xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 91202ce7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64 
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67 
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90 
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
93 
94 struct kvm_caps kvm_caps __read_mostly = {
95 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
96 };
97 EXPORT_SYMBOL_GPL(kvm_caps);
98 
99 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
100 
101 #define emul_to_vcpu(ctxt) \
102 	((struct kvm_vcpu *)(ctxt)->vcpu)
103 
104 /* EFER defaults:
105  * - enable syscall per default because its emulated by KVM
106  * - enable LME and LMA per default on 64 bit KVM
107  */
108 #ifdef CONFIG_X86_64
109 static
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
111 #else
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
113 #endif
114 
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
116 
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
118 
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
120 
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
123 
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
130 
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
136 
137 #define KVM_X86_OP(func)					     \
138 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
139 				*(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
145 
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
148 
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
152 
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
155 
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
158 
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
162 
163 /*
164  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
165  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
166  * advancement entirely.  Any other value is used as-is and disables adaptive
167  * tuning, i.e. allows privileged userspace to set an exact advancement time.
168  */
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
171 
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
174 
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178 
179 /*
180  * Flags to manipulate forced emulation behavior (any non-zero value will
181  * enable forced emulation).
182  */
183 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
186 
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189 
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194 
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
197 
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
201 
202 /*
203  * Restoring the host value for MSRs that are only consumed when running in
204  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205  * returns to userspace, i.e. the kernel can run with the guest's value.
206  */
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
208 
209 struct kvm_user_return_msrs {
210 	struct user_return_notifier urn;
211 	bool registered;
212 	struct kvm_user_return_msr_values {
213 		u64 host;
214 		u64 curr;
215 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
216 };
217 
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
222 
223 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
227 
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
230 
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
233 
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
236 
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
239 
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 	KVM_GENERIC_VM_STATS(),
242 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 	STATS_DESC_COUNTER(VM, mmu_pte_write),
244 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 	STATS_DESC_COUNTER(VM, mmu_flooded),
246 	STATS_DESC_COUNTER(VM, mmu_recycled),
247 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 	STATS_DESC_ICOUNTER(VM, pages_4k),
250 	STATS_DESC_ICOUNTER(VM, pages_2m),
251 	STATS_DESC_ICOUNTER(VM, pages_1g),
252 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256 
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 	.name_size = KVM_STATS_NAME_SIZE,
259 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 	.id_offset = sizeof(struct kvm_stats_header),
261 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 		       sizeof(kvm_vm_stats_desc),
264 };
265 
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 	KVM_GENERIC_VCPU_STATS(),
268 	STATS_DESC_COUNTER(VCPU, pf_taken),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_emulate),
271 	STATS_DESC_COUNTER(VCPU, pf_spurious),
272 	STATS_DESC_COUNTER(VCPU, pf_fast),
273 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 	STATS_DESC_COUNTER(VCPU, pf_guest),
275 	STATS_DESC_COUNTER(VCPU, tlb_flush),
276 	STATS_DESC_COUNTER(VCPU, invlpg),
277 	STATS_DESC_COUNTER(VCPU, exits),
278 	STATS_DESC_COUNTER(VCPU, io_exits),
279 	STATS_DESC_COUNTER(VCPU, mmio_exits),
280 	STATS_DESC_COUNTER(VCPU, signal_exits),
281 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 	STATS_DESC_COUNTER(VCPU, l1d_flush),
284 	STATS_DESC_COUNTER(VCPU, halt_exits),
285 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 	STATS_DESC_COUNTER(VCPU, irq_exits),
287 	STATS_DESC_COUNTER(VCPU, host_state_reload),
288 	STATS_DESC_COUNTER(VCPU, fpu_reload),
289 	STATS_DESC_COUNTER(VCPU, insn_emulation),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 	STATS_DESC_COUNTER(VCPU, hypercalls),
292 	STATS_DESC_COUNTER(VCPU, irq_injections),
293 	STATS_DESC_COUNTER(VCPU, nmi_injections),
294 	STATS_DESC_COUNTER(VCPU, req_event),
295 	STATS_DESC_COUNTER(VCPU, nested_run),
296 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 	STATS_DESC_COUNTER(VCPU, preemption_reported),
299 	STATS_DESC_COUNTER(VCPU, preemption_other),
300 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303 
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 	.name_size = KVM_STATS_NAME_SIZE,
306 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 	.id_offset = sizeof(struct kvm_stats_header),
308 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 		       sizeof(kvm_vcpu_stats_desc),
311 };
312 
313 u64 __read_mostly host_xcr0;
314 
315 static struct kmem_cache *x86_emulator_cache;
316 
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323 	const char *op = write ? "wrmsr" : "rdmsr";
324 
325 	if (ignore_msrs) {
326 		if (report_ignored_msrs)
327 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		/* Mask the error */
330 		return true;
331 	} else {
332 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333 				      op, msr, data);
334 		return false;
335 	}
336 }
337 
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 	unsigned int size = sizeof(struct x86_emulate_ctxt);
342 
343 	return kmem_cache_create_usercopy("x86_emulator", size,
344 					  __alignof__(struct x86_emulate_ctxt),
345 					  SLAB_ACCOUNT, useroffset,
346 					  size - useroffset, NULL);
347 }
348 
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350 
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353 	int i;
354 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355 		vcpu->arch.apf.gfns[i] = ~0;
356 }
357 
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360 	unsigned slot;
361 	struct kvm_user_return_msrs *msrs
362 		= container_of(urn, struct kvm_user_return_msrs, urn);
363 	struct kvm_user_return_msr_values *values;
364 	unsigned long flags;
365 
366 	/*
367 	 * Disabling irqs at this point since the following code could be
368 	 * interrupted and executed through kvm_arch_hardware_disable()
369 	 */
370 	local_irq_save(flags);
371 	if (msrs->registered) {
372 		msrs->registered = false;
373 		user_return_notifier_unregister(urn);
374 	}
375 	local_irq_restore(flags);
376 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377 		values = &msrs->values[slot];
378 		if (values->host != values->curr) {
379 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
380 			values->curr = values->host;
381 		}
382 	}
383 }
384 
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387 	u64 val;
388 	int ret;
389 
390 	preempt_disable();
391 	ret = rdmsrl_safe(msr, &val);
392 	if (ret)
393 		goto out;
394 	ret = wrmsrl_safe(msr, val);
395 out:
396 	preempt_enable();
397 	return ret;
398 }
399 
400 int kvm_add_user_return_msr(u32 msr)
401 {
402 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403 
404 	if (kvm_probe_user_return_msr(msr))
405 		return -1;
406 
407 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 	return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411 
412 int kvm_find_user_return_msr(u32 msr)
413 {
414 	int i;
415 
416 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 		if (kvm_uret_msrs_list[i] == msr)
418 			return i;
419 	}
420 	return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423 
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426 	unsigned int cpu = smp_processor_id();
427 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428 	u64 value;
429 	int i;
430 
431 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433 		msrs->values[i].host = value;
434 		msrs->values[i].curr = value;
435 	}
436 }
437 
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440 	unsigned int cpu = smp_processor_id();
441 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442 	int err;
443 
444 	value = (value & mask) | (msrs->values[slot].host & ~mask);
445 	if (value == msrs->values[slot].curr)
446 		return 0;
447 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448 	if (err)
449 		return 1;
450 
451 	msrs->values[slot].curr = value;
452 	if (!msrs->registered) {
453 		msrs->urn.on_user_return = kvm_on_user_return;
454 		user_return_notifier_register(&msrs->urn);
455 		msrs->registered = true;
456 	}
457 	return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460 
461 static void drop_user_return_notifiers(void)
462 {
463 	unsigned int cpu = smp_processor_id();
464 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465 
466 	if (msrs->registered)
467 		kvm_on_user_return(&msrs->urn);
468 }
469 
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472 	return vcpu->arch.apic_base;
473 }
474 
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
476 {
477 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
478 }
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
480 
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
482 {
483 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
487 
488 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
489 		return 1;
490 	if (!msr_info->host_initiated) {
491 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
492 			return 1;
493 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
494 			return 1;
495 	}
496 
497 	kvm_lapic_set_base(vcpu, msr_info->data);
498 	kvm_recalculate_apic_map(vcpu->kvm);
499 	return 0;
500 }
501 
502 /*
503  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
504  *
505  * Hardware virtualization extension instructions may fault if a reboot turns
506  * off virtualization while processes are running.  Usually after catching the
507  * fault we just panic; during reboot instead the instruction is ignored.
508  */
509 noinstr void kvm_spurious_fault(void)
510 {
511 	/* Fault while not rebooting.  We want the trace. */
512 	BUG_ON(!kvm_rebooting);
513 }
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
515 
516 #define EXCPT_BENIGN		0
517 #define EXCPT_CONTRIBUTORY	1
518 #define EXCPT_PF		2
519 
520 static int exception_class(int vector)
521 {
522 	switch (vector) {
523 	case PF_VECTOR:
524 		return EXCPT_PF;
525 	case DE_VECTOR:
526 	case TS_VECTOR:
527 	case NP_VECTOR:
528 	case SS_VECTOR:
529 	case GP_VECTOR:
530 		return EXCPT_CONTRIBUTORY;
531 	default:
532 		break;
533 	}
534 	return EXCPT_BENIGN;
535 }
536 
537 #define EXCPT_FAULT		0
538 #define EXCPT_TRAP		1
539 #define EXCPT_ABORT		2
540 #define EXCPT_INTERRUPT		3
541 #define EXCPT_DB		4
542 
543 static int exception_type(int vector)
544 {
545 	unsigned int mask;
546 
547 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548 		return EXCPT_INTERRUPT;
549 
550 	mask = 1 << vector;
551 
552 	/*
553 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
554 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
555 	 */
556 	if (mask & (1 << DB_VECTOR))
557 		return EXCPT_DB;
558 
559 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
560 		return EXCPT_TRAP;
561 
562 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563 		return EXCPT_ABORT;
564 
565 	/* Reserved exceptions will result in fault */
566 	return EXCPT_FAULT;
567 }
568 
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570 				   struct kvm_queued_exception *ex)
571 {
572 	if (!ex->has_payload)
573 		return;
574 
575 	switch (ex->vector) {
576 	case DB_VECTOR:
577 		/*
578 		 * "Certain debug exceptions may clear bit 0-3.  The
579 		 * remaining contents of the DR6 register are never
580 		 * cleared by the processor".
581 		 */
582 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 		/*
584 		 * In order to reflect the #DB exception payload in guest
585 		 * dr6, three components need to be considered: active low
586 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 		 * DR6_BS and DR6_BT)
588 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 		 * In the target guest dr6:
590 		 * FIXED_1 bits should always be set.
591 		 * Active low bits should be cleared if 1-setting in payload.
592 		 * Active high bits should be set if 1-setting in payload.
593 		 *
594 		 * Note, the payload is compatible with the pending debug
595 		 * exceptions/exit qualification under VMX, that active_low bits
596 		 * are active high in payload.
597 		 * So they need to be flipped for DR6.
598 		 */
599 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 		vcpu->arch.dr6 |= ex->payload;
601 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
602 
603 		/*
604 		 * The #DB payload is defined as compatible with the 'pending
605 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 		 * defined in the 'pending debug exceptions' field (enabled
607 		 * breakpoint), it is reserved and must be zero in DR6.
608 		 */
609 		vcpu->arch.dr6 &= ~BIT(12);
610 		break;
611 	case PF_VECTOR:
612 		vcpu->arch.cr2 = ex->payload;
613 		break;
614 	}
615 
616 	ex->has_payload = false;
617 	ex->payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620 
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622 				       bool has_error_code, u32 error_code,
623 				       bool has_payload, unsigned long payload)
624 {
625 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626 
627 	ex->vector = vector;
628 	ex->injected = false;
629 	ex->pending = true;
630 	ex->has_error_code = has_error_code;
631 	ex->error_code = error_code;
632 	ex->has_payload = has_payload;
633 	ex->payload = payload;
634 }
635 
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
638 {
639 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
640 }
641 
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643 		unsigned nr, bool has_error, u32 error_code,
644 	        bool has_payload, unsigned long payload, bool reinject)
645 {
646 	u32 prev_nr;
647 	int class1, class2;
648 
649 	kvm_make_request(KVM_REQ_EVENT, vcpu);
650 
651 	/*
652 	 * If the exception is destined for L2 and isn't being reinjected,
653 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
654 	 * previously injected exception is not checked because it was checked
655 	 * when it was original queued, and re-checking is incorrect if _L1_
656 	 * injected the exception, in which case it's exempt from interception.
657 	 */
658 	if (!reinject && is_guest_mode(vcpu) &&
659 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661 					   has_payload, payload);
662 		return;
663 	}
664 
665 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
666 	queue:
667 		if (reinject) {
668 			/*
669 			 * On VM-Entry, an exception can be pending if and only
670 			 * if event injection was blocked by nested_run_pending.
671 			 * In that case, however, vcpu_enter_guest() requests an
672 			 * immediate exit, and the guest shouldn't proceed far
673 			 * enough to need reinjection.
674 			 */
675 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676 			vcpu->arch.exception.injected = true;
677 			if (WARN_ON_ONCE(has_payload)) {
678 				/*
679 				 * A reinjected event has already
680 				 * delivered its payload.
681 				 */
682 				has_payload = false;
683 				payload = 0;
684 			}
685 		} else {
686 			vcpu->arch.exception.pending = true;
687 			vcpu->arch.exception.injected = false;
688 		}
689 		vcpu->arch.exception.has_error_code = has_error;
690 		vcpu->arch.exception.vector = nr;
691 		vcpu->arch.exception.error_code = error_code;
692 		vcpu->arch.exception.has_payload = has_payload;
693 		vcpu->arch.exception.payload = payload;
694 		if (!is_guest_mode(vcpu))
695 			kvm_deliver_exception_payload(vcpu,
696 						      &vcpu->arch.exception);
697 		return;
698 	}
699 
700 	/* to check exception */
701 	prev_nr = vcpu->arch.exception.vector;
702 	if (prev_nr == DF_VECTOR) {
703 		/* triple fault -> shutdown */
704 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
705 		return;
706 	}
707 	class1 = exception_class(prev_nr);
708 	class2 = exception_class(nr);
709 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
711 		/*
712 		 * Synthesize #DF.  Clear the previously injected or pending
713 		 * exception so as not to incorrectly trigger shutdown.
714 		 */
715 		vcpu->arch.exception.injected = false;
716 		vcpu->arch.exception.pending = false;
717 
718 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
719 	} else {
720 		/* replace previous exception with a new one in a hope
721 		   that instruction re-execution will regenerate lost
722 		   exception */
723 		goto queue;
724 	}
725 }
726 
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
730 }
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
732 
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
734 {
735 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
736 }
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
738 
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740 			   unsigned long payload)
741 {
742 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
743 }
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
745 
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747 				    u32 error_code, unsigned long payload)
748 {
749 	kvm_multiple_exception(vcpu, nr, true, error_code,
750 			       true, payload, false);
751 }
752 
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755 	if (err)
756 		kvm_inject_gp(vcpu, 0);
757 	else
758 		return kvm_skip_emulated_instruction(vcpu);
759 
760 	return 1;
761 }
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
763 
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765 {
766 	if (err) {
767 		kvm_inject_gp(vcpu, 0);
768 		return 1;
769 	}
770 
771 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772 				       EMULTYPE_COMPLETE_USER_EXIT);
773 }
774 
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
776 {
777 	++vcpu->stat.pf_guest;
778 
779 	/*
780 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781 	 * whether or not L1 wants to intercept "regular" #PF.
782 	 */
783 	if (is_guest_mode(vcpu) && fault->async_page_fault)
784 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785 					   true, fault->error_code,
786 					   true, fault->address);
787 	else
788 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
789 					fault->address);
790 }
791 
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793 				    struct x86_exception *fault)
794 {
795 	struct kvm_mmu *fault_mmu;
796 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
797 
798 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799 					       vcpu->arch.walk_mmu;
800 
801 	/*
802 	 * Invalidate the TLB entry for the faulting address, if it exists,
803 	 * else the access will fault indefinitely (and to emulate hardware).
804 	 */
805 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
806 	    !(fault->error_code & PFERR_RSVD_MASK))
807 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808 					KVM_MMU_ROOT_CURRENT);
809 
810 	fault_mmu->inject_page_fault(vcpu, fault);
811 }
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
813 
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815 {
816 	atomic_inc(&vcpu->arch.nmi_queued);
817 	kvm_make_request(KVM_REQ_NMI, vcpu);
818 }
819 
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
823 }
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
825 
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
827 {
828 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
829 }
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831 
832 /*
833  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
834  * a #GP and return false.
835  */
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
837 {
838 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
839 		return true;
840 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
841 	return false;
842 }
843 
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
845 {
846 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
847 		return true;
848 
849 	kvm_queue_exception(vcpu, UD_VECTOR);
850 	return false;
851 }
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
853 
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
855 {
856 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
857 }
858 
859 /*
860  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
861  */
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
863 {
864 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
866 	gpa_t real_gpa;
867 	int i;
868 	int ret;
869 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
870 
871 	/*
872 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873 	 * to an L1 GPA.
874 	 */
875 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877 	if (real_gpa == INVALID_GPA)
878 		return 0;
879 
880 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
883 	if (ret < 0)
884 		return 0;
885 
886 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887 		if ((pdpte[i] & PT_PRESENT_MASK) &&
888 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
889 			return 0;
890 		}
891 	}
892 
893 	/*
894 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895 	 * Shadow page roots need to be reconstructed instead.
896 	 */
897 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
899 
900 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903 	vcpu->arch.pdptrs_from_userspace = false;
904 
905 	return 1;
906 }
907 EXPORT_SYMBOL_GPL(load_pdptrs);
908 
909 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
910 {
911 #ifdef CONFIG_X86_64
912 	if (cr0 & 0xffffffff00000000UL)
913 		return false;
914 #endif
915 
916 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
917 		return false;
918 
919 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
920 		return false;
921 
922 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
923 }
924 
925 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
926 {
927 	/*
928 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
929 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
930 	 * as there are no permission bits to emulate.  If TDP is enabled, the
931 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
932 	 * translations does the right thing, but there's no need to unload the
933 	 * root as CR0.WP doesn't affect SPTEs.
934 	 */
935 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
936 		if (!(cr0 & X86_CR0_PG))
937 			return;
938 
939 		if (tdp_enabled) {
940 			kvm_init_mmu(vcpu);
941 			return;
942 		}
943 	}
944 
945 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
946 		kvm_clear_async_pf_completion_queue(vcpu);
947 		kvm_async_pf_hash_reset(vcpu);
948 
949 		/*
950 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
951 		 * perspective.
952 		 */
953 		if (!(cr0 & X86_CR0_PG))
954 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
955 	}
956 
957 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
958 		kvm_mmu_reset_context(vcpu);
959 
960 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
961 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
962 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
963 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
964 }
965 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
966 
967 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
968 {
969 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
970 
971 	if (!kvm_is_valid_cr0(vcpu, cr0))
972 		return 1;
973 
974 	cr0 |= X86_CR0_ET;
975 
976 	/* Write to CR0 reserved bits are ignored, even on Intel. */
977 	cr0 &= ~CR0_RESERVED_BITS;
978 
979 #ifdef CONFIG_X86_64
980 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
981 	    (cr0 & X86_CR0_PG)) {
982 		int cs_db, cs_l;
983 
984 		if (!is_pae(vcpu))
985 			return 1;
986 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
987 		if (cs_l)
988 			return 1;
989 	}
990 #endif
991 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
992 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
993 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
994 		return 1;
995 
996 	if (!(cr0 & X86_CR0_PG) &&
997 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
998 		return 1;
999 
1000 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1001 
1002 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1003 
1004 	return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1007 
1008 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1009 {
1010 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_lmsw);
1013 
1014 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1015 {
1016 	if (vcpu->arch.guest_state_protected)
1017 		return;
1018 
1019 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1020 
1021 		if (vcpu->arch.xcr0 != host_xcr0)
1022 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1023 
1024 		if (vcpu->arch.xsaves_enabled &&
1025 		    vcpu->arch.ia32_xss != host_xss)
1026 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1027 	}
1028 
1029 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1030 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1031 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1032 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1033 		write_pkru(vcpu->arch.pkru);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1036 
1037 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1038 {
1039 	if (vcpu->arch.guest_state_protected)
1040 		return;
1041 
1042 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1043 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1044 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1045 		vcpu->arch.pkru = rdpkru();
1046 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1047 			write_pkru(vcpu->arch.host_pkru);
1048 	}
1049 
1050 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1051 
1052 		if (vcpu->arch.xcr0 != host_xcr0)
1053 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1054 
1055 		if (vcpu->arch.xsaves_enabled &&
1056 		    vcpu->arch.ia32_xss != host_xss)
1057 			wrmsrl(MSR_IA32_XSS, host_xss);
1058 	}
1059 
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1062 
1063 #ifdef CONFIG_X86_64
1064 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1065 {
1066 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1067 }
1068 #endif
1069 
1070 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1071 {
1072 	u64 xcr0 = xcr;
1073 	u64 old_xcr0 = vcpu->arch.xcr0;
1074 	u64 valid_bits;
1075 
1076 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1077 	if (index != XCR_XFEATURE_ENABLED_MASK)
1078 		return 1;
1079 	if (!(xcr0 & XFEATURE_MASK_FP))
1080 		return 1;
1081 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1082 		return 1;
1083 
1084 	/*
1085 	 * Do not allow the guest to set bits that we do not support
1086 	 * saving.  However, xcr0 bit 0 is always set, even if the
1087 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1088 	 */
1089 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1090 	if (xcr0 & ~valid_bits)
1091 		return 1;
1092 
1093 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1094 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1095 		return 1;
1096 
1097 	if (xcr0 & XFEATURE_MASK_AVX512) {
1098 		if (!(xcr0 & XFEATURE_MASK_YMM))
1099 			return 1;
1100 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1101 			return 1;
1102 	}
1103 
1104 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1105 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1106 		return 1;
1107 
1108 	vcpu->arch.xcr0 = xcr0;
1109 
1110 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1111 		kvm_update_cpuid_runtime(vcpu);
1112 	return 0;
1113 }
1114 
1115 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1116 {
1117 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1118 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1119 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1120 		kvm_inject_gp(vcpu, 0);
1121 		return 1;
1122 	}
1123 
1124 	return kvm_skip_emulated_instruction(vcpu);
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1127 
1128 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1129 {
1130 	if (cr4 & cr4_reserved_bits)
1131 		return false;
1132 
1133 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1134 		return false;
1135 
1136 	return true;
1137 }
1138 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1139 
1140 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1141 {
1142 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1143 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1144 }
1145 
1146 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1147 {
1148 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1149 		kvm_mmu_reset_context(vcpu);
1150 
1151 	/*
1152 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1153 	 * according to the SDM; however, stale prev_roots could be reused
1154 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1155 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1156 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1157 	 * so fall through.
1158 	 */
1159 	if (!tdp_enabled &&
1160 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1161 		kvm_mmu_unload(vcpu);
1162 
1163 	/*
1164 	 * The TLB has to be flushed for all PCIDs if any of the following
1165 	 * (architecturally required) changes happen:
1166 	 * - CR4.PCIDE is changed from 1 to 0
1167 	 * - CR4.PGE is toggled
1168 	 *
1169 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1170 	 */
1171 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1172 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1173 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1174 
1175 	/*
1176 	 * The TLB has to be flushed for the current PCID if any of the
1177 	 * following (architecturally required) changes happen:
1178 	 * - CR4.SMEP is changed from 0 to 1
1179 	 * - CR4.PAE is toggled
1180 	 */
1181 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1182 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1183 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1184 
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1187 
1188 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1189 {
1190 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1191 
1192 	if (!kvm_is_valid_cr4(vcpu, cr4))
1193 		return 1;
1194 
1195 	if (is_long_mode(vcpu)) {
1196 		if (!(cr4 & X86_CR4_PAE))
1197 			return 1;
1198 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1199 			return 1;
1200 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1201 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1202 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1203 		return 1;
1204 
1205 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1206 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1207 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1208 			return 1;
1209 	}
1210 
1211 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1212 
1213 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1214 
1215 	return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1218 
1219 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1220 {
1221 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1222 	unsigned long roots_to_free = 0;
1223 	int i;
1224 
1225 	/*
1226 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1227 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1228 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1229 	 * the invalidation, but the guest's TLB entries need to be flushed as
1230 	 * the CPU may have cached entries in its TLB for the target PCID.
1231 	 */
1232 	if (unlikely(tdp_enabled)) {
1233 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234 		return;
1235 	}
1236 
1237 	/*
1238 	 * If neither the current CR3 nor any of the prev_roots use the given
1239 	 * PCID, then nothing needs to be done here because a resync will
1240 	 * happen anyway before switching to any other CR3.
1241 	 */
1242 	if (kvm_get_active_pcid(vcpu) == pcid) {
1243 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1244 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1245 	}
1246 
1247 	/*
1248 	 * If PCID is disabled, there is no need to free prev_roots even if the
1249 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1250 	 * with PCIDE=0.
1251 	 */
1252 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1253 		return;
1254 
1255 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1256 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1257 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1258 
1259 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1260 }
1261 
1262 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1263 {
1264 	bool skip_tlb_flush = false;
1265 	unsigned long pcid = 0;
1266 #ifdef CONFIG_X86_64
1267 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1268 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1269 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1270 		pcid = cr3 & X86_CR3_PCID_MASK;
1271 	}
1272 #endif
1273 
1274 	/* PDPTRs are always reloaded for PAE paging. */
1275 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1276 		goto handle_tlb_flush;
1277 
1278 	/*
1279 	 * Do not condition the GPA check on long mode, this helper is used to
1280 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1281 	 * the current vCPU mode is accurate.
1282 	 */
1283 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1284 		return 1;
1285 
1286 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1287 		return 1;
1288 
1289 	if (cr3 != kvm_read_cr3(vcpu))
1290 		kvm_mmu_new_pgd(vcpu, cr3);
1291 
1292 	vcpu->arch.cr3 = cr3;
1293 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1294 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1295 
1296 handle_tlb_flush:
1297 	/*
1298 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1299 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1300 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1301 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1302 	 * i.e. only PCID=0 can be relevant.
1303 	 */
1304 	if (!skip_tlb_flush)
1305 		kvm_invalidate_pcid(vcpu, pcid);
1306 
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1310 
1311 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1312 {
1313 	if (cr8 & CR8_RESERVED_BITS)
1314 		return 1;
1315 	if (lapic_in_kernel(vcpu))
1316 		kvm_lapic_set_tpr(vcpu, cr8);
1317 	else
1318 		vcpu->arch.cr8 = cr8;
1319 	return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1322 
1323 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1324 {
1325 	if (lapic_in_kernel(vcpu))
1326 		return kvm_lapic_get_cr8(vcpu);
1327 	else
1328 		return vcpu->arch.cr8;
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1331 
1332 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1333 {
1334 	int i;
1335 
1336 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1337 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1338 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1339 	}
1340 }
1341 
1342 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1343 {
1344 	unsigned long dr7;
1345 
1346 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1347 		dr7 = vcpu->arch.guest_debug_dr7;
1348 	else
1349 		dr7 = vcpu->arch.dr7;
1350 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1351 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1352 	if (dr7 & DR7_BP_EN_MASK)
1353 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1356 
1357 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1358 {
1359 	u64 fixed = DR6_FIXED_1;
1360 
1361 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1362 		fixed |= DR6_RTM;
1363 
1364 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1365 		fixed |= DR6_BUS_LOCK;
1366 	return fixed;
1367 }
1368 
1369 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1370 {
1371 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1372 
1373 	switch (dr) {
1374 	case 0 ... 3:
1375 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1376 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1377 			vcpu->arch.eff_db[dr] = val;
1378 		break;
1379 	case 4:
1380 	case 6:
1381 		if (!kvm_dr6_valid(val))
1382 			return 1; /* #GP */
1383 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1384 		break;
1385 	case 5:
1386 	default: /* 7 */
1387 		if (!kvm_dr7_valid(val))
1388 			return 1; /* #GP */
1389 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1390 		kvm_update_dr7(vcpu);
1391 		break;
1392 	}
1393 
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_set_dr);
1397 
1398 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1399 {
1400 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1401 
1402 	switch (dr) {
1403 	case 0 ... 3:
1404 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1405 		break;
1406 	case 4:
1407 	case 6:
1408 		*val = vcpu->arch.dr6;
1409 		break;
1410 	case 5:
1411 	default: /* 7 */
1412 		*val = vcpu->arch.dr7;
1413 		break;
1414 	}
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_get_dr);
1417 
1418 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1419 {
1420 	u32 ecx = kvm_rcx_read(vcpu);
1421 	u64 data;
1422 
1423 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1424 		kvm_inject_gp(vcpu, 0);
1425 		return 1;
1426 	}
1427 
1428 	kvm_rax_write(vcpu, (u32)data);
1429 	kvm_rdx_write(vcpu, data >> 32);
1430 	return kvm_skip_emulated_instruction(vcpu);
1431 }
1432 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1433 
1434 /*
1435  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1436  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1437  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1438  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1439  * MSRs that KVM emulates without strictly requiring host support.
1440  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1441  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1442  * msrs_to_save and emulated_msrs.
1443  */
1444 
1445 static const u32 msrs_to_save_base[] = {
1446 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1447 	MSR_STAR,
1448 #ifdef CONFIG_X86_64
1449 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1450 #endif
1451 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1452 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1453 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1454 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1455 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1456 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1457 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1458 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1459 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1460 	MSR_IA32_UMWAIT_CONTROL,
1461 
1462 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1463 };
1464 
1465 static const u32 msrs_to_save_pmu[] = {
1466 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1467 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1468 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1469 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1470 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1471 
1472 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1473 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1474 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1475 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1476 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1477 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1478 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1479 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1480 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1481 
1482 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1483 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1484 
1485 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1486 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1487 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1488 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1489 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1490 
1491 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1492 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1493 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1494 };
1495 
1496 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1497 			ARRAY_SIZE(msrs_to_save_pmu)];
1498 static unsigned num_msrs_to_save;
1499 
1500 static const u32 emulated_msrs_all[] = {
1501 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1502 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1503 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1504 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1505 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1506 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1507 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1508 	HV_X64_MSR_RESET,
1509 	HV_X64_MSR_VP_INDEX,
1510 	HV_X64_MSR_VP_RUNTIME,
1511 	HV_X64_MSR_SCONTROL,
1512 	HV_X64_MSR_STIMER0_CONFIG,
1513 	HV_X64_MSR_VP_ASSIST_PAGE,
1514 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1515 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1516 	HV_X64_MSR_SYNDBG_OPTIONS,
1517 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1518 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1519 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1520 
1521 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1522 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1523 
1524 	MSR_IA32_TSC_ADJUST,
1525 	MSR_IA32_TSC_DEADLINE,
1526 	MSR_IA32_ARCH_CAPABILITIES,
1527 	MSR_IA32_PERF_CAPABILITIES,
1528 	MSR_IA32_MISC_ENABLE,
1529 	MSR_IA32_MCG_STATUS,
1530 	MSR_IA32_MCG_CTL,
1531 	MSR_IA32_MCG_EXT_CTL,
1532 	MSR_IA32_SMBASE,
1533 	MSR_SMI_COUNT,
1534 	MSR_PLATFORM_INFO,
1535 	MSR_MISC_FEATURES_ENABLES,
1536 	MSR_AMD64_VIRT_SPEC_CTRL,
1537 	MSR_AMD64_TSC_RATIO,
1538 	MSR_IA32_POWER_CTL,
1539 	MSR_IA32_UCODE_REV,
1540 
1541 	/*
1542 	 * KVM always supports the "true" VMX control MSRs, even if the host
1543 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1544 	 * doesn't strictly require them to exist in the host (ignoring that
1545 	 * KVM would refuse to load in the first place if the core set of MSRs
1546 	 * aren't supported).
1547 	 */
1548 	MSR_IA32_VMX_BASIC,
1549 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1550 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1551 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1552 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1553 	MSR_IA32_VMX_MISC,
1554 	MSR_IA32_VMX_CR0_FIXED0,
1555 	MSR_IA32_VMX_CR4_FIXED0,
1556 	MSR_IA32_VMX_VMCS_ENUM,
1557 	MSR_IA32_VMX_PROCBASED_CTLS2,
1558 	MSR_IA32_VMX_EPT_VPID_CAP,
1559 	MSR_IA32_VMX_VMFUNC,
1560 
1561 	MSR_K7_HWCR,
1562 	MSR_KVM_POLL_CONTROL,
1563 };
1564 
1565 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1566 static unsigned num_emulated_msrs;
1567 
1568 /*
1569  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1570  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1571  * feature MSRs, but are handled separately to allow expedited lookups.
1572  */
1573 static const u32 msr_based_features_all_except_vmx[] = {
1574 	MSR_AMD64_DE_CFG,
1575 	MSR_IA32_UCODE_REV,
1576 	MSR_IA32_ARCH_CAPABILITIES,
1577 	MSR_IA32_PERF_CAPABILITIES,
1578 };
1579 
1580 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1581 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1582 static unsigned int num_msr_based_features;
1583 
1584 /*
1585  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1586  * patch, are immutable once the vCPU model is defined.
1587  */
1588 static bool kvm_is_immutable_feature_msr(u32 msr)
1589 {
1590 	int i;
1591 
1592 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1593 		return true;
1594 
1595 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1596 		if (msr == msr_based_features_all_except_vmx[i])
1597 			return msr != MSR_IA32_UCODE_REV;
1598 	}
1599 
1600 	return false;
1601 }
1602 
1603 /*
1604  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1605  * does not yet virtualize. These include:
1606  *   10 - MISC_PACKAGE_CTRLS
1607  *   11 - ENERGY_FILTERING_CTL
1608  *   12 - DOITM
1609  *   18 - FB_CLEAR_CTRL
1610  *   21 - XAPIC_DISABLE_STATUS
1611  *   23 - OVERCLOCKING_STATUS
1612  */
1613 
1614 #define KVM_SUPPORTED_ARCH_CAP \
1615 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1616 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1617 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1618 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1619 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1620 
1621 static u64 kvm_get_arch_capabilities(void)
1622 {
1623 	u64 data = 0;
1624 
1625 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1626 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1627 		data &= KVM_SUPPORTED_ARCH_CAP;
1628 	}
1629 
1630 	/*
1631 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 	 * L1 guests, so it need not worry about its own (L2) guests.
1635 	 */
1636 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637 
1638 	/*
1639 	 * If we're doing cache flushes (either "always" or "cond")
1640 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 	 * If an outer hypervisor is doing the cache flush for us
1642 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 	 * capability to the guest too, and if EPT is disabled we're not
1644 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 	 * require a nested hypervisor to do a flush of its own.
1646 	 */
1647 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649 
1650 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 		data |= ARCH_CAP_RDCL_NO;
1652 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 		data |= ARCH_CAP_SSB_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 		data |= ARCH_CAP_MDS_NO;
1656 
1657 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1658 		/*
1659 		 * If RTM=0 because the kernel has disabled TSX, the host might
1660 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1661 		 * and therefore knows that there cannot be TAA) but keep
1662 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1663 		 * and we want to allow migrating those guests to tsx=off hosts.
1664 		 */
1665 		data &= ~ARCH_CAP_TAA_NO;
1666 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1667 		data |= ARCH_CAP_TAA_NO;
1668 	} else {
1669 		/*
1670 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1671 		 * host so the guest can choose between disabling TSX or
1672 		 * using VERW to clear CPU buffers.
1673 		 */
1674 	}
1675 
1676 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1677 		data |= ARCH_CAP_GDS_NO;
1678 
1679 	return data;
1680 }
1681 
1682 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1683 {
1684 	switch (msr->index) {
1685 	case MSR_IA32_ARCH_CAPABILITIES:
1686 		msr->data = kvm_get_arch_capabilities();
1687 		break;
1688 	case MSR_IA32_PERF_CAPABILITIES:
1689 		msr->data = kvm_caps.supported_perf_cap;
1690 		break;
1691 	case MSR_IA32_UCODE_REV:
1692 		rdmsrl_safe(msr->index, &msr->data);
1693 		break;
1694 	default:
1695 		return static_call(kvm_x86_get_msr_feature)(msr);
1696 	}
1697 	return 0;
1698 }
1699 
1700 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1701 {
1702 	struct kvm_msr_entry msr;
1703 	int r;
1704 
1705 	msr.index = index;
1706 	r = kvm_get_msr_feature(&msr);
1707 
1708 	if (r == KVM_MSR_RET_INVALID) {
1709 		/* Unconditionally clear the output for simplicity */
1710 		*data = 0;
1711 		if (kvm_msr_ignored_check(index, 0, false))
1712 			r = 0;
1713 	}
1714 
1715 	if (r)
1716 		return r;
1717 
1718 	*data = msr.data;
1719 
1720 	return 0;
1721 }
1722 
1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1724 {
1725 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1726 		return false;
1727 
1728 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1729 		return false;
1730 
1731 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1732 		return false;
1733 
1734 	if (efer & (EFER_LME | EFER_LMA) &&
1735 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1736 		return false;
1737 
1738 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1739 		return false;
1740 
1741 	return true;
1742 
1743 }
1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745 {
1746 	if (efer & efer_reserved_bits)
1747 		return false;
1748 
1749 	return __kvm_valid_efer(vcpu, efer);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752 
1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1754 {
1755 	u64 old_efer = vcpu->arch.efer;
1756 	u64 efer = msr_info->data;
1757 	int r;
1758 
1759 	if (efer & efer_reserved_bits)
1760 		return 1;
1761 
1762 	if (!msr_info->host_initiated) {
1763 		if (!__kvm_valid_efer(vcpu, efer))
1764 			return 1;
1765 
1766 		if (is_paging(vcpu) &&
1767 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1768 			return 1;
1769 	}
1770 
1771 	efer &= ~EFER_LMA;
1772 	efer |= vcpu->arch.efer & EFER_LMA;
1773 
1774 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1775 	if (r) {
1776 		WARN_ON(r > 0);
1777 		return r;
1778 	}
1779 
1780 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1781 		kvm_mmu_reset_context(vcpu);
1782 
1783 	return 0;
1784 }
1785 
1786 void kvm_enable_efer_bits(u64 mask)
1787 {
1788        efer_reserved_bits &= ~mask;
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1791 
1792 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1793 {
1794 	struct kvm_x86_msr_filter *msr_filter;
1795 	struct msr_bitmap_range *ranges;
1796 	struct kvm *kvm = vcpu->kvm;
1797 	bool allowed;
1798 	int idx;
1799 	u32 i;
1800 
1801 	/* x2APIC MSRs do not support filtering. */
1802 	if (index >= 0x800 && index <= 0x8ff)
1803 		return true;
1804 
1805 	idx = srcu_read_lock(&kvm->srcu);
1806 
1807 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1808 	if (!msr_filter) {
1809 		allowed = true;
1810 		goto out;
1811 	}
1812 
1813 	allowed = msr_filter->default_allow;
1814 	ranges = msr_filter->ranges;
1815 
1816 	for (i = 0; i < msr_filter->count; i++) {
1817 		u32 start = ranges[i].base;
1818 		u32 end = start + ranges[i].nmsrs;
1819 		u32 flags = ranges[i].flags;
1820 		unsigned long *bitmap = ranges[i].bitmap;
1821 
1822 		if ((index >= start) && (index < end) && (flags & type)) {
1823 			allowed = test_bit(index - start, bitmap);
1824 			break;
1825 		}
1826 	}
1827 
1828 out:
1829 	srcu_read_unlock(&kvm->srcu, idx);
1830 
1831 	return allowed;
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1834 
1835 /*
1836  * Write @data into the MSR specified by @index.  Select MSR specific fault
1837  * checks are bypassed if @host_initiated is %true.
1838  * Returns 0 on success, non-0 otherwise.
1839  * Assumes vcpu_load() was already called.
1840  */
1841 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1842 			 bool host_initiated)
1843 {
1844 	struct msr_data msr;
1845 
1846 	switch (index) {
1847 	case MSR_FS_BASE:
1848 	case MSR_GS_BASE:
1849 	case MSR_KERNEL_GS_BASE:
1850 	case MSR_CSTAR:
1851 	case MSR_LSTAR:
1852 		if (is_noncanonical_address(data, vcpu))
1853 			return 1;
1854 		break;
1855 	case MSR_IA32_SYSENTER_EIP:
1856 	case MSR_IA32_SYSENTER_ESP:
1857 		/*
1858 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1859 		 * non-canonical address is written on Intel but not on
1860 		 * AMD (which ignores the top 32-bits, because it does
1861 		 * not implement 64-bit SYSENTER).
1862 		 *
1863 		 * 64-bit code should hence be able to write a non-canonical
1864 		 * value on AMD.  Making the address canonical ensures that
1865 		 * vmentry does not fail on Intel after writing a non-canonical
1866 		 * value, and that something deterministic happens if the guest
1867 		 * invokes 64-bit SYSENTER.
1868 		 */
1869 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1870 		break;
1871 	case MSR_TSC_AUX:
1872 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1873 			return 1;
1874 
1875 		if (!host_initiated &&
1876 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1877 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1878 			return 1;
1879 
1880 		/*
1881 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1882 		 * incomplete and conflicting architectural behavior.  Current
1883 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1884 		 * reserved and always read as zeros.  Enforce Intel's reserved
1885 		 * bits check if and only if the guest CPU is Intel, and clear
1886 		 * the bits in all other cases.  This ensures cross-vendor
1887 		 * migration will provide consistent behavior for the guest.
1888 		 */
1889 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1890 			return 1;
1891 
1892 		data = (u32)data;
1893 		break;
1894 	}
1895 
1896 	msr.data = data;
1897 	msr.index = index;
1898 	msr.host_initiated = host_initiated;
1899 
1900 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1901 }
1902 
1903 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1904 				     u32 index, u64 data, bool host_initiated)
1905 {
1906 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1907 
1908 	if (ret == KVM_MSR_RET_INVALID)
1909 		if (kvm_msr_ignored_check(index, data, true))
1910 			ret = 0;
1911 
1912 	return ret;
1913 }
1914 
1915 /*
1916  * Read the MSR specified by @index into @data.  Select MSR specific fault
1917  * checks are bypassed if @host_initiated is %true.
1918  * Returns 0 on success, non-0 otherwise.
1919  * Assumes vcpu_load() was already called.
1920  */
1921 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1922 		  bool host_initiated)
1923 {
1924 	struct msr_data msr;
1925 	int ret;
1926 
1927 	switch (index) {
1928 	case MSR_TSC_AUX:
1929 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1930 			return 1;
1931 
1932 		if (!host_initiated &&
1933 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1934 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1935 			return 1;
1936 		break;
1937 	}
1938 
1939 	msr.index = index;
1940 	msr.host_initiated = host_initiated;
1941 
1942 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1943 	if (!ret)
1944 		*data = msr.data;
1945 	return ret;
1946 }
1947 
1948 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1949 				     u32 index, u64 *data, bool host_initiated)
1950 {
1951 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1952 
1953 	if (ret == KVM_MSR_RET_INVALID) {
1954 		/* Unconditionally clear *data for simplicity */
1955 		*data = 0;
1956 		if (kvm_msr_ignored_check(index, 0, false))
1957 			ret = 0;
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1964 {
1965 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1966 		return KVM_MSR_RET_FILTERED;
1967 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1968 }
1969 
1970 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1971 {
1972 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1973 		return KVM_MSR_RET_FILTERED;
1974 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975 }
1976 
1977 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1978 {
1979 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_get_msr);
1982 
1983 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1984 {
1985 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_set_msr);
1988 
1989 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1990 {
1991 	if (!vcpu->run->msr.error) {
1992 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1993 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1994 	}
1995 }
1996 
1997 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1998 {
1999 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2000 }
2001 
2002 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2003 {
2004 	complete_userspace_rdmsr(vcpu);
2005 	return complete_emulated_msr_access(vcpu);
2006 }
2007 
2008 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2009 {
2010 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2011 }
2012 
2013 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2014 {
2015 	complete_userspace_rdmsr(vcpu);
2016 	return complete_fast_msr_access(vcpu);
2017 }
2018 
2019 static u64 kvm_msr_reason(int r)
2020 {
2021 	switch (r) {
2022 	case KVM_MSR_RET_INVALID:
2023 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2024 	case KVM_MSR_RET_FILTERED:
2025 		return KVM_MSR_EXIT_REASON_FILTER;
2026 	default:
2027 		return KVM_MSR_EXIT_REASON_INVAL;
2028 	}
2029 }
2030 
2031 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2032 			      u32 exit_reason, u64 data,
2033 			      int (*completion)(struct kvm_vcpu *vcpu),
2034 			      int r)
2035 {
2036 	u64 msr_reason = kvm_msr_reason(r);
2037 
2038 	/* Check if the user wanted to know about this MSR fault */
2039 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2040 		return 0;
2041 
2042 	vcpu->run->exit_reason = exit_reason;
2043 	vcpu->run->msr.error = 0;
2044 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2045 	vcpu->run->msr.reason = msr_reason;
2046 	vcpu->run->msr.index = index;
2047 	vcpu->run->msr.data = data;
2048 	vcpu->arch.complete_userspace_io = completion;
2049 
2050 	return 1;
2051 }
2052 
2053 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2054 {
2055 	u32 ecx = kvm_rcx_read(vcpu);
2056 	u64 data;
2057 	int r;
2058 
2059 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2060 
2061 	if (!r) {
2062 		trace_kvm_msr_read(ecx, data);
2063 
2064 		kvm_rax_write(vcpu, data & -1u);
2065 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2066 	} else {
2067 		/* MSR read failed? See if we should ask user space */
2068 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2069 				       complete_fast_rdmsr, r))
2070 			return 0;
2071 		trace_kvm_msr_read_ex(ecx);
2072 	}
2073 
2074 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2077 
2078 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2079 {
2080 	u32 ecx = kvm_rcx_read(vcpu);
2081 	u64 data = kvm_read_edx_eax(vcpu);
2082 	int r;
2083 
2084 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2085 
2086 	if (!r) {
2087 		trace_kvm_msr_write(ecx, data);
2088 	} else {
2089 		/* MSR write failed? See if we should ask user space */
2090 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2091 				       complete_fast_msr_access, r))
2092 			return 0;
2093 		/* Signal all other negative errors to userspace */
2094 		if (r < 0)
2095 			return r;
2096 		trace_kvm_msr_write_ex(ecx, data);
2097 	}
2098 
2099 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2102 
2103 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2104 {
2105 	return kvm_skip_emulated_instruction(vcpu);
2106 }
2107 
2108 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2109 {
2110 	/* Treat an INVD instruction as a NOP and just skip it. */
2111 	return kvm_emulate_as_nop(vcpu);
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2114 
2115 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2116 {
2117 	kvm_queue_exception(vcpu, UD_VECTOR);
2118 	return 1;
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2121 
2122 
2123 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2124 {
2125 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2126 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2127 		return kvm_handle_invalid_op(vcpu);
2128 
2129 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2130 	return kvm_emulate_as_nop(vcpu);
2131 }
2132 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2133 {
2134 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2137 
2138 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2139 {
2140 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2141 }
2142 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2143 
2144 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2145 {
2146 	xfer_to_guest_mode_prepare();
2147 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2148 		xfer_to_guest_mode_work_pending();
2149 }
2150 
2151 /*
2152  * The fast path for frequent and performance sensitive wrmsr emulation,
2153  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2154  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2155  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2156  * other cases which must be called after interrupts are enabled on the host.
