xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 9047fa5d)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142 
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145 
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149 
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152 
153 #define KVM_NR_SHARED_MSRS 16
154 
155 struct kvm_shared_msrs_global {
156 	int nr;
157 	u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159 
160 struct kvm_shared_msrs {
161 	struct user_return_notifier urn;
162 	bool registered;
163 	struct kvm_shared_msr_values {
164 		u64 host;
165 		u64 curr;
166 	} values[KVM_NR_SHARED_MSRS];
167 };
168 
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171 
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
174 	{ "pf_guest", VCPU_STAT(pf_guest) },
175 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
176 	{ "invlpg", VCPU_STAT(invlpg) },
177 	{ "exits", VCPU_STAT(exits) },
178 	{ "io_exits", VCPU_STAT(io_exits) },
179 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
180 	{ "signal_exits", VCPU_STAT(signal_exits) },
181 	{ "irq_window", VCPU_STAT(irq_window_exits) },
182 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
183 	{ "halt_exits", VCPU_STAT(halt_exits) },
184 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 	{ "hypercalls", VCPU_STAT(hypercalls) },
189 	{ "request_irq", VCPU_STAT(request_irq_exits) },
190 	{ "irq_exits", VCPU_STAT(irq_exits) },
191 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
192 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
193 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
194 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 	{ "irq_injections", VCPU_STAT(irq_injections) },
196 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
197 	{ "req_event", VCPU_STAT(req_event) },
198 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
199 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
204 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
205 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
207 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 	{ "largepages", VM_STAT(lpages) },
209 	{ "max_mmu_page_hash_collisions",
210 		VM_STAT(max_mmu_page_hash_collisions) },
211 	{ NULL }
212 };
213 
214 u64 __read_mostly host_xcr0;
215 
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217 
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220 	int i;
221 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 		vcpu->arch.apf.gfns[i] = ~0;
223 }
224 
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227 	unsigned slot;
228 	struct kvm_shared_msrs *locals
229 		= container_of(urn, struct kvm_shared_msrs, urn);
230 	struct kvm_shared_msr_values *values;
231 	unsigned long flags;
232 
233 	/*
234 	 * Disabling irqs at this point since the following code could be
235 	 * interrupted and executed through kvm_arch_hardware_disable()
236 	 */
237 	local_irq_save(flags);
238 	if (locals->registered) {
239 		locals->registered = false;
240 		user_return_notifier_unregister(urn);
241 	}
242 	local_irq_restore(flags);
243 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 		values = &locals->values[slot];
245 		if (values->host != values->curr) {
246 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 			values->curr = values->host;
248 		}
249 	}
250 }
251 
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254 	u64 value;
255 	unsigned int cpu = smp_processor_id();
256 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257 
258 	/* only read, and nobody should modify it at this time,
259 	 * so don't need lock */
260 	if (slot >= shared_msrs_global.nr) {
261 		printk(KERN_ERR "kvm: invalid MSR slot!");
262 		return;
263 	}
264 	rdmsrl_safe(msr, &value);
265 	smsr->values[slot].host = value;
266 	smsr->values[slot].curr = value;
267 }
268 
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 	shared_msrs_global.msrs[slot] = msr;
273 	if (slot >= shared_msrs_global.nr)
274 		shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277 
278 static void kvm_shared_msr_cpu_online(void)
279 {
280 	unsigned i;
281 
282 	for (i = 0; i < shared_msrs_global.nr; ++i)
283 		shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285 
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288 	unsigned int cpu = smp_processor_id();
289 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290 	int err;
291 
292 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
293 		return 0;
294 	smsr->values[slot].curr = value;
295 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296 	if (err)
297 		return 1;
298 
299 	if (!smsr->registered) {
300 		smsr->urn.on_user_return = kvm_on_user_return;
301 		user_return_notifier_register(&smsr->urn);
302 		smsr->registered = true;
303 	}
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307 
308 static void drop_user_return_notifiers(void)
309 {
310 	unsigned int cpu = smp_processor_id();
311 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312 
313 	if (smsr->registered)
314 		kvm_on_user_return(&smsr->urn);
315 }
316 
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319 	return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322 
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328 
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335 
336 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337 		return 1;
338 	if (!msr_info->host_initiated) {
339 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340 			return 1;
341 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342 			return 1;
343 	}
344 
345 	kvm_lapic_set_base(vcpu, msr_info->data);
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349 
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352 	/* Fault while not rebooting.  We want the trace. */
353 	BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356 
357 #define EXCPT_BENIGN		0
358 #define EXCPT_CONTRIBUTORY	1
359 #define EXCPT_PF		2
360 
361 static int exception_class(int vector)
362 {
363 	switch (vector) {
364 	case PF_VECTOR:
365 		return EXCPT_PF;
366 	case DE_VECTOR:
367 	case TS_VECTOR:
368 	case NP_VECTOR:
369 	case SS_VECTOR:
370 	case GP_VECTOR:
371 		return EXCPT_CONTRIBUTORY;
372 	default:
373 		break;
374 	}
375 	return EXCPT_BENIGN;
376 }
377 
378 #define EXCPT_FAULT		0
379 #define EXCPT_TRAP		1
380 #define EXCPT_ABORT		2
381 #define EXCPT_INTERRUPT		3
382 
383 static int exception_type(int vector)
384 {
385 	unsigned int mask;
386 
387 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 		return EXCPT_INTERRUPT;
389 
390 	mask = 1 << vector;
391 
392 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
393 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394 		return EXCPT_TRAP;
395 
396 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397 		return EXCPT_ABORT;
398 
399 	/* Reserved exceptions will result in fault */
400 	return EXCPT_FAULT;
401 }
402 
403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
404 		unsigned nr, bool has_error, u32 error_code,
405 		bool reinject)
406 {
407 	u32 prev_nr;
408 	int class1, class2;
409 
410 	kvm_make_request(KVM_REQ_EVENT, vcpu);
411 
412 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
413 	queue:
414 		if (has_error && !is_protmode(vcpu))
415 			has_error = false;
416 		if (reinject) {
417 			/*
418 			 * On vmentry, vcpu->arch.exception.pending is only
419 			 * true if an event injection was blocked by
420 			 * nested_run_pending.  In that case, however,
421 			 * vcpu_enter_guest requests an immediate exit,
422 			 * and the guest shouldn't proceed far enough to
423 			 * need reinjection.
424 			 */
425 			WARN_ON_ONCE(vcpu->arch.exception.pending);
426 			vcpu->arch.exception.injected = true;
427 		} else {
428 			vcpu->arch.exception.pending = true;
429 			vcpu->arch.exception.injected = false;
430 		}
431 		vcpu->arch.exception.has_error_code = has_error;
432 		vcpu->arch.exception.nr = nr;
433 		vcpu->arch.exception.error_code = error_code;
434 		return;
435 	}
436 
437 	/* to check exception */
438 	prev_nr = vcpu->arch.exception.nr;
439 	if (prev_nr == DF_VECTOR) {
440 		/* triple fault -> shutdown */
441 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
442 		return;
443 	}
444 	class1 = exception_class(prev_nr);
445 	class2 = exception_class(nr);
446 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
447 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
448 		/*
449 		 * Generate double fault per SDM Table 5-5.  Set
450 		 * exception.pending = true so that the double fault
451 		 * can trigger a nested vmexit.
452 		 */
453 		vcpu->arch.exception.pending = true;
454 		vcpu->arch.exception.injected = false;
455 		vcpu->arch.exception.has_error_code = true;
456 		vcpu->arch.exception.nr = DF_VECTOR;
457 		vcpu->arch.exception.error_code = 0;
458 	} else
459 		/* replace previous exception with a new one in a hope
460 		   that instruction re-execution will regenerate lost
461 		   exception */
462 		goto queue;
463 }
464 
465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467 	kvm_multiple_exception(vcpu, nr, false, 0, false);
468 }
469 EXPORT_SYMBOL_GPL(kvm_queue_exception);
470 
471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
472 {
473 	kvm_multiple_exception(vcpu, nr, false, 0, true);
474 }
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
476 
477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
478 {
479 	if (err)
480 		kvm_inject_gp(vcpu, 0);
481 	else
482 		return kvm_skip_emulated_instruction(vcpu);
483 
484 	return 1;
485 }
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
487 
488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
489 {
490 	++vcpu->stat.pf_guest;
491 	vcpu->arch.exception.nested_apf =
492 		is_guest_mode(vcpu) && fault->async_page_fault;
493 	if (vcpu->arch.exception.nested_apf)
494 		vcpu->arch.apf.nested_apf_token = fault->address;
495 	else
496 		vcpu->arch.cr2 = fault->address;
497 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
498 }
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
500 
501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
502 {
503 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
504 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
505 	else
506 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
507 
508 	return fault->nested_page_fault;
509 }
510 
511 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
512 {
513 	atomic_inc(&vcpu->arch.nmi_queued);
514 	kvm_make_request(KVM_REQ_NMI, vcpu);
515 }
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
517 
518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
521 }
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
523 
524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
525 {
526 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
527 }
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
529 
530 /*
531  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
532  * a #GP and return false.
533  */
534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
535 {
536 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
537 		return true;
538 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
539 	return false;
540 }
541 EXPORT_SYMBOL_GPL(kvm_require_cpl);
542 
543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
544 {
545 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
546 		return true;
547 
548 	kvm_queue_exception(vcpu, UD_VECTOR);
549 	return false;
550 }
551 EXPORT_SYMBOL_GPL(kvm_require_dr);
552 
553 /*
554  * This function will be used to read from the physical memory of the currently
555  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556  * can read from guest physical or from the guest's guest physical memory.
557  */
558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
559 			    gfn_t ngfn, void *data, int offset, int len,
560 			    u32 access)
561 {
562 	struct x86_exception exception;
563 	gfn_t real_gfn;
564 	gpa_t ngpa;
565 
566 	ngpa     = gfn_to_gpa(ngfn);
567 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
568 	if (real_gfn == UNMAPPED_GVA)
569 		return -EFAULT;
570 
571 	real_gfn = gpa_to_gfn(real_gfn);
572 
573 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
574 }
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
576 
577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
578 			       void *data, int offset, int len, u32 access)
579 {
580 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
581 				       data, offset, len, access);
582 }
583 
584 /*
585  * Load the pae pdptrs.  Return true is they are all valid.
586  */
587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
588 {
589 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
590 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
591 	int i;
592 	int ret;
593 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
594 
595 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
596 				      offset * sizeof(u64), sizeof(pdpte),
597 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
598 	if (ret < 0) {
599 		ret = 0;
600 		goto out;
601 	}
602 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
603 		if ((pdpte[i] & PT_PRESENT_MASK) &&
604 		    (pdpte[i] &
605 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
606 			ret = 0;
607 			goto out;
608 		}
609 	}
610 	ret = 1;
611 
612 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
613 	__set_bit(VCPU_EXREG_PDPTR,
614 		  (unsigned long *)&vcpu->arch.regs_avail);
615 	__set_bit(VCPU_EXREG_PDPTR,
616 		  (unsigned long *)&vcpu->arch.regs_dirty);
617 out:
618 
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(load_pdptrs);
622 
623 bool pdptrs_changed(struct kvm_vcpu *vcpu)
624 {
625 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
626 	bool changed = true;
627 	int offset;
628 	gfn_t gfn;
629 	int r;
630 
631 	if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
632 		return false;
633 
634 	if (!test_bit(VCPU_EXREG_PDPTR,
635 		      (unsigned long *)&vcpu->arch.regs_avail))
636 		return true;
637 
638 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
639 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
640 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
641 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
642 	if (r < 0)
643 		goto out;
644 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
645 out:
646 
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(pdptrs_changed);
650 
651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
652 {
653 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
654 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
655 
656 	cr0 |= X86_CR0_ET;
657 
658 #ifdef CONFIG_X86_64
659 	if (cr0 & 0xffffffff00000000UL)
660 		return 1;
661 #endif
662 
663 	cr0 &= ~CR0_RESERVED_BITS;
664 
665 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
666 		return 1;
667 
668 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
669 		return 1;
670 
671 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
672 #ifdef CONFIG_X86_64
673 		if ((vcpu->arch.efer & EFER_LME)) {
674 			int cs_db, cs_l;
675 
676 			if (!is_pae(vcpu))
677 				return 1;
678 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
679 			if (cs_l)
680 				return 1;
681 		} else
682 #endif
683 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
684 						 kvm_read_cr3(vcpu)))
685 			return 1;
686 	}
687 
688 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
689 		return 1;
690 
691 	kvm_x86_ops->set_cr0(vcpu, cr0);
692 
693 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
694 		kvm_clear_async_pf_completion_queue(vcpu);
695 		kvm_async_pf_hash_reset(vcpu);
696 	}
697 
698 	if ((cr0 ^ old_cr0) & update_bits)
699 		kvm_mmu_reset_context(vcpu);
700 
701 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
702 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
703 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
704 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
705 
706 	return 0;
707 }
708 EXPORT_SYMBOL_GPL(kvm_set_cr0);
709 
710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
711 {
712 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
713 }
714 EXPORT_SYMBOL_GPL(kvm_lmsw);
715 
716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
717 {
718 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
719 			!vcpu->guest_xcr0_loaded) {
720 		/* kvm_set_xcr() also depends on this */
721 		if (vcpu->arch.xcr0 != host_xcr0)
722 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
723 		vcpu->guest_xcr0_loaded = 1;
724 	}
725 }
726 
727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
728 {
729 	if (vcpu->guest_xcr0_loaded) {
730 		if (vcpu->arch.xcr0 != host_xcr0)
731 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
732 		vcpu->guest_xcr0_loaded = 0;
733 	}
734 }
735 
736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
737 {
738 	u64 xcr0 = xcr;
739 	u64 old_xcr0 = vcpu->arch.xcr0;
740 	u64 valid_bits;
741 
742 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
743 	if (index != XCR_XFEATURE_ENABLED_MASK)
744 		return 1;
745 	if (!(xcr0 & XFEATURE_MASK_FP))
746 		return 1;
747 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
748 		return 1;
749 
750 	/*
751 	 * Do not allow the guest to set bits that we do not support
752 	 * saving.  However, xcr0 bit 0 is always set, even if the
753 	 * emulated CPU does not support XSAVE (see fx_init).
754 	 */
755 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
756 	if (xcr0 & ~valid_bits)
757 		return 1;
758 
759 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
760 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
761 		return 1;
762 
763 	if (xcr0 & XFEATURE_MASK_AVX512) {
764 		if (!(xcr0 & XFEATURE_MASK_YMM))
765 			return 1;
766 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
767 			return 1;
768 	}
769 	vcpu->arch.xcr0 = xcr0;
770 
771 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
772 		kvm_update_cpuid(vcpu);
773 	return 0;
774 }
775 
776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
777 {
778 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
779 	    __kvm_set_xcr(vcpu, index, xcr)) {
780 		kvm_inject_gp(vcpu, 0);
781 		return 1;
782 	}
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_xcr);
786 
787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
788 {
789 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
790 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
791 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
792 
793 	if (cr4 & CR4_RESERVED_BITS)
794 		return 1;
795 
796 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
797 		return 1;
798 
799 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
800 		return 1;
801 
802 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
803 		return 1;
804 
805 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
806 		return 1;
807 
808 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
809 		return 1;
810 
811 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
812 		return 1;
813 
814 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
815 		return 1;
816 
817 	if (is_long_mode(vcpu)) {
818 		if (!(cr4 & X86_CR4_PAE))
819 			return 1;
820 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
821 		   && ((cr4 ^ old_cr4) & pdptr_bits)
822 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
823 				   kvm_read_cr3(vcpu)))
824 		return 1;
825 
826 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
827 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
828 			return 1;
829 
830 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
832 			return 1;
833 	}
834 
835 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
836 		return 1;
837 
838 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
839 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
840 		kvm_mmu_reset_context(vcpu);
841 
842 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
843 		kvm_update_cpuid(vcpu);
844 
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(kvm_set_cr4);
848 
849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
850 {
851 	bool skip_tlb_flush = false;
852 #ifdef CONFIG_X86_64
853 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
854 
855 	if (pcid_enabled) {
856 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
857 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
858 	}
859 #endif
860 
861 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
862 		if (!skip_tlb_flush) {
863 			kvm_mmu_sync_roots(vcpu);
864 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
865 		}
866 		return 0;
867 	}
868 
869 	if (is_long_mode(vcpu) &&
870 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
871 		return 1;
872 	else if (is_pae(vcpu) && is_paging(vcpu) &&
873 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
874 		return 1;
875 
876 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
877 	vcpu->arch.cr3 = cr3;
878 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_cr3);
883 
884 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
885 {
886 	if (cr8 & CR8_RESERVED_BITS)
887 		return 1;
888 	if (lapic_in_kernel(vcpu))
889 		kvm_lapic_set_tpr(vcpu, cr8);
890 	else
891 		vcpu->arch.cr8 = cr8;
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_set_cr8);
895 
896 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
897 {
898 	if (lapic_in_kernel(vcpu))
899 		return kvm_lapic_get_cr8(vcpu);
900 	else
901 		return vcpu->arch.cr8;
902 }
903 EXPORT_SYMBOL_GPL(kvm_get_cr8);
904 
905 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
906 {
907 	int i;
908 
909 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
910 		for (i = 0; i < KVM_NR_DB_REGS; i++)
911 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
912 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
913 	}
914 }
915 
916 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
917 {
918 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
920 }
921 
922 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
923 {
924 	unsigned long dr7;
925 
926 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
927 		dr7 = vcpu->arch.guest_debug_dr7;
928 	else
929 		dr7 = vcpu->arch.dr7;
930 	kvm_x86_ops->set_dr7(vcpu, dr7);
931 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
932 	if (dr7 & DR7_BP_EN_MASK)
933 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
934 }
935 
936 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
937 {
938 	u64 fixed = DR6_FIXED_1;
939 
940 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
941 		fixed |= DR6_RTM;
942 	return fixed;
943 }
944 
945 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947 	switch (dr) {
948 	case 0 ... 3:
949 		vcpu->arch.db[dr] = val;
950 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
951 			vcpu->arch.eff_db[dr] = val;
952 		break;
953 	case 4:
954 		/* fall through */
955 	case 6:
956 		if (val & 0xffffffff00000000ULL)
957 			return -1; /* #GP */
958 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
959 		kvm_update_dr6(vcpu);
960 		break;
961 	case 5:
962 		/* fall through */
963 	default: /* 7 */
964 		if (val & 0xffffffff00000000ULL)
965 			return -1; /* #GP */
966 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
967 		kvm_update_dr7(vcpu);
968 		break;
969 	}
970 
971 	return 0;
972 }
973 
974 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
975 {
976 	if (__kvm_set_dr(vcpu, dr, val)) {
977 		kvm_inject_gp(vcpu, 0);
978 		return 1;
979 	}
980 	return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_set_dr);
983 
984 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
985 {
986 	switch (dr) {
987 	case 0 ... 3:
988 		*val = vcpu->arch.db[dr];
989 		break;
990 	case 4:
991 		/* fall through */
992 	case 6:
993 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
994 			*val = vcpu->arch.dr6;
995 		else
996 			*val = kvm_x86_ops->get_dr6(vcpu);
997 		break;
998 	case 5:
999 		/* fall through */
1000 	default: /* 7 */
1001 		*val = vcpu->arch.dr7;
1002 		break;
1003 	}
1004 	return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_get_dr);
1007 
1008 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1009 {
1010 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1011 	u64 data;
1012 	int err;
1013 
1014 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1015 	if (err)
1016 		return err;
1017 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1018 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1019 	return err;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1022 
1023 /*
1024  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1025  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1026  *
1027  * This list is modified at module load time to reflect the
1028  * capabilities of the host cpu. This capabilities test skips MSRs that are
1029  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1030  * may depend on host virtualization features rather than host cpu features.
1031  */
1032 
1033 static u32 msrs_to_save[] = {
1034 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1035 	MSR_STAR,
1036 #ifdef CONFIG_X86_64
1037 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1038 #endif
1039 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1040 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1041 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1042 };
1043 
1044 static unsigned num_msrs_to_save;
1045 
1046 static u32 emulated_msrs[] = {
1047 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1048 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1049 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1050 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1051 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1052 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1053 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1054 	HV_X64_MSR_RESET,
1055 	HV_X64_MSR_VP_INDEX,
1056 	HV_X64_MSR_VP_RUNTIME,
1057 	HV_X64_MSR_SCONTROL,
1058 	HV_X64_MSR_STIMER0_CONFIG,
1059 	HV_X64_MSR_VP_ASSIST_PAGE,
1060 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1061 	HV_X64_MSR_TSC_EMULATION_STATUS,
1062 
1063 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1064 	MSR_KVM_PV_EOI_EN,
1065 
1066 	MSR_IA32_TSC_ADJUST,
1067 	MSR_IA32_TSCDEADLINE,
1068 	MSR_IA32_MISC_ENABLE,
1069 	MSR_IA32_MCG_STATUS,
1070 	MSR_IA32_MCG_CTL,
1071 	MSR_IA32_MCG_EXT_CTL,
1072 	MSR_IA32_SMBASE,
1073 	MSR_SMI_COUNT,
1074 	MSR_PLATFORM_INFO,
1075 	MSR_MISC_FEATURES_ENABLES,
1076 	MSR_AMD64_VIRT_SPEC_CTRL,
1077 };
1078 
1079 static unsigned num_emulated_msrs;
1080 
1081 /*
1082  * List of msr numbers which are used to expose MSR-based features that
1083  * can be used by a hypervisor to validate requested CPU features.
1084  */
1085 static u32 msr_based_features[] = {
1086 	MSR_IA32_VMX_BASIC,
1087 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1088 	MSR_IA32_VMX_PINBASED_CTLS,
1089 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1090 	MSR_IA32_VMX_PROCBASED_CTLS,
1091 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1092 	MSR_IA32_VMX_EXIT_CTLS,
1093 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1094 	MSR_IA32_VMX_ENTRY_CTLS,
1095 	MSR_IA32_VMX_MISC,
1096 	MSR_IA32_VMX_CR0_FIXED0,
1097 	MSR_IA32_VMX_CR0_FIXED1,
1098 	MSR_IA32_VMX_CR4_FIXED0,
1099 	MSR_IA32_VMX_CR4_FIXED1,
1100 	MSR_IA32_VMX_VMCS_ENUM,
1101 	MSR_IA32_VMX_PROCBASED_CTLS2,
1102 	MSR_IA32_VMX_EPT_VPID_CAP,
1103 	MSR_IA32_VMX_VMFUNC,
1104 
1105 	MSR_F10H_DECFG,
1106 	MSR_IA32_UCODE_REV,
1107 	MSR_IA32_ARCH_CAPABILITIES,
1108 };
1109 
1110 static unsigned int num_msr_based_features;
1111 
1112 u64 kvm_get_arch_capabilities(void)
1113 {
1114 	u64 data;
1115 
1116 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1117 
1118 	/*
1119 	 * If we're doing cache flushes (either "always" or "cond")
1120 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1121 	 * If an outer hypervisor is doing the cache flush for us
1122 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1123 	 * capability to the guest too, and if EPT is disabled we're not
1124 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1125 	 * require a nested hypervisor to do a flush of its own.
1126 	 */
1127 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1128 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1129 
1130 	return data;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1133 
1134 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1135 {
1136 	switch (msr->index) {
1137 	case MSR_IA32_ARCH_CAPABILITIES:
1138 		msr->data = kvm_get_arch_capabilities();
1139 		break;
1140 	case MSR_IA32_UCODE_REV:
1141 		rdmsrl_safe(msr->index, &msr->data);
1142 		break;
1143 	default:
1144 		if (kvm_x86_ops->get_msr_feature(msr))
1145 			return 1;
1146 	}
1147 	return 0;
1148 }
1149 
1150 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 	struct kvm_msr_entry msr;
1153 	int r;
1154 
1155 	msr.index = index;
1156 	r = kvm_get_msr_feature(&msr);
1157 	if (r)
1158 		return r;
1159 
1160 	*data = msr.data;
1161 
1162 	return 0;
1163 }
1164 
1165 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1166 {
1167 	if (efer & efer_reserved_bits)
1168 		return false;
1169 
1170 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1171 			return false;
1172 
1173 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1174 			return false;
1175 
1176 	return true;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1179 
1180 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1181 {
1182 	u64 old_efer = vcpu->arch.efer;
1183 
1184 	if (!kvm_valid_efer(vcpu, efer))
1185 		return 1;
1186 
1187 	if (is_paging(vcpu)
1188 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1189 		return 1;
1190 
1191 	efer &= ~EFER_LMA;
1192 	efer |= vcpu->arch.efer & EFER_LMA;
1193 
1194 	kvm_x86_ops->set_efer(vcpu, efer);
1195 
1196 	/* Update reserved bits */
1197 	if ((efer ^ old_efer) & EFER_NX)
1198 		kvm_mmu_reset_context(vcpu);
1199 
1200 	return 0;
1201 }
1202 
1203 void kvm_enable_efer_bits(u64 mask)
1204 {
1205        efer_reserved_bits &= ~mask;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1208 
1209 /*
1210  * Writes msr value into into the appropriate "register".
1211  * Returns 0 on success, non-0 otherwise.
1212  * Assumes vcpu_load() was already called.
1213  */
1214 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1215 {
1216 	switch (msr->index) {
1217 	case MSR_FS_BASE:
1218 	case MSR_GS_BASE:
1219 	case MSR_KERNEL_GS_BASE:
1220 	case MSR_CSTAR:
1221 	case MSR_LSTAR:
1222 		if (is_noncanonical_address(msr->data, vcpu))
1223 			return 1;
1224 		break;
1225 	case MSR_IA32_SYSENTER_EIP:
1226 	case MSR_IA32_SYSENTER_ESP:
1227 		/*
1228 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1229 		 * non-canonical address is written on Intel but not on
1230 		 * AMD (which ignores the top 32-bits, because it does
1231 		 * not implement 64-bit SYSENTER).
1232 		 *
1233 		 * 64-bit code should hence be able to write a non-canonical
1234 		 * value on AMD.  Making the address canonical ensures that
1235 		 * vmentry does not fail on Intel after writing a non-canonical
1236 		 * value, and that something deterministic happens if the guest
1237 		 * invokes 64-bit SYSENTER.
1238 		 */
1239 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1240 	}
1241 	return kvm_x86_ops->set_msr(vcpu, msr);
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_set_msr);
1244 
1245 /*
1246  * Adapt set_msr() to msr_io()'s calling convention
1247  */
1248 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1249 {
1250 	struct msr_data msr;
1251 	int r;
1252 
1253 	msr.index = index;
1254 	msr.host_initiated = true;
1255 	r = kvm_get_msr(vcpu, &msr);
1256 	if (r)
1257 		return r;
1258 
1259 	*data = msr.data;
1260 	return 0;
1261 }
1262 
1263 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1264 {
1265 	struct msr_data msr;
1266 
1267 	msr.data = *data;
1268 	msr.index = index;
1269 	msr.host_initiated = true;
1270 	return kvm_set_msr(vcpu, &msr);
1271 }
1272 
1273 #ifdef CONFIG_X86_64
1274 struct pvclock_gtod_data {
1275 	seqcount_t	seq;
1276 
1277 	struct { /* extract of a clocksource struct */
1278 		int vclock_mode;
1279 		u64	cycle_last;
1280 		u64	mask;
1281 		u32	mult;
1282 		u32	shift;
1283 	} clock;
1284 
1285 	u64		boot_ns;
1286 	u64		nsec_base;
1287 	u64		wall_time_sec;
1288 };
1289 
1290 static struct pvclock_gtod_data pvclock_gtod_data;
1291 
1292 static void update_pvclock_gtod(struct timekeeper *tk)
1293 {
1294 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1295 	u64 boot_ns;
1296 
1297 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1298 
1299 	write_seqcount_begin(&vdata->seq);
1300 
1301 	/* copy pvclock gtod data */
1302 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1303 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1304 	vdata->clock.mask		= tk->tkr_mono.mask;
1305 	vdata->clock.mult		= tk->tkr_mono.mult;
1306 	vdata->clock.shift		= tk->tkr_mono.shift;
1307 
1308 	vdata->boot_ns			= boot_ns;
1309 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1310 
1311 	vdata->wall_time_sec            = tk->xtime_sec;
1312 
1313 	write_seqcount_end(&vdata->seq);
1314 }
1315 #endif
1316 
1317 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1318 {
1319 	/*
1320 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1321 	 * vcpu_enter_guest.  This function is only called from
1322 	 * the physical CPU that is running vcpu.
1323 	 */
1324 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1325 }
1326 
1327 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1328 {
1329 	int version;
1330 	int r;
1331 	struct pvclock_wall_clock wc;
1332 	struct timespec64 boot;
1333 
1334 	if (!wall_clock)
1335 		return;
1336 
1337 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1338 	if (r)
1339 		return;
1340 
1341 	if (version & 1)
1342 		++version;  /* first time write, random junk */
1343 
1344 	++version;
1345 
1346 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1347 		return;
1348 
1349 	/*
1350 	 * The guest calculates current wall clock time by adding
1351 	 * system time (updated by kvm_guest_time_update below) to the
1352 	 * wall clock specified here.  guest system time equals host
1353 	 * system time for us, thus we must fill in host boot time here.
1354 	 */
1355 	getboottime64(&boot);
1356 
1357 	if (kvm->arch.kvmclock_offset) {
1358 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1359 		boot = timespec64_sub(boot, ts);
1360 	}
1361 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1362 	wc.nsec = boot.tv_nsec;
1363 	wc.version = version;
1364 
1365 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1366 
1367 	version++;
1368 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1369 }
1370 
1371 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1372 {
1373 	do_shl32_div32(dividend, divisor);
1374 	return dividend;
1375 }
1376 
1377 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1378 			       s8 *pshift, u32 *pmultiplier)
1379 {
1380 	uint64_t scaled64;
1381 	int32_t  shift = 0;
1382 	uint64_t tps64;
1383 	uint32_t tps32;
1384 
1385 	tps64 = base_hz;
1386 	scaled64 = scaled_hz;
1387 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1388 		tps64 >>= 1;
1389 		shift--;
1390 	}
1391 
1392 	tps32 = (uint32_t)tps64;
1393 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1394 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1395 			scaled64 >>= 1;
1396 		else
1397 			tps32 <<= 1;
1398 		shift++;
1399 	}
1400 
1401 	*pshift = shift;
1402 	*pmultiplier = div_frac(scaled64, tps32);
1403 
1404 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1405 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1406 }
1407 
1408 #ifdef CONFIG_X86_64
1409 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1410 #endif
1411 
1412 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1413 static unsigned long max_tsc_khz;
1414 
1415 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1416 {
1417 	u64 v = (u64)khz * (1000000 + ppm);
1418 	do_div(v, 1000000);
1419 	return v;
1420 }
1421 
1422 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1423 {
1424 	u64 ratio;
1425 
1426 	/* Guest TSC same frequency as host TSC? */
1427 	if (!scale) {
1428 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429 		return 0;
1430 	}
1431 
1432 	/* TSC scaling supported? */
1433 	if (!kvm_has_tsc_control) {
1434 		if (user_tsc_khz > tsc_khz) {
1435 			vcpu->arch.tsc_catchup = 1;
1436 			vcpu->arch.tsc_always_catchup = 1;
1437 			return 0;
1438 		} else {
1439 			WARN(1, "user requested TSC rate below hardware speed\n");
1440 			return -1;
1441 		}
1442 	}
1443 
1444 	/* TSC scaling required  - calculate ratio */
1445 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1446 				user_tsc_khz, tsc_khz);
1447 
1448 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1449 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1450 			  user_tsc_khz);
1451 		return -1;
1452 	}
1453 
1454 	vcpu->arch.tsc_scaling_ratio = ratio;
1455 	return 0;
1456 }
1457 
1458 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1459 {
1460 	u32 thresh_lo, thresh_hi;
1461 	int use_scaling = 0;
1462 
1463 	/* tsc_khz can be zero if TSC calibration fails */
1464 	if (user_tsc_khz == 0) {
1465 		/* set tsc_scaling_ratio to a safe value */
1466 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1467 		return -1;
1468 	}
1469 
1470 	/* Compute a scale to convert nanoseconds in TSC cycles */
1471 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1472 			   &vcpu->arch.virtual_tsc_shift,
1473 			   &vcpu->arch.virtual_tsc_mult);
1474 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1475 
1476 	/*
1477 	 * Compute the variation in TSC rate which is acceptable
1478 	 * within the range of tolerance and decide if the
1479 	 * rate being applied is within that bounds of the hardware
1480 	 * rate.  If so, no scaling or compensation need be done.
