1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 struct kvm_caps kvm_caps __read_mostly = { 96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 97 }; 98 EXPORT_SYMBOL_GPL(kvm_caps); 99 100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 101 102 #define emul_to_vcpu(ctxt) \ 103 ((struct kvm_vcpu *)(ctxt)->vcpu) 104 105 /* EFER defaults: 106 * - enable syscall per default because its emulated by KVM 107 * - enable LME and LMA per default on 64 bit KVM 108 */ 109 #ifdef CONFIG_X86_64 110 static 111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 112 #else 113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 114 #endif 115 116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 117 118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 119 120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 121 122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 124 125 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 126 static void process_nmi(struct kvm_vcpu *vcpu); 127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 128 static void store_regs(struct kvm_vcpu *vcpu); 129 static int sync_regs(struct kvm_vcpu *vcpu); 130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 131 132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 134 135 static DEFINE_MUTEX(vendor_module_lock); 136 struct kvm_x86_ops kvm_x86_ops __read_mostly; 137 138 #define KVM_X86_OP(func) \ 139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 140 *(((struct kvm_x86_ops *)0)->func)); 141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 143 #include <asm/kvm-x86-ops.h> 144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 146 147 static bool __read_mostly ignore_msrs = 0; 148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 149 150 bool __read_mostly report_ignored_msrs = true; 151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 152 EXPORT_SYMBOL_GPL(report_ignored_msrs); 153 154 unsigned int min_timer_period_us = 200; 155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 156 157 static bool __read_mostly kvmclock_periodic_sync = true; 158 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, S_IRUGO); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, S_IRUGO); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 /* 181 * Flags to manipulate forced emulation behavior (any non-zero value will 182 * enable forced emulation). 183 */ 184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 185 static int __read_mostly force_emulation_prefix; 186 module_param(force_emulation_prefix, int, 0644); 187 188 int __read_mostly pi_inject_timer = -1; 189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 190 191 /* Enable/disable PMU virtualization */ 192 bool __read_mostly enable_pmu = true; 193 EXPORT_SYMBOL_GPL(enable_pmu); 194 module_param(enable_pmu, bool, 0444); 195 196 bool __read_mostly eager_page_split = true; 197 module_param(eager_page_split, bool, 0644); 198 199 /* Enable/disable SMT_RSB bug mitigation */ 200 static bool __read_mostly mitigate_smt_rsb; 201 module_param(mitigate_smt_rsb, bool, 0444); 202 203 /* 204 * Restoring the host value for MSRs that are only consumed when running in 205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 206 * returns to userspace, i.e. the kernel can run with the guest's value. 207 */ 208 #define KVM_MAX_NR_USER_RETURN_MSRS 16 209 210 struct kvm_user_return_msrs { 211 struct user_return_notifier urn; 212 bool registered; 213 struct kvm_user_return_msr_values { 214 u64 host; 215 u64 curr; 216 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 217 }; 218 219 u32 __read_mostly kvm_nr_uret_msrs; 220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 222 static struct kvm_user_return_msrs __percpu *user_return_msrs; 223 224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 228 229 u64 __read_mostly host_efer; 230 EXPORT_SYMBOL_GPL(host_efer); 231 232 bool __read_mostly allow_smaller_maxphyaddr = 0; 233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 234 235 bool __read_mostly enable_apicv = true; 236 EXPORT_SYMBOL_GPL(enable_apicv); 237 238 u64 __read_mostly host_xss; 239 EXPORT_SYMBOL_GPL(host_xss); 240 241 u64 __read_mostly host_arch_capabilities; 242 EXPORT_SYMBOL_GPL(host_arch_capabilities); 243 244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 245 KVM_GENERIC_VM_STATS(), 246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 247 STATS_DESC_COUNTER(VM, mmu_pte_write), 248 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 249 STATS_DESC_COUNTER(VM, mmu_flooded), 250 STATS_DESC_COUNTER(VM, mmu_recycled), 251 STATS_DESC_COUNTER(VM, mmu_cache_miss), 252 STATS_DESC_ICOUNTER(VM, mmu_unsync), 253 STATS_DESC_ICOUNTER(VM, pages_4k), 254 STATS_DESC_ICOUNTER(VM, pages_2m), 255 STATS_DESC_ICOUNTER(VM, pages_1g), 256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 259 }; 260 261 const struct kvm_stats_header kvm_vm_stats_header = { 262 .name_size = KVM_STATS_NAME_SIZE, 263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 264 .id_offset = sizeof(struct kvm_stats_header), 265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 267 sizeof(kvm_vm_stats_desc), 268 }; 269 270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 271 KVM_GENERIC_VCPU_STATS(), 272 STATS_DESC_COUNTER(VCPU, pf_taken), 273 STATS_DESC_COUNTER(VCPU, pf_fixed), 274 STATS_DESC_COUNTER(VCPU, pf_emulate), 275 STATS_DESC_COUNTER(VCPU, pf_spurious), 276 STATS_DESC_COUNTER(VCPU, pf_fast), 277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 278 STATS_DESC_COUNTER(VCPU, pf_guest), 279 STATS_DESC_COUNTER(VCPU, tlb_flush), 280 STATS_DESC_COUNTER(VCPU, invlpg), 281 STATS_DESC_COUNTER(VCPU, exits), 282 STATS_DESC_COUNTER(VCPU, io_exits), 283 STATS_DESC_COUNTER(VCPU, mmio_exits), 284 STATS_DESC_COUNTER(VCPU, signal_exits), 285 STATS_DESC_COUNTER(VCPU, irq_window_exits), 286 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 287 STATS_DESC_COUNTER(VCPU, l1d_flush), 288 STATS_DESC_COUNTER(VCPU, halt_exits), 289 STATS_DESC_COUNTER(VCPU, request_irq_exits), 290 STATS_DESC_COUNTER(VCPU, irq_exits), 291 STATS_DESC_COUNTER(VCPU, host_state_reload), 292 STATS_DESC_COUNTER(VCPU, fpu_reload), 293 STATS_DESC_COUNTER(VCPU, insn_emulation), 294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 295 STATS_DESC_COUNTER(VCPU, hypercalls), 296 STATS_DESC_COUNTER(VCPU, irq_injections), 297 STATS_DESC_COUNTER(VCPU, nmi_injections), 298 STATS_DESC_COUNTER(VCPU, req_event), 299 STATS_DESC_COUNTER(VCPU, nested_run), 300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 301 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 302 STATS_DESC_COUNTER(VCPU, preemption_reported), 303 STATS_DESC_COUNTER(VCPU, preemption_other), 304 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 305 STATS_DESC_COUNTER(VCPU, notify_window_exits), 306 }; 307 308 const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315 }; 316 317 u64 __read_mostly host_xcr0; 318 319 static struct kmem_cache *x86_emulator_cache; 320 321 /* 322 * When called, it means the previous get/set msr reached an invalid msr. 323 * Return true if we want to ignore/silent this failed msr access. 324 */ 325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 326 { 327 const char *op = write ? "wrmsr" : "rdmsr"; 328 329 if (ignore_msrs) { 330 if (report_ignored_msrs) 331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 332 op, msr, data); 333 /* Mask the error */ 334 return true; 335 } else { 336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 337 op, msr, data); 338 return false; 339 } 340 } 341 342 static struct kmem_cache *kvm_alloc_emulator_cache(void) 343 { 344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 345 unsigned int size = sizeof(struct x86_emulate_ctxt); 346 347 return kmem_cache_create_usercopy("x86_emulator", size, 348 __alignof__(struct x86_emulate_ctxt), 349 SLAB_ACCOUNT, useroffset, 350 size - useroffset, NULL); 351 } 352 353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 354 355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 356 { 357 int i; 358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 359 vcpu->arch.apf.gfns[i] = ~0; 360 } 361 362 static void kvm_on_user_return(struct user_return_notifier *urn) 363 { 364 unsigned slot; 365 struct kvm_user_return_msrs *msrs 366 = container_of(urn, struct kvm_user_return_msrs, urn); 367 struct kvm_user_return_msr_values *values; 368 unsigned long flags; 369 370 /* 371 * Disabling irqs at this point since the following code could be 372 * interrupted and executed through kvm_arch_hardware_disable() 373 */ 374 local_irq_save(flags); 375 if (msrs->registered) { 376 msrs->registered = false; 377 user_return_notifier_unregister(urn); 378 } 379 local_irq_restore(flags); 380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 381 values = &msrs->values[slot]; 382 if (values->host != values->curr) { 383 wrmsrl(kvm_uret_msrs_list[slot], values->host); 384 values->curr = values->host; 385 } 386 } 387 } 388 389 static int kvm_probe_user_return_msr(u32 msr) 390 { 391 u64 val; 392 int ret; 393 394 preempt_disable(); 395 ret = rdmsrl_safe(msr, &val); 396 if (ret) 397 goto out; 398 ret = wrmsrl_safe(msr, val); 399 out: 400 preempt_enable(); 401 return ret; 402 } 403 404 int kvm_add_user_return_msr(u32 msr) 405 { 406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 407 408 if (kvm_probe_user_return_msr(msr)) 409 return -1; 410 411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 412 return kvm_nr_uret_msrs++; 413 } 414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 415 416 int kvm_find_user_return_msr(u32 msr) 417 { 418 int i; 419 420 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 421 if (kvm_uret_msrs_list[i] == msr) 422 return i; 423 } 424 return -1; 425 } 426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 427 428 static void kvm_user_return_msr_cpu_online(void) 429 { 430 unsigned int cpu = smp_processor_id(); 431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 432 u64 value; 433 int i; 434 435 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 436 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 437 msrs->values[i].host = value; 438 msrs->values[i].curr = value; 439 } 440 } 441 442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 443 { 444 unsigned int cpu = smp_processor_id(); 445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 446 int err; 447 448 value = (value & mask) | (msrs->values[slot].host & ~mask); 449 if (value == msrs->values[slot].curr) 450 return 0; 451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 452 if (err) 453 return 1; 454 455 msrs->values[slot].curr = value; 456 if (!msrs->registered) { 457 msrs->urn.on_user_return = kvm_on_user_return; 458 user_return_notifier_register(&msrs->urn); 459 msrs->registered = true; 460 } 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 464 465 static void drop_user_return_notifiers(void) 466 { 467 unsigned int cpu = smp_processor_id(); 468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 469 470 if (msrs->registered) 471 kvm_on_user_return(&msrs->urn); 472 } 473 474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 475 { 476 return vcpu->arch.apic_base; 477 } 478 479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 480 { 481 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 482 } 483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 484 485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 486 { 487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 491 492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 493 return 1; 494 if (!msr_info->host_initiated) { 495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 496 return 1; 497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 498 return 1; 499 } 500 501 kvm_lapic_set_base(vcpu, msr_info->data); 502 kvm_recalculate_apic_map(vcpu->kvm); 503 return 0; 504 } 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 #define EXCPT_DB 4 546 547 static int exception_type(int vector) 548 { 549 unsigned int mask; 550 551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 552 return EXCPT_INTERRUPT; 553 554 mask = 1 << vector; 555 556 /* 557 * #DBs can be trap-like or fault-like, the caller must check other CPU 558 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 559 */ 560 if (mask & (1 << DB_VECTOR)) 561 return EXCPT_DB; 562 563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 564 return EXCPT_TRAP; 565 566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 567 return EXCPT_ABORT; 568 569 /* Reserved exceptions will result in fault */ 570 return EXCPT_FAULT; 571 } 572 573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 574 struct kvm_queued_exception *ex) 575 { 576 if (!ex->has_payload) 577 return; 578 579 switch (ex->vector) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= ex->payload; 605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = ex->payload; 617 break; 618 } 619 620 ex->has_payload = false; 621 ex->payload = 0; 622 } 623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 626 bool has_error_code, u32 error_code, 627 bool has_payload, unsigned long payload) 628 { 629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 630 631 ex->vector = vector; 632 ex->injected = false; 633 ex->pending = true; 634 ex->has_error_code = has_error_code; 635 ex->error_code = error_code; 636 ex->has_payload = has_payload; 637 ex->payload = payload; 638 } 639 640 /* Forcibly leave the nested mode in cases like a vCPU reset */ 641 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 642 { 643 kvm_x86_ops.nested_ops->leave_nested(vcpu); 644 } 645 646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 647 unsigned nr, bool has_error, u32 error_code, 648 bool has_payload, unsigned long payload, bool reinject) 649 { 650 u32 prev_nr; 651 int class1, class2; 652 653 kvm_make_request(KVM_REQ_EVENT, vcpu); 654 655 /* 656 * If the exception is destined for L2 and isn't being reinjected, 657 * morph it to a VM-Exit if L1 wants to intercept the exception. A 658 * previously injected exception is not checked because it was checked 659 * when it was original queued, and re-checking is incorrect if _L1_ 660 * injected the exception, in which case it's exempt from interception. 661 */ 662 if (!reinject && is_guest_mode(vcpu) && 663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 665 has_payload, payload); 666 return; 667 } 668 669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 670 queue: 671 if (reinject) { 672 /* 673 * On VM-Entry, an exception can be pending if and only 674 * if event injection was blocked by nested_run_pending. 675 * In that case, however, vcpu_enter_guest() requests an 676 * immediate exit, and the guest shouldn't proceed far 677 * enough to need reinjection. 678 */ 679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 680 vcpu->arch.exception.injected = true; 681 if (WARN_ON_ONCE(has_payload)) { 682 /* 683 * A reinjected event has already 684 * delivered its payload. 685 */ 686 has_payload = false; 687 payload = 0; 688 } 689 } else { 690 vcpu->arch.exception.pending = true; 691 vcpu->arch.exception.injected = false; 692 } 693 vcpu->arch.exception.has_error_code = has_error; 694 vcpu->arch.exception.vector = nr; 695 vcpu->arch.exception.error_code = error_code; 696 vcpu->arch.exception.has_payload = has_payload; 697 vcpu->arch.exception.payload = payload; 698 if (!is_guest_mode(vcpu)) 699 kvm_deliver_exception_payload(vcpu, 700 &vcpu->arch.exception); 701 return; 702 } 703 704 /* to check exception */ 705 prev_nr = vcpu->arch.exception.vector; 706 if (prev_nr == DF_VECTOR) { 707 /* triple fault -> shutdown */ 708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 709 return; 710 } 711 class1 = exception_class(prev_nr); 712 class2 = exception_class(nr); 713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 715 /* 716 * Synthesize #DF. Clear the previously injected or pending 717 * exception so as not to incorrectly trigger shutdown. 718 */ 719 vcpu->arch.exception.injected = false; 720 vcpu->arch.exception.pending = false; 721 722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 723 } else { 724 /* replace previous exception with a new one in a hope 725 that instruction re-execution will regenerate lost 726 exception */ 727 goto queue; 728 } 729 } 730 731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 734 } 735 EXPORT_SYMBOL_GPL(kvm_queue_exception); 736 737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 738 { 739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 740 } 741 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 742 743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 744 unsigned long payload) 745 { 746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 747 } 748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 749 750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 751 u32 error_code, unsigned long payload) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, 754 true, payload, false); 755 } 756 757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 758 { 759 if (err) 760 kvm_inject_gp(vcpu, 0); 761 else 762 return kvm_skip_emulated_instruction(vcpu); 763 764 return 1; 765 } 766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 767 768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 769 { 770 if (err) { 771 kvm_inject_gp(vcpu, 0); 772 return 1; 773 } 774 775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 776 EMULTYPE_COMPLETE_USER_EXIT); 777 } 778 779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 780 { 781 ++vcpu->stat.pf_guest; 782 783 /* 784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 785 * whether or not L1 wants to intercept "regular" #PF. 786 */ 787 if (is_guest_mode(vcpu) && fault->async_page_fault) 788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 789 true, fault->error_code, 790 true, fault->address); 791 else 792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 793 fault->address); 794 } 795 796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 797 struct x86_exception *fault) 798 { 799 struct kvm_mmu *fault_mmu; 800 WARN_ON_ONCE(fault->vector != PF_VECTOR); 801 802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 803 vcpu->arch.walk_mmu; 804 805 /* 806 * Invalidate the TLB entry for the faulting address, if it exists, 807 * else the access will fault indefinitely (and to emulate hardware). 808 */ 809 if ((fault->error_code & PFERR_PRESENT_MASK) && 810 !(fault->error_code & PFERR_RSVD_MASK)) 811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 812 KVM_MMU_ROOT_CURRENT); 813 814 fault_mmu->inject_page_fault(vcpu, fault); 815 } 816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 817 818 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 819 { 820 atomic_inc(&vcpu->arch.nmi_queued); 821 kvm_make_request(KVM_REQ_NMI, vcpu); 822 } 823 824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 827 } 828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 829 830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 831 { 832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 833 } 834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 835 836 /* 837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 838 * a #GP and return false. 839 */ 840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 841 { 842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 843 return true; 844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 845 return false; 846 } 847 848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 849 { 850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 851 return true; 852 853 kvm_queue_exception(vcpu, UD_VECTOR); 854 return false; 855 } 856 EXPORT_SYMBOL_GPL(kvm_require_dr); 857 858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 859 { 860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 861 } 862 863 /* 864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 865 */ 866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 867 { 868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 870 gpa_t real_gpa; 871 int i; 872 int ret; 873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 874 875 /* 876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 877 * to an L1 GPA. 878 */ 879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 881 if (real_gpa == INVALID_GPA) 882 return 0; 883 884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 886 cr3 & GENMASK(11, 5), sizeof(pdpte)); 887 if (ret < 0) 888 return 0; 889 890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 891 if ((pdpte[i] & PT_PRESENT_MASK) && 892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 893 return 0; 894 } 895 } 896 897 /* 898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 899 * Shadow page roots need to be reconstructed instead. 900 */ 901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 903 904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 907 vcpu->arch.pdptrs_from_userspace = false; 908 909 return 1; 910 } 911 EXPORT_SYMBOL_GPL(load_pdptrs); 912 913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 914 { 915 #ifdef CONFIG_X86_64 916 if (cr0 & 0xffffffff00000000UL) 917 return false; 918 #endif 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return false; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return false; 925 926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 927 } 928 929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 930 { 931 /* 932 * CR0.WP is incorporated into the MMU role, but only for non-nested, 933 * indirect shadow MMUs. If paging is disabled, no updates are needed 934 * as there are no permission bits to emulate. If TDP is enabled, the 935 * MMU's metadata needs to be updated, e.g. so that emulating guest 936 * translations does the right thing, but there's no need to unload the 937 * root as CR0.WP doesn't affect SPTEs. 938 */ 939 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 940 if (!(cr0 & X86_CR0_PG)) 941 return; 942 943 if (tdp_enabled) { 944 kvm_init_mmu(vcpu); 945 return; 946 } 947 } 948 949 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 950 kvm_clear_async_pf_completion_queue(vcpu); 951 kvm_async_pf_hash_reset(vcpu); 952 953 /* 954 * Clearing CR0.PG is defined to flush the TLB from the guest's 955 * perspective. 956 */ 957 if (!(cr0 & X86_CR0_PG)) 958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 959 } 960 961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 962 kvm_mmu_reset_context(vcpu); 963 964 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 965 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 968 } 969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 970 971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 972 { 973 unsigned long old_cr0 = kvm_read_cr0(vcpu); 974 975 if (!kvm_is_valid_cr0(vcpu, cr0)) 976 return 1; 977 978 cr0 |= X86_CR0_ET; 979 980 /* Write to CR0 reserved bits are ignored, even on Intel. */ 981 cr0 &= ~CR0_RESERVED_BITS; 982 983 #ifdef CONFIG_X86_64 984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 985 (cr0 & X86_CR0_PG)) { 986 int cs_db, cs_l; 987 988 if (!is_pae(vcpu)) 989 return 1; 990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 991 if (cs_l) 992 return 1; 993 } 994 #endif 995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 998 return 1; 999 1000 if (!(cr0 & X86_CR0_PG) && 1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1002 return 1; 1003 1004 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1005 1006 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1007 1008 return 0; 1009 } 1010 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1011 1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1013 { 1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1015 } 1016 EXPORT_SYMBOL_GPL(kvm_lmsw); 1017 1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1019 { 1020 if (vcpu->arch.guest_state_protected) 1021 return; 1022 1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1027 1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1031 } 1032 1033 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1034 vcpu->arch.pkru != vcpu->arch.host_pkru && 1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1037 write_pkru(vcpu->arch.pkru); 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1040 1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1042 { 1043 if (vcpu->arch.guest_state_protected) 1044 return; 1045 1046 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1049 vcpu->arch.pkru = rdpkru(); 1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1051 write_pkru(vcpu->arch.host_pkru); 1052 } 1053 1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1055 1056 if (vcpu->arch.xcr0 != host_xcr0) 1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1058 1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1060 vcpu->arch.ia32_xss != host_xss) 1061 wrmsrl(MSR_IA32_XSS, host_xss); 1062 } 1063 1064 } 1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1066 1067 #ifdef CONFIG_X86_64 1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1069 { 1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1071 } 1072 #endif 1073 1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1075 { 1076 u64 xcr0 = xcr; 1077 u64 old_xcr0 = vcpu->arch.xcr0; 1078 u64 valid_bits; 1079 1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1081 if (index != XCR_XFEATURE_ENABLED_MASK) 1082 return 1; 1083 if (!(xcr0 & XFEATURE_MASK_FP)) 1084 return 1; 1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1086 return 1; 1087 1088 /* 1089 * Do not allow the guest to set bits that we do not support 1090 * saving. However, xcr0 bit 0 is always set, even if the 1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1092 */ 1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1094 if (xcr0 & ~valid_bits) 1095 return 1; 1096 1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1098 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1099 return 1; 1100 1101 if (xcr0 & XFEATURE_MASK_AVX512) { 1102 if (!(xcr0 & XFEATURE_MASK_YMM)) 1103 return 1; 1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1105 return 1; 1106 } 1107 1108 if ((xcr0 & XFEATURE_MASK_XTILE) && 1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1110 return 1; 1111 1112 vcpu->arch.xcr0 = xcr0; 1113 1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1115 kvm_update_cpuid_runtime(vcpu); 1116 return 0; 1117 } 1118 1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1120 { 1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1124 kvm_inject_gp(vcpu, 0); 1125 return 1; 1126 } 1127 1128 return kvm_skip_emulated_instruction(vcpu); 1129 } 1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1131 1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1133 { 1134 if (cr4 & cr4_reserved_bits) 1135 return false; 1136 1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1138 return false; 1139 1140 return true; 1141 } 1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1143 1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1145 { 1146 return __kvm_is_valid_cr4(vcpu, cr4) && 1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1148 } 1149 1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1151 { 1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1153 kvm_mmu_reset_context(vcpu); 1154 1155 /* 1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1157 * according to the SDM; however, stale prev_roots could be reused 1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1161 * so fall through. 1162 */ 1163 if (!tdp_enabled && 1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1165 kvm_mmu_unload(vcpu); 1166 1167 /* 1168 * The TLB has to be flushed for all PCIDs if any of the following 1169 * (architecturally required) changes happen: 1170 * - CR4.PCIDE is changed from 1 to 0 1171 * - CR4.PGE is toggled 1172 * 1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1174 */ 1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1178 1179 /* 1180 * The TLB has to be flushed for the current PCID if any of the 1181 * following (architecturally required) changes happen: 1182 * - CR4.SMEP is changed from 0 to 1 1183 * - CR4.PAE is toggled 1184 */ 1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1188 1189 } 1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1191 1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1193 { 1194 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1195 1196 if (!kvm_is_valid_cr4(vcpu, cr4)) 1197 return 1; 1198 1199 if (is_long_mode(vcpu)) { 1200 if (!(cr4 & X86_CR4_PAE)) 1201 return 1; 1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1203 return 1; 1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1207 return 1; 1208 1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1212 return 1; 1213 } 1214 1215 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1216 1217 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1222 1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1224 { 1225 struct kvm_mmu *mmu = vcpu->arch.mmu; 1226 unsigned long roots_to_free = 0; 1227 int i; 1228 1229 /* 1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1232 * also via the emulator. KVM's TDP page tables are not in the scope of 1233 * the invalidation, but the guest's TLB entries need to be flushed as 1234 * the CPU may have cached entries in its TLB for the target PCID. 1235 */ 1236 if (unlikely(tdp_enabled)) { 1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1238 return; 1239 } 1240 1241 /* 1242 * If neither the current CR3 nor any of the prev_roots use the given 1243 * PCID, then nothing needs to be done here because a resync will 1244 * happen anyway before switching to any other CR3. 1245 */ 1246 if (kvm_get_active_pcid(vcpu) == pcid) { 1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1249 } 1250 1251 /* 1252 * If PCID is disabled, there is no need to free prev_roots even if the 1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1254 * with PCIDE=0. 1255 */ 1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1257 return; 1258 1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1262 1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1264 } 1265 1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1267 { 1268 bool skip_tlb_flush = false; 1269 unsigned long pcid = 0; 1270 #ifdef CONFIG_X86_64 1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1273 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1274 pcid = cr3 & X86_CR3_PCID_MASK; 1275 } 1276 #endif 1277 1278 /* PDPTRs are always reloaded for PAE paging. */ 1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1280 goto handle_tlb_flush; 1281 1282 /* 1283 * Do not condition the GPA check on long mode, this helper is used to 1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1285 * the current vCPU mode is accurate. 1286 */ 1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1288 return 1; 1289 1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1291 return 1; 1292 1293 if (cr3 != kvm_read_cr3(vcpu)) 1294 kvm_mmu_new_pgd(vcpu, cr3); 1295 1296 vcpu->arch.cr3 = cr3; 1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1299 1300 handle_tlb_flush: 1301 /* 1302 * A load of CR3 that flushes the TLB flushes only the current PCID, 1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1304 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1305 * and it's impossible to use a non-zero PCID when PCID is disabled, 1306 * i.e. only PCID=0 can be relevant. 1307 */ 1308 if (!skip_tlb_flush) 1309 kvm_invalidate_pcid(vcpu, pcid); 1310 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1314 1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1316 { 1317 if (cr8 & CR8_RESERVED_BITS) 1318 return 1; 1319 if (lapic_in_kernel(vcpu)) 1320 kvm_lapic_set_tpr(vcpu, cr8); 1321 else 1322 vcpu->arch.cr8 = cr8; 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1326 1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1328 { 1329 if (lapic_in_kernel(vcpu)) 1330 return kvm_lapic_get_cr8(vcpu); 1331 else 1332 return vcpu->arch.cr8; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1335 1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1337 { 1338 int i; 1339 1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1341 for (i = 0; i < KVM_NR_DB_REGS; i++) 1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1343 } 1344 } 1345 1346 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1347 { 1348 unsigned long dr7; 1349 1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1351 dr7 = vcpu->arch.guest_debug_dr7; 1352 else 1353 dr7 = vcpu->arch.dr7; 1354 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1356 if (dr7 & DR7_BP_EN_MASK) 1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1360 1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1362 { 1363 u64 fixed = DR6_FIXED_1; 1364 1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1366 fixed |= DR6_RTM; 1367 1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1369 fixed |= DR6_BUS_LOCK; 1370 return fixed; 1371 } 1372 1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1374 { 1375 size_t size = ARRAY_SIZE(vcpu->arch.db); 1376 1377 switch (dr) { 1378 case 0 ... 3: 1379 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1381 vcpu->arch.eff_db[dr] = val; 1382 break; 1383 case 4: 1384 case 6: 1385 if (!kvm_dr6_valid(val)) 1386 return 1; /* #GP */ 1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1388 break; 1389 case 5: 1390 default: /* 7 */ 1391 if (!kvm_dr7_valid(val)) 1392 return 1; /* #GP */ 1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1394 kvm_update_dr7(vcpu); 1395 break; 1396 } 1397 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_set_dr); 1401 1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1403 { 1404 size_t size = ARRAY_SIZE(vcpu->arch.db); 1405 1406 switch (dr) { 1407 case 0 ... 3: 1408 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1409 break; 1410 case 4: 1411 case 6: 1412 *val = vcpu->arch.dr6; 1413 break; 1414 case 5: 1415 default: /* 7 */ 1416 *val = vcpu->arch.dr7; 1417 break; 1418 } 1419 } 1420 EXPORT_SYMBOL_GPL(kvm_get_dr); 1421 1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1423 { 1424 u32 ecx = kvm_rcx_read(vcpu); 1425 u64 data; 1426 1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1428 kvm_inject_gp(vcpu, 0); 1429 return 1; 1430 } 1431 1432 kvm_rax_write(vcpu, (u32)data); 1433 kvm_rdx_write(vcpu, data >> 32); 1434 return kvm_skip_emulated_instruction(vcpu); 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1437 1438 /* 1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1443 * MSRs that KVM emulates without strictly requiring host support. 1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1446 * msrs_to_save and emulated_msrs. 1447 */ 1448 1449 static const u32 msrs_to_save_base[] = { 1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1451 MSR_STAR, 1452 #ifdef CONFIG_X86_64 1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1454 #endif 1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1464 MSR_IA32_UMWAIT_CONTROL, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static const u32 msrs_to_save_pmu[] = { 1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1475 1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1485 1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1488 1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1494 1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1498 }; 1499 1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1501 ARRAY_SIZE(msrs_to_save_pmu)]; 1502 static unsigned num_msrs_to_save; 1503 1504 static const u32 emulated_msrs_all[] = { 1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1512 HV_X64_MSR_RESET, 1513 HV_X64_MSR_VP_INDEX, 1514 HV_X64_MSR_VP_RUNTIME, 1515 HV_X64_MSR_SCONTROL, 1516 HV_X64_MSR_STIMER0_CONFIG, 1517 HV_X64_MSR_VP_ASSIST_PAGE, 1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1520 HV_X64_MSR_SYNDBG_OPTIONS, 1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1524 1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1527 1528 MSR_IA32_TSC_ADJUST, 1529 MSR_IA32_TSC_DEADLINE, 1530 MSR_IA32_ARCH_CAPABILITIES, 1531 MSR_IA32_PERF_CAPABILITIES, 1532 MSR_IA32_MISC_ENABLE, 1533 MSR_IA32_MCG_STATUS, 1534 MSR_IA32_MCG_CTL, 1535 MSR_IA32_MCG_EXT_CTL, 1536 MSR_IA32_SMBASE, 1537 MSR_SMI_COUNT, 1538 MSR_PLATFORM_INFO, 1539 MSR_MISC_FEATURES_ENABLES, 1540 MSR_AMD64_VIRT_SPEC_CTRL, 1541 MSR_AMD64_TSC_RATIO, 1542 MSR_IA32_POWER_CTL, 1543 MSR_IA32_UCODE_REV, 1544 1545 /* 1546 * KVM always supports the "true" VMX control MSRs, even if the host 1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1548 * doesn't strictly require them to exist in the host (ignoring that 1549 * KVM would refuse to load in the first place if the core set of MSRs 1550 * aren't supported). 1551 */ 1552 MSR_IA32_VMX_BASIC, 1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1557 MSR_IA32_VMX_MISC, 1558 MSR_IA32_VMX_CR0_FIXED0, 1559 MSR_IA32_VMX_CR4_FIXED0, 1560 MSR_IA32_VMX_VMCS_ENUM, 1561 MSR_IA32_VMX_PROCBASED_CTLS2, 1562 MSR_IA32_VMX_EPT_VPID_CAP, 1563 MSR_IA32_VMX_VMFUNC, 1564 1565 MSR_K7_HWCR, 1566 MSR_KVM_POLL_CONTROL, 1567 }; 1568 1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1570 static unsigned num_emulated_msrs; 1571 1572 /* 1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1575 * feature MSRs, but are handled separately to allow expedited lookups. 1576 */ 1577 static const u32 msr_based_features_all_except_vmx[] = { 1578 MSR_AMD64_DE_CFG, 1579 MSR_IA32_UCODE_REV, 1580 MSR_IA32_ARCH_CAPABILITIES, 1581 MSR_IA32_PERF_CAPABILITIES, 1582 }; 1583 1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1586 static unsigned int num_msr_based_features; 1587 1588 /* 1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1590 * patch, are immutable once the vCPU model is defined. 1591 */ 1592 static bool kvm_is_immutable_feature_msr(u32 msr) 1593 { 1594 int i; 1595 1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1597 return true; 1598 1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1600 if (msr == msr_based_features_all_except_vmx[i]) 1601 return msr != MSR_IA32_UCODE_REV; 1602 } 1603 1604 return false; 1605 } 1606 1607 /* 1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1609 * does not yet virtualize. These include: 1610 * 10 - MISC_PACKAGE_CTRLS 1611 * 11 - ENERGY_FILTERING_CTL 1612 * 12 - DOITM 1613 * 18 - FB_CLEAR_CTRL 1614 * 21 - XAPIC_DISABLE_STATUS 1615 * 23 - OVERCLOCKING_STATUS 1616 */ 1617 1618 #define KVM_SUPPORTED_ARCH_CAP \ 1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1624 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR) 1625 1626 static u64 kvm_get_arch_capabilities(void) 1627 { 1628 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1629 1630 /* 1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1632 * the nested hypervisor runs with NX huge pages. If it is not, 1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1634 * L1 guests, so it need not worry about its own (L2) guests. 1635 */ 1636 data |= ARCH_CAP_PSCHANGE_MC_NO; 1637 1638 /* 1639 * If we're doing cache flushes (either "always" or "cond") 1640 * we will do one whenever the guest does a vmlaunch/vmresume. 1641 * If an outer hypervisor is doing the cache flush for us 1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1643 * capability to the guest too, and if EPT is disabled we're not 1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1645 * require a nested hypervisor to do a flush of its own. 1646 */ 1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1649 1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1651 data |= ARCH_CAP_RDCL_NO; 1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1653 data |= ARCH_CAP_SSB_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1655 data |= ARCH_CAP_MDS_NO; 1656 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1657 data |= ARCH_CAP_RFDS_NO; 1658 1659 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1660 /* 1661 * If RTM=0 because the kernel has disabled TSX, the host might 1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1663 * and therefore knows that there cannot be TAA) but keep 1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1665 * and we want to allow migrating those guests to tsx=off hosts. 1666 */ 1667 data &= ~ARCH_CAP_TAA_NO; 1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1669 data |= ARCH_CAP_TAA_NO; 1670 } else { 1671 /* 1672 * Nothing to do here; we emulate TSX_CTRL if present on the 1673 * host so the guest can choose between disabling TSX or 1674 * using VERW to clear CPU buffers. 1675 */ 1676 } 1677 1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1679 data |= ARCH_CAP_GDS_NO; 1680 1681 return data; 1682 } 1683 1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1685 { 1686 switch (msr->index) { 1687 case MSR_IA32_ARCH_CAPABILITIES: 1688 msr->data = kvm_get_arch_capabilities(); 1689 break; 1690 case MSR_IA32_PERF_CAPABILITIES: 1691 msr->data = kvm_caps.supported_perf_cap; 1692 break; 1693 case MSR_IA32_UCODE_REV: 1694 rdmsrl_safe(msr->index, &msr->data); 1695 break; 1696 default: 1697 return static_call(kvm_x86_get_msr_feature)(msr); 1698 } 1699 return 0; 1700 } 1701 1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1703 { 1704 struct kvm_msr_entry msr; 1705 int r; 1706 1707 msr.index = index; 1708 r = kvm_get_msr_feature(&msr); 1709 1710 if (r == KVM_MSR_RET_INVALID) { 1711 /* Unconditionally clear the output for simplicity */ 1712 *data = 0; 1713 if (kvm_msr_ignored_check(index, 0, false)) 1714 r = 0; 1715 } 1716 1717 if (r) 1718 return r; 1719 1720 *data = msr.data; 1721 1722 return 0; 1723 } 1724 1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1726 { 1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1728 return false; 1729 1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1731 return false; 1732 1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1734 return false; 1735 1736 if (efer & (EFER_LME | EFER_LMA) && 1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1738 return false; 1739 1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1741 return false; 1742 1743 return true; 1744 1745 } 1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1747 { 1748 if (efer & efer_reserved_bits) 1749 return false; 1750 1751 return __kvm_valid_efer(vcpu, efer); 1752 } 1753 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1754 1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1756 { 1757 u64 old_efer = vcpu->arch.efer; 1758 u64 efer = msr_info->data; 1759 int r; 1760 1761 if (efer & efer_reserved_bits) 1762 return 1; 1763 1764 if (!msr_info->host_initiated) { 1765 if (!__kvm_valid_efer(vcpu, efer)) 1766 return 1; 1767 1768 if (is_paging(vcpu) && 1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1770 return 1; 1771 } 1772 1773 efer &= ~EFER_LMA; 1774 efer |= vcpu->arch.efer & EFER_LMA; 1775 1776 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1777 if (r) { 1778 WARN_ON(r > 0); 1779 return r; 1780 } 1781 1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1783 kvm_mmu_reset_context(vcpu); 1784 1785 return 0; 1786 } 1787 1788 void kvm_enable_efer_bits(u64 mask) 1789 { 1790 efer_reserved_bits &= ~mask; 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1793 1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1795 { 1796 struct kvm_x86_msr_filter *msr_filter; 1797 struct msr_bitmap_range *ranges; 1798 struct kvm *kvm = vcpu->kvm; 1799 bool allowed; 1800 int idx; 1801 u32 i; 1802 1803 /* x2APIC MSRs do not support filtering. */ 1804 if (index >= 0x800 && index <= 0x8ff) 1805 return true; 1806 1807 idx = srcu_read_lock(&kvm->srcu); 1808 1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1810 if (!msr_filter) { 1811 allowed = true; 1812 goto out; 1813 } 1814 1815 allowed = msr_filter->default_allow; 1816 ranges = msr_filter->ranges; 1817 1818 for (i = 0; i < msr_filter->count; i++) { 1819 u32 start = ranges[i].base; 1820 u32 end = start + ranges[i].nmsrs; 1821 u32 flags = ranges[i].flags; 1822 unsigned long *bitmap = ranges[i].bitmap; 1823 1824 if ((index >= start) && (index < end) && (flags & type)) { 1825 allowed = test_bit(index - start, bitmap); 1826 break; 1827 } 1828 } 1829 1830 out: 1831 srcu_read_unlock(&kvm->srcu, idx); 1832 1833 return allowed; 1834 } 1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1836 1837 /* 1838 * Write @data into the MSR specified by @index. Select MSR specific fault 1839 * checks are bypassed if @host_initiated is %true. 1840 * Returns 0 on success, non-0 otherwise. 1841 * Assumes vcpu_load() was already called. 1842 */ 1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1844 bool host_initiated) 1845 { 1846 struct msr_data msr; 1847 1848 switch (index) { 1849 case MSR_FS_BASE: 1850 case MSR_GS_BASE: 1851 case MSR_KERNEL_GS_BASE: 1852 case MSR_CSTAR: 1853 case MSR_LSTAR: 1854 if (is_noncanonical_address(data, vcpu)) 1855 return 1; 1856 break; 1857 case MSR_IA32_SYSENTER_EIP: 1858 case MSR_IA32_SYSENTER_ESP: 1859 /* 1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1861 * non-canonical address is written on Intel but not on 1862 * AMD (which ignores the top 32-bits, because it does 1863 * not implement 64-bit SYSENTER). 1864 * 1865 * 64-bit code should hence be able to write a non-canonical 1866 * value on AMD. Making the address canonical ensures that 1867 * vmentry does not fail on Intel after writing a non-canonical 1868 * value, and that something deterministic happens if the guest 1869 * invokes 64-bit SYSENTER. 1870 */ 1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1872 break; 1873 case MSR_TSC_AUX: 1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1875 return 1; 1876 1877 if (!host_initiated && 1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1880 return 1; 1881 1882 /* 1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1884 * incomplete and conflicting architectural behavior. Current 1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1886 * reserved and always read as zeros. Enforce Intel's reserved 1887 * bits check if and only if the guest CPU is Intel, and clear 1888 * the bits in all other cases. This ensures cross-vendor 1889 * migration will provide consistent behavior for the guest. 1890 */ 1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1892 return 1; 1893 1894 data = (u32)data; 1895 break; 1896 } 1897 1898 msr.data = data; 1899 msr.index = index; 1900 msr.host_initiated = host_initiated; 1901 1902 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1903 } 1904 1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1906 u32 index, u64 data, bool host_initiated) 1907 { 1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1909 1910 if (ret == KVM_MSR_RET_INVALID) 1911 if (kvm_msr_ignored_check(index, data, true)) 1912 ret = 0; 1913 1914 return ret; 1915 } 1916 1917 /* 1918 * Read the MSR specified by @index into @data. Select MSR specific fault 1919 * checks are bypassed if @host_initiated is %true. 1920 * Returns 0 on success, non-0 otherwise. 1921 * Assumes vcpu_load() was already called. 