xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 95b384f9)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128 
129 static bool __read_mostly backwards_tsc_observed = false;
130 
131 #define KVM_NR_SHARED_MSRS 16
132 
133 struct kvm_shared_msrs_global {
134 	int nr;
135 	u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137 
138 struct kvm_shared_msrs {
139 	struct user_return_notifier urn;
140 	bool registered;
141 	struct kvm_shared_msr_values {
142 		u64 host;
143 		u64 curr;
144 	} values[KVM_NR_SHARED_MSRS];
145 };
146 
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149 
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
152 	{ "pf_guest", VCPU_STAT(pf_guest) },
153 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
154 	{ "invlpg", VCPU_STAT(invlpg) },
155 	{ "exits", VCPU_STAT(exits) },
156 	{ "io_exits", VCPU_STAT(io_exits) },
157 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
158 	{ "signal_exits", VCPU_STAT(signal_exits) },
159 	{ "irq_window", VCPU_STAT(irq_window_exits) },
160 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
161 	{ "halt_exits", VCPU_STAT(halt_exits) },
162 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
165 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
166 	{ "hypercalls", VCPU_STAT(hypercalls) },
167 	{ "request_irq", VCPU_STAT(request_irq_exits) },
168 	{ "irq_exits", VCPU_STAT(irq_exits) },
169 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
170 	{ "efer_reload", VCPU_STAT(efer_reload) },
171 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
172 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
173 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
174 	{ "irq_injections", VCPU_STAT(irq_injections) },
175 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
176 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
177 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
178 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
179 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
180 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
181 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
182 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
183 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
184 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
185 	{ "largepages", VM_STAT(lpages) },
186 	{ NULL }
187 };
188 
189 u64 __read_mostly host_xcr0;
190 
191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
192 
193 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
194 {
195 	int i;
196 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
197 		vcpu->arch.apf.gfns[i] = ~0;
198 }
199 
200 static void kvm_on_user_return(struct user_return_notifier *urn)
201 {
202 	unsigned slot;
203 	struct kvm_shared_msrs *locals
204 		= container_of(urn, struct kvm_shared_msrs, urn);
205 	struct kvm_shared_msr_values *values;
206 
207 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
208 		values = &locals->values[slot];
209 		if (values->host != values->curr) {
210 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
211 			values->curr = values->host;
212 		}
213 	}
214 	locals->registered = false;
215 	user_return_notifier_unregister(urn);
216 }
217 
218 static void shared_msr_update(unsigned slot, u32 msr)
219 {
220 	u64 value;
221 	unsigned int cpu = smp_processor_id();
222 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
223 
224 	/* only read, and nobody should modify it at this time,
225 	 * so don't need lock */
226 	if (slot >= shared_msrs_global.nr) {
227 		printk(KERN_ERR "kvm: invalid MSR slot!");
228 		return;
229 	}
230 	rdmsrl_safe(msr, &value);
231 	smsr->values[slot].host = value;
232 	smsr->values[slot].curr = value;
233 }
234 
235 void kvm_define_shared_msr(unsigned slot, u32 msr)
236 {
237 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
238 	shared_msrs_global.msrs[slot] = msr;
239 	if (slot >= shared_msrs_global.nr)
240 		shared_msrs_global.nr = slot + 1;
241 }
242 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
243 
244 static void kvm_shared_msr_cpu_online(void)
245 {
246 	unsigned i;
247 
248 	for (i = 0; i < shared_msrs_global.nr; ++i)
249 		shared_msr_update(i, shared_msrs_global.msrs[i]);
250 }
251 
252 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
253 {
254 	unsigned int cpu = smp_processor_id();
255 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256 	int err;
257 
258 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
259 		return 0;
260 	smsr->values[slot].curr = value;
261 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
262 	if (err)
263 		return 1;
264 
265 	if (!smsr->registered) {
266 		smsr->urn.on_user_return = kvm_on_user_return;
267 		user_return_notifier_register(&smsr->urn);
268 		smsr->registered = true;
269 	}
270 	return 0;
271 }
272 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
273 
274 static void drop_user_return_notifiers(void)
275 {
276 	unsigned int cpu = smp_processor_id();
277 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278 
279 	if (smsr->registered)
280 		kvm_on_user_return(&smsr->urn);
281 }
282 
283 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
284 {
285 	return vcpu->arch.apic_base;
286 }
287 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
288 
289 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
290 {
291 	u64 old_state = vcpu->arch.apic_base &
292 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
293 	u64 new_state = msr_info->data &
294 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
295 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
296 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
297 
298 	if (!msr_info->host_initiated &&
299 	    ((msr_info->data & reserved_bits) != 0 ||
300 	     new_state == X2APIC_ENABLE ||
301 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
302 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
303 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
304 	      old_state == 0)))
305 		return 1;
306 
307 	kvm_lapic_set_base(vcpu, msr_info->data);
308 	return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
311 
312 asmlinkage __visible void kvm_spurious_fault(void)
313 {
314 	/* Fault while not rebooting.  We want the trace. */
315 	BUG();
316 }
317 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
318 
319 #define EXCPT_BENIGN		0
320 #define EXCPT_CONTRIBUTORY	1
321 #define EXCPT_PF		2
322 
323 static int exception_class(int vector)
324 {
325 	switch (vector) {
326 	case PF_VECTOR:
327 		return EXCPT_PF;
328 	case DE_VECTOR:
329 	case TS_VECTOR:
330 	case NP_VECTOR:
331 	case SS_VECTOR:
332 	case GP_VECTOR:
333 		return EXCPT_CONTRIBUTORY;
334 	default:
335 		break;
336 	}
337 	return EXCPT_BENIGN;
338 }
339 
340 #define EXCPT_FAULT		0
341 #define EXCPT_TRAP		1
342 #define EXCPT_ABORT		2
343 #define EXCPT_INTERRUPT		3
344 
345 static int exception_type(int vector)
346 {
347 	unsigned int mask;
348 
349 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
350 		return EXCPT_INTERRUPT;
351 
352 	mask = 1 << vector;
353 
354 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
355 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
356 		return EXCPT_TRAP;
357 
358 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
359 		return EXCPT_ABORT;
360 
361 	/* Reserved exceptions will result in fault */
362 	return EXCPT_FAULT;
363 }
364 
365 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
366 		unsigned nr, bool has_error, u32 error_code,
367 		bool reinject)
368 {
369 	u32 prev_nr;
370 	int class1, class2;
371 
372 	kvm_make_request(KVM_REQ_EVENT, vcpu);
373 
374 	if (!vcpu->arch.exception.pending) {
375 	queue:
376 		if (has_error && !is_protmode(vcpu))
377 			has_error = false;
378 		vcpu->arch.exception.pending = true;
379 		vcpu->arch.exception.has_error_code = has_error;
380 		vcpu->arch.exception.nr = nr;
381 		vcpu->arch.exception.error_code = error_code;
382 		vcpu->arch.exception.reinject = reinject;
383 		return;
384 	}
385 
386 	/* to check exception */
387 	prev_nr = vcpu->arch.exception.nr;
388 	if (prev_nr == DF_VECTOR) {
389 		/* triple fault -> shutdown */
390 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
391 		return;
392 	}
393 	class1 = exception_class(prev_nr);
394 	class2 = exception_class(nr);
395 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
396 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
397 		/* generate double fault per SDM Table 5-5 */
398 		vcpu->arch.exception.pending = true;
399 		vcpu->arch.exception.has_error_code = true;
400 		vcpu->arch.exception.nr = DF_VECTOR;
401 		vcpu->arch.exception.error_code = 0;
402 	} else
403 		/* replace previous exception with a new one in a hope
404 		   that instruction re-execution will regenerate lost
405 		   exception */
406 		goto queue;
407 }
408 
409 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
410 {
411 	kvm_multiple_exception(vcpu, nr, false, 0, false);
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception);
414 
415 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
416 {
417 	kvm_multiple_exception(vcpu, nr, false, 0, true);
418 }
419 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
420 
421 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
422 {
423 	if (err)
424 		kvm_inject_gp(vcpu, 0);
425 	else
426 		kvm_x86_ops->skip_emulated_instruction(vcpu);
427 }
428 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
429 
430 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
431 {
432 	++vcpu->stat.pf_guest;
433 	vcpu->arch.cr2 = fault->address;
434 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
435 }
436 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
437 
438 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
439 {
440 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
441 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
442 	else
443 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
444 
445 	return fault->nested_page_fault;
446 }
447 
448 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
449 {
450 	atomic_inc(&vcpu->arch.nmi_queued);
451 	kvm_make_request(KVM_REQ_NMI, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
454 
455 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
456 {
457 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
458 }
459 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
460 
461 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
462 {
463 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
464 }
465 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
466 
467 /*
468  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
469  * a #GP and return false.
470  */
471 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
472 {
473 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
474 		return true;
475 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
476 	return false;
477 }
478 EXPORT_SYMBOL_GPL(kvm_require_cpl);
479 
480 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
481 {
482 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
483 		return true;
484 
485 	kvm_queue_exception(vcpu, UD_VECTOR);
486 	return false;
487 }
488 EXPORT_SYMBOL_GPL(kvm_require_dr);
489 
490 /*
491  * This function will be used to read from the physical memory of the currently
492  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
493  * can read from guest physical or from the guest's guest physical memory.
494  */
495 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
496 			    gfn_t ngfn, void *data, int offset, int len,
497 			    u32 access)
498 {
499 	struct x86_exception exception;
500 	gfn_t real_gfn;
501 	gpa_t ngpa;
502 
503 	ngpa     = gfn_to_gpa(ngfn);
504 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
505 	if (real_gfn == UNMAPPED_GVA)
506 		return -EFAULT;
507 
508 	real_gfn = gpa_to_gfn(real_gfn);
509 
510 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
511 }
512 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
513 
514 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
515 			       void *data, int offset, int len, u32 access)
516 {
517 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
518 				       data, offset, len, access);
519 }
520 
521 /*
522  * Load the pae pdptrs.  Return true is they are all valid.
523  */
524 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
525 {
526 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
527 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
528 	int i;
529 	int ret;
530 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
531 
532 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
533 				      offset * sizeof(u64), sizeof(pdpte),
534 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
535 	if (ret < 0) {
536 		ret = 0;
537 		goto out;
538 	}
539 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
540 		if (is_present_gpte(pdpte[i]) &&
541 		    (pdpte[i] &
542 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
543 			ret = 0;
544 			goto out;
545 		}
546 	}
547 	ret = 1;
548 
549 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
550 	__set_bit(VCPU_EXREG_PDPTR,
551 		  (unsigned long *)&vcpu->arch.regs_avail);
552 	__set_bit(VCPU_EXREG_PDPTR,
553 		  (unsigned long *)&vcpu->arch.regs_dirty);
554 out:
555 
556 	return ret;
557 }
558 EXPORT_SYMBOL_GPL(load_pdptrs);
559 
560 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
561 {
562 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
563 	bool changed = true;
564 	int offset;
565 	gfn_t gfn;
566 	int r;
567 
568 	if (is_long_mode(vcpu) || !is_pae(vcpu))
569 		return false;
570 
571 	if (!test_bit(VCPU_EXREG_PDPTR,
572 		      (unsigned long *)&vcpu->arch.regs_avail))
573 		return true;
574 
575 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
576 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
577 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
578 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
579 	if (r < 0)
580 		goto out;
581 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
582 out:
583 
584 	return changed;
585 }
586 
587 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
588 {
589 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
590 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
591 
592 	cr0 |= X86_CR0_ET;
593 
594 #ifdef CONFIG_X86_64
595 	if (cr0 & 0xffffffff00000000UL)
596 		return 1;
597 #endif
598 
599 	cr0 &= ~CR0_RESERVED_BITS;
600 
601 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
602 		return 1;
603 
604 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
605 		return 1;
606 
607 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
608 #ifdef CONFIG_X86_64
609 		if ((vcpu->arch.efer & EFER_LME)) {
610 			int cs_db, cs_l;
611 
612 			if (!is_pae(vcpu))
613 				return 1;
614 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
615 			if (cs_l)
616 				return 1;
617 		} else
618 #endif
619 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
620 						 kvm_read_cr3(vcpu)))
621 			return 1;
622 	}
623 
624 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
625 		return 1;
626 
627 	kvm_x86_ops->set_cr0(vcpu, cr0);
628 
629 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
630 		kvm_clear_async_pf_completion_queue(vcpu);
631 		kvm_async_pf_hash_reset(vcpu);
632 	}
633 
634 	if ((cr0 ^ old_cr0) & update_bits)
635 		kvm_mmu_reset_context(vcpu);
636 
637 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
638 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
639 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
640 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr0);
645 
646 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
647 {
648 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
649 }
650 EXPORT_SYMBOL_GPL(kvm_lmsw);
651 
652 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
653 {
654 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
655 			!vcpu->guest_xcr0_loaded) {
656 		/* kvm_set_xcr() also depends on this */
657 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
658 		vcpu->guest_xcr0_loaded = 1;
659 	}
660 }
661 
662 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
663 {
664 	if (vcpu->guest_xcr0_loaded) {
665 		if (vcpu->arch.xcr0 != host_xcr0)
666 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
667 		vcpu->guest_xcr0_loaded = 0;
668 	}
669 }
670 
671 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
672 {
673 	u64 xcr0 = xcr;
674 	u64 old_xcr0 = vcpu->arch.xcr0;
675 	u64 valid_bits;
676 
677 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
678 	if (index != XCR_XFEATURE_ENABLED_MASK)
679 		return 1;
680 	if (!(xcr0 & XFEATURE_MASK_FP))
681 		return 1;
682 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
683 		return 1;
684 
685 	/*
686 	 * Do not allow the guest to set bits that we do not support
687 	 * saving.  However, xcr0 bit 0 is always set, even if the
688 	 * emulated CPU does not support XSAVE (see fx_init).
689 	 */
690 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
691 	if (xcr0 & ~valid_bits)
692 		return 1;
693 
694 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
695 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
696 		return 1;
697 
698 	if (xcr0 & XFEATURE_MASK_AVX512) {
699 		if (!(xcr0 & XFEATURE_MASK_YMM))
700 			return 1;
701 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
702 			return 1;
703 	}
704 	vcpu->arch.xcr0 = xcr0;
705 
706 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707 		kvm_update_cpuid(vcpu);
708 	return 0;
709 }
710 
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714 	    __kvm_set_xcr(vcpu, index, xcr)) {
715 		kvm_inject_gp(vcpu, 0);
716 		return 1;
717 	}
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721 
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
725 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727 
728 	if (cr4 & CR4_RESERVED_BITS)
729 		return 1;
730 
731 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738 		return 1;
739 
740 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741 		return 1;
742 
743 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744 		return 1;
745 
746 	if (is_long_mode(vcpu)) {
747 		if (!(cr4 & X86_CR4_PAE))
748 			return 1;
749 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750 		   && ((cr4 ^ old_cr4) & pdptr_bits)
751 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752 				   kvm_read_cr3(vcpu)))
753 		return 1;
754 
755 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756 		if (!guest_cpuid_has_pcid(vcpu))
757 			return 1;
758 
759 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761 			return 1;
762 	}
763 
764 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
765 		return 1;
766 
767 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
768 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769 		kvm_mmu_reset_context(vcpu);
770 
771 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772 		kvm_update_cpuid(vcpu);
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777 
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781 	cr3 &= ~CR3_PCID_INVD;
782 #endif
783 
784 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785 		kvm_mmu_sync_roots(vcpu);
786 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787 		return 0;
788 	}
789 
790 	if (is_long_mode(vcpu)) {
791 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
792 			return 1;
793 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
794 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795 		return 1;
796 
797 	vcpu->arch.cr3 = cr3;
798 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799 	kvm_mmu_new_cr3(vcpu);
800 	return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803 
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806 	if (cr8 & CR8_RESERVED_BITS)
807 		return 1;
808 	if (lapic_in_kernel(vcpu))
809 		kvm_lapic_set_tpr(vcpu, cr8);
810 	else
811 		vcpu->arch.cr8 = cr8;
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815 
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818 	if (lapic_in_kernel(vcpu))
819 		return kvm_lapic_get_cr8(vcpu);
820 	else
821 		return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824 
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827 	int i;
828 
829 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830 		for (i = 0; i < KVM_NR_DB_REGS; i++)
831 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833 	}
834 }
835 
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841 
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844 	unsigned long dr7;
845 
846 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847 		dr7 = vcpu->arch.guest_debug_dr7;
848 	else
849 		dr7 = vcpu->arch.dr7;
850 	kvm_x86_ops->set_dr7(vcpu, dr7);
851 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852 	if (dr7 & DR7_BP_EN_MASK)
853 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855 
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858 	u64 fixed = DR6_FIXED_1;
859 
860 	if (!guest_cpuid_has_rtm(vcpu))
861 		fixed |= DR6_RTM;
862 	return fixed;
863 }
864 
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867 	switch (dr) {
868 	case 0 ... 3:
869 		vcpu->arch.db[dr] = val;
870 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871 			vcpu->arch.eff_db[dr] = val;
872 		break;
873 	case 4:
874 		/* fall through */
875 	case 6:
876 		if (val & 0xffffffff00000000ULL)
877 			return -1; /* #GP */
878 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879 		kvm_update_dr6(vcpu);
880 		break;
881 	case 5:
882 		/* fall through */
883 	default: /* 7 */
884 		if (val & 0xffffffff00000000ULL)
885 			return -1; /* #GP */
886 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887 		kvm_update_dr7(vcpu);
888 		break;
889 	}
890 
891 	return 0;
892 }
893 
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896 	if (__kvm_set_dr(vcpu, dr, val)) {
897 		kvm_inject_gp(vcpu, 0);
898 		return 1;
899 	}
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903 
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906 	switch (dr) {
907 	case 0 ... 3:
908 		*val = vcpu->arch.db[dr];
909 		break;
910 	case 4:
911 		/* fall through */
912 	case 6:
913 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914 			*val = vcpu->arch.dr6;
915 		else
916 			*val = kvm_x86_ops->get_dr6(vcpu);
917 		break;
918 	case 5:
919 		/* fall through */
920 	default: /* 7 */
921 		*val = vcpu->arch.dr7;
922 		break;
923 	}
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927 
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931 	u64 data;
932 	int err;
933 
934 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935 	if (err)
936 		return err;
937 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939 	return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942 
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952 
953 static u32 msrs_to_save[] = {
954 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955 	MSR_STAR,
956 #ifdef CONFIG_X86_64
957 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962 
963 static unsigned num_msrs_to_save;
964 
965 static u32 emulated_msrs[] = {
966 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972 	HV_X64_MSR_RESET,
973 	HV_X64_MSR_VP_INDEX,
974 	HV_X64_MSR_VP_RUNTIME,
975 	HV_X64_MSR_SCONTROL,
976 	HV_X64_MSR_STIMER0_CONFIG,
977 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978 	MSR_KVM_PV_EOI_EN,
979 
980 	MSR_IA32_TSC_ADJUST,
981 	MSR_IA32_TSCDEADLINE,
982 	MSR_IA32_MISC_ENABLE,
983 	MSR_IA32_MCG_STATUS,
984 	MSR_IA32_MCG_CTL,
985 	MSR_IA32_SMBASE,
986 };
987 
988 static unsigned num_emulated_msrs;
989 
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992 	if (efer & efer_reserved_bits)
993 		return false;
994 
995 	if (efer & EFER_FFXSR) {
996 		struct kvm_cpuid_entry2 *feat;
997 
998 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000 			return false;
1001 	}
1002 
1003 	if (efer & EFER_SVME) {
1004 		struct kvm_cpuid_entry2 *feat;
1005 
1006 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008 			return false;
1009 	}
1010 
1011 	return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014 
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017 	u64 old_efer = vcpu->arch.efer;
1018 
1019 	if (!kvm_valid_efer(vcpu, efer))
1020 		return 1;
1021 
1022 	if (is_paging(vcpu)
1023 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024 		return 1;
1025 
1026 	efer &= ~EFER_LMA;
1027 	efer |= vcpu->arch.efer & EFER_LMA;
1028 
1029 	kvm_x86_ops->set_efer(vcpu, efer);
1030 
1031 	/* Update reserved bits */
1032 	if ((efer ^ old_efer) & EFER_NX)
1033 		kvm_mmu_reset_context(vcpu);
1034 
1035 	return 0;
1036 }
1037 
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043 
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051 	switch (msr->index) {
1052 	case MSR_FS_BASE:
1053 	case MSR_GS_BASE:
1054 	case MSR_KERNEL_GS_BASE:
1055 	case MSR_CSTAR:
1056 	case MSR_LSTAR:
1057 		if (is_noncanonical_address(msr->data))
1058 			return 1;
1059 		break;
1060 	case MSR_IA32_SYSENTER_EIP:
1061 	case MSR_IA32_SYSENTER_ESP:
1062 		/*
1063 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064 		 * non-canonical address is written on Intel but not on
1065 		 * AMD (which ignores the top 32-bits, because it does
1066 		 * not implement 64-bit SYSENTER).
1067 		 *
1068 		 * 64-bit code should hence be able to write a non-canonical
1069 		 * value on AMD.  Making the address canonical ensures that
1070 		 * vmentry does not fail on Intel after writing a non-canonical
1071 		 * value, and that something deterministic happens if the guest
1072 		 * invokes 64-bit SYSENTER.
1073 		 */
1074 		msr->data = get_canonical(msr->data);
1075 	}
1076 	return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079 
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085 	struct msr_data msr;
1086 	int r;
1087 
1088 	msr.index = index;
1089 	msr.host_initiated = true;
1090 	r = kvm_get_msr(vcpu, &msr);
1091 	if (r)
1092 		return r;
1093 
1094 	*data = msr.data;
1095 	return 0;
1096 }
1097 
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100 	struct msr_data msr;
1101 
1102 	msr.data = *data;
1103 	msr.index = index;
1104 	msr.host_initiated = true;
1105 	return kvm_set_msr(vcpu, &msr);
1106 }
1107 
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110 	seqcount_t	seq;
1111 
1112 	struct { /* extract of a clocksource struct */
1113 		int vclock_mode;
1114 		cycle_t	cycle_last;
1115 		cycle_t	mask;
1116 		u32	mult;
1117 		u32	shift;
1118 	} clock;
1119 
1120 	u64		boot_ns;
1121 	u64		nsec_base;
1122 };
1123 
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125 
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129 	u64 boot_ns;
1130 
1131 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132 
1133 	write_seqcount_begin(&vdata->seq);
1134 
1135 	/* copy pvclock gtod data */
1136 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1137 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1138 	vdata->clock.mask		= tk->tkr_mono.mask;
1139 	vdata->clock.mult		= tk->tkr_mono.mult;
1140 	vdata->clock.shift		= tk->tkr_mono.shift;
1141 
1142 	vdata->boot_ns			= boot_ns;
1143 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1144 
1145 	write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148 
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151 	/*
1152 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153 	 * vcpu_enter_guest.  This function is only called from
1154 	 * the physical CPU that is running vcpu.
1155 	 */
1156 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158 
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161 	int version;
1162 	int r;
1163 	struct pvclock_wall_clock wc;
1164 	struct timespec boot;
1165 
1166 	if (!wall_clock)
1167 		return;
1168 
1169 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170 	if (r)
1171 		return;
1172 
1173 	if (version & 1)
1174 		++version;  /* first time write, random junk */
1175 
1176 	++version;
1177 
1178 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179 		return;
1180 
1181 	/*
1182 	 * The guest calculates current wall clock time by adding
1183 	 * system time (updated by kvm_guest_time_update below) to the
1184 	 * wall clock specified here.  guest system time equals host
1185 	 * system time for us, thus we must fill in host boot time here.
1186 	 */
1187 	getboottime(&boot);
1188 
1189 	if (kvm->arch.kvmclock_offset) {
1190 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191 		boot = timespec_sub(boot, ts);
1192 	}
1193 	wc.sec = boot.tv_sec;
1194 	wc.nsec = boot.tv_nsec;
1195 	wc.version = version;
1196 
1197 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198 
1199 	version++;
1200 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202 
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205 	do_shl32_div32(dividend, divisor);
1206 	return dividend;
1207 }
1208 
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210 			       s8 *pshift, u32 *pmultiplier)
1211 {
1212 	uint64_t scaled64;
1213 	int32_t  shift = 0;
1214 	uint64_t tps64;
1215 	uint32_t tps32;
1216 
1217 	tps64 = base_hz;
1218 	scaled64 = scaled_hz;
1219 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220 		tps64 >>= 1;
1221 		shift--;
1222 	}
1223 
1224 	tps32 = (uint32_t)tps64;
1225 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227 			scaled64 >>= 1;
1228 		else
1229 			tps32 <<= 1;
1230 		shift++;
1231 	}
1232 
1233 	*pshift = shift;
1234 	*pmultiplier = div_frac(scaled64, tps32);
1235 
1236 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239 
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243 
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246 
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250 				   vcpu->arch.virtual_tsc_shift);
1251 }
1252 
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255 	u64 v = (u64)khz * (1000000 + ppm);
1256 	do_div(v, 1000000);
1257 	return v;
1258 }
1259 
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262 	u64 ratio;
1263 
1264 	/* Guest TSC same frequency as host TSC? */
1265 	if (!scale) {
1266 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267 		return 0;
1268 	}
1269 
1270 	/* TSC scaling supported? */
1271 	if (!kvm_has_tsc_control) {
1272 		if (user_tsc_khz > tsc_khz) {
1273 			vcpu->arch.tsc_catchup = 1;
1274 			vcpu->arch.tsc_always_catchup = 1;
1275 			return 0;
1276 		} else {
1277 			WARN(1, "user requested TSC rate below hardware speed\n");
1278 			return -1;
1279 		}
1280 	}
1281 
1282 	/* TSC scaling required  - calculate ratio */
1283 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284 				user_tsc_khz, tsc_khz);
1285 
1286 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288 			  user_tsc_khz);
1289 		return -1;
1290 	}
1291 
1292 	vcpu->arch.tsc_scaling_ratio = ratio;
1293 	return 0;
1294 }
1295 
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1297 {
1298 	u32 thresh_lo, thresh_hi;
1299 	int use_scaling = 0;
1300 
1301 	/* tsc_khz can be zero if TSC calibration fails */
1302 	if (user_tsc_khz == 0) {
1303 		/* set tsc_scaling_ratio to a safe value */
1304 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305 		return -1;
1306 	}
1307 
1308 	/* Compute a scale to convert nanoseconds in TSC cycles */
1309 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1310 			   &vcpu->arch.virtual_tsc_shift,
1311 			   &vcpu->arch.virtual_tsc_mult);
1312 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1313 
1314 	/*
1315 	 * Compute the variation in TSC rate which is acceptable
1316 	 * within the range of tolerance and decide if the
1317 	 * rate being applied is within that bounds of the hardware
1318 	 * rate.  If so, no scaling or compensation need be done.
1319 	 */
1320 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1323 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1324 		use_scaling = 1;
1325 	}
1326 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1327 }
1328 
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332 				      vcpu->arch.virtual_tsc_mult,
1333 				      vcpu->arch.virtual_tsc_shift);
1334 	tsc += vcpu->arch.this_tsc_write;
1335 	return tsc;
1336 }
1337 
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341 	bool vcpus_matched;
1342 	struct kvm_arch *ka = &vcpu->kvm->arch;
1343 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344 
1345 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346 			 atomic_read(&vcpu->kvm->online_vcpus));
1347 
1348 	/*
1349 	 * Once the masterclock is enabled, always perform request in
1350 	 * order to update it.
1351 	 *
1352 	 * In order to enable masterclock, the host clocksource must be TSC
1353 	 * and the vcpus need to have matched TSCs.  When that happens,
1354 	 * perform request to enable masterclock.