1481 	 */
1482 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1483 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1484 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1485 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1486 		use_scaling = 1;
1487 	}
1488 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1489 }
1490 
1491 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1492 {
1493 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1494 				      vcpu->arch.virtual_tsc_mult,
1495 				      vcpu->arch.virtual_tsc_shift);
1496 	tsc += vcpu->arch.this_tsc_write;
1497 	return tsc;
1498 }
1499 
1500 static inline int gtod_is_based_on_tsc(int mode)
1501 {
1502 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1503 }
1504 
1505 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1506 {
1507 #ifdef CONFIG_X86_64
1508 	bool vcpus_matched;
1509 	struct kvm_arch *ka = &vcpu->kvm->arch;
1510 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1511 
1512 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1513 			 atomic_read(&vcpu->kvm->online_vcpus));
1514 
1515 	/*
1516 	 * Once the masterclock is enabled, always perform request in
1517 	 * order to update it.
1518 	 *
1519 	 * In order to enable masterclock, the host clocksource must be TSC
1520 	 * and the vcpus need to have matched TSCs.  When that happens,
1521 	 * perform request to enable masterclock.
1522 	 */
1523 	if (ka->use_master_clock ||
1524 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1525 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1526 
1527 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1528 			    atomic_read(&vcpu->kvm->online_vcpus),
1529 		            ka->use_master_clock, gtod->clock.vclock_mode);
1530 #endif
1531 }
1532 
1533 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1534 {
1535 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1537 }
1538 
1539 /*
1540  * Multiply tsc by a fixed point number represented by ratio.
1541  *
1542  * The most significant 64-N bits (mult) of ratio represent the
1543  * integral part of the fixed point number; the remaining N bits
1544  * (frac) represent the fractional part, ie. ratio represents a fixed
1545  * point number (mult + frac * 2^(-N)).
1546  *
1547  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1548  */
1549 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1550 {
1551 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1552 }
1553 
1554 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1555 {
1556 	u64 _tsc = tsc;
1557 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1558 
1559 	if (ratio != kvm_default_tsc_scaling_ratio)
1560 		_tsc = __scale_tsc(ratio, tsc);
1561 
1562 	return _tsc;
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1565 
1566 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1567 {
1568 	u64 tsc;
1569 
1570 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1571 
1572 	return target_tsc - tsc;
1573 }
1574 
1575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1576 {
1577 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1578 
1579 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1582 
1583 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1584 {
1585 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1586 	vcpu->arch.tsc_offset = offset;
1587 }
1588 
1589 static inline bool kvm_check_tsc_unstable(void)
1590 {
1591 #ifdef CONFIG_X86_64
1592 	/*
1593 	 * TSC is marked unstable when we're running on Hyper-V,
1594 	 * 'TSC page' clocksource is good.
1595 	 */
1596 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1597 		return false;
1598 #endif
1599 	return check_tsc_unstable();
1600 }
1601 
1602 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1603 {
1604 	struct kvm *kvm = vcpu->kvm;
1605 	u64 offset, ns, elapsed;
1606 	unsigned long flags;
1607 	bool matched;
1608 	bool already_matched;
1609 	u64 data = msr->data;
1610 	bool synchronizing = false;
1611 
1612 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1613 	offset = kvm_compute_tsc_offset(vcpu, data);
1614 	ns = ktime_get_boot_ns();
1615 	elapsed = ns - kvm->arch.last_tsc_nsec;
1616 
1617 	if (vcpu->arch.virtual_tsc_khz) {
1618 		if (data == 0 && msr->host_initiated) {
1619 			/*
1620 			 * detection of vcpu initialization -- need to sync
1621 			 * with other vCPUs. This particularly helps to keep
1622 			 * kvm_clock stable after CPU hotplug
1623 			 */
1624 			synchronizing = true;
1625 		} else {
1626 			u64 tsc_exp = kvm->arch.last_tsc_write +
1627 						nsec_to_cycles(vcpu, elapsed);
1628 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1629 			/*
1630 			 * Special case: TSC write with a small delta (1 second)
1631 			 * of virtual cycle time against real time is
1632 			 * interpreted as an attempt to synchronize the CPU.
1633 			 */
1634 			synchronizing = data < tsc_exp + tsc_hz &&
1635 					data + tsc_hz > tsc_exp;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1641 	 * TSC, we add elapsed time in this computation.  We could let the
1642 	 * compensation code attempt to catch up if we fall behind, but
1643 	 * it's better to try to match offsets from the beginning.
1644          */
1645 	if (synchronizing &&
1646 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1647 		if (!kvm_check_tsc_unstable()) {
1648 			offset = kvm->arch.cur_tsc_offset;
1649 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1650 		} else {
1651 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1652 			data += delta;
1653 			offset = kvm_compute_tsc_offset(vcpu, data);
1654 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1655 		}
1656 		matched = true;
1657 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1658 	} else {
1659 		/*
1660 		 * We split periods of matched TSC writes into generations.
1661 		 * For each generation, we track the original measured
1662 		 * nanosecond time, offset, and write, so if TSCs are in
1663 		 * sync, we can match exact offset, and if not, we can match
1664 		 * exact software computation in compute_guest_tsc()
1665 		 *
1666 		 * These values are tracked in kvm->arch.cur_xxx variables.
1667 		 */
1668 		kvm->arch.cur_tsc_generation++;
1669 		kvm->arch.cur_tsc_nsec = ns;
1670 		kvm->arch.cur_tsc_write = data;
1671 		kvm->arch.cur_tsc_offset = offset;
1672 		matched = false;
1673 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1674 			 kvm->arch.cur_tsc_generation, data);
1675 	}
1676 
1677 	/*
1678 	 * We also track th most recent recorded KHZ, write and time to
1679 	 * allow the matching interval to be extended at each write.
1680 	 */
1681 	kvm->arch.last_tsc_nsec = ns;
1682 	kvm->arch.last_tsc_write = data;
1683 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1684 
1685 	vcpu->arch.last_guest_tsc = data;
1686 
1687 	/* Keep track of which generation this VCPU has synchronized to */
1688 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1689 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1690 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1691 
1692 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1693 		update_ia32_tsc_adjust_msr(vcpu, offset);
1694 
1695 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1696 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1697 
1698 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1699 	if (!matched) {
1700 		kvm->arch.nr_vcpus_matched_tsc = 0;
1701 	} else if (!already_matched) {
1702 		kvm->arch.nr_vcpus_matched_tsc++;
1703 	}
1704 
1705 	kvm_track_tsc_matching(vcpu);
1706 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1707 }
1708 
1709 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1710 
1711 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1712 					   s64 adjustment)
1713 {
1714 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1715 }
1716 
1717 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1718 {
1719 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1720 		WARN_ON(adjustment < 0);
1721 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1722 	adjust_tsc_offset_guest(vcpu, adjustment);
1723 }
1724 
1725 #ifdef CONFIG_X86_64
1726 
1727 static u64 read_tsc(void)
1728 {
1729 	u64 ret = (u64)rdtsc_ordered();
1730 	u64 last = pvclock_gtod_data.clock.cycle_last;
1731 
1732 	if (likely(ret >= last))
1733 		return ret;
1734 
1735 	/*
1736 	 * GCC likes to generate cmov here, but this branch is extremely
1737 	 * predictable (it's just a function of time and the likely is
1738 	 * very likely) and there's a data dependence, so force GCC
1739 	 * to generate a branch instead.  I don't barrier() because
1740 	 * we don't actually need a barrier, and if this function
1741 	 * ever gets inlined it will generate worse code.
1742 	 */
1743 	asm volatile ("");
1744 	return last;
1745 }
1746 
1747 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1748 {
1749 	long v;
1750 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1751 	u64 tsc_pg_val;
1752 
1753 	switch (gtod->clock.vclock_mode) {
1754 	case VCLOCK_HVCLOCK:
1755 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1756 						  tsc_timestamp);
1757 		if (tsc_pg_val != U64_MAX) {
1758 			/* TSC page valid */
1759 			*mode = VCLOCK_HVCLOCK;
1760 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1761 				gtod->clock.mask;
1762 		} else {
1763 			/* TSC page invalid */
1764 			*mode = VCLOCK_NONE;
1765 		}
1766 		break;
1767 	case VCLOCK_TSC:
1768 		*mode = VCLOCK_TSC;
1769 		*tsc_timestamp = read_tsc();
1770 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1771 			gtod->clock.mask;
1772 		break;
1773 	default:
1774 		*mode = VCLOCK_NONE;
1775 	}
1776 
1777 	if (*mode == VCLOCK_NONE)
1778 		*tsc_timestamp = v = 0;
1779 
1780 	return v * gtod->clock.mult;
1781 }
1782 
1783 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1784 {
1785 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1786 	unsigned long seq;
1787 	int mode;
1788 	u64 ns;
1789 
1790 	do {
1791 		seq = read_seqcount_begin(&gtod->seq);
1792 		ns = gtod->nsec_base;
1793 		ns += vgettsc(tsc_timestamp, &mode);
1794 		ns >>= gtod->clock.shift;
1795 		ns += gtod->boot_ns;
1796 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1797 	*t = ns;
1798 
1799 	return mode;
1800 }
1801 
1802 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1803 {
1804 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1805 	unsigned long seq;
1806 	int mode;
1807 	u64 ns;
1808 
1809 	do {
1810 		seq = read_seqcount_begin(&gtod->seq);
1811 		ts->tv_sec = gtod->wall_time_sec;
1812 		ns = gtod->nsec_base;
1813 		ns += vgettsc(tsc_timestamp, &mode);
1814 		ns >>= gtod->clock.shift;
1815 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1816 
1817 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1818 	ts->tv_nsec = ns;
1819 
1820 	return mode;
1821 }
1822 
1823 /* returns true if host is using TSC based clocksource */
1824 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1825 {
1826 	/* checked again under seqlock below */
1827 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1828 		return false;
1829 
1830 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1831 						      tsc_timestamp));
1832 }
1833 
1834 /* returns true if host is using TSC based clocksource */
1835 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1836 					   u64 *tsc_timestamp)
1837 {
1838 	/* checked again under seqlock below */
1839 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1840 		return false;
1841 
1842 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1843 }
1844 #endif
1845 
1846 /*
1847  *
1848  * Assuming a stable TSC across physical CPUS, and a stable TSC
1849  * across virtual CPUs, the following condition is possible.
1850  * Each numbered line represents an event visible to both
1851  * CPUs at the next numbered event.
1852  *
1853  * "timespecX" represents host monotonic time. "tscX" represents
1854  * RDTSC value.
1855  *
1856  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1857  *
1858  * 1.  read timespec0,tsc0
1859  * 2.					| timespec1 = timespec0 + N
1860  * 					| tsc1 = tsc0 + M
1861  * 3. transition to guest		| transition to guest
1862  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1863  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1864  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1865  *
1866  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1867  *
1868  * 	- ret0 < ret1
1869  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1870  *		...
1871  *	- 0 < N - M => M < N
1872  *
1873  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1874  * always the case (the difference between two distinct xtime instances
1875  * might be smaller then the difference between corresponding TSC reads,
1876  * when updating guest vcpus pvclock areas).
1877  *
1878  * To avoid that problem, do not allow visibility of distinct
1879  * system_timestamp/tsc_timestamp values simultaneously: use a master
1880  * copy of host monotonic time values. Update that master copy
1881  * in lockstep.
1882  *
1883  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1884  *
1885  */
1886 
1887 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1888 {
1889 #ifdef CONFIG_X86_64
1890 	struct kvm_arch *ka = &kvm->arch;
1891 	int vclock_mode;
1892 	bool host_tsc_clocksource, vcpus_matched;
1893 
1894 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1895 			atomic_read(&kvm->online_vcpus));
1896 
1897 	/*
1898 	 * If the host uses TSC clock, then passthrough TSC as stable
1899 	 * to the guest.
1900 	 */
1901 	host_tsc_clocksource = kvm_get_time_and_clockread(
1902 					&ka->master_kernel_ns,
1903 					&ka->master_cycle_now);
1904 
1905 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1906 				&& !ka->backwards_tsc_observed
1907 				&& !ka->boot_vcpu_runs_old_kvmclock;
1908 
1909 	if (ka->use_master_clock)
1910 		atomic_set(&kvm_guest_has_master_clock, 1);
1911 
1912 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1913 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1914 					vcpus_matched);
1915 #endif
1916 }
1917 
1918 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1919 {
1920 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1921 }
1922 
1923 static void kvm_gen_update_masterclock(struct kvm *kvm)
1924 {
1925 #ifdef CONFIG_X86_64
1926 	int i;
1927 	struct kvm_vcpu *vcpu;
1928 	struct kvm_arch *ka = &kvm->arch;
1929 
1930 	spin_lock(&ka->pvclock_gtod_sync_lock);
1931 	kvm_make_mclock_inprogress_request(kvm);
1932 	/* no guest entries from this point */
1933 	pvclock_update_vm_gtod_copy(kvm);
1934 
1935 	kvm_for_each_vcpu(i, vcpu, kvm)
1936 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1937 
1938 	/* guest entries allowed */
1939 	kvm_for_each_vcpu(i, vcpu, kvm)
1940 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1941 
1942 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1943 #endif
1944 }
1945 
1946 u64 get_kvmclock_ns(struct kvm *kvm)
1947 {
1948 	struct kvm_arch *ka = &kvm->arch;
1949 	struct pvclock_vcpu_time_info hv_clock;
1950 	u64 ret;
1951 
1952 	spin_lock(&ka->pvclock_gtod_sync_lock);
1953 	if (!ka->use_master_clock) {
1954 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1955 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1956 	}
1957 
1958 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1959 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1960 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1961 
1962 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1963 	get_cpu();
1964 
1965 	if (__this_cpu_read(cpu_tsc_khz)) {
1966 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1967 				   &hv_clock.tsc_shift,
1968 				   &hv_clock.tsc_to_system_mul);
1969 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1970 	} else
1971 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1972 
1973 	put_cpu();
1974 
1975 	return ret;
1976 }
1977 
1978 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1979 {
1980 	struct kvm_vcpu_arch *vcpu = &v->arch;
1981 	struct pvclock_vcpu_time_info guest_hv_clock;
1982 
1983 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1984 		&guest_hv_clock, sizeof(guest_hv_clock))))
1985 		return;
1986 
1987 	/* This VCPU is paused, but it's legal for a guest to read another
1988 	 * VCPU's kvmclock, so we really have to follow the specification where
1989 	 * it says that version is odd if data is being modified, and even after
1990 	 * it is consistent.
1991 	 *
1992 	 * Version field updates must be kept separate.  This is because
1993 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1994 	 * writes within a string instruction are weakly ordered.  So there
1995 	 * are three writes overall.
1996 	 *
1997 	 * As a small optimization, only write the version field in the first
1998 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1999 	 * version field is the first in the struct.
2000 	 */
2001 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2002 
2003 	if (guest_hv_clock.version & 1)
2004 		++guest_hv_clock.version;  /* first time write, random junk */
2005 
2006 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2007 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2008 				&vcpu->hv_clock,
2009 				sizeof(vcpu->hv_clock.version));
2010 
2011 	smp_wmb();
2012 
2013 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2014 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2015 
2016 	if (vcpu->pvclock_set_guest_stopped_request) {
2017 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2018 		vcpu->pvclock_set_guest_stopped_request = false;
2019 	}
2020 
2021 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2022 
2023 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2024 				&vcpu->hv_clock,
2025 				sizeof(vcpu->hv_clock));
2026 
2027 	smp_wmb();
2028 
2029 	vcpu->hv_clock.version++;
2030 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2031 				&vcpu->hv_clock,
2032 				sizeof(vcpu->hv_clock.version));
2033 }
2034 
2035 static int kvm_guest_time_update(struct kvm_vcpu *v)
2036 {
2037 	unsigned long flags, tgt_tsc_khz;
2038 	struct kvm_vcpu_arch *vcpu = &v->arch;
2039 	struct kvm_arch *ka = &v->kvm->arch;
2040 	s64 kernel_ns;
2041 	u64 tsc_timestamp, host_tsc;
2042 	u8 pvclock_flags;
2043 	bool use_master_clock;
2044 
2045 	kernel_ns = 0;
2046 	host_tsc = 0;
2047 
2048 	/*
2049 	 * If the host uses TSC clock, then passthrough TSC as stable
2050 	 * to the guest.
2051 	 */
2052 	spin_lock(&ka->pvclock_gtod_sync_lock);
2053 	use_master_clock = ka->use_master_clock;
2054 	if (use_master_clock) {
2055 		host_tsc = ka->master_cycle_now;
2056 		kernel_ns = ka->master_kernel_ns;
2057 	}
2058 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2059 
2060 	/* Keep irq disabled to prevent changes to the clock */
2061 	local_irq_save(flags);
2062 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2063 	if (unlikely(tgt_tsc_khz == 0)) {
2064 		local_irq_restore(flags);
2065 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2066 		return 1;
2067 	}
2068 	if (!use_master_clock) {
2069 		host_tsc = rdtsc();
2070 		kernel_ns = ktime_get_boot_ns();
2071 	}
2072 
2073 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2074 
2075 	/*
2076 	 * We may have to catch up the TSC to match elapsed wall clock
2077 	 * time for two reasons, even if kvmclock is used.
2078 	 *   1) CPU could have been running below the maximum TSC rate
2079 	 *   2) Broken TSC compensation resets the base at each VCPU
2080 	 *      entry to avoid unknown leaps of TSC even when running
2081 	 *      again on the same CPU.  This may cause apparent elapsed
2082 	 *      time to disappear, and the guest to stand still or run
2083 	 *	very slowly.
2084 	 */
2085 	if (vcpu->tsc_catchup) {
2086 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2087 		if (tsc > tsc_timestamp) {
2088 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2089 			tsc_timestamp = tsc;
2090 		}
2091 	}
2092 
2093 	local_irq_restore(flags);
2094 
2095 	/* With all the info we got, fill in the values */
2096 
2097 	if (kvm_has_tsc_control)
2098 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2099 
2100 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2101 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2102 				   &vcpu->hv_clock.tsc_shift,
2103 				   &vcpu->hv_clock.tsc_to_system_mul);
2104 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2105 	}
2106 
2107 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2108 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2109 	vcpu->last_guest_tsc = tsc_timestamp;
2110 
2111 	/* If the host uses TSC clocksource, then it is stable */
2112 	pvclock_flags = 0;
2113 	if (use_master_clock)
2114 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2115 
2116 	vcpu->hv_clock.flags = pvclock_flags;
2117 
2118 	if (vcpu->pv_time_enabled)
2119 		kvm_setup_pvclock_page(v);
2120 	if (v == kvm_get_vcpu(v->kvm, 0))
2121 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2122 	return 0;
2123 }
2124 
2125 /*
2126  * kvmclock updates which are isolated to a given vcpu, such as
2127  * vcpu->cpu migration, should not allow system_timestamp from
2128  * the rest of the vcpus to remain static. Otherwise ntp frequency
2129  * correction applies to one vcpu's system_timestamp but not
2130  * the others.
2131  *
2132  * So in those cases, request a kvmclock update for all vcpus.
2133  * We need to rate-limit these requests though, as they can
2134  * considerably slow guests that have a large number of vcpus.
2135  * The time for a remote vcpu to update its kvmclock is bound
2136  * by the delay we use to rate-limit the updates.
2137  */
2138 
2139 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2140 
2141 static void kvmclock_update_fn(struct work_struct *work)
2142 {
2143 	int i;
2144 	struct delayed_work *dwork = to_delayed_work(work);
2145 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2146 					   kvmclock_update_work);
2147 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2148 	struct kvm_vcpu *vcpu;
2149 
2150 	kvm_for_each_vcpu(i, vcpu, kvm) {
2151 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2152 		kvm_vcpu_kick(vcpu);
2153 	}
2154 }
2155 
2156 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2157 {
2158 	struct kvm *kvm = v->kvm;
2159 
2160 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2161 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2162 					KVMCLOCK_UPDATE_DELAY);
2163 }
2164 
2165 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2166 
2167 static void kvmclock_sync_fn(struct work_struct *work)
2168 {
2169 	struct delayed_work *dwork = to_delayed_work(work);
2170 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2171 					   kvmclock_sync_work);
2172 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2173 
2174 	if (!kvmclock_periodic_sync)
2175 		return;
2176 
2177 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2178 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2179 					KVMCLOCK_SYNC_PERIOD);
2180 }
2181 
2182 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2183 {
2184 	u64 mcg_cap = vcpu->arch.mcg_cap;
2185 	unsigned bank_num = mcg_cap & 0xff;
2186 	u32 msr = msr_info->index;
2187 	u64 data = msr_info->data;
2188 
2189 	switch (msr) {
2190 	case MSR_IA32_MCG_STATUS:
2191 		vcpu->arch.mcg_status = data;
2192 		break;
2193 	case MSR_IA32_MCG_CTL:
2194 		if (!(mcg_cap & MCG_CTL_P) &&
2195 		    (data || !msr_info->host_initiated))
2196 			return 1;
2197 		if (data != 0 && data != ~(u64)0)
2198 			return 1;
2199 		vcpu->arch.mcg_ctl = data;
2200 		break;
2201 	default:
2202 		if (msr >= MSR_IA32_MC0_CTL &&
2203 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2204 			u32 offset = msr - MSR_IA32_MC0_CTL;
2205 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2206 			 * some Linux kernels though clear bit 10 in bank 4 to
2207 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2208 			 * this to avoid an uncatched #GP in the guest
2209 			 */
2210 			if ((offset & 0x3) == 0 &&
2211 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2212 				return -1;
2213 			if (!msr_info->host_initiated &&
2214 				(offset & 0x3) == 1 && data != 0)
2215 				return -1;
2216 			vcpu->arch.mce_banks[offset] = data;
2217 			break;
2218 		}
2219 		return 1;
2220 	}
2221 	return 0;
2222 }
2223 
2224 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2225 {
2226 	struct kvm *kvm = vcpu->kvm;
2227 	int lm = is_long_mode(vcpu);
2228 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2229 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2230 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2231 		: kvm->arch.xen_hvm_config.blob_size_32;
2232 	u32 page_num = data & ~PAGE_MASK;
2233 	u64 page_addr = data & PAGE_MASK;
2234 	u8 *page;
2235 	int r;
2236 
2237 	r = -E2BIG;
2238 	if (page_num >= blob_size)
2239 		goto out;
2240 	r = -ENOMEM;
2241 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2242 	if (IS_ERR(page)) {
2243 		r = PTR_ERR(page);
2244 		goto out;
2245 	}
2246 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2247 		goto out_free;
2248 	r = 0;
2249 out_free:
2250 	kfree(page);
2251 out:
2252 	return r;
2253 }
2254 
2255 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2256 {
2257 	gpa_t gpa = data & ~0x3f;
2258 
2259 	/* Bits 3:5 are reserved, Should be zero */
2260 	if (data & 0x38)
2261 		return 1;
2262 
2263 	vcpu->arch.apf.msr_val = data;
2264 
2265 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2266 		kvm_clear_async_pf_completion_queue(vcpu);
2267 		kvm_async_pf_hash_reset(vcpu);
2268 		return 0;
2269 	}
2270 
2271 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2272 					sizeof(u32)))
2273 		return 1;
2274 
2275 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2276 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2277 	kvm_async_pf_wakeup_all(vcpu);
2278 	return 0;
2279 }
2280 
2281 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2282 {
2283 	vcpu->arch.pv_time_enabled = false;
2284 }
2285 
2286 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2287 {
2288 	++vcpu->stat.tlb_flush;
2289 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2290 }
2291 
2292 static void record_steal_time(struct kvm_vcpu *vcpu)
2293 {
2294 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2295 		return;
2296 
2297 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2299 		return;
2300 
2301 	/*
2302 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2303 	 * expensive IPIs.
2304 	 */
2305 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2306 		kvm_vcpu_flush_tlb(vcpu, false);
2307 
2308 	if (vcpu->arch.st.steal.version & 1)
2309 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2310 
2311 	vcpu->arch.st.steal.version += 1;
2312 
2313 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2314 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2315 
2316 	smp_wmb();
2317 
2318 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2319 		vcpu->arch.st.last_steal;
2320 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2321 
2322 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2324 
2325 	smp_wmb();
2326 
2327 	vcpu->arch.st.steal.version += 1;
2328 
2329 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2330 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2331 }
2332 
2333 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2334 {
2335 	bool pr = false;
2336 	u32 msr = msr_info->index;
2337 	u64 data = msr_info->data;
2338 
2339 	switch (msr) {
2340 	case MSR_AMD64_NB_CFG:
2341 	case MSR_IA32_UCODE_WRITE:
2342 	case MSR_VM_HSAVE_PA:
2343 	case MSR_AMD64_PATCH_LOADER:
2344 	case MSR_AMD64_BU_CFG2:
2345 	case MSR_AMD64_DC_CFG:
2346 		break;
2347 
2348 	case MSR_IA32_UCODE_REV:
2349 		if (msr_info->host_initiated)
2350 			vcpu->arch.microcode_version = data;
2351 		break;
2352 	case MSR_EFER:
2353 		return set_efer(vcpu, data);
2354 	case MSR_K7_HWCR:
2355 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2356 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2357 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2358 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2359 		if (data != 0) {
2360 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2361 				    data);
2362 			return 1;
2363 		}
2364 		break;
2365 	case MSR_FAM10H_MMIO_CONF_BASE:
2366 		if (data != 0) {
2367 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2368 				    "0x%llx\n", data);
2369 			return 1;
2370 		}
2371 		break;
2372 	case MSR_IA32_DEBUGCTLMSR:
2373 		if (!data) {
2374 			/* We support the non-activated case already */
2375 			break;
2376 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2377 			/* Values other than LBR and BTF are vendor-specific,
2378 			   thus reserved and should throw a #GP */
2379 			return 1;
2380 		}
2381 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2382 			    __func__, data);
2383 		break;
2384 	case 0x200 ... 0x2ff:
2385 		return kvm_mtrr_set_msr(vcpu, msr, data);
2386 	case MSR_IA32_APICBASE:
2387 		return kvm_set_apic_base(vcpu, msr_info);
2388 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2389 		return kvm_x2apic_msr_write(vcpu, msr, data);
2390 	case MSR_IA32_TSCDEADLINE:
2391 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2392 		break;
2393 	case MSR_IA32_TSC_ADJUST:
2394 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2395 			if (!msr_info->host_initiated) {
2396 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2397 				adjust_tsc_offset_guest(vcpu, adj);
2398 			}
2399 			vcpu->arch.ia32_tsc_adjust_msr = data;
2400 		}
2401 		break;
2402 	case MSR_IA32_MISC_ENABLE:
2403 		vcpu->arch.ia32_misc_enable_msr = data;
2404 		break;
2405 	case MSR_IA32_SMBASE:
2406 		if (!msr_info->host_initiated)
2407 			return 1;
2408 		vcpu->arch.smbase = data;
2409 		break;
2410 	case MSR_IA32_TSC:
2411 		kvm_write_tsc(vcpu, msr_info);
2412 		break;
2413 	case MSR_SMI_COUNT:
2414 		if (!msr_info->host_initiated)
2415 			return 1;
2416 		vcpu->arch.smi_count = data;
2417 		break;
2418 	case MSR_KVM_WALL_CLOCK_NEW:
2419 	case MSR_KVM_WALL_CLOCK:
2420 		vcpu->kvm->arch.wall_clock = data;
2421 		kvm_write_wall_clock(vcpu->kvm, data);
2422 		break;
2423 	case MSR_KVM_SYSTEM_TIME_NEW:
2424 	case MSR_KVM_SYSTEM_TIME: {
2425 		struct kvm_arch *ka = &vcpu->kvm->arch;
2426 
2427 		kvmclock_reset(vcpu);
2428 
2429 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2430 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2431 
2432 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2433 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2434 
2435 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2436 		}
2437 
2438 		vcpu->arch.time = data;
2439 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2440 
2441 		/* we verify if the enable bit is set... */
2442 		if (!(data & 1))
2443 			break;
2444 
2445 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2446 		     &vcpu->arch.pv_time, data & ~1ULL,
2447 		     sizeof(struct pvclock_vcpu_time_info)))
2448 			vcpu->arch.pv_time_enabled = false;
2449 		else
2450 			vcpu->arch.pv_time_enabled = true;
2451 
2452 		break;
2453 	}
2454 	case MSR_KVM_ASYNC_PF_EN:
2455 		if (kvm_pv_enable_async_pf(vcpu, data))
2456 			return 1;
2457 		break;
2458 	case MSR_KVM_STEAL_TIME:
2459 
2460 		if (unlikely(!sched_info_on()))
2461 			return 1;
2462 
2463 		if (data & KVM_STEAL_RESERVED_MASK)
2464 			return 1;
2465 
2466 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2467 						data & KVM_STEAL_VALID_BITS,
2468 						sizeof(struct kvm_steal_time)))
2469 			return 1;
2470 
2471 		vcpu->arch.st.msr_val = data;
2472 
2473 		if (!(data & KVM_MSR_ENABLED))
2474 			break;
2475 
2476 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2477 
2478 		break;
2479 	case MSR_KVM_PV_EOI_EN:
2480 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2481 			return 1;
2482 		break;
2483 
2484 	case MSR_IA32_MCG_CTL:
2485 	case MSR_IA32_MCG_STATUS:
2486 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2487 		return set_msr_mce(vcpu, msr_info);
2488 
2489 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2490 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2491 		pr = true; /* fall through */
2492 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2493 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2494 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2495 			return kvm_pmu_set_msr(vcpu, msr_info);
2496 
2497 		if (pr || data != 0)
2498 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2499 				    "0x%x data 0x%llx\n", msr, data);
2500 		break;
2501 	case MSR_K7_CLK_CTL:
2502 		/*
2503 		 * Ignore all writes to this no longer documented MSR.
2504 		 * Writes are only relevant for old K7 processors,
2505 		 * all pre-dating SVM, but a recommended workaround from
2506 		 * AMD for these chips. It is possible to specify the
2507 		 * affected processor models on the command line, hence
2508 		 * the need to ignore the workaround.
2509 		 */
2510 		break;
2511 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2512 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2513 	case HV_X64_MSR_CRASH_CTL:
2514 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2515 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2516 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2517 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2518 		return kvm_hv_set_msr_common(vcpu, msr, data,
2519 					     msr_info->host_initiated);
2520 	case MSR_IA32_BBL_CR_CTL3:
2521 		/* Drop writes to this legacy MSR -- see rdmsr
2522 		 * counterpart for further detail.
2523 		 */
2524 		if (report_ignored_msrs)
2525 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2526 				msr, data);
2527 		break;
2528 	case MSR_AMD64_OSVW_ID_LENGTH:
2529 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2530 			return 1;
2531 		vcpu->arch.osvw.length = data;
2532 		break;
2533 	case MSR_AMD64_OSVW_STATUS:
2534 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2535 			return 1;
2536 		vcpu->arch.osvw.status = data;
2537 		break;
2538 	case MSR_PLATFORM_INFO:
2539 		if (!msr_info->host_initiated ||
2540 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2541 		     cpuid_fault_enabled(vcpu)))
2542 			return 1;
2543 		vcpu->arch.msr_platform_info = data;
2544 		break;
2545 	case MSR_MISC_FEATURES_ENABLES:
2546 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2547 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2548 		     !supports_cpuid_fault(vcpu)))
2549 			return 1;
2550 		vcpu->arch.msr_misc_features_enables = data;
2551 		break;
2552 	default:
2553 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2554 			return xen_hvm_config(vcpu, data);
2555 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2556 			return kvm_pmu_set_msr(vcpu, msr_info);
2557 		if (!ignore_msrs) {
2558 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2559 				    msr, data);
2560 			return 1;
2561 		} else {
2562 			if (report_ignored_msrs)
2563 				vcpu_unimpl(vcpu,
2564 					"ignored wrmsr: 0x%x data 0x%llx\n",
2565 					msr, data);
2566 			break;
2567 		}
2568 	}
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2572 
2573 
2574 /*
2575  * Reads an msr value (of 'msr_index') into 'pdata'.
2576  * Returns 0 on success, non-0 otherwise.
2577  * Assumes vcpu_load() was already called.