1922 */ 1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1924 bool host_initiated) 1925 { 1926 struct msr_data msr; 1927 int ret; 1928 1929 switch (index) { 1930 case MSR_TSC_AUX: 1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1932 return 1; 1933 1934 if (!host_initiated && 1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1937 return 1; 1938 break; 1939 } 1940 1941 msr.index = index; 1942 msr.host_initiated = host_initiated; 1943 1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1945 if (!ret) 1946 *data = msr.data; 1947 return ret; 1948 } 1949 1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1951 u32 index, u64 *data, bool host_initiated) 1952 { 1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1954 1955 if (ret == KVM_MSR_RET_INVALID) { 1956 /* Unconditionally clear *data for simplicity */ 1957 *data = 0; 1958 if (kvm_msr_ignored_check(index, 0, false)) 1959 ret = 0; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1966 { 1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1968 return KVM_MSR_RET_FILTERED; 1969 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1970 } 1971 1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1973 { 1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1975 return KVM_MSR_RET_FILTERED; 1976 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1977 } 1978 1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1980 { 1981 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1982 } 1983 EXPORT_SYMBOL_GPL(kvm_get_msr); 1984 1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1986 { 1987 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_set_msr); 1990 1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1992 { 1993 if (!vcpu->run->msr.error) { 1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1996 } 1997 } 1998 1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2000 { 2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2002 } 2003 2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2005 { 2006 complete_userspace_rdmsr(vcpu); 2007 return complete_emulated_msr_access(vcpu); 2008 } 2009 2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2011 { 2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2013 } 2014 2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2016 { 2017 complete_userspace_rdmsr(vcpu); 2018 return complete_fast_msr_access(vcpu); 2019 } 2020 2021 static u64 kvm_msr_reason(int r) 2022 { 2023 switch (r) { 2024 case KVM_MSR_RET_INVALID: 2025 return KVM_MSR_EXIT_REASON_UNKNOWN; 2026 case KVM_MSR_RET_FILTERED: 2027 return KVM_MSR_EXIT_REASON_FILTER; 2028 default: 2029 return KVM_MSR_EXIT_REASON_INVAL; 2030 } 2031 } 2032 2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2034 u32 exit_reason, u64 data, 2035 int (*completion)(struct kvm_vcpu *vcpu), 2036 int r) 2037 { 2038 u64 msr_reason = kvm_msr_reason(r); 2039 2040 /* Check if the user wanted to know about this MSR fault */ 2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2042 return 0; 2043 2044 vcpu->run->exit_reason = exit_reason; 2045 vcpu->run->msr.error = 0; 2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2047 vcpu->run->msr.reason = msr_reason; 2048 vcpu->run->msr.index = index; 2049 vcpu->run->msr.data = data; 2050 vcpu->arch.complete_userspace_io = completion; 2051 2052 return 1; 2053 } 2054 2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2056 { 2057 u32 ecx = kvm_rcx_read(vcpu); 2058 u64 data; 2059 int r; 2060 2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2062 2063 if (!r) { 2064 trace_kvm_msr_read(ecx, data); 2065 2066 kvm_rax_write(vcpu, data & -1u); 2067 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2068 } else { 2069 /* MSR read failed? See if we should ask user space */ 2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2071 complete_fast_rdmsr, r)) 2072 return 0; 2073 trace_kvm_msr_read_ex(ecx); 2074 } 2075 2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2079 2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2081 { 2082 u32 ecx = kvm_rcx_read(vcpu); 2083 u64 data = kvm_read_edx_eax(vcpu); 2084 int r; 2085 2086 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2087 2088 if (!r) { 2089 trace_kvm_msr_write(ecx, data); 2090 } else { 2091 /* MSR write failed? See if we should ask user space */ 2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2093 complete_fast_msr_access, r)) 2094 return 0; 2095 /* Signal all other negative errors to userspace */ 2096 if (r < 0) 2097 return r; 2098 trace_kvm_msr_write_ex(ecx, data); 2099 } 2100 2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2102 } 2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2104 2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2106 { 2107 return kvm_skip_emulated_instruction(vcpu); 2108 } 2109 2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2111 { 2112 /* Treat an INVD instruction as a NOP and just skip it. */ 2113 return kvm_emulate_as_nop(vcpu); 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2116 2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2118 { 2119 kvm_queue_exception(vcpu, UD_VECTOR); 2120 return 1; 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2123 2124 2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2126 { 2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2129 return kvm_handle_invalid_op(vcpu); 2130 2131 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2132 return kvm_emulate_as_nop(vcpu); 2133 } 2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2135 { 2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2137 } 2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2139 2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2141 { 2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2143 } 2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2145 2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2147 { 2148 xfer_to_guest_mode_prepare(); 2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2150 xfer_to_guest_mode_work_pending(); 2151 } 2152 2153 /* 2154 * The fast path for frequent and performance sensitive wrmsr emulation, 2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2158 * other cases which must be called after interrupts are enabled on the host. 2159 */ 2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2161 { 2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2163 return 1; 2164 2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2168 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2170 2171 return 1; 2172 } 2173 2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2175 { 2176 if (!kvm_can_use_hv_timer(vcpu)) 2177 return 1; 2178 2179 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2180 return 0; 2181 } 2182 2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2184 { 2185 u32 msr = kvm_rcx_read(vcpu); 2186 u64 data; 2187 fastpath_t ret = EXIT_FASTPATH_NONE; 2188 2189 kvm_vcpu_srcu_read_lock(vcpu); 2190 2191 switch (msr) { 2192 case APIC_BASE_MSR + (APIC_ICR >> 4): 2193 data = kvm_read_edx_eax(vcpu); 2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2195 kvm_skip_emulated_instruction(vcpu); 2196 ret = EXIT_FASTPATH_EXIT_HANDLED; 2197 } 2198 break; 2199 case MSR_IA32_TSC_DEADLINE: 2200 data = kvm_read_edx_eax(vcpu); 2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2202 kvm_skip_emulated_instruction(vcpu); 2203 ret = EXIT_FASTPATH_REENTER_GUEST; 2204 } 2205 break; 2206 default: 2207 break; 2208 } 2209 2210 if (ret != EXIT_FASTPATH_NONE) 2211 trace_kvm_msr_write(msr, data); 2212 2213 kvm_vcpu_srcu_read_unlock(vcpu); 2214 2215 return ret; 2216 } 2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2218 2219 /* 2220 * Adapt set_msr() to msr_io()'s calling convention 2221 */ 2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2223 { 2224 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2225 } 2226 2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2228 { 2229 u64 val; 2230 2231 /* 2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2233 * not support modifying the guest vCPU model on the fly, e.g. changing 2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2235 * writes of the same value, e.g. to allow userspace to blindly stuff 2236 * all MSRs when emulating RESET. 2237 */ 2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2239 if (do_get_msr(vcpu, index, &val) || *data != val) 2240 return -EINVAL; 2241 2242 return 0; 2243 } 2244 2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2246 } 2247 2248 #ifdef CONFIG_X86_64 2249 struct pvclock_clock { 2250 int vclock_mode; 2251 u64 cycle_last; 2252 u64 mask; 2253 u32 mult; 2254 u32 shift; 2255 u64 base_cycles; 2256 u64 offset; 2257 }; 2258 2259 struct pvclock_gtod_data { 2260 seqcount_t seq; 2261 2262 struct pvclock_clock clock; /* extract of a clocksource struct */ 2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2264 2265 ktime_t offs_boot; 2266 u64 wall_time_sec; 2267 }; 2268 2269 static struct pvclock_gtod_data pvclock_gtod_data; 2270 2271 static void update_pvclock_gtod(struct timekeeper *tk) 2272 { 2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2274 2275 write_seqcount_begin(&vdata->seq); 2276 2277 /* copy pvclock gtod data */ 2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2280 vdata->clock.mask = tk->tkr_mono.mask; 2281 vdata->clock.mult = tk->tkr_mono.mult; 2282 vdata->clock.shift = tk->tkr_mono.shift; 2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2284 vdata->clock.offset = tk->tkr_mono.base; 2285 2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2288 vdata->raw_clock.mask = tk->tkr_raw.mask; 2289 vdata->raw_clock.mult = tk->tkr_raw.mult; 2290 vdata->raw_clock.shift = tk->tkr_raw.shift; 2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2292 vdata->raw_clock.offset = tk->tkr_raw.base; 2293 2294 vdata->wall_time_sec = tk->xtime_sec; 2295 2296 vdata->offs_boot = tk->offs_boot; 2297 2298 write_seqcount_end(&vdata->seq); 2299 } 2300 2301 static s64 get_kvmclock_base_ns(void) 2302 { 2303 /* Count up from boot time, but with the frequency of the raw clock. */ 2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2305 } 2306 #else 2307 static s64 get_kvmclock_base_ns(void) 2308 { 2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2310 return ktime_get_boottime_ns(); 2311 } 2312 #endif 2313 2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2315 { 2316 int version; 2317 int r; 2318 struct pvclock_wall_clock wc; 2319 u32 wc_sec_hi; 2320 u64 wall_nsec; 2321 2322 if (!wall_clock) 2323 return; 2324 2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2326 if (r) 2327 return; 2328 2329 if (version & 1) 2330 ++version; /* first time write, random junk */ 2331 2332 ++version; 2333 2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2335 return; 2336 2337 /* 2338 * The guest calculates current wall clock time by adding 2339 * system time (updated by kvm_guest_time_update below) to the 2340 * wall clock specified here. We do the reverse here. 2341 */ 2342 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2343 2344 wc.nsec = do_div(wall_nsec, 1000000000); 2345 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2346 wc.version = version; 2347 2348 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2349 2350 if (sec_hi_ofs) { 2351 wc_sec_hi = wall_nsec >> 32; 2352 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2353 &wc_sec_hi, sizeof(wc_sec_hi)); 2354 } 2355 2356 version++; 2357 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2358 } 2359 2360 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2361 bool old_msr, bool host_initiated) 2362 { 2363 struct kvm_arch *ka = &vcpu->kvm->arch; 2364 2365 if (vcpu->vcpu_id == 0 && !host_initiated) { 2366 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2367 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2368 2369 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2370 } 2371 2372 vcpu->arch.time = system_time; 2373 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2374 2375 /* we verify if the enable bit is set... */ 2376 if (system_time & 1) 2377 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2378 sizeof(struct pvclock_vcpu_time_info)); 2379 else 2380 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2381 2382 return; 2383 } 2384 2385 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2386 { 2387 do_shl32_div32(dividend, divisor); 2388 return dividend; 2389 } 2390 2391 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2392 s8 *pshift, u32 *pmultiplier) 2393 { 2394 uint64_t scaled64; 2395 int32_t shift = 0; 2396 uint64_t tps64; 2397 uint32_t tps32; 2398 2399 tps64 = base_hz; 2400 scaled64 = scaled_hz; 2401 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2402 tps64 >>= 1; 2403 shift--; 2404 } 2405 2406 tps32 = (uint32_t)tps64; 2407 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2408 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2409 scaled64 >>= 1; 2410 else 2411 tps32 <<= 1; 2412 shift++; 2413 } 2414 2415 *pshift = shift; 2416 *pmultiplier = div_frac(scaled64, tps32); 2417 } 2418 2419 #ifdef CONFIG_X86_64 2420 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2421 #endif 2422 2423 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2424 static unsigned long max_tsc_khz; 2425 2426 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2427 { 2428 u64 v = (u64)khz * (1000000 + ppm); 2429 do_div(v, 1000000); 2430 return v; 2431 } 2432 2433 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2434 2435 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2436 { 2437 u64 ratio; 2438 2439 /* Guest TSC same frequency as host TSC? */ 2440 if (!scale) { 2441 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2442 return 0; 2443 } 2444 2445 /* TSC scaling supported? */ 2446 if (!kvm_caps.has_tsc_control) { 2447 if (user_tsc_khz > tsc_khz) { 2448 vcpu->arch.tsc_catchup = 1; 2449 vcpu->arch.tsc_always_catchup = 1; 2450 return 0; 2451 } else { 2452 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2453 return -1; 2454 } 2455 } 2456 2457 /* TSC scaling required - calculate ratio */ 2458 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2459 user_tsc_khz, tsc_khz); 2460 2461 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2462 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2463 user_tsc_khz); 2464 return -1; 2465 } 2466 2467 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2468 return 0; 2469 } 2470 2471 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2472 { 2473 u32 thresh_lo, thresh_hi; 2474 int use_scaling = 0; 2475 2476 /* tsc_khz can be zero if TSC calibration fails */ 2477 if (user_tsc_khz == 0) { 2478 /* set tsc_scaling_ratio to a safe value */ 2479 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2480 return -1; 2481 } 2482 2483 /* Compute a scale to convert nanoseconds in TSC cycles */ 2484 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2485 &vcpu->arch.virtual_tsc_shift, 2486 &vcpu->arch.virtual_tsc_mult); 2487 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2488 2489 /* 2490 * Compute the variation in TSC rate which is acceptable 2491 * within the range of tolerance and decide if the 2492 * rate being applied is within that bounds of the hardware 2493 * rate. If so, no scaling or compensation need be done. 2494 */ 2495 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2496 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2497 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2498 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2499 user_tsc_khz, thresh_lo, thresh_hi); 2500 use_scaling = 1; 2501 } 2502 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2503 } 2504 2505 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2506 { 2507 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2508 vcpu->arch.virtual_tsc_mult, 2509 vcpu->arch.virtual_tsc_shift); 2510 tsc += vcpu->arch.this_tsc_write; 2511 return tsc; 2512 } 2513 2514 #ifdef CONFIG_X86_64 2515 static inline int gtod_is_based_on_tsc(int mode) 2516 { 2517 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2518 } 2519 #endif 2520 2521 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2522 { 2523 #ifdef CONFIG_X86_64 2524 bool vcpus_matched; 2525 struct kvm_arch *ka = &vcpu->kvm->arch; 2526 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2527 2528 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2529 atomic_read(&vcpu->kvm->online_vcpus)); 2530 2531 /* 2532 * Once the masterclock is enabled, always perform request in 2533 * order to update it. 2534 * 2535 * In order to enable masterclock, the host clocksource must be TSC 2536 * and the vcpus need to have matched TSCs. When that happens, 2537 * perform request to enable masterclock. 2538 */ 2539 if (ka->use_master_clock || 2540 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2541 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2542 2543 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2544 atomic_read(&vcpu->kvm->online_vcpus), 2545 ka->use_master_clock, gtod->clock.vclock_mode); 2546 #endif 2547 } 2548 2549 /* 2550 * Multiply tsc by a fixed point number represented by ratio. 2551 * 2552 * The most significant 64-N bits (mult) of ratio represent the 2553 * integral part of the fixed point number; the remaining N bits 2554 * (frac) represent the fractional part, ie. ratio represents a fixed 2555 * point number (mult + frac * 2^(-N)). 2556 * 2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2558 */ 2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2560 { 2561 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2562 } 2563 2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2565 { 2566 u64 _tsc = tsc; 2567 2568 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2569 _tsc = __scale_tsc(ratio, tsc); 2570 2571 return _tsc; 2572 } 2573 2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2575 { 2576 u64 tsc; 2577 2578 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2579 2580 return target_tsc - tsc; 2581 } 2582 2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2584 { 2585 return vcpu->arch.l1_tsc_offset + 2586 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2587 } 2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2589 2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2591 { 2592 u64 nested_offset; 2593 2594 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2595 nested_offset = l1_offset; 2596 else 2597 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2598 kvm_caps.tsc_scaling_ratio_frac_bits); 2599 2600 nested_offset += l2_offset; 2601 return nested_offset; 2602 } 2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2604 2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2606 { 2607 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2608 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2609 kvm_caps.tsc_scaling_ratio_frac_bits); 2610 2611 return l1_multiplier; 2612 } 2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2614 2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2616 { 2617 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2618 vcpu->arch.l1_tsc_offset, 2619 l1_offset); 2620 2621 vcpu->arch.l1_tsc_offset = l1_offset; 2622 2623 /* 2624 * If we are here because L1 chose not to trap WRMSR to TSC then 2625 * according to the spec this should set L1's TSC (as opposed to 2626 * setting L1's offset for L2). 2627 */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2630 l1_offset, 2631 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2632 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2633 else 2634 vcpu->arch.tsc_offset = l1_offset; 2635 2636 static_call(kvm_x86_write_tsc_offset)(vcpu); 2637 } 2638 2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2640 { 2641 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2642 2643 /* Userspace is changing the multiplier while L2 is active */ 2644 if (is_guest_mode(vcpu)) 2645 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2646 l1_multiplier, 2647 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2648 else 2649 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2650 2651 if (kvm_caps.has_tsc_control) 2652 static_call(kvm_x86_write_tsc_multiplier)(vcpu); 2653 } 2654 2655 static inline bool kvm_check_tsc_unstable(void) 2656 { 2657 #ifdef CONFIG_X86_64 2658 /* 2659 * TSC is marked unstable when we're running on Hyper-V, 2660 * 'TSC page' clocksource is good. 2661 */ 2662 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2663 return false; 2664 #endif 2665 return check_tsc_unstable(); 2666 } 2667 2668 /* 2669 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2670 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2671 * participates in. 2672 */ 2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2674 u64 ns, bool matched) 2675 { 2676 struct kvm *kvm = vcpu->kvm; 2677 2678 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2679 2680 /* 2681 * We also track th most recent recorded KHZ, write and time to 2682 * allow the matching interval to be extended at each write. 2683 */ 2684 kvm->arch.last_tsc_nsec = ns; 2685 kvm->arch.last_tsc_write = tsc; 2686 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2687 kvm->arch.last_tsc_offset = offset; 2688 2689 vcpu->arch.last_guest_tsc = tsc; 2690 2691 kvm_vcpu_write_tsc_offset(vcpu, offset); 2692 2693 if (!matched) { 2694 /* 2695 * We split periods of matched TSC writes into generations. 2696 * For each generation, we track the original measured 2697 * nanosecond time, offset, and write, so if TSCs are in 2698 * sync, we can match exact offset, and if not, we can match 2699 * exact software computation in compute_guest_tsc() 2700 * 2701 * These values are tracked in kvm->arch.cur_xxx variables. 2702 */ 2703 kvm->arch.cur_tsc_generation++; 2704 kvm->arch.cur_tsc_nsec = ns; 2705 kvm->arch.cur_tsc_write = tsc; 2706 kvm->arch.cur_tsc_offset = offset; 2707 kvm->arch.nr_vcpus_matched_tsc = 0; 2708 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2709 kvm->arch.nr_vcpus_matched_tsc++; 2710 } 2711 2712 /* Keep track of which generation this VCPU has synchronized to */ 2713 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2714 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2715 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2716 2717 kvm_track_tsc_matching(vcpu); 2718 } 2719 2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2721 { 2722 struct kvm *kvm = vcpu->kvm; 2723 u64 offset, ns, elapsed; 2724 unsigned long flags; 2725 bool matched = false; 2726 bool synchronizing = false; 2727 2728 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2729 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2730 ns = get_kvmclock_base_ns(); 2731 elapsed = ns - kvm->arch.last_tsc_nsec; 2732 2733 if (vcpu->arch.virtual_tsc_khz) { 2734 if (data == 0) { 2735 /* 2736 * detection of vcpu initialization -- need to sync 2737 * with other vCPUs. This particularly helps to keep 2738 * kvm_clock stable after CPU hotplug 2739 */ 2740 synchronizing = true; 2741 } else { 2742 u64 tsc_exp = kvm->arch.last_tsc_write + 2743 nsec_to_cycles(vcpu, elapsed); 2744 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2745 /* 2746 * Special case: TSC write with a small delta (1 second) 2747 * of virtual cycle time against real time is 2748 * interpreted as an attempt to synchronize the CPU. 2749 */ 2750 synchronizing = data < tsc_exp + tsc_hz && 2751 data + tsc_hz > tsc_exp; 2752 } 2753 } 2754 2755 /* 2756 * For a reliable TSC, we can match TSC offsets, and for an unstable 2757 * TSC, we add elapsed time in this computation. We could let the 2758 * compensation code attempt to catch up if we fall behind, but 2759 * it's better to try to match offsets from the beginning. 2760 */ 2761 if (synchronizing && 2762 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2763 if (!kvm_check_tsc_unstable()) { 2764 offset = kvm->arch.cur_tsc_offset; 2765 } else { 2766 u64 delta = nsec_to_cycles(vcpu, elapsed); 2767 data += delta; 2768 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2769 } 2770 matched = true; 2771 } 2772 2773 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2774 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2775 } 2776 2777 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2778 s64 adjustment) 2779 { 2780 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2781 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2782 } 2783 2784 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2785 { 2786 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2787 WARN_ON(adjustment < 0); 2788 adjustment = kvm_scale_tsc((u64) adjustment, 2789 vcpu->arch.l1_tsc_scaling_ratio); 2790 adjust_tsc_offset_guest(vcpu, adjustment); 2791 } 2792 2793 #ifdef CONFIG_X86_64 2794 2795 static u64 read_tsc(void) 2796 { 2797 u64 ret = (u64)rdtsc_ordered(); 2798 u64 last = pvclock_gtod_data.clock.cycle_last; 2799 2800 if (likely(ret >= last)) 2801 return ret; 2802 2803 /* 2804 * GCC likes to generate cmov here, but this branch is extremely 2805 * predictable (it's just a function of time and the likely is 2806 * very likely) and there's a data dependence, so force GCC 2807 * to generate a branch instead. I don't barrier() because 2808 * we don't actually need a barrier, and if this function 2809 * ever gets inlined it will generate worse code. 2810 */ 2811 asm volatile (""); 2812 return last; 2813 } 2814 2815 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2816 int *mode) 2817 { 2818 u64 tsc_pg_val; 2819 long v; 2820 2821 switch (clock->vclock_mode) { 2822 case VDSO_CLOCKMODE_HVCLOCK: 2823 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2824 tsc_timestamp, &tsc_pg_val)) { 2825 /* TSC page valid */ 2826 *mode = VDSO_CLOCKMODE_HVCLOCK; 2827 v = (tsc_pg_val - clock->cycle_last) & 2828 clock->mask; 2829 } else { 2830 /* TSC page invalid */ 2831 *mode = VDSO_CLOCKMODE_NONE; 2832 } 2833 break; 2834 case VDSO_CLOCKMODE_TSC: 2835 *mode = VDSO_CLOCKMODE_TSC; 2836 *tsc_timestamp = read_tsc(); 2837 v = (*tsc_timestamp - clock->cycle_last) & 2838 clock->mask; 2839 break; 2840 default: 2841 *mode = VDSO_CLOCKMODE_NONE; 2842 } 2843 2844 if (*mode == VDSO_CLOCKMODE_NONE) 2845 *tsc_timestamp = v = 0; 2846 2847 return v * clock->mult; 2848 } 2849 2850 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2851 { 2852 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2853 unsigned long seq; 2854 int mode; 2855 u64 ns; 2856 2857 do { 2858 seq = read_seqcount_begin(>od->seq); 2859 ns = gtod->raw_clock.base_cycles; 2860 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2861 ns >>= gtod->raw_clock.shift; 2862 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2863 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2864 *t = ns; 2865 2866 return mode; 2867 } 2868 2869 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2870 { 2871 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2872 unsigned long seq; 2873 int mode; 2874 u64 ns; 2875 2876 do { 2877 seq = read_seqcount_begin(>od->seq); 2878 ts->tv_sec = gtod->wall_time_sec; 2879 ns = gtod->clock.base_cycles; 2880 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2881 ns >>= gtod->clock.shift; 2882 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2883 2884 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2885 ts->tv_nsec = ns; 2886 2887 return mode; 2888 } 2889 2890 /* returns true if host is using TSC based clocksource */ 2891 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2892 { 2893 /* checked again under seqlock below */ 2894 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2895 return false; 2896 2897 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2898 tsc_timestamp)); 2899 } 2900 2901 /* returns true if host is using TSC based clocksource */ 2902 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2903 u64 *tsc_timestamp) 2904 { 2905 /* checked again under seqlock below */ 2906 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2907 return false; 2908 2909 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2910 } 2911 #endif 2912 2913 /* 2914 * 2915 * Assuming a stable TSC across physical CPUS, and a stable TSC 2916 * across virtual CPUs, the following condition is possible. 2917 * Each numbered line represents an event visible to both 2918 * CPUs at the next numbered event. 2919 * 2920 * "timespecX" represents host monotonic time. "tscX" represents 2921 * RDTSC value. 2922 * 2923 * VCPU0 on CPU0 | VCPU1 on CPU1 2924 * 2925 * 1. read timespec0,tsc0 2926 * 2. | timespec1 = timespec0 + N 2927 * | tsc1 = tsc0 + M 2928 * 3. transition to guest | transition to guest 2929 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2930 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2931 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2932 * 2933 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2934 * 2935 * - ret0 < ret1 2936 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2937 * ... 2938 * - 0 < N - M => M < N 2939 * 2940 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2941 * always the case (the difference between two distinct xtime instances 2942 * might be smaller then the difference between corresponding TSC reads, 2943 * when updating guest vcpus pvclock areas). 2944 * 2945 * To avoid that problem, do not allow visibility of distinct 2946 * system_timestamp/tsc_timestamp values simultaneously: use a master 2947 * copy of host monotonic time values. Update that master copy 2948 * in lockstep. 2949 * 2950 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2951 * 2952 */ 2953 2954 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2955 { 2956 #ifdef CONFIG_X86_64 2957 struct kvm_arch *ka = &kvm->arch; 2958 int vclock_mode; 2959 bool host_tsc_clocksource, vcpus_matched; 2960 2961 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2962 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2963 atomic_read(&kvm->online_vcpus)); 2964 2965 /* 2966 * If the host uses TSC clock, then passthrough TSC as stable 2967 * to the guest. 2968 */ 2969 host_tsc_clocksource = kvm_get_time_and_clockread( 2970 &ka->master_kernel_ns, 2971 &ka->master_cycle_now); 2972 2973 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2974 && !ka->backwards_tsc_observed 2975 && !ka->boot_vcpu_runs_old_kvmclock; 2976 2977 if (ka->use_master_clock) 2978 atomic_set(&kvm_guest_has_master_clock, 1); 2979 2980 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2981 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2982 vcpus_matched); 2983 #endif 2984 } 2985 2986 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2987 { 2988 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2989 } 2990 2991 static void __kvm_start_pvclock_update(struct kvm *kvm) 2992 { 2993 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2994 write_seqcount_begin(&kvm->arch.pvclock_sc); 2995 } 2996 2997 static void kvm_start_pvclock_update(struct kvm *kvm) 2998 { 2999 kvm_make_mclock_inprogress_request(kvm); 3000 3001 /* no guest entries from this point */ 3002 __kvm_start_pvclock_update(kvm); 3003 } 3004 3005 static void kvm_end_pvclock_update(struct kvm *kvm) 3006 { 3007 struct kvm_arch *ka = &kvm->arch; 3008 struct kvm_vcpu *vcpu; 3009 unsigned long i; 3010 3011 write_seqcount_end(&ka->pvclock_sc); 3012 raw_spin_unlock_irq(&ka->tsc_write_lock); 3013 kvm_for_each_vcpu(i, vcpu, kvm) 3014 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3015 3016 /* guest entries allowed */ 3017 kvm_for_each_vcpu(i, vcpu, kvm) 3018 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3019 } 3020 3021 static void kvm_update_masterclock(struct kvm *kvm) 3022 { 3023 kvm_hv_request_tsc_page_update(kvm); 3024 kvm_start_pvclock_update(kvm); 3025 pvclock_update_vm_gtod_copy(kvm); 3026 kvm_end_pvclock_update(kvm); 3027 } 3028 3029 /* 3030 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3031 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3032 * can change during boot even if the TSC is constant, as it's possible for KVM 3033 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3034 * notification when calibration completes, but practically speaking calibration 3035 * will complete before userspace is alive enough to create VMs. 3036 */ 3037 static unsigned long get_cpu_tsc_khz(void) 3038 { 3039 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3040 return tsc_khz; 3041 else 3042 return __this_cpu_read(cpu_tsc_khz); 3043 } 3044 3045 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3046 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3047 { 3048 struct kvm_arch *ka = &kvm->arch; 3049 struct pvclock_vcpu_time_info hv_clock; 3050 3051 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3052 get_cpu(); 3053 3054 data->flags = 0; 3055 if (ka->use_master_clock && 3056 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3057 #ifdef CONFIG_X86_64 3058 struct timespec64 ts; 3059 3060 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3061 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3062 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3063 } else 3064 #endif 3065 data->host_tsc = rdtsc(); 3066 3067 data->flags |= KVM_CLOCK_TSC_STABLE; 3068 hv_clock.tsc_timestamp = ka->master_cycle_now; 3069 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3070 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3071 &hv_clock.tsc_shift, 3072 &hv_clock.tsc_to_system_mul); 3073 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3074 } else { 3075 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3076 } 3077 3078 put_cpu(); 3079 } 3080 3081 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3082 { 3083 struct kvm_arch *ka = &kvm->arch; 3084 unsigned seq; 3085 3086 do { 3087 seq = read_seqcount_begin(&ka->pvclock_sc); 3088 __get_kvmclock(kvm, data); 3089 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3090 } 3091 3092 u64 get_kvmclock_ns(struct kvm *kvm) 3093 { 3094 struct kvm_clock_data data; 3095 3096 get_kvmclock(kvm, &data); 3097 return data.clock; 3098 } 3099 3100 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3101 struct gfn_to_pfn_cache *gpc, 3102 unsigned int offset) 3103 { 3104 struct kvm_vcpu_arch *vcpu = &v->arch; 3105 struct pvclock_vcpu_time_info *guest_hv_clock; 3106 unsigned long flags; 3107 3108 read_lock_irqsave(&gpc->lock, flags); 3109 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3110 read_unlock_irqrestore(&gpc->lock, flags); 3111 3112 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3113 return; 3114 3115 read_lock_irqsave(&gpc->lock, flags); 3116 } 3117 3118 guest_hv_clock = (void *)(gpc->khva + offset); 3119 3120 /* 3121 * This VCPU is paused, but it's legal for a guest to read another 3122 * VCPU's kvmclock, so we really have to follow the specification where 3123 * it says that version is odd if data is being modified, and even after 3124 * it is consistent. 3125 */ 3126 3127 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3128 smp_wmb(); 3129 3130 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3131 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3132 3133 if (vcpu->pvclock_set_guest_stopped_request) { 3134 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3135 vcpu->pvclock_set_guest_stopped_request = false; 3136 } 3137 3138 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3139 smp_wmb(); 3140 3141 guest_hv_clock->version = ++vcpu->hv_clock.version; 3142 3143 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3144 read_unlock_irqrestore(&gpc->lock, flags); 3145 3146 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3147 } 3148 3149 static int kvm_guest_time_update(struct kvm_vcpu *v) 3150 { 3151 unsigned long flags, tgt_tsc_khz; 3152 unsigned seq; 3153 struct kvm_vcpu_arch *vcpu = &v->arch; 3154 struct kvm_arch *ka = &v->kvm->arch; 3155 s64 kernel_ns; 3156 u64 tsc_timestamp, host_tsc; 3157 u8 pvclock_flags; 3158 bool use_master_clock; 3159 3160 kernel_ns = 0; 3161 host_tsc = 0; 3162 3163 /* 3164 * If the host uses TSC clock, then passthrough TSC as stable 3165 * to the guest. 3166 */ 3167 do { 3168 seq = read_seqcount_begin(&ka->pvclock_sc); 3169 use_master_clock = ka->use_master_clock; 3170 if (use_master_clock) { 3171 host_tsc = ka->master_cycle_now; 3172 kernel_ns = ka->master_kernel_ns; 3173 } 3174 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3175 3176 /* Keep irq disabled to prevent changes to the clock */ 3177 local_irq_save(flags); 3178 tgt_tsc_khz = get_cpu_tsc_khz(); 3179 if (unlikely(tgt_tsc_khz == 0)) { 3180 local_irq_restore(flags); 3181 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3182 return 1; 3183 } 3184 if (!use_master_clock) { 3185 host_tsc = rdtsc(); 3186 kernel_ns = get_kvmclock_base_ns(); 3187 } 3188 3189 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3190 3191 /* 3192 * We may have to catch up the TSC to match elapsed wall clock 3193 * time for two reasons, even if kvmclock is used. 3194 * 1) CPU could have been running below the maximum TSC rate 3195 * 2) Broken TSC compensation resets the base at each VCPU 3196 * entry to avoid unknown leaps of TSC even when running 3197 * again on the same CPU. This may cause apparent elapsed 3198 * time to disappear, and the guest to stand still or run 3199 * very slowly. 3200 */ 3201 if (vcpu->tsc_catchup) { 3202 u64 tsc = compute_guest_tsc(v, kernel_ns); 3203 if (tsc > tsc_timestamp) { 3204 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3205 tsc_timestamp = tsc; 3206 } 3207 } 3208 3209 local_irq_restore(flags); 3210 3211 /* With all the info we got, fill in the values */ 3212 3213 if (kvm_caps.has_tsc_control) 3214 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3215 v->arch.l1_tsc_scaling_ratio); 3216 3217 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3218 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3219 &vcpu->hv_clock.tsc_shift, 3220 &vcpu->hv_clock.tsc_to_system_mul); 3221 vcpu->hw_tsc_khz = tgt_tsc_khz; 3222 kvm_xen_update_tsc_info(v); 3223 } 3224 3225 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3226 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3227 vcpu->last_guest_tsc = tsc_timestamp; 3228 3229 /* If the host uses TSC clocksource, then it is stable */ 3230 pvclock_flags = 0; 3231 if (use_master_clock) 3232 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3233 3234 vcpu->hv_clock.flags = pvclock_flags; 3235 3236 if (vcpu->pv_time.active) 3237 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3238 if (vcpu->xen.vcpu_info_cache.active) 3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3240 offsetof(struct compat_vcpu_info, time)); 3241 if (vcpu->xen.vcpu_time_info_cache.active) 3242 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3243 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3244 return 0; 3245 } 3246 3247 /* 3248 * kvmclock updates which are isolated to a given vcpu, such as 3249 * vcpu->cpu migration, should not allow system_timestamp from 3250 * the rest of the vcpus to remain static. Otherwise ntp frequency 3251 * correction applies to one vcpu's system_timestamp but not 3252 * the others. 3253 * 3254 * So in those cases, request a kvmclock update for all vcpus. 3255 * We need to rate-limit these requests though, as they can 3256 * considerably slow guests that have a large number of vcpus. 3257 * The time for a remote vcpu to update its kvmclock is bound 3258 * by the delay we use to rate-limit the updates. 3259 */ 3260 3261 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3262 3263 static void kvmclock_update_fn(struct work_struct *work) 3264 { 3265 unsigned long i; 3266 struct delayed_work *dwork = to_delayed_work(work); 3267 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3268 kvmclock_update_work); 3269 struct kvm *kvm = container_of(ka, struct kvm, arch); 3270 struct kvm_vcpu *vcpu; 3271 3272 kvm_for_each_vcpu(i, vcpu, kvm) { 3273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3274 kvm_vcpu_kick(vcpu); 3275 } 3276 } 3277 3278 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3279 { 3280 struct kvm *kvm = v->kvm; 3281 3282 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3283 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3284 KVMCLOCK_UPDATE_DELAY); 3285 } 3286 3287 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3288 3289 static void kvmclock_sync_fn(struct work_struct *work) 3290 { 3291 struct delayed_work *dwork = to_delayed_work(work); 3292 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3293 kvmclock_sync_work); 3294 struct kvm *kvm = container_of(ka, struct kvm, arch); 3295 3296 if (!kvmclock_periodic_sync) 3297 return; 3298 3299 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3300 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3301 KVMCLOCK_SYNC_PERIOD); 3302 } 3303 3304 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3305 static bool is_mci_control_msr(u32 msr) 3306 { 3307 return (msr & 3) == 0; 3308 } 3309 static bool is_mci_status_msr(u32 msr) 3310 { 3311 return (msr & 3) == 1; 3312 } 3313 3314 /* 3315 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3316 */ 3317 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3318 { 3319 /* McStatusWrEn enabled? */ 3320 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3321 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3322 3323 return false; 3324 } 3325 3326 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3327 { 3328 u64 mcg_cap = vcpu->arch.mcg_cap; 3329 unsigned bank_num = mcg_cap & 0xff; 3330 u32 msr = msr_info->index; 3331 u64 data = msr_info->data; 3332 u32 offset, last_msr; 3333 3334 switch (msr) { 3335 case MSR_IA32_MCG_STATUS: 3336 vcpu->arch.mcg_status = data; 3337 break; 3338 case MSR_IA32_MCG_CTL: 3339 if (!(mcg_cap & MCG_CTL_P) && 3340 (data || !msr_info->host_initiated)) 3341 return 1; 3342 if (data != 0 && data != ~(u64)0) 3343 return 1; 3344 vcpu->arch.mcg_ctl = data; 3345 break; 3346 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3347 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3348 if (msr > last_msr) 3349 return 1; 3350 3351 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3352 return 1; 3353 /* An attempt to write a 1 to a reserved bit raises #GP */ 3354 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3355 return 1; 3356 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3357 last_msr + 1 - MSR_IA32_MC0_CTL2); 3358 vcpu->arch.mci_ctl2_banks[offset] = data; 3359 break; 3360 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3361 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3362 if (msr > last_msr) 3363 return 1; 3364 3365 /* 3366 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3367 * values are architecturally undefined. But, some Linux 3368 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3369 * issue on AMD K8s, allow bit 10 to be clear when setting all 3370 * other bits in order to avoid an uncaught #GP in the guest. 3371 * 3372 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3373 * single-bit ECC data errors. 3374 */ 3375 if (is_mci_control_msr(msr) && 3376 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3377 return 1; 3378 3379 /* 3380 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3381 * AMD-based CPUs allow non-zero values, but if and only if 3382 * HWCR[McStatusWrEn] is set. 3383 */ 3384 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3385 data != 0 && !can_set_mci_status(vcpu)) 3386 return 1; 3387 3388 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3389 last_msr + 1 - MSR_IA32_MC0_CTL); 3390 vcpu->arch.mce_banks[offset] = data; 3391 break; 3392 default: 3393 return 1; 3394 } 3395 return 0; 3396 } 3397 3398 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3399 { 3400 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3401 3402 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3403 } 3404 3405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3406 { 3407 gpa_t gpa = data & ~0x3f; 3408 3409 /* Bits 4:5 are reserved, Should be zero */ 3410 if (data & 0x30) 3411 return 1; 3412 3413 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3414 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3415 return 1; 3416 3417 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3418 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3419 return 1; 3420 3421 if (!lapic_in_kernel(vcpu)) 3422 return data ? 1 : 0; 3423 3424 vcpu->arch.apf.msr_en_val = data; 3425 3426 if (!kvm_pv_async_pf_enabled(vcpu)) { 3427 kvm_clear_async_pf_completion_queue(vcpu); 3428 kvm_async_pf_hash_reset(vcpu); 3429 return 0; 3430 } 3431 3432 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3433 sizeof(u64))) 3434 return 1; 3435 3436 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3437 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3438 3439 kvm_async_pf_wakeup_all(vcpu); 3440 3441 return 0; 3442 } 3443 3444 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3445 { 3446 /* Bits 8-63 are reserved */ 3447 if (data >> 8) 3448 return 1; 3449 3450 if (!lapic_in_kernel(vcpu)) 3451 return 1; 3452 3453 vcpu->arch.apf.msr_int_val = data; 3454 3455 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3456 3457 return 0; 3458 } 3459 3460 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3461 { 3462 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3463 vcpu->arch.time = 0; 3464 } 3465 3466 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3467 { 3468 ++vcpu->stat.tlb_flush; 3469 static_call(kvm_x86_flush_tlb_all)(vcpu); 3470 3471 /* Flushing all ASIDs flushes the current ASID... */ 3472 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3473 } 3474 3475 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3476 { 3477 ++vcpu->stat.tlb_flush; 3478 3479 if (!tdp_enabled) { 3480 /* 3481 * A TLB flush on behalf of the guest is equivalent to 3482 * INVPCID(all), toggling CR4.PGE, etc., which requires 3483 * a forced sync of the shadow page tables. Ensure all the 3484 * roots are synced and the guest TLB in hardware is clean. 3485 */ 3486 kvm_mmu_sync_roots(vcpu); 3487 kvm_mmu_sync_prev_roots(vcpu); 3488 } 3489 3490 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3491 3492 /* 3493 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3494 * grained flushing. 3495 */ 3496 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3497 } 3498 3499 3500 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3501 { 3502 ++vcpu->stat.tlb_flush; 3503 static_call(kvm_x86_flush_tlb_current)(vcpu); 3504 } 3505 3506 /* 3507 * Service "local" TLB flush requests, which are specific to the current MMU 3508 * context. In addition to the generic event handling in vcpu_enter_guest(), 3509 * TLB flushes that are targeted at an MMU context also need to be serviced 3510 * prior before nested VM-Enter/VM-Exit. 3511 */ 3512 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3513 { 3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3515 kvm_vcpu_flush_tlb_current(vcpu); 3516 3517 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3518 kvm_vcpu_flush_tlb_guest(vcpu); 3519 } 3520 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3521 3522 static void record_steal_time(struct kvm_vcpu *vcpu) 3523 { 3524 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3525 struct kvm_steal_time __user *st; 3526 struct kvm_memslots *slots; 3527 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3528 u64 steal; 3529 u32 version; 3530 3531 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3532 kvm_xen_runstate_set_running(vcpu); 3533 return; 3534 } 3535 3536 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3537 return; 3538 3539 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3540 return; 3541 3542 slots = kvm_memslots(vcpu->kvm); 3543 3544 if (unlikely(slots->generation != ghc->generation || 3545 gpa != ghc->gpa || 3546 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3547 /* We rely on the fact that it fits in a single page. */ 3548 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3549 3550 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3551 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3552 return; 3553 } 3554 3555 st = (struct kvm_steal_time __user *)ghc->hva; 3556 /* 3557 * Doing a TLB flush here, on the guest's behalf, can avoid 3558 * expensive IPIs. 3559 */ 3560 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3561 u8 st_preempted = 0; 3562 int err = -EFAULT; 3563 3564 if (!user_access_begin(st, sizeof(*st))) 3565 return; 3566 3567 asm volatile("1: xchgb %0, %2\n" 3568 "xor %1, %1\n" 3569 "2:\n" 3570 _ASM_EXTABLE_UA(1b, 2b) 3571 : "+q" (st_preempted), 3572 "+&r" (err), 3573 "+m" (st->preempted)); 3574 if (err) 3575 goto out; 3576 3577 user_access_end(); 3578 3579 vcpu->arch.st.preempted = 0; 3580 3581 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3582 st_preempted & KVM_VCPU_FLUSH_TLB); 3583 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3584 kvm_vcpu_flush_tlb_guest(vcpu); 3585 3586 if (!user_access_begin(st, sizeof(*st))) 3587 goto dirty; 3588 } else { 3589 if (!user_access_begin(st, sizeof(*st))) 3590 return; 3591 3592 unsafe_put_user(0, &st->preempted, out); 3593 vcpu->arch.st.preempted = 0; 3594 } 3595 3596 unsafe_get_user(version, &st->version, out); 3597 if (version & 1) 3598 version += 1; /* first time write, random junk */ 3599 3600 version += 1; 3601 unsafe_put_user(version, &st->version, out); 3602 3603 smp_wmb(); 3604 3605 unsafe_get_user(steal, &st->steal, out); 3606 steal += current->sched_info.run_delay - 3607 vcpu->arch.st.last_steal; 3608 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3609 unsafe_put_user(steal, &st->steal, out); 3610 3611 version += 1; 3612 unsafe_put_user(version, &st->version, out); 3613 3614 out: 3615 user_access_end(); 3616 dirty: 3617 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3618 } 3619 3620 static bool kvm_is_msr_to_save(u32 msr_index) 3621 { 3622 unsigned int i; 3623 3624 for (i = 0; i < num_msrs_to_save; i++) { 3625 if (msrs_to_save[i] == msr_index) 3626 return true; 3627 } 3628 3629 return false; 3630 } 3631 3632 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3633 { 3634 u32 msr = msr_info->index; 3635 u64 data = msr_info->data; 3636 3637 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3638 return kvm_xen_write_hypercall_page(vcpu, data); 3639 3640 switch (msr) { 3641 case MSR_AMD64_NB_CFG: 3642 case MSR_IA32_UCODE_WRITE: 3643 case MSR_VM_HSAVE_PA: 3644 case MSR_AMD64_PATCH_LOADER: 3645 case MSR_AMD64_BU_CFG2: 3646 case MSR_AMD64_DC_CFG: 3647 case MSR_AMD64_TW_CFG: 3648 case MSR_F15H_EX_CFG: 3649 break; 3650 3651 case MSR_IA32_UCODE_REV: 3652 if (msr_info->host_initiated) 3653 vcpu->arch.microcode_version = data; 3654 break; 3655 case MSR_IA32_ARCH_CAPABILITIES: 3656 if (!msr_info->host_initiated) 3657 return 1; 3658 vcpu->arch.arch_capabilities = data; 3659 break; 3660 case MSR_IA32_PERF_CAPABILITIES: 3661 if (!msr_info->host_initiated) 3662 return 1; 3663 if (data & ~kvm_caps.supported_perf_cap) 3664 return 1; 3665 3666 /* 3667 * Note, this is not just a performance optimization! KVM 3668 * disallows changing feature MSRs after the vCPU has run; PMU 3669 * refresh will bug the VM if called after the vCPU has run. 3670 */ 3671 if (vcpu->arch.perf_capabilities == data) 3672 break; 3673 3674 vcpu->arch.perf_capabilities = data; 3675 kvm_pmu_refresh(vcpu); 3676 break; 3677 case MSR_IA32_PRED_CMD: 3678 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3679 return 1; 3680 3681 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3682 return 1; 3683 if (!data) 3684 break; 3685 3686 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3687 break; 3688 case MSR_IA32_FLUSH_CMD: 3689 if (!msr_info->host_initiated && 3690 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3691 return 1; 3692 3693 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3694 return 1; 3695 if (!data) 3696 break; 3697 3698 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3699 break; 3700 case MSR_EFER: 3701 return set_efer(vcpu, msr_info); 3702 case MSR_K7_HWCR: 3703 data &= ~(u64)0x40; /* ignore flush filter disable */ 3704 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3705 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3706 3707 /* Handle McStatusWrEn */ 3708 if (data == BIT_ULL(18)) { 3709 vcpu->arch.msr_hwcr = data; 3710 } else if (data != 0) { 3711 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3712 return 1; 3713 } 3714 break; 3715 case MSR_FAM10H_MMIO_CONF_BASE: 3716 if (data != 0) { 3717 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3718 return 1; 3719 } 3720 break; 3721 case MSR_IA32_CR_PAT: 3722 if (!kvm_pat_valid(data)) 3723 return 1; 3724 3725 vcpu->arch.pat = data; 3726 break; 3727 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3728 case MSR_MTRRdefType: 3729 return kvm_mtrr_set_msr(vcpu, msr, data); 3730 case MSR_IA32_APICBASE: 3731 return kvm_set_apic_base(vcpu, msr_info); 3732 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3733 return kvm_x2apic_msr_write(vcpu, msr, data); 3734 case MSR_IA32_TSC_DEADLINE: 3735 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3736 break; 3737 case MSR_IA32_TSC_ADJUST: 3738 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3739 if (!msr_info->host_initiated) { 3740 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3741 adjust_tsc_offset_guest(vcpu, adj); 3742 /* Before back to guest, tsc_timestamp must be adjusted 3743 * as well, otherwise guest's percpu pvclock time could jump. 3744 */ 3745 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3746 } 3747 vcpu->arch.ia32_tsc_adjust_msr = data; 3748 } 3749 break; 3750 case MSR_IA32_MISC_ENABLE: { 3751 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3752 3753 if (!msr_info->host_initiated) { 3754 /* RO bits */ 3755 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3756 return 1; 3757 3758 /* R bits, i.e. writes are ignored, but don't fault. */ 3759 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3760 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3761 } 3762 3763 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3764 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3765 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3766 return 1; 3767 vcpu->arch.ia32_misc_enable_msr = data; 3768 kvm_update_cpuid_runtime(vcpu); 3769 } else { 3770 vcpu->arch.ia32_misc_enable_msr = data; 3771 } 3772 break; 3773 } 3774 case MSR_IA32_SMBASE: 3775 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3776 return 1; 3777 vcpu->arch.smbase = data; 3778 break; 3779 case MSR_IA32_POWER_CTL: 3780 vcpu->arch.msr_ia32_power_ctl = data; 3781 break; 3782 case MSR_IA32_TSC: 3783 if (msr_info->host_initiated) { 3784 kvm_synchronize_tsc(vcpu, data); 3785 } else { 3786 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3787 adjust_tsc_offset_guest(vcpu, adj); 3788 vcpu->arch.ia32_tsc_adjust_msr += adj; 3789 } 3790 break; 3791 case MSR_IA32_XSS: 3792 if (!msr_info->host_initiated && 3793 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3794 return 1; 3795 /* 3796 * KVM supports exposing PT to the guest, but does not support 3797 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3798 * XSAVES/XRSTORS to save/restore PT MSRs. 3799 */ 3800 if (data & ~kvm_caps.supported_xss) 3801 return 1; 3802 vcpu->arch.ia32_xss = data; 3803 kvm_update_cpuid_runtime(vcpu); 3804 break; 3805 case MSR_SMI_COUNT: 3806 if (!msr_info->host_initiated) 3807 return 1; 3808 vcpu->arch.smi_count = data; 3809 break; 3810 case MSR_KVM_WALL_CLOCK_NEW: 3811 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3812 return 1; 3813 3814 vcpu->kvm->arch.wall_clock = data; 3815 kvm_write_wall_clock(vcpu->kvm, data, 0); 3816 break; 3817 case MSR_KVM_WALL_CLOCK: 3818 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3819 return 1; 3820 3821 vcpu->kvm->arch.wall_clock = data; 3822 kvm_write_wall_clock(vcpu->kvm, data, 0); 3823 break; 3824 case MSR_KVM_SYSTEM_TIME_NEW: 3825 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3826 return 1; 3827 3828 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3829 break; 3830 case MSR_KVM_SYSTEM_TIME: 3831 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3832 return 1; 3833 3834 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3835 break; 3836 case MSR_KVM_ASYNC_PF_EN: 3837 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3838 return 1; 3839 3840 if (kvm_pv_enable_async_pf(vcpu, data)) 3841 return 1; 3842 break; 3843 case MSR_KVM_ASYNC_PF_INT: 3844 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3845 return 1; 3846 3847 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3848 return 1; 3849 break; 3850 case MSR_KVM_ASYNC_PF_ACK: 3851 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3852 return 1; 3853 if (data & 0x1) { 3854 vcpu->arch.apf.pageready_pending = false; 3855 kvm_check_async_pf_completion(vcpu); 3856 } 3857 break; 3858 case MSR_KVM_STEAL_TIME: 3859 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3860 return 1; 3861 3862 if (unlikely(!sched_info_on())) 3863 return 1; 3864 3865 if (data & KVM_STEAL_RESERVED_MASK) 3866 return 1; 3867 3868 vcpu->arch.st.msr_val = data; 3869 3870 if (!