xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 930c429a)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 
106 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops);
108 
109 static bool __read_mostly ignore_msrs = 0;
110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
111 
112 static bool __read_mostly report_ignored_msrs = true;
113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
114 
115 unsigned int min_timer_period_us = 500;
116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly kvmclock_periodic_sync = true;
119 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
120 
121 bool __read_mostly kvm_has_tsc_control;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
123 u32  __read_mostly kvm_max_guest_tsc_khz;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
125 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
127 u64  __read_mostly kvm_max_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
131 
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm = 250;
134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
135 
136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
137 unsigned int __read_mostly lapic_timer_advance_ns = 0;
138 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
139 
140 static bool __read_mostly vector_hashing = true;
141 module_param(vector_hashing, bool, S_IRUGO);
142 
143 #define KVM_NR_SHARED_MSRS 16
144 
145 struct kvm_shared_msrs_global {
146 	int nr;
147 	u32 msrs[KVM_NR_SHARED_MSRS];
148 };
149 
150 struct kvm_shared_msrs {
151 	struct user_return_notifier urn;
152 	bool registered;
153 	struct kvm_shared_msr_values {
154 		u64 host;
155 		u64 curr;
156 	} values[KVM_NR_SHARED_MSRS];
157 };
158 
159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
160 static struct kvm_shared_msrs __percpu *shared_msrs;
161 
162 struct kvm_stats_debugfs_item debugfs_entries[] = {
163 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
164 	{ "pf_guest", VCPU_STAT(pf_guest) },
165 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
166 	{ "invlpg", VCPU_STAT(invlpg) },
167 	{ "exits", VCPU_STAT(exits) },
168 	{ "io_exits", VCPU_STAT(io_exits) },
169 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
170 	{ "signal_exits", VCPU_STAT(signal_exits) },
171 	{ "irq_window", VCPU_STAT(irq_window_exits) },
172 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
173 	{ "halt_exits", VCPU_STAT(halt_exits) },
174 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
175 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
176 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
177 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
178 	{ "hypercalls", VCPU_STAT(hypercalls) },
179 	{ "request_irq", VCPU_STAT(request_irq_exits) },
180 	{ "irq_exits", VCPU_STAT(irq_exits) },
181 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
182 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
183 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
184 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
185 	{ "irq_injections", VCPU_STAT(irq_injections) },
186 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
187 	{ "req_event", VCPU_STAT(req_event) },
188 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
190 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
193 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
194 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
196 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197 	{ "largepages", VM_STAT(lpages) },
198 	{ "max_mmu_page_hash_collisions",
199 		VM_STAT(max_mmu_page_hash_collisions) },
200 	{ NULL }
201 };
202 
203 u64 __read_mostly host_xcr0;
204 
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206 
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209 	int i;
210 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211 		vcpu->arch.apf.gfns[i] = ~0;
212 }
213 
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216 	unsigned slot;
217 	struct kvm_shared_msrs *locals
218 		= container_of(urn, struct kvm_shared_msrs, urn);
219 	struct kvm_shared_msr_values *values;
220 	unsigned long flags;
221 
222 	/*
223 	 * Disabling irqs at this point since the following code could be
224 	 * interrupted and executed through kvm_arch_hardware_disable()
225 	 */
226 	local_irq_save(flags);
227 	if (locals->registered) {
228 		locals->registered = false;
229 		user_return_notifier_unregister(urn);
230 	}
231 	local_irq_restore(flags);
232 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233 		values = &locals->values[slot];
234 		if (values->host != values->curr) {
235 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
236 			values->curr = values->host;
237 		}
238 	}
239 }
240 
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243 	u64 value;
244 	unsigned int cpu = smp_processor_id();
245 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246 
247 	/* only read, and nobody should modify it at this time,
248 	 * so don't need lock */
249 	if (slot >= shared_msrs_global.nr) {
250 		printk(KERN_ERR "kvm: invalid MSR slot!");
251 		return;
252 	}
253 	rdmsrl_safe(msr, &value);
254 	smsr->values[slot].host = value;
255 	smsr->values[slot].curr = value;
256 }
257 
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261 	shared_msrs_global.msrs[slot] = msr;
262 	if (slot >= shared_msrs_global.nr)
263 		shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266 
267 static void kvm_shared_msr_cpu_online(void)
268 {
269 	unsigned i;
270 
271 	for (i = 0; i < shared_msrs_global.nr; ++i)
272 		shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274 
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277 	unsigned int cpu = smp_processor_id();
278 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 	int err;
280 
281 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
282 		return 0;
283 	smsr->values[slot].curr = value;
284 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285 	if (err)
286 		return 1;
287 
288 	if (!smsr->registered) {
289 		smsr->urn.on_user_return = kvm_on_user_return;
290 		user_return_notifier_register(&smsr->urn);
291 		smsr->registered = true;
292 	}
293 	return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296 
297 static void drop_user_return_notifiers(void)
298 {
299 	unsigned int cpu = smp_processor_id();
300 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301 
302 	if (smsr->registered)
303 		kvm_on_user_return(&smsr->urn);
304 }
305 
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308 	return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311 
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314 	u64 old_state = vcpu->arch.apic_base &
315 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316 	u64 new_state = msr_info->data &
317 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320 
321 	if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322 		return 1;
323 	if (!msr_info->host_initiated &&
324 	    ((new_state == MSR_IA32_APICBASE_ENABLE &&
325 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327 	      old_state == 0)))
328 		return 1;
329 
330 	kvm_lapic_set_base(vcpu, msr_info->data);
331 	return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334 
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337 	/* Fault while not rebooting.  We want the trace. */
338 	BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341 
342 #define EXCPT_BENIGN		0
343 #define EXCPT_CONTRIBUTORY	1
344 #define EXCPT_PF		2
345 
346 static int exception_class(int vector)
347 {
348 	switch (vector) {
349 	case PF_VECTOR:
350 		return EXCPT_PF;
351 	case DE_VECTOR:
352 	case TS_VECTOR:
353 	case NP_VECTOR:
354 	case SS_VECTOR:
355 	case GP_VECTOR:
356 		return EXCPT_CONTRIBUTORY;
357 	default:
358 		break;
359 	}
360 	return EXCPT_BENIGN;
361 }
362 
363 #define EXCPT_FAULT		0
364 #define EXCPT_TRAP		1
365 #define EXCPT_ABORT		2
366 #define EXCPT_INTERRUPT		3
367 
368 static int exception_type(int vector)
369 {
370 	unsigned int mask;
371 
372 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373 		return EXCPT_INTERRUPT;
374 
375 	mask = 1 << vector;
376 
377 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
378 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379 		return EXCPT_TRAP;
380 
381 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382 		return EXCPT_ABORT;
383 
384 	/* Reserved exceptions will result in fault */
385 	return EXCPT_FAULT;
386 }
387 
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389 		unsigned nr, bool has_error, u32 error_code,
390 		bool reinject)
391 {
392 	u32 prev_nr;
393 	int class1, class2;
394 
395 	kvm_make_request(KVM_REQ_EVENT, vcpu);
396 
397 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398 	queue:
399 		if (has_error && !is_protmode(vcpu))
400 			has_error = false;
401 		if (reinject) {
402 			/*
403 			 * On vmentry, vcpu->arch.exception.pending is only
404 			 * true if an event injection was blocked by
405 			 * nested_run_pending.  In that case, however,
406 			 * vcpu_enter_guest requests an immediate exit,
407 			 * and the guest shouldn't proceed far enough to
408 			 * need reinjection.
409 			 */
410 			WARN_ON_ONCE(vcpu->arch.exception.pending);
411 			vcpu->arch.exception.injected = true;
412 		} else {
413 			vcpu->arch.exception.pending = true;
414 			vcpu->arch.exception.injected = false;
415 		}
416 		vcpu->arch.exception.has_error_code = has_error;
417 		vcpu->arch.exception.nr = nr;
418 		vcpu->arch.exception.error_code = error_code;
419 		return;
420 	}
421 
422 	/* to check exception */
423 	prev_nr = vcpu->arch.exception.nr;
424 	if (prev_nr == DF_VECTOR) {
425 		/* triple fault -> shutdown */
426 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427 		return;
428 	}
429 	class1 = exception_class(prev_nr);
430 	class2 = exception_class(nr);
431 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433 		/*
434 		 * Generate double fault per SDM Table 5-5.  Set
435 		 * exception.pending = true so that the double fault
436 		 * can trigger a nested vmexit.
437 		 */
438 		vcpu->arch.exception.pending = true;
439 		vcpu->arch.exception.injected = false;
440 		vcpu->arch.exception.has_error_code = true;
441 		vcpu->arch.exception.nr = DF_VECTOR;
442 		vcpu->arch.exception.error_code = 0;
443 	} else
444 		/* replace previous exception with a new one in a hope
445 		   that instruction re-execution will regenerate lost
446 		   exception */
447 		goto queue;
448 }
449 
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452 	kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455 
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458 	kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461 
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464 	if (err)
465 		kvm_inject_gp(vcpu, 0);
466 	else
467 		return kvm_skip_emulated_instruction(vcpu);
468 
469 	return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472 
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475 	++vcpu->stat.pf_guest;
476 	vcpu->arch.exception.nested_apf =
477 		is_guest_mode(vcpu) && fault->async_page_fault;
478 	if (vcpu->arch.exception.nested_apf)
479 		vcpu->arch.apf.nested_apf_token = fault->address;
480 	else
481 		vcpu->arch.cr2 = fault->address;
482 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485 
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490 	else
491 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492 
493 	return fault->nested_page_fault;
494 }
495 
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498 	atomic_inc(&vcpu->arch.nmi_queued);
499 	kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502 
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508 
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514 
515 /*
516  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
517  * a #GP and return false.
518  */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522 		return true;
523 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524 	return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527 
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531 		return true;
532 
533 	kvm_queue_exception(vcpu, UD_VECTOR);
534 	return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537 
538 /*
539  * This function will be used to read from the physical memory of the currently
540  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541  * can read from guest physical or from the guest's guest physical memory.
542  */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544 			    gfn_t ngfn, void *data, int offset, int len,
545 			    u32 access)
546 {
547 	struct x86_exception exception;
548 	gfn_t real_gfn;
549 	gpa_t ngpa;
550 
551 	ngpa     = gfn_to_gpa(ngfn);
552 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553 	if (real_gfn == UNMAPPED_GVA)
554 		return -EFAULT;
555 
556 	real_gfn = gpa_to_gfn(real_gfn);
557 
558 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561 
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563 			       void *data, int offset, int len, u32 access)
564 {
565 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566 				       data, offset, len, access);
567 }
568 
569 /*
570  * Load the pae pdptrs.  Return true is they are all valid.
571  */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576 	int i;
577 	int ret;
578 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579 
580 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581 				      offset * sizeof(u64), sizeof(pdpte),
582 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
583 	if (ret < 0) {
584 		ret = 0;
585 		goto out;
586 	}
587 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588 		if ((pdpte[i] & PT_PRESENT_MASK) &&
589 		    (pdpte[i] &
590 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591 			ret = 0;
592 			goto out;
593 		}
594 	}
595 	ret = 1;
596 
597 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598 	__set_bit(VCPU_EXREG_PDPTR,
599 		  (unsigned long *)&vcpu->arch.regs_avail);
600 	__set_bit(VCPU_EXREG_PDPTR,
601 		  (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603 
604 	return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607 
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611 	bool changed = true;
612 	int offset;
613 	gfn_t gfn;
614 	int r;
615 
616 	if (is_long_mode(vcpu) || !is_pae(vcpu))
617 		return false;
618 
619 	if (!test_bit(VCPU_EXREG_PDPTR,
620 		      (unsigned long *)&vcpu->arch.regs_avail))
621 		return true;
622 
623 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
627 	if (r < 0)
628 		goto out;
629 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631 
632 	return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635 
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
639 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640 
641 	cr0 |= X86_CR0_ET;
642 
643 #ifdef CONFIG_X86_64
644 	if (cr0 & 0xffffffff00000000UL)
645 		return 1;
646 #endif
647 
648 	cr0 &= ~CR0_RESERVED_BITS;
649 
650 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651 		return 1;
652 
653 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654 		return 1;
655 
656 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658 		if ((vcpu->arch.efer & EFER_LME)) {
659 			int cs_db, cs_l;
660 
661 			if (!is_pae(vcpu))
662 				return 1;
663 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664 			if (cs_l)
665 				return 1;
666 		} else
667 #endif
668 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 						 kvm_read_cr3(vcpu)))
670 			return 1;
671 	}
672 
673 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674 		return 1;
675 
676 	kvm_x86_ops->set_cr0(vcpu, cr0);
677 
678 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679 		kvm_clear_async_pf_completion_queue(vcpu);
680 		kvm_async_pf_hash_reset(vcpu);
681 	}
682 
683 	if ((cr0 ^ old_cr0) & update_bits)
684 		kvm_mmu_reset_context(vcpu);
685 
686 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690 
691 	return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694 
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700 
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704 			!vcpu->guest_xcr0_loaded) {
705 		/* kvm_set_xcr() also depends on this */
706 		if (vcpu->arch.xcr0 != host_xcr0)
707 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
708 		vcpu->guest_xcr0_loaded = 1;
709 	}
710 }
711 
712 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
713 {
714 	if (vcpu->guest_xcr0_loaded) {
715 		if (vcpu->arch.xcr0 != host_xcr0)
716 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
717 		vcpu->guest_xcr0_loaded = 0;
718 	}
719 }
720 
721 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
722 {
723 	u64 xcr0 = xcr;
724 	u64 old_xcr0 = vcpu->arch.xcr0;
725 	u64 valid_bits;
726 
727 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
728 	if (index != XCR_XFEATURE_ENABLED_MASK)
729 		return 1;
730 	if (!(xcr0 & XFEATURE_MASK_FP))
731 		return 1;
732 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
733 		return 1;
734 
735 	/*
736 	 * Do not allow the guest to set bits that we do not support
737 	 * saving.  However, xcr0 bit 0 is always set, even if the
738 	 * emulated CPU does not support XSAVE (see fx_init).
739 	 */
740 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
741 	if (xcr0 & ~valid_bits)
742 		return 1;
743 
744 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
745 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
746 		return 1;
747 
748 	if (xcr0 & XFEATURE_MASK_AVX512) {
749 		if (!(xcr0 & XFEATURE_MASK_YMM))
750 			return 1;
751 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
752 			return 1;
753 	}
754 	vcpu->arch.xcr0 = xcr0;
755 
756 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
757 		kvm_update_cpuid(vcpu);
758 	return 0;
759 }
760 
761 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
762 {
763 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
764 	    __kvm_set_xcr(vcpu, index, xcr)) {
765 		kvm_inject_gp(vcpu, 0);
766 		return 1;
767 	}
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_xcr);
771 
772 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
773 {
774 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
775 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
776 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
777 
778 	if (cr4 & CR4_RESERVED_BITS)
779 		return 1;
780 
781 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
782 		return 1;
783 
784 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
785 		return 1;
786 
787 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
788 		return 1;
789 
790 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
791 		return 1;
792 
793 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
794 		return 1;
795 
796 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
797 		return 1;
798 
799 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
800 		return 1;
801 
802 	if (is_long_mode(vcpu)) {
803 		if (!(cr4 & X86_CR4_PAE))
804 			return 1;
805 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
806 		   && ((cr4 ^ old_cr4) & pdptr_bits)
807 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 				   kvm_read_cr3(vcpu)))
809 		return 1;
810 
811 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
812 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
813 			return 1;
814 
815 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
816 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
817 			return 1;
818 	}
819 
820 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
821 		return 1;
822 
823 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
824 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
825 		kvm_mmu_reset_context(vcpu);
826 
827 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
828 		kvm_update_cpuid(vcpu);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr4);
833 
834 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
835 {
836 #ifdef CONFIG_X86_64
837 	cr3 &= ~CR3_PCID_INVD;
838 #endif
839 
840 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
841 		kvm_mmu_sync_roots(vcpu);
842 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
843 		return 0;
844 	}
845 
846 	if (is_long_mode(vcpu) &&
847 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
848 		return 1;
849 	else if (is_pae(vcpu) && is_paging(vcpu) &&
850 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
851 		return 1;
852 
853 	vcpu->arch.cr3 = cr3;
854 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
855 	kvm_mmu_new_cr3(vcpu);
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(kvm_set_cr3);
859 
860 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
861 {
862 	if (cr8 & CR8_RESERVED_BITS)
863 		return 1;
864 	if (lapic_in_kernel(vcpu))
865 		kvm_lapic_set_tpr(vcpu, cr8);
866 	else
867 		vcpu->arch.cr8 = cr8;
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr8);
871 
872 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
873 {
874 	if (lapic_in_kernel(vcpu))
875 		return kvm_lapic_get_cr8(vcpu);
876 	else
877 		return vcpu->arch.cr8;
878 }
879 EXPORT_SYMBOL_GPL(kvm_get_cr8);
880 
881 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
882 {
883 	int i;
884 
885 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
886 		for (i = 0; i < KVM_NR_DB_REGS; i++)
887 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
888 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
889 	}
890 }
891 
892 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
893 {
894 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
896 }
897 
898 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
899 {
900 	unsigned long dr7;
901 
902 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
903 		dr7 = vcpu->arch.guest_debug_dr7;
904 	else
905 		dr7 = vcpu->arch.dr7;
906 	kvm_x86_ops->set_dr7(vcpu, dr7);
907 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
908 	if (dr7 & DR7_BP_EN_MASK)
909 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
910 }
911 
912 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
913 {
914 	u64 fixed = DR6_FIXED_1;
915 
916 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
917 		fixed |= DR6_RTM;
918 	return fixed;
919 }
920 
921 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
922 {
923 	switch (dr) {
924 	case 0 ... 3:
925 		vcpu->arch.db[dr] = val;
926 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
927 			vcpu->arch.eff_db[dr] = val;
928 		break;
929 	case 4:
930 		/* fall through */
931 	case 6:
932 		if (val & 0xffffffff00000000ULL)
933 			return -1; /* #GP */
934 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
935 		kvm_update_dr6(vcpu);
936 		break;
937 	case 5:
938 		/* fall through */
939 	default: /* 7 */
940 		if (val & 0xffffffff00000000ULL)
941 			return -1; /* #GP */
942 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
943 		kvm_update_dr7(vcpu);
944 		break;
945 	}
946 
947 	return 0;
948 }
949 
950 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
951 {
952 	if (__kvm_set_dr(vcpu, dr, val)) {
953 		kvm_inject_gp(vcpu, 0);
954 		return 1;
955 	}
956 	return 0;
957 }
958 EXPORT_SYMBOL_GPL(kvm_set_dr);
959 
960 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
961 {
962 	switch (dr) {
963 	case 0 ... 3:
964 		*val = vcpu->arch.db[dr];
965 		break;
966 	case 4:
967 		/* fall through */
968 	case 6:
969 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
970 			*val = vcpu->arch.dr6;
971 		else
972 			*val = kvm_x86_ops->get_dr6(vcpu);
973 		break;
974 	case 5:
975 		/* fall through */
976 	default: /* 7 */
977 		*val = vcpu->arch.dr7;
978 		break;
979 	}
980 	return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_get_dr);
983 
984 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
985 {
986 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
987 	u64 data;
988 	int err;
989 
990 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
991 	if (err)
992 		return err;
993 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
994 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
995 	return err;
996 }
997 EXPORT_SYMBOL_GPL(kvm_rdpmc);
998 
999 /*
1000  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1001  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1002  *
1003  * This list is modified at module load time to reflect the
1004  * capabilities of the host cpu. This capabilities test skips MSRs that are
1005  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1006  * may depend on host virtualization features rather than host cpu features.
1007  */
1008 
1009 static u32 msrs_to_save[] = {
1010 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1011 	MSR_STAR,
1012 #ifdef CONFIG_X86_64
1013 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1014 #endif
1015 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1016 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1017 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1018 };
1019 
1020 static unsigned num_msrs_to_save;
1021 
1022 static u32 emulated_msrs[] = {
1023 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1024 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1025 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1026 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1027 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1028 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1029 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1030 	HV_X64_MSR_RESET,
1031 	HV_X64_MSR_VP_INDEX,
1032 	HV_X64_MSR_VP_RUNTIME,
1033 	HV_X64_MSR_SCONTROL,
1034 	HV_X64_MSR_STIMER0_CONFIG,
1035 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1036 	MSR_KVM_PV_EOI_EN,
1037 
1038 	MSR_IA32_TSC_ADJUST,
1039 	MSR_IA32_TSCDEADLINE,
1040 	MSR_IA32_MISC_ENABLE,
1041 	MSR_IA32_MCG_STATUS,
1042 	MSR_IA32_MCG_CTL,
1043 	MSR_IA32_MCG_EXT_CTL,
1044 	MSR_IA32_SMBASE,
1045 	MSR_SMI_COUNT,
1046 	MSR_PLATFORM_INFO,
1047 	MSR_MISC_FEATURES_ENABLES,
1048 };
1049 
1050 static unsigned num_emulated_msrs;
1051 
1052 /*
1053  * List of msr numbers which are used to expose MSR-based features that
1054  * can be used by a hypervisor to validate requested CPU features.
1055  */
1056 static u32 msr_based_features[] = {
1057 	MSR_F10H_DECFG,
1058 	MSR_IA32_UCODE_REV,
1059 };
1060 
1061 static unsigned int num_msr_based_features;
1062 
1063 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1064 {
1065 	switch (msr->index) {
1066 	case MSR_IA32_UCODE_REV:
1067 		rdmsrl(msr->index, msr->data);
1068 		break;
1069 	default:
1070 		if (kvm_x86_ops->get_msr_feature(msr))
1071 			return 1;
1072 	}
1073 	return 0;
1074 }
1075 
1076 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1077 {
1078 	struct kvm_msr_entry msr;
1079 	int r;
1080 
1081 	msr.index = index;
1082 	r = kvm_get_msr_feature(&msr);
1083 	if (r)
1084 		return r;
1085 
1086 	*data = msr.data;
1087 
1088 	return 0;
1089 }
1090 
1091 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1092 {
1093 	if (efer & efer_reserved_bits)
1094 		return false;
1095 
1096 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1097 			return false;
1098 
1099 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1100 			return false;
1101 
1102 	return true;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1105 
1106 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1107 {
1108 	u64 old_efer = vcpu->arch.efer;
1109 
1110 	if (!kvm_valid_efer(vcpu, efer))
1111 		return 1;
1112 
1113 	if (is_paging(vcpu)
1114 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1115 		return 1;
1116 
1117 	efer &= ~EFER_LMA;
1118 	efer |= vcpu->arch.efer & EFER_LMA;
1119 
1120 	kvm_x86_ops->set_efer(vcpu, efer);
1121 
1122 	/* Update reserved bits */
1123 	if ((efer ^ old_efer) & EFER_NX)
1124 		kvm_mmu_reset_context(vcpu);
1125 
1126 	return 0;
1127 }
1128 
1129 void kvm_enable_efer_bits(u64 mask)
1130 {
1131        efer_reserved_bits &= ~mask;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1134 
1135 /*
1136  * Writes msr value into into the appropriate "register".
1137  * Returns 0 on success, non-0 otherwise.
1138  * Assumes vcpu_load() was already called.
1139  */
1140 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1141 {
1142 	switch (msr->index) {
1143 	case MSR_FS_BASE:
1144 	case MSR_GS_BASE:
1145 	case MSR_KERNEL_GS_BASE:
1146 	case MSR_CSTAR:
1147 	case MSR_LSTAR:
1148 		if (is_noncanonical_address(msr->data, vcpu))
1149 			return 1;
1150 		break;
1151 	case MSR_IA32_SYSENTER_EIP:
1152 	case MSR_IA32_SYSENTER_ESP:
1153 		/*
1154 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1155 		 * non-canonical address is written on Intel but not on
1156 		 * AMD (which ignores the top 32-bits, because it does
1157 		 * not implement 64-bit SYSENTER).
1158 		 *
1159 		 * 64-bit code should hence be able to write a non-canonical
1160 		 * value on AMD.  Making the address canonical ensures that
1161 		 * vmentry does not fail on Intel after writing a non-canonical
1162 		 * value, and that something deterministic happens if the guest
1163 		 * invokes 64-bit SYSENTER.
1164 		 */
1165 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1166 	}
1167 	return kvm_x86_ops->set_msr(vcpu, msr);
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_set_msr);
1170 
1171 /*
1172  * Adapt set_msr() to msr_io()'s calling convention
1173  */
1174 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1175 {
1176 	struct msr_data msr;
1177 	int r;
1178 
1179 	msr.index = index;
1180 	msr.host_initiated = true;
1181 	r = kvm_get_msr(vcpu, &msr);
1182 	if (r)
1183 		return r;
1184 
1185 	*data = msr.data;
1186 	return 0;
1187 }
1188 
1189 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1190 {
1191 	struct msr_data msr;
1192 
1193 	msr.data = *data;
1194 	msr.index = index;
1195 	msr.host_initiated = true;
1196 	return kvm_set_msr(vcpu, &msr);
1197 }
1198 
1199 #ifdef CONFIG_X86_64
1200 struct pvclock_gtod_data {
1201 	seqcount_t	seq;
1202 
1203 	struct { /* extract of a clocksource struct */
1204 		int vclock_mode;
1205 		u64	cycle_last;
1206 		u64	mask;
1207 		u32	mult;
1208 		u32	shift;
1209 	} clock;
1210 
1211 	u64		boot_ns;
1212 	u64		nsec_base;
1213 	u64		wall_time_sec;
1214 };
1215 
1216 static struct pvclock_gtod_data pvclock_gtod_data;
1217 
1218 static void update_pvclock_gtod(struct timekeeper *tk)
1219 {
1220 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1221 	u64 boot_ns;
1222 
1223 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1224 
1225 	write_seqcount_begin(&vdata->seq);
1226 
1227 	/* copy pvclock gtod data */
1228 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1229 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1230 	vdata->clock.mask		= tk->tkr_mono.mask;
1231 	vdata->clock.mult		= tk->tkr_mono.mult;
1232 	vdata->clock.shift		= tk->tkr_mono.shift;
1233 
1234 	vdata->boot_ns			= boot_ns;
1235 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1236 
1237 	vdata->wall_time_sec            = tk->xtime_sec;
1238 
1239 	write_seqcount_end(&vdata->seq);
1240 }
1241 #endif
1242 
1243 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1244 {
1245 	/*
1246 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1247 	 * vcpu_enter_guest.  This function is only called from
1248 	 * the physical CPU that is running vcpu.
1249 	 */
1250 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1251 }
1252 
1253 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1254 {
1255 	int version;
1256 	int r;
1257 	struct pvclock_wall_clock wc;
1258 	struct timespec64 boot;
1259 
1260 	if (!wall_clock)
1261 		return;
1262 
1263 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1264 	if (r)
1265 		return;
1266 
1267 	if (version & 1)
1268 		++version;  /* first time write, random junk */
1269 
1270 	++version;
1271 
1272 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1273 		return;
1274 
1275 	/*
1276 	 * The guest calculates current wall clock time by adding
1277 	 * system time (updated by kvm_guest_time_update below) to the
1278 	 * wall clock specified here.  guest system time equals host
1279 	 * system time for us, thus we must fill in host boot time here.
1280 	 */
1281 	getboottime64(&boot);
1282 
1283 	if (kvm->arch.kvmclock_offset) {
1284 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1285 		boot = timespec64_sub(boot, ts);
1286 	}
1287 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1288 	wc.nsec = boot.tv_nsec;
1289 	wc.version = version;
1290 
1291 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1292 
1293 	version++;
1294 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1295 }
1296 
1297 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1298 {
1299 	do_shl32_div32(dividend, divisor);
1300 	return dividend;
1301 }
1302 
1303 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1304 			       s8 *pshift, u32 *pmultiplier)
1305 {
1306 	uint64_t scaled64;
1307 	int32_t  shift = 0;
1308 	uint64_t tps64;
1309 	uint32_t tps32;
1310 
1311 	tps64 = base_hz;
1312 	scaled64 = scaled_hz;
1313 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1314 		tps64 >>= 1;
1315 		shift--;
1316 	}
1317 
1318 	tps32 = (uint32_t)tps64;
1319 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1320 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1321 			scaled64 >>= 1;
1322 		else
1323 			tps32 <<= 1;
1324 		shift++;
1325 	}
1326 
1327 	*pshift = shift;
1328 	*pmultiplier = div_frac(scaled64, tps32);
1329 
1330 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1331 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1332 }
1333 
1334 #ifdef CONFIG_X86_64
1335 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1336 #endif
1337 
1338 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1339 static unsigned long max_tsc_khz;
1340 
1341 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1342 {
1343 	u64 v = (u64)khz * (1000000 + ppm);
1344 	do_div(v, 1000000);
1345 	return v;
1346 }
1347 
1348 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1349 {
1350 	u64 ratio;
1351 
1352 	/* Guest TSC same frequency as host TSC? */
1353 	if (!scale) {
1354 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1355 		return 0;
1356 	}
1357 
1358 	/* TSC scaling supported? */
1359 	if (!kvm_has_tsc_control) {
1360 		if (user_tsc_khz > tsc_khz) {
1361 			vcpu->arch.tsc_catchup = 1;
1362 			vcpu->arch.tsc_always_catchup = 1;
1363 			return 0;
1364 		} else {
1365 			WARN(1, "user requested TSC rate below hardware speed\n");
1366 			return -1;
1367 		}
1368 	}
1369 
1370 	/* TSC scaling required  - calculate ratio */
1371 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1372 				user_tsc_khz, tsc_khz);
1373 
1374 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1375 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1376 			  user_tsc_khz);
1377 		return -1;
1378 	}
1379 
1380 	vcpu->arch.tsc_scaling_ratio = ratio;
1381 	return 0;
1382 }
1383 
1384 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1385 {
1386 	u32 thresh_lo, thresh_hi;
1387 	int use_scaling = 0;
1388 
1389 	/* tsc_khz can be zero if TSC calibration fails */
1390 	if (user_tsc_khz == 0) {
1391 		/* set tsc_scaling_ratio to a safe value */
1392 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1393 		return -1;
1394 	}
1395 
1396 	/* Compute a scale to convert nanoseconds in TSC cycles */
1397 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1398 			   &vcpu->arch.virtual_tsc_shift,
1399 			   &vcpu->arch.virtual_tsc_mult);
1400 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1401 
1402 	/*
1403 	 * Compute the variation in TSC rate which is acceptable
1404 	 * within the range of tolerance and decide if the
1405 	 * rate being applied is within that bounds of the hardware
1406 	 * rate.  If so, no scaling or compensation need be done.
1407 	 */
1408 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1409 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1410 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1411 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1412 		use_scaling = 1;
1413 	}
1414 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1415 }
1416 
1417 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1418 {
1419 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1420 				      vcpu->arch.virtual_tsc_mult,
1421 				      vcpu->arch.virtual_tsc_shift);
1422 	tsc += vcpu->arch.this_tsc_write;
1423 	return tsc;
1424 }
1425 
1426 static inline int gtod_is_based_on_tsc(int mode)
1427 {
1428 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1429 }
1430 
1431 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1432 {
1433 #ifdef CONFIG_X86_64
1434 	bool vcpus_matched;
1435 	struct kvm_arch *ka = &vcpu->kvm->arch;
1436 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1437 
1438 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1439 			 atomic_read(&vcpu->kvm->online_vcpus));
1440 
1441 	/*
1442 	 * Once the masterclock is enabled, always perform request in
1443 	 * order to update it.