2578  */
2579 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2580 {
2581 	return kvm_x86_ops->get_msr(vcpu, msr);
2582 }
2583 EXPORT_SYMBOL_GPL(kvm_get_msr);
2584 
2585 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2586 {
2587 	u64 data;
2588 	u64 mcg_cap = vcpu->arch.mcg_cap;
2589 	unsigned bank_num = mcg_cap & 0xff;
2590 
2591 	switch (msr) {
2592 	case MSR_IA32_P5_MC_ADDR:
2593 	case MSR_IA32_P5_MC_TYPE:
2594 		data = 0;
2595 		break;
2596 	case MSR_IA32_MCG_CAP:
2597 		data = vcpu->arch.mcg_cap;
2598 		break;
2599 	case MSR_IA32_MCG_CTL:
2600 		if (!(mcg_cap & MCG_CTL_P) && !host)
2601 			return 1;
2602 		data = vcpu->arch.mcg_ctl;
2603 		break;
2604 	case MSR_IA32_MCG_STATUS:
2605 		data = vcpu->arch.mcg_status;
2606 		break;
2607 	default:
2608 		if (msr >= MSR_IA32_MC0_CTL &&
2609 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2610 			u32 offset = msr - MSR_IA32_MC0_CTL;
2611 			data = vcpu->arch.mce_banks[offset];
2612 			break;
2613 		}
2614 		return 1;
2615 	}
2616 	*pdata = data;
2617 	return 0;
2618 }
2619 
2620 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2621 {
2622 	switch (msr_info->index) {
2623 	case MSR_IA32_PLATFORM_ID:
2624 	case MSR_IA32_EBL_CR_POWERON:
2625 	case MSR_IA32_DEBUGCTLMSR:
2626 	case MSR_IA32_LASTBRANCHFROMIP:
2627 	case MSR_IA32_LASTBRANCHTOIP:
2628 	case MSR_IA32_LASTINTFROMIP:
2629 	case MSR_IA32_LASTINTTOIP:
2630 	case MSR_K8_SYSCFG:
2631 	case MSR_K8_TSEG_ADDR:
2632 	case MSR_K8_TSEG_MASK:
2633 	case MSR_K7_HWCR:
2634 	case MSR_VM_HSAVE_PA:
2635 	case MSR_K8_INT_PENDING_MSG:
2636 	case MSR_AMD64_NB_CFG:
2637 	case MSR_FAM10H_MMIO_CONF_BASE:
2638 	case MSR_AMD64_BU_CFG2:
2639 	case MSR_IA32_PERF_CTL:
2640 	case MSR_AMD64_DC_CFG:
2641 		msr_info->data = 0;
2642 		break;
2643 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2644 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2645 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2646 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2647 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2648 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2649 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2650 		msr_info->data = 0;
2651 		break;
2652 	case MSR_IA32_UCODE_REV:
2653 		msr_info->data = vcpu->arch.microcode_version;
2654 		break;
2655 	case MSR_IA32_TSC:
2656 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2657 		break;
2658 	case MSR_MTRRcap:
2659 	case 0x200 ... 0x2ff:
2660 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2661 	case 0xcd: /* fsb frequency */
2662 		msr_info->data = 3;
2663 		break;
2664 		/*
2665 		 * MSR_EBC_FREQUENCY_ID
2666 		 * Conservative value valid for even the basic CPU models.
2667 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2668 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2669 		 * and 266MHz for model 3, or 4. Set Core Clock
2670 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2671 		 * 31:24) even though these are only valid for CPU
2672 		 * models > 2, however guests may end up dividing or
2673 		 * multiplying by zero otherwise.
2674 		 */
2675 	case MSR_EBC_FREQUENCY_ID:
2676 		msr_info->data = 1 << 24;
2677 		break;
2678 	case MSR_IA32_APICBASE:
2679 		msr_info->data = kvm_get_apic_base(vcpu);
2680 		break;
2681 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2682 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2683 		break;
2684 	case MSR_IA32_TSCDEADLINE:
2685 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2686 		break;
2687 	case MSR_IA32_TSC_ADJUST:
2688 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2689 		break;
2690 	case MSR_IA32_MISC_ENABLE:
2691 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2692 		break;
2693 	case MSR_IA32_SMBASE:
2694 		if (!msr_info->host_initiated)
2695 			return 1;
2696 		msr_info->data = vcpu->arch.smbase;
2697 		break;
2698 	case MSR_SMI_COUNT:
2699 		msr_info->data = vcpu->arch.smi_count;
2700 		break;
2701 	case MSR_IA32_PERF_STATUS:
2702 		/* TSC increment by tick */
2703 		msr_info->data = 1000ULL;
2704 		/* CPU multiplier */
2705 		msr_info->data |= (((uint64_t)4ULL) << 40);
2706 		break;
2707 	case MSR_EFER:
2708 		msr_info->data = vcpu->arch.efer;
2709 		break;
2710 	case MSR_KVM_WALL_CLOCK:
2711 	case MSR_KVM_WALL_CLOCK_NEW:
2712 		msr_info->data = vcpu->kvm->arch.wall_clock;
2713 		break;
2714 	case MSR_KVM_SYSTEM_TIME:
2715 	case MSR_KVM_SYSTEM_TIME_NEW:
2716 		msr_info->data = vcpu->arch.time;
2717 		break;
2718 	case MSR_KVM_ASYNC_PF_EN:
2719 		msr_info->data = vcpu->arch.apf.msr_val;
2720 		break;
2721 	case MSR_KVM_STEAL_TIME:
2722 		msr_info->data = vcpu->arch.st.msr_val;
2723 		break;
2724 	case MSR_KVM_PV_EOI_EN:
2725 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2726 		break;
2727 	case MSR_IA32_P5_MC_ADDR:
2728 	case MSR_IA32_P5_MC_TYPE:
2729 	case MSR_IA32_MCG_CAP:
2730 	case MSR_IA32_MCG_CTL:
2731 	case MSR_IA32_MCG_STATUS:
2732 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2733 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2734 				   msr_info->host_initiated);
2735 	case MSR_K7_CLK_CTL:
2736 		/*
2737 		 * Provide expected ramp-up count for K7. All other
2738 		 * are set to zero, indicating minimum divisors for
2739 		 * every field.
2740 		 *
2741 		 * This prevents guest kernels on AMD host with CPU
2742 		 * type 6, model 8 and higher from exploding due to
2743 		 * the rdmsr failing.
2744 		 */
2745 		msr_info->data = 0x20000000;
2746 		break;
2747 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2748 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2749 	case HV_X64_MSR_CRASH_CTL:
2750 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2751 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2752 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2753 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2754 		return kvm_hv_get_msr_common(vcpu,
2755 					     msr_info->index, &msr_info->data,
2756 					     msr_info->host_initiated);
2757 		break;
2758 	case MSR_IA32_BBL_CR_CTL3:
2759 		/* This legacy MSR exists but isn't fully documented in current
2760 		 * silicon.  It is however accessed by winxp in very narrow
2761 		 * scenarios where it sets bit #19, itself documented as
2762 		 * a "reserved" bit.  Best effort attempt to source coherent
2763 		 * read data here should the balance of the register be
2764 		 * interpreted by the guest:
2765 		 *
2766 		 * L2 cache control register 3: 64GB range, 256KB size,
2767 		 * enabled, latency 0x1, configured
2768 		 */
2769 		msr_info->data = 0xbe702111;
2770 		break;
2771 	case MSR_AMD64_OSVW_ID_LENGTH:
2772 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2773 			return 1;
2774 		msr_info->data = vcpu->arch.osvw.length;
2775 		break;
2776 	case MSR_AMD64_OSVW_STATUS:
2777 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2778 			return 1;
2779 		msr_info->data = vcpu->arch.osvw.status;
2780 		break;
2781 	case MSR_PLATFORM_INFO:
2782 		if (!msr_info->host_initiated &&
2783 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2784 			return 1;
2785 		msr_info->data = vcpu->arch.msr_platform_info;
2786 		break;
2787 	case MSR_MISC_FEATURES_ENABLES:
2788 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2789 		break;
2790 	default:
2791 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2792 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2793 		if (!ignore_msrs) {
2794 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2795 					       msr_info->index);
2796 			return 1;
2797 		} else {
2798 			if (report_ignored_msrs)
2799 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2800 					msr_info->index);
2801 			msr_info->data = 0;
2802 		}
2803 		break;
2804 	}
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2808 
2809 /*
2810  * Read or write a bunch of msrs. All parameters are kernel addresses.
2811  *
2812  * @return number of msrs set successfully.
2813  */
2814 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2815 		    struct kvm_msr_entry *entries,
2816 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2817 				  unsigned index, u64 *data))
2818 {
2819 	int i;
2820 
2821 	for (i = 0; i < msrs->nmsrs; ++i)
2822 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2823 			break;
2824 
2825 	return i;
2826 }
2827 
2828 /*
2829  * Read or write a bunch of msrs. Parameters are user addresses.
2830  *
2831  * @return number of msrs set successfully.
2832  */
2833 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2834 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2835 				unsigned index, u64 *data),
2836 		  int writeback)
2837 {
2838 	struct kvm_msrs msrs;
2839 	struct kvm_msr_entry *entries;
2840 	int r, n;
2841 	unsigned size;
2842 
2843 	r = -EFAULT;
2844 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2845 		goto out;
2846 
2847 	r = -E2BIG;
2848 	if (msrs.nmsrs >= MAX_IO_MSRS)
2849 		goto out;
2850 
2851 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2852 	entries = memdup_user(user_msrs->entries, size);
2853 	if (IS_ERR(entries)) {
2854 		r = PTR_ERR(entries);
2855 		goto out;
2856 	}
2857 
2858 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2859 	if (r < 0)
2860 		goto out_free;
2861 
2862 	r = -EFAULT;
2863 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2864 		goto out_free;
2865 
2866 	r = n;
2867 
2868 out_free:
2869 	kfree(entries);
2870 out:
2871 	return r;
2872 }
2873 
2874 static inline bool kvm_can_mwait_in_guest(void)
2875 {
2876 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2877 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
2878 		boot_cpu_has(X86_FEATURE_ARAT);
2879 }
2880 
2881 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2882 {
2883 	int r = 0;
2884 
2885 	switch (ext) {
2886 	case KVM_CAP_IRQCHIP:
2887 	case KVM_CAP_HLT:
2888 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2889 	case KVM_CAP_SET_TSS_ADDR:
2890 	case KVM_CAP_EXT_CPUID:
2891 	case KVM_CAP_EXT_EMUL_CPUID:
2892 	case KVM_CAP_CLOCKSOURCE:
2893 	case KVM_CAP_PIT:
2894 	case KVM_CAP_NOP_IO_DELAY:
2895 	case KVM_CAP_MP_STATE:
2896 	case KVM_CAP_SYNC_MMU:
2897 	case KVM_CAP_USER_NMI:
2898 	case KVM_CAP_REINJECT_CONTROL:
2899 	case KVM_CAP_IRQ_INJECT_STATUS:
2900 	case KVM_CAP_IOEVENTFD:
2901 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2902 	case KVM_CAP_PIT2:
2903 	case KVM_CAP_PIT_STATE2:
2904 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2905 	case KVM_CAP_XEN_HVM:
2906 	case KVM_CAP_VCPU_EVENTS:
2907 	case KVM_CAP_HYPERV:
2908 	case KVM_CAP_HYPERV_VAPIC:
2909 	case KVM_CAP_HYPERV_SPIN:
2910 	case KVM_CAP_HYPERV_SYNIC:
2911 	case KVM_CAP_HYPERV_SYNIC2:
2912 	case KVM_CAP_HYPERV_VP_INDEX:
2913 	case KVM_CAP_HYPERV_EVENTFD:
2914 	case KVM_CAP_HYPERV_TLBFLUSH:
2915 	case KVM_CAP_PCI_SEGMENT:
2916 	case KVM_CAP_DEBUGREGS:
2917 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2918 	case KVM_CAP_XSAVE:
2919 	case KVM_CAP_ASYNC_PF:
2920 	case KVM_CAP_GET_TSC_KHZ:
2921 	case KVM_CAP_KVMCLOCK_CTRL:
2922 	case KVM_CAP_READONLY_MEM:
2923 	case KVM_CAP_HYPERV_TIME:
2924 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2925 	case KVM_CAP_TSC_DEADLINE_TIMER:
2926 	case KVM_CAP_ENABLE_CAP_VM:
2927 	case KVM_CAP_DISABLE_QUIRKS:
2928 	case KVM_CAP_SET_BOOT_CPU_ID:
2929  	case KVM_CAP_SPLIT_IRQCHIP:
2930 	case KVM_CAP_IMMEDIATE_EXIT:
2931 	case KVM_CAP_GET_MSR_FEATURES:
2932 	case KVM_CAP_MSR_PLATFORM_INFO:
2933 		r = 1;
2934 		break;
2935 	case KVM_CAP_SYNC_REGS:
2936 		r = KVM_SYNC_X86_VALID_FIELDS;
2937 		break;
2938 	case KVM_CAP_ADJUST_CLOCK:
2939 		r = KVM_CLOCK_TSC_STABLE;
2940 		break;
2941 	case KVM_CAP_X86_DISABLE_EXITS:
2942 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2943 		if(kvm_can_mwait_in_guest())
2944 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
2945 		break;
2946 	case KVM_CAP_X86_SMM:
2947 		/* SMBASE is usually relocated above 1M on modern chipsets,
2948 		 * and SMM handlers might indeed rely on 4G segment limits,
2949 		 * so do not report SMM to be available if real mode is
2950 		 * emulated via vm86 mode.  Still, do not go to great lengths
2951 		 * to avoid userspace's usage of the feature, because it is a
2952 		 * fringe case that is not enabled except via specific settings
2953 		 * of the module parameters.
2954 		 */
2955 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2956 		break;
2957 	case KVM_CAP_VAPIC:
2958 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2959 		break;
2960 	case KVM_CAP_NR_VCPUS:
2961 		r = KVM_SOFT_MAX_VCPUS;
2962 		break;
2963 	case KVM_CAP_MAX_VCPUS:
2964 		r = KVM_MAX_VCPUS;
2965 		break;
2966 	case KVM_CAP_NR_MEMSLOTS:
2967 		r = KVM_USER_MEM_SLOTS;
2968 		break;
2969 	case KVM_CAP_PV_MMU:	/* obsolete */
2970 		r = 0;
2971 		break;
2972 	case KVM_CAP_MCE:
2973 		r = KVM_MAX_MCE_BANKS;
2974 		break;
2975 	case KVM_CAP_XCRS:
2976 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2977 		break;
2978 	case KVM_CAP_TSC_CONTROL:
2979 		r = kvm_has_tsc_control;
2980 		break;
2981 	case KVM_CAP_X2APIC_API:
2982 		r = KVM_X2APIC_API_VALID_FLAGS;
2983 		break;
2984 	case KVM_CAP_NESTED_STATE:
2985 		r = kvm_x86_ops->get_nested_state ?
2986 			kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
2987 		break;
2988 	default:
2989 		break;
2990 	}
2991 	return r;
2992 
2993 }
2994 
2995 long kvm_arch_dev_ioctl(struct file *filp,
2996 			unsigned int ioctl, unsigned long arg)
2997 {
2998 	void __user *argp = (void __user *)arg;
2999 	long r;
3000 
3001 	switch (ioctl) {
3002 	case KVM_GET_MSR_INDEX_LIST: {
3003 		struct kvm_msr_list __user *user_msr_list = argp;
3004 		struct kvm_msr_list msr_list;
3005 		unsigned n;
3006 
3007 		r = -EFAULT;
3008 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3009 			goto out;
3010 		n = msr_list.nmsrs;
3011 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3012 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3013 			goto out;
3014 		r = -E2BIG;
3015 		if (n < msr_list.nmsrs)
3016 			goto out;
3017 		r = -EFAULT;
3018 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3019 				 num_msrs_to_save * sizeof(u32)))
3020 			goto out;
3021 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3022 				 &emulated_msrs,
3023 				 num_emulated_msrs * sizeof(u32)))
3024 			goto out;
3025 		r = 0;
3026 		break;
3027 	}
3028 	case KVM_GET_SUPPORTED_CPUID:
3029 	case KVM_GET_EMULATED_CPUID: {
3030 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3031 		struct kvm_cpuid2 cpuid;
3032 
3033 		r = -EFAULT;
3034 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3035 			goto out;
3036 
3037 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3038 					    ioctl);
3039 		if (r)
3040 			goto out;
3041 
3042 		r = -EFAULT;
3043 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3044 			goto out;
3045 		r = 0;
3046 		break;
3047 	}
3048 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3049 		r = -EFAULT;
3050 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3051 				 sizeof(kvm_mce_cap_supported)))
3052 			goto out;
3053 		r = 0;
3054 		break;
3055 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3056 		struct kvm_msr_list __user *user_msr_list = argp;
3057 		struct kvm_msr_list msr_list;
3058 		unsigned int n;
3059 
3060 		r = -EFAULT;
3061 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3062 			goto out;
3063 		n = msr_list.nmsrs;
3064 		msr_list.nmsrs = num_msr_based_features;
3065 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3066 			goto out;
3067 		r = -E2BIG;
3068 		if (n < msr_list.nmsrs)
3069 			goto out;
3070 		r = -EFAULT;
3071 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3072 				 num_msr_based_features * sizeof(u32)))
3073 			goto out;
3074 		r = 0;
3075 		break;
3076 	}
3077 	case KVM_GET_MSRS:
3078 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3079 		break;
3080 	}
3081 	default:
3082 		r = -EINVAL;
3083 	}
3084 out:
3085 	return r;
3086 }
3087 
3088 static void wbinvd_ipi(void *garbage)
3089 {
3090 	wbinvd();
3091 }
3092 
3093 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3094 {
3095 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3096 }
3097 
3098 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3099 {
3100 	/* Address WBINVD may be executed by guest */
3101 	if (need_emulate_wbinvd(vcpu)) {
3102 		if (kvm_x86_ops->has_wbinvd_exit())
3103 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3104 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3105 			smp_call_function_single(vcpu->cpu,
3106 					wbinvd_ipi, NULL, 1);
3107 	}
3108 
3109 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3110 
3111 	/* Apply any externally detected TSC adjustments (due to suspend) */
3112 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3113 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3114 		vcpu->arch.tsc_offset_adjustment = 0;
3115 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3116 	}
3117 
3118 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3119 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3120 				rdtsc() - vcpu->arch.last_host_tsc;
3121 		if (tsc_delta < 0)
3122 			mark_tsc_unstable("KVM discovered backwards TSC");
3123 
3124 		if (kvm_check_tsc_unstable()) {
3125 			u64 offset = kvm_compute_tsc_offset(vcpu,
3126 						vcpu->arch.last_guest_tsc);
3127 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3128 			vcpu->arch.tsc_catchup = 1;
3129 		}
3130 
3131 		if (kvm_lapic_hv_timer_in_use(vcpu))
3132 			kvm_lapic_restart_hv_timer(vcpu);
3133 
3134 		/*
3135 		 * On a host with synchronized TSC, there is no need to update
3136 		 * kvmclock on vcpu->cpu migration
3137 		 */
3138 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3139 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3140 		if (vcpu->cpu != cpu)
3141 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3142 		vcpu->cpu = cpu;
3143 	}
3144 
3145 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3146 }
3147 
3148 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3149 {
3150 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3151 		return;
3152 
3153 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3154 
3155 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3156 			&vcpu->arch.st.steal.preempted,
3157 			offsetof(struct kvm_steal_time, preempted),
3158 			sizeof(vcpu->arch.st.steal.preempted));
3159 }
3160 
3161 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3162 {
3163 	int idx;
3164 
3165 	if (vcpu->preempted)
3166 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3167 
3168 	/*
3169 	 * Disable page faults because we're in atomic context here.
3170 	 * kvm_write_guest_offset_cached() would call might_fault()
3171 	 * that relies on pagefault_disable() to tell if there's a
3172 	 * bug. NOTE: the write to guest memory may not go through if
3173 	 * during postcopy live migration or if there's heavy guest
3174 	 * paging.
3175 	 */
3176 	pagefault_disable();
3177 	/*
3178 	 * kvm_memslots() will be called by
3179 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3180 	 */
3181 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3182 	kvm_steal_time_set_preempted(vcpu);
3183 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3184 	pagefault_enable();
3185 	kvm_x86_ops->vcpu_put(vcpu);
3186 	vcpu->arch.last_host_tsc = rdtsc();
3187 	/*
3188 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3189 	 * on every vmexit, but if not, we might have a stale dr6 from the
3190 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3191 	 */
3192 	set_debugreg(0, 6);
3193 }
3194 
3195 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3196 				    struct kvm_lapic_state *s)
3197 {
3198 	if (vcpu->arch.apicv_active)
3199 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3200 
3201 	return kvm_apic_get_state(vcpu, s);
3202 }
3203 
3204 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3205 				    struct kvm_lapic_state *s)
3206 {
3207 	int r;
3208 
3209 	r = kvm_apic_set_state(vcpu, s);
3210 	if (r)
3211 		return r;
3212 	update_cr8_intercept(vcpu);
3213 
3214 	return 0;
3215 }
3216 
3217 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3218 {
3219 	return (!lapic_in_kernel(vcpu) ||
3220 		kvm_apic_accept_pic_intr(vcpu));
3221 }
3222 
3223 /*
3224  * if userspace requested an interrupt window, check that the
3225  * interrupt window is open.
3226  *
3227  * No need to exit to userspace if we already have an interrupt queued.
3228  */
3229 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3230 {
3231 	return kvm_arch_interrupt_allowed(vcpu) &&
3232 		!kvm_cpu_has_interrupt(vcpu) &&
3233 		!kvm_event_needs_reinjection(vcpu) &&
3234 		kvm_cpu_accept_dm_intr(vcpu);
3235 }
3236 
3237 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3238 				    struct kvm_interrupt *irq)
3239 {
3240 	if (irq->irq >= KVM_NR_INTERRUPTS)
3241 		return -EINVAL;
3242 
3243 	if (!irqchip_in_kernel(vcpu->kvm)) {
3244 		kvm_queue_interrupt(vcpu, irq->irq, false);
3245 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3246 		return 0;
3247 	}
3248 
3249 	/*
3250 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3251 	 * fail for in-kernel 8259.
3252 	 */
3253 	if (pic_in_kernel(vcpu->kvm))
3254 		return -ENXIO;
3255 
3256 	if (vcpu->arch.pending_external_vector != -1)
3257 		return -EEXIST;
3258 
3259 	vcpu->arch.pending_external_vector = irq->irq;
3260 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3261 	return 0;
3262 }
3263 
3264 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3265 {
3266 	kvm_inject_nmi(vcpu);
3267 
3268 	return 0;
3269 }
3270 
3271 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3272 {
3273 	kvm_make_request(KVM_REQ_SMI, vcpu);
3274 
3275 	return 0;
3276 }
3277 
3278 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3279 					   struct kvm_tpr_access_ctl *tac)
3280 {
3281 	if (tac->flags)
3282 		return -EINVAL;
3283 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3284 	return 0;
3285 }
3286 
3287 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3288 					u64 mcg_cap)
3289 {
3290 	int r;
3291 	unsigned bank_num = mcg_cap & 0xff, bank;
3292 
3293 	r = -EINVAL;
3294 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3295 		goto out;
3296 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3297 		goto out;
3298 	r = 0;
3299 	vcpu->arch.mcg_cap = mcg_cap;
3300 	/* Init IA32_MCG_CTL to all 1s */
3301 	if (mcg_cap & MCG_CTL_P)
3302 		vcpu->arch.mcg_ctl = ~(u64)0;
3303 	/* Init IA32_MCi_CTL to all 1s */
3304 	for (bank = 0; bank < bank_num; bank++)
3305 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3306 
3307 	if (kvm_x86_ops->setup_mce)
3308 		kvm_x86_ops->setup_mce(vcpu);
3309 out:
3310 	return r;
3311 }
3312 
3313 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3314 				      struct kvm_x86_mce *mce)
3315 {
3316 	u64 mcg_cap = vcpu->arch.mcg_cap;
3317 	unsigned bank_num = mcg_cap & 0xff;
3318 	u64 *banks = vcpu->arch.mce_banks;
3319 
3320 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3321 		return -EINVAL;
3322 	/*
3323 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3324 	 * reporting is disabled
3325 	 */
3326 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3327 	    vcpu->arch.mcg_ctl != ~(u64)0)
3328 		return 0;
3329 	banks += 4 * mce->bank;
3330 	/*
3331 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3332 	 * reporting is disabled for the bank
3333 	 */
3334 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3335 		return 0;
3336 	if (mce->status & MCI_STATUS_UC) {
3337 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3338 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3339 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3340 			return 0;
3341 		}
3342 		if (banks[1] & MCI_STATUS_VAL)
3343 			mce->status |= MCI_STATUS_OVER;
3344 		banks[2] = mce->addr;
3345 		banks[3] = mce->misc;
3346 		vcpu->arch.mcg_status = mce->mcg_status;
3347 		banks[1] = mce->status;
3348 		kvm_queue_exception(vcpu, MC_VECTOR);
3349 	} else if (!(banks[1] & MCI_STATUS_VAL)
3350 		   || !(banks[1] & MCI_STATUS_UC)) {
3351 		if (banks[1] & MCI_STATUS_VAL)
3352 			mce->status |= MCI_STATUS_OVER;
3353 		banks[2] = mce->addr;
3354 		banks[3] = mce->misc;
3355 		banks[1] = mce->status;
3356 	} else
3357 		banks[1] |= MCI_STATUS_OVER;
3358 	return 0;
3359 }
3360 
3361 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3362 					       struct kvm_vcpu_events *events)
3363 {
3364 	process_nmi(vcpu);
3365 	/*
3366 	 * FIXME: pass injected and pending separately.  This is only
3367 	 * needed for nested virtualization, whose state cannot be
3368 	 * migrated yet.  For now we can combine them.
3369 	 */
3370 	events->exception.injected =
3371 		(vcpu->arch.exception.pending ||
3372 		 vcpu->arch.exception.injected) &&
3373 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3374 	events->exception.nr = vcpu->arch.exception.nr;
3375 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3376 	events->exception.pad = 0;
3377 	events->exception.error_code = vcpu->arch.exception.error_code;
3378 
3379 	events->interrupt.injected =
3380 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3381 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3382 	events->interrupt.soft = 0;
3383 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3384 
3385 	events->nmi.injected = vcpu->arch.nmi_injected;
3386 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3387 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3388 	events->nmi.pad = 0;
3389 
3390 	events->sipi_vector = 0; /* never valid when reporting to user space */
3391 
3392 	events->smi.smm = is_smm(vcpu);
3393 	events->smi.pending = vcpu->arch.smi_pending;
3394 	events->smi.smm_inside_nmi =
3395 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3396 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3397 
3398 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3399 			 | KVM_VCPUEVENT_VALID_SHADOW
3400 			 | KVM_VCPUEVENT_VALID_SMM);
3401 	memset(&events->reserved, 0, sizeof(events->reserved));
3402 }
3403 
3404 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3405 
3406 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3407 					      struct kvm_vcpu_events *events)
3408 {
3409 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3410 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3411 			      | KVM_VCPUEVENT_VALID_SHADOW
3412 			      | KVM_VCPUEVENT_VALID_SMM))
3413 		return -EINVAL;
3414 
3415 	if (events->exception.injected &&
3416 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3417 	     is_guest_mode(vcpu)))
3418 		return -EINVAL;
3419 
3420 	/* INITs are latched while in SMM */
3421 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3422 	    (events->smi.smm || events->smi.pending) &&
3423 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3424 		return -EINVAL;
3425 
3426 	process_nmi(vcpu);
3427 	vcpu->arch.exception.injected = false;
3428 	vcpu->arch.exception.pending = events->exception.injected;
3429 	vcpu->arch.exception.nr = events->exception.nr;
3430 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3431 	vcpu->arch.exception.error_code = events->exception.error_code;
3432 
3433 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3434 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3435 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3436 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3437 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3438 						  events->interrupt.shadow);
3439 
3440 	vcpu->arch.nmi_injected = events->nmi.injected;
3441 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3442 		vcpu->arch.nmi_pending = events->nmi.pending;
3443 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3444 
3445 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3446 	    lapic_in_kernel(vcpu))
3447 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3448 
3449 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3450 		u32 hflags = vcpu->arch.hflags;
3451 		if (events->smi.smm)
3452 			hflags |= HF_SMM_MASK;
3453 		else
3454 			hflags &= ~HF_SMM_MASK;
3455 		kvm_set_hflags(vcpu, hflags);
3456 
3457 		vcpu->arch.smi_pending = events->smi.pending;
3458 
3459 		if (events->smi.smm) {
3460 			if (events->smi.smm_inside_nmi)
3461 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3462 			else
3463 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3464 			if (lapic_in_kernel(vcpu)) {
3465 				if (events->smi.latched_init)
3466 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3467 				else
3468 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3469 			}
3470 		}
3471 	}
3472 
3473 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3474 
3475 	return 0;
3476 }
3477 
3478 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3479 					     struct kvm_debugregs *dbgregs)
3480 {
3481 	unsigned long val;
3482 
3483 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3484 	kvm_get_dr(vcpu, 6, &val);
3485 	dbgregs->dr6 = val;
3486 	dbgregs->dr7 = vcpu->arch.dr7;
3487 	dbgregs->flags = 0;
3488 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3489 }
3490 
3491 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3492 					    struct kvm_debugregs *dbgregs)
3493 {
3494 	if (dbgregs->flags)
3495 		return -EINVAL;
3496 
3497 	if (dbgregs->dr6 & ~0xffffffffull)
3498 		return -EINVAL;
3499 	if (dbgregs->dr7 & ~0xffffffffull)
3500 		return -EINVAL;
3501 
3502 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3503 	kvm_update_dr0123(vcpu);
3504 	vcpu->arch.dr6 = dbgregs->dr6;
3505 	kvm_update_dr6(vcpu);
3506 	vcpu->arch.dr7 = dbgregs->dr7;
3507 	kvm_update_dr7(vcpu);
3508 
3509 	return 0;
3510 }
3511 
3512 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3513 
3514 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3515 {
3516 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3517 	u64 xstate_bv = xsave->header.xfeatures;
3518 	u64 valid;
3519 
3520 	/*
3521 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3522 	 * leaves 0 and 1 in the loop below.
3523 	 */
3524 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3525 
3526 	/* Set XSTATE_BV */
3527 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3528 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3529 
3530 	/*
3531 	 * Copy each region from the possibly compacted offset to the
3532 	 * non-compacted offset.
3533 	 */
3534 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3535 	while (valid) {
3536 		u64 feature = valid & -valid;
3537 		int index = fls64(feature) - 1;
3538 		void *src = get_xsave_addr(xsave, feature);
3539 
3540 		if (src) {
3541 			u32 size, offset, ecx, edx;
3542 			cpuid_count(XSTATE_CPUID, index,
3543 				    &size, &offset, &ecx, &edx);
3544 			if (feature == XFEATURE_MASK_PKRU)
3545 				memcpy(dest + offset, &vcpu->arch.pkru,
3546 				       sizeof(vcpu->arch.pkru));
3547 			else
3548 				memcpy(dest + offset, src, size);
3549 
3550 		}
3551 
3552 		valid -= feature;
3553 	}
3554 }
3555 
3556 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3557 {
3558 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3559 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3560 	u64 valid;
3561 
3562 	/*
3563 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3564 	 * leaves 0 and 1 in the loop below.
3565 	 */
3566 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3567 
3568 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3569 	xsave->header.xfeatures = xstate_bv;
3570 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3571 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3572 
3573 	/*
3574 	 * Copy each region from the non-compacted offset to the
3575 	 * possibly compacted offset.
3576 	 */
3577 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3578 	while (valid) {
3579 		u64 feature = valid & -valid;
3580 		int index = fls64(feature) - 1;
3581 		void *dest = get_xsave_addr(xsave, feature);
3582 
3583 		if (dest) {
3584 			u32 size, offset, ecx, edx;
3585 			cpuid_count(XSTATE_CPUID, index,
3586 				    &size, &offset, &ecx, &edx);
3587 			if (feature == XFEATURE_MASK_PKRU)
3588 				memcpy(&vcpu->arch.pkru, src + offset,
3589 				       sizeof(vcpu->arch.pkru));
3590 			else
3591 				memcpy(dest, src + offset, size);
3592 		}
3593 
3594 		valid -= feature;
3595 	}
3596 }
3597 
3598 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3599 					 struct kvm_xsave *guest_xsave)
3600 {
3601 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3602 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3603 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3604 	} else {
3605 		memcpy(guest_xsave->region,
3606 			&vcpu->arch.guest_fpu.state.fxsave,
3607 			sizeof(struct fxregs_state));
3608 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3609 			XFEATURE_MASK_FPSSE;
3610 	}
3611 }
3612 
3613 #define XSAVE_MXCSR_OFFSET 24
3614 
3615 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3616 					struct kvm_xsave *guest_xsave)
3617 {
3618 	u64 xstate_bv =
3619 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3620 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3621 
3622 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3623 		/*
3624 		 * Here we allow setting states that are not present in
3625 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3626 		 * with old userspace.