1355 	 */
1356 	if (ka->use_master_clock ||
1357 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359 
1360 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361 			    atomic_read(&vcpu->kvm->online_vcpus),
1362 		            ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365 
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371 
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386 
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389 	u64 _tsc = tsc;
1390 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391 
1392 	if (ratio != kvm_default_tsc_scaling_ratio)
1393 		_tsc = __scale_tsc(ratio, tsc);
1394 
1395 	return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398 
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401 	u64 tsc;
1402 
1403 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1404 
1405 	return target_tsc - tsc;
1406 }
1407 
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413 
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416 	struct kvm *kvm = vcpu->kvm;
1417 	u64 offset, ns, elapsed;
1418 	unsigned long flags;
1419 	s64 usdiff;
1420 	bool matched;
1421 	bool already_matched;
1422 	u64 data = msr->data;
1423 
1424 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425 	offset = kvm_compute_tsc_offset(vcpu, data);
1426 	ns = get_kernel_ns();
1427 	elapsed = ns - kvm->arch.last_tsc_nsec;
1428 
1429 	if (vcpu->arch.virtual_tsc_khz) {
1430 		int faulted = 0;
1431 
1432 		/* n.b - signed multiplication and division required */
1433 		usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437 		/* do_div() only does unsigned */
1438 		asm("1: idivl %[divisor]\n"
1439 		    "2: xor %%edx, %%edx\n"
1440 		    "   movl $0, %[faulted]\n"
1441 		    "3:\n"
1442 		    ".section .fixup,\"ax\"\n"
1443 		    "4: movl $1, %[faulted]\n"
1444 		    "   jmp  3b\n"
1445 		    ".previous\n"
1446 
1447 		_ASM_EXTABLE(1b, 4b)
1448 
1449 		: "=A"(usdiff), [faulted] "=r" (faulted)
1450 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451 
1452 #endif
1453 		do_div(elapsed, 1000);
1454 		usdiff -= elapsed;
1455 		if (usdiff < 0)
1456 			usdiff = -usdiff;
1457 
1458 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1459 		if (faulted)
1460 			usdiff = USEC_PER_SEC;
1461 	} else
1462 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463 
1464 	/*
1465 	 * Special case: TSC write with a small delta (1 second) of virtual
1466 	 * cycle time against real time is interpreted as an attempt to
1467 	 * synchronize the CPU.
1468          *
1469 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1470 	 * TSC, we add elapsed time in this computation.  We could let the
1471 	 * compensation code attempt to catch up if we fall behind, but
1472 	 * it's better to try to match offsets from the beginning.
1473          */
1474 	if (usdiff < USEC_PER_SEC &&
1475 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476 		if (!check_tsc_unstable()) {
1477 			offset = kvm->arch.cur_tsc_offset;
1478 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1479 		} else {
1480 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1481 			data += delta;
1482 			offset = kvm_compute_tsc_offset(vcpu, data);
1483 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484 		}
1485 		matched = true;
1486 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487 	} else {
1488 		/*
1489 		 * We split periods of matched TSC writes into generations.
1490 		 * For each generation, we track the original measured
1491 		 * nanosecond time, offset, and write, so if TSCs are in
1492 		 * sync, we can match exact offset, and if not, we can match
1493 		 * exact software computation in compute_guest_tsc()
1494 		 *
1495 		 * These values are tracked in kvm->arch.cur_xxx variables.
1496 		 */
1497 		kvm->arch.cur_tsc_generation++;
1498 		kvm->arch.cur_tsc_nsec = ns;
1499 		kvm->arch.cur_tsc_write = data;
1500 		kvm->arch.cur_tsc_offset = offset;
1501 		matched = false;
1502 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503 			 kvm->arch.cur_tsc_generation, data);
1504 	}
1505 
1506 	/*
1507 	 * We also track th most recent recorded KHZ, write and time to
1508 	 * allow the matching interval to be extended at each write.
1509 	 */
1510 	kvm->arch.last_tsc_nsec = ns;
1511 	kvm->arch.last_tsc_write = data;
1512 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513 
1514 	vcpu->arch.last_guest_tsc = data;
1515 
1516 	/* Keep track of which generation this VCPU has synchronized to */
1517 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520 
1521 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522 		update_ia32_tsc_adjust_msr(vcpu, offset);
1523 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525 
1526 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527 	if (!matched) {
1528 		kvm->arch.nr_vcpus_matched_tsc = 0;
1529 	} else if (!already_matched) {
1530 		kvm->arch.nr_vcpus_matched_tsc++;
1531 	}
1532 
1533 	kvm_track_tsc_matching(vcpu);
1534 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536 
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538 
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540 					   s64 adjustment)
1541 {
1542 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544 
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548 		WARN_ON(adjustment < 0);
1549 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552 
1553 #ifdef CONFIG_X86_64
1554 
1555 static cycle_t read_tsc(void)
1556 {
1557 	cycle_t ret = (cycle_t)rdtsc_ordered();
1558 	u64 last = pvclock_gtod_data.clock.cycle_last;
1559 
1560 	if (likely(ret >= last))
1561 		return ret;
1562 
1563 	/*
1564 	 * GCC likes to generate cmov here, but this branch is extremely
1565 	 * predictable (it's just a function of time and the likely is
1566 	 * very likely) and there's a data dependence, so force GCC
1567 	 * to generate a branch instead.  I don't barrier() because
1568 	 * we don't actually need a barrier, and if this function
1569 	 * ever gets inlined it will generate worse code.
1570 	 */
1571 	asm volatile ("");
1572 	return last;
1573 }
1574 
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577 	long v;
1578 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579 
1580 	*cycle_now = read_tsc();
1581 
1582 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583 	return v * gtod->clock.mult;
1584 }
1585 
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589 	unsigned long seq;
1590 	int mode;
1591 	u64 ns;
1592 
1593 	do {
1594 		seq = read_seqcount_begin(&gtod->seq);
1595 		mode = gtod->clock.vclock_mode;
1596 		ns = gtod->nsec_base;
1597 		ns += vgettsc(cycle_now);
1598 		ns >>= gtod->clock.shift;
1599 		ns += gtod->boot_ns;
1600 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601 	*t = ns;
1602 
1603 	return mode;
1604 }
1605 
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609 	/* checked again under seqlock below */
1610 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611 		return false;
1612 
1613 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616 
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.					| timespec1 = timespec0 + N
1631  * 					| tsc1 = tsc0 + M
1632  * 3. transition to guest		| transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1635  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  * 	- ret0 < ret1
1640  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *		...
1642  *	- 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657 
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661 	struct kvm_arch *ka = &kvm->arch;
1662 	int vclock_mode;
1663 	bool host_tsc_clocksource, vcpus_matched;
1664 
1665 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666 			atomic_read(&kvm->online_vcpus));
1667 
1668 	/*
1669 	 * If the host uses TSC clock, then passthrough TSC as stable
1670 	 * to the guest.
1671 	 */
1672 	host_tsc_clocksource = kvm_get_time_and_clockread(
1673 					&ka->master_kernel_ns,
1674 					&ka->master_cycle_now);
1675 
1676 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677 				&& !backwards_tsc_observed
1678 				&& !ka->boot_vcpu_runs_old_kvmclock;
1679 
1680 	if (ka->use_master_clock)
1681 		atomic_set(&kvm_guest_has_master_clock, 1);
1682 
1683 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685 					vcpus_matched);
1686 #endif
1687 }
1688 
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693 
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697 	int i;
1698 	struct kvm_vcpu *vcpu;
1699 	struct kvm_arch *ka = &kvm->arch;
1700 
1701 	spin_lock(&ka->pvclock_gtod_sync_lock);
1702 	kvm_make_mclock_inprogress_request(kvm);
1703 	/* no guest entries from this point */
1704 	pvclock_update_vm_gtod_copy(kvm);
1705 
1706 	kvm_for_each_vcpu(i, vcpu, kvm)
1707 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708 
1709 	/* guest entries allowed */
1710 	kvm_for_each_vcpu(i, vcpu, kvm)
1711 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712 
1713 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716 
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719 	unsigned long flags, tgt_tsc_khz;
1720 	struct kvm_vcpu_arch *vcpu = &v->arch;
1721 	struct kvm_arch *ka = &v->kvm->arch;
1722 	s64 kernel_ns;
1723 	u64 tsc_timestamp, host_tsc;
1724 	struct pvclock_vcpu_time_info guest_hv_clock;
1725 	u8 pvclock_flags;
1726 	bool use_master_clock;
1727 
1728 	kernel_ns = 0;
1729 	host_tsc = 0;
1730 
1731 	/*
1732 	 * If the host uses TSC clock, then passthrough TSC as stable
1733 	 * to the guest.
1734 	 */
1735 	spin_lock(&ka->pvclock_gtod_sync_lock);
1736 	use_master_clock = ka->use_master_clock;
1737 	if (use_master_clock) {
1738 		host_tsc = ka->master_cycle_now;
1739 		kernel_ns = ka->master_kernel_ns;
1740 	}
1741 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1742 
1743 	/* Keep irq disabled to prevent changes to the clock */
1744 	local_irq_save(flags);
1745 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746 	if (unlikely(tgt_tsc_khz == 0)) {
1747 		local_irq_restore(flags);
1748 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749 		return 1;
1750 	}
1751 	if (!use_master_clock) {
1752 		host_tsc = rdtsc();
1753 		kernel_ns = get_kernel_ns();
1754 	}
1755 
1756 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757 
1758 	/*
1759 	 * We may have to catch up the TSC to match elapsed wall clock
1760 	 * time for two reasons, even if kvmclock is used.
1761 	 *   1) CPU could have been running below the maximum TSC rate
1762 	 *   2) Broken TSC compensation resets the base at each VCPU
1763 	 *      entry to avoid unknown leaps of TSC even when running
1764 	 *      again on the same CPU.  This may cause apparent elapsed
1765 	 *      time to disappear, and the guest to stand still or run
1766 	 *	very slowly.
1767 	 */
1768 	if (vcpu->tsc_catchup) {
1769 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1770 		if (tsc > tsc_timestamp) {
1771 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772 			tsc_timestamp = tsc;
1773 		}
1774 	}
1775 
1776 	local_irq_restore(flags);
1777 
1778 	if (!vcpu->pv_time_enabled)
1779 		return 0;
1780 
1781 	if (kvm_has_tsc_control)
1782 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1783 
1784 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1785 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1786 				   &vcpu->hv_clock.tsc_shift,
1787 				   &vcpu->hv_clock.tsc_to_system_mul);
1788 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1789 	}
1790 
1791 	/* With all the info we got, fill in the values */
1792 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1793 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1794 	vcpu->last_guest_tsc = tsc_timestamp;
1795 
1796 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797 		&guest_hv_clock, sizeof(guest_hv_clock))))
1798 		return 0;
1799 
1800 	/* This VCPU is paused, but it's legal for a guest to read another
1801 	 * VCPU's kvmclock, so we really have to follow the specification where
1802 	 * it says that version is odd if data is being modified, and even after
1803 	 * it is consistent.
1804 	 *
1805 	 * Version field updates must be kept separate.  This is because
1806 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1807 	 * writes within a string instruction are weakly ordered.  So there
1808 	 * are three writes overall.
1809 	 *
1810 	 * As a small optimization, only write the version field in the first
1811 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1812 	 * version field is the first in the struct.
1813 	 */
1814 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815 
1816 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818 				&vcpu->hv_clock,
1819 				sizeof(vcpu->hv_clock.version));
1820 
1821 	smp_wmb();
1822 
1823 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825 
1826 	if (vcpu->pvclock_set_guest_stopped_request) {
1827 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1828 		vcpu->pvclock_set_guest_stopped_request = false;
1829 	}
1830 
1831 	/* If the host uses TSC clocksource, then it is stable */
1832 	if (use_master_clock)
1833 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1834 
1835 	vcpu->hv_clock.flags = pvclock_flags;
1836 
1837 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1838 
1839 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840 				&vcpu->hv_clock,
1841 				sizeof(vcpu->hv_clock));
1842 
1843 	smp_wmb();
1844 
1845 	vcpu->hv_clock.version++;
1846 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1847 				&vcpu->hv_clock,
1848 				sizeof(vcpu->hv_clock.version));
1849 	return 0;
1850 }
1851 
1852 /*
1853  * kvmclock updates which are isolated to a given vcpu, such as
1854  * vcpu->cpu migration, should not allow system_timestamp from
1855  * the rest of the vcpus to remain static. Otherwise ntp frequency
1856  * correction applies to one vcpu's system_timestamp but not
1857  * the others.
1858  *
1859  * So in those cases, request a kvmclock update for all vcpus.
1860  * We need to rate-limit these requests though, as they can
1861  * considerably slow guests that have a large number of vcpus.
1862  * The time for a remote vcpu to update its kvmclock is bound
1863  * by the delay we use to rate-limit the updates.
1864  */
1865 
1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867 
1868 static void kvmclock_update_fn(struct work_struct *work)
1869 {
1870 	int i;
1871 	struct delayed_work *dwork = to_delayed_work(work);
1872 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1873 					   kvmclock_update_work);
1874 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1875 	struct kvm_vcpu *vcpu;
1876 
1877 	kvm_for_each_vcpu(i, vcpu, kvm) {
1878 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1879 		kvm_vcpu_kick(vcpu);
1880 	}
1881 }
1882 
1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1884 {
1885 	struct kvm *kvm = v->kvm;
1886 
1887 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1888 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1889 					KVMCLOCK_UPDATE_DELAY);
1890 }
1891 
1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893 
1894 static void kvmclock_sync_fn(struct work_struct *work)
1895 {
1896 	struct delayed_work *dwork = to_delayed_work(work);
1897 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1898 					   kvmclock_sync_work);
1899 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1900 
1901 	if (!kvmclock_periodic_sync)
1902 		return;
1903 
1904 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1905 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1906 					KVMCLOCK_SYNC_PERIOD);
1907 }
1908 
1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1910 {
1911 	u64 mcg_cap = vcpu->arch.mcg_cap;
1912 	unsigned bank_num = mcg_cap & 0xff;
1913 
1914 	switch (msr) {
1915 	case MSR_IA32_MCG_STATUS:
1916 		vcpu->arch.mcg_status = data;
1917 		break;
1918 	case MSR_IA32_MCG_CTL:
1919 		if (!(mcg_cap & MCG_CTL_P))
1920 			return 1;
1921 		if (data != 0 && data != ~(u64)0)
1922 			return -1;
1923 		vcpu->arch.mcg_ctl = data;
1924 		break;
1925 	default:
1926 		if (msr >= MSR_IA32_MC0_CTL &&
1927 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1928 			u32 offset = msr - MSR_IA32_MC0_CTL;
1929 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1930 			 * some Linux kernels though clear bit 10 in bank 4 to
1931 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1932 			 * this to avoid an uncatched #GP in the guest
1933 			 */
1934 			if ((offset & 0x3) == 0 &&
1935 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1936 				return -1;
1937 			vcpu->arch.mce_banks[offset] = data;
1938 			break;
1939 		}
1940 		return 1;
1941 	}
1942 	return 0;
1943 }
1944 
1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1946 {
1947 	struct kvm *kvm = vcpu->kvm;
1948 	int lm = is_long_mode(vcpu);
1949 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1950 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1951 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1952 		: kvm->arch.xen_hvm_config.blob_size_32;
1953 	u32 page_num = data & ~PAGE_MASK;
1954 	u64 page_addr = data & PAGE_MASK;
1955 	u8 *page;
1956 	int r;
1957 
1958 	r = -E2BIG;
1959 	if (page_num >= blob_size)
1960 		goto out;
1961 	r = -ENOMEM;
1962 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1963 	if (IS_ERR(page)) {
1964 		r = PTR_ERR(page);
1965 		goto out;
1966 	}
1967 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1968 		goto out_free;
1969 	r = 0;
1970 out_free:
1971 	kfree(page);
1972 out:
1973 	return r;
1974 }
1975 
1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1977 {
1978 	gpa_t gpa = data & ~0x3f;
1979 
1980 	/* Bits 2:5 are reserved, Should be zero */
1981 	if (data & 0x3c)
1982 		return 1;
1983 
1984 	vcpu->arch.apf.msr_val = data;
1985 
1986 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1987 		kvm_clear_async_pf_completion_queue(vcpu);
1988 		kvm_async_pf_hash_reset(vcpu);
1989 		return 0;
1990 	}
1991 
1992 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1993 					sizeof(u32)))
1994 		return 1;
1995 
1996 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1997 	kvm_async_pf_wakeup_all(vcpu);
1998 	return 0;
1999 }
2000 
2001 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2002 {
2003 	vcpu->arch.pv_time_enabled = false;
2004 }
2005 
2006 static void record_steal_time(struct kvm_vcpu *vcpu)
2007 {
2008 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2009 		return;
2010 
2011 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2012 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2013 		return;
2014 
2015 	if (vcpu->arch.st.steal.version & 1)
2016 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2017 
2018 	vcpu->arch.st.steal.version += 1;
2019 
2020 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2021 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2022 
2023 	smp_wmb();
2024 
2025 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2026 		vcpu->arch.st.last_steal;
2027 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028 
2029 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2030 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2031 
2032 	smp_wmb();
2033 
2034 	vcpu->arch.st.steal.version += 1;
2035 
2036 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2038 }
2039 
2040 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2041 {
2042 	bool pr = false;
2043 	u32 msr = msr_info->index;
2044 	u64 data = msr_info->data;
2045 
2046 	switch (msr) {
2047 	case MSR_AMD64_NB_CFG:
2048 	case MSR_IA32_UCODE_REV:
2049 	case MSR_IA32_UCODE_WRITE:
2050 	case MSR_VM_HSAVE_PA:
2051 	case MSR_AMD64_PATCH_LOADER:
2052 	case MSR_AMD64_BU_CFG2:
2053 		break;
2054 
2055 	case MSR_EFER:
2056 		return set_efer(vcpu, data);
2057 	case MSR_K7_HWCR:
2058 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2059 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2060 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2061 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2062 		if (data != 0) {
2063 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2064 				    data);
2065 			return 1;
2066 		}
2067 		break;
2068 	case MSR_FAM10H_MMIO_CONF_BASE:
2069 		if (data != 0) {
2070 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2071 				    "0x%llx\n", data);
2072 			return 1;
2073 		}
2074 		break;
2075 	case MSR_IA32_DEBUGCTLMSR:
2076 		if (!data) {
2077 			/* We support the non-activated case already */
2078 			break;
2079 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2080 			/* Values other than LBR and BTF are vendor-specific,
2081 			   thus reserved and should throw a #GP */
2082 			return 1;
2083 		}
2084 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2085 			    __func__, data);
2086 		break;
2087 	case 0x200 ... 0x2ff:
2088 		return kvm_mtrr_set_msr(vcpu, msr, data);
2089 	case MSR_IA32_APICBASE:
2090 		return kvm_set_apic_base(vcpu, msr_info);
2091 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2092 		return kvm_x2apic_msr_write(vcpu, msr, data);
2093 	case MSR_IA32_TSCDEADLINE:
2094 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2095 		break;
2096 	case MSR_IA32_TSC_ADJUST:
2097 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2098 			if (!msr_info->host_initiated) {
2099 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2100 				adjust_tsc_offset_guest(vcpu, adj);
2101 			}
2102 			vcpu->arch.ia32_tsc_adjust_msr = data;
2103 		}
2104 		break;
2105 	case MSR_IA32_MISC_ENABLE:
2106 		vcpu->arch.ia32_misc_enable_msr = data;
2107 		break;
2108 	case MSR_IA32_SMBASE:
2109 		if (!msr_info->host_initiated)
2110 			return 1;
2111 		vcpu->arch.smbase = data;
2112 		break;
2113 	case MSR_KVM_WALL_CLOCK_NEW:
2114 	case MSR_KVM_WALL_CLOCK:
2115 		vcpu->kvm->arch.wall_clock = data;
2116 		kvm_write_wall_clock(vcpu->kvm, data);
2117 		break;
2118 	case MSR_KVM_SYSTEM_TIME_NEW:
2119 	case MSR_KVM_SYSTEM_TIME: {
2120 		u64 gpa_offset;
2121 		struct kvm_arch *ka = &vcpu->kvm->arch;
2122 
2123 		kvmclock_reset(vcpu);
2124 
2125 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2126 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2127 
2128 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2129 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2130 					&vcpu->requests);
2131 
2132 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2133 		}
2134 
2135 		vcpu->arch.time = data;
2136 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2137 
2138 		/* we verify if the enable bit is set... */
2139 		if (!(data & 1))
2140 			break;
2141 
2142 		gpa_offset = data & ~(PAGE_MASK | 1);
2143 
2144 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2145 		     &vcpu->arch.pv_time, data & ~1ULL,
2146 		     sizeof(struct pvclock_vcpu_time_info)))
2147 			vcpu->arch.pv_time_enabled = false;
2148 		else
2149 			vcpu->arch.pv_time_enabled = true;
2150 
2151 		break;
2152 	}
2153 	case MSR_KVM_ASYNC_PF_EN:
2154 		if (kvm_pv_enable_async_pf(vcpu, data))
2155 			return 1;
2156 		break;
2157 	case MSR_KVM_STEAL_TIME:
2158 
2159 		if (unlikely(!sched_info_on()))
2160 			return 1;
2161 
2162 		if (data & KVM_STEAL_RESERVED_MASK)
2163 			return 1;
2164 
2165 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2166 						data & KVM_STEAL_VALID_BITS,
2167 						sizeof(struct kvm_steal_time)))
2168 			return 1;
2169 
2170 		vcpu->arch.st.msr_val = data;
2171 
2172 		if (!(data & KVM_MSR_ENABLED))
2173 			break;
2174 
2175 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2176 
2177 		break;
2178 	case MSR_KVM_PV_EOI_EN:
2179 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2180 			return 1;
2181 		break;
2182 
2183 	case MSR_IA32_MCG_CTL:
2184 	case MSR_IA32_MCG_STATUS:
2185 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2186 		return set_msr_mce(vcpu, msr, data);
2187 
2188 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2189 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2190 		pr = true; /* fall through */
2191 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2192 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2193 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2194 			return kvm_pmu_set_msr(vcpu, msr_info);
2195 
2196 		if (pr || data != 0)
2197 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2198 				    "0x%x data 0x%llx\n", msr, data);
2199 		break;
2200 	case MSR_K7_CLK_CTL:
2201 		/*
2202 		 * Ignore all writes to this no longer documented MSR.
2203 		 * Writes are only relevant for old K7 processors,
2204 		 * all pre-dating SVM, but a recommended workaround from
2205 		 * AMD for these chips. It is possible to specify the
2206 		 * affected processor models on the command line, hence
2207 		 * the need to ignore the workaround.
2208 		 */
2209 		break;
2210 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2211 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2212 	case HV_X64_MSR_CRASH_CTL:
2213 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2214 		return kvm_hv_set_msr_common(vcpu, msr, data,
2215 					     msr_info->host_initiated);
2216 	case MSR_IA32_BBL_CR_CTL3:
2217 		/* Drop writes to this legacy MSR -- see rdmsr
2218 		 * counterpart for further detail.
2219 		 */
2220 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2221 		break;
2222 	case MSR_AMD64_OSVW_ID_LENGTH:
2223 		if (!guest_cpuid_has_osvw(vcpu))
2224 			return 1;
2225 		vcpu->arch.osvw.length = data;
2226 		break;
2227 	case MSR_AMD64_OSVW_STATUS:
2228 		if (!guest_cpuid_has_osvw(vcpu))
2229 			return 1;
2230 		vcpu->arch.osvw.status = data;
2231 		break;
2232 	default:
2233 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2234 			return xen_hvm_config(vcpu, data);
2235 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2236 			return kvm_pmu_set_msr(vcpu, msr_info);
2237 		if (!ignore_msrs) {
2238 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2239 				    msr, data);
2240 			return 1;
2241 		} else {
2242 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2243 				    msr, data);
2244 			break;
2245 		}
2246 	}
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2250 
2251 
2252 /*
2253  * Reads an msr value (of 'msr_index') into 'pdata'.
2254  * Returns 0 on success, non-0 otherwise.
2255  * Assumes vcpu_load() was already called.
2256  */
2257 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2258 {
2259 	return kvm_x86_ops->get_msr(vcpu, msr);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_get_msr);
2262 
2263 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2264 {
2265 	u64 data;
2266 	u64 mcg_cap = vcpu->arch.mcg_cap;
2267 	unsigned bank_num = mcg_cap & 0xff;
2268 
2269 	switch (msr) {
2270 	case MSR_IA32_P5_MC_ADDR:
2271 	case MSR_IA32_P5_MC_TYPE:
2272 		data = 0;
2273 		break;
2274 	case MSR_IA32_MCG_CAP:
2275 		data = vcpu->arch.mcg_cap;
2276 		break;
2277 	case MSR_IA32_MCG_CTL:
2278 		if (!(mcg_cap & MCG_CTL_P))
2279 			return 1;
2280 		data = vcpu->arch.mcg_ctl;
2281 		break;
2282 	case MSR_IA32_MCG_STATUS:
2283 		data = vcpu->arch.mcg_status;
2284 		break;
2285 	default:
2286 		if (msr >= MSR_IA32_MC0_CTL &&
2287 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2288 			u32 offset = msr - MSR_IA32_MC0_CTL;
2289 			data = vcpu->arch.mce_banks[offset];
2290 			break;
2291 		}
2292 		return 1;
2293 	}
2294 	*pdata = data;
2295 	return 0;
2296 }
2297 
2298 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2299 {
2300 	switch (msr_info->index) {
2301 	case MSR_IA32_PLATFORM_ID:
2302 	case MSR_IA32_EBL_CR_POWERON:
2303 	case MSR_IA32_DEBUGCTLMSR:
2304 	case MSR_IA32_LASTBRANCHFROMIP:
2305 	case MSR_IA32_LASTBRANCHTOIP:
2306 	case MSR_IA32_LASTINTFROMIP:
2307 	case MSR_IA32_LASTINTTOIP:
2308 	case MSR_K8_SYSCFG:
2309 	case MSR_K8_TSEG_ADDR:
2310 	case MSR_K8_TSEG_MASK:
2311 	case MSR_K7_HWCR:
2312 	case MSR_VM_HSAVE_PA:
2313 	case MSR_K8_INT_PENDING_MSG:
2314 	case MSR_AMD64_NB_CFG:
2315 	case MSR_FAM10H_MMIO_CONF_BASE:
2316 	case MSR_AMD64_BU_CFG2:
2317 		msr_info->data = 0;
2318 		break;
2319 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2320 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2321 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2322 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2323 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2324 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2325 		msr_info->data = 0;
2326 		break;
2327 	case MSR_IA32_UCODE_REV:
2328 		msr_info->data = 0x100000000ULL;
2329 		break;
2330 	case MSR_MTRRcap:
2331 	case 0x200 ... 0x2ff:
2332 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2333 	case 0xcd: /* fsb frequency */
2334 		msr_info->data = 3;
2335 		break;
2336 		/*
2337 		 * MSR_EBC_FREQUENCY_ID
2338 		 * Conservative value valid for even the basic CPU models.
2339 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2340 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2341 		 * and 266MHz for model 3, or 4. Set Core Clock
2342 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2343 		 * 31:24) even though these are only valid for CPU
2344 		 * models > 2, however guests may end up dividing or
2345 		 * multiplying by zero otherwise.
2346 		 */
2347 	case MSR_EBC_FREQUENCY_ID:
2348 		msr_info->data = 1 << 24;
2349 		break;
2350 	case MSR_IA32_APICBASE:
2351 		msr_info->data = kvm_get_apic_base(vcpu);
2352 		break;
2353 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2354 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2355 		break;
2356 	case MSR_IA32_TSCDEADLINE:
2357 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2358 		break;
2359 	case MSR_IA32_TSC_ADJUST:
2360 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2361 		break;
2362 	case MSR_IA32_MISC_ENABLE:
2363 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2364 		break;
2365 	case MSR_IA32_SMBASE:
2366 		if (!msr_info->host_initiated)
2367 			return 1;
2368 		msr_info->data = vcpu->arch.smbase;
2369 		break;
2370 	case MSR_IA32_PERF_STATUS:
2371 		/* TSC increment by tick */
2372 		msr_info->data = 1000ULL;
2373 		/* CPU multiplier */
2374 		msr_info->data |= (((uint64_t)4ULL) << 40);
2375 		break;
2376 	case MSR_EFER:
2377 		msr_info->data = vcpu->arch.efer;
2378 		break;
2379 	case MSR_KVM_WALL_CLOCK:
2380 	case MSR_KVM_WALL_CLOCK_NEW:
2381 		msr_info->data = vcpu->kvm->arch.wall_clock;
2382 		break;
2383 	case MSR_KVM_SYSTEM_TIME:
2384 	case MSR_KVM_SYSTEM_TIME_NEW:
2385 		msr_info->data = vcpu->arch.time;
2386 		break;
2387 	case MSR_KVM_ASYNC_PF_EN:
2388 		msr_info->data = vcpu->arch.apf.msr_val;
2389 		break;
2390 	case MSR_KVM_STEAL_TIME:
2391 		msr_info->data = vcpu->arch.st.msr_val;
2392 		break;
2393 	case MSR_KVM_PV_EOI_EN:
2394 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2395 		break;
2396 	case MSR_IA32_P5_MC_ADDR:
2397 	case MSR_IA32_P5_MC_TYPE:
2398 	case MSR_IA32_MCG_CAP:
2399 	case MSR_IA32_MCG_CTL:
2400 	case MSR_IA32_MCG_STATUS:
2401 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2402 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2403 	case MSR_K7_CLK_CTL:
2404 		/*
2405 		 * Provide expected ramp-up count for K7. All other
2406 		 * are set to zero, indicating minimum divisors for
2407 		 * every field.
