837 return user_mode != 0; 4838 } 4839 4840 static unsigned long kvm_get_guest_ip(void) 4841 { 4842 unsigned long ip = 0; 4843 4844 if (__this_cpu_read(current_vcpu)) 4845 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4846 4847 return ip; 4848 } 4849 4850 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4851 .is_in_guest = kvm_is_in_guest, 4852 .is_user_mode = kvm_is_user_mode, 4853 .get_guest_ip = kvm_get_guest_ip, 4854 }; 4855 4856 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4857 { 4858 __this_cpu_write(current_vcpu, vcpu); 4859 } 4860 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4861 4862 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4863 { 4864 __this_cpu_write(current_vcpu, NULL); 4865 } 4866 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4867 4868 static void kvm_set_mmio_spte_mask(void) 4869 { 4870 u64 mask; 4871 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4872 4873 /* 4874 * Set the reserved bits and the present bit of an paging-structure 4875 * entry to generate page fault with PFER.RSV = 1. 4876 */ 4877 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4878 mask |= 1ull; 4879 4880 #ifdef CONFIG_X86_64 4881 /* 4882 * If reserved bit is not supported, clear the present bit to disable 4883 * mmio page fault. 4884 */ 4885 if (maxphyaddr == 52) 4886 mask &= ~1ull; 4887 #endif 4888 4889 kvm_mmu_set_mmio_spte_mask(mask); 4890 } 4891 4892 int kvm_arch_init(void *opaque) 4893 { 4894 int r; 4895 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4896 4897 if (kvm_x86_ops) { 4898 printk(KERN_ERR "kvm: already loaded the other module\n"); 4899 r = -EEXIST; 4900 goto out; 4901 } 4902 4903 if (!ops->cpu_has_kvm_support()) { 4904 printk(KERN_ERR "kvm: no hardware support\n"); 4905 r = -EOPNOTSUPP; 4906 goto out; 4907 } 4908 if (ops->disabled_by_bios()) { 4909 printk(KERN_ERR "kvm: disabled by bios\n"); 4910 r = -EOPNOTSUPP; 4911 goto out; 4912 } 4913 4914 r = kvm_mmu_module_init(); 4915 if (r) 4916 goto out; 4917 4918 kvm_set_mmio_spte_mask(); 4919 kvm_init_msr_list(); 4920 4921 kvm_x86_ops = ops; 4922 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4923 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4924 4925 kvm_timer_init(); 4926 4927 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4928 4929 if (cpu_has_xsave) 4930 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4931 4932 return 0; 4933 4934 out: 4935 return r; 4936 } 4937 4938 void kvm_arch_exit(void) 4939 { 4940 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4941 4942 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4943 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4944 CPUFREQ_TRANSITION_NOTIFIER); 4945 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4946 kvm_x86_ops = NULL; 4947 kvm_mmu_module_exit(); 4948 } 4949 4950 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4951 { 4952 ++vcpu->stat.halt_exits; 4953 if (irqchip_in_kernel(vcpu->kvm)) { 4954 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4955 return 1; 4956 } else { 4957 vcpu->run->exit_reason = KVM_EXIT_HLT; 4958 return 0; 4959 } 4960 } 4961 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4962 4963 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4964 { 4965 u64 param, ingpa, outgpa, ret; 4966 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4967 bool fast, longmode; 4968 int cs_db, cs_l; 4969 4970 /* 4971 * hypercall generates UD from non zero cpl and real mode 4972 * per HYPER-V spec 4973 */ 4974 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4975 kvm_queue_exception(vcpu, UD_VECTOR); 4976 return 0; 4977 } 4978 4979 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4980 longmode = is_long_mode(vcpu) && cs_l == 1; 4981 4982 if (!longmode) { 4983 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4984 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4985 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4986 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4987 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4988 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4989 } 4990 #ifdef CONFIG_X86_64 4991 else { 4992 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4993 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4994 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4995 } 4996 #endif 4997 4998 code = param & 0xffff; 4999 fast = (param >> 16) & 0x1; 5000 rep_cnt = (param >> 32) & 0xfff; 5001 rep_idx = (param >> 48) & 0xfff; 5002 5003 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5004 5005 switch (code) { 5006 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5007 kvm_vcpu_on_spin(vcpu); 5008 break; 5009 default: 5010 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5011 break; 5012 } 5013 5014 ret = res | (((u64)rep_done & 0xfff) << 32); 5015 if (longmode) { 5016 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5017 } else { 5018 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5019 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5020 } 5021 5022 return 1; 5023 } 5024 5025 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5026 { 5027 unsigned long nr, a0, a1, a2, a3, ret; 5028 int r = 1; 5029 5030 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5031 return kvm_hv_hypercall(vcpu); 5032 5033 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5034 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5035 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5036 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5037 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5038 5039 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5040 5041 if (!is_long_mode(vcpu)) { 5042 nr &= 0xFFFFFFFF; 5043 a0 &= 0xFFFFFFFF; 5044 a1 &= 0xFFFFFFFF; 5045 a2 &= 0xFFFFFFFF; 5046 a3 &= 0xFFFFFFFF; 5047 } 5048 5049 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5050 ret = -KVM_EPERM; 5051 goto out; 5052 } 5053 5054 switch (nr) { 5055 case KVM_HC_VAPIC_POLL_IRQ: 5056 ret = 0; 5057 break; 5058 default: 5059 ret = -KVM_ENOSYS; 5060 break; 5061 } 5062 out: 5063 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5064 ++vcpu->stat.hypercalls; 5065 return r; 5066 } 5067 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5068 5069 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5070 { 5071 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5072 char instruction[3]; 5073 unsigned long rip = kvm_rip_read(vcpu); 5074 5075 /* 5076 * Blow out the MMU to ensure that no other VCPU has an active mapping 5077 * to ensure that the updated hypercall appears atomically across all 5078 * VCPUs. 