2157  */
2158 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2159 {
2160 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2161 		return 1;
2162 
2163 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2164 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2165 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2166 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2167 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2168 
2169 	return 1;
2170 }
2171 
2172 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2173 {
2174 	if (!kvm_can_use_hv_timer(vcpu))
2175 		return 1;
2176 
2177 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2178 	return 0;
2179 }
2180 
2181 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2182 {
2183 	u32 msr = kvm_rcx_read(vcpu);
2184 	u64 data;
2185 	fastpath_t ret = EXIT_FASTPATH_NONE;
2186 
2187 	kvm_vcpu_srcu_read_lock(vcpu);
2188 
2189 	switch (msr) {
2190 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2191 		data = kvm_read_edx_eax(vcpu);
2192 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2193 			kvm_skip_emulated_instruction(vcpu);
2194 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2195 		}
2196 		break;
2197 	case MSR_IA32_TSC_DEADLINE:
2198 		data = kvm_read_edx_eax(vcpu);
2199 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2200 			kvm_skip_emulated_instruction(vcpu);
2201 			ret = EXIT_FASTPATH_REENTER_GUEST;
2202 		}
2203 		break;
2204 	default:
2205 		break;
2206 	}
2207 
2208 	if (ret != EXIT_FASTPATH_NONE)
2209 		trace_kvm_msr_write(msr, data);
2210 
2211 	kvm_vcpu_srcu_read_unlock(vcpu);
2212 
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2216 
2217 /*
2218  * Adapt set_msr() to msr_io()'s calling convention
2219  */
2220 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2221 {
2222 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2223 }
2224 
2225 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2226 {
2227 	u64 val;
2228 
2229 	/*
2230 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2231 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2232 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2233 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2234 	 * all MSRs when emulating RESET.
2235 	 */
2236 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2237 		if (do_get_msr(vcpu, index, &val) || *data != val)
2238 			return -EINVAL;
2239 
2240 		return 0;
2241 	}
2242 
2243 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2244 }
2245 
2246 #ifdef CONFIG_X86_64
2247 struct pvclock_clock {
2248 	int vclock_mode;
2249 	u64 cycle_last;
2250 	u64 mask;
2251 	u32 mult;
2252 	u32 shift;
2253 	u64 base_cycles;
2254 	u64 offset;
2255 };
2256 
2257 struct pvclock_gtod_data {
2258 	seqcount_t	seq;
2259 
2260 	struct pvclock_clock clock; /* extract of a clocksource struct */
2261 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2262 
2263 	ktime_t		offs_boot;
2264 	u64		wall_time_sec;
2265 };
2266 
2267 static struct pvclock_gtod_data pvclock_gtod_data;
2268 
2269 static void update_pvclock_gtod(struct timekeeper *tk)
2270 {
2271 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2272 
2273 	write_seqcount_begin(&vdata->seq);
2274 
2275 	/* copy pvclock gtod data */
2276 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2277 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2278 	vdata->clock.mask		= tk->tkr_mono.mask;
2279 	vdata->clock.mult		= tk->tkr_mono.mult;
2280 	vdata->clock.shift		= tk->tkr_mono.shift;
2281 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2282 	vdata->clock.offset		= tk->tkr_mono.base;
2283 
2284 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2285 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2286 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2287 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2288 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2289 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2290 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2291 
2292 	vdata->wall_time_sec            = tk->xtime_sec;
2293 
2294 	vdata->offs_boot		= tk->offs_boot;
2295 
2296 	write_seqcount_end(&vdata->seq);
2297 }
2298 
2299 static s64 get_kvmclock_base_ns(void)
2300 {
2301 	/* Count up from boot time, but with the frequency of the raw clock.  */
2302 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2303 }
2304 #else
2305 static s64 get_kvmclock_base_ns(void)
2306 {
2307 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2308 	return ktime_get_boottime_ns();
2309 }
2310 #endif
2311 
2312 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2313 {
2314 	int version;
2315 	int r;
2316 	struct pvclock_wall_clock wc;
2317 	u32 wc_sec_hi;
2318 	u64 wall_nsec;
2319 
2320 	if (!wall_clock)
2321 		return;
2322 
2323 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2324 	if (r)
2325 		return;
2326 
2327 	if (version & 1)
2328 		++version;  /* first time write, random junk */
2329 
2330 	++version;
2331 
2332 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2333 		return;
2334 
2335 	/*
2336 	 * The guest calculates current wall clock time by adding
2337 	 * system time (updated by kvm_guest_time_update below) to the
2338 	 * wall clock specified here.  We do the reverse here.
2339 	 */
2340 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2341 
2342 	wc.nsec = do_div(wall_nsec, 1000000000);
2343 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2344 	wc.version = version;
2345 
2346 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2347 
2348 	if (sec_hi_ofs) {
2349 		wc_sec_hi = wall_nsec >> 32;
2350 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2351 				&wc_sec_hi, sizeof(wc_sec_hi));
2352 	}
2353 
2354 	version++;
2355 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2356 }
2357 
2358 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2359 				  bool old_msr, bool host_initiated)
2360 {
2361 	struct kvm_arch *ka = &vcpu->kvm->arch;
2362 
2363 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2364 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2365 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2366 
2367 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2368 	}
2369 
2370 	vcpu->arch.time = system_time;
2371 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2372 
2373 	/* we verify if the enable bit is set... */
2374 	if (system_time & 1)
2375 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2376 				 sizeof(struct pvclock_vcpu_time_info));
2377 	else
2378 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2379 
2380 	return;
2381 }
2382 
2383 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2384 {
2385 	do_shl32_div32(dividend, divisor);
2386 	return dividend;
2387 }
2388 
2389 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2390 			       s8 *pshift, u32 *pmultiplier)
2391 {
2392 	uint64_t scaled64;
2393 	int32_t  shift = 0;
2394 	uint64_t tps64;
2395 	uint32_t tps32;
2396 
2397 	tps64 = base_hz;
2398 	scaled64 = scaled_hz;
2399 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2400 		tps64 >>= 1;
2401 		shift--;
2402 	}
2403 
2404 	tps32 = (uint32_t)tps64;
2405 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2406 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2407 			scaled64 >>= 1;
2408 		else
2409 			tps32 <<= 1;
2410 		shift++;
2411 	}
2412 
2413 	*pshift = shift;
2414 	*pmultiplier = div_frac(scaled64, tps32);
2415 }
2416 
2417 #ifdef CONFIG_X86_64
2418 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2419 #endif
2420 
2421 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2422 static unsigned long max_tsc_khz;
2423 
2424 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2425 {
2426 	u64 v = (u64)khz * (1000000 + ppm);
2427 	do_div(v, 1000000);
2428 	return v;
2429 }
2430 
2431 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2432 
2433 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2434 {
2435 	u64 ratio;
2436 
2437 	/* Guest TSC same frequency as host TSC? */
2438 	if (!scale) {
2439 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2440 		return 0;
2441 	}
2442 
2443 	/* TSC scaling supported? */
2444 	if (!kvm_caps.has_tsc_control) {
2445 		if (user_tsc_khz > tsc_khz) {
2446 			vcpu->arch.tsc_catchup = 1;
2447 			vcpu->arch.tsc_always_catchup = 1;
2448 			return 0;
2449 		} else {
2450 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2451 			return -1;
2452 		}
2453 	}
2454 
2455 	/* TSC scaling required  - calculate ratio */
2456 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2457 				user_tsc_khz, tsc_khz);
2458 
2459 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2460 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2461 			            user_tsc_khz);
2462 		return -1;
2463 	}
2464 
2465 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2466 	return 0;
2467 }
2468 
2469 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2470 {
2471 	u32 thresh_lo, thresh_hi;
2472 	int use_scaling = 0;
2473 
2474 	/* tsc_khz can be zero if TSC calibration fails */
2475 	if (user_tsc_khz == 0) {
2476 		/* set tsc_scaling_ratio to a safe value */
2477 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2478 		return -1;
2479 	}
2480 
2481 	/* Compute a scale to convert nanoseconds in TSC cycles */
2482 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2483 			   &vcpu->arch.virtual_tsc_shift,
2484 			   &vcpu->arch.virtual_tsc_mult);
2485 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2486 
2487 	/*
2488 	 * Compute the variation in TSC rate which is acceptable
2489 	 * within the range of tolerance and decide if the
2490 	 * rate being applied is within that bounds of the hardware
2491 	 * rate.  If so, no scaling or compensation need be done.
2492 	 */
2493 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2494 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2495 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2496 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2497 			 user_tsc_khz, thresh_lo, thresh_hi);
2498 		use_scaling = 1;
2499 	}
2500 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2501 }
2502 
2503 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2504 {
2505 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2506 				      vcpu->arch.virtual_tsc_mult,
2507 				      vcpu->arch.virtual_tsc_shift);
2508 	tsc += vcpu->arch.this_tsc_write;
2509 	return tsc;
2510 }
2511 
2512 #ifdef CONFIG_X86_64
2513 static inline int gtod_is_based_on_tsc(int mode)
2514 {
2515 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2516 }
2517 #endif
2518 
2519 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2520 {
2521 #ifdef CONFIG_X86_64
2522 	bool vcpus_matched;
2523 	struct kvm_arch *ka = &vcpu->kvm->arch;
2524 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2525 
2526 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2527 			 atomic_read(&vcpu->kvm->online_vcpus));
2528 
2529 	/*
2530 	 * Once the masterclock is enabled, always perform request in
2531 	 * order to update it.
2532 	 *
2533 	 * In order to enable masterclock, the host clocksource must be TSC
2534 	 * and the vcpus need to have matched TSCs.  When that happens,
2535 	 * perform request to enable masterclock.
2536 	 */
2537 	if (ka->use_master_clock ||
2538 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2539 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540 
2541 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542 			    atomic_read(&vcpu->kvm->online_vcpus),
2543 		            ka->use_master_clock, gtod->clock.vclock_mode);
2544 #endif
2545 }
2546 
2547 /*
2548  * Multiply tsc by a fixed point number represented by ratio.
2549  *
2550  * The most significant 64-N bits (mult) of ratio represent the
2551  * integral part of the fixed point number; the remaining N bits
2552  * (frac) represent the fractional part, ie. ratio represents a fixed
2553  * point number (mult + frac * 2^(-N)).
2554  *
2555  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2556  */
2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2558 {
2559 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2560 }
2561 
2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2563 {
2564 	u64 _tsc = tsc;
2565 
2566 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2567 		_tsc = __scale_tsc(ratio, tsc);
2568 
2569 	return _tsc;
2570 }
2571 
2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2573 {
2574 	u64 tsc;
2575 
2576 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2577 
2578 	return target_tsc - tsc;
2579 }
2580 
2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2582 {
2583 	return vcpu->arch.l1_tsc_offset +
2584 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2587 
2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2589 {
2590 	u64 nested_offset;
2591 
2592 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2593 		nested_offset = l1_offset;
2594 	else
2595 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2596 						kvm_caps.tsc_scaling_ratio_frac_bits);
2597 
2598 	nested_offset += l2_offset;
2599 	return nested_offset;
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2602 
2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2604 {
2605 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2606 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2607 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2608 
2609 	return l1_multiplier;
2610 }
2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2612 
2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2614 {
2615 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616 				   vcpu->arch.l1_tsc_offset,
2617 				   l1_offset);
2618 
2619 	vcpu->arch.l1_tsc_offset = l1_offset;
2620 
2621 	/*
2622 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2623 	 * according to the spec this should set L1's TSC (as opposed to
2624 	 * setting L1's offset for L2).
2625 	 */
2626 	if (is_guest_mode(vcpu))
2627 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2628 			l1_offset,
2629 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631 	else
2632 		vcpu->arch.tsc_offset = l1_offset;
2633 
2634 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2635 }
2636 
2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2638 {
2639 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2640 
2641 	/* Userspace is changing the multiplier while L2 is active */
2642 	if (is_guest_mode(vcpu))
2643 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2644 			l1_multiplier,
2645 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2646 	else
2647 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2648 
2649 	if (kvm_caps.has_tsc_control)
2650 		static_call(kvm_x86_write_tsc_multiplier)(
2651 			vcpu, vcpu->arch.tsc_scaling_ratio);
2652 }
2653 
2654 static inline bool kvm_check_tsc_unstable(void)
2655 {
2656 #ifdef CONFIG_X86_64
2657 	/*
2658 	 * TSC is marked unstable when we're running on Hyper-V,
2659 	 * 'TSC page' clocksource is good.
2660 	 */
2661 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2662 		return false;
2663 #endif
2664 	return check_tsc_unstable();
2665 }
2666 
2667 /*
2668  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2669  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2670  * participates in.
2671  */
2672 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2673 				  u64 ns, bool matched)
2674 {
2675 	struct kvm *kvm = vcpu->kvm;
2676 
2677 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2678 
2679 	/*
2680 	 * We also track th most recent recorded KHZ, write and time to
2681 	 * allow the matching interval to be extended at each write.
2682 	 */
2683 	kvm->arch.last_tsc_nsec = ns;
2684 	kvm->arch.last_tsc_write = tsc;
2685 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2686 	kvm->arch.last_tsc_offset = offset;
2687 
2688 	vcpu->arch.last_guest_tsc = tsc;
2689 
2690 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2691 
2692 	if (!matched) {
2693 		/*
2694 		 * We split periods of matched TSC writes into generations.
2695 		 * For each generation, we track the original measured
2696 		 * nanosecond time, offset, and write, so if TSCs are in
2697 		 * sync, we can match exact offset, and if not, we can match
2698 		 * exact software computation in compute_guest_tsc()
2699 		 *
2700 		 * These values are tracked in kvm->arch.cur_xxx variables.
2701 		 */
2702 		kvm->arch.cur_tsc_generation++;
2703 		kvm->arch.cur_tsc_nsec = ns;
2704 		kvm->arch.cur_tsc_write = tsc;
2705 		kvm->arch.cur_tsc_offset = offset;
2706 		kvm->arch.nr_vcpus_matched_tsc = 0;
2707 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2708 		kvm->arch.nr_vcpus_matched_tsc++;
2709 	}
2710 
2711 	/* Keep track of which generation this VCPU has synchronized to */
2712 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2713 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2714 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2715 
2716 	kvm_track_tsc_matching(vcpu);
2717 }
2718 
2719 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2720 {
2721 	struct kvm *kvm = vcpu->kvm;
2722 	u64 offset, ns, elapsed;
2723 	unsigned long flags;
2724 	bool matched = false;
2725 	bool synchronizing = false;
2726 
2727 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2728 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2729 	ns = get_kvmclock_base_ns();
2730 	elapsed = ns - kvm->arch.last_tsc_nsec;
2731 
2732 	if (vcpu->arch.virtual_tsc_khz) {
2733 		if (data == 0) {
2734 			/*
2735 			 * detection of vcpu initialization -- need to sync
2736 			 * with other vCPUs. This particularly helps to keep
2737 			 * kvm_clock stable after CPU hotplug
2738 			 */
2739 			synchronizing = true;
2740 		} else {
2741 			u64 tsc_exp = kvm->arch.last_tsc_write +
2742 						nsec_to_cycles(vcpu, elapsed);
2743 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2744 			/*
2745 			 * Special case: TSC write with a small delta (1 second)
2746 			 * of virtual cycle time against real time is
2747 			 * interpreted as an attempt to synchronize the CPU.
2748 			 */
2749 			synchronizing = data < tsc_exp + tsc_hz &&
2750 					data + tsc_hz > tsc_exp;
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2756 	 * TSC, we add elapsed time in this computation.  We could let the
2757 	 * compensation code attempt to catch up if we fall behind, but
2758 	 * it's better to try to match offsets from the beginning.
2759          */
2760 	if (synchronizing &&
2761 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2762 		if (!kvm_check_tsc_unstable()) {
2763 			offset = kvm->arch.cur_tsc_offset;
2764 		} else {
2765 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2766 			data += delta;
2767 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2768 		}
2769 		matched = true;
2770 	}
2771 
2772 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2773 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2774 }
2775 
2776 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2777 					   s64 adjustment)
2778 {
2779 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2780 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2781 }
2782 
2783 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2784 {
2785 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2786 		WARN_ON(adjustment < 0);
2787 	adjustment = kvm_scale_tsc((u64) adjustment,
2788 				   vcpu->arch.l1_tsc_scaling_ratio);
2789 	adjust_tsc_offset_guest(vcpu, adjustment);
2790 }
2791 
2792 #ifdef CONFIG_X86_64
2793 
2794 static u64 read_tsc(void)
2795 {
2796 	u64 ret = (u64)rdtsc_ordered();
2797 	u64 last = pvclock_gtod_data.clock.cycle_last;
2798 
2799 	if (likely(ret >= last))
2800 		return ret;
2801 
2802 	/*
2803 	 * GCC likes to generate cmov here, but this branch is extremely
2804 	 * predictable (it's just a function of time and the likely is
2805 	 * very likely) and there's a data dependence, so force GCC
2806 	 * to generate a branch instead.  I don't barrier() because
2807 	 * we don't actually need a barrier, and if this function
2808 	 * ever gets inlined it will generate worse code.
2809 	 */
2810 	asm volatile ("");
2811 	return last;
2812 }
2813 
2814 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2815 			  int *mode)
2816 {
2817 	u64 tsc_pg_val;
2818 	long v;
2819 
2820 	switch (clock->vclock_mode) {
2821 	case VDSO_CLOCKMODE_HVCLOCK:
2822 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2823 					 tsc_timestamp, &tsc_pg_val)) {
2824 			/* TSC page valid */
2825 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2826 			v = (tsc_pg_val - clock->cycle_last) &
2827 				clock->mask;
2828 		} else {
2829 			/* TSC page invalid */
2830 			*mode = VDSO_CLOCKMODE_NONE;
2831 		}
2832 		break;
2833 	case VDSO_CLOCKMODE_TSC:
2834 		*mode = VDSO_CLOCKMODE_TSC;
2835 		*tsc_timestamp = read_tsc();
2836 		v = (*tsc_timestamp - clock->cycle_last) &
2837 			clock->mask;
2838 		break;
2839 	default:
2840 		*mode = VDSO_CLOCKMODE_NONE;
2841 	}
2842 
2843 	if (*mode == VDSO_CLOCKMODE_NONE)
2844 		*tsc_timestamp = v = 0;
2845 
2846 	return v * clock->mult;
2847 }
2848 
2849 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2850 {
2851 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2852 	unsigned long seq;
2853 	int mode;
2854 	u64 ns;
2855 
2856 	do {
2857 		seq = read_seqcount_begin(&gtod->seq);
2858 		ns = gtod->raw_clock.base_cycles;
2859 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2860 		ns >>= gtod->raw_clock.shift;
2861 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2862 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2863 	*t = ns;
2864 
2865 	return mode;
2866 }
2867 
2868 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2869 {
2870 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2871 	unsigned long seq;
2872 	int mode;
2873 	u64 ns;
2874 
2875 	do {
2876 		seq = read_seqcount_begin(&gtod->seq);
2877 		ts->tv_sec = gtod->wall_time_sec;
2878 		ns = gtod->clock.base_cycles;
2879 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2880 		ns >>= gtod->clock.shift;
2881 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2882 
2883 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2884 	ts->tv_nsec = ns;
2885 
2886 	return mode;
2887 }
2888 
2889 /* returns true if host is using TSC based clocksource */
2890 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2891 {
2892 	/* checked again under seqlock below */
2893 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894 		return false;
2895 
2896 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2897 						      tsc_timestamp));
2898 }
2899 
2900 /* returns true if host is using TSC based clocksource */
2901 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2902 					   u64 *tsc_timestamp)
2903 {
2904 	/* checked again under seqlock below */
2905 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906 		return false;
2907 
2908 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2909 }
2910 #endif
2911 
2912 /*
2913  *
2914  * Assuming a stable TSC across physical CPUS, and a stable TSC
2915  * across virtual CPUs, the following condition is possible.
2916  * Each numbered line represents an event visible to both
2917  * CPUs at the next numbered event.
2918  *
2919  * "timespecX" represents host monotonic time. "tscX" represents
2920  * RDTSC value.
2921  *
2922  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2923  *
2924  * 1.  read timespec0,tsc0
2925  * 2.					| timespec1 = timespec0 + N
2926  * 					| tsc1 = tsc0 + M
2927  * 3. transition to guest		| transition to guest
2928  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2929  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2930  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2931  *
2932  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2933  *
2934  * 	- ret0 < ret1
2935  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2936  *		...
2937  *	- 0 < N - M => M < N
2938  *
2939  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2940  * always the case (the difference between two distinct xtime instances
2941  * might be smaller then the difference between corresponding TSC reads,
2942  * when updating guest vcpus pvclock areas).
2943  *
2944  * To avoid that problem, do not allow visibility of distinct
2945  * system_timestamp/tsc_timestamp values simultaneously: use a master
2946  * copy of host monotonic time values. Update that master copy
2947  * in lockstep.
2948  *
2949  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2950  *
2951  */
2952 
2953 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2954 {
2955 #ifdef CONFIG_X86_64
2956 	struct kvm_arch *ka = &kvm->arch;
2957 	int vclock_mode;
2958 	bool host_tsc_clocksource, vcpus_matched;
2959 
2960 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2961 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2962 			atomic_read(&kvm->online_vcpus));
2963 
2964 	/*
2965 	 * If the host uses TSC clock, then passthrough TSC as stable
2966 	 * to the guest.
2967 	 */
2968 	host_tsc_clocksource = kvm_get_time_and_clockread(
2969 					&ka->master_kernel_ns,
2970 					&ka->master_cycle_now);
2971 
2972 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2973 				&& !ka->backwards_tsc_observed
2974 				&& !ka->boot_vcpu_runs_old_kvmclock;
2975 
2976 	if (ka->use_master_clock)
2977 		atomic_set(&kvm_guest_has_master_clock, 1);
2978 
2979 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2980 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2981 					vcpus_matched);
2982 #endif
2983 }
2984 
2985 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2986 {
2987 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2988 }
2989 
2990 static void __kvm_start_pvclock_update(struct kvm *kvm)
2991 {
2992 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2993 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2994 }
2995 
2996 static void kvm_start_pvclock_update(struct kvm *kvm)
2997 {
2998 	kvm_make_mclock_inprogress_request(kvm);
2999 
3000 	/* no guest entries from this point */
3001 	__kvm_start_pvclock_update(kvm);
3002 }
3003 
3004 static void kvm_end_pvclock_update(struct kvm *kvm)
3005 {
3006 	struct kvm_arch *ka = &kvm->arch;
3007 	struct kvm_vcpu *vcpu;
3008 	unsigned long i;
3009 
3010 	write_seqcount_end(&ka->pvclock_sc);
3011 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3012 	kvm_for_each_vcpu(i, vcpu, kvm)
3013 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3014 
3015 	/* guest entries allowed */
3016 	kvm_for_each_vcpu(i, vcpu, kvm)
3017 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3018 }
3019 
3020 static void kvm_update_masterclock(struct kvm *kvm)
3021 {
3022 	kvm_hv_request_tsc_page_update(kvm);
3023 	kvm_start_pvclock_update(kvm);
3024 	pvclock_update_vm_gtod_copy(kvm);
3025 	kvm_end_pvclock_update(kvm);
3026 }
3027 
3028 /*
3029  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3030  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3031  * can change during boot even if the TSC is constant, as it's possible for KVM
3032  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3033  * notification when calibration completes, but practically speaking calibration
3034  * will complete before userspace is alive enough to create VMs.
3035  */
3036 static unsigned long get_cpu_tsc_khz(void)
3037 {
3038 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3039 		return tsc_khz;
3040 	else
3041 		return __this_cpu_read(cpu_tsc_khz);
3042 }
3043 
3044 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3045 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3046 {
3047 	struct kvm_arch *ka = &kvm->arch;
3048 	struct pvclock_vcpu_time_info hv_clock;
3049 
3050 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3051 	get_cpu();
3052 
3053 	data->flags = 0;
3054 	if (ka->use_master_clock &&
3055 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3056 #ifdef CONFIG_X86_64
3057 		struct timespec64 ts;
3058 
3059 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3060 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3061 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3062 		} else
3063 #endif
3064 		data->host_tsc = rdtsc();
3065 
3066 		data->flags |= KVM_CLOCK_TSC_STABLE;
3067 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3068 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3069 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3070 				   &hv_clock.tsc_shift,
3071 				   &hv_clock.tsc_to_system_mul);
3072 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3073 	} else {
3074 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3075 	}
3076 
3077 	put_cpu();
3078 }
3079 
3080 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3081 {
3082 	struct kvm_arch *ka = &kvm->arch;
3083 	unsigned seq;
3084 
3085 	do {
3086 		seq = read_seqcount_begin(&ka->pvclock_sc);
3087 		__get_kvmclock(kvm, data);
3088 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3089 }
3090 
3091 u64 get_kvmclock_ns(struct kvm *kvm)
3092 {
3093 	struct kvm_clock_data data;
3094 
3095 	get_kvmclock(kvm, &data);
3096 	return data.clock;
3097 }
3098 
3099 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3100 				    struct gfn_to_pfn_cache *gpc,
3101 				    unsigned int offset)
3102 {
3103 	struct kvm_vcpu_arch *vcpu = &v->arch;
3104 	struct pvclock_vcpu_time_info *guest_hv_clock;
3105 	unsigned long flags;
3106 
3107 	read_lock_irqsave(&gpc->lock, flags);
3108 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3109 		read_unlock_irqrestore(&gpc->lock, flags);
3110 
3111 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3112 			return;
3113 
3114 		read_lock_irqsave(&gpc->lock, flags);
3115 	}
3116 
3117 	guest_hv_clock = (void *)(gpc->khva + offset);
3118 
3119 	/*
3120 	 * This VCPU is paused, but it's legal for a guest to read another
3121 	 * VCPU's kvmclock, so we really have to follow the specification where
3122 	 * it says that version is odd if data is being modified, and even after
3123 	 * it is consistent.
3124 	 */
3125 
3126 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3127 	smp_wmb();
3128 
3129 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3130 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3131 
3132 	if (vcpu->pvclock_set_guest_stopped_request) {
3133 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3134 		vcpu->pvclock_set_guest_stopped_request = false;
3135 	}
3136 
3137 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3138 	smp_wmb();
3139 
3140 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3141 
3142 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3143 	read_unlock_irqrestore(&gpc->lock, flags);
3144 
3145 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3146 }
3147 
3148 static int kvm_guest_time_update(struct kvm_vcpu *v)
3149 {
3150 	unsigned long flags, tgt_tsc_khz;
3151 	unsigned seq;
3152 	struct kvm_vcpu_arch *vcpu = &v->arch;
3153 	struct kvm_arch *ka = &v->kvm->arch;
3154 	s64 kernel_ns;
3155 	u64 tsc_timestamp, host_tsc;
3156 	u8 pvclock_flags;
3157 	bool use_master_clock;
3158 
3159 	kernel_ns = 0;
3160 	host_tsc = 0;
3161 
3162 	/*
3163 	 * If the host uses TSC clock, then passthrough TSC as stable
3164 	 * to the guest.
3165 	 */
3166 	do {
3167 		seq = read_seqcount_begin(&ka->pvclock_sc);
3168 		use_master_clock = ka->use_master_clock;
3169 		if (use_master_clock) {
3170 			host_tsc = ka->master_cycle_now;
3171 			kernel_ns = ka->master_kernel_ns;
3172 		}
3173 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3174 
3175 	/* Keep irq disabled to prevent changes to the clock */
3176 	local_irq_save(flags);
3177 	tgt_tsc_khz = get_cpu_tsc_khz();
3178 	if (unlikely(tgt_tsc_khz == 0)) {
3179 		local_irq_restore(flags);
3180 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3181 		return 1;
3182 	}
3183 	if (!use_master_clock) {
3184 		host_tsc = rdtsc();
3185 		kernel_ns = get_kvmclock_base_ns();
3186 	}
3187 
3188 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3189 
3190 	/*
3191 	 * We may have to catch up the TSC to match elapsed wall clock
3192 	 * time for two reasons, even if kvmclock is used.
3193 	 *   1) CPU could have been running below the maximum TSC rate
3194 	 *   2) Broken TSC compensation resets the base at each VCPU
3195 	 *      entry to avoid unknown leaps of TSC even when running
3196 	 *      again on the same CPU.  This may cause apparent elapsed
3197 	 *      time to disappear, and the guest to stand still or run
3198 	 *	very slowly.
3199 	 */
3200 	if (vcpu->tsc_catchup) {
3201 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3202 		if (tsc > tsc_timestamp) {
3203 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3204 			tsc_timestamp = tsc;
3205 		}
3206 	}
3207 
3208 	local_irq_restore(flags);
3209 
3210 	/* With all the info we got, fill in the values */
3211 
3212 	if (kvm_caps.has_tsc_control)
3213 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3214 					    v->arch.l1_tsc_scaling_ratio);
3215 
3216 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3217 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3218 				   &vcpu->hv_clock.tsc_shift,
3219 				   &vcpu->hv_clock.tsc_to_system_mul);
3220 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3221 		kvm_xen_update_tsc_info(v);
3222 	}
3223 
3224 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3225 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3226 	vcpu->last_guest_tsc = tsc_timestamp;
3227 
3228 	/* If the host uses TSC clocksource, then it is stable */
3229 	pvclock_flags = 0;
3230 	if (use_master_clock)
3231 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3232 
3233 	vcpu->hv_clock.flags = pvclock_flags;
3234 
3235 	if (vcpu->pv_time.active)
3236 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3237 	if (vcpu->xen.vcpu_info_cache.active)
3238 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3239 					offsetof(struct compat_vcpu_info, time));
3240 	if (vcpu->xen.vcpu_time_info_cache.active)
3241 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3242 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3243 	return 0;
3244 }
3245 
3246 /*
3247  * kvmclock updates which are isolated to a given vcpu, such as
3248  * vcpu->cpu migration, should not allow system_timestamp from
3249  * the rest of the vcpus to remain static. Otherwise ntp frequency
3250  * correction applies to one vcpu's system_timestamp but not
3251  * the others.
3252  *
3253  * So in those cases, request a kvmclock update for all vcpus.
3254  * We need to rate-limit these requests though, as they can
3255  * considerably slow guests that have a large number of vcpus.
3256  * The time for a remote vcpu to update its kvmclock is bound
3257  * by the delay we use to rate-limit the updates.
3258  */
3259 
3260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3261 
3262 static void kvmclock_update_fn(struct work_struct *work)
3263 {
3264 	unsigned long i;
3265 	struct delayed_work *dwork = to_delayed_work(work);
3266 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3267 					   kvmclock_update_work);
3268 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3269 	struct kvm_vcpu *vcpu;
3270 
3271 	kvm_for_each_vcpu(i, vcpu, kvm) {
3272 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3273 		kvm_vcpu_kick(vcpu);
3274 	}
3275 }
3276 
3277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3278 {
3279 	struct kvm *kvm = v->kvm;
3280 
3281 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3282 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3283 					KVMCLOCK_UPDATE_DELAY);
3284 }
3285 
3286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3287 
3288 static void kvmclock_sync_fn(struct work_struct *work)
3289 {
3290 	struct delayed_work *dwork = to_delayed_work(work);
3291 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3292 					   kvmclock_sync_work);
3293 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3294 
3295 	if (!kvmclock_periodic_sync)
3296 		return;
3297 
3298 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3299 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3300 					KVMCLOCK_SYNC_PERIOD);
3301 }
3302 
3303 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3304 static bool is_mci_control_msr(u32 msr)
3305 {
3306 	return (msr & 3) == 0;
3307 }
3308 static bool is_mci_status_msr(u32 msr)
3309 {
3310 	return (msr & 3) == 1;
3311 }
3312 
3313 /*
3314  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3315  */
3316 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3317 {
3318 	/* McStatusWrEn enabled? */
3319 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3320 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3321 
3322 	return false;
3323 }
3324 
3325 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3326 {
3327 	u64 mcg_cap = vcpu->arch.mcg_cap;
3328 	unsigned bank_num = mcg_cap & 0xff;
3329 	u32 msr = msr_info->index;
3330 	u64 data = msr_info->data;
3331 	u32 offset, last_msr;
3332 
3333 	switch (msr) {
3334 	case MSR_IA32_MCG_STATUS:
3335 		vcpu->arch.mcg_status = data;
3336 		break;
3337 	case MSR_IA32_MCG_CTL:
3338 		if (!(mcg_cap & MCG_CTL_P) &&
3339 		    (data || !msr_info->host_initiated))
3340 			return 1;
3341 		if (data != 0 && data != ~(u64)0)
3342 			return 1;
3343 		vcpu->arch.mcg_ctl = data;
3344 		break;
3345 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3346 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3347 		if (msr > last_msr)
3348 			return 1;
3349 
3350 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3351 			return 1;
3352 		/* An attempt to write a 1 to a reserved bit raises #GP */
3353 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3354 			return 1;
3355 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3356 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3357 		vcpu->arch.mci_ctl2_banks[offset] = data;
3358 		break;
3359 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3360 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3361 		if (msr > last_msr)
3362 			return 1;
3363 
3364 		/*
3365 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3366 		 * values are architecturally undefined.  But, some Linux
3367 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3368 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3369 		 * other bits in order to avoid an uncaught #GP in the guest.
3370 		 *
3371 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3372 		 * single-bit ECC data errors.
3373 		 */
3374 		if (is_mci_control_msr(msr) &&
3375 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3376 			return 1;
3377 
3378 		/*
3379 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3380 		 * AMD-based CPUs allow non-zero values, but if and only if
3381 		 * HWCR[McStatusWrEn] is set.
3382 		 */
3383 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3384 		    data != 0 && !can_set_mci_status(vcpu))
3385 			return 1;
3386 
3387 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3388 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3389 		vcpu->arch.mce_banks[offset] = data;
3390 		break;
3391 	default:
3392 		return 1;
3393 	}
3394 	return 0;
3395 }
3396 
3397 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3398 {
3399 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3400 
3401 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3402 }
3403 
3404 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3405 {
3406 	gpa_t gpa = data & ~0x3f;
3407 
3408 	/* Bits 4:5 are reserved, Should be zero */
3409 	if (data & 0x30)
3410 		return 1;
3411 
3412 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3413 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3414 		return 1;
3415 
3416 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3417 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3418 		return 1;
3419 
3420 	if (!lapic_in_kernel(vcpu))
3421 		return data ? 1 : 0;
3422 
3423 	vcpu->arch.apf.msr_en_val = data;
3424 
3425 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3426 		kvm_clear_async_pf_completion_queue(vcpu);
3427 		kvm_async_pf_hash_reset(vcpu);
3428 		return 0;
3429 	}
3430 
3431 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3432 					sizeof(u64)))
3433 		return 1;
3434 
3435 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3436 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3437 
3438 	kvm_async_pf_wakeup_all(vcpu);
3439 
3440 	return 0;
3441 }
3442 
3443 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3444 {
3445 	/* Bits 8-63 are reserved */
3446 	if (data >> 8)
3447 		return 1;
3448 
3449 	if (!lapic_in_kernel(vcpu))
3450 		return 1;
3451 
3452 	vcpu->arch.apf.msr_int_val = data;
3453 
3454 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3455 
3456 	return 0;
3457 }
3458 
3459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3460 {
3461 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3462 	vcpu->arch.time = 0;
3463 }
3464 
3465 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3466 {
3467 	++vcpu->stat.tlb_flush;
3468 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3469 
3470 	/* Flushing all ASIDs flushes the current ASID... */
3471 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3472 }
3473 
3474 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3475 {
3476 	++vcpu->stat.tlb_flush;
3477 
3478 	if (!tdp_enabled) {
3479 		/*
3480 		 * A TLB flush on behalf of the guest is equivalent to
3481 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3482 		 * a forced sync of the shadow page tables.  Ensure all the
3483 		 * roots are synced and the guest TLB in hardware is clean.
3484 		 */
3485 		kvm_mmu_sync_roots(vcpu);
3486 		kvm_mmu_sync_prev_roots(vcpu);
3487 	}
3488 
3489 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3490 
3491 	/*
3492 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3493 	 * grained flushing.
3494 	 */
3495 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3496 }
3497 
3498 
3499 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3500 {
3501 	++vcpu->stat.tlb_flush;
3502 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3503 }
3504 
3505 /*
3506  * Service "local" TLB flush requests, which are specific to the current MMU
3507  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3508  * TLB flushes that are targeted at an MMU context also need to be serviced
3509  * prior before nested VM-Enter/VM-Exit.
3510  */
3511 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3512 {
3513 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3514 		kvm_vcpu_flush_tlb_current(vcpu);
3515 
3516 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3517 		kvm_vcpu_flush_tlb_guest(vcpu);
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3520 
3521 static void record_steal_time(struct kvm_vcpu *vcpu)
3522 {
3523 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3524 	struct kvm_steal_time __user *st;
3525 	struct kvm_memslots *slots;
3526 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3527 	u64 steal;
3528 	u32 version;
3529 
3530 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3531 		kvm_xen_runstate_set_running(vcpu);
3532 		return;
3533 	}
3534 
3535 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3536 		return;
3537 
3538 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3539 		return;
3540 
3541 	slots = kvm_memslots(vcpu->kvm);
3542 
3543 	if (unlikely(slots->generation != ghc->generation ||
3544 		     gpa != ghc->gpa ||
3545 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3546 		/* We rely on the fact that it fits in a single page. */
3547 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3548 
3549 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3550 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3551 			return;
3552 	}
3553 
3554 	st = (struct kvm_steal_time __user *)ghc->hva;
3555 	/*
3556 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3557 	 * expensive IPIs.
3558 	 */
3559 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3560 		u8 st_preempted = 0;
3561 		int err = -EFAULT;
3562 
3563 		if (!user_access_begin(st, sizeof(*st)))
3564 			return;
3565 
3566 		asm volatile("1: xchgb %0, %2\n"
3567 			     "xor %1, %1\n"
3568 			     "2:\n"
3569 			     _ASM_EXTABLE_UA(1b, 2b)
3570 			     : "+q" (st_preempted),
3571 			       "+&r" (err),
3572 			       "+m" (st->preempted));
3573 		if (err)
3574 			goto out;
3575 
3576 		user_access_end();
3577 
3578 		vcpu->arch.st.preempted = 0;
3579 
3580 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3581 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3582 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3583 			kvm_vcpu_flush_tlb_guest(vcpu);
3584 
3585 		if (!user_access_begin(st, sizeof(*st)))
3586 			goto dirty;
3587 	} else {
3588 		if (!user_access_begin(st, sizeof(*st)))
3589 			return;
3590 
3591 		unsafe_put_user(0, &st->preempted, out);
3592 		vcpu->arch.st.preempted = 0;
3593 	}
3594 
3595 	unsafe_get_user(version, &st->version, out);
3596 	if (version & 1)
3597 		version += 1;  /* first time write, random junk */
3598 
3599 	version += 1;
3600 	unsafe_put_user(version, &st->version, out);
3601 
3602 	smp_wmb();
3603 
3604 	unsafe_get_user(steal, &st->steal, out);
3605 	steal += current->sched_info.run_delay -
3606 		vcpu->arch.st.last_steal;
3607 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3608 	unsafe_put_user(steal, &st->steal, out);
3609 
3610 	version += 1;
3611 	unsafe_put_user(version, &st->version, out);
3612 
3613  out:
3614 	user_access_end();
3615  dirty:
3616 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3617 }
3618 
3619 static bool kvm_is_msr_to_save(u32 msr_index)
3620 {
3621 	unsigned int i;
3622 
3623 	for (i = 0; i < num_msrs_to_save; i++) {
3624 		if (msrs_to_save[i] == msr_index)
3625 			return true;
3626 	}
3627 
3628 	return false;
3629 }
3630 
3631 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3632 {
3633 	u32 msr = msr_info->index;
3634 	u64 data = msr_info->data;
3635 
3636 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3637 		return kvm_xen_write_hypercall_page(vcpu, data);
3638 
3639 	switch (msr) {
3640 	case MSR_AMD64_NB_CFG:
3641 	case MSR_IA32_UCODE_WRITE:
3642 	case MSR_VM_HSAVE_PA:
3643 	case MSR_AMD64_PATCH_LOADER:
3644 	case MSR_AMD64_BU_CFG2:
3645 	case MSR_AMD64_DC_CFG:
3646 	case MSR_F15H_EX_CFG:
3647 		break;
3648 
3649 	case MSR_IA32_UCODE_REV:
3650 		if (msr_info->host_initiated)
3651 			vcpu->arch.microcode_version = data;
3652 		break;
3653 	case MSR_IA32_ARCH_CAPABILITIES:
3654 		if (!msr_info->host_initiated)
3655 			return 1;
3656 		vcpu->arch.arch_capabilities = data;
3657 		break;
3658 	case MSR_IA32_PERF_CAPABILITIES:
3659 		if (!msr_info->host_initiated)
3660 			return 1;
3661 		if (data & ~kvm_caps.supported_perf_cap)
3662 			return 1;
3663 
3664 		/*
3665 		 * Note, this is not just a performance optimization!  KVM
3666 		 * disallows changing feature MSRs after the vCPU has run; PMU
3667 		 * refresh will bug the VM if called after the vCPU has run.
3668 		 */
3669 		if (vcpu->arch.perf_capabilities == data)
3670 			break;
3671 
3672 		vcpu->arch.perf_capabilities = data;
3673 		kvm_pmu_refresh(vcpu);
3674 		break;
3675 	case MSR_IA32_PRED_CMD:
3676 		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3677 			return 1;
3678 
3679 		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3680 			return 1;
3681 		if (!data)
3682 			break;
3683 
3684 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3685 		break;
3686 	case MSR_IA32_FLUSH_CMD:
3687 		if (!msr_info->host_initiated &&
3688 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3689 			return 1;
3690 
3691 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3692 			return 1;
3693 		if (!data)
3694 			break;
3695 
3696 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3697 		break;
3698 	case MSR_EFER:
3699 		return set_efer(vcpu, msr_info);
3700 	case MSR_K7_HWCR:
3701 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3702 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3703 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3704 
3705 		/* Handle McStatusWrEn */
3706 		if (data == BIT_ULL(18)) {
3707 			vcpu->arch.msr_hwcr = data;
3708 		} else if (data != 0) {
3709 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3710 			return 1;
3711 		}
3712 		break;
3713 	case MSR_FAM10H_MMIO_CONF_BASE:
3714 		if (data != 0) {
3715 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3716 			return 1;
3717 		}
3718 		break;
3719 	case MSR_IA32_CR_PAT:
3720 		if (!kvm_pat_valid(data))
3721 			return 1;
3722 
3723 		vcpu->arch.pat = data;
3724 		break;
3725 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3726 	case MSR_MTRRdefType:
3727 		return kvm_mtrr_set_msr(vcpu, msr, data);
3728 	case MSR_IA32_APICBASE:
3729 		return kvm_set_apic_base(vcpu, msr_info);
3730 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3731 		return kvm_x2apic_msr_write(vcpu, msr, data);
3732 	case MSR_IA32_TSC_DEADLINE:
3733 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3734 		break;
3735 	case MSR_IA32_TSC_ADJUST:
3736 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3737 			if (!msr_info->host_initiated) {
3738 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3739 				adjust_tsc_offset_guest(vcpu, adj);
3740 				/* Before back to guest, tsc_timestamp must be adjusted
3741 				 * as well, otherwise guest's percpu pvclock time could jump.