(data & KVM_MSR_ENABLED)) 3871 break; 3872 3873 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3874 3875 break; 3876 case MSR_KVM_PV_EOI_EN: 3877 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3878 return 1; 3879 3880 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3881 return 1; 3882 break; 3883 3884 case MSR_KVM_POLL_CONTROL: 3885 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3886 return 1; 3887 3888 /* only enable bit supported */ 3889 if (data & (-1ULL << 1)) 3890 return 1; 3891 3892 vcpu->arch.msr_kvm_poll_control = data; 3893 break; 3894 3895 case MSR_IA32_MCG_CTL: 3896 case MSR_IA32_MCG_STATUS: 3897 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3898 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3899 return set_msr_mce(vcpu, msr_info); 3900 3901 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3902 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3903 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3904 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3905 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3906 return kvm_pmu_set_msr(vcpu, msr_info); 3907 3908 if (data) 3909 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3910 break; 3911 case MSR_K7_CLK_CTL: 3912 /* 3913 * Ignore all writes to this no longer documented MSR. 3914 * Writes are only relevant for old K7 processors, 3915 * all pre-dating SVM, but a recommended workaround from 3916 * AMD for these chips. It is possible to specify the 3917 * affected processor models on the command line, hence 3918 * the need to ignore the workaround. 3919 */ 3920 break; 3921 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3922 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3923 case HV_X64_MSR_SYNDBG_OPTIONS: 3924 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3925 case HV_X64_MSR_CRASH_CTL: 3926 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3927 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3928 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3929 case HV_X64_MSR_TSC_EMULATION_STATUS: 3930 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3931 return kvm_hv_set_msr_common(vcpu, msr, data, 3932 msr_info->host_initiated); 3933 case MSR_IA32_BBL_CR_CTL3: 3934 /* Drop writes to this legacy MSR -- see rdmsr 3935 * counterpart for further detail. 3936 */ 3937 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3938 break; 3939 case MSR_AMD64_OSVW_ID_LENGTH: 3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3941 return 1; 3942 vcpu->arch.osvw.length = data; 3943 break; 3944 case MSR_AMD64_OSVW_STATUS: 3945 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3946 return 1; 3947 vcpu->arch.osvw.status = data; 3948 break; 3949 case MSR_PLATFORM_INFO: 3950 if (!msr_info->host_initiated || 3951 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3952 cpuid_fault_enabled(vcpu))) 3953 return 1; 3954 vcpu->arch.msr_platform_info = data; 3955 break; 3956 case MSR_MISC_FEATURES_ENABLES: 3957 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3958 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3959 !supports_cpuid_fault(vcpu))) 3960 return 1; 3961 vcpu->arch.msr_misc_features_enables = data; 3962 break; 3963 #ifdef CONFIG_X86_64 3964 case MSR_IA32_XFD: 3965 if (!msr_info->host_initiated && 3966 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3967 return 1; 3968 3969 if (data & ~kvm_guest_supported_xfd(vcpu)) 3970 return 1; 3971 3972 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3973 break; 3974 case MSR_IA32_XFD_ERR: 3975 if (!msr_info->host_initiated && 3976 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3977 return 1; 3978 3979 if (data & ~kvm_guest_supported_xfd(vcpu)) 3980 return 1; 3981 3982 vcpu->arch.guest_fpu.xfd_err = data; 3983 break; 3984 #endif 3985 default: 3986 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3987 return kvm_pmu_set_msr(vcpu, msr_info); 3988 3989 /* 3990 * Userspace is allowed to write '0' to MSRs that KVM reports 3991 * as to-be-saved, even if an MSRs isn't fully supported. 3992 */ 3993 if (msr_info->host_initiated && !data && 3994 kvm_is_msr_to_save(msr)) 3995 break; 3996 3997 return KVM_MSR_RET_INVALID; 3998 } 3999 return 0; 4000 } 4001 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4002 4003 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4004 { 4005 u64 data; 4006 u64 mcg_cap = vcpu->arch.mcg_cap; 4007 unsigned bank_num = mcg_cap & 0xff; 4008 u32 offset, last_msr; 4009 4010 switch (msr) { 4011 case MSR_IA32_P5_MC_ADDR: 4012 case MSR_IA32_P5_MC_TYPE: 4013 data = 0; 4014 break; 4015 case MSR_IA32_MCG_CAP: 4016 data = vcpu->arch.mcg_cap; 4017 break; 4018 case MSR_IA32_MCG_CTL: 4019 if (!(mcg_cap & MCG_CTL_P) && !host) 4020 return 1; 4021 data = vcpu->arch.mcg_ctl; 4022 break; 4023 case MSR_IA32_MCG_STATUS: 4024 data = vcpu->arch.mcg_status; 4025 break; 4026 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4027 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4028 if (msr > last_msr) 4029 return 1; 4030 4031 if (!(mcg_cap & MCG_CMCI_P) && !host) 4032 return 1; 4033 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4034 last_msr + 1 - MSR_IA32_MC0_CTL2); 4035 data = vcpu->arch.mci_ctl2_banks[offset]; 4036 break; 4037 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4038 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4039 if (msr > last_msr) 4040 return 1; 4041 4042 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4043 last_msr + 1 - MSR_IA32_MC0_CTL); 4044 data = vcpu->arch.mce_banks[offset]; 4045 break; 4046 default: 4047 return 1; 4048 } 4049 *pdata = data; 4050 return 0; 4051 } 4052 4053 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4054 { 4055 switch (msr_info->index) { 4056 case MSR_IA32_PLATFORM_ID: 4057 case MSR_IA32_EBL_CR_POWERON: 4058 case MSR_IA32_LASTBRANCHFROMIP: 4059 case MSR_IA32_LASTBRANCHTOIP: 4060 case MSR_IA32_LASTINTFROMIP: 4061 case MSR_IA32_LASTINTTOIP: 4062 case MSR_AMD64_SYSCFG: 4063 case MSR_K8_TSEG_ADDR: 4064 case MSR_K8_TSEG_MASK: 4065 case MSR_VM_HSAVE_PA: 4066 case MSR_K8_INT_PENDING_MSG: 4067 case MSR_AMD64_NB_CFG: 4068 case MSR_FAM10H_MMIO_CONF_BASE: 4069 case MSR_AMD64_BU_CFG2: 4070 case MSR_IA32_PERF_CTL: 4071 case MSR_AMD64_DC_CFG: 4072 case MSR_AMD64_TW_CFG: 4073 case MSR_F15H_EX_CFG: 4074 /* 4075 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4076 * limit) MSRs. Just return 0, as we do not want to expose the host 4077 * data here. Do not conditionalize this on CPUID, as KVM does not do 4078 * so for existing CPU-specific MSRs. 4079 */ 4080 case MSR_RAPL_POWER_UNIT: 4081 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4082 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4083 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4084 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4085 msr_info->data = 0; 4086 break; 4087 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4088 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4089 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4090 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4091 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4092 return kvm_pmu_get_msr(vcpu, msr_info); 4093 msr_info->data = 0; 4094 break; 4095 case MSR_IA32_UCODE_REV: 4096 msr_info->data = vcpu->arch.microcode_version; 4097 break; 4098 case MSR_IA32_ARCH_CAPABILITIES: 4099 if (!msr_info->host_initiated && 4100 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4101 return 1; 4102 msr_info->data = vcpu->arch.arch_capabilities; 4103 break; 4104 case MSR_IA32_PERF_CAPABILITIES: 4105 if (!msr_info->host_initiated && 4106 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4107 return 1; 4108 msr_info->data = vcpu->arch.perf_capabilities; 4109 break; 4110 case MSR_IA32_POWER_CTL: 4111 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4112 break; 4113 case MSR_IA32_TSC: { 4114 /* 4115 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4116 * even when not intercepted. AMD manual doesn't explicitly 4117 * state this but appears to behave the same. 4118 * 4119 * On userspace reads and writes, however, we unconditionally 4120 * return L1's TSC value to ensure backwards-compatible 4121 * behavior for migration. 4122 */ 4123 u64 offset, ratio; 4124 4125 if (msr_info->host_initiated) { 4126 offset = vcpu->arch.l1_tsc_offset; 4127 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4128 } else { 4129 offset = vcpu->arch.tsc_offset; 4130 ratio = vcpu->arch.tsc_scaling_ratio; 4131 } 4132 4133 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4134 break; 4135 } 4136 case MSR_IA32_CR_PAT: 4137 msr_info->data = vcpu->arch.pat; 4138 break; 4139 case MSR_MTRRcap: 4140 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4141 case MSR_MTRRdefType: 4142 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4143 case 0xcd: /* fsb frequency */ 4144 msr_info->data = 3; 4145 break; 4146 /* 4147 * MSR_EBC_FREQUENCY_ID 4148 * Conservative value valid for even the basic CPU models. 4149 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4150 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4151 * and 266MHz for model 3, or 4. Set Core Clock 4152 * Frequency to System Bus Frequency Ratio to 1 (bits 4153 * 31:24) even though these are only valid for CPU 4154 * models > 2, however guests may end up dividing or 4155 * multiplying by zero otherwise. 4156 */ 4157 case MSR_EBC_FREQUENCY_ID: 4158 msr_info->data = 1 << 24; 4159 break; 4160 case MSR_IA32_APICBASE: 4161 msr_info->data = kvm_get_apic_base(vcpu); 4162 break; 4163 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4164 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4165 case MSR_IA32_TSC_DEADLINE: 4166 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4167 break; 4168 case MSR_IA32_TSC_ADJUST: 4169 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4170 break; 4171 case MSR_IA32_MISC_ENABLE: 4172 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4173 break; 4174 case MSR_IA32_SMBASE: 4175 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4176 return 1; 4177 msr_info->data = vcpu->arch.smbase; 4178 break; 4179 case MSR_SMI_COUNT: 4180 msr_info->data = vcpu->arch.smi_count; 4181 break; 4182 case MSR_IA32_PERF_STATUS: 4183 /* TSC increment by tick */ 4184 msr_info->data = 1000ULL; 4185 /* CPU multiplier */ 4186 msr_info->data |= (((uint64_t)4ULL) << 40); 4187 break; 4188 case MSR_EFER: 4189 msr_info->data = vcpu->arch.efer; 4190 break; 4191 case MSR_KVM_WALL_CLOCK: 4192 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4193 return 1; 4194 4195 msr_info->data = vcpu->kvm->arch.wall_clock; 4196 break; 4197 case MSR_KVM_WALL_CLOCK_NEW: 4198 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4199 return 1; 4200 4201 msr_info->data = vcpu->kvm->arch.wall_clock; 4202 break; 4203 case MSR_KVM_SYSTEM_TIME: 4204 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4205 return 1; 4206 4207 msr_info->data = vcpu->arch.time; 4208 break; 4209 case MSR_KVM_SYSTEM_TIME_NEW: 4210 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4211 return 1; 4212 4213 msr_info->data = vcpu->arch.time; 4214 break; 4215 case MSR_KVM_ASYNC_PF_EN: 4216 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4217 return 1; 4218 4219 msr_info->data = vcpu->arch.apf.msr_en_val; 4220 break; 4221 case MSR_KVM_ASYNC_PF_INT: 4222 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4223 return 1; 4224 4225 msr_info->data = vcpu->arch.apf.msr_int_val; 4226 break; 4227 case MSR_KVM_ASYNC_PF_ACK: 4228 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4229 return 1; 4230 4231 msr_info->data = 0; 4232 break; 4233 case MSR_KVM_STEAL_TIME: 4234 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4235 return 1; 4236 4237 msr_info->data = vcpu->arch.st.msr_val; 4238 break; 4239 case MSR_KVM_PV_EOI_EN: 4240 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4241 return 1; 4242 4243 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4244 break; 4245 case MSR_KVM_POLL_CONTROL: 4246 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4247 return 1; 4248 4249 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4250 break; 4251 case MSR_IA32_P5_MC_ADDR: 4252 case MSR_IA32_P5_MC_TYPE: 4253 case MSR_IA32_MCG_CAP: 4254 case MSR_IA32_MCG_CTL: 4255 case MSR_IA32_MCG_STATUS: 4256 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4257 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4258 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4259 msr_info->host_initiated); 4260 case MSR_IA32_XSS: 4261 if (!msr_info->host_initiated && 4262 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4263 return 1; 4264 msr_info->data = vcpu->arch.ia32_xss; 4265 break; 4266 case MSR_K7_CLK_CTL: 4267 /* 4268 * Provide expected ramp-up count for K7. All other 4269 * are set to zero, indicating minimum divisors for 4270 * every field. 4271 * 4272 * This prevents guest kernels on AMD host with CPU 4273 * type 6, model 8 and higher from exploding due to 4274 * the rdmsr failing. 4275 */ 4276 msr_info->data = 0x20000000; 4277 break; 4278 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4279 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4280 case HV_X64_MSR_SYNDBG_OPTIONS: 4281 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4282 case HV_X64_MSR_CRASH_CTL: 4283 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4284 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4285 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4286 case HV_X64_MSR_TSC_EMULATION_STATUS: 4287 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4288 return kvm_hv_get_msr_common(vcpu, 4289 msr_info->index, &msr_info->data, 4290 msr_info->host_initiated); 4291 case MSR_IA32_BBL_CR_CTL3: 4292 /* This legacy MSR exists but isn't fully documented in current 4293 * silicon. It is however accessed by winxp in very narrow 4294 * scenarios where it sets bit #19, itself documented as 4295 * a "reserved" bit. Best effort attempt to source coherent 4296 * read data here should the balance of the register be 4297 * interpreted by the guest: 4298 * 4299 * L2 cache control register 3: 64GB range, 256KB size, 4300 * enabled, latency 0x1, configured 4301 */ 4302 msr_info->data = 0xbe702111; 4303 break; 4304 case MSR_AMD64_OSVW_ID_LENGTH: 4305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4306 return 1; 4307 msr_info->data = vcpu->arch.osvw.length; 4308 break; 4309 case MSR_AMD64_OSVW_STATUS: 4310 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4311 return 1; 4312 msr_info->data = vcpu->arch.osvw.status; 4313 break; 4314 case MSR_PLATFORM_INFO: 4315 if (!msr_info->host_initiated && 4316 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4317 return 1; 4318 msr_info->data = vcpu->arch.msr_platform_info; 4319 break; 4320 case MSR_MISC_FEATURES_ENABLES: 4321 msr_info->data = vcpu->arch.msr_misc_features_enables; 4322 break; 4323 case MSR_K7_HWCR: 4324 msr_info->data = vcpu->arch.msr_hwcr; 4325 break; 4326 #ifdef CONFIG_X86_64 4327 case MSR_IA32_XFD: 4328 if (!msr_info->host_initiated && 4329 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4330 return 1; 4331 4332 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4333 break; 4334 case MSR_IA32_XFD_ERR: 4335 if (!msr_info->host_initiated && 4336 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4337 return 1; 4338 4339 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4340 break; 4341 #endif 4342 default: 4343 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4344 return kvm_pmu_get_msr(vcpu, msr_info); 4345 4346 /* 4347 * Userspace is allowed to read MSRs that KVM reports as 4348 * to-be-saved, even if an MSR isn't fully supported. 4349 */ 4350 if (msr_info->host_initiated && 4351 kvm_is_msr_to_save(msr_info->index)) { 4352 msr_info->data = 0; 4353 break; 4354 } 4355 4356 return KVM_MSR_RET_INVALID; 4357 } 4358 return 0; 4359 } 4360 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4361 4362 /* 4363 * Read or write a bunch of msrs. All parameters are kernel addresses. 4364 * 4365 * @return number of msrs set successfully. 4366 */ 4367 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4368 struct kvm_msr_entry *entries, 4369 int (*do_msr)(struct kvm_vcpu *vcpu, 4370 unsigned index, u64 *data)) 4371 { 4372 int i; 4373 4374 for (i = 0; i < msrs->nmsrs; ++i) 4375 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4376 break; 4377 4378 return i; 4379 } 4380 4381 /* 4382 * Read or write a bunch of msrs. Parameters are user addresses. 4383 * 4384 * @return number of msrs set successfully. 4385 */ 4386 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4387 int (*do_msr)(struct kvm_vcpu *vcpu, 4388 unsigned index, u64 *data), 4389 int writeback) 4390 { 4391 struct kvm_msrs msrs; 4392 struct kvm_msr_entry *entries; 4393 unsigned size; 4394 int r; 4395 4396 r = -EFAULT; 4397 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4398 goto out; 4399 4400 r = -E2BIG; 4401 if (msrs.nmsrs >= MAX_IO_MSRS) 4402 goto out; 4403 4404 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4405 entries = memdup_user(user_msrs->entries, size); 4406 if (IS_ERR(entries)) { 4407 r = PTR_ERR(entries); 4408 goto out; 4409 } 4410 4411 r = __msr_io(vcpu, &msrs, entries, do_msr); 4412 4413 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4414 r = -EFAULT; 4415 4416 kfree(entries); 4417 out: 4418 return r; 4419 } 4420 4421 static inline bool kvm_can_mwait_in_guest(void) 4422 { 4423 return boot_cpu_has(X86_FEATURE_MWAIT) && 4424 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4425 boot_cpu_has(X86_FEATURE_ARAT); 4426 } 4427 4428 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4429 struct kvm_cpuid2 __user *cpuid_arg) 4430 { 4431 struct kvm_cpuid2 cpuid; 4432 int r; 4433 4434 r = -EFAULT; 4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4436 return r; 4437 4438 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4439 if (r) 4440 return r; 4441 4442 r = -EFAULT; 4443 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4444 return r; 4445 4446 return 0; 4447 } 4448 4449 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4450 { 4451 int r = 0; 4452 4453 switch (ext) { 4454 case KVM_CAP_IRQCHIP: 4455 case KVM_CAP_HLT: 4456 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4457 case KVM_CAP_SET_TSS_ADDR: 4458 case KVM_CAP_EXT_CPUID: 4459 case KVM_CAP_EXT_EMUL_CPUID: 4460 case KVM_CAP_CLOCKSOURCE: 4461 case KVM_CAP_PIT: 4462 case KVM_CAP_NOP_IO_DELAY: 4463 case KVM_CAP_MP_STATE: 4464 case KVM_CAP_SYNC_MMU: 4465 case KVM_CAP_USER_NMI: 4466 case KVM_CAP_REINJECT_CONTROL: 4467 case KVM_CAP_IRQ_INJECT_STATUS: 4468 case KVM_CAP_IOEVENTFD: 4469 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4470 case KVM_CAP_PIT2: 4471 case KVM_CAP_PIT_STATE2: 4472 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4473 case KVM_CAP_VCPU_EVENTS: 4474 case KVM_CAP_HYPERV: 4475 case KVM_CAP_HYPERV_VAPIC: 4476 case KVM_CAP_HYPERV_SPIN: 4477 case KVM_CAP_HYPERV_SYNIC: 4478 case KVM_CAP_HYPERV_SYNIC2: 4479 case KVM_CAP_HYPERV_VP_INDEX: 4480 case KVM_CAP_HYPERV_EVENTFD: 4481 case KVM_CAP_HYPERV_TLBFLUSH: 4482 case KVM_CAP_HYPERV_SEND_IPI: 4483 case KVM_CAP_HYPERV_CPUID: 4484 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4485 case KVM_CAP_SYS_HYPERV_CPUID: 4486 case KVM_CAP_PCI_SEGMENT: 4487 case KVM_CAP_DEBUGREGS: 4488 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4489 case KVM_CAP_XSAVE: 4490 case KVM_CAP_ASYNC_PF: 4491 case KVM_CAP_ASYNC_PF_INT: 4492 case KVM_CAP_GET_TSC_KHZ: 4493 case KVM_CAP_KVMCLOCK_CTRL: 4494 case KVM_CAP_READONLY_MEM: 4495 case KVM_CAP_HYPERV_TIME: 4496 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4497 case KVM_CAP_TSC_DEADLINE_TIMER: 4498 case KVM_CAP_DISABLE_QUIRKS: 4499 case KVM_CAP_SET_BOOT_CPU_ID: 4500 case KVM_CAP_SPLIT_IRQCHIP: 4501 case KVM_CAP_IMMEDIATE_EXIT: 4502 case KVM_CAP_PMU_EVENT_FILTER: 4503 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4504 case KVM_CAP_GET_MSR_FEATURES: 4505 case KVM_CAP_MSR_PLATFORM_INFO: 4506 case KVM_CAP_EXCEPTION_PAYLOAD: 4507 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4508 case KVM_CAP_SET_GUEST_DEBUG: 4509 case KVM_CAP_LAST_CPU: 4510 case KVM_CAP_X86_USER_SPACE_MSR: 4511 case KVM_CAP_X86_MSR_FILTER: 4512 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4513 #ifdef CONFIG_X86_SGX_KVM 4514 case KVM_CAP_SGX_ATTRIBUTE: 4515 #endif 4516 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4517 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4518 case KVM_CAP_SREGS2: 4519 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4520 case KVM_CAP_VCPU_ATTRIBUTES: 4521 case KVM_CAP_SYS_ATTRIBUTES: 4522 case KVM_CAP_VAPIC: 4523 case KVM_CAP_ENABLE_CAP: 4524 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4525 case KVM_CAP_IRQFD_RESAMPLE: 4526 r = 1; 4527 break; 4528 case KVM_CAP_EXIT_HYPERCALL: 4529 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4530 break; 4531 case KVM_CAP_SET_GUEST_DEBUG2: 4532 return KVM_GUESTDBG_VALID_MASK; 4533 #ifdef CONFIG_KVM_XEN 4534 case KVM_CAP_XEN_HVM: 4535 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4536 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4537 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4538 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4539 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4540 if (sched_info_on()) 4541 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4542 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4543 break; 4544 #endif 4545 case KVM_CAP_SYNC_REGS: 4546 r = KVM_SYNC_X86_VALID_FIELDS; 4547 break; 4548 case KVM_CAP_ADJUST_CLOCK: 4549 r = KVM_CLOCK_VALID_FLAGS; 4550 break; 4551 case KVM_CAP_X86_DISABLE_EXITS: 4552 r = KVM_X86_DISABLE_EXITS_PAUSE; 4553 4554 if (!mitigate_smt_rsb) { 4555 r |= KVM_X86_DISABLE_EXITS_HLT | 4556 KVM_X86_DISABLE_EXITS_CSTATE; 4557 4558 if (kvm_can_mwait_in_guest()) 4559 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4560 } 4561 break; 4562 case KVM_CAP_X86_SMM: 4563 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4564 break; 4565 4566 /* SMBASE is usually relocated above 1M on modern chipsets, 4567 * and SMM handlers might indeed rely on 4G segment limits, 4568 * so do not report SMM to be available if real mode is 4569 * emulated via vm86 mode. Still, do not go to great lengths 4570 * to avoid userspace's usage of the feature, because it is a 4571 * fringe case that is not enabled except via specific settings 4572 * of the module parameters. 4573 */ 4574 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4575 break; 4576 case KVM_CAP_NR_VCPUS: 4577 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4578 break; 4579 case KVM_CAP_MAX_VCPUS: 4580 r = KVM_MAX_VCPUS; 4581 break; 4582 case KVM_CAP_MAX_VCPU_ID: 4583 r = KVM_MAX_VCPU_IDS; 4584 break; 4585 case KVM_CAP_PV_MMU: /* obsolete */ 4586 r = 0; 4587 break; 4588 case KVM_CAP_MCE: 4589 r = KVM_MAX_MCE_BANKS; 4590 break; 4591 case KVM_CAP_XCRS: 4592 r = boot_cpu_has(X86_FEATURE_XSAVE); 4593 break; 4594 case KVM_CAP_TSC_CONTROL: 4595 case KVM_CAP_VM_TSC_CONTROL: 4596 r = kvm_caps.has_tsc_control; 4597 break; 4598 case KVM_CAP_X2APIC_API: 4599 r = KVM_X2APIC_API_VALID_FLAGS; 4600 break; 4601 case KVM_CAP_NESTED_STATE: 4602 r = kvm_x86_ops.nested_ops->get_state ? 4603 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4604 break; 4605 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4606 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4607 break; 4608 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4609 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4610 break; 4611 case KVM_CAP_SMALLER_MAXPHYADDR: 4612 r = (int) allow_smaller_maxphyaddr; 4613 break; 4614 case KVM_CAP_STEAL_TIME: 4615 r = sched_info_on(); 4616 break; 4617 case KVM_CAP_X86_BUS_LOCK_EXIT: 4618 if (kvm_caps.has_bus_lock_exit) 4619 r = KVM_BUS_LOCK_DETECTION_OFF | 4620 KVM_BUS_LOCK_DETECTION_EXIT; 4621 else 4622 r = 0; 4623 break; 4624 case KVM_CAP_XSAVE2: { 4625 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4626 if (r < sizeof(struct kvm_xsave)) 4627 r = sizeof(struct kvm_xsave); 4628 break; 4629 } 4630 case KVM_CAP_PMU_CAPABILITY: 4631 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4632 break; 4633 case KVM_CAP_DISABLE_QUIRKS2: 4634 r = KVM_X86_VALID_QUIRKS; 4635 break; 4636 case KVM_CAP_X86_NOTIFY_VMEXIT: 4637 r = kvm_caps.has_notify_vmexit; 4638 break; 4639 default: 4640 break; 4641 } 4642 return r; 4643 } 4644 4645 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4646 { 4647 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4648 4649 if ((u64)(unsigned long)uaddr != attr->addr) 4650 return ERR_PTR_USR(-EFAULT); 4651 return uaddr; 4652 } 4653 4654 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4655 { 4656 u64 __user *uaddr = kvm_get_attr_addr(attr); 4657 4658 if (attr->group) 4659 return -ENXIO; 4660 4661 if (IS_ERR(uaddr)) 4662 return PTR_ERR(uaddr); 4663 4664 switch (attr->attr) { 4665 case KVM_X86_XCOMP_GUEST_SUPP: 4666 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4667 return -EFAULT; 4668 return 0; 4669 default: 4670 return -ENXIO; 4671 } 4672 } 4673 4674 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4675 { 4676 if (attr->group) 4677 return -ENXIO; 4678 4679 switch (attr->attr) { 4680 case KVM_X86_XCOMP_GUEST_SUPP: 4681 return 0; 4682 default: 4683 return -ENXIO; 4684 } 4685 } 4686 4687 long kvm_arch_dev_ioctl(struct file *filp, 4688 unsigned int ioctl, unsigned long arg) 4689 { 4690 void __user *argp = (void __user *)arg; 4691 long r; 4692 4693 switch (ioctl) { 4694 case KVM_GET_MSR_INDEX_LIST: { 4695 struct kvm_msr_list __user *user_msr_list = argp; 4696 struct kvm_msr_list msr_list; 4697 unsigned n; 4698 4699 r = -EFAULT; 4700 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4701 goto out; 4702 n = msr_list.nmsrs; 4703 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4704 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4705 goto out; 4706 r = -E2BIG; 4707 if (n < msr_list.nmsrs) 4708 goto out; 4709 r = -EFAULT; 4710 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4711 num_msrs_to_save * sizeof(u32))) 4712 goto out; 4713 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4714 &emulated_msrs, 4715 num_emulated_msrs * sizeof(u32))) 4716 goto out; 4717 r = 0; 4718 break; 4719 } 4720 case KVM_GET_SUPPORTED_CPUID: 4721 case KVM_GET_EMULATED_CPUID: { 4722 struct kvm_cpuid2 __user *cpuid_arg = argp; 4723 struct kvm_cpuid2 cpuid; 4724 4725 r = -EFAULT; 4726 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4727 goto out; 4728 4729 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4730 ioctl); 4731 if (r) 4732 goto out; 4733 4734 r = -EFAULT; 4735 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4736 goto out; 4737 r = 0; 4738 break; 4739 } 4740 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4741 r = -EFAULT; 4742 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4743 sizeof(kvm_caps.supported_mce_cap))) 4744 goto out; 4745 r = 0; 4746 break; 4747 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4748 struct kvm_msr_list __user *user_msr_list = argp; 4749 struct kvm_msr_list msr_list; 4750 unsigned int n; 4751 4752 r = -EFAULT; 4753 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4754 goto out; 4755 n = msr_list.nmsrs; 4756 msr_list.nmsrs = num_msr_based_features; 4757 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4758 goto out; 4759 r = -E2BIG; 4760 if (n < msr_list.nmsrs) 4761 goto out; 4762 r = -EFAULT; 4763 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4764 num_msr_based_features * sizeof(u32))) 4765 goto out; 4766 r = 0; 4767 break; 4768 } 4769 case KVM_GET_MSRS: 4770 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4771 break; 4772 case KVM_GET_SUPPORTED_HV_CPUID: 4773 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4774 break; 4775 case KVM_GET_DEVICE_ATTR: { 4776 struct kvm_device_attr attr; 4777 r = -EFAULT; 4778 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4779 break; 4780 r = kvm_x86_dev_get_attr(&attr); 4781 break; 4782 } 4783 case KVM_HAS_DEVICE_ATTR: { 4784 struct kvm_device_attr attr; 4785 r = -EFAULT; 4786 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4787 break; 4788 r = kvm_x86_dev_has_attr(&attr); 4789 break; 4790 } 4791 default: 4792 r = -EINVAL; 4793 break; 4794 } 4795 out: 4796 return r; 4797 } 4798 4799 static void wbinvd_ipi(void *garbage) 4800 { 4801 wbinvd(); 4802 } 4803 4804 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4805 { 4806 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4807 } 4808 4809 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4810 { 4811 /* Address WBINVD may be executed by guest */ 4812 if (need_emulate_wbinvd(vcpu)) { 4813 if (static_call(kvm_x86_has_wbinvd_exit)()) 4814 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4815 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4816 smp_call_function_single(vcpu->cpu, 4817 wbinvd_ipi, NULL, 1); 4818 } 4819 4820 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4821 4822 /* Save host pkru register if supported */ 4823 vcpu->arch.host_pkru = read_pkru(); 4824 4825 /* Apply any externally detected TSC adjustments (due to suspend) */ 4826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4828 vcpu->arch.tsc_offset_adjustment = 0; 4829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4830 } 4831 4832 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4834 rdtsc() - vcpu->arch.last_host_tsc; 4835 if (tsc_delta < 0) 4836 mark_tsc_unstable("KVM discovered backwards TSC"); 4837 4838 if (kvm_check_tsc_unstable()) { 4839 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4840 vcpu->arch.last_guest_tsc); 4841 kvm_vcpu_write_tsc_offset(vcpu, offset); 4842 vcpu->arch.tsc_catchup = 1; 4843 } 4844 4845 if (kvm_lapic_hv_timer_in_use(vcpu)) 4846 kvm_lapic_restart_hv_timer(vcpu); 4847 4848 /* 4849 * On a host with synchronized TSC, there is no need to update 4850 * kvmclock on vcpu->cpu migration 4851 */ 4852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4854 if (vcpu->cpu != cpu) 4855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4856 vcpu->cpu = cpu; 4857 } 4858 4859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4860 } 4861 4862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4863 { 4864 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4865 struct kvm_steal_time __user *st; 4866 struct kvm_memslots *slots; 4867 static const u8 preempted = KVM_VCPU_PREEMPTED; 4868 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4869 4870 /* 4871 * The vCPU can be marked preempted if and only if the VM-Exit was on 4872 * an instruction boundary and will not trigger guest emulation of any 4873 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4874 * when this is true, for example allowing the vCPU to be marked 4875 * preempted if and only if the VM-Exit was due to a host interrupt. 4876 */ 4877 if (!vcpu->arch.at_instruction_boundary) { 4878 vcpu->stat.preemption_other++; 4879 return; 4880 } 4881 4882 vcpu->stat.preemption_reported++; 4883 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4884 return; 4885 4886 if (vcpu->arch.st.preempted) 4887 return; 4888 4889 /* This happens on process exit */ 4890 if (unlikely(current->mm != vcpu->kvm->mm)) 4891 return; 4892 4893 slots = kvm_memslots(vcpu->kvm); 4894 4895 if (unlikely(slots->generation != ghc->generation || 4896 gpa != ghc->gpa || 4897 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4898 return; 4899 4900 st = (struct kvm_steal_time __user *)ghc->hva; 4901 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4902 4903 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4904 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4905 4906 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4907 } 4908 4909 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4910 { 4911 int idx; 4912 4913 if (vcpu->preempted) { 4914 if (!vcpu->arch.guest_state_protected) 4915 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4916 4917 /* 4918 * Take the srcu lock as memslots will be accessed to check the gfn 4919 * cache generation against the memslots generation. 4920 */ 4921 idx = srcu_read_lock(&vcpu->kvm->srcu); 4922 if (kvm_xen_msr_enabled(vcpu->kvm)) 4923 kvm_xen_runstate_set_preempted(vcpu); 4924 else 4925 kvm_steal_time_set_preempted(vcpu); 4926 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4927 } 4928 4929 static_call(kvm_x86_vcpu_put)(vcpu); 4930 vcpu->arch.last_host_tsc = rdtsc(); 4931 } 4932 4933 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4934 struct kvm_lapic_state *s) 4935 { 4936 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4937 4938 return kvm_apic_get_state(vcpu, s); 4939 } 4940 4941 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4942 struct kvm_lapic_state *s) 4943 { 4944 int r; 4945 4946 r = kvm_apic_set_state(vcpu, s); 4947 if (r) 4948 return r; 4949 update_cr8_intercept(vcpu); 4950 4951 return 0; 4952 } 4953 4954 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4955 { 4956 /* 4957 * We can accept userspace's request for interrupt injection 4958 * as long as we have a place to store the interrupt number. 4959 * The actual injection will happen when the CPU is able to 4960 * deliver the interrupt. 4961 */ 4962 if (kvm_cpu_has_extint(vcpu)) 4963 return false; 4964 4965 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4966 return (!lapic_in_kernel(vcpu) || 4967 kvm_apic_accept_pic_intr(vcpu)); 4968 } 4969 4970 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4971 { 4972 /* 4973 * Do not cause an interrupt window exit if an exception 4974 * is pending or an event needs reinjection; userspace 4975 * might want to inject the interrupt manually using KVM_SET_REGS 4976 * or KVM_SET_SREGS. For that to work, we must be at an 4977 * instruction boundary and with no events half-injected. 4978 */ 4979 return (kvm_arch_interrupt_allowed(vcpu) && 4980 kvm_cpu_accept_dm_intr(vcpu) && 4981 !kvm_event_needs_reinjection(vcpu) && 4982 !kvm_is_exception_pending(vcpu)); 4983 } 4984 4985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4986 struct kvm_interrupt *irq) 4987 { 4988 if (irq->irq >= KVM_NR_INTERRUPTS) 4989 return -EINVAL; 4990 4991 if (!irqchip_in_kernel(vcpu->kvm)) { 4992 kvm_queue_interrupt(vcpu, irq->irq, false); 4993 kvm_make_request(KVM_REQ_EVENT, vcpu); 4994 return 0; 4995 } 4996 4997 /* 4998 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4999 * fail for in-kernel 8259. 5000 */ 5001 if (pic_in_kernel(vcpu->kvm)) 5002 return -ENXIO; 5003 5004 if (vcpu->arch.pending_external_vector != -1) 5005 return -EEXIST; 5006 5007 vcpu->arch.pending_external_vector = irq->irq; 5008 kvm_make_request(KVM_REQ_EVENT, vcpu); 5009 return 0; 5010 } 5011 5012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5013 { 5014 kvm_inject_nmi(vcpu); 5015 5016 return 0; 5017 } 5018 5019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5020 struct kvm_tpr_access_ctl *tac) 5021 { 5022 if (tac->flags) 5023 return -EINVAL; 5024 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5025 return 0; 5026 } 5027 5028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5029 u64 mcg_cap) 5030 { 5031 int r; 5032 unsigned bank_num = mcg_cap & 0xff, bank; 5033 5034 r = -EINVAL; 5035 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5036 goto out; 5037 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5038 goto out; 5039 r = 0; 5040 vcpu->arch.mcg_cap = mcg_cap; 5041 /* Init IA32_MCG_CTL to all 1s */ 5042 if (mcg_cap & MCG_CTL_P) 5043 vcpu->arch.mcg_ctl = ~(u64)0; 5044 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5045 for (bank = 0; bank < bank_num; bank++) { 5046 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5047 if (mcg_cap & MCG_CMCI_P) 5048 vcpu->arch.mci_ctl2_banks[bank] = 0; 5049 } 5050 5051 kvm_apic_after_set_mcg_cap(vcpu); 5052 5053 static_call(kvm_x86_setup_mce)(vcpu); 5054 out: 5055 return r; 5056 } 5057 5058 /* 5059 * Validate this is an UCNA (uncorrectable no action) error by checking the 5060 * MCG_STATUS and MCi_STATUS registers: 5061 * - none of the bits for Machine Check Exceptions are set 5062 * - both the VAL (valid) and UC (uncorrectable) bits are set 5063 * MCI_STATUS_PCC - Processor Context Corrupted 5064 * MCI_STATUS_S - Signaled as a Machine Check Exception 5065 * MCI_STATUS_AR - Software recoverable Action Required 5066 */ 5067 static bool is_ucna(struct kvm_x86_mce *mce) 5068 { 5069 return !mce->mcg_status && 5070 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5071 (mce->status & MCI_STATUS_VAL) && 5072 (mce->status & MCI_STATUS_UC); 5073 } 5074 5075 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5076 { 5077 u64 mcg_cap = vcpu->arch.mcg_cap; 5078 5079 banks[1] = mce->status; 5080 banks[2] = mce->addr; 5081 banks[3] = mce->misc; 5082 vcpu->arch.mcg_status = mce->mcg_status; 5083 5084 if (!(mcg_cap & MCG_CMCI_P) || 5085 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5086 return 0; 5087 5088 if (lapic_in_kernel(vcpu)) 5089 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5090 5091 return 0; 5092 } 5093 5094 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5095 struct kvm_x86_mce *mce) 5096 { 5097 u64 mcg_cap = vcpu->arch.mcg_cap; 5098 unsigned bank_num = mcg_cap & 0xff; 5099 u64 *banks = vcpu->arch.mce_banks; 5100 5101 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5102 return -EINVAL; 5103 5104 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5105 5106 if (is_ucna(mce)) 5107 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5108 5109 /* 5110 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5111 * reporting is disabled 5112 */ 5113 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5114 vcpu->arch.mcg_ctl != ~(u64)0) 5115 return 0; 5116 /* 5117 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5118 * reporting is disabled for the bank 5119 */ 5120 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5121 return 0; 5122 if (mce->status & MCI_STATUS_UC) { 5123 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5124 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5125 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5126 return 0; 5127 } 5128 if (banks[1] & MCI_STATUS_VAL) 5129 mce->status |= MCI_STATUS_OVER; 5130 banks[2] = mce->addr; 5131 banks[3] = mce->misc; 5132 vcpu->arch.mcg_status = mce->mcg_status; 5133 banks[1] = mce->status; 5134 kvm_queue_exception(vcpu, MC_VECTOR); 5135 } else if (!(banks[1] & MCI_STATUS_VAL) 5136 || !(banks[1] & MCI_STATUS_UC)) { 5137 if (banks[1] & MCI_STATUS_VAL) 5138 mce->status |= MCI_STATUS_OVER; 5139 banks[2] = mce->addr; 5140 banks[3] = mce->misc; 5141 banks[1] = mce->status; 5142 } else 5143 banks[1] |= MCI_STATUS_OVER; 5144 return 0; 5145 } 5146 5147 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5148 struct kvm_vcpu_events *events) 5149 { 5150 struct kvm_queued_exception *ex; 5151 5152 process_nmi(vcpu); 5153 5154 #ifdef CONFIG_KVM_SMM 5155 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5156 process_smi(vcpu); 5157 #endif 5158 5159 /* 5160 * KVM's ABI only allows for one exception to be migrated. Luckily, 5161 * the only time there can be two queued exceptions is if there's a 5162 * non-exiting _injected_ exception, and a pending exiting exception. 5163 * In that case, ignore the VM-Exiting exception as it's an extension 5164 * of the injected exception. 5165 */ 5166 if (vcpu->arch.exception_vmexit.pending && 5167 !vcpu->arch.exception.pending && 5168 !vcpu->arch.exception.injected) 5169 ex = &vcpu->arch.exception_vmexit; 5170 else 5171 ex = &vcpu->arch.exception; 5172 5173 /* 5174 * In guest mode, payload delivery should be deferred if the exception 5175 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5176 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5177 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5178 * propagate the payload and so it cannot be safely deferred. Deliver 5179 * the payload if the capability hasn't been requested. 5180 */ 5181 if (!vcpu->kvm->arch.exception_payload_enabled && 5182 ex->pending && ex->has_payload) 5183 kvm_deliver_exception_payload(vcpu, ex); 5184 5185 memset(events, 0, sizeof(*events)); 5186 5187 /* 5188 * The API doesn't provide the instruction length for software 5189 * exceptions, so don't report them. As long as the guest RIP 5190 * isn't advanced, we should expect to encounter the exception 5191 * again. 5192 */ 5193 if (!kvm_exception_is_soft(ex->vector)) { 5194 events->exception.injected = ex->injected; 5195 events->exception.pending = ex->pending; 5196 /* 5197 * For ABI compatibility, deliberately conflate 5198 * pending and injected exceptions when 5199 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5200 */ 5201 if (!vcpu->kvm->arch.exception_payload_enabled) 5202 events->exception.injected |= ex->pending; 5203 } 5204 events->exception.nr = ex->vector; 5205 events->exception.has_error_code = ex->has_error_code; 5206 events->exception.error_code = ex->error_code; 5207 events->exception_has_payload = ex->has_payload; 5208 events->exception_payload = ex->payload; 5209 5210 events->interrupt.injected = 5211 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5212 events->interrupt.nr = vcpu->arch.interrupt.nr; 5213 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5214 5215 events->nmi.injected = vcpu->arch.nmi_injected; 5216 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5217 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5218 5219 /* events->sipi_vector is never valid when reporting to user space */ 5220 5221 #ifdef CONFIG_KVM_SMM 5222 events->smi.smm = is_smm(vcpu); 5223 events->smi.pending = vcpu->arch.smi_pending; 5224 events->smi.smm_inside_nmi = 5225 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5226 #endif 5227 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5228 5229 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5230 | KVM_VCPUEVENT_VALID_SHADOW 5231 | KVM_VCPUEVENT_VALID_SMM); 5232 if (vcpu->kvm->arch.exception_payload_enabled) 5233 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5234 if (vcpu->kvm->arch.triple_fault_event) { 5235 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5236 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5237 } 5238 } 5239 5240 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5241 struct kvm_vcpu_events *events) 5242 { 5243 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5244 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5245 | KVM_VCPUEVENT_VALID_SHADOW 5246 | KVM_VCPUEVENT_VALID_SMM 5247 | KVM_VCPUEVENT_VALID_PAYLOAD 5248 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5249 return -EINVAL; 5250 5251 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5252 if (!vcpu->kvm->arch.exception_payload_enabled) 5253 return -EINVAL; 5254 if (events->exception.pending) 5255 events->exception.injected = 0; 5256 else 5257 events->exception_has_payload = 0; 5258 } else { 5259 events->exception.pending = 0; 5260 events->exception_has_payload = 0; 5261 } 5262 5263 if ((events->exception.injected || events->exception.pending) && 5264 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5265 return -EINVAL; 5266 5267 /* INITs are latched while in SMM */ 5268 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5269 (events->smi.smm || events->smi.pending) && 5270 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5271 return -EINVAL; 5272 5273 process_nmi(vcpu); 5274 5275 /* 5276 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5277 * morph the exception to a VM-Exit if appropriate. Do this only for 5278 * pending exceptions, already-injected exceptions are not subject to 5279 * intercpetion. Note, userspace that conflates pending and injected 5280 * is hosed, and will incorrectly convert an injected exception into a 5281 * pending exception, which in turn may cause a spurious VM-Exit. 5282 */ 5283 vcpu->arch.exception_from_userspace = events->exception.pending; 5284 5285 vcpu->arch.exception_vmexit.pending = false; 5286 5287 vcpu->arch.exception.injected = events->exception.injected; 5288 vcpu->arch.exception.pending = events->exception.pending; 5289 vcpu->arch.exception.vector = events->exception.nr; 5290 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5291 vcpu->arch.exception.error_code = events->exception.error_code; 5292 vcpu->arch.exception.has_payload = events->exception_has_payload; 5293 vcpu->arch.exception.payload = events->exception_payload; 5294 5295 vcpu->arch.interrupt.injected = events->interrupt.injected; 5296 vcpu->arch.interrupt.nr = events->interrupt.nr; 5297 vcpu->arch.interrupt.soft = events->interrupt.soft; 5298 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5299 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5300 events->interrupt.shadow); 5301 5302 vcpu->arch.nmi_injected = events->nmi.injected; 5303 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5304 vcpu->arch.nmi_pending = 0; 5305 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5306 if (events->nmi.pending) 5307 kvm_make_request(KVM_REQ_NMI, vcpu); 5308 } 5309 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5310 5311 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5312 lapic_in_kernel(vcpu)) 5313 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5314 5315 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5316 #ifdef CONFIG_KVM_SMM 5317 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5318 kvm_leave_nested(vcpu); 5319 kvm_smm_changed(vcpu, events->smi.smm); 5320 } 5321 5322 vcpu->arch.smi_pending = events->smi.pending; 5323 5324 if (events->smi.smm) { 5325 if (events->smi.smm_inside_nmi) 5326 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5327 else 5328 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5329 } 5330 5331 #else 5332 if (events->smi.smm || events->smi.pending || 5333 events->smi.smm_inside_nmi) 5334 return -EINVAL; 5335 #endif 5336 5337 if (lapic_in_kernel(vcpu)) { 5338 if (events->smi.latched_init) 5339 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5340 else 5341 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5342 } 5343 } 5344 5345 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5346 if (!vcpu->kvm->arch.triple_fault_event) 5347 return -EINVAL; 5348 if (events->triple_fault.pending) 5349 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5350 else 5351 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5352 } 5353 5354 kvm_make_request(KVM_REQ_EVENT, vcpu); 5355 5356 return 0; 5357 } 5358 5359 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5360 struct kvm_debugregs *dbgregs) 5361 { 5362 unsigned long val; 5363 5364 memset(dbgregs, 0, sizeof(*dbgregs)); 5365 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5366 kvm_get_dr(vcpu, 6, &val); 5367 dbgregs->dr6 = val; 5368 dbgregs->dr7 = vcpu->arch.dr7; 5369 } 5370 5371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5372 struct kvm_debugregs *dbgregs) 5373 { 5374 if (dbgregs->flags) 5375 return -EINVAL; 5376 5377 if (!kvm_dr6_valid(dbgregs->dr6)) 5378 return -EINVAL; 5379 if (!kvm_dr7_valid(dbgregs->dr7)) 5380 return -EINVAL; 5381 5382 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5383 kvm_update_dr0123(vcpu); 5384 vcpu->arch.dr6 = dbgregs->dr6; 5385 vcpu->arch.dr7 = dbgregs->dr7; 5386 kvm_update_dr7(vcpu); 5387 5388 return 0; 5389 } 5390 5391 5392 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5393 u8 *state, unsigned int size) 5394 { 5395 /* 5396 * Only copy state for features that are enabled for the guest. The 5397 * state itself isn't problematic, but setting bits in the header for 5398 * features that are supported in *this* host but not exposed to the 5399 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5400 * compatible host without the features that are NOT exposed to the 5401 * guest. 