1444 	 *
1445 	 * In order to enable masterclock, the host clocksource must be TSC
1446 	 * and the vcpus need to have matched TSCs.  When that happens,
1447 	 * perform request to enable masterclock.
1448 	 */
1449 	if (ka->use_master_clock ||
1450 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1451 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1452 
1453 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1454 			    atomic_read(&vcpu->kvm->online_vcpus),
1455 		            ka->use_master_clock, gtod->clock.vclock_mode);
1456 #endif
1457 }
1458 
1459 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1460 {
1461 	u64 curr_offset = vcpu->arch.tsc_offset;
1462 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1463 }
1464 
1465 /*
1466  * Multiply tsc by a fixed point number represented by ratio.
1467  *
1468  * The most significant 64-N bits (mult) of ratio represent the
1469  * integral part of the fixed point number; the remaining N bits
1470  * (frac) represent the fractional part, ie. ratio represents a fixed
1471  * point number (mult + frac * 2^(-N)).
1472  *
1473  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1474  */
1475 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1476 {
1477 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1478 }
1479 
1480 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1481 {
1482 	u64 _tsc = tsc;
1483 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1484 
1485 	if (ratio != kvm_default_tsc_scaling_ratio)
1486 		_tsc = __scale_tsc(ratio, tsc);
1487 
1488 	return _tsc;
1489 }
1490 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1491 
1492 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1493 {
1494 	u64 tsc;
1495 
1496 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1497 
1498 	return target_tsc - tsc;
1499 }
1500 
1501 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1502 {
1503 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1506 
1507 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1508 {
1509 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1510 	vcpu->arch.tsc_offset = offset;
1511 }
1512 
1513 static inline bool kvm_check_tsc_unstable(void)
1514 {
1515 #ifdef CONFIG_X86_64
1516 	/*
1517 	 * TSC is marked unstable when we're running on Hyper-V,
1518 	 * 'TSC page' clocksource is good.
1519 	 */
1520 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1521 		return false;
1522 #endif
1523 	return check_tsc_unstable();
1524 }
1525 
1526 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1527 {
1528 	struct kvm *kvm = vcpu->kvm;
1529 	u64 offset, ns, elapsed;
1530 	unsigned long flags;
1531 	bool matched;
1532 	bool already_matched;
1533 	u64 data = msr->data;
1534 	bool synchronizing = false;
1535 
1536 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1537 	offset = kvm_compute_tsc_offset(vcpu, data);
1538 	ns = ktime_get_boot_ns();
1539 	elapsed = ns - kvm->arch.last_tsc_nsec;
1540 
1541 	if (vcpu->arch.virtual_tsc_khz) {
1542 		if (data == 0 && msr->host_initiated) {
1543 			/*
1544 			 * detection of vcpu initialization -- need to sync
1545 			 * with other vCPUs. This particularly helps to keep
1546 			 * kvm_clock stable after CPU hotplug
1547 			 */
1548 			synchronizing = true;
1549 		} else {
1550 			u64 tsc_exp = kvm->arch.last_tsc_write +
1551 						nsec_to_cycles(vcpu, elapsed);
1552 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1553 			/*
1554 			 * Special case: TSC write with a small delta (1 second)
1555 			 * of virtual cycle time against real time is
1556 			 * interpreted as an attempt to synchronize the CPU.
1557 			 */
1558 			synchronizing = data < tsc_exp + tsc_hz &&
1559 					data + tsc_hz > tsc_exp;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1565 	 * TSC, we add elapsed time in this computation.  We could let the
1566 	 * compensation code attempt to catch up if we fall behind, but
1567 	 * it's better to try to match offsets from the beginning.
1568          */
1569 	if (synchronizing &&
1570 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1571 		if (!kvm_check_tsc_unstable()) {
1572 			offset = kvm->arch.cur_tsc_offset;
1573 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1574 		} else {
1575 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1576 			data += delta;
1577 			offset = kvm_compute_tsc_offset(vcpu, data);
1578 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1579 		}
1580 		matched = true;
1581 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1582 	} else {
1583 		/*
1584 		 * We split periods of matched TSC writes into generations.
1585 		 * For each generation, we track the original measured
1586 		 * nanosecond time, offset, and write, so if TSCs are in
1587 		 * sync, we can match exact offset, and if not, we can match
1588 		 * exact software computation in compute_guest_tsc()
1589 		 *
1590 		 * These values are tracked in kvm->arch.cur_xxx variables.
1591 		 */
1592 		kvm->arch.cur_tsc_generation++;
1593 		kvm->arch.cur_tsc_nsec = ns;
1594 		kvm->arch.cur_tsc_write = data;
1595 		kvm->arch.cur_tsc_offset = offset;
1596 		matched = false;
1597 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1598 			 kvm->arch.cur_tsc_generation, data);
1599 	}
1600 
1601 	/*
1602 	 * We also track th most recent recorded KHZ, write and time to
1603 	 * allow the matching interval to be extended at each write.
1604 	 */
1605 	kvm->arch.last_tsc_nsec = ns;
1606 	kvm->arch.last_tsc_write = data;
1607 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1608 
1609 	vcpu->arch.last_guest_tsc = data;
1610 
1611 	/* Keep track of which generation this VCPU has synchronized to */
1612 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1613 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1614 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1615 
1616 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1617 		update_ia32_tsc_adjust_msr(vcpu, offset);
1618 
1619 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1620 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1621 
1622 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1623 	if (!matched) {
1624 		kvm->arch.nr_vcpus_matched_tsc = 0;
1625 	} else if (!already_matched) {
1626 		kvm->arch.nr_vcpus_matched_tsc++;
1627 	}
1628 
1629 	kvm_track_tsc_matching(vcpu);
1630 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1631 }
1632 
1633 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1634 
1635 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1636 					   s64 adjustment)
1637 {
1638 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1639 }
1640 
1641 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1642 {
1643 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1644 		WARN_ON(adjustment < 0);
1645 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1646 	adjust_tsc_offset_guest(vcpu, adjustment);
1647 }
1648 
1649 #ifdef CONFIG_X86_64
1650 
1651 static u64 read_tsc(void)
1652 {
1653 	u64 ret = (u64)rdtsc_ordered();
1654 	u64 last = pvclock_gtod_data.clock.cycle_last;
1655 
1656 	if (likely(ret >= last))
1657 		return ret;
1658 
1659 	/*
1660 	 * GCC likes to generate cmov here, but this branch is extremely
1661 	 * predictable (it's just a function of time and the likely is
1662 	 * very likely) and there's a data dependence, so force GCC
1663 	 * to generate a branch instead.  I don't barrier() because
1664 	 * we don't actually need a barrier, and if this function
1665 	 * ever gets inlined it will generate worse code.
1666 	 */
1667 	asm volatile ("");
1668 	return last;
1669 }
1670 
1671 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1672 {
1673 	long v;
1674 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1675 	u64 tsc_pg_val;
1676 
1677 	switch (gtod->clock.vclock_mode) {
1678 	case VCLOCK_HVCLOCK:
1679 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1680 						  tsc_timestamp);
1681 		if (tsc_pg_val != U64_MAX) {
1682 			/* TSC page valid */
1683 			*mode = VCLOCK_HVCLOCK;
1684 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1685 				gtod->clock.mask;
1686 		} else {
1687 			/* TSC page invalid */
1688 			*mode = VCLOCK_NONE;
1689 		}
1690 		break;
1691 	case VCLOCK_TSC:
1692 		*mode = VCLOCK_TSC;
1693 		*tsc_timestamp = read_tsc();
1694 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1695 			gtod->clock.mask;
1696 		break;
1697 	default:
1698 		*mode = VCLOCK_NONE;
1699 	}
1700 
1701 	if (*mode == VCLOCK_NONE)
1702 		*tsc_timestamp = v = 0;
1703 
1704 	return v * gtod->clock.mult;
1705 }
1706 
1707 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1708 {
1709 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1710 	unsigned long seq;
1711 	int mode;
1712 	u64 ns;
1713 
1714 	do {
1715 		seq = read_seqcount_begin(&gtod->seq);
1716 		ns = gtod->nsec_base;
1717 		ns += vgettsc(tsc_timestamp, &mode);
1718 		ns >>= gtod->clock.shift;
1719 		ns += gtod->boot_ns;
1720 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1721 	*t = ns;
1722 
1723 	return mode;
1724 }
1725 
1726 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1727 {
1728 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1729 	unsigned long seq;
1730 	int mode;
1731 	u64 ns;
1732 
1733 	do {
1734 		seq = read_seqcount_begin(&gtod->seq);
1735 		ts->tv_sec = gtod->wall_time_sec;
1736 		ns = gtod->nsec_base;
1737 		ns += vgettsc(tsc_timestamp, &mode);
1738 		ns >>= gtod->clock.shift;
1739 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1740 
1741 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1742 	ts->tv_nsec = ns;
1743 
1744 	return mode;
1745 }
1746 
1747 /* returns true if host is using TSC based clocksource */
1748 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1749 {
1750 	/* checked again under seqlock below */
1751 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1752 		return false;
1753 
1754 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1755 						      tsc_timestamp));
1756 }
1757 
1758 /* returns true if host is using TSC based clocksource */
1759 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1760 					   u64 *tsc_timestamp)
1761 {
1762 	/* checked again under seqlock below */
1763 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1764 		return false;
1765 
1766 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1767 }
1768 #endif
1769 
1770 /*
1771  *
1772  * Assuming a stable TSC across physical CPUS, and a stable TSC
1773  * across virtual CPUs, the following condition is possible.
1774  * Each numbered line represents an event visible to both
1775  * CPUs at the next numbered event.
1776  *
1777  * "timespecX" represents host monotonic time. "tscX" represents
1778  * RDTSC value.
1779  *
1780  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1781  *
1782  * 1.  read timespec0,tsc0
1783  * 2.					| timespec1 = timespec0 + N
1784  * 					| tsc1 = tsc0 + M
1785  * 3. transition to guest		| transition to guest
1786  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1787  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1788  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1789  *
1790  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1791  *
1792  * 	- ret0 < ret1
1793  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1794  *		...
1795  *	- 0 < N - M => M < N
1796  *
1797  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1798  * always the case (the difference between two distinct xtime instances
1799  * might be smaller then the difference between corresponding TSC reads,
1800  * when updating guest vcpus pvclock areas).
1801  *
1802  * To avoid that problem, do not allow visibility of distinct
1803  * system_timestamp/tsc_timestamp values simultaneously: use a master
1804  * copy of host monotonic time values. Update that master copy
1805  * in lockstep.
1806  *
1807  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1808  *
1809  */
1810 
1811 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1812 {
1813 #ifdef CONFIG_X86_64
1814 	struct kvm_arch *ka = &kvm->arch;
1815 	int vclock_mode;
1816 	bool host_tsc_clocksource, vcpus_matched;
1817 
1818 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1819 			atomic_read(&kvm->online_vcpus));
1820 
1821 	/*
1822 	 * If the host uses TSC clock, then passthrough TSC as stable
1823 	 * to the guest.
1824 	 */
1825 	host_tsc_clocksource = kvm_get_time_and_clockread(
1826 					&ka->master_kernel_ns,
1827 					&ka->master_cycle_now);
1828 
1829 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1830 				&& !ka->backwards_tsc_observed
1831 				&& !ka->boot_vcpu_runs_old_kvmclock;
1832 
1833 	if (ka->use_master_clock)
1834 		atomic_set(&kvm_guest_has_master_clock, 1);
1835 
1836 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1837 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1838 					vcpus_matched);
1839 #endif
1840 }
1841 
1842 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1843 {
1844 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1845 }
1846 
1847 static void kvm_gen_update_masterclock(struct kvm *kvm)
1848 {
1849 #ifdef CONFIG_X86_64
1850 	int i;
1851 	struct kvm_vcpu *vcpu;
1852 	struct kvm_arch *ka = &kvm->arch;
1853 
1854 	spin_lock(&ka->pvclock_gtod_sync_lock);
1855 	kvm_make_mclock_inprogress_request(kvm);
1856 	/* no guest entries from this point */
1857 	pvclock_update_vm_gtod_copy(kvm);
1858 
1859 	kvm_for_each_vcpu(i, vcpu, kvm)
1860 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1861 
1862 	/* guest entries allowed */
1863 	kvm_for_each_vcpu(i, vcpu, kvm)
1864 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1865 
1866 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1867 #endif
1868 }
1869 
1870 u64 get_kvmclock_ns(struct kvm *kvm)
1871 {
1872 	struct kvm_arch *ka = &kvm->arch;
1873 	struct pvclock_vcpu_time_info hv_clock;
1874 	u64 ret;
1875 
1876 	spin_lock(&ka->pvclock_gtod_sync_lock);
1877 	if (!ka->use_master_clock) {
1878 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1879 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1880 	}
1881 
1882 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1883 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1884 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1885 
1886 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1887 	get_cpu();
1888 
1889 	if (__this_cpu_read(cpu_tsc_khz)) {
1890 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1891 				   &hv_clock.tsc_shift,
1892 				   &hv_clock.tsc_to_system_mul);
1893 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1894 	} else
1895 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1896 
1897 	put_cpu();
1898 
1899 	return ret;
1900 }
1901 
1902 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1903 {
1904 	struct kvm_vcpu_arch *vcpu = &v->arch;
1905 	struct pvclock_vcpu_time_info guest_hv_clock;
1906 
1907 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1908 		&guest_hv_clock, sizeof(guest_hv_clock))))
1909 		return;
1910 
1911 	/* This VCPU is paused, but it's legal for a guest to read another
1912 	 * VCPU's kvmclock, so we really have to follow the specification where
1913 	 * it says that version is odd if data is being modified, and even after
1914 	 * it is consistent.
1915 	 *
1916 	 * Version field updates must be kept separate.  This is because
1917 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1918 	 * writes within a string instruction are weakly ordered.  So there
1919 	 * are three writes overall.
1920 	 *
1921 	 * As a small optimization, only write the version field in the first
1922 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1923 	 * version field is the first in the struct.
1924 	 */
1925 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1926 
1927 	if (guest_hv_clock.version & 1)
1928 		++guest_hv_clock.version;  /* first time write, random junk */
1929 
1930 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1931 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1932 				&vcpu->hv_clock,
1933 				sizeof(vcpu->hv_clock.version));
1934 
1935 	smp_wmb();
1936 
1937 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1938 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1939 
1940 	if (vcpu->pvclock_set_guest_stopped_request) {
1941 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1942 		vcpu->pvclock_set_guest_stopped_request = false;
1943 	}
1944 
1945 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1946 
1947 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1948 				&vcpu->hv_clock,
1949 				sizeof(vcpu->hv_clock));
1950 
1951 	smp_wmb();
1952 
1953 	vcpu->hv_clock.version++;
1954 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1955 				&vcpu->hv_clock,
1956 				sizeof(vcpu->hv_clock.version));
1957 }
1958 
1959 static int kvm_guest_time_update(struct kvm_vcpu *v)
1960 {
1961 	unsigned long flags, tgt_tsc_khz;
1962 	struct kvm_vcpu_arch *vcpu = &v->arch;
1963 	struct kvm_arch *ka = &v->kvm->arch;
1964 	s64 kernel_ns;
1965 	u64 tsc_timestamp, host_tsc;
1966 	u8 pvclock_flags;
1967 	bool use_master_clock;
1968 
1969 	kernel_ns = 0;
1970 	host_tsc = 0;
1971 
1972 	/*
1973 	 * If the host uses TSC clock, then passthrough TSC as stable
1974 	 * to the guest.
1975 	 */
1976 	spin_lock(&ka->pvclock_gtod_sync_lock);
1977 	use_master_clock = ka->use_master_clock;
1978 	if (use_master_clock) {
1979 		host_tsc = ka->master_cycle_now;
1980 		kernel_ns = ka->master_kernel_ns;
1981 	}
1982 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1983 
1984 	/* Keep irq disabled to prevent changes to the clock */
1985 	local_irq_save(flags);
1986 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1987 	if (unlikely(tgt_tsc_khz == 0)) {
1988 		local_irq_restore(flags);
1989 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1990 		return 1;
1991 	}
1992 	if (!use_master_clock) {
1993 		host_tsc = rdtsc();
1994 		kernel_ns = ktime_get_boot_ns();
1995 	}
1996 
1997 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1998 
1999 	/*
2000 	 * We may have to catch up the TSC to match elapsed wall clock
2001 	 * time for two reasons, even if kvmclock is used.
2002 	 *   1) CPU could have been running below the maximum TSC rate
2003 	 *   2) Broken TSC compensation resets the base at each VCPU
2004 	 *      entry to avoid unknown leaps of TSC even when running
2005 	 *      again on the same CPU.  This may cause apparent elapsed
2006 	 *      time to disappear, and the guest to stand still or run
2007 	 *	very slowly.
2008 	 */
2009 	if (vcpu->tsc_catchup) {
2010 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2011 		if (tsc > tsc_timestamp) {
2012 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2013 			tsc_timestamp = tsc;
2014 		}
2015 	}
2016 
2017 	local_irq_restore(flags);
2018 
2019 	/* With all the info we got, fill in the values */
2020 
2021 	if (kvm_has_tsc_control)
2022 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2023 
2024 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2025 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2026 				   &vcpu->hv_clock.tsc_shift,
2027 				   &vcpu->hv_clock.tsc_to_system_mul);
2028 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2029 	}
2030 
2031 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2032 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2033 	vcpu->last_guest_tsc = tsc_timestamp;
2034 
2035 	/* If the host uses TSC clocksource, then it is stable */
2036 	pvclock_flags = 0;
2037 	if (use_master_clock)
2038 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2039 
2040 	vcpu->hv_clock.flags = pvclock_flags;
2041 
2042 	if (vcpu->pv_time_enabled)
2043 		kvm_setup_pvclock_page(v);
2044 	if (v == kvm_get_vcpu(v->kvm, 0))
2045 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2046 	return 0;
2047 }
2048 
2049 /*
2050  * kvmclock updates which are isolated to a given vcpu, such as
2051  * vcpu->cpu migration, should not allow system_timestamp from
2052  * the rest of the vcpus to remain static. Otherwise ntp frequency
2053  * correction applies to one vcpu's system_timestamp but not
2054  * the others.
2055  *
2056  * So in those cases, request a kvmclock update for all vcpus.
2057  * We need to rate-limit these requests though, as they can
2058  * considerably slow guests that have a large number of vcpus.
2059  * The time for a remote vcpu to update its kvmclock is bound
2060  * by the delay we use to rate-limit the updates.
2061  */
2062 
2063 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2064 
2065 static void kvmclock_update_fn(struct work_struct *work)
2066 {
2067 	int i;
2068 	struct delayed_work *dwork = to_delayed_work(work);
2069 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2070 					   kvmclock_update_work);
2071 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2072 	struct kvm_vcpu *vcpu;
2073 
2074 	kvm_for_each_vcpu(i, vcpu, kvm) {
2075 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2076 		kvm_vcpu_kick(vcpu);
2077 	}
2078 }
2079 
2080 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2081 {
2082 	struct kvm *kvm = v->kvm;
2083 
2084 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2085 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2086 					KVMCLOCK_UPDATE_DELAY);
2087 }
2088 
2089 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2090 
2091 static void kvmclock_sync_fn(struct work_struct *work)
2092 {
2093 	struct delayed_work *dwork = to_delayed_work(work);
2094 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2095 					   kvmclock_sync_work);
2096 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2097 
2098 	if (!kvmclock_periodic_sync)
2099 		return;
2100 
2101 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2102 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2103 					KVMCLOCK_SYNC_PERIOD);
2104 }
2105 
2106 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2107 {
2108 	u64 mcg_cap = vcpu->arch.mcg_cap;
2109 	unsigned bank_num = mcg_cap & 0xff;
2110 	u32 msr = msr_info->index;
2111 	u64 data = msr_info->data;
2112 
2113 	switch (msr) {
2114 	case MSR_IA32_MCG_STATUS:
2115 		vcpu->arch.mcg_status = data;
2116 		break;
2117 	case MSR_IA32_MCG_CTL:
2118 		if (!(mcg_cap & MCG_CTL_P))
2119 			return 1;
2120 		if (data != 0 && data != ~(u64)0)
2121 			return -1;
2122 		vcpu->arch.mcg_ctl = data;
2123 		break;
2124 	default:
2125 		if (msr >= MSR_IA32_MC0_CTL &&
2126 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2127 			u32 offset = msr - MSR_IA32_MC0_CTL;
2128 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2129 			 * some Linux kernels though clear bit 10 in bank 4 to
2130 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2131 			 * this to avoid an uncatched #GP in the guest
2132 			 */
2133 			if ((offset & 0x3) == 0 &&
2134 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2135 				return -1;
2136 			if (!msr_info->host_initiated &&
2137 				(offset & 0x3) == 1 && data != 0)
2138 				return -1;
2139 			vcpu->arch.mce_banks[offset] = data;
2140 			break;
2141 		}
2142 		return 1;
2143 	}
2144 	return 0;
2145 }
2146 
2147 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2148 {
2149 	struct kvm *kvm = vcpu->kvm;
2150 	int lm = is_long_mode(vcpu);
2151 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2152 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2153 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2154 		: kvm->arch.xen_hvm_config.blob_size_32;
2155 	u32 page_num = data & ~PAGE_MASK;
2156 	u64 page_addr = data & PAGE_MASK;
2157 	u8 *page;
2158 	int r;
2159 
2160 	r = -E2BIG;
2161 	if (page_num >= blob_size)
2162 		goto out;
2163 	r = -ENOMEM;
2164 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2165 	if (IS_ERR(page)) {
2166 		r = PTR_ERR(page);
2167 		goto out;
2168 	}
2169 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2170 		goto out_free;
2171 	r = 0;
2172 out_free:
2173 	kfree(page);
2174 out:
2175 	return r;
2176 }
2177 
2178 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2179 {
2180 	gpa_t gpa = data & ~0x3f;
2181 
2182 	/* Bits 3:5 are reserved, Should be zero */
2183 	if (data & 0x38)
2184 		return 1;
2185 
2186 	vcpu->arch.apf.msr_val = data;
2187 
2188 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2189 		kvm_clear_async_pf_completion_queue(vcpu);
2190 		kvm_async_pf_hash_reset(vcpu);
2191 		return 0;
2192 	}
2193 
2194 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2195 					sizeof(u32)))
2196 		return 1;
2197 
2198 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2199 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2200 	kvm_async_pf_wakeup_all(vcpu);
2201 	return 0;
2202 }
2203 
2204 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2205 {
2206 	vcpu->arch.pv_time_enabled = false;
2207 }
2208 
2209 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2210 {
2211 	++vcpu->stat.tlb_flush;
2212 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2213 }
2214 
2215 static void record_steal_time(struct kvm_vcpu *vcpu)
2216 {
2217 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2218 		return;
2219 
2220 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2221 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2222 		return;
2223 
2224 	/*
2225 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2226 	 * expensive IPIs.
2227 	 */
2228 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2229 		kvm_vcpu_flush_tlb(vcpu, false);
2230 
2231 	if (vcpu->arch.st.steal.version & 1)
2232 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2233 
2234 	vcpu->arch.st.steal.version += 1;
2235 
2236 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2237 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2238 
2239 	smp_wmb();
2240 
2241 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2242 		vcpu->arch.st.last_steal;
2243 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2244 
2245 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2246 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2247 
2248 	smp_wmb();
2249 
2250 	vcpu->arch.st.steal.version += 1;
2251 
2252 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2253 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2254 }
2255 
2256 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2257 {
2258 	bool pr = false;
2259 	u32 msr = msr_info->index;
2260 	u64 data = msr_info->data;
2261 
2262 	switch (msr) {
2263 	case MSR_AMD64_NB_CFG:
2264 	case MSR_IA32_UCODE_WRITE:
2265 	case MSR_VM_HSAVE_PA:
2266 	case MSR_AMD64_PATCH_LOADER:
2267 	case MSR_AMD64_BU_CFG2:
2268 	case MSR_AMD64_DC_CFG:
2269 		break;
2270 
2271 	case MSR_IA32_UCODE_REV:
2272 		if (msr_info->host_initiated)
2273 			vcpu->arch.microcode_version = data;
2274 		break;
2275 	case MSR_EFER:
2276 		return set_efer(vcpu, data);
2277 	case MSR_K7_HWCR:
2278 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2279 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2280 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2281 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2282 		if (data != 0) {
2283 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2284 				    data);
2285 			return 1;
2286 		}
2287 		break;
2288 	case MSR_FAM10H_MMIO_CONF_BASE:
2289 		if (data != 0) {
2290 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2291 				    "0x%llx\n", data);
2292 			return 1;
2293 		}
2294 		break;
2295 	case MSR_IA32_DEBUGCTLMSR:
2296 		if (!data) {
2297 			/* We support the non-activated case already */
2298 			break;
2299 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2300 			/* Values other than LBR and BTF are vendor-specific,
2301 			   thus reserved and should throw a #GP */
2302 			return 1;
2303 		}
2304 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2305 			    __func__, data);
2306 		break;
2307 	case 0x200 ... 0x2ff:
2308 		return kvm_mtrr_set_msr(vcpu, msr, data);
2309 	case MSR_IA32_APICBASE:
2310 		return kvm_set_apic_base(vcpu, msr_info);
2311 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2312 		return kvm_x2apic_msr_write(vcpu, msr, data);
2313 	case MSR_IA32_TSCDEADLINE:
2314 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2315 		break;
2316 	case MSR_IA32_TSC_ADJUST:
2317 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2318 			if (!msr_info->host_initiated) {
2319 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2320 				adjust_tsc_offset_guest(vcpu, adj);
2321 			}
2322 			vcpu->arch.ia32_tsc_adjust_msr = data;
2323 		}
2324 		break;
2325 	case MSR_IA32_MISC_ENABLE:
2326 		vcpu->arch.ia32_misc_enable_msr = data;
2327 		break;
2328 	case MSR_IA32_SMBASE:
2329 		if (!msr_info->host_initiated)
2330 			return 1;
2331 		vcpu->arch.smbase = data;
2332 		break;
2333 	case MSR_SMI_COUNT:
2334 		if (!msr_info->host_initiated)
2335 			return 1;
2336 		vcpu->arch.smi_count = data;
2337 		break;
2338 	case MSR_KVM_WALL_CLOCK_NEW:
2339 	case MSR_KVM_WALL_CLOCK:
2340 		vcpu->kvm->arch.wall_clock = data;
2341 		kvm_write_wall_clock(vcpu->kvm, data);
2342 		break;
2343 	case MSR_KVM_SYSTEM_TIME_NEW:
2344 	case MSR_KVM_SYSTEM_TIME: {
2345 		struct kvm_arch *ka = &vcpu->kvm->arch;
2346 
2347 		kvmclock_reset(vcpu);
2348 
2349 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2350 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2351 
2352 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2353 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2354 
2355 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2356 		}
2357 
2358 		vcpu->arch.time = data;
2359 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2360 
2361 		/* we verify if the enable bit is set... */
2362 		if (!(data & 1))
2363 			break;
2364 
2365 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2366 		     &vcpu->arch.pv_time, data & ~1ULL,
2367 		     sizeof(struct pvclock_vcpu_time_info)))
2368 			vcpu->arch.pv_time_enabled = false;
2369 		else
2370 			vcpu->arch.pv_time_enabled = true;
2371 
2372 		break;
2373 	}
2374 	case MSR_KVM_ASYNC_PF_EN:
2375 		if (kvm_pv_enable_async_pf(vcpu, data))
2376 			return 1;
2377 		break;
2378 	case MSR_KVM_STEAL_TIME:
2379 
2380 		if (unlikely(!sched_info_on()))
2381 			return 1;
2382 
2383 		if (data & KVM_STEAL_RESERVED_MASK)
2384 			return 1;
2385 
2386 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2387 						data & KVM_STEAL_VALID_BITS,
2388 						sizeof(struct kvm_steal_time)))
2389 			return 1;
2390 
2391 		vcpu->arch.st.msr_val = data;
2392 
2393 		if (!(data & KVM_MSR_ENABLED))
2394 			break;
2395 
2396 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2397 
2398 		break;
2399 	case MSR_KVM_PV_EOI_EN:
2400 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2401 			return 1;
2402 		break;
2403 
2404 	case MSR_IA32_MCG_CTL:
2405 	case MSR_IA32_MCG_STATUS:
2406 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2407 		return set_msr_mce(vcpu, msr_info);
2408 
2409 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2410 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2411 		pr = true; /* fall through */
2412 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2413 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2414 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2415 			return kvm_pmu_set_msr(vcpu, msr_info);
2416 
2417 		if (pr || data != 0)
2418 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2419 				    "0x%x data 0x%llx\n", msr, data);
2420 		break;
2421 	case MSR_K7_CLK_CTL:
2422 		/*
2423 		 * Ignore all writes to this no longer documented MSR.
2424 		 * Writes are only relevant for old K7 processors,
2425 		 * all pre-dating SVM, but a recommended workaround from
2426 		 * AMD for these chips. It is possible to specify the
2427 		 * affected processor models on the command line, hence
2428 		 * the need to ignore the workaround.
2429 		 */
2430 		break;
2431 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2432 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2433 	case HV_X64_MSR_CRASH_CTL:
2434 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2435 		return kvm_hv_set_msr_common(vcpu, msr, data,
2436 					     msr_info->host_initiated);
2437 	case MSR_IA32_BBL_CR_CTL3:
2438 		/* Drop writes to this legacy MSR -- see rdmsr
2439 		 * counterpart for further detail.
2440 		 */
2441 		if (report_ignored_msrs)
2442 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2443 				msr, data);
2444 		break;
2445 	case MSR_AMD64_OSVW_ID_LENGTH:
2446 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2447 			return 1;
2448 		vcpu->arch.osvw.length = data;
2449 		break;
2450 	case MSR_AMD64_OSVW_STATUS:
2451 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2452 			return 1;
2453 		vcpu->arch.osvw.status = data;
2454 		break;
2455 	case MSR_PLATFORM_INFO:
2456 		if (!msr_info->host_initiated ||
2457 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2458 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2459 		     cpuid_fault_enabled(vcpu)))
2460 			return 1;
2461 		vcpu->arch.msr_platform_info = data;
2462 		break;
2463 	case MSR_MISC_FEATURES_ENABLES:
2464 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2465 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2466 		     !supports_cpuid_fault(vcpu)))
2467 			return 1;
2468 		vcpu->arch.msr_misc_features_enables = data;
2469 		break;
2470 	default:
2471 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2472 			return xen_hvm_config(vcpu, data);
2473 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2474 			return kvm_pmu_set_msr(vcpu, msr_info);
2475 		if (!ignore_msrs) {
2476 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2477 				    msr, data);
2478 			return 1;
2479 		} else {
2480 			if (report_ignored_msrs)
2481 				vcpu_unimpl(vcpu,
2482 					"ignored wrmsr: 0x%x data 0x%llx\n",
2483 					msr, data);
2484 			break;
2485 		}
2486 	}
2487 	return 0;
2488 }
2489 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2490 
2491 
2492 /*
2493  * Reads an msr value (of 'msr_index') into 'pdata'.
2494  * Returns 0 on success, non-0 otherwise.
2495  * Assumes vcpu_load() was already called.