3742 				 */
3743 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3744 			}
3745 			vcpu->arch.ia32_tsc_adjust_msr = data;
3746 		}
3747 		break;
3748 	case MSR_IA32_MISC_ENABLE: {
3749 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3750 
3751 		if (!msr_info->host_initiated) {
3752 			/* RO bits */
3753 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3754 				return 1;
3755 
3756 			/* R bits, i.e. writes are ignored, but don't fault. */
3757 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3758 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3759 		}
3760 
3761 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3762 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3763 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3764 				return 1;
3765 			vcpu->arch.ia32_misc_enable_msr = data;
3766 			kvm_update_cpuid_runtime(vcpu);
3767 		} else {
3768 			vcpu->arch.ia32_misc_enable_msr = data;
3769 		}
3770 		break;
3771 	}
3772 	case MSR_IA32_SMBASE:
3773 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3774 			return 1;
3775 		vcpu->arch.smbase = data;
3776 		break;
3777 	case MSR_IA32_POWER_CTL:
3778 		vcpu->arch.msr_ia32_power_ctl = data;
3779 		break;
3780 	case MSR_IA32_TSC:
3781 		if (msr_info->host_initiated) {
3782 			kvm_synchronize_tsc(vcpu, data);
3783 		} else {
3784 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3785 			adjust_tsc_offset_guest(vcpu, adj);
3786 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3787 		}
3788 		break;
3789 	case MSR_IA32_XSS:
3790 		if (!msr_info->host_initiated &&
3791 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3792 			return 1;
3793 		/*
3794 		 * KVM supports exposing PT to the guest, but does not support
3795 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3796 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3797 		 */
3798 		if (data & ~kvm_caps.supported_xss)
3799 			return 1;
3800 		vcpu->arch.ia32_xss = data;
3801 		kvm_update_cpuid_runtime(vcpu);
3802 		break;
3803 	case MSR_SMI_COUNT:
3804 		if (!msr_info->host_initiated)
3805 			return 1;
3806 		vcpu->arch.smi_count = data;
3807 		break;
3808 	case MSR_KVM_WALL_CLOCK_NEW:
3809 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3810 			return 1;
3811 
3812 		vcpu->kvm->arch.wall_clock = data;
3813 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3814 		break;
3815 	case MSR_KVM_WALL_CLOCK:
3816 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3817 			return 1;
3818 
3819 		vcpu->kvm->arch.wall_clock = data;
3820 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3821 		break;
3822 	case MSR_KVM_SYSTEM_TIME_NEW:
3823 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3824 			return 1;
3825 
3826 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3827 		break;
3828 	case MSR_KVM_SYSTEM_TIME:
3829 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3830 			return 1;
3831 
3832 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3833 		break;
3834 	case MSR_KVM_ASYNC_PF_EN:
3835 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3836 			return 1;
3837 
3838 		if (kvm_pv_enable_async_pf(vcpu, data))
3839 			return 1;
3840 		break;
3841 	case MSR_KVM_ASYNC_PF_INT:
3842 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3843 			return 1;
3844 
3845 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3846 			return 1;
3847 		break;
3848 	case MSR_KVM_ASYNC_PF_ACK:
3849 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3850 			return 1;
3851 		if (data & 0x1) {
3852 			vcpu->arch.apf.pageready_pending = false;
3853 			kvm_check_async_pf_completion(vcpu);
3854 		}
3855 		break;
3856 	case MSR_KVM_STEAL_TIME:
3857 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3858 			return 1;
3859 
3860 		if (unlikely(!sched_info_on()))
3861 			return 1;
3862 
3863 		if (data & KVM_STEAL_RESERVED_MASK)
3864 			return 1;
3865 
3866 		vcpu->arch.st.msr_val = data;
3867 
3868 		if (!(data & KVM_MSR_ENABLED))
3869 			break;
3870 
3871 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3872 
3873 		break;
3874 	case MSR_KVM_PV_EOI_EN:
3875 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3876 			return 1;
3877 
3878 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3879 			return 1;
3880 		break;
3881 
3882 	case MSR_KVM_POLL_CONTROL:
3883 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3884 			return 1;
3885 
3886 		/* only enable bit supported */
3887 		if (data & (-1ULL << 1))
3888 			return 1;
3889 
3890 		vcpu->arch.msr_kvm_poll_control = data;
3891 		break;
3892 
3893 	case MSR_IA32_MCG_CTL:
3894 	case MSR_IA32_MCG_STATUS:
3895 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3896 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3897 		return set_msr_mce(vcpu, msr_info);
3898 
3899 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3900 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3901 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3902 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3903 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3904 			return kvm_pmu_set_msr(vcpu, msr_info);
3905 
3906 		if (data)
3907 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3908 		break;
3909 	case MSR_K7_CLK_CTL:
3910 		/*
3911 		 * Ignore all writes to this no longer documented MSR.
3912 		 * Writes are only relevant for old K7 processors,
3913 		 * all pre-dating SVM, but a recommended workaround from
3914 		 * AMD for these chips. It is possible to specify the
3915 		 * affected processor models on the command line, hence
3916 		 * the need to ignore the workaround.
3917 		 */
3918 		break;
3919 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3920 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3921 	case HV_X64_MSR_SYNDBG_OPTIONS:
3922 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3923 	case HV_X64_MSR_CRASH_CTL:
3924 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3925 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3926 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3927 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3928 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3929 		return kvm_hv_set_msr_common(vcpu, msr, data,
3930 					     msr_info->host_initiated);
3931 	case MSR_IA32_BBL_CR_CTL3:
3932 		/* Drop writes to this legacy MSR -- see rdmsr
3933 		 * counterpart for further detail.
3934 		 */
3935 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3936 		break;
3937 	case MSR_AMD64_OSVW_ID_LENGTH:
3938 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3939 			return 1;
3940 		vcpu->arch.osvw.length = data;
3941 		break;
3942 	case MSR_AMD64_OSVW_STATUS:
3943 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3944 			return 1;
3945 		vcpu->arch.osvw.status = data;
3946 		break;
3947 	case MSR_PLATFORM_INFO:
3948 		if (!msr_info->host_initiated ||
3949 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3950 		     cpuid_fault_enabled(vcpu)))
3951 			return 1;
3952 		vcpu->arch.msr_platform_info = data;
3953 		break;
3954 	case MSR_MISC_FEATURES_ENABLES:
3955 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3956 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3957 		     !supports_cpuid_fault(vcpu)))
3958 			return 1;
3959 		vcpu->arch.msr_misc_features_enables = data;
3960 		break;
3961 #ifdef CONFIG_X86_64
3962 	case MSR_IA32_XFD:
3963 		if (!msr_info->host_initiated &&
3964 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3965 			return 1;
3966 
3967 		if (data & ~kvm_guest_supported_xfd(vcpu))
3968 			return 1;
3969 
3970 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3971 		break;
3972 	case MSR_IA32_XFD_ERR:
3973 		if (!msr_info->host_initiated &&
3974 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3975 			return 1;
3976 
3977 		if (data & ~kvm_guest_supported_xfd(vcpu))
3978 			return 1;
3979 
3980 		vcpu->arch.guest_fpu.xfd_err = data;
3981 		break;
3982 #endif
3983 	default:
3984 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3985 			return kvm_pmu_set_msr(vcpu, msr_info);
3986 
3987 		/*
3988 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3989 		 * as to-be-saved, even if an MSRs isn't fully supported.
3990 		 */
3991 		if (msr_info->host_initiated && !data &&
3992 		    kvm_is_msr_to_save(msr))
3993 			break;
3994 
3995 		return KVM_MSR_RET_INVALID;
3996 	}
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4000 
4001 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4002 {
4003 	u64 data;
4004 	u64 mcg_cap = vcpu->arch.mcg_cap;
4005 	unsigned bank_num = mcg_cap & 0xff;
4006 	u32 offset, last_msr;
4007 
4008 	switch (msr) {
4009 	case MSR_IA32_P5_MC_ADDR:
4010 	case MSR_IA32_P5_MC_TYPE:
4011 		data = 0;
4012 		break;
4013 	case MSR_IA32_MCG_CAP:
4014 		data = vcpu->arch.mcg_cap;
4015 		break;
4016 	case MSR_IA32_MCG_CTL:
4017 		if (!(mcg_cap & MCG_CTL_P) && !host)
4018 			return 1;
4019 		data = vcpu->arch.mcg_ctl;
4020 		break;
4021 	case MSR_IA32_MCG_STATUS:
4022 		data = vcpu->arch.mcg_status;
4023 		break;
4024 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4025 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4026 		if (msr > last_msr)
4027 			return 1;
4028 
4029 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4030 			return 1;
4031 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4032 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4033 		data = vcpu->arch.mci_ctl2_banks[offset];
4034 		break;
4035 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4036 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4037 		if (msr > last_msr)
4038 			return 1;
4039 
4040 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4041 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4042 		data = vcpu->arch.mce_banks[offset];
4043 		break;
4044 	default:
4045 		return 1;
4046 	}
4047 	*pdata = data;
4048 	return 0;
4049 }
4050 
4051 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4052 {
4053 	switch (msr_info->index) {
4054 	case MSR_IA32_PLATFORM_ID:
4055 	case MSR_IA32_EBL_CR_POWERON:
4056 	case MSR_IA32_LASTBRANCHFROMIP:
4057 	case MSR_IA32_LASTBRANCHTOIP:
4058 	case MSR_IA32_LASTINTFROMIP:
4059 	case MSR_IA32_LASTINTTOIP:
4060 	case MSR_AMD64_SYSCFG:
4061 	case MSR_K8_TSEG_ADDR:
4062 	case MSR_K8_TSEG_MASK:
4063 	case MSR_VM_HSAVE_PA:
4064 	case MSR_K8_INT_PENDING_MSG:
4065 	case MSR_AMD64_NB_CFG:
4066 	case MSR_FAM10H_MMIO_CONF_BASE:
4067 	case MSR_AMD64_BU_CFG2:
4068 	case MSR_IA32_PERF_CTL:
4069 	case MSR_AMD64_DC_CFG:
4070 	case MSR_F15H_EX_CFG:
4071 	/*
4072 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4073 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4074 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4075 	 * so for existing CPU-specific MSRs.
4076 	 */
4077 	case MSR_RAPL_POWER_UNIT:
4078 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4079 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4080 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4081 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4082 		msr_info->data = 0;
4083 		break;
4084 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4085 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4086 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4087 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4088 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4089 			return kvm_pmu_get_msr(vcpu, msr_info);
4090 		msr_info->data = 0;
4091 		break;
4092 	case MSR_IA32_UCODE_REV:
4093 		msr_info->data = vcpu->arch.microcode_version;
4094 		break;
4095 	case MSR_IA32_ARCH_CAPABILITIES:
4096 		if (!msr_info->host_initiated &&
4097 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4098 			return 1;
4099 		msr_info->data = vcpu->arch.arch_capabilities;
4100 		break;
4101 	case MSR_IA32_PERF_CAPABILITIES:
4102 		if (!msr_info->host_initiated &&
4103 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4104 			return 1;
4105 		msr_info->data = vcpu->arch.perf_capabilities;
4106 		break;
4107 	case MSR_IA32_POWER_CTL:
4108 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4109 		break;
4110 	case MSR_IA32_TSC: {
4111 		/*
4112 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4113 		 * even when not intercepted. AMD manual doesn't explicitly
4114 		 * state this but appears to behave the same.
4115 		 *
4116 		 * On userspace reads and writes, however, we unconditionally
4117 		 * return L1's TSC value to ensure backwards-compatible
4118 		 * behavior for migration.
4119 		 */
4120 		u64 offset, ratio;
4121 
4122 		if (msr_info->host_initiated) {
4123 			offset = vcpu->arch.l1_tsc_offset;
4124 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4125 		} else {
4126 			offset = vcpu->arch.tsc_offset;
4127 			ratio = vcpu->arch.tsc_scaling_ratio;
4128 		}
4129 
4130 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4131 		break;
4132 	}
4133 	case MSR_IA32_CR_PAT:
4134 		msr_info->data = vcpu->arch.pat;
4135 		break;
4136 	case MSR_MTRRcap:
4137 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4138 	case MSR_MTRRdefType:
4139 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4140 	case 0xcd: /* fsb frequency */
4141 		msr_info->data = 3;
4142 		break;
4143 		/*
4144 		 * MSR_EBC_FREQUENCY_ID
4145 		 * Conservative value valid for even the basic CPU models.
4146 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4147 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4148 		 * and 266MHz for model 3, or 4. Set Core Clock
4149 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4150 		 * 31:24) even though these are only valid for CPU
4151 		 * models > 2, however guests may end up dividing or
4152 		 * multiplying by zero otherwise.
4153 		 */
4154 	case MSR_EBC_FREQUENCY_ID:
4155 		msr_info->data = 1 << 24;
4156 		break;
4157 	case MSR_IA32_APICBASE:
4158 		msr_info->data = kvm_get_apic_base(vcpu);
4159 		break;
4160 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4161 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4162 	case MSR_IA32_TSC_DEADLINE:
4163 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4164 		break;
4165 	case MSR_IA32_TSC_ADJUST:
4166 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4167 		break;
4168 	case MSR_IA32_MISC_ENABLE:
4169 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4170 		break;
4171 	case MSR_IA32_SMBASE:
4172 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4173 			return 1;
4174 		msr_info->data = vcpu->arch.smbase;
4175 		break;
4176 	case MSR_SMI_COUNT:
4177 		msr_info->data = vcpu->arch.smi_count;
4178 		break;
4179 	case MSR_IA32_PERF_STATUS:
4180 		/* TSC increment by tick */
4181 		msr_info->data = 1000ULL;
4182 		/* CPU multiplier */
4183 		msr_info->data |= (((uint64_t)4ULL) << 40);
4184 		break;
4185 	case MSR_EFER:
4186 		msr_info->data = vcpu->arch.efer;
4187 		break;
4188 	case MSR_KVM_WALL_CLOCK:
4189 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4190 			return 1;
4191 
4192 		msr_info->data = vcpu->kvm->arch.wall_clock;
4193 		break;
4194 	case MSR_KVM_WALL_CLOCK_NEW:
4195 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4196 			return 1;
4197 
4198 		msr_info->data = vcpu->kvm->arch.wall_clock;
4199 		break;
4200 	case MSR_KVM_SYSTEM_TIME:
4201 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4202 			return 1;
4203 
4204 		msr_info->data = vcpu->arch.time;
4205 		break;
4206 	case MSR_KVM_SYSTEM_TIME_NEW:
4207 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4208 			return 1;
4209 
4210 		msr_info->data = vcpu->arch.time;
4211 		break;
4212 	case MSR_KVM_ASYNC_PF_EN:
4213 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4214 			return 1;
4215 
4216 		msr_info->data = vcpu->arch.apf.msr_en_val;
4217 		break;
4218 	case MSR_KVM_ASYNC_PF_INT:
4219 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4220 			return 1;
4221 
4222 		msr_info->data = vcpu->arch.apf.msr_int_val;
4223 		break;
4224 	case MSR_KVM_ASYNC_PF_ACK:
4225 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4226 			return 1;
4227 
4228 		msr_info->data = 0;
4229 		break;
4230 	case MSR_KVM_STEAL_TIME:
4231 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4232 			return 1;
4233 
4234 		msr_info->data = vcpu->arch.st.msr_val;
4235 		break;
4236 	case MSR_KVM_PV_EOI_EN:
4237 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4238 			return 1;
4239 
4240 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4241 		break;
4242 	case MSR_KVM_POLL_CONTROL:
4243 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4244 			return 1;
4245 
4246 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4247 		break;
4248 	case MSR_IA32_P5_MC_ADDR:
4249 	case MSR_IA32_P5_MC_TYPE:
4250 	case MSR_IA32_MCG_CAP:
4251 	case MSR_IA32_MCG_CTL:
4252 	case MSR_IA32_MCG_STATUS:
4253 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4254 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4255 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4256 				   msr_info->host_initiated);
4257 	case MSR_IA32_XSS:
4258 		if (!msr_info->host_initiated &&
4259 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4260 			return 1;
4261 		msr_info->data = vcpu->arch.ia32_xss;
4262 		break;
4263 	case MSR_K7_CLK_CTL:
4264 		/*
4265 		 * Provide expected ramp-up count for K7. All other
4266 		 * are set to zero, indicating minimum divisors for
4267 		 * every field.
4268 		 *
4269 		 * This prevents guest kernels on AMD host with CPU
4270 		 * type 6, model 8 and higher from exploding due to
4271 		 * the rdmsr failing.
4272 		 */
4273 		msr_info->data = 0x20000000;
4274 		break;
4275 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4276 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4277 	case HV_X64_MSR_SYNDBG_OPTIONS:
4278 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4279 	case HV_X64_MSR_CRASH_CTL:
4280 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4281 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4282 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4283 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4284 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4285 		return kvm_hv_get_msr_common(vcpu,
4286 					     msr_info->index, &msr_info->data,
4287 					     msr_info->host_initiated);
4288 	case MSR_IA32_BBL_CR_CTL3:
4289 		/* This legacy MSR exists but isn't fully documented in current
4290 		 * silicon.  It is however accessed by winxp in very narrow
4291 		 * scenarios where it sets bit #19, itself documented as
4292 		 * a "reserved" bit.  Best effort attempt to source coherent
4293 		 * read data here should the balance of the register be
4294 		 * interpreted by the guest:
4295 		 *
4296 		 * L2 cache control register 3: 64GB range, 256KB size,
4297 		 * enabled, latency 0x1, configured
4298 		 */
4299 		msr_info->data = 0xbe702111;
4300 		break;
4301 	case MSR_AMD64_OSVW_ID_LENGTH:
4302 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4303 			return 1;
4304 		msr_info->data = vcpu->arch.osvw.length;
4305 		break;
4306 	case MSR_AMD64_OSVW_STATUS:
4307 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4308 			return 1;
4309 		msr_info->data = vcpu->arch.osvw.status;
4310 		break;
4311 	case MSR_PLATFORM_INFO:
4312 		if (!msr_info->host_initiated &&
4313 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4314 			return 1;
4315 		msr_info->data = vcpu->arch.msr_platform_info;
4316 		break;
4317 	case MSR_MISC_FEATURES_ENABLES:
4318 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4319 		break;
4320 	case MSR_K7_HWCR:
4321 		msr_info->data = vcpu->arch.msr_hwcr;
4322 		break;
4323 #ifdef CONFIG_X86_64
4324 	case MSR_IA32_XFD:
4325 		if (!msr_info->host_initiated &&
4326 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4327 			return 1;
4328 
4329 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4330 		break;
4331 	case MSR_IA32_XFD_ERR:
4332 		if (!msr_info->host_initiated &&
4333 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4334 			return 1;
4335 
4336 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4337 		break;
4338 #endif
4339 	default:
4340 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4341 			return kvm_pmu_get_msr(vcpu, msr_info);
4342 
4343 		/*
4344 		 * Userspace is allowed to read MSRs that KVM reports as
4345 		 * to-be-saved, even if an MSR isn't fully supported.
4346 		 */
4347 		if (msr_info->host_initiated &&
4348 		    kvm_is_msr_to_save(msr_info->index)) {
4349 			msr_info->data = 0;
4350 			break;
4351 		}
4352 
4353 		return KVM_MSR_RET_INVALID;
4354 	}
4355 	return 0;
4356 }
4357 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4358 
4359 /*
4360  * Read or write a bunch of msrs. All parameters are kernel addresses.
4361  *
4362  * @return number of msrs set successfully.
4363  */
4364 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4365 		    struct kvm_msr_entry *entries,
4366 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4367 				  unsigned index, u64 *data))
4368 {
4369 	int i;
4370 
4371 	for (i = 0; i < msrs->nmsrs; ++i)
4372 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4373 			break;
4374 
4375 	return i;
4376 }
4377 
4378 /*
4379  * Read or write a bunch of msrs. Parameters are user addresses.
4380  *
4381  * @return number of msrs set successfully.
4382  */
4383 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4384 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4385 				unsigned index, u64 *data),
4386 		  int writeback)
4387 {
4388 	struct kvm_msrs msrs;
4389 	struct kvm_msr_entry *entries;
4390 	unsigned size;
4391 	int r;
4392 
4393 	r = -EFAULT;
4394 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4395 		goto out;
4396 
4397 	r = -E2BIG;
4398 	if (msrs.nmsrs >= MAX_IO_MSRS)
4399 		goto out;
4400 
4401 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4402 	entries = memdup_user(user_msrs->entries, size);
4403 	if (IS_ERR(entries)) {
4404 		r = PTR_ERR(entries);
4405 		goto out;
4406 	}
4407 
4408 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4409 
4410 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4411 		r = -EFAULT;
4412 
4413 	kfree(entries);
4414 out:
4415 	return r;
4416 }
4417 
4418 static inline bool kvm_can_mwait_in_guest(void)
4419 {
4420 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4421 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4422 		boot_cpu_has(X86_FEATURE_ARAT);
4423 }
4424 
4425 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4426 					    struct kvm_cpuid2 __user *cpuid_arg)
4427 {
4428 	struct kvm_cpuid2 cpuid;
4429 	int r;
4430 
4431 	r = -EFAULT;
4432 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4433 		return r;
4434 
4435 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4436 	if (r)
4437 		return r;
4438 
4439 	r = -EFAULT;
4440 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4441 		return r;
4442 
4443 	return 0;
4444 }
4445 
4446 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4447 {
4448 	int r = 0;
4449 
4450 	switch (ext) {
4451 	case KVM_CAP_IRQCHIP:
4452 	case KVM_CAP_HLT:
4453 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4454 	case KVM_CAP_SET_TSS_ADDR:
4455 	case KVM_CAP_EXT_CPUID:
4456 	case KVM_CAP_EXT_EMUL_CPUID:
4457 	case KVM_CAP_CLOCKSOURCE:
4458 	case KVM_CAP_PIT:
4459 	case KVM_CAP_NOP_IO_DELAY:
4460 	case KVM_CAP_MP_STATE:
4461 	case KVM_CAP_SYNC_MMU:
4462 	case KVM_CAP_USER_NMI:
4463 	case KVM_CAP_REINJECT_CONTROL:
4464 	case KVM_CAP_IRQ_INJECT_STATUS:
4465 	case KVM_CAP_IOEVENTFD:
4466 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4467 	case KVM_CAP_PIT2:
4468 	case KVM_CAP_PIT_STATE2:
4469 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4470 	case KVM_CAP_VCPU_EVENTS:
4471 	case KVM_CAP_HYPERV:
4472 	case KVM_CAP_HYPERV_VAPIC:
4473 	case KVM_CAP_HYPERV_SPIN:
4474 	case KVM_CAP_HYPERV_SYNIC:
4475 	case KVM_CAP_HYPERV_SYNIC2:
4476 	case KVM_CAP_HYPERV_VP_INDEX:
4477 	case KVM_CAP_HYPERV_EVENTFD:
4478 	case KVM_CAP_HYPERV_TLBFLUSH:
4479 	case KVM_CAP_HYPERV_SEND_IPI:
4480 	case KVM_CAP_HYPERV_CPUID:
4481 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4482 	case KVM_CAP_SYS_HYPERV_CPUID:
4483 	case KVM_CAP_PCI_SEGMENT:
4484 	case KVM_CAP_DEBUGREGS:
4485 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4486 	case KVM_CAP_XSAVE:
4487 	case KVM_CAP_ASYNC_PF:
4488 	case KVM_CAP_ASYNC_PF_INT:
4489 	case KVM_CAP_GET_TSC_KHZ:
4490 	case KVM_CAP_KVMCLOCK_CTRL:
4491 	case KVM_CAP_READONLY_MEM:
4492 	case KVM_CAP_HYPERV_TIME:
4493 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4494 	case KVM_CAP_TSC_DEADLINE_TIMER:
4495 	case KVM_CAP_DISABLE_QUIRKS:
4496 	case KVM_CAP_SET_BOOT_CPU_ID:
4497  	case KVM_CAP_SPLIT_IRQCHIP:
4498 	case KVM_CAP_IMMEDIATE_EXIT:
4499 	case KVM_CAP_PMU_EVENT_FILTER:
4500 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4501 	case KVM_CAP_GET_MSR_FEATURES:
4502 	case KVM_CAP_MSR_PLATFORM_INFO:
4503 	case KVM_CAP_EXCEPTION_PAYLOAD:
4504 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4505 	case KVM_CAP_SET_GUEST_DEBUG:
4506 	case KVM_CAP_LAST_CPU:
4507 	case KVM_CAP_X86_USER_SPACE_MSR:
4508 	case KVM_CAP_X86_MSR_FILTER:
4509 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4510 #ifdef CONFIG_X86_SGX_KVM
4511 	case KVM_CAP_SGX_ATTRIBUTE:
4512 #endif
4513 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4514 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4515 	case KVM_CAP_SREGS2:
4516 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4517 	case KVM_CAP_VCPU_ATTRIBUTES:
4518 	case KVM_CAP_SYS_ATTRIBUTES:
4519 	case KVM_CAP_VAPIC:
4520 	case KVM_CAP_ENABLE_CAP:
4521 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4522 	case KVM_CAP_IRQFD_RESAMPLE:
4523 		r = 1;
4524 		break;
4525 	case KVM_CAP_EXIT_HYPERCALL:
4526 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4527 		break;
4528 	case KVM_CAP_SET_GUEST_DEBUG2:
4529 		return KVM_GUESTDBG_VALID_MASK;
4530 #ifdef CONFIG_KVM_XEN
4531 	case KVM_CAP_XEN_HVM:
4532 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4533 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4534 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4535 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4536 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4537 		if (sched_info_on())
4538 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4539 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4540 		break;
4541 #endif
4542 	case KVM_CAP_SYNC_REGS:
4543 		r = KVM_SYNC_X86_VALID_FIELDS;
4544 		break;
4545 	case KVM_CAP_ADJUST_CLOCK:
4546 		r = KVM_CLOCK_VALID_FLAGS;
4547 		break;
4548 	case KVM_CAP_X86_DISABLE_EXITS:
4549 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4550 
4551 		if (!mitigate_smt_rsb) {
4552 			r |= KVM_X86_DISABLE_EXITS_HLT |
4553 			     KVM_X86_DISABLE_EXITS_CSTATE;
4554 
4555 			if (kvm_can_mwait_in_guest())
4556 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4557 		}
4558 		break;
4559 	case KVM_CAP_X86_SMM:
4560 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4561 			break;
4562 
4563 		/* SMBASE is usually relocated above 1M on modern chipsets,
4564 		 * and SMM handlers might indeed rely on 4G segment limits,
4565 		 * so do not report SMM to be available if real mode is
4566 		 * emulated via vm86 mode.  Still, do not go to great lengths
4567 		 * to avoid userspace's usage of the feature, because it is a
4568 		 * fringe case that is not enabled except via specific settings
4569 		 * of the module parameters.
4570 		 */
4571 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4572 		break;
4573 	case KVM_CAP_NR_VCPUS:
4574 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4575 		break;
4576 	case KVM_CAP_MAX_VCPUS:
4577 		r = KVM_MAX_VCPUS;
4578 		break;
4579 	case KVM_CAP_MAX_VCPU_ID:
4580 		r = KVM_MAX_VCPU_IDS;
4581 		break;
4582 	case KVM_CAP_PV_MMU:	/* obsolete */
4583 		r = 0;
4584 		break;
4585 	case KVM_CAP_MCE:
4586 		r = KVM_MAX_MCE_BANKS;
4587 		break;
4588 	case KVM_CAP_XCRS:
4589 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4590 		break;
4591 	case KVM_CAP_TSC_CONTROL:
4592 	case KVM_CAP_VM_TSC_CONTROL:
4593 		r = kvm_caps.has_tsc_control;
4594 		break;
4595 	case KVM_CAP_X2APIC_API:
4596 		r = KVM_X2APIC_API_VALID_FLAGS;
4597 		break;
4598 	case KVM_CAP_NESTED_STATE:
4599 		r = kvm_x86_ops.nested_ops->get_state ?
4600 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4601 		break;
4602 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4603 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4604 		break;
4605 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4606 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4607 		break;
4608 	case KVM_CAP_SMALLER_MAXPHYADDR:
4609 		r = (int) allow_smaller_maxphyaddr;
4610 		break;
4611 	case KVM_CAP_STEAL_TIME:
4612 		r = sched_info_on();
4613 		break;
4614 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4615 		if (kvm_caps.has_bus_lock_exit)
4616 			r = KVM_BUS_LOCK_DETECTION_OFF |
4617 			    KVM_BUS_LOCK_DETECTION_EXIT;
4618 		else
4619 			r = 0;
4620 		break;
4621 	case KVM_CAP_XSAVE2: {
4622 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4623 		if (r < sizeof(struct kvm_xsave))
4624 			r = sizeof(struct kvm_xsave);
4625 		break;
4626 	}
4627 	case KVM_CAP_PMU_CAPABILITY:
4628 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4629 		break;
4630 	case KVM_CAP_DISABLE_QUIRKS2:
4631 		r = KVM_X86_VALID_QUIRKS;
4632 		break;
4633 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4634 		r = kvm_caps.has_notify_vmexit;
4635 		break;
4636 	default:
4637 		break;
4638 	}
4639 	return r;
4640 }
4641 
4642 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4643 {
4644 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4645 
4646 	if ((u64)(unsigned long)uaddr != attr->addr)
4647 		return ERR_PTR_USR(-EFAULT);
4648 	return uaddr;
4649 }
4650 
4651 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4652 {
4653 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4654 
4655 	if (attr->group)
4656 		return -ENXIO;
4657 
4658 	if (IS_ERR(uaddr))
4659 		return PTR_ERR(uaddr);
4660 
4661 	switch (attr->attr) {
4662 	case KVM_X86_XCOMP_GUEST_SUPP:
4663 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4664 			return -EFAULT;
4665 		return 0;
4666 	default:
4667 		return -ENXIO;
4668 		break;
4669 	}
4670 }
4671 
4672 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4673 {
4674 	if (attr->group)
4675 		return -ENXIO;
4676 
4677 	switch (attr->attr) {
4678 	case KVM_X86_XCOMP_GUEST_SUPP:
4679 		return 0;
4680 	default:
4681 		return -ENXIO;
4682 	}
4683 }
4684 
4685 long kvm_arch_dev_ioctl(struct file *filp,
4686 			unsigned int ioctl, unsigned long arg)
4687 {
4688 	void __user *argp = (void __user *)arg;
4689 	long r;
4690 
4691 	switch (ioctl) {
4692 	case KVM_GET_MSR_INDEX_LIST: {
4693 		struct kvm_msr_list __user *user_msr_list = argp;
4694 		struct kvm_msr_list msr_list;
4695 		unsigned n;
4696 
4697 		r = -EFAULT;
4698 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4699 			goto out;
4700 		n = msr_list.nmsrs;
4701 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4702 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4703 			goto out;
4704 		r = -E2BIG;
4705 		if (n < msr_list.nmsrs)
4706 			goto out;
4707 		r = -EFAULT;
4708 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4709 				 num_msrs_to_save * sizeof(u32)))
4710 			goto out;
4711 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4712 				 &emulated_msrs,
4713 				 num_emulated_msrs * sizeof(u32)))
4714 			goto out;
4715 		r = 0;
4716 		break;
4717 	}
4718 	case KVM_GET_SUPPORTED_CPUID:
4719 	case KVM_GET_EMULATED_CPUID: {
4720 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4721 		struct kvm_cpuid2 cpuid;
4722 
4723 		r = -EFAULT;
4724 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4725 			goto out;
4726 
4727 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4728 					    ioctl);
4729 		if (r)
4730 			goto out;
4731 
4732 		r = -EFAULT;
4733 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4734 			goto out;
4735 		r = 0;
4736 		break;
4737 	}
4738 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4739 		r = -EFAULT;
4740 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4741 				 sizeof(kvm_caps.supported_mce_cap)))
4742 			goto out;
4743 		r = 0;
4744 		break;
4745 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4746 		struct kvm_msr_list __user *user_msr_list = argp;
4747 		struct kvm_msr_list msr_list;
4748 		unsigned int n;
4749 
4750 		r = -EFAULT;
4751 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4752 			goto out;
4753 		n = msr_list.nmsrs;
4754 		msr_list.nmsrs = num_msr_based_features;
4755 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4756 			goto out;
4757 		r = -E2BIG;
4758 		if (n < msr_list.nmsrs)
4759 			goto out;
4760 		r = -EFAULT;
4761 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4762 				 num_msr_based_features * sizeof(u32)))
4763 			goto out;
4764 		r = 0;
4765 		break;
4766 	}
4767 	case KVM_GET_MSRS:
4768 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4769 		break;
4770 	case KVM_GET_SUPPORTED_HV_CPUID:
4771 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4772 		break;
4773 	case KVM_GET_DEVICE_ATTR: {
4774 		struct kvm_device_attr attr;
4775 		r = -EFAULT;
4776 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4777 			break;
4778 		r = kvm_x86_dev_get_attr(&attr);
4779 		break;
4780 	}
4781 	case KVM_HAS_DEVICE_ATTR: {
4782 		struct kvm_device_attr attr;
4783 		r = -EFAULT;
4784 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4785 			break;
4786 		r = kvm_x86_dev_has_attr(&attr);
4787 		break;
4788 	}
4789 	default:
4790 		r = -EINVAL;
4791 		break;
4792 	}
4793 out:
4794 	return r;
4795 }
4796 
4797 static void wbinvd_ipi(void *garbage)
4798 {
4799 	wbinvd();
4800 }
4801 
4802 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4803 {
4804 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4805 }
4806 
4807 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4808 {
4809 	/* Address WBINVD may be executed by guest */
4810 	if (need_emulate_wbinvd(vcpu)) {
4811 		if (static_call(kvm_x86_has_wbinvd_exit)())
4812 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4813 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4814 			smp_call_function_single(vcpu->cpu,
4815 					wbinvd_ipi, NULL, 1);
4816 	}
4817 
4818 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4819 
4820 	/* Save host pkru register if supported */
4821 	vcpu->arch.host_pkru = read_pkru();
4822 
4823 	/* Apply any externally detected TSC adjustments (due to suspend) */
4824 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4825 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4826 		vcpu->arch.tsc_offset_adjustment = 0;
4827 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4828 	}
4829 
4830 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4831 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4832 				rdtsc() - vcpu->arch.last_host_tsc;
4833 		if (tsc_delta < 0)
4834 			mark_tsc_unstable("KVM discovered backwards TSC");
4835 
4836 		if (kvm_check_tsc_unstable()) {
4837 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4838 						vcpu->arch.last_guest_tsc);
4839 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4840 			vcpu->arch.tsc_catchup = 1;
4841 		}
4842 
4843 		if (kvm_lapic_hv_timer_in_use(vcpu))
4844 			kvm_lapic_restart_hv_timer(vcpu);
4845 
4846 		/*
4847 		 * On a host with synchronized TSC, there is no need to update
4848 		 * kvmclock on vcpu->cpu migration
4849 		 */
4850 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4851 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4852 		if (vcpu->cpu != cpu)
4853 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4854 		vcpu->cpu = cpu;
4855 	}
4856 
4857 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4858 }
4859 
4860 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4861 {
4862 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4863 	struct kvm_steal_time __user *st;
4864 	struct kvm_memslots *slots;
4865 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4866 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4867 
4868 	/*
4869 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4870 	 * an instruction boundary and will not trigger guest emulation of any
4871 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4872 	 * when this is true, for example allowing the vCPU to be marked
4873 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4874 	 */
4875 	if (!vcpu->arch.at_instruction_boundary) {
4876 		vcpu->stat.preemption_other++;
4877 		return;
4878 	}
4879 
4880 	vcpu->stat.preemption_reported++;
4881 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4882 		return;
4883 
4884 	if (vcpu->arch.st.preempted)
4885 		return;
4886 
4887 	/* This happens on process exit */
4888 	if (unlikely(current->mm != vcpu->kvm->mm))
4889 		return;
4890 
4891 	slots = kvm_memslots(vcpu->kvm);
4892 
4893 	if (unlikely(slots->generation != ghc->generation ||
4894 		     gpa != ghc->gpa ||
4895 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4896 		return;
4897 
4898 	st = (struct kvm_steal_time __user *)ghc->hva;
4899 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4900 
4901 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4902 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4903 
4904 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4905 }
4906 
4907 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4908 {
4909 	int idx;
4910 
4911 	if (vcpu->preempted) {
4912 		if (!vcpu->arch.guest_state_protected)
4913 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4914 
4915 		/*
4916 		 * Take the srcu lock as memslots will be accessed to check the gfn
4917 		 * cache generation against the memslots generation.
4918 		 */
4919 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4920 		if (kvm_xen_msr_enabled(vcpu->kvm))
4921 			kvm_xen_runstate_set_preempted(vcpu);
4922 		else
4923 			kvm_steal_time_set_preempted(vcpu);
4924 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4925 	}
4926 
4927 	static_call(kvm_x86_vcpu_put)(vcpu);
4928 	vcpu->arch.last_host_tsc = rdtsc();
4929 }
4930 
4931 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4932 				    struct kvm_lapic_state *s)
4933 {
4934 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4935 
4936 	return kvm_apic_get_state(vcpu, s);
4937 }
4938 
4939 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4940 				    struct kvm_lapic_state *s)
4941 {
4942 	int r;
4943 
4944 	r = kvm_apic_set_state(vcpu, s);
4945 	if (r)
4946 		return r;
4947 	update_cr8_intercept(vcpu);
4948 
4949 	return 0;
4950 }
4951 
4952 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4953 {
4954 	/*
4955 	 * We can accept userspace's request for interrupt injection
4956 	 * as long as we have a place to store the interrupt number.
4957 	 * The actual injection will happen when the CPU is able to
4958 	 * deliver the interrupt.
4959 	 */
4960 	if (kvm_cpu_has_extint(vcpu))
4961 		return false;
4962 
4963 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4964 	return (!lapic_in_kernel(vcpu) ||
4965 		kvm_apic_accept_pic_intr(vcpu));
4966 }
4967 
4968 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4969 {
4970 	/*
4971 	 * Do not cause an interrupt window exit if an exception
4972 	 * is pending or an event needs reinjection; userspace
4973 	 * might want to inject the interrupt manually using KVM_SET_REGS
4974 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4975 	 * instruction boundary and with no events half-injected.
4976 	 */
4977 	return (kvm_arch_interrupt_allowed(vcpu) &&
4978 		kvm_cpu_accept_dm_intr(vcpu) &&
4979 		!kvm_event_needs_reinjection(vcpu) &&
4980 		!kvm_is_exception_pending(vcpu));
4981 }
4982 
4983 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4984 				    struct kvm_interrupt *irq)
4985 {
4986 	if (irq->irq >= KVM_NR_INTERRUPTS)
4987 		return -EINVAL;
4988 
4989 	if (!irqchip_in_kernel(vcpu->kvm)) {
4990 		kvm_queue_interrupt(vcpu, irq->irq, false);
4991 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4992 		return 0;
4993 	}
4994 
4995 	/*
4996 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4997 	 * fail for in-kernel 8259.
4998 	 */
4999 	if (pic_in_kernel(vcpu->kvm))
5000 		return -ENXIO;
5001 
5002 	if (vcpu->arch.pending_external_vector != -1)
5003 		return -EEXIST;
5004 
5005 	vcpu->arch.pending_external_vector = irq->irq;
5006 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5007 	return 0;
5008 }
5009 
5010 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5011 {
5012 	kvm_inject_nmi(vcpu);
5013 
5014 	return 0;
5015 }
5016 
5017 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5018 					   struct kvm_tpr_access_ctl *tac)
5019 {
5020 	if (tac->flags)
5021 		return -EINVAL;
5022 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5023 	return 0;
5024 }
5025 
5026 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5027 					u64 mcg_cap)
5028 {
5029 	int r;
5030 	unsigned bank_num = mcg_cap & 0xff, bank;
5031 
5032 	r = -EINVAL;
5033 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5034 		goto out;
5035 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5036 		goto out;
5037 	r = 0;
5038 	vcpu->arch.mcg_cap = mcg_cap;
5039 	/* Init IA32_MCG_CTL to all 1s */
5040 	if (mcg_cap & MCG_CTL_P)
5041 		vcpu->arch.mcg_ctl = ~(u64)0;
5042 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5043 	for (bank = 0; bank < bank_num; bank++) {
5044 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5045 		if (mcg_cap & MCG_CMCI_P)
5046 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5047 	}
5048 
5049 	kvm_apic_after_set_mcg_cap(vcpu);
5050 
5051 	static_call(kvm_x86_setup_mce)(vcpu);
5052 out:
5053 	return r;
5054 }
5055 
5056 /*
5057  * Validate this is an UCNA (uncorrectable no action) error by checking the
5058  * MCG_STATUS and MCi_STATUS registers:
5059  * - none of the bits for Machine Check Exceptions are set
5060  * - both the VAL (valid) and UC (uncorrectable) bits are set
5061  * MCI_STATUS_PCC - Processor Context Corrupted
5062  * MCI_STATUS_S - Signaled as a Machine Check Exception
5063  * MCI_STATUS_AR - Software recoverable Action Required
5064  */
5065 static bool is_ucna(struct kvm_x86_mce *mce)
5066 {
5067 	return	!mce->mcg_status &&
5068 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5069 		(mce->status & MCI_STATUS_VAL) &&
5070 		(mce->status & MCI_STATUS_UC);
5071 }
5072 
5073 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5074 {
5075 	u64 mcg_cap = vcpu->arch.mcg_cap;
5076 
5077 	banks[1] = mce->status;
5078 	banks[2] = mce->addr;
5079 	banks[3] = mce->misc;
5080 	vcpu->arch.mcg_status = mce->mcg_status;
5081 
5082 	if (!(mcg_cap & MCG_CMCI_P) ||
5083 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5084 		return 0;
5085 
5086 	if (lapic_in_kernel(vcpu))
5087 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5088 
5089 	return 0;
5090 }
5091 
5092 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5093 				      struct kvm_x86_mce *mce)
5094 {
5095 	u64 mcg_cap = vcpu->arch.mcg_cap;
5096 	unsigned bank_num = mcg_cap & 0xff;
5097 	u64 *banks = vcpu->arch.mce_banks;
5098 
5099 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5100 		return -EINVAL;
5101 
5102 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5103 
5104 	if (is_ucna(mce))
5105 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5106 
5107 	/*
5108 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5109 	 * reporting is disabled
5110 	 */
5111 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5112 	    vcpu->arch.mcg_ctl != ~(u64)0)
5113 		return 0;
5114 	/*
5115 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5116 	 * reporting is disabled for the bank
5117 	 */
5118 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5119 		return 0;
5120 	if (mce->status & MCI_STATUS_UC) {
5121 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5122 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5123 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5124 			return 0;
5125 		}
5126 		if (banks[1] & MCI_STATUS_VAL)
5127 			mce->status |= MCI_STATUS_OVER;
5128 		banks[2] = mce->addr;
5129 		banks[3] = mce->misc;
5130 		vcpu->arch.mcg_status = mce->mcg_status;
5131 		banks[1] = mce->status;
5132 		kvm_queue_exception(vcpu, MC_VECTOR);
5133 	} else if (!(banks[1] & MCI_STATUS_VAL)
5134 		   || !(banks[1] & MCI_STATUS_UC)) {
5135 		if (banks[1] & MCI_STATUS_VAL)
5136 			mce->status |= MCI_STATUS_OVER;
5137 		banks[2] = mce->addr;
5138 		banks[3] = mce->misc;
5139 		banks[1] = mce->status;
5140 	} else
5141 		banks[1] |= MCI_STATUS_OVER;
5142 	return 0;
5143 }
5144 
5145 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5146 					       struct kvm_vcpu_events *events)
5147 {
5148 	struct kvm_queued_exception *ex;
5149 
5150 	process_nmi(vcpu);
5151 
5152 #ifdef CONFIG_KVM_SMM
5153 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5154 		process_smi(vcpu);
5155 #endif
5156 
5157 	/*
5158 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5159 	 * the only time there can be two queued exceptions is if there's a
5160 	 * non-exiting _injected_ exception, and a pending exiting exception.
5161 	 * In that case, ignore the VM-Exiting exception as it's an extension
5162 	 * of the injected exception.
5163 	 */
5164 	if (vcpu->arch.exception_vmexit.pending &&
5165 	    !vcpu->arch.exception.pending &&
5166 	    !vcpu->arch.exception.injected)
5167 		ex = &vcpu->arch.exception_vmexit;
5168 	else
5169 		ex = &vcpu->arch.exception;
5170 
5171 	/*
5172 	 * In guest mode, payload delivery should be deferred if the exception
5173 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5174 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5175 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5176 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5177 	 * the payload if the capability hasn't been requested.
5178 	 */
5179 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5180 	    ex->pending && ex->has_payload)
5181 		kvm_deliver_exception_payload(vcpu, ex);
5182 
5183 	memset(events, 0, sizeof(*events));
5184 
5185 	/*
5186 	 * The API doesn't provide the instruction length for software
5187 	 * exceptions, so don't report them. As long as the guest RIP
5188 	 * isn't advanced, we should expect to encounter the exception
5189 	 * again.
5190 	 */
5191 	if (!kvm_exception_is_soft(ex->vector)) {
5192 		events->exception.injected = ex->injected;
5193 		events->exception.pending = ex->pending;
5194 		/*
5195 		 * For ABI compatibility, deliberately conflate
5196 		 * pending and injected exceptions when
5197 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5198 		 */
5199 		if (!vcpu->kvm->arch.exception_payload_enabled)
5200 			events->exception.injected |= ex->pending;
5201 	}
5202 	events->exception.nr = ex->vector;
5203 	events->exception.has_error_code = ex->has_error_code;
5204 	events->exception.error_code = ex->error_code;
5205 	events->exception_has_payload = ex->has_payload;
5206 	events->exception_payload = ex->payload;
5207 
5208 	events->interrupt.injected =
5209 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5210 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5211 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5212 
5213 	events->nmi.injected = vcpu->arch.nmi_injected;
5214 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5215 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5216 
5217 	/* events->sipi_vector is never valid when reporting to user space */
5218 
5219 #ifdef CONFIG_KVM_SMM
5220 	events->smi.smm = is_smm(vcpu);
5221 	events->smi.pending = vcpu->arch.smi_pending;
5222 	events->smi.smm_inside_nmi =
5223 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5224 #endif
5225 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5226 
5227 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5228 			 | KVM_VCPUEVENT_VALID_SHADOW
5229 			 | KVM_VCPUEVENT_VALID_SMM);
5230 	if (vcpu->kvm->arch.exception_payload_enabled)
5231 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5232 	if (vcpu->kvm->arch.triple_fault_event) {
5233 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5234 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5235 	}
5236 }
5237 
5238 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5239 					      struct kvm_vcpu_events *events)
5240 {
5241 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5242 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5243 			      | KVM_VCPUEVENT_VALID_SHADOW
5244 			      | KVM_VCPUEVENT_VALID_SMM
5245 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5246 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5247 		return -EINVAL;
5248 
5249 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5250 		if (!vcpu->kvm->arch.exception_payload_enabled)
5251 			return -EINVAL;
5252 		if (events->exception.pending)
5253 			events->exception.injected = 0;
5254 		else
5255 			events->exception_has_payload = 0;
5256 	} else {
5257 		events->exception.pending = 0;
5258 		events->exception_has_payload = 0;
5259 	}
5260 
5261 	if ((events->exception.injected || events->exception.pending) &&
5262 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5263 		return -EINVAL;
5264 
5265 	/* INITs are latched while in SMM */
5266 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5267 	    (events->smi.smm || events->smi.pending) &&
5268 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5269 		return -EINVAL;
5270 
5271 	process_nmi(vcpu);
5272 
5273 	/*
5274 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5275 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5276 	 * pending exceptions, already-injected exceptions are not subject to
5277 	 * intercpetion.  Note, userspace that conflates pending and injected
5278 	 * is hosed, and will incorrectly convert an injected exception into a
5279 	 * pending exception, which in turn may cause a spurious VM-Exit.