5079 */ 5080 kvm_mmu_zap_all(vcpu->kvm); 5081 5082 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5083 5084 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5085 } 5086 5087 /* 5088 * Check if userspace requested an interrupt window, and that the 5089 * interrupt window is open. 5090 * 5091 * No need to exit to userspace if we already have an interrupt queued. 5092 */ 5093 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5094 { 5095 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5096 vcpu->run->request_interrupt_window && 5097 kvm_arch_interrupt_allowed(vcpu)); 5098 } 5099 5100 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5101 { 5102 struct kvm_run *kvm_run = vcpu->run; 5103 5104 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5105 kvm_run->cr8 = kvm_get_cr8(vcpu); 5106 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5107 if (irqchip_in_kernel(vcpu->kvm)) 5108 kvm_run->ready_for_interrupt_injection = 1; 5109 else 5110 kvm_run->ready_for_interrupt_injection = 5111 kvm_arch_interrupt_allowed(vcpu) && 5112 !kvm_cpu_has_interrupt(vcpu) && 5113 !kvm_event_needs_reinjection(vcpu); 5114 } 5115 5116 static void vapic_enter(struct kvm_vcpu *vcpu) 5117 { 5118 struct kvm_lapic *apic = vcpu->arch.apic; 5119 struct page *page; 5120 5121 if (!apic || !apic->vapic_addr) 5122 return; 5123 5124 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5125 5126 vcpu->arch.apic->vapic_page = page; 5127 } 5128 5129 static void vapic_exit(struct kvm_vcpu *vcpu) 5130 { 5131 struct kvm_lapic *apic = vcpu->arch.apic; 5132 int idx; 5133 5134 if (!apic || !apic->vapic_addr) 5135 return; 5136 5137 idx = srcu_read_lock(&vcpu->kvm->srcu); 5138 kvm_release_page_dirty(apic->vapic_page); 5139 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5140 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5141 } 5142 5143 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5144 { 5145 int max_irr, tpr; 5146 5147 if (!kvm_x86_ops->update_cr8_intercept) 5148 return; 5149 5150 if (!vcpu->arch.apic) 5151 return; 5152 5153 if (!vcpu->arch.apic->vapic_addr) 5154 max_irr = kvm_lapic_find_highest_irr(vcpu); 5155 else 5156 max_irr = -1; 5157 5158 if (max_irr != -1) 5159 max_irr >>= 4; 5160 5161 tpr = kvm_lapic_get_cr8(vcpu); 5162 5163 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5164 } 5165 5166 static void inject_pending_event(struct kvm_vcpu *vcpu) 5167 { 5168 /* try to reinject previous events if any */ 5169 if (vcpu->arch.exception.pending) { 5170 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5171 vcpu->arch.exception.has_error_code, 5172 vcpu->arch.exception.error_code); 5173 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5174 vcpu->arch.exception.has_error_code, 5175 vcpu->arch.exception.error_code, 5176 vcpu->arch.exception.reinject); 5177 return; 5178 } 5179 5180 if (vcpu->arch.nmi_injected) { 5181 kvm_x86_ops->set_nmi(vcpu); 5182 return; 5183 } 5184 5185 if (vcpu->arch.interrupt.pending) { 5186 kvm_x86_ops->set_irq(vcpu); 5187 return; 5188 } 5189 5190 /* try to inject new event if pending */ 5191 if (vcpu->arch.nmi_pending) { 5192 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5193 --vcpu->arch.nmi_pending; 5194 vcpu->arch.nmi_injected = true; 5195 kvm_x86_ops->set_nmi(vcpu); 5196 } 5197 } else if (kvm_cpu_has_interrupt(vcpu)) { 5198 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5199 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5200 false); 5201 kvm_x86_ops->set_irq(vcpu); 5202 } 5203 } 5204 } 5205 5206 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5207 { 5208 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5209 !vcpu->guest_xcr0_loaded) { 5210 /* kvm_set_xcr() also depends on this */ 5211 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5212 vcpu->guest_xcr0_loaded = 1; 5213 } 5214 } 5215 5216 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5217 { 5218 if (vcpu->guest_xcr0_loaded) { 5219 if (vcpu->arch.xcr0 != host_xcr0) 5220 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5221 vcpu->guest_xcr0_loaded = 0; 5222 } 5223 } 5224 5225 static void process_nmi(struct kvm_vcpu *vcpu) 5226 { 5227 unsigned limit = 2; 5228 5229 /* 5230 * x86 is limited to one NMI running, and one NMI pending after it. 5231 * If an NMI is already in progress, limit further NMIs to just one. 5232 * Otherwise, allow two (and we'll inject the first one immediately). 5233 */ 5234 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5235 limit = 1; 5236 5237 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5238 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5239 kvm_make_request(KVM_REQ_EVENT, vcpu); 5240 } 5241 5242 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5243 { 5244 int r; 5245 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5246 vcpu->run->request_interrupt_window; 5247 bool req_immediate_exit = 0; 5248 5249 if (vcpu->requests) { 5250 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5251 kvm_mmu_unload(vcpu); 5252 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5253 __kvm_migrate_timers(vcpu); 5254 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5255 r = kvm_guest_time_update(vcpu); 5256 if (unlikely(r)) 5257 goto out; 5258 } 5259 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5260 kvm_mmu_sync_roots(vcpu); 5261 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5262 kvm_x86_ops->tlb_flush(vcpu); 5263 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5264 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5265 r = 0; 5266 goto out; 5267 } 5268 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5269 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5270 r = 0; 5271 goto out; 5272 } 5273 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5274 vcpu->fpu_active = 0; 5275 kvm_x86_ops->fpu_deactivate(vcpu); 5276 } 5277 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5278 /* Page is swapped out. Do synthetic halt */ 5279 vcpu->arch.apf.halted = true; 5280 r = 1; 5281 goto out; 5282 } 5283 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5284 record_steal_time(vcpu); 5285 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5286 process_nmi(vcpu); 5287 req_immediate_exit = 5288 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5289 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5290 kvm_handle_pmu_event(vcpu); 5291 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5292 kvm_deliver_pmi(vcpu); 5293 } 5294 5295 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5296 inject_pending_event(vcpu); 5297 5298 /* enable NMI/IRQ window open exits if needed */ 5299 if (vcpu->arch.nmi_pending) 5300 kvm_x86_ops->enable_nmi_window(vcpu); 5301 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5302 kvm_x86_ops->enable_irq_window(vcpu); 5303 5304 if (kvm_lapic_enabled(vcpu)) { 5305 update_cr8_intercept(vcpu); 5306 kvm_lapic_sync_to_vapic(vcpu); 5307 } 5308 } 5309 5310 r = kvm_mmu_reload(vcpu); 5311 if (unlikely(r)) { 5312 goto cancel_injection; 5313 } 5314 5315 preempt_disable(); 5316 5317 kvm_x86_ops->prepare_guest_switch(vcpu); 5318 if (vcpu->fpu_active) 5319 kvm_load_guest_fpu(vcpu); 5320 kvm_load_guest_xcr0(vcpu); 5321 5322 vcpu->mode = IN_GUEST_MODE; 5323 5324 /* We should set ->mode before check ->requests, 5325 * see the comment in make_all_cpus_request. 