5402 * 5403 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5404 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5405 * supported by the host. 5406 */ 5407 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5408 XFEATURE_MASK_FPSSE; 5409 5410 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5411 return; 5412 5413 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5414 supported_xcr0, vcpu->arch.pkru); 5415 } 5416 5417 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5418 struct kvm_xsave *guest_xsave) 5419 { 5420 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5421 sizeof(guest_xsave->region)); 5422 } 5423 5424 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5425 struct kvm_xsave *guest_xsave) 5426 { 5427 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5428 return 0; 5429 5430 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5431 guest_xsave->region, 5432 kvm_caps.supported_xcr0, 5433 &vcpu->arch.pkru); 5434 } 5435 5436 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5437 struct kvm_xcrs *guest_xcrs) 5438 { 5439 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5440 guest_xcrs->nr_xcrs = 0; 5441 return; 5442 } 5443 5444 guest_xcrs->nr_xcrs = 1; 5445 guest_xcrs->flags = 0; 5446 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5447 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5448 } 5449 5450 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5451 struct kvm_xcrs *guest_xcrs) 5452 { 5453 int i, r = 0; 5454 5455 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5456 return -EINVAL; 5457 5458 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5459 return -EINVAL; 5460 5461 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5462 /* Only support XCR0 currently */ 5463 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5464 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5465 guest_xcrs->xcrs[i].value); 5466 break; 5467 } 5468 if (r) 5469 r = -EINVAL; 5470 return r; 5471 } 5472 5473 /* 5474 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5475 * stopped by the hypervisor. This function will be called from the host only. 5476 * EINVAL is returned when the host attempts to set the flag for a guest that 5477 * does not support pv clocks. 5478 */ 5479 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5480 { 5481 if (!vcpu->arch.pv_time.active) 5482 return -EINVAL; 5483 vcpu->arch.pvclock_set_guest_stopped_request = true; 5484 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5485 return 0; 5486 } 5487 5488 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5489 struct kvm_device_attr *attr) 5490 { 5491 int r; 5492 5493 switch (attr->attr) { 5494 case KVM_VCPU_TSC_OFFSET: 5495 r = 0; 5496 break; 5497 default: 5498 r = -ENXIO; 5499 } 5500 5501 return r; 5502 } 5503 5504 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5505 struct kvm_device_attr *attr) 5506 { 5507 u64 __user *uaddr = kvm_get_attr_addr(attr); 5508 int r; 5509 5510 if (IS_ERR(uaddr)) 5511 return PTR_ERR(uaddr); 5512 5513 switch (attr->attr) { 5514 case KVM_VCPU_TSC_OFFSET: 5515 r = -EFAULT; 5516 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5517 break; 5518 r = 0; 5519 break; 5520 default: 5521 r = -ENXIO; 5522 } 5523 5524 return r; 5525 } 5526 5527 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5528 struct kvm_device_attr *attr) 5529 { 5530 u64 __user *uaddr = kvm_get_attr_addr(attr); 5531 struct kvm *kvm = vcpu->kvm; 5532 int r; 5533 5534 if (IS_ERR(uaddr)) 5535 return PTR_ERR(uaddr); 5536 5537 switch (attr->attr) { 5538 case KVM_VCPU_TSC_OFFSET: { 5539 u64 offset, tsc, ns; 5540 unsigned long flags; 5541 bool matched; 5542 5543 r = -EFAULT; 5544 if (get_user(offset, uaddr)) 5545 break; 5546 5547 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5548 5549 matched = (vcpu->arch.virtual_tsc_khz && 5550 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5551 kvm->arch.last_tsc_offset == offset); 5552 5553 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5554 ns = get_kvmclock_base_ns(); 5555 5556 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5557 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5558 5559 r = 0; 5560 break; 5561 } 5562 default: 5563 r = -ENXIO; 5564 } 5565 5566 return r; 5567 } 5568 5569 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5570 unsigned int ioctl, 5571 void __user *argp) 5572 { 5573 struct kvm_device_attr attr; 5574 int r; 5575 5576 if (copy_from_user(&attr, argp, sizeof(attr))) 5577 return -EFAULT; 5578 5579 if (attr.group != KVM_VCPU_TSC_CTRL) 5580 return -ENXIO; 5581 5582 switch (ioctl) { 5583 case KVM_HAS_DEVICE_ATTR: 5584 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5585 break; 5586 case KVM_GET_DEVICE_ATTR: 5587 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5588 break; 5589 case KVM_SET_DEVICE_ATTR: 5590 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5591 break; 5592 } 5593 5594 return r; 5595 } 5596 5597 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5598 struct kvm_enable_cap *cap) 5599 { 5600 int r; 5601 uint16_t vmcs_version; 5602 void __user *user_ptr; 5603 5604 if (cap->flags) 5605 return -EINVAL; 5606 5607 switch (cap->cap) { 5608 case KVM_CAP_HYPERV_SYNIC2: 5609 if (cap->args[0]) 5610 return -EINVAL; 5611 fallthrough; 5612 5613 case KVM_CAP_HYPERV_SYNIC: 5614 if (!irqchip_in_kernel(vcpu->kvm)) 5615 return -EINVAL; 5616 return kvm_hv_activate_synic(vcpu, cap->cap == 5617 KVM_CAP_HYPERV_SYNIC2); 5618 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5619 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5620 return -ENOTTY; 5621 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5622 if (!r) { 5623 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5624 if (copy_to_user(user_ptr, &vmcs_version, 5625 sizeof(vmcs_version))) 5626 r = -EFAULT; 5627 } 5628 return r; 5629 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5630 if (!kvm_x86_ops.enable_l2_tlb_flush) 5631 return -ENOTTY; 5632 5633 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5634 5635 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5636 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5637 5638 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5639 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5640 if (vcpu->arch.pv_cpuid.enforce) 5641 kvm_update_pv_runtime(vcpu); 5642 5643 return 0; 5644 default: 5645 return -EINVAL; 5646 } 5647 } 5648 5649 long kvm_arch_vcpu_ioctl(struct file *filp, 5650 unsigned int ioctl, unsigned long arg) 5651 { 5652 struct kvm_vcpu *vcpu = filp->private_data; 5653 void __user *argp = (void __user *)arg; 5654 int r; 5655 union { 5656 struct kvm_sregs2 *sregs2; 5657 struct kvm_lapic_state *lapic; 5658 struct kvm_xsave *xsave; 5659 struct kvm_xcrs *xcrs; 5660 void *buffer; 5661 } u; 5662 5663 vcpu_load(vcpu); 5664 5665 u.buffer = NULL; 5666 switch (ioctl) { 5667 case KVM_GET_LAPIC: { 5668 r = -EINVAL; 5669 if (!lapic_in_kernel(vcpu)) 5670 goto out; 5671 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5672 GFP_KERNEL_ACCOUNT); 5673 5674 r = -ENOMEM; 5675 if (!u.lapic) 5676 goto out; 5677 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5678 if (r) 5679 goto out; 5680 r = -EFAULT; 5681 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5682 goto out; 5683 r = 0; 5684 break; 5685 } 5686 case KVM_SET_LAPIC: { 5687 r = -EINVAL; 5688 if (!lapic_in_kernel(vcpu)) 5689 goto out; 5690 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5691 if (IS_ERR(u.lapic)) { 5692 r = PTR_ERR(u.lapic); 5693 goto out_nofree; 5694 } 5695 5696 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5697 break; 5698 } 5699 case KVM_INTERRUPT: { 5700 struct kvm_interrupt irq; 5701 5702 r = -EFAULT; 5703 if (copy_from_user(&irq, argp, sizeof(irq))) 5704 goto out; 5705 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5706 break; 5707 } 5708 case KVM_NMI: { 5709 r = kvm_vcpu_ioctl_nmi(vcpu); 5710 break; 5711 } 5712 case KVM_SMI: { 5713 r = kvm_inject_smi(vcpu); 5714 break; 5715 } 5716 case KVM_SET_CPUID: { 5717 struct kvm_cpuid __user *cpuid_arg = argp; 5718 struct kvm_cpuid cpuid; 5719 5720 r = -EFAULT; 5721 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5722 goto out; 5723 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5724 break; 5725 } 5726 case KVM_SET_CPUID2: { 5727 struct kvm_cpuid2 __user *cpuid_arg = argp; 5728 struct kvm_cpuid2 cpuid; 5729 5730 r = -EFAULT; 5731 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5732 goto out; 5733 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5734 cpuid_arg->entries); 5735 break; 5736 } 5737 case KVM_GET_CPUID2: { 5738 struct kvm_cpuid2 __user *cpuid_arg = argp; 5739 struct kvm_cpuid2 cpuid; 5740 5741 r = -EFAULT; 5742 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5743 goto out; 5744 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5745 cpuid_arg->entries); 5746 if (r) 5747 goto out; 5748 r = -EFAULT; 5749 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5750 goto out; 5751 r = 0; 5752 break; 5753 } 5754 case KVM_GET_MSRS: { 5755 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5756 r = msr_io(vcpu, argp, do_get_msr, 1); 5757 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5758 break; 5759 } 5760 case KVM_SET_MSRS: { 5761 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5762 r = msr_io(vcpu, argp, do_set_msr, 0); 5763 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5764 break; 5765 } 5766 case KVM_TPR_ACCESS_REPORTING: { 5767 struct kvm_tpr_access_ctl tac; 5768 5769 r = -EFAULT; 5770 if (copy_from_user(&tac, argp, sizeof(tac))) 5771 goto out; 5772 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5773 if (r) 5774 goto out; 5775 r = -EFAULT; 5776 if (copy_to_user(argp, &tac, sizeof(tac))) 5777 goto out; 5778 r = 0; 5779 break; 5780 }; 5781 case KVM_SET_VAPIC_ADDR: { 5782 struct kvm_vapic_addr va; 5783 int idx; 5784 5785 r = -EINVAL; 5786 if (!lapic_in_kernel(vcpu)) 5787 goto out; 5788 r = -EFAULT; 5789 if (copy_from_user(&va, argp, sizeof(va))) 5790 goto out; 5791 idx = srcu_read_lock(&vcpu->kvm->srcu); 5792 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5793 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5794 break; 5795 } 5796 case KVM_X86_SETUP_MCE: { 5797 u64 mcg_cap; 5798 5799 r = -EFAULT; 5800 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5801 goto out; 5802 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5803 break; 5804 } 5805 case KVM_X86_SET_MCE: { 5806 struct kvm_x86_mce mce; 5807 5808 r = -EFAULT; 5809 if (copy_from_user(&mce, argp, sizeof(mce))) 5810 goto out; 5811 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5812 break; 5813 } 5814 case KVM_GET_VCPU_EVENTS: { 5815 struct kvm_vcpu_events events; 5816 5817 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5818 5819 r = -EFAULT; 5820 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5821 break; 5822 r = 0; 5823 break; 5824 } 5825 case KVM_SET_VCPU_EVENTS: { 5826 struct kvm_vcpu_events events; 5827 5828 r = -EFAULT; 5829 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5830 break; 5831 5832 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5833 break; 5834 } 5835 case KVM_GET_DEBUGREGS: { 5836 struct kvm_debugregs dbgregs; 5837 5838 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5839 5840 r = -EFAULT; 5841 if (copy_to_user(argp, &dbgregs, 5842 sizeof(struct kvm_debugregs))) 5843 break; 5844 r = 0; 5845 break; 5846 } 5847 case KVM_SET_DEBUGREGS: { 5848 struct kvm_debugregs dbgregs; 5849 5850 r = -EFAULT; 5851 if (copy_from_user(&dbgregs, argp, 5852 sizeof(struct kvm_debugregs))) 5853 break; 5854 5855 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5856 break; 5857 } 5858 case KVM_GET_XSAVE: { 5859 r = -EINVAL; 5860 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5861 break; 5862 5863 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5864 r = -ENOMEM; 5865 if (!u.xsave) 5866 break; 5867 5868 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5869 5870 r = -EFAULT; 5871 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5872 break; 5873 r = 0; 5874 break; 5875 } 5876 case KVM_SET_XSAVE: { 5877 int size = vcpu->arch.guest_fpu.uabi_size; 5878 5879 u.xsave = memdup_user(argp, size); 5880 if (IS_ERR(u.xsave)) { 5881 r = PTR_ERR(u.xsave); 5882 goto out_nofree; 5883 } 5884 5885 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5886 break; 5887 } 5888 5889 case KVM_GET_XSAVE2: { 5890 int size = vcpu->arch.guest_fpu.uabi_size; 5891 5892 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5893 r = -ENOMEM; 5894 if (!u.xsave) 5895 break; 5896 5897 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5898 5899 r = -EFAULT; 5900 if (copy_to_user(argp, u.xsave, size)) 5901 break; 5902 5903 r = 0; 5904 break; 5905 } 5906 5907 case KVM_GET_XCRS: { 5908 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5909 r = -ENOMEM; 5910 if (!u.xcrs) 5911 break; 5912 5913 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5914 5915 r = -EFAULT; 5916 if (copy_to_user(argp, u.xcrs, 5917 sizeof(struct kvm_xcrs))) 5918 break; 5919 r = 0; 5920 break; 5921 } 5922 case KVM_SET_XCRS: { 5923 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5924 if (IS_ERR(u.xcrs)) { 5925 r = PTR_ERR(u.xcrs); 5926 goto out_nofree; 5927 } 5928 5929 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5930 break; 5931 } 5932 case KVM_SET_TSC_KHZ: { 5933 u32 user_tsc_khz; 5934 5935 r = -EINVAL; 5936 user_tsc_khz = (u32)arg; 5937 5938 if (kvm_caps.has_tsc_control && 5939 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5940 goto out; 5941 5942 if (user_tsc_khz == 0) 5943 user_tsc_khz = tsc_khz; 5944 5945 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5946 r = 0; 5947 5948 goto out; 5949 } 5950 case KVM_GET_TSC_KHZ: { 5951 r = vcpu->arch.virtual_tsc_khz; 5952 goto out; 5953 } 5954 case KVM_KVMCLOCK_CTRL: { 5955 r = kvm_set_guest_paused(vcpu); 5956 goto out; 5957 } 5958 case KVM_ENABLE_CAP: { 5959 struct kvm_enable_cap cap; 5960 5961 r = -EFAULT; 5962 if (copy_from_user(&cap, argp, sizeof(cap))) 5963 goto out; 5964 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5965 break; 5966 } 5967 case KVM_GET_NESTED_STATE: { 5968 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5969 u32 user_data_size; 5970 5971 r = -EINVAL; 5972 if (!kvm_x86_ops.nested_ops->get_state) 5973 break; 5974 5975 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5976 r = -EFAULT; 5977 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5978 break; 5979 5980 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5981 user_data_size); 5982 if (r < 0) 5983 break; 5984 5985 if (r > user_data_size) { 5986 if (put_user(r, &user_kvm_nested_state->size)) 5987 r = -EFAULT; 5988 else 5989 r = -E2BIG; 5990 break; 5991 } 5992 5993 r = 0; 5994 break; 5995 } 5996 case KVM_SET_NESTED_STATE: { 5997 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5998 struct kvm_nested_state kvm_state; 5999 int idx; 6000 6001 r = -EINVAL; 6002 if (!kvm_x86_ops.nested_ops->set_state) 6003 break; 6004 6005 r = -EFAULT; 6006 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6007 break; 6008 6009 r = -EINVAL; 6010 if (kvm_state.size < sizeof(kvm_state)) 6011 break; 6012 6013 if (kvm_state.flags & 6014 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6015 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6016 | KVM_STATE_NESTED_GIF_SET)) 6017 break; 6018 6019 /* nested_run_pending implies guest_mode. */ 6020 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6021 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6022 break; 6023 6024 idx = srcu_read_lock(&vcpu->kvm->srcu); 6025 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6026 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6027 break; 6028 } 6029 case KVM_GET_SUPPORTED_HV_CPUID: 6030 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6031 break; 6032 #ifdef CONFIG_KVM_XEN 6033 case KVM_XEN_VCPU_GET_ATTR: { 6034 struct kvm_xen_vcpu_attr xva; 6035 6036 r = -EFAULT; 6037 if (copy_from_user(&xva, argp, sizeof(xva))) 6038 goto out; 6039 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6040 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6041 r = -EFAULT; 6042 break; 6043 } 6044 case KVM_XEN_VCPU_SET_ATTR: { 6045 struct kvm_xen_vcpu_attr xva; 6046 6047 r = -EFAULT; 6048 if (copy_from_user(&xva, argp, sizeof(xva))) 6049 goto out; 6050 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6051 break; 6052 } 6053 #endif 6054 case KVM_GET_SREGS2: { 6055 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6056 r = -ENOMEM; 6057 if (!u.sregs2) 6058 goto out; 6059 __get_sregs2(vcpu, u.sregs2); 6060 r = -EFAULT; 6061 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6062 goto out; 6063 r = 0; 6064 break; 6065 } 6066 case KVM_SET_SREGS2: { 6067 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6068 if (IS_ERR(u.sregs2)) { 6069 r = PTR_ERR(u.sregs2); 6070 u.sregs2 = NULL; 6071 goto out; 6072 } 6073 r = __set_sregs2(vcpu, u.sregs2); 6074 break; 6075 } 6076 case KVM_HAS_DEVICE_ATTR: 6077 case KVM_GET_DEVICE_ATTR: 6078 case KVM_SET_DEVICE_ATTR: 6079 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6080 break; 6081 default: 6082 r = -EINVAL; 6083 } 6084 out: 6085 kfree(u.buffer); 6086 out_nofree: 6087 vcpu_put(vcpu); 6088 return r; 6089 } 6090 6091 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6092 { 6093 return VM_FAULT_SIGBUS; 6094 } 6095 6096 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6097 { 6098 int ret; 6099 6100 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6101 return -EINVAL; 6102 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6103 return ret; 6104 } 6105 6106 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6107 u64 ident_addr) 6108 { 6109 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6110 } 6111 6112 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6113 unsigned long kvm_nr_mmu_pages) 6114 { 6115 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6116 return -EINVAL; 6117 6118 mutex_lock(&kvm->slots_lock); 6119 6120 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6121 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6122 6123 mutex_unlock(&kvm->slots_lock); 6124 return 0; 6125 } 6126 6127 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6128 { 6129 struct kvm_pic *pic = kvm->arch.vpic; 6130 int r; 6131 6132 r = 0; 6133 switch (chip->chip_id) { 6134 case KVM_IRQCHIP_PIC_MASTER: 6135 memcpy(&chip->chip.pic, &pic->pics[0], 6136 sizeof(struct kvm_pic_state)); 6137 break; 6138 case KVM_IRQCHIP_PIC_SLAVE: 6139 memcpy(&chip->chip.pic, &pic->pics[1], 6140 sizeof(struct kvm_pic_state)); 6141 break; 6142 case KVM_IRQCHIP_IOAPIC: 6143 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6144 break; 6145 default: 6146 r = -EINVAL; 6147 break; 6148 } 6149 return r; 6150 } 6151 6152 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6153 { 6154 struct kvm_pic *pic = kvm->arch.vpic; 6155 int r; 6156 6157 r = 0; 6158 switch (chip->chip_id) { 6159 case KVM_IRQCHIP_PIC_MASTER: 6160 spin_lock(&pic->lock); 6161 memcpy(&pic->pics[0], &chip->chip.pic, 6162 sizeof(struct kvm_pic_state)); 6163 spin_unlock(&pic->lock); 6164 break; 6165 case KVM_IRQCHIP_PIC_SLAVE: 6166 spin_lock(&pic->lock); 6167 memcpy(&pic->pics[1], &chip->chip.pic, 6168 sizeof(struct kvm_pic_state)); 6169 spin_unlock(&pic->lock); 6170 break; 6171 case KVM_IRQCHIP_IOAPIC: 6172 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6173 break; 6174 default: 6175 r = -EINVAL; 6176 break; 6177 } 6178 kvm_pic_update_irq(pic); 6179 return r; 6180 } 6181 6182 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6183 { 6184 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6185 6186 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6187 6188 mutex_lock(&kps->lock); 6189 memcpy(ps, &kps->channels, sizeof(*ps)); 6190 mutex_unlock(&kps->lock); 6191 return 0; 6192 } 6193 6194 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6195 { 6196 int i; 6197 struct kvm_pit *pit = kvm->arch.vpit; 6198 6199 mutex_lock(&pit->pit_state.lock); 6200 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6201 for (i = 0; i < 3; i++) 6202 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6203 mutex_unlock(&pit->pit_state.lock); 6204 return 0; 6205 } 6206 6207 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6208 { 6209 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6210 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6211 sizeof(ps->channels)); 6212 ps->flags = kvm->arch.vpit->pit_state.flags; 6213 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6214 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6215 return 0; 6216 } 6217 6218 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6219 { 6220 int start = 0; 6221 int i; 6222 u32 prev_legacy, cur_legacy; 6223 struct kvm_pit *pit = kvm->arch.vpit; 6224 6225 mutex_lock(&pit->pit_state.lock); 6226 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6227 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6228 if (!prev_legacy && cur_legacy) 6229 start = 1; 6230 memcpy(&pit->pit_state.channels, &ps->channels, 6231 sizeof(pit->pit_state.channels)); 6232 pit->pit_state.flags = ps->flags; 6233 for (i = 0; i < 3; i++) 6234 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6235 start && i == 0); 6236 mutex_unlock(&pit->pit_state.lock); 6237 return 0; 6238 } 6239 6240 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6241 struct kvm_reinject_control *control) 6242 { 6243 struct kvm_pit *pit = kvm->arch.vpit; 6244 6245 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6246 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6247 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6248 */ 6249 mutex_lock(&pit->pit_state.lock); 6250 kvm_pit_set_reinject(pit, control->pit_reinject); 6251 mutex_unlock(&pit->pit_state.lock); 6252 6253 return 0; 6254 } 6255 6256 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6257 { 6258 6259 /* 6260 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6261 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6262 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6263 * VM-Exit. 6264 */ 6265 struct kvm_vcpu *vcpu; 6266 unsigned long i; 6267 6268 kvm_for_each_vcpu(i, vcpu, kvm) 6269 kvm_vcpu_kick(vcpu); 6270 } 6271 6272 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6273 bool line_status) 6274 { 6275 if (!irqchip_in_kernel(kvm)) 6276 return -ENXIO; 6277 6278 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6279 irq_event->irq, irq_event->level, 6280 line_status); 6281 return 0; 6282 } 6283 6284 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6285 struct kvm_enable_cap *cap) 6286 { 6287 int r; 6288 6289 if (cap->flags) 6290 return -EINVAL; 6291 6292 switch (cap->cap) { 6293 case KVM_CAP_DISABLE_QUIRKS2: 6294 r = -EINVAL; 6295 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6296 break; 6297 fallthrough; 6298 case KVM_CAP_DISABLE_QUIRKS: 6299 kvm->arch.disabled_quirks = cap->args[0]; 6300 r = 0; 6301 break; 6302 case KVM_CAP_SPLIT_IRQCHIP: { 6303 mutex_lock(&kvm->lock); 6304 r = -EINVAL; 6305 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6306 goto split_irqchip_unlock; 6307 r = -EEXIST; 6308 if (irqchip_in_kernel(kvm)) 6309 goto split_irqchip_unlock; 6310 if (kvm->created_vcpus) 6311 goto split_irqchip_unlock; 6312 r = kvm_setup_empty_irq_routing(kvm); 6313 if (r) 6314 goto split_irqchip_unlock; 6315 /* Pairs with irqchip_in_kernel. */ 6316 smp_wmb(); 6317 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6318 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6319 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6320 r = 0; 6321 split_irqchip_unlock: 6322 mutex_unlock(&kvm->lock); 6323 break; 6324 } 6325 case KVM_CAP_X2APIC_API: 6326 r = -EINVAL; 6327 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6328 break; 6329 6330 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6331 kvm->arch.x2apic_format = true; 6332 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6333 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6334 6335 r = 0; 6336 break; 6337 case KVM_CAP_X86_DISABLE_EXITS: 6338 r = -EINVAL; 6339 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6340 break; 6341 6342 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6343 kvm->arch.pause_in_guest = true; 6344 6345 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6346 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6347 6348 if (!mitigate_smt_rsb) { 6349 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6350 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6351 pr_warn_once(SMT_RSB_MSG); 6352 6353 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6354 kvm_can_mwait_in_guest()) 6355 kvm->arch.mwait_in_guest = true; 6356 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6357 kvm->arch.hlt_in_guest = true; 6358 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6359 kvm->arch.cstate_in_guest = true; 6360 } 6361 6362 r = 0; 6363 break; 6364 case KVM_CAP_MSR_PLATFORM_INFO: 6365 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6366 r = 0; 6367 break; 6368 case KVM_CAP_EXCEPTION_PAYLOAD: 6369 kvm->arch.exception_payload_enabled = cap->args[0]; 6370 r = 0; 6371 break; 6372 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6373 kvm->arch.triple_fault_event = cap->args[0]; 6374 r = 0; 6375 break; 6376 case KVM_CAP_X86_USER_SPACE_MSR: 6377 r = -EINVAL; 6378 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6379 break; 6380 kvm->arch.user_space_msr_mask = cap->args[0]; 6381 r = 0; 6382 break; 6383 case KVM_CAP_X86_BUS_LOCK_EXIT: 6384 r = -EINVAL; 6385 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6386 break; 6387 6388 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6389 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6390 break; 6391 6392 if (kvm_caps.has_bus_lock_exit && 6393 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6394 kvm->arch.bus_lock_detection_enabled = true; 6395 r = 0; 6396 break; 6397 #ifdef CONFIG_X86_SGX_KVM 6398 case KVM_CAP_SGX_ATTRIBUTE: { 6399 unsigned long allowed_attributes = 0; 6400 6401 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6402 if (r) 6403 break; 6404 6405 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6406 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6407 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6408 kvm->arch.sgx_provisioning_allowed = true; 6409 else 6410 r = -EINVAL; 6411 break; 6412 } 6413 #endif 6414 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6415 r = -EINVAL; 6416 if (!kvm_x86_ops.vm_copy_enc_context_from) 6417 break; 6418 6419 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6420 break; 6421 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6422 r = -EINVAL; 6423 if (!kvm_x86_ops.vm_move_enc_context_from) 6424 break; 6425 6426 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6427 break; 6428 case KVM_CAP_EXIT_HYPERCALL: 6429 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6430 r = -EINVAL; 6431 break; 6432 } 6433 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6434 r = 0; 6435 break; 6436 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6437 r = -EINVAL; 6438 if (cap->args[0] & ~1) 6439 break; 6440 kvm->arch.exit_on_emulation_error = cap->args[0]; 6441 r = 0; 6442 break; 6443 case KVM_CAP_PMU_CAPABILITY: 6444 r = -EINVAL; 6445 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6446 break; 6447 6448 mutex_lock(&kvm->lock); 6449 if (!kvm->created_vcpus) { 6450 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6451 r = 0; 6452 } 6453 mutex_unlock(&kvm->lock); 6454 break; 6455 case KVM_CAP_MAX_VCPU_ID: 6456 r = -EINVAL; 6457 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6458 break; 6459 6460 mutex_lock(&kvm->lock); 6461 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6462 r = 0; 6463 } else if (!kvm->arch.max_vcpu_ids) { 6464 kvm->arch.max_vcpu_ids = cap->args[0]; 6465 r = 0; 6466 } 6467 mutex_unlock(&kvm->lock); 6468 break; 6469 case KVM_CAP_X86_NOTIFY_VMEXIT: 6470 r = -EINVAL; 6471 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6472 break; 6473 if (!kvm_caps.has_notify_vmexit) 6474 break; 6475 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6476 break; 6477 mutex_lock(&kvm->lock); 6478 if (!kvm->created_vcpus) { 6479 kvm->arch.notify_window = cap->args[0] >> 32; 6480 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6481 r = 0; 6482 } 6483 mutex_unlock(&kvm->lock); 6484 break; 6485 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6486 r = -EINVAL; 6487 6488 /* 6489 * Since the risk of disabling NX hugepages is a guest crashing 6490 * the system, ensure the userspace process has permission to 6491 * reboot the system. 6492 * 6493 * Note that unlike the reboot() syscall, the process must have 6494 * this capability in the root namespace because exposing 6495 * /dev/kvm into a container does not limit the scope of the 6496 * iTLB multihit bug to that container. In other words, 6497 * this must use capable(), not ns_capable(). 6498 */ 6499 if (!capable(CAP_SYS_BOOT)) { 6500 r = -EPERM; 6501 break; 6502 } 6503 6504 if (cap->args[0]) 6505 break; 6506 6507 mutex_lock(&kvm->lock); 6508 if (!kvm->created_vcpus) { 6509 kvm->arch.disable_nx_huge_pages = true; 6510 r = 0; 6511 } 6512 mutex_unlock(&kvm->lock); 6513 break; 6514 default: 6515 r = -EINVAL; 6516 break; 6517 } 6518 return r; 6519 } 6520 6521 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6522 { 6523 struct kvm_x86_msr_filter *msr_filter; 6524 6525 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6526 if (!msr_filter) 6527 return NULL; 6528 6529 msr_filter->default_allow = default_allow; 6530 return msr_filter; 6531 } 6532 6533 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6534 { 6535 u32 i; 6536 6537 if (!msr_filter) 6538 return; 6539 6540 for (i = 0; i < msr_filter->count; i++) 6541 kfree(msr_filter->ranges[i].bitmap); 6542 6543 kfree(msr_filter); 6544 } 6545 6546 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6547 struct kvm_msr_filter_range *user_range) 6548 { 6549 unsigned long *bitmap; 6550 size_t bitmap_size; 6551 6552 if (!user_range->nmsrs) 6553 return 0; 6554 6555 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6556 return -EINVAL; 6557 6558 if (!user_range->flags) 6559 return -EINVAL; 6560 6561 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6562 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6563 return -EINVAL; 6564 6565 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6566 if (IS_ERR(bitmap)) 6567 return PTR_ERR(bitmap); 6568 6569 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6570 .flags = user_range->flags, 6571 .base = user_range->base, 6572 .nmsrs = user_range->nmsrs, 6573 .bitmap = bitmap, 6574 }; 6575 6576 msr_filter->count++; 6577 return 0; 6578 } 6579 6580 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6581 struct kvm_msr_filter *filter) 6582 { 6583 struct kvm_x86_msr_filter *new_filter, *old_filter; 6584 bool default_allow; 6585 bool empty = true; 6586 int r; 6587 u32 i; 6588 6589 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6590 return -EINVAL; 6591 6592 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6593 empty &= !filter->ranges[i].nmsrs; 6594 6595 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6596 if (empty && !default_allow) 6597 return -EINVAL; 6598 6599 new_filter = kvm_alloc_msr_filter(default_allow); 6600 if (!new_filter) 6601 return -ENOMEM; 6602 6603 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6604 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6605 if (r) { 6606 kvm_free_msr_filter(new_filter); 6607 return r; 6608 } 6609 } 6610 6611 mutex_lock(&kvm->lock); 6612 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6613 mutex_is_locked(&kvm->lock)); 6614 mutex_unlock(&kvm->lock); 6615 synchronize_srcu(&kvm->srcu); 6616 6617 kvm_free_msr_filter(old_filter); 6618 6619 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6620 6621 return 0; 6622 } 6623 6624 #ifdef CONFIG_KVM_COMPAT 6625 /* for KVM_X86_SET_MSR_FILTER */ 6626 struct kvm_msr_filter_range_compat { 6627 __u32 flags; 6628 __u32 nmsrs; 6629 __u32 base; 6630 __u32 bitmap; 6631 }; 6632 6633 struct kvm_msr_filter_compat { 6634 __u32 flags; 6635 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6636 }; 6637 6638 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6639 6640 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6641 unsigned long arg) 6642 { 6643 void __user *argp = (void __user *)arg; 6644 struct kvm *kvm = filp->private_data; 6645 long r = -ENOTTY; 6646 6647 switch (ioctl) { 6648 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6649 struct kvm_msr_filter __user *user_msr_filter = argp; 6650 struct kvm_msr_filter_compat filter_compat; 6651 struct kvm_msr_filter filter; 6652 int i; 6653 6654 if (copy_from_user(&filter_compat, user_msr_filter, 6655 sizeof(filter_compat))) 6656 return -EFAULT; 6657 6658 filter.flags = filter_compat.flags; 6659 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6660 struct kvm_msr_filter_range_compat *cr; 6661 6662 cr = &filter_compat.ranges[i]; 6663 filter.ranges[i] = (struct kvm_msr_filter_range) { 6664 .flags = cr->flags, 6665 .nmsrs = cr->nmsrs, 6666 .base = cr->base, 6667 .bitmap = (__u8 *)(ulong)cr->bitmap, 6668 }; 6669 } 6670 6671 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6672 break; 6673 } 6674 } 6675 6676 return r; 6677 } 6678 #endif 6679 6680 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6681 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6682 { 6683 struct kvm_vcpu *vcpu; 6684 unsigned long i; 6685 int ret = 0; 6686 6687 mutex_lock(&kvm->lock); 6688 kvm_for_each_vcpu(i, vcpu, kvm) { 6689 if (!vcpu->arch.pv_time.active) 6690 continue; 6691 6692 ret = kvm_set_guest_paused(vcpu); 6693 if (ret) { 6694 kvm_err("Failed to pause guest VCPU%d: %d\n", 6695 vcpu->vcpu_id, ret); 6696 break; 6697 } 6698 } 6699 mutex_unlock(&kvm->lock); 6700 6701 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6702 } 6703 6704 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6705 { 6706 switch (state) { 6707 case PM_HIBERNATION_PREPARE: 6708 case PM_SUSPEND_PREPARE: 6709 return kvm_arch_suspend_notifier(kvm); 6710 } 6711 6712 return NOTIFY_DONE; 6713 } 6714 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6715 6716 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6717 { 6718 struct kvm_clock_data data = { 0 }; 6719 6720 get_kvmclock(kvm, &data); 6721 if (copy_to_user(argp, &data, sizeof(data))) 6722 return -EFAULT; 6723 6724 return 0; 6725 } 6726 6727 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6728 { 6729 struct kvm_arch *ka = &kvm->arch; 6730 struct kvm_clock_data data; 6731 u64 now_raw_ns; 6732 6733 if (copy_from_user(&data, argp, sizeof(data))) 6734 return -EFAULT; 6735 6736 /* 6737 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6738 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6739 */ 6740 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6741 return -EINVAL; 6742 6743 kvm_hv_request_tsc_page_update(kvm); 6744 kvm_start_pvclock_update(kvm); 6745 pvclock_update_vm_gtod_copy(kvm); 6746 6747 /* 6748 * This pairs with kvm_guest_time_update(): when masterclock is 6749 * in use, we use master_kernel_ns + kvmclock_offset to set 6750 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6751 * is slightly ahead) here we risk going negative on unsigned 6752 * 'system_time' when 'data.clock' is very small. 6753 */ 6754 if (data.flags & KVM_CLOCK_REALTIME) { 6755 u64 now_real_ns = ktime_get_real_ns(); 6756 6757 /* 6758 * Avoid stepping the kvmclock backwards. 6759 */ 6760 if (now_real_ns > data.realtime) 6761 data.clock += now_real_ns - data.realtime; 6762 } 6763 6764 if (ka->use_master_clock) 6765 now_raw_ns = ka->master_kernel_ns; 6766 else 6767 now_raw_ns = get_kvmclock_base_ns(); 6768 ka->kvmclock_offset = data.clock - now_raw_ns; 6769 kvm_end_pvclock_update(kvm); 6770 return 0; 6771 } 6772 6773 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6774 { 6775 struct kvm *kvm = filp->private_data; 6776 void __user *argp = (void __user *)arg; 6777 int r = -ENOTTY; 6778 /* 6779 * This union makes it completely explicit to gcc-3.x 6780 * that these two variables' stack usage should be 6781 * combined, not added together. 6782 */ 6783 union { 6784 struct kvm_pit_state ps; 6785 struct kvm_pit_state2 ps2; 6786 struct kvm_pit_config pit_config; 6787 } u; 6788 6789 switch (ioctl) { 6790 case KVM_SET_TSS_ADDR: 6791 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6792 break; 6793 case KVM_SET_IDENTITY_MAP_ADDR: { 6794 u64 ident_addr; 6795 6796 mutex_lock(&kvm->lock); 6797 r = -EINVAL; 6798 if (kvm->created_vcpus) 6799 goto set_identity_unlock; 6800 r = -EFAULT; 6801 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6802 goto set_identity_unlock; 6803 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6804 set_identity_unlock: 6805 mutex_unlock(&kvm->lock); 6806 break; 6807 } 6808 case KVM_SET_NR_MMU_PAGES: 6809 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6810 break; 6811 case KVM_CREATE_IRQCHIP: { 6812 mutex_lock(&kvm->lock); 6813 6814 r = -EEXIST; 6815 if (irqchip_in_kernel(kvm)) 6816 goto create_irqchip_unlock; 6817 6818 r = -EINVAL; 6819 if (kvm->created_vcpus) 6820 goto create_irqchip_unlock; 6821 6822 r = kvm_pic_init(kvm); 6823 if (r) 6824 goto create_irqchip_unlock; 6825 6826 r = kvm_ioapic_init(kvm); 6827 if (r) { 6828 kvm_pic_destroy(kvm); 6829 goto create_irqchip_unlock; 6830 } 6831 6832 r = kvm_setup_default_irq_routing(kvm); 6833 if (r) { 6834 kvm_ioapic_destroy(kvm); 6835 kvm_pic_destroy(kvm); 6836 goto create_irqchip_unlock; 6837 } 6838 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6839 smp_wmb(); 6840 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6841 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6842 create_irqchip_unlock: 6843 mutex_unlock(&kvm->lock); 6844 break; 6845 } 6846 case KVM_CREATE_PIT: 6847 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6848 goto create_pit; 6849 case KVM_CREATE_PIT2: 6850 r = -EFAULT; 6851 if (copy_from_user(&u.pit_config, argp, 6852 sizeof(struct kvm_pit_config))) 6853 goto out; 6854 create_pit: 6855 mutex_lock(&kvm->lock); 6856 r = -EEXIST; 6857 if (kvm->arch.vpit) 6858 goto create_pit_unlock; 6859 r = -ENOMEM; 6860 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6861 if (kvm->arch.vpit) 6862 r = 0; 6863 create_pit_unlock: 6864 mutex_unlock(&kvm->lock); 6865 break; 6866 case KVM_GET_IRQCHIP: { 6867 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6868 struct kvm_irqchip *chip; 6869 6870 chip = memdup_user(argp, sizeof(*chip)); 6871 if (IS_ERR(chip)) { 6872 r = PTR_ERR(chip); 6873 goto out; 6874 } 6875 6876 r = -ENXIO; 6877 if (!irqchip_kernel(kvm)) 6878 goto get_irqchip_out; 6879 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6880 if (r) 6881 goto get_irqchip_out; 6882 r = -EFAULT; 6883 if (copy_to_user(argp, chip, sizeof(*chip))) 6884 goto get_irqchip_out; 6885 r = 0; 6886 get_irqchip_out: 6887 kfree(chip); 6888 break; 6889 } 6890 case KVM_SET_IRQCHIP: { 6891 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6892 struct kvm_irqchip *chip; 6893 6894 chip = memdup_user(argp, sizeof(*chip)); 6895 if (IS_ERR(chip)) { 6896 r = PTR_ERR(chip); 6897 goto out; 6898 } 6899 6900 r = -ENXIO; 6901 if (!irqchip_kernel(kvm)) 6902 goto set_irqchip_out; 6903 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6904 set_irqchip_out: 6905 kfree(chip); 6906 break; 6907 } 6908 case KVM_GET_PIT: { 6909 r = -EFAULT; 6910 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6911 goto out; 6912 r = -ENXIO; 6913 if (!kvm->arch.vpit) 6914 goto out; 6915 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6916 if (r) 6917 goto out; 6918 r = -EFAULT; 6919 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6920 goto out; 6921 r = 0; 6922 break; 6923 } 6924 case KVM_SET_PIT: { 6925 r = -EFAULT; 6926 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6927 goto out; 6928 mutex_lock(&kvm->lock); 6929 r = -ENXIO; 6930 if (!kvm->arch.vpit) 6931 goto set_pit_out; 6932 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6933 set_pit_out: 6934 mutex_unlock(&kvm->lock); 6935 break; 6936 } 6937 case KVM_GET_PIT2: { 6938 r = -ENXIO; 6939 if (!kvm->arch.vpit) 6940 goto out; 6941 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6942 if (r) 6943 goto out; 6944 r = -EFAULT; 6945 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6946 goto out; 6947 r = 0; 6948 break; 6949 } 6950 case KVM_SET_PIT2: { 6951 r = -EFAULT; 6952 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6953 goto out; 6954 mutex_lock(&kvm->lock); 6955 r = -ENXIO; 6956 if (!kvm->arch.vpit) 6957 goto set_pit2_out; 6958 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6959 set_pit2_out: 6960 mutex_unlock(&kvm->lock); 6961 break; 6962 } 6963 case KVM_REINJECT_CONTROL: { 6964 struct kvm_reinject_control control; 6965 r = -EFAULT; 6966 if (copy_from_user(&control, argp, sizeof(control))) 6967 goto out; 6968 r = -ENXIO; 6969 if (!kvm->arch.vpit) 6970 goto out; 6971 r = kvm_vm_ioctl_reinject(kvm, &control); 6972 break; 6973 } 6974 case KVM_SET_BOOT_CPU_ID: 6975 r = 0; 6976 mutex_lock(&kvm->lock); 6977 if (kvm->created_vcpus) 6978 r = -EBUSY; 6979 else 6980 kvm->arch.bsp_vcpu_id = arg; 6981 mutex_unlock(&kvm->lock); 6982 break; 6983 #ifdef CONFIG_KVM_XEN 6984 case KVM_XEN_HVM_CONFIG: { 6985 struct kvm_xen_hvm_config xhc; 6986 r = -EFAULT; 6987 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6988 goto out; 6989 r = kvm_xen_hvm_config(kvm, &xhc); 6990 break; 6991 } 6992 case KVM_XEN_HVM_GET_ATTR: { 6993 struct kvm_xen_hvm_attr xha; 6994 6995 r = -EFAULT; 6996 if (copy_from_user(&xha, argp, sizeof(xha))) 6997 goto out; 6998 r = kvm_xen_hvm_get_attr(kvm, &xha); 6999 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7000 r = -EFAULT; 7001 break; 7002 } 7003 case KVM_XEN_HVM_SET_ATTR: { 7004 struct kvm_xen_hvm_attr xha; 7005 7006 r = -EFAULT; 7007 if (copy_from_user(&xha, argp, sizeof(xha))) 7008 goto out; 7009 r = kvm_xen_hvm_set_attr(kvm, &xha); 7010 break; 7011 } 7012 case KVM_XEN_HVM_EVTCHN_SEND: { 7013 struct kvm_irq_routing_xen_evtchn uxe; 7014 7015 r = -EFAULT; 7016 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7017 goto out; 7018 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7019 break; 7020 } 7021 #endif 7022 case KVM_SET_CLOCK: 7023 r = kvm_vm_ioctl_set_clock(kvm, argp); 7024 break; 7025 case KVM_GET_CLOCK: 7026 r = kvm_vm_ioctl_get_clock(kvm, argp); 7027 break; 7028 case KVM_SET_TSC_KHZ: { 7029 u32 user_tsc_khz; 7030 7031 r = -EINVAL; 7032 user_tsc_khz = (u32)arg; 7033 7034 if (kvm_caps.has_tsc_control && 7035 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7036 goto out; 7037 7038 if (user_tsc_khz == 0) 7039 user_tsc_khz = tsc_khz; 7040 7041 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7042 r = 0; 7043 7044 goto out; 7045 } 7046 case KVM_GET_TSC_KHZ: { 7047 r = READ_ONCE(kvm->arch.default_tsc_khz); 7048 goto out; 7049 } 7050 case KVM_MEMORY_ENCRYPT_OP: { 7051 r = -ENOTTY; 7052 if (!kvm_x86_ops.mem_enc_ioctl) 7053 goto out; 7054 7055 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7056 break; 7057 } 7058 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7059 struct kvm_enc_region region; 7060 7061 r = -EFAULT; 7062 if (copy_from_user(®ion, argp, sizeof(region))) 7063 goto out; 7064 7065 r = -ENOTTY; 7066 if (!kvm_x86_ops.mem_enc_register_region) 7067 goto out; 7068 7069 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7070 break; 7071 } 7072 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7073 struct kvm_enc_region region; 7074 7075 r = -EFAULT; 7076 if (copy_from_user(®ion, argp, sizeof(region))) 7077 goto out; 7078 7079 r = -ENOTTY; 7080 if (!kvm_x86_ops.mem_enc_unregister_region) 7081 goto out; 7082 7083 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7084 break; 7085 } 7086 case KVM_HYPERV_EVENTFD: { 7087 struct kvm_hyperv_eventfd hvevfd; 7088 7089 r = -EFAULT; 7090 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7091 goto out; 7092 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7093 break; 7094 } 7095 case KVM_SET_PMU_EVENT_FILTER: 7096 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7097 break; 7098 case KVM_X86_SET_MSR_FILTER: { 7099 struct kvm_msr_filter __user *user_msr_filter = argp; 7100 struct kvm_msr_filter filter; 7101 7102 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7103 return -EFAULT; 7104 7105 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7106 break; 7107 } 7108 default: 7109 r = -ENOTTY; 7110 } 7111 out: 7112 return r; 7113 } 7114 7115 static void kvm_probe_feature_msr(u32 msr_index) 7116 { 7117 struct kvm_msr_entry msr = { 7118 .index = msr_index, 7119 }; 7120 7121 if (kvm_get_msr_feature(&msr)) 7122 return; 7123 7124 msr_based_features[num_msr_based_features++] = msr_index; 7125 } 7126 7127 static void kvm_probe_msr_to_save(u32 msr_index) 7128 { 7129 u32 dummy[2]; 7130 7131 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7132 return; 7133 7134 /* 7135 * Even MSRs that are valid in the host may not be exposed to guests in 7136 * some cases. 7137 */ 7138 switch (msr_index) { 7139 case MSR_IA32_BNDCFGS: 7140 if (!kvm_mpx_supported()) 7141 return; 7142 break; 7143 case MSR_TSC_AUX: 7144 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7145 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7146 return; 7147 break; 7148 case MSR_IA32_UMWAIT_CONTROL: 7149 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7150 return; 7151 break; 7152 case MSR_IA32_RTIT_CTL: 7153 case MSR_IA32_RTIT_STATUS: 7154 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7155 return; 7156 break; 7157 case MSR_IA32_RTIT_CR3_MATCH: 7158 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7159 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7160 return; 7161 break; 7162 case MSR_IA32_RTIT_OUTPUT_BASE: 7163 case MSR_IA32_RTIT_OUTPUT_MASK: 7164 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7165 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7166 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7167 return; 7168 break; 7169 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7170 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7171 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7172 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7173 return; 7174 break; 7175 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7176 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7177 kvm_pmu_cap.num_counters_gp) 7178 return; 7179 break; 7180 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7181 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7182 kvm_pmu_cap.num_counters_gp) 7183 return; 7184 break; 7185 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7186 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7187 kvm_pmu_cap.num_counters_fixed) 7188 return; 7189 break; 7190 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7191 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7192 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7193 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7194 return; 7195 break; 7196 case MSR_IA32_XFD: 7197 case MSR_IA32_XFD_ERR: 7198 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7199 return; 7200 break; 7201 case MSR_IA32_TSX_CTRL: 7202 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7203 return; 7204 break; 7205 default: 7206 break; 7207 } 7208 7209 msrs_to_save[num_msrs_to_save++] = msr_index; 7210 } 7211 7212 static void kvm_init_msr_lists(void) 7213 { 7214 unsigned i; 7215 7216 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7217 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7218 7219 num_msrs_to_save = 0; 7220 num_emulated_msrs = 0; 7221 num_msr_based_features = 0; 7222 7223 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7224 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7225 7226 if (enable_pmu) { 7227 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7228 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7229 } 7230 7231 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7232 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7233 continue; 7234 7235 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7236 } 7237 7238 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7239 kvm_probe_feature_msr(i); 7240 7241 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7242 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7243 } 7244 7245 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7246 const void *v) 7247 { 7248 int handled = 0; 7249 int n; 7250 7251 do { 7252 n = min(len, 8); 7253 if (!