3627 		 */
3628 		if (xstate_bv & ~kvm_supported_xcr0() ||
3629 			mxcsr & ~mxcsr_feature_mask)
3630 			return -EINVAL;
3631 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3632 	} else {
3633 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3634 			mxcsr & ~mxcsr_feature_mask)
3635 			return -EINVAL;
3636 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3637 			guest_xsave->region, sizeof(struct fxregs_state));
3638 	}
3639 	return 0;
3640 }
3641 
3642 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3643 					struct kvm_xcrs *guest_xcrs)
3644 {
3645 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3646 		guest_xcrs->nr_xcrs = 0;
3647 		return;
3648 	}
3649 
3650 	guest_xcrs->nr_xcrs = 1;
3651 	guest_xcrs->flags = 0;
3652 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3653 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3654 }
3655 
3656 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3657 				       struct kvm_xcrs *guest_xcrs)
3658 {
3659 	int i, r = 0;
3660 
3661 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3662 		return -EINVAL;
3663 
3664 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3665 		return -EINVAL;
3666 
3667 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3668 		/* Only support XCR0 currently */
3669 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3670 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3671 				guest_xcrs->xcrs[i].value);
3672 			break;
3673 		}
3674 	if (r)
3675 		r = -EINVAL;
3676 	return r;
3677 }
3678 
3679 /*
3680  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3681  * stopped by the hypervisor.  This function will be called from the host only.
3682  * EINVAL is returned when the host attempts to set the flag for a guest that
3683  * does not support pv clocks.
3684  */
3685 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3686 {
3687 	if (!vcpu->arch.pv_time_enabled)
3688 		return -EINVAL;
3689 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3690 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3691 	return 0;
3692 }
3693 
3694 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3695 				     struct kvm_enable_cap *cap)
3696 {
3697 	if (cap->flags)
3698 		return -EINVAL;
3699 
3700 	switch (cap->cap) {
3701 	case KVM_CAP_HYPERV_SYNIC2:
3702 		if (cap->args[0])
3703 			return -EINVAL;
3704 	case KVM_CAP_HYPERV_SYNIC:
3705 		if (!irqchip_in_kernel(vcpu->kvm))
3706 			return -EINVAL;
3707 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3708 					     KVM_CAP_HYPERV_SYNIC2);
3709 	default:
3710 		return -EINVAL;
3711 	}
3712 }
3713 
3714 long kvm_arch_vcpu_ioctl(struct file *filp,
3715 			 unsigned int ioctl, unsigned long arg)
3716 {
3717 	struct kvm_vcpu *vcpu = filp->private_data;
3718 	void __user *argp = (void __user *)arg;
3719 	int r;
3720 	union {
3721 		struct kvm_lapic_state *lapic;
3722 		struct kvm_xsave *xsave;
3723 		struct kvm_xcrs *xcrs;
3724 		void *buffer;
3725 	} u;
3726 
3727 	vcpu_load(vcpu);
3728 
3729 	u.buffer = NULL;
3730 	switch (ioctl) {
3731 	case KVM_GET_LAPIC: {
3732 		r = -EINVAL;
3733 		if (!lapic_in_kernel(vcpu))
3734 			goto out;
3735 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3736 
3737 		r = -ENOMEM;
3738 		if (!u.lapic)
3739 			goto out;
3740 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3741 		if (r)
3742 			goto out;
3743 		r = -EFAULT;
3744 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3745 			goto out;
3746 		r = 0;
3747 		break;
3748 	}
3749 	case KVM_SET_LAPIC: {
3750 		r = -EINVAL;
3751 		if (!lapic_in_kernel(vcpu))
3752 			goto out;
3753 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3754 		if (IS_ERR(u.lapic)) {
3755 			r = PTR_ERR(u.lapic);
3756 			goto out_nofree;
3757 		}
3758 
3759 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3760 		break;
3761 	}
3762 	case KVM_INTERRUPT: {
3763 		struct kvm_interrupt irq;
3764 
3765 		r = -EFAULT;
3766 		if (copy_from_user(&irq, argp, sizeof irq))
3767 			goto out;
3768 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3769 		break;
3770 	}
3771 	case KVM_NMI: {
3772 		r = kvm_vcpu_ioctl_nmi(vcpu);
3773 		break;
3774 	}
3775 	case KVM_SMI: {
3776 		r = kvm_vcpu_ioctl_smi(vcpu);
3777 		break;
3778 	}
3779 	case KVM_SET_CPUID: {
3780 		struct kvm_cpuid __user *cpuid_arg = argp;
3781 		struct kvm_cpuid cpuid;
3782 
3783 		r = -EFAULT;
3784 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3785 			goto out;
3786 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3787 		break;
3788 	}
3789 	case KVM_SET_CPUID2: {
3790 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3791 		struct kvm_cpuid2 cpuid;
3792 
3793 		r = -EFAULT;
3794 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3795 			goto out;
3796 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3797 					      cpuid_arg->entries);
3798 		break;
3799 	}
3800 	case KVM_GET_CPUID2: {
3801 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3802 		struct kvm_cpuid2 cpuid;
3803 
3804 		r = -EFAULT;
3805 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3806 			goto out;
3807 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3808 					      cpuid_arg->entries);
3809 		if (r)
3810 			goto out;
3811 		r = -EFAULT;
3812 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3813 			goto out;
3814 		r = 0;
3815 		break;
3816 	}
3817 	case KVM_GET_MSRS: {
3818 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3819 		r = msr_io(vcpu, argp, do_get_msr, 1);
3820 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3821 		break;
3822 	}
3823 	case KVM_SET_MSRS: {
3824 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3825 		r = msr_io(vcpu, argp, do_set_msr, 0);
3826 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3827 		break;
3828 	}
3829 	case KVM_TPR_ACCESS_REPORTING: {
3830 		struct kvm_tpr_access_ctl tac;
3831 
3832 		r = -EFAULT;
3833 		if (copy_from_user(&tac, argp, sizeof tac))
3834 			goto out;
3835 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3836 		if (r)
3837 			goto out;
3838 		r = -EFAULT;
3839 		if (copy_to_user(argp, &tac, sizeof tac))
3840 			goto out;
3841 		r = 0;
3842 		break;
3843 	};
3844 	case KVM_SET_VAPIC_ADDR: {
3845 		struct kvm_vapic_addr va;
3846 		int idx;
3847 
3848 		r = -EINVAL;
3849 		if (!lapic_in_kernel(vcpu))
3850 			goto out;
3851 		r = -EFAULT;
3852 		if (copy_from_user(&va, argp, sizeof va))
3853 			goto out;
3854 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3855 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3856 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3857 		break;
3858 	}
3859 	case KVM_X86_SETUP_MCE: {
3860 		u64 mcg_cap;
3861 
3862 		r = -EFAULT;
3863 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3864 			goto out;
3865 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3866 		break;
3867 	}
3868 	case KVM_X86_SET_MCE: {
3869 		struct kvm_x86_mce mce;
3870 
3871 		r = -EFAULT;
3872 		if (copy_from_user(&mce, argp, sizeof mce))
3873 			goto out;
3874 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3875 		break;
3876 	}
3877 	case KVM_GET_VCPU_EVENTS: {
3878 		struct kvm_vcpu_events events;
3879 
3880 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3881 
3882 		r = -EFAULT;
3883 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3884 			break;
3885 		r = 0;
3886 		break;
3887 	}
3888 	case KVM_SET_VCPU_EVENTS: {
3889 		struct kvm_vcpu_events events;
3890 
3891 		r = -EFAULT;
3892 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3893 			break;
3894 
3895 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3896 		break;
3897 	}
3898 	case KVM_GET_DEBUGREGS: {
3899 		struct kvm_debugregs dbgregs;
3900 
3901 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3902 
3903 		r = -EFAULT;
3904 		if (copy_to_user(argp, &dbgregs,
3905 				 sizeof(struct kvm_debugregs)))
3906 			break;
3907 		r = 0;
3908 		break;
3909 	}
3910 	case KVM_SET_DEBUGREGS: {
3911 		struct kvm_debugregs dbgregs;
3912 
3913 		r = -EFAULT;
3914 		if (copy_from_user(&dbgregs, argp,
3915 				   sizeof(struct kvm_debugregs)))
3916 			break;
3917 
3918 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3919 		break;
3920 	}
3921 	case KVM_GET_XSAVE: {
3922 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3923 		r = -ENOMEM;
3924 		if (!u.xsave)
3925 			break;
3926 
3927 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3928 
3929 		r = -EFAULT;
3930 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3931 			break;
3932 		r = 0;
3933 		break;
3934 	}
3935 	case KVM_SET_XSAVE: {
3936 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3937 		if (IS_ERR(u.xsave)) {
3938 			r = PTR_ERR(u.xsave);
3939 			goto out_nofree;
3940 		}
3941 
3942 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3943 		break;
3944 	}
3945 	case KVM_GET_XCRS: {
3946 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3947 		r = -ENOMEM;
3948 		if (!u.xcrs)
3949 			break;
3950 
3951 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3952 
3953 		r = -EFAULT;
3954 		if (copy_to_user(argp, u.xcrs,
3955 				 sizeof(struct kvm_xcrs)))
3956 			break;
3957 		r = 0;
3958 		break;
3959 	}
3960 	case KVM_SET_XCRS: {
3961 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3962 		if (IS_ERR(u.xcrs)) {
3963 			r = PTR_ERR(u.xcrs);
3964 			goto out_nofree;
3965 		}
3966 
3967 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3968 		break;
3969 	}
3970 	case KVM_SET_TSC_KHZ: {
3971 		u32 user_tsc_khz;
3972 
3973 		r = -EINVAL;
3974 		user_tsc_khz = (u32)arg;
3975 
3976 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3977 			goto out;
3978 
3979 		if (user_tsc_khz == 0)
3980 			user_tsc_khz = tsc_khz;
3981 
3982 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3983 			r = 0;
3984 
3985 		goto out;
3986 	}
3987 	case KVM_GET_TSC_KHZ: {
3988 		r = vcpu->arch.virtual_tsc_khz;
3989 		goto out;
3990 	}
3991 	case KVM_KVMCLOCK_CTRL: {
3992 		r = kvm_set_guest_paused(vcpu);
3993 		goto out;
3994 	}
3995 	case KVM_ENABLE_CAP: {
3996 		struct kvm_enable_cap cap;
3997 
3998 		r = -EFAULT;
3999 		if (copy_from_user(&cap, argp, sizeof(cap)))
4000 			goto out;
4001 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4002 		break;
4003 	}
4004 	case KVM_GET_NESTED_STATE: {
4005 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4006 		u32 user_data_size;
4007 
4008 		r = -EINVAL;
4009 		if (!kvm_x86_ops->get_nested_state)
4010 			break;
4011 
4012 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4013 		r = -EFAULT;
4014 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4015 			break;
4016 
4017 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4018 						  user_data_size);
4019 		if (r < 0)
4020 			break;
4021 
4022 		if (r > user_data_size) {
4023 			if (put_user(r, &user_kvm_nested_state->size))
4024 				r = -EFAULT;
4025 			else
4026 				r = -E2BIG;
4027 			break;
4028 		}
4029 
4030 		r = 0;
4031 		break;
4032 	}
4033 	case KVM_SET_NESTED_STATE: {
4034 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4035 		struct kvm_nested_state kvm_state;
4036 
4037 		r = -EINVAL;
4038 		if (!kvm_x86_ops->set_nested_state)
4039 			break;
4040 
4041 		r = -EFAULT;
4042 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4043 			break;
4044 
4045 		r = -EINVAL;
4046 		if (kvm_state.size < sizeof(kvm_state))
4047 			break;
4048 
4049 		if (kvm_state.flags &
4050 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4051 			break;
4052 
4053 		/* nested_run_pending implies guest_mode.  */
4054 		if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4055 			break;
4056 
4057 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4058 		break;
4059 	}
4060 	default:
4061 		r = -EINVAL;
4062 	}
4063 out:
4064 	kfree(u.buffer);
4065 out_nofree:
4066 	vcpu_put(vcpu);
4067 	return r;
4068 }
4069 
4070 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4071 {
4072 	return VM_FAULT_SIGBUS;
4073 }
4074 
4075 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4076 {
4077 	int ret;
4078 
4079 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4080 		return -EINVAL;
4081 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4082 	return ret;
4083 }
4084 
4085 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4086 					      u64 ident_addr)
4087 {
4088 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4089 }
4090 
4091 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4092 					  u32 kvm_nr_mmu_pages)
4093 {
4094 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4095 		return -EINVAL;
4096 
4097 	mutex_lock(&kvm->slots_lock);
4098 
4099 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4100 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4101 
4102 	mutex_unlock(&kvm->slots_lock);
4103 	return 0;
4104 }
4105 
4106 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4107 {
4108 	return kvm->arch.n_max_mmu_pages;
4109 }
4110 
4111 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4112 {
4113 	struct kvm_pic *pic = kvm->arch.vpic;
4114 	int r;
4115 
4116 	r = 0;
4117 	switch (chip->chip_id) {
4118 	case KVM_IRQCHIP_PIC_MASTER:
4119 		memcpy(&chip->chip.pic, &pic->pics[0],
4120 			sizeof(struct kvm_pic_state));
4121 		break;
4122 	case KVM_IRQCHIP_PIC_SLAVE:
4123 		memcpy(&chip->chip.pic, &pic->pics[1],
4124 			sizeof(struct kvm_pic_state));
4125 		break;
4126 	case KVM_IRQCHIP_IOAPIC:
4127 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4128 		break;
4129 	default:
4130 		r = -EINVAL;
4131 		break;
4132 	}
4133 	return r;
4134 }
4135 
4136 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4137 {
4138 	struct kvm_pic *pic = kvm->arch.vpic;
4139 	int r;
4140 
4141 	r = 0;
4142 	switch (chip->chip_id) {
4143 	case KVM_IRQCHIP_PIC_MASTER:
4144 		spin_lock(&pic->lock);
4145 		memcpy(&pic->pics[0], &chip->chip.pic,
4146 			sizeof(struct kvm_pic_state));
4147 		spin_unlock(&pic->lock);
4148 		break;
4149 	case KVM_IRQCHIP_PIC_SLAVE:
4150 		spin_lock(&pic->lock);
4151 		memcpy(&pic->pics[1], &chip->chip.pic,
4152 			sizeof(struct kvm_pic_state));
4153 		spin_unlock(&pic->lock);
4154 		break;
4155 	case KVM_IRQCHIP_IOAPIC:
4156 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4157 		break;
4158 	default:
4159 		r = -EINVAL;
4160 		break;
4161 	}
4162 	kvm_pic_update_irq(pic);
4163 	return r;
4164 }
4165 
4166 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4167 {
4168 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4169 
4170 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4171 
4172 	mutex_lock(&kps->lock);
4173 	memcpy(ps, &kps->channels, sizeof(*ps));
4174 	mutex_unlock(&kps->lock);
4175 	return 0;
4176 }
4177 
4178 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4179 {
4180 	int i;
4181 	struct kvm_pit *pit = kvm->arch.vpit;
4182 
4183 	mutex_lock(&pit->pit_state.lock);
4184 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4185 	for (i = 0; i < 3; i++)
4186 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4187 	mutex_unlock(&pit->pit_state.lock);
4188 	return 0;
4189 }
4190 
4191 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4192 {
4193 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4194 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4195 		sizeof(ps->channels));
4196 	ps->flags = kvm->arch.vpit->pit_state.flags;
4197 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4198 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4199 	return 0;
4200 }
4201 
4202 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4203 {
4204 	int start = 0;
4205 	int i;
4206 	u32 prev_legacy, cur_legacy;
4207 	struct kvm_pit *pit = kvm->arch.vpit;
4208 
4209 	mutex_lock(&pit->pit_state.lock);
4210 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4211 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4212 	if (!prev_legacy && cur_legacy)
4213 		start = 1;
4214 	memcpy(&pit->pit_state.channels, &ps->channels,
4215 	       sizeof(pit->pit_state.channels));
4216 	pit->pit_state.flags = ps->flags;
4217 	for (i = 0; i < 3; i++)
4218 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4219 				   start && i == 0);
4220 	mutex_unlock(&pit->pit_state.lock);
4221 	return 0;
4222 }
4223 
4224 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4225 				 struct kvm_reinject_control *control)
4226 {
4227 	struct kvm_pit *pit = kvm->arch.vpit;
4228 
4229 	if (!pit)
4230 		return -ENXIO;
4231 
4232 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4233 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4234 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4235 	 */
4236 	mutex_lock(&pit->pit_state.lock);
4237 	kvm_pit_set_reinject(pit, control->pit_reinject);
4238 	mutex_unlock(&pit->pit_state.lock);
4239 
4240 	return 0;
4241 }
4242 
4243 /**
4244  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4245  * @kvm: kvm instance
4246  * @log: slot id and address to which we copy the log
4247  *
4248  * Steps 1-4 below provide general overview of dirty page logging. See
4249  * kvm_get_dirty_log_protect() function description for additional details.
4250  *
4251  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4252  * always flush the TLB (step 4) even if previous step failed  and the dirty
4253  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4254  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4255  * writes will be marked dirty for next log read.
4256  *
4257  *   1. Take a snapshot of the bit and clear it if needed.
4258  *   2. Write protect the corresponding page.
4259  *   3. Copy the snapshot to the userspace.
4260  *   4. Flush TLB's if needed.
4261  */
4262 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4263 {
4264 	bool is_dirty = false;
4265 	int r;
4266 
4267 	mutex_lock(&kvm->slots_lock);
4268 
4269 	/*
4270 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4271 	 */
4272 	if (kvm_x86_ops->flush_log_dirty)
4273 		kvm_x86_ops->flush_log_dirty(kvm);
4274 
4275 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4276 
4277 	/*
4278 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4279 	 * kvm_mmu_slot_remove_write_access().
4280 	 */
4281 	lockdep_assert_held(&kvm->slots_lock);
4282 	if (is_dirty)
4283 		kvm_flush_remote_tlbs(kvm);
4284 
4285 	mutex_unlock(&kvm->slots_lock);
4286 	return r;
4287 }
4288 
4289 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4290 			bool line_status)
4291 {
4292 	if (!irqchip_in_kernel(kvm))
4293 		return -ENXIO;
4294 
4295 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4296 					irq_event->irq, irq_event->level,
4297 					line_status);
4298 	return 0;
4299 }
4300 
4301 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4302 				   struct kvm_enable_cap *cap)
4303 {
4304 	int r;
4305 
4306 	if (cap->flags)
4307 		return -EINVAL;
4308 
4309 	switch (cap->cap) {
4310 	case KVM_CAP_DISABLE_QUIRKS:
4311 		kvm->arch.disabled_quirks = cap->args[0];
4312 		r = 0;
4313 		break;
4314 	case KVM_CAP_SPLIT_IRQCHIP: {
4315 		mutex_lock(&kvm->lock);
4316 		r = -EINVAL;
4317 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4318 			goto split_irqchip_unlock;
4319 		r = -EEXIST;
4320 		if (irqchip_in_kernel(kvm))
4321 			goto split_irqchip_unlock;
4322 		if (kvm->created_vcpus)
4323 			goto split_irqchip_unlock;
4324 		r = kvm_setup_empty_irq_routing(kvm);
4325 		if (r)
4326 			goto split_irqchip_unlock;
4327 		/* Pairs with irqchip_in_kernel. */
4328 		smp_wmb();
4329 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4330 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4331 		r = 0;
4332 split_irqchip_unlock:
4333 		mutex_unlock(&kvm->lock);
4334 		break;
4335 	}
4336 	case KVM_CAP_X2APIC_API:
4337 		r = -EINVAL;
4338 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4339 			break;
4340 
4341 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4342 			kvm->arch.x2apic_format = true;
4343 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4344 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4345 
4346 		r = 0;
4347 		break;
4348 	case KVM_CAP_X86_DISABLE_EXITS:
4349 		r = -EINVAL;
4350 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4351 			break;
4352 
4353 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4354 			kvm_can_mwait_in_guest())
4355 			kvm->arch.mwait_in_guest = true;
4356 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4357 			kvm->arch.hlt_in_guest = true;
4358 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4359 			kvm->arch.pause_in_guest = true;
4360 		r = 0;
4361 		break;
4362 	case KVM_CAP_MSR_PLATFORM_INFO:
4363 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4364 		r = 0;
4365 		break;
4366 	default:
4367 		r = -EINVAL;
4368 		break;
4369 	}
4370 	return r;
4371 }
4372 
4373 long kvm_arch_vm_ioctl(struct file *filp,
4374 		       unsigned int ioctl, unsigned long arg)
4375 {
4376 	struct kvm *kvm = filp->private_data;
4377 	void __user *argp = (void __user *)arg;
4378 	int r = -ENOTTY;
4379 	/*
4380 	 * This union makes it completely explicit to gcc-3.x
4381 	 * that these two variables' stack usage should be
4382 	 * combined, not added together.
4383 	 */
4384 	union {
4385 		struct kvm_pit_state ps;
4386 		struct kvm_pit_state2 ps2;
4387 		struct kvm_pit_config pit_config;
4388 	} u;
4389 
4390 	switch (ioctl) {
4391 	case KVM_SET_TSS_ADDR:
4392 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4393 		break;
4394 	case KVM_SET_IDENTITY_MAP_ADDR: {
4395 		u64 ident_addr;
4396 
4397 		mutex_lock(&kvm->lock);
4398 		r = -EINVAL;
4399 		if (kvm->created_vcpus)
4400 			goto set_identity_unlock;
4401 		r = -EFAULT;
4402 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4403 			goto set_identity_unlock;
4404 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4405 set_identity_unlock:
4406 		mutex_unlock(&kvm->lock);
4407 		break;
4408 	}
4409 	case KVM_SET_NR_MMU_PAGES:
4410 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4411 		break;
4412 	case KVM_GET_NR_MMU_PAGES:
4413 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4414 		break;
4415 	case KVM_CREATE_IRQCHIP: {
4416 		mutex_lock(&kvm->lock);
4417 
4418 		r = -EEXIST;
4419 		if (irqchip_in_kernel(kvm))
4420 			goto create_irqchip_unlock;
4421 
4422 		r = -EINVAL;
4423 		if (kvm->created_vcpus)
4424 			goto create_irqchip_unlock;
4425 
4426 		r = kvm_pic_init(kvm);
4427 		if (r)
4428 			goto create_irqchip_unlock;
4429 
4430 		r = kvm_ioapic_init(kvm);
4431 		if (r) {
4432 			kvm_pic_destroy(kvm);
4433 			goto create_irqchip_unlock;
4434 		}
4435 
4436 		r = kvm_setup_default_irq_routing(kvm);
4437 		if (r) {
4438 			kvm_ioapic_destroy(kvm);
4439 			kvm_pic_destroy(kvm);
4440 			goto create_irqchip_unlock;
4441 		}
4442 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4443 		smp_wmb();
4444 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4445 	create_irqchip_unlock:
4446 		mutex_unlock(&kvm->lock);
4447 		break;
4448 	}
4449 	case KVM_CREATE_PIT:
4450 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4451 		goto create_pit;
4452 	case KVM_CREATE_PIT2:
4453 		r = -EFAULT;
4454 		if (copy_from_user(&u.pit_config, argp,
4455 				   sizeof(struct kvm_pit_config)))
4456 			goto out;
4457 	create_pit:
4458 		mutex_lock(&kvm->lock);
4459 		r = -EEXIST;
4460 		if (kvm->arch.vpit)
4461 			goto create_pit_unlock;
4462 		r = -ENOMEM;
4463 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4464 		if (kvm->arch.vpit)
4465 			r = 0;
4466 	create_pit_unlock:
4467 		mutex_unlock(&kvm->lock);
4468 		break;
4469 	case KVM_GET_IRQCHIP: {
4470 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4471 		struct kvm_irqchip *chip;
4472 
4473 		chip = memdup_user(argp, sizeof(*chip));
4474 		if (IS_ERR(chip)) {
4475 			r = PTR_ERR(chip);
4476 			goto out;
4477 		}
4478 
4479 		r = -ENXIO;
4480 		if (!irqchip_kernel(kvm))
4481 			goto get_irqchip_out;
4482 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4483 		if (r)
4484 			goto get_irqchip_out;
4485 		r = -EFAULT;
4486 		if (copy_to_user(argp, chip, sizeof *chip))
4487 			goto get_irqchip_out;
4488 		r = 0;
4489 	get_irqchip_out:
4490 		kfree(chip);
4491 		break;
4492 	}
4493 	case KVM_SET_IRQCHIP: {
4494 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4495 		struct kvm_irqchip *chip;
4496 
4497 		chip = memdup_user(argp, sizeof(*chip));
4498 		if (IS_ERR(chip)) {
4499 			r = PTR_ERR(chip);
4500 			goto out;
4501 		}
4502 
4503 		r = -ENXIO;
4504 		if (!irqchip_kernel(kvm))
4505 			goto set_irqchip_out;
4506 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4507 		if (r)
4508 			goto set_irqchip_out;
4509 		r = 0;
4510 	set_irqchip_out:
4511 		kfree(chip);
4512 		break;
4513 	}
4514 	case KVM_GET_PIT: {
4515 		r = -EFAULT;
4516 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4517 			goto out;
4518 		r = -ENXIO;
4519 		if (!kvm->arch.vpit)
4520 			goto out;
4521 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4522 		if (r)
4523 			goto out;
4524 		r = -EFAULT;
4525 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4526 			goto out;
4527 		r = 0;
4528 		break;
4529 	}
4530 	case KVM_SET_PIT: {
4531 		r = -EFAULT;
4532 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4533 			goto out;
4534 		r = -ENXIO;
4535 		if (!kvm->arch.vpit)
4536 			goto out;
4537 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4538 		break;
4539 	}
4540 	case KVM_GET_PIT2: {
4541 		r = -ENXIO;
4542 		if (!kvm->arch.vpit)
4543 			goto out;
4544 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4545 		if (r)
4546 			goto out;
4547 		r = -EFAULT;
4548 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4549 			goto out;
4550 		r = 0;
4551 		break;
4552 	}
4553 	case KVM_SET_PIT2: {
4554 		r = -EFAULT;
4555 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4556 			goto out;
4557 		r = -ENXIO;
4558 		if (!kvm->arch.vpit)
4559 			goto out;
4560 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4561 		break;
4562 	}
4563 	case KVM_REINJECT_CONTROL: {
4564 		struct kvm_reinject_control control;
4565 		r =  -EFAULT;
4566 		if (copy_from_user(&control, argp, sizeof(control)))
4567 			goto out;
4568 		r = kvm_vm_ioctl_reinject(kvm, &control);
4569 		break;
4570 	}
4571 	case KVM_SET_BOOT_CPU_ID:
4572 		r = 0;
4573 		mutex_lock(&kvm->lock);
4574 		if (kvm->created_vcpus)
4575 			r = -EBUSY;
4576 		else
4577 			kvm->arch.bsp_vcpu_id = arg;
4578 		mutex_unlock(&kvm->lock);
4579 		break;
4580 	case KVM_XEN_HVM_CONFIG: {
4581 		struct kvm_xen_hvm_config xhc;
4582 		r = -EFAULT;
4583 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4584 			goto out;
4585 		r = -EINVAL;
4586 		if (xhc.flags)
4587 			goto out;
4588 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4589 		r = 0;
4590 		break;
4591 	}
4592 	case KVM_SET_CLOCK: {
4593 		struct kvm_clock_data user_ns;
4594 		u64 now_ns;
4595 
4596 		r = -EFAULT;
4597 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4598 			goto out;
4599 
4600 		r = -EINVAL;
4601 		if (user_ns.flags)
4602 			goto out;
4603 
4604 		r = 0;
4605 		/*
4606 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4607 		 * kvm_gen_update_masterclock() can be cut down to locked
4608 		 * pvclock_update_vm_gtod_copy().
4609 		 */
4610 		kvm_gen_update_masterclock(kvm);
4611 		now_ns = get_kvmclock_ns(kvm);
4612 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4613 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4614 		break;
4615 	}
4616 	case KVM_GET_CLOCK: {
4617 		struct kvm_clock_data user_ns;
4618 		u64 now_ns;
4619 
4620 		now_ns = get_kvmclock_ns(kvm);
4621 		user_ns.clock = now_ns;
4622 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4623 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4624 
4625 		r = -EFAULT;
4626 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4627 			goto out;
4628 		r = 0;
4629 		break;
4630 	}
4631 	case KVM_ENABLE_CAP: {
4632 		struct kvm_enable_cap cap;
4633 
4634 		r = -EFAULT;
4635 		if (copy_from_user(&cap, argp, sizeof(cap)))
4636 			goto out;
4637 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4638 		break;
4639 	}
4640 	case KVM_MEMORY_ENCRYPT_OP: {
4641 		r = -ENOTTY;
4642 		if (kvm_x86_ops->mem_enc_op)
4643 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4644 		break;
4645 	}
4646 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4647 		struct kvm_enc_region region;
4648 
4649 		r = -EFAULT;
4650 		if (copy_from_user(&region, argp, sizeof(region)))
4651 			goto out;
4652 
4653 		r = -ENOTTY;
4654 		if (kvm_x86_ops->mem_enc_reg_region)
4655 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4656 		break;
4657 	}
4658 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4659 		struct kvm_enc_region region;
4660 
4661 		r = -EFAULT;
4662 		if (copy_from_user(&region, argp, sizeof(region)))
4663 			goto out;
4664 
4665 		r = -ENOTTY;
4666 		if (kvm_x86_ops->mem_enc_unreg_region)
4667 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4668 		break;
4669 	}
4670 	case KVM_HYPERV_EVENTFD: {
4671 		struct kvm_hyperv_eventfd hvevfd;
4672 
4673 		r = -EFAULT;
4674 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4675 			goto out;
4676 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4677 		break;
4678 	}
4679 	default:
4680 		r = -ENOTTY;
4681 	}
4682 out:
4683 	return r;
4684 }
4685 
4686 static void kvm_init_msr_list(void)
4687 {
4688 	u32 dummy[2];
4689 	unsigned i, j;
4690 
4691 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4692 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4693 			continue;
4694 
4695 		/*
4696 		 * Even MSRs that are valid in the host may not be exposed
4697 		 * to the guests in some cases.