5280 	 */
5281 	vcpu->arch.exception_from_userspace = events->exception.pending;
5282 
5283 	vcpu->arch.exception_vmexit.pending = false;
5284 
5285 	vcpu->arch.exception.injected = events->exception.injected;
5286 	vcpu->arch.exception.pending = events->exception.pending;
5287 	vcpu->arch.exception.vector = events->exception.nr;
5288 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5289 	vcpu->arch.exception.error_code = events->exception.error_code;
5290 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5291 	vcpu->arch.exception.payload = events->exception_payload;
5292 
5293 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5294 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5295 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5296 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5297 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5298 						events->interrupt.shadow);
5299 
5300 	vcpu->arch.nmi_injected = events->nmi.injected;
5301 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5302 		vcpu->arch.nmi_pending = 0;
5303 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5304 		kvm_make_request(KVM_REQ_NMI, vcpu);
5305 	}
5306 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5307 
5308 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5309 	    lapic_in_kernel(vcpu))
5310 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5311 
5312 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5313 #ifdef CONFIG_KVM_SMM
5314 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5315 			kvm_leave_nested(vcpu);
5316 			kvm_smm_changed(vcpu, events->smi.smm);
5317 		}
5318 
5319 		vcpu->arch.smi_pending = events->smi.pending;
5320 
5321 		if (events->smi.smm) {
5322 			if (events->smi.smm_inside_nmi)
5323 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5324 			else
5325 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5326 		}
5327 
5328 #else
5329 		if (events->smi.smm || events->smi.pending ||
5330 		    events->smi.smm_inside_nmi)
5331 			return -EINVAL;
5332 #endif
5333 
5334 		if (lapic_in_kernel(vcpu)) {
5335 			if (events->smi.latched_init)
5336 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5337 			else
5338 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5339 		}
5340 	}
5341 
5342 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5343 		if (!vcpu->kvm->arch.triple_fault_event)
5344 			return -EINVAL;
5345 		if (events->triple_fault.pending)
5346 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5347 		else
5348 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5349 	}
5350 
5351 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5352 
5353 	return 0;
5354 }
5355 
5356 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5357 					     struct kvm_debugregs *dbgregs)
5358 {
5359 	unsigned long val;
5360 
5361 	memset(dbgregs, 0, sizeof(*dbgregs));
5362 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5363 	kvm_get_dr(vcpu, 6, &val);
5364 	dbgregs->dr6 = val;
5365 	dbgregs->dr7 = vcpu->arch.dr7;
5366 }
5367 
5368 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5369 					    struct kvm_debugregs *dbgregs)
5370 {
5371 	if (dbgregs->flags)
5372 		return -EINVAL;
5373 
5374 	if (!kvm_dr6_valid(dbgregs->dr6))
5375 		return -EINVAL;
5376 	if (!kvm_dr7_valid(dbgregs->dr7))
5377 		return -EINVAL;
5378 
5379 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5380 	kvm_update_dr0123(vcpu);
5381 	vcpu->arch.dr6 = dbgregs->dr6;
5382 	vcpu->arch.dr7 = dbgregs->dr7;
5383 	kvm_update_dr7(vcpu);
5384 
5385 	return 0;
5386 }
5387 
5388 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5389 					 struct kvm_xsave *guest_xsave)
5390 {
5391 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5392 		return;
5393 
5394 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5395 				       guest_xsave->region,
5396 				       sizeof(guest_xsave->region),
5397 				       vcpu->arch.pkru);
5398 }
5399 
5400 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5401 					  u8 *state, unsigned int size)
5402 {
5403 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5404 		return;
5405 
5406 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5407 				       state, size, vcpu->arch.pkru);
5408 }
5409 
5410 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5411 					struct kvm_xsave *guest_xsave)
5412 {
5413 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5414 		return 0;
5415 
5416 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5417 					      guest_xsave->region,
5418 					      kvm_caps.supported_xcr0,
5419 					      &vcpu->arch.pkru);
5420 }
5421 
5422 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5423 					struct kvm_xcrs *guest_xcrs)
5424 {
5425 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5426 		guest_xcrs->nr_xcrs = 0;
5427 		return;
5428 	}
5429 
5430 	guest_xcrs->nr_xcrs = 1;
5431 	guest_xcrs->flags = 0;
5432 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5433 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5434 }
5435 
5436 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5437 				       struct kvm_xcrs *guest_xcrs)
5438 {
5439 	int i, r = 0;
5440 
5441 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5442 		return -EINVAL;
5443 
5444 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5445 		return -EINVAL;
5446 
5447 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5448 		/* Only support XCR0 currently */
5449 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5450 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5451 				guest_xcrs->xcrs[i].value);
5452 			break;
5453 		}
5454 	if (r)
5455 		r = -EINVAL;
5456 	return r;
5457 }
5458 
5459 /*
5460  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5461  * stopped by the hypervisor.  This function will be called from the host only.
5462  * EINVAL is returned when the host attempts to set the flag for a guest that
5463  * does not support pv clocks.
5464  */
5465 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5466 {
5467 	if (!vcpu->arch.pv_time.active)
5468 		return -EINVAL;
5469 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5470 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5471 	return 0;
5472 }
5473 
5474 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5475 				 struct kvm_device_attr *attr)
5476 {
5477 	int r;
5478 
5479 	switch (attr->attr) {
5480 	case KVM_VCPU_TSC_OFFSET:
5481 		r = 0;
5482 		break;
5483 	default:
5484 		r = -ENXIO;
5485 	}
5486 
5487 	return r;
5488 }
5489 
5490 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5491 				 struct kvm_device_attr *attr)
5492 {
5493 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5494 	int r;
5495 
5496 	if (IS_ERR(uaddr))
5497 		return PTR_ERR(uaddr);
5498 
5499 	switch (attr->attr) {
5500 	case KVM_VCPU_TSC_OFFSET:
5501 		r = -EFAULT;
5502 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5503 			break;
5504 		r = 0;
5505 		break;
5506 	default:
5507 		r = -ENXIO;
5508 	}
5509 
5510 	return r;
5511 }
5512 
5513 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5514 				 struct kvm_device_attr *attr)
5515 {
5516 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5517 	struct kvm *kvm = vcpu->kvm;
5518 	int r;
5519 
5520 	if (IS_ERR(uaddr))
5521 		return PTR_ERR(uaddr);
5522 
5523 	switch (attr->attr) {
5524 	case KVM_VCPU_TSC_OFFSET: {
5525 		u64 offset, tsc, ns;
5526 		unsigned long flags;
5527 		bool matched;
5528 
5529 		r = -EFAULT;
5530 		if (get_user(offset, uaddr))
5531 			break;
5532 
5533 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5534 
5535 		matched = (vcpu->arch.virtual_tsc_khz &&
5536 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5537 			   kvm->arch.last_tsc_offset == offset);
5538 
5539 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5540 		ns = get_kvmclock_base_ns();
5541 
5542 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5543 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5544 
5545 		r = 0;
5546 		break;
5547 	}
5548 	default:
5549 		r = -ENXIO;
5550 	}
5551 
5552 	return r;
5553 }
5554 
5555 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5556 				      unsigned int ioctl,
5557 				      void __user *argp)
5558 {
5559 	struct kvm_device_attr attr;
5560 	int r;
5561 
5562 	if (copy_from_user(&attr, argp, sizeof(attr)))
5563 		return -EFAULT;
5564 
5565 	if (attr.group != KVM_VCPU_TSC_CTRL)
5566 		return -ENXIO;
5567 
5568 	switch (ioctl) {
5569 	case KVM_HAS_DEVICE_ATTR:
5570 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5571 		break;
5572 	case KVM_GET_DEVICE_ATTR:
5573 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5574 		break;
5575 	case KVM_SET_DEVICE_ATTR:
5576 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5577 		break;
5578 	}
5579 
5580 	return r;
5581 }
5582 
5583 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5584 				     struct kvm_enable_cap *cap)
5585 {
5586 	int r;
5587 	uint16_t vmcs_version;
5588 	void __user *user_ptr;
5589 
5590 	if (cap->flags)
5591 		return -EINVAL;
5592 
5593 	switch (cap->cap) {
5594 	case KVM_CAP_HYPERV_SYNIC2:
5595 		if (cap->args[0])
5596 			return -EINVAL;
5597 		fallthrough;
5598 
5599 	case KVM_CAP_HYPERV_SYNIC:
5600 		if (!irqchip_in_kernel(vcpu->kvm))
5601 			return -EINVAL;
5602 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5603 					     KVM_CAP_HYPERV_SYNIC2);
5604 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5605 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5606 			return -ENOTTY;
5607 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5608 		if (!r) {
5609 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5610 			if (copy_to_user(user_ptr, &vmcs_version,
5611 					 sizeof(vmcs_version)))
5612 				r = -EFAULT;
5613 		}
5614 		return r;
5615 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5616 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5617 			return -ENOTTY;
5618 
5619 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5620 
5621 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5622 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5623 
5624 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5625 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5626 		if (vcpu->arch.pv_cpuid.enforce)
5627 			kvm_update_pv_runtime(vcpu);
5628 
5629 		return 0;
5630 	default:
5631 		return -EINVAL;
5632 	}
5633 }
5634 
5635 long kvm_arch_vcpu_ioctl(struct file *filp,
5636 			 unsigned int ioctl, unsigned long arg)
5637 {
5638 	struct kvm_vcpu *vcpu = filp->private_data;
5639 	void __user *argp = (void __user *)arg;
5640 	int r;
5641 	union {
5642 		struct kvm_sregs2 *sregs2;
5643 		struct kvm_lapic_state *lapic;
5644 		struct kvm_xsave *xsave;
5645 		struct kvm_xcrs *xcrs;
5646 		void *buffer;
5647 	} u;
5648 
5649 	vcpu_load(vcpu);
5650 
5651 	u.buffer = NULL;
5652 	switch (ioctl) {
5653 	case KVM_GET_LAPIC: {
5654 		r = -EINVAL;
5655 		if (!lapic_in_kernel(vcpu))
5656 			goto out;
5657 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5658 				GFP_KERNEL_ACCOUNT);
5659 
5660 		r = -ENOMEM;
5661 		if (!u.lapic)
5662 			goto out;
5663 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5664 		if (r)
5665 			goto out;
5666 		r = -EFAULT;
5667 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5668 			goto out;
5669 		r = 0;
5670 		break;
5671 	}
5672 	case KVM_SET_LAPIC: {
5673 		r = -EINVAL;
5674 		if (!lapic_in_kernel(vcpu))
5675 			goto out;
5676 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5677 		if (IS_ERR(u.lapic)) {
5678 			r = PTR_ERR(u.lapic);
5679 			goto out_nofree;
5680 		}
5681 
5682 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5683 		break;
5684 	}
5685 	case KVM_INTERRUPT: {
5686 		struct kvm_interrupt irq;
5687 
5688 		r = -EFAULT;
5689 		if (copy_from_user(&irq, argp, sizeof(irq)))
5690 			goto out;
5691 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5692 		break;
5693 	}
5694 	case KVM_NMI: {
5695 		r = kvm_vcpu_ioctl_nmi(vcpu);
5696 		break;
5697 	}
5698 	case KVM_SMI: {
5699 		r = kvm_inject_smi(vcpu);
5700 		break;
5701 	}
5702 	case KVM_SET_CPUID: {
5703 		struct kvm_cpuid __user *cpuid_arg = argp;
5704 		struct kvm_cpuid cpuid;
5705 
5706 		r = -EFAULT;
5707 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5708 			goto out;
5709 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5710 		break;
5711 	}
5712 	case KVM_SET_CPUID2: {
5713 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5714 		struct kvm_cpuid2 cpuid;
5715 
5716 		r = -EFAULT;
5717 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5718 			goto out;
5719 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5720 					      cpuid_arg->entries);
5721 		break;
5722 	}
5723 	case KVM_GET_CPUID2: {
5724 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5725 		struct kvm_cpuid2 cpuid;
5726 
5727 		r = -EFAULT;
5728 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5729 			goto out;
5730 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5731 					      cpuid_arg->entries);
5732 		if (r)
5733 			goto out;
5734 		r = -EFAULT;
5735 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5736 			goto out;
5737 		r = 0;
5738 		break;
5739 	}
5740 	case KVM_GET_MSRS: {
5741 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5742 		r = msr_io(vcpu, argp, do_get_msr, 1);
5743 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5744 		break;
5745 	}
5746 	case KVM_SET_MSRS: {
5747 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5748 		r = msr_io(vcpu, argp, do_set_msr, 0);
5749 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5750 		break;
5751 	}
5752 	case KVM_TPR_ACCESS_REPORTING: {
5753 		struct kvm_tpr_access_ctl tac;
5754 
5755 		r = -EFAULT;
5756 		if (copy_from_user(&tac, argp, sizeof(tac)))
5757 			goto out;
5758 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5759 		if (r)
5760 			goto out;
5761 		r = -EFAULT;
5762 		if (copy_to_user(argp, &tac, sizeof(tac)))
5763 			goto out;
5764 		r = 0;
5765 		break;
5766 	};
5767 	case KVM_SET_VAPIC_ADDR: {
5768 		struct kvm_vapic_addr va;
5769 		int idx;
5770 
5771 		r = -EINVAL;
5772 		if (!lapic_in_kernel(vcpu))
5773 			goto out;
5774 		r = -EFAULT;
5775 		if (copy_from_user(&va, argp, sizeof(va)))
5776 			goto out;
5777 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5778 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5779 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5780 		break;
5781 	}
5782 	case KVM_X86_SETUP_MCE: {
5783 		u64 mcg_cap;
5784 
5785 		r = -EFAULT;
5786 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5787 			goto out;
5788 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5789 		break;
5790 	}
5791 	case KVM_X86_SET_MCE: {
5792 		struct kvm_x86_mce mce;
5793 
5794 		r = -EFAULT;
5795 		if (copy_from_user(&mce, argp, sizeof(mce)))
5796 			goto out;
5797 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5798 		break;
5799 	}
5800 	case KVM_GET_VCPU_EVENTS: {
5801 		struct kvm_vcpu_events events;
5802 
5803 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5804 
5805 		r = -EFAULT;
5806 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5807 			break;
5808 		r = 0;
5809 		break;
5810 	}
5811 	case KVM_SET_VCPU_EVENTS: {
5812 		struct kvm_vcpu_events events;
5813 
5814 		r = -EFAULT;
5815 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5816 			break;
5817 
5818 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5819 		break;
5820 	}
5821 	case KVM_GET_DEBUGREGS: {
5822 		struct kvm_debugregs dbgregs;
5823 
5824 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5825 
5826 		r = -EFAULT;
5827 		if (copy_to_user(argp, &dbgregs,
5828 				 sizeof(struct kvm_debugregs)))
5829 			break;
5830 		r = 0;
5831 		break;
5832 	}
5833 	case KVM_SET_DEBUGREGS: {
5834 		struct kvm_debugregs dbgregs;
5835 
5836 		r = -EFAULT;
5837 		if (copy_from_user(&dbgregs, argp,
5838 				   sizeof(struct kvm_debugregs)))
5839 			break;
5840 
5841 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5842 		break;
5843 	}
5844 	case KVM_GET_XSAVE: {
5845 		r = -EINVAL;
5846 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5847 			break;
5848 
5849 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5850 		r = -ENOMEM;
5851 		if (!u.xsave)
5852 			break;
5853 
5854 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5855 
5856 		r = -EFAULT;
5857 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5858 			break;
5859 		r = 0;
5860 		break;
5861 	}
5862 	case KVM_SET_XSAVE: {
5863 		int size = vcpu->arch.guest_fpu.uabi_size;
5864 
5865 		u.xsave = memdup_user(argp, size);
5866 		if (IS_ERR(u.xsave)) {
5867 			r = PTR_ERR(u.xsave);
5868 			goto out_nofree;
5869 		}
5870 
5871 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5872 		break;
5873 	}
5874 
5875 	case KVM_GET_XSAVE2: {
5876 		int size = vcpu->arch.guest_fpu.uabi_size;
5877 
5878 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5879 		r = -ENOMEM;
5880 		if (!u.xsave)
5881 			break;
5882 
5883 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5884 
5885 		r = -EFAULT;
5886 		if (copy_to_user(argp, u.xsave, size))
5887 			break;
5888 
5889 		r = 0;
5890 		break;
5891 	}
5892 
5893 	case KVM_GET_XCRS: {
5894 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5895 		r = -ENOMEM;
5896 		if (!u.xcrs)
5897 			break;
5898 
5899 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5900 
5901 		r = -EFAULT;
5902 		if (copy_to_user(argp, u.xcrs,
5903 				 sizeof(struct kvm_xcrs)))
5904 			break;
5905 		r = 0;
5906 		break;
5907 	}
5908 	case KVM_SET_XCRS: {
5909 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5910 		if (IS_ERR(u.xcrs)) {
5911 			r = PTR_ERR(u.xcrs);
5912 			goto out_nofree;
5913 		}
5914 
5915 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5916 		break;
5917 	}
5918 	case KVM_SET_TSC_KHZ: {
5919 		u32 user_tsc_khz;
5920 
5921 		r = -EINVAL;
5922 		user_tsc_khz = (u32)arg;
5923 
5924 		if (kvm_caps.has_tsc_control &&
5925 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5926 			goto out;
5927 
5928 		if (user_tsc_khz == 0)
5929 			user_tsc_khz = tsc_khz;
5930 
5931 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5932 			r = 0;
5933 
5934 		goto out;
5935 	}
5936 	case KVM_GET_TSC_KHZ: {
5937 		r = vcpu->arch.virtual_tsc_khz;
5938 		goto out;
5939 	}
5940 	case KVM_KVMCLOCK_CTRL: {
5941 		r = kvm_set_guest_paused(vcpu);
5942 		goto out;
5943 	}
5944 	case KVM_ENABLE_CAP: {
5945 		struct kvm_enable_cap cap;
5946 
5947 		r = -EFAULT;
5948 		if (copy_from_user(&cap, argp, sizeof(cap)))
5949 			goto out;
5950 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5951 		break;
5952 	}
5953 	case KVM_GET_NESTED_STATE: {
5954 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5955 		u32 user_data_size;
5956 
5957 		r = -EINVAL;
5958 		if (!kvm_x86_ops.nested_ops->get_state)
5959 			break;
5960 
5961 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5962 		r = -EFAULT;
5963 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5964 			break;
5965 
5966 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5967 						     user_data_size);
5968 		if (r < 0)
5969 			break;
5970 
5971 		if (r > user_data_size) {
5972 			if (put_user(r, &user_kvm_nested_state->size))
5973 				r = -EFAULT;
5974 			else
5975 				r = -E2BIG;
5976 			break;
5977 		}
5978 
5979 		r = 0;
5980 		break;
5981 	}
5982 	case KVM_SET_NESTED_STATE: {
5983 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5984 		struct kvm_nested_state kvm_state;
5985 		int idx;
5986 
5987 		r = -EINVAL;
5988 		if (!kvm_x86_ops.nested_ops->set_state)
5989 			break;
5990 
5991 		r = -EFAULT;
5992 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5993 			break;
5994 
5995 		r = -EINVAL;
5996 		if (kvm_state.size < sizeof(kvm_state))
5997 			break;
5998 
5999 		if (kvm_state.flags &
6000 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6001 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6002 		      | KVM_STATE_NESTED_GIF_SET))
6003 			break;
6004 
6005 		/* nested_run_pending implies guest_mode.  */
6006 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6007 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6008 			break;
6009 
6010 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6011 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6012 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6013 		break;
6014 	}
6015 	case KVM_GET_SUPPORTED_HV_CPUID:
6016 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6017 		break;
6018 #ifdef CONFIG_KVM_XEN
6019 	case KVM_XEN_VCPU_GET_ATTR: {
6020 		struct kvm_xen_vcpu_attr xva;
6021 
6022 		r = -EFAULT;
6023 		if (copy_from_user(&xva, argp, sizeof(xva)))
6024 			goto out;
6025 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6026 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6027 			r = -EFAULT;
6028 		break;
6029 	}
6030 	case KVM_XEN_VCPU_SET_ATTR: {
6031 		struct kvm_xen_vcpu_attr xva;
6032 
6033 		r = -EFAULT;
6034 		if (copy_from_user(&xva, argp, sizeof(xva)))
6035 			goto out;
6036 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6037 		break;
6038 	}
6039 #endif
6040 	case KVM_GET_SREGS2: {
6041 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6042 		r = -ENOMEM;
6043 		if (!u.sregs2)
6044 			goto out;
6045 		__get_sregs2(vcpu, u.sregs2);
6046 		r = -EFAULT;
6047 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6048 			goto out;
6049 		r = 0;
6050 		break;
6051 	}
6052 	case KVM_SET_SREGS2: {
6053 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6054 		if (IS_ERR(u.sregs2)) {
6055 			r = PTR_ERR(u.sregs2);
6056 			u.sregs2 = NULL;
6057 			goto out;
6058 		}
6059 		r = __set_sregs2(vcpu, u.sregs2);
6060 		break;
6061 	}
6062 	case KVM_HAS_DEVICE_ATTR:
6063 	case KVM_GET_DEVICE_ATTR:
6064 	case KVM_SET_DEVICE_ATTR:
6065 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6066 		break;
6067 	default:
6068 		r = -EINVAL;
6069 	}
6070 out:
6071 	kfree(u.buffer);
6072 out_nofree:
6073 	vcpu_put(vcpu);
6074 	return r;
6075 }
6076 
6077 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6078 {
6079 	return VM_FAULT_SIGBUS;
6080 }
6081 
6082 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6083 {
6084 	int ret;
6085 
6086 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6087 		return -EINVAL;
6088 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6089 	return ret;
6090 }
6091 
6092 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6093 					      u64 ident_addr)
6094 {
6095 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6096 }
6097 
6098 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6099 					 unsigned long kvm_nr_mmu_pages)
6100 {
6101 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6102 		return -EINVAL;
6103 
6104 	mutex_lock(&kvm->slots_lock);
6105 
6106 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6107 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6108 
6109 	mutex_unlock(&kvm->slots_lock);
6110 	return 0;
6111 }
6112 
6113 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6114 {
6115 	struct kvm_pic *pic = kvm->arch.vpic;
6116 	int r;
6117 
6118 	r = 0;
6119 	switch (chip->chip_id) {
6120 	case KVM_IRQCHIP_PIC_MASTER:
6121 		memcpy(&chip->chip.pic, &pic->pics[0],
6122 			sizeof(struct kvm_pic_state));
6123 		break;
6124 	case KVM_IRQCHIP_PIC_SLAVE:
6125 		memcpy(&chip->chip.pic, &pic->pics[1],
6126 			sizeof(struct kvm_pic_state));
6127 		break;
6128 	case KVM_IRQCHIP_IOAPIC:
6129 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6130 		break;
6131 	default:
6132 		r = -EINVAL;
6133 		break;
6134 	}
6135 	return r;
6136 }
6137 
6138 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6139 {
6140 	struct kvm_pic *pic = kvm->arch.vpic;
6141 	int r;
6142 
6143 	r = 0;
6144 	switch (chip->chip_id) {
6145 	case KVM_IRQCHIP_PIC_MASTER:
6146 		spin_lock(&pic->lock);
6147 		memcpy(&pic->pics[0], &chip->chip.pic,
6148 			sizeof(struct kvm_pic_state));
6149 		spin_unlock(&pic->lock);
6150 		break;
6151 	case KVM_IRQCHIP_PIC_SLAVE:
6152 		spin_lock(&pic->lock);
6153 		memcpy(&pic->pics[1], &chip->chip.pic,
6154 			sizeof(struct kvm_pic_state));
6155 		spin_unlock(&pic->lock);
6156 		break;
6157 	case KVM_IRQCHIP_IOAPIC:
6158 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6159 		break;
6160 	default:
6161 		r = -EINVAL;
6162 		break;
6163 	}
6164 	kvm_pic_update_irq(pic);
6165 	return r;
6166 }
6167 
6168 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6169 {
6170 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6171 
6172 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6173 
6174 	mutex_lock(&kps->lock);
6175 	memcpy(ps, &kps->channels, sizeof(*ps));
6176 	mutex_unlock(&kps->lock);
6177 	return 0;
6178 }
6179 
6180 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6181 {
6182 	int i;
6183 	struct kvm_pit *pit = kvm->arch.vpit;
6184 
6185 	mutex_lock(&pit->pit_state.lock);
6186 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6187 	for (i = 0; i < 3; i++)
6188 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6189 	mutex_unlock(&pit->pit_state.lock);
6190 	return 0;
6191 }
6192 
6193 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6194 {
6195 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6196 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6197 		sizeof(ps->channels));
6198 	ps->flags = kvm->arch.vpit->pit_state.flags;
6199 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6200 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6201 	return 0;
6202 }
6203 
6204 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6205 {
6206 	int start = 0;
6207 	int i;
6208 	u32 prev_legacy, cur_legacy;
6209 	struct kvm_pit *pit = kvm->arch.vpit;
6210 
6211 	mutex_lock(&pit->pit_state.lock);
6212 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6213 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6214 	if (!prev_legacy && cur_legacy)
6215 		start = 1;
6216 	memcpy(&pit->pit_state.channels, &ps->channels,
6217 	       sizeof(pit->pit_state.channels));
6218 	pit->pit_state.flags = ps->flags;
6219 	for (i = 0; i < 3; i++)
6220 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6221 				   start && i == 0);
6222 	mutex_unlock(&pit->pit_state.lock);
6223 	return 0;
6224 }
6225 
6226 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6227 				 struct kvm_reinject_control *control)
6228 {
6229 	struct kvm_pit *pit = kvm->arch.vpit;
6230 
6231 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6232 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6233 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6234 	 */
6235 	mutex_lock(&pit->pit_state.lock);
6236 	kvm_pit_set_reinject(pit, control->pit_reinject);
6237 	mutex_unlock(&pit->pit_state.lock);
6238 
6239 	return 0;
6240 }
6241 
6242 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6243 {
6244 
6245 	/*
6246 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6247 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6248 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6249 	 * VM-Exit.
6250 	 */
6251 	struct kvm_vcpu *vcpu;
6252 	unsigned long i;
6253 
6254 	kvm_for_each_vcpu(i, vcpu, kvm)
6255 		kvm_vcpu_kick(vcpu);
6256 }
6257 
6258 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6259 			bool line_status)
6260 {
6261 	if (!irqchip_in_kernel(kvm))
6262 		return -ENXIO;
6263 
6264 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6265 					irq_event->irq, irq_event->level,
6266 					line_status);
6267 	return 0;
6268 }
6269 
6270 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6271 			    struct kvm_enable_cap *cap)
6272 {
6273 	int r;
6274 
6275 	if (cap->flags)
6276 		return -EINVAL;
6277 
6278 	switch (cap->cap) {
6279 	case KVM_CAP_DISABLE_QUIRKS2:
6280 		r = -EINVAL;
6281 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6282 			break;
6283 		fallthrough;
6284 	case KVM_CAP_DISABLE_QUIRKS:
6285 		kvm->arch.disabled_quirks = cap->args[0];
6286 		r = 0;
6287 		break;
6288 	case KVM_CAP_SPLIT_IRQCHIP: {
6289 		mutex_lock(&kvm->lock);
6290 		r = -EINVAL;
6291 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6292 			goto split_irqchip_unlock;
6293 		r = -EEXIST;
6294 		if (irqchip_in_kernel(kvm))
6295 			goto split_irqchip_unlock;
6296 		if (kvm->created_vcpus)
6297 			goto split_irqchip_unlock;
6298 		r = kvm_setup_empty_irq_routing(kvm);
6299 		if (r)
6300 			goto split_irqchip_unlock;
6301 		/* Pairs with irqchip_in_kernel. */
6302 		smp_wmb();
6303 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6304 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6305 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6306 		r = 0;
6307 split_irqchip_unlock:
6308 		mutex_unlock(&kvm->lock);
6309 		break;
6310 	}
6311 	case KVM_CAP_X2APIC_API:
6312 		r = -EINVAL;
6313 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6314 			break;
6315 
6316 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6317 			kvm->arch.x2apic_format = true;
6318 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6319 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6320 
6321 		r = 0;
6322 		break;
6323 	case KVM_CAP_X86_DISABLE_EXITS:
6324 		r = -EINVAL;
6325 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6326 			break;
6327 
6328 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6329 			kvm->arch.pause_in_guest = true;
6330 
6331 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6332 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6333 
6334 		if (!mitigate_smt_rsb) {
6335 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6336 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6337 				pr_warn_once(SMT_RSB_MSG);
6338 
6339 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6340 			    kvm_can_mwait_in_guest())
6341 				kvm->arch.mwait_in_guest = true;
6342 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6343 				kvm->arch.hlt_in_guest = true;
6344 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6345 				kvm->arch.cstate_in_guest = true;
6346 		}
6347 
6348 		r = 0;
6349 		break;
6350 	case KVM_CAP_MSR_PLATFORM_INFO:
6351 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6352 		r = 0;
6353 		break;
6354 	case KVM_CAP_EXCEPTION_PAYLOAD:
6355 		kvm->arch.exception_payload_enabled = cap->args[0];
6356 		r = 0;
6357 		break;
6358 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6359 		kvm->arch.triple_fault_event = cap->args[0];
6360 		r = 0;
6361 		break;
6362 	case KVM_CAP_X86_USER_SPACE_MSR:
6363 		r = -EINVAL;
6364 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6365 			break;
6366 		kvm->arch.user_space_msr_mask = cap->args[0];
6367 		r = 0;
6368 		break;
6369 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6370 		r = -EINVAL;
6371 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6372 			break;
6373 
6374 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6375 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6376 			break;
6377 
6378 		if (kvm_caps.has_bus_lock_exit &&
6379 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6380 			kvm->arch.bus_lock_detection_enabled = true;
6381 		r = 0;
6382 		break;
6383 #ifdef CONFIG_X86_SGX_KVM
6384 	case KVM_CAP_SGX_ATTRIBUTE: {
6385 		unsigned long allowed_attributes = 0;
6386 
6387 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6388 		if (r)
6389 			break;
6390 
6391 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6392 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6393 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6394 			kvm->arch.sgx_provisioning_allowed = true;
6395 		else
6396 			r = -EINVAL;
6397 		break;
6398 	}
6399 #endif
6400 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6401 		r = -EINVAL;
6402 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6403 			break;
6404 
6405 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6406 		break;
6407 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6408 		r = -EINVAL;
6409 		if (!kvm_x86_ops.vm_move_enc_context_from)
6410 			break;
6411 
6412 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6413 		break;
6414 	case KVM_CAP_EXIT_HYPERCALL:
6415 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6416 			r = -EINVAL;
6417 			break;
6418 		}
6419 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6420 		r = 0;
6421 		break;
6422 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6423 		r = -EINVAL;
6424 		if (cap->args[0] & ~1)
6425 			break;
6426 		kvm->arch.exit_on_emulation_error = cap->args[0];
6427 		r = 0;
6428 		break;
6429 	case KVM_CAP_PMU_CAPABILITY:
6430 		r = -EINVAL;
6431 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6432 			break;
6433 
6434 		mutex_lock(&kvm->lock);
6435 		if (!kvm->created_vcpus) {
6436 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6437 			r = 0;
6438 		}
6439 		mutex_unlock(&kvm->lock);
6440 		break;
6441 	case KVM_CAP_MAX_VCPU_ID:
6442 		r = -EINVAL;
6443 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6444 			break;
6445 
6446 		mutex_lock(&kvm->lock);
6447 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6448 			r = 0;
6449 		} else if (!kvm->arch.max_vcpu_ids) {
6450 			kvm->arch.max_vcpu_ids = cap->args[0];
6451 			r = 0;
6452 		}
6453 		mutex_unlock(&kvm->lock);
6454 		break;
6455 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6456 		r = -EINVAL;
6457 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6458 			break;
6459 		if (!kvm_caps.has_notify_vmexit)
6460 			break;
6461 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6462 			break;
6463 		mutex_lock(&kvm->lock);
6464 		if (!kvm->created_vcpus) {
6465 			kvm->arch.notify_window = cap->args[0] >> 32;
6466 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6467 			r = 0;
6468 		}
6469 		mutex_unlock(&kvm->lock);
6470 		break;
6471 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6472 		r = -EINVAL;
6473 
6474 		/*
6475 		 * Since the risk of disabling NX hugepages is a guest crashing
6476 		 * the system, ensure the userspace process has permission to
6477 		 * reboot the system.
6478 		 *
6479 		 * Note that unlike the reboot() syscall, the process must have
6480 		 * this capability in the root namespace because exposing
6481 		 * /dev/kvm into a container does not limit the scope of the
6482 		 * iTLB multihit bug to that container. In other words,
6483 		 * this must use capable(), not ns_capable().
6484 		 */
6485 		if (!capable(CAP_SYS_BOOT)) {
6486 			r = -EPERM;
6487 			break;
6488 		}
6489 
6490 		if (cap->args[0])
6491 			break;
6492 
6493 		mutex_lock(&kvm->lock);
6494 		if (!kvm->created_vcpus) {
6495 			kvm->arch.disable_nx_huge_pages = true;
6496 			r = 0;
6497 		}
6498 		mutex_unlock(&kvm->lock);
6499 		break;
6500 	default:
6501 		r = -EINVAL;
6502 		break;
6503 	}
6504 	return r;
6505 }
6506 
6507 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6508 {
6509 	struct kvm_x86_msr_filter *msr_filter;
6510 
6511 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6512 	if (!msr_filter)
6513 		return NULL;
6514 
6515 	msr_filter->default_allow = default_allow;
6516 	return msr_filter;
6517 }
6518 
6519 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6520 {
6521 	u32 i;
6522 
6523 	if (!msr_filter)
6524 		return;
6525 
6526 	for (i = 0; i < msr_filter->count; i++)
6527 		kfree(msr_filter->ranges[i].bitmap);
6528 
6529 	kfree(msr_filter);
6530 }
6531 
6532 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6533 			      struct kvm_msr_filter_range *user_range)
6534 {
6535 	unsigned long *bitmap = NULL;
6536 	size_t bitmap_size;
6537 
6538 	if (!user_range->nmsrs)
6539 		return 0;
6540 
6541 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6542 		return -EINVAL;
6543 
6544 	if (!user_range->flags)
6545 		return -EINVAL;
6546 
6547 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6548 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6549 		return -EINVAL;
6550 
6551 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6552 	if (IS_ERR(bitmap))
6553 		return PTR_ERR(bitmap);
6554 
6555 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6556 		.flags = user_range->flags,
6557 		.base = user_range->base,
6558 		.nmsrs = user_range->nmsrs,
6559 		.bitmap = bitmap,
6560 	};
6561 
6562 	msr_filter->count++;
6563 	return 0;
6564 }
6565 
6566 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6567 				       struct kvm_msr_filter *filter)
6568 {
6569 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6570 	bool default_allow;
6571 	bool empty = true;
6572 	int r;
6573 	u32 i;
6574 
6575 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6576 		return -EINVAL;
6577 
6578 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6579 		empty &= !filter->ranges[i].nmsrs;
6580 
6581 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6582 	if (empty && !default_allow)
6583 		return -EINVAL;
6584 
6585 	new_filter = kvm_alloc_msr_filter(default_allow);
6586 	if (!new_filter)
6587 		return -ENOMEM;
6588 
6589 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6590 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6591 		if (r) {
6592 			kvm_free_msr_filter(new_filter);
6593 			return r;
6594 		}
6595 	}
6596 
6597 	mutex_lock(&kvm->lock);
6598 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6599 					 mutex_is_locked(&kvm->lock));
6600 	mutex_unlock(&kvm->lock);
6601 	synchronize_srcu(&kvm->srcu);
6602 
6603 	kvm_free_msr_filter(old_filter);
6604 
6605 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6606 
6607 	return 0;
6608 }
6609 
6610 #ifdef CONFIG_KVM_COMPAT
6611 /* for KVM_X86_SET_MSR_FILTER */
6612 struct kvm_msr_filter_range_compat {
6613 	__u32 flags;
6614 	__u32 nmsrs;
6615 	__u32 base;
6616 	__u32 bitmap;
6617 };
6618 
6619 struct kvm_msr_filter_compat {
6620 	__u32 flags;
6621 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6622 };
6623 
6624 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6625 
6626 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6627 			      unsigned long arg)
6628 {
6629 	void __user *argp = (void __user *)arg;
6630 	struct kvm *kvm = filp->private_data;
6631 	long r = -ENOTTY;
6632 
6633 	switch (ioctl) {
6634 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6635 		struct kvm_msr_filter __user *user_msr_filter = argp;
6636 		struct kvm_msr_filter_compat filter_compat;
6637 		struct kvm_msr_filter filter;
6638 		int i;
6639 
6640 		if (copy_from_user(&filter_compat, user_msr_filter,
6641 				   sizeof(filter_compat)))
6642 			return -EFAULT;
6643 
6644 		filter.flags = filter_compat.flags;
6645 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6646 			struct kvm_msr_filter_range_compat *cr;
6647 
6648 			cr = &filter_compat.ranges[i];
6649 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6650 				.flags = cr->flags,
6651 				.nmsrs = cr->nmsrs,
6652 				.base = cr->base,
6653 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6654 			};
6655 		}
6656 
6657 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6658 		break;
6659 	}
6660 	}
6661 
6662 	return r;
6663 }
6664 #endif
6665 
6666 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6667 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6668 {
6669 	struct kvm_vcpu *vcpu;
6670 	unsigned long i;
6671 	int ret = 0;
6672 
6673 	mutex_lock(&kvm->lock);
6674 	kvm_for_each_vcpu(i, vcpu, kvm) {
6675 		if (!vcpu->arch.pv_time.active)
6676 			continue;
6677 
6678 		ret = kvm_set_guest_paused(vcpu);
6679 		if (ret) {
6680 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6681 				vcpu->vcpu_id, ret);
6682 			break;
6683 		}
6684 	}
6685 	mutex_unlock(&kvm->lock);
6686 
6687 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6688 }
6689 
6690 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6691 {
6692 	switch (state) {
6693 	case PM_HIBERNATION_PREPARE:
6694 	case PM_SUSPEND_PREPARE:
6695 		return kvm_arch_suspend_notifier(kvm);
6696 	}
6697 
6698 	return NOTIFY_DONE;
6699 }
6700 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6701 
6702 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6703 {
6704 	struct kvm_clock_data data = { 0 };
6705 
6706 	get_kvmclock(kvm, &data);
6707 	if (copy_to_user(argp, &data, sizeof(data)))
6708 		return -EFAULT;
6709 
6710 	return 0;
6711 }
6712 
6713 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6714 {
6715 	struct kvm_arch *ka = &kvm->arch;
6716 	struct kvm_clock_data data;
6717 	u64 now_raw_ns;
6718 
6719 	if (copy_from_user(&data, argp, sizeof(data)))
6720 		return -EFAULT;
6721 
6722 	/*
6723 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6724 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6725 	 */
6726 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6727 		return -EINVAL;
6728 
6729 	kvm_hv_request_tsc_page_update(kvm);
6730 	kvm_start_pvclock_update(kvm);
6731 	pvclock_update_vm_gtod_copy(kvm);
6732 
6733 	/*
6734 	 * This pairs with kvm_guest_time_update(): when masterclock is
6735 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6736 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6737 	 * is slightly ahead) here we risk going negative on unsigned
6738 	 * 'system_time' when 'data.clock' is very small.
6739 	 */
6740 	if (data.flags & KVM_CLOCK_REALTIME) {
6741 		u64 now_real_ns = ktime_get_real_ns();
6742 
6743 		/*
6744 		 * Avoid stepping the kvmclock backwards.
6745 		 */
6746 		if (now_real_ns > data.realtime)
6747 			data.clock += now_real_ns - data.realtime;
6748 	}
6749 
6750 	if (ka->use_master_clock)
6751 		now_raw_ns = ka->master_kernel_ns;
6752 	else
6753 		now_raw_ns = get_kvmclock_base_ns();
6754 	ka->kvmclock_offset = data.clock - now_raw_ns;
6755 	kvm_end_pvclock_update(kvm);
6756 	return 0;
6757 }
6758 
6759 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6760 {
6761 	struct kvm *kvm = filp->private_data;
6762 	void __user *argp = (void __user *)arg;
6763 	int r = -ENOTTY;
6764 	/*
6765 	 * This union makes it completely explicit to gcc-3.x
6766 	 * that these two variables' stack usage should be
6767 	 * combined, not added together.
6768 	 */
6769 	union {
6770 		struct kvm_pit_state ps;
6771 		struct kvm_pit_state2 ps2;
6772 		struct kvm_pit_config pit_config;
6773 	} u;
6774 
6775 	switch (ioctl) {
6776 	case KVM_SET_TSS_ADDR:
6777 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6778 		break;
6779 	case KVM_SET_IDENTITY_MAP_ADDR: {
6780 		u64 ident_addr;
6781 
6782 		mutex_lock(&kvm->lock);
6783 		r = -EINVAL;
6784 		if (kvm->created_vcpus)
6785 			goto set_identity_unlock;
6786 		r = -EFAULT;
6787 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6788 			goto set_identity_unlock;
6789 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6790 set_identity_unlock:
6791 		mutex_unlock(&kvm->lock);
6792 		break;
6793 	}
6794 	case KVM_SET_NR_MMU_PAGES:
6795 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6796 		break;
6797 	case KVM_CREATE_IRQCHIP: {
6798 		mutex_lock(&kvm->lock);
6799 
6800 		r = -EEXIST;
6801 		if (irqchip_in_kernel(kvm))
6802 			goto create_irqchip_unlock;
6803 
6804 		r = -EINVAL;
6805 		if (kvm->created_vcpus)
6806 			goto create_irqchip_unlock;
6807 
6808 		r = kvm_pic_init(kvm);
6809 		if (r)
6810 			goto create_irqchip_unlock;
6811 
6812 		r = kvm_ioapic_init(kvm);
6813 		if (r) {
6814 			kvm_pic_destroy(kvm);
6815 			goto create_irqchip_unlock;
6816 		}
6817 
6818 		r = kvm_setup_default_irq_routing(kvm);
6819 		if (r) {
6820 			kvm_ioapic_destroy(kvm);
6821 			kvm_pic_destroy(kvm);
6822 			goto create_irqchip_unlock;
6823 		}
6824 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6825 		smp_wmb();
6826 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6827 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6828 	create_irqchip_unlock:
6829 		mutex_unlock(&kvm->lock);
6830 		break;
6831 	}
6832 	case KVM_CREATE_PIT:
6833 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6834 		goto create_pit;
6835 	case KVM_CREATE_PIT2:
6836 		r = -EFAULT;
6837 		if (copy_from_user(&u.pit_config, argp,
6838 				   sizeof(struct kvm_pit_config)))
6839 			goto out;
6840 	create_pit:
6841 		mutex_lock(&kvm->lock);
6842 		r = -EEXIST;
6843 		if (kvm->arch.vpit)
6844 			goto create_pit_unlock;
6845 		r = -ENOMEM;
6846 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6847 		if (kvm->arch.vpit)
6848 			r = 0;
6849 	create_pit_unlock:
6850 		mutex_unlock(&kvm->lock);
6851 		break;
6852 	case KVM_GET_IRQCHIP: {
6853 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6854 		struct kvm_irqchip *chip;
6855 
6856 		chip = memdup_user(argp, sizeof(*chip));
6857 		if (IS_ERR(chip)) {
6858 			r = PTR_ERR(chip);
6859 			goto out;
6860 		}
6861 
6862 		r = -ENXIO;
6863 		if (!irqchip_kernel(kvm))
6864 			goto get_irqchip_out;
6865 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6866 		if (r)
6867 			goto get_irqchip_out;
6868 		r = -EFAULT;
6869 		if (copy_to_user(argp, chip, sizeof(*chip)))
6870 			goto get_irqchip_out;
6871 		r = 0;
6872 	get_irqchip_out:
6873 		kfree(chip);
6874 		break;
6875 	}
6876 	case KVM_SET_IRQCHIP: {
6877 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6878 		struct kvm_irqchip *chip;
6879 
6880 		chip = memdup_user(argp, sizeof(*chip));
6881 		if (IS_ERR(chip)) {
6882 			r = PTR_ERR(chip);
6883 			goto out;
6884 		}
6885 
6886 		r = -ENXIO;
6887 		if (!irqchip_kernel(kvm))
6888 			goto set_irqchip_out;
6889 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6890 	set_irqchip_out:
6891 		kfree(chip);
6892 		break;
6893 	}
6894 	case KVM_GET_PIT: {
6895 		r = -EFAULT;
6896 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6897 			goto out;
6898 		r = -ENXIO;
6899 		if (!kvm->arch.vpit)
6900 			goto out;
6901 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6902 		if (r)
6903 			goto out;
6904 		r = -EFAULT;
6905 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6906 			goto out;
6907 		r = 0;
6908 		break;
6909 	}
6910 	case KVM_SET_PIT: {
6911 		r = -EFAULT;
6912 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6913 			goto out;
6914 		mutex_lock(&kvm->lock);
6915 		r = -ENXIO;
6916 		if (!kvm->arch.vpit)
6917 			goto set_pit_out;
6918 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6919 set_pit_out:
6920 		mutex_unlock(&kvm->lock);
6921 		break;
6922 	}
6923 	case KVM_GET_PIT2: {
6924 		r = -ENXIO;
6925 		if (!kvm->arch.vpit)
6926 			goto out;
6927 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6928 		if (r)
6929 			goto out;
6930 		r = -EFAULT;
6931 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6932 			goto out;
6933 		r = 0;
6934 		break;
6935 	}
6936 	case KVM_SET_PIT2: {
6937 		r = -EFAULT;
6938 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6939 			goto out;
6940 		mutex_lock(&kvm->lock);
6941 		r = -ENXIO;
6942 		if (!kvm->arch.vpit)
6943 			goto set_pit2_out;
6944 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6945 set_pit2_out:
6946 		mutex_unlock(&kvm->lock);
6947 		break;
6948 	}
6949 	case KVM_REINJECT_CONTROL: {
6950 		struct kvm_reinject_control control;
6951 		r =  -EFAULT;
6952 		if (copy_from_user(&control, argp, sizeof(control)))
6953 			goto out;
6954 		r = -ENXIO;
6955 		if (!kvm->arch.vpit)
6956 			goto out;
6957 		r = kvm_vm_ioctl_reinject(kvm, &control);
6958 		break;
6959 	}
6960 	case KVM_SET_BOOT_CPU_ID:
6961 		r = 0;
6962 		mutex_lock(&kvm->lock);
6963 		if (kvm->created_vcpus)
6964 			r = -EBUSY;
6965 		else
6966 			kvm->arch.bsp_vcpu_id = arg;
6967 		mutex_unlock(&kvm->lock);
6968 		break;
6969 #ifdef CONFIG_KVM_XEN
6970 	case KVM_XEN_HVM_CONFIG: {
6971 		struct kvm_xen_hvm_config xhc;
6972 		r = -EFAULT;
6973 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6974 			goto out;
6975 		r = kvm_xen_hvm_config(kvm, &xhc);
6976 		break;
6977 	}
6978 	case KVM_XEN_HVM_GET_ATTR: {
6979 		struct kvm_xen_hvm_attr xha;
6980 
6981 		r = -EFAULT;
6982 		if (copy_from_user(&xha, argp, sizeof(xha)))
6983 			goto out;
6984 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6985 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6986 			r = -EFAULT;
6987 		break;
6988 	}
6989 	case KVM_XEN_HVM_SET_ATTR: {
6990 		struct kvm_xen_hvm_attr xha;
6991 
6992 		r = -EFAULT;
6993 		if (copy_from_user(&xha, argp, sizeof(xha)))
6994 			goto out;
6995 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6996 		break;
6997 	}
6998 	case KVM_XEN_HVM_EVTCHN_SEND: {
6999 		struct kvm_irq_routing_xen_evtchn uxe;
7000 
7001 		r = -EFAULT;
7002 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7003 			goto out;
7004 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7005 		break;
7006 	}
7007 #endif
7008 	case KVM_SET_CLOCK:
7009 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7010 		break;
7011 	case KVM_GET_CLOCK:
7012 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7013 		break;
7014 	case KVM_SET_TSC_KHZ: {
7015 		u32 user_tsc_khz;
7016 
7017 		r = -EINVAL;
7018 		user_tsc_khz = (u32)arg;
7019 
7020 		if (kvm_caps.has_tsc_control &&
7021 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7022 			goto out;
7023 
7024 		if (user_tsc_khz == 0)
7025 			user_tsc_khz = tsc_khz;
7026 
7027 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7028 		r = 0;
7029 
7030 		goto out;
7031 	}
7032 	case KVM_GET_TSC_KHZ: {
7033 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7034 		goto out;
7035 	}
7036 	case KVM_MEMORY_ENCRYPT_OP: {
7037 		r = -ENOTTY;
7038 		if (!kvm_x86_ops.mem_enc_ioctl)
7039 			goto out;
7040 
7041 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7042 		break;
7043 	}
7044 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7045 		struct kvm_enc_region region;
7046 
7047 		r = -EFAULT;
7048 		if (copy_from_user(&region, argp, sizeof(region)))
7049 			goto out;
7050 
7051 		r = -ENOTTY;
7052 		if (!kvm_x86_ops.mem_enc_register_region)
7053 			goto out;
7054 
7055 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7056 		break;
7057 	}
7058 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7059 		struct kvm_enc_region region;
7060 
7061 		r = -EFAULT;
7062 		if (copy_from_user(&region, argp, sizeof(region)))
7063 			goto out;
7064 
7065 		r = -ENOTTY;
7066 		if (!kvm_x86_ops.mem_enc_unregister_region)
7067 			goto out;
7068 
7069 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7070 		break;
7071 	}
7072 	case KVM_HYPERV_EVENTFD: {
7073 		struct kvm_hyperv_eventfd hvevfd;
7074 
7075 		r = -EFAULT;
7076 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7077 			goto out;
7078 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7079 		break;
7080 	}
7081 	case KVM_SET_PMU_EVENT_FILTER:
7082 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7083 		break;
7084 	case KVM_X86_SET_MSR_FILTER: {
7085 		struct kvm_msr_filter __user *user_msr_filter = argp;
7086 		struct kvm_msr_filter filter;
7087 
7088 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7089 			return -EFAULT;
7090 
7091 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7092 		break;
7093 	}
7094 	default:
7095 		r = -ENOTTY;
7096 	}
7097 out:
7098 	return r;
7099 }
7100 
7101 static void kvm_probe_feature_msr(u32 msr_index)
7102 {
7103 	struct kvm_msr_entry msr = {
7104 		.index = msr_index,
7105 	};
7106 
7107 	if (kvm_get_msr_feature(&msr))
7108 		return;
7109 
7110 	msr_based_features[num_msr_based_features++] = msr_index;
7111 }
7112 
7113 static void kvm_probe_msr_to_save(u32 msr_index)
7114 {
7115 	u32 dummy[2];
7116 
7117 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7118 		return;
7119 
7120 	/*
7121 	 * Even MSRs that are valid in the host may not be exposed to guests in
7122 	 * some cases.