5326 */ 5327 smp_mb(); 5328 5329 local_irq_disable(); 5330 5331 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5332 || need_resched() || signal_pending(current)) { 5333 vcpu->mode = OUTSIDE_GUEST_MODE; 5334 smp_wmb(); 5335 local_irq_enable(); 5336 preempt_enable(); 5337 r = 1; 5338 goto cancel_injection; 5339 } 5340 5341 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5342 5343 if (req_immediate_exit) 5344 smp_send_reschedule(vcpu->cpu); 5345 5346 kvm_guest_enter(); 5347 5348 if (unlikely(vcpu->arch.switch_db_regs)) { 5349 set_debugreg(0, 7); 5350 set_debugreg(vcpu->arch.eff_db[0], 0); 5351 set_debugreg(vcpu->arch.eff_db[1], 1); 5352 set_debugreg(vcpu->arch.eff_db[2], 2); 5353 set_debugreg(vcpu->arch.eff_db[3], 3); 5354 } 5355 5356 trace_kvm_entry(vcpu->vcpu_id); 5357 kvm_x86_ops->run(vcpu); 5358 5359 /* 5360 * If the guest has used debug registers, at least dr7 5361 * will be disabled while returning to the host. 5362 * If we don't have active breakpoints in the host, we don't 5363 * care about the messed up debug address registers. But if 5364 * we have some of them active, restore the old state. 5365 */ 5366 if (hw_breakpoint_active()) 5367 hw_breakpoint_restore(); 5368 5369 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5370 5371 vcpu->mode = OUTSIDE_GUEST_MODE; 5372 smp_wmb(); 5373 local_irq_enable(); 5374 5375 ++vcpu->stat.exits; 5376 5377 /* 5378 * We must have an instruction between local_irq_enable() and 5379 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5380 * the interrupt shadow. The stat.exits increment will do nicely. 5381 * But we need to prevent reordering, hence this barrier(): 5382 */ 5383 barrier(); 5384 5385 kvm_guest_exit(); 5386 5387 preempt_enable(); 5388 5389 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5390 5391 /* 5392 * Profile KVM exit RIPs: 5393 */ 5394 if (unlikely(prof_on == KVM_PROFILING)) { 5395 unsigned long rip = kvm_rip_read(vcpu); 5396 profile_hit(KVM_PROFILING, (void *)rip); 5397 } 5398 5399 if (unlikely(vcpu->arch.tsc_always_catchup)) 5400 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5401 5402 if (vcpu->arch.apic_attention) 5403 kvm_lapic_sync_from_vapic(vcpu); 5404 5405 r = kvm_x86_ops->handle_exit(vcpu); 5406 return r; 5407 5408 cancel_injection: 5409 kvm_x86_ops->cancel_injection(vcpu); 5410 if (unlikely(vcpu->arch.apic_attention)) 5411 kvm_lapic_sync_from_vapic(vcpu); 5412 out: 5413 return r; 5414 } 5415 5416 5417 static int __vcpu_run(struct kvm_vcpu *vcpu) 5418 { 5419 int r; 5420 struct kvm *kvm = vcpu->kvm; 5421 5422 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5423 pr_debug("vcpu %d received sipi with vector # %x\n", 5424 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5425 kvm_lapic_reset(vcpu); 5426 r = kvm_arch_vcpu_reset(vcpu); 5427 if (r) 5428 return r; 5429 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5430 } 5431 5432 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5433 vapic_enter(vcpu); 5434 5435 r = 1; 5436 while (r > 0) { 5437 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5438 !vcpu->arch.apf.halted) 5439 r = vcpu_enter_guest(vcpu); 5440 else { 5441 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5442 kvm_vcpu_block(vcpu); 5443 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5444 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5445 { 5446 switch(vcpu->arch.mp_state) { 5447 case KVM_MP_STATE_HALTED: 5448 vcpu->arch.mp_state = 5449 KVM_MP_STATE_RUNNABLE; 5450 case KVM_MP_STATE_RUNNABLE: 5451 vcpu->arch.apf.halted = false; 5452 break; 5453 case KVM_MP_STATE_SIPI_RECEIVED: 5454 default: 5455 r = -EINTR; 5456 break; 5457 } 5458 } 5459 } 5460 5461 if (r <= 0) 5462 break; 5463 5464 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5465 if (kvm_cpu_has_pending_timer(vcpu)) 5466 kvm_inject_pending_timer_irqs(vcpu); 5467 5468 if (dm_request_for_irq_injection(vcpu)) { 5469 r = -EINTR; 5470 vcpu->run->exit_reason = KVM_EXIT_INTR; 5471 ++vcpu->stat.request_irq_exits; 5472 } 5473 5474 kvm_check_async_pf_completion(vcpu); 5475 5476 if (signal_pending(current)) { 5477 r = -EINTR; 5478 vcpu->run->exit_reason = KVM_EXIT_INTR; 5479 ++vcpu->stat.signal_exits; 5480 } 5481 if (need_resched()) { 5482 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5483 kvm_resched(vcpu); 5484 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5485 } 5486 } 5487 5488 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5489 5490 vapic_exit(vcpu); 5491 5492 return r; 5493 } 5494 5495 /* 5496 * Implements the following, as a state machine: 5497 * 5498 * read: 5499 * for each fragment 5500 * write gpa, len 5501 * exit 5502 * copy data 5503 * execute insn 5504 * 5505 * write: 5506 * for each fragment 5507 * write gpa, len 5508 * copy data 5509 * exit 5510 */ 5511 static int complete_mmio(struct kvm_vcpu *vcpu) 5512 { 5513 struct kvm_run *run = vcpu->run; 5514 struct kvm_mmio_fragment *frag; 5515 int r; 5516 5517 if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) 5518 return 1; 5519 5520 if (vcpu->mmio_needed) { 5521 /* Complete previous fragment */ 5522 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++]; 5523 if (!vcpu->mmio_is_write) 5524 memcpy(frag->data, run->mmio.data, frag->len); 5525 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5526 vcpu->mmio_needed = 0; 5527 if (vcpu->mmio_is_write) 5528 return 1; 5529 vcpu->mmio_read_completed = 1; 5530 goto done; 5531 } 5532 /* Initiate next fragment */ 5533 ++frag; 5534 run->exit_reason = KVM_EXIT_MMIO; 5535 run->mmio.phys_addr = frag->gpa; 5536 if (vcpu->mmio_is_write) 5537 memcpy(run->mmio.data, frag->data, frag->len); 5538 run->mmio.len = frag->len; 5539 run->mmio.is_write = vcpu->mmio_is_write; 5540 return 0; 5541 5542 } 5543 done: 5544 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5545 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5546 