2496  */
2497 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2498 {
2499 	return kvm_x86_ops->get_msr(vcpu, msr);
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_get_msr);
2502 
2503 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2504 {
2505 	u64 data;
2506 	u64 mcg_cap = vcpu->arch.mcg_cap;
2507 	unsigned bank_num = mcg_cap & 0xff;
2508 
2509 	switch (msr) {
2510 	case MSR_IA32_P5_MC_ADDR:
2511 	case MSR_IA32_P5_MC_TYPE:
2512 		data = 0;
2513 		break;
2514 	case MSR_IA32_MCG_CAP:
2515 		data = vcpu->arch.mcg_cap;
2516 		break;
2517 	case MSR_IA32_MCG_CTL:
2518 		if (!(mcg_cap & MCG_CTL_P))
2519 			return 1;
2520 		data = vcpu->arch.mcg_ctl;
2521 		break;
2522 	case MSR_IA32_MCG_STATUS:
2523 		data = vcpu->arch.mcg_status;
2524 		break;
2525 	default:
2526 		if (msr >= MSR_IA32_MC0_CTL &&
2527 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2528 			u32 offset = msr - MSR_IA32_MC0_CTL;
2529 			data = vcpu->arch.mce_banks[offset];
2530 			break;
2531 		}
2532 		return 1;
2533 	}
2534 	*pdata = data;
2535 	return 0;
2536 }
2537 
2538 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2539 {
2540 	switch (msr_info->index) {
2541 	case MSR_IA32_PLATFORM_ID:
2542 	case MSR_IA32_EBL_CR_POWERON:
2543 	case MSR_IA32_DEBUGCTLMSR:
2544 	case MSR_IA32_LASTBRANCHFROMIP:
2545 	case MSR_IA32_LASTBRANCHTOIP:
2546 	case MSR_IA32_LASTINTFROMIP:
2547 	case MSR_IA32_LASTINTTOIP:
2548 	case MSR_K8_SYSCFG:
2549 	case MSR_K8_TSEG_ADDR:
2550 	case MSR_K8_TSEG_MASK:
2551 	case MSR_K7_HWCR:
2552 	case MSR_VM_HSAVE_PA:
2553 	case MSR_K8_INT_PENDING_MSG:
2554 	case MSR_AMD64_NB_CFG:
2555 	case MSR_FAM10H_MMIO_CONF_BASE:
2556 	case MSR_AMD64_BU_CFG2:
2557 	case MSR_IA32_PERF_CTL:
2558 	case MSR_AMD64_DC_CFG:
2559 		msr_info->data = 0;
2560 		break;
2561 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2562 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2563 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2564 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2565 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2566 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2567 		msr_info->data = 0;
2568 		break;
2569 	case MSR_IA32_UCODE_REV:
2570 		msr_info->data = vcpu->arch.microcode_version;
2571 		break;
2572 	case MSR_MTRRcap:
2573 	case 0x200 ... 0x2ff:
2574 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2575 	case 0xcd: /* fsb frequency */
2576 		msr_info->data = 3;
2577 		break;
2578 		/*
2579 		 * MSR_EBC_FREQUENCY_ID
2580 		 * Conservative value valid for even the basic CPU models.
2581 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2582 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2583 		 * and 266MHz for model 3, or 4. Set Core Clock
2584 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2585 		 * 31:24) even though these are only valid for CPU
2586 		 * models > 2, however guests may end up dividing or
2587 		 * multiplying by zero otherwise.
2588 		 */
2589 	case MSR_EBC_FREQUENCY_ID:
2590 		msr_info->data = 1 << 24;
2591 		break;
2592 	case MSR_IA32_APICBASE:
2593 		msr_info->data = kvm_get_apic_base(vcpu);
2594 		break;
2595 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2596 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2597 		break;
2598 	case MSR_IA32_TSCDEADLINE:
2599 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2600 		break;
2601 	case MSR_IA32_TSC_ADJUST:
2602 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2603 		break;
2604 	case MSR_IA32_MISC_ENABLE:
2605 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2606 		break;
2607 	case MSR_IA32_SMBASE:
2608 		if (!msr_info->host_initiated)
2609 			return 1;
2610 		msr_info->data = vcpu->arch.smbase;
2611 		break;
2612 	case MSR_SMI_COUNT:
2613 		msr_info->data = vcpu->arch.smi_count;
2614 		break;
2615 	case MSR_IA32_PERF_STATUS:
2616 		/* TSC increment by tick */
2617 		msr_info->data = 1000ULL;
2618 		/* CPU multiplier */
2619 		msr_info->data |= (((uint64_t)4ULL) << 40);
2620 		break;
2621 	case MSR_EFER:
2622 		msr_info->data = vcpu->arch.efer;
2623 		break;
2624 	case MSR_KVM_WALL_CLOCK:
2625 	case MSR_KVM_WALL_CLOCK_NEW:
2626 		msr_info->data = vcpu->kvm->arch.wall_clock;
2627 		break;
2628 	case MSR_KVM_SYSTEM_TIME:
2629 	case MSR_KVM_SYSTEM_TIME_NEW:
2630 		msr_info->data = vcpu->arch.time;
2631 		break;
2632 	case MSR_KVM_ASYNC_PF_EN:
2633 		msr_info->data = vcpu->arch.apf.msr_val;
2634 		break;
2635 	case MSR_KVM_STEAL_TIME:
2636 		msr_info->data = vcpu->arch.st.msr_val;
2637 		break;
2638 	case MSR_KVM_PV_EOI_EN:
2639 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2640 		break;
2641 	case MSR_IA32_P5_MC_ADDR:
2642 	case MSR_IA32_P5_MC_TYPE:
2643 	case MSR_IA32_MCG_CAP:
2644 	case MSR_IA32_MCG_CTL:
2645 	case MSR_IA32_MCG_STATUS:
2646 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2647 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2648 	case MSR_K7_CLK_CTL:
2649 		/*
2650 		 * Provide expected ramp-up count for K7. All other
2651 		 * are set to zero, indicating minimum divisors for
2652 		 * every field.
2653 		 *
2654 		 * This prevents guest kernels on AMD host with CPU
2655 		 * type 6, model 8 and higher from exploding due to
2656 		 * the rdmsr failing.
2657 		 */
2658 		msr_info->data = 0x20000000;
2659 		break;
2660 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2661 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2662 	case HV_X64_MSR_CRASH_CTL:
2663 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2664 		return kvm_hv_get_msr_common(vcpu,
2665 					     msr_info->index, &msr_info->data);
2666 		break;
2667 	case MSR_IA32_BBL_CR_CTL3:
2668 		/* This legacy MSR exists but isn't fully documented in current
2669 		 * silicon.  It is however accessed by winxp in very narrow
2670 		 * scenarios where it sets bit #19, itself documented as
2671 		 * a "reserved" bit.  Best effort attempt to source coherent
2672 		 * read data here should the balance of the register be
2673 		 * interpreted by the guest:
2674 		 *
2675 		 * L2 cache control register 3: 64GB range, 256KB size,
2676 		 * enabled, latency 0x1, configured
2677 		 */
2678 		msr_info->data = 0xbe702111;
2679 		break;
2680 	case MSR_AMD64_OSVW_ID_LENGTH:
2681 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2682 			return 1;
2683 		msr_info->data = vcpu->arch.osvw.length;
2684 		break;
2685 	case MSR_AMD64_OSVW_STATUS:
2686 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2687 			return 1;
2688 		msr_info->data = vcpu->arch.osvw.status;
2689 		break;
2690 	case MSR_PLATFORM_INFO:
2691 		msr_info->data = vcpu->arch.msr_platform_info;
2692 		break;
2693 	case MSR_MISC_FEATURES_ENABLES:
2694 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2695 		break;
2696 	default:
2697 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2698 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2699 		if (!ignore_msrs) {
2700 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2701 					       msr_info->index);
2702 			return 1;
2703 		} else {
2704 			if (report_ignored_msrs)
2705 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2706 					msr_info->index);
2707 			msr_info->data = 0;
2708 		}
2709 		break;
2710 	}
2711 	return 0;
2712 }
2713 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2714 
2715 /*
2716  * Read or write a bunch of msrs. All parameters are kernel addresses.
2717  *
2718  * @return number of msrs set successfully.
2719  */
2720 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2721 		    struct kvm_msr_entry *entries,
2722 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2723 				  unsigned index, u64 *data))
2724 {
2725 	int i;
2726 
2727 	for (i = 0; i < msrs->nmsrs; ++i)
2728 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2729 			break;
2730 
2731 	return i;
2732 }
2733 
2734 /*
2735  * Read or write a bunch of msrs. Parameters are user addresses.
2736  *
2737  * @return number of msrs set successfully.
2738  */
2739 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2740 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2741 				unsigned index, u64 *data),
2742 		  int writeback)
2743 {
2744 	struct kvm_msrs msrs;
2745 	struct kvm_msr_entry *entries;
2746 	int r, n;
2747 	unsigned size;
2748 
2749 	r = -EFAULT;
2750 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2751 		goto out;
2752 
2753 	r = -E2BIG;
2754 	if (msrs.nmsrs >= MAX_IO_MSRS)
2755 		goto out;
2756 
2757 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2758 	entries = memdup_user(user_msrs->entries, size);
2759 	if (IS_ERR(entries)) {
2760 		r = PTR_ERR(entries);
2761 		goto out;
2762 	}
2763 
2764 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2765 	if (r < 0)
2766 		goto out_free;
2767 
2768 	r = -EFAULT;
2769 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2770 		goto out_free;
2771 
2772 	r = n;
2773 
2774 out_free:
2775 	kfree(entries);
2776 out:
2777 	return r;
2778 }
2779 
2780 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2781 {
2782 	int r;
2783 
2784 	switch (ext) {
2785 	case KVM_CAP_IRQCHIP:
2786 	case KVM_CAP_HLT:
2787 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2788 	case KVM_CAP_SET_TSS_ADDR:
2789 	case KVM_CAP_EXT_CPUID:
2790 	case KVM_CAP_EXT_EMUL_CPUID:
2791 	case KVM_CAP_CLOCKSOURCE:
2792 	case KVM_CAP_PIT:
2793 	case KVM_CAP_NOP_IO_DELAY:
2794 	case KVM_CAP_MP_STATE:
2795 	case KVM_CAP_SYNC_MMU:
2796 	case KVM_CAP_USER_NMI:
2797 	case KVM_CAP_REINJECT_CONTROL:
2798 	case KVM_CAP_IRQ_INJECT_STATUS:
2799 	case KVM_CAP_IOEVENTFD:
2800 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2801 	case KVM_CAP_PIT2:
2802 	case KVM_CAP_PIT_STATE2:
2803 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2804 	case KVM_CAP_XEN_HVM:
2805 	case KVM_CAP_VCPU_EVENTS:
2806 	case KVM_CAP_HYPERV:
2807 	case KVM_CAP_HYPERV_VAPIC:
2808 	case KVM_CAP_HYPERV_SPIN:
2809 	case KVM_CAP_HYPERV_SYNIC:
2810 	case KVM_CAP_HYPERV_SYNIC2:
2811 	case KVM_CAP_HYPERV_VP_INDEX:
2812 	case KVM_CAP_PCI_SEGMENT:
2813 	case KVM_CAP_DEBUGREGS:
2814 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2815 	case KVM_CAP_XSAVE:
2816 	case KVM_CAP_ASYNC_PF:
2817 	case KVM_CAP_GET_TSC_KHZ:
2818 	case KVM_CAP_KVMCLOCK_CTRL:
2819 	case KVM_CAP_READONLY_MEM:
2820 	case KVM_CAP_HYPERV_TIME:
2821 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2822 	case KVM_CAP_TSC_DEADLINE_TIMER:
2823 	case KVM_CAP_ENABLE_CAP_VM:
2824 	case KVM_CAP_DISABLE_QUIRKS:
2825 	case KVM_CAP_SET_BOOT_CPU_ID:
2826  	case KVM_CAP_SPLIT_IRQCHIP:
2827 	case KVM_CAP_IMMEDIATE_EXIT:
2828 	case KVM_CAP_GET_MSR_FEATURES:
2829 		r = 1;
2830 		break;
2831 	case KVM_CAP_ADJUST_CLOCK:
2832 		r = KVM_CLOCK_TSC_STABLE;
2833 		break;
2834 	case KVM_CAP_X86_GUEST_MWAIT:
2835 		r = kvm_mwait_in_guest();
2836 		break;
2837 	case KVM_CAP_X86_SMM:
2838 		/* SMBASE is usually relocated above 1M on modern chipsets,
2839 		 * and SMM handlers might indeed rely on 4G segment limits,
2840 		 * so do not report SMM to be available if real mode is
2841 		 * emulated via vm86 mode.  Still, do not go to great lengths
2842 		 * to avoid userspace's usage of the feature, because it is a
2843 		 * fringe case that is not enabled except via specific settings
2844 		 * of the module parameters.
2845 		 */
2846 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2847 		break;
2848 	case KVM_CAP_VAPIC:
2849 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2850 		break;
2851 	case KVM_CAP_NR_VCPUS:
2852 		r = KVM_SOFT_MAX_VCPUS;
2853 		break;
2854 	case KVM_CAP_MAX_VCPUS:
2855 		r = KVM_MAX_VCPUS;
2856 		break;
2857 	case KVM_CAP_NR_MEMSLOTS:
2858 		r = KVM_USER_MEM_SLOTS;
2859 		break;
2860 	case KVM_CAP_PV_MMU:	/* obsolete */
2861 		r = 0;
2862 		break;
2863 	case KVM_CAP_MCE:
2864 		r = KVM_MAX_MCE_BANKS;
2865 		break;
2866 	case KVM_CAP_XCRS:
2867 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2868 		break;
2869 	case KVM_CAP_TSC_CONTROL:
2870 		r = kvm_has_tsc_control;
2871 		break;
2872 	case KVM_CAP_X2APIC_API:
2873 		r = KVM_X2APIC_API_VALID_FLAGS;
2874 		break;
2875 	default:
2876 		r = 0;
2877 		break;
2878 	}
2879 	return r;
2880 
2881 }
2882 
2883 long kvm_arch_dev_ioctl(struct file *filp,
2884 			unsigned int ioctl, unsigned long arg)
2885 {
2886 	void __user *argp = (void __user *)arg;
2887 	long r;
2888 
2889 	switch (ioctl) {
2890 	case KVM_GET_MSR_INDEX_LIST: {
2891 		struct kvm_msr_list __user *user_msr_list = argp;
2892 		struct kvm_msr_list msr_list;
2893 		unsigned n;
2894 
2895 		r = -EFAULT;
2896 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2897 			goto out;
2898 		n = msr_list.nmsrs;
2899 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2900 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2901 			goto out;
2902 		r = -E2BIG;
2903 		if (n < msr_list.nmsrs)
2904 			goto out;
2905 		r = -EFAULT;
2906 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2907 				 num_msrs_to_save * sizeof(u32)))
2908 			goto out;
2909 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2910 				 &emulated_msrs,
2911 				 num_emulated_msrs * sizeof(u32)))
2912 			goto out;
2913 		r = 0;
2914 		break;
2915 	}
2916 	case KVM_GET_SUPPORTED_CPUID:
2917 	case KVM_GET_EMULATED_CPUID: {
2918 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2919 		struct kvm_cpuid2 cpuid;
2920 
2921 		r = -EFAULT;
2922 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2923 			goto out;
2924 
2925 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2926 					    ioctl);
2927 		if (r)
2928 			goto out;
2929 
2930 		r = -EFAULT;
2931 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2932 			goto out;
2933 		r = 0;
2934 		break;
2935 	}
2936 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2937 		r = -EFAULT;
2938 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2939 				 sizeof(kvm_mce_cap_supported)))
2940 			goto out;
2941 		r = 0;
2942 		break;
2943 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2944 		struct kvm_msr_list __user *user_msr_list = argp;
2945 		struct kvm_msr_list msr_list;
2946 		unsigned int n;
2947 
2948 		r = -EFAULT;
2949 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2950 			goto out;
2951 		n = msr_list.nmsrs;
2952 		msr_list.nmsrs = num_msr_based_features;
2953 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2954 			goto out;
2955 		r = -E2BIG;
2956 		if (n < msr_list.nmsrs)
2957 			goto out;
2958 		r = -EFAULT;
2959 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
2960 				 num_msr_based_features * sizeof(u32)))
2961 			goto out;
2962 		r = 0;
2963 		break;
2964 	}
2965 	case KVM_GET_MSRS:
2966 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
2967 		break;
2968 	}
2969 	default:
2970 		r = -EINVAL;
2971 	}
2972 out:
2973 	return r;
2974 }
2975 
2976 static void wbinvd_ipi(void *garbage)
2977 {
2978 	wbinvd();
2979 }
2980 
2981 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2982 {
2983 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2984 }
2985 
2986 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2987 {
2988 	/* Address WBINVD may be executed by guest */
2989 	if (need_emulate_wbinvd(vcpu)) {
2990 		if (kvm_x86_ops->has_wbinvd_exit())
2991 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2992 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2993 			smp_call_function_single(vcpu->cpu,
2994 					wbinvd_ipi, NULL, 1);
2995 	}
2996 
2997 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2998 
2999 	/* Apply any externally detected TSC adjustments (due to suspend) */
3000 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3001 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3002 		vcpu->arch.tsc_offset_adjustment = 0;
3003 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3004 	}
3005 
3006 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3007 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3008 				rdtsc() - vcpu->arch.last_host_tsc;
3009 		if (tsc_delta < 0)
3010 			mark_tsc_unstable("KVM discovered backwards TSC");
3011 
3012 		if (kvm_check_tsc_unstable()) {
3013 			u64 offset = kvm_compute_tsc_offset(vcpu,
3014 						vcpu->arch.last_guest_tsc);
3015 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3016 			vcpu->arch.tsc_catchup = 1;
3017 		}
3018 
3019 		if (kvm_lapic_hv_timer_in_use(vcpu))
3020 			kvm_lapic_restart_hv_timer(vcpu);
3021 
3022 		/*
3023 		 * On a host with synchronized TSC, there is no need to update
3024 		 * kvmclock on vcpu->cpu migration
3025 		 */
3026 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3027 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3028 		if (vcpu->cpu != cpu)
3029 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3030 		vcpu->cpu = cpu;
3031 	}
3032 
3033 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3034 }
3035 
3036 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3037 {
3038 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3039 		return;
3040 
3041 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3042 
3043 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3044 			&vcpu->arch.st.steal.preempted,
3045 			offsetof(struct kvm_steal_time, preempted),
3046 			sizeof(vcpu->arch.st.steal.preempted));
3047 }
3048 
3049 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3050 {
3051 	int idx;
3052 
3053 	if (vcpu->preempted)
3054 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3055 
3056 	/*
3057 	 * Disable page faults because we're in atomic context here.
3058 	 * kvm_write_guest_offset_cached() would call might_fault()
3059 	 * that relies on pagefault_disable() to tell if there's a
3060 	 * bug. NOTE: the write to guest memory may not go through if
3061 	 * during postcopy live migration or if there's heavy guest
3062 	 * paging.
3063 	 */
3064 	pagefault_disable();
3065 	/*
3066 	 * kvm_memslots() will be called by
3067 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3068 	 */
3069 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3070 	kvm_steal_time_set_preempted(vcpu);
3071 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3072 	pagefault_enable();
3073 	kvm_x86_ops->vcpu_put(vcpu);
3074 	vcpu->arch.last_host_tsc = rdtsc();
3075 	/*
3076 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3077 	 * on every vmexit, but if not, we might have a stale dr6 from the
3078 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3079 	 */
3080 	set_debugreg(0, 6);
3081 }
3082 
3083 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3084 				    struct kvm_lapic_state *s)
3085 {
3086 	if (vcpu->arch.apicv_active)
3087 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3088 
3089 	return kvm_apic_get_state(vcpu, s);
3090 }
3091 
3092 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3093 				    struct kvm_lapic_state *s)
3094 {
3095 	int r;
3096 
3097 	r = kvm_apic_set_state(vcpu, s);
3098 	if (r)
3099 		return r;
3100 	update_cr8_intercept(vcpu);
3101 
3102 	return 0;
3103 }
3104 
3105 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3106 {
3107 	return (!lapic_in_kernel(vcpu) ||
3108 		kvm_apic_accept_pic_intr(vcpu));
3109 }
3110 
3111 /*
3112  * if userspace requested an interrupt window, check that the
3113  * interrupt window is open.
3114  *
3115  * No need to exit to userspace if we already have an interrupt queued.
3116  */
3117 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3118 {
3119 	return kvm_arch_interrupt_allowed(vcpu) &&
3120 		!kvm_cpu_has_interrupt(vcpu) &&
3121 		!kvm_event_needs_reinjection(vcpu) &&
3122 		kvm_cpu_accept_dm_intr(vcpu);
3123 }
3124 
3125 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3126 				    struct kvm_interrupt *irq)
3127 {
3128 	if (irq->irq >= KVM_NR_INTERRUPTS)
3129 		return -EINVAL;
3130 
3131 	if (!irqchip_in_kernel(vcpu->kvm)) {
3132 		kvm_queue_interrupt(vcpu, irq->irq, false);
3133 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3134 		return 0;
3135 	}
3136 
3137 	/*
3138 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3139 	 * fail for in-kernel 8259.
3140 	 */
3141 	if (pic_in_kernel(vcpu->kvm))
3142 		return -ENXIO;
3143 
3144 	if (vcpu->arch.pending_external_vector != -1)
3145 		return -EEXIST;
3146 
3147 	vcpu->arch.pending_external_vector = irq->irq;
3148 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3149 	return 0;
3150 }
3151 
3152 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3153 {
3154 	kvm_inject_nmi(vcpu);
3155 
3156 	return 0;
3157 }
3158 
3159 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3160 {
3161 	kvm_make_request(KVM_REQ_SMI, vcpu);
3162 
3163 	return 0;
3164 }
3165 
3166 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3167 					   struct kvm_tpr_access_ctl *tac)
3168 {
3169 	if (tac->flags)
3170 		return -EINVAL;
3171 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3172 	return 0;
3173 }
3174 
3175 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3176 					u64 mcg_cap)
3177 {
3178 	int r;
3179 	unsigned bank_num = mcg_cap & 0xff, bank;
3180 
3181 	r = -EINVAL;
3182 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3183 		goto out;
3184 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3185 		goto out;
3186 	r = 0;
3187 	vcpu->arch.mcg_cap = mcg_cap;
3188 	/* Init IA32_MCG_CTL to all 1s */
3189 	if (mcg_cap & MCG_CTL_P)
3190 		vcpu->arch.mcg_ctl = ~(u64)0;
3191 	/* Init IA32_MCi_CTL to all 1s */
3192 	for (bank = 0; bank < bank_num; bank++)
3193 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3194 
3195 	if (kvm_x86_ops->setup_mce)
3196 		kvm_x86_ops->setup_mce(vcpu);
3197 out:
3198 	return r;
3199 }
3200 
3201 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3202 				      struct kvm_x86_mce *mce)
3203 {
3204 	u64 mcg_cap = vcpu->arch.mcg_cap;
3205 	unsigned bank_num = mcg_cap & 0xff;
3206 	u64 *banks = vcpu->arch.mce_banks;
3207 
3208 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3209 		return -EINVAL;
3210 	/*
3211 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3212 	 * reporting is disabled
3213 	 */
3214 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3215 	    vcpu->arch.mcg_ctl != ~(u64)0)
3216 		return 0;
3217 	banks += 4 * mce->bank;
3218 	/*
3219 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3220 	 * reporting is disabled for the bank
3221 	 */
3222 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3223 		return 0;
3224 	if (mce->status & MCI_STATUS_UC) {
3225 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3226 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3227 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3228 			return 0;
3229 		}
3230 		if (banks[1] & MCI_STATUS_VAL)
3231 			mce->status |= MCI_STATUS_OVER;
3232 		banks[2] = mce->addr;
3233 		banks[3] = mce->misc;
3234 		vcpu->arch.mcg_status = mce->mcg_status;
3235 		banks[1] = mce->status;
3236 		kvm_queue_exception(vcpu, MC_VECTOR);
3237 	} else if (!(banks[1] & MCI_STATUS_VAL)
3238 		   || !(banks[1] & MCI_STATUS_UC)) {
3239 		if (banks[1] & MCI_STATUS_VAL)
3240 			mce->status |= MCI_STATUS_OVER;
3241 		banks[2] = mce->addr;
3242 		banks[3] = mce->misc;
3243 		banks[1] = mce->status;
3244 	} else
3245 		banks[1] |= MCI_STATUS_OVER;
3246 	return 0;
3247 }
3248 
3249 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3250 					       struct kvm_vcpu_events *events)
3251 {
3252 	process_nmi(vcpu);
3253 	/*
3254 	 * FIXME: pass injected and pending separately.  This is only
3255 	 * needed for nested virtualization, whose state cannot be
3256 	 * migrated yet.  For now we can combine them.
3257 	 */
3258 	events->exception.injected =
3259 		(vcpu->arch.exception.pending ||
3260 		 vcpu->arch.exception.injected) &&
3261 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3262 	events->exception.nr = vcpu->arch.exception.nr;
3263 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3264 	events->exception.pad = 0;
3265 	events->exception.error_code = vcpu->arch.exception.error_code;
3266 
3267 	events->interrupt.injected =
3268 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3269 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3270 	events->interrupt.soft = 0;
3271 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3272 
3273 	events->nmi.injected = vcpu->arch.nmi_injected;
3274 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3275 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3276 	events->nmi.pad = 0;
3277 
3278 	events->sipi_vector = 0; /* never valid when reporting to user space */
3279 
3280 	events->smi.smm = is_smm(vcpu);
3281 	events->smi.pending = vcpu->arch.smi_pending;
3282 	events->smi.smm_inside_nmi =
3283 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3284 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3285 
3286 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3287 			 | KVM_VCPUEVENT_VALID_SHADOW
3288 			 | KVM_VCPUEVENT_VALID_SMM);
3289 	memset(&events->reserved, 0, sizeof(events->reserved));
3290 }
3291 
3292 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3293 
3294 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3295 					      struct kvm_vcpu_events *events)
3296 {
3297 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3298 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3299 			      | KVM_VCPUEVENT_VALID_SHADOW
3300 			      | KVM_VCPUEVENT_VALID_SMM))
3301 		return -EINVAL;
3302 
3303 	if (events->exception.injected &&
3304 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3305 	     is_guest_mode(vcpu)))
3306 		return -EINVAL;
3307 
3308 	/* INITs are latched while in SMM */
3309 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3310 	    (events->smi.smm || events->smi.pending) &&
3311 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3312 		return -EINVAL;
3313 
3314 	process_nmi(vcpu);
3315 	vcpu->arch.exception.injected = false;
3316 	vcpu->arch.exception.pending = events->exception.injected;
3317 	vcpu->arch.exception.nr = events->exception.nr;
3318 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3319 	vcpu->arch.exception.error_code = events->exception.error_code;
3320 
3321 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3322 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3323 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3324 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3325 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3326 						  events->interrupt.shadow);
3327 
3328 	vcpu->arch.nmi_injected = events->nmi.injected;
3329 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3330 		vcpu->arch.nmi_pending = events->nmi.pending;
3331 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3332 
3333 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3334 	    lapic_in_kernel(vcpu))
3335 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3336 
3337 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3338 		u32 hflags = vcpu->arch.hflags;
3339 		if (events->smi.smm)
3340 			hflags |= HF_SMM_MASK;
3341 		else
3342 			hflags &= ~HF_SMM_MASK;
3343 		kvm_set_hflags(vcpu, hflags);
3344 
3345 		vcpu->arch.smi_pending = events->smi.pending;
3346 
3347 		if (events->smi.smm) {
3348 			if (events->smi.smm_inside_nmi)
3349 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3350 			else
3351 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3352 			if (lapic_in_kernel(vcpu)) {
3353 				if (events->smi.latched_init)
3354 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3355 				else
3356 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3357 			}
3358 		}
3359 	}
3360 
3361 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3362 
3363 	return 0;
3364 }
3365 
3366 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3367 					     struct kvm_debugregs *dbgregs)
3368 {
3369 	unsigned long val;
3370 
3371 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3372 	kvm_get_dr(vcpu, 6, &val);
3373 	dbgregs->dr6 = val;
3374 	dbgregs->dr7 = vcpu->arch.dr7;
3375 	dbgregs->flags = 0;
3376 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3377 }
3378 
3379 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3380 					    struct kvm_debugregs *dbgregs)
3381 {
3382 	if (dbgregs->flags)
3383 		return -EINVAL;
3384 
3385 	if (dbgregs->dr6 & ~0xffffffffull)
3386 		return -EINVAL;
3387 	if (dbgregs->dr7 & ~0xffffffffull)
3388 		return -EINVAL;
3389 
3390 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3391 	kvm_update_dr0123(vcpu);
3392 	vcpu->arch.dr6 = dbgregs->dr6;
3393 	kvm_update_dr6(vcpu);
3394 	vcpu->arch.dr7 = dbgregs->dr7;
3395 	kvm_update_dr7(vcpu);
3396 
3397 	return 0;
3398 }
3399 
3400 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3401 
3402 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3403 {
3404 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3405 	u64 xstate_bv = xsave->header.xfeatures;
3406 	u64 valid;
3407 
3408 	/*
3409 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3410 	 * leaves 0 and 1 in the loop below.
3411 	 */
3412 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3413 
3414 	/* Set XSTATE_BV */
3415 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3416 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3417 
3418 	/*
3419 	 * Copy each region from the possibly compacted offset to the
3420 	 * non-compacted offset.
3421 	 */
3422 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3423 	while (valid) {
3424 		u64 feature = valid & -valid;
3425 		int index = fls64(feature) - 1;
3426 		void *src = get_xsave_addr(xsave, feature);
3427 
3428 		if (src) {
3429 			u32 size, offset, ecx, edx;
3430 			cpuid_count(XSTATE_CPUID, index,
3431 				    &size, &offset, &ecx, &edx);
3432 			if (feature == XFEATURE_MASK_PKRU)
3433 				memcpy(dest + offset, &vcpu->arch.pkru,
3434 				       sizeof(vcpu->arch.pkru));
3435 			else
3436 				memcpy(dest + offset, src, size);
3437 
3438 		}
3439 
3440 		valid -= feature;
3441 	}
3442 }
3443 
3444 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3445 {
3446 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3447 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3448 	u64 valid;
3449 
3450 	/*
3451 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3452 	 * leaves 0 and 1 in the loop below.
3453 	 */
3454 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3455 
3456 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3457 	xsave->header.xfeatures = xstate_bv;
3458 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3459 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3460 
3461 	/*
3462 	 * Copy each region from the non-compacted offset to the
3463 	 * possibly compacted offset.