(lapic_in_kernel(vcpu) && 7254 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7255 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7256 break; 7257 handled += n; 7258 addr += n; 7259 len -= n; 7260 v += n; 7261 } while (len); 7262 7263 return handled; 7264 } 7265 7266 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7267 { 7268 int handled = 0; 7269 int n; 7270 7271 do { 7272 n = min(len, 8); 7273 if (!(lapic_in_kernel(vcpu) && 7274 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7275 addr, n, v)) 7276 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7277 break; 7278 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7279 handled += n; 7280 addr += n; 7281 len -= n; 7282 v += n; 7283 } while (len); 7284 7285 return handled; 7286 } 7287 7288 void kvm_set_segment(struct kvm_vcpu *vcpu, 7289 struct kvm_segment *var, int seg) 7290 { 7291 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7292 } 7293 7294 void kvm_get_segment(struct kvm_vcpu *vcpu, 7295 struct kvm_segment *var, int seg) 7296 { 7297 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7298 } 7299 7300 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7301 struct x86_exception *exception) 7302 { 7303 struct kvm_mmu *mmu = vcpu->arch.mmu; 7304 gpa_t t_gpa; 7305 7306 BUG_ON(!mmu_is_nested(vcpu)); 7307 7308 /* NPT walks are always user-walks */ 7309 access |= PFERR_USER_MASK; 7310 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7311 7312 return t_gpa; 7313 } 7314 7315 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7316 struct x86_exception *exception) 7317 { 7318 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7319 7320 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7321 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7322 } 7323 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7324 7325 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7326 struct x86_exception *exception) 7327 { 7328 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7329 7330 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7331 access |= PFERR_WRITE_MASK; 7332 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7333 } 7334 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7335 7336 /* uses this to access any guest's mapped memory without checking CPL */ 7337 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7338 struct x86_exception *exception) 7339 { 7340 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7341 7342 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7343 } 7344 7345 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7346 struct kvm_vcpu *vcpu, u64 access, 7347 struct x86_exception *exception) 7348 { 7349 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7350 void *data = val; 7351 int r = X86EMUL_CONTINUE; 7352 7353 while (bytes) { 7354 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7355 unsigned offset = addr & (PAGE_SIZE-1); 7356 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7357 int ret; 7358 7359 if (gpa == INVALID_GPA) 7360 return X86EMUL_PROPAGATE_FAULT; 7361 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7362 offset, toread); 7363 if (ret < 0) { 7364 r = X86EMUL_IO_NEEDED; 7365 goto out; 7366 } 7367 7368 bytes -= toread; 7369 data += toread; 7370 addr += toread; 7371 } 7372 out: 7373 return r; 7374 } 7375 7376 /* used for instruction fetching */ 7377 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7378 gva_t addr, void *val, unsigned int bytes, 7379 struct x86_exception *exception) 7380 { 7381 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7382 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7383 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7384 unsigned offset; 7385 int ret; 7386 7387 /* Inline kvm_read_guest_virt_helper for speed. */ 7388 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7389 exception); 7390 if (unlikely(gpa == INVALID_GPA)) 7391 return X86EMUL_PROPAGATE_FAULT; 7392 7393 offset = addr & (PAGE_SIZE-1); 7394 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7395 bytes = (unsigned)PAGE_SIZE - offset; 7396 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7397 offset, bytes); 7398 if (unlikely(ret < 0)) 7399 return X86EMUL_IO_NEEDED; 7400 7401 return X86EMUL_CONTINUE; 7402 } 7403 7404 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7405 gva_t addr, void *val, unsigned int bytes, 7406 struct x86_exception *exception) 7407 { 7408 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7409 7410 /* 7411 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7412 * is returned, but our callers are not ready for that and they blindly 7413 * call kvm_inject_page_fault. Ensure that they at least do not leak 7414 * uninitialized kernel stack memory into cr2 and error code. 7415 */ 7416 memset(exception, 0, sizeof(*exception)); 7417 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7418 exception); 7419 } 7420 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7421 7422 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7423 gva_t addr, void *val, unsigned int bytes, 7424 struct x86_exception *exception, bool system) 7425 { 7426 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7427 u64 access = 0; 7428 7429 if (system) 7430 access |= PFERR_IMPLICIT_ACCESS; 7431 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7432 access |= PFERR_USER_MASK; 7433 7434 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7435 } 7436 7437 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7438 struct kvm_vcpu *vcpu, u64 access, 7439 struct x86_exception *exception) 7440 { 7441 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7442 void *data = val; 7443 int r = X86EMUL_CONTINUE; 7444 7445 while (bytes) { 7446 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7447 unsigned offset = addr & (PAGE_SIZE-1); 7448 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7449 int ret; 7450 7451 if (gpa == INVALID_GPA) 7452 return X86EMUL_PROPAGATE_FAULT; 7453 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7454 if (ret < 0) { 7455 r = X86EMUL_IO_NEEDED; 7456 goto out; 7457 } 7458 7459 bytes -= towrite; 7460 data += towrite; 7461 addr += towrite; 7462 } 7463 out: 7464 return r; 7465 } 7466 7467 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7468 unsigned int bytes, struct x86_exception *exception, 7469 bool system) 7470 { 7471 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7472 u64 access = PFERR_WRITE_MASK; 7473 7474 if (system) 7475 access |= PFERR_IMPLICIT_ACCESS; 7476 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7477 access |= PFERR_USER_MASK; 7478 7479 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7480 access, exception); 7481 } 7482 7483 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7484 unsigned int bytes, struct x86_exception *exception) 7485 { 7486 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7487 vcpu->arch.l1tf_flush_l1d = true; 7488 7489 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7490 PFERR_WRITE_MASK, exception); 7491 } 7492 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7493 7494 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7495 void *insn, int insn_len) 7496 { 7497 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7498 insn, insn_len); 7499 } 7500 7501 int handle_ud(struct kvm_vcpu *vcpu) 7502 { 7503 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7504 int fep_flags = READ_ONCE(force_emulation_prefix); 7505 int emul_type = EMULTYPE_TRAP_UD; 7506 char sig[5]; /* ud2; .ascii "kvm" */ 7507 struct x86_exception e; 7508 7509 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7510 return 1; 7511 7512 if (fep_flags && 7513 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7514 sig, sizeof(sig), &e) == 0 && 7515 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7516 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7517 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7518 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7519 emul_type = EMULTYPE_TRAP_UD_FORCED; 7520 } 7521 7522 return kvm_emulate_instruction(vcpu, emul_type); 7523 } 7524 EXPORT_SYMBOL_GPL(handle_ud); 7525 7526 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7527 gpa_t gpa, bool write) 7528 { 7529 /* For APIC access vmexit */ 7530 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7531 return 1; 7532 7533 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7534 trace_vcpu_match_mmio(gva, gpa, write, true); 7535 return 1; 7536 } 7537 7538 return 0; 7539 } 7540 7541 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7542 gpa_t *gpa, struct x86_exception *exception, 7543 bool write) 7544 { 7545 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7546 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7547 | (write ? PFERR_WRITE_MASK : 0); 7548 7549 /* 7550 * currently PKRU is only applied to ept enabled guest so 7551 * there is no pkey in EPT page table for L1 guest or EPT 7552 * shadow page table for L2 guest. 7553 */ 7554 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7555 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7556 vcpu->arch.mmio_access, 0, access))) { 7557 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7558 (gva & (PAGE_SIZE - 1)); 7559 trace_vcpu_match_mmio(gva, *gpa, write, false); 7560 return 1; 7561 } 7562 7563 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7564 7565 if (*gpa == INVALID_GPA) 7566 return -1; 7567 7568 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7569 } 7570 7571 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7572 const void *val, int bytes) 7573 { 7574 int ret; 7575 7576 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7577 if (ret < 0) 7578 return 0; 7579 kvm_page_track_write(vcpu, gpa, val, bytes); 7580 return 1; 7581 } 7582 7583 struct read_write_emulator_ops { 7584 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7585 int bytes); 7586 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7587 void *val, int bytes); 7588 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7589 int bytes, void *val); 7590 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7591 void *val, int bytes); 7592 bool write; 7593 }; 7594 7595 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7596 { 7597 if (vcpu->mmio_read_completed) { 7598 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7599 vcpu->mmio_fragments[0].gpa, val); 7600 vcpu->mmio_read_completed = 0; 7601 return 1; 7602 } 7603 7604 return 0; 7605 } 7606 7607 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7608 void *val, int bytes) 7609 { 7610 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7611 } 7612 7613 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7614 void *val, int bytes) 7615 { 7616 return emulator_write_phys(vcpu, gpa, val, bytes); 7617 } 7618 7619 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7620 { 7621 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7622 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7623 } 7624 7625 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7626 void *val, int bytes) 7627 { 7628 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7629 return X86EMUL_IO_NEEDED; 7630 } 7631 7632 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7633 void *val, int bytes) 7634 { 7635 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7636 7637 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7638 return X86EMUL_CONTINUE; 7639 } 7640 7641 static const struct read_write_emulator_ops read_emultor = { 7642 .read_write_prepare = read_prepare, 7643 .read_write_emulate = read_emulate, 7644 .read_write_mmio = vcpu_mmio_read, 7645 .read_write_exit_mmio = read_exit_mmio, 7646 }; 7647 7648 static const struct read_write_emulator_ops write_emultor = { 7649 .read_write_emulate = write_emulate, 7650 .read_write_mmio = write_mmio, 7651 .read_write_exit_mmio = write_exit_mmio, 7652 .write = true, 7653 }; 7654 7655 static int emulator_read_write_onepage(unsigned long addr, void *val, 7656 unsigned int bytes, 7657 struct x86_exception *exception, 7658 struct kvm_vcpu *vcpu, 7659 const struct read_write_emulator_ops *ops) 7660 { 7661 gpa_t gpa; 7662 int handled, ret; 7663 bool write = ops->write; 7664 struct kvm_mmio_fragment *frag; 7665 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7666 7667 /* 7668 * If the exit was due to a NPF we may already have a GPA. 7669 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7670 * Note, this cannot be used on string operations since string 7671 * operation using rep will only have the initial GPA from the NPF 7672 * occurred. 7673 */ 7674 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7675 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7676 gpa = ctxt->gpa_val; 7677 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7678 } else { 7679 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7680 if (ret < 0) 7681 return X86EMUL_PROPAGATE_FAULT; 7682 } 7683 7684 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7685 return X86EMUL_CONTINUE; 7686 7687 /* 7688 * Is this MMIO handled locally? 7689 */ 7690 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7691 if (handled == bytes) 7692 return X86EMUL_CONTINUE; 7693 7694 gpa += handled; 7695 bytes -= handled; 7696 val += handled; 7697 7698 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7699 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7700 frag->gpa = gpa; 7701 frag->data = val; 7702 frag->len = bytes; 7703 return X86EMUL_CONTINUE; 7704 } 7705 7706 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7707 unsigned long addr, 7708 void *val, unsigned int bytes, 7709 struct x86_exception *exception, 7710 const struct read_write_emulator_ops *ops) 7711 { 7712 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7713 gpa_t gpa; 7714 int rc; 7715 7716 if (ops->read_write_prepare && 7717 ops->read_write_prepare(vcpu, val, bytes)) 7718 return X86EMUL_CONTINUE; 7719 7720 vcpu->mmio_nr_fragments = 0; 7721 7722 /* Crossing a page boundary? */ 7723 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7724 int now; 7725 7726 now = -addr & ~PAGE_MASK; 7727 rc = emulator_read_write_onepage(addr, val, now, exception, 7728 vcpu, ops); 7729 7730 if (rc != X86EMUL_CONTINUE) 7731 return rc; 7732 addr += now; 7733 if (ctxt->mode != X86EMUL_MODE_PROT64) 7734 addr = (u32)addr; 7735 val += now; 7736 bytes -= now; 7737 } 7738 7739 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7740 vcpu, ops); 7741 if (rc != X86EMUL_CONTINUE) 7742 return rc; 7743 7744 if (!vcpu->mmio_nr_fragments) 7745 return rc; 7746 7747 gpa = vcpu->mmio_fragments[0].gpa; 7748 7749 vcpu->mmio_needed = 1; 7750 vcpu->mmio_cur_fragment = 0; 7751 7752 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7753 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7754 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7755 vcpu->run->mmio.phys_addr = gpa; 7756 7757 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7758 } 7759 7760 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7761 unsigned long addr, 7762 void *val, 7763 unsigned int bytes, 7764 struct x86_exception *exception) 7765 { 7766 return emulator_read_write(ctxt, addr, val, bytes, 7767 exception, &read_emultor); 7768 } 7769 7770 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7771 unsigned long addr, 7772 const void *val, 7773 unsigned int bytes, 7774 struct x86_exception *exception) 7775 { 7776 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7777 exception, &write_emultor); 7778 } 7779 7780 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7781 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7782 7783 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7784 unsigned long addr, 7785 const void *old, 7786 const void *new, 7787 unsigned int bytes, 7788 struct x86_exception *exception) 7789 { 7790 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7791 u64 page_line_mask; 7792 unsigned long hva; 7793 gpa_t gpa; 7794 int r; 7795 7796 /* guests cmpxchg8b have to be emulated atomically */ 7797 if (bytes > 8 || (bytes & (bytes - 1))) 7798 goto emul_write; 7799 7800 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7801 7802 if (gpa == INVALID_GPA || 7803 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7804 goto emul_write; 7805 7806 /* 7807 * Emulate the atomic as a straight write to avoid #AC if SLD is 7808 * enabled in the host and the access splits a cache line. 7809 */ 7810 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7811 page_line_mask = ~(cache_line_size() - 1); 7812 else 7813 page_line_mask = PAGE_MASK; 7814 7815 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7816 goto emul_write; 7817 7818 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7819 if (kvm_is_error_hva(hva)) 7820 goto emul_write; 7821 7822 hva += offset_in_page(gpa); 7823 7824 switch (bytes) { 7825 case 1: 7826 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7827 break; 7828 case 2: 7829 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7830 break; 7831 case 4: 7832 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7833 break; 7834 case 8: 7835 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7836 break; 7837 default: 7838 BUG(); 7839 } 7840 7841 if (r < 0) 7842 return X86EMUL_UNHANDLEABLE; 7843 if (r) 7844 return X86EMUL_CMPXCHG_FAILED; 7845 7846 kvm_page_track_write(vcpu, gpa, new, bytes); 7847 7848 return X86EMUL_CONTINUE; 7849 7850 emul_write: 7851 pr_warn_once("emulating exchange as write\n"); 7852 7853 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7854 } 7855 7856 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7857 unsigned short port, void *data, 7858 unsigned int count, bool in) 7859 { 7860 unsigned i; 7861 int r; 7862 7863 WARN_ON_ONCE(vcpu->arch.pio.count); 7864 for (i = 0; i < count; i++) { 7865 if (in) 7866 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7867 else 7868 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7869 7870 if (r) { 7871 if (i == 0) 7872 goto userspace_io; 7873 7874 /* 7875 * Userspace must have unregistered the device while PIO 7876 * was running. Drop writes / read as 0. 7877 */ 7878 if (in) 7879 memset(data, 0, size * (count - i)); 7880 break; 7881 } 7882 7883 data += size; 7884 } 7885 return 1; 7886 7887 userspace_io: 7888 vcpu->arch.pio.port = port; 7889 vcpu->arch.pio.in = in; 7890 vcpu->arch.pio.count = count; 7891 vcpu->arch.pio.size = size; 7892 7893 if (in) 7894 memset(vcpu->arch.pio_data, 0, size * count); 7895 else 7896 memcpy(vcpu->arch.pio_data, data, size * count); 7897 7898 vcpu->run->exit_reason = KVM_EXIT_IO; 7899 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7900 vcpu->run->io.size = size; 7901 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7902 vcpu->run->io.count = count; 7903 vcpu->run->io.port = port; 7904 return 0; 7905 } 7906 7907 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7908 unsigned short port, void *val, unsigned int count) 7909 { 7910 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7911 if (r) 7912 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7913 7914 return r; 7915 } 7916 7917 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7918 { 7919 int size = vcpu->arch.pio.size; 7920 unsigned int count = vcpu->arch.pio.count; 7921 memcpy(val, vcpu->arch.pio_data, size * count); 7922 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7923 vcpu->arch.pio.count = 0; 7924 } 7925 7926 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7927 int size, unsigned short port, void *val, 7928 unsigned int count) 7929 { 7930 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7931 if (vcpu->arch.pio.count) { 7932 /* 7933 * Complete a previous iteration that required userspace I/O. 7934 * Note, @count isn't guaranteed to match pio.count as userspace 7935 * can modify ECX before rerunning the vCPU. Ignore any such 7936 * shenanigans as KVM doesn't support modifying the rep count, 7937 * and the emulator ensures @count doesn't overflow the buffer. 7938 */ 7939 complete_emulator_pio_in(vcpu, val); 7940 return 1; 7941 } 7942 7943 return emulator_pio_in(vcpu, size, port, val, count); 7944 } 7945 7946 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7947 unsigned short port, const void *val, 7948 unsigned int count) 7949 { 7950 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7951 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7952 } 7953 7954 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7955 int size, unsigned short port, 7956 const void *val, unsigned int count) 7957 { 7958 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7959 } 7960 7961 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7962 { 7963 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7964 } 7965 7966 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7967 { 7968 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7969 } 7970 7971 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7972 { 7973 if (!need_emulate_wbinvd(vcpu)) 7974 return X86EMUL_CONTINUE; 7975 7976 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7977 int cpu = get_cpu(); 7978 7979 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7980 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7981 wbinvd_ipi, NULL, 1); 7982 put_cpu(); 7983 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7984 } else 7985 wbinvd(); 7986 return X86EMUL_CONTINUE; 7987 } 7988 7989 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7990 { 7991 kvm_emulate_wbinvd_noskip(vcpu); 7992 return kvm_skip_emulated_instruction(vcpu); 7993 } 7994 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7995 7996 7997 7998 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7999 { 8000 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8001 } 8002 8003 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 8004 unsigned long *dest) 8005 { 8006 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 8007 } 8008 8009 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8010 unsigned long value) 8011 { 8012 8013 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8014 } 8015 8016 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8017 { 8018 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8019 } 8020 8021 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8022 { 8023 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8024 unsigned long value; 8025 8026 switch (cr) { 8027 case 0: 8028 value = kvm_read_cr0(vcpu); 8029 break; 8030 case 2: 8031 value = vcpu->arch.cr2; 8032 break; 8033 case 3: 8034 value = kvm_read_cr3(vcpu); 8035 break; 8036 case 4: 8037 value = kvm_read_cr4(vcpu); 8038 break; 8039 case 8: 8040 value = kvm_get_cr8(vcpu); 8041 break; 8042 default: 8043 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8044 return 0; 8045 } 8046 8047 return value; 8048 } 8049 8050 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8051 { 8052 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8053 int res = 0; 8054 8055 switch (cr) { 8056 case 0: 8057 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8058 break; 8059 case 2: 8060 vcpu->arch.cr2 = val; 8061 break; 8062 case 3: 8063 res = kvm_set_cr3(vcpu, val); 8064 break; 8065 case 4: 8066 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8067 break; 8068 case 8: 8069 res = kvm_set_cr8(vcpu, val); 8070 break; 8071 default: 8072 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8073 res = -1; 8074 } 8075 8076 return res; 8077 } 8078 8079 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8080 { 8081 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8082 } 8083 8084 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8085 { 8086 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8087 } 8088 8089 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8090 { 8091 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8092 } 8093 8094 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8095 { 8096 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8097 } 8098 8099 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8100 { 8101 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8102 } 8103 8104 static unsigned long emulator_get_cached_segment_base( 8105 struct x86_emulate_ctxt *ctxt, int seg) 8106 { 8107 return get_segment_base(emul_to_vcpu(ctxt), seg); 8108 } 8109 8110 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8111 struct desc_struct *desc, u32 *base3, 8112 int seg) 8113 { 8114 struct kvm_segment var; 8115 8116 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8117 *selector = var.selector; 8118 8119 if (var.unusable) { 8120 memset(desc, 0, sizeof(*desc)); 8121 if (base3) 8122 *base3 = 0; 8123 return false; 8124 } 8125 8126 if (var.g) 8127 var.limit >>= 12; 8128 set_desc_limit(desc, var.limit); 8129 set_desc_base(desc, (unsigned long)var.base); 8130 #ifdef CONFIG_X86_64 8131 if (base3) 8132 *base3 = var.base >> 32; 8133 #endif 8134 desc->type = var.type; 8135 desc->s = var.s; 8136 desc->dpl = var.dpl; 8137 desc->p = var.present; 8138 desc->avl = var.avl; 8139 desc->l = var.l; 8140 desc->d = var.db; 8141 desc->g = var.g; 8142 8143 return true; 8144 } 8145 8146 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8147 struct desc_struct *desc, u32 base3, 8148 int seg) 8149 { 8150 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8151 struct kvm_segment var; 8152 8153 var.selector = selector; 8154 var.base = get_desc_base(desc); 8155 #ifdef CONFIG_X86_64 8156 var.base |= ((u64)base3) << 32; 8157 #endif 8158 var.limit = get_desc_limit(desc); 8159 if (desc->g) 8160 var.limit = (var.limit << 12) | 0xfff; 8161 var.type = desc->type; 8162 var.dpl = desc->dpl; 8163 var.db = desc->d; 8164 var.s = desc->s; 8165 var.l = desc->l; 8166 var.g = desc->g; 8167 var.avl = desc->avl; 8168 var.present = desc->p; 8169 var.unusable = !var.present; 8170 var.padding = 0; 8171 8172 kvm_set_segment(vcpu, &var, seg); 8173 return; 8174 } 8175 8176 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8177 u32 msr_index, u64 *pdata) 8178 { 8179 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8180 int r; 8181 8182 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8183 if (r < 0) 8184 return X86EMUL_UNHANDLEABLE; 8185 8186 if (r) { 8187 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8188 complete_emulated_rdmsr, r)) 8189 return X86EMUL_IO_NEEDED; 8190 8191 trace_kvm_msr_read_ex(msr_index); 8192 return X86EMUL_PROPAGATE_FAULT; 8193 } 8194 8195 trace_kvm_msr_read(msr_index, *pdata); 8196 return X86EMUL_CONTINUE; 8197 } 8198 8199 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8200 u32 msr_index, u64 data) 8201 { 8202 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8203 int r; 8204 8205 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8206 if (r < 0) 8207 return X86EMUL_UNHANDLEABLE; 8208 8209 if (r) { 8210 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8211 complete_emulated_msr_access, r)) 8212 return X86EMUL_IO_NEEDED; 8213 8214 trace_kvm_msr_write_ex(msr_index, data); 8215 return X86EMUL_PROPAGATE_FAULT; 8216 } 8217 8218 trace_kvm_msr_write(msr_index, data); 8219 return X86EMUL_CONTINUE; 8220 } 8221 8222 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8223 u32 msr_index, u64 *pdata) 8224 { 8225 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8226 } 8227 8228 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8229 u32 pmc) 8230 { 8231 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8232 return 0; 8233 return -EINVAL; 8234 } 8235 8236 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8237 u32 pmc, u64 *pdata) 8238 { 8239 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8240 } 8241 8242 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8243 { 8244 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8245 } 8246 8247 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8248 struct x86_instruction_info *info, 8249 enum x86_intercept_stage stage) 8250 { 8251 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8252 &ctxt->exception); 8253 } 8254 8255 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8256 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8257 bool exact_only) 8258 { 8259 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8260 } 8261 8262 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8263 { 8264 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8265 } 8266 8267 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8268 { 8269 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8270 } 8271 8272 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8273 { 8274 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8275 } 8276 8277 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8278 { 8279 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8280 } 8281 8282 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8283 { 8284 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8285 } 8286 8287 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8288 { 8289 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8290 } 8291 8292 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8293 { 8294 return is_smm(emul_to_vcpu(ctxt)); 8295 } 8296 8297 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8298 { 8299 return is_guest_mode(emul_to_vcpu(ctxt)); 8300 } 8301 8302 #ifndef CONFIG_KVM_SMM 8303 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8304 { 8305 WARN_ON_ONCE(1); 8306 return X86EMUL_UNHANDLEABLE; 8307 } 8308 #endif 8309 8310 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8311 { 8312 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8313 } 8314 8315 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8316 { 8317 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8318 } 8319 8320 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8321 { 8322 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8323 8324 if (!kvm->vm_bugged) 8325 kvm_vm_bugged(kvm); 8326 } 8327 8328 static const struct x86_emulate_ops emulate_ops = { 8329 .vm_bugged = emulator_vm_bugged, 8330 .read_gpr = emulator_read_gpr, 8331 .write_gpr = emulator_write_gpr, 8332 .read_std = emulator_read_std, 8333 .write_std = emulator_write_std, 8334 .fetch = kvm_fetch_guest_virt, 8335 .read_emulated = emulator_read_emulated, 8336 .write_emulated = emulator_write_emulated, 8337 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8338 .invlpg = emulator_invlpg, 8339 .pio_in_emulated = emulator_pio_in_emulated, 8340 .pio_out_emulated = emulator_pio_out_emulated, 8341 .get_segment = emulator_get_segment, 8342 .set_segment = emulator_set_segment, 8343 .get_cached_segment_base = emulator_get_cached_segment_base, 8344 .get_gdt = emulator_get_gdt, 8345 .get_idt = emulator_get_idt, 8346 .set_gdt = emulator_set_gdt, 8347 .set_idt = emulator_set_idt, 8348 .get_cr = emulator_get_cr, 8349 .set_cr = emulator_set_cr, 8350 .cpl = emulator_get_cpl, 8351 .get_dr = emulator_get_dr, 8352 .set_dr = emulator_set_dr, 8353 .set_msr_with_filter = emulator_set_msr_with_filter, 8354 .get_msr_with_filter = emulator_get_msr_with_filter, 8355 .get_msr = emulator_get_msr, 8356 .check_pmc = emulator_check_pmc, 8357 .read_pmc = emulator_read_pmc, 8358 .halt = emulator_halt, 8359 .wbinvd = emulator_wbinvd, 8360 .fix_hypercall = emulator_fix_hypercall, 8361 .intercept = emulator_intercept, 8362 .get_cpuid = emulator_get_cpuid, 8363 .guest_has_movbe = emulator_guest_has_movbe, 8364 .guest_has_fxsr = emulator_guest_has_fxsr, 8365 .guest_has_rdpid = emulator_guest_has_rdpid, 8366 .set_nmi_mask = emulator_set_nmi_mask, 8367 .is_smm = emulator_is_smm, 8368 .is_guest_mode = emulator_is_guest_mode, 8369 .leave_smm = emulator_leave_smm, 8370 .triple_fault = emulator_triple_fault, 8371 .set_xcr = emulator_set_xcr, 8372 }; 8373 8374 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8375 { 8376 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8377 /* 8378 * an sti; sti; sequence only disable interrupts for the first 8379 * instruction. So, if the last instruction, be it emulated or 8380 * not, left the system with the INT_STI flag enabled, it 8381 * means that the last instruction is an sti. We should not 8382 * leave the flag on in this case. The same goes for mov ss 8383 */ 8384 if (int_shadow & mask) 8385 mask = 0; 8386 if (unlikely(int_shadow || mask)) { 8387 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8388 if (!mask) 8389 kvm_make_request(KVM_REQ_EVENT, vcpu); 8390 } 8391 } 8392 8393 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8394 { 8395 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8396 8397 if (ctxt->exception.vector == PF_VECTOR) 8398 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8399 else if (ctxt->exception.error_code_valid) 8400 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8401 ctxt->exception.error_code); 8402 else 8403 kvm_queue_exception(vcpu, ctxt->exception.vector); 8404 } 8405 8406 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8407 { 8408 struct x86_emulate_ctxt *ctxt; 8409 8410 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8411 if (!ctxt) { 8412 pr_err("failed to allocate vcpu's emulator\n"); 8413 return NULL; 8414 } 8415 8416 ctxt->vcpu = vcpu; 8417 ctxt->ops = &emulate_ops; 8418 vcpu->arch.emulate_ctxt = ctxt; 8419 8420 return ctxt; 8421 } 8422 8423 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8424 { 8425 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8426 int cs_db, cs_l; 8427 8428 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8429 8430 ctxt->gpa_available = false; 8431 ctxt->eflags = kvm_get_rflags(vcpu); 8432 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8433 8434 ctxt->eip = kvm_rip_read(vcpu); 8435 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8436 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8437 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8438 cs_db ? X86EMUL_MODE_PROT32 : 8439 X86EMUL_MODE_PROT16; 8440 ctxt->interruptibility = 0; 8441 ctxt->have_exception = false; 8442 ctxt->exception.vector = -1; 8443 ctxt->perm_ok = false; 8444 8445 init_decode_cache(ctxt); 8446 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8447 } 8448 8449 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8450 { 8451 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8452 int ret; 8453 8454 init_emulate_ctxt(vcpu); 8455 8456 ctxt->op_bytes = 2; 8457 ctxt->ad_bytes = 2; 8458 ctxt->_eip = ctxt->eip + inc_eip; 8459 ret = emulate_int_real(ctxt, irq); 8460 8461 if (ret != X86EMUL_CONTINUE) { 8462 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8463 } else { 8464 ctxt->eip = ctxt->_eip; 8465 kvm_rip_write(vcpu, ctxt->eip); 8466 kvm_set_rflags(vcpu, ctxt->eflags); 8467 } 8468 } 8469 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8470 8471 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8472 u8 ndata, u8 *insn_bytes, u8 insn_size) 8473 { 8474 struct kvm_run *run = vcpu->run; 8475 u64 info[5]; 8476 u8 info_start; 8477 8478 /* 8479 * Zero the whole array used to retrieve the exit info, as casting to 8480 * u32 for select entries will leave some chunks uninitialized. 8481 */ 8482 memset(&info, 0, sizeof(info)); 8483 8484 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8485 &info[2], (u32 *)&info[3], 8486 (u32 *)&info[4]); 8487 8488 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8489 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8490 8491 /* 8492 * There's currently space for 13 entries, but 5 are used for the exit 8493 * reason and info. Restrict to 4 to reduce the maintenance burden 8494 * when expanding kvm_run.emulation_failure in the future. 8495 */ 8496 if (WARN_ON_ONCE(ndata > 4)) 8497 ndata = 4; 8498 8499 /* Always include the flags as a 'data' entry. */ 8500 info_start = 1; 8501 run->emulation_failure.flags = 0; 8502 8503 if (insn_size) { 8504 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8505 sizeof(run->emulation_failure.insn_bytes) != 16)); 8506 info_start += 2; 8507 run->emulation_failure.flags |= 8508 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8509 run->emulation_failure.insn_size = insn_size; 8510 memset(run->emulation_failure.insn_bytes, 0x90, 8511 sizeof(run->emulation_failure.insn_bytes)); 8512 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8513 } 8514 8515 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8516 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8517 ndata * sizeof(data[0])); 8518 8519 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8520 } 8521 8522 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8523 { 8524 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8525 8526 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8527 ctxt->fetch.end - ctxt->fetch.data); 8528 } 8529 8530 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8531 u8 ndata) 8532 { 8533 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8534 } 8535 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8536 8537 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8538 { 8539 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8540 } 8541 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8542 8543 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8544 { 8545 struct kvm *kvm = vcpu->kvm; 8546 8547 ++vcpu->stat.insn_emulation_fail; 8548 trace_kvm_emulate_insn_failed(vcpu); 8549 8550 if (emulation_type & EMULTYPE_VMWARE_GP) { 8551 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8552 return 1; 8553 } 8554 8555 if (kvm->arch.exit_on_emulation_error || 8556 (emulation_type & EMULTYPE_SKIP)) { 8557 prepare_emulation_ctxt_failure_exit(vcpu); 8558 return 0; 8559 } 8560 8561 kvm_queue_exception(vcpu, UD_VECTOR); 8562 8563 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8564 prepare_emulation_ctxt_failure_exit(vcpu); 8565 return 0; 8566 } 8567 8568 return 1; 8569 } 8570 8571 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8572 int emulation_type) 8573 { 8574 gpa_t gpa = cr2_or_gpa; 8575 kvm_pfn_t pfn; 8576 8577 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8578 return false; 8579 8580 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8581 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8582 return false; 8583 8584 if (!vcpu->arch.mmu->root_role.direct) { 8585 /* 8586 * Write permission should be allowed since only 8587 * write access need to be emulated. 8588 */ 8589 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8590 8591 /* 8592 * If the mapping is invalid in guest, let cpu retry 8593 * it to generate fault. 8594 */ 8595 if (gpa == INVALID_GPA) 8596 return true; 8597 } 8598 8599 /* 8600 * Do not retry the unhandleable instruction if it faults on the 8601 * readonly host memory, otherwise it will goto a infinite loop: 8602 * retry instruction -> write #PF -> emulation fail -> retry 8603 * instruction -> ... 8604 */ 8605 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8606 8607 /* 8608 * If the instruction failed on the error pfn, it can not be fixed, 8609 * report the error to userspace. 8610 */ 8611 if (is_error_noslot_pfn(pfn)) 8612 return false; 8613 8614 kvm_release_pfn_clean(pfn); 8615 8616 /* The instructions are well-emulated on direct mmu. */ 8617 if (vcpu->arch.mmu->root_role.direct) { 8618 unsigned int indirect_shadow_pages; 8619 8620 write_lock(&vcpu->kvm->mmu_lock); 8621 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8622 write_unlock(&vcpu->kvm->mmu_lock); 8623 8624 if (indirect_shadow_pages) 8625 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8626 8627 return true; 8628 } 8629 8630 /* 8631 * if emulation was due to access to shadowed page table 8632 * and it failed try to unshadow page and re-enter the 8633 * guest to let CPU execute the instruction. 8634 */ 8635 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8636 8637 /* 8638 * If the access faults on its page table, it can not 8639 * be fixed by unprotecting shadow page and it should 8640 * be reported to userspace. 8641 */ 8642 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8643 } 8644 8645 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8646 gpa_t cr2_or_gpa, int emulation_type) 8647 { 8648 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8649 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8650 8651 last_retry_eip = vcpu->arch.last_retry_eip; 8652 last_retry_addr = vcpu->arch.last_retry_addr; 8653 8654 /* 8655 * If the emulation is caused by #PF and it is non-page_table 8656 * writing instruction, it means the VM-EXIT is caused by shadow 8657 * page protected, we can zap the shadow page and retry this 8658 * instruction directly. 8659 * 8660 * Note: if the guest uses a non-page-table modifying instruction 8661 * on the PDE that points to the instruction, then we will unmap 8662 * the instruction and go to an infinite loop. So, we cache the 8663 * last retried eip and the last fault address, if we meet the eip 8664 * and the address again, we can break out of the potential infinite 8665 * loop. 8666 */ 8667 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8668 8669 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8670 return false; 8671 8672 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8673 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8674 return false; 8675 8676 if (x86_page_table_writing_insn(ctxt)) 8677 return false; 8678 8679 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8680 return false; 8681 8682 vcpu->arch.last_retry_eip = ctxt->eip; 8683 vcpu->arch.last_retry_addr = cr2_or_gpa; 8684 8685 if (!vcpu->arch.mmu->root_role.direct) 8686 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8687 8688 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8689 8690 return true; 8691 } 8692 8693 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8694 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8695 8696 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8697 unsigned long *db) 8698 { 8699 u32 dr6 = 0; 8700 int i; 8701 u32 enable, rwlen; 8702 8703 enable = dr7; 8704 rwlen = dr7 >> 16; 8705 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8706 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8707 dr6 |= (1 << i); 8708 return dr6; 8709 } 8710 8711 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8712 { 8713 struct kvm_run *kvm_run = vcpu->run; 8714 8715 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8716 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8717 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8718 kvm_run->debug.arch.exception = DB_VECTOR; 8719 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8720 return 0; 8721 } 8722 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8723 return 1; 8724 } 8725 8726 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8727 { 8728 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8729 int r; 8730 8731 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8732 if (unlikely(!r)) 8733 return 0; 8734 8735 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8736 8737 /* 8738 * rflags is the old, "raw" value of the flags. The new value has 8739 * not been saved yet. 8740 * 8741 * This is correct even for TF set by the guest, because "the 8742 * processor will not generate this exception after the instruction 8743 * that sets the TF flag". 8744 */ 8745 if (unlikely(rflags & X86_EFLAGS_TF)) 8746 r = kvm_vcpu_do_singlestep(vcpu); 8747 return r; 8748 } 8749 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8750 8751 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8752 { 8753 u32 shadow; 8754 8755 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8756 return true; 8757 8758 /* 8759 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8760 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8761 * to avoid the relatively expensive CPUID lookup. 8762 */ 8763 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8764 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8765 guest_cpuid_is_intel(vcpu); 8766 } 8767 8768 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8769 int emulation_type, int *r) 8770 { 8771 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8772 8773 /* 8774 * Do not check for code breakpoints if hardware has already done the 8775 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8776 * the instruction has passed all exception checks, and all intercepted 8777 * exceptions that trigger emulation have lower priority than code 8778 * breakpoints, i.e. the fact that the intercepted exception occurred 8779 * means any code breakpoints have already been serviced. 8780 * 8781 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8782 * hardware has checked the RIP of the magic prefix, but not the RIP of 8783 * the instruction being emulated. The intent of forced emulation is 8784 * to behave as if KVM intercepted the instruction without an exception 8785 * and without a prefix. 8786 */ 8787 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8788 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8789 return false; 8790 8791 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8792 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8793 struct kvm_run *kvm_run = vcpu->run; 8794 unsigned long eip = kvm_get_linear_rip(vcpu); 8795 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8796 vcpu->arch.guest_debug_dr7, 8797 vcpu->arch.eff_db); 8798 8799 if (dr6 != 0) { 8800 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8801 kvm_run->debug.arch.pc = eip; 8802 kvm_run->debug.arch.exception = DB_VECTOR; 8803 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8804 *r = 0; 8805 return true; 8806 } 8807 } 8808 8809 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8810 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8811 unsigned long eip = kvm_get_linear_rip(vcpu); 8812 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8813 vcpu->arch.dr7, 8814 vcpu->arch.db); 8815 8816 if (dr6 != 0) { 8817 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8818 *r = 1; 8819 return true; 8820 } 8821 } 8822 8823 return false; 8824 } 8825 8826 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8827 { 8828 switch (ctxt->opcode_len) { 8829 case 1: 8830 switch (ctxt->b) { 8831 case 0xe4: /* IN */ 8832 case 0xe5: 8833 case 0xec: 8834 case 0xed: 8835 case 0xe6: /* OUT */ 8836 case 0xe7: 8837 case 0xee: 8838 case 0xef: 8839 case 0x6c: /* INS */ 8840 case 0x6d: 8841 case 0x6e: /* OUTS */ 8842 case 0x6f: 8843 return true; 8844 } 8845 break; 8846 case 2: 8847 switch (ctxt->b) { 8848 case 0x33: /* RDPMC */ 8849 return true; 8850 } 8851 break; 8852 } 8853 8854 return false; 8855 } 8856 8857 /* 8858 * Decode an instruction for emulation. The caller is responsible for handling 8859 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8860 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8861 * code breakpoints have higher priority and thus have already been done by 8862 * hardware. 8863 * 8864 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8865 * response to a machine check. 8866 */ 8867 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8868 void *insn, int insn_len) 8869 { 8870 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8871 int r; 8872 8873 init_emulate_ctxt(vcpu); 8874 8875 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8876 8877 trace_kvm_emulate_insn_start(vcpu); 8878 ++vcpu->stat.insn_emulation; 8879 8880 return r; 8881 } 8882 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8883 8884 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8885 int emulation_type, void *insn, int insn_len) 8886 { 8887 int r; 8888 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8889 bool writeback = true; 8890 8891 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8892 return 1; 8893 8894 vcpu->arch.l1tf_flush_l1d = true; 8895 8896 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8897 kvm_clear_exception_queue(vcpu); 8898 8899 /* 8900 * Return immediately if RIP hits a code breakpoint, such #DBs 8901 * are fault-like and are higher priority than any faults on 8902 * the code fetch itself. 8903 */ 8904 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8905 return r; 8906 8907 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8908 insn, insn_len); 8909 if (r != EMULATION_OK) { 8910 if ((emulation_type & EMULTYPE_TRAP_UD) || 8911 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8912 kvm_queue_exception(vcpu, UD_VECTOR); 8913 return 1; 8914 } 8915 if (reexecute_instruction(vcpu, cr2_or_gpa, 8916 emulation_type)) 8917 return 1; 8918 8919 if (ctxt->have_exception && 8920 !(emulation_type & EMULTYPE_SKIP)) { 8921 /* 8922 * #UD should result in just EMULATION_FAILED, and trap-like 8923 * exception should not be encountered during decode. 