2408 		 *
2409 		 * This prevents guest kernels on AMD host with CPU
2410 		 * type 6, model 8 and higher from exploding due to
2411 		 * the rdmsr failing.
2412 		 */
2413 		msr_info->data = 0x20000000;
2414 		break;
2415 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2416 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2417 	case HV_X64_MSR_CRASH_CTL:
2418 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2419 		return kvm_hv_get_msr_common(vcpu,
2420 					     msr_info->index, &msr_info->data);
2421 		break;
2422 	case MSR_IA32_BBL_CR_CTL3:
2423 		/* This legacy MSR exists but isn't fully documented in current
2424 		 * silicon.  It is however accessed by winxp in very narrow
2425 		 * scenarios where it sets bit #19, itself documented as
2426 		 * a "reserved" bit.  Best effort attempt to source coherent
2427 		 * read data here should the balance of the register be
2428 		 * interpreted by the guest:
2429 		 *
2430 		 * L2 cache control register 3: 64GB range, 256KB size,
2431 		 * enabled, latency 0x1, configured
2432 		 */
2433 		msr_info->data = 0xbe702111;
2434 		break;
2435 	case MSR_AMD64_OSVW_ID_LENGTH:
2436 		if (!guest_cpuid_has_osvw(vcpu))
2437 			return 1;
2438 		msr_info->data = vcpu->arch.osvw.length;
2439 		break;
2440 	case MSR_AMD64_OSVW_STATUS:
2441 		if (!guest_cpuid_has_osvw(vcpu))
2442 			return 1;
2443 		msr_info->data = vcpu->arch.osvw.status;
2444 		break;
2445 	default:
2446 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2447 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2448 		if (!ignore_msrs) {
2449 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2450 			return 1;
2451 		} else {
2452 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2453 			msr_info->data = 0;
2454 		}
2455 		break;
2456 	}
2457 	return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2460 
2461 /*
2462  * Read or write a bunch of msrs. All parameters are kernel addresses.
2463  *
2464  * @return number of msrs set successfully.
2465  */
2466 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2467 		    struct kvm_msr_entry *entries,
2468 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2469 				  unsigned index, u64 *data))
2470 {
2471 	int i, idx;
2472 
2473 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2474 	for (i = 0; i < msrs->nmsrs; ++i)
2475 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2476 			break;
2477 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2478 
2479 	return i;
2480 }
2481 
2482 /*
2483  * Read or write a bunch of msrs. Parameters are user addresses.
2484  *
2485  * @return number of msrs set successfully.
2486  */
2487 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2488 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2489 				unsigned index, u64 *data),
2490 		  int writeback)
2491 {
2492 	struct kvm_msrs msrs;
2493 	struct kvm_msr_entry *entries;
2494 	int r, n;
2495 	unsigned size;
2496 
2497 	r = -EFAULT;
2498 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2499 		goto out;
2500 
2501 	r = -E2BIG;
2502 	if (msrs.nmsrs >= MAX_IO_MSRS)
2503 		goto out;
2504 
2505 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2506 	entries = memdup_user(user_msrs->entries, size);
2507 	if (IS_ERR(entries)) {
2508 		r = PTR_ERR(entries);
2509 		goto out;
2510 	}
2511 
2512 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2513 	if (r < 0)
2514 		goto out_free;
2515 
2516 	r = -EFAULT;
2517 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2518 		goto out_free;
2519 
2520 	r = n;
2521 
2522 out_free:
2523 	kfree(entries);
2524 out:
2525 	return r;
2526 }
2527 
2528 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2529 {
2530 	int r;
2531 
2532 	switch (ext) {
2533 	case KVM_CAP_IRQCHIP:
2534 	case KVM_CAP_HLT:
2535 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2536 	case KVM_CAP_SET_TSS_ADDR:
2537 	case KVM_CAP_EXT_CPUID:
2538 	case KVM_CAP_EXT_EMUL_CPUID:
2539 	case KVM_CAP_CLOCKSOURCE:
2540 	case KVM_CAP_PIT:
2541 	case KVM_CAP_NOP_IO_DELAY:
2542 	case KVM_CAP_MP_STATE:
2543 	case KVM_CAP_SYNC_MMU:
2544 	case KVM_CAP_USER_NMI:
2545 	case KVM_CAP_REINJECT_CONTROL:
2546 	case KVM_CAP_IRQ_INJECT_STATUS:
2547 	case KVM_CAP_IOEVENTFD:
2548 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2549 	case KVM_CAP_PIT2:
2550 	case KVM_CAP_PIT_STATE2:
2551 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2552 	case KVM_CAP_XEN_HVM:
2553 	case KVM_CAP_ADJUST_CLOCK:
2554 	case KVM_CAP_VCPU_EVENTS:
2555 	case KVM_CAP_HYPERV:
2556 	case KVM_CAP_HYPERV_VAPIC:
2557 	case KVM_CAP_HYPERV_SPIN:
2558 	case KVM_CAP_HYPERV_SYNIC:
2559 	case KVM_CAP_PCI_SEGMENT:
2560 	case KVM_CAP_DEBUGREGS:
2561 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2562 	case KVM_CAP_XSAVE:
2563 	case KVM_CAP_ASYNC_PF:
2564 	case KVM_CAP_GET_TSC_KHZ:
2565 	case KVM_CAP_KVMCLOCK_CTRL:
2566 	case KVM_CAP_READONLY_MEM:
2567 	case KVM_CAP_HYPERV_TIME:
2568 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2569 	case KVM_CAP_TSC_DEADLINE_TIMER:
2570 	case KVM_CAP_ENABLE_CAP_VM:
2571 	case KVM_CAP_DISABLE_QUIRKS:
2572 	case KVM_CAP_SET_BOOT_CPU_ID:
2573  	case KVM_CAP_SPLIT_IRQCHIP:
2574 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2575 	case KVM_CAP_ASSIGN_DEV_IRQ:
2576 	case KVM_CAP_PCI_2_3:
2577 #endif
2578 		r = 1;
2579 		break;
2580 	case KVM_CAP_X86_SMM:
2581 		/* SMBASE is usually relocated above 1M on modern chipsets,
2582 		 * and SMM handlers might indeed rely on 4G segment limits,
2583 		 * so do not report SMM to be available if real mode is
2584 		 * emulated via vm86 mode.  Still, do not go to great lengths
2585 		 * to avoid userspace's usage of the feature, because it is a
2586 		 * fringe case that is not enabled except via specific settings
2587 		 * of the module parameters.
2588 		 */
2589 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2590 		break;
2591 	case KVM_CAP_COALESCED_MMIO:
2592 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2593 		break;
2594 	case KVM_CAP_VAPIC:
2595 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2596 		break;
2597 	case KVM_CAP_NR_VCPUS:
2598 		r = KVM_SOFT_MAX_VCPUS;
2599 		break;
2600 	case KVM_CAP_MAX_VCPUS:
2601 		r = KVM_MAX_VCPUS;
2602 		break;
2603 	case KVM_CAP_NR_MEMSLOTS:
2604 		r = KVM_USER_MEM_SLOTS;
2605 		break;
2606 	case KVM_CAP_PV_MMU:	/* obsolete */
2607 		r = 0;
2608 		break;
2609 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2610 	case KVM_CAP_IOMMU:
2611 		r = iommu_present(&pci_bus_type);
2612 		break;
2613 #endif
2614 	case KVM_CAP_MCE:
2615 		r = KVM_MAX_MCE_BANKS;
2616 		break;
2617 	case KVM_CAP_XCRS:
2618 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2619 		break;
2620 	case KVM_CAP_TSC_CONTROL:
2621 		r = kvm_has_tsc_control;
2622 		break;
2623 	default:
2624 		r = 0;
2625 		break;
2626 	}
2627 	return r;
2628 
2629 }
2630 
2631 long kvm_arch_dev_ioctl(struct file *filp,
2632 			unsigned int ioctl, unsigned long arg)
2633 {
2634 	void __user *argp = (void __user *)arg;
2635 	long r;
2636 
2637 	switch (ioctl) {
2638 	case KVM_GET_MSR_INDEX_LIST: {
2639 		struct kvm_msr_list __user *user_msr_list = argp;
2640 		struct kvm_msr_list msr_list;
2641 		unsigned n;
2642 
2643 		r = -EFAULT;
2644 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2645 			goto out;
2646 		n = msr_list.nmsrs;
2647 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2648 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2649 			goto out;
2650 		r = -E2BIG;
2651 		if (n < msr_list.nmsrs)
2652 			goto out;
2653 		r = -EFAULT;
2654 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2655 				 num_msrs_to_save * sizeof(u32)))
2656 			goto out;
2657 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2658 				 &emulated_msrs,
2659 				 num_emulated_msrs * sizeof(u32)))
2660 			goto out;
2661 		r = 0;
2662 		break;
2663 	}
2664 	case KVM_GET_SUPPORTED_CPUID:
2665 	case KVM_GET_EMULATED_CPUID: {
2666 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2667 		struct kvm_cpuid2 cpuid;
2668 
2669 		r = -EFAULT;
2670 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2671 			goto out;
2672 
2673 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2674 					    ioctl);
2675 		if (r)
2676 			goto out;
2677 
2678 		r = -EFAULT;
2679 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2680 			goto out;
2681 		r = 0;
2682 		break;
2683 	}
2684 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2685 		u64 mce_cap;
2686 
2687 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2688 		r = -EFAULT;
2689 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2690 			goto out;
2691 		r = 0;
2692 		break;
2693 	}
2694 	default:
2695 		r = -EINVAL;
2696 	}
2697 out:
2698 	return r;
2699 }
2700 
2701 static void wbinvd_ipi(void *garbage)
2702 {
2703 	wbinvd();
2704 }
2705 
2706 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2707 {
2708 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2709 }
2710 
2711 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2712 {
2713 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2714 }
2715 
2716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2717 {
2718 	/* Address WBINVD may be executed by guest */
2719 	if (need_emulate_wbinvd(vcpu)) {
2720 		if (kvm_x86_ops->has_wbinvd_exit())
2721 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2722 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2723 			smp_call_function_single(vcpu->cpu,
2724 					wbinvd_ipi, NULL, 1);
2725 	}
2726 
2727 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2728 
2729 	/* Apply any externally detected TSC adjustments (due to suspend) */
2730 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2731 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2732 		vcpu->arch.tsc_offset_adjustment = 0;
2733 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2734 	}
2735 
2736 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2737 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2738 				rdtsc() - vcpu->arch.last_host_tsc;
2739 		if (tsc_delta < 0)
2740 			mark_tsc_unstable("KVM discovered backwards TSC");
2741 		if (check_tsc_unstable()) {
2742 			u64 offset = kvm_compute_tsc_offset(vcpu,
2743 						vcpu->arch.last_guest_tsc);
2744 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2745 			vcpu->arch.tsc_catchup = 1;
2746 		}
2747 		/*
2748 		 * On a host with synchronized TSC, there is no need to update
2749 		 * kvmclock on vcpu->cpu migration
2750 		 */
2751 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2752 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2753 		if (vcpu->cpu != cpu)
2754 			kvm_migrate_timers(vcpu);
2755 		vcpu->cpu = cpu;
2756 	}
2757 
2758 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2759 }
2760 
2761 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2762 {
2763 	kvm_x86_ops->vcpu_put(vcpu);
2764 	kvm_put_guest_fpu(vcpu);
2765 	vcpu->arch.last_host_tsc = rdtsc();
2766 }
2767 
2768 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2769 				    struct kvm_lapic_state *s)
2770 {
2771 	if (vcpu->arch.apicv_active)
2772 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2773 
2774 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2775 
2776 	return 0;
2777 }
2778 
2779 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2780 				    struct kvm_lapic_state *s)
2781 {
2782 	kvm_apic_post_state_restore(vcpu, s);
2783 	update_cr8_intercept(vcpu);
2784 
2785 	return 0;
2786 }
2787 
2788 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2789 {
2790 	return (!lapic_in_kernel(vcpu) ||
2791 		kvm_apic_accept_pic_intr(vcpu));
2792 }
2793 
2794 /*
2795  * if userspace requested an interrupt window, check that the
2796  * interrupt window is open.
2797  *
2798  * No need to exit to userspace if we already have an interrupt queued.
2799  */
2800 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2801 {
2802 	return kvm_arch_interrupt_allowed(vcpu) &&
2803 		!kvm_cpu_has_interrupt(vcpu) &&
2804 		!kvm_event_needs_reinjection(vcpu) &&
2805 		kvm_cpu_accept_dm_intr(vcpu);
2806 }
2807 
2808 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2809 				    struct kvm_interrupt *irq)
2810 {
2811 	if (irq->irq >= KVM_NR_INTERRUPTS)
2812 		return -EINVAL;
2813 
2814 	if (!irqchip_in_kernel(vcpu->kvm)) {
2815 		kvm_queue_interrupt(vcpu, irq->irq, false);
2816 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2817 		return 0;
2818 	}
2819 
2820 	/*
2821 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2822 	 * fail for in-kernel 8259.
2823 	 */
2824 	if (pic_in_kernel(vcpu->kvm))
2825 		return -ENXIO;
2826 
2827 	if (vcpu->arch.pending_external_vector != -1)
2828 		return -EEXIST;
2829 
2830 	vcpu->arch.pending_external_vector = irq->irq;
2831 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2832 	return 0;
2833 }
2834 
2835 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2836 {
2837 	kvm_inject_nmi(vcpu);
2838 
2839 	return 0;
2840 }
2841 
2842 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2843 {
2844 	kvm_make_request(KVM_REQ_SMI, vcpu);
2845 
2846 	return 0;
2847 }
2848 
2849 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2850 					   struct kvm_tpr_access_ctl *tac)
2851 {
2852 	if (tac->flags)
2853 		return -EINVAL;
2854 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2855 	return 0;
2856 }
2857 
2858 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2859 					u64 mcg_cap)
2860 {
2861 	int r;
2862 	unsigned bank_num = mcg_cap & 0xff, bank;
2863 
2864 	r = -EINVAL;
2865 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2866 		goto out;
2867 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2868 		goto out;
2869 	r = 0;
2870 	vcpu->arch.mcg_cap = mcg_cap;
2871 	/* Init IA32_MCG_CTL to all 1s */
2872 	if (mcg_cap & MCG_CTL_P)
2873 		vcpu->arch.mcg_ctl = ~(u64)0;
2874 	/* Init IA32_MCi_CTL to all 1s */
2875 	for (bank = 0; bank < bank_num; bank++)
2876 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2877 out:
2878 	return r;
2879 }
2880 
2881 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2882 				      struct kvm_x86_mce *mce)
2883 {
2884 	u64 mcg_cap = vcpu->arch.mcg_cap;
2885 	unsigned bank_num = mcg_cap & 0xff;
2886 	u64 *banks = vcpu->arch.mce_banks;
2887 
2888 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2889 		return -EINVAL;
2890 	/*
2891 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2892 	 * reporting is disabled
2893 	 */
2894 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2895 	    vcpu->arch.mcg_ctl != ~(u64)0)
2896 		return 0;
2897 	banks += 4 * mce->bank;
2898 	/*
2899 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2900 	 * reporting is disabled for the bank
2901 	 */
2902 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2903 		return 0;
2904 	if (mce->status & MCI_STATUS_UC) {
2905 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2906 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2907 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2908 			return 0;
2909 		}
2910 		if (banks[1] & MCI_STATUS_VAL)
2911 			mce->status |= MCI_STATUS_OVER;
2912 		banks[2] = mce->addr;
2913 		banks[3] = mce->misc;
2914 		vcpu->arch.mcg_status = mce->mcg_status;
2915 		banks[1] = mce->status;
2916 		kvm_queue_exception(vcpu, MC_VECTOR);
2917 	} else if (!(banks[1] & MCI_STATUS_VAL)
2918 		   || !(banks[1] & MCI_STATUS_UC)) {
2919 		if (banks[1] & MCI_STATUS_VAL)
2920 			mce->status |= MCI_STATUS_OVER;
2921 		banks[2] = mce->addr;
2922 		banks[3] = mce->misc;
2923 		banks[1] = mce->status;
2924 	} else
2925 		banks[1] |= MCI_STATUS_OVER;
2926 	return 0;
2927 }
2928 
2929 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2930 					       struct kvm_vcpu_events *events)
2931 {
2932 	process_nmi(vcpu);
2933 	events->exception.injected =
2934 		vcpu->arch.exception.pending &&
2935 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2936 	events->exception.nr = vcpu->arch.exception.nr;
2937 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2938 	events->exception.pad = 0;
2939 	events->exception.error_code = vcpu->arch.exception.error_code;
2940 
2941 	events->interrupt.injected =
2942 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2943 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2944 	events->interrupt.soft = 0;
2945 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2946 
2947 	events->nmi.injected = vcpu->arch.nmi_injected;
2948 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2949 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2950 	events->nmi.pad = 0;
2951 
2952 	events->sipi_vector = 0; /* never valid when reporting to user space */
2953 
2954 	events->smi.smm = is_smm(vcpu);
2955 	events->smi.pending = vcpu->arch.smi_pending;
2956 	events->smi.smm_inside_nmi =
2957 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2958 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2959 
2960 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2961 			 | KVM_VCPUEVENT_VALID_SHADOW
2962 			 | KVM_VCPUEVENT_VALID_SMM);
2963 	memset(&events->reserved, 0, sizeof(events->reserved));
2964 }
2965 
2966 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2967 					      struct kvm_vcpu_events *events)
2968 {
2969 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2970 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2971 			      | KVM_VCPUEVENT_VALID_SHADOW
2972 			      | KVM_VCPUEVENT_VALID_SMM))
2973 		return -EINVAL;
2974 
2975 	process_nmi(vcpu);
2976 	vcpu->arch.exception.pending = events->exception.injected;
2977 	vcpu->arch.exception.nr = events->exception.nr;
2978 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2979 	vcpu->arch.exception.error_code = events->exception.error_code;
2980 
2981 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2982 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2983 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2984 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2985 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2986 						  events->interrupt.shadow);
2987 
2988 	vcpu->arch.nmi_injected = events->nmi.injected;
2989 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2990 		vcpu->arch.nmi_pending = events->nmi.pending;
2991 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2992 
2993 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2994 	    lapic_in_kernel(vcpu))
2995 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2996 
2997 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2998 		if (events->smi.smm)
2999 			vcpu->arch.hflags |= HF_SMM_MASK;
3000 		else
3001 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3002 		vcpu->arch.smi_pending = events->smi.pending;
3003 		if (events->smi.smm_inside_nmi)
3004 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3005 		else
3006 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3007 		if (lapic_in_kernel(vcpu)) {
3008 			if (events->smi.latched_init)
3009 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3010 			else
3011 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3012 		}
3013 	}
3014 
3015 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3016 
3017 	return 0;
3018 }
3019 
3020 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3021 					     struct kvm_debugregs *dbgregs)
3022 {
3023 	unsigned long val;
3024 
3025 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3026 	kvm_get_dr(vcpu, 6, &val);
3027 	dbgregs->dr6 = val;
3028 	dbgregs->dr7 = vcpu->arch.dr7;
3029 	dbgregs->flags = 0;
3030 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3031 }
3032 
3033 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3034 					    struct kvm_debugregs *dbgregs)
3035 {
3036 	if (dbgregs->flags)
3037 		return -EINVAL;
3038 
3039 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3040 	kvm_update_dr0123(vcpu);
3041 	vcpu->arch.dr6 = dbgregs->dr6;
3042 	kvm_update_dr6(vcpu);
3043 	vcpu->arch.dr7 = dbgregs->dr7;
3044 	kvm_update_dr7(vcpu);
3045 
3046 	return 0;
3047 }
3048 
3049 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3050 
3051 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3052 {
3053 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3054 	u64 xstate_bv = xsave->header.xfeatures;
3055 	u64 valid;
3056 
3057 	/*
3058 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3059 	 * leaves 0 and 1 in the loop below.
3060 	 */
3061 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3062 
3063 	/* Set XSTATE_BV */
3064 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3065 
3066 	/*
3067 	 * Copy each region from the possibly compacted offset to the
3068 	 * non-compacted offset.
3069 	 */
3070 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3071 	while (valid) {
3072 		u64 feature = valid & -valid;
3073 		int index = fls64(feature) - 1;
3074 		void *src = get_xsave_addr(xsave, feature);
3075 
3076 		if (src) {
3077 			u32 size, offset, ecx, edx;
3078 			cpuid_count(XSTATE_CPUID, index,
3079 				    &size, &offset, &ecx, &edx);
3080 			memcpy(dest + offset, src, size);
3081 		}
3082 
3083 		valid -= feature;
3084 	}
3085 }
3086 
3087 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3088 {
3089 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3090 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3091 	u64 valid;
3092 
3093 	/*
3094 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3095 	 * leaves 0 and 1 in the loop below.
3096 	 */
3097 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3098 
3099 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3100 	xsave->header.xfeatures = xstate_bv;
3101 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3102 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3103 
3104 	/*
3105 	 * Copy each region from the non-compacted offset to the
3106 	 * possibly compacted offset.
3107 	 */
3108 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3109 	while (valid) {
3110 		u64 feature = valid & -valid;
3111 		int index = fls64(feature) - 1;
3112 		void *dest = get_xsave_addr(xsave, feature);
3113 
3114 		if (dest) {
3115 			u32 size, offset, ecx, edx;
3116 			cpuid_count(XSTATE_CPUID, index,
3117 				    &size, &offset, &ecx, &edx);
3118 			memcpy(dest, src + offset, size);
3119 		}
3120 
3121 		valid -= feature;
3122 	}
3123 }
3124 
3125 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3126 					 struct kvm_xsave *guest_xsave)
3127 {
3128 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3129 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3130 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3131 	} else {
3132 		memcpy(guest_xsave->region,
3133 			&vcpu->arch.guest_fpu.state.fxsave,
3134 			sizeof(struct fxregs_state));
3135 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3136 			XFEATURE_MASK_FPSSE;
3137 	}
3138 }
3139 
3140 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3141 					struct kvm_xsave *guest_xsave)
3142 {
3143 	u64 xstate_bv =
3144 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3145 
3146 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3147 		/*
3148 		 * Here we allow setting states that are not present in
3149 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3150 		 * with old userspace.
3151 		 */
3152 		if (xstate_bv & ~kvm_supported_xcr0())
3153 			return -EINVAL;
3154 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3155 	} else {
3156 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3157 			return -EINVAL;
3158 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3159 			guest_xsave->region, sizeof(struct fxregs_state));
3160 	}
3161 	return 0;
3162 }
3163 
3164 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3165 					struct kvm_xcrs *guest_xcrs)
3166 {
3167 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3168 		guest_xcrs->nr_xcrs = 0;
3169 		return;
3170 	}
3171 
3172 	guest_xcrs->nr_xcrs = 1;
3173 	guest_xcrs->flags = 0;
3174 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3175 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3176 }
3177 
3178 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3179 				       struct kvm_xcrs *guest_xcrs)
3180 {
3181 	int i, r = 0;
3182 
3183 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3184 		return -EINVAL;
3185 
3186 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3187 		return -EINVAL;
3188 
3189 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3190 		/* Only support XCR0 currently */
3191 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3192 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3193 				guest_xcrs->xcrs[i].value);
3194 			break;
3195 		}
3196 	if (r)
3197 		r = -EINVAL;
3198 	return r;
3199 }
3200 
3201 /*
3202  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3203  * stopped by the hypervisor.  This function will be called from the host only.
3204  * EINVAL is returned when the host attempts to set the flag for a guest that
3205  * does not support pv clocks.