3464 	 */
3465 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3466 	while (valid) {
3467 		u64 feature = valid & -valid;
3468 		int index = fls64(feature) - 1;
3469 		void *dest = get_xsave_addr(xsave, feature);
3470 
3471 		if (dest) {
3472 			u32 size, offset, ecx, edx;
3473 			cpuid_count(XSTATE_CPUID, index,
3474 				    &size, &offset, &ecx, &edx);
3475 			if (feature == XFEATURE_MASK_PKRU)
3476 				memcpy(&vcpu->arch.pkru, src + offset,
3477 				       sizeof(vcpu->arch.pkru));
3478 			else
3479 				memcpy(dest, src + offset, size);
3480 		}
3481 
3482 		valid -= feature;
3483 	}
3484 }
3485 
3486 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3487 					 struct kvm_xsave *guest_xsave)
3488 {
3489 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3490 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3491 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3492 	} else {
3493 		memcpy(guest_xsave->region,
3494 			&vcpu->arch.guest_fpu.state.fxsave,
3495 			sizeof(struct fxregs_state));
3496 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3497 			XFEATURE_MASK_FPSSE;
3498 	}
3499 }
3500 
3501 #define XSAVE_MXCSR_OFFSET 24
3502 
3503 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3504 					struct kvm_xsave *guest_xsave)
3505 {
3506 	u64 xstate_bv =
3507 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3508 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3509 
3510 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3511 		/*
3512 		 * Here we allow setting states that are not present in
3513 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3514 		 * with old userspace.
3515 		 */
3516 		if (xstate_bv & ~kvm_supported_xcr0() ||
3517 			mxcsr & ~mxcsr_feature_mask)
3518 			return -EINVAL;
3519 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3520 	} else {
3521 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3522 			mxcsr & ~mxcsr_feature_mask)
3523 			return -EINVAL;
3524 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3525 			guest_xsave->region, sizeof(struct fxregs_state));
3526 	}
3527 	return 0;
3528 }
3529 
3530 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3531 					struct kvm_xcrs *guest_xcrs)
3532 {
3533 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3534 		guest_xcrs->nr_xcrs = 0;
3535 		return;
3536 	}
3537 
3538 	guest_xcrs->nr_xcrs = 1;
3539 	guest_xcrs->flags = 0;
3540 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3541 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3542 }
3543 
3544 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3545 				       struct kvm_xcrs *guest_xcrs)
3546 {
3547 	int i, r = 0;
3548 
3549 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3550 		return -EINVAL;
3551 
3552 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3553 		return -EINVAL;
3554 
3555 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3556 		/* Only support XCR0 currently */
3557 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3558 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3559 				guest_xcrs->xcrs[i].value);
3560 			break;
3561 		}
3562 	if (r)
3563 		r = -EINVAL;
3564 	return r;
3565 }
3566 
3567 /*
3568  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3569  * stopped by the hypervisor.  This function will be called from the host only.
3570  * EINVAL is returned when the host attempts to set the flag for a guest that
3571  * does not support pv clocks.
3572  */
3573 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3574 {
3575 	if (!vcpu->arch.pv_time_enabled)
3576 		return -EINVAL;
3577 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3578 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3579 	return 0;
3580 }
3581 
3582 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3583 				     struct kvm_enable_cap *cap)
3584 {
3585 	if (cap->flags)
3586 		return -EINVAL;
3587 
3588 	switch (cap->cap) {
3589 	case KVM_CAP_HYPERV_SYNIC2:
3590 		if (cap->args[0])
3591 			return -EINVAL;
3592 	case KVM_CAP_HYPERV_SYNIC:
3593 		if (!irqchip_in_kernel(vcpu->kvm))
3594 			return -EINVAL;
3595 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3596 					     KVM_CAP_HYPERV_SYNIC2);
3597 	default:
3598 		return -EINVAL;
3599 	}
3600 }
3601 
3602 long kvm_arch_vcpu_ioctl(struct file *filp,
3603 			 unsigned int ioctl, unsigned long arg)
3604 {
3605 	struct kvm_vcpu *vcpu = filp->private_data;
3606 	void __user *argp = (void __user *)arg;
3607 	int r;
3608 	union {
3609 		struct kvm_lapic_state *lapic;
3610 		struct kvm_xsave *xsave;
3611 		struct kvm_xcrs *xcrs;
3612 		void *buffer;
3613 	} u;
3614 
3615 	vcpu_load(vcpu);
3616 
3617 	u.buffer = NULL;
3618 	switch (ioctl) {
3619 	case KVM_GET_LAPIC: {
3620 		r = -EINVAL;
3621 		if (!lapic_in_kernel(vcpu))
3622 			goto out;
3623 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3624 
3625 		r = -ENOMEM;
3626 		if (!u.lapic)
3627 			goto out;
3628 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3629 		if (r)
3630 			goto out;
3631 		r = -EFAULT;
3632 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3633 			goto out;
3634 		r = 0;
3635 		break;
3636 	}
3637 	case KVM_SET_LAPIC: {
3638 		r = -EINVAL;
3639 		if (!lapic_in_kernel(vcpu))
3640 			goto out;
3641 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3642 		if (IS_ERR(u.lapic)) {
3643 			r = PTR_ERR(u.lapic);
3644 			goto out_nofree;
3645 		}
3646 
3647 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3648 		break;
3649 	}
3650 	case KVM_INTERRUPT: {
3651 		struct kvm_interrupt irq;
3652 
3653 		r = -EFAULT;
3654 		if (copy_from_user(&irq, argp, sizeof irq))
3655 			goto out;
3656 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3657 		break;
3658 	}
3659 	case KVM_NMI: {
3660 		r = kvm_vcpu_ioctl_nmi(vcpu);
3661 		break;
3662 	}
3663 	case KVM_SMI: {
3664 		r = kvm_vcpu_ioctl_smi(vcpu);
3665 		break;
3666 	}
3667 	case KVM_SET_CPUID: {
3668 		struct kvm_cpuid __user *cpuid_arg = argp;
3669 		struct kvm_cpuid cpuid;
3670 
3671 		r = -EFAULT;
3672 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3673 			goto out;
3674 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3675 		break;
3676 	}
3677 	case KVM_SET_CPUID2: {
3678 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3679 		struct kvm_cpuid2 cpuid;
3680 
3681 		r = -EFAULT;
3682 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3683 			goto out;
3684 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3685 					      cpuid_arg->entries);
3686 		break;
3687 	}
3688 	case KVM_GET_CPUID2: {
3689 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3690 		struct kvm_cpuid2 cpuid;
3691 
3692 		r = -EFAULT;
3693 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3694 			goto out;
3695 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3696 					      cpuid_arg->entries);
3697 		if (r)
3698 			goto out;
3699 		r = -EFAULT;
3700 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3701 			goto out;
3702 		r = 0;
3703 		break;
3704 	}
3705 	case KVM_GET_MSRS: {
3706 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3707 		r = msr_io(vcpu, argp, do_get_msr, 1);
3708 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3709 		break;
3710 	}
3711 	case KVM_SET_MSRS: {
3712 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3713 		r = msr_io(vcpu, argp, do_set_msr, 0);
3714 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3715 		break;
3716 	}
3717 	case KVM_TPR_ACCESS_REPORTING: {
3718 		struct kvm_tpr_access_ctl tac;
3719 
3720 		r = -EFAULT;
3721 		if (copy_from_user(&tac, argp, sizeof tac))
3722 			goto out;
3723 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3724 		if (r)
3725 			goto out;
3726 		r = -EFAULT;
3727 		if (copy_to_user(argp, &tac, sizeof tac))
3728 			goto out;
3729 		r = 0;
3730 		break;
3731 	};
3732 	case KVM_SET_VAPIC_ADDR: {
3733 		struct kvm_vapic_addr va;
3734 		int idx;
3735 
3736 		r = -EINVAL;
3737 		if (!lapic_in_kernel(vcpu))
3738 			goto out;
3739 		r = -EFAULT;
3740 		if (copy_from_user(&va, argp, sizeof va))
3741 			goto out;
3742 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3743 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3744 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3745 		break;
3746 	}
3747 	case KVM_X86_SETUP_MCE: {
3748 		u64 mcg_cap;
3749 
3750 		r = -EFAULT;
3751 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3752 			goto out;
3753 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3754 		break;
3755 	}
3756 	case KVM_X86_SET_MCE: {
3757 		struct kvm_x86_mce mce;
3758 
3759 		r = -EFAULT;
3760 		if (copy_from_user(&mce, argp, sizeof mce))
3761 			goto out;
3762 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3763 		break;
3764 	}
3765 	case KVM_GET_VCPU_EVENTS: {
3766 		struct kvm_vcpu_events events;
3767 
3768 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3769 
3770 		r = -EFAULT;
3771 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3772 			break;
3773 		r = 0;
3774 		break;
3775 	}
3776 	case KVM_SET_VCPU_EVENTS: {
3777 		struct kvm_vcpu_events events;
3778 
3779 		r = -EFAULT;
3780 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3781 			break;
3782 
3783 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3784 		break;
3785 	}
3786 	case KVM_GET_DEBUGREGS: {
3787 		struct kvm_debugregs dbgregs;
3788 
3789 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3790 
3791 		r = -EFAULT;
3792 		if (copy_to_user(argp, &dbgregs,
3793 				 sizeof(struct kvm_debugregs)))
3794 			break;
3795 		r = 0;
3796 		break;
3797 	}
3798 	case KVM_SET_DEBUGREGS: {
3799 		struct kvm_debugregs dbgregs;
3800 
3801 		r = -EFAULT;
3802 		if (copy_from_user(&dbgregs, argp,
3803 				   sizeof(struct kvm_debugregs)))
3804 			break;
3805 
3806 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3807 		break;
3808 	}
3809 	case KVM_GET_XSAVE: {
3810 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3811 		r = -ENOMEM;
3812 		if (!u.xsave)
3813 			break;
3814 
3815 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3816 
3817 		r = -EFAULT;
3818 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3819 			break;
3820 		r = 0;
3821 		break;
3822 	}
3823 	case KVM_SET_XSAVE: {
3824 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3825 		if (IS_ERR(u.xsave)) {
3826 			r = PTR_ERR(u.xsave);
3827 			goto out_nofree;
3828 		}
3829 
3830 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3831 		break;
3832 	}
3833 	case KVM_GET_XCRS: {
3834 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3835 		r = -ENOMEM;
3836 		if (!u.xcrs)
3837 			break;
3838 
3839 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3840 
3841 		r = -EFAULT;
3842 		if (copy_to_user(argp, u.xcrs,
3843 				 sizeof(struct kvm_xcrs)))
3844 			break;
3845 		r = 0;
3846 		break;
3847 	}
3848 	case KVM_SET_XCRS: {
3849 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3850 		if (IS_ERR(u.xcrs)) {
3851 			r = PTR_ERR(u.xcrs);
3852 			goto out_nofree;
3853 		}
3854 
3855 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3856 		break;
3857 	}
3858 	case KVM_SET_TSC_KHZ: {
3859 		u32 user_tsc_khz;
3860 
3861 		r = -EINVAL;
3862 		user_tsc_khz = (u32)arg;
3863 
3864 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3865 			goto out;
3866 
3867 		if (user_tsc_khz == 0)
3868 			user_tsc_khz = tsc_khz;
3869 
3870 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3871 			r = 0;
3872 
3873 		goto out;
3874 	}
3875 	case KVM_GET_TSC_KHZ: {
3876 		r = vcpu->arch.virtual_tsc_khz;
3877 		goto out;
3878 	}
3879 	case KVM_KVMCLOCK_CTRL: {
3880 		r = kvm_set_guest_paused(vcpu);
3881 		goto out;
3882 	}
3883 	case KVM_ENABLE_CAP: {
3884 		struct kvm_enable_cap cap;
3885 
3886 		r = -EFAULT;
3887 		if (copy_from_user(&cap, argp, sizeof(cap)))
3888 			goto out;
3889 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3890 		break;
3891 	}
3892 	default:
3893 		r = -EINVAL;
3894 	}
3895 out:
3896 	kfree(u.buffer);
3897 out_nofree:
3898 	vcpu_put(vcpu);
3899 	return r;
3900 }
3901 
3902 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3903 {
3904 	return VM_FAULT_SIGBUS;
3905 }
3906 
3907 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3908 {
3909 	int ret;
3910 
3911 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3912 		return -EINVAL;
3913 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3914 	return ret;
3915 }
3916 
3917 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3918 					      u64 ident_addr)
3919 {
3920 	kvm->arch.ept_identity_map_addr = ident_addr;
3921 	return 0;
3922 }
3923 
3924 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3925 					  u32 kvm_nr_mmu_pages)
3926 {
3927 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3928 		return -EINVAL;
3929 
3930 	mutex_lock(&kvm->slots_lock);
3931 
3932 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3933 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3934 
3935 	mutex_unlock(&kvm->slots_lock);
3936 	return 0;
3937 }
3938 
3939 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3940 {
3941 	return kvm->arch.n_max_mmu_pages;
3942 }
3943 
3944 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3945 {
3946 	struct kvm_pic *pic = kvm->arch.vpic;
3947 	int r;
3948 
3949 	r = 0;
3950 	switch (chip->chip_id) {
3951 	case KVM_IRQCHIP_PIC_MASTER:
3952 		memcpy(&chip->chip.pic, &pic->pics[0],
3953 			sizeof(struct kvm_pic_state));
3954 		break;
3955 	case KVM_IRQCHIP_PIC_SLAVE:
3956 		memcpy(&chip->chip.pic, &pic->pics[1],
3957 			sizeof(struct kvm_pic_state));
3958 		break;
3959 	case KVM_IRQCHIP_IOAPIC:
3960 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
3961 		break;
3962 	default:
3963 		r = -EINVAL;
3964 		break;
3965 	}
3966 	return r;
3967 }
3968 
3969 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3970 {
3971 	struct kvm_pic *pic = kvm->arch.vpic;
3972 	int r;
3973 
3974 	r = 0;
3975 	switch (chip->chip_id) {
3976 	case KVM_IRQCHIP_PIC_MASTER:
3977 		spin_lock(&pic->lock);
3978 		memcpy(&pic->pics[0], &chip->chip.pic,
3979 			sizeof(struct kvm_pic_state));
3980 		spin_unlock(&pic->lock);
3981 		break;
3982 	case KVM_IRQCHIP_PIC_SLAVE:
3983 		spin_lock(&pic->lock);
3984 		memcpy(&pic->pics[1], &chip->chip.pic,
3985 			sizeof(struct kvm_pic_state));
3986 		spin_unlock(&pic->lock);
3987 		break;
3988 	case KVM_IRQCHIP_IOAPIC:
3989 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
3990 		break;
3991 	default:
3992 		r = -EINVAL;
3993 		break;
3994 	}
3995 	kvm_pic_update_irq(pic);
3996 	return r;
3997 }
3998 
3999 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4000 {
4001 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4002 
4003 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4004 
4005 	mutex_lock(&kps->lock);
4006 	memcpy(ps, &kps->channels, sizeof(*ps));
4007 	mutex_unlock(&kps->lock);
4008 	return 0;
4009 }
4010 
4011 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4012 {
4013 	int i;
4014 	struct kvm_pit *pit = kvm->arch.vpit;
4015 
4016 	mutex_lock(&pit->pit_state.lock);
4017 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4018 	for (i = 0; i < 3; i++)
4019 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4020 	mutex_unlock(&pit->pit_state.lock);
4021 	return 0;
4022 }
4023 
4024 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4025 {
4026 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4027 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4028 		sizeof(ps->channels));
4029 	ps->flags = kvm->arch.vpit->pit_state.flags;
4030 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4031 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4032 	return 0;
4033 }
4034 
4035 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4036 {
4037 	int start = 0;
4038 	int i;
4039 	u32 prev_legacy, cur_legacy;
4040 	struct kvm_pit *pit = kvm->arch.vpit;
4041 
4042 	mutex_lock(&pit->pit_state.lock);
4043 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4044 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4045 	if (!prev_legacy && cur_legacy)
4046 		start = 1;
4047 	memcpy(&pit->pit_state.channels, &ps->channels,
4048 	       sizeof(pit->pit_state.channels));
4049 	pit->pit_state.flags = ps->flags;
4050 	for (i = 0; i < 3; i++)
4051 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4052 				   start && i == 0);
4053 	mutex_unlock(&pit->pit_state.lock);
4054 	return 0;
4055 }
4056 
4057 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4058 				 struct kvm_reinject_control *control)
4059 {
4060 	struct kvm_pit *pit = kvm->arch.vpit;
4061 
4062 	if (!pit)
4063 		return -ENXIO;
4064 
4065 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4066 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4067 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4068 	 */
4069 	mutex_lock(&pit->pit_state.lock);
4070 	kvm_pit_set_reinject(pit, control->pit_reinject);
4071 	mutex_unlock(&pit->pit_state.lock);
4072 
4073 	return 0;
4074 }
4075 
4076 /**
4077  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4078  * @kvm: kvm instance
4079  * @log: slot id and address to which we copy the log
4080  *
4081  * Steps 1-4 below provide general overview of dirty page logging. See
4082  * kvm_get_dirty_log_protect() function description for additional details.
4083  *
4084  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4085  * always flush the TLB (step 4) even if previous step failed  and the dirty
4086  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4087  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4088  * writes will be marked dirty for next log read.
4089  *
4090  *   1. Take a snapshot of the bit and clear it if needed.
4091  *   2. Write protect the corresponding page.
4092  *   3. Copy the snapshot to the userspace.
4093  *   4. Flush TLB's if needed.
4094  */
4095 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4096 {
4097 	bool is_dirty = false;
4098 	int r;
4099 
4100 	mutex_lock(&kvm->slots_lock);
4101 
4102 	/*
4103 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4104 	 */
4105 	if (kvm_x86_ops->flush_log_dirty)
4106 		kvm_x86_ops->flush_log_dirty(kvm);
4107 
4108 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4109 
4110 	/*
4111 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4112 	 * kvm_mmu_slot_remove_write_access().
4113 	 */
4114 	lockdep_assert_held(&kvm->slots_lock);
4115 	if (is_dirty)
4116 		kvm_flush_remote_tlbs(kvm);
4117 
4118 	mutex_unlock(&kvm->slots_lock);
4119 	return r;
4120 }
4121 
4122 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4123 			bool line_status)
4124 {
4125 	if (!irqchip_in_kernel(kvm))
4126 		return -ENXIO;
4127 
4128 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4129 					irq_event->irq, irq_event->level,
4130 					line_status);
4131 	return 0;
4132 }
4133 
4134 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4135 				   struct kvm_enable_cap *cap)
4136 {
4137 	int r;
4138 
4139 	if (cap->flags)
4140 		return -EINVAL;
4141 
4142 	switch (cap->cap) {
4143 	case KVM_CAP_DISABLE_QUIRKS:
4144 		kvm->arch.disabled_quirks = cap->args[0];
4145 		r = 0;
4146 		break;
4147 	case KVM_CAP_SPLIT_IRQCHIP: {
4148 		mutex_lock(&kvm->lock);
4149 		r = -EINVAL;
4150 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4151 			goto split_irqchip_unlock;
4152 		r = -EEXIST;
4153 		if (irqchip_in_kernel(kvm))
4154 			goto split_irqchip_unlock;
4155 		if (kvm->created_vcpus)
4156 			goto split_irqchip_unlock;
4157 		r = kvm_setup_empty_irq_routing(kvm);
4158 		if (r)
4159 			goto split_irqchip_unlock;
4160 		/* Pairs with irqchip_in_kernel. */
4161 		smp_wmb();
4162 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4163 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4164 		r = 0;
4165 split_irqchip_unlock:
4166 		mutex_unlock(&kvm->lock);
4167 		break;
4168 	}
4169 	case KVM_CAP_X2APIC_API:
4170 		r = -EINVAL;
4171 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4172 			break;
4173 
4174 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4175 			kvm->arch.x2apic_format = true;
4176 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4177 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4178 
4179 		r = 0;
4180 		break;
4181 	default:
4182 		r = -EINVAL;
4183 		break;
4184 	}
4185 	return r;
4186 }
4187 
4188 long kvm_arch_vm_ioctl(struct file *filp,
4189 		       unsigned int ioctl, unsigned long arg)
4190 {
4191 	struct kvm *kvm = filp->private_data;
4192 	void __user *argp = (void __user *)arg;
4193 	int r = -ENOTTY;
4194 	/*
4195 	 * This union makes it completely explicit to gcc-3.x
4196 	 * that these two variables' stack usage should be
4197 	 * combined, not added together.
4198 	 */
4199 	union {
4200 		struct kvm_pit_state ps;
4201 		struct kvm_pit_state2 ps2;
4202 		struct kvm_pit_config pit_config;
4203 	} u;
4204 
4205 	switch (ioctl) {
4206 	case KVM_SET_TSS_ADDR:
4207 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4208 		break;
4209 	case KVM_SET_IDENTITY_MAP_ADDR: {
4210 		u64 ident_addr;
4211 
4212 		mutex_lock(&kvm->lock);
4213 		r = -EINVAL;
4214 		if (kvm->created_vcpus)
4215 			goto set_identity_unlock;
4216 		r = -EFAULT;
4217 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4218 			goto set_identity_unlock;
4219 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4220 set_identity_unlock:
4221 		mutex_unlock(&kvm->lock);
4222 		break;
4223 	}
4224 	case KVM_SET_NR_MMU_PAGES:
4225 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4226 		break;
4227 	case KVM_GET_NR_MMU_PAGES:
4228 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4229 		break;
4230 	case KVM_CREATE_IRQCHIP: {
4231 		mutex_lock(&kvm->lock);
4232 
4233 		r = -EEXIST;
4234 		if (irqchip_in_kernel(kvm))
4235 			goto create_irqchip_unlock;
4236 
4237 		r = -EINVAL;
4238 		if (kvm->created_vcpus)
4239 			goto create_irqchip_unlock;
4240 
4241 		r = kvm_pic_init(kvm);
4242 		if (r)
4243 			goto create_irqchip_unlock;
4244 
4245 		r = kvm_ioapic_init(kvm);
4246 		if (r) {
4247 			kvm_pic_destroy(kvm);
4248 			goto create_irqchip_unlock;
4249 		}
4250 
4251 		r = kvm_setup_default_irq_routing(kvm);
4252 		if (r) {
4253 			kvm_ioapic_destroy(kvm);
4254 			kvm_pic_destroy(kvm);
4255 			goto create_irqchip_unlock;
4256 		}
4257 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4258 		smp_wmb();
4259 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4260 	create_irqchip_unlock:
4261 		mutex_unlock(&kvm->lock);
4262 		break;
4263 	}
4264 	case KVM_CREATE_PIT:
4265 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4266 		goto create_pit;
4267 	case KVM_CREATE_PIT2:
4268 		r = -EFAULT;
4269 		if (copy_from_user(&u.pit_config, argp,
4270 				   sizeof(struct kvm_pit_config)))
4271 			goto out;
4272 	create_pit:
4273 		mutex_lock(&kvm->lock);
4274 		r = -EEXIST;
4275 		if (kvm->arch.vpit)
4276 			goto create_pit_unlock;
4277 		r = -ENOMEM;
4278 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4279 		if (kvm->arch.vpit)
4280 			r = 0;
4281 	create_pit_unlock:
4282 		mutex_unlock(&kvm->lock);
4283 		break;
4284 	case KVM_GET_IRQCHIP: {
4285 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4286 		struct kvm_irqchip *chip;
4287 
4288 		chip = memdup_user(argp, sizeof(*chip));
4289 		if (IS_ERR(chip)) {
4290 			r = PTR_ERR(chip);
4291 			goto out;
4292 		}
4293 
4294 		r = -ENXIO;
4295 		if (!irqchip_kernel(kvm))
4296 			goto get_irqchip_out;
4297 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4298 		if (r)
4299 			goto get_irqchip_out;
4300 		r = -EFAULT;
4301 		if (copy_to_user(argp, chip, sizeof *chip))
4302 			goto get_irqchip_out;
4303 		r = 0;
4304 	get_irqchip_out:
4305 		kfree(chip);
4306 		break;
4307 	}
4308 	case KVM_SET_IRQCHIP: {
4309 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4310 		struct kvm_irqchip *chip;
4311 
4312 		chip = memdup_user(argp, sizeof(*chip));
4313 		if (IS_ERR(chip)) {
4314 			r = PTR_ERR(chip);
4315 			goto out;
4316 		}
4317 
4318 		r = -ENXIO;
4319 		if (!irqchip_kernel(kvm))
4320 			goto set_irqchip_out;
4321 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4322 		if (r)
4323 			goto set_irqchip_out;
4324 		r = 0;
4325 	set_irqchip_out:
4326 		kfree(chip);
4327 		break;
4328 	}
4329 	case KVM_GET_PIT: {
4330 		r = -EFAULT;
4331 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4332 			goto out;
4333 		r = -ENXIO;
4334 		if (!kvm->arch.vpit)
4335 			goto out;
4336 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4337 		if (r)
4338 			goto out;
4339 		r = -EFAULT;
4340 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4341 			goto out;
4342 		r = 0;
4343 		break;
4344 	}
4345 	case KVM_SET_PIT: {
4346 		r = -EFAULT;
4347 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4348 			goto out;
4349 		r = -ENXIO;
4350 		if (!kvm->arch.vpit)
4351 			goto out;
4352 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4353 		break;
4354 	}
4355 	case KVM_GET_PIT2: {
4356 		r = -ENXIO;
4357 		if (!kvm->arch.vpit)
4358 			goto out;
4359 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4360 		if (r)
4361 			goto out;
4362 		r = -EFAULT;
4363 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4364 			goto out;
4365 		r = 0;
4366 		break;
4367 	}
4368 	case KVM_SET_PIT2: {
4369 		r = -EFAULT;
4370 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4371 			goto out;
4372 		r = -ENXIO;
4373 		if (!kvm->arch.vpit)
4374 			goto out;
4375 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4376 		break;
4377 	}
4378 	case KVM_REINJECT_CONTROL: {
4379 		struct kvm_reinject_control control;
4380 		r =  -EFAULT;
4381 		if (copy_from_user(&control, argp, sizeof(control)))
4382 			goto out;
4383 		r = kvm_vm_ioctl_reinject(kvm, &control);
4384 		break;
4385 	}
4386 	case KVM_SET_BOOT_CPU_ID:
4387 		r = 0;
4388 		mutex_lock(&kvm->lock);
4389 		if (kvm->created_vcpus)
4390 			r = -EBUSY;
4391 		else
4392 			kvm->arch.bsp_vcpu_id = arg;
4393 		mutex_unlock(&kvm->lock);
4394 		break;
4395 	case KVM_XEN_HVM_CONFIG: {
4396 		struct kvm_xen_hvm_config xhc;
4397 		r = -EFAULT;
4398 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4399 			goto out;
4400 		r = -EINVAL;
4401 		if (xhc.flags)
4402 			goto out;
4403 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4404 		r = 0;
4405 		break;
4406 	}
4407 	case KVM_SET_CLOCK: {
4408 		struct kvm_clock_data user_ns;
4409 		u64 now_ns;
4410 
4411 		r = -EFAULT;
4412 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4413 			goto out;
4414 
4415 		r = -EINVAL;
4416 		if (user_ns.flags)
4417 			goto out;
4418 
4419 		r = 0;
4420 		/*
4421 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4422 		 * kvm_gen_update_masterclock() can be cut down to locked
4423 		 * pvclock_update_vm_gtod_copy().
4424 		 */
4425 		kvm_gen_update_masterclock(kvm);
4426 		now_ns = get_kvmclock_ns(kvm);
4427 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4428 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4429 		break;
4430 	}
4431 	case KVM_GET_CLOCK: {
4432 		struct kvm_clock_data user_ns;
4433 		u64 now_ns;
4434 
4435 		now_ns = get_kvmclock_ns(kvm);
4436 		user_ns.clock = now_ns;
4437 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4438 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4439 
4440 		r = -EFAULT;
4441 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4442 			goto out;
4443 		r = 0;
4444 		break;
4445 	}
4446 	case KVM_ENABLE_CAP: {
4447 		struct kvm_enable_cap cap;
4448 
4449 		r = -EFAULT;
4450 		if (copy_from_user(&cap, argp, sizeof(cap)))
4451 			goto out;
4452 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4453 		break;
4454 	}
4455 	case KVM_MEMORY_ENCRYPT_OP: {
4456 		r = -ENOTTY;
4457 		if (kvm_x86_ops->mem_enc_op)
4458 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4459 		break;
4460 	}
4461 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4462 		struct kvm_enc_region region;
4463 
4464 		r = -EFAULT;
4465 		if (copy_from_user(&region, argp, sizeof(region)))
4466 			goto out;
4467 
4468 		r = -ENOTTY;
4469 		if (kvm_x86_ops->mem_enc_reg_region)
4470 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4471 		break;
4472 	}
4473 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4474 		struct kvm_enc_region region;
4475 
4476 		r = -EFAULT;
4477 		if (copy_from_user(&region, argp, sizeof(region)))
4478 			goto out;
4479 
4480 		r = -ENOTTY;
4481 		if (kvm_x86_ops->mem_enc_unreg_region)
4482 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4483 		break;
4484 	}
4485 	default:
4486 		r = -ENOTTY;
4487 	}
4488 out:
4489 	return r;
4490 }
4491 
4492 static void kvm_init_msr_list(void)
4493 {
4494 	u32 dummy[2];
4495 	unsigned i, j;
4496 
4497 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4498 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4499 			continue;
4500 
4501 		/*
4502 		 * Even MSRs that are valid in the host may not be exposed
4503 		 * to the guests in some cases.