4698 		 */
4699 		switch (msrs_to_save[i]) {
4700 		case MSR_IA32_BNDCFGS:
4701 			if (!kvm_mpx_supported())
4702 				continue;
4703 			break;
4704 		case MSR_TSC_AUX:
4705 			if (!kvm_x86_ops->rdtscp_supported())
4706 				continue;
4707 			break;
4708 		default:
4709 			break;
4710 		}
4711 
4712 		if (j < i)
4713 			msrs_to_save[j] = msrs_to_save[i];
4714 		j++;
4715 	}
4716 	num_msrs_to_save = j;
4717 
4718 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4719 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4720 			continue;
4721 
4722 		if (j < i)
4723 			emulated_msrs[j] = emulated_msrs[i];
4724 		j++;
4725 	}
4726 	num_emulated_msrs = j;
4727 
4728 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4729 		struct kvm_msr_entry msr;
4730 
4731 		msr.index = msr_based_features[i];
4732 		if (kvm_get_msr_feature(&msr))
4733 			continue;
4734 
4735 		if (j < i)
4736 			msr_based_features[j] = msr_based_features[i];
4737 		j++;
4738 	}
4739 	num_msr_based_features = j;
4740 }
4741 
4742 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4743 			   const void *v)
4744 {
4745 	int handled = 0;
4746 	int n;
4747 
4748 	do {
4749 		n = min(len, 8);
4750 		if (!(lapic_in_kernel(vcpu) &&
4751 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4752 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4753 			break;
4754 		handled += n;
4755 		addr += n;
4756 		len -= n;
4757 		v += n;
4758 	} while (len);
4759 
4760 	return handled;
4761 }
4762 
4763 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4764 {
4765 	int handled = 0;
4766 	int n;
4767 
4768 	do {
4769 		n = min(len, 8);
4770 		if (!(lapic_in_kernel(vcpu) &&
4771 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4772 					 addr, n, v))
4773 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4774 			break;
4775 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4776 		handled += n;
4777 		addr += n;
4778 		len -= n;
4779 		v += n;
4780 	} while (len);
4781 
4782 	return handled;
4783 }
4784 
4785 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4786 			struct kvm_segment *var, int seg)
4787 {
4788 	kvm_x86_ops->set_segment(vcpu, var, seg);
4789 }
4790 
4791 void kvm_get_segment(struct kvm_vcpu *vcpu,
4792 		     struct kvm_segment *var, int seg)
4793 {
4794 	kvm_x86_ops->get_segment(vcpu, var, seg);
4795 }
4796 
4797 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4798 			   struct x86_exception *exception)
4799 {
4800 	gpa_t t_gpa;
4801 
4802 	BUG_ON(!mmu_is_nested(vcpu));
4803 
4804 	/* NPT walks are always user-walks */
4805 	access |= PFERR_USER_MASK;
4806 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4807 
4808 	return t_gpa;
4809 }
4810 
4811 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4812 			      struct x86_exception *exception)
4813 {
4814 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4815 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4816 }
4817 
4818  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4819 				struct x86_exception *exception)
4820 {
4821 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4822 	access |= PFERR_FETCH_MASK;
4823 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4824 }
4825 
4826 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4827 			       struct x86_exception *exception)
4828 {
4829 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4830 	access |= PFERR_WRITE_MASK;
4831 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4832 }
4833 
4834 /* uses this to access any guest's mapped memory without checking CPL */
4835 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4836 				struct x86_exception *exception)
4837 {
4838 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4839 }
4840 
4841 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4842 				      struct kvm_vcpu *vcpu, u32 access,
4843 				      struct x86_exception *exception)
4844 {
4845 	void *data = val;
4846 	int r = X86EMUL_CONTINUE;
4847 
4848 	while (bytes) {
4849 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4850 							    exception);
4851 		unsigned offset = addr & (PAGE_SIZE-1);
4852 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4853 		int ret;
4854 
4855 		if (gpa == UNMAPPED_GVA)
4856 			return X86EMUL_PROPAGATE_FAULT;
4857 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4858 					       offset, toread);
4859 		if (ret < 0) {
4860 			r = X86EMUL_IO_NEEDED;
4861 			goto out;
4862 		}
4863 
4864 		bytes -= toread;
4865 		data += toread;
4866 		addr += toread;
4867 	}
4868 out:
4869 	return r;
4870 }
4871 
4872 /* used for instruction fetching */
4873 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4874 				gva_t addr, void *val, unsigned int bytes,
4875 				struct x86_exception *exception)
4876 {
4877 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4878 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4879 	unsigned offset;
4880 	int ret;
4881 
4882 	/* Inline kvm_read_guest_virt_helper for speed.  */
4883 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4884 						    exception);
4885 	if (unlikely(gpa == UNMAPPED_GVA))
4886 		return X86EMUL_PROPAGATE_FAULT;
4887 
4888 	offset = addr & (PAGE_SIZE-1);
4889 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4890 		bytes = (unsigned)PAGE_SIZE - offset;
4891 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4892 				       offset, bytes);
4893 	if (unlikely(ret < 0))
4894 		return X86EMUL_IO_NEEDED;
4895 
4896 	return X86EMUL_CONTINUE;
4897 }
4898 
4899 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4900 			       gva_t addr, void *val, unsigned int bytes,
4901 			       struct x86_exception *exception)
4902 {
4903 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4904 
4905 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4906 					  exception);
4907 }
4908 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4909 
4910 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4911 			     gva_t addr, void *val, unsigned int bytes,
4912 			     struct x86_exception *exception, bool system)
4913 {
4914 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915 	u32 access = 0;
4916 
4917 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4918 		access |= PFERR_USER_MASK;
4919 
4920 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4921 }
4922 
4923 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4924 		unsigned long addr, void *val, unsigned int bytes)
4925 {
4926 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4928 
4929 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4930 }
4931 
4932 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4933 				      struct kvm_vcpu *vcpu, u32 access,
4934 				      struct x86_exception *exception)
4935 {
4936 	void *data = val;
4937 	int r = X86EMUL_CONTINUE;
4938 
4939 	while (bytes) {
4940 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4941 							     access,
4942 							     exception);
4943 		unsigned offset = addr & (PAGE_SIZE-1);
4944 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4945 		int ret;
4946 
4947 		if (gpa == UNMAPPED_GVA)
4948 			return X86EMUL_PROPAGATE_FAULT;
4949 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4950 		if (ret < 0) {
4951 			r = X86EMUL_IO_NEEDED;
4952 			goto out;
4953 		}
4954 
4955 		bytes -= towrite;
4956 		data += towrite;
4957 		addr += towrite;
4958 	}
4959 out:
4960 	return r;
4961 }
4962 
4963 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4964 			      unsigned int bytes, struct x86_exception *exception,
4965 			      bool system)
4966 {
4967 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968 	u32 access = PFERR_WRITE_MASK;
4969 
4970 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4971 		access |= PFERR_USER_MASK;
4972 
4973 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4974 					   access, exception);
4975 }
4976 
4977 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4978 				unsigned int bytes, struct x86_exception *exception)
4979 {
4980 	/* kvm_write_guest_virt_system can pull in tons of pages. */
4981 	vcpu->arch.l1tf_flush_l1d = true;
4982 
4983 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4984 					   PFERR_WRITE_MASK, exception);
4985 }
4986 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4987 
4988 int handle_ud(struct kvm_vcpu *vcpu)
4989 {
4990 	int emul_type = EMULTYPE_TRAP_UD;
4991 	enum emulation_result er;
4992 	char sig[5]; /* ud2; .ascii "kvm" */
4993 	struct x86_exception e;
4994 
4995 	if (force_emulation_prefix &&
4996 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4997 				sig, sizeof(sig), &e) == 0 &&
4998 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4999 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5000 		emul_type = 0;
5001 	}
5002 
5003 	er = kvm_emulate_instruction(vcpu, emul_type);
5004 	if (er == EMULATE_USER_EXIT)
5005 		return 0;
5006 	if (er != EMULATE_DONE)
5007 		kvm_queue_exception(vcpu, UD_VECTOR);
5008 	return 1;
5009 }
5010 EXPORT_SYMBOL_GPL(handle_ud);
5011 
5012 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5013 			    gpa_t gpa, bool write)
5014 {
5015 	/* For APIC access vmexit */
5016 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5017 		return 1;
5018 
5019 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5020 		trace_vcpu_match_mmio(gva, gpa, write, true);
5021 		return 1;
5022 	}
5023 
5024 	return 0;
5025 }
5026 
5027 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5028 				gpa_t *gpa, struct x86_exception *exception,
5029 				bool write)
5030 {
5031 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5032 		| (write ? PFERR_WRITE_MASK : 0);
5033 
5034 	/*
5035 	 * currently PKRU is only applied to ept enabled guest so
5036 	 * there is no pkey in EPT page table for L1 guest or EPT
5037 	 * shadow page table for L2 guest.
5038 	 */
5039 	if (vcpu_match_mmio_gva(vcpu, gva)
5040 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5041 				 vcpu->arch.access, 0, access)) {
5042 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5043 					(gva & (PAGE_SIZE - 1));
5044 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5045 		return 1;
5046 	}
5047 
5048 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5049 
5050 	if (*gpa == UNMAPPED_GVA)
5051 		return -1;
5052 
5053 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5054 }
5055 
5056 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5057 			const void *val, int bytes)
5058 {
5059 	int ret;
5060 
5061 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5062 	if (ret < 0)
5063 		return 0;
5064 	kvm_page_track_write(vcpu, gpa, val, bytes);
5065 	return 1;
5066 }
5067 
5068 struct read_write_emulator_ops {
5069 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5070 				  int bytes);
5071 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5072 				  void *val, int bytes);
5073 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5074 			       int bytes, void *val);
5075 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5076 				    void *val, int bytes);
5077 	bool write;
5078 };
5079 
5080 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5081 {
5082 	if (vcpu->mmio_read_completed) {
5083 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5084 			       vcpu->mmio_fragments[0].gpa, val);
5085 		vcpu->mmio_read_completed = 0;
5086 		return 1;
5087 	}
5088 
5089 	return 0;
5090 }
5091 
5092 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5093 			void *val, int bytes)
5094 {
5095 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5096 }
5097 
5098 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5099 			 void *val, int bytes)
5100 {
5101 	return emulator_write_phys(vcpu, gpa, val, bytes);
5102 }
5103 
5104 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5105 {
5106 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5107 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5108 }
5109 
5110 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5111 			  void *val, int bytes)
5112 {
5113 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5114 	return X86EMUL_IO_NEEDED;
5115 }
5116 
5117 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5118 			   void *val, int bytes)
5119 {
5120 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5121 
5122 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5123 	return X86EMUL_CONTINUE;
5124 }
5125 
5126 static const struct read_write_emulator_ops read_emultor = {
5127 	.read_write_prepare = read_prepare,
5128 	.read_write_emulate = read_emulate,
5129 	.read_write_mmio = vcpu_mmio_read,
5130 	.read_write_exit_mmio = read_exit_mmio,
5131 };
5132 
5133 static const struct read_write_emulator_ops write_emultor = {
5134 	.read_write_emulate = write_emulate,
5135 	.read_write_mmio = write_mmio,
5136 	.read_write_exit_mmio = write_exit_mmio,
5137 	.write = true,
5138 };
5139 
5140 static int emulator_read_write_onepage(unsigned long addr, void *val,
5141 				       unsigned int bytes,
5142 				       struct x86_exception *exception,
5143 				       struct kvm_vcpu *vcpu,
5144 				       const struct read_write_emulator_ops *ops)
5145 {
5146 	gpa_t gpa;
5147 	int handled, ret;
5148 	bool write = ops->write;
5149 	struct kvm_mmio_fragment *frag;
5150 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5151 
5152 	/*
5153 	 * If the exit was due to a NPF we may already have a GPA.
5154 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5155 	 * Note, this cannot be used on string operations since string
5156 	 * operation using rep will only have the initial GPA from the NPF
5157 	 * occurred.
5158 	 */
5159 	if (vcpu->arch.gpa_available &&
5160 	    emulator_can_use_gpa(ctxt) &&
5161 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5162 		gpa = vcpu->arch.gpa_val;
5163 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5164 	} else {
5165 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5166 		if (ret < 0)
5167 			return X86EMUL_PROPAGATE_FAULT;
5168 	}
5169 
5170 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5171 		return X86EMUL_CONTINUE;
5172 
5173 	/*
5174 	 * Is this MMIO handled locally?
5175 	 */
5176 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5177 	if (handled == bytes)
5178 		return X86EMUL_CONTINUE;
5179 
5180 	gpa += handled;
5181 	bytes -= handled;
5182 	val += handled;
5183 
5184 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5185 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5186 	frag->gpa = gpa;
5187 	frag->data = val;
5188 	frag->len = bytes;
5189 	return X86EMUL_CONTINUE;
5190 }
5191 
5192 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5193 			unsigned long addr,
5194 			void *val, unsigned int bytes,
5195 			struct x86_exception *exception,
5196 			const struct read_write_emulator_ops *ops)
5197 {
5198 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199 	gpa_t gpa;
5200 	int rc;
5201 
5202 	if (ops->read_write_prepare &&
5203 		  ops->read_write_prepare(vcpu, val, bytes))
5204 		return X86EMUL_CONTINUE;
5205 
5206 	vcpu->mmio_nr_fragments = 0;
5207 
5208 	/* Crossing a page boundary? */
5209 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5210 		int now;
5211 
5212 		now = -addr & ~PAGE_MASK;
5213 		rc = emulator_read_write_onepage(addr, val, now, exception,
5214 						 vcpu, ops);
5215 
5216 		if (rc != X86EMUL_CONTINUE)
5217 			return rc;
5218 		addr += now;
5219 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5220 			addr = (u32)addr;
5221 		val += now;
5222 		bytes -= now;
5223 	}
5224 
5225 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5226 					 vcpu, ops);
5227 	if (rc != X86EMUL_CONTINUE)
5228 		return rc;
5229 
5230 	if (!vcpu->mmio_nr_fragments)
5231 		return rc;
5232 
5233 	gpa = vcpu->mmio_fragments[0].gpa;
5234 
5235 	vcpu->mmio_needed = 1;
5236 	vcpu->mmio_cur_fragment = 0;
5237 
5238 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5239 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5240 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5241 	vcpu->run->mmio.phys_addr = gpa;
5242 
5243 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5244 }
5245 
5246 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5247 				  unsigned long addr,
5248 				  void *val,
5249 				  unsigned int bytes,
5250 				  struct x86_exception *exception)
5251 {
5252 	return emulator_read_write(ctxt, addr, val, bytes,
5253 				   exception, &read_emultor);
5254 }
5255 
5256 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5257 			    unsigned long addr,
5258 			    const void *val,
5259 			    unsigned int bytes,
5260 			    struct x86_exception *exception)
5261 {
5262 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5263 				   exception, &write_emultor);
5264 }
5265 
5266 #define CMPXCHG_TYPE(t, ptr, old, new) \
5267 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5268 
5269 #ifdef CONFIG_X86_64
5270 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5271 #else
5272 #  define CMPXCHG64(ptr, old, new) \
5273 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5274 #endif
5275 
5276 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5277 				     unsigned long addr,
5278 				     const void *old,
5279 				     const void *new,
5280 				     unsigned int bytes,
5281 				     struct x86_exception *exception)
5282 {
5283 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5284 	gpa_t gpa;
5285 	struct page *page;
5286 	char *kaddr;
5287 	bool exchanged;
5288 
5289 	/* guests cmpxchg8b have to be emulated atomically */
5290 	if (bytes > 8 || (bytes & (bytes - 1)))
5291 		goto emul_write;
5292 
5293 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5294 
5295 	if (gpa == UNMAPPED_GVA ||
5296 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5297 		goto emul_write;
5298 
5299 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5300 		goto emul_write;
5301 
5302 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5303 	if (is_error_page(page))
5304 		goto emul_write;
5305 
5306 	kaddr = kmap_atomic(page);
5307 	kaddr += offset_in_page(gpa);
5308 	switch (bytes) {
5309 	case 1:
5310 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5311 		break;
5312 	case 2:
5313 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5314 		break;
5315 	case 4:
5316 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5317 		break;
5318 	case 8:
5319 		exchanged = CMPXCHG64(kaddr, old, new);
5320 		break;
5321 	default:
5322 		BUG();
5323 	}
5324 	kunmap_atomic(kaddr);
5325 	kvm_release_page_dirty(page);
5326 
5327 	if (!exchanged)
5328 		return X86EMUL_CMPXCHG_FAILED;
5329 
5330 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5331 	kvm_page_track_write(vcpu, gpa, new, bytes);
5332 
5333 	return X86EMUL_CONTINUE;
5334 
5335 emul_write:
5336 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5337 
5338 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5339 }
5340 
5341 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5342 {
5343 	int r = 0, i;
5344 
5345 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5346 		if (vcpu->arch.pio.in)
5347 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5348 					    vcpu->arch.pio.size, pd);
5349 		else
5350 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5351 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5352 					     pd);
5353 		if (r)
5354 			break;
5355 		pd += vcpu->arch.pio.size;
5356 	}
5357 	return r;
5358 }
5359 
5360 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5361 			       unsigned short port, void *val,
5362 			       unsigned int count, bool in)
5363 {
5364 	vcpu->arch.pio.port = port;
5365 	vcpu->arch.pio.in = in;
5366 	vcpu->arch.pio.count  = count;
5367 	vcpu->arch.pio.size = size;
5368 
5369 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5370 		vcpu->arch.pio.count = 0;
5371 		return 1;
5372 	}
5373 
5374 	vcpu->run->exit_reason = KVM_EXIT_IO;
5375 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5376 	vcpu->run->io.size = size;
5377 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5378 	vcpu->run->io.count = count;
5379 	vcpu->run->io.port = port;
5380 
5381 	return 0;
5382 }
5383 
5384 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5385 				    int size, unsigned short port, void *val,
5386 				    unsigned int count)
5387 {
5388 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5389 	int ret;
5390 
5391 	if (vcpu->arch.pio.count)
5392 		goto data_avail;
5393 
5394 	memset(vcpu->arch.pio_data, 0, size * count);
5395 
5396 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5397 	if (ret) {
5398 data_avail:
5399 		memcpy(val, vcpu->arch.pio_data, size * count);
5400 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5401 		vcpu->arch.pio.count = 0;
5402 		return 1;
5403 	}
5404 
5405 	return 0;
5406 }
5407 
5408 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5409 				     int size, unsigned short port,
5410 				     const void *val, unsigned int count)
5411 {
5412 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5413 
5414 	memcpy(vcpu->arch.pio_data, val, size * count);
5415 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5416 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5417 }
5418 
5419 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5420 {
5421 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5422 }
5423 
5424 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5425 {
5426 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5427 }
5428 
5429 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5430 {
5431 	if (!need_emulate_wbinvd(vcpu))
5432 		return X86EMUL_CONTINUE;
5433 
5434 	if (kvm_x86_ops->has_wbinvd_exit()) {
5435 		int cpu = get_cpu();
5436 
5437 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5438 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5439 				wbinvd_ipi, NULL, 1);
5440 		put_cpu();
5441 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5442 	} else
5443 		wbinvd();
5444 	return X86EMUL_CONTINUE;
5445 }
5446 
5447 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5448 {
5449 	kvm_emulate_wbinvd_noskip(vcpu);
5450 	return kvm_skip_emulated_instruction(vcpu);
5451 }
5452 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5453 
5454 
5455 
5456 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5457 {
5458 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5459 }
5460 
5461 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5462 			   unsigned long *dest)
5463 {
5464 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5465 }
5466 
5467 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5468 			   unsigned long value)
5469 {
5470 
5471 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5472 }
5473 
5474 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5475 {
5476 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5477 }
5478 
5479 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5480 {
5481 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5482 	unsigned long value;
5483 
5484 	switch (cr) {
5485 	case 0:
5486 		value = kvm_read_cr0(vcpu);
5487 		break;
5488 	case 2:
5489 		value = vcpu->arch.cr2;
5490 		break;
5491 	case 3:
5492 		value = kvm_read_cr3(vcpu);
5493 		break;
5494 	case 4:
5495 		value = kvm_read_cr4(vcpu);
5496 		break;
5497 	case 8:
5498 		value = kvm_get_cr8(vcpu);
5499 		break;
5500 	default:
5501 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5502 		return 0;
5503 	}
5504 
5505 	return value;
5506 }
5507 
5508 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5509 {
5510 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5511 	int res = 0;
5512 
5513 	switch (cr) {
5514 	case 0:
5515 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5516 		break;
5517 	case 2:
5518 		vcpu->arch.cr2 = val;
5519 		break;
5520 	case 3:
5521 		res = kvm_set_cr3(vcpu, val);
5522 		break;
5523 	case 4:
5524 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5525 		break;
5526 	case 8:
5527 		res = kvm_set_cr8(vcpu, val);
5528 		break;
5529 	default:
5530 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5531 		res = -1;
5532 	}
5533 
5534 	return res;
5535 }
5536 
5537 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5538 {
5539 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5540 }
5541 
5542 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5543 {
5544 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5545 }
5546 
5547 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5548 {
5549 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5550 }
5551 
5552 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5553 {
5554 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5555 }
5556 
5557 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5558 {
5559 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5560 }
5561 
5562 static unsigned long emulator_get_cached_segment_base(
5563 	struct x86_emulate_ctxt *ctxt, int seg)
5564 {
5565 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5566 }
5567 
5568 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5569 				 struct desc_struct *desc, u32 *base3,
5570 				 int seg)
5571 {
5572 	struct kvm_segment var;
5573 
5574 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5575 	*selector = var.selector;
5576 
5577 	if (var.unusable) {
5578 		memset(desc, 0, sizeof(*desc));
5579 		if (base3)
5580 			*base3 = 0;
5581 		return false;
5582 	}
5583 
5584 	if (var.g)
5585 		var.limit >>= 12;
5586 	set_desc_limit(desc, var.limit);
5587 	set_desc_base(desc, (unsigned long)var.base);
5588 #ifdef CONFIG_X86_64
5589 	if (base3)
5590 		*base3 = var.base >> 32;
5591 #endif
5592 	desc->type = var.type;
5593 	desc->s = var.s;
5594 	desc->dpl = var.dpl;
5595 	desc->p = var.present;
5596 	desc->avl = var.avl;
5597 	desc->l = var.l;
5598 	desc->d = var.db;
5599 	desc->g = var.g;
5600 
5601 	return true;
5602 }
5603 
5604 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5605 				 struct desc_struct *desc, u32 base3,
5606 				 int seg)
5607 {
5608 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5609 	struct kvm_segment var;
5610 
5611 	var.selector = selector;
5612 	var.base = get_desc_base(desc);
5613 #ifdef CONFIG_X86_64
5614 	var.base |= ((u64)base3) << 32;
5615 #endif
5616 	var.limit = get_desc_limit(desc);
5617 	if (desc->g)
5618 		var.limit = (var.limit << 12) | 0xfff;
5619 	var.type = desc->type;
5620 	var.dpl = desc->dpl;
5621 	var.db = desc->d;
5622 	var.s = desc->s;
5623 	var.l = desc->l;
5624 	var.g = desc->g;
5625 	var.avl = desc->avl;
5626 	var.present = desc->p;
5627 	var.unusable = !var.present;
5628 	var.padding = 0;
5629 
5630 	kvm_set_segment(vcpu, &var, seg);
5631 	return;
5632 }
5633 
5634 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5635 			    u32 msr_index, u64 *pdata)
5636 {
5637 	struct msr_data msr;
5638 	int r;
5639 
5640 	msr.index = msr_index;
5641 	msr.host_initiated = false;
5642 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5643 	if (r)
5644 		return r;
5645 
5646 	*pdata = msr.data;
5647 	return 0;
5648 }
5649 
5650 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5651 			    u32 msr_index, u64 data)
5652 {
5653 	struct msr_data msr;
5654 
5655 	msr.data = data;
5656 	msr.index = msr_index;
5657 	msr.host_initiated = false;
5658 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5659 }
5660 
5661 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5662 {
5663 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5664 
5665 	return vcpu->arch.smbase;
5666 }
5667 
5668 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5669 {
5670 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5671 
5672 	vcpu->arch.smbase = smbase;
5673 }
5674 
5675 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5676 			      u32 pmc)
5677 {
5678 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5679 }
5680 
5681 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5682 			     u32 pmc, u64 *pdata)
5683 {
5684 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5685 }
5686 
5687 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5688 {
5689 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5690 }
5691 
5692 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5693 			      struct x86_instruction_info *info,
5694 			      enum x86_intercept_stage stage)
5695 {
5696 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5697 }
5698 
5699 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5700 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5701 {
5702 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5703 }
5704 
5705 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5706 {
5707 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5708 }
5709 
5710 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5711 {
5712 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5713 }
5714 
5715 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5716 {
5717 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5718 }
5719 
5720 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5721 {
5722 	return emul_to_vcpu(ctxt)->arch.hflags;
5723 }
5724 
5725 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5726 {
5727 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5728 }
5729 
5730 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5731 {
5732 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5733 }
5734 
5735 static const struct x86_emulate_ops emulate_ops = {
5736 	.read_gpr            = emulator_read_gpr,
5737 	.write_gpr           = emulator_write_gpr,
5738 	.read_std            = emulator_read_std,
5739 	.write_std           = emulator_write_std,
5740 	.read_phys           = kvm_read_guest_phys_system,
5741 	.fetch               = kvm_fetch_guest_virt,
5742 	.read_emulated       = emulator_read_emulated,
5743 	.write_emulated      = emulator_write_emulated,
5744 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5745 	.invlpg              = emulator_invlpg,
5746 	.pio_in_emulated     = emulator_pio_in_emulated,
5747 	.pio_out_emulated    = emulator_pio_out_emulated,
5748 	.get_segment         = emulator_get_segment,
5749 	.set_segment         = emulator_set_segment,
5750 	.get_cached_segment_base = emulator_get_cached_segment_base,
5751 	.get_gdt             = emulator_get_gdt,
5752 	.get_idt	     = emulator_get_idt,
5753 	.set_gdt             = emulator_set_gdt,
5754 	.set_idt	     = emulator_set_idt,
5755 	.get_cr              = emulator_get_cr,
5756 	.set_cr              = emulator_set_cr,
5757 	.cpl                 = emulator_get_cpl,
5758 	.get_dr              = emulator_get_dr,
5759 	.set_dr              = emulator_set_dr,
5760 	.get_smbase          = emulator_get_smbase,
5761 	.set_smbase          = emulator_set_smbase,
5762 	.set_msr             = emulator_set_msr,
5763 	.get_msr             = emulator_get_msr,
5764 	.check_pmc	     = emulator_check_pmc,
5765 	.read_pmc            = emulator_read_pmc,
5766 	.halt                = emulator_halt,
5767 	.wbinvd              = emulator_wbinvd,
5768 	.fix_hypercall       = emulator_fix_hypercall,
5769 	.intercept           = emulator_intercept,
5770 	.get_cpuid           = emulator_get_cpuid,
5771 	.set_nmi_mask        = emulator_set_nmi_mask,
5772 	.get_hflags          = emulator_get_hflags,
5773 	.set_hflags          = emulator_set_hflags,
5774 	.pre_leave_smm       = emulator_pre_leave_smm,
5775 };
5776 
5777 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5778 {
5779 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5780 	/*
5781 	 * an sti; sti; sequence only disable interrupts for the first
5782 	 * instruction. So, if the last instruction, be it emulated or
5783 	 * not, left the system with the INT_STI flag enabled, it
5784 	 * means that the last instruction is an sti. We should not
5785 	 * leave the flag on in this case. The same goes for mov ss
5786 	 */
5787 	if (int_shadow & mask)
5788 		mask = 0;
5789 	if (unlikely(int_shadow || mask)) {
5790 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5791 		if (!mask)
5792 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5793 	}
5794 }
5795 
5796 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5797 {
5798 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5799 	if (ctxt->exception.vector == PF_VECTOR)
5800 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5801 
5802 	if (ctxt->exception.error_code_valid)
5803 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5804 				      ctxt->exception.error_code);
5805 	else
5806 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5807 	return false;
5808 }
5809 
5810 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5811 {
5812 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5813 	int cs_db, cs_l;
5814 
5815 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5816 
5817 	ctxt->eflags = kvm_get_rflags(vcpu);
5818 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5819 
5820 	ctxt->eip = kvm_rip_read(vcpu);
5821 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5822 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5823 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5824 		     cs_db				? X86EMUL_MODE_PROT32 :
5825 							  X86EMUL_MODE_PROT16;
5826 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5827 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5828 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5829 
5830 	init_decode_cache(ctxt);
5831 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5832 }
5833 
5834 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5835 {
5836 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5837 	int ret;
5838 
5839 	init_emulate_ctxt(vcpu);
5840 
5841 	ctxt->op_bytes = 2;
5842 	ctxt->ad_bytes = 2;
5843 	ctxt->_eip = ctxt->eip + inc_eip;
5844 	ret = emulate_int_real(ctxt, irq);
5845 
5846 	if (ret != X86EMUL_CONTINUE)
5847 		return EMULATE_FAIL;
5848 
5849 	ctxt->eip = ctxt->_eip;
5850 	kvm_rip_write(vcpu, ctxt->eip);
5851 	kvm_set_rflags(vcpu, ctxt->eflags);
5852 
5853 	return EMULATE_DONE;
5854 }
5855 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5856 
5857 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5858 {
5859 	int r = EMULATE_DONE;
5860 
5861 	++vcpu->stat.insn_emulation_fail;
5862 	trace_kvm_emulate_insn_failed(vcpu);
5863 
5864 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5865 		return EMULATE_FAIL;
5866 
5867 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5868 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5869 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5870 		vcpu->run->internal.ndata = 0;
5871 		r = EMULATE_USER_EXIT;
5872 	}
5873 
5874 	kvm_queue_exception(vcpu, UD_VECTOR);
5875 
5876 	return r;
5877 }
5878 
5879 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5880 				  bool write_fault_to_shadow_pgtable,
5881 				  int emulation_type)
5882 {
5883 	gpa_t gpa = cr2;
5884 	kvm_pfn_t pfn;
5885 
5886 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5887 		return false;
5888 
5889 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5890 		return false;
5891 
5892 	if (!vcpu->arch.mmu.direct_map) {
5893 		/*
5894 		 * Write permission should be allowed since only
5895 		 * write access need to be emulated.
5896 		 */
5897 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5898 
5899 		/*
5900 		 * If the mapping is invalid in guest, let cpu retry
5901 		 * it to generate fault.
5902 		 */
5903 		if (gpa == UNMAPPED_GVA)
5904 			return true;
5905 	}
5906 
5907 	/*
5908 	 * Do not retry the unhandleable instruction if it faults on the
5909 	 * readonly host memory, otherwise it will goto a infinite loop:
5910 	 * retry instruction -> write #PF -> emulation fail -> retry
5911 	 * instruction -> ...
5912 	 */
5913 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5914 
5915 	/*
5916 	 * If the instruction failed on the error pfn, it can not be fixed,
5917 	 * report the error to userspace.
5918 	 */
5919 	if (is_error_noslot_pfn(pfn))
5920 		return false;
5921 
5922 	kvm_release_pfn_clean(pfn);
5923 
5924 	/* The instructions are well-emulated on direct mmu. */
5925 	if (vcpu->arch.mmu.direct_map) {
5926 		unsigned int indirect_shadow_pages;
5927 
5928 		spin_lock(&vcpu->kvm->mmu_lock);
5929 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5930 		spin_unlock(&vcpu->kvm->mmu_lock);
5931 
5932 		if (indirect_shadow_pages)
5933 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5934 
5935 		return true;
5936 	}
5937 
5938 	/*
5939 	 * if emulation was due to access to shadowed page table
5940 	 * and it failed try to unshadow page and re-enter the
5941 	 * guest to let CPU execute the instruction.
5942 	 */
5943 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5944 
5945 	/*
5946 	 * If the access faults on its page table, it can not
5947 	 * be fixed by unprotecting shadow page and it should
5948 	 * be reported to userspace.
5949 	 */
5950 	return !write_fault_to_shadow_pgtable;
5951 }
5952 
5953 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5954 			      unsigned long cr2,  int emulation_type)
5955 {
5956 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5957 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5958 
5959 	last_retry_eip = vcpu->arch.last_retry_eip;
5960 	last_retry_addr = vcpu->arch.last_retry_addr;
5961 
5962 	/*
5963 	 * If the emulation is caused by #PF and it is non-page_table
5964 	 * writing instruction, it means the VM-EXIT is caused by shadow
5965 	 * page protected, we can zap the shadow page and retry this
5966 	 * instruction directly.
5967 	 *
5968 	 * Note: if the guest uses a non-page-table modifying instruction
5969 	 * on the PDE that points to the instruction, then we will unmap
5970 	 * the instruction and go to an infinite loop. So, we cache the
5971 	 * last retried eip and the last fault address, if we meet the eip
5972 	 * and the address again, we can break out of the potential infinite
5973 	 * loop.
5974 	 */
5975 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5976 
5977 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
5978 		return false;
5979 
5980 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5981 		return false;
5982 
5983 	if (x86_page_table_writing_insn(ctxt))
5984 		return false;
5985 
5986 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5987 		return false;
5988 
5989 	vcpu->arch.last_retry_eip = ctxt->eip;
5990 	vcpu->arch.last_retry_addr = cr2;
5991 
5992 	if (!vcpu->arch.mmu.direct_map)
5993 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5994 
5995 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5996 
5997 	return true;
5998 }
5999 
6000 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6001 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6002 
6003 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6004 {
6005 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6006 		/* This is a good place to trace that we are exiting SMM.  */
6007 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6008 
6009 		/* Process a latched INIT or SMI, if any.  */
6010 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6011 	}
6012 
6013 	kvm_mmu_reset_context(vcpu);
6014 }
6015 
6016 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6017 {
6018 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
6019 
6020 	vcpu->arch.hflags = emul_flags;
6021 
6022 	if (changed & HF_SMM_MASK)
6023 		kvm_smm_changed(vcpu);
6024 }
6025 
6026 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6027 				unsigned long *db)
6028 {
6029 	u32 dr6 = 0;
6030 	int i;
6031 	u32 enable, rwlen;
6032 
6033 	enable = dr7;
6034 	rwlen = dr7 >> 16;
6035 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6036 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6037 			dr6 |= (1 << i);
6038 	return dr6;
6039 }
6040 
6041 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6042 {
6043 	struct kvm_run *kvm_run = vcpu->run;
6044 
6045 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6046 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6047 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6048 		kvm_run->debug.arch.exception = DB_VECTOR;
6049 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6050 		*r = EMULATE_USER_EXIT;
6051 	} else {
6052 		/*
6053 		 * "Certain debug exceptions may clear bit 0-3.  The
6054 		 * remaining contents of the DR6 register are never
6055 		 * cleared by the processor".
6056 		 */
6057 		vcpu->arch.dr6 &= ~15;
6058 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6059 		kvm_queue_exception(vcpu, DB_VECTOR);
6060 	}
6061 }
6062 
6063 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6064 {
6065 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6066 	int r = EMULATE_DONE;
6067 
6068 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6069 
6070 	/*
6071 	 * rflags is the old, "raw" value of the flags.  The new value has
6072 	 * not been saved yet.
6073 	 *
6074 	 * This is correct even for TF set by the guest, because "the
6075 	 * processor will not generate this exception after the instruction
6076 	 * that sets the TF flag".