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5547 if (r != EMULATE_DONE) 5548 return 0; 5549 return 1; 5550 } 5551 5552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5553 { 5554 int r; 5555 sigset_t sigsaved; 5556 5557 if (!tsk_used_math(current) && init_fpu(current)) 5558 return -ENOMEM; 5559 5560 if (vcpu->sigset_active) 5561 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5562 5563 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5564 kvm_vcpu_block(vcpu); 5565 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5566 r = -EAGAIN; 5567 goto out; 5568 } 5569 5570 /* re-sync apic's tpr */ 5571 if (!irqchip_in_kernel(vcpu->kvm)) { 5572 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5573 r = -EINVAL; 5574 goto out; 5575 } 5576 } 5577 5578 r = complete_mmio(vcpu); 5579 if (r <= 0) 5580 goto out; 5581 5582 r = __vcpu_run(vcpu); 5583 5584 out: 5585 post_kvm_run_save(vcpu); 5586 if (vcpu->sigset_active) 5587 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5588 5589 return r; 5590 } 5591 5592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5593 { 5594 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5595 /* 5596 * We are here if userspace calls get_regs() in the middle of 5597 * instruction emulation. Registers state needs to be copied 5598 * back from emulation context to vcpu. Usrapace shouldn't do 5599 * that usually, but some bad designed PV devices (vmware 5600 * backdoor interface) need this to work 5601 */ 5602 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5603 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5604 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5605 } 5606 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5607 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5608 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5609 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5610 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5611 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5612 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5613 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5614 #ifdef CONFIG_X86_64 5615 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5616 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5617 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5618 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5619 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5620 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5621 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5622 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5623 #endif 5624 5625 regs->rip = kvm_rip_read(vcpu); 5626 regs->rflags = kvm_get_rflags(vcpu); 5627 5628 return 0; 5629 } 5630 5631 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5632 { 5633 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5634 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5635 5636 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5637 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5638 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5639 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5640 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5641 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5642 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5643 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5644 #ifdef CONFIG_X86_64 5645 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5646 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5647 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5648 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5649 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5650 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5651 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5652 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5653 #endif 5654 5655 kvm_rip_write(vcpu, regs->rip); 5656 kvm_set_rflags(vcpu, regs->rflags); 5657 5658 vcpu->arch.exception.pending = false; 5659 5660 kvm_make_request(KVM_REQ_EVENT, vcpu); 5661 5662 return 0; 5663 } 5664 5665 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5666 { 5667 struct kvm_segment cs; 5668 5669 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5670 *db = cs.db; 5671 *l = cs.l; 5672 } 5673 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5674 5675 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5676 struct kvm_sregs *sregs) 5677 { 5678 struct desc_ptr dt; 5679 5680 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5681 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5682 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5683 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5684 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5685 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5686 5687 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5688 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5689 5690 kvm_x86_ops->get_idt(vcpu, &dt); 5691 sregs->idt.limit = dt.size; 5692 sregs->idt.base = dt.address; 5693 kvm_x86_ops->get_gdt(vcpu, &dt); 5694 sregs->gdt.limit = dt.size; 5695 sregs->gdt.base = dt.address; 5696 5697 sregs->cr0 = kvm_read_cr0(vcpu); 5698 sregs->cr2 = vcpu->arch.cr2; 5699 sregs->cr3 = kvm_read_cr3(vcpu); 5700 sregs->cr4 = kvm_read_cr4(vcpu); 5701 sregs->cr8 = kvm_get_cr8(vcpu); 5702 sregs->efer = vcpu->arch.efer; 5703 sregs->apic_base = kvm_get_apic_base(vcpu); 5704 5705 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5706 5707 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5708 set_bit(vcpu->arch.interrupt.nr, 5709 (unsigned long *)sregs->interrupt_bitmap); 5710 5711 return 0; 5712 } 5713 5714 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5715 struct kvm_mp_state *mp_state) 5716 { 5717 mp_state->mp_state = vcpu->arch.mp_state; 5718 return 0; 5719 } 5720 5721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5722 struct kvm_mp_state *mp_state) 5723 { 5724 vcpu->arch.mp_state = mp_state->mp_state; 5725 kvm_make_request(KVM_REQ_EVENT, vcpu); 5726 return 0; 5727 } 5728 5729 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 5730 int reason, bool has_error_code, u32 error_code) 5731 { 5732 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5733 int ret; 5734 5735 init_emulate_ctxt(vcpu); 5736 5737 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 5738 has_error_code, error_code); 5739 5740 if (ret) 5741 return EMULATE_FAIL; 5742 5743 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5744 kvm_rip_write(vcpu, ctxt->eip); 