4504 		 */
4505 		switch (msrs_to_save[i]) {
4506 		case MSR_IA32_BNDCFGS:
4507 			if (!kvm_x86_ops->mpx_supported())
4508 				continue;
4509 			break;
4510 		case MSR_TSC_AUX:
4511 			if (!kvm_x86_ops->rdtscp_supported())
4512 				continue;
4513 			break;
4514 		default:
4515 			break;
4516 		}
4517 
4518 		if (j < i)
4519 			msrs_to_save[j] = msrs_to_save[i];
4520 		j++;
4521 	}
4522 	num_msrs_to_save = j;
4523 
4524 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4525 		switch (emulated_msrs[i]) {
4526 		case MSR_IA32_SMBASE:
4527 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4528 				continue;
4529 			break;
4530 		default:
4531 			break;
4532 		}
4533 
4534 		if (j < i)
4535 			emulated_msrs[j] = emulated_msrs[i];
4536 		j++;
4537 	}
4538 	num_emulated_msrs = j;
4539 
4540 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4541 		struct kvm_msr_entry msr;
4542 
4543 		msr.index = msr_based_features[i];
4544 		if (kvm_get_msr_feature(&msr))
4545 			continue;
4546 
4547 		if (j < i)
4548 			msr_based_features[j] = msr_based_features[i];
4549 		j++;
4550 	}
4551 	num_msr_based_features = j;
4552 }
4553 
4554 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4555 			   const void *v)
4556 {
4557 	int handled = 0;
4558 	int n;
4559 
4560 	do {
4561 		n = min(len, 8);
4562 		if (!(lapic_in_kernel(vcpu) &&
4563 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4564 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4565 			break;
4566 		handled += n;
4567 		addr += n;
4568 		len -= n;
4569 		v += n;
4570 	} while (len);
4571 
4572 	return handled;
4573 }
4574 
4575 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4576 {
4577 	int handled = 0;
4578 	int n;
4579 
4580 	do {
4581 		n = min(len, 8);
4582 		if (!(lapic_in_kernel(vcpu) &&
4583 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4584 					 addr, n, v))
4585 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4586 			break;
4587 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4588 		handled += n;
4589 		addr += n;
4590 		len -= n;
4591 		v += n;
4592 	} while (len);
4593 
4594 	return handled;
4595 }
4596 
4597 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4598 			struct kvm_segment *var, int seg)
4599 {
4600 	kvm_x86_ops->set_segment(vcpu, var, seg);
4601 }
4602 
4603 void kvm_get_segment(struct kvm_vcpu *vcpu,
4604 		     struct kvm_segment *var, int seg)
4605 {
4606 	kvm_x86_ops->get_segment(vcpu, var, seg);
4607 }
4608 
4609 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4610 			   struct x86_exception *exception)
4611 {
4612 	gpa_t t_gpa;
4613 
4614 	BUG_ON(!mmu_is_nested(vcpu));
4615 
4616 	/* NPT walks are always user-walks */
4617 	access |= PFERR_USER_MASK;
4618 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4619 
4620 	return t_gpa;
4621 }
4622 
4623 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4624 			      struct x86_exception *exception)
4625 {
4626 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4627 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4628 }
4629 
4630  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4631 				struct x86_exception *exception)
4632 {
4633 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4634 	access |= PFERR_FETCH_MASK;
4635 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4636 }
4637 
4638 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4639 			       struct x86_exception *exception)
4640 {
4641 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4642 	access |= PFERR_WRITE_MASK;
4643 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4644 }
4645 
4646 /* uses this to access any guest's mapped memory without checking CPL */
4647 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4648 				struct x86_exception *exception)
4649 {
4650 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4651 }
4652 
4653 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4654 				      struct kvm_vcpu *vcpu, u32 access,
4655 				      struct x86_exception *exception)
4656 {
4657 	void *data = val;
4658 	int r = X86EMUL_CONTINUE;
4659 
4660 	while (bytes) {
4661 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4662 							    exception);
4663 		unsigned offset = addr & (PAGE_SIZE-1);
4664 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4665 		int ret;
4666 
4667 		if (gpa == UNMAPPED_GVA)
4668 			return X86EMUL_PROPAGATE_FAULT;
4669 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4670 					       offset, toread);
4671 		if (ret < 0) {
4672 			r = X86EMUL_IO_NEEDED;
4673 			goto out;
4674 		}
4675 
4676 		bytes -= toread;
4677 		data += toread;
4678 		addr += toread;
4679 	}
4680 out:
4681 	return r;
4682 }
4683 
4684 /* used for instruction fetching */
4685 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4686 				gva_t addr, void *val, unsigned int bytes,
4687 				struct x86_exception *exception)
4688 {
4689 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4691 	unsigned offset;
4692 	int ret;
4693 
4694 	/* Inline kvm_read_guest_virt_helper for speed.  */
4695 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4696 						    exception);
4697 	if (unlikely(gpa == UNMAPPED_GVA))
4698 		return X86EMUL_PROPAGATE_FAULT;
4699 
4700 	offset = addr & (PAGE_SIZE-1);
4701 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4702 		bytes = (unsigned)PAGE_SIZE - offset;
4703 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4704 				       offset, bytes);
4705 	if (unlikely(ret < 0))
4706 		return X86EMUL_IO_NEEDED;
4707 
4708 	return X86EMUL_CONTINUE;
4709 }
4710 
4711 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4712 			       gva_t addr, void *val, unsigned int bytes,
4713 			       struct x86_exception *exception)
4714 {
4715 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4716 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4717 
4718 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4719 					  exception);
4720 }
4721 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4722 
4723 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4724 				      gva_t addr, void *val, unsigned int bytes,
4725 				      struct x86_exception *exception)
4726 {
4727 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4728 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4729 }
4730 
4731 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4732 		unsigned long addr, void *val, unsigned int bytes)
4733 {
4734 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4735 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4736 
4737 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4738 }
4739 
4740 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4741 				       gva_t addr, void *val,
4742 				       unsigned int bytes,
4743 				       struct x86_exception *exception)
4744 {
4745 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4746 	void *data = val;
4747 	int r = X86EMUL_CONTINUE;
4748 
4749 	while (bytes) {
4750 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4751 							     PFERR_WRITE_MASK,
4752 							     exception);
4753 		unsigned offset = addr & (PAGE_SIZE-1);
4754 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4755 		int ret;
4756 
4757 		if (gpa == UNMAPPED_GVA)
4758 			return X86EMUL_PROPAGATE_FAULT;
4759 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4760 		if (ret < 0) {
4761 			r = X86EMUL_IO_NEEDED;
4762 			goto out;
4763 		}
4764 
4765 		bytes -= towrite;
4766 		data += towrite;
4767 		addr += towrite;
4768 	}
4769 out:
4770 	return r;
4771 }
4772 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4773 
4774 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4775 			    gpa_t gpa, bool write)
4776 {
4777 	/* For APIC access vmexit */
4778 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4779 		return 1;
4780 
4781 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4782 		trace_vcpu_match_mmio(gva, gpa, write, true);
4783 		return 1;
4784 	}
4785 
4786 	return 0;
4787 }
4788 
4789 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4790 				gpa_t *gpa, struct x86_exception *exception,
4791 				bool write)
4792 {
4793 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4794 		| (write ? PFERR_WRITE_MASK : 0);
4795 
4796 	/*
4797 	 * currently PKRU is only applied to ept enabled guest so
4798 	 * there is no pkey in EPT page table for L1 guest or EPT
4799 	 * shadow page table for L2 guest.
4800 	 */
4801 	if (vcpu_match_mmio_gva(vcpu, gva)
4802 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4803 				 vcpu->arch.access, 0, access)) {
4804 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4805 					(gva & (PAGE_SIZE - 1));
4806 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4807 		return 1;
4808 	}
4809 
4810 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4811 
4812 	if (*gpa == UNMAPPED_GVA)
4813 		return -1;
4814 
4815 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4816 }
4817 
4818 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4819 			const void *val, int bytes)
4820 {
4821 	int ret;
4822 
4823 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4824 	if (ret < 0)
4825 		return 0;
4826 	kvm_page_track_write(vcpu, gpa, val, bytes);
4827 	return 1;
4828 }
4829 
4830 struct read_write_emulator_ops {
4831 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4832 				  int bytes);
4833 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4834 				  void *val, int bytes);
4835 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4836 			       int bytes, void *val);
4837 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4838 				    void *val, int bytes);
4839 	bool write;
4840 };
4841 
4842 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4843 {
4844 	if (vcpu->mmio_read_completed) {
4845 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4846 			       vcpu->mmio_fragments[0].gpa, val);
4847 		vcpu->mmio_read_completed = 0;
4848 		return 1;
4849 	}
4850 
4851 	return 0;
4852 }
4853 
4854 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4855 			void *val, int bytes)
4856 {
4857 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4858 }
4859 
4860 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4861 			 void *val, int bytes)
4862 {
4863 	return emulator_write_phys(vcpu, gpa, val, bytes);
4864 }
4865 
4866 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4867 {
4868 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4869 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4870 }
4871 
4872 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4873 			  void *val, int bytes)
4874 {
4875 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4876 	return X86EMUL_IO_NEEDED;
4877 }
4878 
4879 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4880 			   void *val, int bytes)
4881 {
4882 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4883 
4884 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4885 	return X86EMUL_CONTINUE;
4886 }
4887 
4888 static const struct read_write_emulator_ops read_emultor = {
4889 	.read_write_prepare = read_prepare,
4890 	.read_write_emulate = read_emulate,
4891 	.read_write_mmio = vcpu_mmio_read,
4892 	.read_write_exit_mmio = read_exit_mmio,
4893 };
4894 
4895 static const struct read_write_emulator_ops write_emultor = {
4896 	.read_write_emulate = write_emulate,
4897 	.read_write_mmio = write_mmio,
4898 	.read_write_exit_mmio = write_exit_mmio,
4899 	.write = true,
4900 };
4901 
4902 static int emulator_read_write_onepage(unsigned long addr, void *val,
4903 				       unsigned int bytes,
4904 				       struct x86_exception *exception,
4905 				       struct kvm_vcpu *vcpu,
4906 				       const struct read_write_emulator_ops *ops)
4907 {
4908 	gpa_t gpa;
4909 	int handled, ret;
4910 	bool write = ops->write;
4911 	struct kvm_mmio_fragment *frag;
4912 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4913 
4914 	/*
4915 	 * If the exit was due to a NPF we may already have a GPA.
4916 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4917 	 * Note, this cannot be used on string operations since string
4918 	 * operation using rep will only have the initial GPA from the NPF
4919 	 * occurred.
4920 	 */
4921 	if (vcpu->arch.gpa_available &&
4922 	    emulator_can_use_gpa(ctxt) &&
4923 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4924 		gpa = vcpu->arch.gpa_val;
4925 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4926 	} else {
4927 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4928 		if (ret < 0)
4929 			return X86EMUL_PROPAGATE_FAULT;
4930 	}
4931 
4932 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4933 		return X86EMUL_CONTINUE;
4934 
4935 	/*
4936 	 * Is this MMIO handled locally?
4937 	 */
4938 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4939 	if (handled == bytes)
4940 		return X86EMUL_CONTINUE;
4941 
4942 	gpa += handled;
4943 	bytes -= handled;
4944 	val += handled;
4945 
4946 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4947 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4948 	frag->gpa = gpa;
4949 	frag->data = val;
4950 	frag->len = bytes;
4951 	return X86EMUL_CONTINUE;
4952 }
4953 
4954 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4955 			unsigned long addr,
4956 			void *val, unsigned int bytes,
4957 			struct x86_exception *exception,
4958 			const struct read_write_emulator_ops *ops)
4959 {
4960 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961 	gpa_t gpa;
4962 	int rc;
4963 
4964 	if (ops->read_write_prepare &&
4965 		  ops->read_write_prepare(vcpu, val, bytes))
4966 		return X86EMUL_CONTINUE;
4967 
4968 	vcpu->mmio_nr_fragments = 0;
4969 
4970 	/* Crossing a page boundary? */
4971 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4972 		int now;
4973 
4974 		now = -addr & ~PAGE_MASK;
4975 		rc = emulator_read_write_onepage(addr, val, now, exception,
4976 						 vcpu, ops);
4977 
4978 		if (rc != X86EMUL_CONTINUE)
4979 			return rc;
4980 		addr += now;
4981 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4982 			addr = (u32)addr;
4983 		val += now;
4984 		bytes -= now;
4985 	}
4986 
4987 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4988 					 vcpu, ops);
4989 	if (rc != X86EMUL_CONTINUE)
4990 		return rc;
4991 
4992 	if (!vcpu->mmio_nr_fragments)
4993 		return rc;
4994 
4995 	gpa = vcpu->mmio_fragments[0].gpa;
4996 
4997 	vcpu->mmio_needed = 1;
4998 	vcpu->mmio_cur_fragment = 0;
4999 
5000 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5001 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5002 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5003 	vcpu->run->mmio.phys_addr = gpa;
5004 
5005 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5006 }
5007 
5008 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5009 				  unsigned long addr,
5010 				  void *val,
5011 				  unsigned int bytes,
5012 				  struct x86_exception *exception)
5013 {
5014 	return emulator_read_write(ctxt, addr, val, bytes,
5015 				   exception, &read_emultor);
5016 }
5017 
5018 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5019 			    unsigned long addr,
5020 			    const void *val,
5021 			    unsigned int bytes,
5022 			    struct x86_exception *exception)
5023 {
5024 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5025 				   exception, &write_emultor);
5026 }
5027 
5028 #define CMPXCHG_TYPE(t, ptr, old, new) \
5029 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5030 
5031 #ifdef CONFIG_X86_64
5032 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5033 #else
5034 #  define CMPXCHG64(ptr, old, new) \
5035 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5036 #endif
5037 
5038 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5039 				     unsigned long addr,
5040 				     const void *old,
5041 				     const void *new,
5042 				     unsigned int bytes,
5043 				     struct x86_exception *exception)
5044 {
5045 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5046 	gpa_t gpa;
5047 	struct page *page;
5048 	char *kaddr;
5049 	bool exchanged;
5050 
5051 	/* guests cmpxchg8b have to be emulated atomically */
5052 	if (bytes > 8 || (bytes & (bytes - 1)))
5053 		goto emul_write;
5054 
5055 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5056 
5057 	if (gpa == UNMAPPED_GVA ||
5058 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5059 		goto emul_write;
5060 
5061 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5062 		goto emul_write;
5063 
5064 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5065 	if (is_error_page(page))
5066 		goto emul_write;
5067 
5068 	kaddr = kmap_atomic(page);
5069 	kaddr += offset_in_page(gpa);
5070 	switch (bytes) {
5071 	case 1:
5072 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5073 		break;
5074 	case 2:
5075 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5076 		break;
5077 	case 4:
5078 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5079 		break;
5080 	case 8:
5081 		exchanged = CMPXCHG64(kaddr, old, new);
5082 		break;
5083 	default:
5084 		BUG();
5085 	}
5086 	kunmap_atomic(kaddr);
5087 	kvm_release_page_dirty(page);
5088 
5089 	if (!exchanged)
5090 		return X86EMUL_CMPXCHG_FAILED;
5091 
5092 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5093 	kvm_page_track_write(vcpu, gpa, new, bytes);
5094 
5095 	return X86EMUL_CONTINUE;
5096 
5097 emul_write:
5098 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5099 
5100 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5101 }
5102 
5103 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5104 {
5105 	int r = 0, i;
5106 
5107 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5108 		if (vcpu->arch.pio.in)
5109 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5110 					    vcpu->arch.pio.size, pd);
5111 		else
5112 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5113 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5114 					     pd);
5115 		if (r)
5116 			break;
5117 		pd += vcpu->arch.pio.size;
5118 	}
5119 	return r;
5120 }
5121 
5122 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5123 			       unsigned short port, void *val,
5124 			       unsigned int count, bool in)
5125 {
5126 	vcpu->arch.pio.port = port;
5127 	vcpu->arch.pio.in = in;
5128 	vcpu->arch.pio.count  = count;
5129 	vcpu->arch.pio.size = size;
5130 
5131 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5132 		vcpu->arch.pio.count = 0;
5133 		return 1;
5134 	}
5135 
5136 	vcpu->run->exit_reason = KVM_EXIT_IO;
5137 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5138 	vcpu->run->io.size = size;
5139 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5140 	vcpu->run->io.count = count;
5141 	vcpu->run->io.port = port;
5142 
5143 	return 0;
5144 }
5145 
5146 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5147 				    int size, unsigned short port, void *val,
5148 				    unsigned int count)
5149 {
5150 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5151 	int ret;
5152 
5153 	if (vcpu->arch.pio.count)
5154 		goto data_avail;
5155 
5156 	memset(vcpu->arch.pio_data, 0, size * count);
5157 
5158 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5159 	if (ret) {
5160 data_avail:
5161 		memcpy(val, vcpu->arch.pio_data, size * count);
5162 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5163 		vcpu->arch.pio.count = 0;
5164 		return 1;
5165 	}
5166 
5167 	return 0;
5168 }
5169 
5170 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5171 				     int size, unsigned short port,
5172 				     const void *val, unsigned int count)
5173 {
5174 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5175 
5176 	memcpy(vcpu->arch.pio_data, val, size * count);
5177 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5178 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5179 }
5180 
5181 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5182 {
5183 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5184 }
5185 
5186 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5187 {
5188 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5189 }
5190 
5191 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5192 {
5193 	if (!need_emulate_wbinvd(vcpu))
5194 		return X86EMUL_CONTINUE;
5195 
5196 	if (kvm_x86_ops->has_wbinvd_exit()) {
5197 		int cpu = get_cpu();
5198 
5199 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5200 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5201 				wbinvd_ipi, NULL, 1);
5202 		put_cpu();
5203 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5204 	} else
5205 		wbinvd();
5206 	return X86EMUL_CONTINUE;
5207 }
5208 
5209 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5210 {
5211 	kvm_emulate_wbinvd_noskip(vcpu);
5212 	return kvm_skip_emulated_instruction(vcpu);
5213 }
5214 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5215 
5216 
5217 
5218 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5219 {
5220 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5221 }
5222 
5223 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5224 			   unsigned long *dest)
5225 {
5226 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5227 }
5228 
5229 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5230 			   unsigned long value)
5231 {
5232 
5233 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5234 }
5235 
5236 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5237 {
5238 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5239 }
5240 
5241 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5242 {
5243 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5244 	unsigned long value;
5245 
5246 	switch (cr) {
5247 	case 0:
5248 		value = kvm_read_cr0(vcpu);
5249 		break;
5250 	case 2:
5251 		value = vcpu->arch.cr2;
5252 		break;
5253 	case 3:
5254 		value = kvm_read_cr3(vcpu);
5255 		break;
5256 	case 4:
5257 		value = kvm_read_cr4(vcpu);
5258 		break;
5259 	case 8:
5260 		value = kvm_get_cr8(vcpu);
5261 		break;
5262 	default:
5263 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5264 		return 0;
5265 	}
5266 
5267 	return value;
5268 }
5269 
5270 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5271 {
5272 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5273 	int res = 0;
5274 
5275 	switch (cr) {
5276 	case 0:
5277 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5278 		break;
5279 	case 2:
5280 		vcpu->arch.cr2 = val;
5281 		break;
5282 	case 3:
5283 		res = kvm_set_cr3(vcpu, val);
5284 		break;
5285 	case 4:
5286 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5287 		break;
5288 	case 8:
5289 		res = kvm_set_cr8(vcpu, val);
5290 		break;
5291 	default:
5292 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5293 		res = -1;
5294 	}
5295 
5296 	return res;
5297 }
5298 
5299 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5300 {
5301 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5302 }
5303 
5304 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5305 {
5306 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5307 }
5308 
5309 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5310 {
5311 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5312 }
5313 
5314 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5315 {
5316 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5317 }
5318 
5319 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5320 {
5321 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5322 }
5323 
5324 static unsigned long emulator_get_cached_segment_base(
5325 	struct x86_emulate_ctxt *ctxt, int seg)
5326 {
5327 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5328 }
5329 
5330 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5331 				 struct desc_struct *desc, u32 *base3,
5332 				 int seg)
5333 {
5334 	struct kvm_segment var;
5335 
5336 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5337 	*selector = var.selector;
5338 
5339 	if (var.unusable) {
5340 		memset(desc, 0, sizeof(*desc));
5341 		if (base3)
5342 			*base3 = 0;
5343 		return false;
5344 	}
5345 
5346 	if (var.g)
5347 		var.limit >>= 12;
5348 	set_desc_limit(desc, var.limit);
5349 	set_desc_base(desc, (unsigned long)var.base);
5350 #ifdef CONFIG_X86_64
5351 	if (base3)
5352 		*base3 = var.base >> 32;
5353 #endif
5354 	desc->type = var.type;
5355 	desc->s = var.s;
5356 	desc->dpl = var.dpl;
5357 	desc->p = var.present;
5358 	desc->avl = var.avl;
5359 	desc->l = var.l;
5360 	desc->d = var.db;
5361 	desc->g = var.g;
5362 
5363 	return true;
5364 }
5365 
5366 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5367 				 struct desc_struct *desc, u32 base3,
5368 				 int seg)
5369 {
5370 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5371 	struct kvm_segment var;
5372 
5373 	var.selector = selector;
5374 	var.base = get_desc_base(desc);
5375 #ifdef CONFIG_X86_64
5376 	var.base |= ((u64)base3) << 32;
5377 #endif
5378 	var.limit = get_desc_limit(desc);
5379 	if (desc->g)
5380 		var.limit = (var.limit << 12) | 0xfff;
5381 	var.type = desc->type;
5382 	var.dpl = desc->dpl;
5383 	var.db = desc->d;
5384 	var.s = desc->s;
5385 	var.l = desc->l;
5386 	var.g = desc->g;
5387 	var.avl = desc->avl;
5388 	var.present = desc->p;
5389 	var.unusable = !var.present;
5390 	var.padding = 0;
5391 
5392 	kvm_set_segment(vcpu, &var, seg);
5393 	return;
5394 }
5395 
5396 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5397 			    u32 msr_index, u64 *pdata)
5398 {
5399 	struct msr_data msr;
5400 	int r;
5401 
5402 	msr.index = msr_index;
5403 	msr.host_initiated = false;
5404 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5405 	if (r)
5406 		return r;
5407 
5408 	*pdata = msr.data;
5409 	return 0;
5410 }
5411 
5412 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5413 			    u32 msr_index, u64 data)
5414 {
5415 	struct msr_data msr;
5416 
5417 	msr.data = data;
5418 	msr.index = msr_index;
5419 	msr.host_initiated = false;
5420 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5421 }
5422 
5423 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5424 {
5425 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426 
5427 	return vcpu->arch.smbase;
5428 }
5429 
5430 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5431 {
5432 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5433 
5434 	vcpu->arch.smbase = smbase;
5435 }
5436 
5437 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5438 			      u32 pmc)
5439 {
5440 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5441 }
5442 
5443 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5444 			     u32 pmc, u64 *pdata)
5445 {
5446 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5447 }
5448 
5449 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5450 {
5451 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5452 }
5453 
5454 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5455 			      struct x86_instruction_info *info,
5456 			      enum x86_intercept_stage stage)
5457 {
5458 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5459 }
5460 
5461 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5462 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5463 {
5464 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5465 }
5466 
5467 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5468 {
5469 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5470 }
5471 
5472 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5473 {
5474 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5475 }
5476 
5477 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5478 {
5479 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5480 }
5481 
5482 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5483 {
5484 	return emul_to_vcpu(ctxt)->arch.hflags;
5485 }
5486 
5487 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5488 {
5489 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5490 }
5491 
5492 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5493 {
5494 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5495 }
5496 
5497 static const struct x86_emulate_ops emulate_ops = {
5498 	.read_gpr            = emulator_read_gpr,
5499 	.write_gpr           = emulator_write_gpr,
5500 	.read_std            = kvm_read_guest_virt_system,
5501 	.write_std           = kvm_write_guest_virt_system,
5502 	.read_phys           = kvm_read_guest_phys_system,
5503 	.fetch               = kvm_fetch_guest_virt,
5504 	.read_emulated       = emulator_read_emulated,
5505 	.write_emulated      = emulator_write_emulated,
5506 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5507 	.invlpg              = emulator_invlpg,
5508 	.pio_in_emulated     = emulator_pio_in_emulated,
5509 	.pio_out_emulated    = emulator_pio_out_emulated,
5510 	.get_segment         = emulator_get_segment,
5511 	.set_segment         = emulator_set_segment,
5512 	.get_cached_segment_base = emulator_get_cached_segment_base,
5513 	.get_gdt             = emulator_get_gdt,
5514 	.get_idt	     = emulator_get_idt,
5515 	.set_gdt             = emulator_set_gdt,
5516 	.set_idt	     = emulator_set_idt,
5517 	.get_cr              = emulator_get_cr,
5518 	.set_cr              = emulator_set_cr,
5519 	.cpl                 = emulator_get_cpl,
5520 	.get_dr              = emulator_get_dr,
5521 	.set_dr              = emulator_set_dr,
5522 	.get_smbase          = emulator_get_smbase,
5523 	.set_smbase          = emulator_set_smbase,
5524 	.set_msr             = emulator_set_msr,
5525 	.get_msr             = emulator_get_msr,
5526 	.check_pmc	     = emulator_check_pmc,
5527 	.read_pmc            = emulator_read_pmc,
5528 	.halt                = emulator_halt,
5529 	.wbinvd              = emulator_wbinvd,
5530 	.fix_hypercall       = emulator_fix_hypercall,
5531 	.intercept           = emulator_intercept,
5532 	.get_cpuid           = emulator_get_cpuid,
5533 	.set_nmi_mask        = emulator_set_nmi_mask,
5534 	.get_hflags          = emulator_get_hflags,
5535 	.set_hflags          = emulator_set_hflags,
5536 	.pre_leave_smm       = emulator_pre_leave_smm,
5537 };
5538 
5539 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5540 {
5541 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5542 	/*
5543 	 * an sti; sti; sequence only disable interrupts for the first
5544 	 * instruction. So, if the last instruction, be it emulated or
5545 	 * not, left the system with the INT_STI flag enabled, it
5546 	 * means that the last instruction is an sti. We should not
5547 	 * leave the flag on in this case. The same goes for mov ss
5548 	 */
5549 	if (int_shadow & mask)
5550 		mask = 0;
5551 	if (unlikely(int_shadow || mask)) {
5552 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5553 		if (!mask)
5554 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5555 	}
5556 }
5557 
5558 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5559 {
5560 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5561 	if (ctxt->exception.vector == PF_VECTOR)
5562 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5563 
5564 	if (ctxt->exception.error_code_valid)
5565 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5566 				      ctxt->exception.error_code);
5567 	else
5568 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5569 	return false;
5570 }
5571 
5572 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5573 {
5574 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5575 	int cs_db, cs_l;
5576 
5577 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5578 
5579 	ctxt->eflags = kvm_get_rflags(vcpu);
5580 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5581 
5582 	ctxt->eip = kvm_rip_read(vcpu);
5583 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5584 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5585 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5586 		     cs_db				? X86EMUL_MODE_PROT32 :
5587 							  X86EMUL_MODE_PROT16;
5588 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5589 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5590 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5591 
5592 	init_decode_cache(ctxt);
5593 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5594 }
5595 
5596 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5597 {
5598 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5599 	int ret;
5600 
5601 	init_emulate_ctxt(vcpu);
5602 
5603 	ctxt->op_bytes = 2;
5604 	ctxt->ad_bytes = 2;
5605 	ctxt->_eip = ctxt->eip + inc_eip;
5606 	ret = emulate_int_real(ctxt, irq);
5607 
5608 	if (ret != X86EMUL_CONTINUE)
5609 		return EMULATE_FAIL;
5610 
5611 	ctxt->eip = ctxt->_eip;
5612 	kvm_rip_write(vcpu, ctxt->eip);
5613 	kvm_set_rflags(vcpu, ctxt->eflags);
5614 
5615 	if (irq == NMI_VECTOR)
5616 		vcpu->arch.nmi_pending = 0;
5617 	else
5618 		vcpu->arch.interrupt.pending = false;
5619 
5620 	return EMULATE_DONE;
5621 }
5622 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5623 
5624 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5625 {
5626 	int r = EMULATE_DONE;
5627 
5628 	++vcpu->stat.insn_emulation_fail;
5629 	trace_kvm_emulate_insn_failed(vcpu);
5630 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5631 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5632 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5633 		vcpu->run->internal.ndata = 0;
5634 		r = EMULATE_USER_EXIT;
5635 	}
5636 	kvm_queue_exception(vcpu, UD_VECTOR);
5637 
5638 	return r;
5639 }
5640 
5641 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5642 				  bool write_fault_to_shadow_pgtable,
5643 				  int emulation_type)
5644 {
5645 	gpa_t gpa = cr2;
5646 	kvm_pfn_t pfn;
5647 
5648 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5649 		return false;
5650 
5651 	if (!vcpu->arch.mmu.direct_map) {
5652 		/*
5653 		 * Write permission should be allowed since only
5654 		 * write access need to be emulated.
5655 		 */
5656 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5657 
5658 		/*
5659 		 * If the mapping is invalid in guest, let cpu retry
5660 		 * it to generate fault.
5661 		 */
5662 		if (gpa == UNMAPPED_GVA)
5663 			return true;
5664 	}
5665 
5666 	/*
5667 	 * Do not retry the unhandleable instruction if it faults on the
5668 	 * readonly host memory, otherwise it will goto a infinite loop:
5669 	 * retry instruction -> write #PF -> emulation fail -> retry
5670 	 * instruction -> ...
5671 	 */
5672 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5673 
5674 	/*
5675 	 * If the instruction failed on the error pfn, it can not be fixed,
5676 	 * report the error to userspace.
5677 	 */
5678 	if (is_error_noslot_pfn(pfn))
5679 		return false;
5680 
5681 	kvm_release_pfn_clean(pfn);
5682 
5683 	/* The instructions are well-emulated on direct mmu. */
5684 	if (vcpu->arch.mmu.direct_map) {
5685 		unsigned int indirect_shadow_pages;
5686 
5687 		spin_lock(&vcpu->kvm->mmu_lock);
5688 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5689 		spin_unlock(&vcpu->kvm->mmu_lock);
5690 
5691 		if (indirect_shadow_pages)
5692 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5693 
5694 		return true;
5695 	}
5696 
5697 	/*
5698 	 * if emulation was due to access to shadowed page table
5699 	 * and it failed try to unshadow page and re-enter the
5700 	 * guest to let CPU execute the instruction.
5701 	 */
5702 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5703 
5704 	/*
5705 	 * If the access faults on its page table, it can not
5706 	 * be fixed by unprotecting shadow page and it should
5707 	 * be reported to userspace.
5708 	 */
5709 	return !write_fault_to_shadow_pgtable;
5710 }
5711 
5712 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5713 			      unsigned long cr2,  int emulation_type)
5714 {
5715 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5716 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5717 
5718 	last_retry_eip = vcpu->arch.last_retry_eip;
5719 	last_retry_addr = vcpu->arch.last_retry_addr;
5720 
5721 	/*
5722 	 * If the emulation is caused by #PF and it is non-page_table
5723 	 * writing instruction, it means the VM-EXIT is caused by shadow
5724 	 * page protected, we can zap the shadow page and retry this
5725 	 * instruction directly.
5726 	 *
5727 	 * Note: if the guest uses a non-page-table modifying instruction
5728 	 * on the PDE that points to the instruction, then we will unmap
5729 	 * the instruction and go to an infinite loop. So, we cache the
5730 	 * last retried eip and the last fault address, if we meet the eip
5731 	 * and the address again, we can break out of the potential infinite
5732 	 * loop.
5733 	 */
5734 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5735 
5736 	if (!(emulation_type & EMULTYPE_RETRY))
5737 		return false;
5738 
5739 	if (x86_page_table_writing_insn(ctxt))
5740 		return false;
5741 
5742 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5743 		return false;
5744 
5745 	vcpu->arch.last_retry_eip = ctxt->eip;
5746 	vcpu->arch.last_retry_addr = cr2;
5747 
5748 	if (!vcpu->arch.mmu.direct_map)
5749 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5750 
5751 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5752 
5753 	return true;
5754 }
5755 
5756 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5757 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5758 
5759 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5760 {
5761 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5762 		/* This is a good place to trace that we are exiting SMM.  */
5763 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5764 
5765 		/* Process a latched INIT or SMI, if any.  */
5766 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5767 	}
5768 
5769 	kvm_mmu_reset_context(vcpu);
5770 }
5771 
5772 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5773 {
5774 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5775 
5776 	vcpu->arch.hflags = emul_flags;
5777 
5778 	if (changed & HF_SMM_MASK)
5779 		kvm_smm_changed(vcpu);
5780 }
5781 
5782 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5783 				unsigned long *db)
5784 {
5785 	u32 dr6 = 0;
5786 	int i;
5787 	u32 enable, rwlen;
5788 
5789 	enable = dr7;
5790 	rwlen = dr7 >> 16;
5791 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5792 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5793 			dr6 |= (1 << i);
5794 	return dr6;
5795 }
5796 
5797 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5798 {
5799 	struct kvm_run *kvm_run = vcpu->run;
5800 
5801 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5802 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5803 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5804 		kvm_run->debug.arch.exception = DB_VECTOR;
5805 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5806 		*r = EMULATE_USER_EXIT;
5807 	} else {
5808 		/*
5809 		 * "Certain debug exceptions may clear bit 0-3.  The
5810 		 * remaining contents of the DR6 register are never
5811 		 * cleared by the processor".