6077 	 */
6078 	if (unlikely(rflags & X86_EFLAGS_TF))
6079 		kvm_vcpu_do_singlestep(vcpu, &r);
6080 	return r == EMULATE_DONE;
6081 }
6082 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6083 
6084 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6085 {
6086 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6087 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6088 		struct kvm_run *kvm_run = vcpu->run;
6089 		unsigned long eip = kvm_get_linear_rip(vcpu);
6090 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6091 					   vcpu->arch.guest_debug_dr7,
6092 					   vcpu->arch.eff_db);
6093 
6094 		if (dr6 != 0) {
6095 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6096 			kvm_run->debug.arch.pc = eip;
6097 			kvm_run->debug.arch.exception = DB_VECTOR;
6098 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6099 			*r = EMULATE_USER_EXIT;
6100 			return true;
6101 		}
6102 	}
6103 
6104 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6105 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6106 		unsigned long eip = kvm_get_linear_rip(vcpu);
6107 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6108 					   vcpu->arch.dr7,
6109 					   vcpu->arch.db);
6110 
6111 		if (dr6 != 0) {
6112 			vcpu->arch.dr6 &= ~15;
6113 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6114 			kvm_queue_exception(vcpu, DB_VECTOR);
6115 			*r = EMULATE_DONE;
6116 			return true;
6117 		}
6118 	}
6119 
6120 	return false;
6121 }
6122 
6123 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6124 {
6125 	switch (ctxt->opcode_len) {
6126 	case 1:
6127 		switch (ctxt->b) {
6128 		case 0xe4:	/* IN */
6129 		case 0xe5:
6130 		case 0xec:
6131 		case 0xed:
6132 		case 0xe6:	/* OUT */
6133 		case 0xe7:
6134 		case 0xee:
6135 		case 0xef:
6136 		case 0x6c:	/* INS */
6137 		case 0x6d:
6138 		case 0x6e:	/* OUTS */
6139 		case 0x6f:
6140 			return true;
6141 		}
6142 		break;
6143 	case 2:
6144 		switch (ctxt->b) {
6145 		case 0x33:	/* RDPMC */
6146 			return true;
6147 		}
6148 		break;
6149 	}
6150 
6151 	return false;
6152 }
6153 
6154 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6155 			    unsigned long cr2,
6156 			    int emulation_type,
6157 			    void *insn,
6158 			    int insn_len)
6159 {
6160 	int r;
6161 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6162 	bool writeback = true;
6163 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6164 
6165 	vcpu->arch.l1tf_flush_l1d = true;
6166 
6167 	/*
6168 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6169 	 * never reused.
6170 	 */
6171 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6172 	kvm_clear_exception_queue(vcpu);
6173 
6174 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6175 		init_emulate_ctxt(vcpu);
6176 
6177 		/*
6178 		 * We will reenter on the same instruction since
6179 		 * we do not set complete_userspace_io.  This does not
6180 		 * handle watchpoints yet, those would be handled in
6181 		 * the emulate_ops.
6182 		 */
6183 		if (!(emulation_type & EMULTYPE_SKIP) &&
6184 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6185 			return r;
6186 
6187 		ctxt->interruptibility = 0;
6188 		ctxt->have_exception = false;
6189 		ctxt->exception.vector = -1;
6190 		ctxt->perm_ok = false;
6191 
6192 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6193 
6194 		r = x86_decode_insn(ctxt, insn, insn_len);
6195 
6196 		trace_kvm_emulate_insn_start(vcpu);
6197 		++vcpu->stat.insn_emulation;
6198 		if (r != EMULATION_OK)  {
6199 			if (emulation_type & EMULTYPE_TRAP_UD)
6200 				return EMULATE_FAIL;
6201 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6202 						emulation_type))
6203 				return EMULATE_DONE;
6204 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6205 				return EMULATE_DONE;
6206 			if (emulation_type & EMULTYPE_SKIP)
6207 				return EMULATE_FAIL;
6208 			return handle_emulation_failure(vcpu, emulation_type);
6209 		}
6210 	}
6211 
6212 	if ((emulation_type & EMULTYPE_VMWARE) &&
6213 	    !is_vmware_backdoor_opcode(ctxt))
6214 		return EMULATE_FAIL;
6215 
6216 	if (emulation_type & EMULTYPE_SKIP) {
6217 		kvm_rip_write(vcpu, ctxt->_eip);
6218 		if (ctxt->eflags & X86_EFLAGS_RF)
6219 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6220 		return EMULATE_DONE;
6221 	}
6222 
6223 	if (retry_instruction(ctxt, cr2, emulation_type))
6224 		return EMULATE_DONE;
6225 
6226 	/* this is needed for vmware backdoor interface to work since it
6227 	   changes registers values  during IO operation */
6228 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6229 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6230 		emulator_invalidate_register_cache(ctxt);
6231 	}
6232 
6233 restart:
6234 	/* Save the faulting GPA (cr2) in the address field */
6235 	ctxt->exception.address = cr2;
6236 
6237 	r = x86_emulate_insn(ctxt);
6238 
6239 	if (r == EMULATION_INTERCEPTED)
6240 		return EMULATE_DONE;
6241 
6242 	if (r == EMULATION_FAILED) {
6243 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6244 					emulation_type))
6245 			return EMULATE_DONE;
6246 
6247 		return handle_emulation_failure(vcpu, emulation_type);
6248 	}
6249 
6250 	if (ctxt->have_exception) {
6251 		r = EMULATE_DONE;
6252 		if (inject_emulated_exception(vcpu))
6253 			return r;
6254 	} else if (vcpu->arch.pio.count) {
6255 		if (!vcpu->arch.pio.in) {
6256 			/* FIXME: return into emulator if single-stepping.  */
6257 			vcpu->arch.pio.count = 0;
6258 		} else {
6259 			writeback = false;
6260 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6261 		}
6262 		r = EMULATE_USER_EXIT;
6263 	} else if (vcpu->mmio_needed) {
6264 		if (!vcpu->mmio_is_write)
6265 			writeback = false;
6266 		r = EMULATE_USER_EXIT;
6267 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6268 	} else if (r == EMULATION_RESTART)
6269 		goto restart;
6270 	else
6271 		r = EMULATE_DONE;
6272 
6273 	if (writeback) {
6274 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6275 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6276 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6277 		kvm_rip_write(vcpu, ctxt->eip);
6278 		if (r == EMULATE_DONE &&
6279 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6280 			kvm_vcpu_do_singlestep(vcpu, &r);
6281 		if (!ctxt->have_exception ||
6282 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6283 			__kvm_set_rflags(vcpu, ctxt->eflags);
6284 
6285 		/*
6286 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6287 		 * do nothing, and it will be requested again as soon as
6288 		 * the shadow expires.  But we still need to check here,
6289 		 * because POPF has no interrupt shadow.
6290 		 */
6291 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6292 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6293 	} else
6294 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6295 
6296 	return r;
6297 }
6298 
6299 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6300 {
6301 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6302 }
6303 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6304 
6305 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6306 					void *insn, int insn_len)
6307 {
6308 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6309 }
6310 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6311 
6312 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6313 			    unsigned short port)
6314 {
6315 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6316 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6317 					    size, port, &val, 1);
6318 	/* do not return to emulator after return from userspace */
6319 	vcpu->arch.pio.count = 0;
6320 	return ret;
6321 }
6322 
6323 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6324 {
6325 	unsigned long val;
6326 
6327 	/* We should only ever be called with arch.pio.count equal to 1 */
6328 	BUG_ON(vcpu->arch.pio.count != 1);
6329 
6330 	/* For size less than 4 we merge, else we zero extend */
6331 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6332 					: 0;
6333 
6334 	/*
6335 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6336 	 * the copy and tracing
6337 	 */
6338 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6339 				 vcpu->arch.pio.port, &val, 1);
6340 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6341 
6342 	return 1;
6343 }
6344 
6345 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6346 			   unsigned short port)
6347 {
6348 	unsigned long val;
6349 	int ret;
6350 
6351 	/* For size less than 4 we merge, else we zero extend */
6352 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6353 
6354 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6355 				       &val, 1);
6356 	if (ret) {
6357 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6358 		return ret;
6359 	}
6360 
6361 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6362 
6363 	return 0;
6364 }
6365 
6366 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6367 {
6368 	int ret = kvm_skip_emulated_instruction(vcpu);
6369 
6370 	/*
6371 	 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6372 	 * KVM_EXIT_DEBUG here.
6373 	 */
6374 	if (in)
6375 		return kvm_fast_pio_in(vcpu, size, port) && ret;
6376 	else
6377 		return kvm_fast_pio_out(vcpu, size, port) && ret;
6378 }
6379 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6380 
6381 static int kvmclock_cpu_down_prep(unsigned int cpu)
6382 {
6383 	__this_cpu_write(cpu_tsc_khz, 0);
6384 	return 0;
6385 }
6386 
6387 static void tsc_khz_changed(void *data)
6388 {
6389 	struct cpufreq_freqs *freq = data;
6390 	unsigned long khz = 0;
6391 
6392 	if (data)
6393 		khz = freq->new;
6394 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6395 		khz = cpufreq_quick_get(raw_smp_processor_id());
6396 	if (!khz)
6397 		khz = tsc_khz;
6398 	__this_cpu_write(cpu_tsc_khz, khz);
6399 }
6400 
6401 #ifdef CONFIG_X86_64
6402 static void kvm_hyperv_tsc_notifier(void)
6403 {
6404 	struct kvm *kvm;
6405 	struct kvm_vcpu *vcpu;
6406 	int cpu;
6407 
6408 	spin_lock(&kvm_lock);
6409 	list_for_each_entry(kvm, &vm_list, vm_list)
6410 		kvm_make_mclock_inprogress_request(kvm);
6411 
6412 	hyperv_stop_tsc_emulation();
6413 
6414 	/* TSC frequency always matches when on Hyper-V */
6415 	for_each_present_cpu(cpu)
6416 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6417 	kvm_max_guest_tsc_khz = tsc_khz;
6418 
6419 	list_for_each_entry(kvm, &vm_list, vm_list) {
6420 		struct kvm_arch *ka = &kvm->arch;
6421 
6422 		spin_lock(&ka->pvclock_gtod_sync_lock);
6423 
6424 		pvclock_update_vm_gtod_copy(kvm);
6425 
6426 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6427 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6428 
6429 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6430 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6431 
6432 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6433 	}
6434 	spin_unlock(&kvm_lock);
6435 }
6436 #endif
6437 
6438 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6439 				     void *data)
6440 {
6441 	struct cpufreq_freqs *freq = data;
6442 	struct kvm *kvm;
6443 	struct kvm_vcpu *vcpu;
6444 	int i, send_ipi = 0;
6445 
6446 	/*
6447 	 * We allow guests to temporarily run on slowing clocks,
6448 	 * provided we notify them after, or to run on accelerating
6449 	 * clocks, provided we notify them before.  Thus time never
6450 	 * goes backwards.
6451 	 *
6452 	 * However, we have a problem.  We can't atomically update
6453 	 * the frequency of a given CPU from this function; it is
6454 	 * merely a notifier, which can be called from any CPU.
6455 	 * Changing the TSC frequency at arbitrary points in time
6456 	 * requires a recomputation of local variables related to
6457 	 * the TSC for each VCPU.  We must flag these local variables
6458 	 * to be updated and be sure the update takes place with the
6459 	 * new frequency before any guests proceed.
6460 	 *
6461 	 * Unfortunately, the combination of hotplug CPU and frequency
6462 	 * change creates an intractable locking scenario; the order
6463 	 * of when these callouts happen is undefined with respect to
6464 	 * CPU hotplug, and they can race with each other.  As such,
6465 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6466 	 * undefined; you can actually have a CPU frequency change take
6467 	 * place in between the computation of X and the setting of the
6468 	 * variable.  To protect against this problem, all updates of
6469 	 * the per_cpu tsc_khz variable are done in an interrupt
6470 	 * protected IPI, and all callers wishing to update the value
6471 	 * must wait for a synchronous IPI to complete (which is trivial
6472 	 * if the caller is on the CPU already).  This establishes the
6473 	 * necessary total order on variable updates.
6474 	 *
6475 	 * Note that because a guest time update may take place
6476 	 * anytime after the setting of the VCPU's request bit, the
6477 	 * correct TSC value must be set before the request.  However,
6478 	 * to ensure the update actually makes it to any guest which
6479 	 * starts running in hardware virtualization between the set
6480 	 * and the acquisition of the spinlock, we must also ping the
6481 	 * CPU after setting the request bit.
6482 	 *
6483 	 */
6484 
6485 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6486 		return 0;
6487 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6488 		return 0;
6489 
6490 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6491 
6492 	spin_lock(&kvm_lock);
6493 	list_for_each_entry(kvm, &vm_list, vm_list) {
6494 		kvm_for_each_vcpu(i, vcpu, kvm) {
6495 			if (vcpu->cpu != freq->cpu)
6496 				continue;
6497 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6498 			if (vcpu->cpu != smp_processor_id())
6499 				send_ipi = 1;
6500 		}
6501 	}
6502 	spin_unlock(&kvm_lock);
6503 
6504 	if (freq->old < freq->new && send_ipi) {
6505 		/*
6506 		 * We upscale the frequency.  Must make the guest
6507 		 * doesn't see old kvmclock values while running with
6508 		 * the new frequency, otherwise we risk the guest sees
6509 		 * time go backwards.
6510 		 *
6511 		 * In case we update the frequency for another cpu
6512 		 * (which might be in guest context) send an interrupt
6513 		 * to kick the cpu out of guest context.  Next time
6514 		 * guest context is entered kvmclock will be updated,
6515 		 * so the guest will not see stale values.
6516 		 */
6517 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6518 	}
6519 	return 0;
6520 }
6521 
6522 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6523 	.notifier_call  = kvmclock_cpufreq_notifier
6524 };
6525 
6526 static int kvmclock_cpu_online(unsigned int cpu)
6527 {
6528 	tsc_khz_changed(NULL);
6529 	return 0;
6530 }
6531 
6532 static void kvm_timer_init(void)
6533 {
6534 	max_tsc_khz = tsc_khz;
6535 
6536 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6537 #ifdef CONFIG_CPU_FREQ
6538 		struct cpufreq_policy policy;
6539 		int cpu;
6540 
6541 		memset(&policy, 0, sizeof(policy));
6542 		cpu = get_cpu();
6543 		cpufreq_get_policy(&policy, cpu);
6544 		if (policy.cpuinfo.max_freq)
6545 			max_tsc_khz = policy.cpuinfo.max_freq;
6546 		put_cpu();
6547 #endif
6548 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6549 					  CPUFREQ_TRANSITION_NOTIFIER);
6550 	}
6551 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6552 
6553 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6554 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6555 }
6556 
6557 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6558 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6559 
6560 int kvm_is_in_guest(void)
6561 {
6562 	return __this_cpu_read(current_vcpu) != NULL;
6563 }
6564 
6565 static int kvm_is_user_mode(void)
6566 {
6567 	int user_mode = 3;
6568 
6569 	if (__this_cpu_read(current_vcpu))
6570 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6571 
6572 	return user_mode != 0;
6573 }
6574 
6575 static unsigned long kvm_get_guest_ip(void)
6576 {
6577 	unsigned long ip = 0;
6578 
6579 	if (__this_cpu_read(current_vcpu))
6580 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6581 
6582 	return ip;
6583 }
6584 
6585 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6586 	.is_in_guest		= kvm_is_in_guest,
6587 	.is_user_mode		= kvm_is_user_mode,
6588 	.get_guest_ip		= kvm_get_guest_ip,
6589 };
6590 
6591 static void kvm_set_mmio_spte_mask(void)
6592 {
6593 	u64 mask;
6594 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6595 
6596 	/*
6597 	 * Set the reserved bits and the present bit of an paging-structure
6598 	 * entry to generate page fault with PFER.RSV = 1.
6599 	 */
6600 
6601 	/*
6602 	 * Mask the uppermost physical address bit, which would be reserved as
6603 	 * long as the supported physical address width is less than 52.
6604 	 */
6605 	mask = 1ull << 51;
6606 
6607 	/* Set the present bit. */
6608 	mask |= 1ull;
6609 
6610 	/*
6611 	 * If reserved bit is not supported, clear the present bit to disable
6612 	 * mmio page fault.
6613 	 */
6614 	if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6615 		mask &= ~1ull;
6616 
6617 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6618 }
6619 
6620 #ifdef CONFIG_X86_64
6621 static void pvclock_gtod_update_fn(struct work_struct *work)
6622 {
6623 	struct kvm *kvm;
6624 
6625 	struct kvm_vcpu *vcpu;
6626 	int i;
6627 
6628 	spin_lock(&kvm_lock);
6629 	list_for_each_entry(kvm, &vm_list, vm_list)
6630 		kvm_for_each_vcpu(i, vcpu, kvm)
6631 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6632 	atomic_set(&kvm_guest_has_master_clock, 0);
6633 	spin_unlock(&kvm_lock);
6634 }
6635 
6636 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6637 
6638 /*
6639  * Notification about pvclock gtod data update.
6640  */
6641 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6642 			       void *priv)
6643 {
6644 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6645 	struct timekeeper *tk = priv;
6646 
6647 	update_pvclock_gtod(tk);
6648 
6649 	/* disable master clock if host does not trust, or does not
6650 	 * use, TSC based clocksource.
6651 	 */
6652 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6653 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6654 		queue_work(system_long_wq, &pvclock_gtod_work);
6655 
6656 	return 0;
6657 }
6658 
6659 static struct notifier_block pvclock_gtod_notifier = {
6660 	.notifier_call = pvclock_gtod_notify,
6661 };
6662 #endif
6663 
6664 int kvm_arch_init(void *opaque)
6665 {
6666 	int r;
6667 	struct kvm_x86_ops *ops = opaque;
6668 
6669 	if (kvm_x86_ops) {
6670 		printk(KERN_ERR "kvm: already loaded the other module\n");
6671 		r = -EEXIST;
6672 		goto out;
6673 	}
6674 
6675 	if (!ops->cpu_has_kvm_support()) {
6676 		printk(KERN_ERR "kvm: no hardware support\n");
6677 		r = -EOPNOTSUPP;
6678 		goto out;
6679 	}
6680 	if (ops->disabled_by_bios()) {
6681 		printk(KERN_ERR "kvm: disabled by bios\n");
6682 		r = -EOPNOTSUPP;
6683 		goto out;
6684 	}
6685 
6686 	r = -ENOMEM;
6687 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6688 	if (!shared_msrs) {
6689 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6690 		goto out;
6691 	}
6692 
6693 	r = kvm_mmu_module_init();
6694 	if (r)
6695 		goto out_free_percpu;
6696 
6697 	kvm_set_mmio_spte_mask();
6698 
6699 	kvm_x86_ops = ops;
6700 
6701 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6702 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6703 			PT_PRESENT_MASK, 0, sme_me_mask);
6704 	kvm_timer_init();
6705 
6706 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6707 
6708 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6709 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6710 
6711 	kvm_lapic_init();
6712 #ifdef CONFIG_X86_64
6713 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6714 
6715 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6716 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6717 #endif
6718 
6719 	return 0;
6720 
6721 out_free_percpu:
6722 	free_percpu(shared_msrs);
6723 out:
6724 	return r;
6725 }
6726 
6727 void kvm_arch_exit(void)
6728 {
6729 #ifdef CONFIG_X86_64
6730 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6731 		clear_hv_tscchange_cb();
6732 #endif
6733 	kvm_lapic_exit();
6734 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6735 
6736 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6737 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6738 					    CPUFREQ_TRANSITION_NOTIFIER);
6739 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6740 #ifdef CONFIG_X86_64
6741 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6742 #endif
6743 	kvm_x86_ops = NULL;
6744 	kvm_mmu_module_exit();
6745 	free_percpu(shared_msrs);
6746 }
6747 
6748 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6749 {
6750 	++vcpu->stat.halt_exits;
6751 	if (lapic_in_kernel(vcpu)) {
6752 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6753 		return 1;
6754 	} else {
6755 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6756 		return 0;
6757 	}
6758 }
6759 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6760 
6761 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6762 {
6763 	int ret = kvm_skip_emulated_instruction(vcpu);
6764 	/*
6765 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6766 	 * KVM_EXIT_DEBUG here.
6767 	 */
6768 	return kvm_vcpu_halt(vcpu) && ret;
6769 }
6770 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6771 
6772 #ifdef CONFIG_X86_64
6773 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6774 			        unsigned long clock_type)
6775 {
6776 	struct kvm_clock_pairing clock_pairing;
6777 	struct timespec64 ts;
6778 	u64 cycle;
6779 	int ret;
6780 
6781 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6782 		return -KVM_EOPNOTSUPP;
6783 
6784 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6785 		return -KVM_EOPNOTSUPP;
6786 
6787 	clock_pairing.sec = ts.tv_sec;
6788 	clock_pairing.nsec = ts.tv_nsec;
6789 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6790 	clock_pairing.flags = 0;
6791 
6792 	ret = 0;
6793 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6794 			    sizeof(struct kvm_clock_pairing)))
6795 		ret = -KVM_EFAULT;
6796 
6797 	return ret;
6798 }
6799 #endif
6800 
6801 /*
6802  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6803  *
6804  * @apicid - apicid of vcpu to be kicked.
6805  */
6806 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6807 {
6808 	struct kvm_lapic_irq lapic_irq;
6809 
6810 	lapic_irq.shorthand = 0;
6811 	lapic_irq.dest_mode = 0;
6812 	lapic_irq.level = 0;
6813 	lapic_irq.dest_id = apicid;
6814 	lapic_irq.msi_redir_hint = false;
6815 
6816 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6817 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6818 }
6819 
6820 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6821 {
6822 	vcpu->arch.apicv_active = false;
6823 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6824 }
6825 
6826 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6827 {
6828 	unsigned long nr, a0, a1, a2, a3, ret;
6829 	int op_64_bit;
6830 
6831 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6832 		return kvm_hv_hypercall(vcpu);
6833 
6834 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6835 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6836 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6837 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6838 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6839 
6840 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6841 
6842 	op_64_bit = is_64_bit_mode(vcpu);
6843 	if (!op_64_bit) {
6844 		nr &= 0xFFFFFFFF;
6845 		a0 &= 0xFFFFFFFF;
6846 		a1 &= 0xFFFFFFFF;
6847 		a2 &= 0xFFFFFFFF;
6848 		a3 &= 0xFFFFFFFF;
6849 	}
6850 
6851 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6852 		ret = -KVM_EPERM;
6853 		goto out;
6854 	}
6855 
6856 	switch (nr) {
6857 	case KVM_HC_VAPIC_POLL_IRQ:
6858 		ret = 0;
6859 		break;
6860 	case KVM_HC_KICK_CPU:
6861 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6862 		ret = 0;
6863 		break;
6864 #ifdef CONFIG_X86_64
6865 	case KVM_HC_CLOCK_PAIRING:
6866 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6867 		break;
6868 	case KVM_HC_SEND_IPI:
6869 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6870 		break;
6871 #endif
6872 	default:
6873 		ret = -KVM_ENOSYS;
6874 		break;
6875 	}
6876 out:
6877 	if (!op_64_bit)
6878 		ret = (u32)ret;
6879 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6880 
6881 	++vcpu->stat.hypercalls;
6882 	return kvm_skip_emulated_instruction(vcpu);
6883 }
6884 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6885 
6886 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6887 {
6888 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6889 	char instruction[3];
6890 	unsigned long rip = kvm_rip_read(vcpu);
6891 
6892 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6893 
6894 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6895 		&ctxt->exception);
6896 }
6897 
6898 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6899 {
6900 	return vcpu->run->request_interrupt_window &&
6901 		likely(!pic_in_kernel(vcpu->kvm));
6902 }
6903 
6904 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6905 {
6906 	struct kvm_run *kvm_run = vcpu->run;
6907 
6908 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6909 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6910 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6911 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6912 	kvm_run->ready_for_interrupt_injection =
6913 		pic_in_kernel(vcpu->kvm) ||
6914 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6915 }
6916 
6917 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6918 {
6919 	int max_irr, tpr;
6920 
6921 	if (!kvm_x86_ops->update_cr8_intercept)
6922 		return;
6923 
6924 	if (!lapic_in_kernel(vcpu))
6925 		return;
6926 
6927 	if (vcpu->arch.apicv_active)
6928 		return;
6929 
6930 	if (!vcpu->arch.apic->vapic_addr)
6931 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6932 	else
6933 		max_irr = -1;
6934 
6935 	if (max_irr != -1)
6936 		max_irr >>= 4;
6937 
6938 	tpr = kvm_lapic_get_cr8(vcpu);
6939 
6940 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6941 }
6942 
6943 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6944 {
6945 	int r;
6946 
6947 	/* try to reinject previous events if any */
6948 
6949 	if (vcpu->arch.exception.injected)
6950 		kvm_x86_ops->queue_exception(vcpu);
6951 	/*
6952 	 * Do not inject an NMI or interrupt if there is a pending
6953 	 * exception.  Exceptions and interrupts are recognized at
6954 	 * instruction boundaries, i.e. the start of an instruction.
6955 	 * Trap-like exceptions, e.g. #DB, have higher priority than
6956 	 * NMIs and interrupts, i.e. traps are recognized before an
6957 	 * NMI/interrupt that's pending on the same instruction.
6958 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6959 	 * priority, but are only generated (pended) during instruction
6960 	 * execution, i.e. a pending fault-like exception means the
6961 	 * fault occurred on the *previous* instruction and must be
6962 	 * serviced prior to recognizing any new events in order to
6963 	 * fully complete the previous instruction.
6964 	 */
6965 	else if (!vcpu->arch.exception.pending) {
6966 		if (vcpu->arch.nmi_injected)
6967 			kvm_x86_ops->set_nmi(vcpu);
6968 		else if (vcpu->arch.interrupt.injected)
6969 			kvm_x86_ops->set_irq(vcpu);
6970 	}
6971 
6972 	/*
6973 	 * Call check_nested_events() even if we reinjected a previous event
6974 	 * in order for caller to determine if it should require immediate-exit
6975 	 * from L2 to L1 due to pending L1 events which require exit
6976 	 * from L2 to L1.
6977 	 */
6978 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6979 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6980 		if (r != 0)
6981 			return r;
6982 	}
6983 
6984 	/* try to inject new event if pending */
6985 	if (vcpu->arch.exception.pending) {
6986 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6987 					vcpu->arch.exception.has_error_code,
6988 					vcpu->arch.exception.error_code);
6989 
6990 		WARN_ON_ONCE(vcpu->arch.exception.injected);
6991 		vcpu->arch.exception.pending = false;
6992 		vcpu->arch.exception.injected = true;
6993 
6994 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6995 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6996 					     X86_EFLAGS_RF);
6997 
6998 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6999 		    (vcpu->arch.dr7 & DR7_GD)) {
7000 			vcpu->arch.dr7 &= ~DR7_GD;
7001 			kvm_update_dr7(vcpu);
7002 		}
7003 
7004 		kvm_x86_ops->queue_exception(vcpu);
7005 	}
7006 
7007 	/* Don't consider new event if we re-injected an event */
7008 	if (kvm_event_needs_reinjection(vcpu))
7009 		return 0;
7010 
7011 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7012 	    kvm_x86_ops->smi_allowed(vcpu)) {
7013 		vcpu->arch.smi_pending = false;
7014 		++vcpu->arch.smi_count;
7015 		enter_smm(vcpu);
7016 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7017 		--vcpu->arch.nmi_pending;
7018 		vcpu->arch.nmi_injected = true;
7019 		kvm_x86_ops->set_nmi(vcpu);
7020 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7021 		/*
7022 		 * Because interrupts can be injected asynchronously, we are
7023 		 * calling check_nested_events again here to avoid a race condition.
7024 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7025 		 * proposal and current concerns.  Perhaps we should be setting
7026 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7027 		 */
7028 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7029 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7030 			if (r != 0)
7031 				return r;
7032 		}
7033 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7034 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7035 					    false);
7036 			kvm_x86_ops->set_irq(vcpu);
7037 		}
7038 	}
7039 
7040 	return 0;
7041 }
7042 
7043 static void process_nmi(struct kvm_vcpu *vcpu)
7044 {
7045 	unsigned limit = 2;
7046 
7047 	/*
7048 	 * x86 is limited to one NMI running, and one NMI pending after it.
7049 	 * If an NMI is already in progress, limit further NMIs to just one.
7050 	 * Otherwise, allow two (and we'll inject the first one immediately).
7051 	 */
7052 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7053 		limit = 1;
7054 
7055 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7056 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7057 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7058 }
7059 
7060 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7061 {
7062 	u32 flags = 0;
7063 	flags |= seg->g       << 23;
7064 	flags |= seg->db      << 22;
7065 	flags |= seg->l       << 21;
7066 	flags |= seg->avl     << 20;
7067 	flags |= seg->present << 15;
7068 	flags |= seg->dpl     << 13;
7069 	flags |= seg->s       << 12;
7070 	flags |= seg->type    << 8;
7071 	return flags;
7072 }
7073 
7074 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7075 {
7076 	struct kvm_segment seg;
7077 	int offset;
7078 
7079 	kvm_get_segment(vcpu, &seg, n);
7080 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7081 
7082 	if (n < 3)
7083 		offset = 0x7f84 + n * 12;
7084 	else
7085 		offset = 0x7f2c + (n - 3) * 12;
7086 
7087 	put_smstate(u32, buf, offset + 8, seg.base);
7088 	put_smstate(u32, buf, offset + 4, seg.limit);
7089 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7090 }
7091 
7092 #ifdef CONFIG_X86_64
7093 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7094 {
7095 	struct kvm_segment seg;
7096 	int offset;
7097 	u16 flags;
7098 
7099 	kvm_get_segment(vcpu, &seg, n);
7100 	offset = 0x7e00 + n * 16;
7101 
7102 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7103 	put_smstate(u16, buf, offset, seg.selector);
7104 	put_smstate(u16, buf, offset + 2, flags);
7105 	put_smstate(u32, buf, offset + 4, seg.limit);
7106 	put_smstate(u64, buf, offset + 8, seg.base);
7107 }
7108 #endif
7109 
7110 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7111 {
7112 	struct desc_ptr dt;
7113 	struct kvm_segment seg;
7114 	unsigned long val;
7115 	int i;
7116 
7117 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7118 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7119 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7120 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7121 
7122 	for (i = 0; i < 8; i++)
7123 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7124 
7125 	kvm_get_dr(vcpu, 6, &val);
7126 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7127 	kvm_get_dr(vcpu, 7, &val);
7128 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7129 
7130 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7131 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7132 	put_smstate(u32, buf, 0x7f64, seg.base);
7133 	put_smstate(u32, buf, 0x7f60, seg.limit);
7134 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7135 
7136 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7137 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7138 	put_smstate(u32, buf, 0x7f80, seg.base);
7139 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7140 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7141 
7142 	kvm_x86_ops->get_gdt(vcpu, &dt);
7143 	put_smstate(u32, buf, 0x7f74, dt.address);
7144 	put_smstate(u32, buf, 0x7f70, dt.size);
7145 
7146 	kvm_x86_ops->get_idt(vcpu, &dt);
7147 	put_smstate(u32, buf, 0x7f58, dt.address);
7148 	put_smstate(u32, buf, 0x7f54, dt.size);
7149 
7150 	for (i = 0; i < 6; i++)
7151 		enter_smm_save_seg_32(vcpu, buf, i);
7152 
7153 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7154 
7155 	/* revision id */
7156 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7157 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7158 }
7159 
7160 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7161 {
7162 #ifdef CONFIG_X86_64
7163 	struct desc_ptr dt;
7164 	struct kvm_segment seg;
7165 	unsigned long val;
7166 	int i;
7167 
7168 	for (i = 0; i < 16; i++)
7169 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7170 
7171 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7172 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7173 
7174 	kvm_get_dr(vcpu, 6, &val);
7175 	put_smstate(u64, buf, 0x7f68, val);
7176 	kvm_get_dr(vcpu, 7, &val);
7177 	put_smstate(u64, buf, 0x7f60, val);
7178 
7179 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7180 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7181 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7182 
7183 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7184 
7185 	/* revision id */
7186 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7187 
7188 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7189 
7190 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7191 	put_smstate(u16, buf, 0x7e90, seg.selector);
7192 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7193 	put_smstate(u32, buf, 0x7e94, seg.limit);
7194 	put_smstate(u64, buf, 0x7e98, seg.base);
7195 
7196 	kvm_x86_ops->get_idt(vcpu, &dt);
7197 	put_smstate(u32, buf, 0x7e84, dt.size);
7198 	put_smstate(u64, buf, 0x7e88, dt.address);
7199 
7200 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7201 	put_smstate(u16, buf, 0x7e70, seg.selector);
7202 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7203 	put_smstate(u32, buf, 0x7e74, seg.limit);
7204 	put_smstate(u64, buf, 0x7e78, seg.base);
7205 
7206 	kvm_x86_ops->get_gdt(vcpu, &dt);
7207 	put_smstate(u32, buf, 0x7e64, dt.size);
7208 	put_smstate(u64, buf, 0x7e68, dt.address);
7209 
7210 	for (i = 0; i < 6; i++)
7211 		enter_smm_save_seg_64(vcpu, buf, i);
7212 #else
7213 	WARN_ON_ONCE(1);
7214 #endif
7215 }
7216 
7217 static void enter_smm(struct kvm_vcpu *vcpu)
7218 {
7219 	struct kvm_segment cs, ds;
7220 	struct desc_ptr dt;
7221 	char buf[512];
7222 	u32 cr0;
7223 
7224 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7225 	memset(buf, 0, 512);
7226 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7227 		enter_smm_save_state_64(vcpu, buf);
7228 	else
7229 		enter_smm_save_state_32(vcpu, buf);
7230 
7231 	/*
7232 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7233 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7234 	 * the SMM state-save area.