7123 	 */
7124 	switch (msr_index) {
7125 	case MSR_IA32_BNDCFGS:
7126 		if (!kvm_mpx_supported())
7127 			return;
7128 		break;
7129 	case MSR_TSC_AUX:
7130 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7131 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7132 			return;
7133 		break;
7134 	case MSR_IA32_UMWAIT_CONTROL:
7135 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7136 			return;
7137 		break;
7138 	case MSR_IA32_RTIT_CTL:
7139 	case MSR_IA32_RTIT_STATUS:
7140 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7141 			return;
7142 		break;
7143 	case MSR_IA32_RTIT_CR3_MATCH:
7144 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7145 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7146 			return;
7147 		break;
7148 	case MSR_IA32_RTIT_OUTPUT_BASE:
7149 	case MSR_IA32_RTIT_OUTPUT_MASK:
7150 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7151 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7152 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7153 			return;
7154 		break;
7155 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7156 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7157 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7158 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7159 			return;
7160 		break;
7161 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7162 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7163 		    kvm_pmu_cap.num_counters_gp)
7164 			return;
7165 		break;
7166 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7167 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7168 		    kvm_pmu_cap.num_counters_gp)
7169 			return;
7170 		break;
7171 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7172 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7173 		    kvm_pmu_cap.num_counters_fixed)
7174 			return;
7175 		break;
7176 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7177 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7178 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7179 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7180 			return;
7181 		break;
7182 	case MSR_IA32_XFD:
7183 	case MSR_IA32_XFD_ERR:
7184 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7185 			return;
7186 		break;
7187 	case MSR_IA32_TSX_CTRL:
7188 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7189 			return;
7190 		break;
7191 	default:
7192 		break;
7193 	}
7194 
7195 	msrs_to_save[num_msrs_to_save++] = msr_index;
7196 }
7197 
7198 static void kvm_init_msr_lists(void)
7199 {
7200 	unsigned i;
7201 
7202 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7203 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7204 
7205 	num_msrs_to_save = 0;
7206 	num_emulated_msrs = 0;
7207 	num_msr_based_features = 0;
7208 
7209 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7210 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7211 
7212 	if (enable_pmu) {
7213 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7214 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7215 	}
7216 
7217 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7218 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7219 			continue;
7220 
7221 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7222 	}
7223 
7224 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7225 		kvm_probe_feature_msr(i);
7226 
7227 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7228 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7229 }
7230 
7231 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7232 			   const void *v)
7233 {
7234 	int handled = 0;
7235 	int n;
7236 
7237 	do {
7238 		n = min(len, 8);
7239 		if (!(lapic_in_kernel(vcpu) &&
7240 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7241 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7242 			break;
7243 		handled += n;
7244 		addr += n;
7245 		len -= n;
7246 		v += n;
7247 	} while (len);
7248 
7249 	return handled;
7250 }
7251 
7252 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7253 {
7254 	int handled = 0;
7255 	int n;
7256 
7257 	do {
7258 		n = min(len, 8);
7259 		if (!(lapic_in_kernel(vcpu) &&
7260 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7261 					 addr, n, v))
7262 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7263 			break;
7264 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7265 		handled += n;
7266 		addr += n;
7267 		len -= n;
7268 		v += n;
7269 	} while (len);
7270 
7271 	return handled;
7272 }
7273 
7274 void kvm_set_segment(struct kvm_vcpu *vcpu,
7275 		     struct kvm_segment *var, int seg)
7276 {
7277 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7278 }
7279 
7280 void kvm_get_segment(struct kvm_vcpu *vcpu,
7281 		     struct kvm_segment *var, int seg)
7282 {
7283 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7284 }
7285 
7286 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7287 			   struct x86_exception *exception)
7288 {
7289 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7290 	gpa_t t_gpa;
7291 
7292 	BUG_ON(!mmu_is_nested(vcpu));
7293 
7294 	/* NPT walks are always user-walks */
7295 	access |= PFERR_USER_MASK;
7296 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7297 
7298 	return t_gpa;
7299 }
7300 
7301 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7302 			      struct x86_exception *exception)
7303 {
7304 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7305 
7306 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7307 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7308 }
7309 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7310 
7311 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7312 			       struct x86_exception *exception)
7313 {
7314 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7315 
7316 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7317 	access |= PFERR_WRITE_MASK;
7318 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7319 }
7320 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7321 
7322 /* uses this to access any guest's mapped memory without checking CPL */
7323 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7324 				struct x86_exception *exception)
7325 {
7326 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7327 
7328 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7329 }
7330 
7331 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7332 				      struct kvm_vcpu *vcpu, u64 access,
7333 				      struct x86_exception *exception)
7334 {
7335 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7336 	void *data = val;
7337 	int r = X86EMUL_CONTINUE;
7338 
7339 	while (bytes) {
7340 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7341 		unsigned offset = addr & (PAGE_SIZE-1);
7342 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7343 		int ret;
7344 
7345 		if (gpa == INVALID_GPA)
7346 			return X86EMUL_PROPAGATE_FAULT;
7347 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7348 					       offset, toread);
7349 		if (ret < 0) {
7350 			r = X86EMUL_IO_NEEDED;
7351 			goto out;
7352 		}
7353 
7354 		bytes -= toread;
7355 		data += toread;
7356 		addr += toread;
7357 	}
7358 out:
7359 	return r;
7360 }
7361 
7362 /* used for instruction fetching */
7363 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7364 				gva_t addr, void *val, unsigned int bytes,
7365 				struct x86_exception *exception)
7366 {
7367 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7368 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7369 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7370 	unsigned offset;
7371 	int ret;
7372 
7373 	/* Inline kvm_read_guest_virt_helper for speed.  */
7374 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7375 				    exception);
7376 	if (unlikely(gpa == INVALID_GPA))
7377 		return X86EMUL_PROPAGATE_FAULT;
7378 
7379 	offset = addr & (PAGE_SIZE-1);
7380 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7381 		bytes = (unsigned)PAGE_SIZE - offset;
7382 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7383 				       offset, bytes);
7384 	if (unlikely(ret < 0))
7385 		return X86EMUL_IO_NEEDED;
7386 
7387 	return X86EMUL_CONTINUE;
7388 }
7389 
7390 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7391 			       gva_t addr, void *val, unsigned int bytes,
7392 			       struct x86_exception *exception)
7393 {
7394 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7395 
7396 	/*
7397 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7398 	 * is returned, but our callers are not ready for that and they blindly
7399 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7400 	 * uninitialized kernel stack memory into cr2 and error code.
7401 	 */
7402 	memset(exception, 0, sizeof(*exception));
7403 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7404 					  exception);
7405 }
7406 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7407 
7408 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7409 			     gva_t addr, void *val, unsigned int bytes,
7410 			     struct x86_exception *exception, bool system)
7411 {
7412 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7413 	u64 access = 0;
7414 
7415 	if (system)
7416 		access |= PFERR_IMPLICIT_ACCESS;
7417 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7418 		access |= PFERR_USER_MASK;
7419 
7420 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7421 }
7422 
7423 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7424 				      struct kvm_vcpu *vcpu, u64 access,
7425 				      struct x86_exception *exception)
7426 {
7427 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7428 	void *data = val;
7429 	int r = X86EMUL_CONTINUE;
7430 
7431 	while (bytes) {
7432 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7433 		unsigned offset = addr & (PAGE_SIZE-1);
7434 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7435 		int ret;
7436 
7437 		if (gpa == INVALID_GPA)
7438 			return X86EMUL_PROPAGATE_FAULT;
7439 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7440 		if (ret < 0) {
7441 			r = X86EMUL_IO_NEEDED;
7442 			goto out;
7443 		}
7444 
7445 		bytes -= towrite;
7446 		data += towrite;
7447 		addr += towrite;
7448 	}
7449 out:
7450 	return r;
7451 }
7452 
7453 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7454 			      unsigned int bytes, struct x86_exception *exception,
7455 			      bool system)
7456 {
7457 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7458 	u64 access = PFERR_WRITE_MASK;
7459 
7460 	if (system)
7461 		access |= PFERR_IMPLICIT_ACCESS;
7462 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7463 		access |= PFERR_USER_MASK;
7464 
7465 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7466 					   access, exception);
7467 }
7468 
7469 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7470 				unsigned int bytes, struct x86_exception *exception)
7471 {
7472 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7473 	vcpu->arch.l1tf_flush_l1d = true;
7474 
7475 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7476 					   PFERR_WRITE_MASK, exception);
7477 }
7478 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7479 
7480 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7481 				void *insn, int insn_len)
7482 {
7483 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7484 							    insn, insn_len);
7485 }
7486 
7487 int handle_ud(struct kvm_vcpu *vcpu)
7488 {
7489 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7490 	int fep_flags = READ_ONCE(force_emulation_prefix);
7491 	int emul_type = EMULTYPE_TRAP_UD;
7492 	char sig[5]; /* ud2; .ascii "kvm" */
7493 	struct x86_exception e;
7494 
7495 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7496 		return 1;
7497 
7498 	if (fep_flags &&
7499 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7500 				sig, sizeof(sig), &e) == 0 &&
7501 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7502 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7503 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7504 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7505 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7506 	}
7507 
7508 	return kvm_emulate_instruction(vcpu, emul_type);
7509 }
7510 EXPORT_SYMBOL_GPL(handle_ud);
7511 
7512 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7513 			    gpa_t gpa, bool write)
7514 {
7515 	/* For APIC access vmexit */
7516 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7517 		return 1;
7518 
7519 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7520 		trace_vcpu_match_mmio(gva, gpa, write, true);
7521 		return 1;
7522 	}
7523 
7524 	return 0;
7525 }
7526 
7527 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7528 				gpa_t *gpa, struct x86_exception *exception,
7529 				bool write)
7530 {
7531 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7532 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7533 		| (write ? PFERR_WRITE_MASK : 0);
7534 
7535 	/*
7536 	 * currently PKRU is only applied to ept enabled guest so
7537 	 * there is no pkey in EPT page table for L1 guest or EPT
7538 	 * shadow page table for L2 guest.
7539 	 */
7540 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7541 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7542 			      vcpu->arch.mmio_access, 0, access))) {
7543 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7544 					(gva & (PAGE_SIZE - 1));
7545 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7546 		return 1;
7547 	}
7548 
7549 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7550 
7551 	if (*gpa == INVALID_GPA)
7552 		return -1;
7553 
7554 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7555 }
7556 
7557 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7558 			const void *val, int bytes)
7559 {
7560 	int ret;
7561 
7562 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7563 	if (ret < 0)
7564 		return 0;
7565 	kvm_page_track_write(vcpu, gpa, val, bytes);
7566 	return 1;
7567 }
7568 
7569 struct read_write_emulator_ops {
7570 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7571 				  int bytes);
7572 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7573 				  void *val, int bytes);
7574 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7575 			       int bytes, void *val);
7576 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7577 				    void *val, int bytes);
7578 	bool write;
7579 };
7580 
7581 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7582 {
7583 	if (vcpu->mmio_read_completed) {
7584 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7585 			       vcpu->mmio_fragments[0].gpa, val);
7586 		vcpu->mmio_read_completed = 0;
7587 		return 1;
7588 	}
7589 
7590 	return 0;
7591 }
7592 
7593 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7594 			void *val, int bytes)
7595 {
7596 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7597 }
7598 
7599 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7600 			 void *val, int bytes)
7601 {
7602 	return emulator_write_phys(vcpu, gpa, val, bytes);
7603 }
7604 
7605 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7606 {
7607 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7608 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7609 }
7610 
7611 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7612 			  void *val, int bytes)
7613 {
7614 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7615 	return X86EMUL_IO_NEEDED;
7616 }
7617 
7618 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7619 			   void *val, int bytes)
7620 {
7621 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7622 
7623 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7624 	return X86EMUL_CONTINUE;
7625 }
7626 
7627 static const struct read_write_emulator_ops read_emultor = {
7628 	.read_write_prepare = read_prepare,
7629 	.read_write_emulate = read_emulate,
7630 	.read_write_mmio = vcpu_mmio_read,
7631 	.read_write_exit_mmio = read_exit_mmio,
7632 };
7633 
7634 static const struct read_write_emulator_ops write_emultor = {
7635 	.read_write_emulate = write_emulate,
7636 	.read_write_mmio = write_mmio,
7637 	.read_write_exit_mmio = write_exit_mmio,
7638 	.write = true,
7639 };
7640 
7641 static int emulator_read_write_onepage(unsigned long addr, void *val,
7642 				       unsigned int bytes,
7643 				       struct x86_exception *exception,
7644 				       struct kvm_vcpu *vcpu,
7645 				       const struct read_write_emulator_ops *ops)
7646 {
7647 	gpa_t gpa;
7648 	int handled, ret;
7649 	bool write = ops->write;
7650 	struct kvm_mmio_fragment *frag;
7651 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7652 
7653 	/*
7654 	 * If the exit was due to a NPF we may already have a GPA.
7655 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7656 	 * Note, this cannot be used on string operations since string
7657 	 * operation using rep will only have the initial GPA from the NPF
7658 	 * occurred.
7659 	 */
7660 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7661 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7662 		gpa = ctxt->gpa_val;
7663 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7664 	} else {
7665 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7666 		if (ret < 0)
7667 			return X86EMUL_PROPAGATE_FAULT;
7668 	}
7669 
7670 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7671 		return X86EMUL_CONTINUE;
7672 
7673 	/*
7674 	 * Is this MMIO handled locally?
7675 	 */
7676 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7677 	if (handled == bytes)
7678 		return X86EMUL_CONTINUE;
7679 
7680 	gpa += handled;
7681 	bytes -= handled;
7682 	val += handled;
7683 
7684 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7685 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7686 	frag->gpa = gpa;
7687 	frag->data = val;
7688 	frag->len = bytes;
7689 	return X86EMUL_CONTINUE;
7690 }
7691 
7692 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7693 			unsigned long addr,
7694 			void *val, unsigned int bytes,
7695 			struct x86_exception *exception,
7696 			const struct read_write_emulator_ops *ops)
7697 {
7698 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7699 	gpa_t gpa;
7700 	int rc;
7701 
7702 	if (ops->read_write_prepare &&
7703 		  ops->read_write_prepare(vcpu, val, bytes))
7704 		return X86EMUL_CONTINUE;
7705 
7706 	vcpu->mmio_nr_fragments = 0;
7707 
7708 	/* Crossing a page boundary? */
7709 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7710 		int now;
7711 
7712 		now = -addr & ~PAGE_MASK;
7713 		rc = emulator_read_write_onepage(addr, val, now, exception,
7714 						 vcpu, ops);
7715 
7716 		if (rc != X86EMUL_CONTINUE)
7717 			return rc;
7718 		addr += now;
7719 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7720 			addr = (u32)addr;
7721 		val += now;
7722 		bytes -= now;
7723 	}
7724 
7725 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7726 					 vcpu, ops);
7727 	if (rc != X86EMUL_CONTINUE)
7728 		return rc;
7729 
7730 	if (!vcpu->mmio_nr_fragments)
7731 		return rc;
7732 
7733 	gpa = vcpu->mmio_fragments[0].gpa;
7734 
7735 	vcpu->mmio_needed = 1;
7736 	vcpu->mmio_cur_fragment = 0;
7737 
7738 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7739 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7740 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7741 	vcpu->run->mmio.phys_addr = gpa;
7742 
7743 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7744 }
7745 
7746 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7747 				  unsigned long addr,
7748 				  void *val,
7749 				  unsigned int bytes,
7750 				  struct x86_exception *exception)
7751 {
7752 	return emulator_read_write(ctxt, addr, val, bytes,
7753 				   exception, &read_emultor);
7754 }
7755 
7756 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7757 			    unsigned long addr,
7758 			    const void *val,
7759 			    unsigned int bytes,
7760 			    struct x86_exception *exception)
7761 {
7762 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7763 				   exception, &write_emultor);
7764 }
7765 
7766 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7767 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7768 
7769 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7770 				     unsigned long addr,
7771 				     const void *old,
7772 				     const void *new,
7773 				     unsigned int bytes,
7774 				     struct x86_exception *exception)
7775 {
7776 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7777 	u64 page_line_mask;
7778 	unsigned long hva;
7779 	gpa_t gpa;
7780 	int r;
7781 
7782 	/* guests cmpxchg8b have to be emulated atomically */
7783 	if (bytes > 8 || (bytes & (bytes - 1)))
7784 		goto emul_write;
7785 
7786 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7787 
7788 	if (gpa == INVALID_GPA ||
7789 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7790 		goto emul_write;
7791 
7792 	/*
7793 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7794 	 * enabled in the host and the access splits a cache line.
7795 	 */
7796 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7797 		page_line_mask = ~(cache_line_size() - 1);
7798 	else
7799 		page_line_mask = PAGE_MASK;
7800 
7801 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7802 		goto emul_write;
7803 
7804 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7805 	if (kvm_is_error_hva(hva))
7806 		goto emul_write;
7807 
7808 	hva += offset_in_page(gpa);
7809 
7810 	switch (bytes) {
7811 	case 1:
7812 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7813 		break;
7814 	case 2:
7815 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7816 		break;
7817 	case 4:
7818 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7819 		break;
7820 	case 8:
7821 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7822 		break;
7823 	default:
7824 		BUG();
7825 	}
7826 
7827 	if (r < 0)
7828 		return X86EMUL_UNHANDLEABLE;
7829 	if (r)
7830 		return X86EMUL_CMPXCHG_FAILED;
7831 
7832 	kvm_page_track_write(vcpu, gpa, new, bytes);
7833 
7834 	return X86EMUL_CONTINUE;
7835 
7836 emul_write:
7837 	pr_warn_once("emulating exchange as write\n");
7838 
7839 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7840 }
7841 
7842 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7843 			       unsigned short port, void *data,
7844 			       unsigned int count, bool in)
7845 {
7846 	unsigned i;
7847 	int r;
7848 
7849 	WARN_ON_ONCE(vcpu->arch.pio.count);
7850 	for (i = 0; i < count; i++) {
7851 		if (in)
7852 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7853 		else
7854 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7855 
7856 		if (r) {
7857 			if (i == 0)
7858 				goto userspace_io;
7859 
7860 			/*
7861 			 * Userspace must have unregistered the device while PIO
7862 			 * was running.  Drop writes / read as 0.
7863 			 */
7864 			if (in)
7865 				memset(data, 0, size * (count - i));
7866 			break;
7867 		}
7868 
7869 		data += size;
7870 	}
7871 	return 1;
7872 
7873 userspace_io:
7874 	vcpu->arch.pio.port = port;
7875 	vcpu->arch.pio.in = in;
7876 	vcpu->arch.pio.count = count;
7877 	vcpu->arch.pio.size = size;
7878 
7879 	if (in)
7880 		memset(vcpu->arch.pio_data, 0, size * count);
7881 	else
7882 		memcpy(vcpu->arch.pio_data, data, size * count);
7883 
7884 	vcpu->run->exit_reason = KVM_EXIT_IO;
7885 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7886 	vcpu->run->io.size = size;
7887 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7888 	vcpu->run->io.count = count;
7889 	vcpu->run->io.port = port;
7890 	return 0;
7891 }
7892 
7893 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7894       			   unsigned short port, void *val, unsigned int count)
7895 {
7896 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7897 	if (r)
7898 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7899 
7900 	return r;
7901 }
7902 
7903 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7904 {
7905 	int size = vcpu->arch.pio.size;
7906 	unsigned int count = vcpu->arch.pio.count;
7907 	memcpy(val, vcpu->arch.pio_data, size * count);
7908 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7909 	vcpu->arch.pio.count = 0;
7910 }
7911 
7912 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7913 				    int size, unsigned short port, void *val,
7914 				    unsigned int count)
7915 {
7916 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7917 	if (vcpu->arch.pio.count) {
7918 		/*
7919 		 * Complete a previous iteration that required userspace I/O.
7920 		 * Note, @count isn't guaranteed to match pio.count as userspace
7921 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7922 		 * shenanigans as KVM doesn't support modifying the rep count,
7923 		 * and the emulator ensures @count doesn't overflow the buffer.
7924 		 */
7925 		complete_emulator_pio_in(vcpu, val);
7926 		return 1;
7927 	}
7928 
7929 	return emulator_pio_in(vcpu, size, port, val, count);
7930 }
7931 
7932 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7933 			    unsigned short port, const void *val,
7934 			    unsigned int count)
7935 {
7936 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7937 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7938 }
7939 
7940 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7941 				     int size, unsigned short port,
7942 				     const void *val, unsigned int count)
7943 {
7944 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7945 }
7946 
7947 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7948 {
7949 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7950 }
7951 
7952 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7953 {
7954 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7955 }
7956 
7957 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7958 {
7959 	if (!need_emulate_wbinvd(vcpu))
7960 		return X86EMUL_CONTINUE;
7961 
7962 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7963 		int cpu = get_cpu();
7964 
7965 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7966 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7967 				wbinvd_ipi, NULL, 1);
7968 		put_cpu();
7969 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7970 	} else
7971 		wbinvd();
7972 	return X86EMUL_CONTINUE;
7973 }
7974 
7975 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7976 {
7977 	kvm_emulate_wbinvd_noskip(vcpu);
7978 	return kvm_skip_emulated_instruction(vcpu);
7979 }
7980 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7981 
7982 
7983 
7984 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7985 {
7986 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7987 }
7988 
7989 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7990 			    unsigned long *dest)
7991 {
7992 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7993 }
7994 
7995 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7996 			   unsigned long value)
7997 {
7998 
7999 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8000 }
8001 
8002 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8003 {
8004 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8005 }
8006 
8007 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8008 {
8009 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8010 	unsigned long value;
8011 
8012 	switch (cr) {
8013 	case 0:
8014 		value = kvm_read_cr0(vcpu);
8015 		break;
8016 	case 2:
8017 		value = vcpu->arch.cr2;
8018 		break;
8019 	case 3:
8020 		value = kvm_read_cr3(vcpu);
8021 		break;
8022 	case 4:
8023 		value = kvm_read_cr4(vcpu);
8024 		break;
8025 	case 8:
8026 		value = kvm_get_cr8(vcpu);
8027 		break;
8028 	default:
8029 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8030 		return 0;
8031 	}
8032 
8033 	return value;
8034 }
8035 
8036 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8037 {
8038 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8039 	int res = 0;
8040 
8041 	switch (cr) {
8042 	case 0:
8043 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8044 		break;
8045 	case 2:
8046 		vcpu->arch.cr2 = val;
8047 		break;
8048 	case 3:
8049 		res = kvm_set_cr3(vcpu, val);
8050 		break;
8051 	case 4:
8052 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8053 		break;
8054 	case 8:
8055 		res = kvm_set_cr8(vcpu, val);
8056 		break;
8057 	default:
8058 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8059 		res = -1;
8060 	}
8061 
8062 	return res;
8063 }
8064 
8065 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8066 {
8067 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8068 }
8069 
8070 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8071 {
8072 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8073 }
8074 
8075 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8076 {
8077 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8078 }
8079 
8080 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8081 {
8082 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8083 }
8084 
8085 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8086 {
8087 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8088 }
8089 
8090 static unsigned long emulator_get_cached_segment_base(
8091 	struct x86_emulate_ctxt *ctxt, int seg)
8092 {
8093 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8094 }
8095 
8096 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8097 				 struct desc_struct *desc, u32 *base3,
8098 				 int seg)
8099 {
8100 	struct kvm_segment var;
8101 
8102 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8103 	*selector = var.selector;
8104 
8105 	if (var.unusable) {
8106 		memset(desc, 0, sizeof(*desc));
8107 		if (base3)
8108 			*base3 = 0;
8109 		return false;
8110 	}
8111 
8112 	if (var.g)
8113 		var.limit >>= 12;
8114 	set_desc_limit(desc, var.limit);
8115 	set_desc_base(desc, (unsigned long)var.base);
8116 #ifdef CONFIG_X86_64
8117 	if (base3)
8118 		*base3 = var.base >> 32;
8119 #endif
8120 	desc->type = var.type;
8121 	desc->s = var.s;
8122 	desc->dpl = var.dpl;
8123 	desc->p = var.present;
8124 	desc->avl = var.avl;
8125 	desc->l = var.l;
8126 	desc->d = var.db;
8127 	desc->g = var.g;
8128 
8129 	return true;
8130 }
8131 
8132 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8133 				 struct desc_struct *desc, u32 base3,
8134 				 int seg)
8135 {
8136 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8137 	struct kvm_segment var;
8138 
8139 	var.selector = selector;
8140 	var.base = get_desc_base(desc);
8141 #ifdef CONFIG_X86_64
8142 	var.base |= ((u64)base3) << 32;
8143 #endif
8144 	var.limit = get_desc_limit(desc);
8145 	if (desc->g)
8146 		var.limit = (var.limit << 12) | 0xfff;
8147 	var.type = desc->type;
8148 	var.dpl = desc->dpl;
8149 	var.db = desc->d;
8150 	var.s = desc->s;
8151 	var.l = desc->l;
8152 	var.g = desc->g;
8153 	var.avl = desc->avl;
8154 	var.present = desc->p;
8155 	var.unusable = !var.present;
8156 	var.padding = 0;
8157 
8158 	kvm_set_segment(vcpu, &var, seg);
8159 	return;
8160 }
8161 
8162 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8163 					u32 msr_index, u64 *pdata)
8164 {
8165 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8166 	int r;
8167 
8168 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8169 	if (r < 0)
8170 		return X86EMUL_UNHANDLEABLE;
8171 
8172 	if (r) {
8173 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8174 				       complete_emulated_rdmsr, r))
8175 			return X86EMUL_IO_NEEDED;
8176 
8177 		trace_kvm_msr_read_ex(msr_index);
8178 		return X86EMUL_PROPAGATE_FAULT;
8179 	}
8180 
8181 	trace_kvm_msr_read(msr_index, *pdata);
8182 	return X86EMUL_CONTINUE;
8183 }
8184 
8185 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8186 					u32 msr_index, u64 data)
8187 {
8188 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8189 	int r;
8190 
8191 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8192 	if (r < 0)
8193 		return X86EMUL_UNHANDLEABLE;
8194 
8195 	if (r) {
8196 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8197 				       complete_emulated_msr_access, r))
8198 			return X86EMUL_IO_NEEDED;
8199 
8200 		trace_kvm_msr_write_ex(msr_index, data);
8201 		return X86EMUL_PROPAGATE_FAULT;
8202 	}
8203 
8204 	trace_kvm_msr_write(msr_index, data);
8205 	return X86EMUL_CONTINUE;
8206 }
8207 
8208 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8209 			    u32 msr_index, u64 *pdata)
8210 {
8211 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8212 }
8213 
8214 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8215 			      u32 pmc)
8216 {
8217 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8218 		return 0;
8219 	return -EINVAL;
8220 }
8221 
8222 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8223 			     u32 pmc, u64 *pdata)
8224 {
8225 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8226 }
8227 
8228 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8229 {
8230 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8231 }
8232 
8233 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8234 			      struct x86_instruction_info *info,
8235 			      enum x86_intercept_stage stage)
8236 {
8237 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8238 					    &ctxt->exception);
8239 }
8240 
8241 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8242 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8243 			      bool exact_only)
8244 {
8245 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8246 }
8247 
8248 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8249 {
8250 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8251 }
8252 
8253 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8254 {
8255 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8256 }
8257 
8258 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8259 {
8260 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8261 }
8262 
8263 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8264 {
8265 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8266 }
8267 
8268 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8269 {
8270 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8271 }
8272 
8273 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8274 {
8275 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8276 }
8277 
8278 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8279 {
8280 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8281 }
8282 
8283 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8284 {
8285 	return is_smm(emul_to_vcpu(ctxt));
8286 }
8287 
8288 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8289 {
8290 	return is_guest_mode(emul_to_vcpu(ctxt));
8291 }
8292 
8293 #ifndef CONFIG_KVM_SMM
8294 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8295 {
8296 	WARN_ON_ONCE(1);
8297 	return X86EMUL_UNHANDLEABLE;
8298 }
8299 #endif
8300 
8301 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8302 {
8303 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8304 }
8305 
8306 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8307 {
8308 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8309 }
8310 
8311 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8312 {
8313 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8314 
8315 	if (!kvm->vm_bugged)
8316 		kvm_vm_bugged(kvm);
8317 }
8318 
8319 static const struct x86_emulate_ops emulate_ops = {
8320 	.vm_bugged           = emulator_vm_bugged,
8321 	.read_gpr            = emulator_read_gpr,
8322 	.write_gpr           = emulator_write_gpr,
8323 	.read_std            = emulator_read_std,
8324 	.write_std           = emulator_write_std,
8325 	.fetch               = kvm_fetch_guest_virt,
8326 	.read_emulated       = emulator_read_emulated,
8327 	.write_emulated      = emulator_write_emulated,
8328 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8329 	.invlpg              = emulator_invlpg,
8330 	.pio_in_emulated     = emulator_pio_in_emulated,
8331 	.pio_out_emulated    = emulator_pio_out_emulated,
8332 	.get_segment         = emulator_get_segment,
8333 	.set_segment         = emulator_set_segment,
8334 	.get_cached_segment_base = emulator_get_cached_segment_base,
8335 	.get_gdt             = emulator_get_gdt,
8336 	.get_idt	     = emulator_get_idt,
8337 	.set_gdt             = emulator_set_gdt,
8338 	.set_idt	     = emulator_set_idt,
8339 	.get_cr              = emulator_get_cr,
8340 	.set_cr              = emulator_set_cr,
8341 	.cpl                 = emulator_get_cpl,
8342 	.get_dr              = emulator_get_dr,
8343 	.set_dr              = emulator_set_dr,
8344 	.set_msr_with_filter = emulator_set_msr_with_filter,
8345 	.get_msr_with_filter = emulator_get_msr_with_filter,
8346 	.get_msr             = emulator_get_msr,
8347 	.check_pmc	     = emulator_check_pmc,
8348 	.read_pmc            = emulator_read_pmc,
8349 	.halt                = emulator_halt,
8350 	.wbinvd              = emulator_wbinvd,
8351 	.fix_hypercall       = emulator_fix_hypercall,
8352 	.intercept           = emulator_intercept,
8353 	.get_cpuid           = emulator_get_cpuid,
8354 	.guest_has_long_mode = emulator_guest_has_long_mode,
8355 	.guest_has_movbe     = emulator_guest_has_movbe,
8356 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8357 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8358 	.set_nmi_mask        = emulator_set_nmi_mask,
8359 	.is_smm              = emulator_is_smm,
8360 	.is_guest_mode       = emulator_is_guest_mode,
8361 	.leave_smm           = emulator_leave_smm,
8362 	.triple_fault        = emulator_triple_fault,
8363 	.set_xcr             = emulator_set_xcr,
8364 };
8365 
8366 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8367 {
8368 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8369 	/*
8370 	 * an sti; sti; sequence only disable interrupts for the first
8371 	 * instruction. So, if the last instruction, be it emulated or
8372 	 * not, left the system with the INT_STI flag enabled, it
8373 	 * means that the last instruction is an sti. We should not
8374 	 * leave the flag on in this case. The same goes for mov ss
8375 	 */
8376 	if (int_shadow & mask)
8377 		mask = 0;
8378 	if (unlikely(int_shadow || mask)) {
8379 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8380 		if (!mask)
8381 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8382 	}
8383 }
8384 
8385 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8386 {
8387 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8388 
8389 	if (ctxt->exception.vector == PF_VECTOR)
8390 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8391 	else if (ctxt->exception.error_code_valid)
8392 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8393 				      ctxt->exception.error_code);
8394 	else
8395 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8396 }
8397 
8398 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8399 {
8400 	struct x86_emulate_ctxt *ctxt;
8401 
8402 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8403 	if (!ctxt) {
8404 		pr_err("failed to allocate vcpu's emulator\n");
8405 		return NULL;
8406 	}
8407 
8408 	ctxt->vcpu = vcpu;
8409 	ctxt->ops = &emulate_ops;
8410 	vcpu->arch.emulate_ctxt = ctxt;
8411 
8412 	return ctxt;
8413 }
8414 
8415 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8416 {
8417 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8418 	int cs_db, cs_l;
8419 
8420 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8421 
8422 	ctxt->gpa_available = false;
8423 	ctxt->eflags = kvm_get_rflags(vcpu);
8424 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8425 
8426 	ctxt->eip = kvm_rip_read(vcpu);
8427 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8428 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8429 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8430 		     cs_db				? X86EMUL_MODE_PROT32 :
8431 							  X86EMUL_MODE_PROT16;
8432 	ctxt->interruptibility = 0;
8433 	ctxt->have_exception = false;
8434 	ctxt->exception.vector = -1;
8435 	ctxt->perm_ok = false;
8436 
8437 	init_decode_cache(ctxt);
8438 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8439 }
8440 
8441 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8442 {
8443 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8444 	int ret;
8445 
8446 	init_emulate_ctxt(vcpu);
8447 
8448 	ctxt->op_bytes = 2;
8449 	ctxt->ad_bytes = 2;
8450 	ctxt->_eip = ctxt->eip + inc_eip;
8451 	ret = emulate_int_real(ctxt, irq);
8452 
8453 	if (ret != X86EMUL_CONTINUE) {
8454 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8455 	} else {
8456 		ctxt->eip = ctxt->_eip;
8457 		kvm_rip_write(vcpu, ctxt->eip);
8458 		kvm_set_rflags(vcpu, ctxt->eflags);
8459 	}
8460 }
8461 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8462 
8463 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8464 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8465 {
8466 	struct kvm_run *run = vcpu->run;
8467 	u64 info[5];
8468 	u8 info_start;
8469 
8470 	/*
8471 	 * Zero the whole array used to retrieve the exit info, as casting to
8472 	 * u32 for select entries will leave some chunks uninitialized.
8473 	 */
8474 	memset(&info, 0, sizeof(info));
8475 
8476 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8477 					   &info[2], (u32 *)&info[3],
8478 					   (u32 *)&info[4]);
8479 
8480 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8481 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8482 
8483 	/*
8484 	 * There's currently space for 13 entries, but 5 are used for the exit
8485 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8486 	 * when expanding kvm_run.emulation_failure in the future.
8487 	 */
8488 	if (WARN_ON_ONCE(ndata > 4))
8489 		ndata = 4;
8490 
8491 	/* Always include the flags as a 'data' entry. */
8492 	info_start = 1;
8493 	run->emulation_failure.flags = 0;
8494 
8495 	if (insn_size) {
8496 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8497 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8498 		info_start += 2;
8499 		run->emulation_failure.flags |=
8500 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8501 		run->emulation_failure.insn_size = insn_size;
8502 		memset(run->emulation_failure.insn_bytes, 0x90,
8503 		       sizeof(run->emulation_failure.insn_bytes));
8504 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8505 	}
8506 
8507 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8508 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8509 	       ndata * sizeof(data[0]));
8510 
8511 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8512 }
8513 
8514 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8515 {
8516 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8517 
8518 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8519 				       ctxt->fetch.end - ctxt->fetch.data);
8520 }
8521 
8522 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8523 					  u8 ndata)
8524 {
8525 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8526 }
8527 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8528 
8529 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8530 {
8531 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8532 }
8533 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8534 
8535 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8536 {
8537 	struct kvm *kvm = vcpu->kvm;
8538 
8539 	++vcpu->stat.insn_emulation_fail;
8540 	trace_kvm_emulate_insn_failed(vcpu);
8541 
8542 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8543 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8544 		return 1;
8545 	}
8546 
8547 	if (kvm->arch.exit_on_emulation_error ||
8548 	    (emulation_type & EMULTYPE_SKIP)) {
8549 		prepare_emulation_ctxt_failure_exit(vcpu);
8550 		return 0;
8551 	}
8552 
8553 	kvm_queue_exception(vcpu, UD_VECTOR);
8554 
8555 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8556 		prepare_emulation_ctxt_failure_exit(vcpu);
8557 		return 0;
8558 	}
8559 
8560 	return 1;
8561 }
8562 
8563 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8564 				  int emulation_type)
8565 {
8566 	gpa_t gpa = cr2_or_gpa;
8567 	kvm_pfn_t pfn;
8568 
8569 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8570 		return false;
8571 
8572 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8573 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8574 		return false;
8575 
8576 	if (!vcpu->arch.mmu->root_role.direct) {
8577 		/*
8578 		 * Write permission should be allowed since only
8579 		 * write access need to be emulated.
8580 		 */
8581 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8582 
8583 		/*
8584 		 * If the mapping is invalid in guest, let cpu retry
8585 		 * it to generate fault.
8586 		 */
8587 		if (gpa == INVALID_GPA)
8588 			return true;
8589 	}
8590 
8591 	/*
8592 	 * Do not retry the unhandleable instruction if it faults on the
8593 	 * readonly host memory, otherwise it will goto a infinite loop:
8594 	 * retry instruction -> write #PF -> emulation fail -> retry
8595 	 * instruction -> ...
8596 	 */
8597 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8598 
8599 	/*
8600 	 * If the instruction failed on the error pfn, it can not be fixed,
8601 	 * report the error to userspace.
8602 	 */
8603 	if (is_error_noslot_pfn(pfn))
8604 		return false;
8605 
8606 	kvm_release_pfn_clean(pfn);
8607 
8608 	/* The instructions are well-emulated on direct mmu. */
8609 	if (vcpu->arch.mmu->root_role.direct) {
8610 		unsigned int indirect_shadow_pages;
8611 
8612 		write_lock(&vcpu->kvm->mmu_lock);
8613 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8614 		write_unlock(&vcpu->kvm->mmu_lock);
8615 
8616 		if (indirect_shadow_pages)
8617 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8618 
8619 		return true;
8620 	}
8621 
8622 	/*
8623 	 * if emulation was due to access to shadowed page table
8624 	 * and it failed try to unshadow page and re-enter the
8625 	 * guest to let CPU execute the instruction.
8626 	 */
8627 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8628 
8629 	/*
8630 	 * If the access faults on its page table, it can not
8631 	 * be fixed by unprotecting shadow page and it should
8632 	 * be reported to userspace.
8633 	 */
8634 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8635 }
8636 
8637 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8638 			      gpa_t cr2_or_gpa,  int emulation_type)
8639 {
8640 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8641 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8642 
8643 	last_retry_eip = vcpu->arch.last_retry_eip;
8644 	last_retry_addr = vcpu->arch.last_retry_addr;
8645 
8646 	/*
8647 	 * If the emulation is caused by #PF and it is non-page_table
8648 	 * writing instruction, it means the VM-EXIT is caused by shadow
8649 	 * page protected, we can zap the shadow page and retry this
8650 	 * instruction directly.
8651 	 *
8652 	 * Note: if the guest uses a non-page-table modifying instruction
8653 	 * on the PDE that points to the instruction, then we will unmap
8654 	 * the instruction and go to an infinite loop. So, we cache the
8655 	 * last retried eip and the last fault address, if we meet the eip
8656 	 * and the address again, we can break out of the potential infinite
8657 	 * loop.
8658 	 */
8659 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8660 
8661 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8662 		return false;
8663 
8664 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8665 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8666 		return false;
8667 
8668 	if (x86_page_table_writing_insn(ctxt))
8669 		return false;
8670 
8671 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8672 		return false;
8673 
8674 	vcpu->arch.last_retry_eip = ctxt->eip;
8675 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8676 
8677 	if (!vcpu->arch.mmu->root_role.direct)
8678 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8679 
8680 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8681 
8682 	return true;
8683 }
8684 
8685 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8686 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8687 
8688 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8689 				unsigned long *db)
8690 {
8691 	u32 dr6 = 0;
8692 	int i;
8693 	u32 enable, rwlen;
8694 
8695 	enable = dr7;
8696 	rwlen = dr7 >> 16;
8697 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8698 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8699 			dr6 |= (1 << i);
8700 	return dr6;
8701 }
8702 
8703 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8704 {
8705 	struct kvm_run *kvm_run = vcpu->run;
8706 
8707 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8708 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8709 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8710 		kvm_run->debug.arch.exception = DB_VECTOR;
8711 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8712 		return 0;
8713 	}
8714 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8715 	return 1;
8716 }
8717 
8718 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8719 {
8720 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8721 	int r;
8722 
8723 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8724 	if (unlikely(!r))
8725 		return 0;
8726 
8727 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8728 
8729 	/*
8730 	 * rflags is the old, "raw" value of the flags.  The new value has
8731 	 * not been saved yet.
8732 	 *
8733 	 * This is correct even for TF set by the guest, because "the
8734 	 * processor will not generate this exception after the instruction
8735 	 * that sets the TF flag".
8736 	 */
8737 	if (unlikely(rflags & X86_EFLAGS_TF))
8738 		r = kvm_vcpu_do_singlestep(vcpu);
8739 	return r;
8740 }
8741 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8742 
8743 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8744 {
8745 	u32 shadow;
8746 
8747 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8748 		return true;
8749 
8750 	/*
8751 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8752 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8753 	 * to avoid the relatively expensive CPUID lookup.