5812 		 */
5813 		vcpu->arch.dr6 &= ~15;
5814 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5815 		kvm_queue_exception(vcpu, DB_VECTOR);
5816 	}
5817 }
5818 
5819 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5820 {
5821 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5822 	int r = EMULATE_DONE;
5823 
5824 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5825 
5826 	/*
5827 	 * rflags is the old, "raw" value of the flags.  The new value has
5828 	 * not been saved yet.
5829 	 *
5830 	 * This is correct even for TF set by the guest, because "the
5831 	 * processor will not generate this exception after the instruction
5832 	 * that sets the TF flag".
5833 	 */
5834 	if (unlikely(rflags & X86_EFLAGS_TF))
5835 		kvm_vcpu_do_singlestep(vcpu, &r);
5836 	return r == EMULATE_DONE;
5837 }
5838 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5839 
5840 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5841 {
5842 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5843 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5844 		struct kvm_run *kvm_run = vcpu->run;
5845 		unsigned long eip = kvm_get_linear_rip(vcpu);
5846 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5847 					   vcpu->arch.guest_debug_dr7,
5848 					   vcpu->arch.eff_db);
5849 
5850 		if (dr6 != 0) {
5851 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5852 			kvm_run->debug.arch.pc = eip;
5853 			kvm_run->debug.arch.exception = DB_VECTOR;
5854 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5855 			*r = EMULATE_USER_EXIT;
5856 			return true;
5857 		}
5858 	}
5859 
5860 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5861 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5862 		unsigned long eip = kvm_get_linear_rip(vcpu);
5863 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5864 					   vcpu->arch.dr7,
5865 					   vcpu->arch.db);
5866 
5867 		if (dr6 != 0) {
5868 			vcpu->arch.dr6 &= ~15;
5869 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5870 			kvm_queue_exception(vcpu, DB_VECTOR);
5871 			*r = EMULATE_DONE;
5872 			return true;
5873 		}
5874 	}
5875 
5876 	return false;
5877 }
5878 
5879 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5880 			    unsigned long cr2,
5881 			    int emulation_type,
5882 			    void *insn,
5883 			    int insn_len)
5884 {
5885 	int r;
5886 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5887 	bool writeback = true;
5888 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5889 
5890 	/*
5891 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5892 	 * never reused.
5893 	 */
5894 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5895 	kvm_clear_exception_queue(vcpu);
5896 
5897 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5898 		init_emulate_ctxt(vcpu);
5899 
5900 		/*
5901 		 * We will reenter on the same instruction since
5902 		 * we do not set complete_userspace_io.  This does not
5903 		 * handle watchpoints yet, those would be handled in
5904 		 * the emulate_ops.
5905 		 */
5906 		if (!(emulation_type & EMULTYPE_SKIP) &&
5907 		    kvm_vcpu_check_breakpoint(vcpu, &r))
5908 			return r;
5909 
5910 		ctxt->interruptibility = 0;
5911 		ctxt->have_exception = false;
5912 		ctxt->exception.vector = -1;
5913 		ctxt->perm_ok = false;
5914 
5915 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5916 
5917 		r = x86_decode_insn(ctxt, insn, insn_len);
5918 
5919 		trace_kvm_emulate_insn_start(vcpu);
5920 		++vcpu->stat.insn_emulation;
5921 		if (r != EMULATION_OK)  {
5922 			if (emulation_type & EMULTYPE_TRAP_UD)
5923 				return EMULATE_FAIL;
5924 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5925 						emulation_type))
5926 				return EMULATE_DONE;
5927 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
5928 				return EMULATE_DONE;
5929 			if (emulation_type & EMULTYPE_SKIP)
5930 				return EMULATE_FAIL;
5931 			return handle_emulation_failure(vcpu);
5932 		}
5933 	}
5934 
5935 	if (emulation_type & EMULTYPE_SKIP) {
5936 		kvm_rip_write(vcpu, ctxt->_eip);
5937 		if (ctxt->eflags & X86_EFLAGS_RF)
5938 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5939 		return EMULATE_DONE;
5940 	}
5941 
5942 	if (retry_instruction(ctxt, cr2, emulation_type))
5943 		return EMULATE_DONE;
5944 
5945 	/* this is needed for vmware backdoor interface to work since it
5946 	   changes registers values  during IO operation */
5947 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5948 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5949 		emulator_invalidate_register_cache(ctxt);
5950 	}
5951 
5952 restart:
5953 	/* Save the faulting GPA (cr2) in the address field */
5954 	ctxt->exception.address = cr2;
5955 
5956 	r = x86_emulate_insn(ctxt);
5957 
5958 	if (r == EMULATION_INTERCEPTED)
5959 		return EMULATE_DONE;
5960 
5961 	if (r == EMULATION_FAILED) {
5962 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5963 					emulation_type))
5964 			return EMULATE_DONE;
5965 
5966 		return handle_emulation_failure(vcpu);
5967 	}
5968 
5969 	if (ctxt->have_exception) {
5970 		r = EMULATE_DONE;
5971 		if (inject_emulated_exception(vcpu))
5972 			return r;
5973 	} else if (vcpu->arch.pio.count) {
5974 		if (!vcpu->arch.pio.in) {
5975 			/* FIXME: return into emulator if single-stepping.  */
5976 			vcpu->arch.pio.count = 0;
5977 		} else {
5978 			writeback = false;
5979 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5980 		}
5981 		r = EMULATE_USER_EXIT;
5982 	} else if (vcpu->mmio_needed) {
5983 		if (!vcpu->mmio_is_write)
5984 			writeback = false;
5985 		r = EMULATE_USER_EXIT;
5986 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5987 	} else if (r == EMULATION_RESTART)
5988 		goto restart;
5989 	else
5990 		r = EMULATE_DONE;
5991 
5992 	if (writeback) {
5993 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5994 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5995 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5996 		kvm_rip_write(vcpu, ctxt->eip);
5997 		if (r == EMULATE_DONE &&
5998 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5999 			kvm_vcpu_do_singlestep(vcpu, &r);
6000 		if (!ctxt->have_exception ||
6001 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6002 			__kvm_set_rflags(vcpu, ctxt->eflags);
6003 
6004 		/*
6005 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6006 		 * do nothing, and it will be requested again as soon as
6007 		 * the shadow expires.  But we still need to check here,
6008 		 * because POPF has no interrupt shadow.
6009 		 */
6010 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6011 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6012 	} else
6013 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6014 
6015 	return r;
6016 }
6017 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6018 
6019 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6020 {
6021 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6022 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6023 					    size, port, &val, 1);
6024 	/* do not return to emulator after return from userspace */
6025 	vcpu->arch.pio.count = 0;
6026 	return ret;
6027 }
6028 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6029 
6030 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6031 {
6032 	unsigned long val;
6033 
6034 	/* We should only ever be called with arch.pio.count equal to 1 */
6035 	BUG_ON(vcpu->arch.pio.count != 1);
6036 
6037 	/* For size less than 4 we merge, else we zero extend */
6038 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6039 					: 0;
6040 
6041 	/*
6042 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6043 	 * the copy and tracing
6044 	 */
6045 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6046 				 vcpu->arch.pio.port, &val, 1);
6047 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6048 
6049 	return 1;
6050 }
6051 
6052 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6053 {
6054 	unsigned long val;
6055 	int ret;
6056 
6057 	/* For size less than 4 we merge, else we zero extend */
6058 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6059 
6060 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6061 				       &val, 1);
6062 	if (ret) {
6063 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6064 		return ret;
6065 	}
6066 
6067 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6068 
6069 	return 0;
6070 }
6071 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6072 
6073 static int kvmclock_cpu_down_prep(unsigned int cpu)
6074 {
6075 	__this_cpu_write(cpu_tsc_khz, 0);
6076 	return 0;
6077 }
6078 
6079 static void tsc_khz_changed(void *data)
6080 {
6081 	struct cpufreq_freqs *freq = data;
6082 	unsigned long khz = 0;
6083 
6084 	if (data)
6085 		khz = freq->new;
6086 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6087 		khz = cpufreq_quick_get(raw_smp_processor_id());
6088 	if (!khz)
6089 		khz = tsc_khz;
6090 	__this_cpu_write(cpu_tsc_khz, khz);
6091 }
6092 
6093 #ifdef CONFIG_X86_64
6094 static void kvm_hyperv_tsc_notifier(void)
6095 {
6096 	struct kvm *kvm;
6097 	struct kvm_vcpu *vcpu;
6098 	int cpu;
6099 
6100 	spin_lock(&kvm_lock);
6101 	list_for_each_entry(kvm, &vm_list, vm_list)
6102 		kvm_make_mclock_inprogress_request(kvm);
6103 
6104 	hyperv_stop_tsc_emulation();
6105 
6106 	/* TSC frequency always matches when on Hyper-V */
6107 	for_each_present_cpu(cpu)
6108 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6109 	kvm_max_guest_tsc_khz = tsc_khz;
6110 
6111 	list_for_each_entry(kvm, &vm_list, vm_list) {
6112 		struct kvm_arch *ka = &kvm->arch;
6113 
6114 		spin_lock(&ka->pvclock_gtod_sync_lock);
6115 
6116 		pvclock_update_vm_gtod_copy(kvm);
6117 
6118 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6119 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6120 
6121 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6122 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6123 
6124 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6125 	}
6126 	spin_unlock(&kvm_lock);
6127 }
6128 #endif
6129 
6130 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6131 				     void *data)
6132 {
6133 	struct cpufreq_freqs *freq = data;
6134 	struct kvm *kvm;
6135 	struct kvm_vcpu *vcpu;
6136 	int i, send_ipi = 0;
6137 
6138 	/*
6139 	 * We allow guests to temporarily run on slowing clocks,
6140 	 * provided we notify them after, or to run on accelerating
6141 	 * clocks, provided we notify them before.  Thus time never
6142 	 * goes backwards.
6143 	 *
6144 	 * However, we have a problem.  We can't atomically update
6145 	 * the frequency of a given CPU from this function; it is
6146 	 * merely a notifier, which can be called from any CPU.
6147 	 * Changing the TSC frequency at arbitrary points in time
6148 	 * requires a recomputation of local variables related to
6149 	 * the TSC for each VCPU.  We must flag these local variables
6150 	 * to be updated and be sure the update takes place with the
6151 	 * new frequency before any guests proceed.
6152 	 *
6153 	 * Unfortunately, the combination of hotplug CPU and frequency
6154 	 * change creates an intractable locking scenario; the order
6155 	 * of when these callouts happen is undefined with respect to
6156 	 * CPU hotplug, and they can race with each other.  As such,
6157 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6158 	 * undefined; you can actually have a CPU frequency change take
6159 	 * place in between the computation of X and the setting of the
6160 	 * variable.  To protect against this problem, all updates of
6161 	 * the per_cpu tsc_khz variable are done in an interrupt
6162 	 * protected IPI, and all callers wishing to update the value
6163 	 * must wait for a synchronous IPI to complete (which is trivial
6164 	 * if the caller is on the CPU already).  This establishes the
6165 	 * necessary total order on variable updates.
6166 	 *
6167 	 * Note that because a guest time update may take place
6168 	 * anytime after the setting of the VCPU's request bit, the
6169 	 * correct TSC value must be set before the request.  However,
6170 	 * to ensure the update actually makes it to any guest which
6171 	 * starts running in hardware virtualization between the set
6172 	 * and the acquisition of the spinlock, we must also ping the
6173 	 * CPU after setting the request bit.
6174 	 *
6175 	 */
6176 
6177 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6178 		return 0;
6179 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6180 		return 0;
6181 
6182 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6183 
6184 	spin_lock(&kvm_lock);
6185 	list_for_each_entry(kvm, &vm_list, vm_list) {
6186 		kvm_for_each_vcpu(i, vcpu, kvm) {
6187 			if (vcpu->cpu != freq->cpu)
6188 				continue;
6189 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6190 			if (vcpu->cpu != smp_processor_id())
6191 				send_ipi = 1;
6192 		}
6193 	}
6194 	spin_unlock(&kvm_lock);
6195 
6196 	if (freq->old < freq->new && send_ipi) {
6197 		/*
6198 		 * We upscale the frequency.  Must make the guest
6199 		 * doesn't see old kvmclock values while running with
6200 		 * the new frequency, otherwise we risk the guest sees
6201 		 * time go backwards.
6202 		 *
6203 		 * In case we update the frequency for another cpu
6204 		 * (which might be in guest context) send an interrupt
6205 		 * to kick the cpu out of guest context.  Next time
6206 		 * guest context is entered kvmclock will be updated,
6207 		 * so the guest will not see stale values.
6208 		 */
6209 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6210 	}
6211 	return 0;
6212 }
6213 
6214 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6215 	.notifier_call  = kvmclock_cpufreq_notifier
6216 };
6217 
6218 static int kvmclock_cpu_online(unsigned int cpu)
6219 {
6220 	tsc_khz_changed(NULL);
6221 	return 0;
6222 }
6223 
6224 static void kvm_timer_init(void)
6225 {
6226 	max_tsc_khz = tsc_khz;
6227 
6228 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6229 #ifdef CONFIG_CPU_FREQ
6230 		struct cpufreq_policy policy;
6231 		int cpu;
6232 
6233 		memset(&policy, 0, sizeof(policy));
6234 		cpu = get_cpu();
6235 		cpufreq_get_policy(&policy, cpu);
6236 		if (policy.cpuinfo.max_freq)
6237 			max_tsc_khz = policy.cpuinfo.max_freq;
6238 		put_cpu();
6239 #endif
6240 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6241 					  CPUFREQ_TRANSITION_NOTIFIER);
6242 	}
6243 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6244 
6245 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6246 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6247 }
6248 
6249 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6250 
6251 int kvm_is_in_guest(void)
6252 {
6253 	return __this_cpu_read(current_vcpu) != NULL;
6254 }
6255 
6256 static int kvm_is_user_mode(void)
6257 {
6258 	int user_mode = 3;
6259 
6260 	if (__this_cpu_read(current_vcpu))
6261 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6262 
6263 	return user_mode != 0;
6264 }
6265 
6266 static unsigned long kvm_get_guest_ip(void)
6267 {
6268 	unsigned long ip = 0;
6269 
6270 	if (__this_cpu_read(current_vcpu))
6271 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6272 
6273 	return ip;
6274 }
6275 
6276 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6277 	.is_in_guest		= kvm_is_in_guest,
6278 	.is_user_mode		= kvm_is_user_mode,
6279 	.get_guest_ip		= kvm_get_guest_ip,
6280 };
6281 
6282 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6283 {
6284 	__this_cpu_write(current_vcpu, vcpu);
6285 }
6286 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6287 
6288 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6289 {
6290 	__this_cpu_write(current_vcpu, NULL);
6291 }
6292 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6293 
6294 static void kvm_set_mmio_spte_mask(void)
6295 {
6296 	u64 mask;
6297 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6298 
6299 	/*
6300 	 * Set the reserved bits and the present bit of an paging-structure
6301 	 * entry to generate page fault with PFER.RSV = 1.
6302 	 */
6303 	 /* Mask the reserved physical address bits. */
6304 	mask = rsvd_bits(maxphyaddr, 51);
6305 
6306 	/* Set the present bit. */
6307 	mask |= 1ull;
6308 
6309 #ifdef CONFIG_X86_64
6310 	/*
6311 	 * If reserved bit is not supported, clear the present bit to disable
6312 	 * mmio page fault.
6313 	 */
6314 	if (maxphyaddr == 52)
6315 		mask &= ~1ull;
6316 #endif
6317 
6318 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6319 }
6320 
6321 #ifdef CONFIG_X86_64
6322 static void pvclock_gtod_update_fn(struct work_struct *work)
6323 {
6324 	struct kvm *kvm;
6325 
6326 	struct kvm_vcpu *vcpu;
6327 	int i;
6328 
6329 	spin_lock(&kvm_lock);
6330 	list_for_each_entry(kvm, &vm_list, vm_list)
6331 		kvm_for_each_vcpu(i, vcpu, kvm)
6332 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6333 	atomic_set(&kvm_guest_has_master_clock, 0);
6334 	spin_unlock(&kvm_lock);
6335 }
6336 
6337 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6338 
6339 /*
6340  * Notification about pvclock gtod data update.
6341  */
6342 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6343 			       void *priv)
6344 {
6345 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6346 	struct timekeeper *tk = priv;
6347 
6348 	update_pvclock_gtod(tk);
6349 
6350 	/* disable master clock if host does not trust, or does not
6351 	 * use, TSC based clocksource.
6352 	 */
6353 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6354 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6355 		queue_work(system_long_wq, &pvclock_gtod_work);
6356 
6357 	return 0;
6358 }
6359 
6360 static struct notifier_block pvclock_gtod_notifier = {
6361 	.notifier_call = pvclock_gtod_notify,
6362 };
6363 #endif
6364 
6365 int kvm_arch_init(void *opaque)
6366 {
6367 	int r;
6368 	struct kvm_x86_ops *ops = opaque;
6369 
6370 	if (kvm_x86_ops) {
6371 		printk(KERN_ERR "kvm: already loaded the other module\n");
6372 		r = -EEXIST;
6373 		goto out;
6374 	}
6375 
6376 	if (!ops->cpu_has_kvm_support()) {
6377 		printk(KERN_ERR "kvm: no hardware support\n");
6378 		r = -EOPNOTSUPP;
6379 		goto out;
6380 	}
6381 	if (ops->disabled_by_bios()) {
6382 		printk(KERN_ERR "kvm: disabled by bios\n");
6383 		r = -EOPNOTSUPP;
6384 		goto out;
6385 	}
6386 
6387 	r = -ENOMEM;
6388 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6389 	if (!shared_msrs) {
6390 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6391 		goto out;
6392 	}
6393 
6394 	r = kvm_mmu_module_init();
6395 	if (r)
6396 		goto out_free_percpu;
6397 
6398 	kvm_set_mmio_spte_mask();
6399 
6400 	kvm_x86_ops = ops;
6401 
6402 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6403 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6404 			PT_PRESENT_MASK, 0, sme_me_mask);
6405 	kvm_timer_init();
6406 
6407 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6408 
6409 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6410 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6411 
6412 	kvm_lapic_init();
6413 #ifdef CONFIG_X86_64
6414 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6415 
6416 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6417 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6418 #endif
6419 
6420 	return 0;
6421 
6422 out_free_percpu:
6423 	free_percpu(shared_msrs);
6424 out:
6425 	return r;
6426 }
6427 
6428 void kvm_arch_exit(void)
6429 {
6430 #ifdef CONFIG_X86_64
6431 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6432 		clear_hv_tscchange_cb();
6433 #endif
6434 	kvm_lapic_exit();
6435 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6436 
6437 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6438 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6439 					    CPUFREQ_TRANSITION_NOTIFIER);
6440 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6441 #ifdef CONFIG_X86_64
6442 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6443 #endif
6444 	kvm_x86_ops = NULL;
6445 	kvm_mmu_module_exit();
6446 	free_percpu(shared_msrs);
6447 }
6448 
6449 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6450 {
6451 	++vcpu->stat.halt_exits;
6452 	if (lapic_in_kernel(vcpu)) {
6453 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6454 		return 1;
6455 	} else {
6456 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6457 		return 0;
6458 	}
6459 }
6460 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6461 
6462 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6463 {
6464 	int ret = kvm_skip_emulated_instruction(vcpu);
6465 	/*
6466 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6467 	 * KVM_EXIT_DEBUG here.
6468 	 */
6469 	return kvm_vcpu_halt(vcpu) && ret;
6470 }
6471 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6472 
6473 #ifdef CONFIG_X86_64
6474 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6475 			        unsigned long clock_type)
6476 {
6477 	struct kvm_clock_pairing clock_pairing;
6478 	struct timespec ts;
6479 	u64 cycle;
6480 	int ret;
6481 
6482 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6483 		return -KVM_EOPNOTSUPP;
6484 
6485 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6486 		return -KVM_EOPNOTSUPP;
6487 
6488 	clock_pairing.sec = ts.tv_sec;
6489 	clock_pairing.nsec = ts.tv_nsec;
6490 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6491 	clock_pairing.flags = 0;
6492 
6493 	ret = 0;
6494 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6495 			    sizeof(struct kvm_clock_pairing)))
6496 		ret = -KVM_EFAULT;
6497 
6498 	return ret;
6499 }
6500 #endif
6501 
6502 /*
6503  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6504  *
6505  * @apicid - apicid of vcpu to be kicked.
6506  */
6507 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6508 {
6509 	struct kvm_lapic_irq lapic_irq;
6510 
6511 	lapic_irq.shorthand = 0;
6512 	lapic_irq.dest_mode = 0;
6513 	lapic_irq.level = 0;
6514 	lapic_irq.dest_id = apicid;
6515 	lapic_irq.msi_redir_hint = false;
6516 
6517 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6518 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6519 }
6520 
6521 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6522 {
6523 	vcpu->arch.apicv_active = false;
6524 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6525 }
6526 
6527 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6528 {
6529 	unsigned long nr, a0, a1, a2, a3, ret;
6530 	int op_64_bit, r;
6531 
6532 	r = kvm_skip_emulated_instruction(vcpu);
6533 
6534 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6535 		return kvm_hv_hypercall(vcpu);
6536 
6537 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6538 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6539 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6540 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6541 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6542 
6543 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6544 
6545 	op_64_bit = is_64_bit_mode(vcpu);
6546 	if (!op_64_bit) {
6547 		nr &= 0xFFFFFFFF;
6548 		a0 &= 0xFFFFFFFF;
6549 		a1 &= 0xFFFFFFFF;
6550 		a2 &= 0xFFFFFFFF;
6551 		a3 &= 0xFFFFFFFF;
6552 	}
6553 
6554 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6555 		ret = -KVM_EPERM;
6556 		goto out;
6557 	}
6558 
6559 	switch (nr) {
6560 	case KVM_HC_VAPIC_POLL_IRQ:
6561 		ret = 0;
6562 		break;
6563 	case KVM_HC_KICK_CPU:
6564 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6565 		ret = 0;
6566 		break;
6567 #ifdef CONFIG_X86_64
6568 	case KVM_HC_CLOCK_PAIRING:
6569 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6570 		break;
6571 #endif
6572 	default:
6573 		ret = -KVM_ENOSYS;
6574 		break;
6575 	}
6576 out:
6577 	if (!op_64_bit)
6578 		ret = (u32)ret;
6579 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6580 	++vcpu->stat.hypercalls;
6581 	return r;
6582 }
6583 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6584 
6585 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6586 {
6587 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6588 	char instruction[3];
6589 	unsigned long rip = kvm_rip_read(vcpu);
6590 
6591 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6592 
6593 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6594 		&ctxt->exception);
6595 }
6596 
6597 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6598 {
6599 	return vcpu->run->request_interrupt_window &&
6600 		likely(!pic_in_kernel(vcpu->kvm));
6601 }
6602 
6603 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6604 {
6605 	struct kvm_run *kvm_run = vcpu->run;
6606 
6607 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6608 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6609 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6610 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6611 	kvm_run->ready_for_interrupt_injection =
6612 		pic_in_kernel(vcpu->kvm) ||
6613 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6614 }
6615 
6616 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6617 {
6618 	int max_irr, tpr;
6619 
6620 	if (!kvm_x86_ops->update_cr8_intercept)
6621 		return;
6622 
6623 	if (!lapic_in_kernel(vcpu))
6624 		return;
6625 
6626 	if (vcpu->arch.apicv_active)
6627 		return;
6628 
6629 	if (!vcpu->arch.apic->vapic_addr)
6630 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6631 	else
6632 		max_irr = -1;
6633 
6634 	if (max_irr != -1)
6635 		max_irr >>= 4;
6636 
6637 	tpr = kvm_lapic_get_cr8(vcpu);
6638 
6639 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6640 }
6641 
6642 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6643 {
6644 	int r;
6645 
6646 	/* try to reinject previous events if any */
6647 	if (vcpu->arch.exception.injected) {
6648 		kvm_x86_ops->queue_exception(vcpu);
6649 		return 0;
6650 	}
6651 
6652 	/*
6653 	 * Exceptions must be injected immediately, or the exception
6654 	 * frame will have the address of the NMI or interrupt handler.
6655 	 */
6656 	if (!vcpu->arch.exception.pending) {
6657 		if (vcpu->arch.nmi_injected) {
6658 			kvm_x86_ops->set_nmi(vcpu);
6659 			return 0;
6660 		}
6661 
6662 		if (vcpu->arch.interrupt.pending) {
6663 			kvm_x86_ops->set_irq(vcpu);
6664 			return 0;
6665 		}
6666 	}
6667 
6668 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6669 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6670 		if (r != 0)
6671 			return r;
6672 	}
6673 
6674 	/* try to inject new event if pending */
6675 	if (vcpu->arch.exception.pending) {
6676 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6677 					vcpu->arch.exception.has_error_code,
6678 					vcpu->arch.exception.error_code);
6679 
6680 		vcpu->arch.exception.pending = false;
6681 		vcpu->arch.exception.injected = true;
6682 
6683 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6684 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6685 					     X86_EFLAGS_RF);
6686 
6687 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6688 		    (vcpu->arch.dr7 & DR7_GD)) {
6689 			vcpu->arch.dr7 &= ~DR7_GD;
6690 			kvm_update_dr7(vcpu);
6691 		}
6692 
6693 		kvm_x86_ops->queue_exception(vcpu);
6694 	} else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6695 		vcpu->arch.smi_pending = false;
6696 		++vcpu->arch.smi_count;
6697 		enter_smm(vcpu);
6698 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6699 		--vcpu->arch.nmi_pending;
6700 		vcpu->arch.nmi_injected = true;
6701 		kvm_x86_ops->set_nmi(vcpu);
6702 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6703 		/*
6704 		 * Because interrupts can be injected asynchronously, we are
6705 		 * calling check_nested_events again here to avoid a race condition.
6706 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6707 		 * proposal and current concerns.  Perhaps we should be setting
6708 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6709 		 */
6710 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6711 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6712 			if (r != 0)
6713 				return r;
6714 		}
6715 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6716 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6717 					    false);
6718 			kvm_x86_ops->set_irq(vcpu);
6719 		}
6720 	}
6721 
6722 	return 0;
6723 }
6724 
6725 static void process_nmi(struct kvm_vcpu *vcpu)
6726 {
6727 	unsigned limit = 2;
6728 
6729 	/*
6730 	 * x86 is limited to one NMI running, and one NMI pending after it.
6731 	 * If an NMI is already in progress, limit further NMIs to just one.
6732 	 * Otherwise, allow two (and we'll inject the first one immediately).
6733 	 */
6734 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6735 		limit = 1;
6736 
6737 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6738 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6739 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6740 }
6741 
6742 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6743 {
6744 	u32 flags = 0;
6745 	flags |= seg->g       << 23;
6746 	flags |= seg->db      << 22;
6747 	flags |= seg->l       << 21;
6748 	flags |= seg->avl     << 20;
6749 	flags |= seg->present << 15;
6750 	flags |= seg->dpl     << 13;
6751 	flags |= seg->s       << 12;
6752 	flags |= seg->type    << 8;
6753 	return flags;
6754 }
6755 
6756 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6757 {
6758 	struct kvm_segment seg;
6759 	int offset;
6760 
6761 	kvm_get_segment(vcpu, &seg, n);
6762 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6763 
6764 	if (n < 3)
6765 		offset = 0x7f84 + n * 12;
6766 	else
6767 		offset = 0x7f2c + (n - 3) * 12;
6768 
6769 	put_smstate(u32, buf, offset + 8, seg.base);
6770 	put_smstate(u32, buf, offset + 4, seg.limit);
6771 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6772 }
6773 
6774 #ifdef CONFIG_X86_64
6775 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6776 {
6777 	struct kvm_segment seg;
6778 	int offset;
6779 	u16 flags;
6780 
6781 	kvm_get_segment(vcpu, &seg, n);
6782 	offset = 0x7e00 + n * 16;
6783 
6784 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6785 	put_smstate(u16, buf, offset, seg.selector);
6786 	put_smstate(u16, buf, offset + 2, flags);
6787 	put_smstate(u32, buf, offset + 4, seg.limit);
6788 	put_smstate(u64, buf, offset + 8, seg.base);
6789 }
6790 #endif
6791 
6792 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6793 {
6794 	struct desc_ptr dt;
6795 	struct kvm_segment seg;
6796 	unsigned long val;
6797 	int i;
6798 
6799 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6800 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6801 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6802 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6803 
6804 	for (i = 0; i < 8; i++)
6805 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6806 
6807 	kvm_get_dr(vcpu, 6, &val);
6808 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6809 	kvm_get_dr(vcpu, 7, &val);
6810 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6811 
6812 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6813 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6814 	put_smstate(u32, buf, 0x7f64, seg.base);
6815 	put_smstate(u32, buf, 0x7f60, seg.limit);
6816 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6817 
6818 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6819 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6820 	put_smstate(u32, buf, 0x7f80, seg.base);
6821 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6822 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6823 
6824 	kvm_x86_ops->get_gdt(vcpu, &dt);
6825 	put_smstate(u32, buf, 0x7f74, dt.address);
6826 	put_smstate(u32, buf, 0x7f70, dt.size);
6827 
6828 	kvm_x86_ops->get_idt(vcpu, &dt);
6829 	put_smstate(u32, buf, 0x7f58, dt.address);
6830 	put_smstate(u32, buf, 0x7f54, dt.size);
6831 
6832 	for (i = 0; i < 6; i++)
6833 		enter_smm_save_seg_32(vcpu, buf, i);
6834 
6835 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6836 
6837 	/* revision id */
6838 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6839 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6840 }
6841 
6842 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6843 {
6844 #ifdef CONFIG_X86_64
6845 	struct desc_ptr dt;
6846 	struct kvm_segment seg;
6847 	unsigned long val;
6848 	int i;
6849 
6850 	for (i = 0; i < 16; i++)
6851 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6852 
6853 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6854 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6855 
6856 	kvm_get_dr(vcpu, 6, &val);
6857 	put_smstate(u64, buf, 0x7f68, val);
6858 	kvm_get_dr(vcpu, 7, &val);
6859 	put_smstate(u64, buf, 0x7f60, val);
6860 
6861 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6862 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6863 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6864 
6865 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6866 
6867 	/* revision id */
6868 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6869 
6870 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6871 
6872 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6873 	put_smstate(u16, buf, 0x7e90, seg.selector);
6874 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6875 	put_smstate(u32, buf, 0x7e94, seg.limit);
6876 	put_smstate(u64, buf, 0x7e98, seg.base);
6877 
6878 	kvm_x86_ops->get_idt(vcpu, &dt);
6879 	put_smstate(u32, buf, 0x7e84, dt.size);
6880 	put_smstate(u64, buf, 0x7e88, dt.address);
6881 
6882 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6883 	put_smstate(u16, buf, 0x7e70, seg.selector);
6884 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6885 	put_smstate(u32, buf, 0x7e74, seg.limit);
6886 	put_smstate(u64, buf, 0x7e78, seg.base);
6887 
6888 	kvm_x86_ops->get_gdt(vcpu, &dt);
6889 	put_smstate(u32, buf, 0x7e64, dt.size);
6890 	put_smstate(u64, buf, 0x7e68, dt.address);
6891 
6892 	for (i = 0; i < 6; i++)
6893 		enter_smm_save_seg_64(vcpu, buf, i);
6894 #else
6895 	WARN_ON_ONCE(1);
6896 #endif
6897 }
6898 
6899 static void enter_smm(struct kvm_vcpu *vcpu)
6900 {
6901 	struct kvm_segment cs, ds;
6902 	struct desc_ptr dt;
6903 	char buf[512];
6904 	u32 cr0;
6905 
6906 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6907 	memset(buf, 0, 512);
6908 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6909 		enter_smm_save_state_64(vcpu, buf);
6910 	else
6911 		enter_smm_save_state_32(vcpu, buf);
6912 
6913 	/*
6914 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6915 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
6916 	 * the SMM state-save area.