3206  */
3207 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3208 {
3209 	if (!vcpu->arch.pv_time_enabled)
3210 		return -EINVAL;
3211 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3212 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3213 	return 0;
3214 }
3215 
3216 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3217 				     struct kvm_enable_cap *cap)
3218 {
3219 	if (cap->flags)
3220 		return -EINVAL;
3221 
3222 	switch (cap->cap) {
3223 	case KVM_CAP_HYPERV_SYNIC:
3224 		return kvm_hv_activate_synic(vcpu);
3225 	default:
3226 		return -EINVAL;
3227 	}
3228 }
3229 
3230 long kvm_arch_vcpu_ioctl(struct file *filp,
3231 			 unsigned int ioctl, unsigned long arg)
3232 {
3233 	struct kvm_vcpu *vcpu = filp->private_data;
3234 	void __user *argp = (void __user *)arg;
3235 	int r;
3236 	union {
3237 		struct kvm_lapic_state *lapic;
3238 		struct kvm_xsave *xsave;
3239 		struct kvm_xcrs *xcrs;
3240 		void *buffer;
3241 	} u;
3242 
3243 	u.buffer = NULL;
3244 	switch (ioctl) {
3245 	case KVM_GET_LAPIC: {
3246 		r = -EINVAL;
3247 		if (!lapic_in_kernel(vcpu))
3248 			goto out;
3249 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3250 
3251 		r = -ENOMEM;
3252 		if (!u.lapic)
3253 			goto out;
3254 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3255 		if (r)
3256 			goto out;
3257 		r = -EFAULT;
3258 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3259 			goto out;
3260 		r = 0;
3261 		break;
3262 	}
3263 	case KVM_SET_LAPIC: {
3264 		r = -EINVAL;
3265 		if (!lapic_in_kernel(vcpu))
3266 			goto out;
3267 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3268 		if (IS_ERR(u.lapic))
3269 			return PTR_ERR(u.lapic);
3270 
3271 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3272 		break;
3273 	}
3274 	case KVM_INTERRUPT: {
3275 		struct kvm_interrupt irq;
3276 
3277 		r = -EFAULT;
3278 		if (copy_from_user(&irq, argp, sizeof irq))
3279 			goto out;
3280 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3281 		break;
3282 	}
3283 	case KVM_NMI: {
3284 		r = kvm_vcpu_ioctl_nmi(vcpu);
3285 		break;
3286 	}
3287 	case KVM_SMI: {
3288 		r = kvm_vcpu_ioctl_smi(vcpu);
3289 		break;
3290 	}
3291 	case KVM_SET_CPUID: {
3292 		struct kvm_cpuid __user *cpuid_arg = argp;
3293 		struct kvm_cpuid cpuid;
3294 
3295 		r = -EFAULT;
3296 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3297 			goto out;
3298 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3299 		break;
3300 	}
3301 	case KVM_SET_CPUID2: {
3302 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3303 		struct kvm_cpuid2 cpuid;
3304 
3305 		r = -EFAULT;
3306 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3307 			goto out;
3308 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3309 					      cpuid_arg->entries);
3310 		break;
3311 	}
3312 	case KVM_GET_CPUID2: {
3313 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3314 		struct kvm_cpuid2 cpuid;
3315 
3316 		r = -EFAULT;
3317 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3318 			goto out;
3319 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3320 					      cpuid_arg->entries);
3321 		if (r)
3322 			goto out;
3323 		r = -EFAULT;
3324 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3325 			goto out;
3326 		r = 0;
3327 		break;
3328 	}
3329 	case KVM_GET_MSRS:
3330 		r = msr_io(vcpu, argp, do_get_msr, 1);
3331 		break;
3332 	case KVM_SET_MSRS:
3333 		r = msr_io(vcpu, argp, do_set_msr, 0);
3334 		break;
3335 	case KVM_TPR_ACCESS_REPORTING: {
3336 		struct kvm_tpr_access_ctl tac;
3337 
3338 		r = -EFAULT;
3339 		if (copy_from_user(&tac, argp, sizeof tac))
3340 			goto out;
3341 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3342 		if (r)
3343 			goto out;
3344 		r = -EFAULT;
3345 		if (copy_to_user(argp, &tac, sizeof tac))
3346 			goto out;
3347 		r = 0;
3348 		break;
3349 	};
3350 	case KVM_SET_VAPIC_ADDR: {
3351 		struct kvm_vapic_addr va;
3352 
3353 		r = -EINVAL;
3354 		if (!lapic_in_kernel(vcpu))
3355 			goto out;
3356 		r = -EFAULT;
3357 		if (copy_from_user(&va, argp, sizeof va))
3358 			goto out;
3359 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3360 		break;
3361 	}
3362 	case KVM_X86_SETUP_MCE: {
3363 		u64 mcg_cap;
3364 
3365 		r = -EFAULT;
3366 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3367 			goto out;
3368 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3369 		break;
3370 	}
3371 	case KVM_X86_SET_MCE: {
3372 		struct kvm_x86_mce mce;
3373 
3374 		r = -EFAULT;
3375 		if (copy_from_user(&mce, argp, sizeof mce))
3376 			goto out;
3377 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3378 		break;
3379 	}
3380 	case KVM_GET_VCPU_EVENTS: {
3381 		struct kvm_vcpu_events events;
3382 
3383 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3384 
3385 		r = -EFAULT;
3386 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3387 			break;
3388 		r = 0;
3389 		break;
3390 	}
3391 	case KVM_SET_VCPU_EVENTS: {
3392 		struct kvm_vcpu_events events;
3393 
3394 		r = -EFAULT;
3395 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3396 			break;
3397 
3398 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3399 		break;
3400 	}
3401 	case KVM_GET_DEBUGREGS: {
3402 		struct kvm_debugregs dbgregs;
3403 
3404 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3405 
3406 		r = -EFAULT;
3407 		if (copy_to_user(argp, &dbgregs,
3408 				 sizeof(struct kvm_debugregs)))
3409 			break;
3410 		r = 0;
3411 		break;
3412 	}
3413 	case KVM_SET_DEBUGREGS: {
3414 		struct kvm_debugregs dbgregs;
3415 
3416 		r = -EFAULT;
3417 		if (copy_from_user(&dbgregs, argp,
3418 				   sizeof(struct kvm_debugregs)))
3419 			break;
3420 
3421 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3422 		break;
3423 	}
3424 	case KVM_GET_XSAVE: {
3425 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3426 		r = -ENOMEM;
3427 		if (!u.xsave)
3428 			break;
3429 
3430 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3431 
3432 		r = -EFAULT;
3433 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3434 			break;
3435 		r = 0;
3436 		break;
3437 	}
3438 	case KVM_SET_XSAVE: {
3439 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3440 		if (IS_ERR(u.xsave))
3441 			return PTR_ERR(u.xsave);
3442 
3443 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3444 		break;
3445 	}
3446 	case KVM_GET_XCRS: {
3447 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3448 		r = -ENOMEM;
3449 		if (!u.xcrs)
3450 			break;
3451 
3452 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3453 
3454 		r = -EFAULT;
3455 		if (copy_to_user(argp, u.xcrs,
3456 				 sizeof(struct kvm_xcrs)))
3457 			break;
3458 		r = 0;
3459 		break;
3460 	}
3461 	case KVM_SET_XCRS: {
3462 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3463 		if (IS_ERR(u.xcrs))
3464 			return PTR_ERR(u.xcrs);
3465 
3466 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3467 		break;
3468 	}
3469 	case KVM_SET_TSC_KHZ: {
3470 		u32 user_tsc_khz;
3471 
3472 		r = -EINVAL;
3473 		user_tsc_khz = (u32)arg;
3474 
3475 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3476 			goto out;
3477 
3478 		if (user_tsc_khz == 0)
3479 			user_tsc_khz = tsc_khz;
3480 
3481 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3482 			r = 0;
3483 
3484 		goto out;
3485 	}
3486 	case KVM_GET_TSC_KHZ: {
3487 		r = vcpu->arch.virtual_tsc_khz;
3488 		goto out;
3489 	}
3490 	case KVM_KVMCLOCK_CTRL: {
3491 		r = kvm_set_guest_paused(vcpu);
3492 		goto out;
3493 	}
3494 	case KVM_ENABLE_CAP: {
3495 		struct kvm_enable_cap cap;
3496 
3497 		r = -EFAULT;
3498 		if (copy_from_user(&cap, argp, sizeof(cap)))
3499 			goto out;
3500 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3501 		break;
3502 	}
3503 	default:
3504 		r = -EINVAL;
3505 	}
3506 out:
3507 	kfree(u.buffer);
3508 	return r;
3509 }
3510 
3511 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3512 {
3513 	return VM_FAULT_SIGBUS;
3514 }
3515 
3516 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3517 {
3518 	int ret;
3519 
3520 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3521 		return -EINVAL;
3522 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3523 	return ret;
3524 }
3525 
3526 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3527 					      u64 ident_addr)
3528 {
3529 	kvm->arch.ept_identity_map_addr = ident_addr;
3530 	return 0;
3531 }
3532 
3533 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3534 					  u32 kvm_nr_mmu_pages)
3535 {
3536 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3537 		return -EINVAL;
3538 
3539 	mutex_lock(&kvm->slots_lock);
3540 
3541 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3542 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3543 
3544 	mutex_unlock(&kvm->slots_lock);
3545 	return 0;
3546 }
3547 
3548 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3549 {
3550 	return kvm->arch.n_max_mmu_pages;
3551 }
3552 
3553 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3554 {
3555 	int r;
3556 
3557 	r = 0;
3558 	switch (chip->chip_id) {
3559 	case KVM_IRQCHIP_PIC_MASTER:
3560 		memcpy(&chip->chip.pic,
3561 			&pic_irqchip(kvm)->pics[0],
3562 			sizeof(struct kvm_pic_state));
3563 		break;
3564 	case KVM_IRQCHIP_PIC_SLAVE:
3565 		memcpy(&chip->chip.pic,
3566 			&pic_irqchip(kvm)->pics[1],
3567 			sizeof(struct kvm_pic_state));
3568 		break;
3569 	case KVM_IRQCHIP_IOAPIC:
3570 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3571 		break;
3572 	default:
3573 		r = -EINVAL;
3574 		break;
3575 	}
3576 	return r;
3577 }
3578 
3579 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3580 {
3581 	int r;
3582 
3583 	r = 0;
3584 	switch (chip->chip_id) {
3585 	case KVM_IRQCHIP_PIC_MASTER:
3586 		spin_lock(&pic_irqchip(kvm)->lock);
3587 		memcpy(&pic_irqchip(kvm)->pics[0],
3588 			&chip->chip.pic,
3589 			sizeof(struct kvm_pic_state));
3590 		spin_unlock(&pic_irqchip(kvm)->lock);
3591 		break;
3592 	case KVM_IRQCHIP_PIC_SLAVE:
3593 		spin_lock(&pic_irqchip(kvm)->lock);
3594 		memcpy(&pic_irqchip(kvm)->pics[1],
3595 			&chip->chip.pic,
3596 			sizeof(struct kvm_pic_state));
3597 		spin_unlock(&pic_irqchip(kvm)->lock);
3598 		break;
3599 	case KVM_IRQCHIP_IOAPIC:
3600 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3601 		break;
3602 	default:
3603 		r = -EINVAL;
3604 		break;
3605 	}
3606 	kvm_pic_update_irq(pic_irqchip(kvm));
3607 	return r;
3608 }
3609 
3610 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3611 {
3612 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3613 
3614 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3615 
3616 	mutex_lock(&kps->lock);
3617 	memcpy(ps, &kps->channels, sizeof(*ps));
3618 	mutex_unlock(&kps->lock);
3619 	return 0;
3620 }
3621 
3622 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3623 {
3624 	int i;
3625 	struct kvm_pit *pit = kvm->arch.vpit;
3626 
3627 	mutex_lock(&pit->pit_state.lock);
3628 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3629 	for (i = 0; i < 3; i++)
3630 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3631 	mutex_unlock(&pit->pit_state.lock);
3632 	return 0;
3633 }
3634 
3635 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3636 {
3637 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3638 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3639 		sizeof(ps->channels));
3640 	ps->flags = kvm->arch.vpit->pit_state.flags;
3641 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3642 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3643 	return 0;
3644 }
3645 
3646 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3647 {
3648 	int start = 0;
3649 	int i;
3650 	u32 prev_legacy, cur_legacy;
3651 	struct kvm_pit *pit = kvm->arch.vpit;
3652 
3653 	mutex_lock(&pit->pit_state.lock);
3654 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3655 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3656 	if (!prev_legacy && cur_legacy)
3657 		start = 1;
3658 	memcpy(&pit->pit_state.channels, &ps->channels,
3659 	       sizeof(pit->pit_state.channels));
3660 	pit->pit_state.flags = ps->flags;
3661 	for (i = 0; i < 3; i++)
3662 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3663 				   start && i == 0);
3664 	mutex_unlock(&pit->pit_state.lock);
3665 	return 0;
3666 }
3667 
3668 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3669 				 struct kvm_reinject_control *control)
3670 {
3671 	struct kvm_pit *pit = kvm->arch.vpit;
3672 
3673 	if (!pit)
3674 		return -ENXIO;
3675 
3676 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3677 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3678 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3679 	 */
3680 	mutex_lock(&pit->pit_state.lock);
3681 	kvm_pit_set_reinject(pit, control->pit_reinject);
3682 	mutex_unlock(&pit->pit_state.lock);
3683 
3684 	return 0;
3685 }
3686 
3687 /**
3688  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3689  * @kvm: kvm instance
3690  * @log: slot id and address to which we copy the log
3691  *
3692  * Steps 1-4 below provide general overview of dirty page logging. See
3693  * kvm_get_dirty_log_protect() function description for additional details.
3694  *
3695  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3696  * always flush the TLB (step 4) even if previous step failed  and the dirty
3697  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3698  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3699  * writes will be marked dirty for next log read.
3700  *
3701  *   1. Take a snapshot of the bit and clear it if needed.
3702  *   2. Write protect the corresponding page.
3703  *   3. Copy the snapshot to the userspace.
3704  *   4. Flush TLB's if needed.
3705  */
3706 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3707 {
3708 	bool is_dirty = false;
3709 	int r;
3710 
3711 	mutex_lock(&kvm->slots_lock);
3712 
3713 	/*
3714 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3715 	 */
3716 	if (kvm_x86_ops->flush_log_dirty)
3717 		kvm_x86_ops->flush_log_dirty(kvm);
3718 
3719 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3720 
3721 	/*
3722 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3723 	 * kvm_mmu_slot_remove_write_access().
3724 	 */
3725 	lockdep_assert_held(&kvm->slots_lock);
3726 	if (is_dirty)
3727 		kvm_flush_remote_tlbs(kvm);
3728 
3729 	mutex_unlock(&kvm->slots_lock);
3730 	return r;
3731 }
3732 
3733 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3734 			bool line_status)
3735 {
3736 	if (!irqchip_in_kernel(kvm))
3737 		return -ENXIO;
3738 
3739 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3740 					irq_event->irq, irq_event->level,
3741 					line_status);
3742 	return 0;
3743 }
3744 
3745 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3746 				   struct kvm_enable_cap *cap)
3747 {
3748 	int r;
3749 
3750 	if (cap->flags)
3751 		return -EINVAL;
3752 
3753 	switch (cap->cap) {
3754 	case KVM_CAP_DISABLE_QUIRKS:
3755 		kvm->arch.disabled_quirks = cap->args[0];
3756 		r = 0;
3757 		break;
3758 	case KVM_CAP_SPLIT_IRQCHIP: {
3759 		mutex_lock(&kvm->lock);
3760 		r = -EINVAL;
3761 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3762 			goto split_irqchip_unlock;
3763 		r = -EEXIST;
3764 		if (irqchip_in_kernel(kvm))
3765 			goto split_irqchip_unlock;
3766 		if (atomic_read(&kvm->online_vcpus))
3767 			goto split_irqchip_unlock;
3768 		r = kvm_setup_empty_irq_routing(kvm);
3769 		if (r)
3770 			goto split_irqchip_unlock;
3771 		/* Pairs with irqchip_in_kernel. */
3772 		smp_wmb();
3773 		kvm->arch.irqchip_split = true;
3774 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3775 		r = 0;
3776 split_irqchip_unlock:
3777 		mutex_unlock(&kvm->lock);
3778 		break;
3779 	}
3780 	default:
3781 		r = -EINVAL;
3782 		break;
3783 	}
3784 	return r;
3785 }
3786 
3787 long kvm_arch_vm_ioctl(struct file *filp,
3788 		       unsigned int ioctl, unsigned long arg)
3789 {
3790 	struct kvm *kvm = filp->private_data;
3791 	void __user *argp = (void __user *)arg;
3792 	int r = -ENOTTY;
3793 	/*
3794 	 * This union makes it completely explicit to gcc-3.x
3795 	 * that these two variables' stack usage should be
3796 	 * combined, not added together.
3797 	 */
3798 	union {
3799 		struct kvm_pit_state ps;
3800 		struct kvm_pit_state2 ps2;
3801 		struct kvm_pit_config pit_config;
3802 	} u;
3803 
3804 	switch (ioctl) {
3805 	case KVM_SET_TSS_ADDR:
3806 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3807 		break;
3808 	case KVM_SET_IDENTITY_MAP_ADDR: {
3809 		u64 ident_addr;
3810 
3811 		r = -EFAULT;
3812 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3813 			goto out;
3814 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3815 		break;
3816 	}
3817 	case KVM_SET_NR_MMU_PAGES:
3818 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3819 		break;
3820 	case KVM_GET_NR_MMU_PAGES:
3821 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3822 		break;
3823 	case KVM_CREATE_IRQCHIP: {
3824 		struct kvm_pic *vpic;
3825 
3826 		mutex_lock(&kvm->lock);
3827 		r = -EEXIST;
3828 		if (kvm->arch.vpic)
3829 			goto create_irqchip_unlock;
3830 		r = -EINVAL;
3831 		if (atomic_read(&kvm->online_vcpus))
3832 			goto create_irqchip_unlock;
3833 		r = -ENOMEM;
3834 		vpic = kvm_create_pic(kvm);
3835 		if (vpic) {
3836 			r = kvm_ioapic_init(kvm);
3837 			if (r) {
3838 				mutex_lock(&kvm->slots_lock);
3839 				kvm_destroy_pic(vpic);
3840 				mutex_unlock(&kvm->slots_lock);
3841 				goto create_irqchip_unlock;
3842 			}
3843 		} else
3844 			goto create_irqchip_unlock;
3845 		r = kvm_setup_default_irq_routing(kvm);
3846 		if (r) {
3847 			mutex_lock(&kvm->slots_lock);
3848 			mutex_lock(&kvm->irq_lock);
3849 			kvm_ioapic_destroy(kvm);
3850 			kvm_destroy_pic(vpic);
3851 			mutex_unlock(&kvm->irq_lock);
3852 			mutex_unlock(&kvm->slots_lock);
3853 			goto create_irqchip_unlock;
3854 		}
3855 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3856 		smp_wmb();
3857 		kvm->arch.vpic = vpic;
3858 	create_irqchip_unlock:
3859 		mutex_unlock(&kvm->lock);
3860 		break;
3861 	}
3862 	case KVM_CREATE_PIT:
3863 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3864 		goto create_pit;
3865 	case KVM_CREATE_PIT2:
3866 		r = -EFAULT;
3867 		if (copy_from_user(&u.pit_config, argp,
3868 				   sizeof(struct kvm_pit_config)))
3869 			goto out;
3870 	create_pit:
3871 		mutex_lock(&kvm->slots_lock);
3872 		r = -EEXIST;
3873 		if (kvm->arch.vpit)
3874 			goto create_pit_unlock;
3875 		r = -ENOMEM;
3876 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3877 		if (kvm->arch.vpit)
3878 			r = 0;
3879 	create_pit_unlock:
3880 		mutex_unlock(&kvm->slots_lock);
3881 		break;
3882 	case KVM_GET_IRQCHIP: {
3883 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3884 		struct kvm_irqchip *chip;
3885 
3886 		chip = memdup_user(argp, sizeof(*chip));
3887 		if (IS_ERR(chip)) {
3888 			r = PTR_ERR(chip);
3889 			goto out;
3890 		}
3891 
3892 		r = -ENXIO;
3893 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3894 			goto get_irqchip_out;
3895 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3896 		if (r)
3897 			goto get_irqchip_out;
3898 		r = -EFAULT;
3899 		if (copy_to_user(argp, chip, sizeof *chip))
3900 			goto get_irqchip_out;
3901 		r = 0;
3902 	get_irqchip_out:
3903 		kfree(chip);
3904 		break;
3905 	}
3906 	case KVM_SET_IRQCHIP: {
3907 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3908 		struct kvm_irqchip *chip;
3909 
3910 		chip = memdup_user(argp, sizeof(*chip));
3911 		if (IS_ERR(chip)) {
3912 			r = PTR_ERR(chip);
3913 			goto out;
3914 		}
3915 
3916 		r = -ENXIO;
3917 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3918 			goto set_irqchip_out;
3919 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3920 		if (r)
3921 			goto set_irqchip_out;
3922 		r = 0;
3923 	set_irqchip_out:
3924 		kfree(chip);
3925 		break;
3926 	}
3927 	case KVM_GET_PIT: {
3928 		r = -EFAULT;
3929 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3930 			goto out;
3931 		r = -ENXIO;
3932 		if (!kvm->arch.vpit)
3933 			goto out;
3934 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3935 		if (r)
3936 			goto out;
3937 		r = -EFAULT;
3938 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3939 			goto out;
3940 		r = 0;
3941 		break;
3942 	}
3943 	case KVM_SET_PIT: {
3944 		r = -EFAULT;
3945 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3946 			goto out;
3947 		r = -ENXIO;
3948 		if (!kvm->arch.vpit)
3949 			goto out;
3950 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3951 		break;
3952 	}
3953 	case KVM_GET_PIT2: {
3954 		r = -ENXIO;
3955 		if (!kvm->arch.vpit)
3956 			goto out;
3957 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3958 		if (r)
3959 			goto out;
3960 		r = -EFAULT;
3961 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3962 			goto out;
3963 		r = 0;
3964 		break;
3965 	}
3966 	case KVM_SET_PIT2: {
3967 		r = -EFAULT;
3968 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3969 			goto out;
3970 		r = -ENXIO;
3971 		if (!kvm->arch.vpit)
3972 			goto out;
3973 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3974 		break;
3975 	}
3976 	case KVM_REINJECT_CONTROL: {
3977 		struct kvm_reinject_control control;
3978 		r =  -EFAULT;
3979 		if (copy_from_user(&control, argp, sizeof(control)))
3980 			goto out;
3981 		r = kvm_vm_ioctl_reinject(kvm, &control);
3982 		break;
3983 	}
3984 	case KVM_SET_BOOT_CPU_ID:
3985 		r = 0;
3986 		mutex_lock(&kvm->lock);
3987 		if (atomic_read(&kvm->online_vcpus) != 0)
3988 			r = -EBUSY;
3989 		else
3990 			kvm->arch.bsp_vcpu_id = arg;
3991 		mutex_unlock(&kvm->lock);
3992 		break;
3993 	case KVM_XEN_HVM_CONFIG: {
3994 		r = -EFAULT;
3995 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3996 				   sizeof(struct kvm_xen_hvm_config)))
3997 			goto out;
3998 		r = -EINVAL;
3999 		if (kvm->arch.xen_hvm_config.flags)
4000 			goto out;
4001 		r = 0;
4002 		break;
4003 	}
4004 	case KVM_SET_CLOCK: {
4005 		struct kvm_clock_data user_ns;
4006 		u64 now_ns;
4007 		s64 delta;
4008 
4009 		r = -EFAULT;
4010 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4011 			goto out;
4012 
4013 		r = -EINVAL;
4014 		if (user_ns.flags)
4015 			goto out;
4016 
4017 		r = 0;
4018 		local_irq_disable();
4019 		now_ns = get_kernel_ns();
4020 		delta = user_ns.clock - now_ns;
4021 		local_irq_enable();
4022 		kvm->arch.kvmclock_offset = delta;
4023 		kvm_gen_update_masterclock(kvm);
4024 		break;
4025 	}
4026 	case KVM_GET_CLOCK: {
4027 		struct kvm_clock_data user_ns;
4028 		u64 now_ns;
4029 
4030 		local_irq_disable();
4031 		now_ns = get_kernel_ns();
4032 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4033 		local_irq_enable();
4034 		user_ns.flags = 0;
4035 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4036 
4037 		r = -EFAULT;
4038 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4039 			goto out;
4040 		r = 0;
4041 		break;
4042 	}
4043 	case KVM_ENABLE_CAP: {
4044 		struct kvm_enable_cap cap;
4045 
4046 		r = -EFAULT;
4047 		if (copy_from_user(&cap, argp, sizeof(cap)))
4048 			goto out;
4049 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4050 		break;
4051 	}
4052 	default:
4053 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4054 	}
4055 out:
4056 	return r;
4057 }
4058 
4059 static void kvm_init_msr_list(void)
4060 {
4061 	u32 dummy[2];
4062 	unsigned i, j;
4063 
4064 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4065 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4066 			continue;
4067 
4068 		/*
4069 		 * Even MSRs that are valid in the host may not be exposed
4070 		 * to the guests in some cases.
4071 		 */
4072 		switch (msrs_to_save[i]) {
4073 		case MSR_IA32_BNDCFGS:
4074 			if (!kvm_x86_ops->mpx_supported())
4075 				continue;
4076 			break;
4077 		case MSR_TSC_AUX:
4078 			if (!kvm_x86_ops->rdtscp_supported())
4079 				continue;
4080 			break;
4081 		default:
4082 			break;
4083 		}
4084 
4085 		if (j < i)
4086 			msrs_to_save[j] = msrs_to_save[i];
4087 		j++;
4088 	}
4089 	num_msrs_to_save = j;
4090 
4091 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4092 		switch (emulated_msrs[i]) {
4093 		case MSR_IA32_SMBASE:
4094 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4095 				continue;
4096 			break;
4097 		default:
4098 			break;
4099 		}
4100 
4101 		if (j < i)
4102 			emulated_msrs[j] = emulated_msrs[i];
4103 		j++;
4104 	}
4105 	num_emulated_msrs = j;
4106 }
4107 
4108 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4109 			   const void *v)
4110 {
4111 	int handled = 0;
4112 	int n;
4113 
4114 	do {
4115 		n = min(len, 8);
4116 		if (!(lapic_in_kernel(vcpu) &&
4117 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4118 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4119 			break;
4120 		handled += n;
4121 		addr += n;
4122 		len -= n;
4123 		v += n;
4124 	} while (len);
4125 
4126 	return handled;
4127 }
4128 
4129 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4130 {
4131 	int handled = 0;
4132 	int n;
4133 
4134 	do {
4135 		n = min(len, 8);
4136 		if (!(lapic_in_kernel(vcpu) &&
4137 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4138 					 addr, n, v))
4139 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4140 			break;
4141 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4142 		handled += n;
4143 		addr += n;
4144 		len -= n;
4145 		v += n;
4146 	} while (len);
4147 
4148 	return handled;
4149 }
4150 
4151 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4152 			struct kvm_segment *var, int seg)
4153 {
4154 	kvm_x86_ops->set_segment(vcpu, var, seg);
4155 }
4156 
4157 void kvm_get_segment(struct kvm_vcpu *vcpu,
4158 		     struct kvm_segment *var, int seg)
4159 {
4160 	kvm_x86_ops->get_segment(vcpu, var, seg);
4161 }
4162 
4163 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4164 			   struct x86_exception *exception)
4165 {
4166 	gpa_t t_gpa;
4167 
4168 	BUG_ON(!mmu_is_nested(vcpu));
4169 
4170 	/* NPT walks are always user-walks */
4171 	access |= PFERR_USER_MASK;
4172 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4173 
4174 	return t_gpa;
4175 }
4176 
4177 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4178 			      struct x86_exception *exception)
4179 {
4180 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4181 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4182 }
4183 
4184  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4185 				struct x86_exception *exception)
4186 {
4187 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4188 	access |= PFERR_FETCH_MASK;
4189 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4190 }
4191 
4192 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4193 			       struct x86_exception *exception)
4194 {
4195 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4196 	access |= PFERR_WRITE_MASK;
4197 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4198 }
4199 
4200 /* uses this to access any guest's mapped memory without checking CPL */
4201 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4202 				struct x86_exception *exception)
4203 {
4204 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4205 }
4206 
4207 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4208 				      struct kvm_vcpu *vcpu, u32 access,
4209 				      struct x86_exception *exception)
4210 {
4211 	void *data = val;
4212 	int r = X86EMUL_CONTINUE;
4213 
4214 	while (bytes) {
4215 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4216 							    exception);
4217 		unsigned offset = addr & (PAGE_SIZE-1);
4218 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4219 		int ret;
4220 
4221 		if (gpa == UNMAPPED_GVA)
4222 			return X86EMUL_PROPAGATE_FAULT;
4223 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4224 					       offset, toread);
4225 		if (ret < 0) {
4226 			r = X86EMUL_IO_NEEDED;
4227 			goto out;
4228 		}
4229 
4230 		bytes -= toread;
4231 		data += toread;
4232 		addr += toread;
4233 	}
4234 out:
4235 	return r;
4236 }
4237 
4238 /* used for instruction fetching */
4239 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4240 				gva_t addr, void *val, unsigned int bytes,
4241 				struct x86_exception *exception)
4242 {
4243 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4244 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4245 	unsigned offset;
4246 	int ret;
4247 
4248 	/* Inline kvm_read_guest_virt_helper for speed.  */
4249 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4250 						    exception);
4251 	if (unlikely(gpa == UNMAPPED_GVA))
4252 		return X86EMUL_PROPAGATE_FAULT;
4253 
4254 	offset = addr & (PAGE_SIZE-1);
4255 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4256 		bytes = (unsigned)PAGE_SIZE - offset;
4257 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4258 				       offset, bytes);
4259 	if (unlikely(ret < 0))
4260 		return X86EMUL_IO_NEEDED;
4261 
4262 	return X86EMUL_CONTINUE;
4263 }
4264 
4265 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4266 			       gva_t addr, void *val, unsigned int bytes,
4267 			       struct x86_exception *exception)
4268 {
4269 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4270 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4271 
4272 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4273 					  exception);
4274 }
4275 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4276 
4277 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4278 				      gva_t addr, void *val, unsigned int bytes,
4279 				      struct x86_exception *exception)
4280 {
4281 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4282 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4283 }
4284 
4285 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4286 		unsigned long addr, void *val, unsigned int bytes)
4287 {
4288 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4289 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4290 
4291 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4292 }
4293 
4294 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4295 				       gva_t addr, void *val,
4296 				       unsigned int bytes,
4297 				       struct x86_exception *exception)
4298 {
4299 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4300 	void *data = val;
4301 	int r = X86EMUL_CONTINUE;
4302 
4303 	while (bytes) {
4304 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4305 							     PFERR_WRITE_MASK,
4306 							     exception);
4307 		unsigned offset = addr & (PAGE_SIZE-1);
4308 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4309 		int ret;
4310 
4311 		if (gpa == UNMAPPED_GVA)
4312 			return X86EMUL_PROPAGATE_FAULT;
4313 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4314 		if (ret < 0) {
4315 			r = X86EMUL_IO_NEEDED;
4316 			goto out;
4317 		}
4318 
4319 		bytes -= towrite;
4320 		data += towrite;
4321 		addr += towrite;
4322 	}
4323 out:
4324 	return r;
4325 }
4326 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4327 
4328 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4329 				gpa_t *gpa, struct x86_exception *exception,
4330 				bool write)
4331 {
4332 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4333 		| (write ? PFERR_WRITE_MASK : 0);
4334 
4335 	/*
4336 	 * currently PKRU is only applied to ept enabled guest so
4337 	 * there is no pkey in EPT page table for L1 guest or EPT
4338 	 * shadow page table for L2 guest.