5745 kvm_set_rflags(vcpu, ctxt->eflags); 5746 kvm_make_request(KVM_REQ_EVENT, vcpu); 5747 return EMULATE_DONE; 5748 } 5749 EXPORT_SYMBOL_GPL(kvm_task_switch); 5750 5751 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5752 struct kvm_sregs *sregs) 5753 { 5754 int mmu_reset_needed = 0; 5755 int pending_vec, max_bits, idx; 5756 struct desc_ptr dt; 5757 5758 dt.size = sregs->idt.limit; 5759 dt.address = sregs->idt.base; 5760 kvm_x86_ops->set_idt(vcpu, &dt); 5761 dt.size = sregs->gdt.limit; 5762 dt.address = sregs->gdt.base; 5763 kvm_x86_ops->set_gdt(vcpu, &dt); 5764 5765 vcpu->arch.cr2 = sregs->cr2; 5766 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5767 vcpu->arch.cr3 = sregs->cr3; 5768 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5769 5770 kvm_set_cr8(vcpu, sregs->cr8); 5771 5772 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5773 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5774 kvm_set_apic_base(vcpu, sregs->apic_base); 5775 5776 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5777 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5778 vcpu->arch.cr0 = sregs->cr0; 5779 5780 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5781 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5782 if (sregs->cr4 & X86_CR4_OSXSAVE) 5783 kvm_update_cpuid(vcpu); 5784 5785 idx = srcu_read_lock(&vcpu->kvm->srcu); 5786 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5787 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5788 mmu_reset_needed = 1; 5789 } 5790 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5791 5792 if (mmu_reset_needed) 5793 kvm_mmu_reset_context(vcpu); 5794 5795 max_bits = (sizeof sregs->interrupt_bitmap) << 3; 5796 pending_vec = find_first_bit( 5797 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5798 if (pending_vec < max_bits) { 5799 kvm_queue_interrupt(vcpu, pending_vec, false); 5800 pr_debug("Set back pending irq %d\n", pending_vec); 5801 } 5802 5803 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5804 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5805 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5806 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5807 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5808 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5809 5810 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5811 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5812 5813 update_cr8_intercept(vcpu); 5814 5815 /* Older userspace won't unhalt the vcpu on reset. */ 5816 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5817 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5818 !is_protmode(vcpu)) 5819 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5820 5821 kvm_make_request(KVM_REQ_EVENT, vcpu); 5822 5823 return 0; 5824 } 5825 5826 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5827 struct kvm_guest_debug *dbg) 5828 { 5829 unsigned long rflags; 5830 int i, r; 5831 5832 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5833 r = -EBUSY; 5834 if (vcpu->arch.exception.pending) 5835 goto out; 5836 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5837 kvm_queue_exception(vcpu, DB_VECTOR); 5838 else 5839 kvm_queue_exception(vcpu, BP_VECTOR); 5840 } 5841 5842 /* 5843 * Read rflags as long as potentially injected trace flags are still 5844 * filtered out. 5845 */ 5846 rflags = kvm_get_rflags(vcpu); 5847 5848 vcpu->guest_debug = dbg->control; 5849 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5850 vcpu->guest_debug = 0; 5851 5852 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5853 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5854 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5855 vcpu->arch.switch_db_regs = 5856 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); 5857 } else { 5858 for (i = 0; i < KVM_NR_DB_REGS; i++) 5859 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5860 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); 5861 } 5862 5863 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5864 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5865 get_segment_base(vcpu, VCPU_SREG_CS); 5866 5867 /* 5868 * Trigger an rflags update that will inject or remove the trace 5869 * flags. 5870 */ 5871 kvm_set_rflags(vcpu, rflags); 5872 5873 kvm_x86_ops->set_guest_debug(vcpu, dbg); 5874 5875 r = 0; 5876 5877 out: 5878 5879 return r; 5880 } 5881 5882 /* 5883 * Translate a guest virtual address to a guest physical address. 5884 */ 5885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5886 struct kvm_translation *tr) 5887 { 5888 unsigned long vaddr = tr->linear_address; 5889 gpa_t gpa; 5890 int idx; 5891 5892 idx = srcu_read_lock(&vcpu->kvm->srcu); 5893 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5894 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5895 tr->physical_address = gpa; 5896 tr->valid = gpa != UNMAPPED_GVA; 5897 tr->writeable = 1; 5898 tr->usermode = 0; 5899 5900 return 0; 5901 } 5902 5903 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5904 { 5905 struct i387_fxsave_struct *fxsave = 5906 &vcpu->arch.guest_fpu.state->fxsave; 5907 5908 memcpy(fpu->fpr, fxsave->st_space, 128); 5909 fpu->fcw = fxsave->cwd; 5910 fpu->fsw = fxsave->swd; 5911 fpu->ftwx = fxsave->twd; 5912 fpu->last_opcode = fxsave->fop; 5913 fpu->last_ip = fxsave->rip; 5914 fpu->last_dp = fxsave->rdp; 5915 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5916 5917 return 0; 5918 } 5919 5920 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5921 { 5922 struct i387_fxsave_struct *fxsave = 5923 &vcpu->arch.guest_fpu.state->fxsave; 5924 5925 memcpy(fxsave->st_space, fpu->fpr, 128); 5926 fxsave->cwd = fpu->fcw; 5927 fxsave->swd = fpu->fsw; 5928 fxsave->twd = fpu->ftwx; 5929 fxsave->fop = fpu->last_opcode; 5930 fxsave->rip = fpu->last_ip; 5931 fxsave->rdp = fpu->last_dp; 5932 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5933 5934 return 0; 5935 } 5936 5937 int fx_init(struct kvm_vcpu *vcpu) 5938 { 5939 int err; 5940 5941 err = fpu_alloc(&vcpu->arch.guest_fpu); 5942 if (err) 5943 return err; 5944 5945 fpu_finit(&vcpu->arch.guest_fpu); 5946 5947 /* 5948 * Ensure guest xcr0 is valid for loading 5949 */ 5950 vcpu->arch.xcr0 = XSTATE_FP; 5951 5952 vcpu->arch.cr0 |= X86_CR0_ET; 5953 5954 return 0; 5955 } 5956 EXPORT_SYMBOL_GPL(fx_init); 5957 5958 static void fx_free(struct kvm_vcpu *vcpu) 5959 { 5960 fpu_free(&vcpu->arch.guest_fpu); 5961 } 5962 5963 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5964 { 5965 if (vcpu->guest_fpu_loaded) 5966 return; 5967 5968 /* 5969 * Restore all possible states in the guest, 5970 * and assume host would use all available bits. 5971 * Guest xcr0 would be loaded later. 