8754 	 */
8755 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8756 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8757 	       guest_cpuid_is_intel(vcpu);
8758 }
8759 
8760 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8761 					   int emulation_type, int *r)
8762 {
8763 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8764 
8765 	/*
8766 	 * Do not check for code breakpoints if hardware has already done the
8767 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8768 	 * the instruction has passed all exception checks, and all intercepted
8769 	 * exceptions that trigger emulation have lower priority than code
8770 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8771 	 * means any code breakpoints have already been serviced.
8772 	 *
8773 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8774 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8775 	 * the instruction being emulated.  The intent of forced emulation is
8776 	 * to behave as if KVM intercepted the instruction without an exception
8777 	 * and without a prefix.
8778 	 */
8779 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8780 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8781 		return false;
8782 
8783 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8784 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8785 		struct kvm_run *kvm_run = vcpu->run;
8786 		unsigned long eip = kvm_get_linear_rip(vcpu);
8787 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8788 					   vcpu->arch.guest_debug_dr7,
8789 					   vcpu->arch.eff_db);
8790 
8791 		if (dr6 != 0) {
8792 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8793 			kvm_run->debug.arch.pc = eip;
8794 			kvm_run->debug.arch.exception = DB_VECTOR;
8795 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8796 			*r = 0;
8797 			return true;
8798 		}
8799 	}
8800 
8801 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8802 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8803 		unsigned long eip = kvm_get_linear_rip(vcpu);
8804 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8805 					   vcpu->arch.dr7,
8806 					   vcpu->arch.db);
8807 
8808 		if (dr6 != 0) {
8809 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8810 			*r = 1;
8811 			return true;
8812 		}
8813 	}
8814 
8815 	return false;
8816 }
8817 
8818 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8819 {
8820 	switch (ctxt->opcode_len) {
8821 	case 1:
8822 		switch (ctxt->b) {
8823 		case 0xe4:	/* IN */
8824 		case 0xe5:
8825 		case 0xec:
8826 		case 0xed:
8827 		case 0xe6:	/* OUT */
8828 		case 0xe7:
8829 		case 0xee:
8830 		case 0xef:
8831 		case 0x6c:	/* INS */
8832 		case 0x6d:
8833 		case 0x6e:	/* OUTS */
8834 		case 0x6f:
8835 			return true;
8836 		}
8837 		break;
8838 	case 2:
8839 		switch (ctxt->b) {
8840 		case 0x33:	/* RDPMC */
8841 			return true;
8842 		}
8843 		break;
8844 	}
8845 
8846 	return false;
8847 }
8848 
8849 /*
8850  * Decode an instruction for emulation.  The caller is responsible for handling
8851  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8852  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8853  * code breakpoints have higher priority and thus have already been done by
8854  * hardware.
8855  *
8856  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8857  *     response to a machine check.
8858  */
8859 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8860 				    void *insn, int insn_len)
8861 {
8862 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8863 	int r;
8864 
8865 	init_emulate_ctxt(vcpu);
8866 
8867 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8868 
8869 	trace_kvm_emulate_insn_start(vcpu);
8870 	++vcpu->stat.insn_emulation;
8871 
8872 	return r;
8873 }
8874 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8875 
8876 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8877 			    int emulation_type, void *insn, int insn_len)
8878 {
8879 	int r;
8880 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8881 	bool writeback = true;
8882 
8883 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8884 		return 1;
8885 
8886 	vcpu->arch.l1tf_flush_l1d = true;
8887 
8888 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8889 		kvm_clear_exception_queue(vcpu);
8890 
8891 		/*
8892 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8893 		 * are fault-like and are higher priority than any faults on
8894 		 * the code fetch itself.
8895 		 */
8896 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8897 			return r;
8898 
8899 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8900 						    insn, insn_len);
8901 		if (r != EMULATION_OK)  {
8902 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8903 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8904 				kvm_queue_exception(vcpu, UD_VECTOR);
8905 				return 1;
8906 			}
8907 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8908 						  emulation_type))
8909 				return 1;
8910 
8911 			if (ctxt->have_exception &&
8912 			    !(emulation_type & EMULTYPE_SKIP)) {
8913 				/*
8914 				 * #UD should result in just EMULATION_FAILED, and trap-like
8915 				 * exception should not be encountered during decode.
8916 				 */
8917 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8918 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8919 				inject_emulated_exception(vcpu);
8920 				return 1;
8921 			}
8922 			return handle_emulation_failure(vcpu, emulation_type);
8923 		}
8924 	}
8925 
8926 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8927 	    !is_vmware_backdoor_opcode(ctxt)) {
8928 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8929 		return 1;
8930 	}
8931 
8932 	/*
8933 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8934 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8935 	 * The caller is responsible for updating interruptibility state and
8936 	 * injecting single-step #DBs.
8937 	 */
8938 	if (emulation_type & EMULTYPE_SKIP) {
8939 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8940 			ctxt->eip = (u32)ctxt->_eip;
8941 		else
8942 			ctxt->eip = ctxt->_eip;
8943 
8944 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8945 			r = 1;
8946 			goto writeback;
8947 		}
8948 
8949 		kvm_rip_write(vcpu, ctxt->eip);
8950 		if (ctxt->eflags & X86_EFLAGS_RF)
8951 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8952 		return 1;
8953 	}
8954 
8955 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8956 		return 1;
8957 
8958 	/* this is needed for vmware backdoor interface to work since it
8959 	   changes registers values  during IO operation */
8960 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8961 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8962 		emulator_invalidate_register_cache(ctxt);
8963 	}
8964 
8965 restart:
8966 	if (emulation_type & EMULTYPE_PF) {
8967 		/* Save the faulting GPA (cr2) in the address field */
8968 		ctxt->exception.address = cr2_or_gpa;
8969 
8970 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8971 		if (vcpu->arch.mmu->root_role.direct) {
8972 			ctxt->gpa_available = true;
8973 			ctxt->gpa_val = cr2_or_gpa;
8974 		}
8975 	} else {
8976 		/* Sanitize the address out of an abundance of paranoia. */
8977 		ctxt->exception.address = 0;
8978 	}
8979 
8980 	r = x86_emulate_insn(ctxt);
8981 
8982 	if (r == EMULATION_INTERCEPTED)
8983 		return 1;
8984 
8985 	if (r == EMULATION_FAILED) {
8986 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8987 			return 1;
8988 
8989 		return handle_emulation_failure(vcpu, emulation_type);
8990 	}
8991 
8992 	if (ctxt->have_exception) {
8993 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8994 		vcpu->mmio_needed = false;
8995 		r = 1;
8996 		inject_emulated_exception(vcpu);
8997 	} else if (vcpu->arch.pio.count) {
8998 		if (!vcpu->arch.pio.in) {
8999 			/* FIXME: return into emulator if single-stepping.  */
9000 			vcpu->arch.pio.count = 0;
9001 		} else {
9002 			writeback = false;
9003 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9004 		}
9005 		r = 0;
9006 	} else if (vcpu->mmio_needed) {
9007 		++vcpu->stat.mmio_exits;
9008 
9009 		if (!vcpu->mmio_is_write)
9010 			writeback = false;
9011 		r = 0;
9012 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9013 	} else if (vcpu->arch.complete_userspace_io) {
9014 		writeback = false;
9015 		r = 0;
9016 	} else if (r == EMULATION_RESTART)
9017 		goto restart;
9018 	else
9019 		r = 1;
9020 
9021 writeback:
9022 	if (writeback) {
9023 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9024 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9025 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9026 
9027 		/*
9028 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9029 		 * only supports code breakpoints and general detect #DB, both
9030 		 * of which are fault-like.
9031 		 */
9032 		if (!ctxt->have_exception ||
9033 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9034 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9035 			if (ctxt->is_branch)
9036 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9037 			kvm_rip_write(vcpu, ctxt->eip);
9038 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9039 				r = kvm_vcpu_do_singlestep(vcpu);
9040 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9041 			__kvm_set_rflags(vcpu, ctxt->eflags);
9042 		}
9043 
9044 		/*
9045 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9046 		 * do nothing, and it will be requested again as soon as
9047 		 * the shadow expires.  But we still need to check here,
9048 		 * because POPF has no interrupt shadow.
9049 		 */
9050 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9051 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9052 	} else
9053 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9054 
9055 	return r;
9056 }
9057 
9058 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9059 {
9060 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9061 }
9062 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9063 
9064 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9065 					void *insn, int insn_len)
9066 {
9067 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9068 }
9069 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9070 
9071 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9072 {
9073 	vcpu->arch.pio.count = 0;
9074 	return 1;
9075 }
9076 
9077 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9078 {
9079 	vcpu->arch.pio.count = 0;
9080 
9081 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9082 		return 1;
9083 
9084 	return kvm_skip_emulated_instruction(vcpu);
9085 }
9086 
9087 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9088 			    unsigned short port)
9089 {
9090 	unsigned long val = kvm_rax_read(vcpu);
9091 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9092 
9093 	if (ret)
9094 		return ret;
9095 
9096 	/*
9097 	 * Workaround userspace that relies on old KVM behavior of %rip being
9098 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9099 	 */
9100 	if (port == 0x7e &&
9101 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9102 		vcpu->arch.complete_userspace_io =
9103 			complete_fast_pio_out_port_0x7e;
9104 		kvm_skip_emulated_instruction(vcpu);
9105 	} else {
9106 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9107 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9108 	}
9109 	return 0;
9110 }
9111 
9112 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9113 {
9114 	unsigned long val;
9115 
9116 	/* We should only ever be called with arch.pio.count equal to 1 */
9117 	BUG_ON(vcpu->arch.pio.count != 1);
9118 
9119 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9120 		vcpu->arch.pio.count = 0;
9121 		return 1;
9122 	}
9123 
9124 	/* For size less than 4 we merge, else we zero extend */
9125 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9126 
9127 	complete_emulator_pio_in(vcpu, &val);
9128 	kvm_rax_write(vcpu, val);
9129 
9130 	return kvm_skip_emulated_instruction(vcpu);
9131 }
9132 
9133 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9134 			   unsigned short port)
9135 {
9136 	unsigned long val;
9137 	int ret;
9138 
9139 	/* For size less than 4 we merge, else we zero extend */
9140 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9141 
9142 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9143 	if (ret) {
9144 		kvm_rax_write(vcpu, val);
9145 		return ret;
9146 	}
9147 
9148 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9149 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9150 
9151 	return 0;
9152 }
9153 
9154 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9155 {
9156 	int ret;
9157 
9158 	if (in)
9159 		ret = kvm_fast_pio_in(vcpu, size, port);
9160 	else
9161 		ret = kvm_fast_pio_out(vcpu, size, port);
9162 	return ret && kvm_skip_emulated_instruction(vcpu);
9163 }
9164 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9165 
9166 static int kvmclock_cpu_down_prep(unsigned int cpu)
9167 {
9168 	__this_cpu_write(cpu_tsc_khz, 0);
9169 	return 0;
9170 }
9171 
9172 static void tsc_khz_changed(void *data)
9173 {
9174 	struct cpufreq_freqs *freq = data;
9175 	unsigned long khz = 0;
9176 
9177 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9178 
9179 	if (data)
9180 		khz = freq->new;
9181 	else
9182 		khz = cpufreq_quick_get(raw_smp_processor_id());
9183 	if (!khz)
9184 		khz = tsc_khz;
9185 	__this_cpu_write(cpu_tsc_khz, khz);
9186 }
9187 
9188 #ifdef CONFIG_X86_64
9189 static void kvm_hyperv_tsc_notifier(void)
9190 {
9191 	struct kvm *kvm;
9192 	int cpu;
9193 
9194 	mutex_lock(&kvm_lock);
9195 	list_for_each_entry(kvm, &vm_list, vm_list)
9196 		kvm_make_mclock_inprogress_request(kvm);
9197 
9198 	/* no guest entries from this point */
9199 	hyperv_stop_tsc_emulation();
9200 
9201 	/* TSC frequency always matches when on Hyper-V */
9202 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9203 		for_each_present_cpu(cpu)
9204 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9205 	}
9206 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9207 
9208 	list_for_each_entry(kvm, &vm_list, vm_list) {
9209 		__kvm_start_pvclock_update(kvm);
9210 		pvclock_update_vm_gtod_copy(kvm);
9211 		kvm_end_pvclock_update(kvm);
9212 	}
9213 
9214 	mutex_unlock(&kvm_lock);
9215 }
9216 #endif
9217 
9218 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9219 {
9220 	struct kvm *kvm;
9221 	struct kvm_vcpu *vcpu;
9222 	int send_ipi = 0;
9223 	unsigned long i;
9224 
9225 	/*
9226 	 * We allow guests to temporarily run on slowing clocks,
9227 	 * provided we notify them after, or to run on accelerating
9228 	 * clocks, provided we notify them before.  Thus time never
9229 	 * goes backwards.
9230 	 *
9231 	 * However, we have a problem.  We can't atomically update
9232 	 * the frequency of a given CPU from this function; it is
9233 	 * merely a notifier, which can be called from any CPU.
9234 	 * Changing the TSC frequency at arbitrary points in time
9235 	 * requires a recomputation of local variables related to
9236 	 * the TSC for each VCPU.  We must flag these local variables
9237 	 * to be updated and be sure the update takes place with the
9238 	 * new frequency before any guests proceed.
9239 	 *
9240 	 * Unfortunately, the combination of hotplug CPU and frequency
9241 	 * change creates an intractable locking scenario; the order
9242 	 * of when these callouts happen is undefined with respect to
9243 	 * CPU hotplug, and they can race with each other.  As such,
9244 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9245 	 * undefined; you can actually have a CPU frequency change take
9246 	 * place in between the computation of X and the setting of the
9247 	 * variable.  To protect against this problem, all updates of
9248 	 * the per_cpu tsc_khz variable are done in an interrupt
9249 	 * protected IPI, and all callers wishing to update the value
9250 	 * must wait for a synchronous IPI to complete (which is trivial
9251 	 * if the caller is on the CPU already).  This establishes the
9252 	 * necessary total order on variable updates.
9253 	 *
9254 	 * Note that because a guest time update may take place
9255 	 * anytime after the setting of the VCPU's request bit, the
9256 	 * correct TSC value must be set before the request.  However,
9257 	 * to ensure the update actually makes it to any guest which
9258 	 * starts running in hardware virtualization between the set
9259 	 * and the acquisition of the spinlock, we must also ping the
9260 	 * CPU after setting the request bit.
9261 	 *
9262 	 */
9263 
9264 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9265 
9266 	mutex_lock(&kvm_lock);
9267 	list_for_each_entry(kvm, &vm_list, vm_list) {
9268 		kvm_for_each_vcpu(i, vcpu, kvm) {
9269 			if (vcpu->cpu != cpu)
9270 				continue;
9271 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9272 			if (vcpu->cpu != raw_smp_processor_id())
9273 				send_ipi = 1;
9274 		}
9275 	}
9276 	mutex_unlock(&kvm_lock);
9277 
9278 	if (freq->old < freq->new && send_ipi) {
9279 		/*
9280 		 * We upscale the frequency.  Must make the guest
9281 		 * doesn't see old kvmclock values while running with
9282 		 * the new frequency, otherwise we risk the guest sees
9283 		 * time go backwards.
9284 		 *
9285 		 * In case we update the frequency for another cpu
9286 		 * (which might be in guest context) send an interrupt
9287 		 * to kick the cpu out of guest context.  Next time
9288 		 * guest context is entered kvmclock will be updated,
9289 		 * so the guest will not see stale values.
9290 		 */
9291 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9292 	}
9293 }
9294 
9295 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9296 				     void *data)
9297 {
9298 	struct cpufreq_freqs *freq = data;
9299 	int cpu;
9300 
9301 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9302 		return 0;
9303 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9304 		return 0;
9305 
9306 	for_each_cpu(cpu, freq->policy->cpus)
9307 		__kvmclock_cpufreq_notifier(freq, cpu);
9308 
9309 	return 0;
9310 }
9311 
9312 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9313 	.notifier_call  = kvmclock_cpufreq_notifier
9314 };
9315 
9316 static int kvmclock_cpu_online(unsigned int cpu)
9317 {
9318 	tsc_khz_changed(NULL);
9319 	return 0;
9320 }
9321 
9322 static void kvm_timer_init(void)
9323 {
9324 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9325 		max_tsc_khz = tsc_khz;
9326 
9327 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9328 			struct cpufreq_policy *policy;
9329 			int cpu;
9330 
9331 			cpu = get_cpu();
9332 			policy = cpufreq_cpu_get(cpu);
9333 			if (policy) {
9334 				if (policy->cpuinfo.max_freq)
9335 					max_tsc_khz = policy->cpuinfo.max_freq;
9336 				cpufreq_cpu_put(policy);
9337 			}
9338 			put_cpu();
9339 		}
9340 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9341 					  CPUFREQ_TRANSITION_NOTIFIER);
9342 
9343 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9344 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9345 	}
9346 }
9347 
9348 #ifdef CONFIG_X86_64
9349 static void pvclock_gtod_update_fn(struct work_struct *work)
9350 {
9351 	struct kvm *kvm;
9352 	struct kvm_vcpu *vcpu;
9353 	unsigned long i;
9354 
9355 	mutex_lock(&kvm_lock);
9356 	list_for_each_entry(kvm, &vm_list, vm_list)
9357 		kvm_for_each_vcpu(i, vcpu, kvm)
9358 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9359 	atomic_set(&kvm_guest_has_master_clock, 0);
9360 	mutex_unlock(&kvm_lock);
9361 }
9362 
9363 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9364 
9365 /*
9366  * Indirection to move queue_work() out of the tk_core.seq write held
9367  * region to prevent possible deadlocks against time accessors which
9368  * are invoked with work related locks held.
9369  */
9370 static void pvclock_irq_work_fn(struct irq_work *w)
9371 {
9372 	queue_work(system_long_wq, &pvclock_gtod_work);
9373 }
9374 
9375 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9376 
9377 /*
9378  * Notification about pvclock gtod data update.
9379  */
9380 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9381 			       void *priv)
9382 {
9383 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9384 	struct timekeeper *tk = priv;
9385 
9386 	update_pvclock_gtod(tk);
9387 
9388 	/*
9389 	 * Disable master clock if host does not trust, or does not use,
9390 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9391 	 * this is invoked with tk_core.seq write held.
9392 	 */
9393 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9394 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9395 		irq_work_queue(&pvclock_irq_work);
9396 	return 0;
9397 }
9398 
9399 static struct notifier_block pvclock_gtod_notifier = {
9400 	.notifier_call = pvclock_gtod_notify,
9401 };
9402 #endif
9403 
9404 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9405 {
9406 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9407 
9408 #define __KVM_X86_OP(func) \
9409 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9410 #define KVM_X86_OP(func) \
9411 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9412 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9413 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9414 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9415 					   (void *)__static_call_return0);
9416 #include <asm/kvm-x86-ops.h>
9417 #undef __KVM_X86_OP
9418 
9419 	kvm_pmu_ops_update(ops->pmu_ops);
9420 }
9421 
9422 static int kvm_x86_check_processor_compatibility(void)
9423 {
9424 	int cpu = smp_processor_id();
9425 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9426 
9427 	/*
9428 	 * Compatibility checks are done when loading KVM and when enabling
9429 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9430 	 * compatible, i.e. KVM should never perform a compatibility check on
9431 	 * an offline CPU.
9432 	 */
9433 	WARN_ON(!cpu_online(cpu));
9434 
9435 	if (__cr4_reserved_bits(cpu_has, c) !=
9436 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9437 		return -EIO;
9438 
9439 	return static_call(kvm_x86_check_processor_compatibility)();
9440 }
9441 
9442 static void kvm_x86_check_cpu_compat(void *ret)
9443 {
9444 	*(int *)ret = kvm_x86_check_processor_compatibility();
9445 }
9446 
9447 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9448 {
9449 	u64 host_pat;
9450 	int r, cpu;
9451 
9452 	if (kvm_x86_ops.hardware_enable) {
9453 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9454 		return -EEXIST;
9455 	}
9456 
9457 	/*
9458 	 * KVM explicitly assumes that the guest has an FPU and
9459 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9460 	 * vCPU's FPU state as a fxregs_state struct.
9461 	 */
9462 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9463 		pr_err("inadequate fpu\n");
9464 		return -EOPNOTSUPP;
9465 	}
9466 
9467 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9468 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9469 		return -EOPNOTSUPP;
9470 	}
9471 
9472 	/*
9473 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9474 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9475 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9476 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9477 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9478 	 */
9479 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9480 	    (host_pat & GENMASK(2, 0)) != 6) {
9481 		pr_err("host PAT[0] is not WB\n");
9482 		return -EIO;
9483 	}
9484 
9485 	x86_emulator_cache = kvm_alloc_emulator_cache();
9486 	if (!x86_emulator_cache) {
9487 		pr_err("failed to allocate cache for x86 emulator\n");
9488 		return -ENOMEM;
9489 	}
9490 
9491 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9492 	if (!user_return_msrs) {
9493 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9494 		r = -ENOMEM;
9495 		goto out_free_x86_emulator_cache;
9496 	}
9497 	kvm_nr_uret_msrs = 0;
9498 
9499 	r = kvm_mmu_vendor_module_init();
9500 	if (r)
9501 		goto out_free_percpu;
9502 
9503 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9504 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9505 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9506 	}
9507 
9508 	rdmsrl_safe(MSR_EFER, &host_efer);
9509 
9510 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9511 		rdmsrl(MSR_IA32_XSS, host_xss);
9512 
9513 	kvm_init_pmu_capability(ops->pmu_ops);
9514 
9515 	r = ops->hardware_setup();
9516 	if (r != 0)
9517 		goto out_mmu_exit;
9518 
9519 	kvm_ops_update(ops);
9520 
9521 	for_each_online_cpu(cpu) {
9522 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9523 		if (r < 0)
9524 			goto out_unwind_ops;
9525 	}
9526 
9527 	/*
9528 	 * Point of no return!  DO NOT add error paths below this point unless
9529 	 * absolutely necessary, as most operations from this point forward
9530 	 * require unwinding.
9531 	 */
9532 	kvm_timer_init();
9533 
9534 	if (pi_inject_timer == -1)
9535 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9536 #ifdef CONFIG_X86_64
9537 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9538 
9539 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9540 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9541 #endif
9542 
9543 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9544 
9545 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9546 		kvm_caps.supported_xss = 0;
9547 
9548 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9549 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9550 #undef __kvm_cpu_cap_has
9551 
9552 	if (kvm_caps.has_tsc_control) {
9553 		/*
9554 		 * Make sure the user can only configure tsc_khz values that
9555 		 * fit into a signed integer.
9556 		 * A min value is not calculated because it will always
9557 		 * be 1 on all machines.
9558 		 */
9559 		u64 max = min(0x7fffffffULL,
9560 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9561 		kvm_caps.max_guest_tsc_khz = max;
9562 	}
9563 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9564 	kvm_init_msr_lists();
9565 	return 0;
9566 
9567 out_unwind_ops:
9568 	kvm_x86_ops.hardware_enable = NULL;
9569 	static_call(kvm_x86_hardware_unsetup)();
9570 out_mmu_exit:
9571 	kvm_mmu_vendor_module_exit();
9572 out_free_percpu:
9573 	free_percpu(user_return_msrs);
9574 out_free_x86_emulator_cache:
9575 	kmem_cache_destroy(x86_emulator_cache);
9576 	return r;
9577 }
9578 
9579 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9580 {
9581 	int r;
9582 
9583 	mutex_lock(&vendor_module_lock);
9584 	r = __kvm_x86_vendor_init(ops);
9585 	mutex_unlock(&vendor_module_lock);
9586 
9587 	return r;
9588 }
9589 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9590 
9591 void kvm_x86_vendor_exit(void)
9592 {
9593 	kvm_unregister_perf_callbacks();
9594 
9595 #ifdef CONFIG_X86_64
9596 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9597 		clear_hv_tscchange_cb();
9598 #endif
9599 	kvm_lapic_exit();
9600 
9601 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9602 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9603 					    CPUFREQ_TRANSITION_NOTIFIER);
9604 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9605 	}
9606 #ifdef CONFIG_X86_64
9607 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9608 	irq_work_sync(&pvclock_irq_work);
9609 	cancel_work_sync(&pvclock_gtod_work);
9610 #endif
9611 	static_call(kvm_x86_hardware_unsetup)();
9612 	kvm_mmu_vendor_module_exit();
9613 	free_percpu(user_return_msrs);
9614 	kmem_cache_destroy(x86_emulator_cache);
9615 #ifdef CONFIG_KVM_XEN
9616 	static_key_deferred_flush(&kvm_xen_enabled);
9617 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9618 #endif
9619 	mutex_lock(&vendor_module_lock);
9620 	kvm_x86_ops.hardware_enable = NULL;
9621 	mutex_unlock(&vendor_module_lock);
9622 }
9623 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9624 
9625 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9626 {
9627 	/*
9628 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9629 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9630 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9631 	 * managed by userspace, in which case userspace is responsible for
9632 	 * handling wake events.
9633 	 */
9634 	++vcpu->stat.halt_exits;
9635 	if (lapic_in_kernel(vcpu)) {
9636 		vcpu->arch.mp_state = state;
9637 		return 1;
9638 	} else {
9639 		vcpu->run->exit_reason = reason;
9640 		return 0;
9641 	}
9642 }
9643 
9644 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9645 {
9646 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9647 }
9648 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9649 
9650 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9651 {
9652 	int ret = kvm_skip_emulated_instruction(vcpu);
9653 	/*
9654 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9655 	 * KVM_EXIT_DEBUG here.
9656 	 */
9657 	return kvm_emulate_halt_noskip(vcpu) && ret;
9658 }
9659 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9660 
9661 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9662 {
9663 	int ret = kvm_skip_emulated_instruction(vcpu);
9664 
9665 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9666 					KVM_EXIT_AP_RESET_HOLD) && ret;
9667 }
9668 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9669 
9670 #ifdef CONFIG_X86_64
9671 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9672 			        unsigned long clock_type)
9673 {
9674 	struct kvm_clock_pairing clock_pairing;
9675 	struct timespec64 ts;
9676 	u64 cycle;
9677 	int ret;
9678 
9679 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9680 		return -KVM_EOPNOTSUPP;
9681 
9682 	/*
9683 	 * When tsc is in permanent catchup mode guests won't be able to use
9684 	 * pvclock_read_retry loop to get consistent view of pvclock
9685 	 */
9686 	if (vcpu->arch.tsc_always_catchup)
9687 		return -KVM_EOPNOTSUPP;
9688 
9689 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9690 		return -KVM_EOPNOTSUPP;
9691 
9692 	clock_pairing.sec = ts.tv_sec;
9693 	clock_pairing.nsec = ts.tv_nsec;
9694 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9695 	clock_pairing.flags = 0;
9696 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9697 
9698 	ret = 0;
9699 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9700 			    sizeof(struct kvm_clock_pairing)))
9701 		ret = -KVM_EFAULT;
9702 
9703 	return ret;
9704 }
9705 #endif
9706 
9707 /*
9708  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9709  *
9710  * @apicid - apicid of vcpu to be kicked.
9711  */
9712 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9713 {
9714 	/*
9715 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9716 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9717 	 */
9718 	struct kvm_lapic_irq lapic_irq = {
9719 		.delivery_mode = APIC_DM_REMRD,
9720 		.dest_mode = APIC_DEST_PHYSICAL,
9721 		.shorthand = APIC_DEST_NOSHORT,
9722 		.dest_id = apicid,
9723 	};
9724 
9725 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9726 }
9727 
9728 bool kvm_apicv_activated(struct kvm *kvm)
9729 {
9730 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9731 }
9732 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9733 
9734 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9735 {
9736 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9737 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9738 
9739 	return (vm_reasons | vcpu_reasons) == 0;
9740 }
9741 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9742 
9743 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9744 				       enum kvm_apicv_inhibit reason, bool set)
9745 {
9746 	if (set)
9747 		__set_bit(reason, inhibits);
9748 	else
9749 		__clear_bit(reason, inhibits);
9750 
9751 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9752 }
9753 
9754 static void kvm_apicv_init(struct kvm *kvm)
9755 {
9756 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9757 
9758 	init_rwsem(&kvm->arch.apicv_update_lock);
9759 
9760 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9761 
9762 	if (!enable_apicv)
9763 		set_or_clear_apicv_inhibit(inhibits,
9764 					   APICV_INHIBIT_REASON_DISABLE, true);
9765 }
9766 
9767 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9768 {
9769 	struct kvm_vcpu *target = NULL;
9770 	struct kvm_apic_map *map;
9771 
9772 	vcpu->stat.directed_yield_attempted++;
9773 
9774 	if (single_task_running())
9775 		goto no_yield;
9776 
9777 	rcu_read_lock();
9778 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9779 
9780 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9781 		target = map->phys_map[dest_id]->vcpu;
9782 
9783 	rcu_read_unlock();
9784 
9785 	if (!target || !READ_ONCE(target->ready))
9786 		goto no_yield;
9787 
9788 	/* Ignore requests to yield to self */
9789 	if (vcpu == target)
9790 		goto no_yield;
9791 
9792 	if (kvm_vcpu_yield_to(target) <= 0)
9793 		goto no_yield;
9794 
9795 	vcpu->stat.directed_yield_successful++;
9796 
9797 no_yield:
9798 	return;
9799 }
9800 
9801 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9802 {
9803 	u64 ret = vcpu->run->hypercall.ret;
9804 
9805 	if (!is_64_bit_mode(vcpu))
9806 		ret = (u32)ret;
9807 	kvm_rax_write(vcpu, ret);
9808 	++vcpu->stat.hypercalls;
9809 	return kvm_skip_emulated_instruction(vcpu);
9810 }
9811 
9812 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9813 {
9814 	unsigned long nr, a0, a1, a2, a3, ret;
9815 	int op_64_bit;
9816 
9817 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9818 		return kvm_xen_hypercall(vcpu);
9819 
9820 	if (kvm_hv_hypercall_enabled(vcpu))
9821 		return kvm_hv_hypercall(vcpu);
9822 
9823 	nr = kvm_rax_read(vcpu);
9824 	a0 = kvm_rbx_read(vcpu);
9825 	a1 = kvm_rcx_read(vcpu);
9826 	a2 = kvm_rdx_read(vcpu);
9827 	a3 = kvm_rsi_read(vcpu);
9828 
9829 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9830 
9831 	op_64_bit = is_64_bit_hypercall(vcpu);
9832 	if (!op_64_bit) {
9833 		nr &= 0xFFFFFFFF;
9834 		a0 &= 0xFFFFFFFF;
9835 		a1 &= 0xFFFFFFFF;
9836 		a2 &= 0xFFFFFFFF;
9837 		a3 &= 0xFFFFFFFF;
9838 	}
9839 
9840 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9841 		ret = -KVM_EPERM;
9842 		goto out;
9843 	}
9844 
9845 	ret = -KVM_ENOSYS;
9846 
9847 	switch (nr) {
9848 	case KVM_HC_VAPIC_POLL_IRQ:
9849 		ret = 0;
9850 		break;
9851 	case KVM_HC_KICK_CPU:
9852 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9853 			break;
9854 
9855 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9856 		kvm_sched_yield(vcpu, a1);
9857 		ret = 0;
9858 		break;
9859 #ifdef CONFIG_X86_64
9860 	case KVM_HC_CLOCK_PAIRING:
9861 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9862 		break;
9863 #endif
9864 	case KVM_HC_SEND_IPI:
9865 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9866 			break;
9867 
9868 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9869 		break;
9870 	case KVM_HC_SCHED_YIELD:
9871 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9872 			break;
9873 
9874 		kvm_sched_yield(vcpu, a0);
9875 		ret = 0;
9876 		break;
9877 	case KVM_HC_MAP_GPA_RANGE: {
9878 		u64 gpa = a0, npages = a1, attrs = a2;
9879 
9880 		ret = -KVM_ENOSYS;
9881 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9882 			break;
9883 
9884 		if (!PAGE_ALIGNED(gpa) || !npages ||
9885 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9886 			ret = -KVM_EINVAL;
9887 			break;
9888 		}
9889 
9890 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9891 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9892 		vcpu->run->hypercall.args[0]  = gpa;
9893 		vcpu->run->hypercall.args[1]  = npages;
9894 		vcpu->run->hypercall.args[2]  = attrs;
9895 		vcpu->run->hypercall.flags    = 0;
9896 		if (op_64_bit)
9897 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9898 
9899 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9900 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9901 		return 0;
9902 	}
9903 	default:
9904 		ret = -KVM_ENOSYS;
9905 		break;
9906 	}
9907 out:
9908 	if (!op_64_bit)
9909 		ret = (u32)ret;
9910 	kvm_rax_write(vcpu, ret);
9911 
9912 	++vcpu->stat.hypercalls;
9913 	return kvm_skip_emulated_instruction(vcpu);
9914 }
9915 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9916 
9917 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9918 {
9919 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9920 	char instruction[3];
9921 	unsigned long rip = kvm_rip_read(vcpu);
9922 
9923 	/*
9924 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9925 	 * the pieces.
9926 	 */
9927 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9928 		ctxt->exception.error_code_valid = false;
9929 		ctxt->exception.vector = UD_VECTOR;
9930 		ctxt->have_exception = true;
9931 		return X86EMUL_PROPAGATE_FAULT;
9932 	}
9933 
9934 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9935 
9936 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9937 		&ctxt->exception);
9938 }
9939 
9940 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9941 {
9942 	return vcpu->run->request_interrupt_window &&
9943 		likely(!pic_in_kernel(vcpu->kvm));
9944 }
9945 
9946 /* Called within kvm->srcu read side.  */
9947 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9948 {
9949 	struct kvm_run *kvm_run = vcpu->run;
9950 
9951 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9952 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9953 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9954 
9955 	kvm_run->ready_for_interrupt_injection =
9956 		pic_in_kernel(vcpu->kvm) ||
9957 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9958 
9959 	if (is_smm(vcpu))
9960 		kvm_run->flags |= KVM_RUN_X86_SMM;
9961 }
9962 
9963 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9964 {
9965 	int max_irr, tpr;
9966 
9967 	if (!kvm_x86_ops.update_cr8_intercept)
9968 		return;
9969 
9970 	if (!lapic_in_kernel(vcpu))
9971 		return;
9972 
9973 	if (vcpu->arch.apic->apicv_active)
9974 		return;
9975 
9976 	if (!vcpu->arch.apic->vapic_addr)
9977 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9978 	else
9979 		max_irr = -1;
9980 
9981 	if (max_irr != -1)
9982 		max_irr >>= 4;
9983 
9984 	tpr = kvm_lapic_get_cr8(vcpu);
9985 
9986 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9987 }
9988 
9989 
9990 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9991 {
9992 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9993 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9994 		return 1;
9995 	}
9996 
9997 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9998 }
9999 
10000 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10001 {
10002 	/*
10003 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10004 	 * exceptions don't report error codes.  The presence of an error code
10005 	 * is carried with the exception and only stripped when the exception
10006 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10007 	 * report an error code despite the CPU being in Real Mode.
10008 	 */
10009 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10010 
10011 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10012 				vcpu->arch.exception.has_error_code,
10013 				vcpu->arch.exception.error_code,
10014 				vcpu->arch.exception.injected);
10015 
10016 	static_call(kvm_x86_inject_exception)(vcpu);
10017 }
10018 
10019 /*
10020  * Check for any event (interrupt or exception) that is ready to be injected,
10021  * and if there is at least one event, inject the event with the highest
10022  * priority.  This handles both "pending" events, i.e. events that have never
10023  * been injected into the guest, and "injected" events, i.e. events that were
10024  * injected as part of a previous VM-Enter, but weren't successfully delivered
10025  * and need to be re-injected.
10026  *
10027  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10028  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10029  * be able to inject exceptions in the "middle" of an instruction, and so must
10030  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10031  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10032  * boundaries is necessary and correct.
10033  *
10034  * For simplicity, KVM uses a single path to inject all events (except events
10035  * that are injected directly from L1 to L2) and doesn't explicitly track
10036  * instruction boundaries for asynchronous events.  However, because VM-Exits
10037  * that can occur during instruction execution typically result in KVM skipping
10038  * the instruction or injecting an exception, e.g. instruction and exception
10039  * intercepts, and because pending exceptions have higher priority than pending
10040  * interrupts, KVM still honors instruction boundaries in most scenarios.
10041  *
10042  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10043  * the instruction or inject an exception, then KVM can incorrecty inject a new
10044  * asynchrounous event if the event became pending after the CPU fetched the
10045  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10046  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10047  * injected on the restarted instruction instead of being deferred until the
10048  * instruction completes.
10049  *
10050  * In practice, this virtualization hole is unlikely to be observed by the
10051  * guest, and even less likely to cause functional problems.  To detect the
10052  * hole, the guest would have to trigger an event on a side effect of an early
10053  * phase of instruction execution, e.g. on the instruction fetch from memory.
10054  * And for it to be a functional problem, the guest would need to depend on the
10055  * ordering between that side effect, the instruction completing, _and_ the
10056  * delivery of the asynchronous event.
10057  */
10058 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10059 				       bool *req_immediate_exit)
10060 {
10061 	bool can_inject;
10062 	int r;
10063 
10064 	/*
10065 	 * Process nested events first, as nested VM-Exit supercedes event
10066 	 * re-injection.  If there's an event queued for re-injection, it will
10067 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10068 	 */
10069 	if (is_guest_mode(vcpu))
10070 		r = kvm_check_nested_events(vcpu);
10071 	else
10072 		r = 0;
10073 
10074 	/*
10075 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10076 	 * to/from L2 is needed, as any event that has already been injected
10077 	 * into L2 needs to complete its lifecycle before injecting a new event.
10078 	 *
10079 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10080 	 * This collision arises if an exception occurred while vectoring the
10081 	 * injected event, KVM intercepted said exception, and KVM ultimately
10082 	 * determined the fault belongs to the guest and queues the exception
10083 	 * for injection back into the guest.
10084 	 *
10085 	 * "Injected" interrupts can also collide with pending exceptions if
10086 	 * userspace ignores the "ready for injection" flag and blindly queues
10087 	 * an interrupt.  In that case, prioritizing the exception is correct,
10088 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10089 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10090 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10091 	 * priority, they're only generated (pended) during instruction
10092 	 * execution, and interrupts are recognized at instruction boundaries.
10093 	 * Thus a pending fault-like exception means the fault occurred on the
10094 	 * *previous* instruction and must be serviced prior to recognizing any
10095 	 * new events in order to fully complete the previous instruction.
10096 	 */
10097 	if (vcpu->arch.exception.injected)
10098 		kvm_inject_exception(vcpu);
10099 	else if (kvm_is_exception_pending(vcpu))
10100 		; /* see above */
10101 	else if (vcpu->arch.nmi_injected)
10102 		static_call(kvm_x86_inject_nmi)(vcpu);
10103 	else if (vcpu->arch.interrupt.injected)
10104 		static_call(kvm_x86_inject_irq)(vcpu, true);
10105 
10106 	/*
10107 	 * Exceptions that morph to VM-Exits are handled above, and pending
10108 	 * exceptions on top of injected exceptions that do not VM-Exit should
10109 	 * either morph to #DF or, sadly, override the injected exception.
10110 	 */
10111 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10112 		     vcpu->arch.exception.pending);
10113 
10114 	/*
10115 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10116 	 * nested VM-Enter or event re-injection so that a different pending
10117 	 * event can be serviced (or if KVM needs to exit to userspace).
10118 	 *
10119 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10120 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10121 	 * there may now be events that can be injected into L1.
10122 	 */
10123 	if (r < 0)
10124 		goto out;
10125 
10126 	/*
10127 	 * A pending exception VM-Exit should either result in nested VM-Exit
10128 	 * or force an immediate re-entry and exit to/from L2, and exception
10129 	 * VM-Exits cannot be injected (flag should _never_ be set).
10130 	 */
10131 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10132 		     vcpu->arch.exception_vmexit.pending);
10133 
10134 	/*
10135 	 * New events, other than exceptions, cannot be injected if KVM needs
10136 	 * to re-inject a previous event.  See above comments on re-injecting
10137 	 * for why pending exceptions get priority.
10138 	 */
10139 	can_inject = !kvm_event_needs_reinjection(vcpu);
10140 
10141 	if (vcpu->arch.exception.pending) {
10142 		/*
10143 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10144 		 * value pushed on the stack.  Trap-like exception and all #DBs
10145 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10146 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10147 		 *
10148 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10149 		 * describe the behavior of General Detect #DBs, which are
10150 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10151 		 */
10152 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10153 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10154 					     X86_EFLAGS_RF);
10155 
10156 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10157 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10158 			if (vcpu->arch.dr7 & DR7_GD) {
10159 				vcpu->arch.dr7 &= ~DR7_GD;
10160 				kvm_update_dr7(vcpu);
10161 			}
10162 		}
10163 
10164 		kvm_inject_exception(vcpu);
10165 
10166 		vcpu->arch.exception.pending = false;
10167 		vcpu->arch.exception.injected = true;
10168 
10169 		can_inject = false;
10170 	}
10171 
10172 	/* Don't inject interrupts if the user asked to avoid doing so */
10173 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10174 		return 0;
10175 
10176 	/*
10177 	 * Finally, inject interrupt events.  If an event cannot be injected
10178 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10179 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10180 	 * and can architecturally be injected, but we cannot do it right now:
10181 	 * an interrupt could have arrived just now and we have to inject it
10182 	 * as a vmexit, or there could already an event in the queue, which is
10183 	 * indicated by can_inject.  In that case we request an immediate exit
10184 	 * in order to make progress and get back here for another iteration.
10185 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10186 	 */
10187 #ifdef CONFIG_KVM_SMM
10188 	if (vcpu->arch.smi_pending) {
10189 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10190 		if (r < 0)
10191 			goto out;
10192 		if (r) {
10193 			vcpu->arch.smi_pending = false;
10194 			++vcpu->arch.smi_count;
10195 			enter_smm(vcpu);
10196 			can_inject = false;
10197 		} else
10198 			static_call(kvm_x86_enable_smi_window)(vcpu);
10199 	}
10200 #endif
10201 
10202 	if (vcpu->arch.nmi_pending) {
10203 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10204 		if (r < 0)
10205 			goto out;
10206 		if (r) {
10207 			--vcpu->arch.nmi_pending;
10208 			vcpu->arch.nmi_injected = true;
10209 			static_call(kvm_x86_inject_nmi)(vcpu);
10210 			can_inject = false;
10211 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10212 		}
10213 		if (vcpu->arch.nmi_pending)
10214 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10215 	}
10216 
10217 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10218 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10219 		if (r < 0)
10220 			goto out;
10221 		if (r) {
10222 			int irq = kvm_cpu_get_interrupt(vcpu);
10223 
10224 			if (!WARN_ON_ONCE(irq == -1)) {
10225 				kvm_queue_interrupt(vcpu, irq, false);
10226 				static_call(kvm_x86_inject_irq)(vcpu, false);
10227 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10228 			}
10229 		}
10230 		if (kvm_cpu_has_injectable_intr(vcpu))
10231 			static_call(kvm_x86_enable_irq_window)(vcpu);
10232 	}
10233 
10234 	if (is_guest_mode(vcpu) &&
10235 	    kvm_x86_ops.nested_ops->has_events &&
10236 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10237 		*req_immediate_exit = true;
10238 
10239 	/*
10240 	 * KVM must never queue a new exception while injecting an event; KVM
10241 	 * is done emulating and should only propagate the to-be-injected event
10242 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10243 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10244 	 * exception and start the cycle all over.
10245 	 *
10246 	 * Exempt triple faults as they have special handling and won't put the
10247 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10248 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10249 	 * Mode events (see kvm_inject_realmode_interrupt()).
10250 	 */
10251 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10252 		     vcpu->arch.exception_vmexit.pending);
10253 	return 0;
10254 
10255 out:
10256 	if (r == -EBUSY) {
10257 		*req_immediate_exit = true;
10258 		r = 0;
10259 	}
10260 	return r;
10261 }
10262 
10263 static void process_nmi(struct kvm_vcpu *vcpu)
10264 {
10265 	unsigned int limit;
10266 
10267 	/*
10268 	 * x86 is limited to one NMI pending, but because KVM can't react to
10269 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10270 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10271 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10272 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10273 	 * waiting for a previous NMI injection to complete (which effectively
10274 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10275 	 * will request an NMI window to handle the second NMI.
10276 	 */
10277 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10278 		limit = 1;
10279 	else
10280 		limit = 2;
10281 
10282 	/*
10283 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10284 	 * tracked in vcpu->arch.nmi_pending.
10285 	 */
10286 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10287 		limit--;
10288 
10289 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10290 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10291 
10292 	if (vcpu->arch.nmi_pending &&
10293 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10294 		vcpu->arch.nmi_pending--;
10295 
10296 	if (vcpu->arch.nmi_pending)
10297 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10298 }
10299 
10300 /* Return total number of NMIs pending injection to the VM */
10301 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10302 {
10303 	return vcpu->arch.nmi_pending +
10304 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10305 }
10306 
10307 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10308 				       unsigned long *vcpu_bitmap)
10309 {
10310 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10311 }
10312 
10313 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10314 {
10315 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10316 }
10317 
10318 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10319 {
10320 	struct kvm_lapic *apic = vcpu->arch.apic;
10321 	bool activate;
10322 
10323 	if (!lapic_in_kernel(vcpu))
10324 		return;
10325 
10326 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10327 	preempt_disable();
10328 
10329 	/* Do not activate APICV when APIC is disabled */
10330 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10331 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10332 
10333 	if (apic->apicv_active == activate)
10334 		goto out;
10335 
10336 	apic->apicv_active = activate;
10337 	kvm_apic_update_apicv(vcpu);
10338 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10339 
10340 	/*
10341 	 * When APICv gets disabled, we may still have injected interrupts
10342 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10343 	 * still active when the interrupt got accepted. Make sure
10344 	 * kvm_check_and_inject_events() is called to check for that.
10345 	 */
10346 	if (!apic->apicv_active)
10347 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10348 
10349 out:
10350 	preempt_enable();
10351 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10352 }
10353 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10354 
10355 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10356 {
10357 	if (!lapic_in_kernel(vcpu))
10358 		return;
10359 
10360 	/*
10361 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10362 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10363 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10364 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10365 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10366 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10367 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10368 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10369 	 * access page is sticky.