4339 	 */
4340 	if (vcpu_match_mmio_gva(vcpu, gva)
4341 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4342 				 vcpu->arch.access, 0, access)) {
4343 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4344 					(gva & (PAGE_SIZE - 1));
4345 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4346 		return 1;
4347 	}
4348 
4349 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350 
4351 	if (*gpa == UNMAPPED_GVA)
4352 		return -1;
4353 
4354 	/* For APIC access vmexit */
4355 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4356 		return 1;
4357 
4358 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4359 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4360 		return 1;
4361 	}
4362 
4363 	return 0;
4364 }
4365 
4366 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4367 			const void *val, int bytes)
4368 {
4369 	int ret;
4370 
4371 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4372 	if (ret < 0)
4373 		return 0;
4374 	kvm_page_track_write(vcpu, gpa, val, bytes);
4375 	return 1;
4376 }
4377 
4378 struct read_write_emulator_ops {
4379 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4380 				  int bytes);
4381 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 				  void *val, int bytes);
4383 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 			       int bytes, void *val);
4385 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386 				    void *val, int bytes);
4387 	bool write;
4388 };
4389 
4390 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4391 {
4392 	if (vcpu->mmio_read_completed) {
4393 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4394 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4395 		vcpu->mmio_read_completed = 0;
4396 		return 1;
4397 	}
4398 
4399 	return 0;
4400 }
4401 
4402 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 			void *val, int bytes)
4404 {
4405 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4406 }
4407 
4408 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4409 			 void *val, int bytes)
4410 {
4411 	return emulator_write_phys(vcpu, gpa, val, bytes);
4412 }
4413 
4414 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4415 {
4416 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4417 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4418 }
4419 
4420 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4421 			  void *val, int bytes)
4422 {
4423 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4424 	return X86EMUL_IO_NEEDED;
4425 }
4426 
4427 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4428 			   void *val, int bytes)
4429 {
4430 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4431 
4432 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4433 	return X86EMUL_CONTINUE;
4434 }
4435 
4436 static const struct read_write_emulator_ops read_emultor = {
4437 	.read_write_prepare = read_prepare,
4438 	.read_write_emulate = read_emulate,
4439 	.read_write_mmio = vcpu_mmio_read,
4440 	.read_write_exit_mmio = read_exit_mmio,
4441 };
4442 
4443 static const struct read_write_emulator_ops write_emultor = {
4444 	.read_write_emulate = write_emulate,
4445 	.read_write_mmio = write_mmio,
4446 	.read_write_exit_mmio = write_exit_mmio,
4447 	.write = true,
4448 };
4449 
4450 static int emulator_read_write_onepage(unsigned long addr, void *val,
4451 				       unsigned int bytes,
4452 				       struct x86_exception *exception,
4453 				       struct kvm_vcpu *vcpu,
4454 				       const struct read_write_emulator_ops *ops)
4455 {
4456 	gpa_t gpa;
4457 	int handled, ret;
4458 	bool write = ops->write;
4459 	struct kvm_mmio_fragment *frag;
4460 
4461 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4462 
4463 	if (ret < 0)
4464 		return X86EMUL_PROPAGATE_FAULT;
4465 
4466 	/* For APIC access vmexit */
4467 	if (ret)
4468 		goto mmio;
4469 
4470 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4471 		return X86EMUL_CONTINUE;
4472 
4473 mmio:
4474 	/*
4475 	 * Is this MMIO handled locally?
4476 	 */
4477 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4478 	if (handled == bytes)
4479 		return X86EMUL_CONTINUE;
4480 
4481 	gpa += handled;
4482 	bytes -= handled;
4483 	val += handled;
4484 
4485 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4486 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4487 	frag->gpa = gpa;
4488 	frag->data = val;
4489 	frag->len = bytes;
4490 	return X86EMUL_CONTINUE;
4491 }
4492 
4493 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4494 			unsigned long addr,
4495 			void *val, unsigned int bytes,
4496 			struct x86_exception *exception,
4497 			const struct read_write_emulator_ops *ops)
4498 {
4499 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4500 	gpa_t gpa;
4501 	int rc;
4502 
4503 	if (ops->read_write_prepare &&
4504 		  ops->read_write_prepare(vcpu, val, bytes))
4505 		return X86EMUL_CONTINUE;
4506 
4507 	vcpu->mmio_nr_fragments = 0;
4508 
4509 	/* Crossing a page boundary? */
4510 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4511 		int now;
4512 
4513 		now = -addr & ~PAGE_MASK;
4514 		rc = emulator_read_write_onepage(addr, val, now, exception,
4515 						 vcpu, ops);
4516 
4517 		if (rc != X86EMUL_CONTINUE)
4518 			return rc;
4519 		addr += now;
4520 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4521 			addr = (u32)addr;
4522 		val += now;
4523 		bytes -= now;
4524 	}
4525 
4526 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4527 					 vcpu, ops);
4528 	if (rc != X86EMUL_CONTINUE)
4529 		return rc;
4530 
4531 	if (!vcpu->mmio_nr_fragments)
4532 		return rc;
4533 
4534 	gpa = vcpu->mmio_fragments[0].gpa;
4535 
4536 	vcpu->mmio_needed = 1;
4537 	vcpu->mmio_cur_fragment = 0;
4538 
4539 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4540 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4541 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4542 	vcpu->run->mmio.phys_addr = gpa;
4543 
4544 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4545 }
4546 
4547 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4548 				  unsigned long addr,
4549 				  void *val,
4550 				  unsigned int bytes,
4551 				  struct x86_exception *exception)
4552 {
4553 	return emulator_read_write(ctxt, addr, val, bytes,
4554 				   exception, &read_emultor);
4555 }
4556 
4557 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4558 			    unsigned long addr,
4559 			    const void *val,
4560 			    unsigned int bytes,
4561 			    struct x86_exception *exception)
4562 {
4563 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4564 				   exception, &write_emultor);
4565 }
4566 
4567 #define CMPXCHG_TYPE(t, ptr, old, new) \
4568 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4569 
4570 #ifdef CONFIG_X86_64
4571 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4572 #else
4573 #  define CMPXCHG64(ptr, old, new) \
4574 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4575 #endif
4576 
4577 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4578 				     unsigned long addr,
4579 				     const void *old,
4580 				     const void *new,
4581 				     unsigned int bytes,
4582 				     struct x86_exception *exception)
4583 {
4584 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4585 	gpa_t gpa;
4586 	struct page *page;
4587 	char *kaddr;
4588 	bool exchanged;
4589 
4590 	/* guests cmpxchg8b have to be emulated atomically */
4591 	if (bytes > 8 || (bytes & (bytes - 1)))
4592 		goto emul_write;
4593 
4594 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4595 
4596 	if (gpa == UNMAPPED_GVA ||
4597 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4598 		goto emul_write;
4599 
4600 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4601 		goto emul_write;
4602 
4603 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4604 	if (is_error_page(page))
4605 		goto emul_write;
4606 
4607 	kaddr = kmap_atomic(page);
4608 	kaddr += offset_in_page(gpa);
4609 	switch (bytes) {
4610 	case 1:
4611 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4612 		break;
4613 	case 2:
4614 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4615 		break;
4616 	case 4:
4617 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4618 		break;
4619 	case 8:
4620 		exchanged = CMPXCHG64(kaddr, old, new);
4621 		break;
4622 	default:
4623 		BUG();
4624 	}
4625 	kunmap_atomic(kaddr);
4626 	kvm_release_page_dirty(page);
4627 
4628 	if (!exchanged)
4629 		return X86EMUL_CMPXCHG_FAILED;
4630 
4631 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4632 	kvm_page_track_write(vcpu, gpa, new, bytes);
4633 
4634 	return X86EMUL_CONTINUE;
4635 
4636 emul_write:
4637 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4638 
4639 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4640 }
4641 
4642 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4643 {
4644 	/* TODO: String I/O for in kernel device */
4645 	int r;
4646 
4647 	if (vcpu->arch.pio.in)
4648 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4649 				    vcpu->arch.pio.size, pd);
4650 	else
4651 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4652 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4653 				     pd);
4654 	return r;
4655 }
4656 
4657 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4658 			       unsigned short port, void *val,
4659 			       unsigned int count, bool in)
4660 {
4661 	vcpu->arch.pio.port = port;
4662 	vcpu->arch.pio.in = in;
4663 	vcpu->arch.pio.count  = count;
4664 	vcpu->arch.pio.size = size;
4665 
4666 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4667 		vcpu->arch.pio.count = 0;
4668 		return 1;
4669 	}
4670 
4671 	vcpu->run->exit_reason = KVM_EXIT_IO;
4672 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4673 	vcpu->run->io.size = size;
4674 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4675 	vcpu->run->io.count = count;
4676 	vcpu->run->io.port = port;
4677 
4678 	return 0;
4679 }
4680 
4681 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4682 				    int size, unsigned short port, void *val,
4683 				    unsigned int count)
4684 {
4685 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4686 	int ret;
4687 
4688 	if (vcpu->arch.pio.count)
4689 		goto data_avail;
4690 
4691 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4692 	if (ret) {
4693 data_avail:
4694 		memcpy(val, vcpu->arch.pio_data, size * count);
4695 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4696 		vcpu->arch.pio.count = 0;
4697 		return 1;
4698 	}
4699 
4700 	return 0;
4701 }
4702 
4703 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4704 				     int size, unsigned short port,
4705 				     const void *val, unsigned int count)
4706 {
4707 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4708 
4709 	memcpy(vcpu->arch.pio_data, val, size * count);
4710 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4711 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4712 }
4713 
4714 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4715 {
4716 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4717 }
4718 
4719 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4720 {
4721 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4722 }
4723 
4724 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4725 {
4726 	if (!need_emulate_wbinvd(vcpu))
4727 		return X86EMUL_CONTINUE;
4728 
4729 	if (kvm_x86_ops->has_wbinvd_exit()) {
4730 		int cpu = get_cpu();
4731 
4732 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4733 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4734 				wbinvd_ipi, NULL, 1);
4735 		put_cpu();
4736 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4737 	} else
4738 		wbinvd();
4739 	return X86EMUL_CONTINUE;
4740 }
4741 
4742 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4743 {
4744 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4745 	return kvm_emulate_wbinvd_noskip(vcpu);
4746 }
4747 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4748 
4749 
4750 
4751 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4752 {
4753 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4754 }
4755 
4756 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4757 			   unsigned long *dest)
4758 {
4759 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4760 }
4761 
4762 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4763 			   unsigned long value)
4764 {
4765 
4766 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4767 }
4768 
4769 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4770 {
4771 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4772 }
4773 
4774 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4775 {
4776 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4777 	unsigned long value;
4778 
4779 	switch (cr) {
4780 	case 0:
4781 		value = kvm_read_cr0(vcpu);
4782 		break;
4783 	case 2:
4784 		value = vcpu->arch.cr2;
4785 		break;
4786 	case 3:
4787 		value = kvm_read_cr3(vcpu);
4788 		break;
4789 	case 4:
4790 		value = kvm_read_cr4(vcpu);
4791 		break;
4792 	case 8:
4793 		value = kvm_get_cr8(vcpu);
4794 		break;
4795 	default:
4796 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4797 		return 0;
4798 	}
4799 
4800 	return value;
4801 }
4802 
4803 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4804 {
4805 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4806 	int res = 0;
4807 
4808 	switch (cr) {
4809 	case 0:
4810 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4811 		break;
4812 	case 2:
4813 		vcpu->arch.cr2 = val;
4814 		break;
4815 	case 3:
4816 		res = kvm_set_cr3(vcpu, val);
4817 		break;
4818 	case 4:
4819 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4820 		break;
4821 	case 8:
4822 		res = kvm_set_cr8(vcpu, val);
4823 		break;
4824 	default:
4825 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4826 		res = -1;
4827 	}
4828 
4829 	return res;
4830 }
4831 
4832 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4833 {
4834 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4835 }
4836 
4837 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4838 {
4839 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4840 }
4841 
4842 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4843 {
4844 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4845 }
4846 
4847 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4848 {
4849 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4850 }
4851 
4852 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4853 {
4854 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4855 }
4856 
4857 static unsigned long emulator_get_cached_segment_base(
4858 	struct x86_emulate_ctxt *ctxt, int seg)
4859 {
4860 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4861 }
4862 
4863 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4864 				 struct desc_struct *desc, u32 *base3,
4865 				 int seg)
4866 {
4867 	struct kvm_segment var;
4868 
4869 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4870 	*selector = var.selector;
4871 
4872 	if (var.unusable) {
4873 		memset(desc, 0, sizeof(*desc));
4874 		return false;
4875 	}
4876 
4877 	if (var.g)
4878 		var.limit >>= 12;
4879 	set_desc_limit(desc, var.limit);
4880 	set_desc_base(desc, (unsigned long)var.base);
4881 #ifdef CONFIG_X86_64
4882 	if (base3)
4883 		*base3 = var.base >> 32;
4884 #endif
4885 	desc->type = var.type;
4886 	desc->s = var.s;
4887 	desc->dpl = var.dpl;
4888 	desc->p = var.present;
4889 	desc->avl = var.avl;
4890 	desc->l = var.l;
4891 	desc->d = var.db;
4892 	desc->g = var.g;
4893 
4894 	return true;
4895 }
4896 
4897 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4898 				 struct desc_struct *desc, u32 base3,
4899 				 int seg)
4900 {
4901 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4902 	struct kvm_segment var;
4903 
4904 	var.selector = selector;
4905 	var.base = get_desc_base(desc);
4906 #ifdef CONFIG_X86_64
4907 	var.base |= ((u64)base3) << 32;
4908 #endif
4909 	var.limit = get_desc_limit(desc);
4910 	if (desc->g)
4911 		var.limit = (var.limit << 12) | 0xfff;
4912 	var.type = desc->type;
4913 	var.dpl = desc->dpl;
4914 	var.db = desc->d;
4915 	var.s = desc->s;
4916 	var.l = desc->l;
4917 	var.g = desc->g;
4918 	var.avl = desc->avl;
4919 	var.present = desc->p;
4920 	var.unusable = !var.present;
4921 	var.padding = 0;
4922 
4923 	kvm_set_segment(vcpu, &var, seg);
4924 	return;
4925 }
4926 
4927 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4928 			    u32 msr_index, u64 *pdata)
4929 {
4930 	struct msr_data msr;
4931 	int r;
4932 
4933 	msr.index = msr_index;
4934 	msr.host_initiated = false;
4935 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4936 	if (r)
4937 		return r;
4938 
4939 	*pdata = msr.data;
4940 	return 0;
4941 }
4942 
4943 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4944 			    u32 msr_index, u64 data)
4945 {
4946 	struct msr_data msr;
4947 
4948 	msr.data = data;
4949 	msr.index = msr_index;
4950 	msr.host_initiated = false;
4951 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4952 }
4953 
4954 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4955 {
4956 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4957 
4958 	return vcpu->arch.smbase;
4959 }
4960 
4961 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4962 {
4963 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4964 
4965 	vcpu->arch.smbase = smbase;
4966 }
4967 
4968 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4969 			      u32 pmc)
4970 {
4971 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4972 }
4973 
4974 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4975 			     u32 pmc, u64 *pdata)
4976 {
4977 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4978 }
4979 
4980 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4981 {
4982 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4983 }
4984 
4985 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4986 {
4987 	preempt_disable();
4988 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4989 	/*
4990 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4991 	 * so it may be clear at this point.
4992 	 */
4993 	clts();
4994 }
4995 
4996 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4997 {
4998 	preempt_enable();
4999 }
5000 
5001 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5002 			      struct x86_instruction_info *info,
5003 			      enum x86_intercept_stage stage)
5004 {
5005 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5006 }
5007 
5008 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5009 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5010 {
5011 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5012 }
5013 
5014 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5015 {
5016 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5017 }
5018 
5019 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5020 {
5021 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5022 }
5023 
5024 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5025 {
5026 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5027 }
5028 
5029 static const struct x86_emulate_ops emulate_ops = {
5030 	.read_gpr            = emulator_read_gpr,
5031 	.write_gpr           = emulator_write_gpr,
5032 	.read_std            = kvm_read_guest_virt_system,
5033 	.write_std           = kvm_write_guest_virt_system,
5034 	.read_phys           = kvm_read_guest_phys_system,
5035 	.fetch               = kvm_fetch_guest_virt,
5036 	.read_emulated       = emulator_read_emulated,
5037 	.write_emulated      = emulator_write_emulated,
5038 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5039 	.invlpg              = emulator_invlpg,
5040 	.pio_in_emulated     = emulator_pio_in_emulated,
5041 	.pio_out_emulated    = emulator_pio_out_emulated,
5042 	.get_segment         = emulator_get_segment,
5043 	.set_segment         = emulator_set_segment,
5044 	.get_cached_segment_base = emulator_get_cached_segment_base,
5045 	.get_gdt             = emulator_get_gdt,
5046 	.get_idt	     = emulator_get_idt,
5047 	.set_gdt             = emulator_set_gdt,
5048 	.set_idt	     = emulator_set_idt,
5049 	.get_cr              = emulator_get_cr,
5050 	.set_cr              = emulator_set_cr,
5051 	.cpl                 = emulator_get_cpl,
5052 	.get_dr              = emulator_get_dr,
5053 	.set_dr              = emulator_set_dr,
5054 	.get_smbase          = emulator_get_smbase,
5055 	.set_smbase          = emulator_set_smbase,
5056 	.set_msr             = emulator_set_msr,
5057 	.get_msr             = emulator_get_msr,
5058 	.check_pmc	     = emulator_check_pmc,
5059 	.read_pmc            = emulator_read_pmc,
5060 	.halt                = emulator_halt,
5061 	.wbinvd              = emulator_wbinvd,
5062 	.fix_hypercall       = emulator_fix_hypercall,
5063 	.get_fpu             = emulator_get_fpu,
5064 	.put_fpu             = emulator_put_fpu,
5065 	.intercept           = emulator_intercept,
5066 	.get_cpuid           = emulator_get_cpuid,
5067 	.set_nmi_mask        = emulator_set_nmi_mask,
5068 };
5069 
5070 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5071 {
5072 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5073 	/*
5074 	 * an sti; sti; sequence only disable interrupts for the first
5075 	 * instruction. So, if the last instruction, be it emulated or
5076 	 * not, left the system with the INT_STI flag enabled, it
5077 	 * means that the last instruction is an sti. We should not
5078 	 * leave the flag on in this case. The same goes for mov ss
5079 	 */
5080 	if (int_shadow & mask)
5081 		mask = 0;
5082 	if (unlikely(int_shadow || mask)) {
5083 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5084 		if (!mask)
5085 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5086 	}
5087 }
5088 
5089 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5090 {
5091 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5092 	if (ctxt->exception.vector == PF_VECTOR)
5093 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5094 
5095 	if (ctxt->exception.error_code_valid)
5096 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5097 				      ctxt->exception.error_code);
5098 	else
5099 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5100 	return false;
5101 }
5102 
5103 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5104 {
5105 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5106 	int cs_db, cs_l;
5107 
5108 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5109 
5110 	ctxt->eflags = kvm_get_rflags(vcpu);
5111 	ctxt->eip = kvm_rip_read(vcpu);
5112 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5113 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5114 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5115 		     cs_db				? X86EMUL_MODE_PROT32 :
5116 							  X86EMUL_MODE_PROT16;
5117 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5118 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5119 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5120 	ctxt->emul_flags = vcpu->arch.hflags;
5121 
5122 	init_decode_cache(ctxt);
5123 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5124 }
5125 
5126 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5127 {
5128 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5129 	int ret;
5130 
5131 	init_emulate_ctxt(vcpu);
5132 
5133 	ctxt->op_bytes = 2;
5134 	ctxt->ad_bytes = 2;
5135 	ctxt->_eip = ctxt->eip + inc_eip;
5136 	ret = emulate_int_real(ctxt, irq);
5137 
5138 	if (ret != X86EMUL_CONTINUE)
5139 		return EMULATE_FAIL;
5140 
5141 	ctxt->eip = ctxt->_eip;
5142 	kvm_rip_write(vcpu, ctxt->eip);
5143 	kvm_set_rflags(vcpu, ctxt->eflags);
5144 
5145 	if (irq == NMI_VECTOR)
5146 		vcpu->arch.nmi_pending = 0;
5147 	else
5148 		vcpu->arch.interrupt.pending = false;
5149 
5150 	return EMULATE_DONE;
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5153 
5154 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5155 {
5156 	int r = EMULATE_DONE;
5157 
5158 	++vcpu->stat.insn_emulation_fail;
5159 	trace_kvm_emulate_insn_failed(vcpu);
5160 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5161 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5162 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5163 		vcpu->run->internal.ndata = 0;
5164 		r = EMULATE_FAIL;
5165 	}
5166 	kvm_queue_exception(vcpu, UD_VECTOR);
5167 
5168 	return r;
5169 }
5170 
5171 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5172 				  bool write_fault_to_shadow_pgtable,
5173 				  int emulation_type)
5174 {
5175 	gpa_t gpa = cr2;
5176 	kvm_pfn_t pfn;
5177 
5178 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5179 		return false;
5180 
5181 	if (!vcpu->arch.mmu.direct_map) {
5182 		/*
5183 		 * Write permission should be allowed since only
5184 		 * write access need to be emulated.
5185 		 */
5186 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5187 
5188 		/*
5189 		 * If the mapping is invalid in guest, let cpu retry
5190 		 * it to generate fault.
5191 		 */
5192 		if (gpa == UNMAPPED_GVA)
5193 			return true;
5194 	}
5195 
5196 	/*
5197 	 * Do not retry the unhandleable instruction if it faults on the
5198 	 * readonly host memory, otherwise it will goto a infinite loop:
5199 	 * retry instruction -> write #PF -> emulation fail -> retry
5200 	 * instruction -> ...
5201 	 */
5202 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5203 
5204 	/*
5205 	 * If the instruction failed on the error pfn, it can not be fixed,
5206 	 * report the error to userspace.
5207 	 */
5208 	if (is_error_noslot_pfn(pfn))
5209 		return false;
5210 
5211 	kvm_release_pfn_clean(pfn);
5212 
5213 	/* The instructions are well-emulated on direct mmu. */
5214 	if (vcpu->arch.mmu.direct_map) {
5215 		unsigned int indirect_shadow_pages;
5216 
5217 		spin_lock(&vcpu->kvm->mmu_lock);
5218 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5219 		spin_unlock(&vcpu->kvm->mmu_lock);
5220 
5221 		if (indirect_shadow_pages)
5222 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5223 
5224 		return true;
5225 	}
5226 
5227 	/*
5228 	 * if emulation was due to access to shadowed page table
5229 	 * and it failed try to unshadow page and re-enter the
5230 	 * guest to let CPU execute the instruction.
5231 	 */
5232 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5233 
5234 	/*
5235 	 * If the access faults on its page table, it can not
5236 	 * be fixed by unprotecting shadow page and it should
5237 	 * be reported to userspace.
5238 	 */
5239 	return !write_fault_to_shadow_pgtable;
5240 }
5241 
5242 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5243 			      unsigned long cr2,  int emulation_type)
5244 {
5245 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5246 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5247 
5248 	last_retry_eip = vcpu->arch.last_retry_eip;
5249 	last_retry_addr = vcpu->arch.last_retry_addr;
5250 
5251 	/*
5252 	 * If the emulation is caused by #PF and it is non-page_table
5253 	 * writing instruction, it means the VM-EXIT is caused by shadow
5254 	 * page protected, we can zap the shadow page and retry this
5255 	 * instruction directly.
5256 	 *
5257 	 * Note: if the guest uses a non-page-table modifying instruction
5258 	 * on the PDE that points to the instruction, then we will unmap
5259 	 * the instruction and go to an infinite loop. So, we cache the
5260 	 * last retried eip and the last fault address, if we meet the eip
5261 	 * and the address again, we can break out of the potential infinite
5262 	 * loop.
5263 	 */
5264 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5265 
5266 	if (!(emulation_type & EMULTYPE_RETRY))
5267 		return false;
5268 
5269 	if (x86_page_table_writing_insn(ctxt))
5270 		return false;
5271 
5272 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5273 		return false;
5274 
5275 	vcpu->arch.last_retry_eip = ctxt->eip;
5276 	vcpu->arch.last_retry_addr = cr2;
5277 
5278 	if (!vcpu->arch.mmu.direct_map)
5279 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5280 
5281 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5282 
5283 	return true;
5284 }
5285 
5286 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5287 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5288 
5289 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5290 {
5291 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5292 		/* This is a good place to trace that we are exiting SMM.  */
5293 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5294 
5295 		if (unlikely(vcpu->arch.smi_pending)) {
5296 			kvm_make_request(KVM_REQ_SMI, vcpu);
5297 			vcpu->arch.smi_pending = 0;
5298 		} else {
5299 			/* Process a latched INIT, if any.  */
5300 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5301 		}
5302 	}
5303 
5304 	kvm_mmu_reset_context(vcpu);
5305 }
5306 
5307 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5308 {
5309 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5310 
5311 	vcpu->arch.hflags = emul_flags;
5312 
5313 	if (changed & HF_SMM_MASK)
5314 		kvm_smm_changed(vcpu);
5315 }
5316 
5317 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5318 				unsigned long *db)
5319 {
5320 	u32 dr6 = 0;
5321 	int i;
5322 	u32 enable, rwlen;
5323 
5324 	enable = dr7;
5325 	rwlen = dr7 >> 16;
5326 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5327 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5328 			dr6 |= (1 << i);
5329 	return dr6;
5330 }
5331 
5332 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5333 {
5334 	struct kvm_run *kvm_run = vcpu->run;
5335 
5336 	/*
5337 	 * rflags is the old, "raw" value of the flags.  The new value has
5338 	 * not been saved yet.
5339 	 *
5340 	 * This is correct even for TF set by the guest, because "the
5341 	 * processor will not generate this exception after the instruction
5342 	 * that sets the TF flag".
5343 	 */
5344 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5345 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5346 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5347 						  DR6_RTM;
5348 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5349 			kvm_run->debug.arch.exception = DB_VECTOR;
5350 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5351 			*r = EMULATE_USER_EXIT;
5352 		} else {
5353 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5354 			/*
5355 			 * "Certain debug exceptions may clear bit 0-3.  The
5356 			 * remaining contents of the DR6 register are never
5357 			 * cleared by the processor".
5358 			 */
5359 			vcpu->arch.dr6 &= ~15;
5360 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5361 			kvm_queue_exception(vcpu, DB_VECTOR);
5362 		}
5363 	}
5364 }
5365 
5366 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5367 {
5368 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5369 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5370 		struct kvm_run *kvm_run = vcpu->run;
5371 		unsigned long eip = kvm_get_linear_rip(vcpu);
5372 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5373 					   vcpu->arch.guest_debug_dr7,
5374 					   vcpu->arch.eff_db);
5375 
5376 		if (dr6 != 0) {
5377 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5378 			kvm_run->debug.arch.pc = eip;
5379 			kvm_run->debug.arch.exception = DB_VECTOR;
5380 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5381 			*r = EMULATE_USER_EXIT;
5382 			return true;
5383 		}
5384 	}
5385 
5386 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5387 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5388 		unsigned long eip = kvm_get_linear_rip(vcpu);
5389 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5390 					   vcpu->arch.dr7,
5391 					   vcpu->arch.db);
5392 
5393 		if (dr6 != 0) {
5394 			vcpu->arch.dr6 &= ~15;
5395 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5396 			kvm_queue_exception(vcpu, DB_VECTOR);
5397 			*r = EMULATE_DONE;
5398 			return true;
5399 		}
5400 	}
5401 
5402 	return false;
5403 }
5404 
5405 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5406 			    unsigned long cr2,
5407 			    int emulation_type,
5408 			    void *insn,
5409 			    int insn_len)
5410 {
5411 	int r;
5412 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5413 	bool writeback = true;
5414 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5415 
5416 	/*
5417 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5418 	 * never reused.