6917 	 */
6918 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
6919 
6920 	vcpu->arch.hflags |= HF_SMM_MASK;
6921 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6922 
6923 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6924 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6925 	else
6926 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6927 
6928 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6929 	kvm_rip_write(vcpu, 0x8000);
6930 
6931 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6932 	kvm_x86_ops->set_cr0(vcpu, cr0);
6933 	vcpu->arch.cr0 = cr0;
6934 
6935 	kvm_x86_ops->set_cr4(vcpu, 0);
6936 
6937 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6938 	dt.address = dt.size = 0;
6939 	kvm_x86_ops->set_idt(vcpu, &dt);
6940 
6941 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6942 
6943 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6944 	cs.base = vcpu->arch.smbase;
6945 
6946 	ds.selector = 0;
6947 	ds.base = 0;
6948 
6949 	cs.limit    = ds.limit = 0xffffffff;
6950 	cs.type     = ds.type = 0x3;
6951 	cs.dpl      = ds.dpl = 0;
6952 	cs.db       = ds.db = 0;
6953 	cs.s        = ds.s = 1;
6954 	cs.l        = ds.l = 0;
6955 	cs.g        = ds.g = 1;
6956 	cs.avl      = ds.avl = 0;
6957 	cs.present  = ds.present = 1;
6958 	cs.unusable = ds.unusable = 0;
6959 	cs.padding  = ds.padding = 0;
6960 
6961 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6962 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6963 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6964 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6965 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6966 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6967 
6968 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6969 		kvm_x86_ops->set_efer(vcpu, 0);
6970 
6971 	kvm_update_cpuid(vcpu);
6972 	kvm_mmu_reset_context(vcpu);
6973 }
6974 
6975 static void process_smi(struct kvm_vcpu *vcpu)
6976 {
6977 	vcpu->arch.smi_pending = true;
6978 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6979 }
6980 
6981 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6982 {
6983 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6984 }
6985 
6986 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6987 {
6988 	u64 eoi_exit_bitmap[4];
6989 
6990 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6991 		return;
6992 
6993 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6994 
6995 	if (irqchip_split(vcpu->kvm))
6996 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6997 	else {
6998 		if (vcpu->arch.apicv_active)
6999 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7000 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7001 	}
7002 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7003 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7004 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7005 }
7006 
7007 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7008 		unsigned long start, unsigned long end)
7009 {
7010 	unsigned long apic_address;
7011 
7012 	/*
7013 	 * The physical address of apic access page is stored in the VMCS.
7014 	 * Update it when it becomes invalid.
7015 	 */
7016 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7017 	if (start <= apic_address && apic_address < end)
7018 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7019 }
7020 
7021 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7022 {
7023 	struct page *page = NULL;
7024 
7025 	if (!lapic_in_kernel(vcpu))
7026 		return;
7027 
7028 	if (!kvm_x86_ops->set_apic_access_page_addr)
7029 		return;
7030 
7031 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7032 	if (is_error_page(page))
7033 		return;
7034 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7035 
7036 	/*
7037 	 * Do not pin apic access page in memory, the MMU notifier
7038 	 * will call us again if it is migrated or swapped out.
7039 	 */
7040 	put_page(page);
7041 }
7042 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7043 
7044 /*
7045  * Returns 1 to let vcpu_run() continue the guest execution loop without
7046  * exiting to the userspace.  Otherwise, the value will be returned to the
7047  * userspace.
7048  */
7049 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7050 {
7051 	int r;
7052 	bool req_int_win =
7053 		dm_request_for_irq_injection(vcpu) &&
7054 		kvm_cpu_accept_dm_intr(vcpu);
7055 
7056 	bool req_immediate_exit = false;
7057 
7058 	if (kvm_request_pending(vcpu)) {
7059 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7060 			kvm_mmu_unload(vcpu);
7061 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7062 			__kvm_migrate_timers(vcpu);
7063 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7064 			kvm_gen_update_masterclock(vcpu->kvm);
7065 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7066 			kvm_gen_kvmclock_update(vcpu);
7067 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7068 			r = kvm_guest_time_update(vcpu);
7069 			if (unlikely(r))
7070 				goto out;
7071 		}
7072 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7073 			kvm_mmu_sync_roots(vcpu);
7074 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7075 			kvm_vcpu_flush_tlb(vcpu, true);
7076 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7077 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7078 			r = 0;
7079 			goto out;
7080 		}
7081 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7082 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7083 			vcpu->mmio_needed = 0;
7084 			r = 0;
7085 			goto out;
7086 		}
7087 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7088 			/* Page is swapped out. Do synthetic halt */
7089 			vcpu->arch.apf.halted = true;
7090 			r = 1;
7091 			goto out;
7092 		}
7093 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7094 			record_steal_time(vcpu);
7095 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7096 			process_smi(vcpu);
7097 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7098 			process_nmi(vcpu);
7099 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7100 			kvm_pmu_handle_event(vcpu);
7101 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7102 			kvm_pmu_deliver_pmi(vcpu);
7103 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7104 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7105 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7106 				     vcpu->arch.ioapic_handled_vectors)) {
7107 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7108 				vcpu->run->eoi.vector =
7109 						vcpu->arch.pending_ioapic_eoi;
7110 				r = 0;
7111 				goto out;
7112 			}
7113 		}
7114 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7115 			vcpu_scan_ioapic(vcpu);
7116 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7117 			kvm_vcpu_reload_apic_access_page(vcpu);
7118 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7119 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7120 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7121 			r = 0;
7122 			goto out;
7123 		}
7124 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7125 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7126 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7127 			r = 0;
7128 			goto out;
7129 		}
7130 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7131 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7132 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7133 			r = 0;
7134 			goto out;
7135 		}
7136 
7137 		/*
7138 		 * KVM_REQ_HV_STIMER has to be processed after
7139 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7140 		 * depend on the guest clock being up-to-date
7141 		 */
7142 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7143 			kvm_hv_process_stimers(vcpu);
7144 	}
7145 
7146 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7147 		++vcpu->stat.req_event;
7148 		kvm_apic_accept_events(vcpu);
7149 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7150 			r = 1;
7151 			goto out;
7152 		}
7153 
7154 		if (inject_pending_event(vcpu, req_int_win) != 0)
7155 			req_immediate_exit = true;
7156 		else {
7157 			/* Enable SMI/NMI/IRQ window open exits if needed.
7158 			 *
7159 			 * SMIs have three cases:
7160 			 * 1) They can be nested, and then there is nothing to
7161 			 *    do here because RSM will cause a vmexit anyway.
7162 			 * 2) There is an ISA-specific reason why SMI cannot be
7163 			 *    injected, and the moment when this changes can be
7164 			 *    intercepted.
7165 			 * 3) Or the SMI can be pending because
7166 			 *    inject_pending_event has completed the injection
7167 			 *    of an IRQ or NMI from the previous vmexit, and
7168 			 *    then we request an immediate exit to inject the
7169 			 *    SMI.
7170 			 */
7171 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7172 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7173 					req_immediate_exit = true;
7174 			if (vcpu->arch.nmi_pending)
7175 				kvm_x86_ops->enable_nmi_window(vcpu);
7176 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7177 				kvm_x86_ops->enable_irq_window(vcpu);
7178 			WARN_ON(vcpu->arch.exception.pending);
7179 		}
7180 
7181 		if (kvm_lapic_enabled(vcpu)) {
7182 			update_cr8_intercept(vcpu);
7183 			kvm_lapic_sync_to_vapic(vcpu);
7184 		}
7185 	}
7186 
7187 	r = kvm_mmu_reload(vcpu);
7188 	if (unlikely(r)) {
7189 		goto cancel_injection;
7190 	}
7191 
7192 	preempt_disable();
7193 
7194 	kvm_x86_ops->prepare_guest_switch(vcpu);
7195 
7196 	/*
7197 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7198 	 * IPI are then delayed after guest entry, which ensures that they
7199 	 * result in virtual interrupt delivery.
7200 	 */
7201 	local_irq_disable();
7202 	vcpu->mode = IN_GUEST_MODE;
7203 
7204 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7205 
7206 	/*
7207 	 * 1) We should set ->mode before checking ->requests.  Please see
7208 	 * the comment in kvm_vcpu_exiting_guest_mode().
7209 	 *
7210 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7211 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7212 	 * (see vmx_deliver_posted_interrupt).
7213 	 *
7214 	 * 3) This also orders the write to mode from any reads to the page
7215 	 * tables done while the VCPU is running.  Please see the comment
7216 	 * in kvm_flush_remote_tlbs.
7217 	 */
7218 	smp_mb__after_srcu_read_unlock();
7219 
7220 	/*
7221 	 * This handles the case where a posted interrupt was
7222 	 * notified with kvm_vcpu_kick.
7223 	 */
7224 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7225 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7226 
7227 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7228 	    || need_resched() || signal_pending(current)) {
7229 		vcpu->mode = OUTSIDE_GUEST_MODE;
7230 		smp_wmb();
7231 		local_irq_enable();
7232 		preempt_enable();
7233 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7234 		r = 1;
7235 		goto cancel_injection;
7236 	}
7237 
7238 	kvm_load_guest_xcr0(vcpu);
7239 
7240 	if (req_immediate_exit) {
7241 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7242 		smp_send_reschedule(vcpu->cpu);
7243 	}
7244 
7245 	trace_kvm_entry(vcpu->vcpu_id);
7246 	if (lapic_timer_advance_ns)
7247 		wait_lapic_expire(vcpu);
7248 	guest_enter_irqoff();
7249 
7250 	if (unlikely(vcpu->arch.switch_db_regs)) {
7251 		set_debugreg(0, 7);
7252 		set_debugreg(vcpu->arch.eff_db[0], 0);
7253 		set_debugreg(vcpu->arch.eff_db[1], 1);
7254 		set_debugreg(vcpu->arch.eff_db[2], 2);
7255 		set_debugreg(vcpu->arch.eff_db[3], 3);
7256 		set_debugreg(vcpu->arch.dr6, 6);
7257 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7258 	}
7259 
7260 	kvm_x86_ops->run(vcpu);
7261 
7262 	/*
7263 	 * Do this here before restoring debug registers on the host.  And
7264 	 * since we do this before handling the vmexit, a DR access vmexit
7265 	 * can (a) read the correct value of the debug registers, (b) set
7266 	 * KVM_DEBUGREG_WONT_EXIT again.
7267 	 */
7268 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7269 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7270 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7271 		kvm_update_dr0123(vcpu);
7272 		kvm_update_dr6(vcpu);
7273 		kvm_update_dr7(vcpu);
7274 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7275 	}
7276 
7277 	/*
7278 	 * If the guest has used debug registers, at least dr7
7279 	 * will be disabled while returning to the host.
7280 	 * If we don't have active breakpoints in the host, we don't
7281 	 * care about the messed up debug address registers. But if
7282 	 * we have some of them active, restore the old state.
7283 	 */
7284 	if (hw_breakpoint_active())
7285 		hw_breakpoint_restore();
7286 
7287 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7288 
7289 	vcpu->mode = OUTSIDE_GUEST_MODE;
7290 	smp_wmb();
7291 
7292 	kvm_put_guest_xcr0(vcpu);
7293 
7294 	kvm_x86_ops->handle_external_intr(vcpu);
7295 
7296 	++vcpu->stat.exits;
7297 
7298 	guest_exit_irqoff();
7299 
7300 	local_irq_enable();
7301 	preempt_enable();
7302 
7303 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7304 
7305 	/*
7306 	 * Profile KVM exit RIPs:
7307 	 */
7308 	if (unlikely(prof_on == KVM_PROFILING)) {
7309 		unsigned long rip = kvm_rip_read(vcpu);
7310 		profile_hit(KVM_PROFILING, (void *)rip);
7311 	}
7312 
7313 	if (unlikely(vcpu->arch.tsc_always_catchup))
7314 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7315 
7316 	if (vcpu->arch.apic_attention)
7317 		kvm_lapic_sync_from_vapic(vcpu);
7318 
7319 	vcpu->arch.gpa_available = false;
7320 	r = kvm_x86_ops->handle_exit(vcpu);
7321 	return r;
7322 
7323 cancel_injection:
7324 	kvm_x86_ops->cancel_injection(vcpu);
7325 	if (unlikely(vcpu->arch.apic_attention))
7326 		kvm_lapic_sync_from_vapic(vcpu);
7327 out:
7328 	return r;
7329 }
7330 
7331 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7332 {
7333 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7334 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7335 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7336 		kvm_vcpu_block(vcpu);
7337 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7338 
7339 		if (kvm_x86_ops->post_block)
7340 			kvm_x86_ops->post_block(vcpu);
7341 
7342 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7343 			return 1;
7344 	}
7345 
7346 	kvm_apic_accept_events(vcpu);
7347 	switch(vcpu->arch.mp_state) {
7348 	case KVM_MP_STATE_HALTED:
7349 		vcpu->arch.pv.pv_unhalted = false;
7350 		vcpu->arch.mp_state =
7351 			KVM_MP_STATE_RUNNABLE;
7352 	case KVM_MP_STATE_RUNNABLE:
7353 		vcpu->arch.apf.halted = false;
7354 		break;
7355 	case KVM_MP_STATE_INIT_RECEIVED:
7356 		break;
7357 	default:
7358 		return -EINTR;
7359 		break;
7360 	}
7361 	return 1;
7362 }
7363 
7364 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7365 {
7366 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7367 		kvm_x86_ops->check_nested_events(vcpu, false);
7368 
7369 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7370 		!vcpu->arch.apf.halted);
7371 }
7372 
7373 static int vcpu_run(struct kvm_vcpu *vcpu)
7374 {
7375 	int r;
7376 	struct kvm *kvm = vcpu->kvm;
7377 
7378 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7379 
7380 	for (;;) {
7381 		if (kvm_vcpu_running(vcpu)) {
7382 			r = vcpu_enter_guest(vcpu);
7383 		} else {
7384 			r = vcpu_block(kvm, vcpu);
7385 		}
7386 
7387 		if (r <= 0)
7388 			break;
7389 
7390 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7391 		if (kvm_cpu_has_pending_timer(vcpu))
7392 			kvm_inject_pending_timer_irqs(vcpu);
7393 
7394 		if (dm_request_for_irq_injection(vcpu) &&
7395 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7396 			r = 0;
7397 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7398 			++vcpu->stat.request_irq_exits;
7399 			break;
7400 		}
7401 
7402 		kvm_check_async_pf_completion(vcpu);
7403 
7404 		if (signal_pending(current)) {
7405 			r = -EINTR;
7406 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7407 			++vcpu->stat.signal_exits;
7408 			break;
7409 		}
7410 		if (need_resched()) {
7411 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7412 			cond_resched();
7413 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7414 		}
7415 	}
7416 
7417 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7418 
7419 	return r;
7420 }
7421 
7422 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7423 {
7424 	int r;
7425 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7426 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7427 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7428 	if (r != EMULATE_DONE)
7429 		return 0;
7430 	return 1;
7431 }
7432 
7433 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7434 {
7435 	BUG_ON(!vcpu->arch.pio.count);
7436 
7437 	return complete_emulated_io(vcpu);
7438 }
7439 
7440 /*
7441  * Implements the following, as a state machine:
7442  *
7443  * read:
7444  *   for each fragment
7445  *     for each mmio piece in the fragment
7446  *       write gpa, len
7447  *       exit
7448  *       copy data
7449  *   execute insn
7450  *
7451  * write:
7452  *   for each fragment
7453  *     for each mmio piece in the fragment
7454  *       write gpa, len
7455  *       copy data
7456  *       exit
7457  */
7458 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7459 {
7460 	struct kvm_run *run = vcpu->run;
7461 	struct kvm_mmio_fragment *frag;
7462 	unsigned len;
7463 
7464 	BUG_ON(!vcpu->mmio_needed);
7465 
7466 	/* Complete previous fragment */
7467 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7468 	len = min(8u, frag->len);
7469 	if (!vcpu->mmio_is_write)
7470 		memcpy(frag->data, run->mmio.data, len);
7471 
7472 	if (frag->len <= 8) {
7473 		/* Switch to the next fragment. */
7474 		frag++;
7475 		vcpu->mmio_cur_fragment++;
7476 	} else {
7477 		/* Go forward to the next mmio piece. */
7478 		frag->data += len;
7479 		frag->gpa += len;
7480 		frag->len -= len;
7481 	}
7482 
7483 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7484 		vcpu->mmio_needed = 0;
7485 
7486 		/* FIXME: return into emulator if single-stepping.  */
7487 		if (vcpu->mmio_is_write)
7488 			return 1;
7489 		vcpu->mmio_read_completed = 1;
7490 		return complete_emulated_io(vcpu);
7491 	}
7492 
7493 	run->exit_reason = KVM_EXIT_MMIO;
7494 	run->mmio.phys_addr = frag->gpa;
7495 	if (vcpu->mmio_is_write)
7496 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7497 	run->mmio.len = min(8u, frag->len);
7498 	run->mmio.is_write = vcpu->mmio_is_write;
7499 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7500 	return 0;
7501 }
7502 
7503 
7504 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7505 {
7506 	int r;
7507 
7508 	vcpu_load(vcpu);
7509 	kvm_sigset_activate(vcpu);
7510 	kvm_load_guest_fpu(vcpu);
7511 
7512 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7513 		if (kvm_run->immediate_exit) {
7514 			r = -EINTR;
7515 			goto out;
7516 		}
7517 		kvm_vcpu_block(vcpu);
7518 		kvm_apic_accept_events(vcpu);
7519 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7520 		r = -EAGAIN;
7521 		if (signal_pending(current)) {
7522 			r = -EINTR;
7523 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7524 			++vcpu->stat.signal_exits;
7525 		}
7526 		goto out;
7527 	}
7528 
7529 	/* re-sync apic's tpr */
7530 	if (!lapic_in_kernel(vcpu)) {
7531 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7532 			r = -EINVAL;
7533 			goto out;
7534 		}
7535 	}
7536 
7537 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7538 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7539 		vcpu->arch.complete_userspace_io = NULL;
7540 		r = cui(vcpu);
7541 		if (r <= 0)
7542 			goto out;
7543 	} else
7544 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7545 
7546 	if (kvm_run->immediate_exit)
7547 		r = -EINTR;
7548 	else
7549 		r = vcpu_run(vcpu);
7550 
7551 out:
7552 	kvm_put_guest_fpu(vcpu);
7553 	post_kvm_run_save(vcpu);
7554 	kvm_sigset_deactivate(vcpu);
7555 
7556 	vcpu_put(vcpu);
7557 	return r;
7558 }
7559 
7560 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7561 {
7562 	vcpu_load(vcpu);
7563 
7564 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7565 		/*
7566 		 * We are here if userspace calls get_regs() in the middle of
7567 		 * instruction emulation. Registers state needs to be copied
7568 		 * back from emulation context to vcpu. Userspace shouldn't do
7569 		 * that usually, but some bad designed PV devices (vmware
7570 		 * backdoor interface) need this to work
7571 		 */
7572 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7573 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7574 	}
7575 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7576 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7577 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7578 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7579 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7580 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7581 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7582 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7583 #ifdef CONFIG_X86_64
7584 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7585 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7586 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7587 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7588 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7589 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7590 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7591 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7592 #endif
7593 
7594 	regs->rip = kvm_rip_read(vcpu);
7595 	regs->rflags = kvm_get_rflags(vcpu);
7596 
7597 	vcpu_put(vcpu);
7598 	return 0;
7599 }
7600 
7601 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7602 {
7603 	vcpu_load(vcpu);
7604 
7605 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7606 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7607 
7608 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7609 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7610 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7611 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7612 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7613 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7614 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7615 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7616 #ifdef CONFIG_X86_64
7617 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7618 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7619 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7620 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7621 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7622 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7623 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7624 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7625 #endif
7626 
7627 	kvm_rip_write(vcpu, regs->rip);
7628 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7629 
7630 	vcpu->arch.exception.pending = false;
7631 
7632 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7633 
7634 	vcpu_put(vcpu);
7635 	return 0;
7636 }
7637 
7638 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7639 {
7640 	struct kvm_segment cs;
7641 
7642 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7643 	*db = cs.db;
7644 	*l = cs.l;
7645 }
7646 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7647 
7648 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7649 				  struct kvm_sregs *sregs)
7650 {
7651 	struct desc_ptr dt;
7652 
7653 	vcpu_load(vcpu);
7654 
7655 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7656 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7657 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7658 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7659 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7660 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7661 
7662 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7663 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7664 
7665 	kvm_x86_ops->get_idt(vcpu, &dt);
7666 	sregs->idt.limit = dt.size;
7667 	sregs->idt.base = dt.address;
7668 	kvm_x86_ops->get_gdt(vcpu, &dt);
7669 	sregs->gdt.limit = dt.size;
7670 	sregs->gdt.base = dt.address;
7671 
7672 	sregs->cr0 = kvm_read_cr0(vcpu);
7673 	sregs->cr2 = vcpu->arch.cr2;
7674 	sregs->cr3 = kvm_read_cr3(vcpu);
7675 	sregs->cr4 = kvm_read_cr4(vcpu);
7676 	sregs->cr8 = kvm_get_cr8(vcpu);
7677 	sregs->efer = vcpu->arch.efer;
7678 	sregs->apic_base = kvm_get_apic_base(vcpu);
7679 
7680 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7681 
7682 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7683 		set_bit(vcpu->arch.interrupt.nr,
7684 			(unsigned long *)sregs->interrupt_bitmap);
7685 
7686 	vcpu_put(vcpu);
7687 	return 0;
7688 }
7689 
7690 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7691 				    struct kvm_mp_state *mp_state)
7692 {
7693 	vcpu_load(vcpu);
7694 
7695 	kvm_apic_accept_events(vcpu);
7696 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7697 					vcpu->arch.pv.pv_unhalted)
7698 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7699 	else
7700 		mp_state->mp_state = vcpu->arch.mp_state;
7701 
7702 	vcpu_put(vcpu);
7703 	return 0;
7704 }
7705 
7706 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7707 				    struct kvm_mp_state *mp_state)
7708 {
7709 	int ret = -EINVAL;
7710 
7711 	vcpu_load(vcpu);
7712 
7713 	if (!lapic_in_kernel(vcpu) &&
7714 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7715 		goto out;
7716 
7717 	/* INITs are latched while in SMM */
7718 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7719 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7720 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7721 		goto out;
7722 
7723 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7724 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7725 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7726 	} else
7727 		vcpu->arch.mp_state = mp_state->mp_state;
7728 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7729 
7730 	ret = 0;
7731 out:
7732 	vcpu_put(vcpu);
7733 	return ret;
7734 }
7735 
7736 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7737 		    int reason, bool has_error_code, u32 error_code)
7738 {
7739 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7740 	int ret;
7741 
7742 	init_emulate_ctxt(vcpu);
7743 
7744 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7745 				   has_error_code, error_code);
7746 
7747 	if (ret)
7748 		return EMULATE_FAIL;
7749 
7750 	kvm_rip_write(vcpu, ctxt->eip);
7751 	kvm_set_rflags(vcpu, ctxt->eflags);
7752 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7753 	return EMULATE_DONE;
7754 }
7755 EXPORT_SYMBOL_GPL(kvm_task_switch);
7756 
7757 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7758 {
7759 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7760 		/*
7761 		 * When EFER.LME and CR0.PG are set, the processor is in
7762 		 * 64-bit mode (though maybe in a 32-bit code segment).
7763 		 * CR4.PAE and EFER.LMA must be set.
7764 		 */
7765 		if (!(sregs->cr4 & X86_CR4_PAE)
7766 		    || !(sregs->efer & EFER_LMA))
7767 			return -EINVAL;
7768 	} else {
7769 		/*
7770 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7771 		 * segment cannot be 64-bit.
7772 		 */
7773 		if (sregs->efer & EFER_LMA || sregs->cs.l)
7774 			return -EINVAL;
7775 	}
7776 
7777 	return 0;
7778 }
7779 
7780 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7781 				  struct kvm_sregs *sregs)
7782 {
7783 	struct msr_data apic_base_msr;
7784 	int mmu_reset_needed = 0;
7785 	int pending_vec, max_bits, idx;
7786 	struct desc_ptr dt;
7787 	int ret = -EINVAL;
7788 
7789 	vcpu_load(vcpu);
7790 
7791 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7792 			(sregs->cr4 & X86_CR4_OSXSAVE))
7793 		goto out;
7794 
7795 	if (kvm_valid_sregs(vcpu, sregs))
7796 		goto out;
7797 
7798 	apic_base_msr.data = sregs->apic_base;
7799 	apic_base_msr.host_initiated = true;
7800 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
7801 		goto out;
7802 
7803 	dt.size = sregs->idt.limit;
7804 	dt.address = sregs->idt.base;
7805 	kvm_x86_ops->set_idt(vcpu, &dt);
7806 	dt.size = sregs->gdt.limit;
7807 	dt.address = sregs->gdt.base;
7808 	kvm_x86_ops->set_gdt(vcpu, &dt);
7809 
7810 	vcpu->arch.cr2 = sregs->cr2;
7811 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7812 	vcpu->arch.cr3 = sregs->cr3;
7813 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7814 
7815 	kvm_set_cr8(vcpu, sregs->cr8);
7816 
7817 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7818 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7819 
7820 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7821 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7822 	vcpu->arch.cr0 = sregs->cr0;
7823 
7824 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7825 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7826 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7827 		kvm_update_cpuid(vcpu);
7828 
7829 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7830 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7831 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7832 		mmu_reset_needed = 1;
7833 	}
7834 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7835 
7836 	if (mmu_reset_needed)
7837 		kvm_mmu_reset_context(vcpu);
7838 
7839 	max_bits = KVM_NR_INTERRUPTS;
7840 	pending_vec = find_first_bit(
7841 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7842 	if (pending_vec < max_bits) {
7843 		kvm_queue_interrupt(vcpu, pending_vec, false);
7844 		pr_debug("Set back pending irq %d\n", pending_vec);
7845 	}
7846 
7847 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7848 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7849 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7850 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7851 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7852 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7853 
7854 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7855 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7856 
7857 	update_cr8_intercept(vcpu);
7858 
7859 	/* Older userspace won't unhalt the vcpu on reset. */
7860 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7861 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7862 	    !is_protmode(vcpu))
7863 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7864 
7865 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7866 
7867 	ret = 0;
7868 out:
7869 	vcpu_put(vcpu);
7870 	return ret;
7871 }
7872 
7873 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7874 					struct kvm_guest_debug *dbg)
7875 {
7876 	unsigned long rflags;
7877 	int i, r;
7878 
7879 	vcpu_load(vcpu);
7880 
7881 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7882 		r = -EBUSY;
7883 		if (vcpu->arch.exception.pending)
7884 			goto out;
7885 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7886 			kvm_queue_exception(vcpu, DB_VECTOR);
7887 		else
7888 			kvm_queue_exception(vcpu, BP_VECTOR);
7889 	}
7890 
7891 	/*
7892 	 * Read rflags as long as potentially injected trace flags are still
7893 	 * filtered out.
7894 	 */
7895 	rflags = kvm_get_rflags(vcpu);
7896 
7897 	vcpu->guest_debug = dbg->control;
7898 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7899 		vcpu->guest_debug = 0;
7900 
7901 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7902 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7903 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7904 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7905 	} else {
7906 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7907 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7908 	}
7909 	kvm_update_dr7(vcpu);
7910 
7911 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7912 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7913 			get_segment_base(vcpu, VCPU_SREG_CS);
7914 
7915 	/*
7916 	 * Trigger an rflags update that will inject or remove the trace
7917 	 * flags.
7918 	 */
7919 	kvm_set_rflags(vcpu, rflags);
7920 
7921 	kvm_x86_ops->update_bp_intercept(vcpu);
7922 
7923 	r = 0;
7924 
7925 out:
7926 	vcpu_put(vcpu);
7927 	return r;
7928 }
7929 
7930 /*
7931  * Translate a guest virtual address to a guest physical address.