10370 	 */
10371 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10372 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10373 		kvm_inhibit_apic_access_page(vcpu);
10374 
10375 	__kvm_vcpu_update_apicv(vcpu);
10376 }
10377 
10378 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10379 				      enum kvm_apicv_inhibit reason, bool set)
10380 {
10381 	unsigned long old, new;
10382 
10383 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10384 
10385 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10386 		return;
10387 
10388 	old = new = kvm->arch.apicv_inhibit_reasons;
10389 
10390 	set_or_clear_apicv_inhibit(&new, reason, set);
10391 
10392 	if (!!old != !!new) {
10393 		/*
10394 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10395 		 * false positives in the sanity check WARN in svm_vcpu_run().
10396 		 * This task will wait for all vCPUs to ack the kick IRQ before
10397 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10398 		 * block on acquiring apicv_update_lock so that vCPUs can't
10399 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10400 		 *
10401 		 * Note, holding apicv_update_lock and taking it in the read
10402 		 * side (handling the request) also prevents other vCPUs from
10403 		 * servicing the request with a stale apicv_inhibit_reasons.
10404 		 */
10405 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10406 		kvm->arch.apicv_inhibit_reasons = new;
10407 		if (new) {
10408 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10409 			int idx = srcu_read_lock(&kvm->srcu);
10410 
10411 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10412 			srcu_read_unlock(&kvm->srcu, idx);
10413 		}
10414 	} else {
10415 		kvm->arch.apicv_inhibit_reasons = new;
10416 	}
10417 }
10418 
10419 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10420 				    enum kvm_apicv_inhibit reason, bool set)
10421 {
10422 	if (!enable_apicv)
10423 		return;
10424 
10425 	down_write(&kvm->arch.apicv_update_lock);
10426 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10427 	up_write(&kvm->arch.apicv_update_lock);
10428 }
10429 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10430 
10431 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10432 {
10433 	if (!kvm_apic_present(vcpu))
10434 		return;
10435 
10436 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10437 
10438 	if (irqchip_split(vcpu->kvm))
10439 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10440 	else {
10441 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10442 		if (ioapic_in_kernel(vcpu->kvm))
10443 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10444 	}
10445 
10446 	if (is_guest_mode(vcpu))
10447 		vcpu->arch.load_eoi_exitmap_pending = true;
10448 	else
10449 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10450 }
10451 
10452 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10453 {
10454 	u64 eoi_exit_bitmap[4];
10455 
10456 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10457 		return;
10458 
10459 	if (to_hv_vcpu(vcpu)) {
10460 		bitmap_or((ulong *)eoi_exit_bitmap,
10461 			  vcpu->arch.ioapic_handled_vectors,
10462 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10463 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10464 		return;
10465 	}
10466 
10467 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10468 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10469 }
10470 
10471 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10472 {
10473 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10474 }
10475 
10476 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10477 {
10478 	if (!lapic_in_kernel(vcpu))
10479 		return;
10480 
10481 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10482 }
10483 
10484 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10485 {
10486 	smp_send_reschedule(vcpu->cpu);
10487 }
10488 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10489 
10490 /*
10491  * Called within kvm->srcu read side.
10492  * Returns 1 to let vcpu_run() continue the guest execution loop without
10493  * exiting to the userspace.  Otherwise, the value will be returned to the
10494  * userspace.
10495  */
10496 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10497 {
10498 	int r;
10499 	bool req_int_win =
10500 		dm_request_for_irq_injection(vcpu) &&
10501 		kvm_cpu_accept_dm_intr(vcpu);
10502 	fastpath_t exit_fastpath;
10503 
10504 	bool req_immediate_exit = false;
10505 
10506 	if (kvm_request_pending(vcpu)) {
10507 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10508 			r = -EIO;
10509 			goto out;
10510 		}
10511 
10512 		if (kvm_dirty_ring_check_request(vcpu)) {
10513 			r = 0;
10514 			goto out;
10515 		}
10516 
10517 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10518 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10519 				r = 0;
10520 				goto out;
10521 			}
10522 		}
10523 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10524 			kvm_mmu_free_obsolete_roots(vcpu);
10525 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10526 			__kvm_migrate_timers(vcpu);
10527 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10528 			kvm_update_masterclock(vcpu->kvm);
10529 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10530 			kvm_gen_kvmclock_update(vcpu);
10531 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10532 			r = kvm_guest_time_update(vcpu);
10533 			if (unlikely(r))
10534 				goto out;
10535 		}
10536 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10537 			kvm_mmu_sync_roots(vcpu);
10538 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10539 			kvm_mmu_load_pgd(vcpu);
10540 
10541 		/*
10542 		 * Note, the order matters here, as flushing "all" TLB entries
10543 		 * also flushes the "current" TLB entries, i.e. servicing the
10544 		 * flush "all" will clear any request to flush "current".
10545 		 */
10546 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10547 			kvm_vcpu_flush_tlb_all(vcpu);
10548 
10549 		kvm_service_local_tlb_flush_requests(vcpu);
10550 
10551 		/*
10552 		 * Fall back to a "full" guest flush if Hyper-V's precise
10553 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10554 		 * the flushes are considered "remote" and not "local" because
10555 		 * the requests can be initiated from other vCPUs.
10556 		 */
10557 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10558 		    kvm_hv_vcpu_flush_tlb(vcpu))
10559 			kvm_vcpu_flush_tlb_guest(vcpu);
10560 
10561 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10562 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10563 			r = 0;
10564 			goto out;
10565 		}
10566 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10567 			if (is_guest_mode(vcpu))
10568 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10569 
10570 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10571 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10572 				vcpu->mmio_needed = 0;
10573 				r = 0;
10574 				goto out;
10575 			}
10576 		}
10577 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10578 			/* Page is swapped out. Do synthetic halt */
10579 			vcpu->arch.apf.halted = true;
10580 			r = 1;
10581 			goto out;
10582 		}
10583 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10584 			record_steal_time(vcpu);
10585 #ifdef CONFIG_KVM_SMM
10586 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10587 			process_smi(vcpu);
10588 #endif
10589 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10590 			process_nmi(vcpu);
10591 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10592 			kvm_pmu_handle_event(vcpu);
10593 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10594 			kvm_pmu_deliver_pmi(vcpu);
10595 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10596 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10597 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10598 				     vcpu->arch.ioapic_handled_vectors)) {
10599 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10600 				vcpu->run->eoi.vector =
10601 						vcpu->arch.pending_ioapic_eoi;
10602 				r = 0;
10603 				goto out;
10604 			}
10605 		}
10606 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10607 			vcpu_scan_ioapic(vcpu);
10608 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10609 			vcpu_load_eoi_exitmap(vcpu);
10610 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10611 			kvm_vcpu_reload_apic_access_page(vcpu);
10612 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10613 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10614 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10615 			vcpu->run->system_event.ndata = 0;
10616 			r = 0;
10617 			goto out;
10618 		}
10619 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10620 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10621 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10622 			vcpu->run->system_event.ndata = 0;
10623 			r = 0;
10624 			goto out;
10625 		}
10626 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10627 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10628 
10629 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10630 			vcpu->run->hyperv = hv_vcpu->exit;
10631 			r = 0;
10632 			goto out;
10633 		}
10634 
10635 		/*
10636 		 * KVM_REQ_HV_STIMER has to be processed after
10637 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10638 		 * depend on the guest clock being up-to-date
10639 		 */
10640 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10641 			kvm_hv_process_stimers(vcpu);
10642 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10643 			kvm_vcpu_update_apicv(vcpu);
10644 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10645 			kvm_check_async_pf_completion(vcpu);
10646 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10647 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10648 
10649 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10650 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10651 	}
10652 
10653 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10654 	    kvm_xen_has_interrupt(vcpu)) {
10655 		++vcpu->stat.req_event;
10656 		r = kvm_apic_accept_events(vcpu);
10657 		if (r < 0) {
10658 			r = 0;
10659 			goto out;
10660 		}
10661 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10662 			r = 1;
10663 			goto out;
10664 		}
10665 
10666 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10667 		if (r < 0) {
10668 			r = 0;
10669 			goto out;
10670 		}
10671 		if (req_int_win)
10672 			static_call(kvm_x86_enable_irq_window)(vcpu);
10673 
10674 		if (kvm_lapic_enabled(vcpu)) {
10675 			update_cr8_intercept(vcpu);
10676 			kvm_lapic_sync_to_vapic(vcpu);
10677 		}
10678 	}
10679 
10680 	r = kvm_mmu_reload(vcpu);
10681 	if (unlikely(r)) {
10682 		goto cancel_injection;
10683 	}
10684 
10685 	preempt_disable();
10686 
10687 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10688 
10689 	/*
10690 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10691 	 * IPI are then delayed after guest entry, which ensures that they
10692 	 * result in virtual interrupt delivery.
10693 	 */
10694 	local_irq_disable();
10695 
10696 	/* Store vcpu->apicv_active before vcpu->mode.  */
10697 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10698 
10699 	kvm_vcpu_srcu_read_unlock(vcpu);
10700 
10701 	/*
10702 	 * 1) We should set ->mode before checking ->requests.  Please see
10703 	 * the comment in kvm_vcpu_exiting_guest_mode().
10704 	 *
10705 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10706 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10707 	 * (see vmx_deliver_posted_interrupt).
10708 	 *
10709 	 * 3) This also orders the write to mode from any reads to the page
10710 	 * tables done while the VCPU is running.  Please see the comment
10711 	 * in kvm_flush_remote_tlbs.
10712 	 */
10713 	smp_mb__after_srcu_read_unlock();
10714 
10715 	/*
10716 	 * Process pending posted interrupts to handle the case where the
10717 	 * notification IRQ arrived in the host, or was never sent (because the
10718 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10719 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10720 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10721 	 */
10722 	if (kvm_lapic_enabled(vcpu))
10723 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10724 
10725 	if (kvm_vcpu_exit_request(vcpu)) {
10726 		vcpu->mode = OUTSIDE_GUEST_MODE;
10727 		smp_wmb();
10728 		local_irq_enable();
10729 		preempt_enable();
10730 		kvm_vcpu_srcu_read_lock(vcpu);
10731 		r = 1;
10732 		goto cancel_injection;
10733 	}
10734 
10735 	if (req_immediate_exit) {
10736 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10737 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10738 	}
10739 
10740 	fpregs_assert_state_consistent();
10741 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10742 		switch_fpu_return();
10743 
10744 	if (vcpu->arch.guest_fpu.xfd_err)
10745 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10746 
10747 	if (unlikely(vcpu->arch.switch_db_regs)) {
10748 		set_debugreg(0, 7);
10749 		set_debugreg(vcpu->arch.eff_db[0], 0);
10750 		set_debugreg(vcpu->arch.eff_db[1], 1);
10751 		set_debugreg(vcpu->arch.eff_db[2], 2);
10752 		set_debugreg(vcpu->arch.eff_db[3], 3);
10753 	} else if (unlikely(hw_breakpoint_active())) {
10754 		set_debugreg(0, 7);
10755 	}
10756 
10757 	guest_timing_enter_irqoff();
10758 
10759 	for (;;) {
10760 		/*
10761 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10762 		 * update must kick and wait for all vCPUs before toggling the
10763 		 * per-VM state, and responsing vCPUs must wait for the update
10764 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10765 		 */
10766 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10767 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10768 
10769 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10770 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10771 			break;
10772 
10773 		if (kvm_lapic_enabled(vcpu))
10774 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10775 
10776 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10777 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10778 			break;
10779 		}
10780 
10781 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10782 		++vcpu->stat.exits;
10783 	}
10784 
10785 	/*
10786 	 * Do this here before restoring debug registers on the host.  And
10787 	 * since we do this before handling the vmexit, a DR access vmexit
10788 	 * can (a) read the correct value of the debug registers, (b) set
10789 	 * KVM_DEBUGREG_WONT_EXIT again.
10790 	 */
10791 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10792 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10793 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10794 		kvm_update_dr0123(vcpu);
10795 		kvm_update_dr7(vcpu);
10796 	}
10797 
10798 	/*
10799 	 * If the guest has used debug registers, at least dr7
10800 	 * will be disabled while returning to the host.
10801 	 * If we don't have active breakpoints in the host, we don't
10802 	 * care about the messed up debug address registers. But if
10803 	 * we have some of them active, restore the old state.
10804 	 */
10805 	if (hw_breakpoint_active())
10806 		hw_breakpoint_restore();
10807 
10808 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10809 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10810 
10811 	vcpu->mode = OUTSIDE_GUEST_MODE;
10812 	smp_wmb();
10813 
10814 	/*
10815 	 * Sync xfd before calling handle_exit_irqoff() which may
10816 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10817 	 * in #NM irqoff handler).
10818 	 */
10819 	if (vcpu->arch.xfd_no_write_intercept)
10820 		fpu_sync_guest_vmexit_xfd_state();
10821 
10822 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10823 
10824 	if (vcpu->arch.guest_fpu.xfd_err)
10825 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10826 
10827 	/*
10828 	 * Consume any pending interrupts, including the possible source of
10829 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10830 	 * An instruction is required after local_irq_enable() to fully unblock
10831 	 * interrupts on processors that implement an interrupt shadow, the
10832 	 * stat.exits increment will do nicely.
10833 	 */
10834 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10835 	local_irq_enable();
10836 	++vcpu->stat.exits;
10837 	local_irq_disable();
10838 	kvm_after_interrupt(vcpu);
10839 
10840 	/*
10841 	 * Wait until after servicing IRQs to account guest time so that any
10842 	 * ticks that occurred while running the guest are properly accounted
10843 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10844 	 * of accounting via context tracking, but the loss of accuracy is
10845 	 * acceptable for all known use cases.
10846 	 */
10847 	guest_timing_exit_irqoff();
10848 
10849 	local_irq_enable();
10850 	preempt_enable();
10851 
10852 	kvm_vcpu_srcu_read_lock(vcpu);
10853 
10854 	/*
10855 	 * Profile KVM exit RIPs:
10856 	 */
10857 	if (unlikely(prof_on == KVM_PROFILING)) {
10858 		unsigned long rip = kvm_rip_read(vcpu);
10859 		profile_hit(KVM_PROFILING, (void *)rip);
10860 	}
10861 
10862 	if (unlikely(vcpu->arch.tsc_always_catchup))
10863 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10864 
10865 	if (vcpu->arch.apic_attention)
10866 		kvm_lapic_sync_from_vapic(vcpu);
10867 
10868 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10869 	return r;
10870 
10871 cancel_injection:
10872 	if (req_immediate_exit)
10873 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10874 	static_call(kvm_x86_cancel_injection)(vcpu);
10875 	if (unlikely(vcpu->arch.apic_attention))
10876 		kvm_lapic_sync_from_vapic(vcpu);
10877 out:
10878 	return r;
10879 }
10880 
10881 /* Called within kvm->srcu read side.  */
10882 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10883 {
10884 	bool hv_timer;
10885 
10886 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10887 		/*
10888 		 * Switch to the software timer before halt-polling/blocking as
10889 		 * the guest's timer may be a break event for the vCPU, and the
10890 		 * hypervisor timer runs only when the CPU is in guest mode.
10891 		 * Switch before halt-polling so that KVM recognizes an expired
10892 		 * timer before blocking.
10893 		 */
10894 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10895 		if (hv_timer)
10896 			kvm_lapic_switch_to_sw_timer(vcpu);
10897 
10898 		kvm_vcpu_srcu_read_unlock(vcpu);
10899 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10900 			kvm_vcpu_halt(vcpu);
10901 		else
10902 			kvm_vcpu_block(vcpu);
10903 		kvm_vcpu_srcu_read_lock(vcpu);
10904 
10905 		if (hv_timer)
10906 			kvm_lapic_switch_to_hv_timer(vcpu);
10907 
10908 		/*
10909 		 * If the vCPU is not runnable, a signal or another host event
10910 		 * of some kind is pending; service it without changing the
10911 		 * vCPU's activity state.
10912 		 */
10913 		if (!kvm_arch_vcpu_runnable(vcpu))
10914 			return 1;
10915 	}
10916 
10917 	/*
10918 	 * Evaluate nested events before exiting the halted state.  This allows
10919 	 * the halt state to be recorded properly in the VMCS12's activity
10920 	 * state field (AMD does not have a similar field and a VM-Exit always
10921 	 * causes a spurious wakeup from HLT).
10922 	 */
10923 	if (is_guest_mode(vcpu)) {
10924 		if (kvm_check_nested_events(vcpu) < 0)
10925 			return 0;
10926 	}
10927 
10928 	if (kvm_apic_accept_events(vcpu) < 0)
10929 		return 0;
10930 	switch(vcpu->arch.mp_state) {
10931 	case KVM_MP_STATE_HALTED:
10932 	case KVM_MP_STATE_AP_RESET_HOLD:
10933 		vcpu->arch.pv.pv_unhalted = false;
10934 		vcpu->arch.mp_state =
10935 			KVM_MP_STATE_RUNNABLE;
10936 		fallthrough;
10937 	case KVM_MP_STATE_RUNNABLE:
10938 		vcpu->arch.apf.halted = false;
10939 		break;
10940 	case KVM_MP_STATE_INIT_RECEIVED:
10941 		break;
10942 	default:
10943 		WARN_ON_ONCE(1);
10944 		break;
10945 	}
10946 	return 1;
10947 }
10948 
10949 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10950 {
10951 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10952 		!vcpu->arch.apf.halted);
10953 }
10954 
10955 /* Called within kvm->srcu read side.  */
10956 static int vcpu_run(struct kvm_vcpu *vcpu)
10957 {
10958 	int r;
10959 
10960 	vcpu->arch.l1tf_flush_l1d = true;
10961 
10962 	for (;;) {
10963 		/*
10964 		 * If another guest vCPU requests a PV TLB flush in the middle
10965 		 * of instruction emulation, the rest of the emulation could
10966 		 * use a stale page translation. Assume that any code after
10967 		 * this point can start executing an instruction.
10968 		 */
10969 		vcpu->arch.at_instruction_boundary = false;
10970 		if (kvm_vcpu_running(vcpu)) {
10971 			r = vcpu_enter_guest(vcpu);
10972 		} else {
10973 			r = vcpu_block(vcpu);
10974 		}
10975 
10976 		if (r <= 0)
10977 			break;
10978 
10979 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10980 		if (kvm_xen_has_pending_events(vcpu))
10981 			kvm_xen_inject_pending_events(vcpu);
10982 
10983 		if (kvm_cpu_has_pending_timer(vcpu))
10984 			kvm_inject_pending_timer_irqs(vcpu);
10985 
10986 		if (dm_request_for_irq_injection(vcpu) &&
10987 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10988 			r = 0;
10989 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10990 			++vcpu->stat.request_irq_exits;
10991 			break;
10992 		}
10993 
10994 		if (__xfer_to_guest_mode_work_pending()) {
10995 			kvm_vcpu_srcu_read_unlock(vcpu);
10996 			r = xfer_to_guest_mode_handle_work(vcpu);
10997 			kvm_vcpu_srcu_read_lock(vcpu);
10998 			if (r)
10999 				return r;
11000 		}
11001 	}
11002 
11003 	return r;
11004 }
11005 
11006 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11007 {
11008 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11009 }
11010 
11011 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11012 {
11013 	BUG_ON(!vcpu->arch.pio.count);
11014 
11015 	return complete_emulated_io(vcpu);
11016 }
11017 
11018 /*
11019  * Implements the following, as a state machine:
11020  *
11021  * read:
11022  *   for each fragment
11023  *     for each mmio piece in the fragment
11024  *       write gpa, len
11025  *       exit
11026  *       copy data
11027  *   execute insn
11028  *
11029  * write:
11030  *   for each fragment
11031  *     for each mmio piece in the fragment
11032  *       write gpa, len
11033  *       copy data
11034  *       exit
11035  */
11036 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11037 {
11038 	struct kvm_run *run = vcpu->run;
11039 	struct kvm_mmio_fragment *frag;
11040 	unsigned len;
11041 
11042 	BUG_ON(!vcpu->mmio_needed);
11043 
11044 	/* Complete previous fragment */
11045 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11046 	len = min(8u, frag->len);
11047 	if (!vcpu->mmio_is_write)
11048 		memcpy(frag->data, run->mmio.data, len);
11049 
11050 	if (frag->len <= 8) {
11051 		/* Switch to the next fragment. */
11052 		frag++;
11053 		vcpu->mmio_cur_fragment++;
11054 	} else {
11055 		/* Go forward to the next mmio piece. */
11056 		frag->data += len;
11057 		frag->gpa += len;
11058 		frag->len -= len;
11059 	}
11060 
11061 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11062 		vcpu->mmio_needed = 0;
11063 
11064 		/* FIXME: return into emulator if single-stepping.  */
11065 		if (vcpu->mmio_is_write)
11066 			return 1;
11067 		vcpu->mmio_read_completed = 1;
11068 		return complete_emulated_io(vcpu);
11069 	}
11070 
11071 	run->exit_reason = KVM_EXIT_MMIO;
11072 	run->mmio.phys_addr = frag->gpa;
11073 	if (vcpu->mmio_is_write)
11074 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11075 	run->mmio.len = min(8u, frag->len);
11076 	run->mmio.is_write = vcpu->mmio_is_write;
11077 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11078 	return 0;
11079 }
11080 
11081 /* Swap (qemu) user FPU context for the guest FPU context. */
11082 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11083 {
11084 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11085 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11086 	trace_kvm_fpu(1);
11087 }
11088 
11089 /* When vcpu_run ends, restore user space FPU context. */
11090 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11091 {
11092 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11093 	++vcpu->stat.fpu_reload;
11094 	trace_kvm_fpu(0);
11095 }
11096 
11097 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11098 {
11099 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11100 	struct kvm_run *kvm_run = vcpu->run;
11101 	int r;
11102 
11103 	vcpu_load(vcpu);
11104 	kvm_sigset_activate(vcpu);
11105 	kvm_run->flags = 0;
11106 	kvm_load_guest_fpu(vcpu);
11107 
11108 	kvm_vcpu_srcu_read_lock(vcpu);
11109 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11110 		if (kvm_run->immediate_exit) {
11111 			r = -EINTR;
11112 			goto out;
11113 		}
11114 		/*
11115 		 * It should be impossible for the hypervisor timer to be in
11116 		 * use before KVM has ever run the vCPU.
11117 		 */
11118 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11119 
11120 		kvm_vcpu_srcu_read_unlock(vcpu);
11121 		kvm_vcpu_block(vcpu);
11122 		kvm_vcpu_srcu_read_lock(vcpu);
11123 
11124 		if (kvm_apic_accept_events(vcpu) < 0) {
11125 			r = 0;
11126 			goto out;
11127 		}
11128 		r = -EAGAIN;
11129 		if (signal_pending(current)) {
11130 			r = -EINTR;
11131 			kvm_run->exit_reason = KVM_EXIT_INTR;
11132 			++vcpu->stat.signal_exits;
11133 		}
11134 		goto out;
11135 	}
11136 
11137 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11138 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11139 		r = -EINVAL;
11140 		goto out;
11141 	}
11142 
11143 	if (kvm_run->kvm_dirty_regs) {
11144 		r = sync_regs(vcpu);
11145 		if (r != 0)
11146 			goto out;
11147 	}
11148 
11149 	/* re-sync apic's tpr */
11150 	if (!lapic_in_kernel(vcpu)) {
11151 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11152 			r = -EINVAL;
11153 			goto out;
11154 		}
11155 	}
11156 
11157 	/*
11158 	 * If userspace set a pending exception and L2 is active, convert it to
11159 	 * a pending VM-Exit if L1 wants to intercept the exception.
11160 	 */
11161 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11162 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11163 							ex->error_code)) {
11164 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11165 					   ex->has_error_code, ex->error_code,
11166 					   ex->has_payload, ex->payload);
11167 		ex->injected = false;
11168 		ex->pending = false;
11169 	}
11170 	vcpu->arch.exception_from_userspace = false;
11171 
11172 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11173 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11174 		vcpu->arch.complete_userspace_io = NULL;
11175 		r = cui(vcpu);
11176 		if (r <= 0)
11177 			goto out;
11178 	} else {
11179 		WARN_ON_ONCE(vcpu->arch.pio.count);
11180 		WARN_ON_ONCE(vcpu->mmio_needed);
11181 	}
11182 
11183 	if (kvm_run->immediate_exit) {
11184 		r = -EINTR;
11185 		goto out;
11186 	}
11187 
11188 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11189 	if (r <= 0)
11190 		goto out;
11191 
11192 	r = vcpu_run(vcpu);
11193 
11194 out:
11195 	kvm_put_guest_fpu(vcpu);
11196 	if (kvm_run->kvm_valid_regs)
11197 		store_regs(vcpu);
11198 	post_kvm_run_save(vcpu);
11199 	kvm_vcpu_srcu_read_unlock(vcpu);
11200 
11201 	kvm_sigset_deactivate(vcpu);
11202 	vcpu_put(vcpu);
11203 	return r;
11204 }
11205 
11206 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11207 {
11208 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11209 		/*
11210 		 * We are here if userspace calls get_regs() in the middle of
11211 		 * instruction emulation. Registers state needs to be copied
11212 		 * back from emulation context to vcpu. Userspace shouldn't do
11213 		 * that usually, but some bad designed PV devices (vmware
11214 		 * backdoor interface) need this to work
11215 		 */
11216 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11217 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11218 	}
11219 	regs->rax = kvm_rax_read(vcpu);
11220 	regs->rbx = kvm_rbx_read(vcpu);
11221 	regs->rcx = kvm_rcx_read(vcpu);
11222 	regs->rdx = kvm_rdx_read(vcpu);
11223 	regs->rsi = kvm_rsi_read(vcpu);
11224 	regs->rdi = kvm_rdi_read(vcpu);
11225 	regs->rsp = kvm_rsp_read(vcpu);
11226 	regs->rbp = kvm_rbp_read(vcpu);
11227 #ifdef CONFIG_X86_64
11228 	regs->r8 = kvm_r8_read(vcpu);
11229 	regs->r9 = kvm_r9_read(vcpu);
11230 	regs->r10 = kvm_r10_read(vcpu);
11231 	regs->r11 = kvm_r11_read(vcpu);
11232 	regs->r12 = kvm_r12_read(vcpu);
11233 	regs->r13 = kvm_r13_read(vcpu);
11234 	regs->r14 = kvm_r14_read(vcpu);
11235 	regs->r15 = kvm_r15_read(vcpu);
11236 #endif
11237 
11238 	regs->rip = kvm_rip_read(vcpu);
11239 	regs->rflags = kvm_get_rflags(vcpu);
11240 }
11241 
11242 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11243 {
11244 	vcpu_load(vcpu);
11245 	__get_regs(vcpu, regs);
11246 	vcpu_put(vcpu);
11247 	return 0;
11248 }
11249 
11250 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11251 {
11252 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11253 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11254 
11255 	kvm_rax_write(vcpu, regs->rax);
11256 	kvm_rbx_write(vcpu, regs->rbx);
11257 	kvm_rcx_write(vcpu, regs->rcx);
11258 	kvm_rdx_write(vcpu, regs->rdx);
11259 	kvm_rsi_write(vcpu, regs->rsi);
11260 	kvm_rdi_write(vcpu, regs->rdi);
11261 	kvm_rsp_write(vcpu, regs->rsp);
11262 	kvm_rbp_write(vcpu, regs->rbp);
11263 #ifdef CONFIG_X86_64
11264 	kvm_r8_write(vcpu, regs->r8);
11265 	kvm_r9_write(vcpu, regs->r9);
11266 	kvm_r10_write(vcpu, regs->r10);
11267 	kvm_r11_write(vcpu, regs->r11);
11268 	kvm_r12_write(vcpu, regs->r12);
11269 	kvm_r13_write(vcpu, regs->r13);
11270 	kvm_r14_write(vcpu, regs->r14);
11271 	kvm_r15_write(vcpu, regs->r15);
11272 #endif
11273 
11274 	kvm_rip_write(vcpu, regs->rip);
11275 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11276 
11277 	vcpu->arch.exception.pending = false;
11278 	vcpu->arch.exception_vmexit.pending = false;
11279 
11280 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11281 }
11282 
11283 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11284 {
11285 	vcpu_load(vcpu);
11286 	__set_regs(vcpu, regs);
11287 	vcpu_put(vcpu);
11288 	return 0;
11289 }
11290 
11291 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11292 {
11293 	struct desc_ptr dt;
11294 
11295 	if (vcpu->arch.guest_state_protected)
11296 		goto skip_protected_regs;
11297 
11298 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11299 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11300 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11301 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11302 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11303 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11304 
11305 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11306 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11307 
11308 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11309 	sregs->idt.limit = dt.size;
11310 	sregs->idt.base = dt.address;
11311 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11312 	sregs->gdt.limit = dt.size;
11313 	sregs->gdt.base = dt.address;
11314 
11315 	sregs->cr2 = vcpu->arch.cr2;
11316 	sregs->cr3 = kvm_read_cr3(vcpu);
11317 
11318 skip_protected_regs:
11319 	sregs->cr0 = kvm_read_cr0(vcpu);
11320 	sregs->cr4 = kvm_read_cr4(vcpu);
11321 	sregs->cr8 = kvm_get_cr8(vcpu);
11322 	sregs->efer = vcpu->arch.efer;
11323 	sregs->apic_base = kvm_get_apic_base(vcpu);
11324 }
11325 
11326 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11327 {
11328 	__get_sregs_common(vcpu, sregs);
11329 
11330 	if (vcpu->arch.guest_state_protected)
11331 		return;
11332 
11333 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11334 		set_bit(vcpu->arch.interrupt.nr,
11335 			(unsigned long *)sregs->interrupt_bitmap);
11336 }
11337 
11338 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11339 {
11340 	int i;
11341 
11342 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11343 
11344 	if (vcpu->arch.guest_state_protected)
11345 		return;
11346 
11347 	if (is_pae_paging(vcpu)) {
11348 		for (i = 0 ; i < 4 ; i++)
11349 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11350 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11351 	}
11352 }
11353 
11354 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11355 				  struct kvm_sregs *sregs)
11356 {
11357 	vcpu_load(vcpu);
11358 	__get_sregs(vcpu, sregs);
11359 	vcpu_put(vcpu);
11360 	return 0;
11361 }
11362 
11363 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11364 				    struct kvm_mp_state *mp_state)
11365 {
11366 	int r;
11367 
11368 	vcpu_load(vcpu);
11369 	if (kvm_mpx_supported())
11370 		kvm_load_guest_fpu(vcpu);
11371 
11372 	r = kvm_apic_accept_events(vcpu);
11373 	if (r < 0)
11374 		goto out;
11375 	r = 0;
11376 
11377 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11378 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11379 	    vcpu->arch.pv.pv_unhalted)
11380 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11381 	else
11382 		mp_state->mp_state = vcpu->arch.mp_state;
11383 
11384 out:
11385 	if (kvm_mpx_supported())
11386 		kvm_put_guest_fpu(vcpu);
11387 	vcpu_put(vcpu);
11388 	return r;
11389 }
11390 
11391 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11392 				    struct kvm_mp_state *mp_state)
11393 {
11394 	int ret = -EINVAL;
11395 
11396 	vcpu_load(vcpu);
11397 
11398 	switch (mp_state->mp_state) {
11399 	case KVM_MP_STATE_UNINITIALIZED:
11400 	case KVM_MP_STATE_HALTED:
11401 	case KVM_MP_STATE_AP_RESET_HOLD:
11402 	case KVM_MP_STATE_INIT_RECEIVED:
11403 	case KVM_MP_STATE_SIPI_RECEIVED:
11404 		if (!lapic_in_kernel(vcpu))
11405 			goto out;
11406 		break;
11407 
11408 	case KVM_MP_STATE_RUNNABLE:
11409 		break;
11410 
11411 	default:
11412 		goto out;
11413 	}
11414 
11415 	/*
11416 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11417 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11418 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11419 	 * if an SMI is pending as well.
11420 	 */
11421 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11422 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11423 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11424 		goto out;
11425 
11426 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11427 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11428 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11429 	} else
11430 		vcpu->arch.mp_state = mp_state->mp_state;
11431 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11432 
11433 	ret = 0;
11434 out:
11435 	vcpu_put(vcpu);
11436 	return ret;
11437 }
11438 
11439 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11440 		    int reason, bool has_error_code, u32 error_code)
11441 {
11442 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11443 	int ret;
11444 
11445 	init_emulate_ctxt(vcpu);
11446 
11447 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11448 				   has_error_code, error_code);
11449 	if (ret) {
11450 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11451 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11452 		vcpu->run->internal.ndata = 0;
11453 		return 0;
11454 	}
11455 
11456 	kvm_rip_write(vcpu, ctxt->eip);
11457 	kvm_set_rflags(vcpu, ctxt->eflags);
11458 	return 1;
11459 }
11460 EXPORT_SYMBOL_GPL(kvm_task_switch);
11461 
11462 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11463 {
11464 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11465 		/*
11466 		 * When EFER.LME and CR0.PG are set, the processor is in
11467 		 * 64-bit mode (though maybe in a 32-bit code segment).
11468 		 * CR4.PAE and EFER.LMA must be set.
11469 		 */
11470 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11471 			return false;
11472 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11473 			return false;
11474 	} else {
11475 		/*
11476 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11477 		 * segment cannot be 64-bit.
11478 		 */
11479 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11480 			return false;
11481 	}
11482 
11483 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11484 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11485 }
11486 
11487 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11488 		int *mmu_reset_needed, bool update_pdptrs)
11489 {
11490 	struct msr_data apic_base_msr;
11491 	int idx;
11492 	struct desc_ptr dt;
11493 
11494 	if (!kvm_is_valid_sregs(vcpu, sregs))
11495 		return -EINVAL;
11496 
11497 	apic_base_msr.data = sregs->apic_base;
11498 	apic_base_msr.host_initiated = true;
11499 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11500 		return -EINVAL;
11501 
11502 	if (vcpu->arch.guest_state_protected)
11503 		return 0;
11504 
11505 	dt.size = sregs->idt.limit;
11506 	dt.address = sregs->idt.base;
11507 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11508 	dt.size = sregs->gdt.limit;
11509 	dt.address = sregs->gdt.base;
11510 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11511 
11512 	vcpu->arch.cr2 = sregs->cr2;
11513 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11514 	vcpu->arch.cr3 = sregs->cr3;
11515 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11516 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11517 
11518 	kvm_set_cr8(vcpu, sregs->cr8);
11519 
11520 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11521 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11522 
11523 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11524 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11525 	vcpu->arch.cr0 = sregs->cr0;
11526 
11527 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11528 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11529 
11530 	if (update_pdptrs) {
11531 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11532 		if (is_pae_paging(vcpu)) {
11533 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11534 			*mmu_reset_needed = 1;
11535 		}
11536 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11537 	}
11538 
11539 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11540 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11541 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11542 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11543 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11544 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11545 
11546 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11547 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11548 
11549 	update_cr8_intercept(vcpu);
11550 
11551 	/* Older userspace won't unhalt the vcpu on reset. */
11552 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11553 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11554 	    !is_protmode(vcpu))
11555 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11556 
11557 	return 0;
11558 }
11559 
11560 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11561 {
11562 	int pending_vec, max_bits;
11563 	int mmu_reset_needed = 0;
11564 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11565 
11566 	if (ret)
11567 		return ret;
11568 
11569 	if (mmu_reset_needed)
11570 		kvm_mmu_reset_context(vcpu);
11571 
11572 	max_bits = KVM_NR_INTERRUPTS;
11573 	pending_vec = find_first_bit(
11574 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11575 
11576 	if (pending_vec < max_bits) {
11577 		kvm_queue_interrupt(vcpu, pending_vec, false);
11578 		pr_debug("Set back pending irq %d\n", pending_vec);
11579 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11580 	}
11581 	return 0;
11582 }
11583 
11584 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11585 {
11586 	int mmu_reset_needed = 0;
11587 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11588 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11589 		!(sregs2->efer & EFER_LMA);
11590 	int i, ret;
11591 
11592 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11593 		return -EINVAL;
11594 
11595 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11596 		return -EINVAL;
11597 
11598 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11599 				 &mmu_reset_needed, !valid_pdptrs);
11600 	if (ret)
11601 		return ret;
11602 
11603 	if (valid_pdptrs) {
11604 		for (i = 0; i < 4 ; i++)
11605 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11606 
11607 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11608 		mmu_reset_needed = 1;
11609 		vcpu->arch.pdptrs_from_userspace = true;
11610 	}
11611 	if (mmu_reset_needed)
11612 		kvm_mmu_reset_context(vcpu);
11613 	return 0;
11614 }
11615 
11616 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11617 				  struct kvm_sregs *sregs)
11618 {
11619 	int ret;
11620 
11621 	vcpu_load(vcpu);
11622 	ret = __set_sregs(vcpu, sregs);
11623 	vcpu_put(vcpu);
11624 	return ret;
11625 }
11626 
11627 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11628 {
11629 	bool set = false;
11630 	struct kvm_vcpu *vcpu;
11631 	unsigned long i;
11632 
11633 	if (!enable_apicv)
11634 		return;
11635 
11636 	down_write(&kvm->arch.apicv_update_lock);
11637 
11638 	kvm_for_each_vcpu(i, vcpu, kvm) {
11639 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11640 			set = true;
11641 			break;
11642 		}
11643 	}
11644 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11645 	up_write(&kvm->arch.apicv_update_lock);
11646 }
11647 
11648 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11649 					struct kvm_guest_debug *dbg)
11650 {
11651 	unsigned long rflags;
11652 	int i, r;
11653 
11654 	if (vcpu->arch.guest_state_protected)
11655 		return -EINVAL;
11656 
11657 	vcpu_load(vcpu);
11658 
11659 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11660 		r = -EBUSY;
11661 		if (kvm_is_exception_pending(vcpu))
11662 			goto out;
11663 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11664 			kvm_queue_exception(vcpu, DB_VECTOR);
11665 		else
11666 			kvm_queue_exception(vcpu, BP_VECTOR);
11667 	}
11668 
11669 	/*
11670 	 * Read rflags as long as potentially injected trace flags are still
11671 	 * filtered out.
11672 	 */
11673 	rflags = kvm_get_rflags(vcpu);
11674 
11675 	vcpu->guest_debug = dbg->control;
11676 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11677 		vcpu->guest_debug = 0;
11678 
11679 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11680 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11681 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11682 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11683 	} else {
11684 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11685 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11686 	}
11687 	kvm_update_dr7(vcpu);
11688 
11689 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11690 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11691 
11692 	/*
11693 	 * Trigger an rflags update that will inject or remove the trace
11694 	 * flags.
11695 	 */
11696 	kvm_set_rflags(vcpu, rflags);
11697 
11698 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11699 
11700 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11701 
11702 	r = 0;
11703 
11704 out:
11705 	vcpu_put(vcpu);
11706 	return r;
11707 }
11708 
11709 /*
11710  * Translate a guest virtual address to a guest physical address.
11711  */
11712 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11713 				    struct kvm_translation *tr)
11714 {
11715 	unsigned long vaddr = tr->linear_address;
11716 	gpa_t gpa;
11717 	int idx;
11718 
11719 	vcpu_load(vcpu);
11720 
11721 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11722 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11723 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11724 	tr->physical_address = gpa;
11725 	tr->valid = gpa != INVALID_GPA;
11726 	tr->writeable = 1;
11727 	tr->usermode = 0;
11728 
11729 	vcpu_put(vcpu);
11730 	return 0;
11731 }
11732 
11733 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11734 {
11735 	struct fxregs_state *fxsave;
11736 
11737 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11738 		return 0;
11739 
11740 	vcpu_load(vcpu);
11741 
11742 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11743 	memcpy(fpu->fpr, fxsave->st_space, 128);
11744 	fpu->fcw = fxsave->cwd;
11745 	fpu->fsw = fxsave->swd;
11746 	fpu->ftwx = fxsave->twd;
11747 	fpu->last_opcode = fxsave->fop;
11748 	fpu->last_ip = fxsave->rip;
11749 	fpu->last_dp = fxsave->rdp;
11750 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11751 
11752 	vcpu_put(vcpu);
11753 	return 0;
11754 }
11755 
11756 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11757 {
11758 	struct fxregs_state *fxsave;
11759 
11760 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11761 		return 0;
11762 
11763 	vcpu_load(vcpu);
11764 
11765 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11766 
11767 	memcpy(fxsave->st_space, fpu->fpr, 128);
11768 	fxsave->cwd = fpu->fcw;
11769 	fxsave->swd = fpu->fsw;
11770 	fxsave->twd = fpu->ftwx;
11771 	fxsave->fop = fpu->last_opcode;
11772 	fxsave->rip = fpu->last_ip;
11773 	fxsave->rdp = fpu->last_dp;
11774 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11775 
11776 	vcpu_put(vcpu);
11777 	return 0;
11778 }
11779 
11780 static void store_regs(struct kvm_vcpu *vcpu)
11781 {
11782 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11783 
11784 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11785 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11786 
11787 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11788 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11789 
11790 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11791 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11792 				vcpu, &vcpu->run->s.regs.events);
11793 }
11794 
11795 static int sync_regs(struct kvm_vcpu *vcpu)
11796 {
11797 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11798 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11799 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11800 	}
11801 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11802 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11803 			return -EINVAL;
11804 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11805 	}
11806 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11807 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11808 				vcpu, &vcpu->run->s.regs.events))
11809 			return -EINVAL;
11810 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11811 	}
11812 
11813 	return 0;
11814 }
11815 
11816 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11817 {
11818 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11819 		pr_warn_once("SMP vm created on host with unstable TSC; "
11820 			     "guest TSC will not be reliable\n");
11821 
11822 	if (!kvm->arch.max_vcpu_ids)
11823 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11824 
11825 	if (id >= kvm->arch.max_vcpu_ids)
11826 		return -EINVAL;
11827 
11828 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11829 }
11830 
11831 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11832 {
11833 	struct page *page;
11834 	int r;
11835 
11836 	vcpu->arch.last_vmentry_cpu = -1;
11837 	vcpu->arch.regs_avail = ~0;
11838 	vcpu->arch.regs_dirty = ~0;
11839 
11840 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11841 
11842 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11843 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11844 	else
11845 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11846 
11847 	r = kvm_mmu_create(vcpu);
11848 	if (r < 0)
11849 		return r;
11850 
11851 	if (irqchip_in_kernel(vcpu->kvm)) {
11852 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11853 		if (r < 0)
11854 			goto fail_mmu_destroy;
11855 
11856 		/*
11857 		 * Defer evaluating inhibits until the vCPU is first run, as
11858 		 * this vCPU will not get notified of any changes until this
11859 		 * vCPU is visible to other vCPUs (marked online and added to
11860 		 * the set of vCPUs).  Opportunistically mark APICv active as
11861 		 * VMX in particularly is highly unlikely to have inhibits.
11862 		 * Ignore the current per-VM APICv state so that vCPU creation
11863 		 * is guaranteed to run with a deterministic value, the request
11864 		 * will ensure the vCPU gets the correct state before VM-Entry.
11865 		 */
11866 		if (enable_apicv) {
11867 			vcpu->arch.apic->apicv_active = true;
11868 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11869 		}
11870 	} else
11871 		static_branch_inc(&kvm_has_noapic_vcpu);
11872 
11873 	r = -ENOMEM;
11874 
11875 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11876 	if (!page)
11877 		goto fail_free_lapic;
11878 	vcpu->arch.pio_data = page_address(page);
11879 
11880 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11881 				       GFP_KERNEL_ACCOUNT);
11882 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11883 					    GFP_KERNEL_ACCOUNT);
11884 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11885 		goto fail_free_mce_banks;
11886 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11887 
11888 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11889 				GFP_KERNEL_ACCOUNT))
11890 		goto fail_free_mce_banks;
11891 
11892 	if (!alloc_emulate_ctxt(vcpu))
11893 		goto free_wbinvd_dirty_mask;
11894 
11895 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11896 		pr_err("failed to allocate vcpu's fpu\n");
11897 		goto free_emulate_ctxt;
11898 	}
11899 
11900 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11901 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11902 
11903 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11904 
11905 	kvm_async_pf_hash_reset(vcpu);
11906 
11907 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11908 	kvm_pmu_init(vcpu);
11909 
11910 	vcpu->arch.pending_external_vector = -1;
11911 	vcpu->arch.preempted_in_kernel = false;
11912 
11913 #if IS_ENABLED(CONFIG_HYPERV)
11914 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11915 #endif
11916 
11917 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11918 	if (r)
11919 		goto free_guest_fpu;
11920 
11921 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11922 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11923 	kvm_xen_init_vcpu(vcpu);
11924 	kvm_vcpu_mtrr_init(vcpu);
11925 	vcpu_load(vcpu);
11926 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11927 	kvm_vcpu_reset(vcpu, false);
11928 	kvm_init_mmu(vcpu);
11929 	vcpu_put(vcpu);
11930 	return 0;
11931 
11932 free_guest_fpu:
11933 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11934 free_emulate_ctxt:
11935 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11936 free_wbinvd_dirty_mask:
11937 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11938 fail_free_mce_banks:
11939 	kfree(vcpu->arch.mce_banks);
11940 	kfree(vcpu->arch.mci_ctl2_banks);
11941 	free_page((unsigned long)vcpu->arch.pio_data);
11942 fail_free_lapic:
11943 	kvm_free_lapic(vcpu);
11944 fail_mmu_destroy:
11945 	kvm_mmu_destroy(vcpu);
11946 	return r;
11947 }
11948 
11949 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11950 {
11951 	struct kvm *kvm = vcpu->kvm;
11952 
11953 	if (mutex_lock_killable(&vcpu->mutex))
11954 		return;
11955 	vcpu_load(vcpu);
11956 	kvm_synchronize_tsc(vcpu, 0);
11957 	vcpu_put(vcpu);
11958 
11959 	/* poll control enabled by default */
11960 	vcpu->arch.msr_kvm_poll_control = 1;
11961 
11962 	mutex_unlock(&vcpu->mutex);
11963 
11964 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11965 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11966 						KVMCLOCK_SYNC_PERIOD);
11967 }
11968 
11969 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11970 {
11971 	int idx;
11972 
11973 	kvmclock_reset(vcpu);
11974 
11975 	static_call(kvm_x86_vcpu_free)(vcpu);
11976 
11977 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11978 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11979 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11980 
11981 	kvm_xen_destroy_vcpu(vcpu);
11982 	kvm_hv_vcpu_uninit(vcpu);
11983 	kvm_pmu_destroy(vcpu);
11984 	kfree(vcpu->arch.mce_banks);
11985 	kfree(vcpu->arch.mci_ctl2_banks);
11986 	kvm_free_lapic(vcpu);
11987 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11988 	kvm_mmu_destroy(vcpu);
11989 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11990 	free_page((unsigned long)vcpu->arch.pio_data);
11991 	kvfree(vcpu->arch.cpuid_entries);
11992 	if (!lapic_in_kernel(vcpu))
11993 		static_branch_dec(&kvm_has_noapic_vcpu);
11994 }
11995 
11996 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11997 {
11998 	struct kvm_cpuid_entry2 *cpuid_0x1;
11999 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12000 	unsigned long new_cr0;
12001 
12002 	/*
12003 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12004 	 * to handle side effects.  RESET emulation hits those flows and relies
12005 	 * on emulated/virtualized registers, including those that are loaded
12006 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12007 	 * to detect improper or missing initialization.