5972 */ 5973 kvm_put_guest_xcr0(vcpu); 5974 vcpu->guest_fpu_loaded = 1; 5975 unlazy_fpu(current); 5976 fpu_restore_checking(&vcpu->arch.guest_fpu); 5977 trace_kvm_fpu(1); 5978 } 5979 5980 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 5981 { 5982 kvm_put_guest_xcr0(vcpu); 5983 5984 if (!vcpu->guest_fpu_loaded) 5985 return; 5986 5987 vcpu->guest_fpu_loaded = 0; 5988 fpu_save_init(&vcpu->arch.guest_fpu); 5989 ++vcpu->stat.fpu_reload; 5990 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 5991 trace_kvm_fpu(0); 5992 } 5993 5994 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 5995 { 5996 kvmclock_reset(vcpu); 5997 5998 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 5999 fx_free(vcpu); 6000 kvm_x86_ops->vcpu_free(vcpu); 6001 } 6002 6003 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6004 unsigned int id) 6005 { 6006 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6007 printk_once(KERN_WARNING 6008 "kvm: SMP vm created on host with unstable TSC; " 6009 "guest TSC will not be reliable\n"); 6010 return kvm_x86_ops->vcpu_create(kvm, id); 6011 } 6012 6013 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6014 { 6015 int r; 6016 6017 vcpu->arch.mtrr_state.have_fixed = 1; 6018 vcpu_load(vcpu); 6019 r = kvm_arch_vcpu_reset(vcpu); 6020 if (r == 0) 6021 r = kvm_mmu_setup(vcpu); 6022 vcpu_put(vcpu); 6023 6024 return r; 6025 } 6026 6027 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6028 { 6029 vcpu->arch.apf.msr_val = 0; 6030 6031 vcpu_load(vcpu); 6032 kvm_mmu_unload(vcpu); 6033 vcpu_put(vcpu); 6034 6035 fx_free(vcpu); 6036 kvm_x86_ops->vcpu_free(vcpu); 6037 } 6038 6039 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 6040 { 6041 atomic_set(&vcpu->arch.nmi_queued, 0); 6042 vcpu->arch.nmi_pending = 0; 6043 vcpu->arch.nmi_injected = false; 6044 6045 vcpu->arch.switch_db_regs = 0; 6046 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6047 vcpu->arch.dr6 = DR6_FIXED_1; 6048 vcpu->arch.dr7 = DR7_FIXED_1; 6049 6050 kvm_make_request(KVM_REQ_EVENT, vcpu); 6051 vcpu->arch.apf.msr_val = 0; 6052 vcpu->arch.st.msr_val = 0; 6053 6054 kvmclock_reset(vcpu); 6055 6056 kvm_clear_async_pf_completion_queue(vcpu); 6057 kvm_async_pf_hash_reset(vcpu); 6058 vcpu->arch.apf.halted = false; 6059 6060 kvm_pmu_reset(vcpu); 6061 6062 return kvm_x86_ops->vcpu_reset(vcpu); 6063 } 6064 6065 int kvm_arch_hardware_enable(void *garbage) 6066 { 6067 struct kvm *kvm; 6068 struct kvm_vcpu *vcpu; 6069 int i; 6070 int ret; 6071 u64 local_tsc; 6072 u64 max_tsc = 0; 6073 bool stable, backwards_tsc = false; 6074 6075 kvm_shared_msr_cpu_online(); 6076 ret = kvm_x86_ops->hardware_enable(garbage); 6077 if (ret != 0) 6078 return ret; 6079 6080 local_tsc = native_read_tsc(); 6081 stable = !check_tsc_unstable(); 6082 list_for_each_entry(kvm, &vm_list, vm_list) { 6083 kvm_for_each_vcpu(i, vcpu, kvm) { 6084 if (!stable && vcpu->cpu == smp_processor_id()) 6085 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6086 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6087 backwards_tsc = true; 6088 if (vcpu->arch.last_host_tsc > max_tsc) 6089 max_tsc = vcpu->arch.last_host_tsc; 6090 } 6091 } 6092 } 6093 6094 /* 6095 * Sometimes, even reliable TSCs go backwards. This happens on 6096 * platforms that reset TSC during suspend or hibernate actions, but 6097 * maintain synchronization. We must compensate. Fortunately, we can 6098 * detect that condition here, which happens early in CPU bringup, 6099 * before any KVM threads can be running. Unfortunately, we can't 6100 * bring the TSCs fully up to date with real time, as we aren't yet far 6101 * enough into CPU bringup that we know how much real time has actually 6102 * elapsed; our helper function, get_kernel_ns() will be using boot 6103 * variables that haven't been updated yet. 6104 * 6105 * So we simply find the maximum observed TSC above, then record the 6106 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6107 * the adjustment will be applied. Note that we accumulate 6108 * adjustments, in case multiple suspend cycles happen before some VCPU 6109 * gets a chance to run again. In the event that no KVM threads get a 6110 * chance to run, we will miss the entire elapsed period, as we'll have 6111 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6112 * loose cycle time. This isn't too big a deal, since the loss will be 6113 * uniform across all VCPUs (not to mention the scenario is extremely 6114 * unlikely). It is possible that a second hibernate recovery happens 6115 * much faster than a first, causing the observed TSC here to be 6116 * smaller; this would require additional padding adjustment, which is 6117 * why we set last_host_tsc to the local tsc observed here. 6118 * 6119 * N.B. - this code below runs only on platforms with reliable TSC, 6120 * as that is the only way backwards_tsc is set above. Also note 6121 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6122 * have the same delta_cyc adjustment applied if backwards_tsc 6123 * is detected. Note further, this adjustment is only done once, 6124 * as we reset last_host_tsc on all VCPUs to stop this from being 6125 * called multiple times (one for each physical CPU bringup). 6126 * 6127 * Platforms with unnreliable TSCs don't have to deal with this, they 6128 * will be compensated by the logic in vcpu_load, which sets the TSC to 6129 * catchup mode. This will catchup all VCPUs to real time, but cannot 6130 * guarantee that they stay in perfect synchronization. 6131 */ 6132 if (backwards_tsc) { 6133 u64 delta_cyc = max_tsc - local_tsc; 6134 list_for_each_entry(kvm, &vm_list, vm_list) { 6135 kvm_for_each_vcpu(i, vcpu, kvm) { 6136 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6137 vcpu->arch.last_host_tsc = local_tsc; 6138 } 6139 6140 /* 6141 * We have to disable TSC offset matching.. if you were 6142 * booting a VM while issuing an S4 host suspend.... 6143 * you may have some problem. Solving this issue is 6144 * left as an exercise to the reader. 