7235 	 */
7236 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7237 
7238 	vcpu->arch.hflags |= HF_SMM_MASK;
7239 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7240 
7241 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7242 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7243 	else
7244 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7245 
7246 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7247 	kvm_rip_write(vcpu, 0x8000);
7248 
7249 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7250 	kvm_x86_ops->set_cr0(vcpu, cr0);
7251 	vcpu->arch.cr0 = cr0;
7252 
7253 	kvm_x86_ops->set_cr4(vcpu, 0);
7254 
7255 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7256 	dt.address = dt.size = 0;
7257 	kvm_x86_ops->set_idt(vcpu, &dt);
7258 
7259 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7260 
7261 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7262 	cs.base = vcpu->arch.smbase;
7263 
7264 	ds.selector = 0;
7265 	ds.base = 0;
7266 
7267 	cs.limit    = ds.limit = 0xffffffff;
7268 	cs.type     = ds.type = 0x3;
7269 	cs.dpl      = ds.dpl = 0;
7270 	cs.db       = ds.db = 0;
7271 	cs.s        = ds.s = 1;
7272 	cs.l        = ds.l = 0;
7273 	cs.g        = ds.g = 1;
7274 	cs.avl      = ds.avl = 0;
7275 	cs.present  = ds.present = 1;
7276 	cs.unusable = ds.unusable = 0;
7277 	cs.padding  = ds.padding = 0;
7278 
7279 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7280 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7281 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7282 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7283 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7284 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7285 
7286 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7287 		kvm_x86_ops->set_efer(vcpu, 0);
7288 
7289 	kvm_update_cpuid(vcpu);
7290 	kvm_mmu_reset_context(vcpu);
7291 }
7292 
7293 static void process_smi(struct kvm_vcpu *vcpu)
7294 {
7295 	vcpu->arch.smi_pending = true;
7296 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7297 }
7298 
7299 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7300 {
7301 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7302 }
7303 
7304 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7305 {
7306 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7307 		return;
7308 
7309 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7310 
7311 	if (irqchip_split(vcpu->kvm))
7312 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7313 	else {
7314 		if (vcpu->arch.apicv_active)
7315 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7316 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7317 	}
7318 
7319 	if (is_guest_mode(vcpu))
7320 		vcpu->arch.load_eoi_exitmap_pending = true;
7321 	else
7322 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7323 }
7324 
7325 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7326 {
7327 	u64 eoi_exit_bitmap[4];
7328 
7329 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7330 		return;
7331 
7332 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7333 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7334 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7335 }
7336 
7337 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7338 		unsigned long start, unsigned long end,
7339 		bool blockable)
7340 {
7341 	unsigned long apic_address;
7342 
7343 	/*
7344 	 * The physical address of apic access page is stored in the VMCS.
7345 	 * Update it when it becomes invalid.
7346 	 */
7347 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7348 	if (start <= apic_address && apic_address < end)
7349 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7350 
7351 	return 0;
7352 }
7353 
7354 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7355 {
7356 	struct page *page = NULL;
7357 
7358 	if (!lapic_in_kernel(vcpu))
7359 		return;
7360 
7361 	if (!kvm_x86_ops->set_apic_access_page_addr)
7362 		return;
7363 
7364 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7365 	if (is_error_page(page))
7366 		return;
7367 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7368 
7369 	/*
7370 	 * Do not pin apic access page in memory, the MMU notifier
7371 	 * will call us again if it is migrated or swapped out.
7372 	 */
7373 	put_page(page);
7374 }
7375 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7376 
7377 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7378 {
7379 	smp_send_reschedule(vcpu->cpu);
7380 }
7381 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7382 
7383 /*
7384  * Returns 1 to let vcpu_run() continue the guest execution loop without
7385  * exiting to the userspace.  Otherwise, the value will be returned to the
7386  * userspace.
7387  */
7388 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7389 {
7390 	int r;
7391 	bool req_int_win =
7392 		dm_request_for_irq_injection(vcpu) &&
7393 		kvm_cpu_accept_dm_intr(vcpu);
7394 
7395 	bool req_immediate_exit = false;
7396 
7397 	if (kvm_request_pending(vcpu)) {
7398 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7399 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7400 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7401 			kvm_mmu_unload(vcpu);
7402 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7403 			__kvm_migrate_timers(vcpu);
7404 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7405 			kvm_gen_update_masterclock(vcpu->kvm);
7406 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7407 			kvm_gen_kvmclock_update(vcpu);
7408 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7409 			r = kvm_guest_time_update(vcpu);
7410 			if (unlikely(r))
7411 				goto out;
7412 		}
7413 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7414 			kvm_mmu_sync_roots(vcpu);
7415 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7416 			kvm_mmu_load_cr3(vcpu);
7417 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7418 			kvm_vcpu_flush_tlb(vcpu, true);
7419 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7420 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7421 			r = 0;
7422 			goto out;
7423 		}
7424 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7425 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7426 			vcpu->mmio_needed = 0;
7427 			r = 0;
7428 			goto out;
7429 		}
7430 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7431 			/* Page is swapped out. Do synthetic halt */
7432 			vcpu->arch.apf.halted = true;
7433 			r = 1;
7434 			goto out;
7435 		}
7436 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7437 			record_steal_time(vcpu);
7438 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7439 			process_smi(vcpu);
7440 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7441 			process_nmi(vcpu);
7442 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7443 			kvm_pmu_handle_event(vcpu);
7444 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7445 			kvm_pmu_deliver_pmi(vcpu);
7446 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7447 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7448 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7449 				     vcpu->arch.ioapic_handled_vectors)) {
7450 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7451 				vcpu->run->eoi.vector =
7452 						vcpu->arch.pending_ioapic_eoi;
7453 				r = 0;
7454 				goto out;
7455 			}
7456 		}
7457 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7458 			vcpu_scan_ioapic(vcpu);
7459 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7460 			vcpu_load_eoi_exitmap(vcpu);
7461 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7462 			kvm_vcpu_reload_apic_access_page(vcpu);
7463 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7464 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7465 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7466 			r = 0;
7467 			goto out;
7468 		}
7469 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7470 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7471 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7472 			r = 0;
7473 			goto out;
7474 		}
7475 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7476 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7477 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7478 			r = 0;
7479 			goto out;
7480 		}
7481 
7482 		/*
7483 		 * KVM_REQ_HV_STIMER has to be processed after
7484 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7485 		 * depend on the guest clock being up-to-date
7486 		 */
7487 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7488 			kvm_hv_process_stimers(vcpu);
7489 	}
7490 
7491 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7492 		++vcpu->stat.req_event;
7493 		kvm_apic_accept_events(vcpu);
7494 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7495 			r = 1;
7496 			goto out;
7497 		}
7498 
7499 		if (inject_pending_event(vcpu, req_int_win) != 0)
7500 			req_immediate_exit = true;
7501 		else {
7502 			/* Enable SMI/NMI/IRQ window open exits if needed.
7503 			 *
7504 			 * SMIs have three cases:
7505 			 * 1) They can be nested, and then there is nothing to
7506 			 *    do here because RSM will cause a vmexit anyway.
7507 			 * 2) There is an ISA-specific reason why SMI cannot be
7508 			 *    injected, and the moment when this changes can be
7509 			 *    intercepted.
7510 			 * 3) Or the SMI can be pending because
7511 			 *    inject_pending_event has completed the injection
7512 			 *    of an IRQ or NMI from the previous vmexit, and
7513 			 *    then we request an immediate exit to inject the
7514 			 *    SMI.
7515 			 */
7516 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7517 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7518 					req_immediate_exit = true;
7519 			if (vcpu->arch.nmi_pending)
7520 				kvm_x86_ops->enable_nmi_window(vcpu);
7521 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7522 				kvm_x86_ops->enable_irq_window(vcpu);
7523 			WARN_ON(vcpu->arch.exception.pending);
7524 		}
7525 
7526 		if (kvm_lapic_enabled(vcpu)) {
7527 			update_cr8_intercept(vcpu);
7528 			kvm_lapic_sync_to_vapic(vcpu);
7529 		}
7530 	}
7531 
7532 	r = kvm_mmu_reload(vcpu);
7533 	if (unlikely(r)) {
7534 		goto cancel_injection;
7535 	}
7536 
7537 	preempt_disable();
7538 
7539 	kvm_x86_ops->prepare_guest_switch(vcpu);
7540 
7541 	/*
7542 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7543 	 * IPI are then delayed after guest entry, which ensures that they
7544 	 * result in virtual interrupt delivery.
7545 	 */
7546 	local_irq_disable();
7547 	vcpu->mode = IN_GUEST_MODE;
7548 
7549 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7550 
7551 	/*
7552 	 * 1) We should set ->mode before checking ->requests.  Please see
7553 	 * the comment in kvm_vcpu_exiting_guest_mode().
7554 	 *
7555 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7556 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7557 	 * (see vmx_deliver_posted_interrupt).
7558 	 *
7559 	 * 3) This also orders the write to mode from any reads to the page
7560 	 * tables done while the VCPU is running.  Please see the comment
7561 	 * in kvm_flush_remote_tlbs.
7562 	 */
7563 	smp_mb__after_srcu_read_unlock();
7564 
7565 	/*
7566 	 * This handles the case where a posted interrupt was
7567 	 * notified with kvm_vcpu_kick.
7568 	 */
7569 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7570 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7571 
7572 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7573 	    || need_resched() || signal_pending(current)) {
7574 		vcpu->mode = OUTSIDE_GUEST_MODE;
7575 		smp_wmb();
7576 		local_irq_enable();
7577 		preempt_enable();
7578 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7579 		r = 1;
7580 		goto cancel_injection;
7581 	}
7582 
7583 	kvm_load_guest_xcr0(vcpu);
7584 
7585 	if (req_immediate_exit) {
7586 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7587 		kvm_x86_ops->request_immediate_exit(vcpu);
7588 	}
7589 
7590 	trace_kvm_entry(vcpu->vcpu_id);
7591 	if (lapic_timer_advance_ns)
7592 		wait_lapic_expire(vcpu);
7593 	guest_enter_irqoff();
7594 
7595 	if (unlikely(vcpu->arch.switch_db_regs)) {
7596 		set_debugreg(0, 7);
7597 		set_debugreg(vcpu->arch.eff_db[0], 0);
7598 		set_debugreg(vcpu->arch.eff_db[1], 1);
7599 		set_debugreg(vcpu->arch.eff_db[2], 2);
7600 		set_debugreg(vcpu->arch.eff_db[3], 3);
7601 		set_debugreg(vcpu->arch.dr6, 6);
7602 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7603 	}
7604 
7605 	kvm_x86_ops->run(vcpu);
7606 
7607 	/*
7608 	 * Do this here before restoring debug registers on the host.  And
7609 	 * since we do this before handling the vmexit, a DR access vmexit
7610 	 * can (a) read the correct value of the debug registers, (b) set
7611 	 * KVM_DEBUGREG_WONT_EXIT again.
7612 	 */
7613 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7614 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7615 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7616 		kvm_update_dr0123(vcpu);
7617 		kvm_update_dr6(vcpu);
7618 		kvm_update_dr7(vcpu);
7619 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7620 	}
7621 
7622 	/*
7623 	 * If the guest has used debug registers, at least dr7
7624 	 * will be disabled while returning to the host.
7625 	 * If we don't have active breakpoints in the host, we don't
7626 	 * care about the messed up debug address registers. But if
7627 	 * we have some of them active, restore the old state.
7628 	 */
7629 	if (hw_breakpoint_active())
7630 		hw_breakpoint_restore();
7631 
7632 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7633 
7634 	vcpu->mode = OUTSIDE_GUEST_MODE;
7635 	smp_wmb();
7636 
7637 	kvm_put_guest_xcr0(vcpu);
7638 
7639 	kvm_before_interrupt(vcpu);
7640 	kvm_x86_ops->handle_external_intr(vcpu);
7641 	kvm_after_interrupt(vcpu);
7642 
7643 	++vcpu->stat.exits;
7644 
7645 	guest_exit_irqoff();
7646 
7647 	local_irq_enable();
7648 	preempt_enable();
7649 
7650 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7651 
7652 	/*
7653 	 * Profile KVM exit RIPs:
7654 	 */
7655 	if (unlikely(prof_on == KVM_PROFILING)) {
7656 		unsigned long rip = kvm_rip_read(vcpu);
7657 		profile_hit(KVM_PROFILING, (void *)rip);
7658 	}
7659 
7660 	if (unlikely(vcpu->arch.tsc_always_catchup))
7661 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7662 
7663 	if (vcpu->arch.apic_attention)
7664 		kvm_lapic_sync_from_vapic(vcpu);
7665 
7666 	vcpu->arch.gpa_available = false;
7667 	r = kvm_x86_ops->handle_exit(vcpu);
7668 	return r;
7669 
7670 cancel_injection:
7671 	kvm_x86_ops->cancel_injection(vcpu);
7672 	if (unlikely(vcpu->arch.apic_attention))
7673 		kvm_lapic_sync_from_vapic(vcpu);
7674 out:
7675 	return r;
7676 }
7677 
7678 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7679 {
7680 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7681 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7682 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7683 		kvm_vcpu_block(vcpu);
7684 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7685 
7686 		if (kvm_x86_ops->post_block)
7687 			kvm_x86_ops->post_block(vcpu);
7688 
7689 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7690 			return 1;
7691 	}
7692 
7693 	kvm_apic_accept_events(vcpu);
7694 	switch(vcpu->arch.mp_state) {
7695 	case KVM_MP_STATE_HALTED:
7696 		vcpu->arch.pv.pv_unhalted = false;
7697 		vcpu->arch.mp_state =
7698 			KVM_MP_STATE_RUNNABLE;
7699 	case KVM_MP_STATE_RUNNABLE:
7700 		vcpu->arch.apf.halted = false;
7701 		break;
7702 	case KVM_MP_STATE_INIT_RECEIVED:
7703 		break;
7704 	default:
7705 		return -EINTR;
7706 		break;
7707 	}
7708 	return 1;
7709 }
7710 
7711 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7712 {
7713 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7714 		kvm_x86_ops->check_nested_events(vcpu, false);
7715 
7716 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7717 		!vcpu->arch.apf.halted);
7718 }
7719 
7720 static int vcpu_run(struct kvm_vcpu *vcpu)
7721 {
7722 	int r;
7723 	struct kvm *kvm = vcpu->kvm;
7724 
7725 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7726 	vcpu->arch.l1tf_flush_l1d = true;
7727 
7728 	for (;;) {
7729 		if (kvm_vcpu_running(vcpu)) {
7730 			r = vcpu_enter_guest(vcpu);
7731 		} else {
7732 			r = vcpu_block(kvm, vcpu);
7733 		}
7734 
7735 		if (r <= 0)
7736 			break;
7737 
7738 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7739 		if (kvm_cpu_has_pending_timer(vcpu))
7740 			kvm_inject_pending_timer_irqs(vcpu);
7741 
7742 		if (dm_request_for_irq_injection(vcpu) &&
7743 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7744 			r = 0;
7745 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7746 			++vcpu->stat.request_irq_exits;
7747 			break;
7748 		}
7749 
7750 		kvm_check_async_pf_completion(vcpu);
7751 
7752 		if (signal_pending(current)) {
7753 			r = -EINTR;
7754 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7755 			++vcpu->stat.signal_exits;
7756 			break;
7757 		}
7758 		if (need_resched()) {
7759 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7760 			cond_resched();
7761 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7762 		}
7763 	}
7764 
7765 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7766 
7767 	return r;
7768 }
7769 
7770 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7771 {
7772 	int r;
7773 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7774 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7775 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7776 	if (r != EMULATE_DONE)
7777 		return 0;
7778 	return 1;
7779 }
7780 
7781 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7782 {
7783 	BUG_ON(!vcpu->arch.pio.count);
7784 
7785 	return complete_emulated_io(vcpu);
7786 }
7787 
7788 /*
7789  * Implements the following, as a state machine:
7790  *
7791  * read:
7792  *   for each fragment
7793  *     for each mmio piece in the fragment
7794  *       write gpa, len
7795  *       exit
7796  *       copy data
7797  *   execute insn
7798  *
7799  * write:
7800  *   for each fragment
7801  *     for each mmio piece in the fragment
7802  *       write gpa, len
7803  *       copy data
7804  *       exit
7805  */
7806 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7807 {
7808 	struct kvm_run *run = vcpu->run;
7809 	struct kvm_mmio_fragment *frag;
7810 	unsigned len;
7811 
7812 	BUG_ON(!vcpu->mmio_needed);
7813 
7814 	/* Complete previous fragment */
7815 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7816 	len = min(8u, frag->len);
7817 	if (!vcpu->mmio_is_write)
7818 		memcpy(frag->data, run->mmio.data, len);
7819 
7820 	if (frag->len <= 8) {
7821 		/* Switch to the next fragment. */
7822 		frag++;
7823 		vcpu->mmio_cur_fragment++;
7824 	} else {
7825 		/* Go forward to the next mmio piece. */
7826 		frag->data += len;
7827 		frag->gpa += len;
7828 		frag->len -= len;
7829 	}
7830 
7831 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7832 		vcpu->mmio_needed = 0;
7833 
7834 		/* FIXME: return into emulator if single-stepping.  */
7835 		if (vcpu->mmio_is_write)
7836 			return 1;
7837 		vcpu->mmio_read_completed = 1;
7838 		return complete_emulated_io(vcpu);
7839 	}
7840 
7841 	run->exit_reason = KVM_EXIT_MMIO;
7842 	run->mmio.phys_addr = frag->gpa;
7843 	if (vcpu->mmio_is_write)
7844 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7845 	run->mmio.len = min(8u, frag->len);
7846 	run->mmio.is_write = vcpu->mmio_is_write;
7847 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7848 	return 0;
7849 }
7850 
7851 /* Swap (qemu) user FPU context for the guest FPU context. */
7852 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7853 {
7854 	preempt_disable();
7855 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7856 	/* PKRU is separately restored in kvm_x86_ops->run.  */
7857 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7858 				~XFEATURE_MASK_PKRU);
7859 	preempt_enable();
7860 	trace_kvm_fpu(1);
7861 }
7862 
7863 /* When vcpu_run ends, restore user space FPU context. */
7864 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7865 {
7866 	preempt_disable();
7867 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7868 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7869 	preempt_enable();
7870 	++vcpu->stat.fpu_reload;
7871 	trace_kvm_fpu(0);
7872 }
7873 
7874 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7875 {
7876 	int r;
7877 
7878 	vcpu_load(vcpu);
7879 	kvm_sigset_activate(vcpu);
7880 	kvm_load_guest_fpu(vcpu);
7881 
7882 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7883 		if (kvm_run->immediate_exit) {
7884 			r = -EINTR;
7885 			goto out;
7886 		}
7887 		kvm_vcpu_block(vcpu);
7888 		kvm_apic_accept_events(vcpu);
7889 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7890 		r = -EAGAIN;
7891 		if (signal_pending(current)) {
7892 			r = -EINTR;
7893 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7894 			++vcpu->stat.signal_exits;
7895 		}
7896 		goto out;
7897 	}
7898 
7899 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7900 		r = -EINVAL;
7901 		goto out;
7902 	}
7903 
7904 	if (vcpu->run->kvm_dirty_regs) {
7905 		r = sync_regs(vcpu);
7906 		if (r != 0)
7907 			goto out;
7908 	}
7909 
7910 	/* re-sync apic's tpr */
7911 	if (!lapic_in_kernel(vcpu)) {
7912 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7913 			r = -EINVAL;
7914 			goto out;
7915 		}
7916 	}
7917 
7918 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7919 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7920 		vcpu->arch.complete_userspace_io = NULL;
7921 		r = cui(vcpu);
7922 		if (r <= 0)
7923 			goto out;
7924 	} else
7925 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7926 
7927 	if (kvm_run->immediate_exit)
7928 		r = -EINTR;
7929 	else
7930 		r = vcpu_run(vcpu);
7931 
7932 out:
7933 	kvm_put_guest_fpu(vcpu);
7934 	if (vcpu->run->kvm_valid_regs)
7935 		store_regs(vcpu);
7936 	post_kvm_run_save(vcpu);
7937 	kvm_sigset_deactivate(vcpu);
7938 
7939 	vcpu_put(vcpu);
7940 	return r;
7941 }
7942 
7943 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7944 {
7945 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7946 		/*
7947 		 * We are here if userspace calls get_regs() in the middle of
7948 		 * instruction emulation. Registers state needs to be copied
7949 		 * back from emulation context to vcpu. Userspace shouldn't do
7950 		 * that usually, but some bad designed PV devices (vmware
7951 		 * backdoor interface) need this to work
7952 		 */
7953 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7954 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7955 	}
7956 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7957 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7958 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7959 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7960 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7961 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7962 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7963 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7964 #ifdef CONFIG_X86_64
7965 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7966 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7967 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7968 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7969 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7970 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7971 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7972 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7973 #endif
7974 
7975 	regs->rip = kvm_rip_read(vcpu);
7976 	regs->rflags = kvm_get_rflags(vcpu);
7977 }
7978 
7979 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7980 {
7981 	vcpu_load(vcpu);
7982 	__get_regs(vcpu, regs);
7983 	vcpu_put(vcpu);
7984 	return 0;
7985 }
7986 
7987 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7988 {
7989 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7990 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7991 
7992 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7993 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7994 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7995 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7996 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7997 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7998 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7999 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8000 #ifdef CONFIG_X86_64
8001 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8002 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8003 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8004 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8005 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8006 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8007 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8008 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8009 #endif
8010 
8011 	kvm_rip_write(vcpu, regs->rip);
8012 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8013 
8014 	vcpu->arch.exception.pending = false;
8015 
8016 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8017 }
8018 
8019 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8020 {
8021 	vcpu_load(vcpu);
8022 	__set_regs(vcpu, regs);
8023 	vcpu_put(vcpu);
8024 	return 0;
8025 }
8026 
8027 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8028 {
8029 	struct kvm_segment cs;
8030 
8031 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8032 	*db = cs.db;
8033 	*l = cs.l;
8034 }
8035 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8036 
8037 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8038 {
8039 	struct desc_ptr dt;
8040 
8041 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8042 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8043 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8044 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8045 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8046 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8047 
8048 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8049 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8050 
8051 	kvm_x86_ops->get_idt(vcpu, &dt);
8052 	sregs->idt.limit = dt.size;
8053 	sregs->idt.base = dt.address;
8054 	kvm_x86_ops->get_gdt(vcpu, &dt);
8055 	sregs->gdt.limit = dt.size;
8056 	sregs->gdt.base = dt.address;
8057 
8058 	sregs->cr0 = kvm_read_cr0(vcpu);
8059 	sregs->cr2 = vcpu->arch.cr2;
8060 	sregs->cr3 = kvm_read_cr3(vcpu);
8061 	sregs->cr4 = kvm_read_cr4(vcpu);
8062 	sregs->cr8 = kvm_get_cr8(vcpu);
8063 	sregs->efer = vcpu->arch.efer;
8064 	sregs->apic_base = kvm_get_apic_base(vcpu);
8065 
8066 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8067 
8068 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8069 		set_bit(vcpu->arch.interrupt.nr,
8070 			(unsigned long *)sregs->interrupt_bitmap);
8071 }
8072 
8073 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8074 				  struct kvm_sregs *sregs)
8075 {
8076 	vcpu_load(vcpu);
8077 	__get_sregs(vcpu, sregs);
8078 	vcpu_put(vcpu);
8079 	return 0;
8080 }
8081 
8082 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8083 				    struct kvm_mp_state *mp_state)
8084 {
8085 	vcpu_load(vcpu);
8086 
8087 	kvm_apic_accept_events(vcpu);
8088 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8089 					vcpu->arch.pv.pv_unhalted)
8090 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8091 	else
8092 		mp_state->mp_state = vcpu->arch.mp_state;
8093 
8094 	vcpu_put(vcpu);
8095 	return 0;
8096 }
8097 
8098 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8099 				    struct kvm_mp_state *mp_state)
8100 {
8101 	int ret = -EINVAL;
8102 
8103 	vcpu_load(vcpu);
8104 
8105 	if (!lapic_in_kernel(vcpu) &&
8106 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8107 		goto out;
8108 
8109 	/* INITs are latched while in SMM */
8110 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8111 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8112 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8113 		goto out;
8114 
8115 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8116 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8117 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8118 	} else
8119 		vcpu->arch.mp_state = mp_state->mp_state;
8120 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8121 
8122 	ret = 0;
8123 out:
8124 	vcpu_put(vcpu);
8125 	return ret;
8126 }
8127 
8128 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8129 		    int reason, bool has_error_code, u32 error_code)
8130 {
8131 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8132 	int ret;
8133 
8134 	init_emulate_ctxt(vcpu);
8135 
8136 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8137 				   has_error_code, error_code);
8138 
8139 	if (ret)
8140 		return EMULATE_FAIL;
8141 
8142 	kvm_rip_write(vcpu, ctxt->eip);
8143 	kvm_set_rflags(vcpu, ctxt->eflags);
8144 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8145 	return EMULATE_DONE;
8146 }
8147 EXPORT_SYMBOL_GPL(kvm_task_switch);
8148 
8149 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8150 {
8151 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8152 			(sregs->cr4 & X86_CR4_OSXSAVE))
8153 		return  -EINVAL;
8154 
8155 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8156 		/*
8157 		 * When EFER.LME and CR0.PG are set, the processor is in
8158 		 * 64-bit mode (though maybe in a 32-bit code segment).
8159 		 * CR4.PAE and EFER.LMA must be set.
8160 		 */
8161 		if (!(sregs->cr4 & X86_CR4_PAE)
8162 		    || !(sregs->efer & EFER_LMA))
8163 			return -EINVAL;
8164 	} else {
8165 		/*
8166 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8167 		 * segment cannot be 64-bit.
8168 		 */
8169 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8170 			return -EINVAL;
8171 	}
8172 
8173 	return 0;
8174 }
8175 
8176 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8177 {
8178 	struct msr_data apic_base_msr;
8179 	int mmu_reset_needed = 0;
8180 	int cpuid_update_needed = 0;
8181 	int pending_vec, max_bits, idx;
8182 	struct desc_ptr dt;
8183 	int ret = -EINVAL;
8184 
8185 	if (kvm_valid_sregs(vcpu, sregs))
8186 		goto out;
8187 
8188 	apic_base_msr.data = sregs->apic_base;
8189 	apic_base_msr.host_initiated = true;
8190 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8191 		goto out;
8192 
8193 	dt.size = sregs->idt.limit;
8194 	dt.address = sregs->idt.base;
8195 	kvm_x86_ops->set_idt(vcpu, &dt);
8196 	dt.size = sregs->gdt.limit;
8197 	dt.address = sregs->gdt.base;
8198 	kvm_x86_ops->set_gdt(vcpu, &dt);
8199 
8200 	vcpu->arch.cr2 = sregs->cr2;
8201 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8202 	vcpu->arch.cr3 = sregs->cr3;
8203 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8204 
8205 	kvm_set_cr8(vcpu, sregs->cr8);
8206 
8207 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8208 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8209 
8210 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8211 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8212 	vcpu->arch.cr0 = sregs->cr0;
8213 
8214 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8215 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8216 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8217 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8218 	if (cpuid_update_needed)
8219 		kvm_update_cpuid(vcpu);
8220 
8221 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8222 	if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8223 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8224 		mmu_reset_needed = 1;
8225 	}
8226 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8227 
8228 	if (mmu_reset_needed)
8229 		kvm_mmu_reset_context(vcpu);
8230 
8231 	max_bits = KVM_NR_INTERRUPTS;
8232 	pending_vec = find_first_bit(
8233 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8234 	if (pending_vec < max_bits) {
8235 		kvm_queue_interrupt(vcpu, pending_vec, false);
8236 		pr_debug("Set back pending irq %d\n", pending_vec);
8237 	}
8238 
8239 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8240 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8241 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8242 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8243 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8244 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8245 
8246 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8247 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8248 
8249 	update_cr8_intercept(vcpu);
8250 
8251 	/* Older userspace won't unhalt the vcpu on reset. */
8252 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8253 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8254 	    !is_protmode(vcpu))
8255 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8256 
8257 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8258 
8259 	ret = 0;
8260 out:
8261 	return ret;
8262 }
8263 
8264 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8265 				  struct kvm_sregs *sregs)
8266 {
8267 	int ret;
8268 
8269 	vcpu_load(vcpu);
8270 	ret = __set_sregs(vcpu, sregs);
8271 	vcpu_put(vcpu);
8272 	return ret;
8273 }
8274 
8275 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8276 					struct kvm_guest_debug *dbg)
8277 {
8278 	unsigned long rflags;
8279 	int i, r;
8280 
8281 	vcpu_load(vcpu);
8282 
8283 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8284 		r = -EBUSY;
8285 		if (vcpu->arch.exception.pending)
8286 			goto out;
8287 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8288 			kvm_queue_exception(vcpu, DB_VECTOR);
8289 		else
8290 			kvm_queue_exception(vcpu, BP_VECTOR);
8291 	}
8292 
8293 	/*
8294 	 * Read rflags as long as potentially injected trace flags are still
8295 	 * filtered out.
8296 	 */
8297 	rflags = kvm_get_rflags(vcpu);
8298 
8299 	vcpu->guest_debug = dbg->control;
8300 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8301 		vcpu->guest_debug = 0;
8302 
8303 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8304 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8305 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8306 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8307 	} else {
8308 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8309 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8310 	}
8311 	kvm_update_dr7(vcpu);
8312 
8313 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8314 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8315 			get_segment_base(vcpu, VCPU_SREG_CS);
8316 
8317 	/*
8318 	 * Trigger an rflags update that will inject or remove the trace
8319 	 * flags.
8320 	 */
8321 	kvm_set_rflags(vcpu, rflags);
8322 
8323 	kvm_x86_ops->update_bp_intercept(vcpu);
8324 
8325 	r = 0;
8326 
8327 out:
8328 	vcpu_put(vcpu);
8329 	return r;
8330 }
8331 
8332 /*
8333  * Translate a guest virtual address to a guest physical address.