12008 	 */
12009 	WARN_ON_ONCE(!init_event &&
12010 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12011 
12012 	/*
12013 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12014 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12015 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12016 	 * bits), i.e. virtualization is disabled.
12017 	 */
12018 	if (is_guest_mode(vcpu))
12019 		kvm_leave_nested(vcpu);
12020 
12021 	kvm_lapic_reset(vcpu, init_event);
12022 
12023 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12024 	vcpu->arch.hflags = 0;
12025 
12026 	vcpu->arch.smi_pending = 0;
12027 	vcpu->arch.smi_count = 0;
12028 	atomic_set(&vcpu->arch.nmi_queued, 0);
12029 	vcpu->arch.nmi_pending = 0;
12030 	vcpu->arch.nmi_injected = false;
12031 	kvm_clear_interrupt_queue(vcpu);
12032 	kvm_clear_exception_queue(vcpu);
12033 
12034 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12035 	kvm_update_dr0123(vcpu);
12036 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12037 	vcpu->arch.dr7 = DR7_FIXED_1;
12038 	kvm_update_dr7(vcpu);
12039 
12040 	vcpu->arch.cr2 = 0;
12041 
12042 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12043 	vcpu->arch.apf.msr_en_val = 0;
12044 	vcpu->arch.apf.msr_int_val = 0;
12045 	vcpu->arch.st.msr_val = 0;
12046 
12047 	kvmclock_reset(vcpu);
12048 
12049 	kvm_clear_async_pf_completion_queue(vcpu);
12050 	kvm_async_pf_hash_reset(vcpu);
12051 	vcpu->arch.apf.halted = false;
12052 
12053 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12054 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12055 
12056 		/*
12057 		 * All paths that lead to INIT are required to load the guest's
12058 		 * FPU state (because most paths are buried in KVM_RUN).
12059 		 */
12060 		if (init_event)
12061 			kvm_put_guest_fpu(vcpu);
12062 
12063 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12064 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12065 
12066 		if (init_event)
12067 			kvm_load_guest_fpu(vcpu);
12068 	}
12069 
12070 	if (!init_event) {
12071 		kvm_pmu_reset(vcpu);
12072 		vcpu->arch.smbase = 0x30000;
12073 
12074 		vcpu->arch.msr_misc_features_enables = 0;
12075 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12076 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12077 
12078 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12079 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12080 	}
12081 
12082 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12083 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12084 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12085 
12086 	/*
12087 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12088 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12089 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12090 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12091 	 * on RESET.  But, go through the motions in case that's ever remedied.
12092 	 */
12093 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12094 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12095 
12096 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12097 
12098 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12099 	kvm_rip_write(vcpu, 0xfff0);
12100 
12101 	vcpu->arch.cr3 = 0;
12102 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12103 
12104 	/*
12105 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12106 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12107 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12108 	 */
12109 	new_cr0 = X86_CR0_ET;
12110 	if (init_event)
12111 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12112 	else
12113 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12114 
12115 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12116 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12117 	static_call(kvm_x86_set_efer)(vcpu, 0);
12118 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12119 
12120 	/*
12121 	 * On the standard CR0/CR4/EFER modification paths, there are several
12122 	 * complex conditions determining whether the MMU has to be reset and/or
12123 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12124 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12125 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12126 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12127 	 */
12128 	if (old_cr0 & X86_CR0_PG) {
12129 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12130 		kvm_mmu_reset_context(vcpu);
12131 	}
12132 
12133 	/*
12134 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12135 	 * APM states the TLBs are untouched by INIT, but it also states that
12136 	 * the TLBs are flushed on "External initialization of the processor."
12137 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12138 	 * benefit in relying on the guest to flush the TLB immediately after
12139 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12140 	 * performance perspective.
12141 	 */
12142 	if (init_event)
12143 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12144 }
12145 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12146 
12147 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12148 {
12149 	struct kvm_segment cs;
12150 
12151 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12152 	cs.selector = vector << 8;
12153 	cs.base = vector << 12;
12154 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12155 	kvm_rip_write(vcpu, 0);
12156 }
12157 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12158 
12159 int kvm_arch_hardware_enable(void)
12160 {
12161 	struct kvm *kvm;
12162 	struct kvm_vcpu *vcpu;
12163 	unsigned long i;
12164 	int ret;
12165 	u64 local_tsc;
12166 	u64 max_tsc = 0;
12167 	bool stable, backwards_tsc = false;
12168 
12169 	kvm_user_return_msr_cpu_online();
12170 
12171 	ret = kvm_x86_check_processor_compatibility();
12172 	if (ret)
12173 		return ret;
12174 
12175 	ret = static_call(kvm_x86_hardware_enable)();
12176 	if (ret != 0)
12177 		return ret;
12178 
12179 	local_tsc = rdtsc();
12180 	stable = !kvm_check_tsc_unstable();
12181 	list_for_each_entry(kvm, &vm_list, vm_list) {
12182 		kvm_for_each_vcpu(i, vcpu, kvm) {
12183 			if (!stable && vcpu->cpu == smp_processor_id())
12184 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12185 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12186 				backwards_tsc = true;
12187 				if (vcpu->arch.last_host_tsc > max_tsc)
12188 					max_tsc = vcpu->arch.last_host_tsc;
12189 			}
12190 		}
12191 	}
12192 
12193 	/*
12194 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12195 	 * platforms that reset TSC during suspend or hibernate actions, but
12196 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12197 	 * detect that condition here, which happens early in CPU bringup,
12198 	 * before any KVM threads can be running.  Unfortunately, we can't
12199 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12200 	 * enough into CPU bringup that we know how much real time has actually
12201 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12202 	 * variables that haven't been updated yet.
12203 	 *
12204 	 * So we simply find the maximum observed TSC above, then record the
12205 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12206 	 * the adjustment will be applied.  Note that we accumulate
12207 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12208 	 * gets a chance to run again.  In the event that no KVM threads get a
12209 	 * chance to run, we will miss the entire elapsed period, as we'll have
12210 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12211 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12212 	 * uniform across all VCPUs (not to mention the scenario is extremely
12213 	 * unlikely). It is possible that a second hibernate recovery happens
12214 	 * much faster than a first, causing the observed TSC here to be
12215 	 * smaller; this would require additional padding adjustment, which is
12216 	 * why we set last_host_tsc to the local tsc observed here.
12217 	 *
12218 	 * N.B. - this code below runs only on platforms with reliable TSC,
12219 	 * as that is the only way backwards_tsc is set above.  Also note
12220 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12221 	 * have the same delta_cyc adjustment applied if backwards_tsc
12222 	 * is detected.  Note further, this adjustment is only done once,
12223 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12224 	 * called multiple times (one for each physical CPU bringup).
12225 	 *
12226 	 * Platforms with unreliable TSCs don't have to deal with this, they
12227 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12228 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12229 	 * guarantee that they stay in perfect synchronization.
12230 	 */
12231 	if (backwards_tsc) {
12232 		u64 delta_cyc = max_tsc - local_tsc;
12233 		list_for_each_entry(kvm, &vm_list, vm_list) {
12234 			kvm->arch.backwards_tsc_observed = true;
12235 			kvm_for_each_vcpu(i, vcpu, kvm) {
12236 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12237 				vcpu->arch.last_host_tsc = local_tsc;
12238 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12239 			}
12240 
12241 			/*
12242 			 * We have to disable TSC offset matching.. if you were
12243 			 * booting a VM while issuing an S4 host suspend....
12244 			 * you may have some problem.  Solving this issue is
12245 			 * left as an exercise to the reader.
12246 			 */
12247 			kvm->arch.last_tsc_nsec = 0;
12248 			kvm->arch.last_tsc_write = 0;
12249 		}
12250 
12251 	}
12252 	return 0;
12253 }
12254 
12255 void kvm_arch_hardware_disable(void)
12256 {
12257 	static_call(kvm_x86_hardware_disable)();
12258 	drop_user_return_notifiers();
12259 }
12260 
12261 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12262 {
12263 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12264 }
12265 
12266 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12267 {
12268 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12269 }
12270 
12271 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12272 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12273 
12274 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12275 {
12276 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12277 
12278 	vcpu->arch.l1tf_flush_l1d = true;
12279 	if (pmu->version && unlikely(pmu->event_count)) {
12280 		pmu->need_cleanup = true;
12281 		kvm_make_request(KVM_REQ_PMU, vcpu);
12282 	}
12283 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12284 }
12285 
12286 void kvm_arch_free_vm(struct kvm *kvm)
12287 {
12288 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12289 	__kvm_arch_free_vm(kvm);
12290 }
12291 
12292 
12293 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12294 {
12295 	int ret;
12296 	unsigned long flags;
12297 
12298 	if (type)
12299 		return -EINVAL;
12300 
12301 	ret = kvm_page_track_init(kvm);
12302 	if (ret)
12303 		goto out;
12304 
12305 	ret = kvm_mmu_init_vm(kvm);
12306 	if (ret)
12307 		goto out_page_track;
12308 
12309 	ret = static_call(kvm_x86_vm_init)(kvm);
12310 	if (ret)
12311 		goto out_uninit_mmu;
12312 
12313 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12314 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12315 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12316 
12317 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12318 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12319 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12320 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12321 		&kvm->arch.irq_sources_bitmap);
12322 
12323 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12324 	mutex_init(&kvm->arch.apic_map_lock);
12325 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12326 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12327 
12328 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12329 	pvclock_update_vm_gtod_copy(kvm);
12330 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12331 
12332 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12333 	kvm->arch.guest_can_read_msr_platform_info = true;
12334 	kvm->arch.enable_pmu = enable_pmu;
12335 
12336 #if IS_ENABLED(CONFIG_HYPERV)
12337 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12338 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12339 #endif
12340 
12341 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12342 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12343 
12344 	kvm_apicv_init(kvm);
12345 	kvm_hv_init_vm(kvm);
12346 	kvm_xen_init_vm(kvm);
12347 
12348 	return 0;
12349 
12350 out_uninit_mmu:
12351 	kvm_mmu_uninit_vm(kvm);
12352 out_page_track:
12353 	kvm_page_track_cleanup(kvm);
12354 out:
12355 	return ret;
12356 }
12357 
12358 int kvm_arch_post_init_vm(struct kvm *kvm)
12359 {
12360 	return kvm_mmu_post_init_vm(kvm);
12361 }
12362 
12363 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12364 {
12365 	vcpu_load(vcpu);
12366 	kvm_mmu_unload(vcpu);
12367 	vcpu_put(vcpu);
12368 }
12369 
12370 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12371 {
12372 	unsigned long i;
12373 	struct kvm_vcpu *vcpu;
12374 
12375 	kvm_for_each_vcpu(i, vcpu, kvm) {
12376 		kvm_clear_async_pf_completion_queue(vcpu);
12377 		kvm_unload_vcpu_mmu(vcpu);
12378 	}
12379 }
12380 
12381 void kvm_arch_sync_events(struct kvm *kvm)
12382 {
12383 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12384 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12385 	kvm_free_pit(kvm);
12386 }
12387 
12388 /**
12389  * __x86_set_memory_region: Setup KVM internal memory slot
12390  *
12391  * @kvm: the kvm pointer to the VM.
12392  * @id: the slot ID to setup.
12393  * @gpa: the GPA to install the slot (unused when @size == 0).
12394  * @size: the size of the slot. Set to zero to uninstall a slot.
12395  *
12396  * This function helps to setup a KVM internal memory slot.  Specify
12397  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12398  * slot.  The return code can be one of the following:
12399  *
12400  *   HVA:           on success (uninstall will return a bogus HVA)
12401  *   -errno:        on error
12402  *
12403  * The caller should always use IS_ERR() to check the return value
12404  * before use.  Note, the KVM internal memory slots are guaranteed to
12405  * remain valid and unchanged until the VM is destroyed, i.e., the
12406  * GPA->HVA translation will not change.  However, the HVA is a user
12407  * address, i.e. its accessibility is not guaranteed, and must be
12408  * accessed via __copy_{to,from}_user().
12409  */
12410 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12411 				      u32 size)
12412 {
12413 	int i, r;
12414 	unsigned long hva, old_npages;
12415 	struct kvm_memslots *slots = kvm_memslots(kvm);
12416 	struct kvm_memory_slot *slot;
12417 
12418 	/* Called with kvm->slots_lock held.  */
12419 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12420 		return ERR_PTR_USR(-EINVAL);
12421 
12422 	slot = id_to_memslot(slots, id);
12423 	if (size) {
12424 		if (slot && slot->npages)
12425 			return ERR_PTR_USR(-EEXIST);
12426 
12427 		/*
12428 		 * MAP_SHARED to prevent internal slot pages from being moved
12429 		 * by fork()/COW.
12430 		 */
12431 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12432 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12433 		if (IS_ERR_VALUE(hva))
12434 			return (void __user *)hva;
12435 	} else {
12436 		if (!slot || !slot->npages)
12437 			return NULL;
12438 
12439 		old_npages = slot->npages;
12440 		hva = slot->userspace_addr;
12441 	}
12442 
12443 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12444 		struct kvm_userspace_memory_region m;
12445 
12446 		m.slot = id | (i << 16);
12447 		m.flags = 0;
12448 		m.guest_phys_addr = gpa;
12449 		m.userspace_addr = hva;
12450 		m.memory_size = size;
12451 		r = __kvm_set_memory_region(kvm, &m);
12452 		if (r < 0)
12453 			return ERR_PTR_USR(r);
12454 	}
12455 
12456 	if (!size)
12457 		vm_munmap(hva, old_npages * PAGE_SIZE);
12458 
12459 	return (void __user *)hva;
12460 }
12461 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12462 
12463 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12464 {
12465 	kvm_mmu_pre_destroy_vm(kvm);
12466 }
12467 
12468 void kvm_arch_destroy_vm(struct kvm *kvm)
12469 {
12470 	if (current->mm == kvm->mm) {
12471 		/*
12472 		 * Free memory regions allocated on behalf of userspace,
12473 		 * unless the memory map has changed due to process exit
12474 		 * or fd copying.
12475 		 */
12476 		mutex_lock(&kvm->slots_lock);
12477 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12478 					0, 0);
12479 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12480 					0, 0);
12481 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12482 		mutex_unlock(&kvm->slots_lock);
12483 	}
12484 	kvm_unload_vcpu_mmus(kvm);
12485 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12486 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12487 	kvm_pic_destroy(kvm);
12488 	kvm_ioapic_destroy(kvm);
12489 	kvm_destroy_vcpus(kvm);
12490 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12491 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12492 	kvm_mmu_uninit_vm(kvm);
12493 	kvm_page_track_cleanup(kvm);
12494 	kvm_xen_destroy_vm(kvm);
12495 	kvm_hv_destroy_vm(kvm);
12496 }
12497 
12498 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12499 {
12500 	int i;
12501 
12502 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12503 		kvfree(slot->arch.rmap[i]);
12504 		slot->arch.rmap[i] = NULL;
12505 	}
12506 }
12507 
12508 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12509 {
12510 	int i;
12511 
12512 	memslot_rmap_free(slot);
12513 
12514 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12515 		kvfree(slot->arch.lpage_info[i - 1]);
12516 		slot->arch.lpage_info[i - 1] = NULL;
12517 	}
12518 
12519 	kvm_page_track_free_memslot(slot);
12520 }
12521 
12522 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12523 {
12524 	const int sz = sizeof(*slot->arch.rmap[0]);
12525 	int i;
12526 
12527 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12528 		int level = i + 1;
12529 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12530 
12531 		if (slot->arch.rmap[i])
12532 			continue;
12533 
12534 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12535 		if (!slot->arch.rmap[i]) {
12536 			memslot_rmap_free(slot);
12537 			return -ENOMEM;
12538 		}
12539 	}
12540 
12541 	return 0;
12542 }
12543 
12544 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12545 				      struct kvm_memory_slot *slot)
12546 {
12547 	unsigned long npages = slot->npages;
12548 	int i, r;
12549 
12550 	/*
12551 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12552 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12553 	 * the new memslot is successful.
12554 	 */
12555 	memset(&slot->arch, 0, sizeof(slot->arch));
12556 
12557 	if (kvm_memslots_have_rmaps(kvm)) {
12558 		r = memslot_rmap_alloc(slot, npages);
12559 		if (r)
12560 			return r;
12561 	}
12562 
12563 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12564 		struct kvm_lpage_info *linfo;
12565 		unsigned long ugfn;
12566 		int lpages;
12567 		int level = i + 1;
12568 
12569 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12570 
12571 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12572 		if (!linfo)
12573 			goto out_free;
12574 
12575 		slot->arch.lpage_info[i - 1] = linfo;
12576 
12577 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12578 			linfo[0].disallow_lpage = 1;
12579 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12580 			linfo[lpages - 1].disallow_lpage = 1;
12581 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12582 		/*
12583 		 * If the gfn and userspace address are not aligned wrt each
12584 		 * other, disable large page support for this slot.
12585 		 */
12586 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12587 			unsigned long j;
12588 
12589 			for (j = 0; j < lpages; ++j)
12590 				linfo[j].disallow_lpage = 1;
12591 		}
12592 	}
12593 
12594 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12595 		goto out_free;
12596 
12597 	return 0;
12598 
12599 out_free:
12600 	memslot_rmap_free(slot);
12601 
12602 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12603 		kvfree(slot->arch.lpage_info[i - 1]);
12604 		slot->arch.lpage_info[i - 1] = NULL;
12605 	}
12606 	return -ENOMEM;
12607 }
12608 
12609 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12610 {
12611 	struct kvm_vcpu *vcpu;
12612 	unsigned long i;
12613 
12614 	/*
12615 	 * memslots->generation has been incremented.
12616 	 * mmio generation may have reached its maximum value.
12617 	 */
12618 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12619 
12620 	/* Force re-initialization of steal_time cache */
12621 	kvm_for_each_vcpu(i, vcpu, kvm)
12622 		kvm_vcpu_kick(vcpu);
12623 }
12624 
12625 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12626 				   const struct kvm_memory_slot *old,
12627 				   struct kvm_memory_slot *new,
12628 				   enum kvm_mr_change change)
12629 {
12630 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12631 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12632 			return -EINVAL;
12633 
12634 		return kvm_alloc_memslot_metadata(kvm, new);
12635 	}
12636 
12637 	if (change == KVM_MR_FLAGS_ONLY)
12638 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12639 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12640 		return -EIO;
12641 
12642 	return 0;
12643 }
12644 
12645 
12646 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12647 {
12648 	int nr_slots;
12649 
12650 	if (!kvm_x86_ops.cpu_dirty_log_size)
12651 		return;
12652 
12653 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12654 	if ((enable && nr_slots == 1) || !nr_slots)
12655 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12656 }
12657 
12658 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12659 				     struct kvm_memory_slot *old,
12660 				     const struct kvm_memory_slot *new,
12661 				     enum kvm_mr_change change)
12662 {
12663 	u32 old_flags = old ? old->flags : 0;
12664 	u32 new_flags = new ? new->flags : 0;
12665 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12666 
12667 	/*
12668 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12669 	 * applies to all operations.
12670 	 */
12671 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12672 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12673 
12674 	/*
12675 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12676 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12677 	 *
12678 	 * For a memslot with dirty logging disabled:
12679 	 * CREATE:      No dirty mappings will already exist.
12680 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12681 	 *		kvm_arch_flush_shadow_memslot()
12682 	 *
12683 	 * For a memslot with dirty logging enabled:
12684 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12685 	 *		and no dirty bits to clear.
12686 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12687 	 *		kvm_arch_flush_shadow_memslot().
12688 	 */
12689 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12690 		return;
12691 
12692 	/*
12693 	 * READONLY and non-flags changes were filtered out above, and the only
12694 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12695 	 * logging isn't being toggled on or off.
12696 	 */
12697 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12698 		return;
12699 
12700 	if (!log_dirty_pages) {
12701 		/*
12702 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12703 		 * large sptes have to be split.  If live migration succeeds,
12704 		 * the guest in the source machine will be destroyed and large
12705 		 * sptes will be created in the destination.  However, if the
12706 		 * guest continues to run in the source machine (for example if
12707 		 * live migration fails), small sptes will remain around and
12708 		 * cause bad performance.
12709 		 *
12710 		 * Scan sptes if dirty logging has been stopped, dropping those
12711 		 * which can be collapsed into a single large-page spte.  Later
12712 		 * page faults will create the large-page sptes.
12713 		 */
12714 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12715 	} else {
12716 		/*
12717 		 * Initially-all-set does not require write protecting any page,
12718 		 * because they're all assumed to be dirty.
12719 		 */
12720 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12721 			return;
12722 
12723 		if (READ_ONCE(eager_page_split))
12724 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12725 
12726 		if (kvm_x86_ops.cpu_dirty_log_size) {
12727 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12728 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12729 		} else {
12730 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12731 		}
12732 
12733 		/*
12734 		 * Unconditionally flush the TLBs after enabling dirty logging.
12735 		 * A flush is almost always going to be necessary (see below),
12736 		 * and unconditionally flushing allows the helpers to omit
12737 		 * the subtly complex checks when removing write access.
12738 		 *
12739 		 * Do the flush outside of mmu_lock to reduce the amount of
12740 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12741 		 * safe as KVM only needs to guarantee the slot is fully
12742 		 * write-protected before returning to userspace, i.e. before
12743 		 * userspace can consume the dirty status.
12744 		 *
12745 		 * Flushing outside of mmu_lock requires KVM to be careful when
12746 		 * making decisions based on writable status of an SPTE, e.g. a
12747 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12748 		 *
12749 		 * Specifically, KVM also write-protects guest page tables to
12750 		 * monitor changes when using shadow paging, and must guarantee
12751 		 * no CPUs can write to those page before mmu_lock is dropped.
12752 		 * Because CPUs may have stale TLB entries at this point, a
12753 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12754 		 *
12755 		 * KVM also allows making SPTES writable outside of mmu_lock,
12756 		 * e.g. to allow dirty logging without taking mmu_lock.
12757 		 *
12758 		 * To handle these scenarios, KVM uses a separate software-only
12759 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12760 		 * a guest page table being write-protected (KVM clears the
12761 		 * MMU-writable flag when write-protecting for shadow paging).
12762 		 *
12763 		 * The use of MMU-writable is also the primary motivation for
12764 		 * the unconditional flush.  Because KVM must guarantee that a
12765 		 * CPU doesn't contain stale, writable TLB entries for a
12766 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12767 		 * MMU-writable SPTE regardless of whether the actual hardware
12768 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12769 		 * to flush, while unconditionally flushing allows the "remove
12770 		 * write access" helpers to ignore MMU-writable entirely.
12771 		 *
12772 		 * See is_writable_pte() for more details (the case involving
12773 		 * access-tracked SPTEs is particularly relevant).
12774 		 */
12775 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12776 	}
12777 }
12778 
12779 void kvm_arch_commit_memory_region(struct kvm *kvm,
12780 				struct kvm_memory_slot *old,
12781 				const struct kvm_memory_slot *new,
12782 				enum kvm_mr_change change)
12783 {
12784 	if (!kvm->arch.n_requested_mmu_pages &&
12785 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12786 		unsigned long nr_mmu_pages;
12787 
12788 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12789 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12790 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12791 	}
12792 
12793 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12794 
12795 	/* Free the arrays associated with the old memslot. */
12796 	if (change == KVM_MR_MOVE)
12797 		kvm_arch_free_memslot(kvm, old);
12798 }
12799 
12800 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12801 {
12802 	kvm_mmu_zap_all(kvm);
12803 }
12804 
12805 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12806 				   struct kvm_memory_slot *slot)
12807 {
12808 	kvm_page_track_flush_slot(kvm, slot);
12809 }
12810 
12811 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12812 {
12813 	return (is_guest_mode(vcpu) &&
12814 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12815 }
12816 
12817 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12818 {
12819 	if (!list_empty_careful(&vcpu->async_pf.done))
12820 		return true;
12821 
12822 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12823 	    kvm_apic_init_sipi_allowed(vcpu))
12824 		return true;
12825 
12826 	if (vcpu->arch.pv.pv_unhalted)
12827 		return true;
12828 
12829 	if (kvm_is_exception_pending(vcpu))
12830 		return true;
12831 
12832 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12833 	    (vcpu->arch.nmi_pending &&
12834 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12835 		return true;
12836 
12837 #ifdef CONFIG_KVM_SMM
12838 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12839 	    (vcpu->arch.smi_pending &&
12840 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12841 		return true;
12842 #endif
12843 
12844 	if (kvm_arch_interrupt_allowed(vcpu) &&
12845 	    (kvm_cpu_has_interrupt(vcpu) ||
12846 	    kvm_guest_apic_has_interrupt(vcpu)))
12847 		return true;
12848 
12849 	if (kvm_hv_has_stimer_pending(vcpu))
12850 		return true;
12851 
12852 	if (is_guest_mode(vcpu) &&
12853 	    kvm_x86_ops.nested_ops->has_events &&
12854 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12855 		return true;
12856 
12857 	if (kvm_xen_has_pending_events(vcpu))
12858 		return true;
12859 
12860 	return false;
12861 }
12862 
12863 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12864 {
12865 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12866 }
12867 
12868 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12869 {
12870 	if (kvm_vcpu_apicv_active(vcpu) &&
12871 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12872 		return true;
12873 
12874 	return false;
12875 }
12876 
12877 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12878 {
12879 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12880 		return true;
12881 
12882 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12883 #ifdef CONFIG_KVM_SMM
12884 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12885 #endif
12886 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12887 		return true;
12888 
12889 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12890 }
12891 
12892 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12893 {
12894 	if (vcpu->arch.guest_state_protected)
12895 		return true;
12896 
12897 	return vcpu->arch.preempted_in_kernel;
12898 }
12899 
12900 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12901 {
12902 	return kvm_rip_read(vcpu);
12903 }
12904 
12905 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12906 {
12907 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12908 }
12909 
12910 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12911 {
12912 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12913 }
12914 
12915 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12916 {
12917 	/* Can't read the RIP when guest state is protected, just return 0 */
12918 	if (vcpu->arch.guest_state_protected)
12919 		return 0;
12920 
12921 	if (is_64_bit_mode(vcpu))
12922 		return kvm_rip_read(vcpu);
12923 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12924 		     kvm_rip_read(vcpu));
12925 }
12926 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12927 
12928 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12929 {
12930 	return kvm_get_linear_rip(vcpu) == linear_rip;
12931 }
12932 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12933 
12934 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12935 {
12936 	unsigned long rflags;
12937 
12938 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12939 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12940 		rflags &= ~X86_EFLAGS_TF;
12941 	return rflags;
12942 }
12943 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12944 
12945 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12946 {
12947 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12948 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12949 		rflags |= X86_EFLAGS_TF;
12950 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12951 }
12952 
12953 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12954 {
12955 	__kvm_set_rflags(vcpu, rflags);
12956 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12957 }
12958 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12959 
12960 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12961 {
12962 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12963 
12964 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12965 }
12966 
12967 static inline u32 kvm_async_pf_next_probe(u32 key)
12968 {
12969 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12970 }
12971 
12972 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12973 {
12974 	u32 key = kvm_async_pf_hash_fn(gfn);
12975 
12976 	while (vcpu->arch.apf.gfns[key] != ~0)
12977 		key = kvm_async_pf_next_probe(key);
12978 
12979 	vcpu->arch.apf.gfns[key] = gfn;
12980 }
12981 
12982 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12983 {
12984 	int i;
12985 	u32 key = kvm_async_pf_hash_fn(gfn);
12986 
12987 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12988 		     (vcpu->arch.apf.gfns[key] != gfn &&
12989 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12990 		key = kvm_async_pf_next_probe(key);
12991 
12992 	return key;
12993 }
12994 
12995 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12996 {
12997 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12998 }
12999 
13000 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13001 {
13002 	u32 i, j, k;
13003 
13004 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13005 
13006 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13007 		return;
13008 
13009 	while (true) {
13010 		vcpu->arch.apf.gfns[i] = ~0;
13011 		do {
13012 			j = kvm_async_pf_next_probe(j);
13013 			if (vcpu->arch.apf.gfns[j] == ~0)
13014 				return;
13015 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13016 			/*
13017 			 * k lies cyclically in ]i,j]
13018 			 * |    i.k.j |
13019 			 * |....j i.k.| or  |.k..j i...|
13020 			 */
13021 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13022 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13023 		i = j;
13024 	}
13025 }
13026 
13027 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13028 {
13029 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13030 
13031 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13032 				      sizeof(reason));
13033 }
13034 
13035 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13036 {
13037 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13038 
13039 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13040 					     &token, offset, sizeof(token));
13041 }
13042 
13043 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13044 {
13045 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13046 	u32 val;
13047 
13048 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13049 					 &val, offset, sizeof(val)))
13050 		return false;
13051 
13052 	return !val;
13053 }
13054 
13055 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13056 {
13057 
13058 	if (!kvm_pv_async_pf_enabled(vcpu))
13059 		return false;
13060 
13061 	if (vcpu->arch.apf.send_user_only &&
13062 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13063 		return false;
13064 
13065 	if (is_guest_mode(vcpu)) {
13066 		/*
13067 		 * L1 needs to opt into the special #PF vmexits that are
13068 		 * used to deliver async page faults.
13069 		 */
13070 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13071 	} else {
13072 		/*
13073 		 * Play it safe in case the guest temporarily disables paging.
13074 		 * The real mode IDT in particular is unlikely to have a #PF
13075 		 * exception setup.
13076 		 */
13077 		return is_paging(vcpu);
13078 	}
13079 }
13080 
13081 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13082 {
13083 	if (unlikely(!lapic_in_kernel(vcpu) ||
13084 		     kvm_event_needs_reinjection(vcpu) ||
13085 		     kvm_is_exception_pending(vcpu)))
13086 		return false;
13087 
13088 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13089 		return false;
13090 
13091 	/*
13092 	 * If interrupts are off we cannot even use an artificial
13093 	 * halt state.
13094 	 */
13095 	return kvm_arch_interrupt_allowed(vcpu);
13096 }
13097 
13098 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13099 				     struct kvm_async_pf *work)
13100 {
13101 	struct x86_exception fault;
13102 
13103 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13104 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13105 
13106 	if (kvm_can_deliver_async_pf(vcpu) &&
13107 	    !apf_put_user_notpresent(vcpu)) {
13108 		fault.vector = PF_VECTOR;
13109 		fault.error_code_valid = true;
13110 		fault.error_code = 0;
13111 		fault.nested_page_fault = false;
13112 		fault.address = work->arch.token;
13113 		fault.async_page_fault = true;
13114 		kvm_inject_page_fault(vcpu, &fault);
13115 		return true;
13116 	} else {
13117 		/*
13118 		 * It is not possible to deliver a paravirtualized asynchronous
13119 		 * page fault, but putting the guest in an artificial halt state
13120 		 * can be beneficial nevertheless: if an interrupt arrives, we
13121 		 * can deliver it timely and perhaps the guest will schedule
13122 		 * another process.  When the instruction that triggered a page
13123 		 * fault is retried, hopefully the page will be ready in the host.
13124 		 */
13125 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13126 		return false;
13127 	}
13128 }
13129 
13130 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13131 				 struct kvm_async_pf *work)
13132 {
13133 	struct kvm_lapic_irq irq = {
13134 		.delivery_mode = APIC_DM_FIXED,
13135 		.vector = vcpu->arch.apf.vec
13136 	};
13137 
13138 	if (work->wakeup_all)
13139 		work->arch.token = ~0; /* broadcast wakeup */
13140 	else
13141 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13142 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13143 
13144 	if ((work->wakeup_all || work->notpresent_injected) &&
13145 	    kvm_pv_async_pf_enabled(vcpu) &&
13146 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13147 		vcpu->arch.apf.pageready_pending = true;
13148 		kvm_apic_set_irq(vcpu, &irq, NULL);
13149 	}
13150 
13151 	vcpu->arch.apf.halted = false;
13152 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13153 }
13154 
13155 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13156 {
13157 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13158 	if (!vcpu->arch.apf.pageready_pending)
13159 		kvm_vcpu_kick(vcpu);
13160 }
13161 
13162 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13163 {
13164 	if (!kvm_pv_async_pf_enabled(vcpu))
13165 		return true;
13166 	else
13167 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13168 }
13169 
13170 void kvm_arch_start_assignment(struct kvm *kvm)
13171 {
13172 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13173 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13174 }
13175 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13176 
13177 void kvm_arch_end_assignment(struct kvm *kvm)
13178 {
13179 	atomic_dec(&kvm->arch.assigned_device_count);
13180 }
13181 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13182 
13183 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13184 {
13185 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13186 }
13187 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13188 
13189 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13190 {
13191 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13192 }
13193 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13194 
13195 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13196 {
13197 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13198 }
13199 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13200 
13201 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13202 {
13203 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13204 }
13205 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13206 
13207 bool kvm_arch_has_irq_bypass(void)
13208 {
13209 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13210 }
13211 
13212 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13213 				      struct irq_bypass_producer *prod)
13214 {
13215 	struct kvm_kernel_irqfd *irqfd =
13216 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13217 	int ret;
13218 
13219 	irqfd->producer = prod;
13220 	kvm_arch_start_assignment(irqfd->kvm);
13221 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13222 					 prod->irq, irqfd->gsi, 1);
13223 
13224 	if (ret)
13225 		kvm_arch_end_assignment(irqfd->kvm);
13226 
13227 	return ret;
13228 }
13229 
13230 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13231 				      struct irq_bypass_producer *prod)
13232 {
13233 	int ret;
13234 	struct kvm_kernel_irqfd *irqfd =
13235 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13236 
13237 	WARN_ON(irqfd->producer != prod);
13238 	irqfd->producer = NULL;
13239 
13240 	/*
13241 	 * When producer of consumer is unregistered, we change back to
13242 	 * remapped mode, so we can re-use the current implementation
13243 	 * when the irq is masked/disabled or the consumer side (KVM
13244 	 * int this case doesn't want to receive the interrupts.
13245 	*/
13246 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13247 	if (ret)
13248 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13249 		       " fails: %d\n", irqfd->consumer.token, ret);
13250 
13251 	kvm_arch_end_assignment(irqfd->kvm);
13252 }
13253 
13254 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13255 				   uint32_t guest_irq, bool set)
13256 {
13257 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13258 }
13259 
13260 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13261 				  struct kvm_kernel_irq_routing_entry *new)
13262 {
13263 	if (new->type != KVM_IRQ_ROUTING_MSI)
13264 		return true;
13265 
13266 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13267 }
13268 
13269 bool kvm_vector_hashing_enabled(void)
13270 {
13271 	return vector_hashing;
13272 }
13273 
13274 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13275 {
13276 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13277 }
13278 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13279 
13280 
13281 int kvm_spec_ctrl_test_value(u64 value)
13282 {
13283 	/*
13284 	 * test that setting IA32_SPEC_CTRL to given value
13285 	 * is allowed by the host processor
13286 	 */
13287 
13288 	u64 saved_value;
13289 	unsigned long flags;
13290 	int ret = 0;
13291 
13292 	local_irq_save(flags);
13293 
13294 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13295 		ret = 1;
13296 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13297 		ret = 1;
13298 	else
13299 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13300 
13301 	local_irq_restore(flags);
13302 
13303 	return ret;
13304 }
13305 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13306 
13307 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13308 {
13309 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13310 	struct x86_exception fault;
13311 	u64 access = error_code &
13312 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13313 
13314 	if (!(error_code & PFERR_PRESENT_MASK) ||
13315 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13316 		/*
13317 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13318 		 * tables probably do not match the TLB.  Just proceed
13319 		 * with the error code that the processor gave.
13320 		 */
13321 		fault.vector = PF_VECTOR;
13322 		fault.error_code_valid = true;
13323 		fault.error_code = error_code;
13324 		fault.nested_page_fault = false;
13325 		fault.address = gva;
13326 		fault.async_page_fault = false;
13327 	}
13328 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13329 }
13330 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13331 
13332 /*
13333  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13334  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13335  * indicates whether exit to userspace is needed.
13336  */
13337 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13338 			      struct x86_exception *e)
13339 {
13340 	if (r == X86EMUL_PROPAGATE_FAULT) {
13341 		if (KVM_BUG_ON(!e, vcpu->kvm))
13342 			return -EIO;
13343 
13344 		kvm_inject_emulated_page_fault(vcpu, e);
13345 		return 1;
13346 	}
13347 
13348 	/*
13349 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13350 	 * while handling a VMX instruction KVM could've handled the request
13351 	 * correctly by exiting to userspace and performing I/O but there
13352 	 * doesn't seem to be a real use-case behind such requests, just return
13353 	 * KVM_EXIT_INTERNAL_ERROR for now.
13354 	 */
13355 	kvm_prepare_emulation_failure_exit(vcpu);
13356 
13357 	return 0;
13358 }
13359 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13360 
13361 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13362 {
13363 	bool pcid_enabled;
13364 	struct x86_exception e;
13365 	struct {
13366 		u64 pcid;
13367 		u64 gla;
13368 	} operand;
13369 	int r;
13370 
13371 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13372 	if (r != X86EMUL_CONTINUE)
13373 		return kvm_handle_memory_failure(vcpu, r, &e);
13374 
13375 	if (operand.pcid >> 12 != 0) {
13376 		kvm_inject_gp(vcpu, 0);
13377 		return 1;
13378 	}
13379 
13380 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13381 
13382 	switch (type) {
13383 	case INVPCID_TYPE_INDIV_ADDR:
13384 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13385 		    is_noncanonical_address(operand.gla, vcpu)) {
13386 			kvm_inject_gp(vcpu, 0);
13387 			return 1;
13388 		}
13389 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13390 		return kvm_skip_emulated_instruction(vcpu);
13391 
13392 	case INVPCID_TYPE_SINGLE_CTXT:
13393 		if (!pcid_enabled && (operand.pcid != 0)) {
13394 			kvm_inject_gp(vcpu, 0);
13395 			return 1;
13396 		}
13397 
13398 		kvm_invalidate_pcid(vcpu, operand.pcid);
13399 		return kvm_skip_emulated_instruction(vcpu);
13400 
13401 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13402 		/*
13403 		 * Currently, KVM doesn't mark global entries in the shadow
13404 		 * page tables, so a non-global flush just degenerates to a
13405 		 * global flush. If needed, we could optimize this later by
13406 		 * keeping track of global entries in shadow page tables.
13407 		 */
13408 
13409 		fallthrough;
13410 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13411 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13412 		return kvm_skip_emulated_instruction(vcpu);
13413 
13414 	default:
13415 		kvm_inject_gp(vcpu, 0);
13416 		return 1;
13417 	}
13418 }
13419 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13420 
13421 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13422 {
13423 	struct kvm_run *run = vcpu->run;
13424 	struct kvm_mmio_fragment *frag;
13425 	unsigned int len;
13426 
13427 	BUG_ON(!vcpu->mmio_needed);
13428 
13429 	/* Complete previous fragment */
13430 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13431 	len = min(8u, frag->len);
13432 	if (!vcpu->mmio_is_write)
13433 		memcpy(frag->data, run->mmio.data, len);
13434 
13435 	if (frag->len <= 8) {
13436 		/* Switch to the next fragment. */
13437 		frag++;
13438 		vcpu->mmio_cur_fragment++;
13439 	} else {
13440 		/* Go forward to the next mmio piece. */
13441 		frag->data += len;
13442 		frag->gpa += len;
13443 		frag->len -= len;
13444 	}
13445 
13446 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13447 		vcpu->mmio_needed = 0;
13448 
13449 		// VMG change, at this point, we're always done
13450 		// RIP has already been advanced
13451 		return 1;
13452 	}
13453 
13454 	// More MMIO is needed
13455 	run->mmio.phys_addr = frag->gpa;
13456 	run->mmio.len = min(8u, frag->len);
13457 	run->mmio.is_write = vcpu->mmio_is_write;
13458 	if (run->mmio.is_write)
13459 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13460 	run->exit_reason = KVM_EXIT_MMIO;
13461 
13462 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13463 
13464 	return 0;
13465 }
13466 
13467 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13468 			  void *data)
13469 {
13470 	int handled;
13471 	struct kvm_mmio_fragment *frag;
13472 
13473 	if (!data)
13474 		return -EINVAL;
13475 
13476 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13477 	if (handled == bytes)
13478 		return 1;
13479 
13480 	bytes -= handled;
13481 	gpa += handled;
13482 	data += handled;
13483 
13484 	/*TODO: Check if need to increment number of frags */
13485 	frag = vcpu->mmio_fragments;
13486 	vcpu->mmio_nr_fragments = 1;
13487 	frag->len = bytes;
13488 	frag->gpa = gpa;
13489 	frag->data = data;
13490 
13491 	vcpu->mmio_needed = 1;
13492 	vcpu->mmio_cur_fragment = 0;
13493 
13494 	vcpu->run->mmio.phys_addr = gpa;
13495 	vcpu->run->mmio.len = min(8u, frag->len);
13496 	vcpu->run->mmio.is_write = 1;
13497 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13498 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13499 
13500 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13501 
13502 	return 0;
13503 }
13504 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13505 
13506 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13507 			 void *data)
13508 {
13509 	int handled;
13510 	struct kvm_mmio_fragment *frag;
13511 
13512 	if (!data)
13513 		return -EINVAL;
13514 
13515 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13516 	if (handled == bytes)
13517 		return 1;
13518 
13519 	bytes -= handled;
13520 	gpa += handled;
13521 	data += handled;
13522 
13523 	/*TODO: Check if need to increment number of frags */
13524 	frag = vcpu->mmio_fragments;
13525 	vcpu->mmio_nr_fragments = 1;
13526 	frag->len = bytes;
13527 	frag->gpa = gpa;
13528 	frag->data = data;
13529 
13530 	vcpu->mmio_needed = 1;
13531 	vcpu->mmio_cur_fragment = 0;
13532 
13533 	vcpu->run->mmio.phys_addr = gpa;
13534 	vcpu->run->mmio.len = min(8u, frag->len);
13535 	vcpu->run->mmio.is_write = 0;
13536 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13537 
13538 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13539 
13540 	return 0;
13541 }
13542 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13543 
13544 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13545 {
13546 	vcpu->arch.sev_pio_count -= count;
13547 	vcpu->arch.sev_pio_data += count * size;
13548 }
13549 
13550 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13551 			   unsigned int port);
13552 
13553 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13554 {
13555 	int size = vcpu->arch.pio.size;
13556 	int port = vcpu->arch.pio.port;
13557 
13558 	vcpu->arch.pio.count = 0;
13559 	if (vcpu->arch.sev_pio_count)
13560 		return kvm_sev_es_outs(vcpu, size, port);
13561 	return 1;
13562 }
13563 
13564 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13565 			   unsigned int port)
13566 {
13567 	for (;;) {
13568 		unsigned int count =
13569 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13570 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13571 
13572 		/* memcpy done already by emulator_pio_out.  */
13573 		advance_sev_es_emulated_pio(vcpu, count, size);
13574 		if (!ret)
13575 			break;
13576 
13577 		/* Emulation done by the kernel.  */
13578 		if (!vcpu->arch.sev_pio_count)
13579 			return 1;
13580 	}
13581 
13582 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13583 	return 0;
13584 }
13585 
13586 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13587 			  unsigned int port);
13588 
13589 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13590 {
13591 	unsigned count = vcpu->arch.pio.count;
13592 	int size = vcpu->arch.pio.size;
13593 	int port = vcpu->arch.pio.port;
13594 
13595 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13596 	advance_sev_es_emulated_pio(vcpu, count, size);
13597 	if (vcpu->arch.sev_pio_count)
13598 		return kvm_sev_es_ins(vcpu, size, port);
13599 	return 1;
13600 }
13601 
13602 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13603 			  unsigned int port)
13604 {
13605 	for (;;) {
13606 		unsigned int count =
13607 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13608 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13609 			break;
13610 
13611 		/* Emulation done by the kernel.  */
13612 		advance_sev_es_emulated_pio(vcpu, count, size);
13613 		if (!vcpu->arch.sev_pio_count)
13614 			return 1;
13615 	}
13616 
13617 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13618 	return 0;
13619 }
13620 
13621 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13622 			 unsigned int port, void *data,  unsigned int count,
13623 			 int in)
13624 {
13625 	vcpu->arch.sev_pio_data = data;
13626 	vcpu->arch.sev_pio_count = count;
13627 	return in ? kvm_sev_es_ins(vcpu, size, port)
13628 		  : kvm_sev_es_outs(vcpu, size, port);
13629 }
13630 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13631 
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13661 
13662 static int __init kvm_x86_init(void)
13663 {
13664 	kvm_mmu_x86_module_init();
13665 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13666 	return 0;
13667 }
13668 module_init(kvm_x86_init);
13669 
13670 static void __exit kvm_x86_exit(void)
13671 {
13672 	/*
13673 	 * If module_init() is implemented, module_exit() must also be
13674 	 * implemented to allow module unload.
13675 	 */
13676 }
13677 module_exit(kvm_x86_exit);
13678