5419 	 */
5420 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5421 	kvm_clear_exception_queue(vcpu);
5422 
5423 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5424 		init_emulate_ctxt(vcpu);
5425 
5426 		/*
5427 		 * We will reenter on the same instruction since
5428 		 * we do not set complete_userspace_io.  This does not
5429 		 * handle watchpoints yet, those would be handled in
5430 		 * the emulate_ops.
5431 		 */
5432 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5433 			return r;
5434 
5435 		ctxt->interruptibility = 0;
5436 		ctxt->have_exception = false;
5437 		ctxt->exception.vector = -1;
5438 		ctxt->perm_ok = false;
5439 
5440 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5441 
5442 		r = x86_decode_insn(ctxt, insn, insn_len);
5443 
5444 		trace_kvm_emulate_insn_start(vcpu);
5445 		++vcpu->stat.insn_emulation;
5446 		if (r != EMULATION_OK)  {
5447 			if (emulation_type & EMULTYPE_TRAP_UD)
5448 				return EMULATE_FAIL;
5449 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5450 						emulation_type))
5451 				return EMULATE_DONE;
5452 			if (emulation_type & EMULTYPE_SKIP)
5453 				return EMULATE_FAIL;
5454 			return handle_emulation_failure(vcpu);
5455 		}
5456 	}
5457 
5458 	if (emulation_type & EMULTYPE_SKIP) {
5459 		kvm_rip_write(vcpu, ctxt->_eip);
5460 		if (ctxt->eflags & X86_EFLAGS_RF)
5461 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5462 		return EMULATE_DONE;
5463 	}
5464 
5465 	if (retry_instruction(ctxt, cr2, emulation_type))
5466 		return EMULATE_DONE;
5467 
5468 	/* this is needed for vmware backdoor interface to work since it
5469 	   changes registers values  during IO operation */
5470 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5471 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5472 		emulator_invalidate_register_cache(ctxt);
5473 	}
5474 
5475 restart:
5476 	r = x86_emulate_insn(ctxt);
5477 
5478 	if (r == EMULATION_INTERCEPTED)
5479 		return EMULATE_DONE;
5480 
5481 	if (r == EMULATION_FAILED) {
5482 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5483 					emulation_type))
5484 			return EMULATE_DONE;
5485 
5486 		return handle_emulation_failure(vcpu);
5487 	}
5488 
5489 	if (ctxt->have_exception) {
5490 		r = EMULATE_DONE;
5491 		if (inject_emulated_exception(vcpu))
5492 			return r;
5493 	} else if (vcpu->arch.pio.count) {
5494 		if (!vcpu->arch.pio.in) {
5495 			/* FIXME: return into emulator if single-stepping.  */
5496 			vcpu->arch.pio.count = 0;
5497 		} else {
5498 			writeback = false;
5499 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5500 		}
5501 		r = EMULATE_USER_EXIT;
5502 	} else if (vcpu->mmio_needed) {
5503 		if (!vcpu->mmio_is_write)
5504 			writeback = false;
5505 		r = EMULATE_USER_EXIT;
5506 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5507 	} else if (r == EMULATION_RESTART)
5508 		goto restart;
5509 	else
5510 		r = EMULATE_DONE;
5511 
5512 	if (writeback) {
5513 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5514 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5515 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5516 		if (vcpu->arch.hflags != ctxt->emul_flags)
5517 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5518 		kvm_rip_write(vcpu, ctxt->eip);
5519 		if (r == EMULATE_DONE)
5520 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5521 		if (!ctxt->have_exception ||
5522 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5523 			__kvm_set_rflags(vcpu, ctxt->eflags);
5524 
5525 		/*
5526 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5527 		 * do nothing, and it will be requested again as soon as
5528 		 * the shadow expires.  But we still need to check here,
5529 		 * because POPF has no interrupt shadow.
5530 		 */
5531 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5532 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5533 	} else
5534 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5535 
5536 	return r;
5537 }
5538 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5539 
5540 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5541 {
5542 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5543 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5544 					    size, port, &val, 1);
5545 	/* do not return to emulator after return from userspace */
5546 	vcpu->arch.pio.count = 0;
5547 	return ret;
5548 }
5549 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5550 
5551 static void tsc_bad(void *info)
5552 {
5553 	__this_cpu_write(cpu_tsc_khz, 0);
5554 }
5555 
5556 static void tsc_khz_changed(void *data)
5557 {
5558 	struct cpufreq_freqs *freq = data;
5559 	unsigned long khz = 0;
5560 
5561 	if (data)
5562 		khz = freq->new;
5563 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5564 		khz = cpufreq_quick_get(raw_smp_processor_id());
5565 	if (!khz)
5566 		khz = tsc_khz;
5567 	__this_cpu_write(cpu_tsc_khz, khz);
5568 }
5569 
5570 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5571 				     void *data)
5572 {
5573 	struct cpufreq_freqs *freq = data;
5574 	struct kvm *kvm;
5575 	struct kvm_vcpu *vcpu;
5576 	int i, send_ipi = 0;
5577 
5578 	/*
5579 	 * We allow guests to temporarily run on slowing clocks,
5580 	 * provided we notify them after, or to run on accelerating
5581 	 * clocks, provided we notify them before.  Thus time never
5582 	 * goes backwards.
5583 	 *
5584 	 * However, we have a problem.  We can't atomically update
5585 	 * the frequency of a given CPU from this function; it is
5586 	 * merely a notifier, which can be called from any CPU.
5587 	 * Changing the TSC frequency at arbitrary points in time
5588 	 * requires a recomputation of local variables related to
5589 	 * the TSC for each VCPU.  We must flag these local variables
5590 	 * to be updated and be sure the update takes place with the
5591 	 * new frequency before any guests proceed.
5592 	 *
5593 	 * Unfortunately, the combination of hotplug CPU and frequency
5594 	 * change creates an intractable locking scenario; the order
5595 	 * of when these callouts happen is undefined with respect to
5596 	 * CPU hotplug, and they can race with each other.  As such,
5597 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5598 	 * undefined; you can actually have a CPU frequency change take
5599 	 * place in between the computation of X and the setting of the
5600 	 * variable.  To protect against this problem, all updates of
5601 	 * the per_cpu tsc_khz variable are done in an interrupt
5602 	 * protected IPI, and all callers wishing to update the value
5603 	 * must wait for a synchronous IPI to complete (which is trivial
5604 	 * if the caller is on the CPU already).  This establishes the
5605 	 * necessary total order on variable updates.
5606 	 *
5607 	 * Note that because a guest time update may take place
5608 	 * anytime after the setting of the VCPU's request bit, the
5609 	 * correct TSC value must be set before the request.  However,
5610 	 * to ensure the update actually makes it to any guest which
5611 	 * starts running in hardware virtualization between the set
5612 	 * and the acquisition of the spinlock, we must also ping the
5613 	 * CPU after setting the request bit.
5614 	 *
5615 	 */
5616 
5617 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5618 		return 0;
5619 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5620 		return 0;
5621 
5622 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5623 
5624 	spin_lock(&kvm_lock);
5625 	list_for_each_entry(kvm, &vm_list, vm_list) {
5626 		kvm_for_each_vcpu(i, vcpu, kvm) {
5627 			if (vcpu->cpu != freq->cpu)
5628 				continue;
5629 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5630 			if (vcpu->cpu != smp_processor_id())
5631 				send_ipi = 1;
5632 		}
5633 	}
5634 	spin_unlock(&kvm_lock);
5635 
5636 	if (freq->old < freq->new && send_ipi) {
5637 		/*
5638 		 * We upscale the frequency.  Must make the guest
5639 		 * doesn't see old kvmclock values while running with
5640 		 * the new frequency, otherwise we risk the guest sees
5641 		 * time go backwards.
5642 		 *
5643 		 * In case we update the frequency for another cpu
5644 		 * (which might be in guest context) send an interrupt
5645 		 * to kick the cpu out of guest context.  Next time
5646 		 * guest context is entered kvmclock will be updated,
5647 		 * so the guest will not see stale values.
5648 		 */
5649 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5650 	}
5651 	return 0;
5652 }
5653 
5654 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5655 	.notifier_call  = kvmclock_cpufreq_notifier
5656 };
5657 
5658 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5659 					unsigned long action, void *hcpu)
5660 {
5661 	unsigned int cpu = (unsigned long)hcpu;
5662 
5663 	switch (action) {
5664 		case CPU_ONLINE:
5665 		case CPU_DOWN_FAILED:
5666 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5667 			break;
5668 		case CPU_DOWN_PREPARE:
5669 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5670 			break;
5671 	}
5672 	return NOTIFY_OK;
5673 }
5674 
5675 static struct notifier_block kvmclock_cpu_notifier_block = {
5676 	.notifier_call  = kvmclock_cpu_notifier,
5677 	.priority = -INT_MAX
5678 };
5679 
5680 static void kvm_timer_init(void)
5681 {
5682 	int cpu;
5683 
5684 	max_tsc_khz = tsc_khz;
5685 
5686 	cpu_notifier_register_begin();
5687 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5688 #ifdef CONFIG_CPU_FREQ
5689 		struct cpufreq_policy policy;
5690 		memset(&policy, 0, sizeof(policy));
5691 		cpu = get_cpu();
5692 		cpufreq_get_policy(&policy, cpu);
5693 		if (policy.cpuinfo.max_freq)
5694 			max_tsc_khz = policy.cpuinfo.max_freq;
5695 		put_cpu();
5696 #endif
5697 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5698 					  CPUFREQ_TRANSITION_NOTIFIER);
5699 	}
5700 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5701 	for_each_online_cpu(cpu)
5702 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5703 
5704 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5705 	cpu_notifier_register_done();
5706 
5707 }
5708 
5709 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5710 
5711 int kvm_is_in_guest(void)
5712 {
5713 	return __this_cpu_read(current_vcpu) != NULL;
5714 }
5715 
5716 static int kvm_is_user_mode(void)
5717 {
5718 	int user_mode = 3;
5719 
5720 	if (__this_cpu_read(current_vcpu))
5721 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5722 
5723 	return user_mode != 0;
5724 }
5725 
5726 static unsigned long kvm_get_guest_ip(void)
5727 {
5728 	unsigned long ip = 0;
5729 
5730 	if (__this_cpu_read(current_vcpu))
5731 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5732 
5733 	return ip;
5734 }
5735 
5736 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5737 	.is_in_guest		= kvm_is_in_guest,
5738 	.is_user_mode		= kvm_is_user_mode,
5739 	.get_guest_ip		= kvm_get_guest_ip,
5740 };
5741 
5742 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5743 {
5744 	__this_cpu_write(current_vcpu, vcpu);
5745 }
5746 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5747 
5748 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5749 {
5750 	__this_cpu_write(current_vcpu, NULL);
5751 }
5752 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5753 
5754 static void kvm_set_mmio_spte_mask(void)
5755 {
5756 	u64 mask;
5757 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5758 
5759 	/*
5760 	 * Set the reserved bits and the present bit of an paging-structure
5761 	 * entry to generate page fault with PFER.RSV = 1.
5762 	 */
5763 	 /* Mask the reserved physical address bits. */
5764 	mask = rsvd_bits(maxphyaddr, 51);
5765 
5766 	/* Bit 62 is always reserved for 32bit host. */
5767 	mask |= 0x3ull << 62;
5768 
5769 	/* Set the present bit. */
5770 	mask |= 1ull;
5771 
5772 #ifdef CONFIG_X86_64
5773 	/*
5774 	 * If reserved bit is not supported, clear the present bit to disable
5775 	 * mmio page fault.
5776 	 */
5777 	if (maxphyaddr == 52)
5778 		mask &= ~1ull;
5779 #endif
5780 
5781 	kvm_mmu_set_mmio_spte_mask(mask);
5782 }
5783 
5784 #ifdef CONFIG_X86_64
5785 static void pvclock_gtod_update_fn(struct work_struct *work)
5786 {
5787 	struct kvm *kvm;
5788 
5789 	struct kvm_vcpu *vcpu;
5790 	int i;
5791 
5792 	spin_lock(&kvm_lock);
5793 	list_for_each_entry(kvm, &vm_list, vm_list)
5794 		kvm_for_each_vcpu(i, vcpu, kvm)
5795 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5796 	atomic_set(&kvm_guest_has_master_clock, 0);
5797 	spin_unlock(&kvm_lock);
5798 }
5799 
5800 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5801 
5802 /*
5803  * Notification about pvclock gtod data update.
5804  */
5805 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5806 			       void *priv)
5807 {
5808 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5809 	struct timekeeper *tk = priv;
5810 
5811 	update_pvclock_gtod(tk);
5812 
5813 	/* disable master clock if host does not trust, or does not
5814 	 * use, TSC clocksource
5815 	 */
5816 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5817 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5818 		queue_work(system_long_wq, &pvclock_gtod_work);
5819 
5820 	return 0;
5821 }
5822 
5823 static struct notifier_block pvclock_gtod_notifier = {
5824 	.notifier_call = pvclock_gtod_notify,
5825 };
5826 #endif
5827 
5828 int kvm_arch_init(void *opaque)
5829 {
5830 	int r;
5831 	struct kvm_x86_ops *ops = opaque;
5832 
5833 	if (kvm_x86_ops) {
5834 		printk(KERN_ERR "kvm: already loaded the other module\n");
5835 		r = -EEXIST;
5836 		goto out;
5837 	}
5838 
5839 	if (!ops->cpu_has_kvm_support()) {
5840 		printk(KERN_ERR "kvm: no hardware support\n");
5841 		r = -EOPNOTSUPP;
5842 		goto out;
5843 	}
5844 	if (ops->disabled_by_bios()) {
5845 		printk(KERN_ERR "kvm: disabled by bios\n");
5846 		r = -EOPNOTSUPP;
5847 		goto out;
5848 	}
5849 
5850 	r = -ENOMEM;
5851 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5852 	if (!shared_msrs) {
5853 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5854 		goto out;
5855 	}
5856 
5857 	r = kvm_mmu_module_init();
5858 	if (r)
5859 		goto out_free_percpu;
5860 
5861 	kvm_set_mmio_spte_mask();
5862 
5863 	kvm_x86_ops = ops;
5864 
5865 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5866 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5867 
5868 	kvm_timer_init();
5869 
5870 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5871 
5872 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5873 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5874 
5875 	kvm_lapic_init();
5876 #ifdef CONFIG_X86_64
5877 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5878 #endif
5879 
5880 	return 0;
5881 
5882 out_free_percpu:
5883 	free_percpu(shared_msrs);
5884 out:
5885 	return r;
5886 }
5887 
5888 void kvm_arch_exit(void)
5889 {
5890 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5891 
5892 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5893 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5894 					    CPUFREQ_TRANSITION_NOTIFIER);
5895 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5896 #ifdef CONFIG_X86_64
5897 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5898 #endif
5899 	kvm_x86_ops = NULL;
5900 	kvm_mmu_module_exit();
5901 	free_percpu(shared_msrs);
5902 }
5903 
5904 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5905 {
5906 	++vcpu->stat.halt_exits;
5907 	if (lapic_in_kernel(vcpu)) {
5908 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5909 		return 1;
5910 	} else {
5911 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5912 		return 0;
5913 	}
5914 }
5915 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5916 
5917 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5918 {
5919 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5920 	return kvm_vcpu_halt(vcpu);
5921 }
5922 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5923 
5924 /*
5925  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5926  *
5927  * @apicid - apicid of vcpu to be kicked.
5928  */
5929 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5930 {
5931 	struct kvm_lapic_irq lapic_irq;
5932 
5933 	lapic_irq.shorthand = 0;
5934 	lapic_irq.dest_mode = 0;
5935 	lapic_irq.dest_id = apicid;
5936 	lapic_irq.msi_redir_hint = false;
5937 
5938 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5939 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5940 }
5941 
5942 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5943 {
5944 	vcpu->arch.apicv_active = false;
5945 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5946 }
5947 
5948 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5949 {
5950 	unsigned long nr, a0, a1, a2, a3, ret;
5951 	int op_64_bit, r = 1;
5952 
5953 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5954 
5955 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5956 		return kvm_hv_hypercall(vcpu);
5957 
5958 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5959 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5960 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5961 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5962 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5963 
5964 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5965 
5966 	op_64_bit = is_64_bit_mode(vcpu);
5967 	if (!op_64_bit) {
5968 		nr &= 0xFFFFFFFF;
5969 		a0 &= 0xFFFFFFFF;
5970 		a1 &= 0xFFFFFFFF;
5971 		a2 &= 0xFFFFFFFF;
5972 		a3 &= 0xFFFFFFFF;
5973 	}
5974 
5975 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5976 		ret = -KVM_EPERM;
5977 		goto out;
5978 	}
5979 
5980 	switch (nr) {
5981 	case KVM_HC_VAPIC_POLL_IRQ:
5982 		ret = 0;
5983 		break;
5984 	case KVM_HC_KICK_CPU:
5985 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5986 		ret = 0;
5987 		break;
5988 	default:
5989 		ret = -KVM_ENOSYS;
5990 		break;
5991 	}
5992 out:
5993 	if (!op_64_bit)
5994 		ret = (u32)ret;
5995 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5996 	++vcpu->stat.hypercalls;
5997 	return r;
5998 }
5999 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6000 
6001 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6002 {
6003 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6004 	char instruction[3];
6005 	unsigned long rip = kvm_rip_read(vcpu);
6006 
6007 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6008 
6009 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6010 }
6011 
6012 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6013 {
6014 	return vcpu->run->request_interrupt_window &&
6015 		likely(!pic_in_kernel(vcpu->kvm));
6016 }
6017 
6018 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6019 {
6020 	struct kvm_run *kvm_run = vcpu->run;
6021 
6022 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6023 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6024 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6025 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6026 	kvm_run->ready_for_interrupt_injection =
6027 		pic_in_kernel(vcpu->kvm) ||
6028 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6029 }
6030 
6031 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6032 {
6033 	int max_irr, tpr;
6034 
6035 	if (!kvm_x86_ops->update_cr8_intercept)
6036 		return;
6037 
6038 	if (!lapic_in_kernel(vcpu))
6039 		return;
6040 
6041 	if (vcpu->arch.apicv_active)
6042 		return;
6043 
6044 	if (!vcpu->arch.apic->vapic_addr)
6045 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6046 	else
6047 		max_irr = -1;
6048 
6049 	if (max_irr != -1)
6050 		max_irr >>= 4;
6051 
6052 	tpr = kvm_lapic_get_cr8(vcpu);
6053 
6054 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6055 }
6056 
6057 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6058 {
6059 	int r;
6060 
6061 	/* try to reinject previous events if any */
6062 	if (vcpu->arch.exception.pending) {
6063 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6064 					vcpu->arch.exception.has_error_code,
6065 					vcpu->arch.exception.error_code);
6066 
6067 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6068 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6069 					     X86_EFLAGS_RF);
6070 
6071 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6072 		    (vcpu->arch.dr7 & DR7_GD)) {
6073 			vcpu->arch.dr7 &= ~DR7_GD;
6074 			kvm_update_dr7(vcpu);
6075 		}
6076 
6077 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6078 					  vcpu->arch.exception.has_error_code,
6079 					  vcpu->arch.exception.error_code,
6080 					  vcpu->arch.exception.reinject);
6081 		return 0;
6082 	}
6083 
6084 	if (vcpu->arch.nmi_injected) {
6085 		kvm_x86_ops->set_nmi(vcpu);
6086 		return 0;
6087 	}
6088 
6089 	if (vcpu->arch.interrupt.pending) {
6090 		kvm_x86_ops->set_irq(vcpu);
6091 		return 0;
6092 	}
6093 
6094 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6095 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6096 		if (r != 0)
6097 			return r;
6098 	}
6099 
6100 	/* try to inject new event if pending */
6101 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6102 		--vcpu->arch.nmi_pending;
6103 		vcpu->arch.nmi_injected = true;
6104 		kvm_x86_ops->set_nmi(vcpu);
6105 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6106 		/*
6107 		 * Because interrupts can be injected asynchronously, we are
6108 		 * calling check_nested_events again here to avoid a race condition.
6109 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6110 		 * proposal and current concerns.  Perhaps we should be setting
6111 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6112 		 */
6113 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6114 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6115 			if (r != 0)
6116 				return r;
6117 		}
6118 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6119 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6120 					    false);
6121 			kvm_x86_ops->set_irq(vcpu);
6122 		}
6123 	}
6124 	return 0;
6125 }
6126 
6127 static void process_nmi(struct kvm_vcpu *vcpu)
6128 {
6129 	unsigned limit = 2;
6130 
6131 	/*
6132 	 * x86 is limited to one NMI running, and one NMI pending after it.
6133 	 * If an NMI is already in progress, limit further NMIs to just one.
6134 	 * Otherwise, allow two (and we'll inject the first one immediately).
6135 	 */
6136 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6137 		limit = 1;
6138 
6139 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6140 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6141 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6142 }
6143 
6144 #define put_smstate(type, buf, offset, val)			  \
6145 	*(type *)((buf) + (offset) - 0x7e00) = val
6146 
6147 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6148 {
6149 	u32 flags = 0;
6150 	flags |= seg->g       << 23;
6151 	flags |= seg->db      << 22;
6152 	flags |= seg->l       << 21;
6153 	flags |= seg->avl     << 20;
6154 	flags |= seg->present << 15;
6155 	flags |= seg->dpl     << 13;
6156 	flags |= seg->s       << 12;
6157 	flags |= seg->type    << 8;
6158 	return flags;
6159 }
6160 
6161 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6162 {
6163 	struct kvm_segment seg;
6164 	int offset;
6165 
6166 	kvm_get_segment(vcpu, &seg, n);
6167 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6168 
6169 	if (n < 3)
6170 		offset = 0x7f84 + n * 12;
6171 	else
6172 		offset = 0x7f2c + (n - 3) * 12;
6173 
6174 	put_smstate(u32, buf, offset + 8, seg.base);
6175 	put_smstate(u32, buf, offset + 4, seg.limit);
6176 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6177 }
6178 
6179 #ifdef CONFIG_X86_64
6180 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6181 {
6182 	struct kvm_segment seg;
6183 	int offset;
6184 	u16 flags;
6185 
6186 	kvm_get_segment(vcpu, &seg, n);
6187 	offset = 0x7e00 + n * 16;
6188 
6189 	flags = process_smi_get_segment_flags(&seg) >> 8;
6190 	put_smstate(u16, buf, offset, seg.selector);
6191 	put_smstate(u16, buf, offset + 2, flags);
6192 	put_smstate(u32, buf, offset + 4, seg.limit);
6193 	put_smstate(u64, buf, offset + 8, seg.base);
6194 }
6195 #endif
6196 
6197 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6198 {
6199 	struct desc_ptr dt;
6200 	struct kvm_segment seg;
6201 	unsigned long val;
6202 	int i;
6203 
6204 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6205 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6206 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6207 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6208 
6209 	for (i = 0; i < 8; i++)
6210 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6211 
6212 	kvm_get_dr(vcpu, 6, &val);
6213 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6214 	kvm_get_dr(vcpu, 7, &val);
6215 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6216 
6217 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6218 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6219 	put_smstate(u32, buf, 0x7f64, seg.base);
6220 	put_smstate(u32, buf, 0x7f60, seg.limit);
6221 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6222 
6223 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6224 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6225 	put_smstate(u32, buf, 0x7f80, seg.base);
6226 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6227 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6228 
6229 	kvm_x86_ops->get_gdt(vcpu, &dt);
6230 	put_smstate(u32, buf, 0x7f74, dt.address);
6231 	put_smstate(u32, buf, 0x7f70, dt.size);
6232 
6233 	kvm_x86_ops->get_idt(vcpu, &dt);
6234 	put_smstate(u32, buf, 0x7f58, dt.address);
6235 	put_smstate(u32, buf, 0x7f54, dt.size);
6236 
6237 	for (i = 0; i < 6; i++)
6238 		process_smi_save_seg_32(vcpu, buf, i);
6239 
6240 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6241 
6242 	/* revision id */
6243 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6244 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6245 }
6246 
6247 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6248 {
6249 #ifdef CONFIG_X86_64
6250 	struct desc_ptr dt;
6251 	struct kvm_segment seg;
6252 	unsigned long val;
6253 	int i;
6254 
6255 	for (i = 0; i < 16; i++)
6256 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6257 
6258 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6259 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6260 
6261 	kvm_get_dr(vcpu, 6, &val);
6262 	put_smstate(u64, buf, 0x7f68, val);
6263 	kvm_get_dr(vcpu, 7, &val);
6264 	put_smstate(u64, buf, 0x7f60, val);
6265 
6266 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6267 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6268 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6269 
6270 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6271 
6272 	/* revision id */
6273 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6274 
6275 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6276 
6277 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6278 	put_smstate(u16, buf, 0x7e90, seg.selector);
6279 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6280 	put_smstate(u32, buf, 0x7e94, seg.limit);
6281 	put_smstate(u64, buf, 0x7e98, seg.base);
6282 
6283 	kvm_x86_ops->get_idt(vcpu, &dt);
6284 	put_smstate(u32, buf, 0x7e84, dt.size);
6285 	put_smstate(u64, buf, 0x7e88, dt.address);
6286 
6287 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6288 	put_smstate(u16, buf, 0x7e70, seg.selector);
6289 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6290 	put_smstate(u32, buf, 0x7e74, seg.limit);
6291 	put_smstate(u64, buf, 0x7e78, seg.base);
6292 
6293 	kvm_x86_ops->get_gdt(vcpu, &dt);
6294 	put_smstate(u32, buf, 0x7e64, dt.size);
6295 	put_smstate(u64, buf, 0x7e68, dt.address);
6296 
6297 	for (i = 0; i < 6; i++)
6298 		process_smi_save_seg_64(vcpu, buf, i);
6299 #else
6300 	WARN_ON_ONCE(1);
6301 #endif
6302 }
6303 
6304 static void process_smi(struct kvm_vcpu *vcpu)
6305 {
6306 	struct kvm_segment cs, ds;
6307 	struct desc_ptr dt;
6308 	char buf[512];
6309 	u32 cr0;
6310 
6311 	if (is_smm(vcpu)) {
6312 		vcpu->arch.smi_pending = true;
6313 		return;
6314 	}
6315 
6316 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6317 	vcpu->arch.hflags |= HF_SMM_MASK;
6318 	memset(buf, 0, 512);
6319 	if (guest_cpuid_has_longmode(vcpu))
6320 		process_smi_save_state_64(vcpu, buf);
6321 	else
6322 		process_smi_save_state_32(vcpu, buf);
6323 
6324 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6325 
6326 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6327 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6328 	else
6329 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6330 
6331 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6332 	kvm_rip_write(vcpu, 0x8000);
6333 
6334 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6335 	kvm_x86_ops->set_cr0(vcpu, cr0);
6336 	vcpu->arch.cr0 = cr0;
6337 
6338 	kvm_x86_ops->set_cr4(vcpu, 0);
6339 
6340 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6341 	dt.address = dt.size = 0;
6342 	kvm_x86_ops->set_idt(vcpu, &dt);
6343 
6344 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6345 
6346 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6347 	cs.base = vcpu->arch.smbase;
6348 
6349 	ds.selector = 0;
6350 	ds.base = 0;
6351 
6352 	cs.limit    = ds.limit = 0xffffffff;
6353 	cs.type     = ds.type = 0x3;
6354 	cs.dpl      = ds.dpl = 0;
6355 	cs.db       = ds.db = 0;
6356 	cs.s        = ds.s = 1;
6357 	cs.l        = ds.l = 0;
6358 	cs.g        = ds.g = 1;
6359 	cs.avl      = ds.avl = 0;
6360 	cs.present  = ds.present = 1;
6361 	cs.unusable = ds.unusable = 0;
6362 	cs.padding  = ds.padding = 0;
6363 
6364 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6365 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6366 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6367 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6368 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6369 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6370 
6371 	if (guest_cpuid_has_longmode(vcpu))
6372 		kvm_x86_ops->set_efer(vcpu, 0);
6373 
6374 	kvm_update_cpuid(vcpu);
6375 	kvm_mmu_reset_context(vcpu);
6376 }
6377 
6378 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6379 {
6380 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6381 }
6382 
6383 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6384 {
6385 	u64 eoi_exit_bitmap[4];
6386 
6387 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6388 		return;
6389 
6390 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6391 
6392 	if (irqchip_split(vcpu->kvm))
6393 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6394 	else {
6395 		if (vcpu->arch.apicv_active)
6396 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6397 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6398 	}
6399 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6400 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6401 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6402 }
6403 
6404 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6405 {
6406 	++vcpu->stat.tlb_flush;
6407 	kvm_x86_ops->tlb_flush(vcpu);
6408 }
6409 
6410 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6411 {
6412 	struct page *page = NULL;
6413 
6414 	if (!lapic_in_kernel(vcpu))
6415 		return;
6416 
6417 	if (!kvm_x86_ops->set_apic_access_page_addr)
6418 		return;
6419 
6420 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6421 	if (is_error_page(page))
6422 		return;
6423 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6424 
6425 	/*
6426 	 * Do not pin apic access page in memory, the MMU notifier
6427 	 * will call us again if it is migrated or swapped out.