8334  */
8335 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8336 				    struct kvm_translation *tr)
8337 {
8338 	unsigned long vaddr = tr->linear_address;
8339 	gpa_t gpa;
8340 	int idx;
8341 
8342 	vcpu_load(vcpu);
8343 
8344 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8345 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8346 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8347 	tr->physical_address = gpa;
8348 	tr->valid = gpa != UNMAPPED_GVA;
8349 	tr->writeable = 1;
8350 	tr->usermode = 0;
8351 
8352 	vcpu_put(vcpu);
8353 	return 0;
8354 }
8355 
8356 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8357 {
8358 	struct fxregs_state *fxsave;
8359 
8360 	vcpu_load(vcpu);
8361 
8362 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8363 	memcpy(fpu->fpr, fxsave->st_space, 128);
8364 	fpu->fcw = fxsave->cwd;
8365 	fpu->fsw = fxsave->swd;
8366 	fpu->ftwx = fxsave->twd;
8367 	fpu->last_opcode = fxsave->fop;
8368 	fpu->last_ip = fxsave->rip;
8369 	fpu->last_dp = fxsave->rdp;
8370 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8371 
8372 	vcpu_put(vcpu);
8373 	return 0;
8374 }
8375 
8376 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8377 {
8378 	struct fxregs_state *fxsave;
8379 
8380 	vcpu_load(vcpu);
8381 
8382 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8383 
8384 	memcpy(fxsave->st_space, fpu->fpr, 128);
8385 	fxsave->cwd = fpu->fcw;
8386 	fxsave->swd = fpu->fsw;
8387 	fxsave->twd = fpu->ftwx;
8388 	fxsave->fop = fpu->last_opcode;
8389 	fxsave->rip = fpu->last_ip;
8390 	fxsave->rdp = fpu->last_dp;
8391 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8392 
8393 	vcpu_put(vcpu);
8394 	return 0;
8395 }
8396 
8397 static void store_regs(struct kvm_vcpu *vcpu)
8398 {
8399 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8400 
8401 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8402 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8403 
8404 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8405 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8406 
8407 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8408 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8409 				vcpu, &vcpu->run->s.regs.events);
8410 }
8411 
8412 static int sync_regs(struct kvm_vcpu *vcpu)
8413 {
8414 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8415 		return -EINVAL;
8416 
8417 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8418 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8419 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8420 	}
8421 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8422 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8423 			return -EINVAL;
8424 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8425 	}
8426 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8427 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8428 				vcpu, &vcpu->run->s.regs.events))
8429 			return -EINVAL;
8430 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8431 	}
8432 
8433 	return 0;
8434 }
8435 
8436 static void fx_init(struct kvm_vcpu *vcpu)
8437 {
8438 	fpstate_init(&vcpu->arch.guest_fpu.state);
8439 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8440 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8441 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8442 
8443 	/*
8444 	 * Ensure guest xcr0 is valid for loading
8445 	 */
8446 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8447 
8448 	vcpu->arch.cr0 |= X86_CR0_ET;
8449 }
8450 
8451 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8452 {
8453 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8454 
8455 	kvmclock_reset(vcpu);
8456 
8457 	kvm_x86_ops->vcpu_free(vcpu);
8458 	free_cpumask_var(wbinvd_dirty_mask);
8459 }
8460 
8461 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8462 						unsigned int id)
8463 {
8464 	struct kvm_vcpu *vcpu;
8465 
8466 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8467 		printk_once(KERN_WARNING
8468 		"kvm: SMP vm created on host with unstable TSC; "
8469 		"guest TSC will not be reliable\n");
8470 
8471 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8472 
8473 	return vcpu;
8474 }
8475 
8476 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8477 {
8478 	kvm_vcpu_mtrr_init(vcpu);
8479 	vcpu_load(vcpu);
8480 	kvm_vcpu_reset(vcpu, false);
8481 	kvm_mmu_setup(vcpu);
8482 	vcpu_put(vcpu);
8483 	return 0;
8484 }
8485 
8486 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8487 {
8488 	struct msr_data msr;
8489 	struct kvm *kvm = vcpu->kvm;
8490 
8491 	kvm_hv_vcpu_postcreate(vcpu);
8492 
8493 	if (mutex_lock_killable(&vcpu->mutex))
8494 		return;
8495 	vcpu_load(vcpu);
8496 	msr.data = 0x0;
8497 	msr.index = MSR_IA32_TSC;
8498 	msr.host_initiated = true;
8499 	kvm_write_tsc(vcpu, &msr);
8500 	vcpu_put(vcpu);
8501 	mutex_unlock(&vcpu->mutex);
8502 
8503 	if (!kvmclock_periodic_sync)
8504 		return;
8505 
8506 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8507 					KVMCLOCK_SYNC_PERIOD);
8508 }
8509 
8510 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8511 {
8512 	vcpu->arch.apf.msr_val = 0;
8513 
8514 	vcpu_load(vcpu);
8515 	kvm_mmu_unload(vcpu);
8516 	vcpu_put(vcpu);
8517 
8518 	kvm_x86_ops->vcpu_free(vcpu);
8519 }
8520 
8521 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8522 {
8523 	kvm_lapic_reset(vcpu, init_event);
8524 
8525 	vcpu->arch.hflags = 0;
8526 
8527 	vcpu->arch.smi_pending = 0;
8528 	vcpu->arch.smi_count = 0;
8529 	atomic_set(&vcpu->arch.nmi_queued, 0);
8530 	vcpu->arch.nmi_pending = 0;
8531 	vcpu->arch.nmi_injected = false;
8532 	kvm_clear_interrupt_queue(vcpu);
8533 	kvm_clear_exception_queue(vcpu);
8534 	vcpu->arch.exception.pending = false;
8535 
8536 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8537 	kvm_update_dr0123(vcpu);
8538 	vcpu->arch.dr6 = DR6_INIT;
8539 	kvm_update_dr6(vcpu);
8540 	vcpu->arch.dr7 = DR7_FIXED_1;
8541 	kvm_update_dr7(vcpu);
8542 
8543 	vcpu->arch.cr2 = 0;
8544 
8545 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8546 	vcpu->arch.apf.msr_val = 0;
8547 	vcpu->arch.st.msr_val = 0;
8548 
8549 	kvmclock_reset(vcpu);
8550 
8551 	kvm_clear_async_pf_completion_queue(vcpu);
8552 	kvm_async_pf_hash_reset(vcpu);
8553 	vcpu->arch.apf.halted = false;
8554 
8555 	if (kvm_mpx_supported()) {
8556 		void *mpx_state_buffer;
8557 
8558 		/*
8559 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8560 		 * called with loaded FPU and does not let userspace fix the state.
8561 		 */
8562 		if (init_event)
8563 			kvm_put_guest_fpu(vcpu);
8564 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8565 					XFEATURE_MASK_BNDREGS);
8566 		if (mpx_state_buffer)
8567 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8568 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8569 					XFEATURE_MASK_BNDCSR);
8570 		if (mpx_state_buffer)
8571 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8572 		if (init_event)
8573 			kvm_load_guest_fpu(vcpu);
8574 	}
8575 
8576 	if (!init_event) {
8577 		kvm_pmu_reset(vcpu);
8578 		vcpu->arch.smbase = 0x30000;
8579 
8580 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8581 		vcpu->arch.msr_misc_features_enables = 0;
8582 
8583 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8584 	}
8585 
8586 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8587 	vcpu->arch.regs_avail = ~0;
8588 	vcpu->arch.regs_dirty = ~0;
8589 
8590 	vcpu->arch.ia32_xss = 0;
8591 
8592 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8593 }
8594 
8595 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8596 {
8597 	struct kvm_segment cs;
8598 
8599 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8600 	cs.selector = vector << 8;
8601 	cs.base = vector << 12;
8602 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8603 	kvm_rip_write(vcpu, 0);
8604 }
8605 
8606 int kvm_arch_hardware_enable(void)
8607 {
8608 	struct kvm *kvm;
8609 	struct kvm_vcpu *vcpu;
8610 	int i;
8611 	int ret;
8612 	u64 local_tsc;
8613 	u64 max_tsc = 0;
8614 	bool stable, backwards_tsc = false;
8615 
8616 	kvm_shared_msr_cpu_online();
8617 	ret = kvm_x86_ops->hardware_enable();
8618 	if (ret != 0)
8619 		return ret;
8620 
8621 	local_tsc = rdtsc();
8622 	stable = !kvm_check_tsc_unstable();
8623 	list_for_each_entry(kvm, &vm_list, vm_list) {
8624 		kvm_for_each_vcpu(i, vcpu, kvm) {
8625 			if (!stable && vcpu->cpu == smp_processor_id())
8626 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8627 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8628 				backwards_tsc = true;
8629 				if (vcpu->arch.last_host_tsc > max_tsc)
8630 					max_tsc = vcpu->arch.last_host_tsc;
8631 			}
8632 		}
8633 	}
8634 
8635 	/*
8636 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8637 	 * platforms that reset TSC during suspend or hibernate actions, but
8638 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8639 	 * detect that condition here, which happens early in CPU bringup,
8640 	 * before any KVM threads can be running.  Unfortunately, we can't
8641 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8642 	 * enough into CPU bringup that we know how much real time has actually
8643 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8644 	 * variables that haven't been updated yet.
8645 	 *
8646 	 * So we simply find the maximum observed TSC above, then record the
8647 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8648 	 * the adjustment will be applied.  Note that we accumulate
8649 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8650 	 * gets a chance to run again.  In the event that no KVM threads get a
8651 	 * chance to run, we will miss the entire elapsed period, as we'll have
8652 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8653 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8654 	 * uniform across all VCPUs (not to mention the scenario is extremely
8655 	 * unlikely). It is possible that a second hibernate recovery happens
8656 	 * much faster than a first, causing the observed TSC here to be
8657 	 * smaller; this would require additional padding adjustment, which is
8658 	 * why we set last_host_tsc to the local tsc observed here.
8659 	 *
8660 	 * N.B. - this code below runs only on platforms with reliable TSC,
8661 	 * as that is the only way backwards_tsc is set above.  Also note
8662 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8663 	 * have the same delta_cyc adjustment applied if backwards_tsc
8664 	 * is detected.  Note further, this adjustment is only done once,
8665 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8666 	 * called multiple times (one for each physical CPU bringup).
8667 	 *
8668 	 * Platforms with unreliable TSCs don't have to deal with this, they
8669 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8670 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8671 	 * guarantee that they stay in perfect synchronization.
8672 	 */
8673 	if (backwards_tsc) {
8674 		u64 delta_cyc = max_tsc - local_tsc;
8675 		list_for_each_entry(kvm, &vm_list, vm_list) {
8676 			kvm->arch.backwards_tsc_observed = true;
8677 			kvm_for_each_vcpu(i, vcpu, kvm) {
8678 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8679 				vcpu->arch.last_host_tsc = local_tsc;
8680 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8681 			}
8682 
8683 			/*
8684 			 * We have to disable TSC offset matching.. if you were
8685 			 * booting a VM while issuing an S4 host suspend....
8686 			 * you may have some problem.  Solving this issue is
8687 			 * left as an exercise to the reader.
8688 			 */
8689 			kvm->arch.last_tsc_nsec = 0;
8690 			kvm->arch.last_tsc_write = 0;
8691 		}
8692 
8693 	}
8694 	return 0;
8695 }
8696 
8697 void kvm_arch_hardware_disable(void)
8698 {
8699 	kvm_x86_ops->hardware_disable();
8700 	drop_user_return_notifiers();
8701 }
8702 
8703 int kvm_arch_hardware_setup(void)
8704 {
8705 	int r;
8706 
8707 	r = kvm_x86_ops->hardware_setup();
8708 	if (r != 0)
8709 		return r;
8710 
8711 	if (kvm_has_tsc_control) {
8712 		/*
8713 		 * Make sure the user can only configure tsc_khz values that
8714 		 * fit into a signed integer.
8715 		 * A min value is not calculated because it will always
8716 		 * be 1 on all machines.
8717 		 */
8718 		u64 max = min(0x7fffffffULL,
8719 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8720 		kvm_max_guest_tsc_khz = max;
8721 
8722 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8723 	}
8724 
8725 	kvm_init_msr_list();
8726 	return 0;
8727 }
8728 
8729 void kvm_arch_hardware_unsetup(void)
8730 {
8731 	kvm_x86_ops->hardware_unsetup();
8732 }
8733 
8734 void kvm_arch_check_processor_compat(void *rtn)
8735 {
8736 	kvm_x86_ops->check_processor_compatibility(rtn);
8737 }
8738 
8739 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8740 {
8741 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8744 
8745 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8746 {
8747 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8748 }
8749 
8750 struct static_key kvm_no_apic_vcpu __read_mostly;
8751 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8752 
8753 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8754 {
8755 	struct page *page;
8756 	int r;
8757 
8758 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8759 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8760 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8761 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8762 	else
8763 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8764 
8765 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8766 	if (!page) {
8767 		r = -ENOMEM;
8768 		goto fail;
8769 	}
8770 	vcpu->arch.pio_data = page_address(page);
8771 
8772 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8773 
8774 	r = kvm_mmu_create(vcpu);
8775 	if (r < 0)
8776 		goto fail_free_pio_data;
8777 
8778 	if (irqchip_in_kernel(vcpu->kvm)) {
8779 		r = kvm_create_lapic(vcpu);
8780 		if (r < 0)
8781 			goto fail_mmu_destroy;
8782 	} else
8783 		static_key_slow_inc(&kvm_no_apic_vcpu);
8784 
8785 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8786 				       GFP_KERNEL);
8787 	if (!vcpu->arch.mce_banks) {
8788 		r = -ENOMEM;
8789 		goto fail_free_lapic;
8790 	}
8791 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8792 
8793 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8794 		r = -ENOMEM;
8795 		goto fail_free_mce_banks;
8796 	}
8797 
8798 	fx_init(vcpu);
8799 
8800 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8801 
8802 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8803 
8804 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8805 
8806 	kvm_async_pf_hash_reset(vcpu);
8807 	kvm_pmu_init(vcpu);
8808 
8809 	vcpu->arch.pending_external_vector = -1;
8810 	vcpu->arch.preempted_in_kernel = false;
8811 
8812 	kvm_hv_vcpu_init(vcpu);
8813 
8814 	return 0;
8815 
8816 fail_free_mce_banks:
8817 	kfree(vcpu->arch.mce_banks);
8818 fail_free_lapic:
8819 	kvm_free_lapic(vcpu);
8820 fail_mmu_destroy:
8821 	kvm_mmu_destroy(vcpu);
8822 fail_free_pio_data:
8823 	free_page((unsigned long)vcpu->arch.pio_data);
8824 fail:
8825 	return r;
8826 }
8827 
8828 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8829 {
8830 	int idx;
8831 
8832 	kvm_hv_vcpu_uninit(vcpu);
8833 	kvm_pmu_destroy(vcpu);
8834 	kfree(vcpu->arch.mce_banks);
8835 	kvm_free_lapic(vcpu);
8836 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8837 	kvm_mmu_destroy(vcpu);
8838 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8839 	free_page((unsigned long)vcpu->arch.pio_data);
8840 	if (!lapic_in_kernel(vcpu))
8841 		static_key_slow_dec(&kvm_no_apic_vcpu);
8842 }
8843 
8844 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8845 {
8846 	vcpu->arch.l1tf_flush_l1d = true;
8847 	kvm_x86_ops->sched_in(vcpu, cpu);
8848 }
8849 
8850 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8851 {
8852 	if (type)
8853 		return -EINVAL;
8854 
8855 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8856 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8857 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8858 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8859 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8860 
8861 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8862 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8863 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8864 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8865 		&kvm->arch.irq_sources_bitmap);
8866 
8867 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8868 	mutex_init(&kvm->arch.apic_map_lock);
8869 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8870 
8871 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8872 	pvclock_update_vm_gtod_copy(kvm);
8873 
8874 	kvm->arch.guest_can_read_msr_platform_info = true;
8875 
8876 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8877 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8878 
8879 	kvm_hv_init_vm(kvm);
8880 	kvm_page_track_init(kvm);
8881 	kvm_mmu_init_vm(kvm);
8882 
8883 	if (kvm_x86_ops->vm_init)
8884 		return kvm_x86_ops->vm_init(kvm);
8885 
8886 	return 0;
8887 }
8888 
8889 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8890 {
8891 	vcpu_load(vcpu);
8892 	kvm_mmu_unload(vcpu);
8893 	vcpu_put(vcpu);
8894 }
8895 
8896 static void kvm_free_vcpus(struct kvm *kvm)
8897 {
8898 	unsigned int i;
8899 	struct kvm_vcpu *vcpu;
8900 
8901 	/*
8902 	 * Unpin any mmu pages first.
8903 	 */
8904 	kvm_for_each_vcpu(i, vcpu, kvm) {
8905 		kvm_clear_async_pf_completion_queue(vcpu);
8906 		kvm_unload_vcpu_mmu(vcpu);
8907 	}
8908 	kvm_for_each_vcpu(i, vcpu, kvm)
8909 		kvm_arch_vcpu_free(vcpu);
8910 
8911 	mutex_lock(&kvm->lock);
8912 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8913 		kvm->vcpus[i] = NULL;
8914 
8915 	atomic_set(&kvm->online_vcpus, 0);
8916 	mutex_unlock(&kvm->lock);
8917 }
8918 
8919 void kvm_arch_sync_events(struct kvm *kvm)
8920 {
8921 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8922 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8923 	kvm_free_pit(kvm);
8924 }
8925 
8926 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8927 {
8928 	int i, r;
8929 	unsigned long hva;
8930 	struct kvm_memslots *slots = kvm_memslots(kvm);
8931 	struct kvm_memory_slot *slot, old;
8932 
8933 	/* Called with kvm->slots_lock held.  */
8934 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8935 		return -EINVAL;
8936 
8937 	slot = id_to_memslot(slots, id);
8938 	if (size) {
8939 		if (slot->npages)
8940 			return -EEXIST;
8941 
8942 		/*
8943 		 * MAP_SHARED to prevent internal slot pages from being moved
8944 		 * by fork()/COW.
8945 		 */
8946 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8947 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8948 		if (IS_ERR((void *)hva))
8949 			return PTR_ERR((void *)hva);
8950 	} else {
8951 		if (!slot->npages)
8952 			return 0;
8953 
8954 		hva = 0;
8955 	}
8956 
8957 	old = *slot;
8958 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8959 		struct kvm_userspace_memory_region m;
8960 
8961 		m.slot = id | (i << 16);
8962 		m.flags = 0;
8963 		m.guest_phys_addr = gpa;
8964 		m.userspace_addr = hva;
8965 		m.memory_size = size;
8966 		r = __kvm_set_memory_region(kvm, &m);
8967 		if (r < 0)
8968 			return r;
8969 	}
8970 
8971 	if (!size)
8972 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8973 
8974 	return 0;
8975 }
8976 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8977 
8978 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8979 {
8980 	int r;
8981 
8982 	mutex_lock(&kvm->slots_lock);
8983 	r = __x86_set_memory_region(kvm, id, gpa, size);
8984 	mutex_unlock(&kvm->slots_lock);
8985 
8986 	return r;
8987 }
8988 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8989 
8990 void kvm_arch_destroy_vm(struct kvm *kvm)
8991 {
8992 	if (current->mm == kvm->mm) {
8993 		/*
8994 		 * Free memory regions allocated on behalf of userspace,
8995 		 * unless the the memory map has changed due to process exit
8996 		 * or fd copying.
8997 		 */
8998 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8999 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9000 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9001 	}
9002 	if (kvm_x86_ops->vm_destroy)
9003 		kvm_x86_ops->vm_destroy(kvm);
9004 	kvm_pic_destroy(kvm);
9005 	kvm_ioapic_destroy(kvm);
9006 	kvm_free_vcpus(kvm);
9007 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9008 	kvm_mmu_uninit_vm(kvm);
9009 	kvm_page_track_cleanup(kvm);
9010 	kvm_hv_destroy_vm(kvm);
9011 }
9012 
9013 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9014 			   struct kvm_memory_slot *dont)
9015 {
9016 	int i;
9017 
9018 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9019 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9020 			kvfree(free->arch.rmap[i]);
9021 			free->arch.rmap[i] = NULL;
9022 		}
9023 		if (i == 0)
9024 			continue;
9025 
9026 		if (!dont || free->arch.lpage_info[i - 1] !=
9027 			     dont->arch.lpage_info[i - 1]) {
9028 			kvfree(free->arch.lpage_info[i - 1]);
9029 			free->arch.lpage_info[i - 1] = NULL;
9030 		}
9031 	}
9032 
9033 	kvm_page_track_free_memslot(free, dont);
9034 }
9035 
9036 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9037 			    unsigned long npages)
9038 {
9039 	int i;
9040 
9041 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9042 		struct kvm_lpage_info *linfo;
9043 		unsigned long ugfn;
9044 		int lpages;
9045 		int level = i + 1;
9046 
9047 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9048 				      slot->base_gfn, level) + 1;
9049 
9050 		slot->arch.rmap[i] =
9051 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9052 				 GFP_KERNEL);
9053 		if (!slot->arch.rmap[i])
9054 			goto out_free;
9055 		if (i == 0)
9056 			continue;
9057 
9058 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9059 		if (!linfo)
9060 			goto out_free;
9061 
9062 		slot->arch.lpage_info[i - 1] = linfo;
9063 
9064 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9065 			linfo[0].disallow_lpage = 1;
9066 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9067 			linfo[lpages - 1].disallow_lpage = 1;
9068 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9069 		/*
9070 		 * If the gfn and userspace address are not aligned wrt each
9071 		 * other, or if explicitly asked to, disable large page
9072 		 * support for this slot
9073 		 */
9074 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9075 		    !kvm_largepages_enabled()) {
9076 			unsigned long j;
9077 
9078 			for (j = 0; j < lpages; ++j)
9079 				linfo[j].disallow_lpage = 1;
9080 		}
9081 	}
9082 
9083 	if (kvm_page_track_create_memslot(slot, npages))
9084 		goto out_free;
9085 
9086 	return 0;
9087 
9088 out_free:
9089 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9090 		kvfree(slot->arch.rmap[i]);
9091 		slot->arch.rmap[i] = NULL;
9092 		if (i == 0)
9093 			continue;
9094 
9095 		kvfree(slot->arch.lpage_info[i - 1]);
9096 		slot->arch.lpage_info[i - 1] = NULL;
9097 	}
9098 	return -ENOMEM;
9099 }
9100 
9101 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9102 {
9103 	/*
9104 	 * memslots->generation has been incremented.
9105 	 * mmio generation may have reached its maximum value.
9106 	 */
9107 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9108 }
9109 
9110 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9111 				struct kvm_memory_slot *memslot,
9112 				const struct kvm_userspace_memory_region *mem,
9113 				enum kvm_mr_change change)
9114 {
9115 	return 0;
9116 }
9117 
9118 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9119 				     struct kvm_memory_slot *new)
9120 {
9121 	/* Still write protect RO slot */
9122 	if (new->flags & KVM_MEM_READONLY) {
9123 		kvm_mmu_slot_remove_write_access(kvm, new);
9124 		return;
9125 	}
9126 
9127 	/*
9128 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9129 	 *
9130 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9131 	 *
9132 	 *  - KVM_MR_CREATE with dirty logging is disabled
9133 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9134 	 *
9135 	 * The reason is, in case of PML, we need to set D-bit for any slots
9136 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9137 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9138 	 * guarantees leaving PML enabled during guest's lifetime won't have
9139 	 * any additonal overhead from PML when guest is running with dirty
9140 	 * logging disabled for memory slots.
9141 	 *
9142 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9143 	 * to dirty logging mode.
9144 	 *
9145 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9146 	 *
9147 	 * In case of write protect:
9148 	 *
9149 	 * Write protect all pages for dirty logging.
9150 	 *
9151 	 * All the sptes including the large sptes which point to this
9152 	 * slot are set to readonly. We can not create any new large
9153 	 * spte on this slot until the end of the logging.
9154 	 *
9155 	 * See the comments in fast_page_fault().
9156 	 */
9157 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9158 		if (kvm_x86_ops->slot_enable_log_dirty)
9159 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9160 		else
9161 			kvm_mmu_slot_remove_write_access(kvm, new);
9162 	} else {
9163 		if (kvm_x86_ops->slot_disable_log_dirty)
9164 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9165 	}
9166 }
9167 
9168 void kvm_arch_commit_memory_region(struct kvm *kvm,
9169 				const struct kvm_userspace_memory_region *mem,
9170 				const struct kvm_memory_slot *old,
9171 				const struct kvm_memory_slot *new,
9172 				enum kvm_mr_change change)
9173 {
9174 	int nr_mmu_pages = 0;
9175 
9176 	if (!kvm->arch.n_requested_mmu_pages)
9177 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9178 
9179 	if (nr_mmu_pages)
9180 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9181 
9182 	/*
9183 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9184 	 * sptes have to be split.  If live migration is successful, the guest
9185 	 * in the source machine will be destroyed and large sptes will be
9186 	 * created in the destination. However, if the guest continues to run
9187 	 * in the source machine (for example if live migration fails), small
9188 	 * sptes will remain around and cause bad performance.
9189 	 *
9190 	 * Scan sptes if dirty logging has been stopped, dropping those
9191 	 * which can be collapsed into a single large-page spte.  Later
9192 	 * page faults will create the large-page sptes.
9193 	 */
9194 	if ((change != KVM_MR_DELETE) &&
9195 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9196 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9197 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9198 
9199 	/*
9200 	 * Set up write protection and/or dirty logging for the new slot.
9201 	 *
9202 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9203 	 * been zapped so no dirty logging staff is needed for old slot. For
9204 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9205 	 * new and it's also covered when dealing with the new slot.
9206 	 *
9207 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9208 	 */
9209 	if (change != KVM_MR_DELETE)
9210 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9211 }
9212 
9213 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9214 {
9215 	kvm_mmu_invalidate_zap_all_pages(kvm);
9216 }
9217 
9218 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9219 				   struct kvm_memory_slot *slot)
9220 {
9221 	kvm_page_track_flush_slot(kvm, slot);
9222 }
9223 
9224 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9225 {
9226 	return (is_guest_mode(vcpu) &&
9227 			kvm_x86_ops->guest_apic_has_interrupt &&
9228 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9229 }
9230 
9231 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9232 {
9233 	if (!list_empty_careful(&vcpu->async_pf.done))
9234 		return true;
9235 
9236 	if (kvm_apic_has_events(vcpu))
9237 		return true;
9238 
9239 	if (vcpu->arch.pv.pv_unhalted)
9240 		return true;
9241 
9242 	if (vcpu->arch.exception.pending)
9243 		return true;
9244 
9245 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9246 	    (vcpu->arch.nmi_pending &&
9247 	     kvm_x86_ops->nmi_allowed(vcpu)))
9248 		return true;
9249 
9250 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9251 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9252 		return true;
9253 
9254 	if (kvm_arch_interrupt_allowed(vcpu) &&
9255 	    (kvm_cpu_has_interrupt(vcpu) ||
9256 	    kvm_guest_apic_has_interrupt(vcpu)))
9257 		return true;
9258 
9259 	if (kvm_hv_has_stimer_pending(vcpu))
9260 		return true;
9261 
9262 	return false;
9263 }
9264 
9265 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9266 {
9267 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9268 }
9269 
9270 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9271 {
9272 	return vcpu->arch.preempted_in_kernel;
9273 }
9274 
9275 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9276 {
9277 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9278 }
9279 
9280 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9281 {
9282 	return kvm_x86_ops->interrupt_allowed(vcpu);
9283 }
9284 
9285 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9286 {
9287 	if (is_64_bit_mode(vcpu))
9288 		return kvm_rip_read(vcpu);
9289 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9290 		     kvm_rip_read(vcpu));
9291 }
9292 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9293 
9294 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9295 {
9296 	return kvm_get_linear_rip(vcpu) == linear_rip;
9297 }
9298 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9299 
9300 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9301 {
9302 	unsigned long rflags;
9303 
9304 	rflags = kvm_x86_ops->get_rflags(vcpu);
9305 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9306 		rflags &= ~X86_EFLAGS_TF;
9307 	return rflags;
9308 }
9309 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9310 
9311 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9312 {
9313 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9314 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9315 		rflags |= X86_EFLAGS_TF;
9316 	kvm_x86_ops->set_rflags(vcpu, rflags);
9317 }
9318 
9319 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9320 {
9321 	__kvm_set_rflags(vcpu, rflags);
9322 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9323 }
9324 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9325 
9326 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9327 {
9328 	int r;
9329 
9330 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9331 	      work->wakeup_all)
9332 		return;
9333 
9334 	r = kvm_mmu_reload(vcpu);
9335 	if (unlikely(r))
9336 		return;
9337 
9338 	if (!vcpu->arch.mmu.direct_map &&
9339 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9340 		return;
9341 
9342 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9343 }
9344 
9345 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9346 {
9347 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9348 }
9349 
9350 static inline u32 kvm_async_pf_next_probe(u32 key)
9351 {
9352 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9353 }
9354 
9355 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9356 {
9357 	u32 key = kvm_async_pf_hash_fn(gfn);
9358 
9359 	while (vcpu->arch.apf.gfns[key] != ~0)
9360 		key = kvm_async_pf_next_probe(key);
9361 
9362 	vcpu->arch.apf.gfns[key] = gfn;
9363 }
9364 
9365 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9366 {
9367 	int i;
9368 	u32 key = kvm_async_pf_hash_fn(gfn);
9369 
9370 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9371 		     (vcpu->arch.apf.gfns[key] != gfn &&
9372 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9373 		key = kvm_async_pf_next_probe(key);
9374 
9375 	return key;
9376 }
9377 
9378 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9379 {
9380 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9381 }
9382 
9383 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9384 {
9385 	u32 i, j, k;
9386 
9387 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9388 	while (true) {
9389 		vcpu->arch.apf.gfns[i] = ~0;
9390 		do {
9391 			j = kvm_async_pf_next_probe(j);
9392 			if (vcpu->arch.apf.gfns[j] == ~0)
9393 				return;
9394 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9395 			/*
9396 			 * k lies cyclically in ]i,j]
9397 			 * |    i.k.j |
9398 			 * |....j i.k.| or  |.k..j i...|
9399 			 */
9400 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9401 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9402 		i = j;
9403 	}
9404 }
9405 
9406 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9407 {
9408 
9409 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9410 				      sizeof(val));
9411 }
9412 
9413 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9414 {
9415 
9416 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9417 				      sizeof(u32));
9418 }
9419 
9420 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9421 				     struct kvm_async_pf *work)
9422 {
9423 	struct x86_exception fault;
9424 
9425 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9426 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9427 
9428 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9429 	    (vcpu->arch.apf.send_user_only &&
9430 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9431 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9432 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9433 		fault.vector = PF_VECTOR;
9434 		fault.error_code_valid = true;
9435 		fault.error_code = 0;
9436 		fault.nested_page_fault = false;
9437 		fault.address = work->arch.token;
9438 		fault.async_page_fault = true;
9439 		kvm_inject_page_fault(vcpu, &fault);
9440 	}
9441 }
9442 
9443 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9444 				 struct kvm_async_pf *work)
9445 {
9446 	struct x86_exception fault;
9447 	u32 val;
9448 
9449 	if (work->wakeup_all)
9450 		work->arch.token = ~0; /* broadcast wakeup */
9451 	else
9452 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9453 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9454 
9455 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9456 	    !apf_get_user(vcpu, &val)) {
9457 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9458 		    vcpu->arch.exception.pending &&
9459 		    vcpu->arch.exception.nr == PF_VECTOR &&
9460 		    !apf_put_user(vcpu, 0)) {
9461 			vcpu->arch.exception.injected = false;
9462 			vcpu->arch.exception.pending = false;
9463 			vcpu->arch.exception.nr = 0;
9464 			vcpu->arch.exception.has_error_code = false;
9465 			vcpu->arch.exception.error_code = 0;
9466 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9467 			fault.vector = PF_VECTOR;
9468 			fault.error_code_valid = true;
9469 			fault.error_code = 0;
9470 			fault.nested_page_fault = false;
9471 			fault.address = work->arch.token;
9472 			fault.async_page_fault = true;
9473 			kvm_inject_page_fault(vcpu, &fault);
9474 		}
9475 	}
9476 	vcpu->arch.apf.halted = false;
9477 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9478 }
9479 
9480 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9481 {
9482 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9483 		return true;
9484 	else
9485 		return kvm_can_do_async_pf(vcpu);
9486 }
9487 
9488 void kvm_arch_start_assignment(struct kvm *kvm)
9489 {
9490 	atomic_inc(&kvm->arch.assigned_device_count);
9491 }
9492 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9493 
9494 void kvm_arch_end_assignment(struct kvm *kvm)
9495 {
9496 	atomic_dec(&kvm->arch.assigned_device_count);
9497 }
9498 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9499 
9500 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9501 {
9502 	return atomic_read(&kvm->arch.assigned_device_count);
9503 }
9504 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9505 
9506 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9507 {
9508 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9509 }
9510 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9511 
9512 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9513 {
9514 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9515 }
9516 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9517 
9518 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9519 {
9520 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9521 }
9522 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9523 
9524 bool kvm_arch_has_irq_bypass(void)
9525 {
9526 	return kvm_x86_ops->update_pi_irte != NULL;
9527 }
9528 
9529 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9530 				      struct irq_bypass_producer *prod)
9531 {
9532 	struct kvm_kernel_irqfd *irqfd =
9533 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9534 
9535 	irqfd->producer = prod;
9536 
9537 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9538 					   prod->irq, irqfd->gsi, 1);
9539 }
9540 
9541 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9542 				      struct irq_bypass_producer *prod)
9543 {
9544 	int ret;
9545 	struct kvm_kernel_irqfd *irqfd =
9546 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9547 
9548 	WARN_ON(irqfd->producer != prod);
9549 	irqfd->producer = NULL;
9550 
9551 	/*
9552 	 * When producer of consumer is unregistered, we change back to
9553 	 * remapped mode, so we can re-use the current implementation
9554 	 * when the irq is masked/disabled or the consumer side (KVM
9555 	 * int this case doesn't want to receive the interrupts.
9556 	*/
9557 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9558 	if (ret)
9559 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9560 		       " fails: %d\n", irqfd->consumer.token, ret);
9561 }
9562 
9563 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9564 				   uint32_t guest_irq, bool set)
9565 {
9566 	if (!kvm_x86_ops->update_pi_irte)
9567 		return -EINVAL;
9568 
9569 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9570 }
9571 
9572 bool kvm_vector_hashing_enabled(void)
9573 {
9574 	return vector_hashing;
9575 }
9576 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9577 
9578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9597