6145 */ 6146 kvm->arch.last_tsc_nsec = 0; 6147 kvm->arch.last_tsc_write = 0; 6148 } 6149 6150 } 6151 return 0; 6152 } 6153 6154 void kvm_arch_hardware_disable(void *garbage) 6155 { 6156 kvm_x86_ops->hardware_disable(garbage); 6157 drop_user_return_notifiers(garbage); 6158 } 6159 6160 int kvm_arch_hardware_setup(void) 6161 { 6162 return kvm_x86_ops->hardware_setup(); 6163 } 6164 6165 void kvm_arch_hardware_unsetup(void) 6166 { 6167 kvm_x86_ops->hardware_unsetup(); 6168 } 6169 6170 void kvm_arch_check_processor_compat(void *rtn) 6171 { 6172 kvm_x86_ops->check_processor_compatibility(rtn); 6173 } 6174 6175 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6176 { 6177 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6178 } 6179 6180 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6181 { 6182 struct page *page; 6183 struct kvm *kvm; 6184 int r; 6185 6186 BUG_ON(vcpu->kvm == NULL); 6187 kvm = vcpu->kvm; 6188 6189 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6190 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6191 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6192 else 6193 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6194 6195 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6196 if (!page) { 6197 r = -ENOMEM; 6198 goto fail; 6199 } 6200 vcpu->arch.pio_data = page_address(page); 6201 6202 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6203 6204 r = kvm_mmu_create(vcpu); 6205 if (r < 0) 6206 goto fail_free_pio_data; 6207 6208 if (irqchip_in_kernel(kvm)) { 6209 r = kvm_create_lapic(vcpu); 6210 if (r < 0) 6211 goto fail_mmu_destroy; 6212 } 6213 6214 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6215 GFP_KERNEL); 6216 if (!vcpu->arch.mce_banks) { 6217 r = -ENOMEM; 6218 goto fail_free_lapic; 6219 } 6220 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6221 6222 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6223 goto fail_free_mce_banks; 6224 6225 kvm_async_pf_hash_reset(vcpu); 6226 kvm_pmu_init(vcpu); 6227 6228 return 0; 6229 fail_free_mce_banks: 6230 kfree(vcpu->arch.mce_banks); 6231 fail_free_lapic: 6232 kvm_free_lapic(vcpu); 6233 fail_mmu_destroy: 6234 kvm_mmu_destroy(vcpu); 6235 fail_free_pio_data: 6236 free_page((unsigned long)vcpu->arch.pio_data); 6237 fail: 6238 return r; 6239 } 6240 6241 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6242 { 6243 int idx; 6244 6245 kvm_pmu_destroy(vcpu); 6246 kfree(vcpu->arch.mce_banks); 6247 kvm_free_lapic(vcpu); 6248 idx = srcu_read_lock(&vcpu->kvm->srcu); 6249 kvm_mmu_destroy(vcpu); 6250 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6251 free_page((unsigned long)vcpu->arch.pio_data); 6252 } 6253 6254 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6255 { 6256 if (type) 6257 return -EINVAL; 6258 6259 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6260 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6261 6262 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6263 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6264 6265 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6266 6267 return 0; 6268 } 6269 6270 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6271 { 6272 vcpu_load(vcpu); 6273 kvm_mmu_unload(vcpu); 6274 vcpu_put(vcpu); 6275 } 6276 6277 static void kvm_free_vcpus(struct kvm *kvm) 6278 { 6279 unsigned int i; 6280 struct kvm_vcpu *vcpu; 6281 6282 /* 6283 * Unpin any mmu pages first. 6284 */ 6285 kvm_for_each_vcpu(i, vcpu, kvm) { 6286 kvm_clear_async_pf_completion_queue(vcpu); 6287 kvm_unload_vcpu_mmu(vcpu); 6288 } 6289 kvm_for_each_vcpu(i, vcpu, kvm) 6290 kvm_arch_vcpu_free(vcpu); 6291 6292 mutex_lock(&kvm->lock); 6293 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6294 kvm->vcpus[i] = NULL; 6295 6296 atomic_set(&kvm->online_vcpus, 0); 6297 mutex_unlock(&kvm->lock); 6298 } 6299 6300 void kvm_arch_sync_events(struct kvm *kvm) 6301 { 6302 kvm_free_all_assigned_devices(kvm); 6303 kvm_free_pit(kvm); 6304 } 6305 6306 void kvm_arch_destroy_vm(struct kvm *kvm) 6307 { 6308 kvm_iommu_unmap_guest(kvm); 6309 kfree(kvm->arch.vpic); 6310 kfree(kvm->arch.vioapic); 6311 kvm_free_vcpus(kvm); 6312 if (kvm->arch.apic_access_page) 6313 put_page(kvm->arch.apic_access_page); 6314 if (kvm->arch.ept_identity_pagetable) 6315 put_page(kvm->arch.ept_identity_pagetable); 6316 } 6317 6318 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6319 struct kvm_memory_slot *dont) 6320 { 6321 int i; 6322 6323 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6324 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) { 6325 kvm_kvfree(free->arch.lpage_info[i]); 6326 free->arch.lpage_info[i] = NULL; 6327 } 6328 } 6329 } 6330 6331 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6332 { 6333 int i; 6334 6335 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6336 unsigned long ugfn; 6337 int lpages; 6338 int level = i + 2; 6339 6340 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6341 slot->base_gfn, level) + 1; 6342 6343 slot->arch.lpage_info[i] = 6344 kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i])); 6345 if (!slot->arch.lpage_info[i]) 6346 goto out_free; 6347 6348 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6349 slot->arch.lpage_info[i][0].write_count = 1; 6350 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6351 slot->arch.lpage_info[i][lpages - 1].write_count = 1; 6352 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6353 /* 6354 * If the gfn and userspace address are not aligned wrt each 6355 * other, or if explicitly asked to, disable large page 6356 * support for this slot 6357 */ 6358 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6359 !kvm_largepages_enabled()) { 6360 unsigned long j; 6361 6362 for (j = 0; j < lpages; ++j) 6363 slot->arch.lpage_info[i][j].write_count = 1; 6364 } 6365 } 6366 6367 return 0; 6368 6369 out_free: 6370 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6371 kvm_kvfree(slot->arch.lpage_info[i]); 6372 slot->arch.lpage_info[i] = NULL; 6373 } 6374 return -ENOMEM; 6375 } 6376 6377 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6378 struct kvm_memory_slot *memslot, 6379 struct kvm_memory_slot old, 6380 struct kvm_userspace_memory_region *mem, 6381 int user_alloc) 6382 { 6383 int npages = memslot->npages; 6384 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6385 6386 /* Prevent internal slot pages from being moved by fork()/COW. */ 6387 if (memslot->id >= KVM_MEMORY_SLOTS) 6388 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6389 6390 /*To keep backward compatibility with older userspace, 6391 *x86 needs to hanlde !user_alloc case. 6392 */ 6393 if (!user_alloc) { 6394 if (npages && !old.rmap) { 6395 unsigned long userspace_addr; 6396 6397 userspace_addr = vm_mmap(NULL, 0, 6398 npages * PAGE_SIZE, 6399 PROT_READ | PROT_WRITE, 6400 map_flags, 6401 0); 6402 6403 if (IS_ERR((void *)userspace_addr)) 6404 return PTR_ERR((void *)userspace_addr); 6405 6406 memslot->userspace_addr = userspace_addr; 6407 } 6408 } 6409 6410 6411 return 0; 6412 } 6413 6414 void kvm_arch_commit_memory_region(struct kvm *kvm, 6415 struct