8924 */ 8925 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8926 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8927 inject_emulated_exception(vcpu); 8928 return 1; 8929 } 8930 return handle_emulation_failure(vcpu, emulation_type); 8931 } 8932 } 8933 8934 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8935 !is_vmware_backdoor_opcode(ctxt)) { 8936 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8937 return 1; 8938 } 8939 8940 /* 8941 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8942 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8943 * The caller is responsible for updating interruptibility state and 8944 * injecting single-step #DBs. 8945 */ 8946 if (emulation_type & EMULTYPE_SKIP) { 8947 if (ctxt->mode != X86EMUL_MODE_PROT64) 8948 ctxt->eip = (u32)ctxt->_eip; 8949 else 8950 ctxt->eip = ctxt->_eip; 8951 8952 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8953 r = 1; 8954 goto writeback; 8955 } 8956 8957 kvm_rip_write(vcpu, ctxt->eip); 8958 if (ctxt->eflags & X86_EFLAGS_RF) 8959 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8960 return 1; 8961 } 8962 8963 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8964 return 1; 8965 8966 /* this is needed for vmware backdoor interface to work since it 8967 changes registers values during IO operation */ 8968 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8969 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8970 emulator_invalidate_register_cache(ctxt); 8971 } 8972 8973 restart: 8974 if (emulation_type & EMULTYPE_PF) { 8975 /* Save the faulting GPA (cr2) in the address field */ 8976 ctxt->exception.address = cr2_or_gpa; 8977 8978 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8979 if (vcpu->arch.mmu->root_role.direct) { 8980 ctxt->gpa_available = true; 8981 ctxt->gpa_val = cr2_or_gpa; 8982 } 8983 } else { 8984 /* Sanitize the address out of an abundance of paranoia. */ 8985 ctxt->exception.address = 0; 8986 } 8987 8988 r = x86_emulate_insn(ctxt); 8989 8990 if (r == EMULATION_INTERCEPTED) 8991 return 1; 8992 8993 if (r == EMULATION_FAILED) { 8994 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8995 return 1; 8996 8997 return handle_emulation_failure(vcpu, emulation_type); 8998 } 8999 9000 if (ctxt->have_exception) { 9001 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9002 vcpu->mmio_needed = false; 9003 r = 1; 9004 inject_emulated_exception(vcpu); 9005 } else if (vcpu->arch.pio.count) { 9006 if (!vcpu->arch.pio.in) { 9007 /* FIXME: return into emulator if single-stepping. */ 9008 vcpu->arch.pio.count = 0; 9009 } else { 9010 writeback = false; 9011 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9012 } 9013 r = 0; 9014 } else if (vcpu->mmio_needed) { 9015 ++vcpu->stat.mmio_exits; 9016 9017 if (!vcpu->mmio_is_write) 9018 writeback = false; 9019 r = 0; 9020 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9021 } else if (vcpu->arch.complete_userspace_io) { 9022 writeback = false; 9023 r = 0; 9024 } else if (r == EMULATION_RESTART) 9025 goto restart; 9026 else 9027 r = 1; 9028 9029 writeback: 9030 if (writeback) { 9031 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9032 toggle_interruptibility(vcpu, ctxt->interruptibility); 9033 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9034 9035 /* 9036 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9037 * only supports code breakpoints and general detect #DB, both 9038 * of which are fault-like. 9039 */ 9040 if (!ctxt->have_exception || 9041 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9042 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9043 if (ctxt->is_branch) 9044 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9045 kvm_rip_write(vcpu, ctxt->eip); 9046 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9047 r = kvm_vcpu_do_singlestep(vcpu); 9048 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9049 __kvm_set_rflags(vcpu, ctxt->eflags); 9050 } 9051 9052 /* 9053 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9054 * do nothing, and it will be requested again as soon as 9055 * the shadow expires. But we still need to check here, 9056 * because POPF has no interrupt shadow. 9057 */ 9058 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9059 kvm_make_request(KVM_REQ_EVENT, vcpu); 9060 } else 9061 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9062 9063 return r; 9064 } 9065 9066 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9067 { 9068 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9069 } 9070 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9071 9072 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9073 void *insn, int insn_len) 9074 { 9075 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9076 } 9077 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9078 9079 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9080 { 9081 vcpu->arch.pio.count = 0; 9082 return 1; 9083 } 9084 9085 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9086 { 9087 vcpu->arch.pio.count = 0; 9088 9089 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9090 return 1; 9091 9092 return kvm_skip_emulated_instruction(vcpu); 9093 } 9094 9095 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9096 unsigned short port) 9097 { 9098 unsigned long val = kvm_rax_read(vcpu); 9099 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9100 9101 if (ret) 9102 return ret; 9103 9104 /* 9105 * Workaround userspace that relies on old KVM behavior of %rip being 9106 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9107 */ 9108 if (port == 0x7e && 9109 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9110 vcpu->arch.complete_userspace_io = 9111 complete_fast_pio_out_port_0x7e; 9112 kvm_skip_emulated_instruction(vcpu); 9113 } else { 9114 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9115 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9116 } 9117 return 0; 9118 } 9119 9120 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9121 { 9122 unsigned long val; 9123 9124 /* We should only ever be called with arch.pio.count equal to 1 */ 9125 BUG_ON(vcpu->arch.pio.count != 1); 9126 9127 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9128 vcpu->arch.pio.count = 0; 9129 return 1; 9130 } 9131 9132 /* For size less than 4 we merge, else we zero extend */ 9133 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9134 9135 complete_emulator_pio_in(vcpu, &val); 9136 kvm_rax_write(vcpu, val); 9137 9138 return kvm_skip_emulated_instruction(vcpu); 9139 } 9140 9141 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9142 unsigned short port) 9143 { 9144 unsigned long val; 9145 int ret; 9146 9147 /* For size less than 4 we merge, else we zero extend */ 9148 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9149 9150 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9151 if (ret) { 9152 kvm_rax_write(vcpu, val); 9153 return ret; 9154 } 9155 9156 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9157 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9158 9159 return 0; 9160 } 9161 9162 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9163 { 9164 int ret; 9165 9166 if (in) 9167 ret = kvm_fast_pio_in(vcpu, size, port); 9168 else 9169 ret = kvm_fast_pio_out(vcpu, size, port); 9170 return ret && kvm_skip_emulated_instruction(vcpu); 9171 } 9172 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9173 9174 static int kvmclock_cpu_down_prep(unsigned int cpu) 9175 { 9176 __this_cpu_write(cpu_tsc_khz, 0); 9177 return 0; 9178 } 9179 9180 static void tsc_khz_changed(void *data) 9181 { 9182 struct cpufreq_freqs *freq = data; 9183 unsigned long khz; 9184 9185 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9186 9187 if (data) 9188 khz = freq->new; 9189 else 9190 khz = cpufreq_quick_get(raw_smp_processor_id()); 9191 if (!khz) 9192 khz = tsc_khz; 9193 __this_cpu_write(cpu_tsc_khz, khz); 9194 } 9195 9196 #ifdef CONFIG_X86_64 9197 static void kvm_hyperv_tsc_notifier(void) 9198 { 9199 struct kvm *kvm; 9200 int cpu; 9201 9202 mutex_lock(&kvm_lock); 9203 list_for_each_entry(kvm, &vm_list, vm_list) 9204 kvm_make_mclock_inprogress_request(kvm); 9205 9206 /* no guest entries from this point */ 9207 hyperv_stop_tsc_emulation(); 9208 9209 /* TSC frequency always matches when on Hyper-V */ 9210 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9211 for_each_present_cpu(cpu) 9212 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9213 } 9214 kvm_caps.max_guest_tsc_khz = tsc_khz; 9215 9216 list_for_each_entry(kvm, &vm_list, vm_list) { 9217 __kvm_start_pvclock_update(kvm); 9218 pvclock_update_vm_gtod_copy(kvm); 9219 kvm_end_pvclock_update(kvm); 9220 } 9221 9222 mutex_unlock(&kvm_lock); 9223 } 9224 #endif 9225 9226 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9227 { 9228 struct kvm *kvm; 9229 struct kvm_vcpu *vcpu; 9230 int send_ipi = 0; 9231 unsigned long i; 9232 9233 /* 9234 * We allow guests to temporarily run on slowing clocks, 9235 * provided we notify them after, or to run on accelerating 9236 * clocks, provided we notify them before. Thus time never 9237 * goes backwards. 9238 * 9239 * However, we have a problem. We can't atomically update 9240 * the frequency of a given CPU from this function; it is 9241 * merely a notifier, which can be called from any CPU. 9242 * Changing the TSC frequency at arbitrary points in time 9243 * requires a recomputation of local variables related to 9244 * the TSC for each VCPU. We must flag these local variables 9245 * to be updated and be sure the update takes place with the 9246 * new frequency before any guests proceed. 9247 * 9248 * Unfortunately, the combination of hotplug CPU and frequency 9249 * change creates an intractable locking scenario; the order 9250 * of when these callouts happen is undefined with respect to 9251 * CPU hotplug, and they can race with each other. As such, 9252 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9253 * undefined; you can actually have a CPU frequency change take 9254 * place in between the computation of X and the setting of the 9255 * variable. To protect against this problem, all updates of 9256 * the per_cpu tsc_khz variable are done in an interrupt 9257 * protected IPI, and all callers wishing to update the value 9258 * must wait for a synchronous IPI to complete (which is trivial 9259 * if the caller is on the CPU already). This establishes the 9260 * necessary total order on variable updates. 9261 * 9262 * Note that because a guest time update may take place 9263 * anytime after the setting of the VCPU's request bit, the 9264 * correct TSC value must be set before the request. However, 9265 * to ensure the update actually makes it to any guest which 9266 * starts running in hardware virtualization between the set 9267 * and the acquisition of the spinlock, we must also ping the 9268 * CPU after setting the request bit. 9269 * 9270 */ 9271 9272 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9273 9274 mutex_lock(&kvm_lock); 9275 list_for_each_entry(kvm, &vm_list, vm_list) { 9276 kvm_for_each_vcpu(i, vcpu, kvm) { 9277 if (vcpu->cpu != cpu) 9278 continue; 9279 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9280 if (vcpu->cpu != raw_smp_processor_id()) 9281 send_ipi = 1; 9282 } 9283 } 9284 mutex_unlock(&kvm_lock); 9285 9286 if (freq->old < freq->new && send_ipi) { 9287 /* 9288 * We upscale the frequency. Must make the guest 9289 * doesn't see old kvmclock values while running with 9290 * the new frequency, otherwise we risk the guest sees 9291 * time go backwards. 9292 * 9293 * In case we update the frequency for another cpu 9294 * (which might be in guest context) send an interrupt 9295 * to kick the cpu out of guest context. Next time 9296 * guest context is entered kvmclock will be updated, 9297 * so the guest will not see stale values. 9298 */ 9299 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9300 } 9301 } 9302 9303 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9304 void *data) 9305 { 9306 struct cpufreq_freqs *freq = data; 9307 int cpu; 9308 9309 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9310 return 0; 9311 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9312 return 0; 9313 9314 for_each_cpu(cpu, freq->policy->cpus) 9315 __kvmclock_cpufreq_notifier(freq, cpu); 9316 9317 return 0; 9318 } 9319 9320 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9321 .notifier_call = kvmclock_cpufreq_notifier 9322 }; 9323 9324 static int kvmclock_cpu_online(unsigned int cpu) 9325 { 9326 tsc_khz_changed(NULL); 9327 return 0; 9328 } 9329 9330 static void kvm_timer_init(void) 9331 { 9332 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9333 max_tsc_khz = tsc_khz; 9334 9335 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9336 struct cpufreq_policy *policy; 9337 int cpu; 9338 9339 cpu = get_cpu(); 9340 policy = cpufreq_cpu_get(cpu); 9341 if (policy) { 9342 if (policy->cpuinfo.max_freq) 9343 max_tsc_khz = policy->cpuinfo.max_freq; 9344 cpufreq_cpu_put(policy); 9345 } 9346 put_cpu(); 9347 } 9348 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9349 CPUFREQ_TRANSITION_NOTIFIER); 9350 9351 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9352 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9353 } 9354 } 9355 9356 #ifdef CONFIG_X86_64 9357 static void pvclock_gtod_update_fn(struct work_struct *work) 9358 { 9359 struct kvm *kvm; 9360 struct kvm_vcpu *vcpu; 9361 unsigned long i; 9362 9363 mutex_lock(&kvm_lock); 9364 list_for_each_entry(kvm, &vm_list, vm_list) 9365 kvm_for_each_vcpu(i, vcpu, kvm) 9366 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9367 atomic_set(&kvm_guest_has_master_clock, 0); 9368 mutex_unlock(&kvm_lock); 9369 } 9370 9371 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9372 9373 /* 9374 * Indirection to move queue_work() out of the tk_core.seq write held 9375 * region to prevent possible deadlocks against time accessors which 9376 * are invoked with work related locks held. 9377 */ 9378 static void pvclock_irq_work_fn(struct irq_work *w) 9379 { 9380 queue_work(system_long_wq, &pvclock_gtod_work); 9381 } 9382 9383 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9384 9385 /* 9386 * Notification about pvclock gtod data update. 9387 */ 9388 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9389 void *priv) 9390 { 9391 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9392 struct timekeeper *tk = priv; 9393 9394 update_pvclock_gtod(tk); 9395 9396 /* 9397 * Disable master clock if host does not trust, or does not use, 9398 * TSC based clocksource. Delegate queue_work() to irq_work as 9399 * this is invoked with tk_core.seq write held. 9400 */ 9401 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9402 atomic_read(&kvm_guest_has_master_clock) != 0) 9403 irq_work_queue(&pvclock_irq_work); 9404 return 0; 9405 } 9406 9407 static struct notifier_block pvclock_gtod_notifier = { 9408 .notifier_call = pvclock_gtod_notify, 9409 }; 9410 #endif 9411 9412 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9413 { 9414 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9415 9416 #define __KVM_X86_OP(func) \ 9417 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9418 #define KVM_X86_OP(func) \ 9419 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9420 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9421 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9422 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9423 (void *)__static_call_return0); 9424 #include <asm/kvm-x86-ops.h> 9425 #undef __KVM_X86_OP 9426 9427 kvm_pmu_ops_update(ops->pmu_ops); 9428 } 9429 9430 static int kvm_x86_check_processor_compatibility(void) 9431 { 9432 int cpu = smp_processor_id(); 9433 struct cpuinfo_x86 *c = &cpu_data(cpu); 9434 9435 /* 9436 * Compatibility checks are done when loading KVM and when enabling 9437 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9438 * compatible, i.e. KVM should never perform a compatibility check on 9439 * an offline CPU. 9440 */ 9441 WARN_ON(!cpu_online(cpu)); 9442 9443 if (__cr4_reserved_bits(cpu_has, c) != 9444 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9445 return -EIO; 9446 9447 return static_call(kvm_x86_check_processor_compatibility)(); 9448 } 9449 9450 static void kvm_x86_check_cpu_compat(void *ret) 9451 { 9452 *(int *)ret = kvm_x86_check_processor_compatibility(); 9453 } 9454 9455 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9456 { 9457 u64 host_pat; 9458 int r, cpu; 9459 9460 if (kvm_x86_ops.hardware_enable) { 9461 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9462 return -EEXIST; 9463 } 9464 9465 /* 9466 * KVM explicitly assumes that the guest has an FPU and 9467 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9468 * vCPU's FPU state as a fxregs_state struct. 9469 */ 9470 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9471 pr_err("inadequate fpu\n"); 9472 return -EOPNOTSUPP; 9473 } 9474 9475 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9476 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9477 return -EOPNOTSUPP; 9478 } 9479 9480 /* 9481 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9482 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9483 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9484 * with an exception. PAT[0] is set to WB on RESET and also by the 9485 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9486 */ 9487 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9488 (host_pat & GENMASK(2, 0)) != 6) { 9489 pr_err("host PAT[0] is not WB\n"); 9490 return -EIO; 9491 } 9492 9493 x86_emulator_cache = kvm_alloc_emulator_cache(); 9494 if (!x86_emulator_cache) { 9495 pr_err("failed to allocate cache for x86 emulator\n"); 9496 return -ENOMEM; 9497 } 9498 9499 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9500 if (!user_return_msrs) { 9501 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9502 r = -ENOMEM; 9503 goto out_free_x86_emulator_cache; 9504 } 9505 kvm_nr_uret_msrs = 0; 9506 9507 r = kvm_mmu_vendor_module_init(); 9508 if (r) 9509 goto out_free_percpu; 9510 9511 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9512 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9513 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9514 } 9515 9516 rdmsrl_safe(MSR_EFER, &host_efer); 9517 9518 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9519 rdmsrl(MSR_IA32_XSS, host_xss); 9520 9521 kvm_init_pmu_capability(ops->pmu_ops); 9522 9523 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9524 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); 9525 9526 r = ops->hardware_setup(); 9527 if (r != 0) 9528 goto out_mmu_exit; 9529 9530 kvm_ops_update(ops); 9531 9532 for_each_online_cpu(cpu) { 9533 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9534 if (r < 0) 9535 goto out_unwind_ops; 9536 } 9537 9538 /* 9539 * Point of no return! DO NOT add error paths below this point unless 9540 * absolutely necessary, as most operations from this point forward 9541 * require unwinding. 9542 */ 9543 kvm_timer_init(); 9544 9545 if (pi_inject_timer == -1) 9546 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9547 #ifdef CONFIG_X86_64 9548 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9549 9550 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9551 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9552 #endif 9553 9554 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9555 9556 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9557 kvm_caps.supported_xss = 0; 9558 9559 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9560 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9561 #undef __kvm_cpu_cap_has 9562 9563 if (kvm_caps.has_tsc_control) { 9564 /* 9565 * Make sure the user can only configure tsc_khz values that 9566 * fit into a signed integer. 9567 * A min value is not calculated because it will always 9568 * be 1 on all machines. 9569 */ 9570 u64 max = min(0x7fffffffULL, 9571 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9572 kvm_caps.max_guest_tsc_khz = max; 9573 } 9574 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9575 kvm_init_msr_lists(); 9576 return 0; 9577 9578 out_unwind_ops: 9579 kvm_x86_ops.hardware_enable = NULL; 9580 static_call(kvm_x86_hardware_unsetup)(); 9581 out_mmu_exit: 9582 kvm_mmu_vendor_module_exit(); 9583 out_free_percpu: 9584 free_percpu(user_return_msrs); 9585 out_free_x86_emulator_cache: 9586 kmem_cache_destroy(x86_emulator_cache); 9587 return r; 9588 } 9589 9590 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9591 { 9592 int r; 9593 9594 mutex_lock(&vendor_module_lock); 9595 r = __kvm_x86_vendor_init(ops); 9596 mutex_unlock(&vendor_module_lock); 9597 9598 return r; 9599 } 9600 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9601 9602 void kvm_x86_vendor_exit(void) 9603 { 9604 kvm_unregister_perf_callbacks(); 9605 9606 #ifdef CONFIG_X86_64 9607 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9608 clear_hv_tscchange_cb(); 9609 #endif 9610 kvm_lapic_exit(); 9611 9612 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9613 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9614 CPUFREQ_TRANSITION_NOTIFIER); 9615 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9616 } 9617 #ifdef CONFIG_X86_64 9618 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9619 irq_work_sync(&pvclock_irq_work); 9620 cancel_work_sync(&pvclock_gtod_work); 9621 #endif 9622 static_call(kvm_x86_hardware_unsetup)(); 9623 kvm_mmu_vendor_module_exit(); 9624 free_percpu(user_return_msrs); 9625 kmem_cache_destroy(x86_emulator_cache); 9626 #ifdef CONFIG_KVM_XEN 9627 static_key_deferred_flush(&kvm_xen_enabled); 9628 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9629 #endif 9630 mutex_lock(&vendor_module_lock); 9631 kvm_x86_ops.hardware_enable = NULL; 9632 mutex_unlock(&vendor_module_lock); 9633 } 9634 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9635 9636 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9637 { 9638 /* 9639 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9640 * local APIC is in-kernel, the run loop will detect the non-runnable 9641 * state and halt the vCPU. Exit to userspace if the local APIC is 9642 * managed by userspace, in which case userspace is responsible for 9643 * handling wake events. 9644 */ 9645 ++vcpu->stat.halt_exits; 9646 if (lapic_in_kernel(vcpu)) { 9647 vcpu->arch.mp_state = state; 9648 return 1; 9649 } else { 9650 vcpu->run->exit_reason = reason; 9651 return 0; 9652 } 9653 } 9654 9655 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9656 { 9657 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9658 } 9659 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9660 9661 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9662 { 9663 int ret = kvm_skip_emulated_instruction(vcpu); 9664 /* 9665 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9666 * KVM_EXIT_DEBUG here. 9667 */ 9668 return kvm_emulate_halt_noskip(vcpu) && ret; 9669 } 9670 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9671 9672 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9673 { 9674 int ret = kvm_skip_emulated_instruction(vcpu); 9675 9676 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9677 KVM_EXIT_AP_RESET_HOLD) && ret; 9678 } 9679 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9680 9681 #ifdef CONFIG_X86_64 9682 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9683 unsigned long clock_type) 9684 { 9685 struct kvm_clock_pairing clock_pairing; 9686 struct timespec64 ts; 9687 u64 cycle; 9688 int ret; 9689 9690 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9691 return -KVM_EOPNOTSUPP; 9692 9693 /* 9694 * When tsc is in permanent catchup mode guests won't be able to use 9695 * pvclock_read_retry loop to get consistent view of pvclock 9696 */ 9697 if (vcpu->arch.tsc_always_catchup) 9698 return -KVM_EOPNOTSUPP; 9699 9700 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9701 return -KVM_EOPNOTSUPP; 9702 9703 clock_pairing.sec = ts.tv_sec; 9704 clock_pairing.nsec = ts.tv_nsec; 9705 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9706 clock_pairing.flags = 0; 9707 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9708 9709 ret = 0; 9710 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9711 sizeof(struct kvm_clock_pairing))) 9712 ret = -KVM_EFAULT; 9713 9714 return ret; 9715 } 9716 #endif 9717 9718 /* 9719 * kvm_pv_kick_cpu_op: Kick a vcpu. 9720 * 9721 * @apicid - apicid of vcpu to be kicked. 9722 */ 9723 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9724 { 9725 /* 9726 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9727 * common code, e.g. for tracing. Defer initialization to the compiler. 9728 */ 9729 struct kvm_lapic_irq lapic_irq = { 9730 .delivery_mode = APIC_DM_REMRD, 9731 .dest_mode = APIC_DEST_PHYSICAL, 9732 .shorthand = APIC_DEST_NOSHORT, 9733 .dest_id = apicid, 9734 }; 9735 9736 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9737 } 9738 9739 bool kvm_apicv_activated(struct kvm *kvm) 9740 { 9741 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9742 } 9743 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9744 9745 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9746 { 9747 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9748 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9749 9750 return (vm_reasons | vcpu_reasons) == 0; 9751 } 9752 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9753 9754 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9755 enum kvm_apicv_inhibit reason, bool set) 9756 { 9757 if (set) 9758 __set_bit(reason, inhibits); 9759 else 9760 __clear_bit(reason, inhibits); 9761 9762 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9763 } 9764 9765 static void kvm_apicv_init(struct kvm *kvm) 9766 { 9767 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9768 9769 init_rwsem(&kvm->arch.apicv_update_lock); 9770 9771 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9772 9773 if (!enable_apicv) 9774 set_or_clear_apicv_inhibit(inhibits, 9775 APICV_INHIBIT_REASON_DISABLE, true); 9776 } 9777 9778 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9779 { 9780 struct kvm_vcpu *target = NULL; 9781 struct kvm_apic_map *map; 9782 9783 vcpu->stat.directed_yield_attempted++; 9784 9785 if (single_task_running()) 9786 goto no_yield; 9787 9788 rcu_read_lock(); 9789 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9790 9791 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9792 target = map->phys_map[dest_id]->vcpu; 9793 9794 rcu_read_unlock(); 9795 9796 if (!target || !READ_ONCE(target->ready)) 9797 goto no_yield; 9798 9799 /* Ignore requests to yield to self */ 9800 if (vcpu == target) 9801 goto no_yield; 9802 9803 if (kvm_vcpu_yield_to(target) <= 0) 9804 goto no_yield; 9805 9806 vcpu->stat.directed_yield_successful++; 9807 9808 no_yield: 9809 return; 9810 } 9811 9812 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9813 { 9814 u64 ret = vcpu->run->hypercall.ret; 9815 9816 if (!is_64_bit_mode(vcpu)) 9817 ret = (u32)ret; 9818 kvm_rax_write(vcpu, ret); 9819 ++vcpu->stat.hypercalls; 9820 return kvm_skip_emulated_instruction(vcpu); 9821 } 9822 9823 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9824 { 9825 unsigned long nr, a0, a1, a2, a3, ret; 9826 int op_64_bit; 9827 9828 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9829 return kvm_xen_hypercall(vcpu); 9830 9831 if (kvm_hv_hypercall_enabled(vcpu)) 9832 return kvm_hv_hypercall(vcpu); 9833 9834 nr = kvm_rax_read(vcpu); 9835 a0 = kvm_rbx_read(vcpu); 9836 a1 = kvm_rcx_read(vcpu); 9837 a2 = kvm_rdx_read(vcpu); 9838 a3 = kvm_rsi_read(vcpu); 9839 9840 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9841 9842 op_64_bit = is_64_bit_hypercall(vcpu); 9843 if (!op_64_bit) { 9844 nr &= 0xFFFFFFFF; 9845 a0 &= 0xFFFFFFFF; 9846 a1 &= 0xFFFFFFFF; 9847 a2 &= 0xFFFFFFFF; 9848 a3 &= 0xFFFFFFFF; 9849 } 9850 9851 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9852 ret = -KVM_EPERM; 9853 goto out; 9854 } 9855 9856 ret = -KVM_ENOSYS; 9857 9858 switch (nr) { 9859 case KVM_HC_VAPIC_POLL_IRQ: 9860 ret = 0; 9861 break; 9862 case KVM_HC_KICK_CPU: 9863 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9864 break; 9865 9866 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9867 kvm_sched_yield(vcpu, a1); 9868 ret = 0; 9869 break; 9870 #ifdef CONFIG_X86_64 9871 case KVM_HC_CLOCK_PAIRING: 9872 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9873 break; 9874 #endif 9875 case KVM_HC_SEND_IPI: 9876 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9877 break; 9878 9879 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9880 break; 9881 case KVM_HC_SCHED_YIELD: 9882 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9883 break; 9884 9885 kvm_sched_yield(vcpu, a0); 9886 ret = 0; 9887 break; 9888 case KVM_HC_MAP_GPA_RANGE: { 9889 u64 gpa = a0, npages = a1, attrs = a2; 9890 9891 ret = -KVM_ENOSYS; 9892 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9893 break; 9894 9895 if (!PAGE_ALIGNED(gpa) || !npages || 9896 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9897 ret = -KVM_EINVAL; 9898 break; 9899 } 9900 9901 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9902 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9903 vcpu->run->hypercall.args[0] = gpa; 9904 vcpu->run->hypercall.args[1] = npages; 9905 vcpu->run->hypercall.args[2] = attrs; 9906 vcpu->run->hypercall.flags = 0; 9907 if (op_64_bit) 9908 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9909 9910 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9911 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9912 return 0; 9913 } 9914 default: 9915 ret = -KVM_ENOSYS; 9916 break; 9917 } 9918 out: 9919 if (!op_64_bit) 9920 ret = (u32)ret; 9921 kvm_rax_write(vcpu, ret); 9922 9923 ++vcpu->stat.hypercalls; 9924 return kvm_skip_emulated_instruction(vcpu); 9925 } 9926 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9927 9928 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9929 { 9930 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9931 char instruction[3]; 9932 unsigned long rip = kvm_rip_read(vcpu); 9933 9934 /* 9935 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9936 * the pieces. 9937 */ 9938 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9939 ctxt->exception.error_code_valid = false; 9940 ctxt->exception.vector = UD_VECTOR; 9941 ctxt->have_exception = true; 9942 return X86EMUL_PROPAGATE_FAULT; 9943 } 9944 9945 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9946 9947 return emulator_write_emulated(ctxt, rip, instruction, 3, 9948 &ctxt->exception); 9949 } 9950 9951 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9952 { 9953 return vcpu->run->request_interrupt_window && 9954 likely(!pic_in_kernel(vcpu->kvm)); 9955 } 9956 9957 /* Called within kvm->srcu read side. */ 9958 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9959 { 9960 struct kvm_run *kvm_run = vcpu->run; 9961 9962 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9963 kvm_run->cr8 = kvm_get_cr8(vcpu); 9964 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9965 9966 kvm_run->ready_for_interrupt_injection = 9967 pic_in_kernel(vcpu->kvm) || 9968 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9969 9970 if (is_smm(vcpu)) 9971 kvm_run->flags |= KVM_RUN_X86_SMM; 9972 } 9973 9974 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9975 { 9976 int max_irr, tpr; 9977 9978 if (!kvm_x86_ops.update_cr8_intercept) 9979 return; 9980 9981 if (!lapic_in_kernel(vcpu)) 9982 return; 9983 9984 if (vcpu->arch.apic->apicv_active) 9985 return; 9986 9987 if (!vcpu->arch.apic->vapic_addr) 9988 max_irr = kvm_lapic_find_highest_irr(vcpu); 9989 else 9990 max_irr = -1; 9991 9992 if (max_irr != -1) 9993 max_irr >>= 4; 9994 9995 tpr = kvm_lapic_get_cr8(vcpu); 9996 9997 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9998 } 9999 10000 10001 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10002 { 10003 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10004 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10005 return 1; 10006 } 10007 10008 return kvm_x86_ops.nested_ops->check_events(vcpu); 10009 } 10010 10011 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10012 { 10013 /* 10014 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10015 * exceptions don't report error codes. The presence of an error code 10016 * is carried with the exception and only stripped when the exception 10017 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10018 * report an error code despite the CPU being in Real Mode. 10019 */ 10020 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10021 10022 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10023 vcpu->arch.exception.has_error_code, 10024 vcpu->arch.exception.error_code, 10025 vcpu->arch.exception.injected); 10026 10027 static_call(kvm_x86_inject_exception)(vcpu); 10028 } 10029 10030 /* 10031 * Check for any event (interrupt or exception) that is ready to be injected, 10032 * and if there is at least one event, inject the event with the highest 10033 * priority. This handles both "pending" events, i.e. events that have never 10034 * been injected into the guest, and "injected" events, i.e. events that were 10035 * injected as part of a previous VM-Enter, but weren't successfully delivered 10036 * and need to be re-injected. 10037 * 10038 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10039 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10040 * be able to inject exceptions in the "middle" of an instruction, and so must 10041 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10042 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10043 * boundaries is necessary and correct. 10044 * 10045 * For simplicity, KVM uses a single path to inject all events (except events 10046 * that are injected directly from L1 to L2) and doesn't explicitly track 10047 * instruction boundaries for asynchronous events. However, because VM-Exits 10048 * that can occur during instruction execution typically result in KVM skipping 10049 * the instruction or injecting an exception, e.g. instruction and exception 10050 * intercepts, and because pending exceptions have higher priority than pending 10051 * interrupts, KVM still honors instruction boundaries in most scenarios. 10052 * 10053 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10054 * the instruction or inject an exception, then KVM can incorrecty inject a new 10055 * asynchrounous event if the event became pending after the CPU fetched the 10056 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10057 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10058 * injected on the restarted instruction instead of being deferred until the 10059 * instruction completes. 10060 * 10061 * In practice, this virtualization hole is unlikely to be observed by the 10062 * guest, and even less likely to cause functional problems. To detect the 10063 * hole, the guest would have to trigger an event on a side effect of an early 10064 * phase of instruction execution, e.g. on the instruction fetch from memory. 10065 * And for it to be a functional problem, the guest would need to depend on the 10066 * ordering between that side effect, the instruction completing, _and_ the 10067 * delivery of the asynchronous event. 10068 */ 10069 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10070 bool *req_immediate_exit) 10071 { 10072 bool can_inject; 10073 int r; 10074 10075 /* 10076 * Process nested events first, as nested VM-Exit supercedes event 10077 * re-injection. If there's an event queued for re-injection, it will 10078 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10079 */ 10080 if (is_guest_mode(vcpu)) 10081 r = kvm_check_nested_events(vcpu); 10082 else 10083 r = 0; 10084 10085 /* 10086 * Re-inject exceptions and events *especially* if immediate entry+exit 10087 * to/from L2 is needed, as any event that has already been injected 10088 * into L2 needs to complete its lifecycle before injecting a new event. 10089 * 10090 * Don't re-inject an NMI or interrupt if there is a pending exception. 10091 * This collision arises if an exception occurred while vectoring the 10092 * injected event, KVM intercepted said exception, and KVM ultimately 10093 * determined the fault belongs to the guest and queues the exception 10094 * for injection back into the guest. 10095 * 10096 * "Injected" interrupts can also collide with pending exceptions if 10097 * userspace ignores the "ready for injection" flag and blindly queues 10098 * an interrupt. In that case, prioritizing the exception is correct, 10099 * as the exception "occurred" before the exit to userspace. Trap-like 10100 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10101 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10102 * priority, they're only generated (pended) during instruction 10103 * execution, and interrupts are recognized at instruction boundaries. 10104 * Thus a pending fault-like exception means the fault occurred on the 10105 * *previous* instruction and must be serviced prior to recognizing any 10106 * new events in order to fully complete the previous instruction. 10107 */ 10108 if (vcpu->arch.exception.injected) 10109 kvm_inject_exception(vcpu); 10110 else if (kvm_is_exception_pending(vcpu)) 10111 ; /* see above */ 10112 else if (vcpu->arch.nmi_injected) 10113 static_call(kvm_x86_inject_nmi)(vcpu); 10114 else if (vcpu->arch.interrupt.injected) 10115 static_call(kvm_x86_inject_irq)(vcpu, true); 10116 10117 /* 10118 * Exceptions that morph to VM-Exits are handled above, and pending 10119 * exceptions on top of injected exceptions that do not VM-Exit should 10120 * either morph to #DF or, sadly, override the injected exception. 10121 */ 10122 WARN_ON_ONCE(vcpu->arch.exception.injected && 10123 vcpu->arch.exception.pending); 10124 10125 /* 10126 * Bail if immediate entry+exit to/from the guest is needed to complete 10127 * nested VM-Enter or event re-injection so that a different pending 10128 * event can be serviced (or if KVM needs to exit to userspace). 10129 * 10130 * Otherwise, continue processing events even if VM-Exit occurred. The 10131 * VM-Exit will have cleared exceptions that were meant for L2, but 10132 * there may now be events that can be injected into L1. 10133 */ 10134 if (r < 0) 10135 goto out; 10136 10137 /* 10138 * A pending exception VM-Exit should either result in nested VM-Exit 10139 * or force an immediate re-entry and exit to/from L2, and exception 10140 * VM-Exits cannot be injected (flag should _never_ be set). 10141 */ 10142 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10143 vcpu->arch.exception_vmexit.pending); 10144 10145 /* 10146 * New events, other than exceptions, cannot be injected if KVM needs 10147 * to re-inject a previous event. See above comments on re-injecting 10148 * for why pending exceptions get priority. 10149 */ 10150 can_inject = !kvm_event_needs_reinjection(vcpu); 10151 10152 if (vcpu->arch.exception.pending) { 10153 /* 10154 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10155 * value pushed on the stack. Trap-like exception and all #DBs 10156 * leave RF as-is (KVM follows Intel's behavior in this regard; 10157 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10158 * 10159 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10160 * describe the behavior of General Detect #DBs, which are 10161 * fault-like. They do _not_ set RF, a la code breakpoints. 10162 */ 10163 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10164 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10165 X86_EFLAGS_RF); 10166 10167 if (vcpu->arch.exception.vector == DB_VECTOR) { 10168 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10169 if (vcpu->arch.dr7 & DR7_GD) { 10170 vcpu->arch.dr7 &= ~DR7_GD; 10171 kvm_update_dr7(vcpu); 10172 } 10173 } 10174 10175 kvm_inject_exception(vcpu); 10176 10177 vcpu->arch.exception.pending = false; 10178 vcpu->arch.exception.injected = true; 10179 10180 can_inject = false; 10181 } 10182 10183 /* Don't inject interrupts if the user asked to avoid doing so */ 10184 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10185 return 0; 10186 10187 /* 10188 * Finally, inject interrupt events. If an event cannot be injected 10189 * due to architectural conditions (e.g. IF=0) a window-open exit 10190 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10191 * and can architecturally be injected, but we cannot do it right now: 10192 * an interrupt could have arrived just now and we have to inject it 10193 * as a vmexit, or there could already an event in the queue, which is 10194 * indicated by can_inject. In that case we request an immediate exit 10195 * in order to make progress and get back here for another iteration. 10196 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10197 */ 10198 #ifdef CONFIG_KVM_SMM 10199 if (vcpu->arch.smi_pending) { 10200 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10201 if (r < 0) 10202 goto out; 10203 if (r) { 10204 vcpu->arch.smi_pending = false; 10205 ++vcpu->arch.smi_count; 10206 enter_smm(vcpu); 10207 can_inject = false; 10208 } else 10209 static_call(kvm_x86_enable_smi_window)(vcpu); 10210 } 10211 #endif 10212 10213 if (vcpu->arch.nmi_pending) { 10214 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10215 if (r < 0) 10216 goto out; 10217 if (r) { 10218 --vcpu->arch.nmi_pending; 10219 vcpu->arch.nmi_injected = true; 10220 static_call(kvm_x86_inject_nmi)(vcpu); 10221 can_inject = false; 10222 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10223 } 10224 if (vcpu->arch.nmi_pending) 10225 static_call(kvm_x86_enable_nmi_window)(vcpu); 10226 } 10227 10228 if (kvm_cpu_has_injectable_intr(vcpu)) { 10229 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10230 if (r < 0) 10231 goto out; 10232 if (r) { 10233 int irq = kvm_cpu_get_interrupt(vcpu); 10234 10235 if (!WARN_ON_ONCE(irq == -1)) { 10236 kvm_queue_interrupt(vcpu, irq, false); 10237 static_call(kvm_x86_inject_irq)(vcpu, false); 10238 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10239 } 10240 } 10241 if (kvm_cpu_has_injectable_intr(vcpu)) 10242 static_call(kvm_x86_enable_irq_window)(vcpu); 10243 } 10244 10245 if (is_guest_mode(vcpu) && 10246 kvm_x86_ops.nested_ops->has_events && 10247 kvm_x86_ops.nested_ops->has_events(vcpu)) 10248 *req_immediate_exit = true; 10249 10250 /* 10251 * KVM must never queue a new exception while injecting an event; KVM 10252 * is done emulating and should only propagate the to-be-injected event 10253 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10254 * infinite loop as KVM will bail from VM-Enter to inject the pending 10255 * exception and start the cycle all over. 10256 * 10257 * Exempt triple faults as they have special handling and won't put the 10258 * vCPU into an infinite loop. Triple fault can be queued when running 10259 * VMX without unrestricted guest, as that requires KVM to emulate Real 10260 * Mode events (see kvm_inject_realmode_interrupt()). 10261 */ 10262 WARN_ON_ONCE(vcpu->arch.exception.pending || 10263 vcpu->arch.exception_vmexit.pending); 10264 return 0; 10265 10266 out: 10267 if (r == -EBUSY) { 10268 *req_immediate_exit = true; 10269 r = 0; 10270 } 10271 return r; 10272 } 10273 10274 static void process_nmi(struct kvm_vcpu *vcpu) 10275 { 10276 unsigned int limit; 10277 10278 /* 10279 * x86 is limited to one NMI pending, but because KVM can't react to 10280 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10281 * scheduled out, KVM needs to play nice with two queued NMIs showing 10282 * up at the same time. To handle this scenario, allow two NMIs to be 10283 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10284 * waiting for a previous NMI injection to complete (which effectively 10285 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10286 * will request an NMI window to handle the second NMI. 10287 */ 10288 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10289 limit = 1; 10290 else 10291 limit = 2; 10292 10293 /* 10294 * Adjust the limit to account for pending virtual NMIs, which aren't 10295 * tracked in vcpu->arch.nmi_pending. 10296 */ 10297 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10298 limit--; 10299 10300 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10301 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10302 10303 if (vcpu->arch.nmi_pending && 10304 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10305 vcpu->arch.nmi_pending--; 10306 10307 if (vcpu->arch.nmi_pending) 10308 kvm_make_request(KVM_REQ_EVENT, vcpu); 10309 } 10310 10311 /* Return total number of NMIs pending injection to the VM */ 10312 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10313 { 10314 return vcpu->arch.nmi_pending + 10315 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10316 } 10317 10318 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10319 unsigned long *vcpu_bitmap) 10320 { 10321 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10322 } 10323 10324 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10325 { 10326 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10327 } 10328 10329 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10330 { 10331 struct kvm_lapic *apic = vcpu->arch.apic; 10332 bool activate; 10333 10334 if (!lapic_in_kernel(vcpu)) 10335 return; 10336 10337 down_read(&vcpu->kvm->arch.apicv_update_lock); 10338 preempt_disable(); 10339 10340 /* Do not activate APICV when APIC is disabled */ 10341 activate = kvm_vcpu_apicv_activated(vcpu) && 10342 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10343 10344 if (apic->apicv_active == activate) 10345 goto out; 10346 10347 apic->apicv_active = activate; 10348 kvm_apic_update_apicv(vcpu); 10349 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10350 10351 /* 10352 * When APICv gets disabled, we may still have injected interrupts 10353 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10354 * still active when the interrupt got accepted. Make sure 10355 * kvm_check_and_inject_events() is called to check for that. 10356 */ 10357 if (!apic->apicv_active) 10358 kvm_make_request(KVM_REQ_EVENT, vcpu); 10359 10360 out: 10361 preempt_enable(); 10362 up_read(&vcpu->kvm->arch.apicv_update_lock); 10363 } 10364 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10365 10366 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10367 { 10368 if (!lapic_in_kernel(vcpu)) 10369 return; 10370 10371 /* 10372 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10373 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10374 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10375 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10376 * this case so that KVM can the AVIC doorbell to inject interrupts to 10377 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10378 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10379 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10380 * access page is sticky. 10381 */ 10382 if (apic_x2apic_mode(vcpu->arch.apic) && 10383 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10384 kvm_inhibit_apic_access_page(vcpu); 10385 10386 __kvm_vcpu_update_apicv(vcpu); 10387 } 10388 10389 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10390 enum kvm_apicv_inhibit reason, bool set) 10391 { 10392 unsigned long old, new; 10393 10394 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10395 10396 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10397 return; 10398 10399 old = new = kvm->arch.apicv_inhibit_reasons; 10400 10401 set_or_clear_apicv_inhibit(&new, reason, set); 10402 10403 if (!!old != !!new) { 10404 /* 10405 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10406 * false positives in the sanity check WARN in svm_vcpu_run(). 10407 * This task will wait for all vCPUs to ack the kick IRQ before 10408 * updating apicv_inhibit_reasons, and all other vCPUs will 10409 * block on acquiring apicv_update_lock so that vCPUs can't 10410 * redo svm_vcpu_run() without seeing the new inhibit state. 10411 * 10412 * Note, holding apicv_update_lock and taking it in the read 10413 * side (handling the request) also prevents other vCPUs from 10414 * servicing the request with a stale apicv_inhibit_reasons. 10415 */ 10416 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10417 kvm->arch.apicv_inhibit_reasons = new; 10418 if (new) { 10419 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10420 int idx = srcu_read_lock(&kvm->srcu); 10421 10422 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10423 srcu_read_unlock(&kvm->srcu, idx); 10424 } 10425 } else { 10426 kvm->arch.apicv_inhibit_reasons = new; 10427 } 10428 } 10429 10430 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10431 enum kvm_apicv_inhibit reason, bool set) 10432 { 10433 if (!enable_apicv) 10434 return; 10435 10436 down_write(&kvm->arch.apicv_update_lock); 10437 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10438 up_write(&kvm->arch.apicv_update_lock); 10439 } 10440 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10441 10442 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10443 { 10444 if (!kvm_apic_present(vcpu)) 10445 return; 10446 10447 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10448 10449 if (irqchip_split(vcpu->kvm)) 10450 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10451 else { 10452 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10453 if (ioapic_in_kernel(vcpu->kvm)) 10454 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10455 } 10456 10457 if (is_guest_mode(vcpu)) 10458 vcpu->arch.load_eoi_exitmap_pending = true; 10459 else 10460 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10461 } 10462 10463 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10464 { 10465 u64 eoi_exit_bitmap[4]; 10466 10467 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10468 return; 10469 10470 if (to_hv_vcpu(vcpu)) { 10471 bitmap_or((ulong *)eoi_exit_bitmap, 10472 vcpu->arch.ioapic_handled_vectors, 10473 to_hv_synic(vcpu)->vec_bitmap, 256); 10474 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10475 return; 10476 } 10477 10478 static_call_cond(kvm_x86_load_eoi_exitmap)( 10479 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10480 } 10481 10482 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10483 { 10484 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10485 } 10486 10487 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10488 { 10489 if (!lapic_in_kernel(vcpu)) 10490 return; 10491 10492 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10493 } 10494 10495 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10496 { 10497 smp_send_reschedule(vcpu->cpu); 10498 } 10499 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10500 10501 /* 10502 * Called within kvm->srcu read side. 10503 * Returns 1 to let vcpu_run() continue the guest execution loop without 10504 * exiting to the userspace. Otherwise, the value will be returned to the 10505 * userspace. 