6428 	 */
6429 	put_page(page);
6430 }
6431 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6432 
6433 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6434 					   unsigned long address)
6435 {
6436 	/*
6437 	 * The physical address of apic access page is stored in the VMCS.
6438 	 * Update it when it becomes invalid.
6439 	 */
6440 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6441 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6442 }
6443 
6444 /*
6445  * Returns 1 to let vcpu_run() continue the guest execution loop without
6446  * exiting to the userspace.  Otherwise, the value will be returned to the
6447  * userspace.
6448  */
6449 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6450 {
6451 	int r;
6452 	bool req_int_win =
6453 		dm_request_for_irq_injection(vcpu) &&
6454 		kvm_cpu_accept_dm_intr(vcpu);
6455 
6456 	bool req_immediate_exit = false;
6457 
6458 	if (vcpu->requests) {
6459 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6460 			kvm_mmu_unload(vcpu);
6461 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6462 			__kvm_migrate_timers(vcpu);
6463 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6464 			kvm_gen_update_masterclock(vcpu->kvm);
6465 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6466 			kvm_gen_kvmclock_update(vcpu);
6467 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6468 			r = kvm_guest_time_update(vcpu);
6469 			if (unlikely(r))
6470 				goto out;
6471 		}
6472 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6473 			kvm_mmu_sync_roots(vcpu);
6474 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6475 			kvm_vcpu_flush_tlb(vcpu);
6476 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6477 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6478 			r = 0;
6479 			goto out;
6480 		}
6481 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6482 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6483 			r = 0;
6484 			goto out;
6485 		}
6486 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6487 			vcpu->fpu_active = 0;
6488 			kvm_x86_ops->fpu_deactivate(vcpu);
6489 		}
6490 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6491 			/* Page is swapped out. Do synthetic halt */
6492 			vcpu->arch.apf.halted = true;
6493 			r = 1;
6494 			goto out;
6495 		}
6496 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6497 			record_steal_time(vcpu);
6498 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6499 			process_smi(vcpu);
6500 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6501 			process_nmi(vcpu);
6502 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6503 			kvm_pmu_handle_event(vcpu);
6504 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6505 			kvm_pmu_deliver_pmi(vcpu);
6506 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6507 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6508 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6509 				     vcpu->arch.ioapic_handled_vectors)) {
6510 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6511 				vcpu->run->eoi.vector =
6512 						vcpu->arch.pending_ioapic_eoi;
6513 				r = 0;
6514 				goto out;
6515 			}
6516 		}
6517 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6518 			vcpu_scan_ioapic(vcpu);
6519 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6520 			kvm_vcpu_reload_apic_access_page(vcpu);
6521 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6522 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6523 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6524 			r = 0;
6525 			goto out;
6526 		}
6527 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6528 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6529 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6530 			r = 0;
6531 			goto out;
6532 		}
6533 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6534 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6535 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6536 			r = 0;
6537 			goto out;
6538 		}
6539 
6540 		/*
6541 		 * KVM_REQ_HV_STIMER has to be processed after
6542 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6543 		 * depend on the guest clock being up-to-date
6544 		 */
6545 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6546 			kvm_hv_process_stimers(vcpu);
6547 	}
6548 
6549 	/*
6550 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6551 	 * VT-d hardware, so we have to update RVI unconditionally.
6552 	 */
6553 	if (kvm_lapic_enabled(vcpu)) {
6554 		/*
6555 		 * Update architecture specific hints for APIC
6556 		 * virtual interrupt delivery.
6557 		 */
6558 		if (vcpu->arch.apicv_active)
6559 			kvm_x86_ops->hwapic_irr_update(vcpu,
6560 				kvm_lapic_find_highest_irr(vcpu));
6561 	}
6562 
6563 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6564 		kvm_apic_accept_events(vcpu);
6565 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6566 			r = 1;
6567 			goto out;
6568 		}
6569 
6570 		if (inject_pending_event(vcpu, req_int_win) != 0)
6571 			req_immediate_exit = true;
6572 		/* enable NMI/IRQ window open exits if needed */
6573 		else {
6574 			if (vcpu->arch.nmi_pending)
6575 				kvm_x86_ops->enable_nmi_window(vcpu);
6576 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6577 				kvm_x86_ops->enable_irq_window(vcpu);
6578 		}
6579 
6580 		if (kvm_lapic_enabled(vcpu)) {
6581 			update_cr8_intercept(vcpu);
6582 			kvm_lapic_sync_to_vapic(vcpu);
6583 		}
6584 	}
6585 
6586 	r = kvm_mmu_reload(vcpu);
6587 	if (unlikely(r)) {
6588 		goto cancel_injection;
6589 	}
6590 
6591 	preempt_disable();
6592 
6593 	kvm_x86_ops->prepare_guest_switch(vcpu);
6594 	if (vcpu->fpu_active)
6595 		kvm_load_guest_fpu(vcpu);
6596 	vcpu->mode = IN_GUEST_MODE;
6597 
6598 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6599 
6600 	/*
6601 	 * We should set ->mode before check ->requests,
6602 	 * Please see the comment in kvm_make_all_cpus_request.
6603 	 * This also orders the write to mode from any reads
6604 	 * to the page tables done while the VCPU is running.
6605 	 * Please see the comment in kvm_flush_remote_tlbs.
6606 	 */
6607 	smp_mb__after_srcu_read_unlock();
6608 
6609 	local_irq_disable();
6610 
6611 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6612 	    || need_resched() || signal_pending(current)) {
6613 		vcpu->mode = OUTSIDE_GUEST_MODE;
6614 		smp_wmb();
6615 		local_irq_enable();
6616 		preempt_enable();
6617 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6618 		r = 1;
6619 		goto cancel_injection;
6620 	}
6621 
6622 	kvm_load_guest_xcr0(vcpu);
6623 
6624 	if (req_immediate_exit)
6625 		smp_send_reschedule(vcpu->cpu);
6626 
6627 	trace_kvm_entry(vcpu->vcpu_id);
6628 	wait_lapic_expire(vcpu);
6629 	__kvm_guest_enter();
6630 
6631 	if (unlikely(vcpu->arch.switch_db_regs)) {
6632 		set_debugreg(0, 7);
6633 		set_debugreg(vcpu->arch.eff_db[0], 0);
6634 		set_debugreg(vcpu->arch.eff_db[1], 1);
6635 		set_debugreg(vcpu->arch.eff_db[2], 2);
6636 		set_debugreg(vcpu->arch.eff_db[3], 3);
6637 		set_debugreg(vcpu->arch.dr6, 6);
6638 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6639 	}
6640 
6641 	kvm_x86_ops->run(vcpu);
6642 
6643 	/*
6644 	 * Do this here before restoring debug registers on the host.  And
6645 	 * since we do this before handling the vmexit, a DR access vmexit
6646 	 * can (a) read the correct value of the debug registers, (b) set
6647 	 * KVM_DEBUGREG_WONT_EXIT again.
6648 	 */
6649 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6650 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6651 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6652 		kvm_update_dr0123(vcpu);
6653 		kvm_update_dr6(vcpu);
6654 		kvm_update_dr7(vcpu);
6655 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6656 	}
6657 
6658 	/*
6659 	 * If the guest has used debug registers, at least dr7
6660 	 * will be disabled while returning to the host.
6661 	 * If we don't have active breakpoints in the host, we don't
6662 	 * care about the messed up debug address registers. But if
6663 	 * we have some of them active, restore the old state.
6664 	 */
6665 	if (hw_breakpoint_active())
6666 		hw_breakpoint_restore();
6667 
6668 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6669 
6670 	vcpu->mode = OUTSIDE_GUEST_MODE;
6671 	smp_wmb();
6672 
6673 	kvm_put_guest_xcr0(vcpu);
6674 
6675 	/* Interrupt is enabled by handle_external_intr() */
6676 	kvm_x86_ops->handle_external_intr(vcpu);
6677 
6678 	++vcpu->stat.exits;
6679 
6680 	/*
6681 	 * We must have an instruction between local_irq_enable() and
6682 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6683 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6684 	 * But we need to prevent reordering, hence this barrier():
6685 	 */
6686 	barrier();
6687 
6688 	kvm_guest_exit();
6689 
6690 	preempt_enable();
6691 
6692 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6693 
6694 	/*
6695 	 * Profile KVM exit RIPs:
6696 	 */
6697 	if (unlikely(prof_on == KVM_PROFILING)) {
6698 		unsigned long rip = kvm_rip_read(vcpu);
6699 		profile_hit(KVM_PROFILING, (void *)rip);
6700 	}
6701 
6702 	if (unlikely(vcpu->arch.tsc_always_catchup))
6703 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6704 
6705 	if (vcpu->arch.apic_attention)
6706 		kvm_lapic_sync_from_vapic(vcpu);
6707 
6708 	r = kvm_x86_ops->handle_exit(vcpu);
6709 	return r;
6710 
6711 cancel_injection:
6712 	kvm_x86_ops->cancel_injection(vcpu);
6713 	if (unlikely(vcpu->arch.apic_attention))
6714 		kvm_lapic_sync_from_vapic(vcpu);
6715 out:
6716 	return r;
6717 }
6718 
6719 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6720 {
6721 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6722 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6723 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6724 		kvm_vcpu_block(vcpu);
6725 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6726 
6727 		if (kvm_x86_ops->post_block)
6728 			kvm_x86_ops->post_block(vcpu);
6729 
6730 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6731 			return 1;
6732 	}
6733 
6734 	kvm_apic_accept_events(vcpu);
6735 	switch(vcpu->arch.mp_state) {
6736 	case KVM_MP_STATE_HALTED:
6737 		vcpu->arch.pv.pv_unhalted = false;
6738 		vcpu->arch.mp_state =
6739 			KVM_MP_STATE_RUNNABLE;
6740 	case KVM_MP_STATE_RUNNABLE:
6741 		vcpu->arch.apf.halted = false;
6742 		break;
6743 	case KVM_MP_STATE_INIT_RECEIVED:
6744 		break;
6745 	default:
6746 		return -EINTR;
6747 		break;
6748 	}
6749 	return 1;
6750 }
6751 
6752 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6753 {
6754 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6755 		!vcpu->arch.apf.halted);
6756 }
6757 
6758 static int vcpu_run(struct kvm_vcpu *vcpu)
6759 {
6760 	int r;
6761 	struct kvm *kvm = vcpu->kvm;
6762 
6763 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6764 
6765 	for (;;) {
6766 		if (kvm_vcpu_running(vcpu)) {
6767 			r = vcpu_enter_guest(vcpu);
6768 		} else {
6769 			r = vcpu_block(kvm, vcpu);
6770 		}
6771 
6772 		if (r <= 0)
6773 			break;
6774 
6775 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6776 		if (kvm_cpu_has_pending_timer(vcpu))
6777 			kvm_inject_pending_timer_irqs(vcpu);
6778 
6779 		if (dm_request_for_irq_injection(vcpu) &&
6780 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6781 			r = 0;
6782 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6783 			++vcpu->stat.request_irq_exits;
6784 			break;
6785 		}
6786 
6787 		kvm_check_async_pf_completion(vcpu);
6788 
6789 		if (signal_pending(current)) {
6790 			r = -EINTR;
6791 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6792 			++vcpu->stat.signal_exits;
6793 			break;
6794 		}
6795 		if (need_resched()) {
6796 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6797 			cond_resched();
6798 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6799 		}
6800 	}
6801 
6802 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6803 
6804 	return r;
6805 }
6806 
6807 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6808 {
6809 	int r;
6810 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6811 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6812 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6813 	if (r != EMULATE_DONE)
6814 		return 0;
6815 	return 1;
6816 }
6817 
6818 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6819 {
6820 	BUG_ON(!vcpu->arch.pio.count);
6821 
6822 	return complete_emulated_io(vcpu);
6823 }
6824 
6825 /*
6826  * Implements the following, as a state machine:
6827  *
6828  * read:
6829  *   for each fragment
6830  *     for each mmio piece in the fragment
6831  *       write gpa, len
6832  *       exit
6833  *       copy data
6834  *   execute insn
6835  *
6836  * write:
6837  *   for each fragment
6838  *     for each mmio piece in the fragment
6839  *       write gpa, len
6840  *       copy data
6841  *       exit
6842  */
6843 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6844 {
6845 	struct kvm_run *run = vcpu->run;
6846 	struct kvm_mmio_fragment *frag;
6847 	unsigned len;
6848 
6849 	BUG_ON(!vcpu->mmio_needed);
6850 
6851 	/* Complete previous fragment */
6852 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6853 	len = min(8u, frag->len);
6854 	if (!vcpu->mmio_is_write)
6855 		memcpy(frag->data, run->mmio.data, len);
6856 
6857 	if (frag->len <= 8) {
6858 		/* Switch to the next fragment. */
6859 		frag++;
6860 		vcpu->mmio_cur_fragment++;
6861 	} else {
6862 		/* Go forward to the next mmio piece. */
6863 		frag->data += len;
6864 		frag->gpa += len;
6865 		frag->len -= len;
6866 	}
6867 
6868 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6869 		vcpu->mmio_needed = 0;
6870 
6871 		/* FIXME: return into emulator if single-stepping.  */
6872 		if (vcpu->mmio_is_write)
6873 			return 1;
6874 		vcpu->mmio_read_completed = 1;
6875 		return complete_emulated_io(vcpu);
6876 	}
6877 
6878 	run->exit_reason = KVM_EXIT_MMIO;
6879 	run->mmio.phys_addr = frag->gpa;
6880 	if (vcpu->mmio_is_write)
6881 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6882 	run->mmio.len = min(8u, frag->len);
6883 	run->mmio.is_write = vcpu->mmio_is_write;
6884 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6885 	return 0;
6886 }
6887 
6888 
6889 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6890 {
6891 	struct fpu *fpu = &current->thread.fpu;
6892 	int r;
6893 	sigset_t sigsaved;
6894 
6895 	fpu__activate_curr(fpu);
6896 
6897 	if (vcpu->sigset_active)
6898 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6899 
6900 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6901 		kvm_vcpu_block(vcpu);
6902 		kvm_apic_accept_events(vcpu);
6903 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6904 		r = -EAGAIN;
6905 		goto out;
6906 	}
6907 
6908 	/* re-sync apic's tpr */
6909 	if (!lapic_in_kernel(vcpu)) {
6910 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6911 			r = -EINVAL;
6912 			goto out;
6913 		}
6914 	}
6915 
6916 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6917 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6918 		vcpu->arch.complete_userspace_io = NULL;
6919 		r = cui(vcpu);
6920 		if (r <= 0)
6921 			goto out;
6922 	} else
6923 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6924 
6925 	r = vcpu_run(vcpu);
6926 
6927 out:
6928 	post_kvm_run_save(vcpu);
6929 	if (vcpu->sigset_active)
6930 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6931 
6932 	return r;
6933 }
6934 
6935 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6936 {
6937 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6938 		/*
6939 		 * We are here if userspace calls get_regs() in the middle of
6940 		 * instruction emulation. Registers state needs to be copied
6941 		 * back from emulation context to vcpu. Userspace shouldn't do
6942 		 * that usually, but some bad designed PV devices (vmware
6943 		 * backdoor interface) need this to work
6944 		 */
6945 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6946 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6947 	}
6948 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6949 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6950 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6951 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6952 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6953 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6954 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6955 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6956 #ifdef CONFIG_X86_64
6957 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6958 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6959 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6960 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6961 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6962 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6963 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6964 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6965 #endif
6966 
6967 	regs->rip = kvm_rip_read(vcpu);
6968 	regs->rflags = kvm_get_rflags(vcpu);
6969 
6970 	return 0;
6971 }
6972 
6973 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6974 {
6975 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6976 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6977 
6978 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6979 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6980 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6981 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6982 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6983 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6984 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6985 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6986 #ifdef CONFIG_X86_64
6987 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6988 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6989 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6990 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6991 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6992 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6993 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6994 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6995 #endif
6996 
6997 	kvm_rip_write(vcpu, regs->rip);
6998 	kvm_set_rflags(vcpu, regs->rflags);
6999 
7000 	vcpu->arch.exception.pending = false;
7001 
7002 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7003 
7004 	return 0;
7005 }
7006 
7007 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7008 {
7009 	struct kvm_segment cs;
7010 
7011 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7012 	*db = cs.db;
7013 	*l = cs.l;
7014 }
7015 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7016 
7017 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7018 				  struct kvm_sregs *sregs)
7019 {
7020 	struct desc_ptr dt;
7021 
7022 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7023 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7024 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7025 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7026 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7027 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7028 
7029 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7030 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7031 
7032 	kvm_x86_ops->get_idt(vcpu, &dt);
7033 	sregs->idt.limit = dt.size;
7034 	sregs->idt.base = dt.address;
7035 	kvm_x86_ops->get_gdt(vcpu, &dt);
7036 	sregs->gdt.limit = dt.size;
7037 	sregs->gdt.base = dt.address;
7038 
7039 	sregs->cr0 = kvm_read_cr0(vcpu);
7040 	sregs->cr2 = vcpu->arch.cr2;
7041 	sregs->cr3 = kvm_read_cr3(vcpu);
7042 	sregs->cr4 = kvm_read_cr4(vcpu);
7043 	sregs->cr8 = kvm_get_cr8(vcpu);
7044 	sregs->efer = vcpu->arch.efer;
7045 	sregs->apic_base = kvm_get_apic_base(vcpu);
7046 
7047 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7048 
7049 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7050 		set_bit(vcpu->arch.interrupt.nr,
7051 			(unsigned long *)sregs->interrupt_bitmap);
7052 
7053 	return 0;
7054 }
7055 
7056 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7057 				    struct kvm_mp_state *mp_state)
7058 {
7059 	kvm_apic_accept_events(vcpu);
7060 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7061 					vcpu->arch.pv.pv_unhalted)
7062 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7063 	else
7064 		mp_state->mp_state = vcpu->arch.mp_state;
7065 
7066 	return 0;
7067 }
7068 
7069 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7070 				    struct kvm_mp_state *mp_state)
7071 {
7072 	if (!lapic_in_kernel(vcpu) &&
7073 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7074 		return -EINVAL;
7075 
7076 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7077 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7078 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7079 	} else
7080 		vcpu->arch.mp_state = mp_state->mp_state;
7081 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7082 	return 0;
7083 }
7084 
7085 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7086 		    int reason, bool has_error_code, u32 error_code)
7087 {
7088 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7089 	int ret;
7090 
7091 	init_emulate_ctxt(vcpu);
7092 
7093 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7094 				   has_error_code, error_code);
7095 
7096 	if (ret)
7097 		return EMULATE_FAIL;
7098 
7099 	kvm_rip_write(vcpu, ctxt->eip);
7100 	kvm_set_rflags(vcpu, ctxt->eflags);
7101 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7102 	return EMULATE_DONE;
7103 }
7104 EXPORT_SYMBOL_GPL(kvm_task_switch);
7105 
7106 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7107 				  struct kvm_sregs *sregs)
7108 {
7109 	struct msr_data apic_base_msr;
7110 	int mmu_reset_needed = 0;
7111 	int pending_vec, max_bits, idx;
7112 	struct desc_ptr dt;
7113 
7114 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7115 		return -EINVAL;
7116 
7117 	dt.size = sregs->idt.limit;
7118 	dt.address = sregs->idt.base;
7119 	kvm_x86_ops->set_idt(vcpu, &dt);
7120 	dt.size = sregs->gdt.limit;
7121 	dt.address = sregs->gdt.base;
7122 	kvm_x86_ops->set_gdt(vcpu, &dt);
7123 
7124 	vcpu->arch.cr2 = sregs->cr2;
7125 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7126 	vcpu->arch.cr3 = sregs->cr3;
7127 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7128 
7129 	kvm_set_cr8(vcpu, sregs->cr8);
7130 
7131 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7132 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7133 	apic_base_msr.data = sregs->apic_base;
7134 	apic_base_msr.host_initiated = true;
7135 	kvm_set_apic_base(vcpu, &apic_base_msr);
7136 
7137 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7138 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7139 	vcpu->arch.cr0 = sregs->cr0;
7140 
7141 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7142 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7143 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7144 		kvm_update_cpuid(vcpu);
7145 
7146 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7147 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7148 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7149 		mmu_reset_needed = 1;
7150 	}
7151 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7152 
7153 	if (mmu_reset_needed)
7154 		kvm_mmu_reset_context(vcpu);
7155 
7156 	max_bits = KVM_NR_INTERRUPTS;
7157 	pending_vec = find_first_bit(
7158 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7159 	if (pending_vec < max_bits) {
7160 		kvm_queue_interrupt(vcpu, pending_vec, false);
7161 		pr_debug("Set back pending irq %d\n", pending_vec);
7162 	}
7163 
7164 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7165 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7166 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7167 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7168 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7169 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7170 
7171 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7172 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7173 
7174 	update_cr8_intercept(vcpu);
7175 
7176 	/* Older userspace won't unhalt the vcpu on reset. */
7177 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7178 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7179 	    !is_protmode(vcpu))
7180 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7181 
7182 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7183 
7184 	return 0;
7185 }
7186 
7187 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7188 					struct kvm_guest_debug *dbg)
7189 {
7190 	unsigned long rflags;
7191 	int i, r;
7192 
7193 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7194 		r = -EBUSY;
7195 		if (vcpu->arch.exception.pending)
7196 			goto out;
7197 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7198 			kvm_queue_exception(vcpu, DB_VECTOR);
7199 		else
7200 			kvm_queue_exception(vcpu, BP_VECTOR);
7201 	}
7202 
7203 	/*
7204 	 * Read rflags as long as potentially injected trace flags are still
7205 	 * filtered out.
7206 	 */
7207 	rflags = kvm_get_rflags(vcpu);
7208 
7209 	vcpu->guest_debug = dbg->control;
7210 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7211 		vcpu->guest_debug = 0;
7212 
7213 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7214 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7215 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7216 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7217 	} else {
7218 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7219 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7220 	}
7221 	kvm_update_dr7(vcpu);
7222 
7223 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7224 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7225 			get_segment_base(vcpu, VCPU_SREG_CS);
7226 
7227 	/*
7228 	 * Trigger an rflags update that will inject or remove the trace
7229 	 * flags.
7230 	 */
7231 	kvm_set_rflags(vcpu, rflags);
7232 
7233 	kvm_x86_ops->update_bp_intercept(vcpu);
7234 
7235 	r = 0;
7236 
7237 out:
7238 
7239 	return r;
7240 }
7241 
7242 /*
7243  * Translate a guest virtual address to a guest physical address.
7244  */
7245 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7246 				    struct kvm_translation *tr)
7247 {
7248 	unsigned long vaddr = tr->linear_address;
7249 	gpa_t gpa;
7250 	int idx;
7251 
7252 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7253 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7254 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7255 	tr->physical_address = gpa;
7256 	tr->valid = gpa != UNMAPPED_GVA;
7257 	tr->writeable = 1;
7258 	tr->usermode = 0;
7259 
7260 	return 0;
7261 }
7262 
7263 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7264 {
7265 	struct fxregs_state *fxsave =
7266 			&vcpu->arch.guest_fpu.state.fxsave;
7267 
7268 	memcpy(fpu->fpr, fxsave->st_space, 128);
7269 	fpu->fcw = fxsave->cwd;
7270 	fpu->fsw = fxsave->swd;
7271 	fpu->ftwx = fxsave->twd;
7272 	fpu->last_opcode = fxsave->fop;
7273 	fpu->last_ip = fxsave->rip;
7274 	fpu->last_dp = fxsave->rdp;
7275 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7276 
7277 	return 0;
7278 }
7279 
7280 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7281 {
7282 	struct fxregs_state *fxsave =
7283 			&vcpu->arch.guest_fpu.state.fxsave;
7284 
7285 	memcpy(fxsave->st_space, fpu->fpr, 128);
7286 	fxsave->cwd = fpu->fcw;
7287 	fxsave->swd = fpu->fsw;
7288 	fxsave->twd = fpu->ftwx;
7289 	fxsave->fop = fpu->last_opcode;
7290 	fxsave->rip = fpu->last_ip;
7291 	fxsave->rdp = fpu->last_dp;
7292 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7293 
7294 	return 0;
7295 }
7296 
7297 static void fx_init(struct kvm_vcpu *vcpu)
7298 {
7299 	fpstate_init(&vcpu->arch.guest_fpu.state);
7300 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7301 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7302 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7303 
7304 	/*
7305 	 * Ensure guest xcr0 is valid for loading
7306 	 */
7307 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7308 
7309 	vcpu->arch.cr0 |= X86_CR0_ET;
7310 }
7311 
7312 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7313 {
7314 	if (vcpu->guest_fpu_loaded)
7315 		return;
7316 
7317 	/*
7318 	 * Restore all possible states in the guest,
7319 	 * and assume host would use all available bits.
7320 	 * Guest xcr0 would be loaded later.
7321 	 */
7322 	vcpu->guest_fpu_loaded = 1;
7323 	__kernel_fpu_begin();
7324 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7325 	trace_kvm_fpu(1);
7326 }
7327 
7328 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7329 {
7330 	if (!vcpu->guest_fpu_loaded) {
7331 		vcpu->fpu_counter = 0;
7332 		return;
7333 	}
7334 
7335 	vcpu->guest_fpu_loaded = 0;
7336 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7337 	__kernel_fpu_end();
7338 	++vcpu->stat.fpu_reload;
7339 	/*
7340 	 * If using eager FPU mode, or if the guest is a frequent user
7341 	 * of the FPU, just leave the FPU active for next time.
7342 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7343 	 * the FPU in bursts will revert to loading it on demand.