kvm_userspace_memory_region *mem, 6416 struct kvm_memory_slot old, 6417 int user_alloc) 6418 { 6419 6420 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6421 6422 if (!user_alloc && !old.user_alloc && old.rmap && !npages) { 6423 int ret; 6424 6425 ret = vm_munmap(old.userspace_addr, 6426 old.npages * PAGE_SIZE); 6427 if (ret < 0) 6428 printk(KERN_WARNING 6429 "kvm_vm_ioctl_set_memory_region: " 6430 "failed to munmap memory\n"); 6431 } 6432 6433 if (!kvm->arch.n_requested_mmu_pages) 6434 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6435 6436 spin_lock(&kvm->mmu_lock); 6437 if (nr_mmu_pages) 6438 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6439 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6440 spin_unlock(&kvm->mmu_lock); 6441 } 6442 6443 void kvm_arch_flush_shadow(struct kvm *kvm) 6444 { 6445 kvm_mmu_zap_all(kvm); 6446 kvm_reload_remote_mmus(kvm); 6447 } 6448 6449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6450 { 6451 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6452 !vcpu->arch.apf.halted) 6453 || !list_empty_careful(&vcpu->async_pf.done) 6454 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6455 || atomic_read(&vcpu->arch.nmi_queued) || 6456 (kvm_arch_interrupt_allowed(vcpu) && 6457 kvm_cpu_has_interrupt(vcpu)); 6458 } 6459 6460 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 6461 { 6462 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 6463 } 6464 6465 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6466 { 6467 return kvm_x86_ops->interrupt_allowed(vcpu); 6468 } 6469 6470 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6471 { 6472 unsigned long current_rip = kvm_rip_read(vcpu) + 6473 get_segment_base(vcpu, VCPU_SREG_CS); 6474 6475 return current_rip == linear_rip; 6476 } 6477 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6478 6479 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6480 { 6481 unsigned long rflags; 6482 6483 rflags = kvm_x86_ops->get_rflags(vcpu); 6484 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6485 rflags &= ~X86_EFLAGS_TF; 6486 return rflags; 6487 } 6488 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6489 6490 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6491 { 6492 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6493 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6494 rflags |= X86_EFLAGS_TF; 6495 kvm_x86_ops->set_rflags(vcpu, rflags); 6496 kvm_make_request(KVM_REQ_EVENT, vcpu); 6497 } 6498 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6499 6500 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6501 { 6502 int r; 6503 6504 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6505 is_error_page(work->page)) 6506 return; 6507 6508 r = kvm_mmu_reload(vcpu); 6509 if (unlikely(r)) 6510 return; 6511 6512 if (!vcpu->arch.mmu.direct_map && 6513 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6514 return; 6515 6516 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6517 } 6518 6519 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6520 { 6521 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6522 } 6523 6524 static inline u32 kvm_async_pf_next_probe(u32 key) 6525 { 6526 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6527 } 6528 6529 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6530 { 6531 u32 key = kvm_async_pf_hash_fn(gfn); 6532 6533 while (vcpu->arch.apf.gfns[key] != ~0) 6534 key = kvm_async_pf_next_probe(key); 6535 6536 vcpu->arch.apf.gfns[key] = gfn; 6537 } 6538 6539 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6540 { 6541 int i; 6542 u32 key = kvm_async_pf_hash_fn(gfn); 6543 6544 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6545 (vcpu->arch.apf.gfns[key] != gfn && 6546 vcpu->arch.apf.gfns[key] != ~0); i++) 6547 key = kvm_async_pf_next_probe(key); 6548 6549 return key; 6550 } 6551 6552 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6553 { 6554 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6555 } 6556 6557 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6558 { 6559 u32 i, j, k; 6560 6561 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6562 while (true) { 6563 vcpu->arch.apf.gfns[i] = ~0; 6564 do { 6565 j = kvm_async_pf_next_probe(j); 6566 if (vcpu->arch.apf.gfns[j] == ~0) 6567 return; 6568 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6569 /* 6570 * k lies cyclically in ]i,j] 6571 * | i.k.j | 6572 * |....j i.k.| or |.k..j i...| 6573 */ 6574 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6575 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6576 i = j; 6577 } 6578 } 6579 6580 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6581 { 6582 6583 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6584 sizeof(val)); 6585 } 6586 6587 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6588 struct kvm_async_pf *work) 6589 { 6590 struct x86_exception fault; 6591 6592 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6593 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6594 6595 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6596 (vcpu->arch.apf.send_user_only && 6597 kvm_x86_ops->get_cpl(vcpu) == 0)) 6598 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6599 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6600 fault.vector = PF_VECTOR; 6601 fault.error_code_valid = true; 6602 fault.error_code = 0; 6603 fault.nested_page_fault = false; 6604 fault.address = work->arch.token; 6605 kvm_inject_page_fault(vcpu, &fault); 6606 } 6607 } 6608 6609 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6610 struct kvm_async_pf *work) 6611 { 6612 struct x86_exception fault; 6613 6614 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6615 if (is_error_page(work->page)) 6616 work->arch.token = ~0; /* broadcast wakeup */ 6617 else 6618 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6619 6620 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6621 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6622 fault.vector = PF_VECTOR; 6623 fault.error_code_valid = true; 6624 fault.error_code = 0; 6625 fault.nested_page_fault = false; 6626 fault.address = work->arch.token; 6627 kvm_inject_page_fault(vcpu, &fault); 6628 } 6629 vcpu->arch.apf.halted = false; 6630 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6631 } 6632 6633 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6634 { 6635 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6636 return true; 6637 else 6638 return !kvm_event_needs_reinjection(vcpu) && 6639 kvm_x86_ops->interrupt_allowed(vcpu); 6640 } 6641 6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6654