10506 */ 10507 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10508 { 10509 int r; 10510 bool req_int_win = 10511 dm_request_for_irq_injection(vcpu) && 10512 kvm_cpu_accept_dm_intr(vcpu); 10513 fastpath_t exit_fastpath; 10514 10515 bool req_immediate_exit = false; 10516 10517 if (kvm_request_pending(vcpu)) { 10518 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10519 r = -EIO; 10520 goto out; 10521 } 10522 10523 if (kvm_dirty_ring_check_request(vcpu)) { 10524 r = 0; 10525 goto out; 10526 } 10527 10528 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10529 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10530 r = 0; 10531 goto out; 10532 } 10533 } 10534 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10535 kvm_mmu_free_obsolete_roots(vcpu); 10536 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10537 __kvm_migrate_timers(vcpu); 10538 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10539 kvm_update_masterclock(vcpu->kvm); 10540 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10541 kvm_gen_kvmclock_update(vcpu); 10542 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10543 r = kvm_guest_time_update(vcpu); 10544 if (unlikely(r)) 10545 goto out; 10546 } 10547 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10548 kvm_mmu_sync_roots(vcpu); 10549 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10550 kvm_mmu_load_pgd(vcpu); 10551 10552 /* 10553 * Note, the order matters here, as flushing "all" TLB entries 10554 * also flushes the "current" TLB entries, i.e. servicing the 10555 * flush "all" will clear any request to flush "current". 10556 */ 10557 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10558 kvm_vcpu_flush_tlb_all(vcpu); 10559 10560 kvm_service_local_tlb_flush_requests(vcpu); 10561 10562 /* 10563 * Fall back to a "full" guest flush if Hyper-V's precise 10564 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10565 * the flushes are considered "remote" and not "local" because 10566 * the requests can be initiated from other vCPUs. 10567 */ 10568 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10569 kvm_hv_vcpu_flush_tlb(vcpu)) 10570 kvm_vcpu_flush_tlb_guest(vcpu); 10571 10572 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10573 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10574 r = 0; 10575 goto out; 10576 } 10577 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10578 if (is_guest_mode(vcpu)) 10579 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10580 10581 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10582 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10583 vcpu->mmio_needed = 0; 10584 r = 0; 10585 goto out; 10586 } 10587 } 10588 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10589 /* Page is swapped out. Do synthetic halt */ 10590 vcpu->arch.apf.halted = true; 10591 r = 1; 10592 goto out; 10593 } 10594 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10595 record_steal_time(vcpu); 10596 #ifdef CONFIG_KVM_SMM 10597 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10598 process_smi(vcpu); 10599 #endif 10600 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10601 process_nmi(vcpu); 10602 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10603 kvm_pmu_handle_event(vcpu); 10604 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10605 kvm_pmu_deliver_pmi(vcpu); 10606 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10607 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10608 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10609 vcpu->arch.ioapic_handled_vectors)) { 10610 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10611 vcpu->run->eoi.vector = 10612 vcpu->arch.pending_ioapic_eoi; 10613 r = 0; 10614 goto out; 10615 } 10616 } 10617 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10618 vcpu_scan_ioapic(vcpu); 10619 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10620 vcpu_load_eoi_exitmap(vcpu); 10621 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10622 kvm_vcpu_reload_apic_access_page(vcpu); 10623 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10624 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10625 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10626 vcpu->run->system_event.ndata = 0; 10627 r = 0; 10628 goto out; 10629 } 10630 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10631 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10632 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10633 vcpu->run->system_event.ndata = 0; 10634 r = 0; 10635 goto out; 10636 } 10637 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10638 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10639 10640 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10641 vcpu->run->hyperv = hv_vcpu->exit; 10642 r = 0; 10643 goto out; 10644 } 10645 10646 /* 10647 * KVM_REQ_HV_STIMER has to be processed after 10648 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10649 * depend on the guest clock being up-to-date 10650 */ 10651 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10652 kvm_hv_process_stimers(vcpu); 10653 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10654 kvm_vcpu_update_apicv(vcpu); 10655 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10656 kvm_check_async_pf_completion(vcpu); 10657 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10658 static_call(kvm_x86_msr_filter_changed)(vcpu); 10659 10660 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10661 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10662 } 10663 10664 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10665 kvm_xen_has_interrupt(vcpu)) { 10666 ++vcpu->stat.req_event; 10667 r = kvm_apic_accept_events(vcpu); 10668 if (r < 0) { 10669 r = 0; 10670 goto out; 10671 } 10672 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10673 r = 1; 10674 goto out; 10675 } 10676 10677 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10678 if (r < 0) { 10679 r = 0; 10680 goto out; 10681 } 10682 if (req_int_win) 10683 static_call(kvm_x86_enable_irq_window)(vcpu); 10684 10685 if (kvm_lapic_enabled(vcpu)) { 10686 update_cr8_intercept(vcpu); 10687 kvm_lapic_sync_to_vapic(vcpu); 10688 } 10689 } 10690 10691 r = kvm_mmu_reload(vcpu); 10692 if (unlikely(r)) { 10693 goto cancel_injection; 10694 } 10695 10696 preempt_disable(); 10697 10698 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10699 10700 /* 10701 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10702 * IPI are then delayed after guest entry, which ensures that they 10703 * result in virtual interrupt delivery. 10704 */ 10705 local_irq_disable(); 10706 10707 /* Store vcpu->apicv_active before vcpu->mode. */ 10708 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10709 10710 kvm_vcpu_srcu_read_unlock(vcpu); 10711 10712 /* 10713 * 1) We should set ->mode before checking ->requests. Please see 10714 * the comment in kvm_vcpu_exiting_guest_mode(). 10715 * 10716 * 2) For APICv, we should set ->mode before checking PID.ON. This 10717 * pairs with the memory barrier implicit in pi_test_and_set_on 10718 * (see vmx_deliver_posted_interrupt). 10719 * 10720 * 3) This also orders the write to mode from any reads to the page 10721 * tables done while the VCPU is running. Please see the comment 10722 * in kvm_flush_remote_tlbs. 10723 */ 10724 smp_mb__after_srcu_read_unlock(); 10725 10726 /* 10727 * Process pending posted interrupts to handle the case where the 10728 * notification IRQ arrived in the host, or was never sent (because the 10729 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10730 * status, KVM doesn't update assigned devices when APICv is inhibited, 10731 * i.e. they can post interrupts even if APICv is temporarily disabled. 10732 */ 10733 if (kvm_lapic_enabled(vcpu)) 10734 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10735 10736 if (kvm_vcpu_exit_request(vcpu)) { 10737 vcpu->mode = OUTSIDE_GUEST_MODE; 10738 smp_wmb(); 10739 local_irq_enable(); 10740 preempt_enable(); 10741 kvm_vcpu_srcu_read_lock(vcpu); 10742 r = 1; 10743 goto cancel_injection; 10744 } 10745 10746 if (req_immediate_exit) { 10747 kvm_make_request(KVM_REQ_EVENT, vcpu); 10748 static_call(kvm_x86_request_immediate_exit)(vcpu); 10749 } 10750 10751 fpregs_assert_state_consistent(); 10752 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10753 switch_fpu_return(); 10754 10755 if (vcpu->arch.guest_fpu.xfd_err) 10756 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10757 10758 if (unlikely(vcpu->arch.switch_db_regs)) { 10759 set_debugreg(0, 7); 10760 set_debugreg(vcpu->arch.eff_db[0], 0); 10761 set_debugreg(vcpu->arch.eff_db[1], 1); 10762 set_debugreg(vcpu->arch.eff_db[2], 2); 10763 set_debugreg(vcpu->arch.eff_db[3], 3); 10764 } else if (unlikely(hw_breakpoint_active())) { 10765 set_debugreg(0, 7); 10766 } 10767 10768 guest_timing_enter_irqoff(); 10769 10770 for (;;) { 10771 /* 10772 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10773 * update must kick and wait for all vCPUs before toggling the 10774 * per-VM state, and responsing vCPUs must wait for the update 10775 * to complete before servicing KVM_REQ_APICV_UPDATE. 10776 */ 10777 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10778 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10779 10780 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10781 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10782 break; 10783 10784 if (kvm_lapic_enabled(vcpu)) 10785 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10786 10787 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10788 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10789 break; 10790 } 10791 10792 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10793 ++vcpu->stat.exits; 10794 } 10795 10796 /* 10797 * Do this here before restoring debug registers on the host. And 10798 * since we do this before handling the vmexit, a DR access vmexit 10799 * can (a) read the correct value of the debug registers, (b) set 10800 * KVM_DEBUGREG_WONT_EXIT again. 10801 */ 10802 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10803 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10804 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10805 kvm_update_dr0123(vcpu); 10806 kvm_update_dr7(vcpu); 10807 } 10808 10809 /* 10810 * If the guest has used debug registers, at least dr7 10811 * will be disabled while returning to the host. 10812 * If we don't have active breakpoints in the host, we don't 10813 * care about the messed up debug address registers. But if 10814 * we have some of them active, restore the old state. 10815 */ 10816 if (hw_breakpoint_active()) 10817 hw_breakpoint_restore(); 10818 10819 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10820 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10821 10822 vcpu->mode = OUTSIDE_GUEST_MODE; 10823 smp_wmb(); 10824 10825 /* 10826 * Sync xfd before calling handle_exit_irqoff() which may 10827 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10828 * in #NM irqoff handler). 10829 */ 10830 if (vcpu->arch.xfd_no_write_intercept) 10831 fpu_sync_guest_vmexit_xfd_state(); 10832 10833 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10834 10835 if (vcpu->arch.guest_fpu.xfd_err) 10836 wrmsrl(MSR_IA32_XFD_ERR, 0); 10837 10838 /* 10839 * Consume any pending interrupts, including the possible source of 10840 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10841 * An instruction is required after local_irq_enable() to fully unblock 10842 * interrupts on processors that implement an interrupt shadow, the 10843 * stat.exits increment will do nicely. 10844 */ 10845 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10846 local_irq_enable(); 10847 ++vcpu->stat.exits; 10848 local_irq_disable(); 10849 kvm_after_interrupt(vcpu); 10850 10851 /* 10852 * Wait until after servicing IRQs to account guest time so that any 10853 * ticks that occurred while running the guest are properly accounted 10854 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10855 * of accounting via context tracking, but the loss of accuracy is 10856 * acceptable for all known use cases. 10857 */ 10858 guest_timing_exit_irqoff(); 10859 10860 local_irq_enable(); 10861 preempt_enable(); 10862 10863 kvm_vcpu_srcu_read_lock(vcpu); 10864 10865 /* 10866 * Profile KVM exit RIPs: 10867 */ 10868 if (unlikely(prof_on == KVM_PROFILING)) { 10869 unsigned long rip = kvm_rip_read(vcpu); 10870 profile_hit(KVM_PROFILING, (void *)rip); 10871 } 10872 10873 if (unlikely(vcpu->arch.tsc_always_catchup)) 10874 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10875 10876 if (vcpu->arch.apic_attention) 10877 kvm_lapic_sync_from_vapic(vcpu); 10878 10879 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10880 return r; 10881 10882 cancel_injection: 10883 if (req_immediate_exit) 10884 kvm_make_request(KVM_REQ_EVENT, vcpu); 10885 static_call(kvm_x86_cancel_injection)(vcpu); 10886 if (unlikely(vcpu->arch.apic_attention)) 10887 kvm_lapic_sync_from_vapic(vcpu); 10888 out: 10889 return r; 10890 } 10891 10892 /* Called within kvm->srcu read side. */ 10893 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10894 { 10895 bool hv_timer; 10896 10897 if (!kvm_arch_vcpu_runnable(vcpu)) { 10898 /* 10899 * Switch to the software timer before halt-polling/blocking as 10900 * the guest's timer may be a break event for the vCPU, and the 10901 * hypervisor timer runs only when the CPU is in guest mode. 10902 * Switch before halt-polling so that KVM recognizes an expired 10903 * timer before blocking. 10904 */ 10905 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10906 if (hv_timer) 10907 kvm_lapic_switch_to_sw_timer(vcpu); 10908 10909 kvm_vcpu_srcu_read_unlock(vcpu); 10910 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10911 kvm_vcpu_halt(vcpu); 10912 else 10913 kvm_vcpu_block(vcpu); 10914 kvm_vcpu_srcu_read_lock(vcpu); 10915 10916 if (hv_timer) 10917 kvm_lapic_switch_to_hv_timer(vcpu); 10918 10919 /* 10920 * If the vCPU is not runnable, a signal or another host event 10921 * of some kind is pending; service it without changing the 10922 * vCPU's activity state. 10923 */ 10924 if (!kvm_arch_vcpu_runnable(vcpu)) 10925 return 1; 10926 } 10927 10928 /* 10929 * Evaluate nested events before exiting the halted state. This allows 10930 * the halt state to be recorded properly in the VMCS12's activity 10931 * state field (AMD does not have a similar field and a VM-Exit always 10932 * causes a spurious wakeup from HLT). 10933 */ 10934 if (is_guest_mode(vcpu)) { 10935 if (kvm_check_nested_events(vcpu) < 0) 10936 return 0; 10937 } 10938 10939 if (kvm_apic_accept_events(vcpu) < 0) 10940 return 0; 10941 switch(vcpu->arch.mp_state) { 10942 case KVM_MP_STATE_HALTED: 10943 case KVM_MP_STATE_AP_RESET_HOLD: 10944 vcpu->arch.pv.pv_unhalted = false; 10945 vcpu->arch.mp_state = 10946 KVM_MP_STATE_RUNNABLE; 10947 fallthrough; 10948 case KVM_MP_STATE_RUNNABLE: 10949 vcpu->arch.apf.halted = false; 10950 break; 10951 case KVM_MP_STATE_INIT_RECEIVED: 10952 break; 10953 default: 10954 WARN_ON_ONCE(1); 10955 break; 10956 } 10957 return 1; 10958 } 10959 10960 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10961 { 10962 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10963 !vcpu->arch.apf.halted); 10964 } 10965 10966 /* Called within kvm->srcu read side. */ 10967 static int vcpu_run(struct kvm_vcpu *vcpu) 10968 { 10969 int r; 10970 10971 vcpu->arch.l1tf_flush_l1d = true; 10972 10973 for (;;) { 10974 /* 10975 * If another guest vCPU requests a PV TLB flush in the middle 10976 * of instruction emulation, the rest of the emulation could 10977 * use a stale page translation. Assume that any code after 10978 * this point can start executing an instruction. 10979 */ 10980 vcpu->arch.at_instruction_boundary = false; 10981 if (kvm_vcpu_running(vcpu)) { 10982 r = vcpu_enter_guest(vcpu); 10983 } else { 10984 r = vcpu_block(vcpu); 10985 } 10986 10987 if (r <= 0) 10988 break; 10989 10990 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10991 if (kvm_xen_has_pending_events(vcpu)) 10992 kvm_xen_inject_pending_events(vcpu); 10993 10994 if (kvm_cpu_has_pending_timer(vcpu)) 10995 kvm_inject_pending_timer_irqs(vcpu); 10996 10997 if (dm_request_for_irq_injection(vcpu) && 10998 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10999 r = 0; 11000 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11001 ++vcpu->stat.request_irq_exits; 11002 break; 11003 } 11004 11005 if (__xfer_to_guest_mode_work_pending()) { 11006 kvm_vcpu_srcu_read_unlock(vcpu); 11007 r = xfer_to_guest_mode_handle_work(vcpu); 11008 kvm_vcpu_srcu_read_lock(vcpu); 11009 if (r) 11010 return r; 11011 } 11012 } 11013 11014 return r; 11015 } 11016 11017 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11018 { 11019 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11020 } 11021 11022 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11023 { 11024 BUG_ON(!vcpu->arch.pio.count); 11025 11026 return complete_emulated_io(vcpu); 11027 } 11028 11029 /* 11030 * Implements the following, as a state machine: 11031 * 11032 * read: 11033 * for each fragment 11034 * for each mmio piece in the fragment 11035 * write gpa, len 11036 * exit 11037 * copy data 11038 * execute insn 11039 * 11040 * write: 11041 * for each fragment 11042 * for each mmio piece in the fragment 11043 * write gpa, len 11044 * copy data 11045 * exit 11046 */ 11047 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11048 { 11049 struct kvm_run *run = vcpu->run; 11050 struct kvm_mmio_fragment *frag; 11051 unsigned len; 11052 11053 BUG_ON(!vcpu->mmio_needed); 11054 11055 /* Complete previous fragment */ 11056 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11057 len = min(8u, frag->len); 11058 if (!vcpu->mmio_is_write) 11059 memcpy(frag->data, run->mmio.data, len); 11060 11061 if (frag->len <= 8) { 11062 /* Switch to the next fragment. */ 11063 frag++; 11064 vcpu->mmio_cur_fragment++; 11065 } else { 11066 /* Go forward to the next mmio piece. */ 11067 frag->data += len; 11068 frag->gpa += len; 11069 frag->len -= len; 11070 } 11071 11072 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11073 vcpu->mmio_needed = 0; 11074 11075 /* FIXME: return into emulator if single-stepping. */ 11076 if (vcpu->mmio_is_write) 11077 return 1; 11078 vcpu->mmio_read_completed = 1; 11079 return complete_emulated_io(vcpu); 11080 } 11081 11082 run->exit_reason = KVM_EXIT_MMIO; 11083 run->mmio.phys_addr = frag->gpa; 11084 if (vcpu->mmio_is_write) 11085 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11086 run->mmio.len = min(8u, frag->len); 11087 run->mmio.is_write = vcpu->mmio_is_write; 11088 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11089 return 0; 11090 } 11091 11092 /* Swap (qemu) user FPU context for the guest FPU context. */ 11093 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11094 { 11095 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11096 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11097 trace_kvm_fpu(1); 11098 } 11099 11100 /* When vcpu_run ends, restore user space FPU context. */ 11101 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11102 { 11103 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11104 ++vcpu->stat.fpu_reload; 11105 trace_kvm_fpu(0); 11106 } 11107 11108 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11109 { 11110 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11111 struct kvm_run *kvm_run = vcpu->run; 11112 int r; 11113 11114 vcpu_load(vcpu); 11115 kvm_sigset_activate(vcpu); 11116 kvm_run->flags = 0; 11117 kvm_load_guest_fpu(vcpu); 11118 11119 kvm_vcpu_srcu_read_lock(vcpu); 11120 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11121 if (kvm_run->immediate_exit) { 11122 r = -EINTR; 11123 goto out; 11124 } 11125 11126 /* 11127 * Don't bother switching APIC timer emulation from the 11128 * hypervisor timer to the software timer, the only way for the 11129 * APIC timer to be active is if userspace stuffed vCPU state, 11130 * i.e. put the vCPU into a nonsensical state. Only an INIT 11131 * will transition the vCPU out of UNINITIALIZED (without more 11132 * state stuffing from userspace), which will reset the local 11133 * APIC and thus cancel the timer or drop the IRQ (if the timer 11134 * already expired). 11135 */ 11136 kvm_vcpu_srcu_read_unlock(vcpu); 11137 kvm_vcpu_block(vcpu); 11138 kvm_vcpu_srcu_read_lock(vcpu); 11139 11140 if (kvm_apic_accept_events(vcpu) < 0) { 11141 r = 0; 11142 goto out; 11143 } 11144 r = -EAGAIN; 11145 if (signal_pending(current)) { 11146 r = -EINTR; 11147 kvm_run->exit_reason = KVM_EXIT_INTR; 11148 ++vcpu->stat.signal_exits; 11149 } 11150 goto out; 11151 } 11152 11153 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11154 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11155 r = -EINVAL; 11156 goto out; 11157 } 11158 11159 if (kvm_run->kvm_dirty_regs) { 11160 r = sync_regs(vcpu); 11161 if (r != 0) 11162 goto out; 11163 } 11164 11165 /* re-sync apic's tpr */ 11166 if (!lapic_in_kernel(vcpu)) { 11167 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11168 r = -EINVAL; 11169 goto out; 11170 } 11171 } 11172 11173 /* 11174 * If userspace set a pending exception and L2 is active, convert it to 11175 * a pending VM-Exit if L1 wants to intercept the exception. 11176 */ 11177 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11178 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11179 ex->error_code)) { 11180 kvm_queue_exception_vmexit(vcpu, ex->vector, 11181 ex->has_error_code, ex->error_code, 11182 ex->has_payload, ex->payload); 11183 ex->injected = false; 11184 ex->pending = false; 11185 } 11186 vcpu->arch.exception_from_userspace = false; 11187 11188 if (unlikely(vcpu->arch.complete_userspace_io)) { 11189 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11190 vcpu->arch.complete_userspace_io = NULL; 11191 r = cui(vcpu); 11192 if (r <= 0) 11193 goto out; 11194 } else { 11195 WARN_ON_ONCE(vcpu->arch.pio.count); 11196 WARN_ON_ONCE(vcpu->mmio_needed); 11197 } 11198 11199 if (kvm_run->immediate_exit) { 11200 r = -EINTR; 11201 goto out; 11202 } 11203 11204 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11205 if (r <= 0) 11206 goto out; 11207 11208 r = vcpu_run(vcpu); 11209 11210 out: 11211 kvm_put_guest_fpu(vcpu); 11212 if (kvm_run->kvm_valid_regs) 11213 store_regs(vcpu); 11214 post_kvm_run_save(vcpu); 11215 kvm_vcpu_srcu_read_unlock(vcpu); 11216 11217 kvm_sigset_deactivate(vcpu); 11218 vcpu_put(vcpu); 11219 return r; 11220 } 11221 11222 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11223 { 11224 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11225 /* 11226 * We are here if userspace calls get_regs() in the middle of 11227 * instruction emulation. Registers state needs to be copied 11228 * back from emulation context to vcpu. Userspace shouldn't do 11229 * that usually, but some bad designed PV devices (vmware 11230 * backdoor interface) need this to work 11231 */ 11232 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11233 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11234 } 11235 regs->rax = kvm_rax_read(vcpu); 11236 regs->rbx = kvm_rbx_read(vcpu); 11237 regs->rcx = kvm_rcx_read(vcpu); 11238 regs->rdx = kvm_rdx_read(vcpu); 11239 regs->rsi = kvm_rsi_read(vcpu); 11240 regs->rdi = kvm_rdi_read(vcpu); 11241 regs->rsp = kvm_rsp_read(vcpu); 11242 regs->rbp = kvm_rbp_read(vcpu); 11243 #ifdef CONFIG_X86_64 11244 regs->r8 = kvm_r8_read(vcpu); 11245 regs->r9 = kvm_r9_read(vcpu); 11246 regs->r10 = kvm_r10_read(vcpu); 11247 regs->r11 = kvm_r11_read(vcpu); 11248 regs->r12 = kvm_r12_read(vcpu); 11249 regs->r13 = kvm_r13_read(vcpu); 11250 regs->r14 = kvm_r14_read(vcpu); 11251 regs->r15 = kvm_r15_read(vcpu); 11252 #endif 11253 11254 regs->rip = kvm_rip_read(vcpu); 11255 regs->rflags = kvm_get_rflags(vcpu); 11256 } 11257 11258 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11259 { 11260 vcpu_load(vcpu); 11261 __get_regs(vcpu, regs); 11262 vcpu_put(vcpu); 11263 return 0; 11264 } 11265 11266 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11267 { 11268 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11269 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11270 11271 kvm_rax_write(vcpu, regs->rax); 11272 kvm_rbx_write(vcpu, regs->rbx); 11273 kvm_rcx_write(vcpu, regs->rcx); 11274 kvm_rdx_write(vcpu, regs->rdx); 11275 kvm_rsi_write(vcpu, regs->rsi); 11276 kvm_rdi_write(vcpu, regs->rdi); 11277 kvm_rsp_write(vcpu, regs->rsp); 11278 kvm_rbp_write(vcpu, regs->rbp); 11279 #ifdef CONFIG_X86_64 11280 kvm_r8_write(vcpu, regs->r8); 11281 kvm_r9_write(vcpu, regs->r9); 11282 kvm_r10_write(vcpu, regs->r10); 11283 kvm_r11_write(vcpu, regs->r11); 11284 kvm_r12_write(vcpu, regs->r12); 11285 kvm_r13_write(vcpu, regs->r13); 11286 kvm_r14_write(vcpu, regs->r14); 11287 kvm_r15_write(vcpu, regs->r15); 11288 #endif 11289 11290 kvm_rip_write(vcpu, regs->rip); 11291 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11292 11293 vcpu->arch.exception.pending = false; 11294 vcpu->arch.exception_vmexit.pending = false; 11295 11296 kvm_make_request(KVM_REQ_EVENT, vcpu); 11297 } 11298 11299 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11300 { 11301 vcpu_load(vcpu); 11302 __set_regs(vcpu, regs); 11303 vcpu_put(vcpu); 11304 return 0; 11305 } 11306 11307 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11308 { 11309 struct desc_ptr dt; 11310 11311 if (vcpu->arch.guest_state_protected) 11312 goto skip_protected_regs; 11313 11314 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11315 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11316 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11317 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11318 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11319 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11320 11321 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11322 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11323 11324 static_call(kvm_x86_get_idt)(vcpu, &dt); 11325 sregs->idt.limit = dt.size; 11326 sregs->idt.base = dt.address; 11327 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11328 sregs->gdt.limit = dt.size; 11329 sregs->gdt.base = dt.address; 11330 11331 sregs->cr2 = vcpu->arch.cr2; 11332 sregs->cr3 = kvm_read_cr3(vcpu); 11333 11334 skip_protected_regs: 11335 sregs->cr0 = kvm_read_cr0(vcpu); 11336 sregs->cr4 = kvm_read_cr4(vcpu); 11337 sregs->cr8 = kvm_get_cr8(vcpu); 11338 sregs->efer = vcpu->arch.efer; 11339 sregs->apic_base = kvm_get_apic_base(vcpu); 11340 } 11341 11342 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11343 { 11344 __get_sregs_common(vcpu, sregs); 11345 11346 if (vcpu->arch.guest_state_protected) 11347 return; 11348 11349 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11350 set_bit(vcpu->arch.interrupt.nr, 11351 (unsigned long *)sregs->interrupt_bitmap); 11352 } 11353 11354 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11355 { 11356 int i; 11357 11358 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11359 11360 if (vcpu->arch.guest_state_protected) 11361 return; 11362 11363 if (is_pae_paging(vcpu)) { 11364 for (i = 0 ; i < 4 ; i++) 11365 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11366 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11367 } 11368 } 11369 11370 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11371 struct kvm_sregs *sregs) 11372 { 11373 vcpu_load(vcpu); 11374 __get_sregs(vcpu, sregs); 11375 vcpu_put(vcpu); 11376 return 0; 11377 } 11378 11379 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11380 struct kvm_mp_state *mp_state) 11381 { 11382 int r; 11383 11384 vcpu_load(vcpu); 11385 if (kvm_mpx_supported()) 11386 kvm_load_guest_fpu(vcpu); 11387 11388 r = kvm_apic_accept_events(vcpu); 11389 if (r < 0) 11390 goto out; 11391 r = 0; 11392 11393 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11394 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11395 vcpu->arch.pv.pv_unhalted) 11396 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11397 else 11398 mp_state->mp_state = vcpu->arch.mp_state; 11399 11400 out: 11401 if (kvm_mpx_supported()) 11402 kvm_put_guest_fpu(vcpu); 11403 vcpu_put(vcpu); 11404 return r; 11405 } 11406 11407 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11408 struct kvm_mp_state *mp_state) 11409 { 11410 int ret = -EINVAL; 11411 11412 vcpu_load(vcpu); 11413 11414 switch (mp_state->mp_state) { 11415 case KVM_MP_STATE_UNINITIALIZED: 11416 case KVM_MP_STATE_HALTED: 11417 case KVM_MP_STATE_AP_RESET_HOLD: 11418 case KVM_MP_STATE_INIT_RECEIVED: 11419 case KVM_MP_STATE_SIPI_RECEIVED: 11420 if (!lapic_in_kernel(vcpu)) 11421 goto out; 11422 break; 11423 11424 case KVM_MP_STATE_RUNNABLE: 11425 break; 11426 11427 default: 11428 goto out; 11429 } 11430 11431 /* 11432 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11433 * forcing the guest into INIT/SIPI if those events are supposed to be 11434 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11435 * if an SMI is pending as well. 11436 */ 11437 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11438 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11439 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11440 goto out; 11441 11442 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11443 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11444 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11445 } else 11446 vcpu->arch.mp_state = mp_state->mp_state; 11447 kvm_make_request(KVM_REQ_EVENT, vcpu); 11448 11449 ret = 0; 11450 out: 11451 vcpu_put(vcpu); 11452 return ret; 11453 } 11454 11455 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11456 int reason, bool has_error_code, u32 error_code) 11457 { 11458 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11459 int ret; 11460 11461 init_emulate_ctxt(vcpu); 11462 11463 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11464 has_error_code, error_code); 11465 if (ret) { 11466 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11467 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11468 vcpu->run->internal.ndata = 0; 11469 return 0; 11470 } 11471 11472 kvm_rip_write(vcpu, ctxt->eip); 11473 kvm_set_rflags(vcpu, ctxt->eflags); 11474 return 1; 11475 } 11476 EXPORT_SYMBOL_GPL(kvm_task_switch); 11477 11478 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11479 { 11480 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11481 /* 11482 * When EFER.LME and CR0.PG are set, the processor is in 11483 * 64-bit mode (though maybe in a 32-bit code segment). 11484 * CR4.PAE and EFER.LMA must be set. 11485 */ 11486 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11487 return false; 11488 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11489 return false; 11490 } else { 11491 /* 11492 * Not in 64-bit mode: EFER.LMA is clear and the code 11493 * segment cannot be 64-bit. 11494 */ 11495 if (sregs->efer & EFER_LMA || sregs->cs.l) 11496 return false; 11497 } 11498 11499 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11500 kvm_is_valid_cr0(vcpu, sregs->cr0); 11501 } 11502 11503 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11504 int *mmu_reset_needed, bool update_pdptrs) 11505 { 11506 struct msr_data apic_base_msr; 11507 int idx; 11508 struct desc_ptr dt; 11509 11510 if (!kvm_is_valid_sregs(vcpu, sregs)) 11511 return -EINVAL; 11512 11513 apic_base_msr.data = sregs->apic_base; 11514 apic_base_msr.host_initiated = true; 11515 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11516 return -EINVAL; 11517 11518 if (vcpu->arch.guest_state_protected) 11519 return 0; 11520 11521 dt.size = sregs->idt.limit; 11522 dt.address = sregs->idt.base; 11523 static_call(kvm_x86_set_idt)(vcpu, &dt); 11524 dt.size = sregs->gdt.limit; 11525 dt.address = sregs->gdt.base; 11526 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11527 11528 vcpu->arch.cr2 = sregs->cr2; 11529 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11530 vcpu->arch.cr3 = sregs->cr3; 11531 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11532 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11533 11534 kvm_set_cr8(vcpu, sregs->cr8); 11535 11536 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11537 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11538 11539 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11540 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11541 vcpu->arch.cr0 = sregs->cr0; 11542 11543 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11544 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11545 11546 if (update_pdptrs) { 11547 idx = srcu_read_lock(&vcpu->kvm->srcu); 11548 if (is_pae_paging(vcpu)) { 11549 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11550 *mmu_reset_needed = 1; 11551 } 11552 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11553 } 11554 11555 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11556 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11557 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11558 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11559 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11560 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11561 11562 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11563 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11564 11565 update_cr8_intercept(vcpu); 11566 11567 /* Older userspace won't unhalt the vcpu on reset. */ 11568 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11569 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11570 !is_protmode(vcpu)) 11571 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11572 11573 return 0; 11574 } 11575 11576 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11577 { 11578 int pending_vec, max_bits; 11579 int mmu_reset_needed = 0; 11580 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11581 11582 if (ret) 11583 return ret; 11584 11585 if (mmu_reset_needed) 11586 kvm_mmu_reset_context(vcpu); 11587 11588 max_bits = KVM_NR_INTERRUPTS; 11589 pending_vec = find_first_bit( 11590 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11591 11592 if (pending_vec < max_bits) { 11593 kvm_queue_interrupt(vcpu, pending_vec, false); 11594 pr_debug("Set back pending irq %d\n", pending_vec); 11595 kvm_make_request(KVM_REQ_EVENT, vcpu); 11596 } 11597 return 0; 11598 } 11599 11600 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11601 { 11602 int mmu_reset_needed = 0; 11603 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11604 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11605 !(sregs2->efer & EFER_LMA); 11606 int i, ret; 11607 11608 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11609 return -EINVAL; 11610 11611 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11612 return -EINVAL; 11613 11614 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11615 &mmu_reset_needed, !valid_pdptrs); 11616 if (ret) 11617 return ret; 11618 11619 if (valid_pdptrs) { 11620 for (i = 0; i < 4 ; i++) 11621 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11622 11623 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11624 mmu_reset_needed = 1; 11625 vcpu->arch.pdptrs_from_userspace = true; 11626 } 11627 if (mmu_reset_needed) 11628 kvm_mmu_reset_context(vcpu); 11629 return 0; 11630 } 11631 11632 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11633 struct kvm_sregs *sregs) 11634 { 11635 int ret; 11636 11637 vcpu_load(vcpu); 11638 ret = __set_sregs(vcpu, sregs); 11639 vcpu_put(vcpu); 11640 return ret; 11641 } 11642 11643 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11644 { 11645 bool set = false; 11646 struct kvm_vcpu *vcpu; 11647 unsigned long i; 11648 11649 if (!enable_apicv) 11650 return; 11651 11652 down_write(&kvm->arch.apicv_update_lock); 11653 11654 kvm_for_each_vcpu(i, vcpu, kvm) { 11655 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11656 set = true; 11657 break; 11658 } 11659 } 11660 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11661 up_write(&kvm->arch.apicv_update_lock); 11662 } 11663 11664 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11665 struct kvm_guest_debug *dbg) 11666 { 11667 unsigned long rflags; 11668 int i, r; 11669 11670 if (vcpu->arch.guest_state_protected) 11671 return -EINVAL; 11672 11673 vcpu_load(vcpu); 11674 11675 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11676 r = -EBUSY; 11677 if (kvm_is_exception_pending(vcpu)) 11678 goto out; 11679 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11680 kvm_queue_exception(vcpu, DB_VECTOR); 11681 else 11682 kvm_queue_exception(vcpu, BP_VECTOR); 11683 } 11684 11685 /* 11686 * Read rflags as long as potentially injected trace flags are still 11687 * filtered out. 11688 */ 11689 rflags = kvm_get_rflags(vcpu); 11690 11691 vcpu->guest_debug = dbg->control; 11692 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11693 vcpu->guest_debug = 0; 11694 11695 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11696 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11697 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11698 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11699 } else { 11700 for (i = 0; i < KVM_NR_DB_REGS; i++) 11701 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11702 } 11703 kvm_update_dr7(vcpu); 11704 11705 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11706 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11707 11708 /* 11709 * Trigger an rflags update that will inject or remove the trace 11710 * flags. 11711 */ 11712 kvm_set_rflags(vcpu, rflags); 11713 11714 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11715 11716 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11717 11718 r = 0; 11719 11720 out: 11721 vcpu_put(vcpu); 11722 return r; 11723 } 11724 11725 /* 11726 * Translate a guest virtual address to a guest physical address. 11727 */ 11728 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11729 struct kvm_translation *tr) 11730 { 11731 unsigned long vaddr = tr->linear_address; 11732 gpa_t gpa; 11733 int idx; 11734 11735 vcpu_load(vcpu); 11736 11737 idx = srcu_read_lock(&vcpu->kvm->srcu); 11738 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11739 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11740 tr->physical_address = gpa; 11741 tr->valid = gpa != INVALID_GPA; 11742 tr->writeable = 1; 11743 tr->usermode = 0; 11744 11745 vcpu_put(vcpu); 11746 return 0; 11747 } 11748 11749 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11750 { 11751 struct fxregs_state *fxsave; 11752 11753 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11754 return 0; 11755 11756 vcpu_load(vcpu); 11757 11758 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11759 memcpy(fpu->fpr, fxsave->st_space, 128); 11760 fpu->fcw = fxsave->cwd; 11761 fpu->fsw = fxsave->swd; 11762 fpu->ftwx = fxsave->twd; 11763 fpu->last_opcode = fxsave->fop; 11764 fpu->last_ip = fxsave->rip; 11765 fpu->last_dp = fxsave->rdp; 11766 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11767 11768 vcpu_put(vcpu); 11769 return 0; 11770 } 11771 11772 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11773 { 11774 struct fxregs_state *fxsave; 11775 11776 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11777 return 0; 11778 11779 vcpu_load(vcpu); 11780 11781 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11782 11783 memcpy(fxsave->st_space, fpu->fpr, 128); 11784 fxsave->cwd = fpu->fcw; 11785 fxsave->swd = fpu->fsw; 11786 fxsave->twd = fpu->ftwx; 11787 fxsave->fop = fpu->last_opcode; 11788 fxsave->rip = fpu->last_ip; 11789 fxsave->rdp = fpu->last_dp; 11790 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11791 11792 vcpu_put(vcpu); 11793 return 0; 11794 } 11795 11796 static void store_regs(struct kvm_vcpu *vcpu) 11797 { 11798 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11799 11800 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11801 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11802 11803 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11804 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11805 11806 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11807 kvm_vcpu_ioctl_x86_get_vcpu_events( 11808 vcpu, &vcpu->run->s.regs.events); 11809 } 11810 11811 static int sync_regs(struct kvm_vcpu *vcpu) 11812 { 11813 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11814 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11815 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11816 } 11817 11818 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11819 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 11820 11821 if (__set_sregs(vcpu, &sregs)) 11822 return -EINVAL; 11823 11824 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11825 } 11826 11827 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11828 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 11829 11830 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 11831 return -EINVAL; 11832 11833 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11834 } 11835 11836 return 0; 11837 } 11838 11839 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11840 { 11841 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11842 pr_warn_once("SMP vm created on host with unstable TSC; " 11843 "guest TSC will not be reliable\n"); 11844 11845 if (!kvm->arch.max_vcpu_ids) 11846 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11847 11848 if (id >= kvm->arch.max_vcpu_ids) 11849 return -EINVAL; 11850 11851 return static_call(kvm_x86_vcpu_precreate)(kvm); 11852 } 11853 11854 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11855 { 11856 struct page *page; 11857 int r; 11858 11859 vcpu->arch.last_vmentry_cpu = -1; 11860 vcpu->arch.regs_avail = ~0; 11861 vcpu->arch.regs_dirty = ~0; 11862 11863 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11864 11865 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11866 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11867 else 11868 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11869 11870 r = kvm_mmu_create(vcpu); 11871 if (r < 0) 11872 return r; 11873 11874 if (irqchip_in_kernel(vcpu->kvm)) { 11875 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11876 if (r < 0) 11877 goto fail_mmu_destroy; 11878 11879 /* 11880 * Defer evaluating inhibits until the vCPU is first run, as 11881 * this vCPU will not get notified of any changes until this 11882 * vCPU is visible to other vCPUs (marked online and added to 11883 * the set of vCPUs). Opportunistically mark APICv active as 11884 * VMX in particularly is highly unlikely to have inhibits. 11885 * Ignore the current per-VM APICv state so that vCPU creation 11886 * is guaranteed to run with a deterministic value, the request 11887 * will ensure the vCPU gets the correct state before VM-Entry. 11888 */ 11889 if (enable_apicv) { 11890 vcpu->arch.apic->apicv_active = true; 11891 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11892 } 11893 } else 11894 static_branch_inc(&kvm_has_noapic_vcpu); 11895 11896 r = -ENOMEM; 11897 11898 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11899 if (!page) 11900 goto fail_free_lapic; 11901 vcpu->arch.pio_data = page_address(page); 11902 11903 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11904 GFP_KERNEL_ACCOUNT); 11905 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11906 GFP_KERNEL_ACCOUNT); 11907 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11908 goto fail_free_mce_banks; 11909 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11910 11911 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11912 GFP_KERNEL_ACCOUNT)) 11913 goto fail_free_mce_banks; 11914 11915 if (!alloc_emulate_ctxt(vcpu)) 11916 goto free_wbinvd_dirty_mask; 11917 11918 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11919 pr_err("failed to allocate vcpu's fpu\n"); 11920 goto free_emulate_ctxt; 11921 } 11922 11923 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11924 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11925 11926 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11927 11928 kvm_async_pf_hash_reset(vcpu); 11929 11930 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11931 kvm_pmu_init(vcpu); 11932 11933 vcpu->arch.pending_external_vector = -1; 11934 vcpu->arch.preempted_in_kernel = false; 11935 11936 #if IS_ENABLED(CONFIG_HYPERV) 11937 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11938 #endif 11939 11940 r = static_call(kvm_x86_vcpu_create)(vcpu); 11941 if (r) 11942 goto free_guest_fpu; 11943 11944 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11945 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11946 kvm_xen_init_vcpu(vcpu); 11947 kvm_vcpu_mtrr_init(vcpu); 11948 vcpu_load(vcpu); 11949 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11950 kvm_vcpu_reset(vcpu, false); 11951 kvm_init_mmu(vcpu); 11952 vcpu_put(vcpu); 11953 return 0; 11954 11955 free_guest_fpu: 11956 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11957 free_emulate_ctxt: 11958 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11959 free_wbinvd_dirty_mask: 11960 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11961 fail_free_mce_banks: 11962 kfree(vcpu->arch.mce_banks); 11963 kfree(vcpu->arch.mci_ctl2_banks); 11964 free_page((unsigned long)vcpu->arch.pio_data); 11965 fail_free_lapic: 11966 kvm_free_lapic(vcpu); 11967 fail_mmu_destroy: 11968 kvm_mmu_destroy(vcpu); 11969 return r; 11970 } 11971 11972 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11973 { 11974 struct kvm *kvm = vcpu->kvm; 11975 11976 if (mutex_lock_killable(&vcpu->mutex)) 11977 return; 11978 vcpu_load(vcpu); 11979 kvm_synchronize_tsc(vcpu, 0); 11980 vcpu_put(vcpu); 11981 11982 /* poll control enabled by default */ 11983 vcpu->arch.msr_kvm_poll_control = 1; 11984 11985 mutex_unlock(&vcpu->mutex); 11986 11987 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11988 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11989 KVMCLOCK_SYNC_PERIOD); 11990 } 11991 11992 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11993 { 11994 int idx; 11995 11996 kvmclock_reset(vcpu); 11997 11998 static_call(kvm_x86_vcpu_free)(vcpu); 11999 12000 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12001 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12002 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12003 12004 kvm_xen_destroy_vcpu(vcpu); 12005 kvm_hv_vcpu_uninit(vcpu); 12006 kvm_pmu_destroy(vcpu); 12007 kfree(vcpu->arch.mce_banks); 12008 kfree(vcpu->arch.mci_ctl2_banks); 12009 kvm_free_lapic(vcpu); 12010 idx = srcu_read_lock(&vcpu->kvm->srcu); 12011 kvm_mmu_destroy(vcpu); 12012 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12013 free_page((unsigned long)vcpu->arch.pio_data); 12014 kvfree(vcpu->arch.cpuid_entries); 12015 if (!lapic_in_kernel(vcpu)) 12016 static_branch_dec(&kvm_has_noapic_vcpu); 12017 } 12018 12019 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12020 { 12021 struct kvm_cpuid_entry2 *cpuid_0x1; 12022 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12023 unsigned long new_cr0; 12024 12025 /* 12026 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12027 * to handle side effects. RESET emulation hits those flows and relies 12028 * on emulated/virtualized registers, including those that are loaded 12029 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12030 * to detect improper or missing initialization. 12031 */ 12032 WARN_ON_ONCE(!init_event && 12033 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12034 12035 /* 12036 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12037 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12038 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12039 * bits), i.e. virtualization is disabled. 12040 */ 12041 if (is_guest_mode(vcpu)) 12042 kvm_leave_nested(vcpu); 12043 12044 kvm_lapic_reset(vcpu, init_event); 12045 12046 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12047 vcpu->arch.hflags = 0; 12048 12049 vcpu->arch.smi_pending = 0; 12050 vcpu->arch.smi_count = 0; 12051 atomic_set(&vcpu->arch.nmi_queued, 0); 12052 vcpu->arch.nmi_pending = 0; 12053 vcpu->arch.nmi_injected = false; 12054 kvm_clear_interrupt_queue(vcpu); 12055 kvm_clear_exception_queue(vcpu); 12056 12057 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12058 kvm_update_dr0123(vcpu); 12059 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12060 vcpu->arch.dr7 = DR7_FIXED_1; 12061 kvm_update_dr7(vcpu); 12062 12063 vcpu->arch.cr2 = 0; 12064 12065 kvm_make_request(KVM_REQ_EVENT, vcpu); 12066 vcpu->arch.apf.msr_en_val = 0; 12067 vcpu->arch.apf.msr_int_val = 0; 12068 vcpu->arch.st.msr_val = 0; 12069 12070 kvmclock_reset(vcpu); 12071 12072 kvm_clear_async_pf_completion_queue(vcpu); 12073 kvm_async_pf_hash_reset(vcpu); 12074 vcpu->arch.apf.halted = false; 12075 12076 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12077 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12078 12079 /* 12080 * All paths that lead to INIT are required to load the guest's 12081 * FPU state (because most paths are buried in KVM_RUN). 