7932  */
7933 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7934 				    struct kvm_translation *tr)
7935 {
7936 	unsigned long vaddr = tr->linear_address;
7937 	gpa_t gpa;
7938 	int idx;
7939 
7940 	vcpu_load(vcpu);
7941 
7942 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7943 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7944 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7945 	tr->physical_address = gpa;
7946 	tr->valid = gpa != UNMAPPED_GVA;
7947 	tr->writeable = 1;
7948 	tr->usermode = 0;
7949 
7950 	vcpu_put(vcpu);
7951 	return 0;
7952 }
7953 
7954 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7955 {
7956 	struct fxregs_state *fxsave;
7957 
7958 	vcpu_load(vcpu);
7959 
7960 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7961 	memcpy(fpu->fpr, fxsave->st_space, 128);
7962 	fpu->fcw = fxsave->cwd;
7963 	fpu->fsw = fxsave->swd;
7964 	fpu->ftwx = fxsave->twd;
7965 	fpu->last_opcode = fxsave->fop;
7966 	fpu->last_ip = fxsave->rip;
7967 	fpu->last_dp = fxsave->rdp;
7968 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7969 
7970 	vcpu_put(vcpu);
7971 	return 0;
7972 }
7973 
7974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7975 {
7976 	struct fxregs_state *fxsave;
7977 
7978 	vcpu_load(vcpu);
7979 
7980 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7981 
7982 	memcpy(fxsave->st_space, fpu->fpr, 128);
7983 	fxsave->cwd = fpu->fcw;
7984 	fxsave->swd = fpu->fsw;
7985 	fxsave->twd = fpu->ftwx;
7986 	fxsave->fop = fpu->last_opcode;
7987 	fxsave->rip = fpu->last_ip;
7988 	fxsave->rdp = fpu->last_dp;
7989 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7990 
7991 	vcpu_put(vcpu);
7992 	return 0;
7993 }
7994 
7995 static void fx_init(struct kvm_vcpu *vcpu)
7996 {
7997 	fpstate_init(&vcpu->arch.guest_fpu.state);
7998 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7999 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8000 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8001 
8002 	/*
8003 	 * Ensure guest xcr0 is valid for loading
8004 	 */
8005 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8006 
8007 	vcpu->arch.cr0 |= X86_CR0_ET;
8008 }
8009 
8010 /* Swap (qemu) user FPU context for the guest FPU context. */
8011 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8012 {
8013 	preempt_disable();
8014 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8015 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8016 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8017 				~XFEATURE_MASK_PKRU);
8018 	preempt_enable();
8019 	trace_kvm_fpu(1);
8020 }
8021 
8022 /* When vcpu_run ends, restore user space FPU context. */
8023 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8024 {
8025 	preempt_disable();
8026 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8027 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8028 	preempt_enable();
8029 	++vcpu->stat.fpu_reload;
8030 	trace_kvm_fpu(0);
8031 }
8032 
8033 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8034 {
8035 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8036 
8037 	kvmclock_reset(vcpu);
8038 
8039 	kvm_x86_ops->vcpu_free(vcpu);
8040 	free_cpumask_var(wbinvd_dirty_mask);
8041 }
8042 
8043 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8044 						unsigned int id)
8045 {
8046 	struct kvm_vcpu *vcpu;
8047 
8048 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8049 		printk_once(KERN_WARNING
8050 		"kvm: SMP vm created on host with unstable TSC; "
8051 		"guest TSC will not be reliable\n");
8052 
8053 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8054 
8055 	return vcpu;
8056 }
8057 
8058 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8059 {
8060 	kvm_vcpu_mtrr_init(vcpu);
8061 	vcpu_load(vcpu);
8062 	kvm_vcpu_reset(vcpu, false);
8063 	kvm_mmu_setup(vcpu);
8064 	vcpu_put(vcpu);
8065 	return 0;
8066 }
8067 
8068 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8069 {
8070 	struct msr_data msr;
8071 	struct kvm *kvm = vcpu->kvm;
8072 
8073 	kvm_hv_vcpu_postcreate(vcpu);
8074 
8075 	if (mutex_lock_killable(&vcpu->mutex))
8076 		return;
8077 	vcpu_load(vcpu);
8078 	msr.data = 0x0;
8079 	msr.index = MSR_IA32_TSC;
8080 	msr.host_initiated = true;
8081 	kvm_write_tsc(vcpu, &msr);
8082 	vcpu_put(vcpu);
8083 	mutex_unlock(&vcpu->mutex);
8084 
8085 	if (!kvmclock_periodic_sync)
8086 		return;
8087 
8088 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8089 					KVMCLOCK_SYNC_PERIOD);
8090 }
8091 
8092 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8093 {
8094 	vcpu->arch.apf.msr_val = 0;
8095 
8096 	vcpu_load(vcpu);
8097 	kvm_mmu_unload(vcpu);
8098 	vcpu_put(vcpu);
8099 
8100 	kvm_x86_ops->vcpu_free(vcpu);
8101 }
8102 
8103 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8104 {
8105 	kvm_lapic_reset(vcpu, init_event);
8106 
8107 	vcpu->arch.hflags = 0;
8108 
8109 	vcpu->arch.smi_pending = 0;
8110 	vcpu->arch.smi_count = 0;
8111 	atomic_set(&vcpu->arch.nmi_queued, 0);
8112 	vcpu->arch.nmi_pending = 0;
8113 	vcpu->arch.nmi_injected = false;
8114 	kvm_clear_interrupt_queue(vcpu);
8115 	kvm_clear_exception_queue(vcpu);
8116 	vcpu->arch.exception.pending = false;
8117 
8118 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8119 	kvm_update_dr0123(vcpu);
8120 	vcpu->arch.dr6 = DR6_INIT;
8121 	kvm_update_dr6(vcpu);
8122 	vcpu->arch.dr7 = DR7_FIXED_1;
8123 	kvm_update_dr7(vcpu);
8124 
8125 	vcpu->arch.cr2 = 0;
8126 
8127 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8128 	vcpu->arch.apf.msr_val = 0;
8129 	vcpu->arch.st.msr_val = 0;
8130 
8131 	kvmclock_reset(vcpu);
8132 
8133 	kvm_clear_async_pf_completion_queue(vcpu);
8134 	kvm_async_pf_hash_reset(vcpu);
8135 	vcpu->arch.apf.halted = false;
8136 
8137 	if (kvm_mpx_supported()) {
8138 		void *mpx_state_buffer;
8139 
8140 		/*
8141 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8142 		 * called with loaded FPU and does not let userspace fix the state.
8143 		 */
8144 		if (init_event)
8145 			kvm_put_guest_fpu(vcpu);
8146 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8147 					XFEATURE_MASK_BNDREGS);
8148 		if (mpx_state_buffer)
8149 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8150 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8151 					XFEATURE_MASK_BNDCSR);
8152 		if (mpx_state_buffer)
8153 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8154 		if (init_event)
8155 			kvm_load_guest_fpu(vcpu);
8156 	}
8157 
8158 	if (!init_event) {
8159 		kvm_pmu_reset(vcpu);
8160 		vcpu->arch.smbase = 0x30000;
8161 
8162 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8163 		vcpu->arch.msr_misc_features_enables = 0;
8164 
8165 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8166 	}
8167 
8168 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8169 	vcpu->arch.regs_avail = ~0;
8170 	vcpu->arch.regs_dirty = ~0;
8171 
8172 	vcpu->arch.ia32_xss = 0;
8173 
8174 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8175 }
8176 
8177 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8178 {
8179 	struct kvm_segment cs;
8180 
8181 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8182 	cs.selector = vector << 8;
8183 	cs.base = vector << 12;
8184 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8185 	kvm_rip_write(vcpu, 0);
8186 }
8187 
8188 int kvm_arch_hardware_enable(void)
8189 {
8190 	struct kvm *kvm;
8191 	struct kvm_vcpu *vcpu;
8192 	int i;
8193 	int ret;
8194 	u64 local_tsc;
8195 	u64 max_tsc = 0;
8196 	bool stable, backwards_tsc = false;
8197 
8198 	kvm_shared_msr_cpu_online();
8199 	ret = kvm_x86_ops->hardware_enable();
8200 	if (ret != 0)
8201 		return ret;
8202 
8203 	local_tsc = rdtsc();
8204 	stable = !kvm_check_tsc_unstable();
8205 	list_for_each_entry(kvm, &vm_list, vm_list) {
8206 		kvm_for_each_vcpu(i, vcpu, kvm) {
8207 			if (!stable && vcpu->cpu == smp_processor_id())
8208 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8209 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8210 				backwards_tsc = true;
8211 				if (vcpu->arch.last_host_tsc > max_tsc)
8212 					max_tsc = vcpu->arch.last_host_tsc;
8213 			}
8214 		}
8215 	}
8216 
8217 	/*
8218 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8219 	 * platforms that reset TSC during suspend or hibernate actions, but
8220 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8221 	 * detect that condition here, which happens early in CPU bringup,
8222 	 * before any KVM threads can be running.  Unfortunately, we can't
8223 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8224 	 * enough into CPU bringup that we know how much real time has actually
8225 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8226 	 * variables that haven't been updated yet.
8227 	 *
8228 	 * So we simply find the maximum observed TSC above, then record the
8229 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8230 	 * the adjustment will be applied.  Note that we accumulate
8231 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8232 	 * gets a chance to run again.  In the event that no KVM threads get a
8233 	 * chance to run, we will miss the entire elapsed period, as we'll have
8234 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8235 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8236 	 * uniform across all VCPUs (not to mention the scenario is extremely
8237 	 * unlikely). It is possible that a second hibernate recovery happens
8238 	 * much faster than a first, causing the observed TSC here to be
8239 	 * smaller; this would require additional padding adjustment, which is
8240 	 * why we set last_host_tsc to the local tsc observed here.
8241 	 *
8242 	 * N.B. - this code below runs only on platforms with reliable TSC,
8243 	 * as that is the only way backwards_tsc is set above.  Also note
8244 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8245 	 * have the same delta_cyc adjustment applied if backwards_tsc
8246 	 * is detected.  Note further, this adjustment is only done once,
8247 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8248 	 * called multiple times (one for each physical CPU bringup).
8249 	 *
8250 	 * Platforms with unreliable TSCs don't have to deal with this, they
8251 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8252 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8253 	 * guarantee that they stay in perfect synchronization.
8254 	 */
8255 	if (backwards_tsc) {
8256 		u64 delta_cyc = max_tsc - local_tsc;
8257 		list_for_each_entry(kvm, &vm_list, vm_list) {
8258 			kvm->arch.backwards_tsc_observed = true;
8259 			kvm_for_each_vcpu(i, vcpu, kvm) {
8260 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8261 				vcpu->arch.last_host_tsc = local_tsc;
8262 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8263 			}
8264 
8265 			/*
8266 			 * We have to disable TSC offset matching.. if you were
8267 			 * booting a VM while issuing an S4 host suspend....
8268 			 * you may have some problem.  Solving this issue is
8269 			 * left as an exercise to the reader.
8270 			 */
8271 			kvm->arch.last_tsc_nsec = 0;
8272 			kvm->arch.last_tsc_write = 0;
8273 		}
8274 
8275 	}
8276 	return 0;
8277 }
8278 
8279 void kvm_arch_hardware_disable(void)
8280 {
8281 	kvm_x86_ops->hardware_disable();
8282 	drop_user_return_notifiers();
8283 }
8284 
8285 int kvm_arch_hardware_setup(void)
8286 {
8287 	int r;
8288 
8289 	r = kvm_x86_ops->hardware_setup();
8290 	if (r != 0)
8291 		return r;
8292 
8293 	if (kvm_has_tsc_control) {
8294 		/*
8295 		 * Make sure the user can only configure tsc_khz values that
8296 		 * fit into a signed integer.
8297 		 * A min value is not calculated needed because it will always
8298 		 * be 1 on all machines.
8299 		 */
8300 		u64 max = min(0x7fffffffULL,
8301 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8302 		kvm_max_guest_tsc_khz = max;
8303 
8304 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8305 	}
8306 
8307 	kvm_init_msr_list();
8308 	return 0;
8309 }
8310 
8311 void kvm_arch_hardware_unsetup(void)
8312 {
8313 	kvm_x86_ops->hardware_unsetup();
8314 }
8315 
8316 void kvm_arch_check_processor_compat(void *rtn)
8317 {
8318 	kvm_x86_ops->check_processor_compatibility(rtn);
8319 }
8320 
8321 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8322 {
8323 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8324 }
8325 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8326 
8327 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8328 {
8329 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8330 }
8331 
8332 struct static_key kvm_no_apic_vcpu __read_mostly;
8333 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8334 
8335 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8336 {
8337 	struct page *page;
8338 	int r;
8339 
8340 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8341 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8342 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8343 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8344 	else
8345 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8346 
8347 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8348 	if (!page) {
8349 		r = -ENOMEM;
8350 		goto fail;
8351 	}
8352 	vcpu->arch.pio_data = page_address(page);
8353 
8354 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8355 
8356 	r = kvm_mmu_create(vcpu);
8357 	if (r < 0)
8358 		goto fail_free_pio_data;
8359 
8360 	if (irqchip_in_kernel(vcpu->kvm)) {
8361 		r = kvm_create_lapic(vcpu);
8362 		if (r < 0)
8363 			goto fail_mmu_destroy;
8364 	} else
8365 		static_key_slow_inc(&kvm_no_apic_vcpu);
8366 
8367 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8368 				       GFP_KERNEL);
8369 	if (!vcpu->arch.mce_banks) {
8370 		r = -ENOMEM;
8371 		goto fail_free_lapic;
8372 	}
8373 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8374 
8375 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8376 		r = -ENOMEM;
8377 		goto fail_free_mce_banks;
8378 	}
8379 
8380 	fx_init(vcpu);
8381 
8382 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8383 
8384 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8385 
8386 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8387 
8388 	kvm_async_pf_hash_reset(vcpu);
8389 	kvm_pmu_init(vcpu);
8390 
8391 	vcpu->arch.pending_external_vector = -1;
8392 	vcpu->arch.preempted_in_kernel = false;
8393 
8394 	kvm_hv_vcpu_init(vcpu);
8395 
8396 	return 0;
8397 
8398 fail_free_mce_banks:
8399 	kfree(vcpu->arch.mce_banks);
8400 fail_free_lapic:
8401 	kvm_free_lapic(vcpu);
8402 fail_mmu_destroy:
8403 	kvm_mmu_destroy(vcpu);
8404 fail_free_pio_data:
8405 	free_page((unsigned long)vcpu->arch.pio_data);
8406 fail:
8407 	return r;
8408 }
8409 
8410 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8411 {
8412 	int idx;
8413 
8414 	kvm_hv_vcpu_uninit(vcpu);
8415 	kvm_pmu_destroy(vcpu);
8416 	kfree(vcpu->arch.mce_banks);
8417 	kvm_free_lapic(vcpu);
8418 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8419 	kvm_mmu_destroy(vcpu);
8420 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8421 	free_page((unsigned long)vcpu->arch.pio_data);
8422 	if (!lapic_in_kernel(vcpu))
8423 		static_key_slow_dec(&kvm_no_apic_vcpu);
8424 }
8425 
8426 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8427 {
8428 	kvm_x86_ops->sched_in(vcpu, cpu);
8429 }
8430 
8431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8432 {
8433 	if (type)
8434 		return -EINVAL;
8435 
8436 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8437 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8438 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8439 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8440 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8441 
8442 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8443 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8444 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8445 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8446 		&kvm->arch.irq_sources_bitmap);
8447 
8448 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8449 	mutex_init(&kvm->arch.apic_map_lock);
8450 	mutex_init(&kvm->arch.hyperv.hv_lock);
8451 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8452 
8453 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8454 	pvclock_update_vm_gtod_copy(kvm);
8455 
8456 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8457 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8458 
8459 	kvm_page_track_init(kvm);
8460 	kvm_mmu_init_vm(kvm);
8461 
8462 	if (kvm_x86_ops->vm_init)
8463 		return kvm_x86_ops->vm_init(kvm);
8464 
8465 	return 0;
8466 }
8467 
8468 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8469 {
8470 	vcpu_load(vcpu);
8471 	kvm_mmu_unload(vcpu);
8472 	vcpu_put(vcpu);
8473 }
8474 
8475 static void kvm_free_vcpus(struct kvm *kvm)
8476 {
8477 	unsigned int i;
8478 	struct kvm_vcpu *vcpu;
8479 
8480 	/*
8481 	 * Unpin any mmu pages first.
8482 	 */
8483 	kvm_for_each_vcpu(i, vcpu, kvm) {
8484 		kvm_clear_async_pf_completion_queue(vcpu);
8485 		kvm_unload_vcpu_mmu(vcpu);
8486 	}
8487 	kvm_for_each_vcpu(i, vcpu, kvm)
8488 		kvm_arch_vcpu_free(vcpu);
8489 
8490 	mutex_lock(&kvm->lock);
8491 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8492 		kvm->vcpus[i] = NULL;
8493 
8494 	atomic_set(&kvm->online_vcpus, 0);
8495 	mutex_unlock(&kvm->lock);
8496 }
8497 
8498 void kvm_arch_sync_events(struct kvm *kvm)
8499 {
8500 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8501 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8502 	kvm_free_pit(kvm);
8503 }
8504 
8505 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8506 {
8507 	int i, r;
8508 	unsigned long hva;
8509 	struct kvm_memslots *slots = kvm_memslots(kvm);
8510 	struct kvm_memory_slot *slot, old;
8511 
8512 	/* Called with kvm->slots_lock held.  */
8513 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8514 		return -EINVAL;
8515 
8516 	slot = id_to_memslot(slots, id);
8517 	if (size) {
8518 		if (slot->npages)
8519 			return -EEXIST;
8520 
8521 		/*
8522 		 * MAP_SHARED to prevent internal slot pages from being moved
8523 		 * by fork()/COW.
8524 		 */
8525 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8526 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8527 		if (IS_ERR((void *)hva))
8528 			return PTR_ERR((void *)hva);
8529 	} else {
8530 		if (!slot->npages)
8531 			return 0;
8532 
8533 		hva = 0;
8534 	}
8535 
8536 	old = *slot;
8537 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8538 		struct kvm_userspace_memory_region m;
8539 
8540 		m.slot = id | (i << 16);
8541 		m.flags = 0;
8542 		m.guest_phys_addr = gpa;
8543 		m.userspace_addr = hva;
8544 		m.memory_size = size;
8545 		r = __kvm_set_memory_region(kvm, &m);
8546 		if (r < 0)
8547 			return r;
8548 	}
8549 
8550 	if (!size)
8551 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8552 
8553 	return 0;
8554 }
8555 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8556 
8557 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8558 {
8559 	int r;
8560 
8561 	mutex_lock(&kvm->slots_lock);
8562 	r = __x86_set_memory_region(kvm, id, gpa, size);
8563 	mutex_unlock(&kvm->slots_lock);
8564 
8565 	return r;
8566 }
8567 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8568 
8569 void kvm_arch_destroy_vm(struct kvm *kvm)
8570 {
8571 	if (current->mm == kvm->mm) {
8572 		/*
8573 		 * Free memory regions allocated on behalf of userspace,
8574 		 * unless the the memory map has changed due to process exit
8575 		 * or fd copying.
8576 		 */
8577 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8578 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8579 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8580 	}
8581 	if (kvm_x86_ops->vm_destroy)
8582 		kvm_x86_ops->vm_destroy(kvm);
8583 	kvm_pic_destroy(kvm);
8584 	kvm_ioapic_destroy(kvm);
8585 	kvm_free_vcpus(kvm);
8586 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8587 	kvm_mmu_uninit_vm(kvm);
8588 	kvm_page_track_cleanup(kvm);
8589 }
8590 
8591 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8592 			   struct kvm_memory_slot *dont)
8593 {
8594 	int i;
8595 
8596 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8597 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8598 			kvfree(free->arch.rmap[i]);
8599 			free->arch.rmap[i] = NULL;
8600 		}
8601 		if (i == 0)
8602 			continue;
8603 
8604 		if (!dont || free->arch.lpage_info[i - 1] !=
8605 			     dont->arch.lpage_info[i - 1]) {
8606 			kvfree(free->arch.lpage_info[i - 1]);
8607 			free->arch.lpage_info[i - 1] = NULL;
8608 		}
8609 	}
8610 
8611 	kvm_page_track_free_memslot(free, dont);
8612 }
8613 
8614 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8615 			    unsigned long npages)
8616 {
8617 	int i;
8618 
8619 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8620 		struct kvm_lpage_info *linfo;
8621 		unsigned long ugfn;
8622 		int lpages;
8623 		int level = i + 1;
8624 
8625 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8626 				      slot->base_gfn, level) + 1;
8627 
8628 		slot->arch.rmap[i] =
8629 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8630 		if (!slot->arch.rmap[i])
8631 			goto out_free;
8632 		if (i == 0)
8633 			continue;
8634 
8635 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8636 		if (!linfo)
8637 			goto out_free;
8638 
8639 		slot->arch.lpage_info[i - 1] = linfo;
8640 
8641 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8642 			linfo[0].disallow_lpage = 1;
8643 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8644 			linfo[lpages - 1].disallow_lpage = 1;
8645 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8646 		/*
8647 		 * If the gfn and userspace address are not aligned wrt each
8648 		 * other, or if explicitly asked to, disable large page
8649 		 * support for this slot
8650 		 */
8651 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8652 		    !kvm_largepages_enabled()) {
8653 			unsigned long j;
8654 
8655 			for (j = 0; j < lpages; ++j)
8656 				linfo[j].disallow_lpage = 1;
8657 		}
8658 	}
8659 
8660 	if (kvm_page_track_create_memslot(slot, npages))
8661 		goto out_free;
8662 
8663 	return 0;
8664 
8665 out_free:
8666 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8667 		kvfree(slot->arch.rmap[i]);
8668 		slot->arch.rmap[i] = NULL;
8669 		if (i == 0)
8670 			continue;
8671 
8672 		kvfree(slot->arch.lpage_info[i - 1]);
8673 		slot->arch.lpage_info[i - 1] = NULL;
8674 	}
8675 	return -ENOMEM;
8676 }
8677 
8678 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8679 {
8680 	/*
8681 	 * memslots->generation has been incremented.
8682 	 * mmio generation may have reached its maximum value.
8683 	 */
8684 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8685 }
8686 
8687 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8688 				struct kvm_memory_slot *memslot,
8689 				const struct kvm_userspace_memory_region *mem,
8690 				enum kvm_mr_change change)
8691 {
8692 	return 0;
8693 }
8694 
8695 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8696 				     struct kvm_memory_slot *new)
8697 {
8698 	/* Still write protect RO slot */
8699 	if (new->flags & KVM_MEM_READONLY) {
8700 		kvm_mmu_slot_remove_write_access(kvm, new);
8701 		return;
8702 	}
8703 
8704 	/*
8705 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8706 	 *
8707 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8708 	 *
8709 	 *  - KVM_MR_CREATE with dirty logging is disabled
8710 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8711 	 *
8712 	 * The reason is, in case of PML, we need to set D-bit for any slots
8713 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8714 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8715 	 * guarantees leaving PML enabled during guest's lifetime won't have
8716 	 * any additonal overhead from PML when guest is running with dirty
8717 	 * logging disabled for memory slots.
8718 	 *
8719 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8720 	 * to dirty logging mode.
8721 	 *
8722 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8723 	 *
8724 	 * In case of write protect:
8725 	 *
8726 	 * Write protect all pages for dirty logging.
8727 	 *
8728 	 * All the sptes including the large sptes which point to this
8729 	 * slot are set to readonly. We can not create any new large
8730 	 * spte on this slot until the end of the logging.
8731 	 *
8732 	 * See the comments in fast_page_fault().
8733 	 */
8734 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8735 		if (kvm_x86_ops->slot_enable_log_dirty)
8736 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8737 		else
8738 			kvm_mmu_slot_remove_write_access(kvm, new);
8739 	} else {
8740 		if (kvm_x86_ops->slot_disable_log_dirty)
8741 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8742 	}
8743 }
8744 
8745 void kvm_arch_commit_memory_region(struct kvm *kvm,
8746 				const struct kvm_userspace_memory_region *mem,
8747 				const struct kvm_memory_slot *old,
8748 				const struct kvm_memory_slot *new,
8749 				enum kvm_mr_change change)
8750 {
8751 	int nr_mmu_pages = 0;
8752 
8753 	if (!kvm->arch.n_requested_mmu_pages)
8754 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8755 
8756 	if (nr_mmu_pages)
8757 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8758 
8759 	/*
8760 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8761 	 * sptes have to be split.  If live migration is successful, the guest
8762 	 * in the source machine will be destroyed and large sptes will be
8763 	 * created in the destination. However, if the guest continues to run
8764 	 * in the source machine (for example if live migration fails), small
8765 	 * sptes will remain around and cause bad performance.
8766 	 *
8767 	 * Scan sptes if dirty logging has been stopped, dropping those
8768 	 * which can be collapsed into a single large-page spte.  Later
8769 	 * page faults will create the large-page sptes.
8770 	 */
8771 	if ((change != KVM_MR_DELETE) &&
8772 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8773 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8774 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8775 
8776 	/*
8777 	 * Set up write protection and/or dirty logging for the new slot.
8778 	 *
8779 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8780 	 * been zapped so no dirty logging staff is needed for old slot. For
8781 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8782 	 * new and it's also covered when dealing with the new slot.
8783 	 *
8784 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8785 	 */
8786 	if (change != KVM_MR_DELETE)
8787 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8788 }
8789 
8790 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8791 {
8792 	kvm_mmu_invalidate_zap_all_pages(kvm);
8793 }
8794 
8795 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8796 				   struct kvm_memory_slot *slot)
8797 {
8798 	kvm_page_track_flush_slot(kvm, slot);
8799 }
8800 
8801 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8802 {
8803 	if (!list_empty_careful(&vcpu->async_pf.done))
8804 		return true;
8805 
8806 	if (kvm_apic_has_events(vcpu))
8807 		return true;
8808 
8809 	if (vcpu->arch.pv.pv_unhalted)
8810 		return true;
8811 
8812 	if (vcpu->arch.exception.pending)
8813 		return true;
8814 
8815 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8816 	    (vcpu->arch.nmi_pending &&
8817 	     kvm_x86_ops->nmi_allowed(vcpu)))
8818 		return true;
8819 
8820 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8821 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
8822 		return true;
8823 
8824 	if (kvm_arch_interrupt_allowed(vcpu) &&
8825 	    kvm_cpu_has_interrupt(vcpu))
8826 		return true;
8827 
8828 	if (kvm_hv_has_stimer_pending(vcpu))
8829 		return true;
8830 
8831 	return false;
8832 }
8833 
8834 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8835 {
8836 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8837 }
8838 
8839 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8840 {
8841 	return vcpu->arch.preempted_in_kernel;
8842 }
8843 
8844 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8845 {
8846 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8847 }
8848 
8849 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8850 {
8851 	return kvm_x86_ops->interrupt_allowed(vcpu);
8852 }
8853 
8854 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8855 {
8856 	if (is_64_bit_mode(vcpu))
8857 		return kvm_rip_read(vcpu);
8858 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8859 		     kvm_rip_read(vcpu));
8860 }
8861 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8862 
8863 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8864 {
8865 	return kvm_get_linear_rip(vcpu) == linear_rip;
8866 }
8867 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8868 
8869 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8870 {
8871 	unsigned long rflags;
8872 
8873 	rflags = kvm_x86_ops->get_rflags(vcpu);
8874 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8875 		rflags &= ~X86_EFLAGS_TF;
8876 	return rflags;
8877 }
8878 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8879 
8880 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8881 {
8882 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8883 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8884 		rflags |= X86_EFLAGS_TF;
8885 	kvm_x86_ops->set_rflags(vcpu, rflags);
8886 }
8887 
8888 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8889 {
8890 	__kvm_set_rflags(vcpu, rflags);
8891 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8892 }
8893 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8894 
8895 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8896 {
8897 	int r;
8898 
8899 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8900 	      work->wakeup_all)
8901 		return;
8902 
8903 	r = kvm_mmu_reload(vcpu);
8904 	if (unlikely(r))
8905 		return;
8906 
8907 	if (!vcpu->arch.mmu.direct_map &&
8908 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8909 		return;
8910 
8911 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8912 }
8913 
8914 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8915 {
8916 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8917 }
8918 
8919 static inline u32 kvm_async_pf_next_probe(u32 key)
8920 {
8921 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8922 }
8923 
8924 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8925 {
8926 	u32 key = kvm_async_pf_hash_fn(gfn);
8927 
8928 	while (vcpu->arch.apf.gfns[key] != ~0)
8929 		key = kvm_async_pf_next_probe(key);
8930 
8931 	vcpu->arch.apf.gfns[key] = gfn;
8932 }
8933 
8934 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8935 {
8936 	int i;
8937 	u32 key = kvm_async_pf_hash_fn(gfn);
8938 
8939 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8940 		     (vcpu->arch.apf.gfns[key] != gfn &&
8941 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8942 		key = kvm_async_pf_next_probe(key);
8943 
8944 	return key;
8945 }
8946 
8947 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8948 {
8949 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8950 }
8951 
8952 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8953 {
8954 	u32 i, j, k;
8955 
8956 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8957 	while (true) {
8958 		vcpu->arch.apf.gfns[i] = ~0;
8959 		do {
8960 			j = kvm_async_pf_next_probe(j);
8961 			if (vcpu->arch.apf.gfns[j] == ~0)
8962 				return;
8963 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8964 			/*
8965 			 * k lies cyclically in ]i,j]
8966 			 * |    i.k.j |
8967 			 * |....j i.k.| or  |.k..j i...|
8968 			 */
8969 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8970 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8971 		i = j;
8972 	}
8973 }
8974 
8975 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8976 {
8977 
8978 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8979 				      sizeof(val));
8980 }
8981 
8982 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8983 {
8984 
8985 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8986 				      sizeof(u32));
8987 }
8988 
8989 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8990 				     struct kvm_async_pf *work)
8991 {
8992 	struct x86_exception fault;
8993 
8994 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8995 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8996 
8997 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8998 	    (vcpu->arch.apf.send_user_only &&
8999 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9000 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9001 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9002 		fault.vector = PF_VECTOR;
9003 		fault.error_code_valid = true;
9004 		fault.error_code = 0;
9005 		fault.nested_page_fault = false;
9006 		fault.address = work->arch.token;
9007 		fault.async_page_fault = true;
9008 		kvm_inject_page_fault(vcpu, &fault);
9009 	}
9010 }
9011 
9012 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9013 				 struct kvm_async_pf *work)
9014 {
9015 	struct x86_exception fault;
9016 	u32 val;
9017 
9018 	if (work->wakeup_all)
9019 		work->arch.token = ~0; /* broadcast wakeup */
9020 	else
9021 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9022 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9023 
9024 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9025 	    !apf_get_user(vcpu, &val)) {
9026 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9027 		    vcpu->arch.exception.pending &&
9028 		    vcpu->arch.exception.nr == PF_VECTOR &&
9029 		    !apf_put_user(vcpu, 0)) {
9030 			vcpu->arch.exception.injected = false;
9031 			vcpu->arch.exception.pending = false;
9032 			vcpu->arch.exception.nr = 0;
9033 			vcpu->arch.exception.has_error_code = false;
9034 			vcpu->arch.exception.error_code = 0;
9035 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9036 			fault.vector = PF_VECTOR;
9037 			fault.error_code_valid = true;
9038 			fault.error_code = 0;
9039 			fault.nested_page_fault = false;
9040 			fault.address = work->arch.token;
9041 			fault.async_page_fault = true;
9042 			kvm_inject_page_fault(vcpu, &fault);
9043 		}
9044 	}
9045 	vcpu->arch.apf.halted = false;
9046 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9047 }
9048 
9049 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9050 {
9051 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9052 		return true;
9053 	else
9054 		return kvm_can_do_async_pf(vcpu);
9055 }
9056 
9057 void kvm_arch_start_assignment(struct kvm *kvm)
9058 {
9059 	atomic_inc(&kvm->arch.assigned_device_count);
9060 }
9061 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9062 
9063 void kvm_arch_end_assignment(struct kvm *kvm)
9064 {
9065 	atomic_dec(&kvm->arch.assigned_device_count);
9066 }
9067 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9068 
9069 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9070 {
9071 	return atomic_read(&kvm->arch.assigned_device_count);
9072 }
9073 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9074 
9075 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9076 {
9077 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9078 }
9079 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9080 
9081 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9082 {
9083 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9084 }
9085 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9086 
9087 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9088 {
9089 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9092 
9093 bool kvm_arch_has_irq_bypass(void)
9094 {
9095 	return kvm_x86_ops->update_pi_irte != NULL;
9096 }
9097 
9098 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9099 				      struct irq_bypass_producer *prod)
9100 {
9101 	struct kvm_kernel_irqfd *irqfd =
9102 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9103 
9104 	irqfd->producer = prod;
9105 
9106 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9107 					   prod->irq, irqfd->gsi, 1);
9108 }
9109 
9110 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9111 				      struct irq_bypass_producer *prod)
9112 {
9113 	int ret;
9114 	struct kvm_kernel_irqfd *irqfd =
9115 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9116 
9117 	WARN_ON(irqfd->producer != prod);
9118 	irqfd->producer = NULL;
9119 
9120 	/*
9121 	 * When producer of consumer is unregistered, we change back to
9122 	 * remapped mode, so we can re-use the current implementation
9123 	 * when the irq is masked/disabled or the consumer side (KVM
9124 	 * int this case doesn't want to receive the interrupts.
9125 	*/
9126 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9127 	if (ret)
9128 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9129 		       " fails: %d\n", irqfd->consumer.token, ret);
9130 }
9131 
9132 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9133 				   uint32_t guest_irq, bool set)
9134 {
9135 	if (!kvm_x86_ops->update_pi_irte)
9136 		return -EINVAL;
9137 
9138 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9139 }
9140 
9141 bool kvm_vector_hashing_enabled(void)
9142 {
9143 	return vector_hashing;
9144 }
9145 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9146 
9147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9156 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9157 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9158 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9159 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9160 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9161 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9162 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9163 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9164 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9165 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9166