7344 	 */
7345 	if (!use_eager_fpu()) {
7346 		if (++vcpu->fpu_counter < 5)
7347 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7348 	}
7349 	trace_kvm_fpu(0);
7350 }
7351 
7352 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7353 {
7354 	kvmclock_reset(vcpu);
7355 
7356 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7357 	kvm_x86_ops->vcpu_free(vcpu);
7358 }
7359 
7360 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7361 						unsigned int id)
7362 {
7363 	struct kvm_vcpu *vcpu;
7364 
7365 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7366 		printk_once(KERN_WARNING
7367 		"kvm: SMP vm created on host with unstable TSC; "
7368 		"guest TSC will not be reliable\n");
7369 
7370 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7371 
7372 	return vcpu;
7373 }
7374 
7375 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7376 {
7377 	int r;
7378 
7379 	kvm_vcpu_mtrr_init(vcpu);
7380 	r = vcpu_load(vcpu);
7381 	if (r)
7382 		return r;
7383 	kvm_vcpu_reset(vcpu, false);
7384 	kvm_mmu_setup(vcpu);
7385 	vcpu_put(vcpu);
7386 	return r;
7387 }
7388 
7389 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7390 {
7391 	struct msr_data msr;
7392 	struct kvm *kvm = vcpu->kvm;
7393 
7394 	if (vcpu_load(vcpu))
7395 		return;
7396 	msr.data = 0x0;
7397 	msr.index = MSR_IA32_TSC;
7398 	msr.host_initiated = true;
7399 	kvm_write_tsc(vcpu, &msr);
7400 	vcpu_put(vcpu);
7401 
7402 	if (!kvmclock_periodic_sync)
7403 		return;
7404 
7405 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7406 					KVMCLOCK_SYNC_PERIOD);
7407 }
7408 
7409 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7410 {
7411 	int r;
7412 	vcpu->arch.apf.msr_val = 0;
7413 
7414 	r = vcpu_load(vcpu);
7415 	BUG_ON(r);
7416 	kvm_mmu_unload(vcpu);
7417 	vcpu_put(vcpu);
7418 
7419 	kvm_x86_ops->vcpu_free(vcpu);
7420 }
7421 
7422 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7423 {
7424 	vcpu->arch.hflags = 0;
7425 
7426 	atomic_set(&vcpu->arch.nmi_queued, 0);
7427 	vcpu->arch.nmi_pending = 0;
7428 	vcpu->arch.nmi_injected = false;
7429 	kvm_clear_interrupt_queue(vcpu);
7430 	kvm_clear_exception_queue(vcpu);
7431 
7432 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7433 	kvm_update_dr0123(vcpu);
7434 	vcpu->arch.dr6 = DR6_INIT;
7435 	kvm_update_dr6(vcpu);
7436 	vcpu->arch.dr7 = DR7_FIXED_1;
7437 	kvm_update_dr7(vcpu);
7438 
7439 	vcpu->arch.cr2 = 0;
7440 
7441 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7442 	vcpu->arch.apf.msr_val = 0;
7443 	vcpu->arch.st.msr_val = 0;
7444 
7445 	kvmclock_reset(vcpu);
7446 
7447 	kvm_clear_async_pf_completion_queue(vcpu);
7448 	kvm_async_pf_hash_reset(vcpu);
7449 	vcpu->arch.apf.halted = false;
7450 
7451 	if (!init_event) {
7452 		kvm_pmu_reset(vcpu);
7453 		vcpu->arch.smbase = 0x30000;
7454 	}
7455 
7456 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7457 	vcpu->arch.regs_avail = ~0;
7458 	vcpu->arch.regs_dirty = ~0;
7459 
7460 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7461 }
7462 
7463 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7464 {
7465 	struct kvm_segment cs;
7466 
7467 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7468 	cs.selector = vector << 8;
7469 	cs.base = vector << 12;
7470 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7471 	kvm_rip_write(vcpu, 0);
7472 }
7473 
7474 int kvm_arch_hardware_enable(void)
7475 {
7476 	struct kvm *kvm;
7477 	struct kvm_vcpu *vcpu;
7478 	int i;
7479 	int ret;
7480 	u64 local_tsc;
7481 	u64 max_tsc = 0;
7482 	bool stable, backwards_tsc = false;
7483 
7484 	kvm_shared_msr_cpu_online();
7485 	ret = kvm_x86_ops->hardware_enable();
7486 	if (ret != 0)
7487 		return ret;
7488 
7489 	local_tsc = rdtsc();
7490 	stable = !check_tsc_unstable();
7491 	list_for_each_entry(kvm, &vm_list, vm_list) {
7492 		kvm_for_each_vcpu(i, vcpu, kvm) {
7493 			if (!stable && vcpu->cpu == smp_processor_id())
7494 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7495 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7496 				backwards_tsc = true;
7497 				if (vcpu->arch.last_host_tsc > max_tsc)
7498 					max_tsc = vcpu->arch.last_host_tsc;
7499 			}
7500 		}
7501 	}
7502 
7503 	/*
7504 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7505 	 * platforms that reset TSC during suspend or hibernate actions, but
7506 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7507 	 * detect that condition here, which happens early in CPU bringup,
7508 	 * before any KVM threads can be running.  Unfortunately, we can't
7509 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7510 	 * enough into CPU bringup that we know how much real time has actually
7511 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7512 	 * variables that haven't been updated yet.
7513 	 *
7514 	 * So we simply find the maximum observed TSC above, then record the
7515 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7516 	 * the adjustment will be applied.  Note that we accumulate
7517 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7518 	 * gets a chance to run again.  In the event that no KVM threads get a
7519 	 * chance to run, we will miss the entire elapsed period, as we'll have
7520 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7521 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7522 	 * uniform across all VCPUs (not to mention the scenario is extremely
7523 	 * unlikely). It is possible that a second hibernate recovery happens
7524 	 * much faster than a first, causing the observed TSC here to be
7525 	 * smaller; this would require additional padding adjustment, which is
7526 	 * why we set last_host_tsc to the local tsc observed here.
7527 	 *
7528 	 * N.B. - this code below runs only on platforms with reliable TSC,
7529 	 * as that is the only way backwards_tsc is set above.  Also note
7530 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7531 	 * have the same delta_cyc adjustment applied if backwards_tsc
7532 	 * is detected.  Note further, this adjustment is only done once,
7533 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7534 	 * called multiple times (one for each physical CPU bringup).
7535 	 *
7536 	 * Platforms with unreliable TSCs don't have to deal with this, they
7537 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7538 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7539 	 * guarantee that they stay in perfect synchronization.
7540 	 */
7541 	if (backwards_tsc) {
7542 		u64 delta_cyc = max_tsc - local_tsc;
7543 		backwards_tsc_observed = true;
7544 		list_for_each_entry(kvm, &vm_list, vm_list) {
7545 			kvm_for_each_vcpu(i, vcpu, kvm) {
7546 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7547 				vcpu->arch.last_host_tsc = local_tsc;
7548 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7549 			}
7550 
7551 			/*
7552 			 * We have to disable TSC offset matching.. if you were
7553 			 * booting a VM while issuing an S4 host suspend....
7554 			 * you may have some problem.  Solving this issue is
7555 			 * left as an exercise to the reader.
7556 			 */
7557 			kvm->arch.last_tsc_nsec = 0;
7558 			kvm->arch.last_tsc_write = 0;
7559 		}
7560 
7561 	}
7562 	return 0;
7563 }
7564 
7565 void kvm_arch_hardware_disable(void)
7566 {
7567 	kvm_x86_ops->hardware_disable();
7568 	drop_user_return_notifiers();
7569 }
7570 
7571 int kvm_arch_hardware_setup(void)
7572 {
7573 	int r;
7574 
7575 	r = kvm_x86_ops->hardware_setup();
7576 	if (r != 0)
7577 		return r;
7578 
7579 	if (kvm_has_tsc_control) {
7580 		/*
7581 		 * Make sure the user can only configure tsc_khz values that
7582 		 * fit into a signed integer.
7583 		 * A min value is not calculated needed because it will always
7584 		 * be 1 on all machines.
7585 		 */
7586 		u64 max = min(0x7fffffffULL,
7587 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7588 		kvm_max_guest_tsc_khz = max;
7589 
7590 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7591 	}
7592 
7593 	kvm_init_msr_list();
7594 	return 0;
7595 }
7596 
7597 void kvm_arch_hardware_unsetup(void)
7598 {
7599 	kvm_x86_ops->hardware_unsetup();
7600 }
7601 
7602 void kvm_arch_check_processor_compat(void *rtn)
7603 {
7604 	kvm_x86_ops->check_processor_compatibility(rtn);
7605 }
7606 
7607 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7608 {
7609 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7610 }
7611 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7612 
7613 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7614 {
7615 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7616 }
7617 
7618 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7619 {
7620 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7621 }
7622 
7623 struct static_key kvm_no_apic_vcpu __read_mostly;
7624 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7625 
7626 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7627 {
7628 	struct page *page;
7629 	struct kvm *kvm;
7630 	int r;
7631 
7632 	BUG_ON(vcpu->kvm == NULL);
7633 	kvm = vcpu->kvm;
7634 
7635 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7636 	vcpu->arch.pv.pv_unhalted = false;
7637 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7638 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7639 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7640 	else
7641 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7642 
7643 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7644 	if (!page) {
7645 		r = -ENOMEM;
7646 		goto fail;
7647 	}
7648 	vcpu->arch.pio_data = page_address(page);
7649 
7650 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7651 
7652 	r = kvm_mmu_create(vcpu);
7653 	if (r < 0)
7654 		goto fail_free_pio_data;
7655 
7656 	if (irqchip_in_kernel(kvm)) {
7657 		r = kvm_create_lapic(vcpu);
7658 		if (r < 0)
7659 			goto fail_mmu_destroy;
7660 	} else
7661 		static_key_slow_inc(&kvm_no_apic_vcpu);
7662 
7663 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7664 				       GFP_KERNEL);
7665 	if (!vcpu->arch.mce_banks) {
7666 		r = -ENOMEM;
7667 		goto fail_free_lapic;
7668 	}
7669 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7670 
7671 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7672 		r = -ENOMEM;
7673 		goto fail_free_mce_banks;
7674 	}
7675 
7676 	fx_init(vcpu);
7677 
7678 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7679 	vcpu->arch.pv_time_enabled = false;
7680 
7681 	vcpu->arch.guest_supported_xcr0 = 0;
7682 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7683 
7684 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7685 
7686 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7687 
7688 	kvm_async_pf_hash_reset(vcpu);
7689 	kvm_pmu_init(vcpu);
7690 
7691 	vcpu->arch.pending_external_vector = -1;
7692 
7693 	kvm_hv_vcpu_init(vcpu);
7694 
7695 	return 0;
7696 
7697 fail_free_mce_banks:
7698 	kfree(vcpu->arch.mce_banks);
7699 fail_free_lapic:
7700 	kvm_free_lapic(vcpu);
7701 fail_mmu_destroy:
7702 	kvm_mmu_destroy(vcpu);
7703 fail_free_pio_data:
7704 	free_page((unsigned long)vcpu->arch.pio_data);
7705 fail:
7706 	return r;
7707 }
7708 
7709 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7710 {
7711 	int idx;
7712 
7713 	kvm_hv_vcpu_uninit(vcpu);
7714 	kvm_pmu_destroy(vcpu);
7715 	kfree(vcpu->arch.mce_banks);
7716 	kvm_free_lapic(vcpu);
7717 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7718 	kvm_mmu_destroy(vcpu);
7719 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7720 	free_page((unsigned long)vcpu->arch.pio_data);
7721 	if (!lapic_in_kernel(vcpu))
7722 		static_key_slow_dec(&kvm_no_apic_vcpu);
7723 }
7724 
7725 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7726 {
7727 	kvm_x86_ops->sched_in(vcpu, cpu);
7728 }
7729 
7730 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7731 {
7732 	if (type)
7733 		return -EINVAL;
7734 
7735 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7736 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7737 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7738 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7739 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7740 
7741 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7742 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7743 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7744 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7745 		&kvm->arch.irq_sources_bitmap);
7746 
7747 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7748 	mutex_init(&kvm->arch.apic_map_lock);
7749 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7750 
7751 	pvclock_update_vm_gtod_copy(kvm);
7752 
7753 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7754 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7755 
7756 	kvm_page_track_init(kvm);
7757 	kvm_mmu_init_vm(kvm);
7758 
7759 	if (kvm_x86_ops->vm_init)
7760 		return kvm_x86_ops->vm_init(kvm);
7761 
7762 	return 0;
7763 }
7764 
7765 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7766 {
7767 	int r;
7768 	r = vcpu_load(vcpu);
7769 	BUG_ON(r);
7770 	kvm_mmu_unload(vcpu);
7771 	vcpu_put(vcpu);
7772 }
7773 
7774 static void kvm_free_vcpus(struct kvm *kvm)
7775 {
7776 	unsigned int i;
7777 	struct kvm_vcpu *vcpu;
7778 
7779 	/*
7780 	 * Unpin any mmu pages first.
7781 	 */
7782 	kvm_for_each_vcpu(i, vcpu, kvm) {
7783 		kvm_clear_async_pf_completion_queue(vcpu);
7784 		kvm_unload_vcpu_mmu(vcpu);
7785 	}
7786 	kvm_for_each_vcpu(i, vcpu, kvm)
7787 		kvm_arch_vcpu_free(vcpu);
7788 
7789 	mutex_lock(&kvm->lock);
7790 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7791 		kvm->vcpus[i] = NULL;
7792 
7793 	atomic_set(&kvm->online_vcpus, 0);
7794 	mutex_unlock(&kvm->lock);
7795 }
7796 
7797 void kvm_arch_sync_events(struct kvm *kvm)
7798 {
7799 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7800 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7801 	kvm_free_all_assigned_devices(kvm);
7802 	kvm_free_pit(kvm);
7803 }
7804 
7805 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7806 {
7807 	int i, r;
7808 	unsigned long hva;
7809 	struct kvm_memslots *slots = kvm_memslots(kvm);
7810 	struct kvm_memory_slot *slot, old;
7811 
7812 	/* Called with kvm->slots_lock held.  */
7813 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7814 		return -EINVAL;
7815 
7816 	slot = id_to_memslot(slots, id);
7817 	if (size) {
7818 		if (WARN_ON(slot->npages))
7819 			return -EEXIST;
7820 
7821 		/*
7822 		 * MAP_SHARED to prevent internal slot pages from being moved
7823 		 * by fork()/COW.
7824 		 */
7825 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7826 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7827 		if (IS_ERR((void *)hva))
7828 			return PTR_ERR((void *)hva);
7829 	} else {
7830 		if (!slot->npages)
7831 			return 0;
7832 
7833 		hva = 0;
7834 	}
7835 
7836 	old = *slot;
7837 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7838 		struct kvm_userspace_memory_region m;
7839 
7840 		m.slot = id | (i << 16);
7841 		m.flags = 0;
7842 		m.guest_phys_addr = gpa;
7843 		m.userspace_addr = hva;
7844 		m.memory_size = size;
7845 		r = __kvm_set_memory_region(kvm, &m);
7846 		if (r < 0)
7847 			return r;
7848 	}
7849 
7850 	if (!size) {
7851 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7852 		WARN_ON(r < 0);
7853 	}
7854 
7855 	return 0;
7856 }
7857 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7858 
7859 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7860 {
7861 	int r;
7862 
7863 	mutex_lock(&kvm->slots_lock);
7864 	r = __x86_set_memory_region(kvm, id, gpa, size);
7865 	mutex_unlock(&kvm->slots_lock);
7866 
7867 	return r;
7868 }
7869 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7870 
7871 void kvm_arch_destroy_vm(struct kvm *kvm)
7872 {
7873 	if (current->mm == kvm->mm) {
7874 		/*
7875 		 * Free memory regions allocated on behalf of userspace,
7876 		 * unless the the memory map has changed due to process exit
7877 		 * or fd copying.
7878 		 */
7879 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7880 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7881 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7882 	}
7883 	if (kvm_x86_ops->vm_destroy)
7884 		kvm_x86_ops->vm_destroy(kvm);
7885 	kvm_iommu_unmap_guest(kvm);
7886 	kfree(kvm->arch.vpic);
7887 	kfree(kvm->arch.vioapic);
7888 	kvm_free_vcpus(kvm);
7889 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7890 	kvm_mmu_uninit_vm(kvm);
7891 }
7892 
7893 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7894 			   struct kvm_memory_slot *dont)
7895 {
7896 	int i;
7897 
7898 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7899 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7900 			kvfree(free->arch.rmap[i]);
7901 			free->arch.rmap[i] = NULL;
7902 		}
7903 		if (i == 0)
7904 			continue;
7905 
7906 		if (!dont || free->arch.lpage_info[i - 1] !=
7907 			     dont->arch.lpage_info[i - 1]) {
7908 			kvfree(free->arch.lpage_info[i - 1]);
7909 			free->arch.lpage_info[i - 1] = NULL;
7910 		}
7911 	}
7912 
7913 	kvm_page_track_free_memslot(free, dont);
7914 }
7915 
7916 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7917 			    unsigned long npages)
7918 {
7919 	int i;
7920 
7921 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7922 		struct kvm_lpage_info *linfo;
7923 		unsigned long ugfn;
7924 		int lpages;
7925 		int level = i + 1;
7926 
7927 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7928 				      slot->base_gfn, level) + 1;
7929 
7930 		slot->arch.rmap[i] =
7931 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7932 		if (!slot->arch.rmap[i])
7933 			goto out_free;
7934 		if (i == 0)
7935 			continue;
7936 
7937 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7938 		if (!linfo)
7939 			goto out_free;
7940 
7941 		slot->arch.lpage_info[i - 1] = linfo;
7942 
7943 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7944 			linfo[0].disallow_lpage = 1;
7945 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7946 			linfo[lpages - 1].disallow_lpage = 1;
7947 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7948 		/*
7949 		 * If the gfn and userspace address are not aligned wrt each
7950 		 * other, or if explicitly asked to, disable large page
7951 		 * support for this slot
7952 		 */
7953 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7954 		    !kvm_largepages_enabled()) {
7955 			unsigned long j;
7956 
7957 			for (j = 0; j < lpages; ++j)
7958 				linfo[j].disallow_lpage = 1;
7959 		}
7960 	}
7961 
7962 	if (kvm_page_track_create_memslot(slot, npages))
7963 		goto out_free;
7964 
7965 	return 0;
7966 
7967 out_free:
7968 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7969 		kvfree(slot->arch.rmap[i]);
7970 		slot->arch.rmap[i] = NULL;
7971 		if (i == 0)
7972 			continue;
7973 
7974 		kvfree(slot->arch.lpage_info[i - 1]);
7975 		slot->arch.lpage_info[i - 1] = NULL;
7976 	}
7977 	return -ENOMEM;
7978 }
7979 
7980 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7981 {
7982 	/*
7983 	 * memslots->generation has been incremented.
7984 	 * mmio generation may have reached its maximum value.
7985 	 */
7986 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7987 }
7988 
7989 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7990 				struct kvm_memory_slot *memslot,
7991 				const struct kvm_userspace_memory_region *mem,
7992 				enum kvm_mr_change change)
7993 {
7994 	return 0;
7995 }
7996 
7997 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7998 				     struct kvm_memory_slot *new)
7999 {
8000 	/* Still write protect RO slot */
8001 	if (new->flags & KVM_MEM_READONLY) {
8002 		kvm_mmu_slot_remove_write_access(kvm, new);
8003 		return;
8004 	}
8005 
8006 	/*
8007 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8008 	 *
8009 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8010 	 *
8011 	 *  - KVM_MR_CREATE with dirty logging is disabled
8012 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8013 	 *
8014 	 * The reason is, in case of PML, we need to set D-bit for any slots
8015 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8016 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8017 	 * guarantees leaving PML enabled during guest's lifetime won't have
8018 	 * any additonal overhead from PML when guest is running with dirty
8019 	 * logging disabled for memory slots.
8020 	 *
8021 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8022 	 * to dirty logging mode.
8023 	 *
8024 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8025 	 *
8026 	 * In case of write protect:
8027 	 *
8028 	 * Write protect all pages for dirty logging.
8029 	 *
8030 	 * All the sptes including the large sptes which point to this
8031 	 * slot are set to readonly. We can not create any new large
8032 	 * spte on this slot until the end of the logging.
8033 	 *
8034 	 * See the comments in fast_page_fault().
8035 	 */
8036 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8037 		if (kvm_x86_ops->slot_enable_log_dirty)
8038 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8039 		else
8040 			kvm_mmu_slot_remove_write_access(kvm, new);
8041 	} else {
8042 		if (kvm_x86_ops->slot_disable_log_dirty)
8043 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8044 	}
8045 }
8046 
8047 void kvm_arch_commit_memory_region(struct kvm *kvm,
8048 				const struct kvm_userspace_memory_region *mem,
8049 				const struct kvm_memory_slot *old,
8050 				const struct kvm_memory_slot *new,
8051 				enum kvm_mr_change change)
8052 {
8053 	int nr_mmu_pages = 0;
8054 
8055 	if (!kvm->arch.n_requested_mmu_pages)
8056 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8057 
8058 	if (nr_mmu_pages)
8059 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8060 
8061 	/*
8062 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8063 	 * sptes have to be split.  If live migration is successful, the guest
8064 	 * in the source machine will be destroyed and large sptes will be
8065 	 * created in the destination. However, if the guest continues to run
8066 	 * in the source machine (for example if live migration fails), small
8067 	 * sptes will remain around and cause bad performance.
8068 	 *
8069 	 * Scan sptes if dirty logging has been stopped, dropping those
8070 	 * which can be collapsed into a single large-page spte.  Later
8071 	 * page faults will create the large-page sptes.
8072 	 */
8073 	if ((change != KVM_MR_DELETE) &&
8074 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8075 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8076 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8077 
8078 	/*
8079 	 * Set up write protection and/or dirty logging for the new slot.
8080 	 *
8081 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8082 	 * been zapped so no dirty logging staff is needed for old slot. For
8083 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8084 	 * new and it's also covered when dealing with the new slot.
8085 	 *
8086 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8087 	 */
8088 	if (change != KVM_MR_DELETE)
8089 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8090 }
8091 
8092 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8093 {
8094 	kvm_mmu_invalidate_zap_all_pages(kvm);
8095 }
8096 
8097 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8098 				   struct kvm_memory_slot *slot)
8099 {
8100 	kvm_mmu_invalidate_zap_all_pages(kvm);
8101 }
8102 
8103 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8104 {
8105 	if (!list_empty_careful(&vcpu->async_pf.done))
8106 		return true;
8107 
8108 	if (kvm_apic_has_events(vcpu))
8109 		return true;
8110 
8111 	if (vcpu->arch.pv.pv_unhalted)
8112 		return true;
8113 
8114 	if (atomic_read(&vcpu->arch.nmi_queued))
8115 		return true;
8116 
8117 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8118 		return true;
8119 
8120 	if (kvm_arch_interrupt_allowed(vcpu) &&
8121 	    kvm_cpu_has_interrupt(vcpu))
8122 		return true;
8123 
8124 	if (kvm_hv_has_stimer_pending(vcpu))
8125 		return true;
8126 
8127 	return false;
8128 }
8129 
8130 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8131 {
8132 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8133 		kvm_x86_ops->check_nested_events(vcpu, false);
8134 
8135 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8136 }
8137 
8138 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8139 {
8140 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8141 }
8142 
8143 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8144 {
8145 	return kvm_x86_ops->interrupt_allowed(vcpu);
8146 }
8147 
8148 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8149 {
8150 	if (is_64_bit_mode(vcpu))
8151 		return kvm_rip_read(vcpu);
8152 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8153 		     kvm_rip_read(vcpu));
8154 }
8155 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8156 
8157 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8158 {
8159 	return kvm_get_linear_rip(vcpu) == linear_rip;
8160 }
8161 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8162 
8163 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8164 {
8165 	unsigned long rflags;
8166 
8167 	rflags = kvm_x86_ops->get_rflags(vcpu);
8168 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8169 		rflags &= ~X86_EFLAGS_TF;
8170 	return rflags;
8171 }
8172 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8173 
8174 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8175 {
8176 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8177 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8178 		rflags |= X86_EFLAGS_TF;
8179 	kvm_x86_ops->set_rflags(vcpu, rflags);
8180 }
8181 
8182 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8183 {
8184 	__kvm_set_rflags(vcpu, rflags);
8185 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8186 }
8187 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8188 
8189 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8190 {
8191 	int r;
8192 
8193 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8194 	      work->wakeup_all)
8195 		return;
8196 
8197 	r = kvm_mmu_reload(vcpu);
8198 	if (unlikely(r))
8199 		return;
8200 
8201 	if (!vcpu->arch.mmu.direct_map &&
8202 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8203 		return;
8204 
8205 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8206 }
8207 
8208 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8209 {
8210 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8211 }
8212 
8213 static inline u32 kvm_async_pf_next_probe(u32 key)
8214 {
8215 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8216 }
8217 
8218 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8219 {
8220 	u32 key = kvm_async_pf_hash_fn(gfn);
8221 
8222 	while (vcpu->arch.apf.gfns[key] != ~0)
8223 		key = kvm_async_pf_next_probe(key);
8224 
8225 	vcpu->arch.apf.gfns[key] = gfn;
8226 }
8227 
8228 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8229 {
8230 	int i;
8231 	u32 key = kvm_async_pf_hash_fn(gfn);
8232 
8233 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8234 		     (vcpu->arch.apf.gfns[key] != gfn &&
8235 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8236 		key = kvm_async_pf_next_probe(key);
8237 
8238 	return key;
8239 }
8240 
8241 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8242 {
8243 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8244 }
8245 
8246 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8247 {
8248 	u32 i, j, k;
8249 
8250 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8251 	while (true) {
8252 		vcpu->arch.apf.gfns[i] = ~0;
8253 		do {
8254 			j = kvm_async_pf_next_probe(j);
8255 			if (vcpu->arch.apf.gfns[j] == ~0)
8256 				return;
8257 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8258 			/*
8259 			 * k lies cyclically in ]i,j]
8260 			 * |    i.k.j |
8261 			 * |....j i.k.| or  |.k..j i...|
8262 			 */
8263 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8264 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8265 		i = j;
8266 	}
8267 }
8268 
8269 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8270 {
8271 
8272 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8273 				      sizeof(val));
8274 }
8275 
8276 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8277 				     struct kvm_async_pf *work)
8278 {
8279 	struct x86_exception fault;
8280 
8281 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8282 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8283 
8284 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8285 	    (vcpu->arch.apf.send_user_only &&
8286 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8287 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8288 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8289 		fault.vector = PF_VECTOR;
8290 		fault.error_code_valid = true;
8291 		fault.error_code = 0;
8292 		fault.nested_page_fault = false;
8293 		fault.address = work->arch.token;
8294 		kvm_inject_page_fault(vcpu, &fault);
8295 	}
8296 }
8297 
8298 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8299 				 struct kvm_async_pf *work)
8300 {
8301 	struct x86_exception fault;
8302 
8303 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8304 	if (work->wakeup_all)
8305 		work->arch.token = ~0; /* broadcast wakeup */
8306 	else
8307 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8308 
8309 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8310 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8311 		fault.vector = PF_VECTOR;
8312 		fault.error_code_valid = true;
8313 		fault.error_code = 0;
8314 		fault.nested_page_fault = false;
8315 		fault.address = work->arch.token;
8316 		kvm_inject_page_fault(vcpu, &fault);
8317 	}
8318 	vcpu->arch.apf.halted = false;
8319 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8320 }
8321 
8322 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8323 {
8324 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8325 		return true;
8326 	else
8327 		return !kvm_event_needs_reinjection(vcpu) &&
8328 			kvm_x86_ops->interrupt_allowed(vcpu);
8329 }
8330 
8331 void kvm_arch_start_assignment(struct kvm *kvm)
8332 {
8333 	atomic_inc(&kvm->arch.assigned_device_count);
8334 }
8335 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8336 
8337 void kvm_arch_end_assignment(struct kvm *kvm)
8338 {
8339 	atomic_dec(&kvm->arch.assigned_device_count);
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8342 
8343 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8344 {
8345 	return atomic_read(&kvm->arch.assigned_device_count);
8346 }
8347 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8348 
8349 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8350 {
8351 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8352 }
8353 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8354 
8355 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8356 {
8357 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8358 }
8359 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8360 
8361 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8362 {
8363 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8364 }
8365 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8366 
8367 bool kvm_arch_has_irq_bypass(void)
8368 {
8369 	return kvm_x86_ops->update_pi_irte != NULL;
8370 }
8371 
8372 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8373 				      struct irq_bypass_producer *prod)
8374 {
8375 	struct kvm_kernel_irqfd *irqfd =
8376 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8377 
8378 	irqfd->producer = prod;
8379 
8380 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8381 					   prod->irq, irqfd->gsi, 1);
8382 }
8383 
8384 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8385 				      struct irq_bypass_producer *prod)
8386 {
8387 	int ret;
8388 	struct kvm_kernel_irqfd *irqfd =
8389 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8390 
8391 	WARN_ON(irqfd->producer != prod);
8392 	irqfd->producer = NULL;
8393 
8394 	/*
8395 	 * When producer of consumer is unregistered, we change back to
8396 	 * remapped mode, so we can re-use the current implementation
8397 	 * when the irq is masked/disabed or the consumer side (KVM
8398 	 * int this case doesn't want to receive the interrupts.
8399 	*/
8400 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8401 	if (ret)
8402 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8403 		       " fails: %d\n", irqfd->consumer.token, ret);
8404 }
8405 
8406 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8407 				   uint32_t guest_irq, bool set)
8408 {
8409 	if (!kvm_x86_ops->update_pi_irte)
8410 		return -EINVAL;
8411 
8412 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8413 }
8414 
8415 bool kvm_vector_hashing_enabled(void)
8416 {
8417 	return vector_hashing;
8418 }
8419 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8420 
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8440