12082 */ 12083 if (init_event) 12084 kvm_put_guest_fpu(vcpu); 12085 12086 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12087 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12088 12089 if (init_event) 12090 kvm_load_guest_fpu(vcpu); 12091 } 12092 12093 if (!init_event) { 12094 kvm_pmu_reset(vcpu); 12095 vcpu->arch.smbase = 0x30000; 12096 12097 vcpu->arch.msr_misc_features_enables = 0; 12098 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12099 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12100 12101 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12102 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12103 } 12104 12105 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12106 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12107 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12108 12109 /* 12110 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12111 * if no CPUID match is found. Note, it's impossible to get a match at 12112 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12113 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12114 * on RESET. But, go through the motions in case that's ever remedied. 12115 */ 12116 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12117 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12118 12119 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12120 12121 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12122 kvm_rip_write(vcpu, 0xfff0); 12123 12124 vcpu->arch.cr3 = 0; 12125 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12126 12127 /* 12128 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12129 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12130 * (or qualify) that with a footnote stating that CD/NW are preserved. 12131 */ 12132 new_cr0 = X86_CR0_ET; 12133 if (init_event) 12134 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12135 else 12136 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12137 12138 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12139 static_call(kvm_x86_set_cr4)(vcpu, 0); 12140 static_call(kvm_x86_set_efer)(vcpu, 0); 12141 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12142 12143 /* 12144 * On the standard CR0/CR4/EFER modification paths, there are several 12145 * complex conditions determining whether the MMU has to be reset and/or 12146 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12147 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12148 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12149 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12150 */ 12151 if (old_cr0 & X86_CR0_PG) { 12152 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12153 kvm_mmu_reset_context(vcpu); 12154 } 12155 12156 /* 12157 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12158 * APM states the TLBs are untouched by INIT, but it also states that 12159 * the TLBs are flushed on "External initialization of the processor." 12160 * Flush the guest TLB regardless of vendor, there is no meaningful 12161 * benefit in relying on the guest to flush the TLB immediately after 12162 * INIT. A spurious TLB flush is benign and likely negligible from a 12163 * performance perspective. 12164 */ 12165 if (init_event) 12166 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12167 } 12168 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12169 12170 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12171 { 12172 struct kvm_segment cs; 12173 12174 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12175 cs.selector = vector << 8; 12176 cs.base = vector << 12; 12177 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12178 kvm_rip_write(vcpu, 0); 12179 } 12180 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12181 12182 int kvm_arch_hardware_enable(void) 12183 { 12184 struct kvm *kvm; 12185 struct kvm_vcpu *vcpu; 12186 unsigned long i; 12187 int ret; 12188 u64 local_tsc; 12189 u64 max_tsc = 0; 12190 bool stable, backwards_tsc = false; 12191 12192 kvm_user_return_msr_cpu_online(); 12193 12194 ret = kvm_x86_check_processor_compatibility(); 12195 if (ret) 12196 return ret; 12197 12198 ret = static_call(kvm_x86_hardware_enable)(); 12199 if (ret != 0) 12200 return ret; 12201 12202 local_tsc = rdtsc(); 12203 stable = !kvm_check_tsc_unstable(); 12204 list_for_each_entry(kvm, &vm_list, vm_list) { 12205 kvm_for_each_vcpu(i, vcpu, kvm) { 12206 if (!stable && vcpu->cpu == smp_processor_id()) 12207 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12208 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12209 backwards_tsc = true; 12210 if (vcpu->arch.last_host_tsc > max_tsc) 12211 max_tsc = vcpu->arch.last_host_tsc; 12212 } 12213 } 12214 } 12215 12216 /* 12217 * Sometimes, even reliable TSCs go backwards. This happens on 12218 * platforms that reset TSC during suspend or hibernate actions, but 12219 * maintain synchronization. We must compensate. Fortunately, we can 12220 * detect that condition here, which happens early in CPU bringup, 12221 * before any KVM threads can be running. Unfortunately, we can't 12222 * bring the TSCs fully up to date with real time, as we aren't yet far 12223 * enough into CPU bringup that we know how much real time has actually 12224 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12225 * variables that haven't been updated yet. 12226 * 12227 * So we simply find the maximum observed TSC above, then record the 12228 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12229 * the adjustment will be applied. Note that we accumulate 12230 * adjustments, in case multiple suspend cycles happen before some VCPU 12231 * gets a chance to run again. In the event that no KVM threads get a 12232 * chance to run, we will miss the entire elapsed period, as we'll have 12233 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12234 * loose cycle time. This isn't too big a deal, since the loss will be 12235 * uniform across all VCPUs (not to mention the scenario is extremely 12236 * unlikely). It is possible that a second hibernate recovery happens 12237 * much faster than a first, causing the observed TSC here to be 12238 * smaller; this would require additional padding adjustment, which is 12239 * why we set last_host_tsc to the local tsc observed here. 12240 * 12241 * N.B. - this code below runs only on platforms with reliable TSC, 12242 * as that is the only way backwards_tsc is set above. Also note 12243 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12244 * have the same delta_cyc adjustment applied if backwards_tsc 12245 * is detected. Note further, this adjustment is only done once, 12246 * as we reset last_host_tsc on all VCPUs to stop this from being 12247 * called multiple times (one for each physical CPU bringup). 12248 * 12249 * Platforms with unreliable TSCs don't have to deal with this, they 12250 * will be compensated by the logic in vcpu_load, which sets the TSC to 12251 * catchup mode. This will catchup all VCPUs to real time, but cannot 12252 * guarantee that they stay in perfect synchronization. 12253 */ 12254 if (backwards_tsc) { 12255 u64 delta_cyc = max_tsc - local_tsc; 12256 list_for_each_entry(kvm, &vm_list, vm_list) { 12257 kvm->arch.backwards_tsc_observed = true; 12258 kvm_for_each_vcpu(i, vcpu, kvm) { 12259 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12260 vcpu->arch.last_host_tsc = local_tsc; 12261 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12262 } 12263 12264 /* 12265 * We have to disable TSC offset matching.. if you were 12266 * booting a VM while issuing an S4 host suspend.... 12267 * you may have some problem. Solving this issue is 12268 * left as an exercise to the reader. 12269 */ 12270 kvm->arch.last_tsc_nsec = 0; 12271 kvm->arch.last_tsc_write = 0; 12272 } 12273 12274 } 12275 return 0; 12276 } 12277 12278 void kvm_arch_hardware_disable(void) 12279 { 12280 static_call(kvm_x86_hardware_disable)(); 12281 drop_user_return_notifiers(); 12282 } 12283 12284 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12285 { 12286 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12287 } 12288 12289 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12290 { 12291 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12292 } 12293 12294 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12295 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12296 12297 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12298 { 12299 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12300 12301 vcpu->arch.l1tf_flush_l1d = true; 12302 if (pmu->version && unlikely(pmu->event_count)) { 12303 pmu->need_cleanup = true; 12304 kvm_make_request(KVM_REQ_PMU, vcpu); 12305 } 12306 static_call(kvm_x86_sched_in)(vcpu, cpu); 12307 } 12308 12309 void kvm_arch_free_vm(struct kvm *kvm) 12310 { 12311 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12312 __kvm_arch_free_vm(kvm); 12313 } 12314 12315 12316 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12317 { 12318 int ret; 12319 unsigned long flags; 12320 12321 if (type) 12322 return -EINVAL; 12323 12324 ret = kvm_page_track_init(kvm); 12325 if (ret) 12326 goto out; 12327 12328 kvm_mmu_init_vm(kvm); 12329 12330 ret = static_call(kvm_x86_vm_init)(kvm); 12331 if (ret) 12332 goto out_uninit_mmu; 12333 12334 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12335 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12336 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12337 12338 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12339 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12340 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12341 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12342 &kvm->arch.irq_sources_bitmap); 12343 12344 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12345 mutex_init(&kvm->arch.apic_map_lock); 12346 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12347 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12348 12349 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12350 pvclock_update_vm_gtod_copy(kvm); 12351 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12352 12353 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12354 kvm->arch.guest_can_read_msr_platform_info = true; 12355 kvm->arch.enable_pmu = enable_pmu; 12356 12357 #if IS_ENABLED(CONFIG_HYPERV) 12358 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12359 kvm->arch.hv_root_tdp = INVALID_PAGE; 12360 #endif 12361 12362 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12363 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12364 12365 kvm_apicv_init(kvm); 12366 kvm_hv_init_vm(kvm); 12367 kvm_xen_init_vm(kvm); 12368 12369 return 0; 12370 12371 out_uninit_mmu: 12372 kvm_mmu_uninit_vm(kvm); 12373 kvm_page_track_cleanup(kvm); 12374 out: 12375 return ret; 12376 } 12377 12378 int kvm_arch_post_init_vm(struct kvm *kvm) 12379 { 12380 return kvm_mmu_post_init_vm(kvm); 12381 } 12382 12383 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12384 { 12385 vcpu_load(vcpu); 12386 kvm_mmu_unload(vcpu); 12387 vcpu_put(vcpu); 12388 } 12389 12390 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12391 { 12392 unsigned long i; 12393 struct kvm_vcpu *vcpu; 12394 12395 kvm_for_each_vcpu(i, vcpu, kvm) { 12396 kvm_clear_async_pf_completion_queue(vcpu); 12397 kvm_unload_vcpu_mmu(vcpu); 12398 } 12399 } 12400 12401 void kvm_arch_sync_events(struct kvm *kvm) 12402 { 12403 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12404 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12405 kvm_free_pit(kvm); 12406 } 12407 12408 /** 12409 * __x86_set_memory_region: Setup KVM internal memory slot 12410 * 12411 * @kvm: the kvm pointer to the VM. 12412 * @id: the slot ID to setup. 12413 * @gpa: the GPA to install the slot (unused when @size == 0). 12414 * @size: the size of the slot. Set to zero to uninstall a slot. 12415 * 12416 * This function helps to setup a KVM internal memory slot. Specify 12417 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12418 * slot. The return code can be one of the following: 12419 * 12420 * HVA: on success (uninstall will return a bogus HVA) 12421 * -errno: on error 12422 * 12423 * The caller should always use IS_ERR() to check the return value 12424 * before use. Note, the KVM internal memory slots are guaranteed to 12425 * remain valid and unchanged until the VM is destroyed, i.e., the 12426 * GPA->HVA translation will not change. However, the HVA is a user 12427 * address, i.e. its accessibility is not guaranteed, and must be 12428 * accessed via __copy_{to,from}_user(). 12429 */ 12430 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12431 u32 size) 12432 { 12433 int i, r; 12434 unsigned long hva, old_npages; 12435 struct kvm_memslots *slots = kvm_memslots(kvm); 12436 struct kvm_memory_slot *slot; 12437 12438 /* Called with kvm->slots_lock held. */ 12439 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12440 return ERR_PTR_USR(-EINVAL); 12441 12442 slot = id_to_memslot(slots, id); 12443 if (size) { 12444 if (slot && slot->npages) 12445 return ERR_PTR_USR(-EEXIST); 12446 12447 /* 12448 * MAP_SHARED to prevent internal slot pages from being moved 12449 * by fork()/COW. 12450 */ 12451 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12452 MAP_SHARED | MAP_ANONYMOUS, 0); 12453 if (IS_ERR_VALUE(hva)) 12454 return (void __user *)hva; 12455 } else { 12456 if (!slot || !slot->npages) 12457 return NULL; 12458 12459 old_npages = slot->npages; 12460 hva = slot->userspace_addr; 12461 } 12462 12463 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12464 struct kvm_userspace_memory_region m; 12465 12466 m.slot = id | (i << 16); 12467 m.flags = 0; 12468 m.guest_phys_addr = gpa; 12469 m.userspace_addr = hva; 12470 m.memory_size = size; 12471 r = __kvm_set_memory_region(kvm, &m); 12472 if (r < 0) 12473 return ERR_PTR_USR(r); 12474 } 12475 12476 if (!size) 12477 vm_munmap(hva, old_npages * PAGE_SIZE); 12478 12479 return (void __user *)hva; 12480 } 12481 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12482 12483 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12484 { 12485 kvm_mmu_pre_destroy_vm(kvm); 12486 } 12487 12488 void kvm_arch_destroy_vm(struct kvm *kvm) 12489 { 12490 if (current->mm == kvm->mm) { 12491 /* 12492 * Free memory regions allocated on behalf of userspace, 12493 * unless the memory map has changed due to process exit 12494 * or fd copying. 12495 */ 12496 mutex_lock(&kvm->slots_lock); 12497 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12498 0, 0); 12499 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12500 0, 0); 12501 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12502 mutex_unlock(&kvm->slots_lock); 12503 } 12504 kvm_unload_vcpu_mmus(kvm); 12505 static_call_cond(kvm_x86_vm_destroy)(kvm); 12506 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12507 kvm_pic_destroy(kvm); 12508 kvm_ioapic_destroy(kvm); 12509 kvm_destroy_vcpus(kvm); 12510 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12511 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12512 kvm_mmu_uninit_vm(kvm); 12513 kvm_page_track_cleanup(kvm); 12514 kvm_xen_destroy_vm(kvm); 12515 kvm_hv_destroy_vm(kvm); 12516 } 12517 12518 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12519 { 12520 int i; 12521 12522 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12523 kvfree(slot->arch.rmap[i]); 12524 slot->arch.rmap[i] = NULL; 12525 } 12526 } 12527 12528 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12529 { 12530 int i; 12531 12532 memslot_rmap_free(slot); 12533 12534 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12535 kvfree(slot->arch.lpage_info[i - 1]); 12536 slot->arch.lpage_info[i - 1] = NULL; 12537 } 12538 12539 kvm_page_track_free_memslot(slot); 12540 } 12541 12542 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12543 { 12544 const int sz = sizeof(*slot->arch.rmap[0]); 12545 int i; 12546 12547 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12548 int level = i + 1; 12549 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12550 12551 if (slot->arch.rmap[i]) 12552 continue; 12553 12554 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12555 if (!slot->arch.rmap[i]) { 12556 memslot_rmap_free(slot); 12557 return -ENOMEM; 12558 } 12559 } 12560 12561 return 0; 12562 } 12563 12564 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12565 struct kvm_memory_slot *slot) 12566 { 12567 unsigned long npages = slot->npages; 12568 int i, r; 12569 12570 /* 12571 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12572 * old arrays will be freed by __kvm_set_memory_region() if installing 12573 * the new memslot is successful. 12574 */ 12575 memset(&slot->arch, 0, sizeof(slot->arch)); 12576 12577 if (kvm_memslots_have_rmaps(kvm)) { 12578 r = memslot_rmap_alloc(slot, npages); 12579 if (r) 12580 return r; 12581 } 12582 12583 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12584 struct kvm_lpage_info *linfo; 12585 unsigned long ugfn; 12586 int lpages; 12587 int level = i + 1; 12588 12589 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12590 12591 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12592 if (!linfo) 12593 goto out_free; 12594 12595 slot->arch.lpage_info[i - 1] = linfo; 12596 12597 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12598 linfo[0].disallow_lpage = 1; 12599 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12600 linfo[lpages - 1].disallow_lpage = 1; 12601 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12602 /* 12603 * If the gfn and userspace address are not aligned wrt each 12604 * other, disable large page support for this slot. 12605 */ 12606 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12607 unsigned long j; 12608 12609 for (j = 0; j < lpages; ++j) 12610 linfo[j].disallow_lpage = 1; 12611 } 12612 } 12613 12614 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12615 goto out_free; 12616 12617 return 0; 12618 12619 out_free: 12620 memslot_rmap_free(slot); 12621 12622 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12623 kvfree(slot->arch.lpage_info[i - 1]); 12624 slot->arch.lpage_info[i - 1] = NULL; 12625 } 12626 return -ENOMEM; 12627 } 12628 12629 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12630 { 12631 struct kvm_vcpu *vcpu; 12632 unsigned long i; 12633 12634 /* 12635 * memslots->generation has been incremented. 12636 * mmio generation may have reached its maximum value. 12637 */ 12638 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12639 12640 /* Force re-initialization of steal_time cache */ 12641 kvm_for_each_vcpu(i, vcpu, kvm) 12642 kvm_vcpu_kick(vcpu); 12643 } 12644 12645 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12646 const struct kvm_memory_slot *old, 12647 struct kvm_memory_slot *new, 12648 enum kvm_mr_change change) 12649 { 12650 /* 12651 * KVM doesn't support moving memslots when there are external page 12652 * trackers attached to the VM, i.e. if KVMGT is in use. 12653 */ 12654 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 12655 return -EINVAL; 12656 12657 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12658 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12659 return -EINVAL; 12660 12661 return kvm_alloc_memslot_metadata(kvm, new); 12662 } 12663 12664 if (change == KVM_MR_FLAGS_ONLY) 12665 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12666 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12667 return -EIO; 12668 12669 return 0; 12670 } 12671 12672 12673 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12674 { 12675 int nr_slots; 12676 12677 if (!kvm_x86_ops.cpu_dirty_log_size) 12678 return; 12679 12680 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12681 if ((enable && nr_slots == 1) || !nr_slots) 12682 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12683 } 12684 12685 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12686 struct kvm_memory_slot *old, 12687 const struct kvm_memory_slot *new, 12688 enum kvm_mr_change change) 12689 { 12690 u32 old_flags = old ? old->flags : 0; 12691 u32 new_flags = new ? new->flags : 0; 12692 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12693 12694 /* 12695 * Update CPU dirty logging if dirty logging is being toggled. This 12696 * applies to all operations. 12697 */ 12698 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12699 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12700 12701 /* 12702 * Nothing more to do for RO slots (which can't be dirtied and can't be 12703 * made writable) or CREATE/MOVE/DELETE of a slot. 12704 * 12705 * For a memslot with dirty logging disabled: 12706 * CREATE: No dirty mappings will already exist. 12707 * MOVE/DELETE: The old mappings will already have been cleaned up by 12708 * kvm_arch_flush_shadow_memslot() 12709 * 12710 * For a memslot with dirty logging enabled: 12711 * CREATE: No shadow pages exist, thus nothing to write-protect 12712 * and no dirty bits to clear. 12713 * MOVE/DELETE: The old mappings will already have been cleaned up by 12714 * kvm_arch_flush_shadow_memslot(). 12715 */ 12716 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12717 return; 12718 12719 /* 12720 * READONLY and non-flags changes were filtered out above, and the only 12721 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12722 * logging isn't being toggled on or off. 12723 */ 12724 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12725 return; 12726 12727 if (!log_dirty_pages) { 12728 /* 12729 * Dirty logging tracks sptes in 4k granularity, meaning that 12730 * large sptes have to be split. If live migration succeeds, 12731 * the guest in the source machine will be destroyed and large 12732 * sptes will be created in the destination. However, if the 12733 * guest continues to run in the source machine (for example if 12734 * live migration fails), small sptes will remain around and 12735 * cause bad performance. 12736 * 12737 * Scan sptes if dirty logging has been stopped, dropping those 12738 * which can be collapsed into a single large-page spte. Later 12739 * page faults will create the large-page sptes. 12740 */ 12741 kvm_mmu_zap_collapsible_sptes(kvm, new); 12742 } else { 12743 /* 12744 * Initially-all-set does not require write protecting any page, 12745 * because they're all assumed to be dirty. 12746 */ 12747 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12748 return; 12749 12750 if (READ_ONCE(eager_page_split)) 12751 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12752 12753 if (kvm_x86_ops.cpu_dirty_log_size) { 12754 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12755 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12756 } else { 12757 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12758 } 12759 12760 /* 12761 * Unconditionally flush the TLBs after enabling dirty logging. 12762 * A flush is almost always going to be necessary (see below), 12763 * and unconditionally flushing allows the helpers to omit 12764 * the subtly complex checks when removing write access. 12765 * 12766 * Do the flush outside of mmu_lock to reduce the amount of 12767 * time mmu_lock is held. Flushing after dropping mmu_lock is 12768 * safe as KVM only needs to guarantee the slot is fully 12769 * write-protected before returning to userspace, i.e. before 12770 * userspace can consume the dirty status. 12771 * 12772 * Flushing outside of mmu_lock requires KVM to be careful when 12773 * making decisions based on writable status of an SPTE, e.g. a 12774 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12775 * 12776 * Specifically, KVM also write-protects guest page tables to 12777 * monitor changes when using shadow paging, and must guarantee 12778 * no CPUs can write to those page before mmu_lock is dropped. 12779 * Because CPUs may have stale TLB entries at this point, a 12780 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12781 * 12782 * KVM also allows making SPTES writable outside of mmu_lock, 12783 * e.g. to allow dirty logging without taking mmu_lock. 12784 * 12785 * To handle these scenarios, KVM uses a separate software-only 12786 * bit (MMU-writable) to track if a SPTE is !writable due to 12787 * a guest page table being write-protected (KVM clears the 12788 * MMU-writable flag when write-protecting for shadow paging). 12789 * 12790 * The use of MMU-writable is also the primary motivation for 12791 * the unconditional flush. Because KVM must guarantee that a 12792 * CPU doesn't contain stale, writable TLB entries for a 12793 * !MMU-writable SPTE, KVM must flush if it encounters any 12794 * MMU-writable SPTE regardless of whether the actual hardware 12795 * writable bit was set. I.e. KVM is almost guaranteed to need 12796 * to flush, while unconditionally flushing allows the "remove 12797 * write access" helpers to ignore MMU-writable entirely. 12798 * 12799 * See is_writable_pte() for more details (the case involving 12800 * access-tracked SPTEs is particularly relevant). 12801 */ 12802 kvm_flush_remote_tlbs_memslot(kvm, new); 12803 } 12804 } 12805 12806 void kvm_arch_commit_memory_region(struct kvm *kvm, 12807 struct kvm_memory_slot *old, 12808 const struct kvm_memory_slot *new, 12809 enum kvm_mr_change change) 12810 { 12811 if (change == KVM_MR_DELETE) 12812 kvm_page_track_delete_slot(kvm, old); 12813 12814 if (!kvm->arch.n_requested_mmu_pages && 12815 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12816 unsigned long nr_mmu_pages; 12817 12818 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12819 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12820 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12821 } 12822 12823 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12824 12825 /* Free the arrays associated with the old memslot. */ 12826 if (change == KVM_MR_MOVE) 12827 kvm_arch_free_memslot(kvm, old); 12828 } 12829 12830 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12831 { 12832 return (is_guest_mode(vcpu) && 12833 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12834 } 12835 12836 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12837 { 12838 if (!list_empty_careful(&vcpu->async_pf.done)) 12839 return true; 12840 12841 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12842 kvm_apic_init_sipi_allowed(vcpu)) 12843 return true; 12844 12845 if (vcpu->arch.pv.pv_unhalted) 12846 return true; 12847 12848 if (kvm_is_exception_pending(vcpu)) 12849 return true; 12850 12851 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12852 (vcpu->arch.nmi_pending && 12853 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12854 return true; 12855 12856 #ifdef CONFIG_KVM_SMM 12857 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12858 (vcpu->arch.smi_pending && 12859 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12860 return true; 12861 #endif 12862 12863 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 12864 return true; 12865 12866 if (kvm_arch_interrupt_allowed(vcpu) && 12867 (kvm_cpu_has_interrupt(vcpu) || 12868 kvm_guest_apic_has_interrupt(vcpu))) 12869 return true; 12870 12871 if (kvm_hv_has_stimer_pending(vcpu)) 12872 return true; 12873 12874 if (is_guest_mode(vcpu) && 12875 kvm_x86_ops.nested_ops->has_events && 12876 kvm_x86_ops.nested_ops->has_events(vcpu)) 12877 return true; 12878 12879 if (kvm_xen_has_pending_events(vcpu)) 12880 return true; 12881 12882 return false; 12883 } 12884 12885 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12886 { 12887 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12888 } 12889 12890 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12891 { 12892 if (kvm_vcpu_apicv_active(vcpu) && 12893 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12894 return true; 12895 12896 return false; 12897 } 12898 12899 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12900 { 12901 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12902 return true; 12903 12904 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12905 #ifdef CONFIG_KVM_SMM 12906 kvm_test_request(KVM_REQ_SMI, vcpu) || 12907 #endif 12908 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12909 return true; 12910 12911 return kvm_arch_dy_has_pending_interrupt(vcpu); 12912 } 12913 12914 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12915 { 12916 if (vcpu->arch.guest_state_protected) 12917 return true; 12918 12919 return vcpu->arch.preempted_in_kernel; 12920 } 12921 12922 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12923 { 12924 return kvm_rip_read(vcpu); 12925 } 12926 12927 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12928 { 12929 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12930 } 12931 12932 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12933 { 12934 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12935 } 12936 12937 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12938 { 12939 /* Can't read the RIP when guest state is protected, just return 0 */ 12940 if (vcpu->arch.guest_state_protected) 12941 return 0; 12942 12943 if (is_64_bit_mode(vcpu)) 12944 return kvm_rip_read(vcpu); 12945 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12946 kvm_rip_read(vcpu)); 12947 } 12948 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12949 12950 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12951 { 12952 return kvm_get_linear_rip(vcpu) == linear_rip; 12953 } 12954 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12955 12956 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12957 { 12958 unsigned long rflags; 12959 12960 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12961 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12962 rflags &= ~X86_EFLAGS_TF; 12963 return rflags; 12964 } 12965 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12966 12967 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12968 { 12969 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12970 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12971 rflags |= X86_EFLAGS_TF; 12972 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12973 } 12974 12975 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12976 { 12977 __kvm_set_rflags(vcpu, rflags); 12978 kvm_make_request(KVM_REQ_EVENT, vcpu); 12979 } 12980 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12981 12982 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12983 { 12984 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12985 12986 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12987 } 12988 12989 static inline u32 kvm_async_pf_next_probe(u32 key) 12990 { 12991 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12992 } 12993 12994 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12995 { 12996 u32 key = kvm_async_pf_hash_fn(gfn); 12997 12998 while (vcpu->arch.apf.gfns[key] != ~0) 12999 key = kvm_async_pf_next_probe(key); 13000 13001 vcpu->arch.apf.gfns[key] = gfn; 13002 } 13003 13004 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13005 { 13006 int i; 13007 u32 key = kvm_async_pf_hash_fn(gfn); 13008 13009 for (i = 0; i < ASYNC_PF_PER_VCPU && 13010 (vcpu->arch.apf.gfns[key] != gfn && 13011 vcpu->arch.apf.gfns[key] != ~0); i++) 13012 key = kvm_async_pf_next_probe(key); 13013 13014 return key; 13015 } 13016 13017 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13018 { 13019 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13020 } 13021 13022 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13023 { 13024 u32 i, j, k; 13025 13026 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13027 13028 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13029 return; 13030 13031 while (true) { 13032 vcpu->arch.apf.gfns[i] = ~0; 13033 do { 13034 j = kvm_async_pf_next_probe(j); 13035 if (vcpu->arch.apf.gfns[j] == ~0) 13036 return; 13037 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13038 /* 13039 * k lies cyclically in ]i,j] 13040 * | i.k.j | 13041 * |....j i.k.| or |.k..j i...| 13042 */ 13043 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13044 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13045 i = j; 13046 } 13047 } 13048 13049 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13050 { 13051 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13052 13053 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13054 sizeof(reason)); 13055 } 13056 13057 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13058 { 13059 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13060 13061 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13062 &token, offset, sizeof(token)); 13063 } 13064 13065 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13066 { 13067 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13068 u32 val; 13069 13070 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13071 &val, offset, sizeof(val))) 13072 return false; 13073 13074 return !val; 13075 } 13076 13077 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13078 { 13079 13080 if (!kvm_pv_async_pf_enabled(vcpu)) 13081 return false; 13082 13083 if (vcpu->arch.apf.send_user_only && 13084 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13085 return false; 13086 13087 if (is_guest_mode(vcpu)) { 13088 /* 13089 * L1 needs to opt into the special #PF vmexits that are 13090 * used to deliver async page faults. 13091 */ 13092 return vcpu->arch.apf.delivery_as_pf_vmexit; 13093 } else { 13094 /* 13095 * Play it safe in case the guest temporarily disables paging. 13096 * The real mode IDT in particular is unlikely to have a #PF 13097 * exception setup. 13098 */ 13099 return is_paging(vcpu); 13100 } 13101 } 13102 13103 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13104 { 13105 if (unlikely(!lapic_in_kernel(vcpu) || 13106 kvm_event_needs_reinjection(vcpu) || 13107 kvm_is_exception_pending(vcpu))) 13108 return false; 13109 13110 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13111 return false; 13112 13113 /* 13114 * If interrupts are off we cannot even use an artificial 13115 * halt state. 13116 */ 13117 return kvm_arch_interrupt_allowed(vcpu); 13118 } 13119 13120 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13121 struct kvm_async_pf *work) 13122 { 13123 struct x86_exception fault; 13124 13125 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13126 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13127 13128 if (kvm_can_deliver_async_pf(vcpu) && 13129 !apf_put_user_notpresent(vcpu)) { 13130 fault.vector = PF_VECTOR; 13131 fault.error_code_valid = true; 13132 fault.error_code = 0; 13133 fault.nested_page_fault = false; 13134 fault.address = work->arch.token; 13135 fault.async_page_fault = true; 13136 kvm_inject_page_fault(vcpu, &fault); 13137 return true; 13138 } else { 13139 /* 13140 * It is not possible to deliver a paravirtualized asynchronous 13141 * page fault, but putting the guest in an artificial halt state 13142 * can be beneficial nevertheless: if an interrupt arrives, we 13143 * can deliver it timely and perhaps the guest will schedule 13144 * another process. When the instruction that triggered a page 13145 * fault is retried, hopefully the page will be ready in the host. 13146 */ 13147 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13148 return false; 13149 } 13150 } 13151 13152 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13153 struct kvm_async_pf *work) 13154 { 13155 struct kvm_lapic_irq irq = { 13156 .delivery_mode = APIC_DM_FIXED, 13157 .vector = vcpu->arch.apf.vec 13158 }; 13159 13160 if (work->wakeup_all) 13161 work->arch.token = ~0; /* broadcast wakeup */ 13162 else 13163 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13164 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13165 13166 if ((work->wakeup_all || work->notpresent_injected) && 13167 kvm_pv_async_pf_enabled(vcpu) && 13168 !apf_put_user_ready(vcpu, work->arch.token)) { 13169 vcpu->arch.apf.pageready_pending = true; 13170 kvm_apic_set_irq(vcpu, &irq, NULL); 13171 } 13172 13173 vcpu->arch.apf.halted = false; 13174 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13175 } 13176 13177 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13178 { 13179 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13180 if (!vcpu->arch.apf.pageready_pending) 13181 kvm_vcpu_kick(vcpu); 13182 } 13183 13184 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13185 { 13186 if (!kvm_pv_async_pf_enabled(vcpu)) 13187 return true; 13188 else 13189 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13190 } 13191 13192 void kvm_arch_start_assignment(struct kvm *kvm) 13193 { 13194 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13195 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13196 } 13197 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13198 13199 void kvm_arch_end_assignment(struct kvm *kvm) 13200 { 13201 atomic_dec(&kvm->arch.assigned_device_count); 13202 } 13203 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13204 13205 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13206 { 13207 return raw_atomic_read(&kvm->arch.assigned_device_count); 13208 } 13209 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13210 13211 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13212 { 13213 atomic_inc(&kvm->arch.noncoherent_dma_count); 13214 } 13215 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13216 13217 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13218 { 13219 atomic_dec(&kvm->arch.noncoherent_dma_count); 13220 } 13221 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13222 13223 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13224 { 13225 return atomic_read(&kvm->arch.noncoherent_dma_count); 13226 } 13227 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13228 13229 bool kvm_arch_has_irq_bypass(void) 13230 { 13231 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13232 } 13233 13234 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13235 struct irq_bypass_producer *prod) 13236 { 13237 struct kvm_kernel_irqfd *irqfd = 13238 container_of(cons, struct kvm_kernel_irqfd, consumer); 13239 int ret; 13240 13241 irqfd->producer = prod; 13242 kvm_arch_start_assignment(irqfd->kvm); 13243 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13244 prod->irq, irqfd->gsi, 1); 13245 13246 if (ret) 13247 kvm_arch_end_assignment(irqfd->kvm); 13248 13249 return ret; 13250 } 13251 13252 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13253 struct irq_bypass_producer *prod) 13254 { 13255 int ret; 13256 struct kvm_kernel_irqfd *irqfd = 13257 container_of(cons, struct kvm_kernel_irqfd, consumer); 13258 13259 WARN_ON(irqfd->producer != prod); 13260 irqfd->producer = NULL; 13261 13262 /* 13263 * When producer of consumer is unregistered, we change back to 13264 * remapped mode, so we can re-use the current implementation 13265 * when the irq is masked/disabled or the consumer side (KVM 13266 * int this case doesn't want to receive the interrupts. 13267 */ 13268 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13269 if (ret) 13270 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13271 " fails: %d\n", irqfd->consumer.token, ret); 13272 13273 kvm_arch_end_assignment(irqfd->kvm); 13274 } 13275 13276 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13277 uint32_t guest_irq, bool set) 13278 { 13279 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13280 } 13281 13282 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13283 struct kvm_kernel_irq_routing_entry *new) 13284 { 13285 if (new->type != KVM_IRQ_ROUTING_MSI) 13286 return true; 13287 13288 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13289 } 13290 13291 bool kvm_vector_hashing_enabled(void) 13292 { 13293 return vector_hashing; 13294 } 13295 13296 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13297 { 13298 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13299 } 13300 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13301 13302 13303 int kvm_spec_ctrl_test_value(u64 value) 13304 { 13305 /* 13306 * test that setting IA32_SPEC_CTRL to given value 13307 * is allowed by the host processor 13308 */ 13309 13310 u64 saved_value; 13311 unsigned long flags; 13312 int ret = 0; 13313 13314 local_irq_save(flags); 13315 13316 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13317 ret = 1; 13318 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13319 ret = 1; 13320 else 13321 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13322 13323 local_irq_restore(flags); 13324 13325 return ret; 13326 } 13327 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13328 13329 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13330 { 13331 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13332 struct x86_exception fault; 13333 u64 access = error_code & 13334 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13335 13336 if (!(error_code & PFERR_PRESENT_MASK) || 13337 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13338 /* 13339 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13340 * tables probably do not match the TLB. Just proceed 13341 * with the error code that the processor gave. 13342 */ 13343 fault.vector = PF_VECTOR; 13344 fault.error_code_valid = true; 13345 fault.error_code = error_code; 13346 fault.nested_page_fault = false; 13347 fault.address = gva; 13348 fault.async_page_fault = false; 13349 } 13350 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13351 } 13352 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13353 13354 /* 13355 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13356 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13357 * indicates whether exit to userspace is needed. 13358 */ 13359 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13360 struct x86_exception *e) 13361 { 13362 if (r == X86EMUL_PROPAGATE_FAULT) { 13363 if (KVM_BUG_ON(!e, vcpu->kvm)) 13364 return -EIO; 13365 13366 kvm_inject_emulated_page_fault(vcpu, e); 13367 return 1; 13368 } 13369 13370 /* 13371 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13372 * while handling a VMX instruction KVM could've handled the request 13373 * correctly by exiting to userspace and performing I/O but there 13374 * doesn't seem to be a real use-case behind such requests, just return 13375 * KVM_EXIT_INTERNAL_ERROR for now. 13376 */ 13377 kvm_prepare_emulation_failure_exit(vcpu); 13378 13379 return 0; 13380 } 13381 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13382 13383 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13384 { 13385 bool pcid_enabled; 13386 struct x86_exception e; 13387 struct { 13388 u64 pcid; 13389 u64 gla; 13390 } operand; 13391 int r; 13392 13393 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13394 if (r != X86EMUL_CONTINUE) 13395 return kvm_handle_memory_failure(vcpu, r, &e); 13396 13397 if (operand.pcid >> 12 != 0) { 13398 kvm_inject_gp(vcpu, 0); 13399 return 1; 13400 } 13401 13402 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13403 13404 switch (type) { 13405 case INVPCID_TYPE_INDIV_ADDR: 13406 if ((!pcid_enabled && (operand.pcid != 0)) || 13407 is_noncanonical_address(operand.gla, vcpu)) { 13408 kvm_inject_gp(vcpu, 0); 13409 return 1; 13410 } 13411 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13412 return kvm_skip_emulated_instruction(vcpu); 13413 13414 case INVPCID_TYPE_SINGLE_CTXT: 13415 if (!pcid_enabled && (operand.pcid != 0)) { 13416 kvm_inject_gp(vcpu, 0); 13417 return 1; 13418 } 13419 13420 kvm_invalidate_pcid(vcpu, operand.pcid); 13421 return kvm_skip_emulated_instruction(vcpu); 13422 13423 case INVPCID_TYPE_ALL_NON_GLOBAL: 13424 /* 13425 * Currently, KVM doesn't mark global entries in the shadow 13426 * page tables, so a non-global flush just degenerates to a 13427 * global flush. If needed, we could optimize this later by 13428 * keeping track of global entries in shadow page tables. 13429 */ 13430 13431 fallthrough; 13432 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13433 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13434 return kvm_skip_emulated_instruction(vcpu); 13435 13436 default: 13437 kvm_inject_gp(vcpu, 0); 13438 return 1; 13439 } 13440 } 13441 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13442 13443 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13444 { 13445 struct kvm_run *run = vcpu->run; 13446 struct kvm_mmio_fragment *frag; 13447 unsigned int len; 13448 13449 BUG_ON(!vcpu->mmio_needed); 13450 13451 /* Complete previous fragment */ 13452 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13453 len = min(8u, frag->len); 13454 if (!vcpu->mmio_is_write) 13455 memcpy(frag->data, run->mmio.data, len); 13456 13457 if (frag->len <= 8) { 13458 /* Switch to the next fragment. */ 13459 frag++; 13460 vcpu->mmio_cur_fragment++; 13461 } else { 13462 /* Go forward to the next mmio piece. */ 13463 frag->data += len; 13464 frag->gpa += len; 13465 frag->len -= len; 13466 } 13467 13468 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13469 vcpu->mmio_needed = 0; 13470 13471 // VMG change, at this point, we're always done 13472 // RIP has already been advanced 13473 return 1; 13474 } 13475 13476 // More MMIO is needed 13477 run->mmio.phys_addr = frag->gpa; 13478 run->mmio.len = min(8u, frag->len); 13479 run->mmio.is_write = vcpu->mmio_is_write; 13480 if (run->mmio.is_write) 13481 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13482 run->exit_reason = KVM_EXIT_MMIO; 13483 13484 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13485 13486 return 0; 13487 } 13488 13489 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13490 void *data) 13491 { 13492 int handled; 13493 struct kvm_mmio_fragment *frag; 13494 13495 if (!data) 13496 return -EINVAL; 13497 13498 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13499 if (handled == bytes) 13500 return 1; 13501 13502 bytes -= handled; 13503 gpa += handled; 13504 data += handled; 13505 13506 /*TODO: Check if need to increment number of frags */ 13507 frag = vcpu->mmio_fragments; 13508 vcpu->mmio_nr_fragments = 1; 13509 frag->len = bytes; 13510 frag->gpa = gpa; 13511 frag->data = data; 13512 13513 vcpu->mmio_needed = 1; 13514 vcpu->mmio_cur_fragment = 0; 13515 13516 vcpu->run->mmio.phys_addr = gpa; 13517 vcpu->run->mmio.len = min(8u, frag->len); 13518 vcpu->run->mmio.is_write = 1; 13519 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13520 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13521 13522 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13523 13524 return 0; 13525 } 13526 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13527 13528 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13529 void *data) 13530 { 13531 int handled; 13532 struct kvm_mmio_fragment *frag; 13533 13534 if (!data) 13535 return -EINVAL; 13536 13537 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13538 if (handled == bytes) 13539 return 1; 13540 13541 bytes -= handled; 13542 gpa += handled; 13543 data += handled; 13544 13545 /*TODO: Check if need to increment number of frags */ 13546 frag = vcpu->mmio_fragments; 13547 vcpu->mmio_nr_fragments = 1; 13548 frag->len = bytes; 13549 frag->gpa = gpa; 13550 frag->data = data; 13551 13552 vcpu->mmio_needed = 1; 13553 vcpu->mmio_cur_fragment = 0; 13554 13555 vcpu->run->mmio.phys_addr = gpa; 13556 vcpu->run->mmio.len = min(8u, frag->len); 13557 vcpu->run->mmio.is_write = 0; 13558 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13559 13560 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13561 13562 return 0; 13563 } 13564 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13565 13566 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13567 { 13568 vcpu->arch.sev_pio_count -= count; 13569 vcpu->arch.sev_pio_data += count * size; 13570 } 13571 13572 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13573 unsigned int port); 13574 13575 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13576 { 13577 int size = vcpu->arch.pio.size; 13578 int port = vcpu->arch.pio.port; 13579 13580 vcpu->arch.pio.count = 0; 13581 if (vcpu->arch.sev_pio_count) 13582 return kvm_sev_es_outs(vcpu, size, port); 13583 return 1; 13584 } 13585 13586 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13587 unsigned int port) 13588 { 13589 for (;;) { 13590 unsigned int count = 13591 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13592 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13593 13594 /* memcpy done already by emulator_pio_out. */ 13595 advance_sev_es_emulated_pio(vcpu, count, size); 13596 if (!ret) 13597 break; 13598 13599 /* Emulation done by the kernel. */ 13600 if (!vcpu->arch.sev_pio_count) 13601 return 1; 13602 } 13603 13604 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13605 return 0; 13606 } 13607 13608 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13609 unsigned int port); 13610 13611 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13612 { 13613 unsigned count = vcpu->arch.pio.count; 13614 int size = vcpu->arch.pio.size; 13615 int port = vcpu->arch.pio.port; 13616 13617 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13618 advance_sev_es_emulated_pio(vcpu, count, size); 13619 if (vcpu->arch.sev_pio_count) 13620 return kvm_sev_es_ins(vcpu, size, port); 13621 return 1; 13622 } 13623 13624 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13625 unsigned int port) 13626 { 13627 for (;;) { 13628 unsigned int count = 13629 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13630 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13631 break; 13632 13633 /* Emulation done by the kernel. */ 13634 advance_sev_es_emulated_pio(vcpu, count, size); 13635 if (!vcpu->arch.sev_pio_count) 13636 return 1; 13637 } 13638 13639 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13640 return 0; 13641 } 13642 13643 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13644 unsigned int port, void *data, unsigned int count, 13645 int in) 13646 { 13647 vcpu->arch.sev_pio_data = data; 13648 vcpu->arch.sev_pio_count = count; 13649 return in ? kvm_sev_es_ins(vcpu, size, port) 13650 : kvm_sev_es_outs(vcpu, size, port); 13651 } 13652 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13653 13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13683 13684 static int __init kvm_x86_init(void) 13685 { 13686 kvm_mmu_x86_module_init(); 13687 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13688 return 0; 13689 } 13690 module_init(kvm_x86_init); 13691 13692 static void __exit kvm_x86_exit(void) 13693 { 13694 /* 13695 * If module_init() is implemented, module_exit() must also be 13696 * implemented to allow module unload. 13697 */ 13698 } 13699 module_exit(kvm_x86_exit); 13700